1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 1990 Mentat Inc.
  25  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
  26  */
  27 
  28 #include <sys/types.h>
  29 #include <sys/stream.h>
  30 #include <sys/dlpi.h>
  31 #include <sys/stropts.h>
  32 #include <sys/sysmacros.h>
  33 #include <sys/strsubr.h>
  34 #include <sys/strlog.h>
  35 #include <sys/strsun.h>
  36 #include <sys/zone.h>
  37 #define _SUN_TPI_VERSION 2
  38 #include <sys/tihdr.h>
  39 #include <sys/xti_inet.h>
  40 #include <sys/ddi.h>
  41 #include <sys/suntpi.h>
  42 #include <sys/cmn_err.h>
  43 #include <sys/debug.h>
  44 #include <sys/kobj.h>
  45 #include <sys/modctl.h>
  46 #include <sys/atomic.h>
  47 #include <sys/policy.h>
  48 #include <sys/priv.h>
  49 #include <sys/taskq.h>
  50 
  51 #include <sys/systm.h>
  52 #include <sys/param.h>
  53 #include <sys/kmem.h>
  54 #include <sys/sdt.h>
  55 #include <sys/socket.h>
  56 #include <sys/vtrace.h>
  57 #include <sys/isa_defs.h>
  58 #include <sys/mac.h>
  59 #include <net/if.h>
  60 #include <net/if_arp.h>
  61 #include <net/route.h>
  62 #include <sys/sockio.h>
  63 #include <netinet/in.h>
  64 #include <net/if_dl.h>
  65 
  66 #include <inet/common.h>
  67 #include <inet/mi.h>
  68 #include <inet/mib2.h>
  69 #include <inet/nd.h>
  70 #include <inet/arp.h>
  71 #include <inet/snmpcom.h>
  72 #include <inet/optcom.h>
  73 #include <inet/kstatcom.h>
  74 
  75 #include <netinet/igmp_var.h>
  76 #include <netinet/ip6.h>
  77 #include <netinet/icmp6.h>
  78 #include <netinet/sctp.h>
  79 
  80 #include <inet/ip.h>
  81 #include <inet/ip_impl.h>
  82 #include <inet/ip6.h>
  83 #include <inet/ip6_asp.h>
  84 #include <inet/tcp.h>
  85 #include <inet/tcp_impl.h>
  86 #include <inet/ip_multi.h>
  87 #include <inet/ip_if.h>
  88 #include <inet/ip_ire.h>
  89 #include <inet/ip_ftable.h>
  90 #include <inet/ip_rts.h>
  91 #include <inet/ip_ndp.h>
  92 #include <inet/ip_listutils.h>
  93 #include <netinet/igmp.h>
  94 #include <netinet/ip_mroute.h>
  95 #include <inet/ipp_common.h>
  96 
  97 #include <net/pfkeyv2.h>
  98 #include <inet/sadb.h>
  99 #include <inet/ipsec_impl.h>
 100 #include <inet/iptun/iptun_impl.h>
 101 #include <inet/ipdrop.h>
 102 #include <inet/ip_netinfo.h>
 103 #include <inet/ilb_ip.h>
 104 
 105 #include <sys/ethernet.h>
 106 #include <net/if_types.h>
 107 #include <sys/cpuvar.h>
 108 
 109 #include <ipp/ipp.h>
 110 #include <ipp/ipp_impl.h>
 111 #include <ipp/ipgpc/ipgpc.h>
 112 
 113 #include <sys/pattr.h>
 114 #include <inet/ipclassifier.h>
 115 #include <inet/sctp_ip.h>
 116 #include <inet/sctp/sctp_impl.h>
 117 #include <inet/udp_impl.h>
 118 #include <inet/rawip_impl.h>
 119 #include <inet/rts_impl.h>
 120 
 121 #include <sys/tsol/label.h>
 122 #include <sys/tsol/tnet.h>
 123 
 124 #include <sys/squeue_impl.h>
 125 #include <inet/ip_arp.h>
 126 
 127 #include <sys/clock_impl.h>       /* For LBOLT_FASTPATH{,64} */
 128 
 129 /*
 130  * Values for squeue switch:
 131  * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
 132  * IP_SQUEUE_ENTER: SQ_PROCESS
 133  * IP_SQUEUE_FILL: SQ_FILL
 134  */
 135 int ip_squeue_enter = IP_SQUEUE_ENTER;  /* Setable in /etc/system */
 136 
 137 int ip_squeue_flag;
 138 
 139 /*
 140  * Setable in /etc/system
 141  */
 142 int ip_poll_normal_ms = 100;
 143 int ip_poll_normal_ticks = 0;
 144 int ip_modclose_ackwait_ms = 3000;
 145 
 146 /*
 147  * It would be nice to have these present only in DEBUG systems, but the
 148  * current design of the global symbol checking logic requires them to be
 149  * unconditionally present.
 150  */
 151 uint_t ip_thread_data;                  /* TSD key for debug support */
 152 krwlock_t ip_thread_rwlock;
 153 list_t  ip_thread_list;
 154 
 155 /*
 156  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
 157  */
 158 
 159 struct listptr_s {
 160         mblk_t  *lp_head;       /* pointer to the head of the list */
 161         mblk_t  *lp_tail;       /* pointer to the tail of the list */
 162 };
 163 
 164 typedef struct listptr_s listptr_t;
 165 
 166 /*
 167  * This is used by ip_snmp_get_mib2_ip_route_media and
 168  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
 169  */
 170 typedef struct iproutedata_s {
 171         uint_t          ird_idx;
 172         uint_t          ird_flags;      /* see below */
 173         listptr_t       ird_route;      /* ipRouteEntryTable */
 174         listptr_t       ird_netmedia;   /* ipNetToMediaEntryTable */
 175         listptr_t       ird_attrs;      /* ipRouteAttributeTable */
 176 } iproutedata_t;
 177 
 178 /* Include ire_testhidden and IRE_IF_CLONE routes */
 179 #define IRD_REPORT_ALL  0x01
 180 
 181 /*
 182  * Cluster specific hooks. These should be NULL when booted as a non-cluster
 183  */
 184 
 185 /*
 186  * Hook functions to enable cluster networking
 187  * On non-clustered systems these vectors must always be NULL.
 188  *
 189  * Hook function to Check ip specified ip address is a shared ip address
 190  * in the cluster
 191  *
 192  */
 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
 194     sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
 195 
 196 /*
 197  * Hook function to generate cluster wide ip fragment identifier
 198  */
 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
 200     sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
 201     void *args) = NULL;
 202 
 203 /*
 204  * Hook function to generate cluster wide SPI.
 205  */
 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
 207     void *) = NULL;
 208 
 209 /*
 210  * Hook function to verify if the SPI is already utlized.
 211  */
 212 
 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
 214 
 215 /*
 216  * Hook function to delete the SPI from the cluster wide repository.
 217  */
 218 
 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
 220 
 221 /*
 222  * Hook function to inform the cluster when packet received on an IDLE SA
 223  */
 224 
 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
 226     in6_addr_t, in6_addr_t, void *) = NULL;
 227 
 228 /*
 229  * Synchronization notes:
 230  *
 231  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
 232  * MT level protection given by STREAMS. IP uses a combination of its own
 233  * internal serialization mechanism and standard Solaris locking techniques.
 234  * The internal serialization is per phyint.  This is used to serialize
 235  * plumbing operations, IPMP operations, most set ioctls, etc.
 236  *
 237  * Plumbing is a long sequence of operations involving message
 238  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
 239  * involved in plumbing operations. A natural model is to serialize these
 240  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
 241  * parallel without any interference. But various set ioctls on hme0 are best
 242  * serialized, along with IPMP operations and processing of DLPI control
 243  * messages received from drivers on a per phyint basis. This serialization is
 244  * provided by the ipsq_t and primitives operating on this. Details can
 245  * be found in ip_if.c above the core primitives operating on ipsq_t.
 246  *
 247  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
 248  * Simiarly lookup of an ire by a thread also returns a refheld ire.
 249  * In addition ipif's and ill's referenced by the ire are also indirectly
 250  * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
 251  * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
 252  * address of an ipif has to go through the ipsq_t. This ensures that only
 253  * one such exclusive operation proceeds at any time on the ipif. It then
 254  * waits for all refcnts
 255  * associated with this ipif to come down to zero. The address is changed
 256  * only after the ipif has been quiesced. Then the ipif is brought up again.
 257  * More details are described above the comment in ip_sioctl_flags.
 258  *
 259  * Packet processing is based mostly on IREs and are fully multi-threaded
 260  * using standard Solaris MT techniques.
 261  *
 262  * There are explicit locks in IP to handle:
 263  * - The ip_g_head list maintained by mi_open_link() and friends.
 264  *
 265  * - The reassembly data structures (one lock per hash bucket)
 266  *
 267  * - conn_lock is meant to protect conn_t fields. The fields actually
 268  *   protected by conn_lock are documented in the conn_t definition.
 269  *
 270  * - ire_lock to protect some of the fields of the ire, IRE tables
 271  *   (one lock per hash bucket). Refer to ip_ire.c for details.
 272  *
 273  * - ndp_g_lock and ncec_lock for protecting NCEs.
 274  *
 275  * - ill_lock protects fields of the ill and ipif. Details in ip.h
 276  *
 277  * - ill_g_lock: This is a global reader/writer lock. Protects the following
 278  *      * The AVL tree based global multi list of all ills.
 279  *      * The linked list of all ipifs of an ill
 280  *      * The <ipsq-xop> mapping
 281  *      * <ill-phyint> association
 282  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
 283  *   into an ill, changing the <ipsq-xop> mapping of an ill, changing the
 284  *   <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
 285  *   writer for the actual duration of the insertion/deletion/change.
 286  *
 287  * - ill_lock:  This is a per ill mutex.
 288  *   It protects some members of the ill_t struct; see ip.h for details.
 289  *   It also protects the <ill-phyint> assoc.
 290  *   It also protects the list of ipifs hanging off the ill.
 291  *
 292  * - ipsq_lock: This is a per ipsq_t mutex lock.
 293  *   This protects some members of the ipsq_t struct; see ip.h for details.
 294  *   It also protects the <ipsq-ipxop> mapping
 295  *
 296  * - ipx_lock: This is a per ipxop_t mutex lock.
 297  *   This protects some members of the ipxop_t struct; see ip.h for details.
 298  *
 299  * - phyint_lock: This is a per phyint mutex lock. Protects just the
 300  *   phyint_flags
 301  *
 302  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
 303  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
 304  *   uniqueness check also done atomically.
 305  *
 306  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
 307  *   group list linked by ill_usesrc_grp_next. It also protects the
 308  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
 309  *   group is being added or deleted.  This lock is taken as a reader when
 310  *   walking the list/group(eg: to get the number of members in a usesrc group).
 311  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
 312  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
 313  *   example, it is not necessary to take this lock in the initial portion
 314  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
 315  *   operations are executed exclusively and that ensures that the "usesrc
 316  *   group state" cannot change. The "usesrc group state" change can happen
 317  *   only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
 318  *
 319  * Changing <ill-phyint>, <ipsq-xop> assocications:
 320  *
 321  * To change the <ill-phyint> association, the ill_g_lock must be held
 322  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
 323  * must be held.
 324  *
 325  * To change the <ipsq-xop> association, the ill_g_lock must be held as
 326  * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
 327  * This is only done when ills are added or removed from IPMP groups.
 328  *
 329  * To add or delete an ipif from the list of ipifs hanging off the ill,
 330  * ill_g_lock (writer) and ill_lock must be held and the thread must be
 331  * a writer on the associated ipsq.
 332  *
 333  * To add or delete an ill to the system, the ill_g_lock must be held as
 334  * writer and the thread must be a writer on the associated ipsq.
 335  *
 336  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
 337  * must be a writer on the associated ipsq.
 338  *
 339  * Lock hierarchy
 340  *
 341  * Some lock hierarchy scenarios are listed below.
 342  *
 343  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
 344  * ill_g_lock -> ill_lock(s) -> phyint_lock
 345  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
 346  * ill_g_lock -> ip_addr_avail_lock
 347  * conn_lock -> irb_lock -> ill_lock -> ire_lock
 348  * ill_g_lock -> ip_g_nd_lock
 349  * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
 350  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
 351  * arl_lock -> ill_lock
 352  * ips_ire_dep_lock -> irb_lock
 353  *
 354  * When more than 1 ill lock is needed to be held, all ill lock addresses
 355  * are sorted on address and locked starting from highest addressed lock
 356  * downward.
 357  *
 358  * Multicast scenarios
 359  * ips_ill_g_lock -> ill_mcast_lock
 360  * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
 361  * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
 362  * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
 363  * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
 364  * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
 365  *
 366  * IPsec scenarios
 367  *
 368  * ipsa_lock -> ill_g_lock -> ill_lock
 369  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
 370  *
 371  * Trusted Solaris scenarios
 372  *
 373  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
 374  * igsa_lock -> gcdb_lock
 375  * gcgrp_rwlock -> ire_lock
 376  * gcgrp_rwlock -> gcdb_lock
 377  *
 378  * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
 379  *
 380  * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
 381  * sq_lock -> conn_lock -> QLOCK(q)
 382  * ill_lock -> ft_lock -> fe_lock
 383  *
 384  * Routing/forwarding table locking notes:
 385  *
 386  * Lock acquisition order: Radix tree lock, irb_lock.
 387  * Requirements:
 388  * i.  Walker must not hold any locks during the walker callback.
 389  * ii  Walker must not see a truncated tree during the walk because of any node
 390  *     deletion.
 391  * iii Existing code assumes ire_bucket is valid if it is non-null and is used
 392  *     in many places in the code to walk the irb list. Thus even if all the
 393  *     ires in a bucket have been deleted, we still can't free the radix node
 394  *     until the ires have actually been inactive'd (freed).
 395  *
 396  * Tree traversal - Need to hold the global tree lock in read mode.
 397  * Before dropping the global tree lock, need to either increment the ire_refcnt
 398  * to ensure that the radix node can't be deleted.
 399  *
 400  * Tree add - Need to hold the global tree lock in write mode to add a
 401  * radix node. To prevent the node from being deleted, increment the
 402  * irb_refcnt, after the node is added to the tree. The ire itself is
 403  * added later while holding the irb_lock, but not the tree lock.
 404  *
 405  * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
 406  * All associated ires must be inactive (i.e. freed), and irb_refcnt
 407  * must be zero.
 408  *
 409  * Walker - Increment irb_refcnt before calling the walker callback. Hold the
 410  * global tree lock (read mode) for traversal.
 411  *
 412  * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
 413  * hence we will acquire irb_lock while holding ips_ire_dep_lock.
 414  *
 415  * IPsec notes :
 416  *
 417  * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
 418  * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
 419  * ip_xmit_attr_t has the
 420  * information used by the IPsec code for applying the right level of
 421  * protection. The information initialized by IP in the ip_xmit_attr_t
 422  * is determined by the per-socket policy or global policy in the system.
 423  * For inbound datagrams, the ip_recv_attr_t
 424  * starts out with nothing in it. It gets filled
 425  * with the right information if it goes through the AH/ESP code, which
 426  * happens if the incoming packet is secure. The information initialized
 427  * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
 428  * the policy requirements needed by per-socket policy or global policy
 429  * is met or not.
 430  *
 431  * For fully connected sockets i.e dst, src [addr, port] is known,
 432  * conn_policy_cached is set indicating that policy has been cached.
 433  * conn_in_enforce_policy may or may not be set depending on whether
 434  * there is a global policy match or per-socket policy match.
 435  * Policy inheriting happpens in ip_policy_set once the destination is known.
 436  * Once the right policy is set on the conn_t, policy cannot change for
 437  * this socket. This makes life simpler for TCP (UDP ?) where
 438  * re-transmissions go out with the same policy. For symmetry, policy
 439  * is cached for fully connected UDP sockets also. Thus if policy is cached,
 440  * it also implies that policy is latched i.e policy cannot change
 441  * on these sockets. As we have the right policy on the conn, we don't
 442  * have to lookup global policy for every outbound and inbound datagram
 443  * and thus serving as an optimization. Note that a global policy change
 444  * does not affect fully connected sockets if they have policy. If fully
 445  * connected sockets did not have any policy associated with it, global
 446  * policy change may affect them.
 447  *
 448  * IP Flow control notes:
 449  * ---------------------
 450  * Non-TCP streams are flow controlled by IP. The way this is accomplished
 451  * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
 452  * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
 453  * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
 454  * functions.
 455  *
 456  * Per Tx ring udp flow control:
 457  * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
 458  * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
 459  *
 460  * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
 461  * To achieve best performance, outgoing traffic need to be fanned out among
 462  * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
 463  * traffic out of the NIC and it takes a fanout hint. UDP connections pass
 464  * the address of connp as fanout hint to mac_tx(). Under flow controlled
 465  * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
 466  * cookie points to a specific Tx ring that is blocked. The cookie is used to
 467  * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
 468  * point to drain_lists (idl_t's). These drain list will store the blocked UDP
 469  * connp's. The drain list is not a single list but a configurable number of
 470  * lists.
 471  *
 472  * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
 473  * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
 474  * which is equal to 128. This array in turn contains a pointer to idl_t[],
 475  * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
 476  * list will point to the list of connp's that are flow controlled.
 477  *
 478  *                      ---------------   -------   -------   -------
 479  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
 480  *                   |  ---------------   -------   -------   -------
 481  *                   |  ---------------   -------   -------   -------
 482  *                   |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
 483  * ----------------  |  ---------------   -------   -------   -------
 484  * |idl_tx_list[0]|->|  ---------------   -------   -------   -------
 485  * ----------------  |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
 486  *                   |  ---------------   -------   -------   -------
 487  *                   .        .              .         .         .
 488  *                   |  ---------------   -------   -------   -------
 489  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
 490  *                      ---------------   -------   -------   -------
 491  *                      ---------------   -------   -------   -------
 492  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
 493  *                   |  ---------------   -------   -------   -------
 494  *                   |  ---------------   -------   -------   -------
 495  * ----------------  |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
 496  * |idl_tx_list[1]|->|  ---------------   -------   -------   -------
 497  * ----------------  |        .              .         .         .
 498  *                   |  ---------------   -------   -------   -------
 499  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
 500  *                      ---------------   -------   -------   -------
 501  *     .....
 502  * ----------------
 503  * |idl_tx_list[n]|-> ...
 504  * ----------------
 505  *
 506  * When mac_tx() returns a cookie, the cookie is hashed into an index into
 507  * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
 508  * to insert the conn onto.  conn_drain_insert() asserts flow control for the
 509  * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
 510  * Further, conn_blocked is set to indicate that the conn is blocked.
 511  *
 512  * GLDv3 calls ill_flow_enable() when flow control is relieved.  The cookie
 513  * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
 514  * is again hashed to locate the appropriate idl_tx_list, which is then
 515  * drained via conn_walk_drain().  conn_walk_drain() goes through each conn in
 516  * the drain list and calls conn_drain_remove() to clear flow control (via
 517  * calling su_txq_full() or clearing QFULL), and remove the conn from the
 518  * drain list.
 519  *
 520  * Note that the drain list is not a single list but a (configurable) array of
 521  * lists (8 elements by default).  Synchronization between drain insertion and
 522  * flow control wakeup is handled by using idl_txl->txl_lock, and only
 523  * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
 524  *
 525  * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
 526  * On the send side, if the packet cannot be sent down to the driver by IP
 527  * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
 528  * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
 529  * the 0'th drain list.  When ip_wsrv() runs on the ill_wq because flow
 530  * control has been relieved, the blocked conns in the 0'th drain list are
 531  * drained as in the non-STREAMS case.
 532  *
 533  * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
 534  * is done when the conn is inserted into the drain list (conn_drain_insert())
 535  * and cleared when the conn is removed from the it (conn_drain_remove()).
 536  *
 537  * IPQOS notes:
 538  *
 539  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
 540  * and IPQoS modules. IPPF includes hooks in IP at different control points
 541  * (callout positions) which direct packets to IPQoS modules for policy
 542  * processing. Policies, if present, are global.
 543  *
 544  * The callout positions are located in the following paths:
 545  *              o local_in (packets destined for this host)
 546  *              o local_out (packets orginating from this host )
 547  *              o fwd_in  (packets forwarded by this m/c - inbound)
 548  *              o fwd_out (packets forwarded by this m/c - outbound)
 549  * Hooks at these callout points can be enabled/disabled using the ndd variable
 550  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
 551  * By default all the callout positions are enabled.
 552  *
 553  * Outbound (local_out)
 554  * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
 555  *
 556  * Inbound (local_in)
 557  * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
 558  *
 559  * Forwarding (in and out)
 560  * Hooks are placed in ire_recv_forward_v4/v6.
 561  *
 562  * IP Policy Framework processing (IPPF processing)
 563  * Policy processing for a packet is initiated by ip_process, which ascertains
 564  * that the classifier (ipgpc) is loaded and configured, failing which the
 565  * packet resumes normal processing in IP. If the clasifier is present, the
 566  * packet is acted upon by one or more IPQoS modules (action instances), per
 567  * filters configured in ipgpc and resumes normal IP processing thereafter.
 568  * An action instance can drop a packet in course of its processing.
 569  *
 570  * Zones notes:
 571  *
 572  * The partitioning rules for networking are as follows:
 573  * 1) Packets coming from a zone must have a source address belonging to that
 574  * zone.
 575  * 2) Packets coming from a zone can only be sent on a physical interface on
 576  * which the zone has an IP address.
 577  * 3) Between two zones on the same machine, packet delivery is only allowed if
 578  * there's a matching route for the destination and zone in the forwarding
 579  * table.
 580  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
 581  * different zones can bind to the same port with the wildcard address
 582  * (INADDR_ANY).
 583  *
 584  * The granularity of interface partitioning is at the logical interface level.
 585  * Therefore, every zone has its own IP addresses, and incoming packets can be
 586  * attributed to a zone unambiguously. A logical interface is placed into a zone
 587  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
 588  * structure. Rule (1) is implemented by modifying the source address selection
 589  * algorithm so that the list of eligible addresses is filtered based on the
 590  * sending process zone.
 591  *
 592  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
 593  * across all zones, depending on their type. Here is the break-up:
 594  *
 595  * IRE type                             Shared/exclusive
 596  * --------                             ----------------
 597  * IRE_BROADCAST                        Exclusive
 598  * IRE_DEFAULT (default routes)         Shared (*)
 599  * IRE_LOCAL                            Exclusive (x)
 600  * IRE_LOOPBACK                         Exclusive
 601  * IRE_PREFIX (net routes)              Shared (*)
 602  * IRE_IF_NORESOLVER (interface routes) Exclusive
 603  * IRE_IF_RESOLVER (interface routes)   Exclusive
 604  * IRE_IF_CLONE (interface routes)      Exclusive
 605  * IRE_HOST (host routes)               Shared (*)
 606  *
 607  * (*) A zone can only use a default or off-subnet route if the gateway is
 608  * directly reachable from the zone, that is, if the gateway's address matches
 609  * one of the zone's logical interfaces.
 610  *
 611  * (x) IRE_LOCAL are handled a bit differently.
 612  * When ip_restrict_interzone_loopback is set (the default),
 613  * ire_route_recursive restricts loopback using an IRE_LOCAL
 614  * between zone to the case when L2 would have conceptually looped the packet
 615  * back, i.e. the loopback which is required since neither Ethernet drivers
 616  * nor Ethernet hardware loops them back. This is the case when the normal
 617  * routes (ignoring IREs with different zoneids) would send out the packet on
 618  * the same ill as the ill with which is IRE_LOCAL is associated.
 619  *
 620  * Multiple zones can share a common broadcast address; typically all zones
 621  * share the 255.255.255.255 address. Incoming as well as locally originated
 622  * broadcast packets must be dispatched to all the zones on the broadcast
 623  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
 624  * since some zones may not be on the 10.16.72/24 network. To handle this, each
 625  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
 626  * sent to every zone that has an IRE_BROADCAST entry for the destination
 627  * address on the input ill, see ip_input_broadcast().
 628  *
 629  * Applications in different zones can join the same multicast group address.
 630  * The same logic applies for multicast as for broadcast. ip_input_multicast
 631  * dispatches packets to all zones that have members on the physical interface.
 632  */
 633 
 634 /*
 635  * Squeue Fanout flags:
 636  *      0: No fanout.
 637  *      1: Fanout across all squeues
 638  */
 639 boolean_t       ip_squeue_fanout = 0;
 640 
 641 /*
 642  * Maximum dups allowed per packet.
 643  */
 644 uint_t ip_max_frag_dups = 10;
 645 
 646 static int      ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
 647                     cred_t *credp, boolean_t isv6);
 648 static mblk_t   *ip_xmit_attach_llhdr(mblk_t *, nce_t *);
 649 
 650 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
 651 static void     icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
 652 static void     icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
 653     ip_recv_attr_t *);
 654 static void     icmp_options_update(ipha_t *);
 655 static void     icmp_param_problem(mblk_t *, uint8_t,  ip_recv_attr_t *);
 656 static void     icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
 657 static mblk_t   *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
 658 static void     icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
 659     ip_recv_attr_t *);
 660 static void     icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
 661 static void     icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
 662     ip_recv_attr_t *);
 663 
 664 mblk_t          *ip_dlpi_alloc(size_t, t_uscalar_t);
 665 char            *ip_dot_addr(ipaddr_t, char *);
 666 mblk_t          *ip_carve_mp(mblk_t **, ssize_t);
 667 int             ip_close(queue_t *, int);
 668 static char     *ip_dot_saddr(uchar_t *, char *);
 669 static void     ip_lrput(queue_t *, mblk_t *);
 670 ipaddr_t        ip_net_mask(ipaddr_t);
 671 char            *ip_nv_lookup(nv_t *, int);
 672 void    ip_rput(queue_t *, mblk_t *);
 673 static void     ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
 674                     void *dummy_arg);
 675 int             ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
 676 static mblk_t   *ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
 677                     mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
 678 static mblk_t   *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
 679                     ip_stack_t *, boolean_t);
 680 static mblk_t   *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
 681                     boolean_t);
 682 static mblk_t   *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
 683 static mblk_t   *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
 684 static mblk_t   *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
 685 static mblk_t   *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
 686 static mblk_t   *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
 687                     ip_stack_t *ipst, boolean_t);
 688 static mblk_t   *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
 689                     ip_stack_t *ipst, boolean_t);
 690 static mblk_t   *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
 691                     ip_stack_t *ipst);
 692 static mblk_t   *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
 693                     ip_stack_t *ipst);
 694 static mblk_t   *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
 695                     ip_stack_t *ipst);
 696 static mblk_t   *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
 697                     ip_stack_t *ipst);
 698 static mblk_t   *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
 699                     ip_stack_t *ipst);
 700 static mblk_t   *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
 701                     ip_stack_t *ipst);
 702 static mblk_t   *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
 703                     ip_stack_t *ipst);
 704 static mblk_t   *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
 705                     ip_stack_t *ipst);
 706 static void     ip_snmp_get2_v4(ire_t *, iproutedata_t *);
 707 static void     ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
 708 static int      ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *);
 709 static int      ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *);
 710 int             ip_snmp_set(queue_t *, int, int, uchar_t *, int);
 711 
 712 static mblk_t   *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
 713                     mblk_t *);
 714 
 715 static void     conn_drain_init(ip_stack_t *);
 716 static void     conn_drain_fini(ip_stack_t *);
 717 static void     conn_drain(conn_t *connp, boolean_t closing);
 718 
 719 static void     conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
 720 static void     conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
 721 
 722 static void     *ip_stack_init(netstackid_t stackid, netstack_t *ns);
 723 static void     ip_stack_shutdown(netstackid_t stackid, void *arg);
 724 static void     ip_stack_fini(netstackid_t stackid, void *arg);
 725 
 726 static int      ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
 727     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
 728     ire_t *, conn_t *, boolean_t, const in6_addr_t *,  mcast_record_t,
 729     const in6_addr_t *);
 730 
 731 static int      ip_squeue_switch(int);
 732 
 733 static void     *ip_kstat_init(netstackid_t, ip_stack_t *);
 734 static void     ip_kstat_fini(netstackid_t, kstat_t *);
 735 static int      ip_kstat_update(kstat_t *kp, int rw);
 736 static void     *icmp_kstat_init(netstackid_t);
 737 static void     icmp_kstat_fini(netstackid_t, kstat_t *);
 738 static int      icmp_kstat_update(kstat_t *kp, int rw);
 739 static void     *ip_kstat2_init(netstackid_t, ip_stat_t *);
 740 static void     ip_kstat2_fini(netstackid_t, kstat_t *);
 741 
 742 static void     ipobs_init(ip_stack_t *);
 743 static void     ipobs_fini(ip_stack_t *);
 744 
 745 static int      ip_tp_cpu_update(cpu_setup_t, int, void *);
 746 
 747 ipaddr_t        ip_g_all_ones = IP_HOST_MASK;
 748 
 749 static long ip_rput_pullups;
 750 int     dohwcksum = 1;  /* use h/w cksum if supported by the hardware */
 751 
 752 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
 753 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
 754 
 755 int     ip_debug;
 756 
 757 /*
 758  * Multirouting/CGTP stuff
 759  */
 760 int     ip_cgtp_filter_rev = CGTP_FILTER_REV;   /* CGTP hooks version */
 761 
 762 /*
 763  * IP tunables related declarations. Definitions are in ip_tunables.c
 764  */
 765 extern mod_prop_info_t ip_propinfo_tbl[];
 766 extern int ip_propinfo_count;
 767 
 768 /*
 769  * Table of IP ioctls encoding the various properties of the ioctl and
 770  * indexed based on the last byte of the ioctl command. Occasionally there
 771  * is a clash, and there is more than 1 ioctl with the same last byte.
 772  * In such a case 1 ioctl is encoded in the ndx table and the remaining
 773  * ioctls are encoded in the misc table. An entry in the ndx table is
 774  * retrieved by indexing on the last byte of the ioctl command and comparing
 775  * the ioctl command with the value in the ndx table. In the event of a
 776  * mismatch the misc table is then searched sequentially for the desired
 777  * ioctl command.
 778  *
 779  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
 780  */
 781 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
 782         /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 783         /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 784         /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 785         /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 786         /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 787         /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 788         /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 789         /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 790         /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 791         /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 792 
 793         /* 010 */ { SIOCADDRT,  sizeof (struct rtentry), IPI_PRIV,
 794                         MISC_CMD, ip_siocaddrt, NULL },
 795         /* 011 */ { SIOCDELRT,  sizeof (struct rtentry), IPI_PRIV,
 796                         MISC_CMD, ip_siocdelrt, NULL },
 797 
 798         /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 799                         IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
 800         /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
 801                         IF_CMD, ip_sioctl_get_addr, NULL },
 802 
 803         /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 804                         IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
 805         /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
 806                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
 807 
 808         /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
 809                         IPI_PRIV | IPI_WR,
 810                         IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
 811         /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
 812                         IPI_MODOK | IPI_GET_CMD,
 813                         IF_CMD, ip_sioctl_get_flags, NULL },
 814 
 815         /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 816         /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 817 
 818         /* copyin size cannot be coded for SIOCGIFCONF */
 819         /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
 820                         MISC_CMD, ip_sioctl_get_ifconf, NULL },
 821 
 822         /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 823                         IF_CMD, ip_sioctl_mtu, NULL },
 824         /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD,
 825                         IF_CMD, ip_sioctl_get_mtu, NULL },
 826         /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
 827                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
 828         /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 829                         IF_CMD, ip_sioctl_brdaddr, NULL },
 830         /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
 831                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
 832         /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 833                         IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
 834         /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
 835                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
 836         /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
 837                         IF_CMD, ip_sioctl_metric, NULL },
 838         /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 839 
 840         /* See 166-168 below for extended SIOC*XARP ioctls */
 841         /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
 842                         ARP_CMD, ip_sioctl_arp, NULL },
 843         /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
 844                         ARP_CMD, ip_sioctl_arp, NULL },
 845         /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
 846                         ARP_CMD, ip_sioctl_arp, NULL },
 847 
 848         /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 849         /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 850         /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 851         /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 852         /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 853         /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 854         /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 855         /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 856         /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 857         /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 858         /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 859         /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 860         /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 861         /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 862         /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 863         /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 864         /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 865         /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 866         /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 867         /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 868         /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 869 
 870         /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
 871                         MISC_CMD, if_unitsel, if_unitsel_restart },
 872 
 873         /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 874         /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 875         /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 876         /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 877         /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 878         /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 879         /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 880         /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 881         /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 882         /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 883         /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 884         /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 885         /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 886         /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 887         /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 888         /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 889         /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 890         /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 891 
 892         /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
 893                         IPI_PRIV | IPI_WR | IPI_MODOK,
 894                         IF_CMD, ip_sioctl_sifname, NULL },
 895 
 896         /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 897         /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 898         /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 899         /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 900         /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 901         /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 902         /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 903         /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 904         /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 905         /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 906         /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 907         /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 908         /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 909 
 910         /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
 911                         MISC_CMD, ip_sioctl_get_ifnum, NULL },
 912         /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
 913                         IF_CMD, ip_sioctl_get_muxid, NULL },
 914         /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
 915                         IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
 916 
 917         /* Both if and lif variants share same func */
 918         /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
 919                         IF_CMD, ip_sioctl_get_lifindex, NULL },
 920         /* Both if and lif variants share same func */
 921         /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
 922                         IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
 923 
 924         /* copyin size cannot be coded for SIOCGIFCONF */
 925         /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
 926                         MISC_CMD, ip_sioctl_get_ifconf, NULL },
 927         /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 928         /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 929         /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 930         /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 931         /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 932         /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 933         /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 934         /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 935         /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 936         /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 937         /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 938         /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 939         /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 940         /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 941         /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 942         /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 943         /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 944 
 945         /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
 946                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
 947                         ip_sioctl_removeif_restart },
 948         /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
 949                         IPI_GET_CMD | IPI_PRIV | IPI_WR,
 950                         LIF_CMD, ip_sioctl_addif, NULL },
 951 #define SIOCLIFADDR_NDX 112
 952         /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 953                         LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
 954         /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
 955                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
 956         /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 957                         LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
 958         /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
 959                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
 960         /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
 961                         IPI_PRIV | IPI_WR,
 962                         LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
 963         /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
 964                         IPI_GET_CMD | IPI_MODOK,
 965                         LIF_CMD, ip_sioctl_get_flags, NULL },
 966 
 967         /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 968         /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 969 
 970         /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
 971                         ip_sioctl_get_lifconf, NULL },
 972         /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 973                         LIF_CMD, ip_sioctl_mtu, NULL },
 974         /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
 975                         LIF_CMD, ip_sioctl_get_mtu, NULL },
 976         /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
 977                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
 978         /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 979                         LIF_CMD, ip_sioctl_brdaddr, NULL },
 980         /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
 981                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
 982         /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 983                         LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
 984         /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
 985                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
 986         /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 987                         LIF_CMD, ip_sioctl_metric, NULL },
 988         /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
 989                         IPI_PRIV | IPI_WR | IPI_MODOK,
 990                         LIF_CMD, ip_sioctl_slifname,
 991                         ip_sioctl_slifname_restart },
 992 
 993         /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
 994                         MISC_CMD, ip_sioctl_get_lifnum, NULL },
 995         /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
 996                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
 997         /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
 998                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
 999         /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1000                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1001         /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1002                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1003         /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1004                         LIF_CMD, ip_sioctl_token, NULL },
1005         /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1006                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1007         /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1008                         LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1009         /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1010                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1011         /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1012                         LIF_CMD, ip_sioctl_lnkinfo, NULL },
1013 
1014         /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1015                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1016         /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1017                         LIF_CMD, ip_siocdelndp_v6, NULL },
1018         /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1019                         LIF_CMD, ip_siocqueryndp_v6, NULL },
1020         /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1021                         LIF_CMD, ip_siocsetndp_v6, NULL },
1022         /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1023                         MISC_CMD, ip_sioctl_tmyaddr, NULL },
1024         /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1025                         MISC_CMD, ip_sioctl_tonlink, NULL },
1026         /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1027                         MISC_CMD, ip_sioctl_tmysite, NULL },
1028         /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1029         /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1030         /* IPSECioctls handled in ip_sioctl_copyin_setup itself */
1031         /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1032         /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1033         /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1034         /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1035 
1036         /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1037 
1038         /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1039                         LIF_CMD, ip_sioctl_get_binding, NULL },
1040         /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1041                         IPI_PRIV | IPI_WR,
1042                         LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1043         /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1044                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1045         /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1046                         IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1047 
1048         /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1049         /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1050         /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1051         /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1052 
1053         /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054 
1055         /* These are handled in ip_sioctl_copyin_setup itself */
1056         /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1057                         MISC_CMD, NULL, NULL },
1058         /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1059                         MISC_CMD, NULL, NULL },
1060         /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1061 
1062         /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1063                         ip_sioctl_get_lifconf, NULL },
1064 
1065         /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1066                         XARP_CMD, ip_sioctl_arp, NULL },
1067         /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1068                         XARP_CMD, ip_sioctl_arp, NULL },
1069         /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1070                         XARP_CMD, ip_sioctl_arp, NULL },
1071 
1072         /* SIOCPOPSOCKFS is not handled by IP */
1073         /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1074 
1075         /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1076                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1077         /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1078                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1079                         ip_sioctl_slifzone_restart },
1080         /* 172-174 are SCTP ioctls and not handled by IP */
1081         /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1082         /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1083         /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1084         /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1085                         IPI_GET_CMD, LIF_CMD,
1086                         ip_sioctl_get_lifusesrc, 0 },
1087         /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1088                         IPI_PRIV | IPI_WR,
1089                         LIF_CMD, ip_sioctl_slifusesrc,
1090                         NULL },
1091         /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1092                         ip_sioctl_get_lifsrcof, NULL },
1093         /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1094                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1095         /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1096                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1097         /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1098                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1099         /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1100                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1101         /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1102         /* SIOCSENABLESDP is handled by SDP */
1103         /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1104         /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1105         /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1106                         IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1107         /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1108         /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1109                         ip_sioctl_ilb_cmd, NULL },
1110         /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1111         /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1112         /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1113                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1114         /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1115                         LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1116         /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1117                         LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1118 };
1119 
1120 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1121 
1122 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1123         { I_LINK,       0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1124         { I_UNLINK,     0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1125         { I_PLINK,      0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1126         { I_PUNLINK,    0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1127         { ND_GET,       0, 0, 0, NULL, NULL },
1128         { ND_SET,       0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1129         { IP_IOCTL,     0, 0, 0, NULL, NULL },
1130         { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1131                 MISC_CMD, mrt_ioctl},
1132         { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD,
1133                 MISC_CMD, mrt_ioctl},
1134         { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1135                 MISC_CMD, mrt_ioctl}
1136 };
1137 
1138 int ip_misc_ioctl_count =
1139     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1140 
1141 int     conn_drain_nthreads;            /* Number of drainers reqd. */
1142                                         /* Settable in /etc/system */
1143 /* Defined in ip_ire.c */
1144 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1145 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1146 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1147 
1148 static nv_t     ire_nv_arr[] = {
1149         { IRE_BROADCAST, "BROADCAST" },
1150         { IRE_LOCAL, "LOCAL" },
1151         { IRE_LOOPBACK, "LOOPBACK" },
1152         { IRE_DEFAULT, "DEFAULT" },
1153         { IRE_PREFIX, "PREFIX" },
1154         { IRE_IF_NORESOLVER, "IF_NORESOL" },
1155         { IRE_IF_RESOLVER, "IF_RESOLV" },
1156         { IRE_IF_CLONE, "IF_CLONE" },
1157         { IRE_HOST, "HOST" },
1158         { IRE_MULTICAST, "MULTICAST" },
1159         { IRE_NOROUTE, "NOROUTE" },
1160         { 0 }
1161 };
1162 
1163 nv_t    *ire_nv_tbl = ire_nv_arr;
1164 
1165 /* Simple ICMP IP Header Template */
1166 static ipha_t icmp_ipha = {
1167         IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1168 };
1169 
1170 struct module_info ip_mod_info = {
1171         IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1172         IP_MOD_LOWAT
1173 };
1174 
1175 /*
1176  * Duplicate static symbols within a module confuses mdb; so we avoid the
1177  * problem by making the symbols here distinct from those in udp.c.
1178  */
1179 
1180 /*
1181  * Entry points for IP as a device and as a module.
1182  * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1183  */
1184 static struct qinit iprinitv4 = {
1185         (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL,
1186         &ip_mod_info
1187 };
1188 
1189 struct qinit iprinitv6 = {
1190         (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL,
1191         &ip_mod_info
1192 };
1193 
1194 static struct qinit ipwinit = {
1195         (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL,
1196         &ip_mod_info
1197 };
1198 
1199 static struct qinit iplrinit = {
1200         (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL,
1201         &ip_mod_info
1202 };
1203 
1204 static struct qinit iplwinit = {
1205         (pfi_t)ip_lwput, NULL, NULL, NULL, NULL,
1206         &ip_mod_info
1207 };
1208 
1209 /* For AF_INET aka /dev/ip */
1210 struct streamtab ipinfov4 = {
1211         &iprinitv4, &ipwinit, &iplrinit, &iplwinit
1212 };
1213 
1214 /* For AF_INET6 aka /dev/ip6 */
1215 struct streamtab ipinfov6 = {
1216         &iprinitv6, &ipwinit, &iplrinit, &iplwinit
1217 };
1218 
1219 #ifdef  DEBUG
1220 boolean_t skip_sctp_cksum = B_FALSE;
1221 #endif
1222 
1223 /*
1224  * Generate an ICMP fragmentation needed message.
1225  * When called from ip_output side a minimal ip_recv_attr_t needs to be
1226  * constructed by the caller.
1227  */
1228 void
1229 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1230 {
1231         icmph_t icmph;
1232         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
1233 
1234         mp = icmp_pkt_err_ok(mp, ira);
1235         if (mp == NULL)
1236                 return;
1237 
1238         bzero(&icmph, sizeof (icmph_t));
1239         icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1240         icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1241         icmph.icmph_du_mtu = htons((uint16_t)mtu);
1242         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1243         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1244 
1245         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1246 }
1247 
1248 /*
1249  * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1250  * If the ICMP message is consumed by IP, i.e., it should not be delivered
1251  * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1252  * Likewise, if the ICMP error is misformed (too short, etc), then it
1253  * returns NULL. The caller uses this to determine whether or not to send
1254  * to raw sockets.
1255  *
1256  * All error messages are passed to the matching transport stream.
1257  *
1258  * The following cases are handled by icmp_inbound:
1259  * 1) It needs to send a reply back and possibly delivering it
1260  *    to the "interested" upper clients.
1261  * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1262  * 3) It needs to change some values in IP only.
1263  * 4) It needs to change some values in IP and upper layers e.g TCP
1264  *    by delivering an error to the upper layers.
1265  *
1266  * We handle the above three cases in the context of IPsec in the
1267  * following way :
1268  *
1269  * 1) Send the reply back in the same way as the request came in.
1270  *    If it came in encrypted, it goes out encrypted. If it came in
1271  *    clear, it goes out in clear. Thus, this will prevent chosen
1272  *    plain text attack.
1273  * 2) The client may or may not expect things to come in secure.
1274  *    If it comes in secure, the policy constraints are checked
1275  *    before delivering it to the upper layers. If it comes in
1276  *    clear, ipsec_inbound_accept_clear will decide whether to
1277  *    accept this in clear or not. In both the cases, if the returned
1278  *    message (IP header + 8 bytes) that caused the icmp message has
1279  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1280  *    sending up. If there are only 8 bytes of returned message, then
1281  *    upper client will not be notified.
1282  * 3) Check with global policy to see whether it matches the constaints.
1283  *    But this will be done only if icmp_accept_messages_in_clear is
1284  *    zero.
1285  * 4) If we need to change both in IP and ULP, then the decision taken
1286  *    while affecting the values in IP and while delivering up to TCP
1287  *    should be the same.
1288  *
1289  *      There are two cases.
1290  *
1291  *      a) If we reject data at the IP layer (ipsec_check_global_policy()
1292  *         failed), we will not deliver it to the ULP, even though they
1293  *         are *willing* to accept in *clear*. This is fine as our global
1294  *         disposition to icmp messages asks us reject the datagram.
1295  *
1296  *      b) If we accept data at the IP layer (ipsec_check_global_policy()
1297  *         succeeded or icmp_accept_messages_in_clear is 1), and not able
1298  *         to deliver it to ULP (policy failed), it can lead to
1299  *         consistency problems. The cases known at this time are
1300  *         ICMP_DESTINATION_UNREACHABLE  messages with following code
1301  *         values :
1302  *
1303  *         - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1304  *           and Upper layer rejects. Then the communication will
1305  *           come to a stop. This is solved by making similar decisions
1306  *           at both levels. Currently, when we are unable to deliver
1307  *           to the Upper Layer (due to policy failures) while IP has
1308  *           adjusted dce_pmtu, the next outbound datagram would
1309  *           generate a local ICMP_FRAGMENTATION_NEEDED message - which
1310  *           will be with the right level of protection. Thus the right
1311  *           value will be communicated even if we are not able to
1312  *           communicate when we get from the wire initially. But this
1313  *           assumes there would be at least one outbound datagram after
1314  *           IP has adjusted its dce_pmtu value. To make things
1315  *           simpler, we accept in clear after the validation of
1316  *           AH/ESP headers.
1317  *
1318  *         - Other ICMP ERRORS : We may not be able to deliver it to the
1319  *           upper layer depending on the level of protection the upper
1320  *           layer expects and the disposition in ipsec_inbound_accept_clear().
1321  *           ipsec_inbound_accept_clear() decides whether a given ICMP error
1322  *           should be accepted in clear when the Upper layer expects secure.
1323  *           Thus the communication may get aborted by some bad ICMP
1324  *           packets.
1325  */
1326 mblk_t *
1327 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1328 {
1329         icmph_t         *icmph;
1330         ipha_t          *ipha;          /* Outer header */
1331         int             ip_hdr_length;  /* Outer header length */
1332         boolean_t       interested;
1333         ipif_t          *ipif;
1334         uint32_t        ts;
1335         uint32_t        *tsp;
1336         timestruc_t     now;
1337         ill_t           *ill = ira->ira_ill;
1338         ip_stack_t      *ipst = ill->ill_ipst;
1339         zoneid_t        zoneid = ira->ira_zoneid;
1340         int             len_needed;
1341         mblk_t          *mp_ret = NULL;
1342 
1343         ipha = (ipha_t *)mp->b_rptr;
1344 
1345         BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1346 
1347         ip_hdr_length = ira->ira_ip_hdr_length;
1348         if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1349                 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1350                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1351                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1352                         freemsg(mp);
1353                         return (NULL);
1354                 }
1355                 /* Last chance to get real. */
1356                 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1357                 if (ipha == NULL) {
1358                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1359                         freemsg(mp);
1360                         return (NULL);
1361                 }
1362         }
1363 
1364         /* The IP header will always be a multiple of four bytes */
1365         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1366         ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1367             icmph->icmph_code));
1368 
1369         /*
1370          * We will set "interested" to "true" if we should pass a copy to
1371          * the transport or if we handle the packet locally.
1372          */
1373         interested = B_FALSE;
1374         switch (icmph->icmph_type) {
1375         case ICMP_ECHO_REPLY:
1376                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1377                 break;
1378         case ICMP_DEST_UNREACHABLE:
1379                 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1380                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1381                 interested = B_TRUE;    /* Pass up to transport */
1382                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1383                 break;
1384         case ICMP_SOURCE_QUENCH:
1385                 interested = B_TRUE;    /* Pass up to transport */
1386                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1387                 break;
1388         case ICMP_REDIRECT:
1389                 if (!ipst->ips_ip_ignore_redirect)
1390                         interested = B_TRUE;
1391                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1392                 break;
1393         case ICMP_ECHO_REQUEST:
1394                 /*
1395                  * Whether to respond to echo requests that come in as IP
1396                  * broadcasts or as IP multicast is subject to debate
1397                  * (what isn't?).  We aim to please, you pick it.
1398                  * Default is do it.
1399                  */
1400                 if (ira->ira_flags & IRAF_MULTICAST) {
1401                         /* multicast: respond based on tunable */
1402                         interested = ipst->ips_ip_g_resp_to_echo_mcast;
1403                 } else if (ira->ira_flags & IRAF_BROADCAST) {
1404                         /* broadcast: respond based on tunable */
1405                         interested = ipst->ips_ip_g_resp_to_echo_bcast;
1406                 } else {
1407                         /* unicast: always respond */
1408                         interested = B_TRUE;
1409                 }
1410                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1411                 if (!interested) {
1412                         /* We never pass these to RAW sockets */
1413                         freemsg(mp);
1414                         return (NULL);
1415                 }
1416 
1417                 /* Check db_ref to make sure we can modify the packet. */
1418                 if (mp->b_datap->db_ref > 1) {
1419                         mblk_t  *mp1;
1420 
1421                         mp1 = copymsg(mp);
1422                         freemsg(mp);
1423                         if (!mp1) {
1424                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1425                                 return (NULL);
1426                         }
1427                         mp = mp1;
1428                         ipha = (ipha_t *)mp->b_rptr;
1429                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1430                 }
1431                 icmph->icmph_type = ICMP_ECHO_REPLY;
1432                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1433                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1434                 return (NULL);
1435 
1436         case ICMP_ROUTER_ADVERTISEMENT:
1437         case ICMP_ROUTER_SOLICITATION:
1438                 break;
1439         case ICMP_TIME_EXCEEDED:
1440                 interested = B_TRUE;    /* Pass up to transport */
1441                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1442                 break;
1443         case ICMP_PARAM_PROBLEM:
1444                 interested = B_TRUE;    /* Pass up to transport */
1445                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1446                 break;
1447         case ICMP_TIME_STAMP_REQUEST:
1448                 /* Response to Time Stamp Requests is local policy. */
1449                 if (ipst->ips_ip_g_resp_to_timestamp) {
1450                         if (ira->ira_flags & IRAF_MULTIBROADCAST)
1451                                 interested =
1452                                     ipst->ips_ip_g_resp_to_timestamp_bcast;
1453                         else
1454                                 interested = B_TRUE;
1455                 }
1456                 if (!interested) {
1457                         /* We never pass these to RAW sockets */
1458                         freemsg(mp);
1459                         return (NULL);
1460                 }
1461 
1462                 /* Make sure we have enough of the packet */
1463                 len_needed = ip_hdr_length + ICMPH_SIZE +
1464                     3 * sizeof (uint32_t);
1465 
1466                 if (mp->b_wptr - mp->b_rptr < len_needed) {
1467                         ipha = ip_pullup(mp, len_needed, ira);
1468                         if (ipha == NULL) {
1469                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1470                                 ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1471                                     mp, ill);
1472                                 freemsg(mp);
1473                                 return (NULL);
1474                         }
1475                         /* Refresh following the pullup. */
1476                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1477                 }
1478                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1479                 /* Check db_ref to make sure we can modify the packet. */
1480                 if (mp->b_datap->db_ref > 1) {
1481                         mblk_t  *mp1;
1482 
1483                         mp1 = copymsg(mp);
1484                         freemsg(mp);
1485                         if (!mp1) {
1486                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1487                                 return (NULL);
1488                         }
1489                         mp = mp1;
1490                         ipha = (ipha_t *)mp->b_rptr;
1491                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1492                 }
1493                 icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1494                 tsp = (uint32_t *)&icmph[1];
1495                 tsp++;          /* Skip past 'originate time' */
1496                 /* Compute # of milliseconds since midnight */
1497                 gethrestime(&now);
1498                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1499                     now.tv_nsec / (NANOSEC / MILLISEC);
1500                 *tsp++ = htonl(ts);     /* Lay in 'receive time' */
1501                 *tsp++ = htonl(ts);     /* Lay in 'send time' */
1502                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1503                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1504                 return (NULL);
1505 
1506         case ICMP_TIME_STAMP_REPLY:
1507                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1508                 break;
1509         case ICMP_INFO_REQUEST:
1510                 /* Per RFC 1122 3.2.2.7, ignore this. */
1511         case ICMP_INFO_REPLY:
1512                 break;
1513         case ICMP_ADDRESS_MASK_REQUEST:
1514                 if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1515                         interested =
1516                             ipst->ips_ip_respond_to_address_mask_broadcast;
1517                 } else {
1518                         interested = B_TRUE;
1519                 }
1520                 if (!interested) {
1521                         /* We never pass these to RAW sockets */
1522                         freemsg(mp);
1523                         return (NULL);
1524                 }
1525                 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1526                 if (mp->b_wptr - mp->b_rptr < len_needed) {
1527                         ipha = ip_pullup(mp, len_needed, ira);
1528                         if (ipha == NULL) {
1529                                 BUMP_MIB(ill->ill_ip_mib,
1530                                     ipIfStatsInTruncatedPkts);
1531                                 ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1532                                     ill);
1533                                 freemsg(mp);
1534                                 return (NULL);
1535                         }
1536                         /* Refresh following the pullup. */
1537                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1538                 }
1539                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1540                 /* Check db_ref to make sure we can modify the packet. */
1541                 if (mp->b_datap->db_ref > 1) {
1542                         mblk_t  *mp1;
1543 
1544                         mp1 = copymsg(mp);
1545                         freemsg(mp);
1546                         if (!mp1) {
1547                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1548                                 return (NULL);
1549                         }
1550                         mp = mp1;
1551                         ipha = (ipha_t *)mp->b_rptr;
1552                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1553                 }
1554                 /*
1555                  * Need the ipif with the mask be the same as the source
1556                  * address of the mask reply. For unicast we have a specific
1557                  * ipif. For multicast/broadcast we only handle onlink
1558                  * senders, and use the source address to pick an ipif.
1559                  */
1560                 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1561                 if (ipif == NULL) {
1562                         /* Broadcast or multicast */
1563                         ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1564                         if (ipif == NULL) {
1565                                 freemsg(mp);
1566                                 return (NULL);
1567                         }
1568                 }
1569                 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1570                 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1571                 ipif_refrele(ipif);
1572                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1573                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1574                 return (NULL);
1575 
1576         case ICMP_ADDRESS_MASK_REPLY:
1577                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1578                 break;
1579         default:
1580                 interested = B_TRUE;    /* Pass up to transport */
1581                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1582                 break;
1583         }
1584         /*
1585          * See if there is an ICMP client to avoid an extra copymsg/freemsg
1586          * if there isn't one.
1587          */
1588         if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1589                 /* If there is an ICMP client and we want one too, copy it. */
1590 
1591                 if (!interested) {
1592                         /* Caller will deliver to RAW sockets */
1593                         return (mp);
1594                 }
1595                 mp_ret = copymsg(mp);
1596                 if (mp_ret == NULL) {
1597                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1598                         ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1599                 }
1600         } else if (!interested) {
1601                 /* Neither we nor raw sockets are interested. Drop packet now */
1602                 freemsg(mp);
1603                 return (NULL);
1604         }
1605 
1606         /*
1607          * ICMP error or redirect packet. Make sure we have enough of
1608          * the header and that db_ref == 1 since we might end up modifying
1609          * the packet.
1610          */
1611         if (mp->b_cont != NULL) {
1612                 if (ip_pullup(mp, -1, ira) == NULL) {
1613                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1614                         ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1615                             mp, ill);
1616                         freemsg(mp);
1617                         return (mp_ret);
1618                 }
1619         }
1620 
1621         if (mp->b_datap->db_ref > 1) {
1622                 mblk_t  *mp1;
1623 
1624                 mp1 = copymsg(mp);
1625                 if (mp1 == NULL) {
1626                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1627                         ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1628                         freemsg(mp);
1629                         return (mp_ret);
1630                 }
1631                 freemsg(mp);
1632                 mp = mp1;
1633         }
1634 
1635         /*
1636          * In case mp has changed, verify the message before any further
1637          * processes.
1638          */
1639         ipha = (ipha_t *)mp->b_rptr;
1640         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1641         if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1642                 freemsg(mp);
1643                 return (mp_ret);
1644         }
1645 
1646         switch (icmph->icmph_type) {
1647         case ICMP_REDIRECT:
1648                 icmp_redirect_v4(mp, ipha, icmph, ira);
1649                 break;
1650         case ICMP_DEST_UNREACHABLE:
1651                 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1652                         /* Update DCE and adjust MTU is icmp header if needed */
1653                         icmp_inbound_too_big_v4(icmph, ira);
1654                 }
1655                 /* FALLTHRU */
1656         default:
1657                 icmp_inbound_error_fanout_v4(mp, icmph, ira);
1658                 break;
1659         }
1660         return (mp_ret);
1661 }
1662 
1663 /*
1664  * Send an ICMP echo, timestamp or address mask reply.
1665  * The caller has already updated the payload part of the packet.
1666  * We handle the ICMP checksum, IP source address selection and feed
1667  * the packet into ip_output_simple.
1668  */
1669 static void
1670 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1671     ip_recv_attr_t *ira)
1672 {
1673         uint_t          ip_hdr_length = ira->ira_ip_hdr_length;
1674         ill_t           *ill = ira->ira_ill;
1675         ip_stack_t      *ipst = ill->ill_ipst;
1676         ip_xmit_attr_t  ixas;
1677 
1678         /* Send out an ICMP packet */
1679         icmph->icmph_checksum = 0;
1680         icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1681         /* Reset time to live. */
1682         ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1683         {
1684                 /* Swap source and destination addresses */
1685                 ipaddr_t tmp;
1686 
1687                 tmp = ipha->ipha_src;
1688                 ipha->ipha_src = ipha->ipha_dst;
1689                 ipha->ipha_dst = tmp;
1690         }
1691         ipha->ipha_ident = 0;
1692         if (!IS_SIMPLE_IPH(ipha))
1693                 icmp_options_update(ipha);
1694 
1695         bzero(&ixas, sizeof (ixas));
1696         ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1697         ixas.ixa_zoneid = ira->ira_zoneid;
1698         ixas.ixa_cred = kcred;
1699         ixas.ixa_cpid = NOPID;
1700         ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
1701         ixas.ixa_ifindex = 0;
1702         ixas.ixa_ipst = ipst;
1703         ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1704 
1705         if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1706                 /*
1707                  * This packet should go out the same way as it
1708                  * came in i.e in clear, independent of the IPsec policy
1709                  * for transmitting packets.
1710                  */
1711                 ixas.ixa_flags |= IXAF_NO_IPSEC;
1712         } else {
1713                 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1714                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1715                         /* Note: mp already consumed and ip_drop_packet done */
1716                         return;
1717                 }
1718         }
1719         if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1720                 /*
1721                  * Not one or our addresses (IRE_LOCALs), thus we let
1722                  * ip_output_simple pick the source.
1723                  */
1724                 ipha->ipha_src = INADDR_ANY;
1725                 ixas.ixa_flags |= IXAF_SET_SOURCE;
1726         }
1727         /* Should we send with DF and use dce_pmtu? */
1728         if (ipst->ips_ipv4_icmp_return_pmtu) {
1729                 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1730                 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1731         }
1732 
1733         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1734 
1735         (void) ip_output_simple(mp, &ixas);
1736         ixa_cleanup(&ixas);
1737 }
1738 
1739 /*
1740  * Verify the ICMP messages for either for ICMP error or redirect packet.
1741  * The caller should have fully pulled up the message. If it's a redirect
1742  * packet, only basic checks on IP header will be done; otherwise, verify
1743  * the packet by looking at the included ULP header.
1744  *
1745  * Called before icmp_inbound_error_fanout_v4 is called.
1746  */
1747 static boolean_t
1748 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1749 {
1750         ill_t           *ill = ira->ira_ill;
1751         int             hdr_length;
1752         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
1753         conn_t          *connp;
1754         ipha_t          *ipha;  /* Inner IP header */
1755 
1756         ipha = (ipha_t *)&icmph[1];
1757         if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1758                 goto truncated;
1759 
1760         hdr_length = IPH_HDR_LENGTH(ipha);
1761 
1762         if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1763                 goto discard_pkt;
1764 
1765         if (hdr_length < sizeof (ipha_t))
1766                 goto truncated;
1767 
1768         if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1769                 goto truncated;
1770 
1771         /*
1772          * Stop here for ICMP_REDIRECT.
1773          */
1774         if (icmph->icmph_type == ICMP_REDIRECT)
1775                 return (B_TRUE);
1776 
1777         /*
1778          * ICMP errors only.
1779          */
1780         switch (ipha->ipha_protocol) {
1781         case IPPROTO_UDP:
1782                 /*
1783                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1784                  * transport header.
1785                  */
1786                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1787                     mp->b_wptr)
1788                         goto truncated;
1789                 break;
1790         case IPPROTO_TCP: {
1791                 tcpha_t         *tcpha;
1792 
1793                 /*
1794                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1795                  * transport header.
1796                  */
1797                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1798                     mp->b_wptr)
1799                         goto truncated;
1800 
1801                 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1802                 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1803                     ipst);
1804                 if (connp == NULL)
1805                         goto discard_pkt;
1806 
1807                 if ((connp->conn_verifyicmp != NULL) &&
1808                     !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1809                         CONN_DEC_REF(connp);
1810                         goto discard_pkt;
1811                 }
1812                 CONN_DEC_REF(connp);
1813                 break;
1814         }
1815         case IPPROTO_SCTP:
1816                 /*
1817                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1818                  * transport header.
1819                  */
1820                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1821                     mp->b_wptr)
1822                         goto truncated;
1823                 break;
1824         case IPPROTO_ESP:
1825         case IPPROTO_AH:
1826                 break;
1827         case IPPROTO_ENCAP:
1828                 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1829                     mp->b_wptr)
1830                         goto truncated;
1831                 break;
1832         default:
1833                 break;
1834         }
1835 
1836         return (B_TRUE);
1837 
1838 discard_pkt:
1839         /* Bogus ICMP error. */
1840         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1841         return (B_FALSE);
1842 
1843 truncated:
1844         /* We pulled up everthing already. Must be truncated */
1845         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1846         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1847         return (B_FALSE);
1848 }
1849 
1850 /* Table from RFC 1191 */
1851 static int icmp_frag_size_table[] =
1852 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1853 
1854 /*
1855  * Process received ICMP Packet too big.
1856  * Just handles the DCE create/update, including using the above table of
1857  * PMTU guesses. The caller is responsible for validating the packet before
1858  * passing it in and also to fanout the ICMP error to any matching transport
1859  * conns. Assumes the message has been fully pulled up and verified.
1860  *
1861  * Before getting here, the caller has called icmp_inbound_verify_v4()
1862  * that should have verified with ULP to prevent undoing the changes we're
1863  * going to make to DCE. For example, TCP might have verified that the packet
1864  * which generated error is in the send window.
1865  *
1866  * In some cases modified this MTU in the ICMP header packet; the caller
1867  * should pass to the matching ULP after this returns.
1868  */
1869 static void
1870 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1871 {
1872         dce_t           *dce;
1873         int             old_mtu;
1874         int             mtu, orig_mtu;
1875         ipaddr_t        dst;
1876         boolean_t       disable_pmtud;
1877         ill_t           *ill = ira->ira_ill;
1878         ip_stack_t      *ipst = ill->ill_ipst;
1879         uint_t          hdr_length;
1880         ipha_t          *ipha;
1881 
1882         /* Caller already pulled up everything. */
1883         ipha = (ipha_t *)&icmph[1];
1884         ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1885             icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1886         ASSERT(ill != NULL);
1887 
1888         hdr_length = IPH_HDR_LENGTH(ipha);
1889 
1890         /*
1891          * We handle path MTU for source routed packets since the DCE
1892          * is looked up using the final destination.
1893          */
1894         dst = ip_get_dst(ipha);
1895 
1896         dce = dce_lookup_and_add_v4(dst, ipst);
1897         if (dce == NULL) {
1898                 /* Couldn't add a unique one - ENOMEM */
1899                 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1900                     ntohl(dst)));
1901                 return;
1902         }
1903 
1904         /* Check for MTU discovery advice as described in RFC 1191 */
1905         mtu = ntohs(icmph->icmph_du_mtu);
1906         orig_mtu = mtu;
1907         disable_pmtud = B_FALSE;
1908 
1909         mutex_enter(&dce->dce_lock);
1910         if (dce->dce_flags & DCEF_PMTU)
1911                 old_mtu = dce->dce_pmtu;
1912         else
1913                 old_mtu = ill->ill_mtu;
1914 
1915         if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1916                 uint32_t length;
1917                 int     i;
1918 
1919                 /*
1920                  * Use the table from RFC 1191 to figure out
1921                  * the next "plateau" based on the length in
1922                  * the original IP packet.
1923                  */
1924                 length = ntohs(ipha->ipha_length);
1925                 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1926                     uint32_t, length);
1927                 if (old_mtu <= length &&
1928                     old_mtu >= length - hdr_length) {
1929                         /*
1930                          * Handle broken BSD 4.2 systems that
1931                          * return the wrong ipha_length in ICMP
1932                          * errors.
1933                          */
1934                         ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1935                             length, old_mtu));
1936                         length -= hdr_length;
1937                 }
1938                 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1939                         if (length > icmp_frag_size_table[i])
1940                                 break;
1941                 }
1942                 if (i == A_CNT(icmp_frag_size_table)) {
1943                         /* Smaller than IP_MIN_MTU! */
1944                         ip1dbg(("Too big for packet size %d\n",
1945                             length));
1946                         disable_pmtud = B_TRUE;
1947                         mtu = ipst->ips_ip_pmtu_min;
1948                 } else {
1949                         mtu = icmp_frag_size_table[i];
1950                         ip1dbg(("Calculated mtu %d, packet size %d, "
1951                             "before %d\n", mtu, length, old_mtu));
1952                         if (mtu < ipst->ips_ip_pmtu_min) {
1953                                 mtu = ipst->ips_ip_pmtu_min;
1954                                 disable_pmtud = B_TRUE;
1955                         }
1956                 }
1957         }
1958         if (disable_pmtud)
1959                 dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1960         else
1961                 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1962 
1963         dce->dce_pmtu = MIN(old_mtu, mtu);
1964         /* Prepare to send the new max frag size for the ULP. */
1965         icmph->icmph_du_zero = 0;
1966         icmph->icmph_du_mtu =  htons((uint16_t)dce->dce_pmtu);
1967         DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1968             dce, int, orig_mtu, int, mtu);
1969 
1970         /* We now have a PMTU for sure */
1971         dce->dce_flags |= DCEF_PMTU;
1972         dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1973         mutex_exit(&dce->dce_lock);
1974         /*
1975          * After dropping the lock the new value is visible to everyone.
1976          * Then we bump the generation number so any cached values reinspect
1977          * the dce_t.
1978          */
1979         dce_increment_generation(dce);
1980         dce_refrele(dce);
1981 }
1982 
1983 /*
1984  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1985  * calls this function.
1986  */
1987 static mblk_t *
1988 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1989 {
1990         int length;
1991 
1992         ASSERT(mp->b_datap->db_type == M_DATA);
1993 
1994         /* icmp_inbound_v4 has already pulled up the whole error packet */
1995         ASSERT(mp->b_cont == NULL);
1996 
1997         /*
1998          * The length that we want to overlay is the inner header
1999          * and what follows it.
2000          */
2001         length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
2002 
2003         /*
2004          * Overlay the inner header and whatever follows it over the
2005          * outer header.
2006          */
2007         bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2008 
2009         /* Adjust for what we removed */
2010         mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2011         return (mp);
2012 }
2013 
2014 /*
2015  * Try to pass the ICMP message upstream in case the ULP cares.
2016  *
2017  * If the packet that caused the ICMP error is secure, we send
2018  * it to AH/ESP to make sure that the attached packet has a
2019  * valid association. ipha in the code below points to the
2020  * IP header of the packet that caused the error.
2021  *
2022  * For IPsec cases, we let the next-layer-up (which has access to
2023  * cached policy on the conn_t, or can query the SPD directly)
2024  * subtract out any IPsec overhead if they must.  We therefore make no
2025  * adjustments here for IPsec overhead.
2026  *
2027  * IFN could have been generated locally or by some router.
2028  *
2029  * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2030  * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2031  *          This happens because IP adjusted its value of MTU on an
2032  *          earlier IFN message and could not tell the upper layer,
2033  *          the new adjusted value of MTU e.g. Packet was encrypted
2034  *          or there was not enough information to fanout to upper
2035  *          layers. Thus on the next outbound datagram, ire_send_wire
2036  *          generates the IFN, where IPsec processing has *not* been
2037  *          done.
2038  *
2039  *          Note that we retain ixa_fragsize across IPsec thus once
2040  *          we have picking ixa_fragsize and entered ipsec_out_process we do
2041  *          no change the fragsize even if the path MTU changes before
2042  *          we reach ip_output_post_ipsec.
2043  *
2044  *          In the local case, IRAF_LOOPBACK will be set indicating
2045  *          that IFN was generated locally.
2046  *
2047  * ROUTER : IFN could be secure or non-secure.
2048  *
2049  *          * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2050  *            packet in error has AH/ESP headers to validate the AH/ESP
2051  *            headers. AH/ESP will verify whether there is a valid SA or
2052  *            not and send it back. We will fanout again if we have more
2053  *            data in the packet.
2054  *
2055  *            If the packet in error does not have AH/ESP, we handle it
2056  *            like any other case.
2057  *
2058  *          * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2059  *            up to AH/ESP for validation. AH/ESP will verify whether there is a
2060  *            valid SA or not and send it back. We will fanout again if
2061  *            we have more data in the packet.
2062  *
2063  *            If the packet in error does not have AH/ESP, we handle it
2064  *            like any other case.
2065  *
2066  * The caller must have called icmp_inbound_verify_v4.
2067  */
2068 static void
2069 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2070 {
2071         uint16_t        *up;    /* Pointer to ports in ULP header */
2072         uint32_t        ports;  /* reversed ports for fanout */
2073         ipha_t          ripha;  /* With reversed addresses */
2074         ipha_t          *ipha;  /* Inner IP header */
2075         uint_t          hdr_length; /* Inner IP header length */
2076         tcpha_t         *tcpha;
2077         conn_t          *connp;
2078         ill_t           *ill = ira->ira_ill;
2079         ip_stack_t      *ipst = ill->ill_ipst;
2080         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
2081         ill_t           *rill = ira->ira_rill;
2082 
2083         /* Caller already pulled up everything. */
2084         ipha = (ipha_t *)&icmph[1];
2085         ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2086         ASSERT(mp->b_cont == NULL);
2087 
2088         hdr_length = IPH_HDR_LENGTH(ipha);
2089         ira->ira_protocol = ipha->ipha_protocol;
2090 
2091         /*
2092          * We need a separate IP header with the source and destination
2093          * addresses reversed to do fanout/classification because the ipha in
2094          * the ICMP error is in the form we sent it out.
2095          */
2096         ripha.ipha_src = ipha->ipha_dst;
2097         ripha.ipha_dst = ipha->ipha_src;
2098         ripha.ipha_protocol = ipha->ipha_protocol;
2099         ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2100 
2101         ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2102             ripha.ipha_protocol, ntohl(ipha->ipha_src),
2103             ntohl(ipha->ipha_dst),
2104             icmph->icmph_type, icmph->icmph_code));
2105 
2106         switch (ipha->ipha_protocol) {
2107         case IPPROTO_UDP:
2108                 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2109 
2110                 /* Attempt to find a client stream based on port. */
2111                 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2112                     ntohs(up[0]), ntohs(up[1])));
2113 
2114                 /* Note that we send error to all matches. */
2115                 ira->ira_flags |= IRAF_ICMP_ERROR;
2116                 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2117                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2118                 return;
2119 
2120         case IPPROTO_TCP:
2121                 /*
2122                  * Find a TCP client stream for this packet.
2123                  * Note that we do a reverse lookup since the header is
2124                  * in the form we sent it out.
2125                  */
2126                 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2127                 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2128                     ipst);
2129                 if (connp == NULL)
2130                         goto discard_pkt;
2131 
2132                 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2133                     (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2134                         mp = ipsec_check_inbound_policy(mp, connp,
2135                             ipha, NULL, ira);
2136                         if (mp == NULL) {
2137                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2138                                 /* Note that mp is NULL */
2139                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2140                                 CONN_DEC_REF(connp);
2141                                 return;
2142                         }
2143                 }
2144 
2145                 ira->ira_flags |= IRAF_ICMP_ERROR;
2146                 ira->ira_ill = ira->ira_rill = NULL;
2147                 if (IPCL_IS_TCP(connp)) {
2148                         SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2149                             connp->conn_recvicmp, connp, ira, SQ_FILL,
2150                             SQTAG_TCP_INPUT_ICMP_ERR);
2151                 } else {
2152                         /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2153                         (connp->conn_recv)(connp, mp, NULL, ira);
2154                         CONN_DEC_REF(connp);
2155                 }
2156                 ira->ira_ill = ill;
2157                 ira->ira_rill = rill;
2158                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2159                 return;
2160 
2161         case IPPROTO_SCTP:
2162                 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2163                 /* Find a SCTP client stream for this packet. */
2164                 ((uint16_t *)&ports)[0] = up[1];
2165                 ((uint16_t *)&ports)[1] = up[0];
2166 
2167                 ira->ira_flags |= IRAF_ICMP_ERROR;
2168                 ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2169                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2170                 return;
2171 
2172         case IPPROTO_ESP:
2173         case IPPROTO_AH:
2174                 if (!ipsec_loaded(ipss)) {
2175                         ip_proto_not_sup(mp, ira);
2176                         return;
2177                 }
2178 
2179                 if (ipha->ipha_protocol == IPPROTO_ESP)
2180                         mp = ipsecesp_icmp_error(mp, ira);
2181                 else
2182                         mp = ipsecah_icmp_error(mp, ira);
2183                 if (mp == NULL)
2184                         return;
2185 
2186                 /* Just in case ipsec didn't preserve the NULL b_cont */
2187                 if (mp->b_cont != NULL) {
2188                         if (!pullupmsg(mp, -1))
2189                                 goto discard_pkt;
2190                 }
2191 
2192                 /*
2193                  * Note that ira_pktlen and ira_ip_hdr_length are no longer
2194                  * correct, but we don't use them any more here.
2195                  *
2196                  * If succesful, the mp has been modified to not include
2197                  * the ESP/AH header so we can fanout to the ULP's icmp
2198                  * error handler.
2199                  */
2200                 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2201                         goto truncated;
2202 
2203                 /* Verify the modified message before any further processes. */
2204                 ipha = (ipha_t *)mp->b_rptr;
2205                 hdr_length = IPH_HDR_LENGTH(ipha);
2206                 icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2207                 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2208                         freemsg(mp);
2209                         return;
2210                 }
2211 
2212                 icmp_inbound_error_fanout_v4(mp, icmph, ira);
2213                 return;
2214 
2215         case IPPROTO_ENCAP: {
2216                 /* Look for self-encapsulated packets that caused an error */
2217                 ipha_t *in_ipha;
2218 
2219                 /*
2220                  * Caller has verified that length has to be
2221                  * at least the size of IP header.
2222                  */
2223                 ASSERT(hdr_length >= sizeof (ipha_t));
2224                 /*
2225                  * Check the sanity of the inner IP header like
2226                  * we did for the outer header.
2227                  */
2228                 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2229                 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2230                         goto discard_pkt;
2231                 }
2232                 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2233                         goto discard_pkt;
2234                 }
2235                 /* Check for Self-encapsulated tunnels */
2236                 if (in_ipha->ipha_src == ipha->ipha_src &&
2237                     in_ipha->ipha_dst == ipha->ipha_dst) {
2238 
2239                         mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2240                             in_ipha);
2241                         if (mp == NULL)
2242                                 goto discard_pkt;
2243 
2244                         /*
2245                          * Just in case self_encap didn't preserve the NULL
2246                          * b_cont
2247                          */
2248                         if (mp->b_cont != NULL) {
2249                                 if (!pullupmsg(mp, -1))
2250                                         goto discard_pkt;
2251                         }
2252                         /*
2253                          * Note that ira_pktlen and ira_ip_hdr_length are no
2254                          * longer correct, but we don't use them any more here.
2255                          */
2256                         if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2257                                 goto truncated;
2258 
2259                         /*
2260                          * Verify the modified message before any further
2261                          * processes.
2262                          */
2263                         ipha = (ipha_t *)mp->b_rptr;
2264                         hdr_length = IPH_HDR_LENGTH(ipha);
2265                         icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2266                         if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2267                                 freemsg(mp);
2268                                 return;
2269                         }
2270 
2271                         /*
2272                          * The packet in error is self-encapsualted.
2273                          * And we are finding it further encapsulated
2274                          * which we could not have possibly generated.
2275                          */
2276                         if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2277                                 goto discard_pkt;
2278                         }
2279                         icmp_inbound_error_fanout_v4(mp, icmph, ira);
2280                         return;
2281                 }
2282                 /* No self-encapsulated */
2283                 /* FALLTHRU */
2284         }
2285         case IPPROTO_IPV6:
2286                 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2287                     &ripha.ipha_dst, ipst)) != NULL) {
2288                         ira->ira_flags |= IRAF_ICMP_ERROR;
2289                         connp->conn_recvicmp(connp, mp, NULL, ira);
2290                         CONN_DEC_REF(connp);
2291                         ira->ira_flags &= ~IRAF_ICMP_ERROR;
2292                         return;
2293                 }
2294                 /*
2295                  * No IP tunnel is interested, fallthrough and see
2296                  * if a raw socket will want it.
2297                  */
2298                 /* FALLTHRU */
2299         default:
2300                 ira->ira_flags |= IRAF_ICMP_ERROR;
2301                 ip_fanout_proto_v4(mp, &ripha, ira);
2302                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2303                 return;
2304         }
2305         /* NOTREACHED */
2306 discard_pkt:
2307         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2308         ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2309         ip_drop_input("ipIfStatsInDiscards", mp, ill);
2310         freemsg(mp);
2311         return;
2312 
2313 truncated:
2314         /* We pulled up everthing already. Must be truncated */
2315         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2316         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2317         freemsg(mp);
2318 }
2319 
2320 /*
2321  * Common IP options parser.
2322  *
2323  * Setup routine: fill in *optp with options-parsing state, then
2324  * tail-call ipoptp_next to return the first option.
2325  */
2326 uint8_t
2327 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2328 {
2329         uint32_t totallen; /* total length of all options */
2330 
2331         totallen = ipha->ipha_version_and_hdr_length -
2332             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2333         totallen <<= 2;
2334         optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2335         optp->ipoptp_end = optp->ipoptp_next + totallen;
2336         optp->ipoptp_flags = 0;
2337         return (ipoptp_next(optp));
2338 }
2339 
2340 /* Like above but without an ipha_t */
2341 uint8_t
2342 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2343 {
2344         optp->ipoptp_next = opt;
2345         optp->ipoptp_end = optp->ipoptp_next + totallen;
2346         optp->ipoptp_flags = 0;
2347         return (ipoptp_next(optp));
2348 }
2349 
2350 /*
2351  * Common IP options parser: extract next option.
2352  */
2353 uint8_t
2354 ipoptp_next(ipoptp_t *optp)
2355 {
2356         uint8_t *end = optp->ipoptp_end;
2357         uint8_t *cur = optp->ipoptp_next;
2358         uint8_t opt, len, pointer;
2359 
2360         /*
2361          * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2362          * has been corrupted.
2363          */
2364         ASSERT(cur <= end);
2365 
2366         if (cur == end)
2367                 return (IPOPT_EOL);
2368 
2369         opt = cur[IPOPT_OPTVAL];
2370 
2371         /*
2372          * Skip any NOP options.
2373          */
2374         while (opt == IPOPT_NOP) {
2375                 cur++;
2376                 if (cur == end)
2377                         return (IPOPT_EOL);
2378                 opt = cur[IPOPT_OPTVAL];
2379         }
2380 
2381         if (opt == IPOPT_EOL)
2382                 return (IPOPT_EOL);
2383 
2384         /*
2385          * Option requiring a length.
2386          */
2387         if ((cur + 1) >= end) {
2388                 optp->ipoptp_flags |= IPOPTP_ERROR;
2389                 return (IPOPT_EOL);
2390         }
2391         len = cur[IPOPT_OLEN];
2392         if (len < 2) {
2393                 optp->ipoptp_flags |= IPOPTP_ERROR;
2394                 return (IPOPT_EOL);
2395         }
2396         optp->ipoptp_cur = cur;
2397         optp->ipoptp_len = len;
2398         optp->ipoptp_next = cur + len;
2399         if (cur + len > end) {
2400                 optp->ipoptp_flags |= IPOPTP_ERROR;
2401                 return (IPOPT_EOL);
2402         }
2403 
2404         /*
2405          * For the options which require a pointer field, make sure
2406          * its there, and make sure it points to either something
2407          * inside this option, or the end of the option.
2408          */
2409         switch (opt) {
2410         case IPOPT_RR:
2411         case IPOPT_TS:
2412         case IPOPT_LSRR:
2413         case IPOPT_SSRR:
2414                 if (len <= IPOPT_OFFSET) {
2415                         optp->ipoptp_flags |= IPOPTP_ERROR;
2416                         return (opt);
2417                 }
2418                 pointer = cur[IPOPT_OFFSET];
2419                 if (pointer - 1 > len) {
2420                         optp->ipoptp_flags |= IPOPTP_ERROR;
2421                         return (opt);
2422                 }
2423                 break;
2424         }
2425 
2426         /*
2427          * Sanity check the pointer field based on the type of the
2428          * option.
2429          */
2430         switch (opt) {
2431         case IPOPT_RR:
2432         case IPOPT_SSRR:
2433         case IPOPT_LSRR:
2434                 if (pointer < IPOPT_MINOFF_SR)
2435                         optp->ipoptp_flags |= IPOPTP_ERROR;
2436                 break;
2437         case IPOPT_TS:
2438                 if (pointer < IPOPT_MINOFF_IT)
2439                         optp->ipoptp_flags |= IPOPTP_ERROR;
2440                 /*
2441                  * Note that the Internet Timestamp option also
2442                  * contains two four bit fields (the Overflow field,
2443                  * and the Flag field), which follow the pointer
2444                  * field.  We don't need to check that these fields
2445                  * fall within the length of the option because this
2446                  * was implicitely done above.  We've checked that the
2447                  * pointer value is at least IPOPT_MINOFF_IT, and that
2448                  * it falls within the option.  Since IPOPT_MINOFF_IT >
2449                  * IPOPT_POS_OV_FLG, we don't need the explicit check.
2450                  */
2451                 ASSERT(len > IPOPT_POS_OV_FLG);
2452                 break;
2453         }
2454 
2455         return (opt);
2456 }
2457 
2458 /*
2459  * Use the outgoing IP header to create an IP_OPTIONS option the way
2460  * it was passed down from the application.
2461  *
2462  * This is compatible with BSD in that it returns
2463  * the reverse source route with the final destination
2464  * as the last entry. The first 4 bytes of the option
2465  * will contain the final destination.
2466  */
2467 int
2468 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2469 {
2470         ipoptp_t        opts;
2471         uchar_t         *opt;
2472         uint8_t         optval;
2473         uint8_t         optlen;
2474         uint32_t        len = 0;
2475         uchar_t         *buf1 = buf;
2476         uint32_t        totallen;
2477         ipaddr_t        dst;
2478         ip_pkt_t        *ipp = &connp->conn_xmit_ipp;
2479 
2480         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2481                 return (0);
2482 
2483         totallen = ipp->ipp_ipv4_options_len;
2484         if (totallen & 0x3)
2485                 return (0);
2486 
2487         buf += IP_ADDR_LEN;     /* Leave room for final destination */
2488         len += IP_ADDR_LEN;
2489         bzero(buf1, IP_ADDR_LEN);
2490 
2491         dst = connp->conn_faddr_v4;
2492 
2493         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2494             optval != IPOPT_EOL;
2495             optval = ipoptp_next(&opts)) {
2496                 int     off;
2497 
2498                 opt = opts.ipoptp_cur;
2499                 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2500                         break;
2501                 }
2502                 optlen = opts.ipoptp_len;
2503 
2504                 switch (optval) {
2505                 case IPOPT_SSRR:
2506                 case IPOPT_LSRR:
2507 
2508                         /*
2509                          * Insert destination as the first entry in the source
2510                          * route and move down the entries on step.
2511                          * The last entry gets placed at buf1.
2512                          */
2513                         buf[IPOPT_OPTVAL] = optval;
2514                         buf[IPOPT_OLEN] = optlen;
2515                         buf[IPOPT_OFFSET] = optlen;
2516 
2517                         off = optlen - IP_ADDR_LEN;
2518                         if (off < 0) {
2519                                 /* No entries in source route */
2520                                 break;
2521                         }
2522                         /* Last entry in source route if not already set */
2523                         if (dst == INADDR_ANY)
2524                                 bcopy(opt + off, buf1, IP_ADDR_LEN);
2525                         off -= IP_ADDR_LEN;
2526 
2527                         while (off > 0) {
2528                                 bcopy(opt + off,
2529                                     buf + off + IP_ADDR_LEN,
2530                                     IP_ADDR_LEN);
2531                                 off -= IP_ADDR_LEN;
2532                         }
2533                         /* ipha_dst into first slot */
2534                         bcopy(&dst, buf + off + IP_ADDR_LEN,
2535                             IP_ADDR_LEN);
2536                         buf += optlen;
2537                         len += optlen;
2538                         break;
2539 
2540                 default:
2541                         bcopy(opt, buf, optlen);
2542                         buf += optlen;
2543                         len += optlen;
2544                         break;
2545                 }
2546         }
2547 done:
2548         /* Pad the resulting options */
2549         while (len & 0x3) {
2550                 *buf++ = IPOPT_EOL;
2551                 len++;
2552         }
2553         return (len);
2554 }
2555 
2556 /*
2557  * Update any record route or timestamp options to include this host.
2558  * Reverse any source route option.
2559  * This routine assumes that the options are well formed i.e. that they
2560  * have already been checked.
2561  */
2562 static void
2563 icmp_options_update(ipha_t *ipha)
2564 {
2565         ipoptp_t        opts;
2566         uchar_t         *opt;
2567         uint8_t         optval;
2568         ipaddr_t        src;            /* Our local address */
2569         ipaddr_t        dst;
2570 
2571         ip2dbg(("icmp_options_update\n"));
2572         src = ipha->ipha_src;
2573         dst = ipha->ipha_dst;
2574 
2575         for (optval = ipoptp_first(&opts, ipha);
2576             optval != IPOPT_EOL;
2577             optval = ipoptp_next(&opts)) {
2578                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2579                 opt = opts.ipoptp_cur;
2580                 ip2dbg(("icmp_options_update: opt %d, len %d\n",
2581                     optval, opts.ipoptp_len));
2582                 switch (optval) {
2583                         int off1, off2;
2584                 case IPOPT_SSRR:
2585                 case IPOPT_LSRR:
2586                         /*
2587                          * Reverse the source route.  The first entry
2588                          * should be the next to last one in the current
2589                          * source route (the last entry is our address).
2590                          * The last entry should be the final destination.
2591                          */
2592                         off1 = IPOPT_MINOFF_SR - 1;
2593                         off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2594                         if (off2 < 0) {
2595                                 /* No entries in source route */
2596                                 ip1dbg((
2597                                     "icmp_options_update: bad src route\n"));
2598                                 break;
2599                         }
2600                         bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2601                         bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2602                         bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2603                         off2 -= IP_ADDR_LEN;
2604 
2605                         while (off1 < off2) {
2606                                 bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2607                                 bcopy((char *)opt + off2, (char *)opt + off1,
2608                                     IP_ADDR_LEN);
2609                                 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2610                                 off1 += IP_ADDR_LEN;
2611                                 off2 -= IP_ADDR_LEN;
2612                         }
2613                         opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2614                         break;
2615                 }
2616         }
2617 }
2618 
2619 /*
2620  * Process received ICMP Redirect messages.
2621  * Assumes the caller has verified that the headers are in the pulled up mblk.
2622  * Consumes mp.
2623  */
2624 static void
2625 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2626 {
2627         ire_t           *ire, *nire;
2628         ire_t           *prev_ire;
2629         ipaddr_t        src, dst, gateway;
2630         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2631         ipha_t          *inner_ipha;    /* Inner IP header */
2632 
2633         /* Caller already pulled up everything. */
2634         inner_ipha = (ipha_t *)&icmph[1];
2635         src = ipha->ipha_src;
2636         dst = inner_ipha->ipha_dst;
2637         gateway = icmph->icmph_rd_gateway;
2638         /* Make sure the new gateway is reachable somehow. */
2639         ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2640             ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2641         /*
2642          * Make sure we had a route for the dest in question and that
2643          * that route was pointing to the old gateway (the source of the
2644          * redirect packet.)
2645          * We do longest match and then compare ire_gateway_addr below.
2646          */
2647         prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2648             NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2649         /*
2650          * Check that
2651          *      the redirect was not from ourselves
2652          *      the new gateway and the old gateway are directly reachable
2653          */
2654         if (prev_ire == NULL || ire == NULL ||
2655             (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2656             (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2657             !(ire->ire_type & IRE_IF_ALL) ||
2658             prev_ire->ire_gateway_addr != src) {
2659                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2660                 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2661                 freemsg(mp);
2662                 if (ire != NULL)
2663                         ire_refrele(ire);
2664                 if (prev_ire != NULL)
2665                         ire_refrele(prev_ire);
2666                 return;
2667         }
2668 
2669         ire_refrele(prev_ire);
2670         ire_refrele(ire);
2671 
2672         /*
2673          * TODO: more precise handling for cases 0, 2, 3, the latter two
2674          * require TOS routing
2675          */
2676         switch (icmph->icmph_code) {
2677         case 0:
2678         case 1:
2679                 /* TODO: TOS specificity for cases 2 and 3 */
2680         case 2:
2681         case 3:
2682                 break;
2683         default:
2684                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2685                 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2686                 freemsg(mp);
2687                 return;
2688         }
2689         /*
2690          * Create a Route Association.  This will allow us to remember that
2691          * someone we believe told us to use the particular gateway.
2692          */
2693         ire = ire_create(
2694             (uchar_t *)&dst,                        /* dest addr */
2695             (uchar_t *)&ip_g_all_ones,              /* mask */
2696             (uchar_t *)&gateway,            /* gateway addr */
2697             IRE_HOST,
2698             NULL,                               /* ill */
2699             ALL_ZONES,
2700             (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2701             NULL,                               /* tsol_gc_t */
2702             ipst);
2703 
2704         if (ire == NULL) {
2705                 freemsg(mp);
2706                 return;
2707         }
2708         nire = ire_add(ire);
2709         /* Check if it was a duplicate entry */
2710         if (nire != NULL && nire != ire) {
2711                 ASSERT(nire->ire_identical_ref > 1);
2712                 ire_delete(nire);
2713                 ire_refrele(nire);
2714                 nire = NULL;
2715         }
2716         ire = nire;
2717         if (ire != NULL) {
2718                 ire_refrele(ire);               /* Held in ire_add */
2719 
2720                 /* tell routing sockets that we received a redirect */
2721                 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2722                     (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2723                     (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2724         }
2725 
2726         /*
2727          * Delete any existing IRE_HOST type redirect ires for this destination.
2728          * This together with the added IRE has the effect of
2729          * modifying an existing redirect.
2730          */
2731         prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2732             ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2733         if (prev_ire != NULL) {
2734                 if (prev_ire ->ire_flags & RTF_DYNAMIC)
2735                         ire_delete(prev_ire);
2736                 ire_refrele(prev_ire);
2737         }
2738 
2739         freemsg(mp);
2740 }
2741 
2742 /*
2743  * Generate an ICMP parameter problem message.
2744  * When called from ip_output side a minimal ip_recv_attr_t needs to be
2745  * constructed by the caller.
2746  */
2747 static void
2748 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2749 {
2750         icmph_t icmph;
2751         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2752 
2753         mp = icmp_pkt_err_ok(mp, ira);
2754         if (mp == NULL)
2755                 return;
2756 
2757         bzero(&icmph, sizeof (icmph_t));
2758         icmph.icmph_type = ICMP_PARAM_PROBLEM;
2759         icmph.icmph_pp_ptr = ptr;
2760         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2761         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2762 }
2763 
2764 /*
2765  * Build and ship an IPv4 ICMP message using the packet data in mp, and
2766  * the ICMP header pointed to by "stuff".  (May be called as writer.)
2767  * Note: assumes that icmp_pkt_err_ok has been called to verify that
2768  * an icmp error packet can be sent.
2769  * Assigns an appropriate source address to the packet. If ipha_dst is
2770  * one of our addresses use it for source. Otherwise let ip_output_simple
2771  * pick the source address.
2772  */
2773 static void
2774 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2775 {
2776         ipaddr_t dst;
2777         icmph_t *icmph;
2778         ipha_t  *ipha;
2779         uint_t  len_needed;
2780         size_t  msg_len;
2781         mblk_t  *mp1;
2782         ipaddr_t src;
2783         ire_t   *ire;
2784         ip_xmit_attr_t ixas;
2785         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2786 
2787         ipha = (ipha_t *)mp->b_rptr;
2788 
2789         bzero(&ixas, sizeof (ixas));
2790         ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2791         ixas.ixa_zoneid = ira->ira_zoneid;
2792         ixas.ixa_ifindex = 0;
2793         ixas.ixa_ipst = ipst;
2794         ixas.ixa_cred = kcred;
2795         ixas.ixa_cpid = NOPID;
2796         ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
2797         ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2798 
2799         if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2800                 /*
2801                  * Apply IPsec based on how IPsec was applied to
2802                  * the packet that had the error.
2803                  *
2804                  * If it was an outbound packet that caused the ICMP
2805                  * error, then the caller will have setup the IRA
2806                  * appropriately.
2807                  */
2808                 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2809                         BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2810                         /* Note: mp already consumed and ip_drop_packet done */
2811                         return;
2812                 }
2813         } else {
2814                 /*
2815                  * This is in clear. The icmp message we are building
2816                  * here should go out in clear, independent of our policy.
2817                  */
2818                 ixas.ixa_flags |= IXAF_NO_IPSEC;
2819         }
2820 
2821         /* Remember our eventual destination */
2822         dst = ipha->ipha_src;
2823 
2824         /*
2825          * If the packet was for one of our unicast addresses, make
2826          * sure we respond with that as the source. Otherwise
2827          * have ip_output_simple pick the source address.
2828          */
2829         ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2830             (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2831             MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2832         if (ire != NULL) {
2833                 ire_refrele(ire);
2834                 src = ipha->ipha_dst;
2835         } else {
2836                 src = INADDR_ANY;
2837                 ixas.ixa_flags |= IXAF_SET_SOURCE;
2838         }
2839 
2840         /*
2841          * Check if we can send back more then 8 bytes in addition to
2842          * the IP header.  We try to send 64 bytes of data and the internal
2843          * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2844          */
2845         len_needed = IPH_HDR_LENGTH(ipha);
2846         if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2847             ipha->ipha_protocol == IPPROTO_IPV6) {
2848                 if (!pullupmsg(mp, -1)) {
2849                         BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2850                         ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2851                         freemsg(mp);
2852                         return;
2853                 }
2854                 ipha = (ipha_t *)mp->b_rptr;
2855 
2856                 if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2857                         len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2858                             len_needed));
2859                 } else {
2860                         ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2861 
2862                         ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2863                         len_needed += ip_hdr_length_v6(mp, ip6h);
2864                 }
2865         }
2866         len_needed += ipst->ips_ip_icmp_return;
2867         msg_len = msgdsize(mp);
2868         if (msg_len > len_needed) {
2869                 (void) adjmsg(mp, len_needed - msg_len);
2870                 msg_len = len_needed;
2871         }
2872         mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2873         if (mp1 == NULL) {
2874                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2875                 freemsg(mp);
2876                 return;
2877         }
2878         mp1->b_cont = mp;
2879         mp = mp1;
2880 
2881         /*
2882          * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2883          * node generates be accepted in peace by all on-host destinations.
2884          * If we do NOT assume that all on-host destinations trust
2885          * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2886          * (Look for IXAF_TRUSTED_ICMP).
2887          */
2888         ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2889 
2890         ipha = (ipha_t *)mp->b_rptr;
2891         mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2892         *ipha = icmp_ipha;
2893         ipha->ipha_src = src;
2894         ipha->ipha_dst = dst;
2895         ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2896         msg_len += sizeof (icmp_ipha) + len;
2897         if (msg_len > IP_MAXPACKET) {
2898                 (void) adjmsg(mp, IP_MAXPACKET - msg_len);
2899                 msg_len = IP_MAXPACKET;
2900         }
2901         ipha->ipha_length = htons((uint16_t)msg_len);
2902         icmph = (icmph_t *)&ipha[1];
2903         bcopy(stuff, icmph, len);
2904         icmph->icmph_checksum = 0;
2905         icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2906         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2907 
2908         (void) ip_output_simple(mp, &ixas);
2909         ixa_cleanup(&ixas);
2910 }
2911 
2912 /*
2913  * Determine if an ICMP error packet can be sent given the rate limit.
2914  * The limit consists of an average frequency (icmp_pkt_err_interval measured
2915  * in milliseconds) and a burst size. Burst size number of packets can
2916  * be sent arbitrarely closely spaced.
2917  * The state is tracked using two variables to implement an approximate
2918  * token bucket filter:
2919  *      icmp_pkt_err_last - lbolt value when the last burst started
2920  *      icmp_pkt_err_sent - number of packets sent in current burst
2921  */
2922 boolean_t
2923 icmp_err_rate_limit(ip_stack_t *ipst)
2924 {
2925         clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2926         uint_t refilled; /* Number of packets refilled in tbf since last */
2927         /* Guard against changes by loading into local variable */
2928         uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2929 
2930         if (err_interval == 0)
2931                 return (B_FALSE);
2932 
2933         if (ipst->ips_icmp_pkt_err_last > now) {
2934                 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2935                 ipst->ips_icmp_pkt_err_last = 0;
2936                 ipst->ips_icmp_pkt_err_sent = 0;
2937         }
2938         /*
2939          * If we are in a burst update the token bucket filter.
2940          * Update the "last" time to be close to "now" but make sure
2941          * we don't loose precision.
2942          */
2943         if (ipst->ips_icmp_pkt_err_sent != 0) {
2944                 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2945                 if (refilled > ipst->ips_icmp_pkt_err_sent) {
2946                         ipst->ips_icmp_pkt_err_sent = 0;
2947                 } else {
2948                         ipst->ips_icmp_pkt_err_sent -= refilled;
2949                         ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2950                 }
2951         }
2952         if (ipst->ips_icmp_pkt_err_sent == 0) {
2953                 /* Start of new burst */
2954                 ipst->ips_icmp_pkt_err_last = now;
2955         }
2956         if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2957                 ipst->ips_icmp_pkt_err_sent++;
2958                 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2959                     ipst->ips_icmp_pkt_err_sent));
2960                 return (B_FALSE);
2961         }
2962         ip1dbg(("icmp_err_rate_limit: dropped\n"));
2963         return (B_TRUE);
2964 }
2965 
2966 /*
2967  * Check if it is ok to send an IPv4 ICMP error packet in
2968  * response to the IPv4 packet in mp.
2969  * Free the message and return null if no
2970  * ICMP error packet should be sent.
2971  */
2972 static mblk_t *
2973 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2974 {
2975         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2976         icmph_t *icmph;
2977         ipha_t  *ipha;
2978         uint_t  len_needed;
2979 
2980         if (!mp)
2981                 return (NULL);
2982         ipha = (ipha_t *)mp->b_rptr;
2983         if (ip_csum_hdr(ipha)) {
2984                 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2985                 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2986                 freemsg(mp);
2987                 return (NULL);
2988         }
2989         if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2990             ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2991             CLASSD(ipha->ipha_dst) ||
2992             CLASSD(ipha->ipha_src) ||
2993             (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2994                 /* Note: only errors to the fragment with offset 0 */
2995                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2996                 freemsg(mp);
2997                 return (NULL);
2998         }
2999         if (ipha->ipha_protocol == IPPROTO_ICMP) {
3000                 /*
3001                  * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3002                  * errors in response to any ICMP errors.
3003                  */
3004                 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3005                 if (mp->b_wptr - mp->b_rptr < len_needed) {
3006                         if (!pullupmsg(mp, len_needed)) {
3007                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3008                                 freemsg(mp);
3009                                 return (NULL);
3010                         }
3011                         ipha = (ipha_t *)mp->b_rptr;
3012                 }
3013                 icmph = (icmph_t *)
3014                     (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3015                 switch (icmph->icmph_type) {
3016                 case ICMP_DEST_UNREACHABLE:
3017                 case ICMP_SOURCE_QUENCH:
3018                 case ICMP_TIME_EXCEEDED:
3019                 case ICMP_PARAM_PROBLEM:
3020                 case ICMP_REDIRECT:
3021                         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3022                         freemsg(mp);
3023                         return (NULL);
3024                 default:
3025                         break;
3026                 }
3027         }
3028         /*
3029          * If this is a labeled system, then check to see if we're allowed to
3030          * send a response to this particular sender.  If not, then just drop.
3031          */
3032         if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3033                 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3034                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3035                 freemsg(mp);
3036                 return (NULL);
3037         }
3038         if (icmp_err_rate_limit(ipst)) {
3039                 /*
3040                  * Only send ICMP error packets every so often.
3041                  * This should be done on a per port/source basis,
3042                  * but for now this will suffice.
3043                  */
3044                 freemsg(mp);
3045                 return (NULL);
3046         }
3047         return (mp);
3048 }
3049 
3050 /*
3051  * Called when a packet was sent out the same link that it arrived on.
3052  * Check if it is ok to send a redirect and then send it.
3053  */
3054 void
3055 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3056     ip_recv_attr_t *ira)
3057 {
3058         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
3059         ipaddr_t        src, nhop;
3060         mblk_t          *mp1;
3061         ire_t           *nhop_ire;
3062 
3063         /*
3064          * Check the source address to see if it originated
3065          * on the same logical subnet it is going back out on.
3066          * If so, we should be able to send it a redirect.
3067          * Avoid sending a redirect if the destination
3068          * is directly connected (i.e., we matched an IRE_ONLINK),
3069          * or if the packet was source routed out this interface.
3070          *
3071          * We avoid sending a redirect if the
3072          * destination is directly connected
3073          * because it is possible that multiple
3074          * IP subnets may have been configured on
3075          * the link, and the source may not
3076          * be on the same subnet as ip destination,
3077          * even though they are on the same
3078          * physical link.
3079          */
3080         if ((ire->ire_type & IRE_ONLINK) ||
3081             ip_source_routed(ipha, ipst))
3082                 return;
3083 
3084         nhop_ire = ire_nexthop(ire);
3085         if (nhop_ire == NULL)
3086                 return;
3087 
3088         nhop = nhop_ire->ire_addr;
3089 
3090         if (nhop_ire->ire_type & IRE_IF_CLONE) {
3091                 ire_t   *ire2;
3092 
3093                 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3094                 mutex_enter(&nhop_ire->ire_lock);
3095                 ire2 = nhop_ire->ire_dep_parent;
3096                 if (ire2 != NULL)
3097                         ire_refhold(ire2);
3098                 mutex_exit(&nhop_ire->ire_lock);
3099                 ire_refrele(nhop_ire);
3100                 nhop_ire = ire2;
3101         }
3102         if (nhop_ire == NULL)
3103                 return;
3104 
3105         ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3106 
3107         src = ipha->ipha_src;
3108 
3109         /*
3110          * We look at the interface ire for the nexthop,
3111          * to see if ipha_src is in the same subnet
3112          * as the nexthop.
3113          */
3114         if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3115                 /*
3116                  * The source is directly connected.
3117                  */
3118                 mp1 = copymsg(mp);
3119                 if (mp1 != NULL) {
3120                         icmp_send_redirect(mp1, nhop, ira);
3121                 }
3122         }
3123         ire_refrele(nhop_ire);
3124 }
3125 
3126 /*
3127  * Generate an ICMP redirect message.
3128  */
3129 static void
3130 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3131 {
3132         icmph_t icmph;
3133         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3134 
3135         mp = icmp_pkt_err_ok(mp, ira);
3136         if (mp == NULL)
3137                 return;
3138 
3139         bzero(&icmph, sizeof (icmph_t));
3140         icmph.icmph_type = ICMP_REDIRECT;
3141         icmph.icmph_code = 1;
3142         icmph.icmph_rd_gateway = gateway;
3143         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3144         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3145 }
3146 
3147 /*
3148  * Generate an ICMP time exceeded message.
3149  */
3150 void
3151 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3152 {
3153         icmph_t icmph;
3154         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3155 
3156         mp = icmp_pkt_err_ok(mp, ira);
3157         if (mp == NULL)
3158                 return;
3159 
3160         bzero(&icmph, sizeof (icmph_t));
3161         icmph.icmph_type = ICMP_TIME_EXCEEDED;
3162         icmph.icmph_code = code;
3163         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3164         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3165 }
3166 
3167 /*
3168  * Generate an ICMP unreachable message.
3169  * When called from ip_output side a minimal ip_recv_attr_t needs to be
3170  * constructed by the caller.
3171  */
3172 void
3173 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3174 {
3175         icmph_t icmph;
3176         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3177 
3178         mp = icmp_pkt_err_ok(mp, ira);
3179         if (mp == NULL)
3180                 return;
3181 
3182         bzero(&icmph, sizeof (icmph_t));
3183         icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3184         icmph.icmph_code = code;
3185         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3186         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3187 }
3188 
3189 /*
3190  * Latch in the IPsec state for a stream based the policy in the listener
3191  * and the actions in the ip_recv_attr_t.
3192  * Called directly from TCP and SCTP.
3193  */
3194 boolean_t
3195 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3196 {
3197         ASSERT(lconnp->conn_policy != NULL);
3198         ASSERT(connp->conn_policy == NULL);
3199 
3200         IPPH_REFHOLD(lconnp->conn_policy);
3201         connp->conn_policy = lconnp->conn_policy;
3202 
3203         if (ira->ira_ipsec_action != NULL) {
3204                 if (connp->conn_latch == NULL) {
3205                         connp->conn_latch = iplatch_create();
3206                         if (connp->conn_latch == NULL)
3207                                 return (B_FALSE);
3208                 }
3209                 ipsec_latch_inbound(connp, ira);
3210         }
3211         return (B_TRUE);
3212 }
3213 
3214 /*
3215  * Verify whether or not the IP address is a valid local address.
3216  * Could be a unicast, including one for a down interface.
3217  * If allow_mcbc then a multicast or broadcast address is also
3218  * acceptable.
3219  *
3220  * In the case of a broadcast/multicast address, however, the
3221  * upper protocol is expected to reset the src address
3222  * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3223  * no packets are emitted with broadcast/multicast address as
3224  * source address (that violates hosts requirements RFC 1122)
3225  * The addresses valid for bind are:
3226  *      (1) - INADDR_ANY (0)
3227  *      (2) - IP address of an UP interface
3228  *      (3) - IP address of a DOWN interface
3229  *      (4) - valid local IP broadcast addresses. In this case
3230  *      the conn will only receive packets destined to
3231  *      the specified broadcast address.
3232  *      (5) - a multicast address. In this case
3233  *      the conn will only receive packets destined to
3234  *      the specified multicast address. Note: the
3235  *      application still has to issue an
3236  *      IP_ADD_MEMBERSHIP socket option.
3237  *
3238  * In all the above cases, the bound address must be valid in the current zone.
3239  * When the address is loopback, multicast or broadcast, there might be many
3240  * matching IREs so bind has to look up based on the zone.
3241  */
3242 ip_laddr_t
3243 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3244     ip_stack_t *ipst, boolean_t allow_mcbc)
3245 {
3246         ire_t *src_ire;
3247 
3248         ASSERT(src_addr != INADDR_ANY);
3249 
3250         src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3251             NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3252 
3253         /*
3254          * If an address other than in6addr_any is requested,
3255          * we verify that it is a valid address for bind
3256          * Note: Following code is in if-else-if form for
3257          * readability compared to a condition check.
3258          */
3259         if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3260                 /*
3261                  * (2) Bind to address of local UP interface
3262                  */
3263                 ire_refrele(src_ire);
3264                 return (IPVL_UNICAST_UP);
3265         } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3266                 /*
3267                  * (4) Bind to broadcast address
3268                  */
3269                 ire_refrele(src_ire);
3270                 if (allow_mcbc)
3271                         return (IPVL_BCAST);
3272                 else
3273                         return (IPVL_BAD);
3274         } else if (CLASSD(src_addr)) {
3275                 /* (5) bind to multicast address. */
3276                 if (src_ire != NULL)
3277                         ire_refrele(src_ire);
3278 
3279                 if (allow_mcbc)
3280                         return (IPVL_MCAST);
3281                 else
3282                         return (IPVL_BAD);
3283         } else {
3284                 ipif_t *ipif;
3285 
3286                 /*
3287                  * (3) Bind to address of local DOWN interface?
3288                  * (ipif_lookup_addr() looks up all interfaces
3289                  * but we do not get here for UP interfaces
3290                  * - case (2) above)
3291                  */
3292                 if (src_ire != NULL)
3293                         ire_refrele(src_ire);
3294 
3295                 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3296                 if (ipif == NULL)
3297                         return (IPVL_BAD);
3298 
3299                 /* Not a useful source? */
3300                 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3301                         ipif_refrele(ipif);
3302                         return (IPVL_BAD);
3303                 }
3304                 ipif_refrele(ipif);
3305                 return (IPVL_UNICAST_DOWN);
3306         }
3307 }
3308 
3309 /*
3310  * Insert in the bind fanout for IPv4 and IPv6.
3311  * The caller should already have used ip_laddr_verify_v*() before calling
3312  * this.
3313  */
3314 int
3315 ip_laddr_fanout_insert(conn_t *connp)
3316 {
3317         int             error;
3318 
3319         /*
3320          * Allow setting new policies. For example, disconnects result
3321          * in us being called. As we would have set conn_policy_cached
3322          * to B_TRUE before, we should set it to B_FALSE, so that policy
3323          * can change after the disconnect.
3324          */
3325         connp->conn_policy_cached = B_FALSE;
3326 
3327         error = ipcl_bind_insert(connp);
3328         if (error != 0) {
3329                 if (connp->conn_anon_port) {
3330                         (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3331                             connp->conn_mlp_type, connp->conn_proto,
3332                             ntohs(connp->conn_lport), B_FALSE);
3333                 }
3334                 connp->conn_mlp_type = mlptSingle;
3335         }
3336         return (error);
3337 }
3338 
3339 /*
3340  * Verify that both the source and destination addresses are valid. If
3341  * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3342  * i.e. have no route to it.  Protocols like TCP want to verify destination
3343  * reachability, while tunnels do not.
3344  *
3345  * Determine the route, the interface, and (optionally) the source address
3346  * to use to reach a given destination.
3347  * Note that we allow connect to broadcast and multicast addresses when
3348  * IPDF_ALLOW_MCBC is set.
3349  * first_hop and dst_addr are normally the same, but if source routing
3350  * they will differ; in that case the first_hop is what we'll use for the
3351  * routing lookup but the dce and label checks will be done on dst_addr,
3352  *
3353  * If uinfo is set, then we fill in the best available information
3354  * we have for the destination. This is based on (in priority order) any
3355  * metrics and path MTU stored in a dce_t, route metrics, and finally the
3356  * ill_mtu/ill_mc_mtu.
3357  *
3358  * Tsol note: If we have a source route then dst_addr != firsthop. But we
3359  * always do the label check on dst_addr.
3360  */
3361 int
3362 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3363     ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3364 {
3365         ire_t           *ire = NULL;
3366         int             error = 0;
3367         ipaddr_t        setsrc;                         /* RTF_SETSRC */
3368         zoneid_t        zoneid = ixa->ixa_zoneid;    /* Honors SO_ALLZONES */
3369         ip_stack_t      *ipst = ixa->ixa_ipst;
3370         dce_t           *dce;
3371         uint_t          pmtu;
3372         uint_t          generation;
3373         nce_t           *nce;
3374         ill_t           *ill = NULL;
3375         boolean_t       multirt = B_FALSE;
3376 
3377         ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3378 
3379         /*
3380          * We never send to zero; the ULPs map it to the loopback address.
3381          * We can't allow it since we use zero to mean unitialized in some
3382          * places.
3383          */
3384         ASSERT(dst_addr != INADDR_ANY);
3385 
3386         if (is_system_labeled()) {
3387                 ts_label_t *tsl = NULL;
3388 
3389                 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3390                     mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3391                 if (error != 0)
3392                         return (error);
3393                 if (tsl != NULL) {
3394                         /* Update the label */
3395                         ip_xmit_attr_replace_tsl(ixa, tsl);
3396                 }
3397         }
3398 
3399         setsrc = INADDR_ANY;
3400         /*
3401          * Select a route; For IPMP interfaces, we would only select
3402          * a "hidden" route (i.e., going through a specific under_ill)
3403          * if ixa_ifindex has been specified.
3404          */
3405         ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3406             &generation, &setsrc, &error, &multirt);
3407         ASSERT(ire != NULL);    /* IRE_NOROUTE if none found */
3408         if (error != 0)
3409                 goto bad_addr;
3410 
3411         /*
3412          * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3413          * If IPDF_VERIFY_DST is set, the destination must be reachable;
3414          * Otherwise the destination needn't be reachable.
3415          *
3416          * If we match on a reject or black hole, then we've got a
3417          * local failure.  May as well fail out the connect() attempt,
3418          * since it's never going to succeed.
3419          */
3420         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3421                 /*
3422                  * If we're verifying destination reachability, we always want
3423                  * to complain here.
3424                  *
3425                  * If we're not verifying destination reachability but the
3426                  * destination has a route, we still want to fail on the
3427                  * temporary address and broadcast address tests.
3428                  *
3429                  * In both cases do we let the code continue so some reasonable
3430                  * information is returned to the caller. That enables the
3431                  * caller to use (and even cache) the IRE. conn_ip_ouput will
3432                  * use the generation mismatch path to check for the unreachable
3433                  * case thereby avoiding any specific check in the main path.
3434                  */
3435                 ASSERT(generation == IRE_GENERATION_VERIFY);
3436                 if (flags & IPDF_VERIFY_DST) {
3437                         /*
3438                          * Set errno but continue to set up ixa_ire to be
3439                          * the RTF_REJECT|RTF_BLACKHOLE IRE.
3440                          * That allows callers to use ip_output to get an
3441                          * ICMP error back.
3442                          */
3443                         if (!(ire->ire_type & IRE_HOST))
3444                                 error = ENETUNREACH;
3445                         else
3446                                 error = EHOSTUNREACH;
3447                 }
3448         }
3449 
3450         if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3451             !(flags & IPDF_ALLOW_MCBC)) {
3452                 ire_refrele(ire);
3453                 ire = ire_reject(ipst, B_FALSE);
3454                 generation = IRE_GENERATION_VERIFY;
3455                 error = ENETUNREACH;
3456         }
3457 
3458         /* Cache things */
3459         if (ixa->ixa_ire != NULL)
3460                 ire_refrele_notr(ixa->ixa_ire);
3461 #ifdef DEBUG
3462         ire_refhold_notr(ire);
3463         ire_refrele(ire);
3464 #endif
3465         ixa->ixa_ire = ire;
3466         ixa->ixa_ire_generation = generation;
3467 
3468         /*
3469          * Ensure that ixa_dce is always set any time that ixa_ire is set,
3470          * since some callers will send a packet to conn_ip_output() even if
3471          * there's an error.
3472          */
3473         if (flags & IPDF_UNIQUE_DCE) {
3474                 /* Fallback to the default dce if allocation fails */
3475                 dce = dce_lookup_and_add_v4(dst_addr, ipst);
3476                 if (dce != NULL)
3477                         generation = dce->dce_generation;
3478                 else
3479                         dce = dce_lookup_v4(dst_addr, ipst, &generation);
3480         } else {
3481                 dce = dce_lookup_v4(dst_addr, ipst, &generation);
3482         }
3483         ASSERT(dce != NULL);
3484         if (ixa->ixa_dce != NULL)
3485                 dce_refrele_notr(ixa->ixa_dce);
3486 #ifdef DEBUG
3487         dce_refhold_notr(dce);
3488         dce_refrele(dce);
3489 #endif
3490         ixa->ixa_dce = dce;
3491         ixa->ixa_dce_generation = generation;
3492 
3493         /*
3494          * For multicast with multirt we have a flag passed back from
3495          * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3496          * possible multicast address.
3497          * We also need a flag for multicast since we can't check
3498          * whether RTF_MULTIRT is set in ixa_ire for multicast.
3499          */
3500         if (multirt) {
3501                 ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3502                 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3503         } else {
3504                 ixa->ixa_postfragfn = ire->ire_postfragfn;
3505                 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3506         }
3507         if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3508                 /* Get an nce to cache. */
3509                 nce = ire_to_nce(ire, firsthop, NULL);
3510                 if (nce == NULL) {
3511                         /* Allocation failure? */
3512                         ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3513                 } else {
3514                         if (ixa->ixa_nce != NULL)
3515                                 nce_refrele(ixa->ixa_nce);
3516                         ixa->ixa_nce = nce;
3517                 }
3518         }
3519 
3520         /*
3521          * If the source address is a loopback address, the
3522          * destination had best be local or multicast.
3523          * If we are sending to an IRE_LOCAL using a loopback source then
3524          * it had better be the same zoneid.
3525          */
3526         if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3527                 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3528                         ire = NULL;     /* Stored in ixa_ire */
3529                         error = EADDRNOTAVAIL;
3530                         goto bad_addr;
3531                 }
3532                 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3533                         ire = NULL;     /* Stored in ixa_ire */
3534                         error = EADDRNOTAVAIL;
3535                         goto bad_addr;
3536                 }
3537         }
3538         if (ire->ire_type & IRE_BROADCAST) {
3539                 /*
3540                  * If the ULP didn't have a specified source, then we
3541                  * make sure we reselect the source when sending
3542                  * broadcasts out different interfaces.
3543                  */
3544                 if (flags & IPDF_SELECT_SRC)
3545                         ixa->ixa_flags |= IXAF_SET_SOURCE;
3546                 else
3547                         ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3548         }
3549 
3550         /*
3551          * Does the caller want us to pick a source address?
3552          */
3553         if (flags & IPDF_SELECT_SRC) {
3554                 ipaddr_t        src_addr;
3555 
3556                 /*
3557                  * We use use ire_nexthop_ill to avoid the under ipmp
3558                  * interface for source address selection. Note that for ipmp
3559                  * probe packets, ixa_ifindex would have been specified, and
3560                  * the ip_select_route() invocation would have picked an ire
3561                  * will ire_ill pointing at an under interface.
3562                  */
3563                 ill = ire_nexthop_ill(ire);
3564 
3565                 /* If unreachable we have no ill but need some source */
3566                 if (ill == NULL) {
3567                         src_addr = htonl(INADDR_LOOPBACK);
3568                         /* Make sure we look for a better source address */
3569                         generation = SRC_GENERATION_VERIFY;
3570                 } else {
3571                         error = ip_select_source_v4(ill, setsrc, dst_addr,
3572                             ixa->ixa_multicast_ifaddr, zoneid,
3573                             ipst, &src_addr, &generation, NULL);
3574                         if (error != 0) {
3575                                 ire = NULL;     /* Stored in ixa_ire */
3576                                 goto bad_addr;
3577                         }
3578                 }
3579 
3580                 /*
3581                  * We allow the source address to to down.
3582                  * However, we check that we don't use the loopback address
3583                  * as a source when sending out on the wire.
3584                  */
3585                 if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3586                     !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3587                     !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3588                         ire = NULL;     /* Stored in ixa_ire */
3589                         error = EADDRNOTAVAIL;
3590                         goto bad_addr;
3591                 }
3592 
3593                 *src_addrp = src_addr;
3594                 ixa->ixa_src_generation = generation;
3595         }
3596 
3597         /*
3598          * Make sure we don't leave an unreachable ixa_nce in place
3599          * since ip_select_route is used when we unplumb i.e., remove
3600          * references on ixa_ire, ixa_nce, and ixa_dce.
3601          */
3602         nce = ixa->ixa_nce;
3603         if (nce != NULL && nce->nce_is_condemned) {
3604                 nce_refrele(nce);
3605                 ixa->ixa_nce = NULL;
3606                 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3607         }
3608 
3609         /*
3610          * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3611          * However, we can't do it for IPv4 multicast or broadcast.
3612          */
3613         if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3614                 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3615 
3616         /*
3617          * Set initial value for fragmentation limit. Either conn_ip_output
3618          * or ULP might updates it when there are routing changes.
3619          * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3620          */
3621         pmtu = ip_get_pmtu(ixa);
3622         ixa->ixa_fragsize = pmtu;
3623         /* Make sure ixa_fragsize and ixa_pmtu remain identical */
3624         if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3625                 ixa->ixa_pmtu = pmtu;
3626 
3627         /*
3628          * Extract information useful for some transports.
3629          * First we look for DCE metrics. Then we take what we have in
3630          * the metrics in the route, where the offlink is used if we have
3631          * one.
3632          */
3633         if (uinfo != NULL) {
3634                 bzero(uinfo, sizeof (*uinfo));
3635 
3636                 if (dce->dce_flags & DCEF_UINFO)
3637                         *uinfo = dce->dce_uinfo;
3638 
3639                 rts_merge_metrics(uinfo, &ire->ire_metrics);
3640 
3641                 /* Allow ire_metrics to decrease the path MTU from above */
3642                 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3643                         uinfo->iulp_mtu = pmtu;
3644 
3645                 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3646                 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3647                 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3648         }
3649 
3650         if (ill != NULL)
3651                 ill_refrele(ill);
3652 
3653         return (error);
3654 
3655 bad_addr:
3656         if (ire != NULL)
3657                 ire_refrele(ire);
3658 
3659         if (ill != NULL)
3660                 ill_refrele(ill);
3661 
3662         /*
3663          * Make sure we don't leave an unreachable ixa_nce in place
3664          * since ip_select_route is used when we unplumb i.e., remove
3665          * references on ixa_ire, ixa_nce, and ixa_dce.
3666          */
3667         nce = ixa->ixa_nce;
3668         if (nce != NULL && nce->nce_is_condemned) {
3669                 nce_refrele(nce);
3670                 ixa->ixa_nce = NULL;
3671                 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3672         }
3673 
3674         return (error);
3675 }
3676 
3677 
3678 /*
3679  * Get the base MTU for the case when path MTU discovery is not used.
3680  * Takes the MTU of the IRE into account.
3681  */
3682 uint_t
3683 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3684 {
3685         uint_t mtu;
3686         uint_t iremtu = ire->ire_metrics.iulp_mtu;
3687 
3688         if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3689                 mtu = ill->ill_mc_mtu;
3690         else
3691                 mtu = ill->ill_mtu;
3692 
3693         if (iremtu != 0 && iremtu < mtu)
3694                 mtu = iremtu;
3695 
3696         return (mtu);
3697 }
3698 
3699 /*
3700  * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3701  * Assumes that ixa_ire, dce, and nce have already been set up.
3702  *
3703  * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3704  * We avoid path MTU discovery if it is disabled with ndd.
3705  * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3706  *
3707  * NOTE: We also used to turn it off for source routed packets. That
3708  * is no longer required since the dce is per final destination.
3709  */
3710 uint_t
3711 ip_get_pmtu(ip_xmit_attr_t *ixa)
3712 {
3713         ip_stack_t      *ipst = ixa->ixa_ipst;
3714         dce_t           *dce;
3715         nce_t           *nce;
3716         ire_t           *ire;
3717         uint_t          pmtu;
3718 
3719         ire = ixa->ixa_ire;
3720         dce = ixa->ixa_dce;
3721         nce = ixa->ixa_nce;
3722 
3723         /*
3724          * If path MTU discovery has been turned off by ndd, then we ignore
3725          * any dce_pmtu and for IPv4 we will not set DF.
3726          */
3727         if (!ipst->ips_ip_path_mtu_discovery)
3728                 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3729 
3730         pmtu = IP_MAXPACKET;
3731         /*
3732          * Decide whether whether IPv4 sets DF
3733          * For IPv6 "no DF" means to use the 1280 mtu
3734          */
3735         if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3736                 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3737         } else {
3738                 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3739                 if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3740                         pmtu = IPV6_MIN_MTU;
3741         }
3742 
3743         /* Check if the PMTU is to old before we use it */
3744         if ((dce->dce_flags & DCEF_PMTU) &&
3745             TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3746             ipst->ips_ip_pathmtu_interval) {
3747                 /*
3748                  * Older than 20 minutes. Drop the path MTU information.
3749                  */
3750                 mutex_enter(&dce->dce_lock);
3751                 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3752                 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3753                 mutex_exit(&dce->dce_lock);
3754                 dce_increment_generation(dce);
3755         }
3756 
3757         /* The metrics on the route can lower the path MTU */
3758         if (ire->ire_metrics.iulp_mtu != 0 &&
3759             ire->ire_metrics.iulp_mtu < pmtu)
3760                 pmtu = ire->ire_metrics.iulp_mtu;
3761 
3762         /*
3763          * If the path MTU is smaller than some minimum, we still use dce_pmtu
3764          * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3765          * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3766          */
3767         if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3768                 if (dce->dce_flags & DCEF_PMTU) {
3769                         if (dce->dce_pmtu < pmtu)
3770                                 pmtu = dce->dce_pmtu;
3771 
3772                         if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3773                                 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3774                                 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3775                         } else {
3776                                 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3777                                 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3778                         }
3779                 } else {
3780                         ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3781                         ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3782                 }
3783         }
3784 
3785         /*
3786          * If we have an IRE_LOCAL we use the loopback mtu instead of
3787          * the ill for going out the wire i.e., IRE_LOCAL gets the same
3788          * mtu as IRE_LOOPBACK.
3789          */
3790         if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3791                 uint_t loopback_mtu;
3792 
3793                 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3794                     ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3795 
3796                 if (loopback_mtu < pmtu)
3797                         pmtu = loopback_mtu;
3798         } else if (nce != NULL) {
3799                 /*
3800                  * Make sure we don't exceed the interface MTU.
3801                  * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3802                  * an ill. We'd use the above IP_MAXPACKET in that case just
3803                  * to tell the transport something larger than zero.
3804                  */
3805                 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3806                         if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3807                                 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3808                         if (nce->nce_common->ncec_ill != nce->nce_ill &&
3809                             nce->nce_ill->ill_mc_mtu < pmtu) {
3810                                 /*
3811                                  * for interfaces in an IPMP group, the mtu of
3812                                  * the nce_ill (under_ill) could be different
3813                                  * from the mtu of the ncec_ill, so we take the
3814                                  * min of the two.
3815                                  */
3816                                 pmtu = nce->nce_ill->ill_mc_mtu;
3817                         }
3818                 } else {
3819                         if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3820                                 pmtu = nce->nce_common->ncec_ill->ill_mtu;
3821                         if (nce->nce_common->ncec_ill != nce->nce_ill &&
3822                             nce->nce_ill->ill_mtu < pmtu) {
3823                                 /*
3824                                  * for interfaces in an IPMP group, the mtu of
3825                                  * the nce_ill (under_ill) could be different
3826                                  * from the mtu of the ncec_ill, so we take the
3827                                  * min of the two.
3828                                  */
3829                                 pmtu = nce->nce_ill->ill_mtu;
3830                         }
3831                 }
3832         }
3833 
3834         /*
3835          * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3836          * Only applies to IPv6.
3837          */
3838         if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3839                 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3840                         switch (ixa->ixa_use_min_mtu) {
3841                         case IPV6_USE_MIN_MTU_MULTICAST:
3842                                 if (ire->ire_type & IRE_MULTICAST)
3843                                         pmtu = IPV6_MIN_MTU;
3844                                 break;
3845                         case IPV6_USE_MIN_MTU_ALWAYS:
3846                                 pmtu = IPV6_MIN_MTU;
3847                                 break;
3848                         case IPV6_USE_MIN_MTU_NEVER:
3849                                 break;
3850                         }
3851                 } else {
3852                         /* Default is IPV6_USE_MIN_MTU_MULTICAST */
3853                         if (ire->ire_type & IRE_MULTICAST)
3854                                 pmtu = IPV6_MIN_MTU;
3855                 }
3856         }
3857 
3858         /*
3859          * After receiving an ICMPv6 "packet too big" message with a
3860          * MTU < 1280, and for multirouted IPv6 packets, the IP layer
3861          * will insert a 8-byte fragment header in every packet. We compensate
3862          * for those cases by returning a smaller path MTU to the ULP.
3863          *
3864          * In the case of CGTP then ip_output will add a fragment header.
3865          * Make sure there is room for it by telling a smaller number
3866          * to the transport.
3867          *
3868          * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3869          * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3870          * which is the size of the packets it can send.
3871          */
3872         if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3873                 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) ||
3874                     (ire->ire_flags & RTF_MULTIRT) ||
3875                     (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3876                         pmtu -= sizeof (ip6_frag_t);
3877                         ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3878                 }
3879         }
3880 
3881         return (pmtu);
3882 }
3883 
3884 /*
3885  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3886  * the final piece where we don't.  Return a pointer to the first mblk in the
3887  * result, and update the pointer to the next mblk to chew on.  If anything
3888  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3889  * NULL pointer.
3890  */
3891 mblk_t *
3892 ip_carve_mp(mblk_t **mpp, ssize_t len)
3893 {
3894         mblk_t  *mp0;
3895         mblk_t  *mp1;
3896         mblk_t  *mp2;
3897 
3898         if (!len || !mpp || !(mp0 = *mpp))
3899                 return (NULL);
3900         /* If we aren't going to consume the first mblk, we need a dup. */
3901         if (mp0->b_wptr - mp0->b_rptr > len) {
3902                 mp1 = dupb(mp0);
3903                 if (mp1) {
3904                         /* Partition the data between the two mblks. */
3905                         mp1->b_wptr = mp1->b_rptr + len;
3906                         mp0->b_rptr = mp1->b_wptr;
3907                         /*
3908                          * after adjustments if mblk not consumed is now
3909                          * unaligned, try to align it. If this fails free
3910                          * all messages and let upper layer recover.
3911                          */
3912                         if (!OK_32PTR(mp0->b_rptr)) {
3913                                 if (!pullupmsg(mp0, -1)) {
3914                                         freemsg(mp0);
3915                                         freemsg(mp1);
3916                                         *mpp = NULL;
3917                                         return (NULL);
3918                                 }
3919                         }
3920                 }
3921                 return (mp1);
3922         }
3923         /* Eat through as many mblks as we need to get len bytes. */
3924         len -= mp0->b_wptr - mp0->b_rptr;
3925         for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3926                 if (mp2->b_wptr - mp2->b_rptr > len) {
3927                         /*
3928                          * We won't consume the entire last mblk.  Like
3929                          * above, dup and partition it.
3930                          */
3931                         mp1->b_cont = dupb(mp2);
3932                         mp1 = mp1->b_cont;
3933                         if (!mp1) {
3934                                 /*
3935                                  * Trouble.  Rather than go to a lot of
3936                                  * trouble to clean up, we free the messages.
3937                                  * This won't be any worse than losing it on
3938                                  * the wire.
3939                                  */
3940                                 freemsg(mp0);
3941                                 freemsg(mp2);
3942                                 *mpp = NULL;
3943                                 return (NULL);
3944                         }
3945                         mp1->b_wptr = mp1->b_rptr + len;
3946                         mp2->b_rptr = mp1->b_wptr;
3947                         /*
3948                          * after adjustments if mblk not consumed is now
3949                          * unaligned, try to align it. If this fails free
3950                          * all messages and let upper layer recover.
3951                          */
3952                         if (!OK_32PTR(mp2->b_rptr)) {
3953                                 if (!pullupmsg(mp2, -1)) {
3954                                         freemsg(mp0);
3955                                         freemsg(mp2);
3956                                         *mpp = NULL;
3957                                         return (NULL);
3958                                 }
3959                         }
3960                         *mpp = mp2;
3961                         return (mp0);
3962                 }
3963                 /* Decrement len by the amount we just got. */
3964                 len -= mp2->b_wptr - mp2->b_rptr;
3965         }
3966         /*
3967          * len should be reduced to zero now.  If not our caller has
3968          * screwed up.
3969          */
3970         if (len) {
3971                 /* Shouldn't happen! */
3972                 freemsg(mp0);
3973                 *mpp = NULL;
3974                 return (NULL);
3975         }
3976         /*
3977          * We consumed up to exactly the end of an mblk.  Detach the part
3978          * we are returning from the rest of the chain.
3979          */
3980         mp1->b_cont = NULL;
3981         *mpp = mp2;
3982         return (mp0);
3983 }
3984 
3985 /* The ill stream is being unplumbed. Called from ip_close */
3986 int
3987 ip_modclose(ill_t *ill)
3988 {
3989         boolean_t success;
3990         ipsq_t  *ipsq;
3991         ipif_t  *ipif;
3992         queue_t *q = ill->ill_rq;
3993         ip_stack_t      *ipst = ill->ill_ipst;
3994         int     i;
3995         arl_ill_common_t *ai = ill->ill_common;
3996 
3997         /*
3998          * The punlink prior to this may have initiated a capability
3999          * negotiation. But ipsq_enter will block until that finishes or
4000          * times out.
4001          */
4002         success = ipsq_enter(ill, B_FALSE, NEW_OP);
4003 
4004         /*
4005          * Open/close/push/pop is guaranteed to be single threaded
4006          * per stream by STREAMS. FS guarantees that all references
4007          * from top are gone before close is called. So there can't
4008          * be another close thread that has set CONDEMNED on this ill.
4009          * and cause ipsq_enter to return failure.
4010          */
4011         ASSERT(success);
4012         ipsq = ill->ill_phyint->phyint_ipsq;
4013 
4014         /*
4015          * Mark it condemned. No new reference will be made to this ill.
4016          * Lookup functions will return an error. Threads that try to
4017          * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4018          * that the refcnt will drop down to zero.
4019          */
4020         mutex_enter(&ill->ill_lock);
4021         ill->ill_state_flags |= ILL_CONDEMNED;
4022         for (ipif = ill->ill_ipif; ipif != NULL;
4023             ipif = ipif->ipif_next) {
4024                 ipif->ipif_state_flags |= IPIF_CONDEMNED;
4025         }
4026         /*
4027          * Wake up anybody waiting to enter the ipsq. ipsq_enter
4028          * returns  error if ILL_CONDEMNED is set
4029          */
4030         cv_broadcast(&ill->ill_cv);
4031         mutex_exit(&ill->ill_lock);
4032 
4033         /*
4034          * Send all the deferred DLPI messages downstream which came in
4035          * during the small window right before ipsq_enter(). We do this
4036          * without waiting for the ACKs because all the ACKs for M_PROTO
4037          * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4038          */
4039         ill_dlpi_send_deferred(ill);
4040 
4041         /*
4042          * Shut down fragmentation reassembly.
4043          * ill_frag_timer won't start a timer again.
4044          * Now cancel any existing timer
4045          */
4046         (void) untimeout(ill->ill_frag_timer_id);
4047         (void) ill_frag_timeout(ill, 0);
4048 
4049         /*
4050          * Call ill_delete to bring down the ipifs, ilms and ill on
4051          * this ill. Then wait for the refcnts to drop to zero.
4052          * ill_is_freeable checks whether the ill is really quiescent.
4053          * Then make sure that threads that are waiting to enter the
4054          * ipsq have seen the error returned by ipsq_enter and have
4055          * gone away. Then we call ill_delete_tail which does the
4056          * DL_UNBIND_REQ with the driver and then qprocsoff.
4057          */
4058         ill_delete(ill);
4059         mutex_enter(&ill->ill_lock);
4060         while (!ill_is_freeable(ill))
4061                 cv_wait(&ill->ill_cv, &ill->ill_lock);
4062 
4063         while (ill->ill_waiters)
4064                 cv_wait(&ill->ill_cv, &ill->ill_lock);
4065 
4066         mutex_exit(&ill->ill_lock);
4067 
4068         /*
4069          * ill_delete_tail drops reference on ill_ipst, but we need to keep
4070          * it held until the end of the function since the cleanup
4071          * below needs to be able to use the ip_stack_t.
4072          */
4073         netstack_hold(ipst->ips_netstack);
4074 
4075         /* qprocsoff is done via ill_delete_tail */
4076         ill_delete_tail(ill);
4077         /*
4078          * synchronously wait for arp stream to unbind. After this, we
4079          * cannot get any data packets up from the driver.
4080          */
4081         arp_unbind_complete(ill);
4082         ASSERT(ill->ill_ipst == NULL);
4083 
4084         /*
4085          * Walk through all conns and qenable those that have queued data.
4086          * Close synchronization needs this to
4087          * be done to ensure that all upper layers blocked
4088          * due to flow control to the closing device
4089          * get unblocked.
4090          */
4091         ip1dbg(("ip_wsrv: walking\n"));
4092         for (i = 0; i < TX_FANOUT_SIZE; i++) {
4093                 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4094         }
4095 
4096         /*
4097          * ai can be null if this is an IPv6 ill, or if the IPv4
4098          * stream is being torn down before ARP was plumbed (e.g.,
4099          * /sbin/ifconfig plumbing a stream twice, and encountering
4100          * an error
4101          */
4102         if (ai != NULL) {
4103                 ASSERT(!ill->ill_isv6);
4104                 mutex_enter(&ai->ai_lock);
4105                 ai->ai_ill = NULL;
4106                 if (ai->ai_arl == NULL) {
4107                         mutex_destroy(&ai->ai_lock);
4108                         kmem_free(ai, sizeof (*ai));
4109                 } else {
4110                         cv_signal(&ai->ai_ill_unplumb_done);
4111                         mutex_exit(&ai->ai_lock);
4112                 }
4113         }
4114 
4115         mutex_enter(&ipst->ips_ip_mi_lock);
4116         mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4117         mutex_exit(&ipst->ips_ip_mi_lock);
4118 
4119         /*
4120          * credp could be null if the open didn't succeed and ip_modopen
4121          * itself calls ip_close.
4122          */
4123         if (ill->ill_credp != NULL)
4124                 crfree(ill->ill_credp);
4125 
4126         mutex_destroy(&ill->ill_saved_ire_lock);
4127         mutex_destroy(&ill->ill_lock);
4128         rw_destroy(&ill->ill_mcast_lock);
4129         mutex_destroy(&ill->ill_mcast_serializer);
4130         list_destroy(&ill->ill_nce);
4131 
4132         /*
4133          * Now we are done with the module close pieces that
4134          * need the netstack_t.
4135          */
4136         netstack_rele(ipst->ips_netstack);
4137 
4138         mi_close_free((IDP)ill);
4139         q->q_ptr = WR(q)->q_ptr = NULL;
4140 
4141         ipsq_exit(ipsq);
4142 
4143         return (0);
4144 }
4145 
4146 /*
4147  * This is called as part of close() for IP, UDP, ICMP, and RTS
4148  * in order to quiesce the conn.
4149  */
4150 void
4151 ip_quiesce_conn(conn_t *connp)
4152 {
4153         boolean_t       drain_cleanup_reqd = B_FALSE;
4154         boolean_t       conn_ioctl_cleanup_reqd = B_FALSE;
4155         boolean_t       ilg_cleanup_reqd = B_FALSE;
4156         ip_stack_t      *ipst;
4157 
4158         ASSERT(!IPCL_IS_TCP(connp));
4159         ipst = connp->conn_netstack->netstack_ip;
4160 
4161         /*
4162          * Mark the conn as closing, and this conn must not be
4163          * inserted in future into any list. Eg. conn_drain_insert(),
4164          * won't insert this conn into the conn_drain_list.
4165          *
4166          * conn_idl, and conn_ilg cannot get set henceforth.
4167          */
4168         mutex_enter(&connp->conn_lock);
4169         ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4170         connp->conn_state_flags |= CONN_CLOSING;
4171         if (connp->conn_idl != NULL)
4172                 drain_cleanup_reqd = B_TRUE;
4173         if (connp->conn_oper_pending_ill != NULL)
4174                 conn_ioctl_cleanup_reqd = B_TRUE;
4175         if (connp->conn_dhcpinit_ill != NULL) {
4176                 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4177                 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4178                 ill_set_inputfn(connp->conn_dhcpinit_ill);
4179                 connp->conn_dhcpinit_ill = NULL;
4180         }
4181         if (connp->conn_ilg != NULL)
4182                 ilg_cleanup_reqd = B_TRUE;
4183         mutex_exit(&connp->conn_lock);
4184 
4185         if (conn_ioctl_cleanup_reqd)
4186                 conn_ioctl_cleanup(connp);
4187 
4188         if (is_system_labeled() && connp->conn_anon_port) {
4189                 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4190                     connp->conn_mlp_type, connp->conn_proto,
4191                     ntohs(connp->conn_lport), B_FALSE);
4192                 connp->conn_anon_port = 0;
4193         }
4194         connp->conn_mlp_type = mlptSingle;
4195 
4196         /*
4197          * Remove this conn from any fanout list it is on.
4198          * and then wait for any threads currently operating
4199          * on this endpoint to finish
4200          */
4201         ipcl_hash_remove(connp);
4202 
4203         /*
4204          * Remove this conn from the drain list, and do any other cleanup that
4205          * may be required.  (TCP conns are never flow controlled, and
4206          * conn_idl will be NULL.)
4207          */
4208         if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4209                 idl_t *idl = connp->conn_idl;
4210 
4211                 mutex_enter(&idl->idl_lock);
4212                 conn_drain(connp, B_TRUE);
4213                 mutex_exit(&idl->idl_lock);
4214         }
4215 
4216         if (connp == ipst->ips_ip_g_mrouter)
4217                 (void) ip_mrouter_done(ipst);
4218 
4219         if (ilg_cleanup_reqd)
4220                 ilg_delete_all(connp);
4221 
4222         /*
4223          * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4224          * callers from write side can't be there now because close
4225          * is in progress. The only other caller is ipcl_walk
4226          * which checks for the condemned flag.
4227          */
4228         mutex_enter(&connp->conn_lock);
4229         connp->conn_state_flags |= CONN_CONDEMNED;
4230         while (connp->conn_ref != 1)
4231                 cv_wait(&connp->conn_cv, &connp->conn_lock);
4232         connp->conn_state_flags |= CONN_QUIESCED;
4233         mutex_exit(&connp->conn_lock);
4234 }
4235 
4236 /* ARGSUSED */
4237 int
4238 ip_close(queue_t *q, int flags)
4239 {
4240         conn_t          *connp;
4241 
4242         /*
4243          * Call the appropriate delete routine depending on whether this is
4244          * a module or device.
4245          */
4246         if (WR(q)->q_next != NULL) {
4247                 /* This is a module close */
4248                 return (ip_modclose((ill_t *)q->q_ptr));
4249         }
4250 
4251         connp = q->q_ptr;
4252         ip_quiesce_conn(connp);
4253 
4254         qprocsoff(q);
4255 
4256         /*
4257          * Now we are truly single threaded on this stream, and can
4258          * delete the things hanging off the connp, and finally the connp.
4259          * We removed this connp from the fanout list, it cannot be
4260          * accessed thru the fanouts, and we already waited for the
4261          * conn_ref to drop to 0. We are already in close, so
4262          * there cannot be any other thread from the top. qprocsoff
4263          * has completed, and service has completed or won't run in
4264          * future.
4265          */
4266         ASSERT(connp->conn_ref == 1);
4267 
4268         inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4269 
4270         connp->conn_ref--;
4271         ipcl_conn_destroy(connp);
4272 
4273         q->q_ptr = WR(q)->q_ptr = NULL;
4274         return (0);
4275 }
4276 
4277 /*
4278  * Wapper around putnext() so that ip_rts_request can merely use
4279  * conn_recv.
4280  */
4281 /*ARGSUSED2*/
4282 static void
4283 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4284 {
4285         conn_t *connp = (conn_t *)arg1;
4286 
4287         putnext(connp->conn_rq, mp);
4288 }
4289 
4290 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4291 /* ARGSUSED */
4292 static void
4293 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4294 {
4295         freemsg(mp);
4296 }
4297 
4298 /*
4299  * Called when the module is about to be unloaded
4300  */
4301 void
4302 ip_ddi_destroy(void)
4303 {
4304         /* This needs to be called before destroying any transports. */
4305         mutex_enter(&cpu_lock);
4306         unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4307         mutex_exit(&cpu_lock);
4308 
4309         tnet_fini();
4310 
4311         icmp_ddi_g_destroy();
4312         rts_ddi_g_destroy();
4313         udp_ddi_g_destroy();
4314         sctp_ddi_g_destroy();
4315         tcp_ddi_g_destroy();
4316         ilb_ddi_g_destroy();
4317         dce_g_destroy();
4318         ipsec_policy_g_destroy();
4319         ipcl_g_destroy();
4320         ip_net_g_destroy();
4321         ip_ire_g_fini();
4322         inet_minor_destroy(ip_minor_arena_sa);
4323 #if defined(_LP64)
4324         inet_minor_destroy(ip_minor_arena_la);
4325 #endif
4326 
4327 #ifdef DEBUG
4328         list_destroy(&ip_thread_list);
4329         rw_destroy(&ip_thread_rwlock);
4330         tsd_destroy(&ip_thread_data);
4331 #endif
4332 
4333         netstack_unregister(NS_IP);
4334 }
4335 
4336 /*
4337  * First step in cleanup.
4338  */
4339 /* ARGSUSED */
4340 static void
4341 ip_stack_shutdown(netstackid_t stackid, void *arg)
4342 {
4343         ip_stack_t *ipst = (ip_stack_t *)arg;
4344 
4345 #ifdef NS_DEBUG
4346         printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4347 #endif
4348 
4349         /*
4350          * Perform cleanup for special interfaces (loopback and IPMP).
4351          */
4352         ip_interface_cleanup(ipst);
4353 
4354         /*
4355          * The *_hook_shutdown()s start the process of notifying any
4356          * consumers that things are going away.... nothing is destroyed.
4357          */
4358         ipv4_hook_shutdown(ipst);
4359         ipv6_hook_shutdown(ipst);
4360         arp_hook_shutdown(ipst);
4361 
4362         mutex_enter(&ipst->ips_capab_taskq_lock);
4363         ipst->ips_capab_taskq_quit = B_TRUE;
4364         cv_signal(&ipst->ips_capab_taskq_cv);
4365         mutex_exit(&ipst->ips_capab_taskq_lock);
4366 }
4367 
4368 /*
4369  * Free the IP stack instance.
4370  */
4371 static void
4372 ip_stack_fini(netstackid_t stackid, void *arg)
4373 {
4374         ip_stack_t *ipst = (ip_stack_t *)arg;
4375         int ret;
4376 
4377 #ifdef NS_DEBUG
4378         printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4379 #endif
4380         /*
4381          * At this point, all of the notifications that the events and
4382          * protocols are going away have been run, meaning that we can
4383          * now set about starting to clean things up.
4384          */
4385         ipobs_fini(ipst);
4386         ipv4_hook_destroy(ipst);
4387         ipv6_hook_destroy(ipst);
4388         arp_hook_destroy(ipst);
4389         ip_net_destroy(ipst);
4390 
4391         ipmp_destroy(ipst);
4392 
4393         ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4394         ipst->ips_ip_mibkp = NULL;
4395         icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4396         ipst->ips_icmp_mibkp = NULL;
4397         ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4398         ipst->ips_ip_kstat = NULL;
4399         bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4400         ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4401         ipst->ips_ip6_kstat = NULL;
4402         bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4403 
4404         kmem_free(ipst->ips_propinfo_tbl,
4405             ip_propinfo_count * sizeof (mod_prop_info_t));
4406         ipst->ips_propinfo_tbl = NULL;
4407 
4408         dce_stack_destroy(ipst);
4409         ip_mrouter_stack_destroy(ipst);
4410 
4411         ret = untimeout(ipst->ips_igmp_timeout_id);
4412         if (ret == -1) {
4413                 ASSERT(ipst->ips_igmp_timeout_id == 0);
4414         } else {
4415                 ASSERT(ipst->ips_igmp_timeout_id != 0);
4416                 ipst->ips_igmp_timeout_id = 0;
4417         }
4418         ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4419         if (ret == -1) {
4420                 ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4421         } else {
4422                 ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4423                 ipst->ips_igmp_slowtimeout_id = 0;
4424         }
4425         ret = untimeout(ipst->ips_mld_timeout_id);
4426         if (ret == -1) {
4427                 ASSERT(ipst->ips_mld_timeout_id == 0);
4428         } else {
4429                 ASSERT(ipst->ips_mld_timeout_id != 0);
4430                 ipst->ips_mld_timeout_id = 0;
4431         }
4432         ret = untimeout(ipst->ips_mld_slowtimeout_id);
4433         if (ret == -1) {
4434                 ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4435         } else {
4436                 ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4437                 ipst->ips_mld_slowtimeout_id = 0;
4438         }
4439 
4440         ip_ire_fini(ipst);
4441         ip6_asp_free(ipst);
4442         conn_drain_fini(ipst);
4443         ipcl_destroy(ipst);
4444 
4445         mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4446         mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4447         kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4448         ipst->ips_ndp4 = NULL;
4449         kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4450         ipst->ips_ndp6 = NULL;
4451 
4452         if (ipst->ips_loopback_ksp != NULL) {
4453                 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4454                 ipst->ips_loopback_ksp = NULL;
4455         }
4456 
4457         mutex_destroy(&ipst->ips_capab_taskq_lock);
4458         cv_destroy(&ipst->ips_capab_taskq_cv);
4459 
4460         rw_destroy(&ipst->ips_srcid_lock);
4461 
4462         mutex_destroy(&ipst->ips_ip_mi_lock);
4463         rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4464 
4465         mutex_destroy(&ipst->ips_igmp_timer_lock);
4466         mutex_destroy(&ipst->ips_mld_timer_lock);
4467         mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4468         mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4469         mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4470         rw_destroy(&ipst->ips_ill_g_lock);
4471 
4472         kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4473         ipst->ips_phyint_g_list = NULL;
4474         kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4475         ipst->ips_ill_g_heads = NULL;
4476 
4477         ldi_ident_release(ipst->ips_ldi_ident);
4478         kmem_free(ipst, sizeof (*ipst));
4479 }
4480 
4481 /*
4482  * This function is called from the TSD destructor, and is used to debug
4483  * reference count issues in IP. See block comment in <inet/ip_if.h> for
4484  * details.
4485  */
4486 static void
4487 ip_thread_exit(void *phash)
4488 {
4489         th_hash_t *thh = phash;
4490 
4491         rw_enter(&ip_thread_rwlock, RW_WRITER);
4492         list_remove(&ip_thread_list, thh);
4493         rw_exit(&ip_thread_rwlock);
4494         mod_hash_destroy_hash(thh->thh_hash);
4495         kmem_free(thh, sizeof (*thh));
4496 }
4497 
4498 /*
4499  * Called when the IP kernel module is loaded into the kernel
4500  */
4501 void
4502 ip_ddi_init(void)
4503 {
4504         ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4505 
4506         /*
4507          * For IP and TCP the minor numbers should start from 2 since we have 4
4508          * initial devices: ip, ip6, tcp, tcp6.
4509          */
4510         /*
4511          * If this is a 64-bit kernel, then create two separate arenas -
4512          * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4513          * other for socket apps in the range 2^^18 through 2^^32-1.
4514          */
4515         ip_minor_arena_la = NULL;
4516         ip_minor_arena_sa = NULL;
4517 #if defined(_LP64)
4518         if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4519             INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4520                 cmn_err(CE_PANIC,
4521                     "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4522         }
4523         if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4524             MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4525                 cmn_err(CE_PANIC,
4526                     "ip_ddi_init: ip_minor_arena_la creation failed\n");
4527         }
4528 #else
4529         if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4530             INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4531                 cmn_err(CE_PANIC,
4532                     "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4533         }
4534 #endif
4535         ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4536 
4537         ipcl_g_init();
4538         ip_ire_g_init();
4539         ip_net_g_init();
4540 
4541 #ifdef DEBUG
4542         tsd_create(&ip_thread_data, ip_thread_exit);
4543         rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4544         list_create(&ip_thread_list, sizeof (th_hash_t),
4545             offsetof(th_hash_t, thh_link));
4546 #endif
4547         ipsec_policy_g_init();
4548         tcp_ddi_g_init();
4549         sctp_ddi_g_init();
4550         dce_g_init();
4551 
4552         /*
4553          * We want to be informed each time a stack is created or
4554          * destroyed in the kernel, so we can maintain the
4555          * set of udp_stack_t's.
4556          */
4557         netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4558             ip_stack_fini);
4559 
4560         tnet_init();
4561 
4562         udp_ddi_g_init();
4563         rts_ddi_g_init();
4564         icmp_ddi_g_init();
4565         ilb_ddi_g_init();
4566 
4567         /* This needs to be called after all transports are initialized. */
4568         mutex_enter(&cpu_lock);
4569         register_cpu_setup_func(ip_tp_cpu_update, NULL);
4570         mutex_exit(&cpu_lock);
4571 }
4572 
4573 /*
4574  * Initialize the IP stack instance.
4575  */
4576 static void *
4577 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4578 {
4579         ip_stack_t      *ipst;
4580         size_t          arrsz;
4581         major_t         major;
4582 
4583 #ifdef NS_DEBUG
4584         printf("ip_stack_init(stack %d)\n", stackid);
4585 #endif
4586 
4587         ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4588         ipst->ips_netstack = ns;
4589 
4590         ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4591             KM_SLEEP);
4592         ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4593             KM_SLEEP);
4594         ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4595         ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4596         mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4597         mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4598 
4599         mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4600         ipst->ips_igmp_deferred_next = INFINITY;
4601         mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4602         ipst->ips_mld_deferred_next = INFINITY;
4603         mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4604         mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4605         mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4606         mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4607         rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4608         rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4609 
4610         ipcl_init(ipst);
4611         ip_ire_init(ipst);
4612         ip6_asp_init(ipst);
4613         ipif_init(ipst);
4614         conn_drain_init(ipst);
4615         ip_mrouter_stack_init(ipst);
4616         dce_stack_init(ipst);
4617 
4618         ipst->ips_ip_multirt_log_interval = 1000;
4619 
4620         ipst->ips_ill_index = 1;
4621 
4622         ipst->ips_saved_ip_forwarding = -1;
4623         ipst->ips_reg_vif_num = ALL_VIFS;    /* Index to Register vif */
4624 
4625         arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4626         ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4627         bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4628 
4629         ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4630         ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4631         ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4632         ipst->ips_ip6_kstat =
4633             ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4634 
4635         ipst->ips_ip_src_id = 1;
4636         rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4637 
4638         ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4639 
4640         ip_net_init(ipst, ns);
4641         ipv4_hook_init(ipst);
4642         ipv6_hook_init(ipst);
4643         arp_hook_init(ipst);
4644         ipmp_init(ipst);
4645         ipobs_init(ipst);
4646 
4647         /*
4648          * Create the taskq dispatcher thread and initialize related stuff.
4649          */
4650         ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4651             ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4652         mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4653         cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4654 
4655         major = mod_name_to_major(INET_NAME);
4656         (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4657         return (ipst);
4658 }
4659 
4660 /*
4661  * Allocate and initialize a DLPI template of the specified length.  (May be
4662  * called as writer.)
4663  */
4664 mblk_t *
4665 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4666 {
4667         mblk_t  *mp;
4668 
4669         mp = allocb(len, BPRI_MED);
4670         if (!mp)
4671                 return (NULL);
4672 
4673         /*
4674          * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4675          * of which we don't seem to use) are sent with M_PCPROTO, and
4676          * that other DLPI are M_PROTO.
4677          */
4678         if (prim == DL_INFO_REQ) {
4679                 mp->b_datap->db_type = M_PCPROTO;
4680         } else {
4681                 mp->b_datap->db_type = M_PROTO;
4682         }
4683 
4684         mp->b_wptr = mp->b_rptr + len;
4685         bzero(mp->b_rptr, len);
4686         ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4687         return (mp);
4688 }
4689 
4690 /*
4691  * Allocate and initialize a DLPI notification.  (May be called as writer.)
4692  */
4693 mblk_t *
4694 ip_dlnotify_alloc(uint_t notification, uint_t data)
4695 {
4696         dl_notify_ind_t *notifyp;
4697         mblk_t          *mp;
4698 
4699         if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4700                 return (NULL);
4701 
4702         notifyp = (dl_notify_ind_t *)mp->b_rptr;
4703         notifyp->dl_notification = notification;
4704         notifyp->dl_data = data;
4705         return (mp);
4706 }
4707 
4708 mblk_t *
4709 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4710 {
4711         dl_notify_ind_t *notifyp;
4712         mblk_t          *mp;
4713 
4714         if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4715                 return (NULL);
4716 
4717         notifyp = (dl_notify_ind_t *)mp->b_rptr;
4718         notifyp->dl_notification = notification;
4719         notifyp->dl_data1 = data1;
4720         notifyp->dl_data2 = data2;
4721         return (mp);
4722 }
4723 
4724 /*
4725  * Debug formatting routine.  Returns a character string representation of the
4726  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
4727  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4728  *
4729  * Once the ndd table-printing interfaces are removed, this can be changed to
4730  * standard dotted-decimal form.
4731  */
4732 char *
4733 ip_dot_addr(ipaddr_t addr, char *buf)
4734 {
4735         uint8_t *ap = (uint8_t *)&addr;
4736 
4737         (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4738             ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4739         return (buf);
4740 }
4741 
4742 /*
4743  * Write the given MAC address as a printable string in the usual colon-
4744  * separated format.
4745  */
4746 const char *
4747 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4748 {
4749         char *bp;
4750 
4751         if (alen == 0 || buflen < 4)
4752                 return ("?");
4753         bp = buf;
4754         for (;;) {
4755                 /*
4756                  * If there are more MAC address bytes available, but we won't
4757                  * have any room to print them, then add "..." to the string
4758                  * instead.  See below for the 'magic number' explanation.
4759                  */
4760                 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4761                         (void) strcpy(bp, "...");
4762                         break;
4763                 }
4764                 (void) sprintf(bp, "%02x", *addr++);
4765                 bp += 2;
4766                 if (--alen == 0)
4767                         break;
4768                 *bp++ = ':';
4769                 buflen -= 3;
4770                 /*
4771                  * At this point, based on the first 'if' statement above,
4772                  * either alen == 1 and buflen >= 3, or alen > 1 and
4773                  * buflen >= 4.  The first case leaves room for the final "xx"
4774                  * number and trailing NUL byte.  The second leaves room for at
4775                  * least "...".  Thus the apparently 'magic' numbers chosen for
4776                  * that statement.
4777                  */
4778         }
4779         return (buf);
4780 }
4781 
4782 /*
4783  * Called when it is conceptually a ULP that would sent the packet
4784  * e.g., port unreachable and protocol unreachable. Check that the packet
4785  * would have passed the IPsec global policy before sending the error.
4786  *
4787  * Send an ICMP error after patching up the packet appropriately.
4788  * Uses ip_drop_input and bumps the appropriate MIB.
4789  */
4790 void
4791 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4792     ip_recv_attr_t *ira)
4793 {
4794         ipha_t          *ipha;
4795         boolean_t       secure;
4796         ill_t           *ill = ira->ira_ill;
4797         ip_stack_t      *ipst = ill->ill_ipst;
4798         netstack_t      *ns = ipst->ips_netstack;
4799         ipsec_stack_t   *ipss = ns->netstack_ipsec;
4800 
4801         secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4802 
4803         /*
4804          * We are generating an icmp error for some inbound packet.
4805          * Called from all ip_fanout_(udp, tcp, proto) functions.
4806          * Before we generate an error, check with global policy
4807          * to see whether this is allowed to enter the system. As
4808          * there is no "conn", we are checking with global policy.
4809          */
4810         ipha = (ipha_t *)mp->b_rptr;
4811         if (secure || ipss->ipsec_inbound_v4_policy_present) {
4812                 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4813                 if (mp == NULL)
4814                         return;
4815         }
4816 
4817         /* We never send errors for protocols that we do implement */
4818         if (ira->ira_protocol == IPPROTO_ICMP ||
4819             ira->ira_protocol == IPPROTO_IGMP) {
4820                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4821                 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4822                 freemsg(mp);
4823                 return;
4824         }
4825         /*
4826          * Have to correct checksum since
4827          * the packet might have been
4828          * fragmented and the reassembly code in ip_rput
4829          * does not restore the IP checksum.
4830          */
4831         ipha->ipha_hdr_checksum = 0;
4832         ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4833 
4834         switch (icmp_type) {
4835         case ICMP_DEST_UNREACHABLE:
4836                 switch (icmp_code) {
4837                 case ICMP_PROTOCOL_UNREACHABLE:
4838                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4839                         ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4840                         break;
4841                 case ICMP_PORT_UNREACHABLE:
4842                         BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4843                         ip_drop_input("ipIfStatsNoPorts", mp, ill);
4844                         break;
4845                 }
4846 
4847                 icmp_unreachable(mp, icmp_code, ira);
4848                 break;
4849         default:
4850 #ifdef DEBUG
4851                 panic("ip_fanout_send_icmp_v4: wrong type");
4852                 /*NOTREACHED*/
4853 #else
4854                 freemsg(mp);
4855                 break;
4856 #endif
4857         }
4858 }
4859 
4860 /*
4861  * Used to send an ICMP error message when a packet is received for
4862  * a protocol that is not supported. The mblk passed as argument
4863  * is consumed by this function.
4864  */
4865 void
4866 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4867 {
4868         ipha_t          *ipha;
4869 
4870         ipha = (ipha_t *)mp->b_rptr;
4871         if (ira->ira_flags & IRAF_IS_IPV4) {
4872                 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4873                 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4874                     ICMP_PROTOCOL_UNREACHABLE, ira);
4875         } else {
4876                 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4877                 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4878                     ICMP6_PARAMPROB_NEXTHEADER, ira);
4879         }
4880 }
4881 
4882 /*
4883  * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4884  * Handles IPv4 and IPv6.
4885  * We are responsible for disposing of mp, such as by freemsg() or putnext()
4886  * Caller is responsible for dropping references to the conn.
4887  */
4888 void
4889 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4890     ip_recv_attr_t *ira)
4891 {
4892         ill_t           *ill = ira->ira_ill;
4893         ip_stack_t      *ipst = ill->ill_ipst;
4894         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
4895         boolean_t       secure;
4896         uint_t          protocol = ira->ira_protocol;
4897         iaflags_t       iraflags = ira->ira_flags;
4898         queue_t         *rq;
4899 
4900         secure = iraflags & IRAF_IPSEC_SECURE;
4901 
4902         rq = connp->conn_rq;
4903         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4904                 switch (protocol) {
4905                 case IPPROTO_ICMPV6:
4906                         BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4907                         break;
4908                 case IPPROTO_ICMP:
4909                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4910                         break;
4911                 default:
4912                         BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4913                         break;
4914                 }
4915                 freemsg(mp);
4916                 return;
4917         }
4918 
4919         ASSERT(!(IPCL_IS_IPTUN(connp)));
4920 
4921         if (((iraflags & IRAF_IS_IPV4) ?
4922             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4923             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4924             secure) {
4925                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
4926                     ip6h, ira);
4927                 if (mp == NULL) {
4928                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4929                         /* Note that mp is NULL */
4930                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
4931                         return;
4932                 }
4933         }
4934 
4935         if (iraflags & IRAF_ICMP_ERROR) {
4936                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
4937         } else {
4938                 ill_t *rill = ira->ira_rill;
4939 
4940                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4941                 ira->ira_ill = ira->ira_rill = NULL;
4942                 /* Send it upstream */
4943                 (connp->conn_recv)(connp, mp, NULL, ira);
4944                 ira->ira_ill = ill;
4945                 ira->ira_rill = rill;
4946         }
4947 }
4948 
4949 /*
4950  * Handle protocols with which IP is less intimate.  There
4951  * can be more than one stream bound to a particular
4952  * protocol.  When this is the case, normally each one gets a copy
4953  * of any incoming packets.
4954  *
4955  * IPsec NOTE :
4956  *
4957  * Don't allow a secure packet going up a non-secure connection.
4958  * We don't allow this because
4959  *
4960  * 1) Reply might go out in clear which will be dropped at
4961  *    the sending side.
4962  * 2) If the reply goes out in clear it will give the
4963  *    adversary enough information for getting the key in
4964  *    most of the cases.
4965  *
4966  * Moreover getting a secure packet when we expect clear
4967  * implies that SA's were added without checking for
4968  * policy on both ends. This should not happen once ISAKMP
4969  * is used to negotiate SAs as SAs will be added only after
4970  * verifying the policy.
4971  *
4972  * Zones notes:
4973  * Earlier in ip_input on a system with multiple shared-IP zones we
4974  * duplicate the multicast and broadcast packets and send them up
4975  * with each explicit zoneid that exists on that ill.
4976  * This means that here we can match the zoneid with SO_ALLZONES being special.
4977  */
4978 void
4979 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
4980 {
4981         mblk_t          *mp1;
4982         ipaddr_t        laddr;
4983         conn_t          *connp, *first_connp, *next_connp;
4984         connf_t         *connfp;
4985         ill_t           *ill = ira->ira_ill;
4986         ip_stack_t      *ipst = ill->ill_ipst;
4987 
4988         laddr = ipha->ipha_dst;
4989 
4990         connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
4991         mutex_enter(&connfp->connf_lock);
4992         connp = connfp->connf_head;
4993         for (connp = connfp->connf_head; connp != NULL;
4994             connp = connp->conn_next) {
4995                 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
4996                 if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
4997                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
4998                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
4999                         break;
5000                 }
5001         }
5002 
5003         if (connp == NULL) {
5004                 /*
5005                  * No one bound to these addresses.  Is
5006                  * there a client that wants all
5007                  * unclaimed datagrams?
5008                  */
5009                 mutex_exit(&connfp->connf_lock);
5010                 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5011                     ICMP_PROTOCOL_UNREACHABLE, ira);
5012                 return;
5013         }
5014 
5015         ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5016 
5017         CONN_INC_REF(connp);
5018         first_connp = connp;
5019         connp = connp->conn_next;
5020 
5021         for (;;) {
5022                 while (connp != NULL) {
5023                         /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5024                         if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5025                             (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5026                             tsol_receive_local(mp, &laddr, IPV4_VERSION,
5027                             ira, connp)))
5028                                 break;
5029                         connp = connp->conn_next;
5030                 }
5031 
5032                 if (connp == NULL) {
5033                         /* No more interested clients */
5034                         connp = first_connp;
5035                         break;
5036                 }
5037                 if (((mp1 = dupmsg(mp)) == NULL) &&
5038                     ((mp1 = copymsg(mp)) == NULL)) {
5039                         /* Memory allocation failed */
5040                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5041                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
5042                         connp = first_connp;
5043                         break;
5044                 }
5045 
5046                 CONN_INC_REF(connp);
5047                 mutex_exit(&connfp->connf_lock);
5048 
5049                 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5050                     ira);
5051 
5052                 mutex_enter(&connfp->connf_lock);
5053                 /* Follow the next pointer before releasing the conn. */
5054                 next_connp = connp->conn_next;
5055                 CONN_DEC_REF(connp);
5056                 connp = next_connp;
5057         }
5058 
5059         /* Last one.  Send it upstream. */
5060         mutex_exit(&connfp->connf_lock);
5061 
5062         ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5063 
5064         CONN_DEC_REF(connp);
5065 }
5066 
5067 /*
5068  * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5069  * pass it along to ESP if the SPI is non-zero.  Returns the mblk if the mblk
5070  * is not consumed.
5071  *
5072  * One of three things can happen, all of which affect the passed-in mblk:
5073  *
5074  * 1.) The packet is stock UDP and gets its zero-SPI stripped.  Return mblk..
5075  *
5076  * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5077  *     ESP packet, and is passed along to ESP for consumption.  Return NULL.
5078  *
5079  * 3.) The packet is an ESP-in-UDP Keepalive.  Drop it and return NULL.
5080  */
5081 mblk_t *
5082 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5083 {
5084         int shift, plen, iph_len;
5085         ipha_t *ipha;
5086         udpha_t *udpha;
5087         uint32_t *spi;
5088         uint32_t esp_ports;
5089         uint8_t *orptr;
5090         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
5091         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
5092 
5093         ipha = (ipha_t *)mp->b_rptr;
5094         iph_len = ira->ira_ip_hdr_length;
5095         plen = ira->ira_pktlen;
5096 
5097         if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5098                 /*
5099                  * Most likely a keepalive for the benefit of an intervening
5100                  * NAT.  These aren't for us, per se, so drop it.
5101                  *
5102                  * RFC 3947/8 doesn't say for sure what to do for 2-3
5103                  * byte packets (keepalives are 1-byte), but we'll drop them
5104                  * also.
5105                  */
5106                 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5107                     DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5108                 return (NULL);
5109         }
5110 
5111         if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5112                 /* might as well pull it all up - it might be ESP. */
5113                 if (!pullupmsg(mp, -1)) {
5114                         ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5115                             DROPPER(ipss, ipds_esp_nomem),
5116                             &ipss->ipsec_dropper);
5117                         return (NULL);
5118                 }
5119 
5120                 ipha = (ipha_t *)mp->b_rptr;
5121         }
5122         spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5123         if (*spi == 0) {
5124                 /* UDP packet - remove 0-spi. */
5125                 shift = sizeof (uint32_t);
5126         } else {
5127                 /* ESP-in-UDP packet - reduce to ESP. */
5128                 ipha->ipha_protocol = IPPROTO_ESP;
5129                 shift = sizeof (udpha_t);
5130         }
5131 
5132         /* Fix IP header */
5133         ira->ira_pktlen = (plen - shift);
5134         ipha->ipha_length = htons(ira->ira_pktlen);
5135         ipha->ipha_hdr_checksum = 0;
5136 
5137         orptr = mp->b_rptr;
5138         mp->b_rptr += shift;
5139 
5140         udpha = (udpha_t *)(orptr + iph_len);
5141         if (*spi == 0) {
5142                 ASSERT((uint8_t *)ipha == orptr);
5143                 udpha->uha_length = htons(plen - shift - iph_len);
5144                 iph_len += sizeof (udpha_t);    /* For the call to ovbcopy(). */
5145                 esp_ports = 0;
5146         } else {
5147                 esp_ports = *((uint32_t *)udpha);
5148                 ASSERT(esp_ports != 0);
5149         }
5150         ovbcopy(orptr, orptr + shift, iph_len);
5151         if (esp_ports != 0) /* Punt up for ESP processing. */ {
5152                 ipha = (ipha_t *)(orptr + shift);
5153 
5154                 ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5155                 ira->ira_esp_udp_ports = esp_ports;
5156                 ip_fanout_v4(mp, ipha, ira);
5157                 return (NULL);
5158         }
5159         return (mp);
5160 }
5161 
5162 /*
5163  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5164  * Handles IPv4 and IPv6.
5165  * We are responsible for disposing of mp, such as by freemsg() or putnext()
5166  * Caller is responsible for dropping references to the conn.
5167  */
5168 void
5169 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5170     ip_recv_attr_t *ira)
5171 {
5172         ill_t           *ill = ira->ira_ill;
5173         ip_stack_t      *ipst = ill->ill_ipst;
5174         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
5175         boolean_t       secure;
5176         iaflags_t       iraflags = ira->ira_flags;
5177 
5178         secure = iraflags & IRAF_IPSEC_SECURE;
5179 
5180         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5181             !canputnext(connp->conn_rq)) {
5182                 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5183                 freemsg(mp);
5184                 return;
5185         }
5186 
5187         if (((iraflags & IRAF_IS_IPV4) ?
5188             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5189             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5190             secure) {
5191                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
5192                     ip6h, ira);
5193                 if (mp == NULL) {
5194                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5195                         /* Note that mp is NULL */
5196                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
5197                         return;
5198                 }
5199         }
5200 
5201         /*
5202          * Since this code is not used for UDP unicast we don't need a NAT_T
5203          * check. Only ip_fanout_v4 has that check.
5204          */
5205         if (ira->ira_flags & IRAF_ICMP_ERROR) {
5206                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
5207         } else {
5208                 ill_t *rill = ira->ira_rill;
5209 
5210                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5211                 ira->ira_ill = ira->ira_rill = NULL;
5212                 /* Send it upstream */
5213                 (connp->conn_recv)(connp, mp, NULL, ira);
5214                 ira->ira_ill = ill;
5215                 ira->ira_rill = rill;
5216         }
5217 }
5218 
5219 /*
5220  * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5221  * (Unicast fanout is handled in ip_input_v4.)
5222  *
5223  * If SO_REUSEADDR is set all multicast and broadcast packets
5224  * will be delivered to all conns bound to the same port.
5225  *
5226  * If there is at least one matching AF_INET receiver, then we will
5227  * ignore any AF_INET6 receivers.
5228  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5229  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5230  * packets.
5231  *
5232  * Zones notes:
5233  * Earlier in ip_input on a system with multiple shared-IP zones we
5234  * duplicate the multicast and broadcast packets and send them up
5235  * with each explicit zoneid that exists on that ill.
5236  * This means that here we can match the zoneid with SO_ALLZONES being special.
5237  */
5238 void
5239 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5240     ip_recv_attr_t *ira)
5241 {
5242         ipaddr_t        laddr;
5243         in6_addr_t      v6faddr;
5244         conn_t          *connp;
5245         connf_t         *connfp;
5246         ipaddr_t        faddr;
5247         ill_t           *ill = ira->ira_ill;
5248         ip_stack_t      *ipst = ill->ill_ipst;
5249 
5250         ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5251 
5252         laddr = ipha->ipha_dst;
5253         faddr = ipha->ipha_src;
5254 
5255         connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5256         mutex_enter(&connfp->connf_lock);
5257         connp = connfp->connf_head;
5258 
5259         /*
5260          * If SO_REUSEADDR has been set on the first we send the
5261          * packet to all clients that have joined the group and
5262          * match the port.
5263          */
5264         while (connp != NULL) {
5265                 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5266                     conn_wantpacket(connp, ira, ipha) &&
5267                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5268                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5269                         break;
5270                 connp = connp->conn_next;
5271         }
5272 
5273         if (connp == NULL)
5274                 goto notfound;
5275 
5276         CONN_INC_REF(connp);
5277 
5278         if (connp->conn_reuseaddr) {
5279                 conn_t          *first_connp = connp;
5280                 conn_t          *next_connp;
5281                 mblk_t          *mp1;
5282 
5283                 connp = connp->conn_next;
5284                 for (;;) {
5285                         while (connp != NULL) {
5286                                 if (IPCL_UDP_MATCH(connp, lport, laddr,
5287                                     fport, faddr) &&
5288                                     conn_wantpacket(connp, ira, ipha) &&
5289                                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5290                                     tsol_receive_local(mp, &laddr, IPV4_VERSION,
5291                                     ira, connp)))
5292                                         break;
5293                                 connp = connp->conn_next;
5294                         }
5295                         if (connp == NULL) {
5296                                 /* No more interested clients */
5297                                 connp = first_connp;
5298                                 break;
5299                         }
5300                         if (((mp1 = dupmsg(mp)) == NULL) &&
5301                             ((mp1 = copymsg(mp)) == NULL)) {
5302                                 /* Memory allocation failed */
5303                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5304                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5305                                 connp = first_connp;
5306                                 break;
5307                         }
5308                         CONN_INC_REF(connp);
5309                         mutex_exit(&connfp->connf_lock);
5310 
5311                         IP_STAT(ipst, ip_udp_fanmb);
5312                         ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5313                             NULL, ira);
5314                         mutex_enter(&connfp->connf_lock);
5315                         /* Follow the next pointer before releasing the conn */
5316                         next_connp = connp->conn_next;
5317                         CONN_DEC_REF(connp);
5318                         connp = next_connp;
5319                 }
5320         }
5321 
5322         /* Last one.  Send it upstream. */
5323         mutex_exit(&connfp->connf_lock);
5324         IP_STAT(ipst, ip_udp_fanmb);
5325         ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5326         CONN_DEC_REF(connp);
5327         return;
5328 
5329 notfound:
5330         mutex_exit(&connfp->connf_lock);
5331         /*
5332          * IPv6 endpoints bound to multicast IPv4-mapped addresses
5333          * have already been matched above, since they live in the IPv4
5334          * fanout tables. This implies we only need to
5335          * check for IPv6 in6addr_any endpoints here.
5336          * Thus we compare using ipv6_all_zeros instead of the destination
5337          * address, except for the multicast group membership lookup which
5338          * uses the IPv4 destination.
5339          */
5340         IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5341         connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5342         mutex_enter(&connfp->connf_lock);
5343         connp = connfp->connf_head;
5344         /*
5345          * IPv4 multicast packet being delivered to an AF_INET6
5346          * in6addr_any endpoint.
5347          * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5348          * and not conn_wantpacket_v6() since any multicast membership is
5349          * for an IPv4-mapped multicast address.
5350          */
5351         while (connp != NULL) {
5352                 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5353                     fport, v6faddr) &&
5354                     conn_wantpacket(connp, ira, ipha) &&
5355                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5356                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5357                         break;
5358                 connp = connp->conn_next;
5359         }
5360 
5361         if (connp == NULL) {
5362                 /*
5363                  * No one bound to this port.  Is
5364                  * there a client that wants all
5365                  * unclaimed datagrams?
5366                  */
5367                 mutex_exit(&connfp->connf_lock);
5368 
5369                 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5370                     NULL) {
5371                         ASSERT(ira->ira_protocol == IPPROTO_UDP);
5372                         ip_fanout_proto_v4(mp, ipha, ira);
5373                 } else {
5374                         /*
5375                          * We used to attempt to send an icmp error here, but
5376                          * since this is known to be a multicast packet
5377                          * and we don't send icmp errors in response to
5378                          * multicast, just drop the packet and give up sooner.
5379                          */
5380                         BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5381                         freemsg(mp);
5382                 }
5383                 return;
5384         }
5385         ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5386 
5387         /*
5388          * If SO_REUSEADDR has been set on the first we send the
5389          * packet to all clients that have joined the group and
5390          * match the port.
5391          */
5392         if (connp->conn_reuseaddr) {
5393                 conn_t          *first_connp = connp;
5394                 conn_t          *next_connp;
5395                 mblk_t          *mp1;
5396 
5397                 CONN_INC_REF(connp);
5398                 connp = connp->conn_next;
5399                 for (;;) {
5400                         while (connp != NULL) {
5401                                 if (IPCL_UDP_MATCH_V6(connp, lport,
5402                                     ipv6_all_zeros, fport, v6faddr) &&
5403                                     conn_wantpacket(connp, ira, ipha) &&
5404                                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5405                                     tsol_receive_local(mp, &laddr, IPV4_VERSION,
5406                                     ira, connp)))
5407                                         break;
5408                                 connp = connp->conn_next;
5409                         }
5410                         if (connp == NULL) {
5411                                 /* No more interested clients */
5412                                 connp = first_connp;
5413                                 break;
5414                         }
5415                         if (((mp1 = dupmsg(mp)) == NULL) &&
5416                             ((mp1 = copymsg(mp)) == NULL)) {
5417                                 /* Memory allocation failed */
5418                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5419                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5420                                 connp = first_connp;
5421                                 break;
5422                         }
5423                         CONN_INC_REF(connp);
5424                         mutex_exit(&connfp->connf_lock);
5425 
5426                         IP_STAT(ipst, ip_udp_fanmb);
5427                         ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5428                             NULL, ira);
5429                         mutex_enter(&connfp->connf_lock);
5430                         /* Follow the next pointer before releasing the conn */
5431                         next_connp = connp->conn_next;
5432                         CONN_DEC_REF(connp);
5433                         connp = next_connp;
5434                 }
5435         }
5436 
5437         /* Last one.  Send it upstream. */
5438         mutex_exit(&connfp->connf_lock);
5439         IP_STAT(ipst, ip_udp_fanmb);
5440         ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5441         CONN_DEC_REF(connp);
5442 }
5443 
5444 /*
5445  * Split an incoming packet's IPv4 options into the label and the other options.
5446  * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5447  * clearing out any leftover label or options.
5448  * Otherwise it just makes ipp point into the packet.
5449  *
5450  * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5451  */
5452 int
5453 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5454 {
5455         uchar_t         *opt;
5456         uint32_t        totallen;
5457         uint32_t        optval;
5458         uint32_t        optlen;
5459 
5460         ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5461         ipp->ipp_hoplimit = ipha->ipha_ttl;
5462         ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5463         IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5464 
5465         /*
5466          * Get length (in 4 byte octets) of IP header options.
5467          */
5468         totallen = ipha->ipha_version_and_hdr_length -
5469             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5470 
5471         if (totallen == 0) {
5472                 if (!allocate)
5473                         return (0);
5474 
5475                 /* Clear out anything from a previous packet */
5476                 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5477                         kmem_free(ipp->ipp_ipv4_options,
5478                             ipp->ipp_ipv4_options_len);
5479                         ipp->ipp_ipv4_options = NULL;
5480                         ipp->ipp_ipv4_options_len = 0;
5481                         ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5482                 }
5483                 if (ipp->ipp_fields & IPPF_LABEL_V4) {
5484                         kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5485                         ipp->ipp_label_v4 = NULL;
5486                         ipp->ipp_label_len_v4 = 0;
5487                         ipp->ipp_fields &= ~IPPF_LABEL_V4;
5488                 }
5489                 return (0);
5490         }
5491 
5492         totallen <<= 2;
5493         opt = (uchar_t *)&ipha[1];
5494         if (!is_system_labeled()) {
5495 
5496         copyall:
5497                 if (!allocate) {
5498                         if (totallen != 0) {
5499                                 ipp->ipp_ipv4_options = opt;
5500                                 ipp->ipp_ipv4_options_len = totallen;
5501                                 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5502                         }
5503                         return (0);
5504                 }
5505                 /* Just copy all of options */
5506                 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5507                         if (totallen == ipp->ipp_ipv4_options_len) {
5508                                 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5509                                 return (0);
5510                         }
5511                         kmem_free(ipp->ipp_ipv4_options,
5512                             ipp->ipp_ipv4_options_len);
5513                         ipp->ipp_ipv4_options = NULL;
5514                         ipp->ipp_ipv4_options_len = 0;
5515                         ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5516                 }
5517                 if (totallen == 0)
5518                         return (0);
5519 
5520                 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5521                 if (ipp->ipp_ipv4_options == NULL)
5522                         return (ENOMEM);
5523                 ipp->ipp_ipv4_options_len = totallen;
5524                 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5525                 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5526                 return (0);
5527         }
5528 
5529         if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5530                 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5531                 ipp->ipp_label_v4 = NULL;
5532                 ipp->ipp_label_len_v4 = 0;
5533                 ipp->ipp_fields &= ~IPPF_LABEL_V4;
5534         }
5535 
5536         /*
5537          * Search for CIPSO option.
5538          * We assume CIPSO is first in options if it is present.
5539          * If it isn't, then ipp_opt_ipv4_options will not include the options
5540          * prior to the CIPSO option.
5541          */
5542         while (totallen != 0) {
5543                 switch (optval = opt[IPOPT_OPTVAL]) {
5544                 case IPOPT_EOL:
5545                         return (0);
5546                 case IPOPT_NOP:
5547                         optlen = 1;
5548                         break;
5549                 default:
5550                         if (totallen <= IPOPT_OLEN)
5551                                 return (EINVAL);
5552                         optlen = opt[IPOPT_OLEN];
5553                         if (optlen < 2)
5554                                 return (EINVAL);
5555                 }
5556                 if (optlen > totallen)
5557                         return (EINVAL);
5558 
5559                 switch (optval) {
5560                 case IPOPT_COMSEC:
5561                         if (!allocate) {
5562                                 ipp->ipp_label_v4 = opt;
5563                                 ipp->ipp_label_len_v4 = optlen;
5564                                 ipp->ipp_fields |= IPPF_LABEL_V4;
5565                         } else {
5566                                 ipp->ipp_label_v4 = kmem_alloc(optlen,
5567                                     KM_NOSLEEP);
5568                                 if (ipp->ipp_label_v4 == NULL)
5569                                         return (ENOMEM);
5570                                 ipp->ipp_label_len_v4 = optlen;
5571                                 ipp->ipp_fields |= IPPF_LABEL_V4;
5572                                 bcopy(opt, ipp->ipp_label_v4, optlen);
5573                         }
5574                         totallen -= optlen;
5575                         opt += optlen;
5576 
5577                         /* Skip padding bytes until we get to a multiple of 4 */
5578                         while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5579                                 totallen--;
5580                                 opt++;
5581                         }
5582                         /* Remaining as ipp_ipv4_options */
5583                         goto copyall;
5584                 }
5585                 totallen -= optlen;
5586                 opt += optlen;
5587         }
5588         /* No CIPSO found; return everything as ipp_ipv4_options */
5589         totallen = ipha->ipha_version_and_hdr_length -
5590             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5591         totallen <<= 2;
5592         opt = (uchar_t *)&ipha[1];
5593         goto copyall;
5594 }
5595 
5596 /*
5597  * Efficient versions of lookup for an IRE when we only
5598  * match the address.
5599  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5600  * Does not handle multicast addresses.
5601  */
5602 uint_t
5603 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5604 {
5605         ire_t *ire;
5606         uint_t result;
5607 
5608         ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5609         ASSERT(ire != NULL);
5610         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5611                 result = IRE_NOROUTE;
5612         else
5613                 result = ire->ire_type;
5614         ire_refrele(ire);
5615         return (result);
5616 }
5617 
5618 /*
5619  * Efficient versions of lookup for an IRE when we only
5620  * match the address.
5621  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5622  * Does not handle multicast addresses.
5623  */
5624 uint_t
5625 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5626 {
5627         ire_t *ire;
5628         uint_t result;
5629 
5630         ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5631         ASSERT(ire != NULL);
5632         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5633                 result = IRE_NOROUTE;
5634         else
5635                 result = ire->ire_type;
5636         ire_refrele(ire);
5637         return (result);
5638 }
5639 
5640 /*
5641  * Nobody should be sending
5642  * packets up this stream
5643  */
5644 static void
5645 ip_lrput(queue_t *q, mblk_t *mp)
5646 {
5647         switch (mp->b_datap->db_type) {
5648         case M_FLUSH:
5649                 /* Turn around */
5650                 if (*mp->b_rptr & FLUSHW) {
5651                         *mp->b_rptr &= ~FLUSHR;
5652                         qreply(q, mp);
5653                         return;
5654                 }
5655                 break;
5656         }
5657         freemsg(mp);
5658 }
5659 
5660 /* Nobody should be sending packets down this stream */
5661 /* ARGSUSED */
5662 void
5663 ip_lwput(queue_t *q, mblk_t *mp)
5664 {
5665         freemsg(mp);
5666 }
5667 
5668 /*
5669  * Move the first hop in any source route to ipha_dst and remove that part of
5670  * the source route.  Called by other protocols.  Errors in option formatting
5671  * are ignored - will be handled by ip_output_options. Return the final
5672  * destination (either ipha_dst or the last entry in a source route.)
5673  */
5674 ipaddr_t
5675 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5676 {
5677         ipoptp_t        opts;
5678         uchar_t         *opt;
5679         uint8_t         optval;
5680         uint8_t         optlen;
5681         ipaddr_t        dst;
5682         int             i;
5683         ip_stack_t      *ipst = ns->netstack_ip;
5684 
5685         ip2dbg(("ip_massage_options\n"));
5686         dst = ipha->ipha_dst;
5687         for (optval = ipoptp_first(&opts, ipha);
5688             optval != IPOPT_EOL;
5689             optval = ipoptp_next(&opts)) {
5690                 opt = opts.ipoptp_cur;
5691                 switch (optval) {
5692                         uint8_t off;
5693                 case IPOPT_SSRR:
5694                 case IPOPT_LSRR:
5695                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5696                                 ip1dbg(("ip_massage_options: bad src route\n"));
5697                                 break;
5698                         }
5699                         optlen = opts.ipoptp_len;
5700                         off = opt[IPOPT_OFFSET];
5701                         off--;
5702                 redo_srr:
5703                         if (optlen < IP_ADDR_LEN ||
5704                             off > optlen - IP_ADDR_LEN) {
5705                                 /* End of source route */
5706                                 ip1dbg(("ip_massage_options: end of SR\n"));
5707                                 break;
5708                         }
5709                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5710                         ip1dbg(("ip_massage_options: next hop 0x%x\n",
5711                             ntohl(dst)));
5712                         /*
5713                          * Check if our address is present more than
5714                          * once as consecutive hops in source route.
5715                          * XXX verify per-interface ip_forwarding
5716                          * for source route?
5717                          */
5718                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5719                                 off += IP_ADDR_LEN;
5720                                 goto redo_srr;
5721                         }
5722                         if (dst == htonl(INADDR_LOOPBACK)) {
5723                                 ip1dbg(("ip_massage_options: loopback addr in "
5724                                     "source route!\n"));
5725                                 break;
5726                         }
5727                         /*
5728                          * Update ipha_dst to be the first hop and remove the
5729                          * first hop from the source route (by overwriting
5730                          * part of the option with NOP options).
5731                          */
5732                         ipha->ipha_dst = dst;
5733                         /* Put the last entry in dst */
5734                         off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5735                             3;
5736                         bcopy(&opt[off], &dst, IP_ADDR_LEN);
5737 
5738                         ip1dbg(("ip_massage_options: last hop 0x%x\n",
5739                             ntohl(dst)));
5740                         /* Move down and overwrite */
5741                         opt[IP_ADDR_LEN] = opt[0];
5742                         opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5743                         opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5744                         for (i = 0; i < IP_ADDR_LEN; i++)
5745                                 opt[i] = IPOPT_NOP;
5746                         break;
5747                 }
5748         }
5749         return (dst);
5750 }
5751 
5752 /*
5753  * Return the network mask
5754  * associated with the specified address.
5755  */
5756 ipaddr_t
5757 ip_net_mask(ipaddr_t addr)
5758 {
5759         uchar_t *up = (uchar_t *)&addr;
5760         ipaddr_t mask = 0;
5761         uchar_t *maskp = (uchar_t *)&mask;
5762 
5763 #if defined(__i386) || defined(__amd64)
5764 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER
5765 #endif
5766 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
5767         maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5768 #endif
5769         if (CLASSD(addr)) {
5770                 maskp[0] = 0xF0;
5771                 return (mask);
5772         }
5773 
5774         /* We assume Class E default netmask to be 32 */
5775         if (CLASSE(addr))
5776                 return (0xffffffffU);
5777 
5778         if (addr == 0)
5779                 return (0);
5780         maskp[0] = 0xFF;
5781         if ((up[0] & 0x80) == 0)
5782                 return (mask);
5783 
5784         maskp[1] = 0xFF;
5785         if ((up[0] & 0xC0) == 0x80)
5786                 return (mask);
5787 
5788         maskp[2] = 0xFF;
5789         if ((up[0] & 0xE0) == 0xC0)
5790                 return (mask);
5791 
5792         /* Otherwise return no mask */
5793         return ((ipaddr_t)0);
5794 }
5795 
5796 /* Name/Value Table Lookup Routine */
5797 char *
5798 ip_nv_lookup(nv_t *nv, int value)
5799 {
5800         if (!nv)
5801                 return (NULL);
5802         for (; nv->nv_name; nv++) {
5803                 if (nv->nv_value == value)
5804                         return (nv->nv_name);
5805         }
5806         return ("unknown");
5807 }
5808 
5809 static int
5810 ip_wait_for_info_ack(ill_t *ill)
5811 {
5812         int err;
5813 
5814         mutex_enter(&ill->ill_lock);
5815         while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5816                 /*
5817                  * Return value of 0 indicates a pending signal.
5818                  */
5819                 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5820                 if (err == 0) {
5821                         mutex_exit(&ill->ill_lock);
5822                         return (EINTR);
5823                 }
5824         }
5825         mutex_exit(&ill->ill_lock);
5826         /*
5827          * ip_rput_other could have set an error  in ill_error on
5828          * receipt of M_ERROR.
5829          */
5830         return (ill->ill_error);
5831 }
5832 
5833 /*
5834  * This is a module open, i.e. this is a control stream for access
5835  * to a DLPI device.  We allocate an ill_t as the instance data in
5836  * this case.
5837  */
5838 static int
5839 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5840 {
5841         ill_t   *ill;
5842         int     err;
5843         zoneid_t zoneid;
5844         netstack_t *ns;
5845         ip_stack_t *ipst;
5846 
5847         /*
5848          * Prevent unprivileged processes from pushing IP so that
5849          * they can't send raw IP.
5850          */
5851         if (secpolicy_net_rawaccess(credp) != 0)
5852                 return (EPERM);
5853 
5854         ns = netstack_find_by_cred(credp);
5855         ASSERT(ns != NULL);
5856         ipst = ns->netstack_ip;
5857         ASSERT(ipst != NULL);
5858 
5859         /*
5860          * For exclusive stacks we set the zoneid to zero
5861          * to make IP operate as if in the global zone.
5862          */
5863         if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5864                 zoneid = GLOBAL_ZONEID;
5865         else
5866                 zoneid = crgetzoneid(credp);
5867 
5868         ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5869         q->q_ptr = WR(q)->q_ptr = ill;
5870         ill->ill_ipst = ipst;
5871         ill->ill_zoneid = zoneid;
5872 
5873         /*
5874          * ill_init initializes the ill fields and then sends down
5875          * down a DL_INFO_REQ after calling qprocson.
5876          */
5877         err = ill_init(q, ill);
5878 
5879         if (err != 0) {
5880                 mi_free(ill);
5881                 netstack_rele(ipst->ips_netstack);
5882                 q->q_ptr = NULL;
5883                 WR(q)->q_ptr = NULL;
5884                 return (err);
5885         }
5886 
5887         /*
5888          * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5889          *
5890          * ill_init initializes the ipsq marking this thread as
5891          * writer
5892          */
5893         ipsq_exit(ill->ill_phyint->phyint_ipsq);
5894         err = ip_wait_for_info_ack(ill);
5895         if (err == 0)
5896                 ill->ill_credp = credp;
5897         else
5898                 goto fail;
5899 
5900         crhold(credp);
5901 
5902         mutex_enter(&ipst->ips_ip_mi_lock);
5903         err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5904             sflag, credp);
5905         mutex_exit(&ipst->ips_ip_mi_lock);
5906 fail:
5907         if (err) {
5908                 (void) ip_close(q, 0);
5909                 return (err);
5910         }
5911         return (0);
5912 }
5913 
5914 /* For /dev/ip aka AF_INET open */
5915 int
5916 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5917 {
5918         return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5919 }
5920 
5921 /* For /dev/ip6 aka AF_INET6 open */
5922 int
5923 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5924 {
5925         return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5926 }
5927 
5928 /* IP open routine. */
5929 int
5930 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5931     boolean_t isv6)
5932 {
5933         conn_t          *connp;
5934         major_t         maj;
5935         zoneid_t        zoneid;
5936         netstack_t      *ns;
5937         ip_stack_t      *ipst;
5938 
5939         /* Allow reopen. */
5940         if (q->q_ptr != NULL)
5941                 return (0);
5942 
5943         if (sflag & MODOPEN) {
5944                 /* This is a module open */
5945                 return (ip_modopen(q, devp, flag, sflag, credp));
5946         }
5947 
5948         if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5949                 /*
5950                  * Non streams based socket looking for a stream
5951                  * to access IP
5952                  */
5953                 return (ip_helper_stream_setup(q, devp, flag, sflag,
5954                     credp, isv6));
5955         }
5956 
5957         ns = netstack_find_by_cred(credp);
5958         ASSERT(ns != NULL);
5959         ipst = ns->netstack_ip;
5960         ASSERT(ipst != NULL);
5961 
5962         /*
5963          * For exclusive stacks we set the zoneid to zero
5964          * to make IP operate as if in the global zone.
5965          */
5966         if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5967                 zoneid = GLOBAL_ZONEID;
5968         else
5969                 zoneid = crgetzoneid(credp);
5970 
5971         /*
5972          * We are opening as a device. This is an IP client stream, and we
5973          * allocate an conn_t as the instance data.
5974          */
5975         connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
5976 
5977         /*
5978          * ipcl_conn_create did a netstack_hold. Undo the hold that was
5979          * done by netstack_find_by_cred()
5980          */
5981         netstack_rele(ipst->ips_netstack);
5982 
5983         connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
5984         /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
5985         connp->conn_ixa->ixa_zoneid = zoneid;
5986         connp->conn_zoneid = zoneid;
5987 
5988         connp->conn_rq = q;
5989         q->q_ptr = WR(q)->q_ptr = connp;
5990 
5991         /* Minor tells us which /dev entry was opened */
5992         if (isv6) {
5993                 connp->conn_family = AF_INET6;
5994                 connp->conn_ipversion = IPV6_VERSION;
5995                 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
5996                 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
5997         } else {
5998                 connp->conn_family = AF_INET;
5999                 connp->conn_ipversion = IPV4_VERSION;
6000                 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6001         }
6002 
6003         if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6004             ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6005                 connp->conn_minor_arena = ip_minor_arena_la;
6006         } else {
6007                 /*
6008                  * Either minor numbers in the large arena were exhausted
6009                  * or a non socket application is doing the open.
6010                  * Try to allocate from the small arena.
6011                  */
6012                 if ((connp->conn_dev =
6013                     inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6014                         /* CONN_DEC_REF takes care of netstack_rele() */
6015                         q->q_ptr = WR(q)->q_ptr = NULL;
6016                         CONN_DEC_REF(connp);
6017                         return (EBUSY);
6018                 }
6019                 connp->conn_minor_arena = ip_minor_arena_sa;
6020         }
6021 
6022         maj = getemajor(*devp);
6023         *devp = makedevice(maj, (minor_t)connp->conn_dev);
6024 
6025         /*
6026          * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6027          */
6028         connp->conn_cred = credp;
6029         connp->conn_cpid = curproc->p_pid;
6030         /* Cache things in ixa without an extra refhold */
6031         ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6032         connp->conn_ixa->ixa_cred = connp->conn_cred;
6033         connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6034         if (is_system_labeled())
6035                 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6036 
6037         /*
6038          * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6039          */
6040         connp->conn_recv = ip_conn_input;
6041         connp->conn_recvicmp = ip_conn_input_icmp;
6042 
6043         crhold(connp->conn_cred);
6044 
6045         /*
6046          * If the caller has the process-wide flag set, then default to MAC
6047          * exempt mode.  This allows read-down to unlabeled hosts.
6048          */
6049         if (getpflags(NET_MAC_AWARE, credp) != 0)
6050                 connp->conn_mac_mode = CONN_MAC_AWARE;
6051 
6052         connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6053 
6054         connp->conn_rq = q;
6055         connp->conn_wq = WR(q);
6056 
6057         /* Non-zero default values */
6058         connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6059 
6060         /*
6061          * Make the conn globally visible to walkers
6062          */
6063         ASSERT(connp->conn_ref == 1);
6064         mutex_enter(&connp->conn_lock);
6065         connp->conn_state_flags &= ~CONN_INCIPIENT;
6066         mutex_exit(&connp->conn_lock);
6067 
6068         qprocson(q);
6069 
6070         return (0);
6071 }
6072 
6073 /*
6074  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6075  * all of them are copied to the conn_t. If the req is "zero", the policy is
6076  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6077  * fields.
6078  * We keep only the latest setting of the policy and thus policy setting
6079  * is not incremental/cumulative.
6080  *
6081  * Requests to set policies with multiple alternative actions will
6082  * go through a different API.
6083  */
6084 int
6085 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6086 {
6087         uint_t ah_req = 0;
6088         uint_t esp_req = 0;
6089         uint_t se_req = 0;
6090         ipsec_act_t *actp = NULL;
6091         uint_t nact;
6092         ipsec_policy_head_t *ph;
6093         boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6094         int error = 0;
6095         netstack_t      *ns = connp->conn_netstack;
6096         ip_stack_t      *ipst = ns->netstack_ip;
6097         ipsec_stack_t   *ipss = ns->netstack_ipsec;
6098 
6099 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6100 
6101         /*
6102          * The IP_SEC_OPT option does not allow variable length parameters,
6103          * hence a request cannot be NULL.
6104          */
6105         if (req == NULL)
6106                 return (EINVAL);
6107 
6108         ah_req = req->ipsr_ah_req;
6109         esp_req = req->ipsr_esp_req;
6110         se_req = req->ipsr_self_encap_req;
6111 
6112         /* Don't allow setting self-encap without one or more of AH/ESP. */
6113         if (se_req != 0 && esp_req == 0 && ah_req == 0)
6114                 return (EINVAL);
6115 
6116         /*
6117          * Are we dealing with a request to reset the policy (i.e.
6118          * zero requests).
6119          */
6120         is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6121             (esp_req & REQ_MASK) == 0 &&
6122             (se_req & REQ_MASK) == 0);
6123 
6124         if (!is_pol_reset) {
6125                 /*
6126                  * If we couldn't load IPsec, fail with "protocol
6127                  * not supported".
6128                  * IPsec may not have been loaded for a request with zero
6129                  * policies, so we don't fail in this case.
6130                  */
6131                 mutex_enter(&ipss->ipsec_loader_lock);
6132                 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6133                         mutex_exit(&ipss->ipsec_loader_lock);
6134                         return (EPROTONOSUPPORT);
6135                 }
6136                 mutex_exit(&ipss->ipsec_loader_lock);
6137 
6138                 /*
6139                  * Test for valid requests. Invalid algorithms
6140                  * need to be tested by IPsec code because new
6141                  * algorithms can be added dynamically.
6142                  */
6143                 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6144                     (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6145                     (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6146                         return (EINVAL);
6147                 }
6148 
6149                 /*
6150                  * Only privileged users can issue these
6151                  * requests.
6152                  */
6153                 if (((ah_req & IPSEC_PREF_NEVER) ||
6154                     (esp_req & IPSEC_PREF_NEVER) ||
6155                     (se_req & IPSEC_PREF_NEVER)) &&
6156                     secpolicy_ip_config(cr, B_FALSE) != 0) {
6157                         return (EPERM);
6158                 }
6159 
6160                 /*
6161                  * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6162                  * are mutually exclusive.
6163                  */
6164                 if (((ah_req & REQ_MASK) == REQ_MASK) ||
6165                     ((esp_req & REQ_MASK) == REQ_MASK) ||
6166                     ((se_req & REQ_MASK) == REQ_MASK)) {
6167                         /* Both of them are set */
6168                         return (EINVAL);
6169                 }
6170         }
6171 
6172         ASSERT(MUTEX_HELD(&connp->conn_lock));
6173 
6174         /*
6175          * If we have already cached policies in conn_connect(), don't
6176          * let them change now. We cache policies for connections
6177          * whose src,dst [addr, port] is known.
6178          */
6179         if (connp->conn_policy_cached) {
6180                 return (EINVAL);
6181         }
6182 
6183         /*
6184          * We have a zero policies, reset the connection policy if already
6185          * set. This will cause the connection to inherit the
6186          * global policy, if any.
6187          */
6188         if (is_pol_reset) {
6189                 if (connp->conn_policy != NULL) {
6190                         IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6191                         connp->conn_policy = NULL;
6192                 }
6193                 connp->conn_in_enforce_policy = B_FALSE;
6194                 connp->conn_out_enforce_policy = B_FALSE;
6195                 return (0);
6196         }
6197 
6198         ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6199             ipst->ips_netstack);
6200         if (ph == NULL)
6201                 goto enomem;
6202 
6203         ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6204         if (actp == NULL)
6205                 goto enomem;
6206 
6207         /*
6208          * Always insert IPv4 policy entries, since they can also apply to
6209          * ipv6 sockets being used in ipv4-compat mode.
6210          */
6211         if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6212             IPSEC_TYPE_INBOUND, ns))
6213                 goto enomem;
6214         is_pol_inserted = B_TRUE;
6215         if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6216             IPSEC_TYPE_OUTBOUND, ns))
6217                 goto enomem;
6218 
6219         /*
6220          * We're looking at a v6 socket, also insert the v6-specific
6221          * entries.
6222          */
6223         if (connp->conn_family == AF_INET6) {
6224                 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6225                     IPSEC_TYPE_INBOUND, ns))
6226                         goto enomem;
6227                 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6228                     IPSEC_TYPE_OUTBOUND, ns))
6229                         goto enomem;
6230         }
6231 
6232         ipsec_actvec_free(actp, nact);
6233 
6234         /*
6235          * If the requests need security, set enforce_policy.
6236          * If the requests are IPSEC_PREF_NEVER, one should
6237          * still set conn_out_enforce_policy so that ip_set_destination
6238          * marks the ip_xmit_attr_t appropriatly. This is needed so that
6239          * for connections that we don't cache policy in at connect time,
6240          * if global policy matches in ip_output_attach_policy, we
6241          * don't wrongly inherit global policy. Similarly, we need
6242          * to set conn_in_enforce_policy also so that we don't verify
6243          * policy wrongly.
6244          */
6245         if ((ah_req & REQ_MASK) != 0 ||
6246             (esp_req & REQ_MASK) != 0 ||
6247             (se_req & REQ_MASK) != 0) {
6248                 connp->conn_in_enforce_policy = B_TRUE;
6249                 connp->conn_out_enforce_policy = B_TRUE;
6250         }
6251 
6252         return (error);
6253 #undef REQ_MASK
6254 
6255         /*
6256          * Common memory-allocation-failure exit path.
6257          */
6258 enomem:
6259         if (actp != NULL)
6260                 ipsec_actvec_free(actp, nact);
6261         if (is_pol_inserted)
6262                 ipsec_polhead_flush(ph, ns);
6263         return (ENOMEM);
6264 }
6265 
6266 /*
6267  * Set socket options for joining and leaving multicast groups.
6268  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6269  * The caller has already check that the option name is consistent with
6270  * the address family of the socket.
6271  */
6272 int
6273 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6274     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6275 {
6276         int             *i1 = (int *)invalp;
6277         int             error = 0;
6278         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
6279         struct ip_mreq  *v4_mreqp;
6280         struct ipv6_mreq *v6_mreqp;
6281         struct group_req *greqp;
6282         ire_t *ire;
6283         boolean_t done = B_FALSE;
6284         ipaddr_t ifaddr;
6285         in6_addr_t v6group;
6286         uint_t ifindex;
6287         boolean_t mcast_opt = B_TRUE;
6288         mcast_record_t fmode;
6289         int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6290             ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6291 
6292         switch (name) {
6293         case IP_ADD_MEMBERSHIP:
6294         case IPV6_JOIN_GROUP:
6295                 mcast_opt = B_FALSE;
6296                 /* FALLTHRU */
6297         case MCAST_JOIN_GROUP:
6298                 fmode = MODE_IS_EXCLUDE;
6299                 optfn = ip_opt_add_group;
6300                 break;
6301 
6302         case IP_DROP_MEMBERSHIP:
6303         case IPV6_LEAVE_GROUP:
6304                 mcast_opt = B_FALSE;
6305                 /* FALLTHRU */
6306         case MCAST_LEAVE_GROUP:
6307                 fmode = MODE_IS_INCLUDE;
6308                 optfn = ip_opt_delete_group;
6309                 break;
6310         default:
6311                 ASSERT(0);
6312         }
6313 
6314         if (mcast_opt) {
6315                 struct sockaddr_in *sin;
6316                 struct sockaddr_in6 *sin6;
6317 
6318                 greqp = (struct group_req *)i1;
6319                 if (greqp->gr_group.ss_family == AF_INET) {
6320                         sin = (struct sockaddr_in *)&(greqp->gr_group);
6321                         IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6322                 } else {
6323                         if (!inet6)
6324                                 return (EINVAL);        /* Not on INET socket */
6325 
6326                         sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6327                         v6group = sin6->sin6_addr;
6328                 }
6329                 ifaddr = INADDR_ANY;
6330                 ifindex = greqp->gr_interface;
6331         } else if (inet6) {
6332                 v6_mreqp = (struct ipv6_mreq *)i1;
6333                 v6group = v6_mreqp->ipv6mr_multiaddr;
6334                 ifaddr = INADDR_ANY;
6335                 ifindex = v6_mreqp->ipv6mr_interface;
6336         } else {
6337                 v4_mreqp = (struct ip_mreq *)i1;
6338                 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6339                 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6340                 ifindex = 0;
6341         }
6342 
6343         /*
6344          * In the multirouting case, we need to replicate
6345          * the request on all interfaces that will take part
6346          * in replication.  We do so because multirouting is
6347          * reflective, thus we will probably receive multi-
6348          * casts on those interfaces.
6349          * The ip_multirt_apply_membership() succeeds if
6350          * the operation succeeds on at least one interface.
6351          */
6352         if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6353                 ipaddr_t group;
6354 
6355                 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6356 
6357                 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6358                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6359                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6360         } else {
6361                 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6362                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6363                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6364         }
6365         if (ire != NULL) {
6366                 if (ire->ire_flags & RTF_MULTIRT) {
6367                         error = ip_multirt_apply_membership(optfn, ire, connp,
6368                             checkonly, &v6group, fmode, &ipv6_all_zeros);
6369                         done = B_TRUE;
6370                 }
6371                 ire_refrele(ire);
6372         }
6373 
6374         if (!done) {
6375                 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6376                     fmode, &ipv6_all_zeros);
6377         }
6378         return (error);
6379 }
6380 
6381 /*
6382  * Set socket options for joining and leaving multicast groups
6383  * for specific sources.
6384  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6385  * The caller has already check that the option name is consistent with
6386  * the address family of the socket.
6387  */
6388 int
6389 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6390     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6391 {
6392         int             *i1 = (int *)invalp;
6393         int             error = 0;
6394         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
6395         struct ip_mreq_source *imreqp;
6396         struct group_source_req *gsreqp;
6397         in6_addr_t v6group, v6src;
6398         uint32_t ifindex;
6399         ipaddr_t ifaddr;
6400         boolean_t mcast_opt = B_TRUE;
6401         mcast_record_t fmode;
6402         ire_t *ire;
6403         boolean_t done = B_FALSE;
6404         int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6405             ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6406 
6407         switch (name) {
6408         case IP_BLOCK_SOURCE:
6409                 mcast_opt = B_FALSE;
6410                 /* FALLTHRU */
6411         case MCAST_BLOCK_SOURCE:
6412                 fmode = MODE_IS_EXCLUDE;
6413                 optfn = ip_opt_add_group;
6414                 break;
6415 
6416         case IP_UNBLOCK_SOURCE:
6417                 mcast_opt = B_FALSE;
6418                 /* FALLTHRU */
6419         case MCAST_UNBLOCK_SOURCE:
6420                 fmode = MODE_IS_EXCLUDE;
6421                 optfn = ip_opt_delete_group;
6422                 break;
6423 
6424         case IP_ADD_SOURCE_MEMBERSHIP:
6425                 mcast_opt = B_FALSE;
6426                 /* FALLTHRU */
6427         case MCAST_JOIN_SOURCE_GROUP:
6428                 fmode = MODE_IS_INCLUDE;
6429                 optfn = ip_opt_add_group;
6430                 break;
6431 
6432         case IP_DROP_SOURCE_MEMBERSHIP:
6433                 mcast_opt = B_FALSE;
6434                 /* FALLTHRU */
6435         case MCAST_LEAVE_SOURCE_GROUP:
6436                 fmode = MODE_IS_INCLUDE;
6437                 optfn = ip_opt_delete_group;
6438                 break;
6439         default:
6440                 ASSERT(0);
6441         }
6442 
6443         if (mcast_opt) {
6444                 gsreqp = (struct group_source_req *)i1;
6445                 ifindex = gsreqp->gsr_interface;
6446                 if (gsreqp->gsr_group.ss_family == AF_INET) {
6447                         struct sockaddr_in *s;
6448                         s = (struct sockaddr_in *)&gsreqp->gsr_group;
6449                         IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6450                         s = (struct sockaddr_in *)&gsreqp->gsr_source;
6451                         IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6452                 } else {
6453                         struct sockaddr_in6 *s6;
6454 
6455                         if (!inet6)
6456                                 return (EINVAL);        /* Not on INET socket */
6457 
6458                         s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6459                         v6group = s6->sin6_addr;
6460                         s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6461                         v6src = s6->sin6_addr;
6462                 }
6463                 ifaddr = INADDR_ANY;
6464         } else {
6465                 imreqp = (struct ip_mreq_source *)i1;
6466                 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6467                 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6468                 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6469                 ifindex = 0;
6470         }
6471 
6472         /*
6473          * Handle src being mapped INADDR_ANY by changing it to unspecified.
6474          */
6475         if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6476                 v6src = ipv6_all_zeros;
6477 
6478         /*
6479          * In the multirouting case, we need to replicate
6480          * the request as noted in the mcast cases above.
6481          */
6482         if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6483                 ipaddr_t group;
6484 
6485                 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6486 
6487                 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6488                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6489                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6490         } else {
6491                 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6492                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6493                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6494         }
6495         if (ire != NULL) {
6496                 if (ire->ire_flags & RTF_MULTIRT) {
6497                         error = ip_multirt_apply_membership(optfn, ire, connp,
6498                             checkonly, &v6group, fmode, &v6src);
6499                         done = B_TRUE;
6500                 }
6501                 ire_refrele(ire);
6502         }
6503         if (!done) {
6504                 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6505                     fmode, &v6src);
6506         }
6507         return (error);
6508 }
6509 
6510 /*
6511  * Given a destination address and a pointer to where to put the information
6512  * this routine fills in the mtuinfo.
6513  * The socket must be connected.
6514  * For sctp conn_faddr is the primary address.
6515  */
6516 int
6517 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6518 {
6519         uint32_t        pmtu = IP_MAXPACKET;
6520         uint_t          scopeid;
6521 
6522         if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6523                 return (-1);
6524 
6525         /* In case we never sent or called ip_set_destination_v4/v6 */
6526         if (ixa->ixa_ire != NULL)
6527                 pmtu = ip_get_pmtu(ixa);
6528 
6529         if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6530                 scopeid = ixa->ixa_scopeid;
6531         else
6532                 scopeid = 0;
6533 
6534         bzero(mtuinfo, sizeof (*mtuinfo));
6535         mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6536         mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6537         mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6538         mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6539         mtuinfo->ip6m_mtu = pmtu;
6540 
6541         return (sizeof (struct ip6_mtuinfo));
6542 }
6543 
6544 /*
6545  * When the src multihoming is changed from weak to [strong, preferred]
6546  * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6547  * and identify routes that were created by user-applications in the
6548  * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6549  * currently defined. These routes are then 'rebound', i.e., their ire_ill
6550  * is selected by finding an interface route for the gateway.
6551  */
6552 /* ARGSUSED */
6553 void
6554 ip_ire_rebind_walker(ire_t *ire, void *notused)
6555 {
6556         if (!ire->ire_unbound || ire->ire_ill != NULL)
6557                 return;
6558         ire_rebind(ire);
6559         ire_delete(ire);
6560 }
6561 
6562 /*
6563  * When the src multihoming is changed from  [strong, preferred] to weak,
6564  * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6565  * set any entries that were created by user-applications in the unbound state
6566  * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6567  */
6568 /* ARGSUSED */
6569 void
6570 ip_ire_unbind_walker(ire_t *ire, void *notused)
6571 {
6572         ire_t *new_ire;
6573 
6574         if (!ire->ire_unbound || ire->ire_ill == NULL)
6575                 return;
6576         if (ire->ire_ipversion == IPV6_VERSION) {
6577                 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6578                     &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6579                     ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6580         } else {
6581                 new_ire = ire_create((uchar_t *)&ire->ire_addr,
6582                     (uchar_t *)&ire->ire_mask,
6583                     (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6584                     ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6585         }
6586         if (new_ire == NULL)
6587                 return;
6588         new_ire->ire_unbound = B_TRUE;
6589         /*
6590          * The bound ire must first be deleted so that we don't return
6591          * the existing one on the attempt to add the unbound new_ire.
6592          */
6593         ire_delete(ire);
6594         new_ire = ire_add(new_ire);
6595         if (new_ire != NULL)
6596                 ire_refrele(new_ire);
6597 }
6598 
6599 /*
6600  * When the settings of ip*_strict_src_multihoming tunables are changed,
6601  * all cached routes need to be recomputed. This recomputation needs to be
6602  * done when going from weaker to stronger modes so that the cached ire
6603  * for the connection does not violate the current ip*_strict_src_multihoming
6604  * setting. It also needs to be done when going from stronger to weaker modes,
6605  * so that we fall back to matching on the longest-matching-route (as opposed
6606  * to a shorter match that may have been selected in the strong mode
6607  * to satisfy src_multihoming settings).
6608  *
6609  * The cached ixa_ire entires for all conn_t entries are marked as
6610  * "verify" so that they will be recomputed for the next packet.
6611  */
6612 void
6613 conn_ire_revalidate(conn_t *connp, void *arg)
6614 {
6615         boolean_t isv6 = (boolean_t)arg;
6616 
6617         if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6618             (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6619                 return;
6620         connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6621 }
6622 
6623 /*
6624  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6625  * When an ipf is passed here for the first time, if
6626  * we already have in-order fragments on the queue, we convert from the fast-
6627  * path reassembly scheme to the hard-case scheme.  From then on, additional
6628  * fragments are reassembled here.  We keep track of the start and end offsets
6629  * of each piece, and the number of holes in the chain.  When the hole count
6630  * goes to zero, we are done!
6631  *
6632  * The ipf_count will be updated to account for any mblk(s) added (pointed to
6633  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6634  * ipfb_count and ill_frag_count by the difference of ipf_count before and
6635  * after the call to ip_reassemble().
6636  */
6637 int
6638 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6639     size_t msg_len)
6640 {
6641         uint_t  end;
6642         mblk_t  *next_mp;
6643         mblk_t  *mp1;
6644         uint_t  offset;
6645         boolean_t incr_dups = B_TRUE;
6646         boolean_t offset_zero_seen = B_FALSE;
6647         boolean_t pkt_boundary_checked = B_FALSE;
6648 
6649         /* If start == 0 then ipf_nf_hdr_len has to be set. */
6650         ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6651 
6652         /* Add in byte count */
6653         ipf->ipf_count += msg_len;
6654         if (ipf->ipf_end) {
6655                 /*
6656                  * We were part way through in-order reassembly, but now there
6657                  * is a hole.  We walk through messages already queued, and
6658                  * mark them for hard case reassembly.  We know that up till
6659                  * now they were in order starting from offset zero.
6660                  */
6661                 offset = 0;
6662                 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6663                         IP_REASS_SET_START(mp1, offset);
6664                         if (offset == 0) {
6665                                 ASSERT(ipf->ipf_nf_hdr_len != 0);
6666                                 offset = -ipf->ipf_nf_hdr_len;
6667                         }
6668                         offset += mp1->b_wptr - mp1->b_rptr;
6669                         IP_REASS_SET_END(mp1, offset);
6670                 }
6671                 /* One hole at the end. */
6672                 ipf->ipf_hole_cnt = 1;
6673                 /* Brand it as a hard case, forever. */
6674                 ipf->ipf_end = 0;
6675         }
6676         /* Walk through all the new pieces. */
6677         do {
6678                 end = start + (mp->b_wptr - mp->b_rptr);
6679                 /*
6680                  * If start is 0, decrease 'end' only for the first mblk of
6681                  * the fragment. Otherwise 'end' can get wrong value in the
6682                  * second pass of the loop if first mblk is exactly the
6683                  * size of ipf_nf_hdr_len.
6684                  */
6685                 if (start == 0 && !offset_zero_seen) {
6686                         /* First segment */
6687                         ASSERT(ipf->ipf_nf_hdr_len != 0);
6688                         end -= ipf->ipf_nf_hdr_len;
6689                         offset_zero_seen = B_TRUE;
6690                 }
6691                 next_mp = mp->b_cont;
6692                 /*
6693                  * We are checking to see if there is any interesing data
6694                  * to process.  If there isn't and the mblk isn't the
6695                  * one which carries the unfragmentable header then we
6696                  * drop it.  It's possible to have just the unfragmentable
6697                  * header come through without any data.  That needs to be
6698                  * saved.
6699                  *
6700                  * If the assert at the top of this function holds then the
6701                  * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
6702                  * is infrequently traveled enough that the test is left in
6703                  * to protect against future code changes which break that
6704                  * invariant.
6705                  */
6706                 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6707                         /* Empty.  Blast it. */
6708                         IP_REASS_SET_START(mp, 0);
6709                         IP_REASS_SET_END(mp, 0);
6710                         /*
6711                          * If the ipf points to the mblk we are about to free,
6712                          * update ipf to point to the next mblk (or NULL
6713                          * if none).
6714                          */
6715                         if (ipf->ipf_mp->b_cont == mp)
6716                                 ipf->ipf_mp->b_cont = next_mp;
6717                         freeb(mp);
6718                         continue;
6719                 }
6720                 mp->b_cont = NULL;
6721                 IP_REASS_SET_START(mp, start);
6722                 IP_REASS_SET_END(mp, end);
6723                 if (!ipf->ipf_tail_mp) {
6724                         ipf->ipf_tail_mp = mp;
6725                         ipf->ipf_mp->b_cont = mp;
6726                         if (start == 0 || !more) {
6727                                 ipf->ipf_hole_cnt = 1;
6728                                 /*
6729                                  * if the first fragment comes in more than one
6730                                  * mblk, this loop will be executed for each
6731                                  * mblk. Need to adjust hole count so exiting
6732                                  * this routine will leave hole count at 1.
6733                                  */
6734                                 if (next_mp)
6735                                         ipf->ipf_hole_cnt++;
6736                         } else
6737                                 ipf->ipf_hole_cnt = 2;
6738                         continue;
6739                 } else if (ipf->ipf_last_frag_seen && !more &&
6740                     !pkt_boundary_checked) {
6741                         /*
6742                          * We check datagram boundary only if this fragment
6743                          * claims to be the last fragment and we have seen a
6744                          * last fragment in the past too. We do this only
6745                          * once for a given fragment.
6746                          *
6747                          * start cannot be 0 here as fragments with start=0
6748                          * and MF=0 gets handled as a complete packet. These
6749                          * fragments should not reach here.
6750                          */
6751 
6752                         if (start + msgdsize(mp) !=
6753                             IP_REASS_END(ipf->ipf_tail_mp)) {
6754                                 /*
6755                                  * We have two fragments both of which claim
6756                                  * to be the last fragment but gives conflicting
6757                                  * information about the whole datagram size.
6758                                  * Something fishy is going on. Drop the
6759                                  * fragment and free up the reassembly list.
6760                                  */
6761                                 return (IP_REASS_FAILED);
6762                         }
6763 
6764                         /*
6765                          * We shouldn't come to this code block again for this
6766                          * particular fragment.
6767                          */
6768                         pkt_boundary_checked = B_TRUE;
6769                 }
6770 
6771                 /* New stuff at or beyond tail? */
6772                 offset = IP_REASS_END(ipf->ipf_tail_mp);
6773                 if (start >= offset) {
6774                         if (ipf->ipf_last_frag_seen) {
6775                                 /* current fragment is beyond last fragment */
6776                                 return (IP_REASS_FAILED);
6777                         }
6778                         /* Link it on end. */
6779                         ipf->ipf_tail_mp->b_cont = mp;
6780                         ipf->ipf_tail_mp = mp;
6781                         if (more) {
6782                                 if (start != offset)
6783                                         ipf->ipf_hole_cnt++;
6784                         } else if (start == offset && next_mp == NULL)
6785                                         ipf->ipf_hole_cnt--;
6786                         continue;
6787                 }
6788                 mp1 = ipf->ipf_mp->b_cont;
6789                 offset = IP_REASS_START(mp1);
6790                 /* New stuff at the front? */
6791                 if (start < offset) {
6792                         if (start == 0) {
6793                                 if (end >= offset) {
6794                                         /* Nailed the hole at the begining. */
6795                                         ipf->ipf_hole_cnt--;
6796                                 }
6797                         } else if (end < offset) {
6798                                 /*
6799                                  * A hole, stuff, and a hole where there used
6800                                  * to be just a hole.
6801                                  */
6802                                 ipf->ipf_hole_cnt++;
6803                         }
6804                         mp->b_cont = mp1;
6805                         /* Check for overlap. */
6806                         while (end > offset) {
6807                                 if (end < IP_REASS_END(mp1)) {
6808                                         mp->b_wptr -= end - offset;
6809                                         IP_REASS_SET_END(mp, offset);
6810                                         BUMP_MIB(ill->ill_ip_mib,
6811                                             ipIfStatsReasmPartDups);
6812                                         break;
6813                                 }
6814                                 /* Did we cover another hole? */
6815                                 if ((mp1->b_cont &&
6816                                     IP_REASS_END(mp1) !=
6817                                     IP_REASS_START(mp1->b_cont) &&
6818                                     end >= IP_REASS_START(mp1->b_cont)) ||
6819                                     (!ipf->ipf_last_frag_seen && !more)) {
6820                                         ipf->ipf_hole_cnt--;
6821                                 }
6822                                 /* Clip out mp1. */
6823                                 if ((mp->b_cont = mp1->b_cont) == NULL) {
6824                                         /*
6825                                          * After clipping out mp1, this guy
6826                                          * is now hanging off the end.
6827                                          */
6828                                         ipf->ipf_tail_mp = mp;
6829                                 }
6830                                 IP_REASS_SET_START(mp1, 0);
6831                                 IP_REASS_SET_END(mp1, 0);
6832                                 /* Subtract byte count */
6833                                 ipf->ipf_count -= mp1->b_datap->db_lim -
6834                                     mp1->b_datap->db_base;
6835                                 freeb(mp1);
6836                                 BUMP_MIB(ill->ill_ip_mib,
6837                                     ipIfStatsReasmPartDups);
6838                                 mp1 = mp->b_cont;
6839                                 if (!mp1)
6840                                         break;
6841                                 offset = IP_REASS_START(mp1);
6842                         }
6843                         ipf->ipf_mp->b_cont = mp;
6844                         continue;
6845                 }
6846                 /*
6847                  * The new piece starts somewhere between the start of the head
6848                  * and before the end of the tail.
6849                  */
6850                 for (; mp1; mp1 = mp1->b_cont) {
6851                         offset = IP_REASS_END(mp1);
6852                         if (start < offset) {
6853                                 if (end <= offset) {
6854                                         /* Nothing new. */
6855                                         IP_REASS_SET_START(mp, 0);
6856                                         IP_REASS_SET_END(mp, 0);
6857                                         /* Subtract byte count */
6858                                         ipf->ipf_count -= mp->b_datap->db_lim -
6859                                             mp->b_datap->db_base;
6860                                         if (incr_dups) {
6861                                                 ipf->ipf_num_dups++;
6862                                                 incr_dups = B_FALSE;
6863                                         }
6864                                         freeb(mp);
6865                                         BUMP_MIB(ill->ill_ip_mib,
6866                                             ipIfStatsReasmDuplicates);
6867                                         break;
6868                                 }
6869                                 /*
6870                                  * Trim redundant stuff off beginning of new
6871                                  * piece.
6872                                  */
6873                                 IP_REASS_SET_START(mp, offset);
6874                                 mp->b_rptr += offset - start;
6875                                 BUMP_MIB(ill->ill_ip_mib,
6876                                     ipIfStatsReasmPartDups);
6877                                 start = offset;
6878                                 if (!mp1->b_cont) {
6879                                         /*
6880                                          * After trimming, this guy is now
6881                                          * hanging off the end.
6882                                          */
6883                                         mp1->b_cont = mp;
6884                                         ipf->ipf_tail_mp = mp;
6885                                         if (!more) {
6886                                                 ipf->ipf_hole_cnt--;
6887                                         }
6888                                         break;
6889                                 }
6890                         }
6891                         if (start >= IP_REASS_START(mp1->b_cont))
6892                                 continue;
6893                         /* Fill a hole */
6894                         if (start > offset)
6895                                 ipf->ipf_hole_cnt++;
6896                         mp->b_cont = mp1->b_cont;
6897                         mp1->b_cont = mp;
6898                         mp1 = mp->b_cont;
6899                         offset = IP_REASS_START(mp1);
6900                         if (end >= offset) {
6901                                 ipf->ipf_hole_cnt--;
6902                                 /* Check for overlap. */
6903                                 while (end > offset) {
6904                                         if (end < IP_REASS_END(mp1)) {
6905                                                 mp->b_wptr -= end - offset;
6906                                                 IP_REASS_SET_END(mp, offset);
6907                                                 /*
6908                                                  * TODO we might bump
6909                                                  * this up twice if there is
6910                                                  * overlap at both ends.
6911                                                  */
6912                                                 BUMP_MIB(ill->ill_ip_mib,
6913                                                     ipIfStatsReasmPartDups);
6914                                                 break;
6915                                         }
6916                                         /* Did we cover another hole? */
6917                                         if ((mp1->b_cont &&
6918                                             IP_REASS_END(mp1)
6919                                             != IP_REASS_START(mp1->b_cont) &&
6920                                             end >=
6921                                             IP_REASS_START(mp1->b_cont)) ||
6922                                             (!ipf->ipf_last_frag_seen &&
6923                                             !more)) {
6924                                                 ipf->ipf_hole_cnt--;
6925                                         }
6926                                         /* Clip out mp1. */
6927                                         if ((mp->b_cont = mp1->b_cont) ==
6928                                             NULL) {
6929                                                 /*
6930                                                  * After clipping out mp1,
6931                                                  * this guy is now hanging
6932                                                  * off the end.
6933                                                  */
6934                                                 ipf->ipf_tail_mp = mp;
6935                                         }
6936                                         IP_REASS_SET_START(mp1, 0);
6937                                         IP_REASS_SET_END(mp1, 0);
6938                                         /* Subtract byte count */
6939                                         ipf->ipf_count -=
6940                                             mp1->b_datap->db_lim -
6941                                             mp1->b_datap->db_base;
6942                                         freeb(mp1);
6943                                         BUMP_MIB(ill->ill_ip_mib,
6944                                             ipIfStatsReasmPartDups);
6945                                         mp1 = mp->b_cont;
6946                                         if (!mp1)
6947                                                 break;
6948                                         offset = IP_REASS_START(mp1);
6949                                 }
6950                         }
6951                         break;
6952                 }
6953         } while (start = end, mp = next_mp);
6954 
6955         /* Fragment just processed could be the last one. Remember this fact */
6956         if (!more)
6957                 ipf->ipf_last_frag_seen = B_TRUE;
6958 
6959         /* Still got holes? */
6960         if (ipf->ipf_hole_cnt)
6961                 return (IP_REASS_PARTIAL);
6962         /* Clean up overloaded fields to avoid upstream disasters. */
6963         for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6964                 IP_REASS_SET_START(mp1, 0);
6965                 IP_REASS_SET_END(mp1, 0);
6966         }
6967         return (IP_REASS_COMPLETE);
6968 }
6969 
6970 /*
6971  * Fragmentation reassembly.  Each ILL has a hash table for
6972  * queuing packets undergoing reassembly for all IPIFs
6973  * associated with the ILL.  The hash is based on the packet
6974  * IP ident field.  The ILL frag hash table was allocated
6975  * as a timer block at the time the ILL was created.  Whenever
6976  * there is anything on the reassembly queue, the timer will
6977  * be running.  Returns the reassembled packet if reassembly completes.
6978  */
6979 mblk_t *
6980 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
6981 {
6982         uint32_t        frag_offset_flags;
6983         mblk_t          *t_mp;
6984         ipaddr_t        dst;
6985         uint8_t         proto = ipha->ipha_protocol;
6986         uint32_t        sum_val;
6987         uint16_t        sum_flags;
6988         ipf_t           *ipf;
6989         ipf_t           **ipfp;
6990         ipfb_t          *ipfb;
6991         uint16_t        ident;
6992         uint32_t        offset;
6993         ipaddr_t        src;
6994         uint_t          hdr_length;
6995         uint32_t        end;
6996         mblk_t          *mp1;
6997         mblk_t          *tail_mp;
6998         size_t          count;
6999         size_t          msg_len;
7000         uint8_t         ecn_info = 0;
7001         uint32_t        packet_size;
7002         boolean_t       pruned = B_FALSE;
7003         ill_t           *ill = ira->ira_ill;
7004         ip_stack_t      *ipst = ill->ill_ipst;
7005 
7006         /*
7007          * Drop the fragmented as early as possible, if
7008          * we don't have resource(s) to re-assemble.
7009          */
7010         if (ipst->ips_ip_reass_queue_bytes == 0) {
7011                 freemsg(mp);
7012                 return (NULL);
7013         }
7014 
7015         /* Check for fragmentation offset; return if there's none */
7016         if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7017             (IPH_MF | IPH_OFFSET)) == 0)
7018                 return (mp);
7019 
7020         /*
7021          * We utilize hardware computed checksum info only for UDP since
7022          * IP fragmentation is a normal occurrence for the protocol.  In
7023          * addition, checksum offload support for IP fragments carrying
7024          * UDP payload is commonly implemented across network adapters.
7025          */
7026         ASSERT(ira->ira_rill != NULL);
7027         if (proto == IPPROTO_UDP && dohwcksum &&
7028             ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7029             (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7030                 mblk_t *mp1 = mp->b_cont;
7031                 int32_t len;
7032 
7033                 /* Record checksum information from the packet */
7034                 sum_val = (uint32_t)DB_CKSUM16(mp);
7035                 sum_flags = DB_CKSUMFLAGS(mp);
7036 
7037                 /* IP payload offset from beginning of mblk */
7038                 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7039 
7040                 if ((sum_flags & HCK_PARTIALCKSUM) &&
7041                     (mp1 == NULL || mp1->b_cont == NULL) &&
7042                     offset >= DB_CKSUMSTART(mp) &&
7043                     ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7044                         uint32_t adj;
7045                         /*
7046                          * Partial checksum has been calculated by hardware
7047                          * and attached to the packet; in addition, any
7048                          * prepended extraneous data is even byte aligned.
7049                          * If any such data exists, we adjust the checksum;
7050                          * this would also handle any postpended data.
7051                          */
7052                         IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7053                             mp, mp1, len, adj);
7054 
7055                         /* One's complement subtract extraneous checksum */
7056                         if (adj >= sum_val)
7057                                 sum_val = ~(adj - sum_val) & 0xFFFF;
7058                         else
7059                                 sum_val -= adj;
7060                 }
7061         } else {
7062                 sum_val = 0;
7063                 sum_flags = 0;
7064         }
7065 
7066         /* Clear hardware checksumming flag */
7067         DB_CKSUMFLAGS(mp) = 0;
7068 
7069         ident = ipha->ipha_ident;
7070         offset = (frag_offset_flags << 3) & 0xFFFF;
7071         src = ipha->ipha_src;
7072         dst = ipha->ipha_dst;
7073         hdr_length = IPH_HDR_LENGTH(ipha);
7074         end = ntohs(ipha->ipha_length) - hdr_length;
7075 
7076         /* If end == 0 then we have a packet with no data, so just free it */
7077         if (end == 0) {
7078                 freemsg(mp);
7079                 return (NULL);
7080         }
7081 
7082         /* Record the ECN field info. */
7083         ecn_info = (ipha->ipha_type_of_service & 0x3);
7084         if (offset != 0) {
7085                 /*
7086                  * If this isn't the first piece, strip the header, and
7087                  * add the offset to the end value.
7088                  */
7089                 mp->b_rptr += hdr_length;
7090                 end += offset;
7091         }
7092 
7093         /* Handle vnic loopback of fragments */
7094         if (mp->b_datap->db_ref > 2)
7095                 msg_len = 0;
7096         else
7097                 msg_len = MBLKSIZE(mp);
7098 
7099         tail_mp = mp;
7100         while (tail_mp->b_cont != NULL) {
7101                 tail_mp = tail_mp->b_cont;
7102                 if (tail_mp->b_datap->db_ref <= 2)
7103                         msg_len += MBLKSIZE(tail_mp);
7104         }
7105 
7106         /* If the reassembly list for this ILL will get too big, prune it */
7107         if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7108             ipst->ips_ip_reass_queue_bytes) {
7109                 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7110                     uint_t, ill->ill_frag_count,
7111                     uint_t, ipst->ips_ip_reass_queue_bytes);
7112                 ill_frag_prune(ill,
7113                     (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7114                     (ipst->ips_ip_reass_queue_bytes - msg_len));
7115                 pruned = B_TRUE;
7116         }
7117 
7118         ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7119         mutex_enter(&ipfb->ipfb_lock);
7120 
7121         ipfp = &ipfb->ipfb_ipf;
7122         /* Try to find an existing fragment queue for this packet. */
7123         for (;;) {
7124                 ipf = ipfp[0];
7125                 if (ipf != NULL) {
7126                         /*
7127                          * It has to match on ident and src/dst address.
7128                          */
7129                         if (ipf->ipf_ident == ident &&
7130                             ipf->ipf_src == src &&
7131                             ipf->ipf_dst == dst &&
7132                             ipf->ipf_protocol == proto) {
7133                                 /*
7134                                  * If we have received too many
7135                                  * duplicate fragments for this packet
7136                                  * free it.
7137                                  */
7138                                 if (ipf->ipf_num_dups > ip_max_frag_dups) {
7139                                         ill_frag_free_pkts(ill, ipfb, ipf, 1);
7140                                         freemsg(mp);
7141                                         mutex_exit(&ipfb->ipfb_lock);
7142                                         return (NULL);
7143                                 }
7144                                 /* Found it. */
7145                                 break;
7146                         }
7147                         ipfp = &ipf->ipf_hash_next;
7148                         continue;
7149                 }
7150 
7151                 /*
7152                  * If we pruned the list, do we want to store this new
7153                  * fragment?. We apply an optimization here based on the
7154                  * fact that most fragments will be received in order.
7155                  * So if the offset of this incoming fragment is zero,
7156                  * it is the first fragment of a new packet. We will
7157                  * keep it.  Otherwise drop the fragment, as we have
7158                  * probably pruned the packet already (since the
7159                  * packet cannot be found).
7160                  */
7161                 if (pruned && offset != 0) {
7162                         mutex_exit(&ipfb->ipfb_lock);
7163                         freemsg(mp);
7164                         return (NULL);
7165                 }
7166 
7167                 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
7168                         /*
7169                          * Too many fragmented packets in this hash
7170                          * bucket. Free the oldest.
7171                          */
7172                         ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7173                 }
7174 
7175                 /* New guy.  Allocate a frag message. */
7176                 mp1 = allocb(sizeof (*ipf), BPRI_MED);
7177                 if (mp1 == NULL) {
7178                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7179                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7180                         freemsg(mp);
7181 reass_done:
7182                         mutex_exit(&ipfb->ipfb_lock);
7183                         return (NULL);
7184                 }
7185 
7186                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7187                 mp1->b_cont = mp;
7188 
7189                 /* Initialize the fragment header. */
7190                 ipf = (ipf_t *)mp1->b_rptr;
7191                 ipf->ipf_mp = mp1;
7192                 ipf->ipf_ptphn = ipfp;
7193                 ipfp[0] = ipf;
7194                 ipf->ipf_hash_next = NULL;
7195                 ipf->ipf_ident = ident;
7196                 ipf->ipf_protocol = proto;
7197                 ipf->ipf_src = src;
7198                 ipf->ipf_dst = dst;
7199                 ipf->ipf_nf_hdr_len = 0;
7200                 /* Record reassembly start time. */
7201                 ipf->ipf_timestamp = gethrestime_sec();
7202                 /* Record ipf generation and account for frag header */
7203                 ipf->ipf_gen = ill->ill_ipf_gen++;
7204                 ipf->ipf_count = MBLKSIZE(mp1);
7205                 ipf->ipf_last_frag_seen = B_FALSE;
7206                 ipf->ipf_ecn = ecn_info;
7207                 ipf->ipf_num_dups = 0;
7208                 ipfb->ipfb_frag_pkts++;
7209                 ipf->ipf_checksum = 0;
7210                 ipf->ipf_checksum_flags = 0;
7211 
7212                 /* Store checksum value in fragment header */
7213                 if (sum_flags != 0) {
7214                         sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7215                         sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7216                         ipf->ipf_checksum = sum_val;
7217                         ipf->ipf_checksum_flags = sum_flags;
7218                 }
7219 
7220                 /*
7221                  * We handle reassembly two ways.  In the easy case,
7222                  * where all the fragments show up in order, we do
7223                  * minimal bookkeeping, and just clip new pieces on
7224                  * the end.  If we ever see a hole, then we go off
7225                  * to ip_reassemble which has to mark the pieces and
7226                  * keep track of the number of holes, etc.  Obviously,
7227                  * the point of having both mechanisms is so we can
7228                  * handle the easy case as efficiently as possible.
7229                  */
7230                 if (offset == 0) {
7231                         /* Easy case, in-order reassembly so far. */
7232                         ipf->ipf_count += msg_len;
7233                         ipf->ipf_tail_mp = tail_mp;
7234                         /*
7235                          * Keep track of next expected offset in
7236                          * ipf_end.
7237                          */
7238                         ipf->ipf_end = end;
7239                         ipf->ipf_nf_hdr_len = hdr_length;
7240                 } else {
7241                         /* Hard case, hole at the beginning. */
7242                         ipf->ipf_tail_mp = NULL;
7243                         /*
7244                          * ipf_end == 0 means that we have given up
7245                          * on easy reassembly.
7246                          */
7247                         ipf->ipf_end = 0;
7248 
7249                         /* Forget checksum offload from now on */
7250                         ipf->ipf_checksum_flags = 0;
7251 
7252                         /*
7253                          * ipf_hole_cnt is set by ip_reassemble.
7254                          * ipf_count is updated by ip_reassemble.
7255                          * No need to check for return value here
7256                          * as we don't expect reassembly to complete
7257                          * or fail for the first fragment itself.
7258                          */
7259                         (void) ip_reassemble(mp, ipf,
7260                             (frag_offset_flags & IPH_OFFSET) << 3,
7261                             (frag_offset_flags & IPH_MF), ill, msg_len);
7262                 }
7263                 /* Update per ipfb and ill byte counts */
7264                 ipfb->ipfb_count += ipf->ipf_count;
7265                 ASSERT(ipfb->ipfb_count > 0);     /* Wraparound */
7266                 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7267                 /* If the frag timer wasn't already going, start it. */
7268                 mutex_enter(&ill->ill_lock);
7269                 ill_frag_timer_start(ill);
7270                 mutex_exit(&ill->ill_lock);
7271                 goto reass_done;
7272         }
7273 
7274         /*
7275          * If the packet's flag has changed (it could be coming up
7276          * from an interface different than the previous, therefore
7277          * possibly different checksum capability), then forget about
7278          * any stored checksum states.  Otherwise add the value to
7279          * the existing one stored in the fragment header.
7280          */
7281         if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7282                 sum_val += ipf->ipf_checksum;
7283                 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7284                 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7285                 ipf->ipf_checksum = sum_val;
7286         } else if (ipf->ipf_checksum_flags != 0) {
7287                 /* Forget checksum offload from now on */
7288                 ipf->ipf_checksum_flags = 0;
7289         }
7290 
7291         /*
7292          * We have a new piece of a datagram which is already being
7293          * reassembled.  Update the ECN info if all IP fragments
7294          * are ECN capable.  If there is one which is not, clear
7295          * all the info.  If there is at least one which has CE
7296          * code point, IP needs to report that up to transport.
7297          */
7298         if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7299                 if (ecn_info == IPH_ECN_CE)
7300                         ipf->ipf_ecn = IPH_ECN_CE;
7301         } else {
7302                 ipf->ipf_ecn = IPH_ECN_NECT;
7303         }
7304         if (offset && ipf->ipf_end == offset) {
7305                 /* The new fragment fits at the end */
7306                 ipf->ipf_tail_mp->b_cont = mp;
7307                 /* Update the byte count */
7308                 ipf->ipf_count += msg_len;
7309                 /* Update per ipfb and ill byte counts */
7310                 ipfb->ipfb_count += msg_len;
7311                 ASSERT(ipfb->ipfb_count > 0);     /* Wraparound */
7312                 atomic_add_32(&ill->ill_frag_count, msg_len);
7313                 if (frag_offset_flags & IPH_MF) {
7314                         /* More to come. */
7315                         ipf->ipf_end = end;
7316                         ipf->ipf_tail_mp = tail_mp;
7317                         goto reass_done;
7318                 }
7319         } else {
7320                 /* Go do the hard cases. */
7321                 int ret;
7322 
7323                 if (offset == 0)
7324                         ipf->ipf_nf_hdr_len = hdr_length;
7325 
7326                 /* Save current byte count */
7327                 count = ipf->ipf_count;
7328                 ret = ip_reassemble(mp, ipf,
7329                     (frag_offset_flags & IPH_OFFSET) << 3,
7330                     (frag_offset_flags & IPH_MF), ill, msg_len);
7331                 /* Count of bytes added and subtracted (freeb()ed) */
7332                 count = ipf->ipf_count - count;
7333                 if (count) {
7334                         /* Update per ipfb and ill byte counts */
7335                         ipfb->ipfb_count += count;
7336                         ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7337                         atomic_add_32(&ill->ill_frag_count, count);
7338                 }
7339                 if (ret == IP_REASS_PARTIAL) {
7340                         goto reass_done;
7341                 } else if (ret == IP_REASS_FAILED) {
7342                         /* Reassembly failed. Free up all resources */
7343                         ill_frag_free_pkts(ill, ipfb, ipf, 1);
7344                         for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7345                                 IP_REASS_SET_START(t_mp, 0);
7346                                 IP_REASS_SET_END(t_mp, 0);
7347                         }
7348                         freemsg(mp);
7349                         goto reass_done;
7350                 }
7351                 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7352         }
7353         /*
7354          * We have completed reassembly.  Unhook the frag header from
7355          * the reassembly list.
7356          *
7357          * Before we free the frag header, record the ECN info
7358          * to report back to the transport.
7359          */
7360         ecn_info = ipf->ipf_ecn;
7361         BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7362         ipfp = ipf->ipf_ptphn;
7363 
7364         /* We need to supply these to caller */
7365         if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7366                 sum_val = ipf->ipf_checksum;
7367         else
7368                 sum_val = 0;
7369 
7370         mp1 = ipf->ipf_mp;
7371         count = ipf->ipf_count;
7372         ipf = ipf->ipf_hash_next;
7373         if (ipf != NULL)
7374                 ipf->ipf_ptphn = ipfp;
7375         ipfp[0] = ipf;
7376         atomic_add_32(&ill->ill_frag_count, -count);
7377         ASSERT(ipfb->ipfb_count >= count);
7378         ipfb->ipfb_count -= count;
7379         ipfb->ipfb_frag_pkts--;
7380         mutex_exit(&ipfb->ipfb_lock);
7381         /* Ditch the frag header. */
7382         mp = mp1->b_cont;
7383 
7384         freeb(mp1);
7385 
7386         /* Restore original IP length in header. */
7387         packet_size = (uint32_t)msgdsize(mp);
7388         if (packet_size > IP_MAXPACKET) {
7389                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7390                 ip_drop_input("Reassembled packet too large", mp, ill);
7391                 freemsg(mp);
7392                 return (NULL);
7393         }
7394 
7395         if (DB_REF(mp) > 1) {
7396                 mblk_t *mp2 = copymsg(mp);
7397 
7398                 if (mp2 == NULL) {
7399                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7400                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7401                         freemsg(mp);
7402                         return (NULL);
7403                 }
7404                 freemsg(mp);
7405                 mp = mp2;
7406         }
7407         ipha = (ipha_t *)mp->b_rptr;
7408 
7409         ipha->ipha_length = htons((uint16_t)packet_size);
7410         /* We're now complete, zip the frag state */
7411         ipha->ipha_fragment_offset_and_flags = 0;
7412         /* Record the ECN info. */
7413         ipha->ipha_type_of_service &= 0xFC;
7414         ipha->ipha_type_of_service |= ecn_info;
7415 
7416         /* Update the receive attributes */
7417         ira->ira_pktlen = packet_size;
7418         ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7419 
7420         /* Reassembly is successful; set checksum information in packet */
7421         DB_CKSUM16(mp) = (uint16_t)sum_val;
7422         DB_CKSUMFLAGS(mp) = sum_flags;
7423         DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7424 
7425         return (mp);
7426 }
7427 
7428 /*
7429  * Pullup function that should be used for IP input in order to
7430  * ensure we do not loose the L2 source address; we need the l2 source
7431  * address for IP_RECVSLLA and for ndp_input.
7432  *
7433  * We return either NULL or b_rptr.
7434  */
7435 void *
7436 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7437 {
7438         ill_t           *ill = ira->ira_ill;
7439 
7440         if (ip_rput_pullups++ == 0) {
7441                 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7442                     "ip_pullup: %s forced us to "
7443                     " pullup pkt, hdr len %ld, hdr addr %p",
7444                     ill->ill_name, len, (void *)mp->b_rptr);
7445         }
7446         if (!(ira->ira_flags & IRAF_L2SRC_SET))
7447                 ip_setl2src(mp, ira, ira->ira_rill);
7448         ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7449         if (!pullupmsg(mp, len))
7450                 return (NULL);
7451         else
7452                 return (mp->b_rptr);
7453 }
7454 
7455 /*
7456  * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7457  * When called from the ULP ira_rill will be NULL hence the caller has to
7458  * pass in the ill.
7459  */
7460 /* ARGSUSED */
7461 void
7462 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7463 {
7464         const uchar_t *addr;
7465         int alen;
7466 
7467         if (ira->ira_flags & IRAF_L2SRC_SET)
7468                 return;
7469 
7470         ASSERT(ill != NULL);
7471         alen = ill->ill_phys_addr_length;
7472         ASSERT(alen <= sizeof (ira->ira_l2src));
7473         if (ira->ira_mhip != NULL &&
7474             (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7475                 bcopy(addr, ira->ira_l2src, alen);
7476         } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7477             (addr = ill->ill_phys_addr) != NULL) {
7478                 bcopy(addr, ira->ira_l2src, alen);
7479         } else {
7480                 bzero(ira->ira_l2src, alen);
7481         }
7482         ira->ira_flags |= IRAF_L2SRC_SET;
7483 }
7484 
7485 /*
7486  * check ip header length and align it.
7487  */
7488 mblk_t *
7489 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7490 {
7491         ill_t   *ill = ira->ira_ill;
7492         ssize_t len;
7493 
7494         len = MBLKL(mp);
7495 
7496         if (!OK_32PTR(mp->b_rptr))
7497                 IP_STAT(ill->ill_ipst, ip_notaligned);
7498         else
7499                 IP_STAT(ill->ill_ipst, ip_recv_pullup);
7500 
7501         /* Guard against bogus device drivers */
7502         if (len < 0) {
7503                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7504                 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7505                 freemsg(mp);
7506                 return (NULL);
7507         }
7508 
7509         if (len == 0) {
7510                 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7511                 mblk_t *mp1 = mp->b_cont;
7512 
7513                 if (!(ira->ira_flags & IRAF_L2SRC_SET))
7514                         ip_setl2src(mp, ira, ira->ira_rill);
7515                 ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7516 
7517                 freeb(mp);
7518                 mp = mp1;
7519                 if (mp == NULL)
7520                         return (NULL);
7521 
7522                 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7523                         return (mp);
7524         }
7525         if (ip_pullup(mp, min_size, ira) == NULL) {
7526                 if (msgdsize(mp) < min_size) {
7527                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7528                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7529                 } else {
7530                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7531                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7532                 }
7533                 freemsg(mp);
7534                 return (NULL);
7535         }
7536         return (mp);
7537 }
7538 
7539 /*
7540  * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7541  */
7542 mblk_t *
7543 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len,
7544     uint_t min_size, ip_recv_attr_t *ira)
7545 {
7546         ill_t   *ill = ira->ira_ill;
7547 
7548         /*
7549          * Make sure we have data length consistent
7550          * with the IP header.
7551          */
7552         if (mp->b_cont == NULL) {
7553                 /* pkt_len is based on ipha_len, not the mblk length */
7554                 if (pkt_len < min_size) {
7555                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7556                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7557                         freemsg(mp);
7558                         return (NULL);
7559                 }
7560                 if (len < 0) {
7561                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7562                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7563                         freemsg(mp);
7564                         return (NULL);
7565                 }
7566                 /* Drop any pad */
7567                 mp->b_wptr = rptr + pkt_len;
7568         } else if ((len += msgdsize(mp->b_cont)) != 0) {
7569                 ASSERT(pkt_len >= min_size);
7570                 if (pkt_len < min_size) {
7571                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7572                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7573                         freemsg(mp);
7574                         return (NULL);
7575                 }
7576                 if (len < 0) {
7577                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7578                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7579                         freemsg(mp);
7580                         return (NULL);
7581                 }
7582                 /* Drop any pad */
7583                 (void) adjmsg(mp, -len);
7584                 /*
7585                  * adjmsg may have freed an mblk from the chain, hence
7586                  * invalidate any hw checksum here. This will force IP to
7587                  * calculate the checksum in sw, but only for this packet.
7588                  */
7589                 DB_CKSUMFLAGS(mp) = 0;
7590                 IP_STAT(ill->ill_ipst, ip_multimblk);
7591         }
7592         return (mp);
7593 }
7594 
7595 /*
7596  * Check that the IPv4 opt_len is consistent with the packet and pullup
7597  * the options.
7598  */
7599 mblk_t *
7600 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7601     ip_recv_attr_t *ira)
7602 {
7603         ill_t   *ill = ira->ira_ill;
7604         ssize_t len;
7605 
7606         /* Assume no IPv6 packets arrive over the IPv4 queue */
7607         if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7608                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7609                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7610                 ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7611                 freemsg(mp);
7612                 return (NULL);
7613         }
7614 
7615         if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7616                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7617                 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7618                 freemsg(mp);
7619                 return (NULL);
7620         }
7621         /*
7622          * Recompute complete header length and make sure we
7623          * have access to all of it.
7624          */
7625         len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7626         if (len > (mp->b_wptr - mp->b_rptr)) {
7627                 if (len > pkt_len) {
7628                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7629                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7630                         freemsg(mp);
7631                         return (NULL);
7632                 }
7633                 if (ip_pullup(mp, len, ira) == NULL) {
7634                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7635                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7636                         freemsg(mp);
7637                         return (NULL);
7638                 }
7639         }
7640         return (mp);
7641 }
7642 
7643 /*
7644  * Returns a new ire, or the same ire, or NULL.
7645  * If a different IRE is returned, then it is held; the caller
7646  * needs to release it.
7647  * In no case is there any hold/release on the ire argument.
7648  */
7649 ire_t *
7650 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7651 {
7652         ire_t           *new_ire;
7653         ill_t           *ire_ill;
7654         uint_t          ifindex;
7655         ip_stack_t      *ipst = ill->ill_ipst;
7656         boolean_t       strict_check = B_FALSE;
7657 
7658         /*
7659          * IPMP common case: if IRE and ILL are in the same group, there's no
7660          * issue (e.g. packet received on an underlying interface matched an
7661          * IRE_LOCAL on its associated group interface).
7662          */
7663         ASSERT(ire->ire_ill != NULL);
7664         if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7665                 return (ire);
7666 
7667         /*
7668          * Do another ire lookup here, using the ingress ill, to see if the
7669          * interface is in a usesrc group.
7670          * As long as the ills belong to the same group, we don't consider
7671          * them to be arriving on the wrong interface. Thus, if the switch
7672          * is doing inbound load spreading, we won't drop packets when the
7673          * ip*_strict_dst_multihoming switch is on.
7674          * We also need to check for IPIF_UNNUMBERED point2point interfaces
7675          * where the local address may not be unique. In this case we were
7676          * at the mercy of the initial ire lookup and the IRE_LOCAL it
7677          * actually returned. The new lookup, which is more specific, should
7678          * only find the IRE_LOCAL associated with the ingress ill if one
7679          * exists.
7680          */
7681         if (ire->ire_ipversion == IPV4_VERSION) {
7682                 if (ipst->ips_ip_strict_dst_multihoming)
7683                         strict_check = B_TRUE;
7684                 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7685                     IRE_LOCAL, ill, ALL_ZONES, NULL,
7686                     (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7687         } else {
7688                 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7689                 if (ipst->ips_ipv6_strict_dst_multihoming)
7690                         strict_check = B_TRUE;
7691                 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7692                     IRE_LOCAL, ill, ALL_ZONES, NULL,
7693                     (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7694         }
7695         /*
7696          * If the same ire that was returned in ip_input() is found then this
7697          * is an indication that usesrc groups are in use. The packet
7698          * arrived on a different ill in the group than the one associated with
7699          * the destination address.  If a different ire was found then the same
7700          * IP address must be hosted on multiple ills. This is possible with
7701          * unnumbered point2point interfaces. We switch to use this new ire in
7702          * order to have accurate interface statistics.
7703          */
7704         if (new_ire != NULL) {
7705                 /* Note: held in one case but not the other? Caller handles */
7706                 if (new_ire != ire)
7707                         return (new_ire);
7708                 /* Unchanged */
7709                 ire_refrele(new_ire);
7710                 return (ire);
7711         }
7712 
7713         /*
7714          * Chase pointers once and store locally.
7715          */
7716         ASSERT(ire->ire_ill != NULL);
7717         ire_ill = ire->ire_ill;
7718         ifindex = ill->ill_usesrc_ifindex;
7719 
7720         /*
7721          * Check if it's a legal address on the 'usesrc' interface.
7722          * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7723          * can just check phyint_ifindex.
7724          */
7725         if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7726                 return (ire);
7727         }
7728 
7729         /*
7730          * If the ip*_strict_dst_multihoming switch is on then we can
7731          * only accept this packet if the interface is marked as routing.
7732          */
7733         if (!(strict_check))
7734                 return (ire);
7735 
7736         if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7737                 return (ire);
7738         }
7739         return (NULL);
7740 }
7741 
7742 /*
7743  * This function is used to construct a mac_header_info_s from a
7744  * DL_UNITDATA_IND message.
7745  * The address fields in the mhi structure points into the message,
7746  * thus the caller can't use those fields after freeing the message.
7747  *
7748  * We determine whether the packet received is a non-unicast packet
7749  * and in doing so, determine whether or not it is broadcast vs multicast.
7750  * For it to be a broadcast packet, we must have the appropriate mblk_t
7751  * hanging off the ill_t.  If this is either not present or doesn't match
7752  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7753  * to be multicast.  Thus NICs that have no broadcast address (or no
7754  * capability for one, such as point to point links) cannot return as
7755  * the packet being broadcast.
7756  */
7757 void
7758 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7759 {
7760         dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7761         mblk_t *bmp;
7762         uint_t extra_offset;
7763 
7764         bzero(mhip, sizeof (struct mac_header_info_s));
7765 
7766         mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7767 
7768         if (ill->ill_sap_length < 0)
7769                 extra_offset = 0;
7770         else
7771                 extra_offset = ill->ill_sap_length;
7772 
7773         mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7774             extra_offset;
7775         mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7776             extra_offset;
7777 
7778         if (!ind->dl_group_address)
7779                 return;
7780 
7781         /* Multicast or broadcast */
7782         mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7783 
7784         if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7785             ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7786             (bmp = ill->ill_bcast_mp) != NULL) {
7787                 dl_unitdata_req_t *dlur;
7788                 uint8_t *bphys_addr;
7789 
7790                 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7791                 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7792                     extra_offset;
7793 
7794                 if (bcmp(mhip->mhi_daddr, bphys_addr,
7795                     ind->dl_dest_addr_length) == 0)
7796                         mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7797         }
7798 }
7799 
7800 /*
7801  * This function is used to construct a mac_header_info_s from a
7802  * M_DATA fastpath message from a DLPI driver.
7803  * The address fields in the mhi structure points into the message,
7804  * thus the caller can't use those fields after freeing the message.
7805  *
7806  * We determine whether the packet received is a non-unicast packet
7807  * and in doing so, determine whether or not it is broadcast vs multicast.
7808  * For it to be a broadcast packet, we must have the appropriate mblk_t
7809  * hanging off the ill_t.  If this is either not present or doesn't match
7810  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7811  * to be multicast.  Thus NICs that have no broadcast address (or no
7812  * capability for one, such as point to point links) cannot return as
7813  * the packet being broadcast.
7814  */
7815 void
7816 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7817 {
7818         mblk_t *bmp;
7819         struct ether_header *pether;
7820 
7821         bzero(mhip, sizeof (struct mac_header_info_s));
7822 
7823         mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7824 
7825         pether = (struct ether_header *)((char *)mp->b_rptr
7826             - sizeof (struct ether_header));
7827 
7828         /*
7829          * Make sure the interface is an ethernet type, since we don't
7830          * know the header format for anything but Ethernet. Also make
7831          * sure we are pointing correctly above db_base.
7832          */
7833         if (ill->ill_type != IFT_ETHER)
7834                 return;
7835 
7836         /*
7837          * PPP (including PPPoE) interfaces lie about being an ethernet, but
7838          * have other clues to indicate we should just bail now.  We exploit
7839          * the 0 broadcast address length.
7840          *
7841          * XXX KEBE ASKS --> what about IP multicast packets?
7842          */
7843         if (ill->ill_bcast_addr_length == 0)
7844                 return;
7845 
7846 retry:
7847         if ((uchar_t *)pether < mp->b_datap->db_base)
7848                 return;
7849 
7850         /* Is there a VLAN tag? */
7851         if (ill->ill_isv6) {
7852                 if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7853                         pether = (struct ether_header *)((char *)pether - 4);
7854                         goto retry;
7855                 }
7856         } else {
7857                 if (pether->ether_type != htons(ETHERTYPE_IP)) {
7858                         pether = (struct ether_header *)((char *)pether - 4);
7859                         goto retry;
7860                 }
7861         }
7862         mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7863         mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7864 
7865         if (!(mhip->mhi_daddr[0] & 0x01))
7866                 return;
7867 
7868         /* Multicast or broadcast */
7869         mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7870 
7871         if ((bmp = ill->ill_bcast_mp) != NULL) {
7872                 dl_unitdata_req_t *dlur;
7873                 uint8_t *bphys_addr;
7874                 uint_t  addrlen;
7875 
7876                 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7877                 addrlen = dlur->dl_dest_addr_length;
7878                 if (ill->ill_sap_length < 0) {
7879                         bphys_addr = (uchar_t *)dlur +
7880                             dlur->dl_dest_addr_offset;
7881                         addrlen += ill->ill_sap_length;
7882                 } else {
7883                         bphys_addr = (uchar_t *)dlur +
7884                             dlur->dl_dest_addr_offset +
7885                             ill->ill_sap_length;
7886                         addrlen -= ill->ill_sap_length;
7887                 }
7888                 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7889                         mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7890         }
7891 }
7892 
7893 /*
7894  * Handle anything but M_DATA messages
7895  * We see the DL_UNITDATA_IND which are part
7896  * of the data path, and also the other messages from the driver.
7897  */
7898 void
7899 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7900 {
7901         mblk_t          *first_mp;
7902         struct iocblk   *iocp;
7903         struct mac_header_info_s mhi;
7904 
7905         switch (DB_TYPE(mp)) {
7906         case M_PROTO:
7907         case M_PCPROTO: {
7908                 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7909                     DL_UNITDATA_IND) {
7910                         /* Go handle anything other than data elsewhere. */
7911                         ip_rput_dlpi(ill, mp);
7912                         return;
7913                 }
7914 
7915                 first_mp = mp;
7916                 mp = first_mp->b_cont;
7917                 first_mp->b_cont = NULL;
7918 
7919                 if (mp == NULL) {
7920                         freeb(first_mp);
7921                         return;
7922                 }
7923                 ip_dlur_to_mhi(ill, first_mp, &mhi);
7924                 if (ill->ill_isv6)
7925                         ip_input_v6(ill, NULL, mp, &mhi);
7926                 else
7927                         ip_input(ill, NULL, mp, &mhi);
7928 
7929                 /* Ditch the DLPI header. */
7930                 freeb(first_mp);
7931                 return;
7932         }
7933         case M_IOCACK:
7934                 iocp = (struct iocblk *)mp->b_rptr;
7935                 switch (iocp->ioc_cmd) {
7936                 case DL_IOC_HDR_INFO:
7937                         ill_fastpath_ack(ill, mp);
7938                         return;
7939                 default:
7940                         putnext(ill->ill_rq, mp);
7941                         return;
7942                 }
7943                 /* FALLTHRU */
7944         case M_ERROR:
7945         case M_HANGUP:
7946                 mutex_enter(&ill->ill_lock);
7947                 if (ill->ill_state_flags & ILL_CONDEMNED) {
7948                         mutex_exit(&ill->ill_lock);
7949                         freemsg(mp);
7950                         return;
7951                 }
7952                 ill_refhold_locked(ill);
7953                 mutex_exit(&ill->ill_lock);
7954                 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7955                     B_FALSE);
7956                 return;
7957         case M_CTL:
7958                 putnext(ill->ill_rq, mp);
7959                 return;
7960         case M_IOCNAK:
7961                 ip1dbg(("got iocnak "));
7962                 iocp = (struct iocblk *)mp->b_rptr;
7963                 switch (iocp->ioc_cmd) {
7964                 case DL_IOC_HDR_INFO:
7965                         ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7966                         return;
7967                 default:
7968                         break;
7969                 }
7970                 /* FALLTHRU */
7971         default:
7972                 putnext(ill->ill_rq, mp);
7973                 return;
7974         }
7975 }
7976 
7977 /* Read side put procedure.  Packets coming from the wire arrive here. */
7978 void
7979 ip_rput(queue_t *q, mblk_t *mp)
7980 {
7981         ill_t   *ill;
7982         union DL_primitives *dl;
7983 
7984         ill = (ill_t *)q->q_ptr;
7985 
7986         if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
7987                 /*
7988                  * If things are opening or closing, only accept high-priority
7989                  * DLPI messages.  (On open ill->ill_ipif has not yet been
7990                  * created; on close, things hanging off the ill may have been
7991                  * freed already.)
7992                  */
7993                 dl = (union DL_primitives *)mp->b_rptr;
7994                 if (DB_TYPE(mp) != M_PCPROTO ||
7995                     dl->dl_primitive == DL_UNITDATA_IND) {
7996                         inet_freemsg(mp);
7997                         return;
7998                 }
7999         }
8000         if (DB_TYPE(mp) == M_DATA) {
8001                 struct mac_header_info_s mhi;
8002 
8003                 ip_mdata_to_mhi(ill, mp, &mhi);
8004                 ip_input(ill, NULL, mp, &mhi);
8005         } else {
8006                 ip_rput_notdata(ill, mp);
8007         }
8008 }
8009 
8010 /*
8011  * Move the information to a copy.
8012  */
8013 mblk_t *
8014 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8015 {
8016         mblk_t          *mp1;
8017         ill_t           *ill = ira->ira_ill;
8018         ip_stack_t      *ipst = ill->ill_ipst;
8019 
8020         IP_STAT(ipst, ip_db_ref);
8021 
8022         /* Make sure we have ira_l2src before we loose the original mblk */
8023         if (!(ira->ira_flags & IRAF_L2SRC_SET))
8024                 ip_setl2src(mp, ira, ira->ira_rill);
8025 
8026         mp1 = copymsg(mp);
8027         if (mp1 == NULL) {
8028                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8029                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
8030                 freemsg(mp);
8031                 return (NULL);
8032         }
8033         /* preserve the hardware checksum flags and data, if present */
8034         if (DB_CKSUMFLAGS(mp) != 0) {
8035                 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8036                 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8037                 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8038                 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8039                 DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8040         }
8041         freemsg(mp);
8042         return (mp1);
8043 }
8044 
8045 static void
8046 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8047     t_uscalar_t err)
8048 {
8049         if (dl_err == DL_SYSERR) {
8050                 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8051                     "%s: %s failed: DL_SYSERR (errno %u)\n",
8052                     ill->ill_name, dl_primstr(prim), err);
8053                 return;
8054         }
8055 
8056         (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8057             "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8058             dl_errstr(dl_err));
8059 }
8060 
8061 /*
8062  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8063  * than DL_UNITDATA_IND messages. If we need to process this message
8064  * exclusively, we call qwriter_ip, in which case we also need to call
8065  * ill_refhold before that, since qwriter_ip does an ill_refrele.
8066  */
8067 void
8068 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8069 {
8070         dl_ok_ack_t     *dloa = (dl_ok_ack_t *)mp->b_rptr;
8071         dl_error_ack_t  *dlea = (dl_error_ack_t *)dloa;
8072         queue_t         *q = ill->ill_rq;
8073         t_uscalar_t     prim = dloa->dl_primitive;
8074         t_uscalar_t     reqprim = DL_PRIM_INVAL;
8075 
8076         DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8077             char *, dl_primstr(prim), ill_t *, ill);
8078         ip1dbg(("ip_rput_dlpi"));
8079 
8080         /*
8081          * If we received an ACK but didn't send a request for it, then it
8082          * can't be part of any pending operation; discard up-front.
8083          */
8084         switch (prim) {
8085         case DL_ERROR_ACK:
8086                 reqprim = dlea->dl_error_primitive;
8087                 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8088                     "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8089                     reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8090                     dlea->dl_unix_errno));
8091                 break;
8092         case DL_OK_ACK:
8093                 reqprim = dloa->dl_correct_primitive;
8094                 break;
8095         case DL_INFO_ACK:
8096                 reqprim = DL_INFO_REQ;
8097                 break;
8098         case DL_BIND_ACK:
8099                 reqprim = DL_BIND_REQ;
8100                 break;
8101         case DL_PHYS_ADDR_ACK:
8102                 reqprim = DL_PHYS_ADDR_REQ;
8103                 break;
8104         case DL_NOTIFY_ACK:
8105                 reqprim = DL_NOTIFY_REQ;
8106                 break;
8107         case DL_CAPABILITY_ACK:
8108                 reqprim = DL_CAPABILITY_REQ;
8109                 break;
8110         }
8111 
8112         if (prim != DL_NOTIFY_IND) {
8113                 if (reqprim == DL_PRIM_INVAL ||
8114                     !ill_dlpi_pending(ill, reqprim)) {
8115                         /* Not a DLPI message we support or expected */
8116                         freemsg(mp);
8117                         return;
8118                 }
8119                 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8120                     dl_primstr(reqprim)));
8121         }
8122 
8123         switch (reqprim) {
8124         case DL_UNBIND_REQ:
8125                 /*
8126                  * NOTE: we mark the unbind as complete even if we got a
8127                  * DL_ERROR_ACK, since there's not much else we can do.
8128                  */
8129                 mutex_enter(&ill->ill_lock);
8130                 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8131                 cv_signal(&ill->ill_cv);
8132                 mutex_exit(&ill->ill_lock);
8133                 break;
8134 
8135         case DL_ENABMULTI_REQ:
8136                 if (prim == DL_OK_ACK) {
8137                         if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8138                                 ill->ill_dlpi_multicast_state = IDS_OK;
8139                 }
8140                 break;
8141         }
8142 
8143         /*
8144          * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8145          * need to become writer to continue to process it.  Because an
8146          * exclusive operation doesn't complete until replies to all queued
8147          * DLPI messages have been received, we know we're in the middle of an
8148          * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8149          *
8150          * As required by qwriter_ip(), we refhold the ill; it will refrele.
8151          * Since this is on the ill stream we unconditionally bump up the
8152          * refcount without doing ILL_CAN_LOOKUP().
8153          */
8154         ill_refhold(ill);
8155         if (prim == DL_NOTIFY_IND)
8156                 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8157         else
8158                 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8159 }
8160 
8161 /*
8162  * Handling of DLPI messages that require exclusive access to the ipsq.
8163  *
8164  * Need to do ipsq_pending_mp_get on ioctl completion, which could
8165  * happen here. (along with mi_copy_done)
8166  */
8167 /* ARGSUSED */
8168 static void
8169 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8170 {
8171         dl_ok_ack_t     *dloa = (dl_ok_ack_t *)mp->b_rptr;
8172         dl_error_ack_t  *dlea = (dl_error_ack_t *)dloa;
8173         int             err = 0;
8174         ill_t           *ill = (ill_t *)q->q_ptr;
8175         ipif_t          *ipif = NULL;
8176         mblk_t          *mp1 = NULL;
8177         conn_t          *connp = NULL;
8178         t_uscalar_t     paddrreq;
8179         mblk_t          *mp_hw;
8180         boolean_t       success;
8181         boolean_t       ioctl_aborted = B_FALSE;
8182         boolean_t       log = B_TRUE;
8183 
8184         DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8185             char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8186 
8187         ip1dbg(("ip_rput_dlpi_writer .."));
8188         ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8189         ASSERT(IAM_WRITER_ILL(ill));
8190 
8191         ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8192         /*
8193          * The current ioctl could have been aborted by the user and a new
8194          * ioctl to bring up another ill could have started. We could still
8195          * get a response from the driver later.
8196          */
8197         if (ipif != NULL && ipif->ipif_ill != ill)
8198                 ioctl_aborted = B_TRUE;
8199 
8200         switch (dloa->dl_primitive) {
8201         case DL_ERROR_ACK:
8202                 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8203                     dl_primstr(dlea->dl_error_primitive)));
8204 
8205                 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8206                     char *, dl_primstr(dlea->dl_error_primitive),
8207                     ill_t *, ill);
8208 
8209                 switch (dlea->dl_error_primitive) {
8210                 case DL_DISABMULTI_REQ:
8211                         ill_dlpi_done(ill, dlea->dl_error_primitive);
8212                         break;
8213                 case DL_PROMISCON_REQ:
8214                 case DL_PROMISCOFF_REQ:
8215                 case DL_UNBIND_REQ:
8216                 case DL_ATTACH_REQ:
8217                 case DL_INFO_REQ:
8218                         ill_dlpi_done(ill, dlea->dl_error_primitive);
8219                         break;
8220                 case DL_NOTIFY_REQ:
8221                         ill_dlpi_done(ill, DL_NOTIFY_REQ);
8222                         log = B_FALSE;
8223                         break;
8224                 case DL_PHYS_ADDR_REQ:
8225                         /*
8226                          * For IPv6 only, there are two additional
8227                          * phys_addr_req's sent to the driver to get the
8228                          * IPv6 token and lla. This allows IP to acquire
8229                          * the hardware address format for a given interface
8230                          * without having built in knowledge of the hardware
8231                          * address. ill_phys_addr_pend keeps track of the last
8232                          * DL_PAR sent so we know which response we are
8233                          * dealing with. ill_dlpi_done will update
8234                          * ill_phys_addr_pend when it sends the next req.
8235                          * We don't complete the IOCTL until all three DL_PARs
8236                          * have been attempted, so set *_len to 0 and break.
8237                          */
8238                         paddrreq = ill->ill_phys_addr_pend;
8239                         ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8240                         if (paddrreq == DL_IPV6_TOKEN) {
8241                                 ill->ill_token_length = 0;
8242                                 log = B_FALSE;
8243                                 break;
8244                         } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8245                                 ill->ill_nd_lla_len = 0;
8246                                 log = B_FALSE;
8247                                 break;
8248                         }
8249                         /*
8250                          * Something went wrong with the DL_PHYS_ADDR_REQ.
8251                          * We presumably have an IOCTL hanging out waiting
8252                          * for completion. Find it and complete the IOCTL
8253                          * with the error noted.
8254                          * However, ill_dl_phys was called on an ill queue
8255                          * (from SIOCSLIFNAME), thus conn_pending_ill is not
8256                          * set. But the ioctl is known to be pending on ill_wq.
8257                          */
8258                         if (!ill->ill_ifname_pending)
8259                                 break;
8260                         ill->ill_ifname_pending = 0;
8261                         if (!ioctl_aborted)
8262                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8263                         if (mp1 != NULL) {
8264                                 /*
8265                                  * This operation (SIOCSLIFNAME) must have
8266                                  * happened on the ill. Assert there is no conn
8267                                  */
8268                                 ASSERT(connp == NULL);
8269                                 q = ill->ill_wq;
8270                         }
8271                         break;
8272                 case DL_BIND_REQ:
8273                         ill_dlpi_done(ill, DL_BIND_REQ);
8274                         if (ill->ill_ifname_pending)
8275                                 break;
8276                         mutex_enter(&ill->ill_lock);
8277                         ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8278                         mutex_exit(&ill->ill_lock);
8279                         /*
8280                          * Something went wrong with the bind.  We presumably
8281                          * have an IOCTL hanging out waiting for completion.
8282                          * Find it, take down the interface that was coming
8283                          * up, and complete the IOCTL with the error noted.
8284                          */
8285                         if (!ioctl_aborted)
8286                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8287                         if (mp1 != NULL) {
8288                                 /*
8289                                  * This might be a result of a DL_NOTE_REPLUMB
8290                                  * notification. In that case, connp is NULL.
8291                                  */
8292                                 if (connp != NULL)
8293                                         q = CONNP_TO_WQ(connp);
8294 
8295                                 (void) ipif_down(ipif, NULL, NULL);
8296                                 /* error is set below the switch */
8297                         }
8298                         break;
8299                 case DL_ENABMULTI_REQ:
8300                         ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8301 
8302                         if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8303                                 ill->ill_dlpi_multicast_state = IDS_FAILED;
8304                         if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8305 
8306                                 printf("ip: joining multicasts failed (%d)"
8307                                     " on %s - will use link layer "
8308                                     "broadcasts for multicast\n",
8309                                     dlea->dl_errno, ill->ill_name);
8310 
8311                                 /*
8312                                  * Set up for multi_bcast; We are the
8313                                  * writer, so ok to access ill->ill_ipif
8314                                  * without any lock.
8315                                  */
8316                                 mutex_enter(&ill->ill_phyint->phyint_lock);
8317                                 ill->ill_phyint->phyint_flags |=
8318                                     PHYI_MULTI_BCAST;
8319                                 mutex_exit(&ill->ill_phyint->phyint_lock);
8320 
8321                         }
8322                         freemsg(mp);    /* Don't want to pass this up */
8323                         return;
8324                 case DL_CAPABILITY_REQ:
8325                         ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8326                             "DL_CAPABILITY REQ\n"));
8327                         if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8328                                 ill->ill_dlpi_capab_state = IDCS_FAILED;
8329                         ill_capability_done(ill);
8330                         freemsg(mp);
8331                         return;
8332                 }
8333                 /*
8334                  * Note the error for IOCTL completion (mp1 is set when
8335                  * ready to complete ioctl). If ill_ifname_pending_err is
8336                  * set, an error occured during plumbing (ill_ifname_pending),
8337                  * so we want to report that error.
8338                  *
8339                  * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8340                  * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8341                  * expected to get errack'd if the driver doesn't support
8342                  * these flags (e.g. ethernet). log will be set to B_FALSE
8343                  * if these error conditions are encountered.
8344                  */
8345                 if (mp1 != NULL) {
8346                         if (ill->ill_ifname_pending_err != 0)  {
8347                                 err = ill->ill_ifname_pending_err;
8348                                 ill->ill_ifname_pending_err = 0;
8349                         } else {
8350                                 err = dlea->dl_unix_errno ?
8351                                     dlea->dl_unix_errno : ENXIO;
8352                         }
8353                 /*
8354                  * If we're plumbing an interface and an error hasn't already
8355                  * been saved, set ill_ifname_pending_err to the error passed
8356                  * up. Ignore the error if log is B_FALSE (see comment above).
8357                  */
8358                 } else if (log && ill->ill_ifname_pending &&
8359                     ill->ill_ifname_pending_err == 0) {
8360                         ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8361                             dlea->dl_unix_errno : ENXIO;
8362                 }
8363 
8364                 if (log)
8365                         ip_dlpi_error(ill, dlea->dl_error_primitive,
8366                             dlea->dl_errno, dlea->dl_unix_errno);
8367                 break;
8368         case DL_CAPABILITY_ACK:
8369                 ill_capability_ack(ill, mp);
8370                 /*
8371                  * The message has been handed off to ill_capability_ack
8372                  * and must not be freed below
8373                  */
8374                 mp = NULL;
8375                 break;
8376 
8377         case DL_INFO_ACK:
8378                 /* Call a routine to handle this one. */
8379                 ill_dlpi_done(ill, DL_INFO_REQ);
8380                 ip_ll_subnet_defaults(ill, mp);
8381                 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8382                 return;
8383         case DL_BIND_ACK:
8384                 /*
8385                  * We should have an IOCTL waiting on this unless
8386                  * sent by ill_dl_phys, in which case just return
8387                  */
8388                 ill_dlpi_done(ill, DL_BIND_REQ);
8389 
8390                 if (ill->ill_ifname_pending) {
8391                         DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8392                             ill_t *, ill, mblk_t *, mp);
8393                         break;
8394                 }
8395                 mutex_enter(&ill->ill_lock);
8396                 ill->ill_dl_up = 1;
8397                 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8398                 mutex_exit(&ill->ill_lock);
8399 
8400                 if (!ioctl_aborted)
8401                         mp1 = ipsq_pending_mp_get(ipsq, &connp);
8402                 if (mp1 == NULL) {
8403                         DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8404                         break;
8405                 }
8406                 /*
8407                  * mp1 was added by ill_dl_up(). if that is a result of
8408                  * a DL_NOTE_REPLUMB notification, connp could be NULL.
8409                  */
8410                 if (connp != NULL)
8411                         q = CONNP_TO_WQ(connp);
8412                 /*
8413                  * We are exclusive. So nothing can change even after
8414                  * we get the pending mp.
8415                  */
8416                 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8417                 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8418                 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8419 
8420                 /*
8421                  * Now bring up the resolver; when that is complete, we'll
8422                  * create IREs.  Note that we intentionally mirror what
8423                  * ipif_up() would have done, because we got here by way of
8424                  * ill_dl_up(), which stopped ipif_up()'s processing.
8425                  */
8426                 if (ill->ill_isv6) {
8427                         /*
8428                          * v6 interfaces.
8429                          * Unlike ARP which has to do another bind
8430                          * and attach, once we get here we are
8431                          * done with NDP
8432                          */
8433                         (void) ipif_resolver_up(ipif, Res_act_initial);
8434                         if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8435                                 err = ipif_up_done_v6(ipif);
8436                 } else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8437                         /*
8438                          * ARP and other v4 external resolvers.
8439                          * Leave the pending mblk intact so that
8440                          * the ioctl completes in ip_rput().
8441                          */
8442                         if (connp != NULL)
8443                                 mutex_enter(&connp->conn_lock);
8444                         mutex_enter(&ill->ill_lock);
8445                         success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8446                         mutex_exit(&ill->ill_lock);
8447                         if (connp != NULL)
8448                                 mutex_exit(&connp->conn_lock);
8449                         if (success) {
8450                                 err = ipif_resolver_up(ipif, Res_act_initial);
8451                                 if (err == EINPROGRESS) {
8452                                         freemsg(mp);
8453                                         return;
8454                                 }
8455                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8456                         } else {
8457                                 /* The conn has started closing */
8458                                 err = EINTR;
8459                         }
8460                 } else {
8461                         /*
8462                          * This one is complete. Reply to pending ioctl.
8463                          */
8464                         (void) ipif_resolver_up(ipif, Res_act_initial);
8465                         err = ipif_up_done(ipif);
8466                 }
8467 
8468                 if ((err == 0) && (ill->ill_up_ipifs)) {
8469                         err = ill_up_ipifs(ill, q, mp1);
8470                         if (err == EINPROGRESS) {
8471                                 freemsg(mp);
8472                                 return;
8473                         }
8474                 }
8475 
8476                 /*
8477                  * If we have a moved ipif to bring up, and everything has
8478                  * succeeded to this point, bring it up on the IPMP ill.
8479                  * Otherwise, leave it down -- the admin can try to bring it
8480                  * up by hand if need be.
8481                  */
8482                 if (ill->ill_move_ipif != NULL) {
8483                         if (err != 0) {
8484                                 ill->ill_move_ipif = NULL;
8485                         } else {
8486                                 ipif = ill->ill_move_ipif;
8487                                 ill->ill_move_ipif = NULL;
8488                                 err = ipif_up(ipif, q, mp1);
8489                                 if (err == EINPROGRESS) {
8490                                         freemsg(mp);
8491                                         return;
8492                                 }
8493                         }
8494                 }
8495                 break;
8496 
8497         case DL_NOTIFY_IND: {
8498                 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8499                 uint_t orig_mtu, orig_mc_mtu;
8500 
8501                 switch (notify->dl_notification) {
8502                 case DL_NOTE_PHYS_ADDR:
8503                         err = ill_set_phys_addr(ill, mp);
8504                         break;
8505 
8506                 case DL_NOTE_REPLUMB:
8507                         /*
8508                          * Directly return after calling ill_replumb().
8509                          * Note that we should not free mp as it is reused
8510                          * in the ill_replumb() function.
8511                          */
8512                         err = ill_replumb(ill, mp);
8513                         return;
8514 
8515                 case DL_NOTE_FASTPATH_FLUSH:
8516                         nce_flush(ill, B_FALSE);
8517                         break;
8518 
8519                 case DL_NOTE_SDU_SIZE:
8520                 case DL_NOTE_SDU_SIZE2:
8521                         /*
8522                          * The dce and fragmentation code can cope with
8523                          * this changing while packets are being sent.
8524                          * When packets are sent ip_output will discover
8525                          * a change.
8526                          *
8527                          * Change the MTU size of the interface.
8528                          */
8529                         mutex_enter(&ill->ill_lock);
8530                         orig_mtu = ill->ill_mtu;
8531                         orig_mc_mtu = ill->ill_mc_mtu;
8532                         switch (notify->dl_notification) {
8533                         case DL_NOTE_SDU_SIZE:
8534                                 ill->ill_current_frag =
8535                                     (uint_t)notify->dl_data;
8536                                 ill->ill_mc_mtu = (uint_t)notify->dl_data;
8537                                 break;
8538                         case DL_NOTE_SDU_SIZE2:
8539                                 ill->ill_current_frag =
8540                                     (uint_t)notify->dl_data1;
8541                                 ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8542                                 break;
8543                         }
8544                         if (ill->ill_current_frag > ill->ill_max_frag)
8545                                 ill->ill_max_frag = ill->ill_current_frag;
8546 
8547                         if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8548                                 ill->ill_mtu = ill->ill_current_frag;
8549 
8550                                 /*
8551                                  * If ill_user_mtu was set (via
8552                                  * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8553                                  */
8554                                 if (ill->ill_user_mtu != 0 &&
8555                                     ill->ill_user_mtu < ill->ill_mtu)
8556                                         ill->ill_mtu = ill->ill_user_mtu;
8557 
8558                                 if (ill->ill_user_mtu != 0 &&
8559                                     ill->ill_user_mtu < ill->ill_mc_mtu)
8560                                         ill->ill_mc_mtu = ill->ill_user_mtu;
8561 
8562                                 if (ill->ill_isv6) {
8563                                         if (ill->ill_mtu < IPV6_MIN_MTU)
8564                                                 ill->ill_mtu = IPV6_MIN_MTU;
8565                                         if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8566                                                 ill->ill_mc_mtu = IPV6_MIN_MTU;
8567                                 } else {
8568                                         if (ill->ill_mtu < IP_MIN_MTU)
8569                                                 ill->ill_mtu = IP_MIN_MTU;
8570                                         if (ill->ill_mc_mtu < IP_MIN_MTU)
8571                                                 ill->ill_mc_mtu = IP_MIN_MTU;
8572                                 }
8573                         } else if (ill->ill_mc_mtu > ill->ill_mtu) {
8574                                 ill->ill_mc_mtu = ill->ill_mtu;
8575                         }
8576 
8577                         mutex_exit(&ill->ill_lock);
8578                         /*
8579                          * Make sure all dce_generation checks find out
8580                          * that ill_mtu/ill_mc_mtu has changed.
8581                          */
8582                         if (orig_mtu != ill->ill_mtu ||
8583                             orig_mc_mtu != ill->ill_mc_mtu) {
8584                                 dce_increment_all_generations(ill->ill_isv6,
8585                                     ill->ill_ipst);
8586                         }
8587 
8588                         /*
8589                          * Refresh IPMP meta-interface MTU if necessary.
8590                          */
8591                         if (IS_UNDER_IPMP(ill))
8592                                 ipmp_illgrp_refresh_mtu(ill->ill_grp);
8593                         break;
8594 
8595                 case DL_NOTE_LINK_UP:
8596                 case DL_NOTE_LINK_DOWN: {
8597                         /*
8598                          * We are writer. ill / phyint / ipsq assocs stable.
8599                          * The RUNNING flag reflects the state of the link.
8600                          */
8601                         phyint_t *phyint = ill->ill_phyint;
8602                         uint64_t new_phyint_flags;
8603                         boolean_t changed = B_FALSE;
8604                         boolean_t went_up;
8605 
8606                         went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8607                         mutex_enter(&phyint->phyint_lock);
8608 
8609                         new_phyint_flags = went_up ?
8610                             phyint->phyint_flags | PHYI_RUNNING :
8611                             phyint->phyint_flags & ~PHYI_RUNNING;
8612 
8613                         if (IS_IPMP(ill)) {
8614                                 new_phyint_flags = went_up ?
8615                                     new_phyint_flags & ~PHYI_FAILED :
8616                                     new_phyint_flags | PHYI_FAILED;
8617                         }
8618 
8619                         if (new_phyint_flags != phyint->phyint_flags) {
8620                                 phyint->phyint_flags = new_phyint_flags;
8621                                 changed = B_TRUE;
8622                         }
8623                         mutex_exit(&phyint->phyint_lock);
8624                         /*
8625                          * ill_restart_dad handles the DAD restart and routing
8626                          * socket notification logic.
8627                          */
8628                         if (changed) {
8629                                 ill_restart_dad(phyint->phyint_illv4, went_up);
8630                                 ill_restart_dad(phyint->phyint_illv6, went_up);
8631                         }
8632                         break;
8633                 }
8634                 case DL_NOTE_PROMISC_ON_PHYS: {
8635                         phyint_t *phyint = ill->ill_phyint;
8636 
8637                         mutex_enter(&phyint->phyint_lock);
8638                         phyint->phyint_flags |= PHYI_PROMISC;
8639                         mutex_exit(&phyint->phyint_lock);
8640                         break;
8641                 }
8642                 case DL_NOTE_PROMISC_OFF_PHYS: {
8643                         phyint_t *phyint = ill->ill_phyint;
8644 
8645                         mutex_enter(&phyint->phyint_lock);
8646                         phyint->phyint_flags &= ~PHYI_PROMISC;
8647                         mutex_exit(&phyint->phyint_lock);
8648                         break;
8649                 }
8650                 case DL_NOTE_CAPAB_RENEG:
8651                         /*
8652                          * Something changed on the driver side.
8653                          * It wants us to renegotiate the capabilities
8654                          * on this ill. One possible cause is the aggregation
8655                          * interface under us where a port got added or
8656                          * went away.
8657                          *
8658                          * If the capability negotiation is already done
8659                          * or is in progress, reset the capabilities and
8660                          * mark the ill's ill_capab_reneg to be B_TRUE,
8661                          * so that when the ack comes back, we can start
8662                          * the renegotiation process.
8663                          *
8664                          * Note that if ill_capab_reneg is already B_TRUE
8665                          * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8666                          * the capability resetting request has been sent
8667                          * and the renegotiation has not been started yet;
8668                          * nothing needs to be done in this case.
8669                          */
8670                         ipsq_current_start(ipsq, ill->ill_ipif, 0);
8671                         ill_capability_reset(ill, B_TRUE);
8672                         ipsq_current_finish(ipsq);
8673                         break;
8674 
8675                 case DL_NOTE_ALLOWED_IPS:
8676                         ill_set_allowed_ips(ill, mp);
8677                         break;
8678                 default:
8679                         ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8680                             "type 0x%x for DL_NOTIFY_IND\n",
8681                             notify->dl_notification));
8682                         break;
8683                 }
8684 
8685                 /*
8686                  * As this is an asynchronous operation, we
8687                  * should not call ill_dlpi_done
8688                  */
8689                 break;
8690         }
8691         case DL_NOTIFY_ACK: {
8692                 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8693 
8694                 if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8695                         ill->ill_note_link = 1;
8696                 ill_dlpi_done(ill, DL_NOTIFY_REQ);
8697                 break;
8698         }
8699         case DL_PHYS_ADDR_ACK: {
8700                 /*
8701                  * As part of plumbing the interface via SIOCSLIFNAME,
8702                  * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8703                  * whose answers we receive here.  As each answer is received,
8704                  * we call ill_dlpi_done() to dispatch the next request as
8705                  * we're processing the current one.  Once all answers have
8706                  * been received, we use ipsq_pending_mp_get() to dequeue the
8707                  * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
8708                  * is invoked from an ill queue, conn_oper_pending_ill is not
8709                  * available, but we know the ioctl is pending on ill_wq.)
8710                  */
8711                 uint_t  paddrlen, paddroff;
8712                 uint8_t *addr;
8713 
8714                 paddrreq = ill->ill_phys_addr_pend;
8715                 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8716                 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8717                 addr = mp->b_rptr + paddroff;
8718 
8719                 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8720                 if (paddrreq == DL_IPV6_TOKEN) {
8721                         /*
8722                          * bcopy to low-order bits of ill_token
8723                          *
8724                          * XXX Temporary hack - currently, all known tokens
8725                          * are 64 bits, so I'll cheat for the moment.
8726                          */
8727                         bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8728                         ill->ill_token_length = paddrlen;
8729                         break;
8730                 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8731                         ASSERT(ill->ill_nd_lla_mp == NULL);
8732                         ill_set_ndmp(ill, mp, paddroff, paddrlen);
8733                         mp = NULL;
8734                         break;
8735                 } else if (paddrreq == DL_CURR_DEST_ADDR) {
8736                         ASSERT(ill->ill_dest_addr_mp == NULL);
8737                         ill->ill_dest_addr_mp = mp;
8738                         ill->ill_dest_addr = addr;
8739                         mp = NULL;
8740                         if (ill->ill_isv6) {
8741                                 ill_setdesttoken(ill);
8742                                 ipif_setdestlinklocal(ill->ill_ipif);
8743                         }
8744                         break;
8745                 }
8746 
8747                 ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8748                 ASSERT(ill->ill_phys_addr_mp == NULL);
8749                 if (!ill->ill_ifname_pending)
8750                         break;
8751                 ill->ill_ifname_pending = 0;
8752                 if (!ioctl_aborted)
8753                         mp1 = ipsq_pending_mp_get(ipsq, &connp);
8754                 if (mp1 != NULL) {
8755                         ASSERT(connp == NULL);
8756                         q = ill->ill_wq;
8757                 }
8758                 /*
8759                  * If any error acks received during the plumbing sequence,
8760                  * ill_ifname_pending_err will be set. Break out and send up
8761                  * the error to the pending ioctl.
8762                  */
8763                 if (ill->ill_ifname_pending_err != 0) {
8764                         err = ill->ill_ifname_pending_err;
8765                         ill->ill_ifname_pending_err = 0;
8766                         break;
8767                 }
8768 
8769                 ill->ill_phys_addr_mp = mp;
8770                 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8771                 mp = NULL;
8772 
8773                 /*
8774                  * If paddrlen or ill_phys_addr_length is zero, the DLPI
8775                  * provider doesn't support physical addresses.  We check both
8776                  * paddrlen and ill_phys_addr_length because sppp (PPP) does
8777                  * not have physical addresses, but historically adversises a
8778                  * physical address length of 0 in its DL_INFO_ACK, but 6 in
8779                  * its DL_PHYS_ADDR_ACK.
8780                  */
8781                 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8782                         ill->ill_phys_addr = NULL;
8783                 } else if (paddrlen != ill->ill_phys_addr_length) {
8784                         ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8785                             paddrlen, ill->ill_phys_addr_length));
8786                         err = EINVAL;
8787                         break;
8788                 }
8789 
8790                 if (ill->ill_nd_lla_mp == NULL) {
8791                         if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8792                                 err = ENOMEM;
8793                                 break;
8794                         }
8795                         ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8796                 }
8797 
8798                 if (ill->ill_isv6) {
8799                         ill_setdefaulttoken(ill);
8800                         ipif_setlinklocal(ill->ill_ipif);
8801                 }
8802                 break;
8803         }
8804         case DL_OK_ACK:
8805                 ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8806                     dl_primstr((int)dloa->dl_correct_primitive),
8807                     dloa->dl_correct_primitive));
8808                 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8809                     char *, dl_primstr(dloa->dl_correct_primitive),
8810                     ill_t *, ill);
8811 
8812                 switch (dloa->dl_correct_primitive) {
8813                 case DL_ENABMULTI_REQ:
8814                 case DL_DISABMULTI_REQ:
8815                         ill_dlpi_done(ill, dloa->dl_correct_primitive);
8816                         break;
8817                 case DL_PROMISCON_REQ:
8818                 case DL_PROMISCOFF_REQ:
8819                 case DL_UNBIND_REQ:
8820                 case DL_ATTACH_REQ:
8821                         ill_dlpi_done(ill, dloa->dl_correct_primitive);
8822                         break;
8823                 }
8824                 break;
8825         default:
8826                 break;
8827         }
8828 
8829         freemsg(mp);
8830         if (mp1 == NULL)
8831                 return;
8832 
8833         /*
8834          * The operation must complete without EINPROGRESS since
8835          * ipsq_pending_mp_get() has removed the mblk (mp1).  Otherwise,
8836          * the operation will be stuck forever inside the IPSQ.
8837          */
8838         ASSERT(err != EINPROGRESS);
8839 
8840         DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8841             int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8842             ipif_t *, NULL);
8843 
8844         switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8845         case 0:
8846                 ipsq_current_finish(ipsq);
8847                 break;
8848 
8849         case SIOCSLIFNAME:
8850         case IF_UNITSEL: {
8851                 ill_t *ill_other = ILL_OTHER(ill);
8852 
8853                 /*
8854                  * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8855                  * ill has a peer which is in an IPMP group, then place ill
8856                  * into the same group.  One catch: although ifconfig plumbs
8857                  * the appropriate IPMP meta-interface prior to plumbing this
8858                  * ill, it is possible for multiple ifconfig applications to
8859                  * race (or for another application to adjust plumbing), in
8860                  * which case the IPMP meta-interface we need will be missing.
8861                  * If so, kick the phyint out of the group.
8862                  */
8863                 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8864                         ipmp_grp_t      *grp = ill->ill_phyint->phyint_grp;
8865                         ipmp_illgrp_t   *illg;
8866 
8867                         illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8868                         if (illg == NULL)
8869                                 ipmp_phyint_leave_grp(ill->ill_phyint);
8870                         else
8871                                 ipmp_ill_join_illgrp(ill, illg);
8872                 }
8873 
8874                 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8875                         ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8876                 else
8877                         ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8878                 break;
8879         }
8880         case SIOCLIFADDIF:
8881                 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8882                 break;
8883 
8884         default:
8885                 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8886                 break;
8887         }
8888 }
8889 
8890 /*
8891  * ip_rput_other is called by ip_rput to handle messages modifying the global
8892  * state in IP.  If 'ipsq' is non-NULL, caller is writer on it.
8893  */
8894 /* ARGSUSED */
8895 void
8896 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8897 {
8898         ill_t           *ill = q->q_ptr;
8899         struct iocblk   *iocp;
8900 
8901         ip1dbg(("ip_rput_other "));
8902         if (ipsq != NULL) {
8903                 ASSERT(IAM_WRITER_IPSQ(ipsq));
8904                 ASSERT(ipsq->ipsq_xop ==
8905                     ill->ill_phyint->phyint_ipsq->ipsq_xop);
8906         }
8907 
8908         switch (mp->b_datap->db_type) {
8909         case M_ERROR:
8910         case M_HANGUP:
8911                 /*
8912                  * The device has a problem.  We force the ILL down.  It can
8913                  * be brought up again manually using SIOCSIFFLAGS (via
8914                  * ifconfig or equivalent).
8915                  */
8916                 ASSERT(ipsq != NULL);
8917                 if (mp->b_rptr < mp->b_wptr)
8918                         ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8919                 if (ill->ill_error == 0)
8920                         ill->ill_error = ENXIO;
8921                 if (!ill_down_start(q, mp))
8922                         return;
8923                 ipif_all_down_tail(ipsq, q, mp, NULL);
8924                 break;
8925         case M_IOCNAK: {
8926                 iocp = (struct iocblk *)mp->b_rptr;
8927 
8928                 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8929                 /*
8930                  * If this was the first attempt, turn off the fastpath
8931                  * probing.
8932                  */
8933                 mutex_enter(&ill->ill_lock);
8934                 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8935                         ill->ill_dlpi_fastpath_state = IDS_FAILED;
8936                         mutex_exit(&ill->ill_lock);
8937                         /*
8938                          * don't flush the nce_t entries: we use them
8939                          * as an index to the ncec itself.
8940                          */
8941                         ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8942                             ill->ill_name));
8943                 } else {
8944                         mutex_exit(&ill->ill_lock);
8945                 }
8946                 freemsg(mp);
8947                 break;
8948         }
8949         default:
8950                 ASSERT(0);
8951                 break;
8952         }
8953 }
8954 
8955 /*
8956  * Update any source route, record route or timestamp options
8957  * When it fails it has consumed the message and BUMPed the MIB.
8958  */
8959 boolean_t
8960 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8961     ip_recv_attr_t *ira)
8962 {
8963         ipoptp_t        opts;
8964         uchar_t         *opt;
8965         uint8_t         optval;
8966         uint8_t         optlen;
8967         ipaddr_t        dst;
8968         ipaddr_t        ifaddr;
8969         uint32_t        ts;
8970         timestruc_t     now;
8971         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
8972 
8973         ip2dbg(("ip_forward_options\n"));
8974         dst = ipha->ipha_dst;
8975         for (optval = ipoptp_first(&opts, ipha);
8976             optval != IPOPT_EOL;
8977             optval = ipoptp_next(&opts)) {
8978                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
8979                 opt = opts.ipoptp_cur;
8980                 optlen = opts.ipoptp_len;
8981                 ip2dbg(("ip_forward_options: opt %d, len %d\n",
8982                     optval, opts.ipoptp_len));
8983                 switch (optval) {
8984                         uint32_t off;
8985                 case IPOPT_SSRR:
8986                 case IPOPT_LSRR:
8987                         /* Check if adminstratively disabled */
8988                         if (!ipst->ips_ip_forward_src_routed) {
8989                                 BUMP_MIB(dst_ill->ill_ip_mib,
8990                                     ipIfStatsForwProhibits);
8991                                 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
8992                                     mp, dst_ill);
8993                                 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
8994                                     ira);
8995                                 return (B_FALSE);
8996                         }
8997                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
8998                                 /*
8999                                  * Must be partial since ip_input_options
9000                                  * checked for strict.
9001                                  */
9002                                 break;
9003                         }
9004                         off = opt[IPOPT_OFFSET];
9005                         off--;
9006                 redo_srr:
9007                         if (optlen < IP_ADDR_LEN ||
9008                             off > optlen - IP_ADDR_LEN) {
9009                                 /* End of source route */
9010                                 ip1dbg((
9011                                     "ip_forward_options: end of SR\n"));
9012                                 break;
9013                         }
9014                         /* Pick a reasonable address on the outbound if */
9015                         ASSERT(dst_ill != NULL);
9016                         if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9017                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9018                             NULL) != 0) {
9019                                 /* No source! Shouldn't happen */
9020                                 ifaddr = INADDR_ANY;
9021                         }
9022                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9023                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9024                         ip1dbg(("ip_forward_options: next hop 0x%x\n",
9025                             ntohl(dst)));
9026 
9027                         /*
9028                          * Check if our address is present more than
9029                          * once as consecutive hops in source route.
9030                          */
9031                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9032                                 off += IP_ADDR_LEN;
9033                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9034                                 goto redo_srr;
9035                         }
9036                         ipha->ipha_dst = dst;
9037                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9038                         break;
9039                 case IPOPT_RR:
9040                         off = opt[IPOPT_OFFSET];
9041                         off--;
9042                         if (optlen < IP_ADDR_LEN ||
9043                             off > optlen - IP_ADDR_LEN) {
9044                                 /* No more room - ignore */
9045                                 ip1dbg((
9046                                     "ip_forward_options: end of RR\n"));
9047                                 break;
9048                         }
9049                         /* Pick a reasonable address on the outbound if */
9050                         ASSERT(dst_ill != NULL);
9051                         if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9052                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9053                             NULL) != 0) {
9054                                 /* No source! Shouldn't happen */
9055                                 ifaddr = INADDR_ANY;
9056                         }
9057                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9058                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9059                         break;
9060                 case IPOPT_TS:
9061                         /* Insert timestamp if there is room */
9062                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9063                         case IPOPT_TS_TSONLY:
9064                                 off = IPOPT_TS_TIMELEN;
9065                                 break;
9066                         case IPOPT_TS_PRESPEC:
9067                         case IPOPT_TS_PRESPEC_RFC791:
9068                                 /* Verify that the address matched */
9069                                 off = opt[IPOPT_OFFSET] - 1;
9070                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9071                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9072                                         /* Not for us */
9073                                         break;
9074                                 }
9075                                 /* FALLTHRU */
9076                         case IPOPT_TS_TSANDADDR:
9077                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9078                                 break;
9079                         default:
9080                                 /*
9081                                  * ip_*put_options should have already
9082                                  * dropped this packet.
9083                                  */
9084                                 cmn_err(CE_PANIC, "ip_forward_options: "
9085                                     "unknown IT - bug in ip_input_options?\n");
9086                                 return (B_TRUE);        /* Keep "lint" happy */
9087                         }
9088                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9089                                 /* Increase overflow counter */
9090                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9091                                 opt[IPOPT_POS_OV_FLG] =
9092                                     (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9093                                     (off << 4));
9094                                 break;
9095                         }
9096                         off = opt[IPOPT_OFFSET] - 1;
9097                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9098                         case IPOPT_TS_PRESPEC:
9099                         case IPOPT_TS_PRESPEC_RFC791:
9100                         case IPOPT_TS_TSANDADDR:
9101                                 /* Pick a reasonable addr on the outbound if */
9102                                 ASSERT(dst_ill != NULL);
9103                                 if (ip_select_source_v4(dst_ill, INADDR_ANY,
9104                                     dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9105                                     NULL, NULL) != 0) {
9106                                         /* No source! Shouldn't happen */
9107                                         ifaddr = INADDR_ANY;
9108                                 }
9109                                 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9110                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9111                                 /* FALLTHRU */
9112                         case IPOPT_TS_TSONLY:
9113                                 off = opt[IPOPT_OFFSET] - 1;
9114                                 /* Compute # of milliseconds since midnight */
9115                                 gethrestime(&now);
9116                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9117                                     now.tv_nsec / (NANOSEC / MILLISEC);
9118                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9119                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9120                                 break;
9121                         }
9122                         break;
9123                 }
9124         }
9125         return (B_TRUE);
9126 }
9127 
9128 /*
9129  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9130  * returns 'true' if there are still fragments left on the queue, in
9131  * which case we restart the timer.
9132  */
9133 void
9134 ill_frag_timer(void *arg)
9135 {
9136         ill_t   *ill = (ill_t *)arg;
9137         boolean_t frag_pending;
9138         ip_stack_t *ipst = ill->ill_ipst;
9139         time_t  timeout;
9140 
9141         mutex_enter(&ill->ill_lock);
9142         ASSERT(!ill->ill_fragtimer_executing);
9143         if (ill->ill_state_flags & ILL_CONDEMNED) {
9144                 ill->ill_frag_timer_id = 0;
9145                 mutex_exit(&ill->ill_lock);
9146                 return;
9147         }
9148         ill->ill_fragtimer_executing = 1;
9149         mutex_exit(&ill->ill_lock);
9150 
9151         timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9152             ipst->ips_ip_reassembly_timeout);
9153 
9154         frag_pending = ill_frag_timeout(ill, timeout);
9155 
9156         /*
9157          * Restart the timer, if we have fragments pending or if someone
9158          * wanted us to be scheduled again.
9159          */
9160         mutex_enter(&ill->ill_lock);
9161         ill->ill_fragtimer_executing = 0;
9162         ill->ill_frag_timer_id = 0;
9163         if (frag_pending || ill->ill_fragtimer_needrestart)
9164                 ill_frag_timer_start(ill);
9165         mutex_exit(&ill->ill_lock);
9166 }
9167 
9168 void
9169 ill_frag_timer_start(ill_t *ill)
9170 {
9171         ip_stack_t *ipst = ill->ill_ipst;
9172         clock_t timeo_ms;
9173 
9174         ASSERT(MUTEX_HELD(&ill->ill_lock));
9175 
9176         /* If the ill is closing or opening don't proceed */
9177         if (ill->ill_state_flags & ILL_CONDEMNED)
9178                 return;
9179 
9180         if (ill->ill_fragtimer_executing) {
9181                 /*
9182                  * ill_frag_timer is currently executing. Just record the
9183                  * the fact that we want the timer to be restarted.
9184                  * ill_frag_timer will post a timeout before it returns,
9185                  * ensuring it will be called again.
9186                  */
9187                 ill->ill_fragtimer_needrestart = 1;
9188                 return;
9189         }
9190 
9191         if (ill->ill_frag_timer_id == 0) {
9192                 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9193                     ipst->ips_ip_reassembly_timeout) * SECONDS;
9194 
9195                 /*
9196                  * The timer is neither running nor is the timeout handler
9197                  * executing. Post a timeout so that ill_frag_timer will be
9198                  * called
9199                  */
9200                 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9201                     MSEC_TO_TICK(timeo_ms >> 1));
9202                 ill->ill_fragtimer_needrestart = 0;
9203         }
9204 }
9205 
9206 /*
9207  * Update any source route, record route or timestamp options.
9208  * Check that we are at end of strict source route.
9209  * The options have already been checked for sanity in ip_input_options().
9210  */
9211 boolean_t
9212 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9213 {
9214         ipoptp_t        opts;
9215         uchar_t         *opt;
9216         uint8_t         optval;
9217         uint8_t         optlen;
9218         ipaddr_t        dst;
9219         ipaddr_t        ifaddr;
9220         uint32_t        ts;
9221         timestruc_t     now;
9222         ill_t           *ill = ira->ira_ill;
9223         ip_stack_t      *ipst = ill->ill_ipst;
9224 
9225         ip2dbg(("ip_input_local_options\n"));
9226 
9227         for (optval = ipoptp_first(&opts, ipha);
9228             optval != IPOPT_EOL;
9229             optval = ipoptp_next(&opts)) {
9230                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9231                 opt = opts.ipoptp_cur;
9232                 optlen = opts.ipoptp_len;
9233                 ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9234                     optval, optlen));
9235                 switch (optval) {
9236                         uint32_t off;
9237                 case IPOPT_SSRR:
9238                 case IPOPT_LSRR:
9239                         off = opt[IPOPT_OFFSET];
9240                         off--;
9241                         if (optlen < IP_ADDR_LEN ||
9242                             off > optlen - IP_ADDR_LEN) {
9243                                 /* End of source route */
9244                                 ip1dbg(("ip_input_local_options: end of SR\n"));
9245                                 break;
9246                         }
9247                         /*
9248                          * This will only happen if two consecutive entries
9249                          * in the source route contains our address or if
9250                          * it is a packet with a loose source route which
9251                          * reaches us before consuming the whole source route
9252                          */
9253                         ip1dbg(("ip_input_local_options: not end of SR\n"));
9254                         if (optval == IPOPT_SSRR) {
9255                                 goto bad_src_route;
9256                         }
9257                         /*
9258                          * Hack: instead of dropping the packet truncate the
9259                          * source route to what has been used by filling the
9260                          * rest with IPOPT_NOP.
9261                          */
9262                         opt[IPOPT_OLEN] = (uint8_t)off;
9263                         while (off < optlen) {
9264                                 opt[off++] = IPOPT_NOP;
9265                         }
9266                         break;
9267                 case IPOPT_RR:
9268                         off = opt[IPOPT_OFFSET];
9269                         off--;
9270                         if (optlen < IP_ADDR_LEN ||
9271                             off > optlen - IP_ADDR_LEN) {
9272                                 /* No more room - ignore */
9273                                 ip1dbg((
9274                                     "ip_input_local_options: end of RR\n"));
9275                                 break;
9276                         }
9277                         /* Pick a reasonable address on the outbound if */
9278                         if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9279                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9280                             NULL) != 0) {
9281                                 /* No source! Shouldn't happen */
9282                                 ifaddr = INADDR_ANY;
9283                         }
9284                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9285                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9286                         break;
9287                 case IPOPT_TS:
9288                         /* Insert timestamp if there is romm */
9289                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9290                         case IPOPT_TS_TSONLY:
9291                                 off = IPOPT_TS_TIMELEN;
9292                                 break;
9293                         case IPOPT_TS_PRESPEC:
9294                         case IPOPT_TS_PRESPEC_RFC791:
9295                                 /* Verify that the address matched */
9296                                 off = opt[IPOPT_OFFSET] - 1;
9297                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9298                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9299                                         /* Not for us */
9300                                         break;
9301                                 }
9302                                 /* FALLTHRU */
9303                         case IPOPT_TS_TSANDADDR:
9304                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9305                                 break;
9306                         default:
9307                                 /*
9308                                  * ip_*put_options should have already
9309                                  * dropped this packet.
9310                                  */
9311                                 cmn_err(CE_PANIC, "ip_input_local_options: "
9312                                     "unknown IT - bug in ip_input_options?\n");
9313                                 return (B_TRUE);        /* Keep "lint" happy */
9314                         }
9315                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9316                                 /* Increase overflow counter */
9317                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9318                                 opt[IPOPT_POS_OV_FLG] =
9319                                     (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9320                                     (off << 4));
9321                                 break;
9322                         }
9323                         off = opt[IPOPT_OFFSET] - 1;
9324                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9325                         case IPOPT_TS_PRESPEC:
9326                         case IPOPT_TS_PRESPEC_RFC791:
9327                         case IPOPT_TS_TSANDADDR:
9328                                 /* Pick a reasonable addr on the outbound if */
9329                                 if (ip_select_source_v4(ill, INADDR_ANY,
9330                                     ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9331                                     &ifaddr, NULL, NULL) != 0) {
9332                                         /* No source! Shouldn't happen */
9333                                         ifaddr = INADDR_ANY;
9334                                 }
9335                                 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9336                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9337                                 /* FALLTHRU */
9338                         case IPOPT_TS_TSONLY:
9339                                 off = opt[IPOPT_OFFSET] - 1;
9340                                 /* Compute # of milliseconds since midnight */
9341                                 gethrestime(&now);
9342                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9343                                     now.tv_nsec / (NANOSEC / MILLISEC);
9344                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9345                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9346                                 break;
9347                         }
9348                         break;
9349                 }
9350         }
9351         return (B_TRUE);
9352 
9353 bad_src_route:
9354         /* make sure we clear any indication of a hardware checksum */
9355         DB_CKSUMFLAGS(mp) = 0;
9356         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9357         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9358         return (B_FALSE);
9359 
9360 }
9361 
9362 /*
9363  * Process IP options in an inbound packet.  Always returns the nexthop.
9364  * Normally this is the passed in nexthop, but if there is an option
9365  * that effects the nexthop (such as a source route) that will be returned.
9366  * Sets *errorp if there is an error, in which case an ICMP error has been sent
9367  * and mp freed.
9368  */
9369 ipaddr_t
9370 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9371     ip_recv_attr_t *ira, int *errorp)
9372 {
9373         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
9374         ipoptp_t        opts;
9375         uchar_t         *opt;
9376         uint8_t         optval;
9377         uint8_t         optlen;
9378         intptr_t        code = 0;
9379         ire_t           *ire;
9380 
9381         ip2dbg(("ip_input_options\n"));
9382         *errorp = 0;
9383         for (optval = ipoptp_first(&opts, ipha);
9384             optval != IPOPT_EOL;
9385             optval = ipoptp_next(&opts)) {
9386                 opt = opts.ipoptp_cur;
9387                 optlen = opts.ipoptp_len;
9388                 ip2dbg(("ip_input_options: opt %d, len %d\n",
9389                     optval, optlen));
9390                 /*
9391                  * Note: we need to verify the checksum before we
9392                  * modify anything thus this routine only extracts the next
9393                  * hop dst from any source route.
9394                  */
9395                 switch (optval) {
9396                         uint32_t off;
9397                 case IPOPT_SSRR:
9398                 case IPOPT_LSRR:
9399                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9400                                 if (optval == IPOPT_SSRR) {
9401                                         ip1dbg(("ip_input_options: not next"
9402                                             " strict source route 0x%x\n",
9403                                             ntohl(dst)));
9404                                         code = (char *)&ipha->ipha_dst -
9405                                             (char *)ipha;
9406                                         goto param_prob; /* RouterReq's */
9407                                 }
9408                                 ip2dbg(("ip_input_options: "
9409                                     "not next source route 0x%x\n",
9410                                     ntohl(dst)));
9411                                 break;
9412                         }
9413 
9414                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9415                                 ip1dbg((
9416                                     "ip_input_options: bad option offset\n"));
9417                                 code = (char *)&opt[IPOPT_OLEN] -
9418                                     (char *)ipha;
9419                                 goto param_prob;
9420                         }
9421                         off = opt[IPOPT_OFFSET];
9422                         off--;
9423                 redo_srr:
9424                         if (optlen < IP_ADDR_LEN ||
9425                             off > optlen - IP_ADDR_LEN) {
9426                                 /* End of source route */
9427                                 ip1dbg(("ip_input_options: end of SR\n"));
9428                                 break;
9429                         }
9430                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9431                         ip1dbg(("ip_input_options: next hop 0x%x\n",
9432                             ntohl(dst)));
9433 
9434                         /*
9435                          * Check if our address is present more than
9436                          * once as consecutive hops in source route.
9437                          * XXX verify per-interface ip_forwarding
9438                          * for source route?
9439                          */
9440                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9441                                 off += IP_ADDR_LEN;
9442                                 goto redo_srr;
9443                         }
9444 
9445                         if (dst == htonl(INADDR_LOOPBACK)) {
9446                                 ip1dbg(("ip_input_options: loopback addr in "
9447                                     "source route!\n"));
9448                                 goto bad_src_route;
9449                         }
9450                         /*
9451                          * For strict: verify that dst is directly
9452                          * reachable.
9453                          */
9454                         if (optval == IPOPT_SSRR) {
9455                                 ire = ire_ftable_lookup_v4(dst, 0, 0,
9456                                     IRE_INTERFACE, NULL, ALL_ZONES,
9457                                     ira->ira_tsl,
9458                                     MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9459                                     NULL);
9460                                 if (ire == NULL) {
9461                                         ip1dbg(("ip_input_options: SSRR not "
9462                                             "directly reachable: 0x%x\n",
9463                                             ntohl(dst)));
9464                                         goto bad_src_route;
9465                                 }
9466                                 ire_refrele(ire);
9467                         }
9468                         /*
9469                          * Defer update of the offset and the record route
9470                          * until the packet is forwarded.
9471                          */
9472                         break;
9473                 case IPOPT_RR:
9474                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9475                                 ip1dbg((
9476                                     "ip_input_options: bad option offset\n"));
9477                                 code = (char *)&opt[IPOPT_OLEN] -
9478                                     (char *)ipha;
9479                                 goto param_prob;
9480                         }
9481                         break;
9482                 case IPOPT_TS:
9483                         /*
9484                          * Verify that length >= 5 and that there is either
9485                          * room for another timestamp or that the overflow
9486                          * counter is not maxed out.
9487                          */
9488                         code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9489                         if (optlen < IPOPT_MINLEN_IT) {
9490                                 goto param_prob;
9491                         }
9492                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9493                                 ip1dbg((
9494                                     "ip_input_options: bad option offset\n"));
9495                                 code = (char *)&opt[IPOPT_OFFSET] -
9496                                     (char *)ipha;
9497                                 goto param_prob;
9498                         }
9499                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9500                         case IPOPT_TS_TSONLY:
9501                                 off = IPOPT_TS_TIMELEN;
9502                                 break;
9503                         case IPOPT_TS_TSANDADDR:
9504                         case IPOPT_TS_PRESPEC:
9505                         case IPOPT_TS_PRESPEC_RFC791:
9506                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9507                                 break;
9508                         default:
9509                                 code = (char *)&opt[IPOPT_POS_OV_FLG] -
9510                                     (char *)ipha;
9511                                 goto param_prob;
9512                         }
9513                         if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9514                             (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9515                                 /*
9516                                  * No room and the overflow counter is 15
9517                                  * already.
9518                                  */
9519                                 goto param_prob;
9520                         }
9521                         break;
9522                 }
9523         }
9524 
9525         if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9526                 return (dst);
9527         }
9528 
9529         ip1dbg(("ip_input_options: error processing IP options."));
9530         code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9531 
9532 param_prob:
9533         /* make sure we clear any indication of a hardware checksum */
9534         DB_CKSUMFLAGS(mp) = 0;
9535         ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9536         icmp_param_problem(mp, (uint8_t)code, ira);
9537         *errorp = -1;
9538         return (dst);
9539 
9540 bad_src_route:
9541         /* make sure we clear any indication of a hardware checksum */
9542         DB_CKSUMFLAGS(mp) = 0;
9543         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9544         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9545         *errorp = -1;
9546         return (dst);
9547 }
9548 
9549 /*
9550  * IP & ICMP info in >=14 msg's ...
9551  *  - ip fixed part (mib2_ip_t)
9552  *  - icmp fixed part (mib2_icmp_t)
9553  *  - ipAddrEntryTable (ip 20)          all IPv4 ipifs
9554  *  - ipRouteEntryTable (ip 21)         all IPv4 IREs
9555  *  - ipNetToMediaEntryTable (ip 22)    all IPv4 Neighbor Cache entries
9556  *  - ipRouteAttributeTable (ip 102)    labeled routes
9557  *  - ip multicast membership (ip_member_t)
9558  *  - ip multicast source filtering (ip_grpsrc_t)
9559  *  - igmp fixed part (struct igmpstat)
9560  *  - multicast routing stats (struct mrtstat)
9561  *  - multicast routing vifs (array of struct vifctl)
9562  *  - multicast routing routes (array of struct mfcctl)
9563  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9564  *                                      One per ill plus one generic
9565  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9566  *                                      One per ill plus one generic
9567  *  - ipv6RouteEntry                    all IPv6 IREs
9568  *  - ipv6RouteAttributeTable (ip6 102) labeled routes
9569  *  - ipv6NetToMediaEntry               all IPv6 Neighbor Cache entries
9570  *  - ipv6AddrEntry                     all IPv6 ipifs
9571  *  - ipv6 multicast membership (ipv6_member_t)
9572  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
9573  *
9574  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9575  * already filled in by the caller.
9576  * If legacy_req is true then MIB structures needs to be truncated to their
9577  * legacy sizes before being returned.
9578  * Return value of 0 indicates that no messages were sent and caller
9579  * should free mpctl.
9580  */
9581 int
9582 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9583 {
9584         ip_stack_t *ipst;
9585         sctp_stack_t *sctps;
9586 
9587         if (q->q_next != NULL) {
9588                 ipst = ILLQ_TO_IPST(q);
9589         } else {
9590                 ipst = CONNQ_TO_IPST(q);
9591         }
9592         ASSERT(ipst != NULL);
9593         sctps = ipst->ips_netstack->netstack_sctp;
9594 
9595         if (mpctl == NULL || mpctl->b_cont == NULL) {
9596                 return (0);
9597         }
9598 
9599         /*
9600          * For the purposes of the (broken) packet shell use
9601          * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9602          * to make TCP and UDP appear first in the list of mib items.
9603          * TBD: We could expand this and use it in netstat so that
9604          * the kernel doesn't have to produce large tables (connections,
9605          * routes, etc) when netstat only wants the statistics or a particular
9606          * table.
9607          */
9608         if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9609                 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9610                         return (1);
9611                 }
9612         }
9613 
9614         if (level != MIB2_TCP) {
9615                 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9616                         return (1);
9617                 }
9618         }
9619 
9620         if (level != MIB2_UDP) {
9621                 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9622                         return (1);
9623                 }
9624         }
9625 
9626         if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9627             ipst, legacy_req)) == NULL) {
9628                 return (1);
9629         }
9630 
9631         if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9632             legacy_req)) == NULL) {
9633                 return (1);
9634         }
9635 
9636         if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9637                 return (1);
9638         }
9639 
9640         if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9641                 return (1);
9642         }
9643 
9644         if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9645                 return (1);
9646         }
9647 
9648         if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9649                 return (1);
9650         }
9651 
9652         if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9653             legacy_req)) == NULL) {
9654                 return (1);
9655         }
9656 
9657         if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9658             legacy_req)) == NULL) {
9659                 return (1);
9660         }
9661 
9662         if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9663                 return (1);
9664         }
9665 
9666         if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9667                 return (1);
9668         }
9669 
9670         if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9671                 return (1);
9672         }
9673 
9674         if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9675                 return (1);
9676         }
9677 
9678         if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9679                 return (1);
9680         }
9681 
9682         if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9683                 return (1);
9684         }
9685 
9686         mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9687         if (mpctl == NULL)
9688                 return (1);
9689 
9690         mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9691         if (mpctl == NULL)
9692                 return (1);
9693 
9694         if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9695                 return (1);
9696         }
9697         if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9698                 return (1);
9699         }
9700         freemsg(mpctl);
9701         return (1);
9702 }
9703 
9704 /* Get global (legacy) IPv4 statistics */
9705 static mblk_t *
9706 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9707     ip_stack_t *ipst, boolean_t legacy_req)
9708 {
9709         mib2_ip_t               old_ip_mib;
9710         struct opthdr           *optp;
9711         mblk_t                  *mp2ctl;
9712         mib2_ipAddrEntry_t      mae;
9713 
9714         /*
9715          * make a copy of the original message
9716          */
9717         mp2ctl = copymsg(mpctl);
9718 
9719         /* fixed length IP structure... */
9720         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9721         optp->level = MIB2_IP;
9722         optp->name = 0;
9723         SET_MIB(old_ip_mib.ipForwarding,
9724             (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9725         SET_MIB(old_ip_mib.ipDefaultTTL,
9726             (uint32_t)ipst->ips_ip_def_ttl);
9727         SET_MIB(old_ip_mib.ipReasmTimeout,
9728             ipst->ips_ip_reassembly_timeout);
9729         SET_MIB(old_ip_mib.ipAddrEntrySize,
9730             (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9731             sizeof (mib2_ipAddrEntry_t));
9732         SET_MIB(old_ip_mib.ipRouteEntrySize,
9733             sizeof (mib2_ipRouteEntry_t));
9734         SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9735             sizeof (mib2_ipNetToMediaEntry_t));
9736         SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9737         SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9738         SET_MIB(old_ip_mib.ipRouteAttributeSize,
9739             sizeof (mib2_ipAttributeEntry_t));
9740         SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9741         SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9742 
9743         /*
9744          * Grab the statistics from the new IP MIB
9745          */
9746         SET_MIB(old_ip_mib.ipInReceives,
9747             (uint32_t)ipmib->ipIfStatsHCInReceives);
9748         SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9749         SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9750         SET_MIB(old_ip_mib.ipForwDatagrams,
9751             (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9752         SET_MIB(old_ip_mib.ipInUnknownProtos,
9753             ipmib->ipIfStatsInUnknownProtos);
9754         SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9755         SET_MIB(old_ip_mib.ipInDelivers,
9756             (uint32_t)ipmib->ipIfStatsHCInDelivers);
9757         SET_MIB(old_ip_mib.ipOutRequests,
9758             (uint32_t)ipmib->ipIfStatsHCOutRequests);
9759         SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9760         SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9761         SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9762         SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9763         SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9764         SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9765         SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9766         SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9767 
9768         /* ipRoutingDiscards is not being used */
9769         SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9770         SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9771         SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9772         SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9773         SET_MIB(old_ip_mib.ipReasmDuplicates,
9774             ipmib->ipIfStatsReasmDuplicates);
9775         SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9776         SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9777         SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9778         SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9779         SET_MIB(old_ip_mib.rawipInOverflows,
9780             ipmib->rawipIfStatsInOverflows);
9781 
9782         SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9783         SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9784         SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9785         SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9786         SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9787             ipmib->ipIfStatsOutSwitchIPVersion);
9788 
9789         if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9790             (int)sizeof (old_ip_mib))) {
9791                 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9792                     (uint_t)sizeof (old_ip_mib)));
9793         }
9794 
9795         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9796         ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9797             (int)optp->level, (int)optp->name, (int)optp->len));
9798         qreply(q, mpctl);
9799         return (mp2ctl);
9800 }
9801 
9802 /* Per interface IPv4 statistics */
9803 static mblk_t *
9804 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9805     boolean_t legacy_req)
9806 {
9807         struct opthdr           *optp;
9808         mblk_t                  *mp2ctl;
9809         ill_t                   *ill;
9810         ill_walk_context_t      ctx;
9811         mblk_t                  *mp_tail = NULL;
9812         mib2_ipIfStatsEntry_t   global_ip_mib;
9813         mib2_ipAddrEntry_t      mae;
9814 
9815         /*
9816          * Make a copy of the original message
9817          */
9818         mp2ctl = copymsg(mpctl);
9819 
9820         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9821         optp->level = MIB2_IP;
9822         optp->name = MIB2_IP_TRAFFIC_STATS;
9823         /* Include "unknown interface" ip_mib */
9824         ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9825         ipst->ips_ip_mib.ipIfStatsIfIndex =
9826             MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9827         SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9828             (ipst->ips_ip_forwarding ? 1 : 2));
9829         SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9830             (uint32_t)ipst->ips_ip_def_ttl);
9831         SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9832             sizeof (mib2_ipIfStatsEntry_t));
9833         SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9834             sizeof (mib2_ipAddrEntry_t));
9835         SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9836             sizeof (mib2_ipRouteEntry_t));
9837         SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9838             sizeof (mib2_ipNetToMediaEntry_t));
9839         SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9840             sizeof (ip_member_t));
9841         SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9842             sizeof (ip_grpsrc_t));
9843 
9844         bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9845 
9846         if (legacy_req) {
9847                 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9848                     LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9849         }
9850 
9851         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9852             (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9853                 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9854                     "failed to allocate %u bytes\n",
9855                     (uint_t)sizeof (global_ip_mib)));
9856         }
9857 
9858         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9859         ill = ILL_START_WALK_V4(&ctx, ipst);
9860         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9861                 ill->ill_ip_mib->ipIfStatsIfIndex =
9862                     ill->ill_phyint->phyint_ifindex;
9863                 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9864                     (ipst->ips_ip_forwarding ? 1 : 2));
9865                 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9866                     (uint32_t)ipst->ips_ip_def_ttl);
9867 
9868                 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9869                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9870                     (char *)ill->ill_ip_mib,
9871                     (int)sizeof (*ill->ill_ip_mib))) {
9872                         ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9873                             "failed to allocate %u bytes\n",
9874                             (uint_t)sizeof (*ill->ill_ip_mib)));
9875                 }
9876         }
9877         rw_exit(&ipst->ips_ill_g_lock);
9878 
9879         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9880         ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9881             "level %d, name %d, len %d\n",
9882             (int)optp->level, (int)optp->name, (int)optp->len));
9883         qreply(q, mpctl);
9884 
9885         if (mp2ctl == NULL)
9886                 return (NULL);
9887 
9888         return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9889             legacy_req));
9890 }
9891 
9892 /* Global IPv4 ICMP statistics */
9893 static mblk_t *
9894 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9895 {
9896         struct opthdr           *optp;
9897         mblk_t                  *mp2ctl;
9898 
9899         /*
9900          * Make a copy of the original message
9901          */
9902         mp2ctl = copymsg(mpctl);
9903 
9904         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9905         optp->level = MIB2_ICMP;
9906         optp->name = 0;
9907         if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9908             (int)sizeof (ipst->ips_icmp_mib))) {
9909                 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9910                     (uint_t)sizeof (ipst->ips_icmp_mib)));
9911         }
9912         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9913         ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9914             (int)optp->level, (int)optp->name, (int)optp->len));
9915         qreply(q, mpctl);
9916         return (mp2ctl);
9917 }
9918 
9919 /* Global IPv4 IGMP statistics */
9920 static mblk_t *
9921 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9922 {
9923         struct opthdr           *optp;
9924         mblk_t                  *mp2ctl;
9925 
9926         /*
9927          * make a copy of the original message
9928          */
9929         mp2ctl = copymsg(mpctl);
9930 
9931         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9932         optp->level = EXPER_IGMP;
9933         optp->name = 0;
9934         if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9935             (int)sizeof (ipst->ips_igmpstat))) {
9936                 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9937                     (uint_t)sizeof (ipst->ips_igmpstat)));
9938         }
9939         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9940         ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9941             (int)optp->level, (int)optp->name, (int)optp->len));
9942         qreply(q, mpctl);
9943         return (mp2ctl);
9944 }
9945 
9946 /* Global IPv4 Multicast Routing statistics */
9947 static mblk_t *
9948 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9949 {
9950         struct opthdr           *optp;
9951         mblk_t                  *mp2ctl;
9952 
9953         /*
9954          * make a copy of the original message
9955          */
9956         mp2ctl = copymsg(mpctl);
9957 
9958         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9959         optp->level = EXPER_DVMRP;
9960         optp->name = 0;
9961         if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
9962                 ip0dbg(("ip_mroute_stats: failed\n"));
9963         }
9964         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9965         ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
9966             (int)optp->level, (int)optp->name, (int)optp->len));
9967         qreply(q, mpctl);
9968         return (mp2ctl);
9969 }
9970 
9971 /* IPv4 address information */
9972 static mblk_t *
9973 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9974     boolean_t legacy_req)
9975 {
9976         struct opthdr           *optp;
9977         mblk_t                  *mp2ctl;
9978         mblk_t                  *mp_tail = NULL;
9979         ill_t                   *ill;
9980         ipif_t                  *ipif;
9981         uint_t                  bitval;
9982         mib2_ipAddrEntry_t      mae;
9983         size_t                  mae_size;
9984         zoneid_t                zoneid;
9985         ill_walk_context_t      ctx;
9986 
9987         /*
9988          * make a copy of the original message
9989          */
9990         mp2ctl = copymsg(mpctl);
9991 
9992         mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9993             sizeof (mib2_ipAddrEntry_t);
9994 
9995         /* ipAddrEntryTable */
9996 
9997         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9998         optp->level = MIB2_IP;
9999         optp->name = MIB2_IP_ADDR;
10000         zoneid = Q_TO_CONN(q)->conn_zoneid;
10001 
10002         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10003         ill = ILL_START_WALK_V4(&ctx, ipst);
10004         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10005                 for (ipif = ill->ill_ipif; ipif != NULL;
10006                     ipif = ipif->ipif_next) {
10007                         if (ipif->ipif_zoneid != zoneid &&
10008                             ipif->ipif_zoneid != ALL_ZONES)
10009                                 continue;
10010                         /* Sum of count from dead IRE_LO* and our current */
10011                         mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10012                         if (ipif->ipif_ire_local != NULL) {
10013                                 mae.ipAdEntInfo.ae_ibcnt +=
10014                                     ipif->ipif_ire_local->ire_ib_pkt_count;
10015                         }
10016                         mae.ipAdEntInfo.ae_obcnt = 0;
10017                         mae.ipAdEntInfo.ae_focnt = 0;
10018 
10019                         ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10020                             OCTET_LENGTH);
10021                         mae.ipAdEntIfIndex.o_length =
10022                             mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10023                         mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10024                         mae.ipAdEntNetMask = ipif->ipif_net_mask;
10025                         mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10026                         mae.ipAdEntInfo.ae_subnet_len =
10027                             ip_mask_to_plen(ipif->ipif_net_mask);
10028                         mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10029                         for (bitval = 1;
10030                             bitval &&
10031                             !(bitval & ipif->ipif_brd_addr);
10032                             bitval <<= 1)
10033                                 noop;
10034                         mae.ipAdEntBcastAddr = bitval;
10035                         mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10036                         mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10037                         mae.ipAdEntInfo.ae_metric  = ipif->ipif_ill->ill_metric;
10038                         mae.ipAdEntInfo.ae_broadcast_addr =
10039                             ipif->ipif_brd_addr;
10040                         mae.ipAdEntInfo.ae_pp_dst_addr =
10041                             ipif->ipif_pp_dst_addr;
10042                         mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10043                             ill->ill_flags | ill->ill_phyint->phyint_flags;
10044                         mae.ipAdEntRetransmitTime =
10045                             ill->ill_reachable_retrans_time;
10046 
10047                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10048                             (char *)&mae, (int)mae_size)) {
10049                                 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10050                                     "allocate %u bytes\n", (uint_t)mae_size));
10051                         }
10052                 }
10053         }
10054         rw_exit(&ipst->ips_ill_g_lock);
10055 
10056         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10057         ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10058             (int)optp->level, (int)optp->name, (int)optp->len));
10059         qreply(q, mpctl);
10060         return (mp2ctl);
10061 }
10062 
10063 /* IPv6 address information */
10064 static mblk_t *
10065 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10066     boolean_t legacy_req)
10067 {
10068         struct opthdr           *optp;
10069         mblk_t                  *mp2ctl;
10070         mblk_t                  *mp_tail = NULL;
10071         ill_t                   *ill;
10072         ipif_t                  *ipif;
10073         mib2_ipv6AddrEntry_t    mae6;
10074         size_t                  mae6_size;
10075         zoneid_t                zoneid;
10076         ill_walk_context_t      ctx;
10077 
10078         /*
10079          * make a copy of the original message
10080          */
10081         mp2ctl = copymsg(mpctl);
10082 
10083         mae6_size = (legacy_req) ?
10084             LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10085             sizeof (mib2_ipv6AddrEntry_t);
10086 
10087         /* ipv6AddrEntryTable */
10088 
10089         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10090         optp->level = MIB2_IP6;
10091         optp->name = MIB2_IP6_ADDR;
10092         zoneid = Q_TO_CONN(q)->conn_zoneid;
10093 
10094         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10095         ill = ILL_START_WALK_V6(&ctx, ipst);
10096         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10097                 for (ipif = ill->ill_ipif; ipif != NULL;
10098                     ipif = ipif->ipif_next) {
10099                         if (ipif->ipif_zoneid != zoneid &&
10100                             ipif->ipif_zoneid != ALL_ZONES)
10101                                 continue;
10102                         /* Sum of count from dead IRE_LO* and our current */
10103                         mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10104                         if (ipif->ipif_ire_local != NULL) {
10105                                 mae6.ipv6AddrInfo.ae_ibcnt +=
10106                                     ipif->ipif_ire_local->ire_ib_pkt_count;
10107                         }
10108                         mae6.ipv6AddrInfo.ae_obcnt = 0;
10109                         mae6.ipv6AddrInfo.ae_focnt = 0;
10110 
10111                         ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10112                             OCTET_LENGTH);
10113                         mae6.ipv6AddrIfIndex.o_length =
10114                             mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10115                         mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10116                         mae6.ipv6AddrPfxLength =
10117                             ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10118                         mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10119                         mae6.ipv6AddrInfo.ae_subnet_len =
10120                             mae6.ipv6AddrPfxLength;
10121                         mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10122 
10123                         /* Type: stateless(1), stateful(2), unknown(3) */
10124                         if (ipif->ipif_flags & IPIF_ADDRCONF)
10125                                 mae6.ipv6AddrType = 1;
10126                         else
10127                                 mae6.ipv6AddrType = 2;
10128                         /* Anycast: true(1), false(2) */
10129                         if (ipif->ipif_flags & IPIF_ANYCAST)
10130                                 mae6.ipv6AddrAnycastFlag = 1;
10131                         else
10132                                 mae6.ipv6AddrAnycastFlag = 2;
10133 
10134                         /*
10135                          * Address status: preferred(1), deprecated(2),
10136                          * invalid(3), inaccessible(4), unknown(5)
10137                          */
10138                         if (ipif->ipif_flags & IPIF_NOLOCAL)
10139                                 mae6.ipv6AddrStatus = 3;
10140                         else if (ipif->ipif_flags & IPIF_DEPRECATED)
10141                                 mae6.ipv6AddrStatus = 2;
10142                         else
10143                                 mae6.ipv6AddrStatus = 1;
10144                         mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10145                         mae6.ipv6AddrInfo.ae_metric  =
10146                             ipif->ipif_ill->ill_metric;
10147                         mae6.ipv6AddrInfo.ae_pp_dst_addr =
10148                             ipif->ipif_v6pp_dst_addr;
10149                         mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10150                             ill->ill_flags | ill->ill_phyint->phyint_flags;
10151                         mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10152                         mae6.ipv6AddrIdentifier = ill->ill_token;
10153                         mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10154                         mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10155                         mae6.ipv6AddrRetransmitTime =
10156                             ill->ill_reachable_retrans_time;
10157                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10158                             (char *)&mae6, (int)mae6_size)) {
10159                                 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10160                                     "allocate %u bytes\n",
10161                                     (uint_t)mae6_size));
10162                         }
10163                 }
10164         }
10165         rw_exit(&ipst->ips_ill_g_lock);
10166 
10167         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10168         ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10169             (int)optp->level, (int)optp->name, (int)optp->len));
10170         qreply(q, mpctl);
10171         return (mp2ctl);
10172 }
10173 
10174 /* IPv4 multicast group membership. */
10175 static mblk_t *
10176 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10177 {
10178         struct opthdr           *optp;
10179         mblk_t                  *mp2ctl;
10180         ill_t                   *ill;
10181         ipif_t                  *ipif;
10182         ilm_t                   *ilm;
10183         ip_member_t             ipm;
10184         mblk_t                  *mp_tail = NULL;
10185         ill_walk_context_t      ctx;
10186         zoneid_t                zoneid;
10187 
10188         /*
10189          * make a copy of the original message
10190          */
10191         mp2ctl = copymsg(mpctl);
10192         zoneid = Q_TO_CONN(q)->conn_zoneid;
10193 
10194         /* ipGroupMember table */
10195         optp = (struct opthdr *)&mpctl->b_rptr[
10196             sizeof (struct T_optmgmt_ack)];
10197         optp->level = MIB2_IP;
10198         optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10199 
10200         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10201         ill = ILL_START_WALK_V4(&ctx, ipst);
10202         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10203                 /* Make sure the ill isn't going away. */
10204                 if (!ill_check_and_refhold(ill))
10205                         continue;
10206                 rw_exit(&ipst->ips_ill_g_lock);
10207                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10208                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10209                         if (ilm->ilm_zoneid != zoneid &&
10210                             ilm->ilm_zoneid != ALL_ZONES)
10211                                 continue;
10212 
10213                         /* Is there an ipif for ilm_ifaddr? */
10214                         for (ipif = ill->ill_ipif; ipif != NULL;
10215                             ipif = ipif->ipif_next) {
10216                                 if (!IPIF_IS_CONDEMNED(ipif) &&
10217                                     ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10218                                     ilm->ilm_ifaddr != INADDR_ANY)
10219                                         break;
10220                         }
10221                         if (ipif != NULL) {
10222                                 ipif_get_name(ipif,
10223                                     ipm.ipGroupMemberIfIndex.o_bytes,
10224                                     OCTET_LENGTH);
10225                         } else {
10226                                 ill_get_name(ill,
10227                                     ipm.ipGroupMemberIfIndex.o_bytes,
10228                                     OCTET_LENGTH);
10229                         }
10230                         ipm.ipGroupMemberIfIndex.o_length =
10231                             mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10232 
10233                         ipm.ipGroupMemberAddress = ilm->ilm_addr;
10234                         ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10235                         ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10236                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10237                             (char *)&ipm, (int)sizeof (ipm))) {
10238                                 ip1dbg(("ip_snmp_get_mib2_ip_group: "
10239                                     "failed to allocate %u bytes\n",
10240                                     (uint_t)sizeof (ipm)));
10241                         }
10242                 }
10243                 rw_exit(&ill->ill_mcast_lock);
10244                 ill_refrele(ill);
10245                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10246         }
10247         rw_exit(&ipst->ips_ill_g_lock);
10248         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10249         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10250             (int)optp->level, (int)optp->name, (int)optp->len));
10251         qreply(q, mpctl);
10252         return (mp2ctl);
10253 }
10254 
10255 /* IPv6 multicast group membership. */
10256 static mblk_t *
10257 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10258 {
10259         struct opthdr           *optp;
10260         mblk_t                  *mp2ctl;
10261         ill_t                   *ill;
10262         ilm_t                   *ilm;
10263         ipv6_member_t           ipm6;
10264         mblk_t                  *mp_tail = NULL;
10265         ill_walk_context_t      ctx;
10266         zoneid_t                zoneid;
10267 
10268         /*
10269          * make a copy of the original message
10270          */
10271         mp2ctl = copymsg(mpctl);
10272         zoneid = Q_TO_CONN(q)->conn_zoneid;
10273 
10274         /* ip6GroupMember table */
10275         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10276         optp->level = MIB2_IP6;
10277         optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10278 
10279         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10280         ill = ILL_START_WALK_V6(&ctx, ipst);
10281         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10282                 /* Make sure the ill isn't going away. */
10283                 if (!ill_check_and_refhold(ill))
10284                         continue;
10285                 rw_exit(&ipst->ips_ill_g_lock);
10286                 /*
10287                  * Normally we don't have any members on under IPMP interfaces.
10288                  * We report them as a debugging aid.
10289                  */
10290                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10291                 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10292                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10293                         if (ilm->ilm_zoneid != zoneid &&
10294                             ilm->ilm_zoneid != ALL_ZONES)
10295                                 continue;       /* not this zone */
10296                         ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10297                         ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10298                         ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10299                         if (!snmp_append_data2(mpctl->b_cont,
10300                             &mp_tail,
10301                             (char *)&ipm6, (int)sizeof (ipm6))) {
10302                                 ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10303                                     "failed to allocate %u bytes\n",
10304                                     (uint_t)sizeof (ipm6)));
10305                         }
10306                 }
10307                 rw_exit(&ill->ill_mcast_lock);
10308                 ill_refrele(ill);
10309                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10310         }
10311         rw_exit(&ipst->ips_ill_g_lock);
10312 
10313         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10314         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10315             (int)optp->level, (int)optp->name, (int)optp->len));
10316         qreply(q, mpctl);
10317         return (mp2ctl);
10318 }
10319 
10320 /* IP multicast filtered sources */
10321 static mblk_t *
10322 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10323 {
10324         struct opthdr           *optp;
10325         mblk_t                  *mp2ctl;
10326         ill_t                   *ill;
10327         ipif_t                  *ipif;
10328         ilm_t                   *ilm;
10329         ip_grpsrc_t             ips;
10330         mblk_t                  *mp_tail = NULL;
10331         ill_walk_context_t      ctx;
10332         zoneid_t                zoneid;
10333         int                     i;
10334         slist_t                 *sl;
10335 
10336         /*
10337          * make a copy of the original message
10338          */
10339         mp2ctl = copymsg(mpctl);
10340         zoneid = Q_TO_CONN(q)->conn_zoneid;
10341 
10342         /* ipGroupSource table */
10343         optp = (struct opthdr *)&mpctl->b_rptr[
10344             sizeof (struct T_optmgmt_ack)];
10345         optp->level = MIB2_IP;
10346         optp->name = EXPER_IP_GROUP_SOURCES;
10347 
10348         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10349         ill = ILL_START_WALK_V4(&ctx, ipst);
10350         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10351                 /* Make sure the ill isn't going away. */
10352                 if (!ill_check_and_refhold(ill))
10353                         continue;
10354                 rw_exit(&ipst->ips_ill_g_lock);
10355                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10356                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10357                         sl = ilm->ilm_filter;
10358                         if (ilm->ilm_zoneid != zoneid &&
10359                             ilm->ilm_zoneid != ALL_ZONES)
10360                                 continue;
10361                         if (SLIST_IS_EMPTY(sl))
10362                                 continue;
10363 
10364                         /* Is there an ipif for ilm_ifaddr? */
10365                         for (ipif = ill->ill_ipif; ipif != NULL;
10366                             ipif = ipif->ipif_next) {
10367                                 if (!IPIF_IS_CONDEMNED(ipif) &&
10368                                     ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10369                                     ilm->ilm_ifaddr != INADDR_ANY)
10370                                         break;
10371                         }
10372                         if (ipif != NULL) {
10373                                 ipif_get_name(ipif,
10374                                     ips.ipGroupSourceIfIndex.o_bytes,
10375                                     OCTET_LENGTH);
10376                         } else {
10377                                 ill_get_name(ill,
10378                                     ips.ipGroupSourceIfIndex.o_bytes,
10379                                     OCTET_LENGTH);
10380                         }
10381                         ips.ipGroupSourceIfIndex.o_length =
10382                             mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10383 
10384                         ips.ipGroupSourceGroup = ilm->ilm_addr;
10385                         for (i = 0; i < sl->sl_numsrc; i++) {
10386                                 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10387                                         continue;
10388                                 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10389                                     ips.ipGroupSourceAddress);
10390                                 if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10391                                     (char *)&ips, (int)sizeof (ips)) == 0) {
10392                                         ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10393                                             " failed to allocate %u bytes\n",
10394                                             (uint_t)sizeof (ips)));
10395                                 }
10396                         }
10397                 }
10398                 rw_exit(&ill->ill_mcast_lock);
10399                 ill_refrele(ill);
10400                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10401         }
10402         rw_exit(&ipst->ips_ill_g_lock);
10403         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10404         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10405             (int)optp->level, (int)optp->name, (int)optp->len));
10406         qreply(q, mpctl);
10407         return (mp2ctl);
10408 }
10409 
10410 /* IPv6 multicast filtered sources. */
10411 static mblk_t *
10412 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10413 {
10414         struct opthdr           *optp;
10415         mblk_t                  *mp2ctl;
10416         ill_t                   *ill;
10417         ilm_t                   *ilm;
10418         ipv6_grpsrc_t           ips6;
10419         mblk_t                  *mp_tail = NULL;
10420         ill_walk_context_t      ctx;
10421         zoneid_t                zoneid;
10422         int                     i;
10423         slist_t                 *sl;
10424 
10425         /*
10426          * make a copy of the original message
10427          */
10428         mp2ctl = copymsg(mpctl);
10429         zoneid = Q_TO_CONN(q)->conn_zoneid;
10430 
10431         /* ip6GroupMember table */
10432         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10433         optp->level = MIB2_IP6;
10434         optp->name = EXPER_IP6_GROUP_SOURCES;
10435 
10436         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10437         ill = ILL_START_WALK_V6(&ctx, ipst);
10438         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10439                 /* Make sure the ill isn't going away. */
10440                 if (!ill_check_and_refhold(ill))
10441                         continue;
10442                 rw_exit(&ipst->ips_ill_g_lock);
10443                 /*
10444                  * Normally we don't have any members on under IPMP interfaces.
10445                  * We report them as a debugging aid.
10446                  */
10447                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10448                 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10449                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10450                         sl = ilm->ilm_filter;
10451                         if (ilm->ilm_zoneid != zoneid &&
10452                             ilm->ilm_zoneid != ALL_ZONES)
10453                                 continue;
10454                         if (SLIST_IS_EMPTY(sl))
10455                                 continue;
10456                         ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10457                         for (i = 0; i < sl->sl_numsrc; i++) {
10458                                 ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10459                                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10460                                     (char *)&ips6, (int)sizeof (ips6))) {
10461                                         ip1dbg(("ip_snmp_get_mib2_ip6_"
10462                                             "group_src: failed to allocate "
10463                                             "%u bytes\n",
10464                                             (uint_t)sizeof (ips6)));
10465                                 }
10466                         }
10467                 }
10468                 rw_exit(&ill->ill_mcast_lock);
10469                 ill_refrele(ill);
10470                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10471         }
10472         rw_exit(&ipst->ips_ill_g_lock);
10473 
10474         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10475         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10476             (int)optp->level, (int)optp->name, (int)optp->len));
10477         qreply(q, mpctl);
10478         return (mp2ctl);
10479 }
10480 
10481 /* Multicast routing virtual interface table. */
10482 static mblk_t *
10483 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10484 {
10485         struct opthdr           *optp;
10486         mblk_t                  *mp2ctl;
10487 
10488         /*
10489          * make a copy of the original message
10490          */
10491         mp2ctl = copymsg(mpctl);
10492 
10493         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10494         optp->level = EXPER_DVMRP;
10495         optp->name = EXPER_DVMRP_VIF;
10496         if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10497                 ip0dbg(("ip_mroute_vif: failed\n"));
10498         }
10499         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10500         ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10501             (int)optp->level, (int)optp->name, (int)optp->len));
10502         qreply(q, mpctl);
10503         return (mp2ctl);
10504 }
10505 
10506 /* Multicast routing table. */
10507 static mblk_t *
10508 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10509 {
10510         struct opthdr           *optp;
10511         mblk_t                  *mp2ctl;
10512 
10513         /*
10514          * make a copy of the original message
10515          */
10516         mp2ctl = copymsg(mpctl);
10517 
10518         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10519         optp->level = EXPER_DVMRP;
10520         optp->name = EXPER_DVMRP_MRT;
10521         if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10522                 ip0dbg(("ip_mroute_mrt: failed\n"));
10523         }
10524         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10525         ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10526             (int)optp->level, (int)optp->name, (int)optp->len));
10527         qreply(q, mpctl);
10528         return (mp2ctl);
10529 }
10530 
10531 /*
10532  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10533  * in one IRE walk.
10534  */
10535 static mblk_t *
10536 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10537     ip_stack_t *ipst)
10538 {
10539         struct opthdr   *optp;
10540         mblk_t          *mp2ctl;        /* Returned */
10541         mblk_t          *mp3ctl;        /* nettomedia */
10542         mblk_t          *mp4ctl;        /* routeattrs */
10543         iproutedata_t   ird;
10544         zoneid_t        zoneid;
10545 
10546         /*
10547          * make copies of the original message
10548          *      - mp2ctl is returned unchanged to the caller for his use
10549          *      - mpctl is sent upstream as ipRouteEntryTable
10550          *      - mp3ctl is sent upstream as ipNetToMediaEntryTable
10551          *      - mp4ctl is sent upstream as ipRouteAttributeTable
10552          */
10553         mp2ctl = copymsg(mpctl);
10554         mp3ctl = copymsg(mpctl);
10555         mp4ctl = copymsg(mpctl);
10556         if (mp3ctl == NULL || mp4ctl == NULL) {
10557                 freemsg(mp4ctl);
10558                 freemsg(mp3ctl);
10559                 freemsg(mp2ctl);
10560                 freemsg(mpctl);
10561                 return (NULL);
10562         }
10563 
10564         bzero(&ird, sizeof (ird));
10565 
10566         ird.ird_route.lp_head = mpctl->b_cont;
10567         ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10568         ird.ird_attrs.lp_head = mp4ctl->b_cont;
10569         /*
10570          * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10571          * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10572          * intended a temporary solution until a proper MIB API is provided
10573          * that provides complete filtering/caller-opt-in.
10574          */
10575         if (level == EXPER_IP_AND_ALL_IRES)
10576                 ird.ird_flags |= IRD_REPORT_ALL;
10577 
10578         zoneid = Q_TO_CONN(q)->conn_zoneid;
10579         ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10580 
10581         /* ipRouteEntryTable in mpctl */
10582         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10583         optp->level = MIB2_IP;
10584         optp->name = MIB2_IP_ROUTE;
10585         optp->len = msgdsize(ird.ird_route.lp_head);
10586         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10587             (int)optp->level, (int)optp->name, (int)optp->len));
10588         qreply(q, mpctl);
10589 
10590         /* ipNetToMediaEntryTable in mp3ctl */
10591         ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10592 
10593         optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10594         optp->level = MIB2_IP;
10595         optp->name = MIB2_IP_MEDIA;
10596         optp->len = msgdsize(ird.ird_netmedia.lp_head);
10597         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10598             (int)optp->level, (int)optp->name, (int)optp->len));
10599         qreply(q, mp3ctl);
10600 
10601         /* ipRouteAttributeTable in mp4ctl */
10602         optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10603         optp->level = MIB2_IP;
10604         optp->name = EXPER_IP_RTATTR;
10605         optp->len = msgdsize(ird.ird_attrs.lp_head);
10606         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10607             (int)optp->level, (int)optp->name, (int)optp->len));
10608         if (optp->len == 0)
10609                 freemsg(mp4ctl);
10610         else
10611                 qreply(q, mp4ctl);
10612 
10613         return (mp2ctl);
10614 }
10615 
10616 /*
10617  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10618  * ipv6NetToMediaEntryTable in an NDP walk.
10619  */
10620 static mblk_t *
10621 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10622     ip_stack_t *ipst)
10623 {
10624         struct opthdr   *optp;
10625         mblk_t          *mp2ctl;        /* Returned */
10626         mblk_t          *mp3ctl;        /* nettomedia */
10627         mblk_t          *mp4ctl;        /* routeattrs */
10628         iproutedata_t   ird;
10629         zoneid_t        zoneid;
10630 
10631         /*
10632          * make copies of the original message
10633          *      - mp2ctl is returned unchanged to the caller for his use
10634          *      - mpctl is sent upstream as ipv6RouteEntryTable
10635          *      - mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10636          *      - mp4ctl is sent upstream as ipv6RouteAttributeTable
10637          */
10638         mp2ctl = copymsg(mpctl);
10639         mp3ctl = copymsg(mpctl);
10640         mp4ctl = copymsg(mpctl);
10641         if (mp3ctl == NULL || mp4ctl == NULL) {
10642                 freemsg(mp4ctl);
10643                 freemsg(mp3ctl);
10644                 freemsg(mp2ctl);
10645                 freemsg(mpctl);
10646                 return (NULL);
10647         }
10648 
10649         bzero(&ird, sizeof (ird));
10650 
10651         ird.ird_route.lp_head = mpctl->b_cont;
10652         ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10653         ird.ird_attrs.lp_head = mp4ctl->b_cont;
10654         /*
10655          * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10656          * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10657          * intended a temporary solution until a proper MIB API is provided
10658          * that provides complete filtering/caller-opt-in.
10659          */
10660         if (level == EXPER_IP_AND_ALL_IRES)
10661                 ird.ird_flags |= IRD_REPORT_ALL;
10662 
10663         zoneid = Q_TO_CONN(q)->conn_zoneid;
10664         ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10665 
10666         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10667         optp->level = MIB2_IP6;
10668         optp->name = MIB2_IP6_ROUTE;
10669         optp->len = msgdsize(ird.ird_route.lp_head);
10670         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10671             (int)optp->level, (int)optp->name, (int)optp->len));
10672         qreply(q, mpctl);
10673 
10674         /* ipv6NetToMediaEntryTable in mp3ctl */
10675         ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10676 
10677         optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10678         optp->level = MIB2_IP6;
10679         optp->name = MIB2_IP6_MEDIA;
10680         optp->len = msgdsize(ird.ird_netmedia.lp_head);
10681         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10682             (int)optp->level, (int)optp->name, (int)optp->len));
10683         qreply(q, mp3ctl);
10684 
10685         /* ipv6RouteAttributeTable in mp4ctl */
10686         optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10687         optp->level = MIB2_IP6;
10688         optp->name = EXPER_IP_RTATTR;
10689         optp->len = msgdsize(ird.ird_attrs.lp_head);
10690         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10691             (int)optp->level, (int)optp->name, (int)optp->len));
10692         if (optp->len == 0)
10693                 freemsg(mp4ctl);
10694         else
10695                 qreply(q, mp4ctl);
10696 
10697         return (mp2ctl);
10698 }
10699 
10700 /*
10701  * IPv6 mib: One per ill
10702  */
10703 static mblk_t *
10704 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10705     boolean_t legacy_req)
10706 {
10707         struct opthdr           *optp;
10708         mblk_t                  *mp2ctl;
10709         ill_t                   *ill;
10710         ill_walk_context_t      ctx;
10711         mblk_t                  *mp_tail = NULL;
10712         mib2_ipv6AddrEntry_t    mae6;
10713         mib2_ipIfStatsEntry_t   *ise;
10714         size_t                  ise_size, iae_size;
10715 
10716         /*
10717          * Make a copy of the original message
10718          */
10719         mp2ctl = copymsg(mpctl);
10720 
10721         /* fixed length IPv6 structure ... */
10722 
10723         if (legacy_req) {
10724                 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10725                     mib2_ipIfStatsEntry_t);
10726                 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10727         } else {
10728                 ise_size = sizeof (mib2_ipIfStatsEntry_t);
10729                 iae_size = sizeof (mib2_ipv6AddrEntry_t);
10730         }
10731 
10732         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10733         optp->level = MIB2_IP6;
10734         optp->name = 0;
10735         /* Include "unknown interface" ip6_mib */
10736         ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10737         ipst->ips_ip6_mib.ipIfStatsIfIndex =
10738             MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10739         SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10740             ipst->ips_ipv6_forwarding ? 1 : 2);
10741         SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10742             ipst->ips_ipv6_def_hops);
10743         SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10744             sizeof (mib2_ipIfStatsEntry_t));
10745         SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10746             sizeof (mib2_ipv6AddrEntry_t));
10747         SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10748             sizeof (mib2_ipv6RouteEntry_t));
10749         SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10750             sizeof (mib2_ipv6NetToMediaEntry_t));
10751         SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10752             sizeof (ipv6_member_t));
10753         SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10754             sizeof (ipv6_grpsrc_t));
10755 
10756         /*
10757          * Synchronize 64- and 32-bit counters
10758          */
10759         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10760             ipIfStatsHCInReceives);
10761         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10762             ipIfStatsHCInDelivers);
10763         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10764             ipIfStatsHCOutRequests);
10765         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10766             ipIfStatsHCOutForwDatagrams);
10767         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10768             ipIfStatsHCOutMcastPkts);
10769         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10770             ipIfStatsHCInMcastPkts);
10771 
10772         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10773             (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10774                 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10775                     (uint_t)ise_size));
10776         } else if (legacy_req) {
10777                 /* Adjust the EntrySize fields for legacy requests. */
10778                 ise =
10779                     (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10780                 SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10781                 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10782         }
10783 
10784         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10785         ill = ILL_START_WALK_V6(&ctx, ipst);
10786         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10787                 ill->ill_ip_mib->ipIfStatsIfIndex =
10788                     ill->ill_phyint->phyint_ifindex;
10789                 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10790                     ipst->ips_ipv6_forwarding ? 1 : 2);
10791                 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10792                     ill->ill_max_hops);
10793 
10794                 /*
10795                  * Synchronize 64- and 32-bit counters
10796                  */
10797                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10798                     ipIfStatsHCInReceives);
10799                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10800                     ipIfStatsHCInDelivers);
10801                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10802                     ipIfStatsHCOutRequests);
10803                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10804                     ipIfStatsHCOutForwDatagrams);
10805                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10806                     ipIfStatsHCOutMcastPkts);
10807                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10808                     ipIfStatsHCInMcastPkts);
10809 
10810                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10811                     (char *)ill->ill_ip_mib, (int)ise_size)) {
10812                         ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10813                         "%u bytes\n", (uint_t)ise_size));
10814                 } else if (legacy_req) {
10815                         /* Adjust the EntrySize fields for legacy requests. */
10816                         ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10817                             (int)ise_size);
10818                         SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10819                         SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10820                 }
10821         }
10822         rw_exit(&ipst->ips_ill_g_lock);
10823 
10824         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10825         ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10826             (int)optp->level, (int)optp->name, (int)optp->len));
10827         qreply(q, mpctl);
10828         return (mp2ctl);
10829 }
10830 
10831 /*
10832  * ICMPv6 mib: One per ill
10833  */
10834 static mblk_t *
10835 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10836 {
10837         struct opthdr           *optp;
10838         mblk_t                  *mp2ctl;
10839         ill_t                   *ill;
10840         ill_walk_context_t      ctx;
10841         mblk_t                  *mp_tail = NULL;
10842         /*
10843          * Make a copy of the original message
10844          */
10845         mp2ctl = copymsg(mpctl);
10846 
10847         /* fixed length ICMPv6 structure ... */
10848 
10849         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10850         optp->level = MIB2_ICMP6;
10851         optp->name = 0;
10852         /* Include "unknown interface" icmp6_mib */
10853         ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10854             MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10855         ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10856             sizeof (mib2_ipv6IfIcmpEntry_t);
10857         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10858             (char *)&ipst->ips_icmp6_mib,
10859             (int)sizeof (ipst->ips_icmp6_mib))) {
10860                 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10861                     (uint_t)sizeof (ipst->ips_icmp6_mib)));
10862         }
10863 
10864         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10865         ill = ILL_START_WALK_V6(&ctx, ipst);
10866         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10867                 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10868                     ill->ill_phyint->phyint_ifindex;
10869                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10870                     (char *)ill->ill_icmp6_mib,
10871                     (int)sizeof (*ill->ill_icmp6_mib))) {
10872                         ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10873                             "%u bytes\n",
10874                             (uint_t)sizeof (*ill->ill_icmp6_mib)));
10875                 }
10876         }
10877         rw_exit(&ipst->ips_ill_g_lock);
10878 
10879         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10880         ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10881             (int)optp->level, (int)optp->name, (int)optp->len));
10882         qreply(q, mpctl);
10883         return (mp2ctl);
10884 }
10885 
10886 /*
10887  * ire_walk routine to create both ipRouteEntryTable and
10888  * ipRouteAttributeTable in one IRE walk
10889  */
10890 static void
10891 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10892 {
10893         ill_t                           *ill;
10894         mib2_ipRouteEntry_t             *re;
10895         mib2_ipAttributeEntry_t         iaes;
10896         tsol_ire_gw_secattr_t           *attrp;
10897         tsol_gc_t                       *gc = NULL;
10898         tsol_gcgrp_t                    *gcgrp = NULL;
10899         ip_stack_t                      *ipst = ire->ire_ipst;
10900 
10901         ASSERT(ire->ire_ipversion == IPV4_VERSION);
10902 
10903         if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10904                 if (ire->ire_testhidden)
10905                         return;
10906                 if (ire->ire_type & IRE_IF_CLONE)
10907                         return;
10908         }
10909 
10910         if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10911                 return;
10912 
10913         if ((attrp = ire->ire_gw_secattr) != NULL) {
10914                 mutex_enter(&attrp->igsa_lock);
10915                 if ((gc = attrp->igsa_gc) != NULL) {
10916                         gcgrp = gc->gc_grp;
10917                         ASSERT(gcgrp != NULL);
10918                         rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10919                 }
10920                 mutex_exit(&attrp->igsa_lock);
10921         }
10922         /*
10923          * Return all IRE types for route table... let caller pick and choose
10924          */
10925         re->ipRouteDest = ire->ire_addr;
10926         ill = ire->ire_ill;
10927         re->ipRouteIfIndex.o_length = 0;
10928         if (ill != NULL) {
10929                 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10930                 re->ipRouteIfIndex.o_length =
10931                     mi_strlen(re->ipRouteIfIndex.o_bytes);
10932         }
10933         re->ipRouteMetric1 = -1;
10934         re->ipRouteMetric2 = -1;
10935         re->ipRouteMetric3 = -1;
10936         re->ipRouteMetric4 = -1;
10937 
10938         re->ipRouteNextHop = ire->ire_gateway_addr;
10939         /* indirect(4), direct(3), or invalid(2) */
10940         if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10941                 re->ipRouteType = 2;
10942         else if (ire->ire_type & IRE_ONLINK)
10943                 re->ipRouteType = 3;
10944         else
10945                 re->ipRouteType = 4;
10946 
10947         re->ipRouteProto = -1;
10948         re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10949         re->ipRouteMask = ire->ire_mask;
10950         re->ipRouteMetric5 = -1;
10951         re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10952         if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10953                 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10954 
10955         re->ipRouteInfo.re_frag_flag = 0;
10956         re->ipRouteInfo.re_rtt               = 0;
10957         re->ipRouteInfo.re_src_addr  = 0;
10958         re->ipRouteInfo.re_ref               = ire->ire_refcnt;
10959         re->ipRouteInfo.re_obpkt     = ire->ire_ob_pkt_count;
10960         re->ipRouteInfo.re_ibpkt     = ire->ire_ib_pkt_count;
10961         re->ipRouteInfo.re_flags     = ire->ire_flags;
10962 
10963         /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
10964         if (ire->ire_type & IRE_INTERFACE) {
10965                 ire_t *child;
10966 
10967                 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
10968                 child = ire->ire_dep_children;
10969                 while (child != NULL) {
10970                         re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
10971                         re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
10972                         child = child->ire_dep_sib_next;
10973                 }
10974                 rw_exit(&ipst->ips_ire_dep_lock);
10975         }
10976 
10977         if (ire->ire_flags & RTF_DYNAMIC) {
10978                 re->ipRouteInfo.re_ire_type  = IRE_HOST_REDIRECT;
10979         } else {
10980                 re->ipRouteInfo.re_ire_type  = ire->ire_type;
10981         }
10982 
10983         if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
10984             (char *)re, (int)sizeof (*re))) {
10985                 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
10986                     (uint_t)sizeof (*re)));
10987         }
10988 
10989         if (gc != NULL) {
10990                 iaes.iae_routeidx = ird->ird_idx;
10991                 iaes.iae_doi = gc->gc_db->gcdb_doi;
10992                 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
10993 
10994                 if (!snmp_append_data2(ird->ird_attrs.lp_head,
10995                     &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
10996                         ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
10997                             "bytes\n", (uint_t)sizeof (iaes)));
10998                 }
10999         }
11000 
11001         /* bump route index for next pass */
11002         ird->ird_idx++;
11003 
11004         kmem_free(re, sizeof (*re));
11005         if (gcgrp != NULL)
11006                 rw_exit(&gcgrp->gcgrp_rwlock);
11007 }
11008 
11009 /*
11010  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11011  */
11012 static void
11013 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11014 {
11015         ill_t                           *ill;
11016         mib2_ipv6RouteEntry_t           *re;
11017         mib2_ipAttributeEntry_t         iaes;
11018         tsol_ire_gw_secattr_t           *attrp;
11019         tsol_gc_t                       *gc = NULL;
11020         tsol_gcgrp_t                    *gcgrp = NULL;
11021         ip_stack_t                      *ipst = ire->ire_ipst;
11022 
11023         ASSERT(ire->ire_ipversion == IPV6_VERSION);
11024 
11025         if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11026                 if (ire->ire_testhidden)
11027                         return;
11028                 if (ire->ire_type & IRE_IF_CLONE)
11029                         return;
11030         }
11031 
11032         if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11033                 return;
11034 
11035         if ((attrp = ire->ire_gw_secattr) != NULL) {
11036                 mutex_enter(&attrp->igsa_lock);
11037                 if ((gc = attrp->igsa_gc) != NULL) {
11038                         gcgrp = gc->gc_grp;
11039                         ASSERT(gcgrp != NULL);
11040                         rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11041                 }
11042                 mutex_exit(&attrp->igsa_lock);
11043         }
11044         /*
11045          * Return all IRE types for route table... let caller pick and choose
11046          */
11047         re->ipv6RouteDest = ire->ire_addr_v6;
11048         re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11049         re->ipv6RouteIndex = 0;      /* Unique when multiple with same dest/plen */
11050         re->ipv6RouteIfIndex.o_length = 0;
11051         ill = ire->ire_ill;
11052         if (ill != NULL) {
11053                 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11054                 re->ipv6RouteIfIndex.o_length =
11055                     mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11056         }
11057 
11058         ASSERT(!(ire->ire_type & IRE_BROADCAST));
11059 
11060         mutex_enter(&ire->ire_lock);
11061         re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11062         mutex_exit(&ire->ire_lock);
11063 
11064         /* remote(4), local(3), or discard(2) */
11065         if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11066                 re->ipv6RouteType = 2;
11067         else if (ire->ire_type & IRE_ONLINK)
11068                 re->ipv6RouteType = 3;
11069         else
11070                 re->ipv6RouteType = 4;
11071 
11072         re->ipv6RouteProtocol        = -1;
11073         re->ipv6RoutePolicy  = 0;
11074         re->ipv6RouteAge     = gethrestime_sec() - ire->ire_create_time;
11075         re->ipv6RouteNextHopRDI      = 0;
11076         re->ipv6RouteWeight  = 0;
11077         re->ipv6RouteMetric  = 0;
11078         re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11079         if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11080                 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11081 
11082         re->ipv6RouteInfo.re_frag_flag       = 0;
11083         re->ipv6RouteInfo.re_rtt     = 0;
11084         re->ipv6RouteInfo.re_src_addr        = ipv6_all_zeros;
11085         re->ipv6RouteInfo.re_obpkt   = ire->ire_ob_pkt_count;
11086         re->ipv6RouteInfo.re_ibpkt   = ire->ire_ib_pkt_count;
11087         re->ipv6RouteInfo.re_ref     = ire->ire_refcnt;
11088         re->ipv6RouteInfo.re_flags   = ire->ire_flags;
11089 
11090         /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11091         if (ire->ire_type & IRE_INTERFACE) {
11092                 ire_t *child;
11093 
11094                 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11095                 child = ire->ire_dep_children;
11096                 while (child != NULL) {
11097                         re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11098                         re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11099                         child = child->ire_dep_sib_next;
11100                 }
11101                 rw_exit(&ipst->ips_ire_dep_lock);
11102         }
11103         if (ire->ire_flags & RTF_DYNAMIC) {
11104                 re->ipv6RouteInfo.re_ire_type        = IRE_HOST_REDIRECT;
11105         } else {
11106                 re->ipv6RouteInfo.re_ire_type        = ire->ire_type;
11107         }
11108 
11109         if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11110             (char *)re, (int)sizeof (*re))) {
11111                 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11112                     (uint_t)sizeof (*re)));
11113         }
11114 
11115         if (gc != NULL) {
11116                 iaes.iae_routeidx = ird->ird_idx;
11117                 iaes.iae_doi = gc->gc_db->gcdb_doi;
11118                 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11119 
11120                 if (!snmp_append_data2(ird->ird_attrs.lp_head,
11121                     &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11122                         ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11123                             "bytes\n", (uint_t)sizeof (iaes)));
11124                 }
11125         }
11126 
11127         /* bump route index for next pass */
11128         ird->ird_idx++;
11129 
11130         kmem_free(re, sizeof (*re));
11131         if (gcgrp != NULL)
11132                 rw_exit(&gcgrp->gcgrp_rwlock);
11133 }
11134 
11135 /*
11136  * ncec_walk routine to create ipv6NetToMediaEntryTable
11137  */
11138 static int
11139 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird)
11140 {
11141         ill_t                           *ill;
11142         mib2_ipv6NetToMediaEntry_t      ntme;
11143 
11144         ill = ncec->ncec_ill;
11145         /* skip arpce entries, and loopback ncec entries */
11146         if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11147                 return (0);
11148         /*
11149          * Neighbor cache entry attached to IRE with on-link
11150          * destination.
11151          * We report all IPMP groups on ncec_ill which is normally the upper.
11152          */
11153         ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11154         ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11155         ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11156         if (ncec->ncec_lladdr != NULL) {
11157                 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11158                     ntme.ipv6NetToMediaPhysAddress.o_length);
11159         }
11160         /*
11161          * Note: Returns ND_* states. Should be:
11162          * reachable(1), stale(2), delay(3), probe(4),
11163          * invalid(5), unknown(6)
11164          */
11165         ntme.ipv6NetToMediaState = ncec->ncec_state;
11166         ntme.ipv6NetToMediaLastUpdated = 0;
11167 
11168         /* other(1), dynamic(2), static(3), local(4) */
11169         if (NCE_MYADDR(ncec)) {
11170                 ntme.ipv6NetToMediaType = 4;
11171         } else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11172                 ntme.ipv6NetToMediaType = 1; /* proxy */
11173         } else if (ncec->ncec_flags & NCE_F_STATIC) {
11174                 ntme.ipv6NetToMediaType = 3;
11175         } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11176                 ntme.ipv6NetToMediaType = 1;
11177         } else {
11178                 ntme.ipv6NetToMediaType = 2;
11179         }
11180 
11181         if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11182             &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11183                 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11184                     (uint_t)sizeof (ntme)));
11185         }
11186         return (0);
11187 }
11188 
11189 int
11190 nce2ace(ncec_t *ncec)
11191 {
11192         int flags = 0;
11193 
11194         if (NCE_ISREACHABLE(ncec))
11195                 flags |= ACE_F_RESOLVED;
11196         if (ncec->ncec_flags & NCE_F_AUTHORITY)
11197                 flags |= ACE_F_AUTHORITY;
11198         if (ncec->ncec_flags & NCE_F_PUBLISH)
11199                 flags |= ACE_F_PUBLISH;
11200         if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11201                 flags |= ACE_F_PERMANENT;
11202         if (NCE_MYADDR(ncec))
11203                 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11204         if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11205                 flags |= ACE_F_UNVERIFIED;
11206         if (ncec->ncec_flags & NCE_F_AUTHORITY)
11207                 flags |= ACE_F_AUTHORITY;
11208         if (ncec->ncec_flags & NCE_F_DELAYED)
11209                 flags |= ACE_F_DELAYED;
11210         return (flags);
11211 }
11212 
11213 /*
11214  * ncec_walk routine to create ipNetToMediaEntryTable
11215  */
11216 static int
11217 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird)
11218 {
11219         ill_t                           *ill;
11220         mib2_ipNetToMediaEntry_t        ntme;
11221         const char                      *name = "unknown";
11222         ipaddr_t                        ncec_addr;
11223 
11224         ill = ncec->ncec_ill;
11225         if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11226             ill->ill_net_type == IRE_LOOPBACK)
11227                 return (0);
11228 
11229         /* We report all IPMP groups on ncec_ill which is normally the upper. */
11230         name = ill->ill_name;
11231         /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11232         if (NCE_MYADDR(ncec)) {
11233                 ntme.ipNetToMediaType = 4;
11234         } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11235                 ntme.ipNetToMediaType = 1;
11236         } else {
11237                 ntme.ipNetToMediaType = 3;
11238         }
11239         ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11240         bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11241             ntme.ipNetToMediaIfIndex.o_length);
11242 
11243         IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11244         bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11245 
11246         ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11247         ncec_addr = INADDR_BROADCAST;
11248         bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11249             sizeof (ncec_addr));
11250         /*
11251          * map all the flags to the ACE counterpart.
11252          */
11253         ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11254 
11255         ntme.ipNetToMediaPhysAddress.o_length =
11256             MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11257 
11258         if (!NCE_ISREACHABLE(ncec))
11259                 ntme.ipNetToMediaPhysAddress.o_length = 0;
11260         else {
11261                 if (ncec->ncec_lladdr != NULL) {
11262                         bcopy(ncec->ncec_lladdr,
11263                             ntme.ipNetToMediaPhysAddress.o_bytes,
11264                             ntme.ipNetToMediaPhysAddress.o_length);
11265                 }
11266         }
11267 
11268         if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11269             &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11270                 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11271                     (uint_t)sizeof (ntme)));
11272         }
11273         return (0);
11274 }
11275 
11276 /*
11277  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11278  */
11279 /* ARGSUSED */
11280 int
11281 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11282 {
11283         switch (level) {
11284         case MIB2_IP:
11285         case MIB2_ICMP:
11286                 switch (name) {
11287                 default:
11288                         break;
11289                 }
11290                 return (1);
11291         default:
11292                 return (1);
11293         }
11294 }
11295 
11296 /*
11297  * When there exists both a 64- and 32-bit counter of a particular type
11298  * (i.e., InReceives), only the 64-bit counters are added.
11299  */
11300 void
11301 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11302 {
11303         UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11304         UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11305         UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11306         UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11307         UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11308         UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11309         UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11310         UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11311         UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11312         UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11313         UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11314         UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11315         UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11316         UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11317         UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11318         UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11319         UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11320         UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11321         UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11322         UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11323         UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11324         UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11325             o2->ipIfStatsInWrongIPVersion);
11326         UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11327             o2->ipIfStatsInWrongIPVersion);
11328         UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11329             o2->ipIfStatsOutSwitchIPVersion);
11330         UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11331         UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11332         UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11333             o2->ipIfStatsHCInForwDatagrams);
11334         UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11335         UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11336         UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11337             o2->ipIfStatsHCOutForwDatagrams);
11338         UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11339         UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11340         UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11341         UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11342         UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11343         UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11344         UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11345             o2->ipIfStatsHCOutMcastOctets);
11346         UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11347         UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11348         UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11349         UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11350         UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11351         UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11352         UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11353 }
11354 
11355 void
11356 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11357 {
11358         UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11359         UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11360         UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11361         UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11362         UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11363         UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11364         UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11365         UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11366         UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11367         UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11368             o2->ipv6IfIcmpInRouterSolicits);
11369         UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11370             o2->ipv6IfIcmpInRouterAdvertisements);
11371         UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11372             o2->ipv6IfIcmpInNeighborSolicits);
11373         UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11374             o2->ipv6IfIcmpInNeighborAdvertisements);
11375         UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11376         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11377             o2->ipv6IfIcmpInGroupMembQueries);
11378         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11379             o2->ipv6IfIcmpInGroupMembResponses);
11380         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11381             o2->ipv6IfIcmpInGroupMembReductions);
11382         UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11383         UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11384         UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11385             o2->ipv6IfIcmpOutDestUnreachs);
11386         UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11387             o2->ipv6IfIcmpOutAdminProhibs);
11388         UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11389         UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11390             o2->ipv6IfIcmpOutParmProblems);
11391         UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11392         UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11393         UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11394         UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11395             o2->ipv6IfIcmpOutRouterSolicits);
11396         UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11397             o2->ipv6IfIcmpOutRouterAdvertisements);
11398         UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11399             o2->ipv6IfIcmpOutNeighborSolicits);
11400         UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11401             o2->ipv6IfIcmpOutNeighborAdvertisements);
11402         UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11403         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11404             o2->ipv6IfIcmpOutGroupMembQueries);
11405         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11406             o2->ipv6IfIcmpOutGroupMembResponses);
11407         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11408             o2->ipv6IfIcmpOutGroupMembReductions);
11409         UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11410         UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11411         UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11412             o2->ipv6IfIcmpInBadNeighborAdvertisements);
11413         UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11414             o2->ipv6IfIcmpInBadNeighborSolicitations);
11415         UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11416         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11417             o2->ipv6IfIcmpInGroupMembTotal);
11418         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11419             o2->ipv6IfIcmpInGroupMembBadQueries);
11420         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11421             o2->ipv6IfIcmpInGroupMembBadReports);
11422         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11423             o2->ipv6IfIcmpInGroupMembOurReports);
11424 }
11425 
11426 /*
11427  * Called before the options are updated to check if this packet will
11428  * be source routed from here.
11429  * This routine assumes that the options are well formed i.e. that they
11430  * have already been checked.
11431  */
11432 boolean_t
11433 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11434 {
11435         ipoptp_t        opts;
11436         uchar_t         *opt;
11437         uint8_t         optval;
11438         uint8_t         optlen;
11439         ipaddr_t        dst;
11440 
11441         if (IS_SIMPLE_IPH(ipha)) {
11442                 ip2dbg(("not source routed\n"));
11443                 return (B_FALSE);
11444         }
11445         dst = ipha->ipha_dst;
11446         for (optval = ipoptp_first(&opts, ipha);
11447             optval != IPOPT_EOL;
11448             optval = ipoptp_next(&opts)) {
11449                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11450                 opt = opts.ipoptp_cur;
11451                 optlen = opts.ipoptp_len;
11452                 ip2dbg(("ip_source_routed: opt %d, len %d\n",
11453                     optval, optlen));
11454                 switch (optval) {
11455                         uint32_t off;
11456                 case IPOPT_SSRR:
11457                 case IPOPT_LSRR:
11458                         /*
11459                          * If dst is one of our addresses and there are some
11460                          * entries left in the source route return (true).
11461                          */
11462                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11463                                 ip2dbg(("ip_source_routed: not next"
11464                                     " source route 0x%x\n",
11465                                     ntohl(dst)));
11466                                 return (B_FALSE);
11467                         }
11468                         off = opt[IPOPT_OFFSET];
11469                         off--;
11470                         if (optlen < IP_ADDR_LEN ||
11471                             off > optlen - IP_ADDR_LEN) {
11472                                 /* End of source route */
11473                                 ip1dbg(("ip_source_routed: end of SR\n"));
11474                                 return (B_FALSE);
11475                         }
11476                         return (B_TRUE);
11477                 }
11478         }
11479         ip2dbg(("not source routed\n"));
11480         return (B_FALSE);
11481 }
11482 
11483 /*
11484  * ip_unbind is called by the transports to remove a conn from
11485  * the fanout table.
11486  */
11487 void
11488 ip_unbind(conn_t *connp)
11489 {
11490 
11491         ASSERT(!MUTEX_HELD(&connp->conn_lock));
11492 
11493         if (is_system_labeled() && connp->conn_anon_port) {
11494                 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11495                     connp->conn_mlp_type, connp->conn_proto,
11496                     ntohs(connp->conn_lport), B_FALSE);
11497                 connp->conn_anon_port = 0;
11498         }
11499         connp->conn_mlp_type = mlptSingle;
11500 
11501         ipcl_hash_remove(connp);
11502 }
11503 
11504 /*
11505  * Used for deciding the MSS size for the upper layer. Thus
11506  * we need to check the outbound policy values in the conn.
11507  */
11508 int
11509 conn_ipsec_length(conn_t *connp)
11510 {
11511         ipsec_latch_t *ipl;
11512 
11513         ipl = connp->conn_latch;
11514         if (ipl == NULL)
11515                 return (0);
11516 
11517         if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11518                 return (0);
11519 
11520         return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11521 }
11522 
11523 /*
11524  * Returns an estimate of the IPsec headers size. This is used if
11525  * we don't want to call into IPsec to get the exact size.
11526  */
11527 int
11528 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11529 {
11530         ipsec_action_t *a;
11531 
11532         if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11533                 return (0);
11534 
11535         a = ixa->ixa_ipsec_action;
11536         if (a == NULL) {
11537                 ASSERT(ixa->ixa_ipsec_policy != NULL);
11538                 a = ixa->ixa_ipsec_policy->ipsp_act;
11539         }
11540         ASSERT(a != NULL);
11541 
11542         return (a->ipa_ovhd);
11543 }
11544 
11545 /*
11546  * If there are any source route options, return the true final
11547  * destination. Otherwise, return the destination.
11548  */
11549 ipaddr_t
11550 ip_get_dst(ipha_t *ipha)
11551 {
11552         ipoptp_t        opts;
11553         uchar_t         *opt;
11554         uint8_t         optval;
11555         uint8_t         optlen;
11556         ipaddr_t        dst;
11557         uint32_t off;
11558 
11559         dst = ipha->ipha_dst;
11560 
11561         if (IS_SIMPLE_IPH(ipha))
11562                 return (dst);
11563 
11564         for (optval = ipoptp_first(&opts, ipha);
11565             optval != IPOPT_EOL;
11566             optval = ipoptp_next(&opts)) {
11567                 opt = opts.ipoptp_cur;
11568                 optlen = opts.ipoptp_len;
11569                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11570                 switch (optval) {
11571                 case IPOPT_SSRR:
11572                 case IPOPT_LSRR:
11573                         off = opt[IPOPT_OFFSET];
11574                         /*
11575                          * If one of the conditions is true, it means
11576                          * end of options and dst already has the right
11577                          * value.
11578                          */
11579                         if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11580                                 off = optlen - IP_ADDR_LEN;
11581                                 bcopy(&opt[off], &dst, IP_ADDR_LEN);
11582                         }
11583                         return (dst);
11584                 default:
11585                         break;
11586                 }
11587         }
11588 
11589         return (dst);
11590 }
11591 
11592 /*
11593  * Outbound IP fragmentation routine.
11594  * Assumes the caller has checked whether or not fragmentation should
11595  * be allowed. Here we copy the DF bit from the header to all the generated
11596  * fragments.
11597  */
11598 int
11599 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11600     uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11601     zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11602 {
11603         int             i1;
11604         int             hdr_len;
11605         mblk_t          *hdr_mp;
11606         ipha_t          *ipha;
11607         int             ip_data_end;
11608         int             len;
11609         mblk_t          *mp = mp_orig;
11610         int             offset;
11611         ill_t           *ill = nce->nce_ill;
11612         ip_stack_t      *ipst = ill->ill_ipst;
11613         mblk_t          *carve_mp;
11614         uint32_t        frag_flag;
11615         uint_t          priority = mp->b_band;
11616         int             error = 0;
11617 
11618         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11619 
11620         if (pkt_len != msgdsize(mp)) {
11621                 ip0dbg(("Packet length mismatch: %d, %ld\n",
11622                     pkt_len, msgdsize(mp)));
11623                 freemsg(mp);
11624                 return (EINVAL);
11625         }
11626 
11627         if (max_frag == 0) {
11628                 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11629                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11630                 ip_drop_output("FragFails: zero max_frag", mp, ill);
11631                 freemsg(mp);
11632                 return (EINVAL);
11633         }
11634 
11635         ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11636         ipha = (ipha_t *)mp->b_rptr;
11637         ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11638         frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11639 
11640         /*
11641          * Establish the starting offset.  May not be zero if we are fragging
11642          * a fragment that is being forwarded.
11643          */
11644         offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11645 
11646         /* TODO why is this test needed? */
11647         if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11648                 /* TODO: notify ulp somehow */
11649                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11650                 ip_drop_output("FragFails: bad starting offset", mp, ill);
11651                 freemsg(mp);
11652                 return (EINVAL);
11653         }
11654 
11655         hdr_len = IPH_HDR_LENGTH(ipha);
11656         ipha->ipha_hdr_checksum = 0;
11657 
11658         /*
11659          * Establish the number of bytes maximum per frag, after putting
11660          * in the header.
11661          */
11662         len = (max_frag - hdr_len) & ~7;
11663 
11664         /* Get a copy of the header for the trailing frags */
11665         hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11666             mp);
11667         if (hdr_mp == NULL) {
11668                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11669                 ip_drop_output("FragFails: no hdr_mp", mp, ill);
11670                 freemsg(mp);
11671                 return (ENOBUFS);
11672         }
11673 
11674         /* Store the starting offset, with the MoreFrags flag. */
11675         i1 = offset | IPH_MF | frag_flag;
11676         ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11677 
11678         /* Establish the ending byte offset, based on the starting offset. */
11679         offset <<= 3;
11680         ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11681 
11682         /* Store the length of the first fragment in the IP header. */
11683         i1 = len + hdr_len;
11684         ASSERT(i1 <= IP_MAXPACKET);
11685         ipha->ipha_length = htons((uint16_t)i1);
11686 
11687         /*
11688          * Compute the IP header checksum for the first frag.  We have to
11689          * watch out that we stop at the end of the header.
11690          */
11691         ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11692 
11693         /*
11694          * Now carve off the first frag.  Note that this will include the
11695          * original IP header.
11696          */
11697         if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11698                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11699                 ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11700                 freeb(hdr_mp);
11701                 freemsg(mp_orig);
11702                 return (ENOBUFS);
11703         }
11704 
11705         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11706 
11707         error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11708             ixa_cookie);
11709         if (error != 0 && error != EWOULDBLOCK) {
11710                 /* No point in sending the other fragments */
11711                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11712                 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11713                 freeb(hdr_mp);
11714                 freemsg(mp_orig);
11715                 return (error);
11716         }
11717 
11718         /* No need to redo state machine in loop */
11719         ixaflags &= ~IXAF_REACH_CONF;
11720 
11721         /* Advance the offset to the second frag starting point. */
11722         offset += len;
11723         /*
11724          * Update hdr_len from the copied header - there might be less options
11725          * in the later fragments.
11726          */
11727         hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11728         /* Loop until done. */
11729         for (;;) {
11730                 uint16_t        offset_and_flags;
11731                 uint16_t        ip_len;
11732 
11733                 if (ip_data_end - offset > len) {
11734                         /*
11735                          * Carve off the appropriate amount from the original
11736                          * datagram.
11737                          */
11738                         if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11739                                 mp = NULL;
11740                                 break;
11741                         }
11742                         /*
11743                          * More frags after this one.  Get another copy
11744                          * of the header.
11745                          */
11746                         if (carve_mp->b_datap->db_ref == 1 &&
11747                             hdr_mp->b_wptr - hdr_mp->b_rptr <
11748                             carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11749                                 /* Inline IP header */
11750                                 carve_mp->b_rptr -= hdr_mp->b_wptr -
11751                                     hdr_mp->b_rptr;
11752                                 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11753                                     hdr_mp->b_wptr - hdr_mp->b_rptr);
11754                                 mp = carve_mp;
11755                         } else {
11756                                 if (!(mp = copyb(hdr_mp))) {
11757                                         freemsg(carve_mp);
11758                                         break;
11759                                 }
11760                                 /* Get priority marking, if any. */
11761                                 mp->b_band = priority;
11762                                 mp->b_cont = carve_mp;
11763                         }
11764                         ipha = (ipha_t *)mp->b_rptr;
11765                         offset_and_flags = IPH_MF;
11766                 } else {
11767                         /*
11768                          * Last frag.  Consume the header. Set len to
11769                          * the length of this last piece.
11770                          */
11771                         len = ip_data_end - offset;
11772 
11773                         /*
11774                          * Carve off the appropriate amount from the original
11775                          * datagram.
11776                          */
11777                         if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11778                                 mp = NULL;
11779                                 break;
11780                         }
11781                         if (carve_mp->b_datap->db_ref == 1 &&
11782                             hdr_mp->b_wptr - hdr_mp->b_rptr <
11783                             carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11784                                 /* Inline IP header */
11785                                 carve_mp->b_rptr -= hdr_mp->b_wptr -
11786                                     hdr_mp->b_rptr;
11787                                 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11788                                     hdr_mp->b_wptr - hdr_mp->b_rptr);
11789                                 mp = carve_mp;
11790                                 freeb(hdr_mp);
11791                                 hdr_mp = mp;
11792                         } else {
11793                                 mp = hdr_mp;
11794                                 /* Get priority marking, if any. */
11795                                 mp->b_band = priority;
11796                                 mp->b_cont = carve_mp;
11797                         }
11798                         ipha = (ipha_t *)mp->b_rptr;
11799                         /* A frag of a frag might have IPH_MF non-zero */
11800                         offset_and_flags =
11801                             ntohs(ipha->ipha_fragment_offset_and_flags) &
11802                             IPH_MF;
11803                 }
11804                 offset_and_flags |= (uint16_t)(offset >> 3);
11805                 offset_and_flags |= (uint16_t)frag_flag;
11806                 /* Store the offset and flags in the IP header. */
11807                 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11808 
11809                 /* Store the length in the IP header. */
11810                 ip_len = (uint16_t)(len + hdr_len);
11811                 ipha->ipha_length = htons(ip_len);
11812 
11813                 /*
11814                  * Set the IP header checksum.  Note that mp is just
11815                  * the header, so this is easy to pass to ip_csum.
11816                  */
11817                 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11818 
11819                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11820 
11821                 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11822                     nolzid, ixa_cookie);
11823                 /* All done if we just consumed the hdr_mp. */
11824                 if (mp == hdr_mp) {
11825                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11826                         return (error);
11827                 }
11828                 if (error != 0 && error != EWOULDBLOCK) {
11829                         DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11830                             mblk_t *, hdr_mp);
11831                         /* No point in sending the other fragments */
11832                         break;
11833                 }
11834 
11835                 /* Otherwise, advance and loop. */
11836                 offset += len;
11837         }
11838         /* Clean up following allocation failure. */
11839         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11840         ip_drop_output("FragFails: loop ended", NULL, ill);
11841         if (mp != hdr_mp)
11842                 freeb(hdr_mp);
11843         if (mp != mp_orig)
11844                 freemsg(mp_orig);
11845         return (error);
11846 }
11847 
11848 /*
11849  * Copy the header plus those options which have the copy bit set
11850  */
11851 static mblk_t *
11852 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11853     mblk_t *src)
11854 {
11855         mblk_t  *mp;
11856         uchar_t *up;
11857 
11858         /*
11859          * Quick check if we need to look for options without the copy bit
11860          * set
11861          */
11862         mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11863         if (!mp)
11864                 return (mp);
11865         mp->b_rptr += ipst->ips_ip_wroff_extra;
11866         if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11867                 bcopy(rptr, mp->b_rptr, hdr_len);
11868                 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11869                 return (mp);
11870         }
11871         up  = mp->b_rptr;
11872         bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11873         up += IP_SIMPLE_HDR_LENGTH;
11874         rptr += IP_SIMPLE_HDR_LENGTH;
11875         hdr_len -= IP_SIMPLE_HDR_LENGTH;
11876         while (hdr_len > 0) {
11877                 uint32_t optval;
11878                 uint32_t optlen;
11879 
11880                 optval = *rptr;
11881                 if (optval == IPOPT_EOL)
11882                         break;
11883                 if (optval == IPOPT_NOP)
11884                         optlen = 1;
11885                 else
11886                         optlen = rptr[1];
11887                 if (optval & IPOPT_COPY) {
11888                         bcopy(rptr, up, optlen);
11889                         up += optlen;
11890                 }
11891                 rptr += optlen;
11892                 hdr_len -= optlen;
11893         }
11894         /*
11895          * Make sure that we drop an even number of words by filling
11896          * with EOL to the next word boundary.
11897          */
11898         for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11899             hdr_len & 0x3; hdr_len++)
11900                 *up++ = IPOPT_EOL;
11901         mp->b_wptr = up;
11902         /* Update header length */
11903         mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11904         return (mp);
11905 }
11906 
11907 /*
11908  * Update any source route, record route, or timestamp options when
11909  * sending a packet back to ourselves.
11910  * Check that we are at end of strict source route.
11911  * The options have been sanity checked by ip_output_options().
11912  */
11913 void
11914 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11915 {
11916         ipoptp_t        opts;
11917         uchar_t         *opt;
11918         uint8_t         optval;
11919         uint8_t         optlen;
11920         ipaddr_t        dst;
11921         uint32_t        ts;
11922         timestruc_t     now;
11923 
11924         for (optval = ipoptp_first(&opts, ipha);
11925             optval != IPOPT_EOL;
11926             optval = ipoptp_next(&opts)) {
11927                 opt = opts.ipoptp_cur;
11928                 optlen = opts.ipoptp_len;
11929                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11930                 switch (optval) {
11931                         uint32_t off;
11932                 case IPOPT_SSRR:
11933                 case IPOPT_LSRR:
11934                         off = opt[IPOPT_OFFSET];
11935                         off--;
11936                         if (optlen < IP_ADDR_LEN ||
11937                             off > optlen - IP_ADDR_LEN) {
11938                                 /* End of source route */
11939                                 break;
11940                         }
11941                         /*
11942                          * This will only happen if two consecutive entries
11943                          * in the source route contains our address or if
11944                          * it is a packet with a loose source route which
11945                          * reaches us before consuming the whole source route
11946                          */
11947 
11948                         if (optval == IPOPT_SSRR) {
11949                                 return;
11950                         }
11951                         /*
11952                          * Hack: instead of dropping the packet truncate the
11953                          * source route to what has been used by filling the
11954                          * rest with IPOPT_NOP.
11955                          */
11956                         opt[IPOPT_OLEN] = (uint8_t)off;
11957                         while (off < optlen) {
11958                                 opt[off++] = IPOPT_NOP;
11959                         }
11960                         break;
11961                 case IPOPT_RR:
11962                         off = opt[IPOPT_OFFSET];
11963                         off--;
11964                         if (optlen < IP_ADDR_LEN ||
11965                             off > optlen - IP_ADDR_LEN) {
11966                                 /* No more room - ignore */
11967                                 ip1dbg((
11968                                     "ip_output_local_options: end of RR\n"));
11969                                 break;
11970                         }
11971                         dst = htonl(INADDR_LOOPBACK);
11972                         bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
11973                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
11974                         break;
11975                 case IPOPT_TS:
11976                         /* Insert timestamp if there is romm */
11977                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
11978                         case IPOPT_TS_TSONLY:
11979                                 off = IPOPT_TS_TIMELEN;
11980                                 break;
11981                         case IPOPT_TS_PRESPEC:
11982                         case IPOPT_TS_PRESPEC_RFC791:
11983                                 /* Verify that the address matched */
11984                                 off = opt[IPOPT_OFFSET] - 1;
11985                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
11986                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11987                                         /* Not for us */
11988                                         break;
11989                                 }
11990                                 /* FALLTHRU */
11991                         case IPOPT_TS_TSANDADDR:
11992                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
11993                                 break;
11994                         default:
11995                                 /*
11996                                  * ip_*put_options should have already
11997                                  * dropped this packet.
11998                                  */
11999                                 cmn_err(CE_PANIC, "ip_output_local_options: "
12000                                     "unknown IT - bug in ip_output_options?\n");
12001                                 return; /* Keep "lint" happy */
12002                         }
12003                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
12004                                 /* Increase overflow counter */
12005                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
12006                                 opt[IPOPT_POS_OV_FLG] = (uint8_t)
12007                                     (opt[IPOPT_POS_OV_FLG] & 0x0F) |
12008                                     (off << 4);
12009                                 break;
12010                         }
12011                         off = opt[IPOPT_OFFSET] - 1;
12012                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12013                         case IPOPT_TS_PRESPEC:
12014                         case IPOPT_TS_PRESPEC_RFC791:
12015                         case IPOPT_TS_TSANDADDR:
12016                                 dst = htonl(INADDR_LOOPBACK);
12017                                 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12018                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12019                                 /* FALLTHRU */
12020                         case IPOPT_TS_TSONLY:
12021                                 off = opt[IPOPT_OFFSET] - 1;
12022                                 /* Compute # of milliseconds since midnight */
12023                                 gethrestime(&now);
12024                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12025                                     now.tv_nsec / (NANOSEC / MILLISEC);
12026                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12027                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12028                                 break;
12029                         }
12030                         break;
12031                 }
12032         }
12033 }
12034 
12035 /*
12036  * Prepend an M_DATA fastpath header, and if none present prepend a
12037  * DL_UNITDATA_REQ. Frees the mblk on failure.
12038  *
12039  * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12040  * If there is a change to them, the nce will be deleted (condemned) and
12041  * a new nce_t will be created when packets are sent. Thus we need no locks
12042  * to access those fields.
12043  *
12044  * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12045  * we place b_band in dl_priority.dl_max.
12046  */
12047 static mblk_t *
12048 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12049 {
12050         uint_t  hlen;
12051         mblk_t *mp1;
12052         uint_t  priority;
12053         uchar_t *rptr;
12054 
12055         rptr = mp->b_rptr;
12056 
12057         ASSERT(DB_TYPE(mp) == M_DATA);
12058         priority = mp->b_band;
12059 
12060         ASSERT(nce != NULL);
12061         if ((mp1 = nce->nce_fp_mp) != NULL) {
12062                 hlen = MBLKL(mp1);
12063                 /*
12064                  * Check if we have enough room to prepend fastpath
12065                  * header
12066                  */
12067                 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12068                         rptr -= hlen;
12069                         bcopy(mp1->b_rptr, rptr, hlen);
12070                         /*
12071                          * Set the b_rptr to the start of the link layer
12072                          * header
12073                          */
12074                         mp->b_rptr = rptr;
12075                         return (mp);
12076                 }
12077                 mp1 = copyb(mp1);
12078                 if (mp1 == NULL) {
12079                         ill_t *ill = nce->nce_ill;
12080 
12081                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12082                         ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12083                         freemsg(mp);
12084                         return (NULL);
12085                 }
12086                 mp1->b_band = priority;
12087                 mp1->b_cont = mp;
12088                 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12089                 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12090                 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12091                 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12092                 DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12093                 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12094                 /*
12095                  * XXX disable ICK_VALID and compute checksum
12096                  * here; can happen if nce_fp_mp changes and
12097                  * it can't be copied now due to insufficient
12098                  * space. (unlikely, fp mp can change, but it
12099                  * does not increase in length)
12100                  */
12101                 return (mp1);
12102         }
12103         mp1 = copyb(nce->nce_dlur_mp);
12104 
12105         if (mp1 == NULL) {
12106                 ill_t *ill = nce->nce_ill;
12107 
12108                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12109                 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12110                 freemsg(mp);
12111                 return (NULL);
12112         }
12113         mp1->b_cont = mp;
12114         if (priority != 0) {
12115                 mp1->b_band = priority;
12116                 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12117                     priority;
12118         }
12119         return (mp1);
12120 #undef rptr
12121 }
12122 
12123 /*
12124  * Finish the outbound IPsec processing. This function is called from
12125  * ipsec_out_process() if the IPsec packet was processed
12126  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12127  * asynchronously.
12128  *
12129  * This is common to IPv4 and IPv6.
12130  */
12131 int
12132 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12133 {
12134         iaflags_t       ixaflags = ixa->ixa_flags;
12135         uint_t          pktlen;
12136 
12137 
12138         /* AH/ESP don't update ixa_pktlen when they modify the packet */
12139         if (ixaflags & IXAF_IS_IPV4) {
12140                 ipha_t          *ipha = (ipha_t *)mp->b_rptr;
12141 
12142                 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12143                 pktlen = ntohs(ipha->ipha_length);
12144         } else {
12145                 ip6_t           *ip6h = (ip6_t *)mp->b_rptr;
12146 
12147                 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12148                 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12149         }
12150 
12151         /*
12152          * We release any hard reference on the SAs here to make
12153          * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12154          * on the SAs.
12155          * If in the future we want the hard latching of the SAs in the
12156          * ip_xmit_attr_t then we should remove this.
12157          */
12158         if (ixa->ixa_ipsec_esp_sa != NULL) {
12159                 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12160                 ixa->ixa_ipsec_esp_sa = NULL;
12161         }
12162         if (ixa->ixa_ipsec_ah_sa != NULL) {
12163                 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12164                 ixa->ixa_ipsec_ah_sa = NULL;
12165         }
12166 
12167         /* Do we need to fragment? */
12168         if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12169             pktlen > ixa->ixa_fragsize) {
12170                 if (ixaflags & IXAF_IS_IPV4) {
12171                         ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12172                         /*
12173                          * We check for the DF case in ipsec_out_process
12174                          * hence this only handles the non-DF case.
12175                          */
12176                         return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12177                             pktlen, ixa->ixa_fragsize,
12178                             ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12179                             ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12180                             &ixa->ixa_cookie));
12181                 } else {
12182                         mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12183                         if (mp == NULL) {
12184                                 /* MIB and ip_drop_output already done */
12185                                 return (ENOMEM);
12186                         }
12187                         pktlen += sizeof (ip6_frag_t);
12188                         if (pktlen > ixa->ixa_fragsize) {
12189                                 return (ip_fragment_v6(mp, ixa->ixa_nce,
12190                                     ixa->ixa_flags, pktlen,
12191                                     ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12192                                     ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12193                                     ixa->ixa_postfragfn, &ixa->ixa_cookie));
12194                         }
12195                 }
12196         }
12197         return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12198             pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12199             ixa->ixa_no_loop_zoneid, NULL));
12200 }
12201 
12202 /*
12203  * Finish the inbound IPsec processing. This function is called from
12204  * ipsec_out_process() if the IPsec packet was processed
12205  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12206  * asynchronously.
12207  *
12208  * This is common to IPv4 and IPv6.
12209  */
12210 void
12211 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12212 {
12213         iaflags_t       iraflags = ira->ira_flags;
12214 
12215         /* Length might have changed */
12216         if (iraflags & IRAF_IS_IPV4) {
12217                 ipha_t          *ipha = (ipha_t *)mp->b_rptr;
12218 
12219                 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12220                 ira->ira_pktlen = ntohs(ipha->ipha_length);
12221                 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12222                 ira->ira_protocol = ipha->ipha_protocol;
12223 
12224                 ip_fanout_v4(mp, ipha, ira);
12225         } else {
12226                 ip6_t           *ip6h = (ip6_t *)mp->b_rptr;
12227                 uint8_t         *nexthdrp;
12228 
12229                 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12230                 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12231                 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12232                     &nexthdrp)) {
12233                         /* Malformed packet */
12234                         BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12235                         ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12236                         freemsg(mp);
12237                         return;
12238                 }
12239                 ira->ira_protocol = *nexthdrp;
12240                 ip_fanout_v6(mp, ip6h, ira);
12241         }
12242 }
12243 
12244 /*
12245  * Select which AH & ESP SA's to use (if any) for the outbound packet.
12246  *
12247  * If this function returns B_TRUE, the requested SA's have been filled
12248  * into the ixa_ipsec_*_sa pointers.
12249  *
12250  * If the function returns B_FALSE, the packet has been "consumed", most
12251  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12252  *
12253  * The SA references created by the protocol-specific "select"
12254  * function will be released in ip_output_post_ipsec.
12255  */
12256 static boolean_t
12257 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12258 {
12259         boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12260         ipsec_policy_t *pp;
12261         ipsec_action_t *ap;
12262 
12263         ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12264         ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12265             (ixa->ixa_ipsec_action != NULL));
12266 
12267         ap = ixa->ixa_ipsec_action;
12268         if (ap == NULL) {
12269                 pp = ixa->ixa_ipsec_policy;
12270                 ASSERT(pp != NULL);
12271                 ap = pp->ipsp_act;
12272                 ASSERT(ap != NULL);
12273         }
12274 
12275         /*
12276          * We have an action.  now, let's select SA's.
12277          * A side effect of setting ixa_ipsec_*_sa is that it will
12278          * be cached in the conn_t.
12279          */
12280         if (ap->ipa_want_esp) {
12281                 if (ixa->ixa_ipsec_esp_sa == NULL) {
12282                         need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12283                             IPPROTO_ESP);
12284                 }
12285                 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12286         }
12287 
12288         if (ap->ipa_want_ah) {
12289                 if (ixa->ixa_ipsec_ah_sa == NULL) {
12290                         need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12291                             IPPROTO_AH);
12292                 }
12293                 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12294                 /*
12295                  * The ESP and AH processing order needs to be preserved
12296                  * when both protocols are required (ESP should be applied
12297                  * before AH for an outbound packet). Force an ESP ACQUIRE
12298                  * when both ESP and AH are required, and an AH ACQUIRE
12299                  * is needed.
12300                  */
12301                 if (ap->ipa_want_esp && need_ah_acquire)
12302                         need_esp_acquire = B_TRUE;
12303         }
12304 
12305         /*
12306          * Send an ACQUIRE (extended, regular, or both) if we need one.
12307          * Release SAs that got referenced, but will not be used until we
12308          * acquire _all_ of the SAs we need.
12309          */
12310         if (need_ah_acquire || need_esp_acquire) {
12311                 if (ixa->ixa_ipsec_ah_sa != NULL) {
12312                         IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12313                         ixa->ixa_ipsec_ah_sa = NULL;
12314                 }
12315                 if (ixa->ixa_ipsec_esp_sa != NULL) {
12316                         IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12317                         ixa->ixa_ipsec_esp_sa = NULL;
12318                 }
12319 
12320                 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12321                 return (B_FALSE);
12322         }
12323 
12324         return (B_TRUE);
12325 }
12326 
12327 /*
12328  * Handle IPsec output processing.
12329  * This function is only entered once for a given packet.
12330  * We try to do things synchronously, but if we need to have user-level
12331  * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12332  * will be completed
12333  *  - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12334  *  - when asynchronous ESP is done it will do AH
12335  *
12336  * In all cases we come back in ip_output_post_ipsec() to fragment and
12337  * send out the packet.
12338  */
12339 int
12340 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12341 {
12342         ill_t           *ill = ixa->ixa_nce->nce_ill;
12343         ip_stack_t      *ipst = ixa->ixa_ipst;
12344         ipsec_stack_t   *ipss;
12345         ipsec_policy_t  *pp;
12346         ipsec_action_t  *ap;
12347 
12348         ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12349 
12350         ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12351             (ixa->ixa_ipsec_action != NULL));
12352 
12353         ipss = ipst->ips_netstack->netstack_ipsec;
12354         if (!ipsec_loaded(ipss)) {
12355                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12356                 ip_drop_packet(mp, B_TRUE, ill,
12357                     DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12358                     &ipss->ipsec_dropper);
12359                 return (ENOTSUP);
12360         }
12361 
12362         ap = ixa->ixa_ipsec_action;
12363         if (ap == NULL) {
12364                 pp = ixa->ixa_ipsec_policy;
12365                 ASSERT(pp != NULL);
12366                 ap = pp->ipsp_act;
12367                 ASSERT(ap != NULL);
12368         }
12369 
12370         /* Handle explicit drop action and bypass. */
12371         switch (ap->ipa_act.ipa_type) {
12372         case IPSEC_ACT_DISCARD:
12373         case IPSEC_ACT_REJECT:
12374                 ip_drop_packet(mp, B_FALSE, ill,
12375                     DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12376                 return (EHOSTUNREACH);  /* IPsec policy failure */
12377         case IPSEC_ACT_BYPASS:
12378                 return (ip_output_post_ipsec(mp, ixa));
12379         }
12380 
12381         /*
12382          * The order of processing is first insert a IP header if needed.
12383          * Then insert the ESP header and then the AH header.
12384          */
12385         if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12386                 /*
12387                  * First get the outer IP header before sending
12388                  * it to ESP.
12389                  */
12390                 ipha_t *oipha, *iipha;
12391                 mblk_t *outer_mp, *inner_mp;
12392 
12393                 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12394                         (void) mi_strlog(ill->ill_rq, 0,
12395                             SL_ERROR|SL_TRACE|SL_CONSOLE,
12396                             "ipsec_out_process: "
12397                             "Self-Encapsulation failed: Out of memory\n");
12398                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12399                         ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12400                         freemsg(mp);
12401                         return (ENOBUFS);
12402                 }
12403                 inner_mp = mp;
12404                 ASSERT(inner_mp->b_datap->db_type == M_DATA);
12405                 oipha = (ipha_t *)outer_mp->b_rptr;
12406                 iipha = (ipha_t *)inner_mp->b_rptr;
12407                 *oipha = *iipha;
12408                 outer_mp->b_wptr += sizeof (ipha_t);
12409                 oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12410                     sizeof (ipha_t));
12411                 oipha->ipha_protocol = IPPROTO_ENCAP;
12412                 oipha->ipha_version_and_hdr_length =
12413                     IP_SIMPLE_HDR_VERSION;
12414                 oipha->ipha_hdr_checksum = 0;
12415                 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12416                 outer_mp->b_cont = inner_mp;
12417                 mp = outer_mp;
12418 
12419                 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12420         }
12421 
12422         /* If we need to wait for a SA then we can't return any errno */
12423         if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12424             (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12425             !ipsec_out_select_sa(mp, ixa))
12426                 return (0);
12427 
12428         /*
12429          * By now, we know what SA's to use.  Toss over to ESP & AH
12430          * to do the heavy lifting.
12431          */
12432         if (ap->ipa_want_esp) {
12433                 ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12434 
12435                 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12436                 if (mp == NULL) {
12437                         /*
12438                          * Either it failed or is pending. In the former case
12439                          * ipIfStatsInDiscards was increased.
12440                          */
12441                         return (0);
12442                 }
12443         }
12444 
12445         if (ap->ipa_want_ah) {
12446                 ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12447 
12448                 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12449                 if (mp == NULL) {
12450                         /*
12451                          * Either it failed or is pending. In the former case
12452                          * ipIfStatsInDiscards was increased.
12453                          */
12454                         return (0);
12455                 }
12456         }
12457         /*
12458          * We are done with IPsec processing. Send it over
12459          * the wire.
12460          */
12461         return (ip_output_post_ipsec(mp, ixa));
12462 }
12463 
12464 /*
12465  * ioctls that go through a down/up sequence may need to wait for the down
12466  * to complete. This involves waiting for the ire and ipif refcnts to go down
12467  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12468  */
12469 /* ARGSUSED */
12470 void
12471 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12472 {
12473         struct iocblk *iocp;
12474         mblk_t *mp1;
12475         ip_ioctl_cmd_t *ipip;
12476         int err;
12477         sin_t   *sin;
12478         struct lifreq *lifr;
12479         struct ifreq *ifr;
12480 
12481         iocp = (struct iocblk *)mp->b_rptr;
12482         ASSERT(ipsq != NULL);
12483         /* Existence of mp1 verified in ip_wput_nondata */
12484         mp1 = mp->b_cont->b_cont;
12485         ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12486         if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12487                 /*
12488                  * Special case where ipx_current_ipif is not set:
12489                  * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12490                  * We are here as were not able to complete the operation in
12491                  * ipif_set_values because we could not become exclusive on
12492                  * the new ipsq.
12493                  */
12494                 ill_t *ill = q->q_ptr;
12495                 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12496         }
12497         ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12498 
12499         if (ipip->ipi_cmd_type == IF_CMD) {
12500                 /* This a old style SIOC[GS]IF* command */
12501                 ifr = (struct ifreq *)mp1->b_rptr;
12502                 sin = (sin_t *)&ifr->ifr_addr;
12503         } else if (ipip->ipi_cmd_type == LIF_CMD) {
12504                 /* This a new style SIOC[GS]LIF* command */
12505                 lifr = (struct lifreq *)mp1->b_rptr;
12506                 sin = (sin_t *)&lifr->lifr_addr;
12507         } else {
12508                 sin = NULL;
12509         }
12510 
12511         err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12512             q, mp, ipip, mp1->b_rptr);
12513 
12514         DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12515             int, ipip->ipi_cmd,
12516             ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12517             ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12518 
12519         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12520 }
12521 
12522 /*
12523  * ioctl processing
12524  *
12525  * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12526  * the ioctl command in the ioctl tables, determines the copyin data size
12527  * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12528  *
12529  * ioctl processing then continues when the M_IOCDATA makes its way down to
12530  * ip_wput_nondata().  The ioctl is looked up again in the ioctl table, its
12531  * associated 'conn' is refheld till the end of the ioctl and the general
12532  * ioctl processing function ip_process_ioctl() is called to extract the
12533  * arguments and process the ioctl.  To simplify extraction, ioctl commands
12534  * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12535  * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12536  * is used to extract the ioctl's arguments.
12537  *
12538  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12539  * so goes thru the serialization primitive ipsq_try_enter. Then the
12540  * appropriate function to handle the ioctl is called based on the entry in
12541  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12542  * which also refreleases the 'conn' that was refheld at the start of the
12543  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12544  *
12545  * Many exclusive ioctls go thru an internal down up sequence as part of
12546  * the operation. For example an attempt to change the IP address of an
12547  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12548  * does all the cleanup such as deleting all ires that use this address.
12549  * Then we need to wait till all references to the interface go away.
12550  */
12551 void
12552 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12553 {
12554         struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12555         ip_ioctl_cmd_t *ipip = arg;
12556         ip_extract_func_t *extract_funcp;
12557         cmd_info_t ci;
12558         int err;
12559         boolean_t entered_ipsq = B_FALSE;
12560 
12561         ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12562 
12563         if (ipip == NULL)
12564                 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12565 
12566         /*
12567          * SIOCLIFADDIF needs to go thru a special path since the
12568          * ill may not exist yet. This happens in the case of lo0
12569          * which is created using this ioctl.
12570          */
12571         if (ipip->ipi_cmd == SIOCLIFADDIF) {
12572                 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12573                 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12574                     int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12575                 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12576                 return;
12577         }
12578 
12579         ci.ci_ipif = NULL;
12580         switch (ipip->ipi_cmd_type) {
12581         case MISC_CMD:
12582         case MSFILT_CMD:
12583                 /*
12584                  * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12585                  */
12586                 if (ipip->ipi_cmd == IF_UNITSEL) {
12587                         /* ioctl comes down the ill */
12588                         ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12589                         ipif_refhold(ci.ci_ipif);
12590                 }
12591                 err = 0;
12592                 ci.ci_sin = NULL;
12593                 ci.ci_sin6 = NULL;
12594                 ci.ci_lifr = NULL;
12595                 extract_funcp = NULL;
12596                 break;
12597 
12598         case IF_CMD:
12599         case LIF_CMD:
12600                 extract_funcp = ip_extract_lifreq;
12601                 break;
12602 
12603         case ARP_CMD:
12604         case XARP_CMD:
12605                 extract_funcp = ip_extract_arpreq;
12606                 break;
12607 
12608         default:
12609                 ASSERT(0);
12610         }
12611 
12612         if (extract_funcp != NULL) {
12613                 err = (*extract_funcp)(q, mp, ipip, &ci);
12614                 if (err != 0) {
12615                         DTRACE_PROBE4(ipif__ioctl,
12616                             char *, "ip_process_ioctl finish err",
12617                             int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12618                         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12619                         return;
12620                 }
12621 
12622                 /*
12623                  * All of the extraction functions return a refheld ipif.
12624                  */
12625                 ASSERT(ci.ci_ipif != NULL);
12626         }
12627 
12628         if (!(ipip->ipi_flags & IPI_WR)) {
12629                 /*
12630                  * A return value of EINPROGRESS means the ioctl is
12631                  * either queued and waiting for some reason or has
12632                  * already completed.
12633                  */
12634                 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12635                     ci.ci_lifr);
12636                 if (ci.ci_ipif != NULL) {
12637                         DTRACE_PROBE4(ipif__ioctl,
12638                             char *, "ip_process_ioctl finish RD",
12639                             int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12640                             ipif_t *, ci.ci_ipif);
12641                         ipif_refrele(ci.ci_ipif);
12642                 } else {
12643                         DTRACE_PROBE4(ipif__ioctl,
12644                             char *, "ip_process_ioctl finish RD",
12645                             int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12646                 }
12647                 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12648                 return;
12649         }
12650 
12651         ASSERT(ci.ci_ipif != NULL);
12652 
12653         /*
12654          * If ipsq is non-NULL, we are already being called exclusively
12655          */
12656         ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12657         if (ipsq == NULL) {
12658                 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12659                     NEW_OP, B_TRUE);
12660                 if (ipsq == NULL) {
12661                         ipif_refrele(ci.ci_ipif);
12662                         return;
12663                 }
12664                 entered_ipsq = B_TRUE;
12665         }
12666         /*
12667          * Release the ipif so that ipif_down and friends that wait for
12668          * references to go away are not misled about the current ipif_refcnt
12669          * values. We are writer so we can access the ipif even after releasing
12670          * the ipif.
12671          */
12672         ipif_refrele(ci.ci_ipif);
12673 
12674         ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12675 
12676         /*
12677          * A return value of EINPROGRESS means the ioctl is
12678          * either queued and waiting for some reason or has
12679          * already completed.
12680          */
12681         err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12682 
12683         DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12684             int, ipip->ipi_cmd,
12685             ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12686             ipif_t *, ci.ci_ipif);
12687         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12688 
12689         if (entered_ipsq)
12690                 ipsq_exit(ipsq);
12691 }
12692 
12693 /*
12694  * Complete the ioctl. Typically ioctls use the mi package and need to
12695  * do mi_copyout/mi_copy_done.
12696  */
12697 void
12698 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12699 {
12700         conn_t  *connp = NULL;
12701 
12702         if (err == EINPROGRESS)
12703                 return;
12704 
12705         if (CONN_Q(q)) {
12706                 connp = Q_TO_CONN(q);
12707                 ASSERT(connp->conn_ref >= 2);
12708         }
12709 
12710         switch (mode) {
12711         case COPYOUT:
12712                 if (err == 0)
12713                         mi_copyout(q, mp);
12714                 else
12715                         mi_copy_done(q, mp, err);
12716                 break;
12717 
12718         case NO_COPYOUT:
12719                 mi_copy_done(q, mp, err);
12720                 break;
12721 
12722         default:
12723                 ASSERT(mode == CONN_CLOSE);     /* aborted through CONN_CLOSE */
12724                 break;
12725         }
12726 
12727         /*
12728          * The conn refhold and ioctlref placed on the conn at the start of the
12729          * ioctl are released here.
12730          */
12731         if (connp != NULL) {
12732                 CONN_DEC_IOCTLREF(connp);
12733                 CONN_OPER_PENDING_DONE(connp);
12734         }
12735 
12736         if (ipsq != NULL)
12737                 ipsq_current_finish(ipsq);
12738 }
12739 
12740 /* Handles all non data messages */
12741 void
12742 ip_wput_nondata(queue_t *q, mblk_t *mp)
12743 {
12744         mblk_t          *mp1;
12745         struct iocblk   *iocp;
12746         ip_ioctl_cmd_t  *ipip;
12747         conn_t          *connp;
12748         cred_t          *cr;
12749         char            *proto_str;
12750 
12751         if (CONN_Q(q))
12752                 connp = Q_TO_CONN(q);
12753         else
12754                 connp = NULL;
12755 
12756         switch (DB_TYPE(mp)) {
12757         case M_IOCTL:
12758                 /*
12759                  * IOCTL processing begins in ip_sioctl_copyin_setup which
12760                  * will arrange to copy in associated control structures.
12761                  */
12762                 ip_sioctl_copyin_setup(q, mp);
12763                 return;
12764         case M_IOCDATA:
12765                 /*
12766                  * Ensure that this is associated with one of our trans-
12767                  * parent ioctls.  If it's not ours, discard it if we're
12768                  * running as a driver, or pass it on if we're a module.
12769                  */
12770                 iocp = (struct iocblk *)mp->b_rptr;
12771                 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12772                 if (ipip == NULL) {
12773                         if (q->q_next == NULL) {
12774                                 goto nak;
12775                         } else {
12776                                 putnext(q, mp);
12777                         }
12778                         return;
12779                 }
12780                 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12781                         /*
12782                          * The ioctl is one we recognise, but is not consumed
12783                          * by IP as a module and we are a module, so we drop
12784                          */
12785                         goto nak;
12786                 }
12787 
12788                 /* IOCTL continuation following copyin or copyout. */
12789                 if (mi_copy_state(q, mp, NULL) == -1) {
12790                         /*
12791                          * The copy operation failed.  mi_copy_state already
12792                          * cleaned up, so we're out of here.
12793                          */
12794                         return;
12795                 }
12796                 /*
12797                  * If we just completed a copy in, we become writer and
12798                  * continue processing in ip_sioctl_copyin_done.  If it
12799                  * was a copy out, we call mi_copyout again.  If there is
12800                  * nothing more to copy out, it will complete the IOCTL.
12801                  */
12802                 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12803                         if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12804                                 mi_copy_done(q, mp, EPROTO);
12805                                 return;
12806                         }
12807                         /*
12808                          * Check for cases that need more copying.  A return
12809                          * value of 0 means a second copyin has been started,
12810                          * so we return; a return value of 1 means no more
12811                          * copying is needed, so we continue.
12812                          */
12813                         if (ipip->ipi_cmd_type == MSFILT_CMD &&
12814                             MI_COPY_COUNT(mp) == 1) {
12815                                 if (ip_copyin_msfilter(q, mp) == 0)
12816                                         return;
12817                         }
12818                         /*
12819                          * Refhold the conn, till the ioctl completes. This is
12820                          * needed in case the ioctl ends up in the pending mp
12821                          * list. Every mp in the ipx_pending_mp list must have
12822                          * a refhold on the conn to resume processing. The
12823                          * refhold is released when the ioctl completes
12824                          * (whether normally or abnormally). An ioctlref is also
12825                          * placed on the conn to prevent TCP from removing the
12826                          * queue needed to send the ioctl reply back.
12827                          * In all cases ip_ioctl_finish is called to finish
12828                          * the ioctl and release the refholds.
12829                          */
12830                         if (connp != NULL) {
12831                                 /* This is not a reentry */
12832                                 CONN_INC_REF(connp);
12833                                 CONN_INC_IOCTLREF(connp);
12834                         } else {
12835                                 if (!(ipip->ipi_flags & IPI_MODOK)) {
12836                                         mi_copy_done(q, mp, EINVAL);
12837                                         return;
12838                                 }
12839                         }
12840 
12841                         ip_process_ioctl(NULL, q, mp, ipip);
12842 
12843                 } else {
12844                         mi_copyout(q, mp);
12845                 }
12846                 return;
12847 
12848         case M_IOCNAK:
12849                 /*
12850                  * The only way we could get here is if a resolver didn't like
12851                  * an IOCTL we sent it.  This shouldn't happen.
12852                  */
12853                 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12854                     "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12855                     ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12856                 freemsg(mp);
12857                 return;
12858         case M_IOCACK:
12859                 /* /dev/ip shouldn't see this */
12860                 goto nak;
12861         case M_FLUSH:
12862                 if (*mp->b_rptr & FLUSHW)
12863                         flushq(q, FLUSHALL);
12864                 if (q->q_next) {
12865                         putnext(q, mp);
12866                         return;
12867                 }
12868                 if (*mp->b_rptr & FLUSHR) {
12869                         *mp->b_rptr &= ~FLUSHW;
12870                         qreply(q, mp);
12871                         return;
12872                 }
12873                 freemsg(mp);
12874                 return;
12875         case M_CTL:
12876                 break;
12877         case M_PROTO:
12878         case M_PCPROTO:
12879                 /*
12880                  * The only PROTO messages we expect are SNMP-related.
12881                  */
12882                 switch (((union T_primitives *)mp->b_rptr)->type) {
12883                 case T_SVR4_OPTMGMT_REQ:
12884                         ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12885                             "flags %x\n",
12886                             ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12887 
12888                         if (connp == NULL) {
12889                                 proto_str = "T_SVR4_OPTMGMT_REQ";
12890                                 goto protonak;
12891                         }
12892 
12893                         /*
12894                          * All Solaris components should pass a db_credp
12895                          * for this TPI message, hence we ASSERT.
12896                          * But in case there is some other M_PROTO that looks
12897                          * like a TPI message sent by some other kernel
12898                          * component, we check and return an error.
12899                          */
12900                         cr = msg_getcred(mp, NULL);
12901                         ASSERT(cr != NULL);
12902                         if (cr == NULL) {
12903                                 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12904                                 if (mp != NULL)
12905                                         qreply(q, mp);
12906                                 return;
12907                         }
12908 
12909                         if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12910                                 proto_str = "Bad SNMPCOM request?";
12911                                 goto protonak;
12912                         }
12913                         return;
12914                 default:
12915                         ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12916                             (int)*(uint_t *)mp->b_rptr));
12917                         freemsg(mp);
12918                         return;
12919                 }
12920         default:
12921                 break;
12922         }
12923         if (q->q_next) {
12924                 putnext(q, mp);
12925         } else
12926                 freemsg(mp);
12927         return;
12928 
12929 nak:
12930         iocp->ioc_error = EINVAL;
12931         mp->b_datap->db_type = M_IOCNAK;
12932         iocp->ioc_count = 0;
12933         qreply(q, mp);
12934         return;
12935 
12936 protonak:
12937         cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12938         if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12939                 qreply(q, mp);
12940 }
12941 
12942 /*
12943  * Process IP options in an outbound packet.  Verify that the nexthop in a
12944  * strict source route is onlink.
12945  * Returns non-zero if something fails in which case an ICMP error has been
12946  * sent and mp freed.
12947  *
12948  * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12949  */
12950 int
12951 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12952 {
12953         ipoptp_t        opts;
12954         uchar_t         *opt;
12955         uint8_t         optval;
12956         uint8_t         optlen;
12957         ipaddr_t        dst;
12958         intptr_t        code = 0;
12959         ire_t           *ire;
12960         ip_stack_t      *ipst = ixa->ixa_ipst;
12961         ip_recv_attr_t  iras;
12962 
12963         ip2dbg(("ip_output_options\n"));
12964 
12965         dst = ipha->ipha_dst;
12966         for (optval = ipoptp_first(&opts, ipha);
12967             optval != IPOPT_EOL;
12968             optval = ipoptp_next(&opts)) {
12969                 opt = opts.ipoptp_cur;
12970                 optlen = opts.ipoptp_len;
12971                 ip2dbg(("ip_output_options: opt %d, len %d\n",
12972                     optval, optlen));
12973                 switch (optval) {
12974                         uint32_t off;
12975                 case IPOPT_SSRR:
12976                 case IPOPT_LSRR:
12977                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12978                                 ip1dbg((
12979                                     "ip_output_options: bad option offset\n"));
12980                                 code = (char *)&opt[IPOPT_OLEN] -
12981                                     (char *)ipha;
12982                                 goto param_prob;
12983                         }
12984                         off = opt[IPOPT_OFFSET];
12985                         ip1dbg(("ip_output_options: next hop 0x%x\n",
12986                             ntohl(dst)));
12987                         /*
12988                          * For strict: verify that dst is directly
12989                          * reachable.
12990                          */
12991                         if (optval == IPOPT_SSRR) {
12992                                 ire = ire_ftable_lookup_v4(dst, 0, 0,
12993                                     IRE_INTERFACE, NULL, ALL_ZONES,
12994                                     ixa->ixa_tsl,
12995                                     MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
12996                                     NULL);
12997                                 if (ire == NULL) {
12998                                         ip1dbg(("ip_output_options: SSRR not"
12999                                             " directly reachable: 0x%x\n",
13000                                             ntohl(dst)));
13001                                         goto bad_src_route;
13002                                 }
13003                                 ire_refrele(ire);
13004                         }
13005                         break;
13006                 case IPOPT_RR:
13007                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13008                                 ip1dbg((
13009                                     "ip_output_options: bad option offset\n"));
13010                                 code = (char *)&opt[IPOPT_OLEN] -
13011                                     (char *)ipha;
13012                                 goto param_prob;
13013                         }
13014                         break;
13015                 case IPOPT_TS:
13016                         /*
13017                          * Verify that length >=5 and that there is either
13018                          * room for another timestamp or that the overflow
13019                          * counter is not maxed out.
13020                          */
13021                         code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13022                         if (optlen < IPOPT_MINLEN_IT) {
13023                                 goto param_prob;
13024                         }
13025                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13026                                 ip1dbg((
13027                                     "ip_output_options: bad option offset\n"));
13028                                 code = (char *)&opt[IPOPT_OFFSET] -
13029                                     (char *)ipha;
13030                                 goto param_prob;
13031                         }
13032                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13033                         case IPOPT_TS_TSONLY:
13034                                 off = IPOPT_TS_TIMELEN;
13035                                 break;
13036                         case IPOPT_TS_TSANDADDR:
13037                         case IPOPT_TS_PRESPEC:
13038                         case IPOPT_TS_PRESPEC_RFC791:
13039                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13040                                 break;
13041                         default:
13042                                 code = (char *)&opt[IPOPT_POS_OV_FLG] -
13043                                     (char *)ipha;
13044                                 goto param_prob;
13045                         }
13046                         if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13047                             (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13048                                 /*
13049                                  * No room and the overflow counter is 15
13050                                  * already.
13051                                  */
13052                                 goto param_prob;
13053                         }
13054                         break;
13055                 }
13056         }
13057 
13058         if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13059                 return (0);
13060 
13061         ip1dbg(("ip_output_options: error processing IP options."));
13062         code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13063 
13064 param_prob:
13065         bzero(&iras, sizeof (iras));
13066         iras.ira_ill = iras.ira_rill = ill;
13067         iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13068         iras.ira_rifindex = iras.ira_ruifindex;
13069         iras.ira_flags = IRAF_IS_IPV4;
13070 
13071         ip_drop_output("ip_output_options", mp, ill);
13072         icmp_param_problem(mp, (uint8_t)code, &iras);
13073         ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13074         return (-1);
13075 
13076 bad_src_route:
13077         bzero(&iras, sizeof (iras));
13078         iras.ira_ill = iras.ira_rill = ill;
13079         iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13080         iras.ira_rifindex = iras.ira_ruifindex;
13081         iras.ira_flags = IRAF_IS_IPV4;
13082 
13083         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13084         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13085         ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13086         return (-1);
13087 }
13088 
13089 /*
13090  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13091  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13092  * thru /etc/system.
13093  */
13094 #define CONN_MAXDRAINCNT        64
13095 
13096 static void
13097 conn_drain_init(ip_stack_t *ipst)
13098 {
13099         int i, j;
13100         idl_tx_list_t *itl_tx;
13101 
13102         ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13103 
13104         if ((ipst->ips_conn_drain_list_cnt == 0) ||
13105             (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13106                 /*
13107                  * Default value of the number of drainers is the
13108                  * number of cpus, subject to maximum of 8 drainers.
13109                  */
13110                 if (boot_max_ncpus != -1)
13111                         ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13112                 else
13113                         ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13114         }
13115 
13116         ipst->ips_idl_tx_list =
13117             kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13118         for (i = 0; i < TX_FANOUT_SIZE; i++) {
13119                 itl_tx =  &ipst->ips_idl_tx_list[i];
13120                 itl_tx->txl_drain_list =
13121                     kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13122                     sizeof (idl_t), KM_SLEEP);
13123                 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13124                 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13125                         mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13126                             MUTEX_DEFAULT, NULL);
13127                         itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13128                 }
13129         }
13130 }
13131 
13132 static void
13133 conn_drain_fini(ip_stack_t *ipst)
13134 {
13135         int i;
13136         idl_tx_list_t *itl_tx;
13137 
13138         for (i = 0; i < TX_FANOUT_SIZE; i++) {
13139                 itl_tx =  &ipst->ips_idl_tx_list[i];
13140                 kmem_free(itl_tx->txl_drain_list,
13141                     ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13142         }
13143         kmem_free(ipst->ips_idl_tx_list,
13144             TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13145         ipst->ips_idl_tx_list = NULL;
13146 }
13147 
13148 /*
13149  * Flow control has blocked us from proceeding.  Insert the given conn in one
13150  * of the conn drain lists.  When flow control is unblocked, either ip_wsrv()
13151  * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13152  * will call conn_walk_drain().  See the flow control notes at the top of this
13153  * file for more details.
13154  */
13155 void
13156 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13157 {
13158         idl_t   *idl = tx_list->txl_drain_list;
13159         uint_t  index;
13160         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
13161 
13162         mutex_enter(&connp->conn_lock);
13163         if (connp->conn_state_flags & CONN_CLOSING) {
13164                 /*
13165                  * The conn is closing as a result of which CONN_CLOSING
13166                  * is set. Return.
13167                  */
13168                 mutex_exit(&connp->conn_lock);
13169                 return;
13170         } else if (connp->conn_idl == NULL) {
13171                 /*
13172                  * Assign the next drain list round robin. We dont' use
13173                  * a lock, and thus it may not be strictly round robin.
13174                  * Atomicity of load/stores is enough to make sure that
13175                  * conn_drain_list_index is always within bounds.
13176                  */
13177                 index = tx_list->txl_drain_index;
13178                 ASSERT(index < ipst->ips_conn_drain_list_cnt);
13179                 connp->conn_idl = &tx_list->txl_drain_list[index];
13180                 index++;
13181                 if (index == ipst->ips_conn_drain_list_cnt)
13182                         index = 0;
13183                 tx_list->txl_drain_index = index;
13184         } else {
13185                 ASSERT(connp->conn_idl->idl_itl == tx_list);
13186         }
13187         mutex_exit(&connp->conn_lock);
13188 
13189         idl = connp->conn_idl;
13190         mutex_enter(&idl->idl_lock);
13191         if ((connp->conn_drain_prev != NULL) ||
13192             (connp->conn_state_flags & CONN_CLOSING)) {
13193                 /*
13194                  * The conn is either already in the drain list or closing.
13195                  * (We needed to check for CONN_CLOSING again since close can
13196                  * sneak in between dropping conn_lock and acquiring idl_lock.)
13197                  */
13198                 mutex_exit(&idl->idl_lock);
13199                 return;
13200         }
13201 
13202         /*
13203          * The conn is not in the drain list. Insert it at the
13204          * tail of the drain list. The drain list is circular
13205          * and doubly linked. idl_conn points to the 1st element
13206          * in the list.
13207          */
13208         if (idl->idl_conn == NULL) {
13209                 idl->idl_conn = connp;
13210                 connp->conn_drain_next = connp;
13211                 connp->conn_drain_prev = connp;
13212         } else {
13213                 conn_t *head = idl->idl_conn;
13214 
13215                 connp->conn_drain_next = head;
13216                 connp->conn_drain_prev = head->conn_drain_prev;
13217                 head->conn_drain_prev->conn_drain_next = connp;
13218                 head->conn_drain_prev = connp;
13219         }
13220         /*
13221          * For non streams based sockets assert flow control.
13222          */
13223         conn_setqfull(connp, NULL);
13224         mutex_exit(&idl->idl_lock);
13225 }
13226 
13227 static void
13228 conn_drain_remove(conn_t *connp)
13229 {
13230         idl_t *idl = connp->conn_idl;
13231 
13232         if (idl != NULL) {
13233                 /*
13234                  * Remove ourself from the drain list.
13235                  */
13236                 if (connp->conn_drain_next == connp) {
13237                         /* Singleton in the list */
13238                         ASSERT(connp->conn_drain_prev == connp);
13239                         idl->idl_conn = NULL;
13240                 } else {
13241                         connp->conn_drain_prev->conn_drain_next =
13242                             connp->conn_drain_next;
13243                         connp->conn_drain_next->conn_drain_prev =
13244                             connp->conn_drain_prev;
13245                         if (idl->idl_conn == connp)
13246                                 idl->idl_conn = connp->conn_drain_next;
13247                 }
13248 
13249                 /*
13250                  * NOTE: because conn_idl is associated with a specific drain
13251                  * list which in turn is tied to the index the TX ring
13252                  * (txl_cookie) hashes to, and because the TX ring can change
13253                  * over the lifetime of the conn_t, we must clear conn_idl so
13254                  * a subsequent conn_drain_insert() will set conn_idl again
13255                  * based on the latest txl_cookie.
13256                  */
13257                 connp->conn_idl = NULL;
13258         }
13259         connp->conn_drain_next = NULL;
13260         connp->conn_drain_prev = NULL;
13261 
13262         conn_clrqfull(connp, NULL);
13263         /*
13264          * For streams based sockets open up flow control.
13265          */
13266         if (!IPCL_IS_NONSTR(connp))
13267                 enableok(connp->conn_wq);
13268 }
13269 
13270 /*
13271  * This conn is closing, and we are called from ip_close. OR
13272  * this conn is draining because flow-control on the ill has been relieved.
13273  *
13274  * We must also need to remove conn's on this idl from the list, and also
13275  * inform the sockfs upcalls about the change in flow-control.
13276  */
13277 static void
13278 conn_drain(conn_t *connp, boolean_t closing)
13279 {
13280         idl_t *idl;
13281         conn_t *next_connp;
13282 
13283         /*
13284          * connp->conn_idl is stable at this point, and no lock is needed
13285          * to check it. If we are called from ip_close, close has already
13286          * set CONN_CLOSING, thus freezing the value of conn_idl, and
13287          * called us only because conn_idl is non-null. If we are called thru
13288          * service, conn_idl could be null, but it cannot change because
13289          * service is single-threaded per queue, and there cannot be another
13290          * instance of service trying to call conn_drain_insert on this conn
13291          * now.
13292          */
13293         ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13294 
13295         /*
13296          * If the conn doesn't exist or is not on a drain list, bail.
13297          */
13298         if (connp == NULL || connp->conn_idl == NULL ||
13299             connp->conn_drain_prev == NULL) {
13300                 return;
13301         }
13302 
13303         idl = connp->conn_idl;
13304         ASSERT(MUTEX_HELD(&idl->idl_lock));
13305 
13306         if (!closing) {
13307                 next_connp = connp->conn_drain_next;
13308                 while (next_connp != connp) {
13309                         conn_t *delconnp = next_connp;
13310 
13311                         next_connp = next_connp->conn_drain_next;
13312                         conn_drain_remove(delconnp);
13313                 }
13314                 ASSERT(connp->conn_drain_next == idl->idl_conn);
13315         }
13316         conn_drain_remove(connp);
13317 }
13318 
13319 /*
13320  * Write service routine. Shared perimeter entry point.
13321  * The device queue's messages has fallen below the low water mark and STREAMS
13322  * has backenabled the ill_wq. Send sockfs notification about flow-control on
13323  * each waiting conn.
13324  */
13325 void
13326 ip_wsrv(queue_t *q)
13327 {
13328         ill_t   *ill;
13329 
13330         ill = (ill_t *)q->q_ptr;
13331         if (ill->ill_state_flags == 0) {
13332                 ip_stack_t *ipst = ill->ill_ipst;
13333 
13334                 /*
13335                  * The device flow control has opened up.
13336                  * Walk through conn drain lists and qenable the
13337                  * first conn in each list. This makes sense only
13338                  * if the stream is fully plumbed and setup.
13339                  * Hence the ill_state_flags check above.
13340                  */
13341                 ip1dbg(("ip_wsrv: walking\n"));
13342                 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13343                 enableok(ill->ill_wq);
13344         }
13345 }
13346 
13347 /*
13348  * Callback to disable flow control in IP.
13349  *
13350  * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13351  * is enabled.
13352  *
13353  * When MAC_TX() is not able to send any more packets, dld sets its queue
13354  * to QFULL and enable the STREAMS flow control. Later, when the underlying
13355  * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13356  * function and wakes up corresponding mac worker threads, which in turn
13357  * calls this callback function, and disables flow control.
13358  */
13359 void
13360 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13361 {
13362         ill_t *ill = (ill_t *)arg;
13363         ip_stack_t *ipst = ill->ill_ipst;
13364         idl_tx_list_t *idl_txl;
13365 
13366         idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13367         mutex_enter(&idl_txl->txl_lock);
13368         /* add code to to set a flag to indicate idl_txl is enabled */
13369         conn_walk_drain(ipst, idl_txl);
13370         mutex_exit(&idl_txl->txl_lock);
13371 }
13372 
13373 /*
13374  * Flow control has been relieved and STREAMS has backenabled us; drain
13375  * all the conn lists on `tx_list'.
13376  */
13377 static void
13378 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13379 {
13380         int i;
13381         idl_t *idl;
13382 
13383         IP_STAT(ipst, ip_conn_walk_drain);
13384 
13385         for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13386                 idl = &tx_list->txl_drain_list[i];
13387                 mutex_enter(&idl->idl_lock);
13388                 conn_drain(idl->idl_conn, B_FALSE);
13389                 mutex_exit(&idl->idl_lock);
13390         }
13391 }
13392 
13393 /*
13394  * Determine if the ill and multicast aspects of that packets
13395  * "matches" the conn.
13396  */
13397 boolean_t
13398 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13399 {
13400         ill_t           *ill = ira->ira_rill;
13401         zoneid_t        zoneid = ira->ira_zoneid;
13402         uint_t          in_ifindex;
13403         ipaddr_t        dst, src;
13404 
13405         dst = ipha->ipha_dst;
13406         src = ipha->ipha_src;
13407 
13408         /*
13409          * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13410          * unicast, broadcast and multicast reception to
13411          * conn_incoming_ifindex.
13412          * conn_wantpacket is called for unicast, broadcast and
13413          * multicast packets.
13414          */
13415         in_ifindex = connp->conn_incoming_ifindex;
13416 
13417         /* mpathd can bind to the under IPMP interface, which we allow */
13418         if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13419                 if (!IS_UNDER_IPMP(ill))
13420                         return (B_FALSE);
13421 
13422                 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13423                         return (B_FALSE);
13424         }
13425 
13426         if (!IPCL_ZONE_MATCH(connp, zoneid))
13427                 return (B_FALSE);
13428 
13429         if (!(ira->ira_flags & IRAF_MULTICAST))
13430                 return (B_TRUE);
13431 
13432         if (connp->conn_multi_router) {
13433                 /* multicast packet and multicast router socket: send up */
13434                 return (B_TRUE);
13435         }
13436 
13437         if (ipha->ipha_protocol == IPPROTO_PIM ||
13438             ipha->ipha_protocol == IPPROTO_RSVP)
13439                 return (B_TRUE);
13440 
13441         return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13442 }
13443 
13444 void
13445 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13446 {
13447         if (IPCL_IS_NONSTR(connp)) {
13448                 (*connp->conn_upcalls->su_txq_full)
13449                     (connp->conn_upper_handle, B_TRUE);
13450                 if (flow_stopped != NULL)
13451                         *flow_stopped = B_TRUE;
13452         } else {
13453                 queue_t *q = connp->conn_wq;
13454 
13455                 ASSERT(q != NULL);
13456                 if (!(q->q_flag & QFULL)) {
13457                         mutex_enter(QLOCK(q));
13458                         if (!(q->q_flag & QFULL)) {
13459                                 /* still need to set QFULL */
13460                                 q->q_flag |= QFULL;
13461                                 /* set flow_stopped to true under QLOCK */
13462                                 if (flow_stopped != NULL)
13463                                         *flow_stopped = B_TRUE;
13464                                 mutex_exit(QLOCK(q));
13465                         } else {
13466                                 /* flow_stopped is left unchanged */
13467                                 mutex_exit(QLOCK(q));
13468                         }
13469                 }
13470         }
13471 }
13472 
13473 void
13474 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13475 {
13476         if (IPCL_IS_NONSTR(connp)) {
13477                 (*connp->conn_upcalls->su_txq_full)
13478                     (connp->conn_upper_handle, B_FALSE);
13479                 if (flow_stopped != NULL)
13480                         *flow_stopped = B_FALSE;
13481         } else {
13482                 queue_t *q = connp->conn_wq;
13483 
13484                 ASSERT(q != NULL);
13485                 if (q->q_flag & QFULL) {
13486                         mutex_enter(QLOCK(q));
13487                         if (q->q_flag & QFULL) {
13488                                 q->q_flag &= ~QFULL;
13489                                 /* set flow_stopped to false under QLOCK */
13490                                 if (flow_stopped != NULL)
13491                                         *flow_stopped = B_FALSE;
13492                                 mutex_exit(QLOCK(q));
13493                                 if (q->q_flag & QWANTW)
13494                                         qbackenable(q, 0);
13495                         } else {
13496                                 /* flow_stopped is left unchanged */
13497                                 mutex_exit(QLOCK(q));
13498                         }
13499                 }
13500         }
13501 
13502         mutex_enter(&connp->conn_lock);
13503         connp->conn_blocked = B_FALSE;
13504         mutex_exit(&connp->conn_lock);
13505 }
13506 
13507 /*
13508  * Return the length in bytes of the IPv4 headers (base header, label, and
13509  * other IP options) that will be needed based on the
13510  * ip_pkt_t structure passed by the caller.
13511  *
13512  * The returned length does not include the length of the upper level
13513  * protocol (ULP) header.
13514  * The caller needs to check that the length doesn't exceed the max for IPv4.
13515  */
13516 int
13517 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13518 {
13519         int len;
13520 
13521         len = IP_SIMPLE_HDR_LENGTH;
13522         if (ipp->ipp_fields & IPPF_LABEL_V4) {
13523                 ASSERT(ipp->ipp_label_len_v4 != 0);
13524                 /* We need to round up here */
13525                 len += (ipp->ipp_label_len_v4 + 3) & ~3;
13526         }
13527 
13528         if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13529                 ASSERT(ipp->ipp_ipv4_options_len != 0);
13530                 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13531                 len += ipp->ipp_ipv4_options_len;
13532         }
13533         return (len);
13534 }
13535 
13536 /*
13537  * All-purpose routine to build an IPv4 header with options based
13538  * on the abstract ip_pkt_t.
13539  *
13540  * The caller has to set the source and destination address as well as
13541  * ipha_length. The caller has to massage any source route and compensate
13542  * for the ULP pseudo-header checksum due to the source route.
13543  */
13544 void
13545 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13546     uint8_t protocol)
13547 {
13548         ipha_t  *ipha = (ipha_t *)buf;
13549         uint8_t *cp;
13550 
13551         /* Initialize IPv4 header */
13552         ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13553         ipha->ipha_length = 0;       /* Caller will set later */
13554         ipha->ipha_ident = 0;
13555         ipha->ipha_fragment_offset_and_flags = 0;
13556         ipha->ipha_ttl = ipp->ipp_unicast_hops;
13557         ipha->ipha_protocol = protocol;
13558         ipha->ipha_hdr_checksum = 0;
13559 
13560         if ((ipp->ipp_fields & IPPF_ADDR) &&
13561             IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13562                 ipha->ipha_src = ipp->ipp_addr_v4;
13563 
13564         cp = (uint8_t *)&ipha[1];
13565         if (ipp->ipp_fields & IPPF_LABEL_V4) {
13566                 ASSERT(ipp->ipp_label_len_v4 != 0);
13567                 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13568                 cp += ipp->ipp_label_len_v4;
13569                 /* We need to round up here */
13570                 while ((uintptr_t)cp & 0x3) {
13571                         *cp++ = IPOPT_NOP;
13572                 }
13573         }
13574 
13575         if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13576                 ASSERT(ipp->ipp_ipv4_options_len != 0);
13577                 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13578                 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13579                 cp += ipp->ipp_ipv4_options_len;
13580         }
13581         ipha->ipha_version_and_hdr_length =
13582             (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13583 
13584         ASSERT((int)(cp - buf) == buf_len);
13585 }
13586 
13587 /* Allocate the private structure */
13588 static int
13589 ip_priv_alloc(void **bufp)
13590 {
13591         void    *buf;
13592 
13593         if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13594                 return (ENOMEM);
13595 
13596         *bufp = buf;
13597         return (0);
13598 }
13599 
13600 /* Function to delete the private structure */
13601 void
13602 ip_priv_free(void *buf)
13603 {
13604         ASSERT(buf != NULL);
13605         kmem_free(buf, sizeof (ip_priv_t));
13606 }
13607 
13608 /*
13609  * The entry point for IPPF processing.
13610  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13611  * routine just returns.
13612  *
13613  * When called, ip_process generates an ipp_packet_t structure
13614  * which holds the state information for this packet and invokes the
13615  * the classifier (via ipp_packet_process). The classification, depending on
13616  * configured filters, results in a list of actions for this packet. Invoking
13617  * an action may cause the packet to be dropped, in which case we return NULL.
13618  * proc indicates the callout position for
13619  * this packet and ill is the interface this packet arrived on or will leave
13620  * on (inbound and outbound resp.).
13621  *
13622  * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13623  * on the ill corrsponding to the destination IP address.
13624  */
13625 mblk_t *
13626 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13627 {
13628         ip_priv_t       *priv;
13629         ipp_action_id_t aid;
13630         int             rc = 0;
13631         ipp_packet_t    *pp;
13632 
13633         /* If the classifier is not loaded, return  */
13634         if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13635                 return (mp);
13636         }
13637 
13638         ASSERT(mp != NULL);
13639 
13640         /* Allocate the packet structure */
13641         rc = ipp_packet_alloc(&pp, "ip", aid);
13642         if (rc != 0)
13643                 goto drop;
13644 
13645         /* Allocate the private structure */
13646         rc = ip_priv_alloc((void **)&priv);
13647         if (rc != 0) {
13648                 ipp_packet_free(pp);
13649                 goto drop;
13650         }
13651         priv->proc = proc;
13652         priv->ill_index = ill_get_upper_ifindex(rill);
13653 
13654         ipp_packet_set_private(pp, priv, ip_priv_free);
13655         ipp_packet_set_data(pp, mp);
13656 
13657         /* Invoke the classifier */
13658         rc = ipp_packet_process(&pp);
13659         if (pp != NULL) {
13660                 mp = ipp_packet_get_data(pp);
13661                 ipp_packet_free(pp);
13662                 if (rc != 0)
13663                         goto drop;
13664                 return (mp);
13665         } else {
13666                 /* No mp to trace in ip_drop_input/ip_drop_output  */
13667                 mp = NULL;
13668         }
13669 drop:
13670         if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13671                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13672                 ip_drop_input("ip_process", mp, ill);
13673         } else {
13674                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13675                 ip_drop_output("ip_process", mp, ill);
13676         }
13677         freemsg(mp);
13678         return (NULL);
13679 }
13680 
13681 /*
13682  * Propagate a multicast group membership operation (add/drop) on
13683  * all the interfaces crossed by the related multirt routes.
13684  * The call is considered successful if the operation succeeds
13685  * on at least one interface.
13686  *
13687  * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13688  * multicast addresses with the ire argument being the first one.
13689  * We walk the bucket to find all the of those.
13690  *
13691  * Common to IPv4 and IPv6.
13692  */
13693 static int
13694 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13695     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13696     ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13697     mcast_record_t fmode, const in6_addr_t *v6src)
13698 {
13699         ire_t           *ire_gw;
13700         irb_t           *irb;
13701         int             ifindex;
13702         int             error = 0;
13703         int             result;
13704         ip_stack_t      *ipst = ire->ire_ipst;
13705         ipaddr_t        group;
13706         boolean_t       isv6;
13707         int             match_flags;
13708 
13709         if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13710                 IN6_V4MAPPED_TO_IPADDR(v6group, group);
13711                 isv6 = B_FALSE;
13712         } else {
13713                 isv6 = B_TRUE;
13714         }
13715 
13716         irb = ire->ire_bucket;
13717         ASSERT(irb != NULL);
13718 
13719         result = 0;
13720         irb_refhold(irb);
13721         for (; ire != NULL; ire = ire->ire_next) {
13722                 if ((ire->ire_flags & RTF_MULTIRT) == 0)
13723                         continue;
13724 
13725                 /* We handle -ifp routes by matching on the ill if set */
13726                 match_flags = MATCH_IRE_TYPE;
13727                 if (ire->ire_ill != NULL)
13728                         match_flags |= MATCH_IRE_ILL;
13729 
13730                 if (isv6) {
13731                         if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13732                                 continue;
13733 
13734                         ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13735                             0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13736                             match_flags, 0, ipst, NULL);
13737                 } else {
13738                         if (ire->ire_addr != group)
13739                                 continue;
13740 
13741                         ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13742                             0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13743                             match_flags, 0, ipst, NULL);
13744                 }
13745                 /* No interface route exists for the gateway; skip this ire. */
13746                 if (ire_gw == NULL)
13747                         continue;
13748                 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13749                         ire_refrele(ire_gw);
13750                         continue;
13751                 }
13752                 ASSERT(ire_gw->ire_ill != NULL);     /* IRE_INTERFACE */
13753                 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13754 
13755                 /*
13756                  * The operation is considered a success if
13757                  * it succeeds at least once on any one interface.
13758                  */
13759                 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13760                     fmode, v6src);
13761                 if (error == 0)
13762                         result = CGTP_MCAST_SUCCESS;
13763 
13764                 ire_refrele(ire_gw);
13765         }
13766         irb_refrele(irb);
13767         /*
13768          * Consider the call as successful if we succeeded on at least
13769          * one interface. Otherwise, return the last encountered error.
13770          */
13771         return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13772 }
13773 
13774 /*
13775  * Return the expected CGTP hooks version number.
13776  */
13777 int
13778 ip_cgtp_filter_supported(void)
13779 {
13780         return (ip_cgtp_filter_rev);
13781 }
13782 
13783 /*
13784  * CGTP hooks can be registered by invoking this function.
13785  * Checks that the version number matches.
13786  */
13787 int
13788 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13789 {
13790         netstack_t *ns;
13791         ip_stack_t *ipst;
13792 
13793         if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13794                 return (ENOTSUP);
13795 
13796         ns = netstack_find_by_stackid(stackid);
13797         if (ns == NULL)
13798                 return (EINVAL);
13799         ipst = ns->netstack_ip;
13800         ASSERT(ipst != NULL);
13801 
13802         if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13803                 netstack_rele(ns);
13804                 return (EALREADY);
13805         }
13806 
13807         ipst->ips_ip_cgtp_filter_ops = ops;
13808 
13809         ill_set_inputfn_all(ipst);
13810 
13811         netstack_rele(ns);
13812         return (0);
13813 }
13814 
13815 /*
13816  * CGTP hooks can be unregistered by invoking this function.
13817  * Returns ENXIO if there was no registration.
13818  * Returns EBUSY if the ndd variable has not been turned off.
13819  */
13820 int
13821 ip_cgtp_filter_unregister(netstackid_t stackid)
13822 {
13823         netstack_t *ns;
13824         ip_stack_t *ipst;
13825 
13826         ns = netstack_find_by_stackid(stackid);
13827         if (ns == NULL)
13828                 return (EINVAL);
13829         ipst = ns->netstack_ip;
13830         ASSERT(ipst != NULL);
13831 
13832         if (ipst->ips_ip_cgtp_filter) {
13833                 netstack_rele(ns);
13834                 return (EBUSY);
13835         }
13836 
13837         if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13838                 netstack_rele(ns);
13839                 return (ENXIO);
13840         }
13841         ipst->ips_ip_cgtp_filter_ops = NULL;
13842 
13843         ill_set_inputfn_all(ipst);
13844 
13845         netstack_rele(ns);
13846         return (0);
13847 }
13848 
13849 /*
13850  * Check whether there is a CGTP filter registration.
13851  * Returns non-zero if there is a registration, otherwise returns zero.
13852  * Note: returns zero if bad stackid.
13853  */
13854 int
13855 ip_cgtp_filter_is_registered(netstackid_t stackid)
13856 {
13857         netstack_t *ns;
13858         ip_stack_t *ipst;
13859         int ret;
13860 
13861         ns = netstack_find_by_stackid(stackid);
13862         if (ns == NULL)
13863                 return (0);
13864         ipst = ns->netstack_ip;
13865         ASSERT(ipst != NULL);
13866 
13867         if (ipst->ips_ip_cgtp_filter_ops != NULL)
13868                 ret = 1;
13869         else
13870                 ret = 0;
13871 
13872         netstack_rele(ns);
13873         return (ret);
13874 }
13875 
13876 static int
13877 ip_squeue_switch(int val)
13878 {
13879         int rval;
13880 
13881         switch (val) {
13882         case IP_SQUEUE_ENTER_NODRAIN:
13883                 rval = SQ_NODRAIN;
13884                 break;
13885         case IP_SQUEUE_ENTER:
13886                 rval = SQ_PROCESS;
13887                 break;
13888         case IP_SQUEUE_FILL:
13889         default:
13890                 rval = SQ_FILL;
13891                 break;
13892         }
13893         return (rval);
13894 }
13895 
13896 static void *
13897 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13898 {
13899         kstat_t *ksp;
13900 
13901         ip_stat_t template = {
13902                 { "ip_udp_fannorm",             KSTAT_DATA_UINT64 },
13903                 { "ip_udp_fanmb",               KSTAT_DATA_UINT64 },
13904                 { "ip_recv_pullup",             KSTAT_DATA_UINT64 },
13905                 { "ip_db_ref",                  KSTAT_DATA_UINT64 },
13906                 { "ip_notaligned",              KSTAT_DATA_UINT64 },
13907                 { "ip_multimblk",               KSTAT_DATA_UINT64 },
13908                 { "ip_opt",                     KSTAT_DATA_UINT64 },
13909                 { "ipsec_proto_ahesp",          KSTAT_DATA_UINT64 },
13910                 { "ip_conn_flputbq",            KSTAT_DATA_UINT64 },
13911                 { "ip_conn_walk_drain",         KSTAT_DATA_UINT64 },
13912                 { "ip_out_sw_cksum",            KSTAT_DATA_UINT64 },
13913                 { "ip_out_sw_cksum_bytes",      KSTAT_DATA_UINT64 },
13914                 { "ip_in_sw_cksum",             KSTAT_DATA_UINT64 },
13915                 { "ip_ire_reclaim_calls",       KSTAT_DATA_UINT64 },
13916                 { "ip_ire_reclaim_deleted",     KSTAT_DATA_UINT64 },
13917                 { "ip_nce_reclaim_calls",       KSTAT_DATA_UINT64 },
13918                 { "ip_nce_reclaim_deleted",     KSTAT_DATA_UINT64 },
13919                 { "ip_dce_reclaim_calls",       KSTAT_DATA_UINT64 },
13920                 { "ip_dce_reclaim_deleted",     KSTAT_DATA_UINT64 },
13921                 { "ip_tcp_in_full_hw_cksum_err",        KSTAT_DATA_UINT64 },
13922                 { "ip_tcp_in_part_hw_cksum_err",        KSTAT_DATA_UINT64 },
13923                 { "ip_tcp_in_sw_cksum_err",             KSTAT_DATA_UINT64 },
13924                 { "ip_udp_in_full_hw_cksum_err",        KSTAT_DATA_UINT64 },
13925                 { "ip_udp_in_part_hw_cksum_err",        KSTAT_DATA_UINT64 },
13926                 { "ip_udp_in_sw_cksum_err",     KSTAT_DATA_UINT64 },
13927                 { "conn_in_recvdstaddr",        KSTAT_DATA_UINT64 },
13928                 { "conn_in_recvopts",           KSTAT_DATA_UINT64 },
13929                 { "conn_in_recvif",             KSTAT_DATA_UINT64 },
13930                 { "conn_in_recvslla",           KSTAT_DATA_UINT64 },
13931                 { "conn_in_recvucred",          KSTAT_DATA_UINT64 },
13932                 { "conn_in_recvttl",            KSTAT_DATA_UINT64 },
13933                 { "conn_in_recvhopopts",        KSTAT_DATA_UINT64 },
13934                 { "conn_in_recvhoplimit",       KSTAT_DATA_UINT64 },
13935                 { "conn_in_recvdstopts",        KSTAT_DATA_UINT64 },
13936                 { "conn_in_recvrthdrdstopts",   KSTAT_DATA_UINT64 },
13937                 { "conn_in_recvrthdr",          KSTAT_DATA_UINT64 },
13938                 { "conn_in_recvpktinfo",        KSTAT_DATA_UINT64 },
13939                 { "conn_in_recvtclass",         KSTAT_DATA_UINT64 },
13940                 { "conn_in_timestamp",          KSTAT_DATA_UINT64 },
13941         };
13942 
13943         ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13944             KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13945             KSTAT_FLAG_VIRTUAL, stackid);
13946 
13947         if (ksp == NULL)
13948                 return (NULL);
13949 
13950         bcopy(&template, ip_statisticsp, sizeof (template));
13951         ksp->ks_data = (void *)ip_statisticsp;
13952         ksp->ks_private = (void *)(uintptr_t)stackid;
13953 
13954         kstat_install(ksp);
13955         return (ksp);
13956 }
13957 
13958 static void
13959 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
13960 {
13961         if (ksp != NULL) {
13962                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
13963                 kstat_delete_netstack(ksp, stackid);
13964         }
13965 }
13966 
13967 static void *
13968 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
13969 {
13970         kstat_t *ksp;
13971 
13972         ip_named_kstat_t template = {
13973                 { "forwarding",         KSTAT_DATA_UINT32, 0 },
13974                 { "defaultTTL",         KSTAT_DATA_UINT32, 0 },
13975                 { "inReceives",         KSTAT_DATA_UINT64, 0 },
13976                 { "inHdrErrors",        KSTAT_DATA_UINT32, 0 },
13977                 { "inAddrErrors",       KSTAT_DATA_UINT32, 0 },
13978                 { "forwDatagrams",      KSTAT_DATA_UINT64, 0 },
13979                 { "inUnknownProtos",    KSTAT_DATA_UINT32, 0 },
13980                 { "inDiscards",         KSTAT_DATA_UINT32, 0 },
13981                 { "inDelivers",         KSTAT_DATA_UINT64, 0 },
13982                 { "outRequests",        KSTAT_DATA_UINT64, 0 },
13983                 { "outDiscards",        KSTAT_DATA_UINT32, 0 },
13984                 { "outNoRoutes",        KSTAT_DATA_UINT32, 0 },
13985                 { "reasmTimeout",       KSTAT_DATA_UINT32, 0 },
13986                 { "reasmReqds",         KSTAT_DATA_UINT32, 0 },
13987                 { "reasmOKs",           KSTAT_DATA_UINT32, 0 },
13988                 { "reasmFails",         KSTAT_DATA_UINT32, 0 },
13989                 { "fragOKs",            KSTAT_DATA_UINT32, 0 },
13990                 { "fragFails",          KSTAT_DATA_UINT32, 0 },
13991                 { "fragCreates",        KSTAT_DATA_UINT32, 0 },
13992                 { "addrEntrySize",      KSTAT_DATA_INT32, 0 },
13993                 { "routeEntrySize",     KSTAT_DATA_INT32, 0 },
13994                 { "netToMediaEntrySize",        KSTAT_DATA_INT32, 0 },
13995                 { "routingDiscards",    KSTAT_DATA_UINT32, 0 },
13996                 { "inErrs",             KSTAT_DATA_UINT32, 0 },
13997                 { "noPorts",            KSTAT_DATA_UINT32, 0 },
13998                 { "inCksumErrs",        KSTAT_DATA_UINT32, 0 },
13999                 { "reasmDuplicates",    KSTAT_DATA_UINT32, 0 },
14000                 { "reasmPartDups",      KSTAT_DATA_UINT32, 0 },
14001                 { "forwProhibits",      KSTAT_DATA_UINT32, 0 },
14002                 { "udpInCksumErrs",     KSTAT_DATA_UINT32, 0 },
14003                 { "udpInOverflows",     KSTAT_DATA_UINT32, 0 },
14004                 { "rawipInOverflows",   KSTAT_DATA_UINT32, 0 },
14005                 { "ipsecInSucceeded",   KSTAT_DATA_UINT32, 0 },
14006                 { "ipsecInFailed",      KSTAT_DATA_INT32, 0 },
14007                 { "memberEntrySize",    KSTAT_DATA_INT32, 0 },
14008                 { "inIPv6",             KSTAT_DATA_UINT32, 0 },
14009                 { "outIPv6",            KSTAT_DATA_UINT32, 0 },
14010                 { "outSwitchIPv6",      KSTAT_DATA_UINT32, 0 },
14011         };
14012 
14013         ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14014             NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14015         if (ksp == NULL || ksp->ks_data == NULL)
14016                 return (NULL);
14017 
14018         template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14019         template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14020         template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14021         template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14022         template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14023 
14024         template.netToMediaEntrySize.value.i32 =
14025             sizeof (mib2_ipNetToMediaEntry_t);
14026 
14027         template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14028 
14029         bcopy(&template, ksp->ks_data, sizeof (template));
14030         ksp->ks_update = ip_kstat_update;
14031         ksp->ks_private = (void *)(uintptr_t)stackid;
14032 
14033         kstat_install(ksp);
14034         return (ksp);
14035 }
14036 
14037 static void
14038 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14039 {
14040         if (ksp != NULL) {
14041                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14042                 kstat_delete_netstack(ksp, stackid);
14043         }
14044 }
14045 
14046 static int
14047 ip_kstat_update(kstat_t *kp, int rw)
14048 {
14049         ip_named_kstat_t *ipkp;
14050         mib2_ipIfStatsEntry_t ipmib;
14051         ill_walk_context_t ctx;
14052         ill_t *ill;
14053         netstackid_t    stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14054         netstack_t      *ns;
14055         ip_stack_t      *ipst;
14056 
14057         if (kp == NULL || kp->ks_data == NULL)
14058                 return (EIO);
14059 
14060         if (rw == KSTAT_WRITE)
14061                 return (EACCES);
14062 
14063         ns = netstack_find_by_stackid(stackid);
14064         if (ns == NULL)
14065                 return (-1);
14066         ipst = ns->netstack_ip;
14067         if (ipst == NULL) {
14068                 netstack_rele(ns);
14069                 return (-1);
14070         }
14071         ipkp = (ip_named_kstat_t *)kp->ks_data;
14072 
14073         bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14074         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14075         ill = ILL_START_WALK_V4(&ctx, ipst);
14076         for (; ill != NULL; ill = ill_next(&ctx, ill))
14077                 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14078         rw_exit(&ipst->ips_ill_g_lock);
14079 
14080         ipkp->forwarding.value.ui32 =                ipmib.ipIfStatsForwarding;
14081         ipkp->defaultTTL.value.ui32 =                ipmib.ipIfStatsDefaultTTL;
14082         ipkp->inReceives.value.ui64 =                ipmib.ipIfStatsHCInReceives;
14083         ipkp->inHdrErrors.value.ui32 =               ipmib.ipIfStatsInHdrErrors;
14084         ipkp->inAddrErrors.value.ui32 =              ipmib.ipIfStatsInAddrErrors;
14085         ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14086         ipkp->inUnknownProtos.value.ui32 =   ipmib.ipIfStatsInUnknownProtos;
14087         ipkp->inDiscards.value.ui32 =                ipmib.ipIfStatsInDiscards;
14088         ipkp->inDelivers.value.ui64 =                ipmib.ipIfStatsHCInDelivers;
14089         ipkp->outRequests.value.ui64 =               ipmib.ipIfStatsHCOutRequests;
14090         ipkp->outDiscards.value.ui32 =               ipmib.ipIfStatsOutDiscards;
14091         ipkp->outNoRoutes.value.ui32 =               ipmib.ipIfStatsOutNoRoutes;
14092         ipkp->reasmTimeout.value.ui32 =              ipst->ips_ip_reassembly_timeout;
14093         ipkp->reasmReqds.value.ui32 =                ipmib.ipIfStatsReasmReqds;
14094         ipkp->reasmOKs.value.ui32 =          ipmib.ipIfStatsReasmOKs;
14095         ipkp->reasmFails.value.ui32 =                ipmib.ipIfStatsReasmFails;
14096         ipkp->fragOKs.value.ui32 =           ipmib.ipIfStatsOutFragOKs;
14097         ipkp->fragFails.value.ui32 =         ipmib.ipIfStatsOutFragFails;
14098         ipkp->fragCreates.value.ui32 =               ipmib.ipIfStatsOutFragCreates;
14099 
14100         ipkp->routingDiscards.value.ui32 =   0;
14101         ipkp->inErrs.value.ui32 =            ipmib.tcpIfStatsInErrs;
14102         ipkp->noPorts.value.ui32 =           ipmib.udpIfStatsNoPorts;
14103         ipkp->inCksumErrs.value.ui32 =               ipmib.ipIfStatsInCksumErrs;
14104         ipkp->reasmDuplicates.value.ui32 =   ipmib.ipIfStatsReasmDuplicates;
14105         ipkp->reasmPartDups.value.ui32 =     ipmib.ipIfStatsReasmPartDups;
14106         ipkp->forwProhibits.value.ui32 =     ipmib.ipIfStatsForwProhibits;
14107         ipkp->udpInCksumErrs.value.ui32 =    ipmib.udpIfStatsInCksumErrs;
14108         ipkp->udpInOverflows.value.ui32 =    ipmib.udpIfStatsInOverflows;
14109         ipkp->rawipInOverflows.value.ui32 =  ipmib.rawipIfStatsInOverflows;
14110         ipkp->ipsecInSucceeded.value.ui32 =  ipmib.ipsecIfStatsInSucceeded;
14111         ipkp->ipsecInFailed.value.i32 =              ipmib.ipsecIfStatsInFailed;
14112 
14113         ipkp->inIPv6.value.ui32 =    ipmib.ipIfStatsInWrongIPVersion;
14114         ipkp->outIPv6.value.ui32 =   ipmib.ipIfStatsOutWrongIPVersion;
14115         ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14116 
14117         netstack_rele(ns);
14118 
14119         return (0);
14120 }
14121 
14122 static void *
14123 icmp_kstat_init(netstackid_t stackid)
14124 {
14125         kstat_t *ksp;
14126 
14127         icmp_named_kstat_t template = {
14128                 { "inMsgs",             KSTAT_DATA_UINT32 },
14129                 { "inErrors",           KSTAT_DATA_UINT32 },
14130                 { "inDestUnreachs",     KSTAT_DATA_UINT32 },
14131                 { "inTimeExcds",        KSTAT_DATA_UINT32 },
14132                 { "inParmProbs",        KSTAT_DATA_UINT32 },
14133                 { "inSrcQuenchs",       KSTAT_DATA_UINT32 },
14134                 { "inRedirects",        KSTAT_DATA_UINT32 },
14135                 { "inEchos",            KSTAT_DATA_UINT32 },
14136                 { "inEchoReps",         KSTAT_DATA_UINT32 },
14137                 { "inTimestamps",       KSTAT_DATA_UINT32 },
14138                 { "inTimestampReps",    KSTAT_DATA_UINT32 },
14139                 { "inAddrMasks",        KSTAT_DATA_UINT32 },
14140                 { "inAddrMaskReps",     KSTAT_DATA_UINT32 },
14141                 { "outMsgs",            KSTAT_DATA_UINT32 },
14142                 { "outErrors",          KSTAT_DATA_UINT32 },
14143                 { "outDestUnreachs",    KSTAT_DATA_UINT32 },
14144                 { "outTimeExcds",       KSTAT_DATA_UINT32 },
14145                 { "outParmProbs",       KSTAT_DATA_UINT32 },
14146                 { "outSrcQuenchs",      KSTAT_DATA_UINT32 },
14147                 { "outRedirects",       KSTAT_DATA_UINT32 },
14148                 { "outEchos",           KSTAT_DATA_UINT32 },
14149                 { "outEchoReps",        KSTAT_DATA_UINT32 },
14150                 { "outTimestamps",      KSTAT_DATA_UINT32 },
14151                 { "outTimestampReps",   KSTAT_DATA_UINT32 },
14152                 { "outAddrMasks",       KSTAT_DATA_UINT32 },
14153                 { "outAddrMaskReps",    KSTAT_DATA_UINT32 },
14154                 { "inChksumErrs",       KSTAT_DATA_UINT32 },
14155                 { "inUnknowns",         KSTAT_DATA_UINT32 },
14156                 { "inFragNeeded",       KSTAT_DATA_UINT32 },
14157                 { "outFragNeeded",      KSTAT_DATA_UINT32 },
14158                 { "outDrops",           KSTAT_DATA_UINT32 },
14159                 { "inOverFlows",        KSTAT_DATA_UINT32 },
14160                 { "inBadRedirects",     KSTAT_DATA_UINT32 },
14161         };
14162 
14163         ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14164             NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14165         if (ksp == NULL || ksp->ks_data == NULL)
14166                 return (NULL);
14167 
14168         bcopy(&template, ksp->ks_data, sizeof (template));
14169 
14170         ksp->ks_update = icmp_kstat_update;
14171         ksp->ks_private = (void *)(uintptr_t)stackid;
14172 
14173         kstat_install(ksp);
14174         return (ksp);
14175 }
14176 
14177 static void
14178 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14179 {
14180         if (ksp != NULL) {
14181                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14182                 kstat_delete_netstack(ksp, stackid);
14183         }
14184 }
14185 
14186 static int
14187 icmp_kstat_update(kstat_t *kp, int rw)
14188 {
14189         icmp_named_kstat_t *icmpkp;
14190         netstackid_t    stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14191         netstack_t      *ns;
14192         ip_stack_t      *ipst;
14193 
14194         if ((kp == NULL) || (kp->ks_data == NULL))
14195                 return (EIO);
14196 
14197         if (rw == KSTAT_WRITE)
14198                 return (EACCES);
14199 
14200         ns = netstack_find_by_stackid(stackid);
14201         if (ns == NULL)
14202                 return (-1);
14203         ipst = ns->netstack_ip;
14204         if (ipst == NULL) {
14205                 netstack_rele(ns);
14206                 return (-1);
14207         }
14208         icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14209 
14210         icmpkp->inMsgs.value.ui32 =      ipst->ips_icmp_mib.icmpInMsgs;
14211         icmpkp->inErrors.value.ui32 =            ipst->ips_icmp_mib.icmpInErrors;
14212         icmpkp->inDestUnreachs.value.ui32 =
14213             ipst->ips_icmp_mib.icmpInDestUnreachs;
14214         icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
14215         icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
14216         icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
14217         icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
14218         icmpkp->inEchos.value.ui32 =     ipst->ips_icmp_mib.icmpInEchos;
14219         icmpkp->inEchoReps.value.ui32 =          ipst->ips_icmp_mib.icmpInEchoReps;
14220         icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
14221         icmpkp->inTimestampReps.value.ui32 =
14222             ipst->ips_icmp_mib.icmpInTimestampReps;
14223         icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
14224         icmpkp->inAddrMaskReps.value.ui32 =
14225             ipst->ips_icmp_mib.icmpInAddrMaskReps;
14226         icmpkp->outMsgs.value.ui32 =     ipst->ips_icmp_mib.icmpOutMsgs;
14227         icmpkp->outErrors.value.ui32 =           ipst->ips_icmp_mib.icmpOutErrors;
14228         icmpkp->outDestUnreachs.value.ui32 =
14229             ipst->ips_icmp_mib.icmpOutDestUnreachs;
14230         icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
14231         icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
14232         icmpkp->outSrcQuenchs.value.ui32 =
14233             ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14234         icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
14235         icmpkp->outEchos.value.ui32 =            ipst->ips_icmp_mib.icmpOutEchos;
14236         icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
14237         icmpkp->outTimestamps.value.ui32 =
14238             ipst->ips_icmp_mib.icmpOutTimestamps;
14239         icmpkp->outTimestampReps.value.ui32 =
14240             ipst->ips_icmp_mib.icmpOutTimestampReps;
14241         icmpkp->outAddrMasks.value.ui32 =
14242             ipst->ips_icmp_mib.icmpOutAddrMasks;
14243         icmpkp->outAddrMaskReps.value.ui32 =
14244             ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14245         icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
14246         icmpkp->inUnknowns.value.ui32 =          ipst->ips_icmp_mib.icmpInUnknowns;
14247         icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
14248         icmpkp->outFragNeeded.value.ui32 =
14249             ipst->ips_icmp_mib.icmpOutFragNeeded;
14250         icmpkp->outDrops.value.ui32 =            ipst->ips_icmp_mib.icmpOutDrops;
14251         icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
14252         icmpkp->inBadRedirects.value.ui32 =
14253             ipst->ips_icmp_mib.icmpInBadRedirects;
14254 
14255         netstack_rele(ns);
14256         return (0);
14257 }
14258 
14259 /*
14260  * This is the fanout function for raw socket opened for SCTP.  Note
14261  * that it is called after SCTP checks that there is no socket which
14262  * wants a packet.  Then before SCTP handles this out of the blue packet,
14263  * this function is called to see if there is any raw socket for SCTP.
14264  * If there is and it is bound to the correct address, the packet will
14265  * be sent to that socket.  Note that only one raw socket can be bound to
14266  * a port.  This is assured in ipcl_sctp_hash_insert();
14267  */
14268 void
14269 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14270     ip_recv_attr_t *ira)
14271 {
14272         conn_t          *connp;
14273         queue_t         *rq;
14274         boolean_t       secure;
14275         ill_t           *ill = ira->ira_ill;
14276         ip_stack_t      *ipst = ill->ill_ipst;
14277         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
14278         sctp_stack_t    *sctps = ipst->ips_netstack->netstack_sctp;
14279         iaflags_t       iraflags = ira->ira_flags;
14280         ill_t           *rill = ira->ira_rill;
14281 
14282         secure = iraflags & IRAF_IPSEC_SECURE;
14283 
14284         connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14285             ira, ipst);
14286         if (connp == NULL) {
14287                 /*
14288                  * Although raw sctp is not summed, OOB chunks must be.
14289                  * Drop the packet here if the sctp checksum failed.
14290                  */
14291                 if (iraflags & IRAF_SCTP_CSUM_ERR) {
14292                         SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14293                         freemsg(mp);
14294                         return;
14295                 }
14296                 ira->ira_ill = ira->ira_rill = NULL;
14297                 sctp_ootb_input(mp, ira, ipst);
14298                 ira->ira_ill = ill;
14299                 ira->ira_rill = rill;
14300                 return;
14301         }
14302         rq = connp->conn_rq;
14303         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14304                 CONN_DEC_REF(connp);
14305                 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14306                 freemsg(mp);
14307                 return;
14308         }
14309         if (((iraflags & IRAF_IS_IPV4) ?
14310             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14311             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14312             secure) {
14313                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
14314                     ip6h, ira);
14315                 if (mp == NULL) {
14316                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14317                         /* Note that mp is NULL */
14318                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
14319                         CONN_DEC_REF(connp);
14320                         return;
14321                 }
14322         }
14323 
14324         if (iraflags & IRAF_ICMP_ERROR) {
14325                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
14326         } else {
14327                 ill_t *rill = ira->ira_rill;
14328 
14329                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14330                 /* This is the SOCK_RAW, IPPROTO_SCTP case. */
14331                 ira->ira_ill = ira->ira_rill = NULL;
14332                 (connp->conn_recv)(connp, mp, NULL, ira);
14333                 ira->ira_ill = ill;
14334                 ira->ira_rill = rill;
14335         }
14336         CONN_DEC_REF(connp);
14337 }
14338 
14339 /*
14340  * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14341  * header before the ip payload.
14342  */
14343 static void
14344 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14345 {
14346         int len = (mp->b_wptr - mp->b_rptr);
14347         mblk_t *ip_mp;
14348 
14349         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14350         if (is_fp_mp || len != fp_mp_len) {
14351                 if (len > fp_mp_len) {
14352                         /*
14353                          * fastpath header and ip header in the first mblk
14354                          */
14355                         mp->b_rptr += fp_mp_len;
14356                 } else {
14357                         /*
14358                          * ip_xmit_attach_llhdr had to prepend an mblk to
14359                          * attach the fastpath header before ip header.
14360                          */
14361                         ip_mp = mp->b_cont;
14362                         freeb(mp);
14363                         mp = ip_mp;
14364                         mp->b_rptr += (fp_mp_len - len);
14365                 }
14366         } else {
14367                 ip_mp = mp->b_cont;
14368                 freeb(mp);
14369                 mp = ip_mp;
14370         }
14371         ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14372         freemsg(mp);
14373 }
14374 
14375 /*
14376  * Normal post fragmentation function.
14377  *
14378  * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14379  * using the same state machine.
14380  *
14381  * We return an error on failure. In particular we return EWOULDBLOCK
14382  * when the driver flow controls. In that case this ensures that ip_wsrv runs
14383  * (currently by canputnext failure resulting in backenabling from GLD.)
14384  * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14385  * indication that they can flow control until ip_wsrv() tells then to restart.
14386  *
14387  * If the nce passed by caller is incomplete, this function
14388  * queues the packet and if necessary, sends ARP request and bails.
14389  * If the Neighbor Cache passed is fully resolved, we simply prepend
14390  * the link-layer header to the packet, do ipsec hw acceleration
14391  * work if necessary, and send the packet out on the wire.
14392  */
14393 /* ARGSUSED6 */
14394 int
14395 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14396     uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14397 {
14398         queue_t         *wq;
14399         ill_t           *ill = nce->nce_ill;
14400         ip_stack_t      *ipst = ill->ill_ipst;
14401         uint64_t        delta;
14402         boolean_t       isv6 = ill->ill_isv6;
14403         boolean_t       fp_mp;
14404         ncec_t          *ncec = nce->nce_common;
14405         int64_t         now = LBOLT_FASTPATH64;
14406         boolean_t       is_probe;
14407 
14408         DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14409 
14410         ASSERT(mp != NULL);
14411         ASSERT(mp->b_datap->db_type == M_DATA);
14412         ASSERT(pkt_len == msgdsize(mp));
14413 
14414         /*
14415          * If we have already been here and are coming back after ARP/ND.
14416          * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14417          * in that case since they have seen the packet when it came here
14418          * the first time.
14419          */
14420         if (ixaflags & IXAF_NO_TRACE)
14421                 goto sendit;
14422 
14423         if (ixaflags & IXAF_IS_IPV4) {
14424                 ipha_t *ipha = (ipha_t *)mp->b_rptr;
14425 
14426                 ASSERT(!isv6);
14427                 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14428                 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14429                     !(ixaflags & IXAF_NO_PFHOOK)) {
14430                         int     error;
14431 
14432                         FW_HOOKS(ipst->ips_ip4_physical_out_event,
14433                             ipst->ips_ipv4firewall_physical_out,
14434                             NULL, ill, ipha, mp, mp, 0, ipst, error);
14435                         DTRACE_PROBE1(ip4__physical__out__end,
14436                             mblk_t *, mp);
14437                         if (mp == NULL)
14438                                 return (error);
14439 
14440                         /* The length could have changed */
14441                         pkt_len = msgdsize(mp);
14442                 }
14443                 if (ipst->ips_ip4_observe.he_interested) {
14444                         /*
14445                          * Note that for TX the zoneid is the sending
14446                          * zone, whether or not MLP is in play.
14447                          * Since the szone argument is the IP zoneid (i.e.,
14448                          * zero for exclusive-IP zones) and ipobs wants
14449                          * the system zoneid, we map it here.
14450                          */
14451                         szone = IP_REAL_ZONEID(szone, ipst);
14452 
14453                         /*
14454                          * On the outbound path the destination zone will be
14455                          * unknown as we're sending this packet out on the
14456                          * wire.
14457                          */
14458                         ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14459                             ill, ipst);
14460                 }
14461                 DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14462                     void_ip_t *, ipha,  __dtrace_ipsr_ill_t *, ill,
14463                     ipha_t *, ipha, ip6_t *, NULL, int, 0);
14464         } else {
14465                 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14466 
14467                 ASSERT(isv6);
14468                 ASSERT(pkt_len ==
14469                     ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14470                 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14471                     !(ixaflags & IXAF_NO_PFHOOK)) {
14472                         int     error;
14473 
14474                         FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14475                             ipst->ips_ipv6firewall_physical_out,
14476                             NULL, ill, ip6h, mp, mp, 0, ipst, error);
14477                         DTRACE_PROBE1(ip6__physical__out__end,
14478                             mblk_t *, mp);
14479                         if (mp == NULL)
14480                                 return (error);
14481 
14482                         /* The length could have changed */
14483                         pkt_len = msgdsize(mp);
14484                 }
14485                 if (ipst->ips_ip6_observe.he_interested) {
14486                         /* See above */
14487                         szone = IP_REAL_ZONEID(szone, ipst);
14488 
14489                         ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14490                             ill, ipst);
14491                 }
14492                 DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14493                     void_ip_t *, ip6h,  __dtrace_ipsr_ill_t *, ill,
14494                     ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14495         }
14496 
14497 sendit:
14498         /*
14499          * We check the state without a lock because the state can never
14500          * move "backwards" to initial or incomplete.
14501          */
14502         switch (ncec->ncec_state) {
14503         case ND_REACHABLE:
14504         case ND_STALE:
14505         case ND_DELAY:
14506         case ND_PROBE:
14507                 mp = ip_xmit_attach_llhdr(mp, nce);
14508                 if (mp == NULL) {
14509                         /*
14510                          * ip_xmit_attach_llhdr has increased
14511                          * ipIfStatsOutDiscards and called ip_drop_output()
14512                          */
14513                         return (ENOBUFS);
14514                 }
14515                 /*
14516                  * check if nce_fastpath completed and we tagged on a
14517                  * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14518                  */
14519                 fp_mp = (mp->b_datap->db_type == M_DATA);
14520 
14521                 if (fp_mp &&
14522                     (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14523                         ill_dld_direct_t *idd;
14524 
14525                         idd = &ill->ill_dld_capab->idc_direct;
14526                         /*
14527                          * Send the packet directly to DLD, where it
14528                          * may be queued depending on the availability
14529                          * of transmit resources at the media layer.
14530                          * Return value should be taken into
14531                          * account and flow control the TCP.
14532                          */
14533                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14534                         UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14535                             pkt_len);
14536 
14537                         if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14538                                 (void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14539                                     (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14540                         } else {
14541                                 uintptr_t cookie;
14542 
14543                                 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14544                                     mp, (uintptr_t)xmit_hint, 0)) != 0) {
14545                                         if (ixacookie != NULL)
14546                                                 *ixacookie = cookie;
14547                                         return (EWOULDBLOCK);
14548                                 }
14549                         }
14550                 } else {
14551                         wq = ill->ill_wq;
14552 
14553                         if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14554                             !canputnext(wq)) {
14555                                 if (ixacookie != NULL)
14556                                         *ixacookie = 0;
14557                                 ip_xmit_flowctl_drop(ill, mp, fp_mp,
14558                                     nce->nce_fp_mp != NULL ?
14559                                     MBLKL(nce->nce_fp_mp) : 0);
14560                                 return (EWOULDBLOCK);
14561                         }
14562                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14563                         UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14564                             pkt_len);
14565                         putnext(wq, mp);
14566                 }
14567 
14568                 /*
14569                  * The rest of this function implements Neighbor Unreachability
14570                  * detection. Determine if the ncec is eligible for NUD.
14571                  */
14572                 if (ncec->ncec_flags & NCE_F_NONUD)
14573                         return (0);
14574 
14575                 ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14576 
14577                 /*
14578                  * Check for upper layer advice
14579                  */
14580                 if (ixaflags & IXAF_REACH_CONF) {
14581                         timeout_id_t tid;
14582 
14583                         /*
14584                          * It should be o.k. to check the state without
14585                          * a lock here, at most we lose an advice.
14586                          */
14587                         ncec->ncec_last = TICK_TO_MSEC(now);
14588                         if (ncec->ncec_state != ND_REACHABLE) {
14589                                 mutex_enter(&ncec->ncec_lock);
14590                                 ncec->ncec_state = ND_REACHABLE;
14591                                 tid = ncec->ncec_timeout_id;
14592                                 ncec->ncec_timeout_id = 0;
14593                                 mutex_exit(&ncec->ncec_lock);
14594                                 (void) untimeout(tid);
14595                                 if (ip_debug > 2) {
14596                                         /* ip1dbg */
14597                                         pr_addr_dbg("ip_xmit: state"
14598                                             " for %s changed to"
14599                                             " REACHABLE\n", AF_INET6,
14600                                             &ncec->ncec_addr);
14601                                 }
14602                         }
14603                         return (0);
14604                 }
14605 
14606                 delta =  TICK_TO_MSEC(now) - ncec->ncec_last;
14607                 ip1dbg(("ip_xmit: delta = %" PRId64
14608                     " ill_reachable_time = %d \n", delta,
14609                     ill->ill_reachable_time));
14610                 if (delta > (uint64_t)ill->ill_reachable_time) {
14611                         mutex_enter(&ncec->ncec_lock);
14612                         switch (ncec->ncec_state) {
14613                         case ND_REACHABLE:
14614                                 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14615                                 /* FALLTHROUGH */
14616                         case ND_STALE:
14617                                 /*
14618                                  * ND_REACHABLE is identical to
14619                                  * ND_STALE in this specific case. If
14620                                  * reachable time has expired for this
14621                                  * neighbor (delta is greater than
14622                                  * reachable time), conceptually, the
14623                                  * neighbor cache is no longer in
14624                                  * REACHABLE state, but already in
14625                                  * STALE state.  So the correct
14626                                  * transition here is to ND_DELAY.
14627                                  */
14628                                 ncec->ncec_state = ND_DELAY;
14629                                 mutex_exit(&ncec->ncec_lock);
14630                                 nce_restart_timer(ncec,
14631                                     ipst->ips_delay_first_probe_time);
14632                                 if (ip_debug > 3) {
14633                                         /* ip2dbg */
14634                                         pr_addr_dbg("ip_xmit: state"
14635                                             " for %s changed to"
14636                                             " DELAY\n", AF_INET6,
14637                                             &ncec->ncec_addr);
14638                                 }
14639                                 break;
14640                         case ND_DELAY:
14641                         case ND_PROBE:
14642                                 mutex_exit(&ncec->ncec_lock);
14643                                 /* Timers have already started */
14644                                 break;
14645                         case ND_UNREACHABLE:
14646                                 /*
14647                                  * nce_timer has detected that this ncec
14648                                  * is unreachable and initiated deleting
14649                                  * this ncec.
14650                                  * This is a harmless race where we found the
14651                                  * ncec before it was deleted and have
14652                                  * just sent out a packet using this
14653                                  * unreachable ncec.
14654                                  */
14655                                 mutex_exit(&ncec->ncec_lock);
14656                                 break;
14657                         default:
14658                                 ASSERT(0);
14659                                 mutex_exit(&ncec->ncec_lock);
14660                         }
14661                 }
14662                 return (0);
14663 
14664         case ND_INCOMPLETE:
14665                 /*
14666                  * the state could have changed since we didn't hold the lock.
14667                  * Re-verify state under lock.
14668                  */
14669                 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14670                 mutex_enter(&ncec->ncec_lock);
14671                 if (NCE_ISREACHABLE(ncec)) {
14672                         mutex_exit(&ncec->ncec_lock);
14673                         goto sendit;
14674                 }
14675                 /* queue the packet */
14676                 nce_queue_mp(ncec, mp, is_probe);
14677                 mutex_exit(&ncec->ncec_lock);
14678                 DTRACE_PROBE2(ip__xmit__incomplete,
14679                     (ncec_t *), ncec, (mblk_t *), mp);
14680                 return (0);
14681 
14682         case ND_INITIAL:
14683                 /*
14684                  * State could have changed since we didn't hold the lock, so
14685                  * re-verify state.
14686                  */
14687                 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14688                 mutex_enter(&ncec->ncec_lock);
14689                 if (NCE_ISREACHABLE(ncec))  {
14690                         mutex_exit(&ncec->ncec_lock);
14691                         goto sendit;
14692                 }
14693                 nce_queue_mp(ncec, mp, is_probe);
14694                 if (ncec->ncec_state == ND_INITIAL) {
14695                         ncec->ncec_state = ND_INCOMPLETE;
14696                         mutex_exit(&ncec->ncec_lock);
14697                         /*
14698                          * figure out the source we want to use
14699                          * and resolve it.
14700                          */
14701                         ip_ndp_resolve(ncec);
14702                 } else  {
14703                         mutex_exit(&ncec->ncec_lock);
14704                 }
14705                 return (0);
14706 
14707         case ND_UNREACHABLE:
14708                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14709                 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14710                     mp, ill);
14711                 freemsg(mp);
14712                 return (0);
14713 
14714         default:
14715                 ASSERT(0);
14716                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14717                 ip_drop_output("ipIfStatsOutDiscards - ND_other",
14718                     mp, ill);
14719                 freemsg(mp);
14720                 return (ENETUNREACH);
14721         }
14722 }
14723 
14724 /*
14725  * Return B_TRUE if the buffers differ in length or content.
14726  * This is used for comparing extension header buffers.
14727  * Note that an extension header would be declared different
14728  * even if all that changed was the next header value in that header i.e.
14729  * what really changed is the next extension header.
14730  */
14731 boolean_t
14732 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14733     uint_t blen)
14734 {
14735         if (!b_valid)
14736                 blen = 0;
14737 
14738         if (alen != blen)
14739                 return (B_TRUE);
14740         if (alen == 0)
14741                 return (B_FALSE);       /* Both zero length */
14742         return (bcmp(abuf, bbuf, alen));
14743 }
14744 
14745 /*
14746  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14747  * Return B_FALSE if memory allocation fails - don't change any state!
14748  */
14749 boolean_t
14750 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14751     const void *src, uint_t srclen)
14752 {
14753         void *dst;
14754 
14755         if (!src_valid)
14756                 srclen = 0;
14757 
14758         ASSERT(*dstlenp == 0);
14759         if (src != NULL && srclen != 0) {
14760                 dst = mi_alloc(srclen, BPRI_MED);
14761                 if (dst == NULL)
14762                         return (B_FALSE);
14763         } else {
14764                 dst = NULL;
14765         }
14766         if (*dstp != NULL)
14767                 mi_free(*dstp);
14768         *dstp = dst;
14769         *dstlenp = dst == NULL ? 0 : srclen;
14770         return (B_TRUE);
14771 }
14772 
14773 /*
14774  * Replace what is in *dst, *dstlen with the source.
14775  * Assumes ip_allocbuf has already been called.
14776  */
14777 void
14778 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14779     const void *src, uint_t srclen)
14780 {
14781         if (!src_valid)
14782                 srclen = 0;
14783 
14784         ASSERT(*dstlenp == srclen);
14785         if (src != NULL && srclen != 0)
14786                 bcopy(src, *dstp, srclen);
14787 }
14788 
14789 /*
14790  * Free the storage pointed to by the members of an ip_pkt_t.
14791  */
14792 void
14793 ip_pkt_free(ip_pkt_t *ipp)
14794 {
14795         uint_t  fields = ipp->ipp_fields;
14796 
14797         if (fields & IPPF_HOPOPTS) {
14798                 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14799                 ipp->ipp_hopopts = NULL;
14800                 ipp->ipp_hopoptslen = 0;
14801         }
14802         if (fields & IPPF_RTHDRDSTOPTS) {
14803                 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14804                 ipp->ipp_rthdrdstopts = NULL;
14805                 ipp->ipp_rthdrdstoptslen = 0;
14806         }
14807         if (fields & IPPF_DSTOPTS) {
14808                 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14809                 ipp->ipp_dstopts = NULL;
14810                 ipp->ipp_dstoptslen = 0;
14811         }
14812         if (fields & IPPF_RTHDR) {
14813                 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14814                 ipp->ipp_rthdr = NULL;
14815                 ipp->ipp_rthdrlen = 0;
14816         }
14817         if (fields & IPPF_IPV4_OPTIONS) {
14818                 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14819                 ipp->ipp_ipv4_options = NULL;
14820                 ipp->ipp_ipv4_options_len = 0;
14821         }
14822         if (fields & IPPF_LABEL_V4) {
14823                 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14824                 ipp->ipp_label_v4 = NULL;
14825                 ipp->ipp_label_len_v4 = 0;
14826         }
14827         if (fields & IPPF_LABEL_V6) {
14828                 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14829                 ipp->ipp_label_v6 = NULL;
14830                 ipp->ipp_label_len_v6 = 0;
14831         }
14832         ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14833             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14834 }
14835 
14836 /*
14837  * Copy from src to dst and allocate as needed.
14838  * Returns zero or ENOMEM.
14839  *
14840  * The caller must initialize dst to zero.
14841  */
14842 int
14843 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14844 {
14845         uint_t  fields = src->ipp_fields;
14846 
14847         /* Start with fields that don't require memory allocation */
14848         dst->ipp_fields = fields &
14849             ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14850             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14851 
14852         dst->ipp_addr = src->ipp_addr;
14853         dst->ipp_unicast_hops = src->ipp_unicast_hops;
14854         dst->ipp_hoplimit = src->ipp_hoplimit;
14855         dst->ipp_tclass = src->ipp_tclass;
14856         dst->ipp_type_of_service = src->ipp_type_of_service;
14857 
14858         if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14859             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14860                 return (0);
14861 
14862         if (fields & IPPF_HOPOPTS) {
14863                 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14864                 if (dst->ipp_hopopts == NULL) {
14865                         ip_pkt_free(dst);
14866                         return (ENOMEM);
14867                 }
14868                 dst->ipp_fields |= IPPF_HOPOPTS;
14869                 bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14870                     src->ipp_hopoptslen);
14871                 dst->ipp_hopoptslen = src->ipp_hopoptslen;
14872         }
14873         if (fields & IPPF_RTHDRDSTOPTS) {
14874                 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14875                     kmflag);
14876                 if (dst->ipp_rthdrdstopts == NULL) {
14877                         ip_pkt_free(dst);
14878                         return (ENOMEM);
14879                 }
14880                 dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14881                 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14882                     src->ipp_rthdrdstoptslen);
14883                 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14884         }
14885         if (fields & IPPF_DSTOPTS) {
14886                 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14887                 if (dst->ipp_dstopts == NULL) {
14888                         ip_pkt_free(dst);
14889                         return (ENOMEM);
14890                 }
14891                 dst->ipp_fields |= IPPF_DSTOPTS;
14892                 bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14893                     src->ipp_dstoptslen);
14894                 dst->ipp_dstoptslen = src->ipp_dstoptslen;
14895         }
14896         if (fields & IPPF_RTHDR) {
14897                 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14898                 if (dst->ipp_rthdr == NULL) {
14899                         ip_pkt_free(dst);
14900                         return (ENOMEM);
14901                 }
14902                 dst->ipp_fields |= IPPF_RTHDR;
14903                 bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14904                     src->ipp_rthdrlen);
14905                 dst->ipp_rthdrlen = src->ipp_rthdrlen;
14906         }
14907         if (fields & IPPF_IPV4_OPTIONS) {
14908                 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14909                     kmflag);
14910                 if (dst->ipp_ipv4_options == NULL) {
14911                         ip_pkt_free(dst);
14912                         return (ENOMEM);
14913                 }
14914                 dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14915                 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14916                     src->ipp_ipv4_options_len);
14917                 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14918         }
14919         if (fields & IPPF_LABEL_V4) {
14920                 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14921                 if (dst->ipp_label_v4 == NULL) {
14922                         ip_pkt_free(dst);
14923                         return (ENOMEM);
14924                 }
14925                 dst->ipp_fields |= IPPF_LABEL_V4;
14926                 bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14927                     src->ipp_label_len_v4);
14928                 dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14929         }
14930         if (fields & IPPF_LABEL_V6) {
14931                 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14932                 if (dst->ipp_label_v6 == NULL) {
14933                         ip_pkt_free(dst);
14934                         return (ENOMEM);
14935                 }
14936                 dst->ipp_fields |= IPPF_LABEL_V6;
14937                 bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14938                     src->ipp_label_len_v6);
14939                 dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14940         }
14941         if (fields & IPPF_FRAGHDR) {
14942                 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14943                 if (dst->ipp_fraghdr == NULL) {
14944                         ip_pkt_free(dst);
14945                         return (ENOMEM);
14946                 }
14947                 dst->ipp_fields |= IPPF_FRAGHDR;
14948                 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14949                     src->ipp_fraghdrlen);
14950                 dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14951         }
14952         return (0);
14953 }
14954 
14955 /*
14956  * Returns INADDR_ANY if no source route
14957  */
14958 ipaddr_t
14959 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
14960 {
14961         ipaddr_t        nexthop = INADDR_ANY;
14962         ipoptp_t        opts;
14963         uchar_t         *opt;
14964         uint8_t         optval;
14965         uint8_t         optlen;
14966         uint32_t        totallen;
14967 
14968         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
14969                 return (INADDR_ANY);
14970 
14971         totallen = ipp->ipp_ipv4_options_len;
14972         if (totallen & 0x3)
14973                 return (INADDR_ANY);
14974 
14975         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
14976             optval != IPOPT_EOL;
14977             optval = ipoptp_next(&opts)) {
14978                 opt = opts.ipoptp_cur;
14979                 switch (optval) {
14980                         uint8_t off;
14981                 case IPOPT_SSRR:
14982                 case IPOPT_LSRR:
14983                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
14984                                 break;
14985                         }
14986                         optlen = opts.ipoptp_len;
14987                         off = opt[IPOPT_OFFSET];
14988                         off--;
14989                         if (optlen < IP_ADDR_LEN ||
14990                             off > optlen - IP_ADDR_LEN) {
14991                                 /* End of source route */
14992                                 break;
14993                         }
14994                         bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
14995                         if (nexthop == htonl(INADDR_LOOPBACK)) {
14996                                 /* Ignore */
14997                                 nexthop = INADDR_ANY;
14998                                 break;
14999                         }
15000                         break;
15001                 }
15002         }
15003         return (nexthop);
15004 }
15005 
15006 /*
15007  * Reverse a source route.
15008  */
15009 void
15010 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15011 {
15012         ipaddr_t        tmp;
15013         ipoptp_t        opts;
15014         uchar_t         *opt;
15015         uint8_t         optval;
15016         uint32_t        totallen;
15017 
15018         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15019                 return;
15020 
15021         totallen = ipp->ipp_ipv4_options_len;
15022         if (totallen & 0x3)
15023                 return;
15024 
15025         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15026             optval != IPOPT_EOL;
15027             optval = ipoptp_next(&opts)) {
15028                 uint8_t off1, off2;
15029 
15030                 opt = opts.ipoptp_cur;
15031                 switch (optval) {
15032                 case IPOPT_SSRR:
15033                 case IPOPT_LSRR:
15034                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15035                                 break;
15036                         }
15037                         off1 = IPOPT_MINOFF_SR - 1;
15038                         off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15039                         while (off2 > off1) {
15040                                 bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15041                                 bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15042                                 bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15043                                 off2 -= IP_ADDR_LEN;
15044                                 off1 += IP_ADDR_LEN;
15045                         }
15046                         opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15047                         break;
15048                 }
15049         }
15050 }
15051 
15052 /*
15053  * Returns NULL if no routing header
15054  */
15055 in6_addr_t *
15056 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15057 {
15058         in6_addr_t      *nexthop = NULL;
15059         ip6_rthdr0_t    *rthdr;
15060 
15061         if (!(ipp->ipp_fields & IPPF_RTHDR))
15062                 return (NULL);
15063 
15064         rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15065         if (rthdr->ip6r0_segleft == 0)
15066                 return (NULL);
15067 
15068         nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15069         return (nexthop);
15070 }
15071 
15072 zoneid_t
15073 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15074     zoneid_t lookup_zoneid)
15075 {
15076         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
15077         ire_t           *ire;
15078         int             ire_flags = MATCH_IRE_TYPE;
15079         zoneid_t        zoneid = ALL_ZONES;
15080 
15081         if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15082                 return (ALL_ZONES);
15083 
15084         if (lookup_zoneid != ALL_ZONES)
15085                 ire_flags |= MATCH_IRE_ZONEONLY;
15086         ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15087             NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15088         if (ire != NULL) {
15089                 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15090                 ire_refrele(ire);
15091         }
15092         return (zoneid);
15093 }
15094 
15095 zoneid_t
15096 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15097     ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15098 {
15099         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
15100         ire_t           *ire;
15101         int             ire_flags = MATCH_IRE_TYPE;
15102         zoneid_t        zoneid = ALL_ZONES;
15103 
15104         if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15105                 return (ALL_ZONES);
15106 
15107         if (IN6_IS_ADDR_LINKLOCAL(addr))
15108                 ire_flags |= MATCH_IRE_ILL;
15109 
15110         if (lookup_zoneid != ALL_ZONES)
15111                 ire_flags |= MATCH_IRE_ZONEONLY;
15112         ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15113             ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15114         if (ire != NULL) {
15115                 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15116                 ire_refrele(ire);
15117         }
15118         return (zoneid);
15119 }
15120 
15121 /*
15122  * IP obserability hook support functions.
15123  */
15124 static void
15125 ipobs_init(ip_stack_t *ipst)
15126 {
15127         netid_t id;
15128 
15129         id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15130 
15131         ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15132         VERIFY(ipst->ips_ip4_observe_pr != NULL);
15133 
15134         ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15135         VERIFY(ipst->ips_ip6_observe_pr != NULL);
15136 }
15137 
15138 static void
15139 ipobs_fini(ip_stack_t *ipst)
15140 {
15141 
15142         VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15143         VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15144 }
15145 
15146 /*
15147  * hook_pkt_observe_t is composed in network byte order so that the
15148  * entire mblk_t chain handed into hook_run can be used as-is.
15149  * The caveat is that use of the fields, such as the zone fields,
15150  * requires conversion into host byte order first.
15151  */
15152 void
15153 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15154     const ill_t *ill, ip_stack_t *ipst)
15155 {
15156         hook_pkt_observe_t *hdr;
15157         uint64_t grifindex;
15158         mblk_t *imp;
15159 
15160         imp = allocb(sizeof (*hdr), BPRI_HI);
15161         if (imp == NULL)
15162                 return;
15163 
15164         hdr = (hook_pkt_observe_t *)imp->b_rptr;
15165         /*
15166          * b_wptr is set to make the apparent size of the data in the mblk_t
15167          * to exclude the pointers at the end of hook_pkt_observer_t.
15168          */
15169         imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15170         imp->b_cont = mp;
15171 
15172         ASSERT(DB_TYPE(mp) == M_DATA);
15173 
15174         if (IS_UNDER_IPMP(ill))
15175                 grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15176         else
15177                 grifindex = 0;
15178 
15179         hdr->hpo_version = 1;
15180         hdr->hpo_htype = htons(htype);
15181         hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15182         hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15183         hdr->hpo_grifindex = htonl(grifindex);
15184         hdr->hpo_zsrc = htonl(zsrc);
15185         hdr->hpo_zdst = htonl(zdst);
15186         hdr->hpo_pkt = imp;
15187         hdr->hpo_ctx = ipst->ips_netstack;
15188 
15189         if (ill->ill_isv6) {
15190                 hdr->hpo_family = AF_INET6;
15191                 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15192                     ipst->ips_ipv6observing, (hook_data_t)hdr);
15193         } else {
15194                 hdr->hpo_family = AF_INET;
15195                 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15196                     ipst->ips_ipv4observing, (hook_data_t)hdr);
15197         }
15198 
15199         imp->b_cont = NULL;
15200         freemsg(imp);
15201 }
15202 
15203 /*
15204  * Utility routine that checks if `v4srcp' is a valid address on underlying
15205  * interface `ill'.  If `ipifp' is non-NULL, it's set to a held ipif
15206  * associated with `v4srcp' on success.  NOTE: if this is not called from
15207  * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15208  * group during or after this lookup.
15209  */
15210 boolean_t
15211 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15212 {
15213         ipif_t *ipif;
15214 
15215         ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15216         if (ipif != NULL) {
15217                 if (ipifp != NULL)
15218                         *ipifp = ipif;
15219                 else
15220                         ipif_refrele(ipif);
15221                 return (B_TRUE);
15222         }
15223 
15224         ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15225             *v4srcp));
15226         return (B_FALSE);
15227 }
15228 
15229 /*
15230  * Transport protocol call back function for CPU state change.
15231  */
15232 /* ARGSUSED */
15233 static int
15234 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15235 {
15236         processorid_t cpu_seqid;
15237         netstack_handle_t nh;
15238         netstack_t *ns;
15239 
15240         ASSERT(MUTEX_HELD(&cpu_lock));
15241 
15242         switch (what) {
15243         case CPU_CONFIG:
15244         case CPU_ON:
15245         case CPU_INIT:
15246         case CPU_CPUPART_IN:
15247                 cpu_seqid = cpu[id]->cpu_seqid;
15248                 netstack_next_init(&nh);
15249                 while ((ns = netstack_next(&nh)) != NULL) {
15250                         tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15251                         sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15252                         udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15253                         netstack_rele(ns);
15254                 }
15255                 netstack_next_fini(&nh);
15256                 break;
15257         case CPU_UNCONFIG:
15258         case CPU_OFF:
15259         case CPU_CPUPART_OUT:
15260                 /*
15261                  * Nothing to do.  We don't remove the per CPU stats from
15262                  * the IP stack even when the CPU goes offline.
15263                  */
15264                 break;
15265         default:
15266                 break;
15267         }
15268         return (0);
15269 }