1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
  24  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
  25  * Copyright (c) 2014 Integros [integros.com]
  26  */
  27 
  28 #include <sys/zio.h>
  29 #include <sys/spa.h>
  30 #include <sys/dmu.h>
  31 #include <sys/zfs_context.h>
  32 #include <sys/zap.h>
  33 #include <sys/refcount.h>
  34 #include <sys/zap_impl.h>
  35 #include <sys/zap_leaf.h>
  36 #include <sys/avl.h>
  37 #include <sys/arc.h>
  38 #include <sys/dmu_objset.h>
  39 
  40 #ifdef _KERNEL
  41 #include <sys/sunddi.h>
  42 #endif
  43 
  44 extern inline mzap_phys_t *zap_m_phys(zap_t *zap);
  45 
  46 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
  47 
  48 uint64_t
  49 zap_getflags(zap_t *zap)
  50 {
  51         if (zap->zap_ismicro)
  52                 return (0);
  53         return (zap_f_phys(zap)->zap_flags);
  54 }
  55 
  56 int
  57 zap_hashbits(zap_t *zap)
  58 {
  59         if (zap_getflags(zap) & ZAP_FLAG_HASH64)
  60                 return (48);
  61         else
  62                 return (28);
  63 }
  64 
  65 uint32_t
  66 zap_maxcd(zap_t *zap)
  67 {
  68         if (zap_getflags(zap) & ZAP_FLAG_HASH64)
  69                 return ((1<<16)-1);
  70         else
  71                 return (-1U);
  72 }
  73 
  74 static uint64_t
  75 zap_hash(zap_name_t *zn)
  76 {
  77         zap_t *zap = zn->zn_zap;
  78         uint64_t h = 0;
  79 
  80         if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
  81                 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
  82                 h = *(uint64_t *)zn->zn_key_orig;
  83         } else {
  84                 h = zap->zap_salt;
  85                 ASSERT(h != 0);
  86                 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
  87 
  88                 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
  89                         int i;
  90                         const uint64_t *wp = zn->zn_key_norm;
  91 
  92                         ASSERT(zn->zn_key_intlen == 8);
  93                         for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
  94                                 int j;
  95                                 uint64_t word = *wp;
  96 
  97                                 for (j = 0; j < zn->zn_key_intlen; j++) {
  98                                         h = (h >> 8) ^
  99                                             zfs_crc64_table[(h ^ word) & 0xFF];
 100                                         word >>= NBBY;
 101                                 }
 102                         }
 103                 } else {
 104                         int i, len;
 105                         const uint8_t *cp = zn->zn_key_norm;
 106 
 107                         /*
 108                          * We previously stored the terminating null on
 109                          * disk, but didn't hash it, so we need to
 110                          * continue to not hash it.  (The
 111                          * zn_key_*_numints includes the terminating
 112                          * null for non-binary keys.)
 113                          */
 114                         len = zn->zn_key_norm_numints - 1;
 115 
 116                         ASSERT(zn->zn_key_intlen == 1);
 117                         for (i = 0; i < len; cp++, i++) {
 118                                 h = (h >> 8) ^
 119                                     zfs_crc64_table[(h ^ *cp) & 0xFF];
 120                         }
 121                 }
 122         }
 123         /*
 124          * Don't use all 64 bits, since we need some in the cookie for
 125          * the collision differentiator.  We MUST use the high bits,
 126          * since those are the ones that we first pay attention to when
 127          * chosing the bucket.
 128          */
 129         h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
 130 
 131         return (h);
 132 }
 133 
 134 static int
 135 zap_normalize(zap_t *zap, const char *name, char *namenorm)
 136 {
 137         size_t inlen, outlen;
 138         int err;
 139 
 140         ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
 141 
 142         inlen = strlen(name) + 1;
 143         outlen = ZAP_MAXNAMELEN;
 144 
 145         err = 0;
 146         (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
 147             zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
 148             U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
 149 
 150         return (err);
 151 }
 152 
 153 boolean_t
 154 zap_match(zap_name_t *zn, const char *matchname)
 155 {
 156         ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
 157 
 158         if (zn->zn_matchtype == MT_FIRST) {
 159                 char norm[ZAP_MAXNAMELEN];
 160 
 161                 if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
 162                         return (B_FALSE);
 163 
 164                 return (strcmp(zn->zn_key_norm, norm) == 0);
 165         } else {
 166                 /* MT_BEST or MT_EXACT */
 167                 return (strcmp(zn->zn_key_orig, matchname) == 0);
 168         }
 169 }
 170 
 171 void
 172 zap_name_free(zap_name_t *zn)
 173 {
 174         kmem_free(zn, sizeof (zap_name_t));
 175 }
 176 
 177 zap_name_t *
 178 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
 179 {
 180         zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
 181 
 182         zn->zn_zap = zap;
 183         zn->zn_key_intlen = sizeof (*key);
 184         zn->zn_key_orig = key;
 185         zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
 186         zn->zn_matchtype = mt;
 187         if (zap->zap_normflags) {
 188                 if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
 189                         zap_name_free(zn);
 190                         return (NULL);
 191                 }
 192                 zn->zn_key_norm = zn->zn_normbuf;
 193                 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
 194         } else {
 195                 if (mt != MT_EXACT) {
 196                         zap_name_free(zn);
 197                         return (NULL);
 198                 }
 199                 zn->zn_key_norm = zn->zn_key_orig;
 200                 zn->zn_key_norm_numints = zn->zn_key_orig_numints;
 201         }
 202 
 203         zn->zn_hash = zap_hash(zn);
 204         return (zn);
 205 }
 206 
 207 zap_name_t *
 208 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
 209 {
 210         zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
 211 
 212         ASSERT(zap->zap_normflags == 0);
 213         zn->zn_zap = zap;
 214         zn->zn_key_intlen = sizeof (*key);
 215         zn->zn_key_orig = zn->zn_key_norm = key;
 216         zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
 217         zn->zn_matchtype = MT_EXACT;
 218 
 219         zn->zn_hash = zap_hash(zn);
 220         return (zn);
 221 }
 222 
 223 static void
 224 mzap_byteswap(mzap_phys_t *buf, size_t size)
 225 {
 226         int i, max;
 227         buf->mz_block_type = BSWAP_64(buf->mz_block_type);
 228         buf->mz_salt = BSWAP_64(buf->mz_salt);
 229         buf->mz_normflags = BSWAP_64(buf->mz_normflags);
 230         max = (size / MZAP_ENT_LEN) - 1;
 231         for (i = 0; i < max; i++) {
 232                 buf->mz_chunk[i].mze_value =
 233                     BSWAP_64(buf->mz_chunk[i].mze_value);
 234                 buf->mz_chunk[i].mze_cd =
 235                     BSWAP_32(buf->mz_chunk[i].mze_cd);
 236         }
 237 }
 238 
 239 void
 240 zap_byteswap(void *buf, size_t size)
 241 {
 242         uint64_t block_type;
 243 
 244         block_type = *(uint64_t *)buf;
 245 
 246         if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
 247                 /* ASSERT(magic == ZAP_LEAF_MAGIC); */
 248                 mzap_byteswap(buf, size);
 249         } else {
 250                 fzap_byteswap(buf, size);
 251         }
 252 }
 253 
 254 static int
 255 mze_compare(const void *arg1, const void *arg2)
 256 {
 257         const mzap_ent_t *mze1 = arg1;
 258         const mzap_ent_t *mze2 = arg2;
 259 
 260         if (mze1->mze_hash > mze2->mze_hash)
 261                 return (+1);
 262         if (mze1->mze_hash < mze2->mze_hash)
 263                 return (-1);
 264         if (mze1->mze_cd > mze2->mze_cd)
 265                 return (+1);
 266         if (mze1->mze_cd < mze2->mze_cd)
 267                 return (-1);
 268         return (0);
 269 }
 270 
 271 static void
 272 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
 273 {
 274         mzap_ent_t *mze;
 275 
 276         ASSERT(zap->zap_ismicro);
 277         ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
 278 
 279         mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
 280         mze->mze_chunkid = chunkid;
 281         mze->mze_hash = hash;
 282         mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
 283         ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
 284         avl_add(&zap->zap_m.zap_avl, mze);
 285 }
 286 
 287 static mzap_ent_t *
 288 mze_find(zap_name_t *zn)
 289 {
 290         mzap_ent_t mze_tofind;
 291         mzap_ent_t *mze;
 292         avl_index_t idx;
 293         avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
 294 
 295         ASSERT(zn->zn_zap->zap_ismicro);
 296         ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
 297 
 298         mze_tofind.mze_hash = zn->zn_hash;
 299         mze_tofind.mze_cd = 0;
 300 
 301 again:
 302         mze = avl_find(avl, &mze_tofind, &idx);
 303         if (mze == NULL)
 304                 mze = avl_nearest(avl, idx, AVL_AFTER);
 305         for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
 306                 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
 307                 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
 308                         return (mze);
 309         }
 310         if (zn->zn_matchtype == MT_BEST) {
 311                 zn->zn_matchtype = MT_FIRST;
 312                 goto again;
 313         }
 314         return (NULL);
 315 }
 316 
 317 static uint32_t
 318 mze_find_unused_cd(zap_t *zap, uint64_t hash)
 319 {
 320         mzap_ent_t mze_tofind;
 321         mzap_ent_t *mze;
 322         avl_index_t idx;
 323         avl_tree_t *avl = &zap->zap_m.zap_avl;
 324         uint32_t cd;
 325 
 326         ASSERT(zap->zap_ismicro);
 327         ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
 328 
 329         mze_tofind.mze_hash = hash;
 330         mze_tofind.mze_cd = 0;
 331 
 332         cd = 0;
 333         for (mze = avl_find(avl, &mze_tofind, &idx);
 334             mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
 335                 if (mze->mze_cd != cd)
 336                         break;
 337                 cd++;
 338         }
 339 
 340         return (cd);
 341 }
 342 
 343 static void
 344 mze_remove(zap_t *zap, mzap_ent_t *mze)
 345 {
 346         ASSERT(zap->zap_ismicro);
 347         ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
 348 
 349         avl_remove(&zap->zap_m.zap_avl, mze);
 350         kmem_free(mze, sizeof (mzap_ent_t));
 351 }
 352 
 353 static void
 354 mze_destroy(zap_t *zap)
 355 {
 356         mzap_ent_t *mze;
 357         void *avlcookie = NULL;
 358 
 359         while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
 360                 kmem_free(mze, sizeof (mzap_ent_t));
 361         avl_destroy(&zap->zap_m.zap_avl);
 362 }
 363 
 364 static zap_t *
 365 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
 366 {
 367         zap_t *winner;
 368         zap_t *zap;
 369         int i;
 370         uint64_t *zap_hdr = (uint64_t *)db->db_data;
 371         uint64_t zap_block_type = zap_hdr[0];
 372         uint64_t zap_magic = zap_hdr[1];
 373 
 374         ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
 375 
 376         zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
 377         rw_init(&zap->zap_rwlock, 0, 0, 0);
 378         rw_enter(&zap->zap_rwlock, RW_WRITER);
 379         zap->zap_objset = os;
 380         zap->zap_object = obj;
 381         zap->zap_dbuf = db;
 382 
 383         if (zap_block_type != ZBT_MICRO) {
 384                 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
 385                 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
 386                 if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
 387                         winner = NULL;  /* No actual winner here... */
 388                         goto handle_winner;
 389                 }
 390         } else {
 391                 zap->zap_ismicro = TRUE;
 392         }
 393 
 394         /*
 395          * Make sure that zap_ismicro is set before we let others see
 396          * it, because zap_lockdir() checks zap_ismicro without the lock
 397          * held.
 398          */
 399         dmu_buf_init_user(&zap->zap_dbu, zap_evict, &zap->zap_dbuf);
 400         winner = dmu_buf_set_user(db, &zap->zap_dbu);
 401 
 402         if (winner != NULL)
 403                 goto handle_winner;
 404 
 405         if (zap->zap_ismicro) {
 406                 zap->zap_salt = zap_m_phys(zap)->mz_salt;
 407                 zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
 408                 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
 409                 avl_create(&zap->zap_m.zap_avl, mze_compare,
 410                     sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
 411 
 412                 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
 413                         mzap_ent_phys_t *mze =
 414                             &zap_m_phys(zap)->mz_chunk[i];
 415                         if (mze->mze_name[0]) {
 416                                 zap_name_t *zn;
 417 
 418                                 zap->zap_m.zap_num_entries++;
 419                                 zn = zap_name_alloc(zap, mze->mze_name,
 420                                     MT_EXACT);
 421                                 mze_insert(zap, i, zn->zn_hash);
 422                                 zap_name_free(zn);
 423                         }
 424                 }
 425         } else {
 426                 zap->zap_salt = zap_f_phys(zap)->zap_salt;
 427                 zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
 428 
 429                 ASSERT3U(sizeof (struct zap_leaf_header), ==,
 430                     2*ZAP_LEAF_CHUNKSIZE);
 431 
 432                 /*
 433                  * The embedded pointer table should not overlap the
 434                  * other members.
 435                  */
 436                 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
 437                     &zap_f_phys(zap)->zap_salt);
 438 
 439                 /*
 440                  * The embedded pointer table should end at the end of
 441                  * the block
 442                  */
 443                 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
 444                     1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
 445                     (uintptr_t)zap_f_phys(zap), ==,
 446                     zap->zap_dbuf->db_size);
 447         }
 448         rw_exit(&zap->zap_rwlock);
 449         return (zap);
 450 
 451 handle_winner:
 452         rw_exit(&zap->zap_rwlock);
 453         rw_destroy(&zap->zap_rwlock);
 454         if (!zap->zap_ismicro)
 455                 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
 456         kmem_free(zap, sizeof (zap_t));
 457         return (winner);
 458 }
 459 
 460 int
 461 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
 462     krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
 463 {
 464         zap_t *zap;
 465         dmu_buf_t *db;
 466         krw_t lt;
 467         int err;
 468 
 469         *zapp = NULL;
 470 
 471         err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
 472         if (err)
 473                 return (err);
 474 
 475 #ifdef ZFS_DEBUG
 476         {
 477                 dmu_object_info_t doi;
 478                 dmu_object_info_from_db(db, &doi);
 479                 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
 480         }
 481 #endif
 482 
 483         zap = dmu_buf_get_user(db);
 484         if (zap == NULL) {
 485                 zap = mzap_open(os, obj, db);
 486                 if (zap == NULL) {
 487                         /*
 488                          * mzap_open() didn't like what it saw on-disk.
 489                          * Check for corruption!
 490                          */
 491                         dmu_buf_rele(db, NULL);
 492                         return (SET_ERROR(EIO));
 493                 }
 494         }
 495 
 496         /*
 497          * We're checking zap_ismicro without the lock held, in order to
 498          * tell what type of lock we want.  Once we have some sort of
 499          * lock, see if it really is the right type.  In practice this
 500          * can only be different if it was upgraded from micro to fat,
 501          * and micro wanted WRITER but fat only needs READER.
 502          */
 503         lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
 504         rw_enter(&zap->zap_rwlock, lt);
 505         if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
 506                 /* it was upgraded, now we only need reader */
 507                 ASSERT(lt == RW_WRITER);
 508                 ASSERT(RW_READER ==
 509                     (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
 510                 rw_downgrade(&zap->zap_rwlock);
 511                 lt = RW_READER;
 512         }
 513 
 514         zap->zap_objset = os;
 515 
 516         if (lt == RW_WRITER)
 517                 dmu_buf_will_dirty(db, tx);
 518 
 519         ASSERT3P(zap->zap_dbuf, ==, db);
 520 
 521         ASSERT(!zap->zap_ismicro ||
 522             zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
 523         if (zap->zap_ismicro && tx && adding &&
 524             zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
 525                 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
 526                 if (newsz > MZAP_MAX_BLKSZ) {
 527                         dprintf("upgrading obj %llu: num_entries=%u\n",
 528                             obj, zap->zap_m.zap_num_entries);
 529                         *zapp = zap;
 530                         return (mzap_upgrade(zapp, tx, 0));
 531                 }
 532                 err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
 533                 ASSERT0(err);
 534                 zap->zap_m.zap_num_chunks =
 535                     db->db_size / MZAP_ENT_LEN - 1;
 536         }
 537 
 538         *zapp = zap;
 539         return (0);
 540 }
 541 
 542 void
 543 zap_unlockdir(zap_t *zap)
 544 {
 545         rw_exit(&zap->zap_rwlock);
 546         dmu_buf_rele(zap->zap_dbuf, NULL);
 547 }
 548 
 549 static int
 550 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
 551 {
 552         mzap_phys_t *mzp;
 553         int i, sz, nchunks;
 554         int err = 0;
 555         zap_t *zap = *zapp;
 556 
 557         ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
 558 
 559         sz = zap->zap_dbuf->db_size;
 560         mzp = zio_buf_alloc(sz);
 561         bcopy(zap->zap_dbuf->db_data, mzp, sz);
 562         nchunks = zap->zap_m.zap_num_chunks;
 563 
 564         if (!flags) {
 565                 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
 566                     1ULL << fzap_default_block_shift, 0, tx);
 567                 if (err) {
 568                         zio_buf_free(mzp, sz);
 569                         return (err);
 570                 }
 571         }
 572 
 573         dprintf("upgrading obj=%llu with %u chunks\n",
 574             zap->zap_object, nchunks);
 575         /* XXX destroy the avl later, so we can use the stored hash value */
 576         mze_destroy(zap);
 577 
 578         fzap_upgrade(zap, tx, flags);
 579 
 580         for (i = 0; i < nchunks; i++) {
 581                 mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
 582                 zap_name_t *zn;
 583                 if (mze->mze_name[0] == 0)
 584                         continue;
 585                 dprintf("adding %s=%llu\n",
 586                     mze->mze_name, mze->mze_value);
 587                 zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
 588                 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
 589                 zap = zn->zn_zap;    /* fzap_add_cd() may change zap */
 590                 zap_name_free(zn);
 591                 if (err)
 592                         break;
 593         }
 594         zio_buf_free(mzp, sz);
 595         *zapp = zap;
 596         return (err);
 597 }
 598 
 599 void
 600 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
 601     dmu_tx_t *tx)
 602 {
 603         dmu_buf_t *db;
 604         mzap_phys_t *zp;
 605 
 606         VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
 607 
 608 #ifdef ZFS_DEBUG
 609         {
 610                 dmu_object_info_t doi;
 611                 dmu_object_info_from_db(db, &doi);
 612                 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
 613         }
 614 #endif
 615 
 616         dmu_buf_will_dirty(db, tx);
 617         zp = db->db_data;
 618         zp->mz_block_type = ZBT_MICRO;
 619         zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
 620         zp->mz_normflags = normflags;
 621         dmu_buf_rele(db, FTAG);
 622 
 623         if (flags != 0) {
 624                 zap_t *zap;
 625                 /* Only fat zap supports flags; upgrade immediately. */
 626                 VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
 627                     B_FALSE, B_FALSE, &zap));
 628                 VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
 629                 zap_unlockdir(zap);
 630         }
 631 }
 632 
 633 int
 634 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
 635     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
 636 {
 637         return (zap_create_claim_norm(os, obj,
 638             0, ot, bonustype, bonuslen, tx));
 639 }
 640 
 641 int
 642 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
 643     dmu_object_type_t ot,
 644     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
 645 {
 646         int err;
 647 
 648         err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
 649         if (err != 0)
 650                 return (err);
 651         mzap_create_impl(os, obj, normflags, 0, tx);
 652         return (0);
 653 }
 654 
 655 uint64_t
 656 zap_create(objset_t *os, dmu_object_type_t ot,
 657     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
 658 {
 659         return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
 660 }
 661 
 662 uint64_t
 663 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
 664     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
 665 {
 666         uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
 667 
 668         mzap_create_impl(os, obj, normflags, 0, tx);
 669         return (obj);
 670 }
 671 
 672 uint64_t
 673 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
 674     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
 675     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
 676 {
 677         uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
 678 
 679         ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
 680             leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT &&
 681             indirect_blockshift >= SPA_MINBLOCKSHIFT &&
 682             indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT);
 683 
 684         VERIFY(dmu_object_set_blocksize(os, obj,
 685             1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
 686 
 687         mzap_create_impl(os, obj, normflags, flags, tx);
 688         return (obj);
 689 }
 690 
 691 int
 692 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
 693 {
 694         /*
 695          * dmu_object_free will free the object number and free the
 696          * data.  Freeing the data will cause our pageout function to be
 697          * called, which will destroy our data (zap_leaf_t's and zap_t).
 698          */
 699 
 700         return (dmu_object_free(os, zapobj, tx));
 701 }
 702 
 703 void
 704 zap_evict(void *dbu)
 705 {
 706         zap_t *zap = dbu;
 707 
 708         rw_destroy(&zap->zap_rwlock);
 709 
 710         if (zap->zap_ismicro)
 711                 mze_destroy(zap);
 712         else
 713                 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
 714 
 715         kmem_free(zap, sizeof (zap_t));
 716 }
 717 
 718 int
 719 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
 720 {
 721         zap_t *zap;
 722         int err;
 723 
 724         err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
 725         if (err)
 726                 return (err);
 727         if (!zap->zap_ismicro) {
 728                 err = fzap_count(zap, count);
 729         } else {
 730                 *count = zap->zap_m.zap_num_entries;
 731         }
 732         zap_unlockdir(zap);
 733         return (err);
 734 }
 735 
 736 /*
 737  * zn may be NULL; if not specified, it will be computed if needed.
 738  * See also the comment above zap_entry_normalization_conflict().
 739  */
 740 static boolean_t
 741 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
 742 {
 743         mzap_ent_t *other;
 744         int direction = AVL_BEFORE;
 745         boolean_t allocdzn = B_FALSE;
 746 
 747         if (zap->zap_normflags == 0)
 748                 return (B_FALSE);
 749 
 750 again:
 751         for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
 752             other && other->mze_hash == mze->mze_hash;
 753             other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
 754 
 755                 if (zn == NULL) {
 756                         zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
 757                             MT_FIRST);
 758                         allocdzn = B_TRUE;
 759                 }
 760                 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
 761                         if (allocdzn)
 762                                 zap_name_free(zn);
 763                         return (B_TRUE);
 764                 }
 765         }
 766 
 767         if (direction == AVL_BEFORE) {
 768                 direction = AVL_AFTER;
 769                 goto again;
 770         }
 771 
 772         if (allocdzn)
 773                 zap_name_free(zn);
 774         return (B_FALSE);
 775 }
 776 
 777 /*
 778  * Routines for manipulating attributes.
 779  */
 780 
 781 int
 782 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
 783     uint64_t integer_size, uint64_t num_integers, void *buf)
 784 {
 785         return (zap_lookup_norm(os, zapobj, name, integer_size,
 786             num_integers, buf, MT_EXACT, NULL, 0, NULL));
 787 }
 788 
 789 int
 790 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
 791     uint64_t integer_size, uint64_t num_integers, void *buf,
 792     matchtype_t mt, char *realname, int rn_len,
 793     boolean_t *ncp)
 794 {
 795         zap_t *zap;
 796         int err;
 797         mzap_ent_t *mze;
 798         zap_name_t *zn;
 799 
 800         err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
 801         if (err)
 802                 return (err);
 803         zn = zap_name_alloc(zap, name, mt);
 804         if (zn == NULL) {
 805                 zap_unlockdir(zap);
 806                 return (SET_ERROR(ENOTSUP));
 807         }
 808 
 809         if (!zap->zap_ismicro) {
 810                 err = fzap_lookup(zn, integer_size, num_integers, buf,
 811                     realname, rn_len, ncp);
 812         } else {
 813                 mze = mze_find(zn);
 814                 if (mze == NULL) {
 815                         err = SET_ERROR(ENOENT);
 816                 } else {
 817                         if (num_integers < 1) {
 818                                 err = SET_ERROR(EOVERFLOW);
 819                         } else if (integer_size != 8) {
 820                                 err = SET_ERROR(EINVAL);
 821                         } else {
 822                                 *(uint64_t *)buf =
 823                                     MZE_PHYS(zap, mze)->mze_value;
 824                                 (void) strlcpy(realname,
 825                                     MZE_PHYS(zap, mze)->mze_name, rn_len);
 826                                 if (ncp) {
 827                                         *ncp = mzap_normalization_conflict(zap,
 828                                             zn, mze);
 829                                 }
 830                         }
 831                 }
 832         }
 833         zap_name_free(zn);
 834         zap_unlockdir(zap);
 835         return (err);
 836 }
 837 
 838 int
 839 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 840     int key_numints)
 841 {
 842         zap_t *zap;
 843         int err;
 844         zap_name_t *zn;
 845 
 846         err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
 847         if (err)
 848                 return (err);
 849         zn = zap_name_alloc_uint64(zap, key, key_numints);
 850         if (zn == NULL) {
 851                 zap_unlockdir(zap);
 852                 return (SET_ERROR(ENOTSUP));
 853         }
 854 
 855         fzap_prefetch(zn);
 856         zap_name_free(zn);
 857         zap_unlockdir(zap);
 858         return (err);
 859 }
 860 
 861 int
 862 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 863     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
 864 {
 865         zap_t *zap;
 866         int err;
 867         zap_name_t *zn;
 868 
 869         err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
 870         if (err)
 871                 return (err);
 872         zn = zap_name_alloc_uint64(zap, key, key_numints);
 873         if (zn == NULL) {
 874                 zap_unlockdir(zap);
 875                 return (SET_ERROR(ENOTSUP));
 876         }
 877 
 878         err = fzap_lookup(zn, integer_size, num_integers, buf,
 879             NULL, 0, NULL);
 880         zap_name_free(zn);
 881         zap_unlockdir(zap);
 882         return (err);
 883 }
 884 
 885 int
 886 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
 887 {
 888         int err = zap_lookup_norm(os, zapobj, name, 0,
 889             0, NULL, MT_EXACT, NULL, 0, NULL);
 890         if (err == EOVERFLOW || err == EINVAL)
 891                 err = 0; /* found, but skipped reading the value */
 892         return (err);
 893 }
 894 
 895 int
 896 zap_length(objset_t *os, uint64_t zapobj, const char *name,
 897     uint64_t *integer_size, uint64_t *num_integers)
 898 {
 899         zap_t *zap;
 900         int err;
 901         mzap_ent_t *mze;
 902         zap_name_t *zn;
 903 
 904         err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
 905         if (err)
 906                 return (err);
 907         zn = zap_name_alloc(zap, name, MT_EXACT);
 908         if (zn == NULL) {
 909                 zap_unlockdir(zap);
 910                 return (SET_ERROR(ENOTSUP));
 911         }
 912         if (!zap->zap_ismicro) {
 913                 err = fzap_length(zn, integer_size, num_integers);
 914         } else {
 915                 mze = mze_find(zn);
 916                 if (mze == NULL) {
 917                         err = SET_ERROR(ENOENT);
 918                 } else {
 919                         if (integer_size)
 920                                 *integer_size = 8;
 921                         if (num_integers)
 922                                 *num_integers = 1;
 923                 }
 924         }
 925         zap_name_free(zn);
 926         zap_unlockdir(zap);
 927         return (err);
 928 }
 929 
 930 int
 931 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 932     int key_numints, uint64_t *integer_size, uint64_t *num_integers)
 933 {
 934         zap_t *zap;
 935         int err;
 936         zap_name_t *zn;
 937 
 938         err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
 939         if (err)
 940                 return (err);
 941         zn = zap_name_alloc_uint64(zap, key, key_numints);
 942         if (zn == NULL) {
 943                 zap_unlockdir(zap);
 944                 return (SET_ERROR(ENOTSUP));
 945         }
 946         err = fzap_length(zn, integer_size, num_integers);
 947         zap_name_free(zn);
 948         zap_unlockdir(zap);
 949         return (err);
 950 }
 951 
 952 static void
 953 mzap_addent(zap_name_t *zn, uint64_t value)
 954 {
 955         int i;
 956         zap_t *zap = zn->zn_zap;
 957         int start = zap->zap_m.zap_alloc_next;
 958         uint32_t cd;
 959 
 960         ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
 961 
 962 #ifdef ZFS_DEBUG
 963         for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
 964                 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
 965                 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
 966         }
 967 #endif
 968 
 969         cd = mze_find_unused_cd(zap, zn->zn_hash);
 970         /* given the limited size of the microzap, this can't happen */
 971         ASSERT(cd < zap_maxcd(zap));
 972 
 973 again:
 974         for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
 975                 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
 976                 if (mze->mze_name[0] == 0) {
 977                         mze->mze_value = value;
 978                         mze->mze_cd = cd;
 979                         (void) strcpy(mze->mze_name, zn->zn_key_orig);
 980                         zap->zap_m.zap_num_entries++;
 981                         zap->zap_m.zap_alloc_next = i+1;
 982                         if (zap->zap_m.zap_alloc_next ==
 983                             zap->zap_m.zap_num_chunks)
 984                                 zap->zap_m.zap_alloc_next = 0;
 985                         mze_insert(zap, i, zn->zn_hash);
 986                         return;
 987                 }
 988         }
 989         if (start != 0) {
 990                 start = 0;
 991                 goto again;
 992         }
 993         ASSERT(!"out of entries!");
 994 }
 995 
 996 int
 997 zap_add(objset_t *os, uint64_t zapobj, const char *key,
 998     int integer_size, uint64_t num_integers,
 999     const void *val, dmu_tx_t *tx)
1000 {
1001         zap_t *zap;
1002         int err;
1003         mzap_ent_t *mze;
1004         const uint64_t *intval = val;
1005         zap_name_t *zn;
1006 
1007         err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1008         if (err)
1009                 return (err);
1010         zn = zap_name_alloc(zap, key, MT_EXACT);
1011         if (zn == NULL) {
1012                 zap_unlockdir(zap);
1013                 return (SET_ERROR(ENOTSUP));
1014         }
1015         if (!zap->zap_ismicro) {
1016                 err = fzap_add(zn, integer_size, num_integers, val, tx);
1017                 zap = zn->zn_zap;    /* fzap_add() may change zap */
1018         } else if (integer_size != 8 || num_integers != 1 ||
1019             strlen(key) >= MZAP_NAME_LEN) {
1020                 err = mzap_upgrade(&zn->zn_zap, tx, 0);
1021                 if (err == 0)
1022                         err = fzap_add(zn, integer_size, num_integers, val, tx);
1023                 zap = zn->zn_zap;    /* fzap_add() may change zap */
1024         } else {
1025                 mze = mze_find(zn);
1026                 if (mze != NULL) {
1027                         err = SET_ERROR(EEXIST);
1028                 } else {
1029                         mzap_addent(zn, *intval);
1030                 }
1031         }
1032         ASSERT(zap == zn->zn_zap);
1033         zap_name_free(zn);
1034         if (zap != NULL)        /* may be NULL if fzap_add() failed */
1035                 zap_unlockdir(zap);
1036         return (err);
1037 }
1038 
1039 int
1040 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1041     int key_numints, int integer_size, uint64_t num_integers,
1042     const void *val, dmu_tx_t *tx)
1043 {
1044         zap_t *zap;
1045         int err;
1046         zap_name_t *zn;
1047 
1048         err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1049         if (err)
1050                 return (err);
1051         zn = zap_name_alloc_uint64(zap, key, key_numints);
1052         if (zn == NULL) {
1053                 zap_unlockdir(zap);
1054                 return (SET_ERROR(ENOTSUP));
1055         }
1056         err = fzap_add(zn, integer_size, num_integers, val, tx);
1057         zap = zn->zn_zap;    /* fzap_add() may change zap */
1058         zap_name_free(zn);
1059         if (zap != NULL)        /* may be NULL if fzap_add() failed */
1060                 zap_unlockdir(zap);
1061         return (err);
1062 }
1063 
1064 int
1065 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1066     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1067 {
1068         zap_t *zap;
1069         mzap_ent_t *mze;
1070         uint64_t oldval;
1071         const uint64_t *intval = val;
1072         zap_name_t *zn;
1073         int err;
1074 
1075 #ifdef ZFS_DEBUG
1076         /*
1077          * If there is an old value, it shouldn't change across the
1078          * lockdir (eg, due to bprewrite's xlation).
1079          */
1080         if (integer_size == 8 && num_integers == 1)
1081                 (void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1082 #endif
1083 
1084         err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1085         if (err)
1086                 return (err);
1087         zn = zap_name_alloc(zap, name, MT_EXACT);
1088         if (zn == NULL) {
1089                 zap_unlockdir(zap);
1090                 return (SET_ERROR(ENOTSUP));
1091         }
1092         if (!zap->zap_ismicro) {
1093                 err = fzap_update(zn, integer_size, num_integers, val, tx);
1094                 zap = zn->zn_zap;    /* fzap_update() may change zap */
1095         } else if (integer_size != 8 || num_integers != 1 ||
1096             strlen(name) >= MZAP_NAME_LEN) {
1097                 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1098                     zapobj, integer_size, num_integers, name);
1099                 err = mzap_upgrade(&zn->zn_zap, tx, 0);
1100                 if (err == 0)
1101                         err = fzap_update(zn, integer_size, num_integers,
1102                             val, tx);
1103                 zap = zn->zn_zap;    /* fzap_update() may change zap */
1104         } else {
1105                 mze = mze_find(zn);
1106                 if (mze != NULL) {
1107                         ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1108                         MZE_PHYS(zap, mze)->mze_value = *intval;
1109                 } else {
1110                         mzap_addent(zn, *intval);
1111                 }
1112         }
1113         ASSERT(zap == zn->zn_zap);
1114         zap_name_free(zn);
1115         if (zap != NULL)        /* may be NULL if fzap_upgrade() failed */
1116                 zap_unlockdir(zap);
1117         return (err);
1118 }
1119 
1120 int
1121 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1122     int key_numints,
1123     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1124 {
1125         zap_t *zap;
1126         zap_name_t *zn;
1127         int err;
1128 
1129         err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1130         if (err)
1131                 return (err);
1132         zn = zap_name_alloc_uint64(zap, key, key_numints);
1133         if (zn == NULL) {
1134                 zap_unlockdir(zap);
1135                 return (SET_ERROR(ENOTSUP));
1136         }
1137         err = fzap_update(zn, integer_size, num_integers, val, tx);
1138         zap = zn->zn_zap;    /* fzap_update() may change zap */
1139         zap_name_free(zn);
1140         if (zap != NULL)        /* may be NULL if fzap_upgrade() failed */
1141                 zap_unlockdir(zap);
1142         return (err);
1143 }
1144 
1145 int
1146 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1147 {
1148         return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1149 }
1150 
1151 int
1152 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1153     matchtype_t mt, dmu_tx_t *tx)
1154 {
1155         zap_t *zap;
1156         int err;
1157         mzap_ent_t *mze;
1158         zap_name_t *zn;
1159 
1160         err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1161         if (err)
1162                 return (err);
1163         zn = zap_name_alloc(zap, name, mt);
1164         if (zn == NULL) {
1165                 zap_unlockdir(zap);
1166                 return (SET_ERROR(ENOTSUP));
1167         }
1168         if (!zap->zap_ismicro) {
1169                 err = fzap_remove(zn, tx);
1170         } else {
1171                 mze = mze_find(zn);
1172                 if (mze == NULL) {
1173                         err = SET_ERROR(ENOENT);
1174                 } else {
1175                         zap->zap_m.zap_num_entries--;
1176                         bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid],
1177                             sizeof (mzap_ent_phys_t));
1178                         mze_remove(zap, mze);
1179                 }
1180         }
1181         zap_name_free(zn);
1182         zap_unlockdir(zap);
1183         return (err);
1184 }
1185 
1186 int
1187 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1188     int key_numints, dmu_tx_t *tx)
1189 {
1190         zap_t *zap;
1191         int err;
1192         zap_name_t *zn;
1193 
1194         err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1195         if (err)
1196                 return (err);
1197         zn = zap_name_alloc_uint64(zap, key, key_numints);
1198         if (zn == NULL) {
1199                 zap_unlockdir(zap);
1200                 return (SET_ERROR(ENOTSUP));
1201         }
1202         err = fzap_remove(zn, tx);
1203         zap_name_free(zn);
1204         zap_unlockdir(zap);
1205         return (err);
1206 }
1207 
1208 /*
1209  * Routines for iterating over the attributes.
1210  */
1211 
1212 void
1213 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1214     uint64_t serialized)
1215 {
1216         zc->zc_objset = os;
1217         zc->zc_zap = NULL;
1218         zc->zc_leaf = NULL;
1219         zc->zc_zapobj = zapobj;
1220         zc->zc_serialized = serialized;
1221         zc->zc_hash = 0;
1222         zc->zc_cd = 0;
1223 }
1224 
1225 void
1226 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1227 {
1228         zap_cursor_init_serialized(zc, os, zapobj, 0);
1229 }
1230 
1231 void
1232 zap_cursor_fini(zap_cursor_t *zc)
1233 {
1234         if (zc->zc_zap) {
1235                 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1236                 zap_unlockdir(zc->zc_zap);
1237                 zc->zc_zap = NULL;
1238         }
1239         if (zc->zc_leaf) {
1240                 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1241                 zap_put_leaf(zc->zc_leaf);
1242                 zc->zc_leaf = NULL;
1243         }
1244         zc->zc_objset = NULL;
1245 }
1246 
1247 uint64_t
1248 zap_cursor_serialize(zap_cursor_t *zc)
1249 {
1250         if (zc->zc_hash == -1ULL)
1251                 return (-1ULL);
1252         if (zc->zc_zap == NULL)
1253                 return (zc->zc_serialized);
1254         ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1255         ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1256 
1257         /*
1258          * We want to keep the high 32 bits of the cursor zero if we can, so
1259          * that 32-bit programs can access this.  So usually use a small
1260          * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1261          * of the cursor.
1262          *
1263          * [ collision differentiator | zap_hashbits()-bit hash value ]
1264          */
1265         return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1266             ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1267 }
1268 
1269 int
1270 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1271 {
1272         int err;
1273         avl_index_t idx;
1274         mzap_ent_t mze_tofind;
1275         mzap_ent_t *mze;
1276 
1277         if (zc->zc_hash == -1ULL)
1278                 return (SET_ERROR(ENOENT));
1279 
1280         if (zc->zc_zap == NULL) {
1281                 int hb;
1282                 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1283                     RW_READER, TRUE, FALSE, &zc->zc_zap);
1284                 if (err)
1285                         return (err);
1286 
1287                 /*
1288                  * To support zap_cursor_init_serialized, advance, retrieve,
1289                  * we must add to the existing zc_cd, which may already
1290                  * be 1 due to the zap_cursor_advance.
1291                  */
1292                 ASSERT(zc->zc_hash == 0);
1293                 hb = zap_hashbits(zc->zc_zap);
1294                 zc->zc_hash = zc->zc_serialized << (64 - hb);
1295                 zc->zc_cd += zc->zc_serialized >> hb;
1296                 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1297                         zc->zc_cd = 0;
1298         } else {
1299                 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1300         }
1301         if (!zc->zc_zap->zap_ismicro) {
1302                 err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1303         } else {
1304                 mze_tofind.mze_hash = zc->zc_hash;
1305                 mze_tofind.mze_cd = zc->zc_cd;
1306 
1307                 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1308                 if (mze == NULL) {
1309                         mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1310                             idx, AVL_AFTER);
1311                 }
1312                 if (mze) {
1313                         mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1314                         ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1315                         za->za_normalization_conflict =
1316                             mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1317                         za->za_integer_length = 8;
1318                         za->za_num_integers = 1;
1319                         za->za_first_integer = mzep->mze_value;
1320                         (void) strcpy(za->za_name, mzep->mze_name);
1321                         zc->zc_hash = mze->mze_hash;
1322                         zc->zc_cd = mze->mze_cd;
1323                         err = 0;
1324                 } else {
1325                         zc->zc_hash = -1ULL;
1326                         err = SET_ERROR(ENOENT);
1327                 }
1328         }
1329         rw_exit(&zc->zc_zap->zap_rwlock);
1330         return (err);
1331 }
1332 
1333 void
1334 zap_cursor_advance(zap_cursor_t *zc)
1335 {
1336         if (zc->zc_hash == -1ULL)
1337                 return;
1338         zc->zc_cd++;
1339 }
1340 
1341 int
1342 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1343 {
1344         int err;
1345         zap_t *zap;
1346 
1347         err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1348         if (err)
1349                 return (err);
1350 
1351         bzero(zs, sizeof (zap_stats_t));
1352 
1353         if (zap->zap_ismicro) {
1354                 zs->zs_blocksize = zap->zap_dbuf->db_size;
1355                 zs->zs_num_entries = zap->zap_m.zap_num_entries;
1356                 zs->zs_num_blocks = 1;
1357         } else {
1358                 fzap_get_stats(zap, zs);
1359         }
1360         zap_unlockdir(zap);
1361         return (0);
1362 }
1363 
1364 int
1365 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1366     uint64_t *towrite, uint64_t *tooverwrite)
1367 {
1368         zap_t *zap;
1369         int err = 0;
1370 
1371         /*
1372          * Since, we don't have a name, we cannot figure out which blocks will
1373          * be affected in this operation. So, account for the worst case :
1374          * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1375          * - 4 new blocks written if adding:
1376          *      - 2 blocks for possibly split leaves,
1377          *      - 2 grown ptrtbl blocks
1378          *
1379          * This also accomodates the case where an add operation to a fairly
1380          * large microzap results in a promotion to fatzap.
1381          */
1382         if (name == NULL) {
1383                 *towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE;
1384                 return (err);
1385         }
1386 
1387         /*
1388          * We lock the zap with adding == FALSE. Because, if we pass
1389          * the actual value of add, it could trigger a mzap_upgrade().
1390          * At present we are just evaluating the possibility of this operation
1391          * and hence we donot want to trigger an upgrade.
1392          */
1393         err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1394         if (err)
1395                 return (err);
1396 
1397         if (!zap->zap_ismicro) {
1398                 zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1399                 if (zn) {
1400                         err = fzap_count_write(zn, add, towrite,
1401                             tooverwrite);
1402                         zap_name_free(zn);
1403                 } else {
1404                         /*
1405                          * We treat this case as similar to (name == NULL)
1406                          */
1407                         *towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE;
1408                 }
1409         } else {
1410                 /*
1411                  * We are here if (name != NULL) and this is a micro-zap.
1412                  * We account for the header block depending on whether it
1413                  * is freeable.
1414                  *
1415                  * Incase of an add-operation it is hard to find out
1416                  * if this add will promote this microzap to fatzap.
1417                  * Hence, we consider the worst case and account for the
1418                  * blocks assuming this microzap would be promoted to a
1419                  * fatzap.
1420                  *
1421                  * 1 block overwritten  : header block
1422                  * 4 new blocks written : 2 new split leaf, 2 grown
1423                  *                      ptrtbl blocks
1424                  */
1425                 if (dmu_buf_freeable(zap->zap_dbuf))
1426                         *tooverwrite += MZAP_MAX_BLKSZ;
1427                 else
1428                         *towrite += MZAP_MAX_BLKSZ;
1429 
1430                 if (add) {
1431                         *towrite += 4 * MZAP_MAX_BLKSZ;
1432                 }
1433         }
1434 
1435         zap_unlockdir(zap);
1436         return (err);
1437 }