1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
  24  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
  25  * Copyright (c) 2014 Integros [integros.com]
  26  * Copyright 2017 RackTop Systems.
  27  */
  28 
  29 #include <sys/zfs_context.h>
  30 #include <sys/dbuf.h>
  31 #include <sys/dnode.h>
  32 #include <sys/dmu.h>
  33 #include <sys/dmu_impl.h>
  34 #include <sys/dmu_tx.h>
  35 #include <sys/dmu_objset.h>
  36 #include <sys/dsl_dir.h>
  37 #include <sys/dsl_dataset.h>
  38 #include <sys/spa.h>
  39 #include <sys/zio.h>
  40 #include <sys/dmu_zfetch.h>
  41 #include <sys/range_tree.h>
  42 #include <sys/zfs_project.h>
  43 
  44 dnode_stats_t dnode_stats = {
  45         { "dnode_hold_dbuf_hold",               KSTAT_DATA_UINT64 },
  46         { "dnode_hold_dbuf_read",               KSTAT_DATA_UINT64 },
  47         { "dnode_hold_alloc_hits",              KSTAT_DATA_UINT64 },
  48         { "dnode_hold_alloc_misses",            KSTAT_DATA_UINT64 },
  49         { "dnode_hold_alloc_interior",          KSTAT_DATA_UINT64 },
  50         { "dnode_hold_alloc_lock_retry",        KSTAT_DATA_UINT64 },
  51         { "dnode_hold_alloc_lock_misses",       KSTAT_DATA_UINT64 },
  52         { "dnode_hold_alloc_type_none",         KSTAT_DATA_UINT64 },
  53         { "dnode_hold_free_hits",               KSTAT_DATA_UINT64 },
  54         { "dnode_hold_free_misses",             KSTAT_DATA_UINT64 },
  55         { "dnode_hold_free_lock_misses",        KSTAT_DATA_UINT64 },
  56         { "dnode_hold_free_lock_retry",         KSTAT_DATA_UINT64 },
  57         { "dnode_hold_free_overflow",           KSTAT_DATA_UINT64 },
  58         { "dnode_hold_free_refcount",           KSTAT_DATA_UINT64 },
  59         { "dnode_free_interior_lock_retry",     KSTAT_DATA_UINT64 },
  60         { "dnode_allocate",                     KSTAT_DATA_UINT64 },
  61         { "dnode_reallocate",                   KSTAT_DATA_UINT64 },
  62         { "dnode_buf_evict",                    KSTAT_DATA_UINT64 },
  63         { "dnode_alloc_next_chunk",             KSTAT_DATA_UINT64 },
  64         { "dnode_alloc_race",                   KSTAT_DATA_UINT64 },
  65         { "dnode_alloc_next_block",             KSTAT_DATA_UINT64 },
  66         { "dnode_move_invalid",                 KSTAT_DATA_UINT64 },
  67         { "dnode_move_recheck1",                KSTAT_DATA_UINT64 },
  68         { "dnode_move_recheck2",                KSTAT_DATA_UINT64 },
  69         { "dnode_move_special",                 KSTAT_DATA_UINT64 },
  70         { "dnode_move_handle",                  KSTAT_DATA_UINT64 },
  71         { "dnode_move_rwlock",                  KSTAT_DATA_UINT64 },
  72         { "dnode_move_active",                  KSTAT_DATA_UINT64 },
  73 };
  74 
  75 static kstat_t *dnode_ksp;
  76 static kmem_cache_t *dnode_cache;
  77 
  78 static dnode_phys_t dnode_phys_zero;
  79 
  80 int zfs_default_bs = SPA_MINBLOCKSHIFT;
  81 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
  82 
  83 #ifdef  _KERNEL
  84 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
  85 #endif  /* _KERNEL */
  86 
  87 static int
  88 dbuf_compare(const void *x1, const void *x2)
  89 {
  90         const dmu_buf_impl_t *d1 = x1;
  91         const dmu_buf_impl_t *d2 = x2;
  92 
  93         int cmp = AVL_CMP(d1->db_level, d2->db_level);
  94         if (likely(cmp))
  95                 return (cmp);
  96 
  97         cmp = AVL_CMP(d1->db_blkid, d2->db_blkid);
  98         if (likely(cmp))
  99                 return (cmp);
 100 
 101         if (d1->db_state == DB_SEARCH) {
 102                 ASSERT3S(d2->db_state, !=, DB_SEARCH);
 103                 return (-1);
 104         } else if (d2->db_state == DB_SEARCH) {
 105                 ASSERT3S(d1->db_state, !=, DB_SEARCH);
 106                 return (1);
 107         }
 108 
 109         return (AVL_PCMP(d1, d2));
 110 }
 111 
 112 /* ARGSUSED */
 113 static int
 114 dnode_cons(void *arg, void *unused, int kmflag)
 115 {
 116         dnode_t *dn = arg;
 117         int i;
 118 
 119         rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
 120         mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
 121         mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
 122         cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
 123 
 124         /*
 125          * Every dbuf has a reference, and dropping a tracked reference is
 126          * O(number of references), so don't track dn_holds.
 127          */
 128         zfs_refcount_create_untracked(&dn->dn_holds);
 129         zfs_refcount_create(&dn->dn_tx_holds);
 130         list_link_init(&dn->dn_link);
 131 
 132         bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
 133         bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
 134         bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
 135         bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
 136         bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
 137         bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
 138         bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
 139         bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid));
 140 
 141         for (i = 0; i < TXG_SIZE; i++) {
 142                 multilist_link_init(&dn->dn_dirty_link[i]);
 143                 dn->dn_free_ranges[i] = NULL;
 144                 list_create(&dn->dn_dirty_records[i],
 145                     sizeof (dbuf_dirty_record_t),
 146                     offsetof(dbuf_dirty_record_t, dr_dirty_node));
 147         }
 148 
 149         dn->dn_allocated_txg = 0;
 150         dn->dn_free_txg = 0;
 151         dn->dn_assigned_txg = 0;
 152         dn->dn_dirty_txg = 0;
 153         dn->dn_dirtyctx = 0;
 154         dn->dn_dirtyctx_firstset = NULL;
 155         dn->dn_bonus = NULL;
 156         dn->dn_have_spill = B_FALSE;
 157         dn->dn_zio = NULL;
 158         dn->dn_oldused = 0;
 159         dn->dn_oldflags = 0;
 160         dn->dn_olduid = 0;
 161         dn->dn_oldgid = 0;
 162         dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
 163         dn->dn_newuid = 0;
 164         dn->dn_newgid = 0;
 165         dn->dn_newprojid = ZFS_DEFAULT_PROJID;
 166         dn->dn_id_flags = 0;
 167 
 168         dn->dn_dbufs_count = 0;
 169         avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
 170             offsetof(dmu_buf_impl_t, db_link));
 171 
 172         dn->dn_moved = 0;
 173         return (0);
 174 }
 175 
 176 /* ARGSUSED */
 177 static void
 178 dnode_dest(void *arg, void *unused)
 179 {
 180         int i;
 181         dnode_t *dn = arg;
 182 
 183         rw_destroy(&dn->dn_struct_rwlock);
 184         mutex_destroy(&dn->dn_mtx);
 185         mutex_destroy(&dn->dn_dbufs_mtx);
 186         cv_destroy(&dn->dn_notxholds);
 187         zfs_refcount_destroy(&dn->dn_holds);
 188         zfs_refcount_destroy(&dn->dn_tx_holds);
 189         ASSERT(!list_link_active(&dn->dn_link));
 190 
 191         for (i = 0; i < TXG_SIZE; i++) {
 192                 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
 193                 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
 194                 list_destroy(&dn->dn_dirty_records[i]);
 195                 ASSERT0(dn->dn_next_nblkptr[i]);
 196                 ASSERT0(dn->dn_next_nlevels[i]);
 197                 ASSERT0(dn->dn_next_indblkshift[i]);
 198                 ASSERT0(dn->dn_next_bonustype[i]);
 199                 ASSERT0(dn->dn_rm_spillblk[i]);
 200                 ASSERT0(dn->dn_next_bonuslen[i]);
 201                 ASSERT0(dn->dn_next_blksz[i]);
 202                 ASSERT0(dn->dn_next_maxblkid[i]);
 203         }
 204 
 205         ASSERT0(dn->dn_allocated_txg);
 206         ASSERT0(dn->dn_free_txg);
 207         ASSERT0(dn->dn_assigned_txg);
 208         ASSERT0(dn->dn_dirty_txg);
 209         ASSERT0(dn->dn_dirtyctx);
 210         ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
 211         ASSERT3P(dn->dn_bonus, ==, NULL);
 212         ASSERT(!dn->dn_have_spill);
 213         ASSERT3P(dn->dn_zio, ==, NULL);
 214         ASSERT0(dn->dn_oldused);
 215         ASSERT0(dn->dn_oldflags);
 216         ASSERT0(dn->dn_olduid);
 217         ASSERT0(dn->dn_oldgid);
 218         ASSERT0(dn->dn_oldprojid);
 219         ASSERT0(dn->dn_newuid);
 220         ASSERT0(dn->dn_newgid);
 221         ASSERT0(dn->dn_newprojid);
 222         ASSERT0(dn->dn_id_flags);
 223 
 224         ASSERT0(dn->dn_dbufs_count);
 225         avl_destroy(&dn->dn_dbufs);
 226 }
 227 
 228 void
 229 dnode_init(void)
 230 {
 231         ASSERT(dnode_cache == NULL);
 232         dnode_cache = kmem_cache_create("dnode_t",
 233             sizeof (dnode_t),
 234             0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
 235 #ifdef  _KERNEL
 236         kmem_cache_set_move(dnode_cache, dnode_move);
 237 
 238         dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc",
 239             KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t),
 240             KSTAT_FLAG_VIRTUAL);
 241         if (dnode_ksp != NULL) {
 242                 dnode_ksp->ks_data = &dnode_stats;
 243                 kstat_install(dnode_ksp);
 244         }
 245 #endif  /* _KERNEL */
 246 }
 247 
 248 void
 249 dnode_fini(void)
 250 {
 251         if (dnode_ksp != NULL) {
 252                 kstat_delete(dnode_ksp);
 253                 dnode_ksp = NULL;
 254         }
 255 
 256         kmem_cache_destroy(dnode_cache);
 257         dnode_cache = NULL;
 258 }
 259 
 260 
 261 #ifdef ZFS_DEBUG
 262 void
 263 dnode_verify(dnode_t *dn)
 264 {
 265         int drop_struct_lock = FALSE;
 266 
 267         ASSERT(dn->dn_phys);
 268         ASSERT(dn->dn_objset);
 269         ASSERT(dn->dn_handle->dnh_dnode == dn);
 270 
 271         ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
 272 
 273         if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
 274                 return;
 275 
 276         if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
 277                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
 278                 drop_struct_lock = TRUE;
 279         }
 280         if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
 281                 int i;
 282                 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
 283                 ASSERT3U(dn->dn_indblkshift, >=, 0);
 284                 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
 285                 if (dn->dn_datablkshift) {
 286                         ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
 287                         ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
 288                         ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
 289                 }
 290                 ASSERT3U(dn->dn_nlevels, <=, 30);
 291                 ASSERT(DMU_OT_IS_VALID(dn->dn_type));
 292                 ASSERT3U(dn->dn_nblkptr, >=, 1);
 293                 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
 294                 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen);
 295                 ASSERT3U(dn->dn_datablksz, ==,
 296                     dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
 297                 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
 298                 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
 299                     dn->dn_bonuslen, <=, max_bonuslen);
 300                 for (i = 0; i < TXG_SIZE; i++) {
 301                         ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
 302                 }
 303         }
 304         if (dn->dn_phys->dn_type != DMU_OT_NONE)
 305                 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
 306         ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
 307         if (dn->dn_dbuf != NULL) {
 308                 ASSERT3P(dn->dn_phys, ==,
 309                     (dnode_phys_t *)dn->dn_dbuf->db.db_data +
 310                     (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
 311         }
 312         if (drop_struct_lock)
 313                 rw_exit(&dn->dn_struct_rwlock);
 314 }
 315 #endif
 316 
 317 void
 318 dnode_byteswap(dnode_phys_t *dnp)
 319 {
 320         uint64_t *buf64 = (void*)&dnp->dn_blkptr;
 321         int i;
 322 
 323         if (dnp->dn_type == DMU_OT_NONE) {
 324                 bzero(dnp, sizeof (dnode_phys_t));
 325                 return;
 326         }
 327 
 328         dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
 329         dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
 330         dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots);
 331         dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
 332         dnp->dn_used = BSWAP_64(dnp->dn_used);
 333 
 334         /*
 335          * dn_nblkptr is only one byte, so it's OK to read it in either
 336          * byte order.  We can't read dn_bouslen.
 337          */
 338         ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
 339         ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
 340         for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
 341                 buf64[i] = BSWAP_64(buf64[i]);
 342 
 343         /*
 344          * OK to check dn_bonuslen for zero, because it won't matter if
 345          * we have the wrong byte order.  This is necessary because the
 346          * dnode dnode is smaller than a regular dnode.
 347          */
 348         if (dnp->dn_bonuslen != 0) {
 349                 /*
 350                  * Note that the bonus length calculated here may be
 351                  * longer than the actual bonus buffer.  This is because
 352                  * we always put the bonus buffer after the last block
 353                  * pointer (instead of packing it against the end of the
 354                  * dnode buffer).
 355                  */
 356                 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
 357                 int slots = dnp->dn_extra_slots + 1;
 358                 size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off;
 359                 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
 360                 dmu_object_byteswap_t byteswap =
 361                     DMU_OT_BYTESWAP(dnp->dn_bonustype);
 362                 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
 363         }
 364 
 365         /* Swap SPILL block if we have one */
 366         if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
 367                 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
 368 
 369 }
 370 
 371 void
 372 dnode_buf_byteswap(void *vbuf, size_t size)
 373 {
 374         int i = 0;
 375 
 376         ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
 377         ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
 378 
 379         while (i < size) {
 380                 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i);
 381                 dnode_byteswap(dnp);
 382 
 383                 i += DNODE_MIN_SIZE;
 384                 if (dnp->dn_type != DMU_OT_NONE)
 385                         i += dnp->dn_extra_slots * DNODE_MIN_SIZE;
 386         }
 387 }
 388 
 389 void
 390 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
 391 {
 392         ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
 393 
 394         dnode_setdirty(dn, tx);
 395         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 396         ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
 397             (dn->dn_nblkptr-1) * sizeof (blkptr_t));
 398         dn->dn_bonuslen = newsize;
 399         if (newsize == 0)
 400                 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
 401         else
 402                 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
 403         rw_exit(&dn->dn_struct_rwlock);
 404 }
 405 
 406 void
 407 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
 408 {
 409         ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
 410         dnode_setdirty(dn, tx);
 411         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 412         dn->dn_bonustype = newtype;
 413         dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
 414         rw_exit(&dn->dn_struct_rwlock);
 415 }
 416 
 417 void
 418 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
 419 {
 420         ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
 421         ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
 422         dnode_setdirty(dn, tx);
 423         dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
 424         dn->dn_have_spill = B_FALSE;
 425 }
 426 
 427 static void
 428 dnode_setdblksz(dnode_t *dn, int size)
 429 {
 430         ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
 431         ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
 432         ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
 433         ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
 434             1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
 435         dn->dn_datablksz = size;
 436         dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
 437         dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
 438 }
 439 
 440 static dnode_t *
 441 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
 442     uint64_t object, dnode_handle_t *dnh)
 443 {
 444         dnode_t *dn;
 445 
 446         dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
 447 #ifdef _KERNEL
 448         ASSERT(!POINTER_IS_VALID(dn->dn_objset));
 449 #endif /* _KERNEL */
 450         dn->dn_moved = 0;
 451 
 452         /*
 453          * Defer setting dn_objset until the dnode is ready to be a candidate
 454          * for the dnode_move() callback.
 455          */
 456         dn->dn_object = object;
 457         dn->dn_dbuf = db;
 458         dn->dn_handle = dnh;
 459         dn->dn_phys = dnp;
 460 
 461         if (dnp->dn_datablkszsec) {
 462                 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
 463         } else {
 464                 dn->dn_datablksz = 0;
 465                 dn->dn_datablkszsec = 0;
 466                 dn->dn_datablkshift = 0;
 467         }
 468         dn->dn_indblkshift = dnp->dn_indblkshift;
 469         dn->dn_nlevels = dnp->dn_nlevels;
 470         dn->dn_type = dnp->dn_type;
 471         dn->dn_nblkptr = dnp->dn_nblkptr;
 472         dn->dn_checksum = dnp->dn_checksum;
 473         dn->dn_compress = dnp->dn_compress;
 474         dn->dn_bonustype = dnp->dn_bonustype;
 475         dn->dn_bonuslen = dnp->dn_bonuslen;
 476         dn->dn_num_slots = dnp->dn_extra_slots + 1;
 477         dn->dn_maxblkid = dnp->dn_maxblkid;
 478         dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
 479         dn->dn_id_flags = 0;
 480 
 481         dmu_zfetch_init(&dn->dn_zfetch, dn);
 482 
 483         ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
 484         ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
 485         ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode));
 486 
 487         mutex_enter(&os->os_lock);
 488 
 489         /*
 490          * Exclude special dnodes from os_dnodes so an empty os_dnodes
 491          * signifies that the special dnodes have no references from
 492          * their children (the entries in os_dnodes).  This allows
 493          * dnode_destroy() to easily determine if the last child has
 494          * been removed and then complete eviction of the objset.
 495          */
 496         if (!DMU_OBJECT_IS_SPECIAL(object))
 497                 list_insert_head(&os->os_dnodes, dn);
 498         membar_producer();
 499 
 500         /*
 501          * Everything else must be valid before assigning dn_objset
 502          * makes the dnode eligible for dnode_move().
 503          */
 504         dn->dn_objset = os;
 505 
 506         dnh->dnh_dnode = dn;
 507         mutex_exit(&os->os_lock);
 508 
 509         arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
 510 
 511         return (dn);
 512 }
 513 
 514 /*
 515  * Caller must be holding the dnode handle, which is released upon return.
 516  */
 517 static void
 518 dnode_destroy(dnode_t *dn)
 519 {
 520         objset_t *os = dn->dn_objset;
 521         boolean_t complete_os_eviction = B_FALSE;
 522 
 523         ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
 524 
 525         mutex_enter(&os->os_lock);
 526         POINTER_INVALIDATE(&dn->dn_objset);
 527         if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
 528                 list_remove(&os->os_dnodes, dn);
 529                 complete_os_eviction =
 530                     list_is_empty(&os->os_dnodes) &&
 531                     list_link_active(&os->os_evicting_node);
 532         }
 533         mutex_exit(&os->os_lock);
 534 
 535         /* the dnode can no longer move, so we can release the handle */
 536         if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock))
 537                 zrl_remove(&dn->dn_handle->dnh_zrlock);
 538 
 539         dn->dn_allocated_txg = 0;
 540         dn->dn_free_txg = 0;
 541         dn->dn_assigned_txg = 0;
 542         dn->dn_dirty_txg = 0;
 543 
 544         dn->dn_dirtyctx = 0;
 545         if (dn->dn_dirtyctx_firstset != NULL) {
 546                 kmem_free(dn->dn_dirtyctx_firstset, 1);
 547                 dn->dn_dirtyctx_firstset = NULL;
 548         }
 549         if (dn->dn_bonus != NULL) {
 550                 mutex_enter(&dn->dn_bonus->db_mtx);
 551                 dbuf_destroy(dn->dn_bonus);
 552                 dn->dn_bonus = NULL;
 553         }
 554         dn->dn_zio = NULL;
 555 
 556         dn->dn_have_spill = B_FALSE;
 557         dn->dn_oldused = 0;
 558         dn->dn_oldflags = 0;
 559         dn->dn_olduid = 0;
 560         dn->dn_oldgid = 0;
 561         dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
 562         dn->dn_newuid = 0;
 563         dn->dn_newgid = 0;
 564         dn->dn_newprojid = ZFS_DEFAULT_PROJID;
 565         dn->dn_id_flags = 0;
 566 
 567         dmu_zfetch_fini(&dn->dn_zfetch);
 568         kmem_cache_free(dnode_cache, dn);
 569         arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
 570 
 571         if (complete_os_eviction)
 572                 dmu_objset_evict_done(os);
 573 }
 574 
 575 void
 576 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
 577     dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
 578 {
 579         int i;
 580 
 581         ASSERT3U(dn_slots, >, 0);
 582         ASSERT3U(dn_slots << DNODE_SHIFT, <=,
 583             spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)));
 584         ASSERT3U(blocksize, <=,
 585             spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
 586         if (blocksize == 0)
 587                 blocksize = 1 << zfs_default_bs;
 588         else
 589                 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
 590 
 591         if (ibs == 0)
 592                 ibs = zfs_default_ibs;
 593 
 594         ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
 595 
 596         dprintf("os=%p obj=%" PRIu64 " txg=%" PRIu64
 597             " blocksize=%d ibs=%d dn_slots=%d\n",
 598             dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots);
 599         DNODE_STAT_BUMP(dnode_allocate);
 600 
 601         ASSERT(dn->dn_type == DMU_OT_NONE);
 602         ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
 603         ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
 604         ASSERT(ot != DMU_OT_NONE);
 605         ASSERT(DMU_OT_IS_VALID(ot));
 606         ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
 607             (bonustype == DMU_OT_SA && bonuslen == 0) ||
 608             (bonustype != DMU_OT_NONE && bonuslen != 0));
 609         ASSERT(DMU_OT_IS_VALID(bonustype));
 610         ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots));
 611         ASSERT(dn->dn_type == DMU_OT_NONE);
 612         ASSERT0(dn->dn_maxblkid);
 613         ASSERT0(dn->dn_allocated_txg);
 614         ASSERT0(dn->dn_dirty_txg);
 615         ASSERT0(dn->dn_assigned_txg);
 616         ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
 617         ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1);
 618         ASSERT(avl_is_empty(&dn->dn_dbufs));
 619 
 620         for (i = 0; i < TXG_SIZE; i++) {
 621                 ASSERT0(dn->dn_next_nblkptr[i]);
 622                 ASSERT0(dn->dn_next_nlevels[i]);
 623                 ASSERT0(dn->dn_next_indblkshift[i]);
 624                 ASSERT0(dn->dn_next_bonuslen[i]);
 625                 ASSERT0(dn->dn_next_bonustype[i]);
 626                 ASSERT0(dn->dn_rm_spillblk[i]);
 627                 ASSERT0(dn->dn_next_blksz[i]);
 628                 ASSERT0(dn->dn_next_maxblkid[i]);
 629                 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
 630                 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
 631                 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
 632         }
 633 
 634         dn->dn_type = ot;
 635         dnode_setdblksz(dn, blocksize);
 636         dn->dn_indblkshift = ibs;
 637         dn->dn_nlevels = 1;
 638         dn->dn_num_slots = dn_slots;
 639         if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
 640                 dn->dn_nblkptr = 1;
 641         else {
 642                 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR,
 643                     1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
 644                     SPA_BLKPTRSHIFT));
 645         }
 646 
 647         dn->dn_bonustype = bonustype;
 648         dn->dn_bonuslen = bonuslen;
 649         dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
 650         dn->dn_compress = ZIO_COMPRESS_INHERIT;
 651         dn->dn_dirtyctx = 0;
 652 
 653         dn->dn_free_txg = 0;
 654         if (dn->dn_dirtyctx_firstset) {
 655                 kmem_free(dn->dn_dirtyctx_firstset, 1);
 656                 dn->dn_dirtyctx_firstset = NULL;
 657         }
 658 
 659         dn->dn_allocated_txg = tx->tx_txg;
 660         dn->dn_id_flags = 0;
 661 
 662         dnode_setdirty(dn, tx);
 663         dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
 664         dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
 665         dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
 666         dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
 667 }
 668 
 669 void
 670 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
 671     dmu_object_type_t bonustype, int bonuslen, int dn_slots,
 672     boolean_t keep_spill, dmu_tx_t *tx)
 673 {
 674         int nblkptr;
 675 
 676         ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
 677         ASSERT3U(blocksize, <=,
 678             spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
 679         ASSERT0(blocksize % SPA_MINBLOCKSIZE);
 680         ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
 681         ASSERT(tx->tx_txg != 0);
 682         ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
 683             (bonustype != DMU_OT_NONE && bonuslen != 0) ||
 684             (bonustype == DMU_OT_SA && bonuslen == 0));
 685         ASSERT(DMU_OT_IS_VALID(bonustype));
 686         ASSERT3U(bonuslen, <=,
 687             DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
 688         ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT));
 689 
 690         dnode_free_interior_slots(dn);
 691         DNODE_STAT_BUMP(dnode_reallocate);
 692 
 693         /* clean up any unreferenced dbufs */
 694         dnode_evict_dbufs(dn);
 695 
 696         dn->dn_id_flags = 0;
 697 
 698         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 699         dnode_setdirty(dn, tx);
 700         if (dn->dn_datablksz != blocksize) {
 701                 /* change blocksize */
 702                 ASSERT(dn->dn_maxblkid == 0 &&
 703                     (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
 704                     dnode_block_freed(dn, 0)));
 705                 dnode_setdblksz(dn, blocksize);
 706                 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
 707         }
 708         if (dn->dn_bonuslen != bonuslen)
 709                 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
 710 
 711         if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
 712                 nblkptr = 1;
 713         else
 714                 nblkptr = MIN(DN_MAX_NBLKPTR,
 715                     1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
 716                     SPA_BLKPTRSHIFT));
 717         if (dn->dn_bonustype != bonustype)
 718                 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
 719         if (dn->dn_nblkptr != nblkptr)
 720                 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
 721         if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) {
 722                 dbuf_rm_spill(dn, tx);
 723                 dnode_rm_spill(dn, tx);
 724         }
 725         rw_exit(&dn->dn_struct_rwlock);
 726 
 727         /* change type */
 728         dn->dn_type = ot;
 729 
 730         /* change bonus size and type */
 731         mutex_enter(&dn->dn_mtx);
 732         dn->dn_bonustype = bonustype;
 733         dn->dn_bonuslen = bonuslen;
 734         dn->dn_num_slots = dn_slots;
 735         dn->dn_nblkptr = nblkptr;
 736         dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
 737         dn->dn_compress = ZIO_COMPRESS_INHERIT;
 738         ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
 739 
 740         /* fix up the bonus db_size */
 741         if (dn->dn_bonus) {
 742                 dn->dn_bonus->db.db_size =
 743                     DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
 744                     (dn->dn_nblkptr - 1) * sizeof (blkptr_t);
 745                 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
 746         }
 747 
 748         dn->dn_allocated_txg = tx->tx_txg;
 749         mutex_exit(&dn->dn_mtx);
 750 }
 751 
 752 #ifdef  _KERNEL
 753 static void
 754 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
 755 {
 756         int i;
 757 
 758         ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
 759         ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
 760         ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
 761         ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
 762 
 763         /* Copy fields. */
 764         ndn->dn_objset = odn->dn_objset;
 765         ndn->dn_object = odn->dn_object;
 766         ndn->dn_dbuf = odn->dn_dbuf;
 767         ndn->dn_handle = odn->dn_handle;
 768         ndn->dn_phys = odn->dn_phys;
 769         ndn->dn_type = odn->dn_type;
 770         ndn->dn_bonuslen = odn->dn_bonuslen;
 771         ndn->dn_bonustype = odn->dn_bonustype;
 772         ndn->dn_nblkptr = odn->dn_nblkptr;
 773         ndn->dn_checksum = odn->dn_checksum;
 774         ndn->dn_compress = odn->dn_compress;
 775         ndn->dn_nlevels = odn->dn_nlevels;
 776         ndn->dn_indblkshift = odn->dn_indblkshift;
 777         ndn->dn_datablkshift = odn->dn_datablkshift;
 778         ndn->dn_datablkszsec = odn->dn_datablkszsec;
 779         ndn->dn_datablksz = odn->dn_datablksz;
 780         ndn->dn_maxblkid = odn->dn_maxblkid;
 781         ndn->dn_num_slots = odn->dn_num_slots;
 782         bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0],
 783             sizeof (odn->dn_next_type));
 784         bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
 785             sizeof (odn->dn_next_nblkptr));
 786         bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
 787             sizeof (odn->dn_next_nlevels));
 788         bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
 789             sizeof (odn->dn_next_indblkshift));
 790         bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
 791             sizeof (odn->dn_next_bonustype));
 792         bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
 793             sizeof (odn->dn_rm_spillblk));
 794         bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
 795             sizeof (odn->dn_next_bonuslen));
 796         bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
 797             sizeof (odn->dn_next_blksz));
 798         bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0],
 799             sizeof (odn->dn_next_maxblkid));
 800         for (i = 0; i < TXG_SIZE; i++) {
 801                 list_move_tail(&ndn->dn_dirty_records[i],
 802                     &odn->dn_dirty_records[i]);
 803         }
 804         bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
 805             sizeof (odn->dn_free_ranges));
 806         ndn->dn_allocated_txg = odn->dn_allocated_txg;
 807         ndn->dn_free_txg = odn->dn_free_txg;
 808         ndn->dn_assigned_txg = odn->dn_assigned_txg;
 809         ndn->dn_dirty_txg = odn->dn_dirty_txg;
 810         ndn->dn_dirtyctx = odn->dn_dirtyctx;
 811         ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
 812         ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0);
 813         zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
 814         ASSERT(avl_is_empty(&ndn->dn_dbufs));
 815         avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
 816         ndn->dn_dbufs_count = odn->dn_dbufs_count;
 817         ndn->dn_bonus = odn->dn_bonus;
 818         ndn->dn_have_spill = odn->dn_have_spill;
 819         ndn->dn_zio = odn->dn_zio;
 820         ndn->dn_oldused = odn->dn_oldused;
 821         ndn->dn_oldflags = odn->dn_oldflags;
 822         ndn->dn_olduid = odn->dn_olduid;
 823         ndn->dn_oldgid = odn->dn_oldgid;
 824         ndn->dn_oldprojid = odn->dn_oldprojid;
 825         ndn->dn_newuid = odn->dn_newuid;
 826         ndn->dn_newgid = odn->dn_newgid;
 827         ndn->dn_newprojid = odn->dn_newprojid;
 828         ndn->dn_id_flags = odn->dn_id_flags;
 829         dmu_zfetch_init(&ndn->dn_zfetch, NULL);
 830         list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
 831         ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
 832 
 833         /*
 834          * Update back pointers. Updating the handle fixes the back pointer of
 835          * every descendant dbuf as well as the bonus dbuf.
 836          */
 837         ASSERT(ndn->dn_handle->dnh_dnode == odn);
 838         ndn->dn_handle->dnh_dnode = ndn;
 839         if (ndn->dn_zfetch.zf_dnode == odn) {
 840                 ndn->dn_zfetch.zf_dnode = ndn;
 841         }
 842 
 843         /*
 844          * Invalidate the original dnode by clearing all of its back pointers.
 845          */
 846         odn->dn_dbuf = NULL;
 847         odn->dn_handle = NULL;
 848         avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
 849             offsetof(dmu_buf_impl_t, db_link));
 850         odn->dn_dbufs_count = 0;
 851         odn->dn_bonus = NULL;
 852         odn->dn_zfetch.zf_dnode = NULL;
 853 
 854         /*
 855          * Set the low bit of the objset pointer to ensure that dnode_move()
 856          * recognizes the dnode as invalid in any subsequent callback.
 857          */
 858         POINTER_INVALIDATE(&odn->dn_objset);
 859 
 860         /*
 861          * Satisfy the destructor.
 862          */
 863         for (i = 0; i < TXG_SIZE; i++) {
 864                 list_create(&odn->dn_dirty_records[i],
 865                     sizeof (dbuf_dirty_record_t),
 866                     offsetof(dbuf_dirty_record_t, dr_dirty_node));
 867                 odn->dn_free_ranges[i] = NULL;
 868                 odn->dn_next_nlevels[i] = 0;
 869                 odn->dn_next_indblkshift[i] = 0;
 870                 odn->dn_next_bonustype[i] = 0;
 871                 odn->dn_rm_spillblk[i] = 0;
 872                 odn->dn_next_bonuslen[i] = 0;
 873                 odn->dn_next_blksz[i] = 0;
 874         }
 875         odn->dn_allocated_txg = 0;
 876         odn->dn_free_txg = 0;
 877         odn->dn_assigned_txg = 0;
 878         odn->dn_dirty_txg = 0;
 879         odn->dn_dirtyctx = 0;
 880         odn->dn_dirtyctx_firstset = NULL;
 881         odn->dn_have_spill = B_FALSE;
 882         odn->dn_zio = NULL;
 883         odn->dn_oldused = 0;
 884         odn->dn_oldflags = 0;
 885         odn->dn_olduid = 0;
 886         odn->dn_oldgid = 0;
 887         odn->dn_oldprojid = ZFS_DEFAULT_PROJID;
 888         odn->dn_newuid = 0;
 889         odn->dn_newgid = 0;
 890         odn->dn_newprojid = ZFS_DEFAULT_PROJID;
 891         odn->dn_id_flags = 0;
 892 
 893         /*
 894          * Mark the dnode.
 895          */
 896         ndn->dn_moved = 1;
 897         odn->dn_moved = (uint8_t)-1;
 898 }
 899 
 900 /*ARGSUSED*/
 901 static kmem_cbrc_t
 902 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
 903 {
 904         dnode_t *odn = buf, *ndn = newbuf;
 905         objset_t *os;
 906         int64_t refcount;
 907         uint32_t dbufs;
 908 
 909         /*
 910          * The dnode is on the objset's list of known dnodes if the objset
 911          * pointer is valid. We set the low bit of the objset pointer when
 912          * freeing the dnode to invalidate it, and the memory patterns written
 913          * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
 914          * A newly created dnode sets the objset pointer last of all to indicate
 915          * that the dnode is known and in a valid state to be moved by this
 916          * function.
 917          */
 918         os = odn->dn_objset;
 919         if (!POINTER_IS_VALID(os)) {
 920                 DNODE_STAT_BUMP(dnode_move_invalid);
 921                 return (KMEM_CBRC_DONT_KNOW);
 922         }
 923 
 924         /*
 925          * Ensure that the objset does not go away during the move.
 926          */
 927         rw_enter(&os_lock, RW_WRITER);
 928         if (os != odn->dn_objset) {
 929                 rw_exit(&os_lock);
 930                 DNODE_STAT_BUMP(dnode_move_recheck1);
 931                 return (KMEM_CBRC_DONT_KNOW);
 932         }
 933 
 934         /*
 935          * If the dnode is still valid, then so is the objset. We know that no
 936          * valid objset can be freed while we hold os_lock, so we can safely
 937          * ensure that the objset remains in use.
 938          */
 939         mutex_enter(&os->os_lock);
 940 
 941         /*
 942          * Recheck the objset pointer in case the dnode was removed just before
 943          * acquiring the lock.
 944          */
 945         if (os != odn->dn_objset) {
 946                 mutex_exit(&os->os_lock);
 947                 rw_exit(&os_lock);
 948                 DNODE_STAT_BUMP(dnode_move_recheck2);
 949                 return (KMEM_CBRC_DONT_KNOW);
 950         }
 951 
 952         /*
 953          * At this point we know that as long as we hold os->os_lock, the dnode
 954          * cannot be freed and fields within the dnode can be safely accessed.
 955          * The objset listing this dnode cannot go away as long as this dnode is
 956          * on its list.
 957          */
 958         rw_exit(&os_lock);
 959         if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
 960                 mutex_exit(&os->os_lock);
 961                 DNODE_STAT_BUMP(dnode_move_special);
 962                 return (KMEM_CBRC_NO);
 963         }
 964         ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
 965 
 966         /*
 967          * Lock the dnode handle to prevent the dnode from obtaining any new
 968          * holds. This also prevents the descendant dbufs and the bonus dbuf
 969          * from accessing the dnode, so that we can discount their holds. The
 970          * handle is safe to access because we know that while the dnode cannot
 971          * go away, neither can its handle. Once we hold dnh_zrlock, we can
 972          * safely move any dnode referenced only by dbufs.
 973          */
 974         if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
 975                 mutex_exit(&os->os_lock);
 976                 DNODE_STAT_BUMP(dnode_move_handle);
 977                 return (KMEM_CBRC_LATER);
 978         }
 979 
 980         /*
 981          * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
 982          * We need to guarantee that there is a hold for every dbuf in order to
 983          * determine whether the dnode is actively referenced. Falsely matching
 984          * a dbuf to an active hold would lead to an unsafe move. It's possible
 985          * that a thread already having an active dnode hold is about to add a
 986          * dbuf, and we can't compare hold and dbuf counts while the add is in
 987          * progress.
 988          */
 989         if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
 990                 zrl_exit(&odn->dn_handle->dnh_zrlock);
 991                 mutex_exit(&os->os_lock);
 992                 DNODE_STAT_BUMP(dnode_move_rwlock);
 993                 return (KMEM_CBRC_LATER);
 994         }
 995 
 996         /*
 997          * A dbuf may be removed (evicted) without an active dnode hold. In that
 998          * case, the dbuf count is decremented under the handle lock before the
 999          * dbuf's hold is released. This order ensures that if we count the hold
1000          * after the dbuf is removed but before its hold is released, we will
1001          * treat the unmatched hold as active and exit safely. If we count the
1002          * hold before the dbuf is removed, the hold is discounted, and the
1003          * removal is blocked until the move completes.
1004          */
1005         refcount = zfs_refcount_count(&odn->dn_holds);
1006         ASSERT(refcount >= 0);
1007         dbufs = odn->dn_dbufs_count;
1008 
1009         /* We can't have more dbufs than dnode holds. */
1010         ASSERT3U(dbufs, <=, refcount);
1011         DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
1012             uint32_t, dbufs);
1013 
1014         if (refcount > dbufs) {
1015                 rw_exit(&odn->dn_struct_rwlock);
1016                 zrl_exit(&odn->dn_handle->dnh_zrlock);
1017                 mutex_exit(&os->os_lock);
1018                 DNODE_STAT_BUMP(dnode_move_active);
1019                 return (KMEM_CBRC_LATER);
1020         }
1021 
1022         rw_exit(&odn->dn_struct_rwlock);
1023 
1024         /*
1025          * At this point we know that anyone with a hold on the dnode is not
1026          * actively referencing it. The dnode is known and in a valid state to
1027          * move. We're holding the locks needed to execute the critical section.
1028          */
1029         dnode_move_impl(odn, ndn);
1030 
1031         list_link_replace(&odn->dn_link, &ndn->dn_link);
1032         /* If the dnode was safe to move, the refcount cannot have changed. */
1033         ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds));
1034         ASSERT(dbufs == ndn->dn_dbufs_count);
1035         zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
1036         mutex_exit(&os->os_lock);
1037 
1038         return (KMEM_CBRC_YES);
1039 }
1040 #endif  /* _KERNEL */
1041 
1042 static void
1043 dnode_slots_hold(dnode_children_t *children, int idx, int slots)
1044 {
1045         ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1046 
1047         for (int i = idx; i < idx + slots; i++) {
1048                 dnode_handle_t *dnh = &children->dnc_children[i];
1049                 zrl_add(&dnh->dnh_zrlock);
1050         }
1051 }
1052 
1053 static void
1054 dnode_slots_rele(dnode_children_t *children, int idx, int slots)
1055 {
1056         ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1057 
1058         for (int i = idx; i < idx + slots; i++) {
1059                 dnode_handle_t *dnh = &children->dnc_children[i];
1060 
1061                 if (zrl_is_locked(&dnh->dnh_zrlock))
1062                         zrl_exit(&dnh->dnh_zrlock);
1063                 else
1064                         zrl_remove(&dnh->dnh_zrlock);
1065         }
1066 }
1067 
1068 static int
1069 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots)
1070 {
1071         ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1072 
1073         for (int i = idx; i < idx + slots; i++) {
1074                 dnode_handle_t *dnh = &children->dnc_children[i];
1075 
1076                 if (!zrl_tryenter(&dnh->dnh_zrlock)) {
1077                         for (int j = idx; j < i; j++) {
1078                                 dnh = &children->dnc_children[j];
1079                                 zrl_exit(&dnh->dnh_zrlock);
1080                         }
1081 
1082                         return (0);
1083                 }
1084         }
1085 
1086         return (1);
1087 }
1088 
1089 static void
1090 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr)
1091 {
1092         ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1093 
1094         for (int i = idx; i < idx + slots; i++) {
1095                 dnode_handle_t *dnh = &children->dnc_children[i];
1096                 dnh->dnh_dnode = ptr;
1097         }
1098 }
1099 
1100 static boolean_t
1101 dnode_check_slots_free(dnode_children_t *children, int idx, int slots)
1102 {
1103         ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1104 
1105         /*
1106          * If all dnode slots are either already free or
1107          * evictable return B_TRUE.
1108          */
1109         for (int i = idx; i < idx + slots; i++) {
1110                 dnode_handle_t *dnh = &children->dnc_children[i];
1111                 dnode_t *dn = dnh->dnh_dnode;
1112 
1113                 if (dn == DN_SLOT_FREE) {
1114                         continue;
1115                 } else if (DN_SLOT_IS_PTR(dn)) {
1116                         mutex_enter(&dn->dn_mtx);
1117                         boolean_t can_free = (dn->dn_type == DMU_OT_NONE &&
1118                             zfs_refcount_is_zero(&dn->dn_holds) &&
1119                             !DNODE_IS_DIRTY(dn));
1120                         mutex_exit(&dn->dn_mtx);
1121 
1122                         if (!can_free)
1123                                 return (B_FALSE);
1124                         else
1125                                 continue;
1126                 } else {
1127                         return (B_FALSE);
1128                 }
1129         }
1130 
1131         return (B_TRUE);
1132 }
1133 
1134 static void
1135 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots)
1136 {
1137         ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1138 
1139         for (int i = idx; i < idx + slots; i++) {
1140                 dnode_handle_t *dnh = &children->dnc_children[i];
1141 
1142                 ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
1143 
1144                 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1145                         ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE);
1146                         dnode_destroy(dnh->dnh_dnode);
1147                         dnh->dnh_dnode = DN_SLOT_FREE;
1148                 }
1149         }
1150 }
1151 
1152 void
1153 dnode_free_interior_slots(dnode_t *dn)
1154 {
1155         dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db);
1156         int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT;
1157         int idx = (dn->dn_object & (epb - 1)) + 1;
1158         int slots = dn->dn_num_slots - 1;
1159 
1160         if (slots == 0)
1161                 return;
1162 
1163         ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1164 
1165         while (!dnode_slots_tryenter(children, idx, slots))
1166                 DNODE_STAT_BUMP(dnode_free_interior_lock_retry);
1167 
1168         dnode_set_slots(children, idx, slots, DN_SLOT_FREE);
1169         dnode_slots_rele(children, idx, slots);
1170 }
1171 
1172 void
1173 dnode_special_close(dnode_handle_t *dnh)
1174 {
1175         dnode_t *dn = dnh->dnh_dnode;
1176 
1177         /*
1178          * Wait for final references to the dnode to clear.  This can
1179          * only happen if the arc is asynchronously evicting state that
1180          * has a hold on this dnode while we are trying to evict this
1181          * dnode.
1182          */
1183         while (zfs_refcount_count(&dn->dn_holds) > 0)
1184                 delay(1);
1185         ASSERT(dn->dn_dbuf == NULL ||
1186             dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1187         zrl_add(&dnh->dnh_zrlock);
1188         dnode_destroy(dn); /* implicit zrl_remove() */
1189         zrl_destroy(&dnh->dnh_zrlock);
1190         dnh->dnh_dnode = NULL;
1191 }
1192 
1193 void
1194 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1195     dnode_handle_t *dnh)
1196 {
1197         dnode_t *dn;
1198 
1199         zrl_init(&dnh->dnh_zrlock);
1200         zrl_tryenter(&dnh->dnh_zrlock);
1201 
1202         dn = dnode_create(os, dnp, NULL, object, dnh);
1203         DNODE_VERIFY(dn);
1204 
1205         zrl_exit(&dnh->dnh_zrlock);
1206 }
1207 
1208 static void
1209 dnode_buf_evict_async(void *dbu)
1210 {
1211         dnode_children_t *dnc = dbu;
1212 
1213         DNODE_STAT_BUMP(dnode_buf_evict);
1214 
1215         for (int i = 0; i < dnc->dnc_count; i++) {
1216                 dnode_handle_t *dnh = &dnc->dnc_children[i];
1217                 dnode_t *dn;
1218 
1219                 /*
1220                  * The dnode handle lock guards against the dnode moving to
1221                  * another valid address, so there is no need here to guard
1222                  * against changes to or from NULL.
1223                  */
1224                 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1225                         zrl_destroy(&dnh->dnh_zrlock);
1226                         dnh->dnh_dnode = DN_SLOT_UNINIT;
1227                         continue;
1228                 }
1229 
1230                 zrl_add(&dnh->dnh_zrlock);
1231                 dn = dnh->dnh_dnode;
1232                 /*
1233                  * If there are holds on this dnode, then there should
1234                  * be holds on the dnode's containing dbuf as well; thus
1235                  * it wouldn't be eligible for eviction and this function
1236                  * would not have been called.
1237                  */
1238                 ASSERT(zfs_refcount_is_zero(&dn->dn_holds));
1239                 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
1240 
1241                 dnode_destroy(dn); /* implicit zrl_remove() for first slot */
1242                 zrl_destroy(&dnh->dnh_zrlock);
1243                 dnh->dnh_dnode = DN_SLOT_UNINIT;
1244         }
1245         kmem_free(dnc, sizeof (dnode_children_t) +
1246             dnc->dnc_count * sizeof (dnode_handle_t));
1247 }
1248 
1249 /*
1250  * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used
1251  * to ensure the hole at the specified object offset is large enough to
1252  * hold the dnode being created. The slots parameter is also used to ensure
1253  * a dnode does not span multiple dnode blocks. In both of these cases, if
1254  * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases
1255  * are only possible when using DNODE_MUST_BE_FREE.
1256  *
1257  * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
1258  * dnode_hold_impl() will check if the requested dnode is already consumed
1259  * as an extra dnode slot by an large dnode, in which case it returns
1260  * ENOENT.
1261  *
1262  * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just
1263  * return whether the hold would succeed or not. tag and dnp should set to
1264  * NULL in this case.
1265  *
1266  * errors:
1267  * EINVAL - invalid object number or flags.
1268  * ENOSPC - hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE)
1269  * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE)
1270  *        - Refers to a freeing dnode (DNODE_MUST_BE_FREE)
1271  *        - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED)
1272  * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED)
1273  *        - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED)
1274  * EIO    - i/o error error when reading the meta dnode dbuf.
1275  * succeeds even for free dnodes.
1276  */
1277 int
1278 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
1279     void *tag, dnode_t **dnp)
1280 {
1281         int epb, idx, err;
1282         int drop_struct_lock = FALSE;
1283         int type;
1284         uint64_t blk;
1285         dnode_t *mdn, *dn;
1286         dmu_buf_impl_t *db;
1287         dnode_children_t *dnc;
1288         dnode_phys_t *dn_block;
1289         dnode_handle_t *dnh;
1290 
1291         ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0));
1292         ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0));
1293         IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL));
1294 
1295         /*
1296          * If you are holding the spa config lock as writer, you shouldn't
1297          * be asking the DMU to do *anything* unless it's the root pool
1298          * which may require us to read from the root filesystem while
1299          * holding some (not all) of the locks as writer.
1300          */
1301         ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1302             (spa_is_root(os->os_spa) &&
1303             spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1304 
1305         ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE));
1306 
1307         if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT ||
1308             object == DMU_PROJECTUSED_OBJECT) {
1309                 if (object == DMU_USERUSED_OBJECT)
1310                         dn = DMU_USERUSED_DNODE(os);
1311                 else if (object == DMU_GROUPUSED_OBJECT)
1312                         dn = DMU_GROUPUSED_DNODE(os);
1313                 else
1314                         dn = DMU_PROJECTUSED_DNODE(os);
1315                 if (dn == NULL)
1316                         return (SET_ERROR(ENOENT));
1317                 type = dn->dn_type;
1318                 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1319                         return (SET_ERROR(ENOENT));
1320                 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1321                         return (SET_ERROR(EEXIST));
1322                 DNODE_VERIFY(dn);
1323                 /* Don't actually hold if dry run, just return 0 */
1324                 if (!(flag & DNODE_DRY_RUN)) {
1325                         (void) zfs_refcount_add(&dn->dn_holds, tag);
1326                         *dnp = dn;
1327                 }
1328                 return (0);
1329         }
1330 
1331         if (object == 0 || object >= DN_MAX_OBJECT)
1332                 return (SET_ERROR(EINVAL));
1333 
1334         mdn = DMU_META_DNODE(os);
1335         ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1336 
1337         DNODE_VERIFY(mdn);
1338 
1339         if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1340                 rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1341                 drop_struct_lock = TRUE;
1342         }
1343 
1344         blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1345 
1346         db = dbuf_hold(mdn, blk, FTAG);
1347         if (drop_struct_lock)
1348                 rw_exit(&mdn->dn_struct_rwlock);
1349         if (db == NULL) {
1350                 DNODE_STAT_BUMP(dnode_hold_dbuf_hold);
1351                 return (SET_ERROR(EIO));
1352         }
1353         /*
1354          * We do not need to decrypt to read the dnode so it doesn't matter
1355          * if we get the encrypted or decrypted version.
1356          */
1357         err = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_NO_DECRYPT);
1358         if (err) {
1359                 DNODE_STAT_BUMP(dnode_hold_dbuf_read);
1360                 dbuf_rele(db, FTAG);
1361                 return (err);
1362         }
1363 
1364         ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1365         epb = db->db.db_size >> DNODE_SHIFT;
1366 
1367         idx = object & (epb - 1);
1368         dn_block = (dnode_phys_t *)db->db.db_data;
1369 
1370         ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1371         dnc = dmu_buf_get_user(&db->db);
1372         dnh = NULL;
1373         if (dnc == NULL) {
1374                 dnode_children_t *winner;
1375                 int skip = 0;
1376 
1377                 dnc = kmem_zalloc(sizeof (dnode_children_t) +
1378                     epb * sizeof (dnode_handle_t), KM_SLEEP);
1379                 dnc->dnc_count = epb;
1380                 dnh = &dnc->dnc_children[0];
1381 
1382                 /* Initialize dnode slot status from dnode_phys_t */
1383                 for (int i = 0; i < epb; i++) {
1384                         zrl_init(&dnh[i].dnh_zrlock);
1385 
1386                         if (skip) {
1387                                 skip--;
1388                                 continue;
1389                         }
1390 
1391                         if (dn_block[i].dn_type != DMU_OT_NONE) {
1392                                 int interior = dn_block[i].dn_extra_slots;
1393 
1394                                 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED);
1395                                 dnode_set_slots(dnc, i + 1, interior,
1396                                     DN_SLOT_INTERIOR);
1397                                 skip = interior;
1398                         } else {
1399                                 dnh[i].dnh_dnode = DN_SLOT_FREE;
1400                                 skip = 0;
1401                         }
1402                 }
1403 
1404                 dmu_buf_init_user(&dnc->dnc_dbu, NULL,
1405                     dnode_buf_evict_async, NULL);
1406                 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu);
1407                 if (winner != NULL) {
1408 
1409                         for (int i = 0; i < epb; i++)
1410                                 zrl_destroy(&dnh[i].dnh_zrlock);
1411 
1412                         kmem_free(dnc, sizeof (dnode_children_t) +
1413                             epb * sizeof (dnode_handle_t));
1414                         dnc = winner;
1415                 }
1416         }
1417 
1418         ASSERT(dnc->dnc_count == epb);
1419         dn = DN_SLOT_UNINIT;
1420 
1421         if (flag & DNODE_MUST_BE_ALLOCATED) {
1422                 slots = 1;
1423 
1424                 while (dn == DN_SLOT_UNINIT) {
1425                         dnode_slots_hold(dnc, idx, slots);
1426                         dnh = &dnc->dnc_children[idx];
1427 
1428                         if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1429                                 dn = dnh->dnh_dnode;
1430                                 break;
1431                         } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) {
1432                                 DNODE_STAT_BUMP(dnode_hold_alloc_interior);
1433                                 dnode_slots_rele(dnc, idx, slots);
1434                                 dbuf_rele(db, FTAG);
1435                                 return (SET_ERROR(EEXIST));
1436                         } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) {
1437                                 DNODE_STAT_BUMP(dnode_hold_alloc_misses);
1438                                 dnode_slots_rele(dnc, idx, slots);
1439                                 dbuf_rele(db, FTAG);
1440                                 return (SET_ERROR(ENOENT));
1441                         }
1442 
1443                         dnode_slots_rele(dnc, idx, slots);
1444                         if (!dnode_slots_tryenter(dnc, idx, slots)) {
1445                                 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry);
1446                                 continue;
1447                         }
1448 
1449                         /*
1450                          * Someone else won the race and called dnode_create()
1451                          * after we checked DN_SLOT_IS_PTR() above but before
1452                          * we acquired the lock.
1453                          */
1454                         if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1455                                 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses);
1456                                 dn = dnh->dnh_dnode;
1457                         } else {
1458                                 dn = dnode_create(os, dn_block + idx, db,
1459                                     object, dnh);
1460                         }
1461                 }
1462 
1463                 mutex_enter(&dn->dn_mtx);
1464                 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) {
1465                         DNODE_STAT_BUMP(dnode_hold_alloc_type_none);
1466                         mutex_exit(&dn->dn_mtx);
1467                         dnode_slots_rele(dnc, idx, slots);
1468                         dbuf_rele(db, FTAG);
1469                         return (SET_ERROR(ENOENT));
1470                 }
1471 
1472                 /* Don't actually hold if dry run, just return 0 */
1473                 if (flag & DNODE_DRY_RUN) {
1474                         mutex_exit(&dn->dn_mtx);
1475                         dnode_slots_rele(dnc, idx, slots);
1476                         dbuf_rele(db, FTAG);
1477                         return (0);
1478                 }
1479 
1480                 DNODE_STAT_BUMP(dnode_hold_alloc_hits);
1481         } else if (flag & DNODE_MUST_BE_FREE) {
1482 
1483                 if (idx + slots - 1 >= DNODES_PER_BLOCK) {
1484                         DNODE_STAT_BUMP(dnode_hold_free_overflow);
1485                         dbuf_rele(db, FTAG);
1486                         return (SET_ERROR(ENOSPC));
1487                 }
1488 
1489                 while (dn == DN_SLOT_UNINIT) {
1490                         dnode_slots_hold(dnc, idx, slots);
1491 
1492                         if (!dnode_check_slots_free(dnc, idx, slots)) {
1493                                 DNODE_STAT_BUMP(dnode_hold_free_misses);
1494                                 dnode_slots_rele(dnc, idx, slots);
1495                                 dbuf_rele(db, FTAG);
1496                                 return (SET_ERROR(ENOSPC));
1497                         }
1498 
1499                         dnode_slots_rele(dnc, idx, slots);
1500                         if (!dnode_slots_tryenter(dnc, idx, slots)) {
1501                                 DNODE_STAT_BUMP(dnode_hold_free_lock_retry);
1502                                 continue;
1503                         }
1504 
1505                         if (!dnode_check_slots_free(dnc, idx, slots)) {
1506                                 DNODE_STAT_BUMP(dnode_hold_free_lock_misses);
1507                                 dnode_slots_rele(dnc, idx, slots);
1508                                 dbuf_rele(db, FTAG);
1509                                 return (SET_ERROR(ENOSPC));
1510                         }
1511 
1512                         /*
1513                          * Allocated but otherwise free dnodes which would
1514                          * be in the interior of a multi-slot dnodes need
1515                          * to be freed.  Single slot dnodes can be safely
1516                          * re-purposed as a performance optimization.
1517                          */
1518                         if (slots > 1)
1519                                 dnode_reclaim_slots(dnc, idx + 1, slots - 1);
1520 
1521                         dnh = &dnc->dnc_children[idx];
1522                         if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1523                                 dn = dnh->dnh_dnode;
1524                         } else {
1525                                 dn = dnode_create(os, dn_block + idx, db,
1526                                     object, dnh);
1527                         }
1528                 }
1529 
1530                 mutex_enter(&dn->dn_mtx);
1531                 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) {
1532                         DNODE_STAT_BUMP(dnode_hold_free_refcount);
1533                         mutex_exit(&dn->dn_mtx);
1534                         dnode_slots_rele(dnc, idx, slots);
1535                         dbuf_rele(db, FTAG);
1536                         return (SET_ERROR(EEXIST));
1537                 }
1538 
1539                 /* Don't actually hold if dry run, just return 0 */
1540                 if (flag & DNODE_DRY_RUN) {
1541                         mutex_exit(&dn->dn_mtx);
1542                         dnode_slots_rele(dnc, idx, slots);
1543                         dbuf_rele(db, FTAG);
1544                         return (0);
1545                 }
1546 
1547                 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR);
1548                 DNODE_STAT_BUMP(dnode_hold_free_hits);
1549         } else {
1550                 dbuf_rele(db, FTAG);
1551                 return (SET_ERROR(EINVAL));
1552         }
1553 
1554         ASSERT0(dn->dn_free_txg);
1555 
1556         if (zfs_refcount_add(&dn->dn_holds, tag) == 1)
1557                 dbuf_add_ref(db, dnh);
1558 
1559         mutex_exit(&dn->dn_mtx);
1560 
1561         /* Now we can rely on the hold to prevent the dnode from moving. */
1562         dnode_slots_rele(dnc, idx, slots);
1563 
1564         DNODE_VERIFY(dn);
1565         ASSERT3P(dn->dn_dbuf, ==, db);
1566         ASSERT3U(dn->dn_object, ==, object);
1567         dbuf_rele(db, FTAG);
1568 
1569         *dnp = dn;
1570         return (0);
1571 }
1572 
1573 /*
1574  * Return held dnode if the object is allocated, NULL if not.
1575  */
1576 int
1577 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1578 {
1579         return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag,
1580             dnp));
1581 }
1582 
1583 /*
1584  * Can only add a reference if there is already at least one
1585  * reference on the dnode.  Returns FALSE if unable to add a
1586  * new reference.
1587  */
1588 boolean_t
1589 dnode_add_ref(dnode_t *dn, void *tag)
1590 {
1591         mutex_enter(&dn->dn_mtx);
1592         if (zfs_refcount_is_zero(&dn->dn_holds)) {
1593                 mutex_exit(&dn->dn_mtx);
1594                 return (FALSE);
1595         }
1596         VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag));
1597         mutex_exit(&dn->dn_mtx);
1598         return (TRUE);
1599 }
1600 
1601 void
1602 dnode_rele(dnode_t *dn, void *tag)
1603 {
1604         mutex_enter(&dn->dn_mtx);
1605         dnode_rele_and_unlock(dn, tag, B_FALSE);
1606 }
1607 
1608 void
1609 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting)
1610 {
1611         uint64_t refs;
1612         /* Get while the hold prevents the dnode from moving. */
1613         dmu_buf_impl_t *db = dn->dn_dbuf;
1614         dnode_handle_t *dnh = dn->dn_handle;
1615 
1616         refs = zfs_refcount_remove(&dn->dn_holds, tag);
1617         mutex_exit(&dn->dn_mtx);
1618 
1619         /*
1620          * It's unsafe to release the last hold on a dnode by dnode_rele() or
1621          * indirectly by dbuf_rele() while relying on the dnode handle to
1622          * prevent the dnode from moving, since releasing the last hold could
1623          * result in the dnode's parent dbuf evicting its dnode handles. For
1624          * that reason anyone calling dnode_rele() or dbuf_rele() without some
1625          * other direct or indirect hold on the dnode must first drop the dnode
1626          * handle.
1627          */
1628         ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1629 
1630         /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1631         if (refs == 0 && db != NULL) {
1632                 /*
1633                  * Another thread could add a hold to the dnode handle in
1634                  * dnode_hold_impl() while holding the parent dbuf. Since the
1635                  * hold on the parent dbuf prevents the handle from being
1636                  * destroyed, the hold on the handle is OK. We can't yet assert
1637                  * that the handle has zero references, but that will be
1638                  * asserted anyway when the handle gets destroyed.
1639                  */
1640                 mutex_enter(&db->db_mtx);
1641                 dbuf_rele_and_unlock(db, dnh, evicting);
1642         }
1643 }
1644 
1645 /*
1646  * Test whether we can create a dnode at the specified location.
1647  */
1648 int
1649 dnode_try_claim(objset_t *os, uint64_t object, int slots)
1650 {
1651         return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN,
1652             slots, NULL, NULL));
1653 }
1654 
1655 void
1656 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1657 {
1658         objset_t *os = dn->dn_objset;
1659         uint64_t txg = tx->tx_txg;
1660 
1661         if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1662                 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1663                 return;
1664         }
1665 
1666         DNODE_VERIFY(dn);
1667 
1668 #ifdef ZFS_DEBUG
1669         mutex_enter(&dn->dn_mtx);
1670         ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1671         ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1672         mutex_exit(&dn->dn_mtx);
1673 #endif
1674 
1675         /*
1676          * Determine old uid/gid when necessary
1677          */
1678         dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1679 
1680         multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK];
1681         multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn);
1682 
1683         /*
1684          * If we are already marked dirty, we're done.
1685          */
1686         if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1687                 multilist_sublist_unlock(mls);
1688                 return;
1689         }
1690 
1691         ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) ||
1692             !avl_is_empty(&dn->dn_dbufs));
1693         ASSERT(dn->dn_datablksz != 0);
1694         ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1695         ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1696         ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1697 
1698         dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1699             dn->dn_object, txg);
1700 
1701         multilist_sublist_insert_head(mls, dn);
1702 
1703         multilist_sublist_unlock(mls);
1704 
1705         /*
1706          * The dnode maintains a hold on its containing dbuf as
1707          * long as there are holds on it.  Each instantiated child
1708          * dbuf maintains a hold on the dnode.  When the last child
1709          * drops its hold, the dnode will drop its hold on the
1710          * containing dbuf. We add a "dirty hold" here so that the
1711          * dnode will hang around after we finish processing its
1712          * children.
1713          */
1714         VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1715 
1716         (void) dbuf_dirty(dn->dn_dbuf, tx);
1717 
1718         dsl_dataset_dirty(os->os_dsl_dataset, tx);
1719 }
1720 
1721 void
1722 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1723 {
1724         mutex_enter(&dn->dn_mtx);
1725         if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1726                 mutex_exit(&dn->dn_mtx);
1727                 return;
1728         }
1729         dn->dn_free_txg = tx->tx_txg;
1730         mutex_exit(&dn->dn_mtx);
1731 
1732         dnode_setdirty(dn, tx);
1733 }
1734 
1735 /*
1736  * Try to change the block size for the indicated dnode.  This can only
1737  * succeed if there are no blocks allocated or dirty beyond first block
1738  */
1739 int
1740 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1741 {
1742         dmu_buf_impl_t *db;
1743         int err;
1744 
1745         ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1746         if (size == 0)
1747                 size = SPA_MINBLOCKSIZE;
1748         else
1749                 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1750 
1751         if (ibs == dn->dn_indblkshift)
1752                 ibs = 0;
1753 
1754         if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1755                 return (0);
1756 
1757         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1758 
1759         /* Check for any allocated blocks beyond the first */
1760         if (dn->dn_maxblkid != 0)
1761                 goto fail;
1762 
1763         mutex_enter(&dn->dn_dbufs_mtx);
1764         for (db = avl_first(&dn->dn_dbufs); db != NULL;
1765             db = AVL_NEXT(&dn->dn_dbufs, db)) {
1766                 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1767                     db->db_blkid != DMU_SPILL_BLKID) {
1768                         mutex_exit(&dn->dn_dbufs_mtx);
1769                         goto fail;
1770                 }
1771         }
1772         mutex_exit(&dn->dn_dbufs_mtx);
1773 
1774         if (ibs && dn->dn_nlevels != 1)
1775                 goto fail;
1776 
1777         /* resize the old block */
1778         err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1779         if (err == 0)
1780                 dbuf_new_size(db, size, tx);
1781         else if (err != ENOENT)
1782                 goto fail;
1783 
1784         dnode_setdblksz(dn, size);
1785         dnode_setdirty(dn, tx);
1786         dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1787         if (ibs) {
1788                 dn->dn_indblkshift = ibs;
1789                 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1790         }
1791         /* rele after we have fixed the blocksize in the dnode */
1792         if (db)
1793                 dbuf_rele(db, FTAG);
1794 
1795         rw_exit(&dn->dn_struct_rwlock);
1796         return (0);
1797 
1798 fail:
1799         rw_exit(&dn->dn_struct_rwlock);
1800         return (SET_ERROR(ENOTSUP));
1801 }
1802 
1803 static void
1804 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx)
1805 {
1806         uint64_t txgoff = tx->tx_txg & TXG_MASK;
1807         int old_nlevels = dn->dn_nlevels;
1808         dmu_buf_impl_t *db;
1809         list_t *list;
1810         dbuf_dirty_record_t *new, *dr, *dr_next;
1811 
1812         ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1813 
1814         dn->dn_nlevels = new_nlevels;
1815 
1816         ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1817         dn->dn_next_nlevels[txgoff] = new_nlevels;
1818 
1819         /* dirty the left indirects */
1820         db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1821         ASSERT(db != NULL);
1822         new = dbuf_dirty(db, tx);
1823         dbuf_rele(db, FTAG);
1824 
1825         /* transfer the dirty records to the new indirect */
1826         mutex_enter(&dn->dn_mtx);
1827         mutex_enter(&new->dt.di.dr_mtx);
1828         list = &dn->dn_dirty_records[txgoff];
1829         for (dr = list_head(list); dr; dr = dr_next) {
1830                 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1831                 if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1832                     dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1833                     dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1834                         ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1835                         list_remove(&dn->dn_dirty_records[txgoff], dr);
1836                         list_insert_tail(&new->dt.di.dr_children, dr);
1837                         dr->dr_parent = new;
1838                 }
1839         }
1840         mutex_exit(&new->dt.di.dr_mtx);
1841         mutex_exit(&dn->dn_mtx);
1842 }
1843 
1844 int
1845 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx)
1846 {
1847         int ret = 0;
1848 
1849         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1850 
1851         if (dn->dn_nlevels == nlevels) {
1852                 ret = 0;
1853                 goto out;
1854         } else if (nlevels < dn->dn_nlevels) {
1855                 ret = SET_ERROR(EINVAL);
1856                 goto out;
1857         }
1858 
1859         dnode_set_nlevels_impl(dn, nlevels, tx);
1860 
1861 out:
1862         rw_exit(&dn->dn_struct_rwlock);
1863         return (ret);
1864 }
1865 
1866 /* read-holding callers must not rely on the lock being continuously held */
1867 void
1868 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read,
1869     boolean_t force)
1870 {
1871         int epbs, new_nlevels;
1872         uint64_t sz;
1873 
1874         ASSERT(blkid != DMU_BONUS_BLKID);
1875 
1876         ASSERT(have_read ?
1877             RW_READ_HELD(&dn->dn_struct_rwlock) :
1878             RW_WRITE_HELD(&dn->dn_struct_rwlock));
1879 
1880         /*
1881          * if we have a read-lock, check to see if we need to do any work
1882          * before upgrading to a write-lock.
1883          */
1884         if (have_read) {
1885                 if (blkid <= dn->dn_maxblkid)
1886                         return;
1887 
1888                 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1889                         rw_exit(&dn->dn_struct_rwlock);
1890                         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1891                 }
1892         }
1893 
1894         /*
1895          * Raw sends (indicated by the force flag) require that we take the
1896          * given blkid even if the value is lower than the current value.
1897          */
1898         if (!force && blkid <= dn->dn_maxblkid)
1899                 goto out;
1900 
1901         /*
1902          * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff]
1903          * to indicate that this field is set. This allows us to set the
1904          * maxblkid to 0 on an existing object in dnode_sync().
1905          */
1906         dn->dn_maxblkid = blkid;
1907         dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] =
1908             blkid | DMU_NEXT_MAXBLKID_SET;
1909 
1910         /*
1911          * Compute the number of levels necessary to support the new maxblkid.
1912          * Raw sends will ensure nlevels is set correctly for us.
1913          */
1914         new_nlevels = 1;
1915         epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1916         for (sz = dn->dn_nblkptr;
1917             sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1918                 new_nlevels++;
1919 
1920         if (!force) {
1921                 if (new_nlevels > dn->dn_nlevels)
1922                         dnode_set_nlevels_impl(dn, new_nlevels, tx);
1923         } else {
1924                 ASSERT3U(dn->dn_nlevels, >=, new_nlevels);
1925         }
1926 
1927 out:
1928         if (have_read)
1929                 rw_downgrade(&dn->dn_struct_rwlock);
1930 }
1931 
1932 static void
1933 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
1934 {
1935         dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1936         if (db != NULL) {
1937                 dmu_buf_will_dirty(&db->db, tx);
1938                 dbuf_rele(db, FTAG);
1939         }
1940 }
1941 
1942 /*
1943  * Dirty all the in-core level-1 dbufs in the range specified by start_blkid
1944  * and end_blkid.
1945  */
1946 static void
1947 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1948     dmu_tx_t *tx)
1949 {
1950         dmu_buf_impl_t db_search;
1951         dmu_buf_impl_t *db;
1952         avl_index_t where;
1953 
1954         mutex_enter(&dn->dn_dbufs_mtx);
1955 
1956         db_search.db_level = 1;
1957         db_search.db_blkid = start_blkid + 1;
1958         db_search.db_state = DB_SEARCH;
1959         for (;;) {
1960 
1961                 db = avl_find(&dn->dn_dbufs, &db_search, &where);
1962                 if (db == NULL)
1963                         db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1964 
1965                 if (db == NULL || db->db_level != 1 ||
1966                     db->db_blkid >= end_blkid) {
1967                         break;
1968                 }
1969 
1970                 /*
1971                  * Setup the next blkid we want to search for.
1972                  */
1973                 db_search.db_blkid = db->db_blkid + 1;
1974                 ASSERT3U(db->db_blkid, >=, start_blkid);
1975 
1976                 /*
1977                  * If the dbuf transitions to DB_EVICTING while we're trying
1978                  * to dirty it, then we will be unable to discover it in
1979                  * the dbuf hash table. This will result in a call to
1980                  * dbuf_create() which needs to acquire the dn_dbufs_mtx
1981                  * lock. To avoid a deadlock, we drop the lock before
1982                  * dirtying the level-1 dbuf.
1983                  */
1984                 mutex_exit(&dn->dn_dbufs_mtx);
1985                 dnode_dirty_l1(dn, db->db_blkid, tx);
1986                 mutex_enter(&dn->dn_dbufs_mtx);
1987         }
1988 
1989 #ifdef ZFS_DEBUG
1990         /*
1991          * Walk all the in-core level-1 dbufs and verify they have been dirtied.
1992          */
1993         db_search.db_level = 1;
1994         db_search.db_blkid = start_blkid + 1;
1995         db_search.db_state = DB_SEARCH;
1996         db = avl_find(&dn->dn_dbufs, &db_search, &where);
1997         if (db == NULL)
1998                 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1999         for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) {
2000                 if (db->db_level != 1 || db->db_blkid >= end_blkid)
2001                         break;
2002                 ASSERT(db->db_dirtycnt > 0);
2003         }
2004 #endif
2005         mutex_exit(&dn->dn_dbufs_mtx);
2006 }
2007 
2008 void
2009 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
2010 {
2011         dmu_buf_impl_t *db;
2012         uint64_t blkoff, blkid, nblks;
2013         int blksz, blkshift, head, tail;
2014         int trunc = FALSE;
2015         int epbs;
2016 
2017         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2018         blksz = dn->dn_datablksz;
2019         blkshift = dn->dn_datablkshift;
2020         epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2021 
2022         if (len == DMU_OBJECT_END) {
2023                 len = UINT64_MAX - off;
2024                 trunc = TRUE;
2025         }
2026 
2027         /*
2028          * First, block align the region to free:
2029          */
2030         if (ISP2(blksz)) {
2031                 head = P2NPHASE(off, blksz);
2032                 blkoff = P2PHASE(off, blksz);
2033                 if ((off >> blkshift) > dn->dn_maxblkid)
2034                         goto out;
2035         } else {
2036                 ASSERT(dn->dn_maxblkid == 0);
2037                 if (off == 0 && len >= blksz) {
2038                         /*
2039                          * Freeing the whole block; fast-track this request.
2040                          */
2041                         blkid = 0;
2042                         nblks = 1;
2043                         if (dn->dn_nlevels > 1)
2044                                 dnode_dirty_l1(dn, 0, tx);
2045                         goto done;
2046                 } else if (off >= blksz) {
2047                         /* Freeing past end-of-data */
2048                         goto out;
2049                 } else {
2050                         /* Freeing part of the block. */
2051                         head = blksz - off;
2052                         ASSERT3U(head, >, 0);
2053                 }
2054                 blkoff = off;
2055         }
2056         /* zero out any partial block data at the start of the range */
2057         if (head) {
2058                 ASSERT3U(blkoff + head, ==, blksz);
2059                 if (len < head)
2060                         head = len;
2061                 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off),
2062                     TRUE, FALSE, FTAG, &db) == 0) {
2063                         caddr_t data;
2064 
2065                         /* don't dirty if it isn't on disk and isn't dirty */
2066                         if (db->db_last_dirty ||
2067                             (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
2068                                 rw_exit(&dn->dn_struct_rwlock);
2069                                 dmu_buf_will_dirty(&db->db, tx);
2070                                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2071                                 data = db->db.db_data;
2072                                 bzero(data + blkoff, head);
2073                         }
2074                         dbuf_rele(db, FTAG);
2075                 }
2076                 off += head;
2077                 len -= head;
2078         }
2079 
2080         /* If the range was less than one block, we're done */
2081         if (len == 0)
2082                 goto out;
2083 
2084         /* If the remaining range is past end of file, we're done */
2085         if ((off >> blkshift) > dn->dn_maxblkid)
2086                 goto out;
2087 
2088         ASSERT(ISP2(blksz));
2089         if (trunc)
2090                 tail = 0;
2091         else
2092                 tail = P2PHASE(len, blksz);
2093 
2094         ASSERT0(P2PHASE(off, blksz));
2095         /* zero out any partial block data at the end of the range */
2096         if (tail) {
2097                 if (len < tail)
2098                         tail = len;
2099                 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len),
2100                     TRUE, FALSE, FTAG, &db) == 0) {
2101                         /* don't dirty if not on disk and not dirty */
2102                         if (db->db_last_dirty ||
2103                             (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
2104                                 rw_exit(&dn->dn_struct_rwlock);
2105                                 dmu_buf_will_dirty(&db->db, tx);
2106                                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2107                                 bzero(db->db.db_data, tail);
2108                         }
2109                         dbuf_rele(db, FTAG);
2110                 }
2111                 len -= tail;
2112         }
2113 
2114         /* If the range did not include a full block, we are done */
2115         if (len == 0)
2116                 goto out;
2117 
2118         ASSERT(IS_P2ALIGNED(off, blksz));
2119         ASSERT(trunc || IS_P2ALIGNED(len, blksz));
2120         blkid = off >> blkshift;
2121         nblks = len >> blkshift;
2122         if (trunc)
2123                 nblks += 1;
2124 
2125         /*
2126          * Dirty all the indirect blocks in this range.  Note that only
2127          * the first and last indirect blocks can actually be written
2128          * (if they were partially freed) -- they must be dirtied, even if
2129          * they do not exist on disk yet.  The interior blocks will
2130          * be freed by free_children(), so they will not actually be written.
2131          * Even though these interior blocks will not be written, we
2132          * dirty them for two reasons:
2133          *
2134          *  - It ensures that the indirect blocks remain in memory until
2135          *    syncing context.  (They have already been prefetched by
2136          *    dmu_tx_hold_free(), so we don't have to worry about reading
2137          *    them serially here.)
2138          *
2139          *  - The dirty space accounting will put pressure on the txg sync
2140          *    mechanism to begin syncing, and to delay transactions if there
2141          *    is a large amount of freeing.  Even though these indirect
2142          *    blocks will not be written, we could need to write the same
2143          *    amount of space if we copy the freed BPs into deadlists.
2144          */
2145         if (dn->dn_nlevels > 1) {
2146                 uint64_t first, last;
2147 
2148                 first = blkid >> epbs;
2149                 dnode_dirty_l1(dn, first, tx);
2150                 if (trunc)
2151                         last = dn->dn_maxblkid >> epbs;
2152                 else
2153                         last = (blkid + nblks - 1) >> epbs;
2154                 if (last != first)
2155                         dnode_dirty_l1(dn, last, tx);
2156 
2157                 dnode_dirty_l1range(dn, first, last, tx);
2158 
2159                 int shift = dn->dn_datablkshift + dn->dn_indblkshift -
2160                     SPA_BLKPTRSHIFT;
2161                 for (uint64_t i = first + 1; i < last; i++) {
2162                         /*
2163                          * Set i to the blockid of the next non-hole
2164                          * level-1 indirect block at or after i.  Note
2165                          * that dnode_next_offset() operates in terms of
2166                          * level-0-equivalent bytes.
2167                          */
2168                         uint64_t ibyte = i << shift;
2169                         int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
2170                             &ibyte, 2, 1, 0);
2171                         i = ibyte >> shift;
2172                         if (i >= last)
2173                                 break;
2174 
2175                         /*
2176                          * Normally we should not see an error, either
2177                          * from dnode_next_offset() or dbuf_hold_level()
2178                          * (except for ESRCH from dnode_next_offset).
2179                          * If there is an i/o error, then when we read
2180                          * this block in syncing context, it will use
2181                          * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
2182                          * to the "failmode" property.  dnode_next_offset()
2183                          * doesn't have a flag to indicate MUSTSUCCEED.
2184                          */
2185                         if (err != 0)
2186                                 break;
2187 
2188                         dnode_dirty_l1(dn, i, tx);
2189                 }
2190         }
2191 
2192 done:
2193         /*
2194          * Add this range to the dnode range list.
2195          * We will finish up this free operation in the syncing phase.
2196          */
2197         mutex_enter(&dn->dn_mtx);
2198         int txgoff = tx->tx_txg & TXG_MASK;
2199         if (dn->dn_free_ranges[txgoff] == NULL) {
2200                 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, NULL);
2201         }
2202         range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
2203         range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
2204         dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
2205             blkid, nblks, tx->tx_txg);
2206         mutex_exit(&dn->dn_mtx);
2207 
2208         dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
2209         dnode_setdirty(dn, tx);
2210 out:
2211 
2212         rw_exit(&dn->dn_struct_rwlock);
2213 }
2214 
2215 static boolean_t
2216 dnode_spill_freed(dnode_t *dn)
2217 {
2218         int i;
2219 
2220         mutex_enter(&dn->dn_mtx);
2221         for (i = 0; i < TXG_SIZE; i++) {
2222                 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
2223                         break;
2224         }
2225         mutex_exit(&dn->dn_mtx);
2226         return (i < TXG_SIZE);
2227 }
2228 
2229 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
2230 uint64_t
2231 dnode_block_freed(dnode_t *dn, uint64_t blkid)
2232 {
2233         void *dp = spa_get_dsl(dn->dn_objset->os_spa);
2234         int i;
2235 
2236         if (blkid == DMU_BONUS_BLKID)
2237                 return (FALSE);
2238 
2239         /*
2240          * If we're in the process of opening the pool, dp will not be
2241          * set yet, but there shouldn't be anything dirty.
2242          */
2243         if (dp == NULL)
2244                 return (FALSE);
2245 
2246         if (dn->dn_free_txg)
2247                 return (TRUE);
2248 
2249         if (blkid == DMU_SPILL_BLKID)
2250                 return (dnode_spill_freed(dn));
2251 
2252         mutex_enter(&dn->dn_mtx);
2253         for (i = 0; i < TXG_SIZE; i++) {
2254                 if (dn->dn_free_ranges[i] != NULL &&
2255                     range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
2256                         break;
2257         }
2258         mutex_exit(&dn->dn_mtx);
2259         return (i < TXG_SIZE);
2260 }
2261 
2262 /* call from syncing context when we actually write/free space for this dnode */
2263 void
2264 dnode_diduse_space(dnode_t *dn, int64_t delta)
2265 {
2266         uint64_t space;
2267         dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
2268             dn, dn->dn_phys,
2269             (u_longlong_t)dn->dn_phys->dn_used,
2270             (longlong_t)delta);
2271 
2272         mutex_enter(&dn->dn_mtx);
2273         space = DN_USED_BYTES(dn->dn_phys);
2274         if (delta > 0) {
2275                 ASSERT3U(space + delta, >=, space); /* no overflow */
2276         } else {
2277                 ASSERT3U(space, >=, -delta); /* no underflow */
2278         }
2279         space += delta;
2280         if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
2281                 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
2282                 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
2283                 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
2284         } else {
2285                 dn->dn_phys->dn_used = space;
2286                 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
2287         }
2288         mutex_exit(&dn->dn_mtx);
2289 }
2290 
2291 /*
2292  * Scans a block at the indicated "level" looking for a hole or data,
2293  * depending on 'flags'.
2294  *
2295  * If level > 0, then we are scanning an indirect block looking at its
2296  * pointers.  If level == 0, then we are looking at a block of dnodes.
2297  *
2298  * If we don't find what we are looking for in the block, we return ESRCH.
2299  * Otherwise, return with *offset pointing to the beginning (if searching
2300  * forwards) or end (if searching backwards) of the range covered by the
2301  * block pointer we matched on (or dnode).
2302  *
2303  * The basic search algorithm used below by dnode_next_offset() is to
2304  * use this function to search up the block tree (widen the search) until
2305  * we find something (i.e., we don't return ESRCH) and then search back
2306  * down the tree (narrow the search) until we reach our original search
2307  * level.
2308  */
2309 static int
2310 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
2311     int lvl, uint64_t blkfill, uint64_t txg)
2312 {
2313         dmu_buf_impl_t *db = NULL;
2314         void *data = NULL;
2315         uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2316         uint64_t epb = 1ULL << epbs;
2317         uint64_t minfill, maxfill;
2318         boolean_t hole;
2319         int i, inc, error, span;
2320 
2321         dprintf("probing object %llu offset %llx level %d of %u\n",
2322             dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
2323 
2324         hole = ((flags & DNODE_FIND_HOLE) != 0);
2325         inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
2326         ASSERT(txg == 0 || !hole);
2327 
2328         if (lvl == dn->dn_phys->dn_nlevels) {
2329                 error = 0;
2330                 epb = dn->dn_phys->dn_nblkptr;
2331                 data = dn->dn_phys->dn_blkptr;
2332         } else {
2333                 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
2334                 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
2335                 if (error) {
2336                         if (error != ENOENT)
2337                                 return (error);
2338                         if (hole)
2339                                 return (0);
2340                         /*
2341                          * This can only happen when we are searching up
2342                          * the block tree for data.  We don't really need to
2343                          * adjust the offset, as we will just end up looking
2344                          * at the pointer to this block in its parent, and its
2345                          * going to be unallocated, so we will skip over it.
2346                          */
2347                         return (SET_ERROR(ESRCH));
2348                 }
2349                 error = dbuf_read(db, NULL,
2350                     DB_RF_CANFAIL | DB_RF_HAVESTRUCT | DB_RF_NO_DECRYPT);
2351                 if (error) {
2352                         dbuf_rele(db, FTAG);
2353                         return (error);
2354                 }
2355                 data = db->db.db_data;
2356         }
2357 
2358 
2359         if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
2360             db->db_blkptr->blk_birth <= txg ||
2361             BP_IS_HOLE(db->db_blkptr))) {
2362                 /*
2363                  * This can only happen when we are searching up the tree
2364                  * and these conditions mean that we need to keep climbing.
2365                  */
2366                 error = SET_ERROR(ESRCH);
2367         } else if (lvl == 0) {
2368                 dnode_phys_t *dnp = data;
2369 
2370                 ASSERT(dn->dn_type == DMU_OT_DNODE);
2371                 ASSERT(!(flags & DNODE_FIND_BACKWARDS));
2372 
2373                 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1);
2374                     i < blkfill; i += dnp[i].dn_extra_slots + 1) {
2375                         if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
2376                                 break;
2377                 }
2378 
2379                 if (i == blkfill)
2380                         error = SET_ERROR(ESRCH);
2381 
2382                 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) +
2383                     (i << DNODE_SHIFT);
2384         } else {
2385                 blkptr_t *bp = data;
2386                 uint64_t start = *offset;
2387                 span = (lvl - 1) * epbs + dn->dn_datablkshift;
2388                 minfill = 0;
2389                 maxfill = blkfill << ((lvl - 1) * epbs);
2390 
2391                 if (hole)
2392                         maxfill--;
2393                 else
2394                         minfill++;
2395 
2396                 *offset = *offset >> span;
2397                 for (i = BF64_GET(*offset, 0, epbs);
2398                     i >= 0 && i < epb; i += inc) {
2399                         if (BP_GET_FILL(&bp[i]) >= minfill &&
2400                             BP_GET_FILL(&bp[i]) <= maxfill &&
2401                             (hole || bp[i].blk_birth > txg))
2402                                 break;
2403                         if (inc > 0 || *offset > 0)
2404                                 *offset += inc;
2405                 }
2406                 *offset = *offset << span;
2407                 if (inc < 0) {
2408                         /* traversing backwards; position offset at the end */
2409                         ASSERT3U(*offset, <=, start);
2410                         *offset = MIN(*offset + (1ULL << span) - 1, start);
2411                 } else if (*offset < start) {
2412                         *offset = start;
2413                 }
2414                 if (i < 0 || i >= epb)
2415                         error = SET_ERROR(ESRCH);
2416         }
2417 
2418         if (db)
2419                 dbuf_rele(db, FTAG);
2420 
2421         return (error);
2422 }
2423 
2424 /*
2425  * Find the next hole, data, or sparse region at or after *offset.
2426  * The value 'blkfill' tells us how many items we expect to find
2427  * in an L0 data block; this value is 1 for normal objects,
2428  * DNODES_PER_BLOCK for the meta dnode, and some fraction of
2429  * DNODES_PER_BLOCK when searching for sparse regions thereof.
2430  *
2431  * Examples:
2432  *
2433  * dnode_next_offset(dn, flags, offset, 1, 1, 0);
2434  *      Finds the next/previous hole/data in a file.
2435  *      Used in dmu_offset_next().
2436  *
2437  * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
2438  *      Finds the next free/allocated dnode an objset's meta-dnode.
2439  *      Only finds objects that have new contents since txg (ie.
2440  *      bonus buffer changes and content removal are ignored).
2441  *      Used in dmu_object_next().
2442  *
2443  * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
2444  *      Finds the next L2 meta-dnode bp that's at most 1/4 full.
2445  *      Used in dmu_object_alloc().
2446  */
2447 int
2448 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
2449     int minlvl, uint64_t blkfill, uint64_t txg)
2450 {
2451         uint64_t initial_offset = *offset;
2452         int lvl, maxlvl;
2453         int error = 0;
2454 
2455         if (!(flags & DNODE_FIND_HAVELOCK))
2456                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2457 
2458         if (dn->dn_phys->dn_nlevels == 0) {
2459                 error = SET_ERROR(ESRCH);
2460                 goto out;
2461         }
2462 
2463         if (dn->dn_datablkshift == 0) {
2464                 if (*offset < dn->dn_datablksz) {
2465                         if (flags & DNODE_FIND_HOLE)
2466                                 *offset = dn->dn_datablksz;
2467                 } else {
2468                         error = SET_ERROR(ESRCH);
2469                 }
2470                 goto out;
2471         }
2472 
2473         maxlvl = dn->dn_phys->dn_nlevels;
2474 
2475         for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2476                 error = dnode_next_offset_level(dn,
2477                     flags, offset, lvl, blkfill, txg);
2478                 if (error != ESRCH)
2479                         break;
2480         }
2481 
2482         while (error == 0 && --lvl >= minlvl) {
2483                 error = dnode_next_offset_level(dn,
2484                     flags, offset, lvl, blkfill, txg);
2485         }
2486 
2487         /*
2488          * There's always a "virtual hole" at the end of the object, even
2489          * if all BP's which physically exist are non-holes.
2490          */
2491         if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2492             minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2493                 error = 0;
2494         }
2495 
2496         if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2497             initial_offset < *offset : initial_offset > *offset))
2498                 error = SET_ERROR(ESRCH);
2499 out:
2500         if (!(flags & DNODE_FIND_HAVELOCK))
2501                 rw_exit(&dn->dn_struct_rwlock);
2502 
2503         return (error);
2504 }