1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 1990 Mentat Inc.
  25  */
  26 
  27 #include <sys/types.h>
  28 #include <sys/stream.h>
  29 #include <sys/dlpi.h>
  30 #include <sys/stropts.h>
  31 #include <sys/sysmacros.h>
  32 #include <sys/strsubr.h>
  33 #include <sys/strlog.h>
  34 #include <sys/strsun.h>
  35 #include <sys/zone.h>
  36 #define _SUN_TPI_VERSION 2
  37 #include <sys/tihdr.h>
  38 #include <sys/xti_inet.h>
  39 #include <sys/ddi.h>
  40 #include <sys/suntpi.h>
  41 #include <sys/cmn_err.h>
  42 #include <sys/debug.h>
  43 #include <sys/kobj.h>
  44 #include <sys/modctl.h>
  45 #include <sys/atomic.h>
  46 #include <sys/policy.h>
  47 #include <sys/priv.h>
  48 #include <sys/taskq.h>
  49 
  50 #include <sys/systm.h>
  51 #include <sys/param.h>
  52 #include <sys/kmem.h>
  53 #include <sys/sdt.h>
  54 #include <sys/socket.h>
  55 #include <sys/vtrace.h>
  56 #include <sys/isa_defs.h>
  57 #include <sys/mac.h>
  58 #include <net/if.h>
  59 #include <net/if_arp.h>
  60 #include <net/route.h>
  61 #include <sys/sockio.h>
  62 #include <netinet/in.h>
  63 #include <net/if_dl.h>
  64 
  65 #include <inet/common.h>
  66 #include <inet/mi.h>
  67 #include <inet/mib2.h>
  68 #include <inet/nd.h>
  69 #include <inet/arp.h>
  70 #include <inet/snmpcom.h>
  71 #include <inet/optcom.h>
  72 #include <inet/kstatcom.h>
  73 
  74 #include <netinet/igmp_var.h>
  75 #include <netinet/ip6.h>
  76 #include <netinet/icmp6.h>
  77 #include <netinet/sctp.h>
  78 
  79 #include <inet/ip.h>
  80 #include <inet/ip_impl.h>
  81 #include <inet/ip6.h>
  82 #include <inet/ip6_asp.h>
  83 #include <inet/tcp.h>
  84 #include <inet/tcp_impl.h>
  85 #include <inet/ip_multi.h>
  86 #include <inet/ip_if.h>
  87 #include <inet/ip_ire.h>
  88 #include <inet/ip_ftable.h>
  89 #include <inet/ip_rts.h>
  90 #include <inet/ip_ndp.h>
  91 #include <inet/ip_listutils.h>
  92 #include <netinet/igmp.h>
  93 #include <netinet/ip_mroute.h>
  94 #include <inet/ipp_common.h>
  95 
  96 #include <net/pfkeyv2.h>
  97 #include <inet/sadb.h>
  98 #include <inet/ipsec_impl.h>
  99 #include <inet/iptun/iptun_impl.h>
 100 #include <inet/ipdrop.h>
 101 #include <inet/ip_netinfo.h>
 102 #include <inet/ilb_ip.h>
 103 
 104 #include <sys/ethernet.h>
 105 #include <net/if_types.h>
 106 #include <sys/cpuvar.h>
 107 
 108 #include <ipp/ipp.h>
 109 #include <ipp/ipp_impl.h>
 110 #include <ipp/ipgpc/ipgpc.h>
 111 
 112 #include <sys/pattr.h>
 113 #include <inet/ipclassifier.h>
 114 #include <inet/sctp_ip.h>
 115 #include <inet/sctp/sctp_impl.h>
 116 #include <inet/udp_impl.h>
 117 #include <inet/rawip_impl.h>
 118 #include <inet/rts_impl.h>
 119 
 120 #include <sys/tsol/label.h>
 121 #include <sys/tsol/tnet.h>
 122 
 123 #include <sys/squeue_impl.h>
 124 #include <inet/ip_arp.h>
 125 
 126 #include <sys/clock_impl.h>       /* For LBOLT_FASTPATH{,64} */
 127 
 128 /*
 129  * Values for squeue switch:
 130  * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
 131  * IP_SQUEUE_ENTER: SQ_PROCESS
 132  * IP_SQUEUE_FILL: SQ_FILL
 133  */
 134 int ip_squeue_enter = IP_SQUEUE_ENTER;  /* Setable in /etc/system */
 135 
 136 int ip_squeue_flag;
 137 
 138 /*
 139  * Setable in /etc/system
 140  */
 141 int ip_poll_normal_ms = 100;
 142 int ip_poll_normal_ticks = 0;
 143 int ip_modclose_ackwait_ms = 3000;
 144 
 145 /*
 146  * It would be nice to have these present only in DEBUG systems, but the
 147  * current design of the global symbol checking logic requires them to be
 148  * unconditionally present.
 149  */
 150 uint_t ip_thread_data;                  /* TSD key for debug support */
 151 krwlock_t ip_thread_rwlock;
 152 list_t  ip_thread_list;
 153 
 154 /*
 155  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
 156  */
 157 
 158 struct listptr_s {
 159         mblk_t  *lp_head;       /* pointer to the head of the list */
 160         mblk_t  *lp_tail;       /* pointer to the tail of the list */
 161 };
 162 
 163 typedef struct listptr_s listptr_t;
 164 
 165 /*
 166  * This is used by ip_snmp_get_mib2_ip_route_media and
 167  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
 168  */
 169 typedef struct iproutedata_s {
 170         uint_t          ird_idx;
 171         uint_t          ird_flags;      /* see below */
 172         listptr_t       ird_route;      /* ipRouteEntryTable */
 173         listptr_t       ird_netmedia;   /* ipNetToMediaEntryTable */
 174         listptr_t       ird_attrs;      /* ipRouteAttributeTable */
 175 } iproutedata_t;
 176 
 177 /* Include ire_testhidden and IRE_IF_CLONE routes */
 178 #define IRD_REPORT_ALL  0x01
 179 
 180 /*
 181  * Cluster specific hooks. These should be NULL when booted as a non-cluster
 182  */
 183 
 184 /*
 185  * Hook functions to enable cluster networking
 186  * On non-clustered systems these vectors must always be NULL.
 187  *
 188  * Hook function to Check ip specified ip address is a shared ip address
 189  * in the cluster
 190  *
 191  */
 192 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
 193     sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
 194 
 195 /*
 196  * Hook function to generate cluster wide ip fragment identifier
 197  */
 198 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
 199     sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
 200     void *args) = NULL;
 201 
 202 /*
 203  * Hook function to generate cluster wide SPI.
 204  */
 205 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
 206     void *) = NULL;
 207 
 208 /*
 209  * Hook function to verify if the SPI is already utlized.
 210  */
 211 
 212 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
 213 
 214 /*
 215  * Hook function to delete the SPI from the cluster wide repository.
 216  */
 217 
 218 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
 219 
 220 /*
 221  * Hook function to inform the cluster when packet received on an IDLE SA
 222  */
 223 
 224 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
 225     in6_addr_t, in6_addr_t, void *) = NULL;
 226 
 227 /*
 228  * Synchronization notes:
 229  *
 230  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
 231  * MT level protection given by STREAMS. IP uses a combination of its own
 232  * internal serialization mechanism and standard Solaris locking techniques.
 233  * The internal serialization is per phyint.  This is used to serialize
 234  * plumbing operations, IPMP operations, most set ioctls, etc.
 235  *
 236  * Plumbing is a long sequence of operations involving message
 237  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
 238  * involved in plumbing operations. A natural model is to serialize these
 239  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
 240  * parallel without any interference. But various set ioctls on hme0 are best
 241  * serialized, along with IPMP operations and processing of DLPI control
 242  * messages received from drivers on a per phyint basis. This serialization is
 243  * provided by the ipsq_t and primitives operating on this. Details can
 244  * be found in ip_if.c above the core primitives operating on ipsq_t.
 245  *
 246  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
 247  * Simiarly lookup of an ire by a thread also returns a refheld ire.
 248  * In addition ipif's and ill's referenced by the ire are also indirectly
 249  * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
 250  * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
 251  * address of an ipif has to go through the ipsq_t. This ensures that only
 252  * one such exclusive operation proceeds at any time on the ipif. It then
 253  * waits for all refcnts
 254  * associated with this ipif to come down to zero. The address is changed
 255  * only after the ipif has been quiesced. Then the ipif is brought up again.
 256  * More details are described above the comment in ip_sioctl_flags.
 257  *
 258  * Packet processing is based mostly on IREs and are fully multi-threaded
 259  * using standard Solaris MT techniques.
 260  *
 261  * There are explicit locks in IP to handle:
 262  * - The ip_g_head list maintained by mi_open_link() and friends.
 263  *
 264  * - The reassembly data structures (one lock per hash bucket)
 265  *
 266  * - conn_lock is meant to protect conn_t fields. The fields actually
 267  *   protected by conn_lock are documented in the conn_t definition.
 268  *
 269  * - ire_lock to protect some of the fields of the ire, IRE tables
 270  *   (one lock per hash bucket). Refer to ip_ire.c for details.
 271  *
 272  * - ndp_g_lock and ncec_lock for protecting NCEs.
 273  *
 274  * - ill_lock protects fields of the ill and ipif. Details in ip.h
 275  *
 276  * - ill_g_lock: This is a global reader/writer lock. Protects the following
 277  *      * The AVL tree based global multi list of all ills.
 278  *      * The linked list of all ipifs of an ill
 279  *      * The <ipsq-xop> mapping
 280  *      * <ill-phyint> association
 281  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
 282  *   into an ill, changing the <ipsq-xop> mapping of an ill, changing the
 283  *   <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
 284  *   writer for the actual duration of the insertion/deletion/change.
 285  *
 286  * - ill_lock:  This is a per ill mutex.
 287  *   It protects some members of the ill_t struct; see ip.h for details.
 288  *   It also protects the <ill-phyint> assoc.
 289  *   It also protects the list of ipifs hanging off the ill.
 290  *
 291  * - ipsq_lock: This is a per ipsq_t mutex lock.
 292  *   This protects some members of the ipsq_t struct; see ip.h for details.
 293  *   It also protects the <ipsq-ipxop> mapping
 294  *
 295  * - ipx_lock: This is a per ipxop_t mutex lock.
 296  *   This protects some members of the ipxop_t struct; see ip.h for details.
 297  *
 298  * - phyint_lock: This is a per phyint mutex lock. Protects just the
 299  *   phyint_flags
 300  *
 301  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
 302  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
 303  *   uniqueness check also done atomically.
 304  *
 305  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
 306  *   group list linked by ill_usesrc_grp_next. It also protects the
 307  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
 308  *   group is being added or deleted.  This lock is taken as a reader when
 309  *   walking the list/group(eg: to get the number of members in a usesrc group).
 310  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
 311  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
 312  *   example, it is not necessary to take this lock in the initial portion
 313  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
 314  *   operations are executed exclusively and that ensures that the "usesrc
 315  *   group state" cannot change. The "usesrc group state" change can happen
 316  *   only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
 317  *
 318  * Changing <ill-phyint>, <ipsq-xop> assocications:
 319  *
 320  * To change the <ill-phyint> association, the ill_g_lock must be held
 321  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
 322  * must be held.
 323  *
 324  * To change the <ipsq-xop> association, the ill_g_lock must be held as
 325  * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
 326  * This is only done when ills are added or removed from IPMP groups.
 327  *
 328  * To add or delete an ipif from the list of ipifs hanging off the ill,
 329  * ill_g_lock (writer) and ill_lock must be held and the thread must be
 330  * a writer on the associated ipsq.
 331  *
 332  * To add or delete an ill to the system, the ill_g_lock must be held as
 333  * writer and the thread must be a writer on the associated ipsq.
 334  *
 335  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
 336  * must be a writer on the associated ipsq.
 337  *
 338  * Lock hierarchy
 339  *
 340  * Some lock hierarchy scenarios are listed below.
 341  *
 342  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
 343  * ill_g_lock -> ill_lock(s) -> phyint_lock
 344  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
 345  * ill_g_lock -> ip_addr_avail_lock
 346  * conn_lock -> irb_lock -> ill_lock -> ire_lock
 347  * ill_g_lock -> ip_g_nd_lock
 348  * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
 349  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
 350  * arl_lock -> ill_lock
 351  * ips_ire_dep_lock -> irb_lock
 352  *
 353  * When more than 1 ill lock is needed to be held, all ill lock addresses
 354  * are sorted on address and locked starting from highest addressed lock
 355  * downward.
 356  *
 357  * Multicast scenarios
 358  * ips_ill_g_lock -> ill_mcast_lock
 359  * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
 360  * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
 361  * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
 362  * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
 363  * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
 364  *
 365  * IPsec scenarios
 366  *
 367  * ipsa_lock -> ill_g_lock -> ill_lock
 368  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
 369  *
 370  * Trusted Solaris scenarios
 371  *
 372  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
 373  * igsa_lock -> gcdb_lock
 374  * gcgrp_rwlock -> ire_lock
 375  * gcgrp_rwlock -> gcdb_lock
 376  *
 377  * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
 378  *
 379  * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
 380  * sq_lock -> conn_lock -> QLOCK(q)
 381  * ill_lock -> ft_lock -> fe_lock
 382  *
 383  * Routing/forwarding table locking notes:
 384  *
 385  * Lock acquisition order: Radix tree lock, irb_lock.
 386  * Requirements:
 387  * i.  Walker must not hold any locks during the walker callback.
 388  * ii  Walker must not see a truncated tree during the walk because of any node
 389  *     deletion.
 390  * iii Existing code assumes ire_bucket is valid if it is non-null and is used
 391  *     in many places in the code to walk the irb list. Thus even if all the
 392  *     ires in a bucket have been deleted, we still can't free the radix node
 393  *     until the ires have actually been inactive'd (freed).
 394  *
 395  * Tree traversal - Need to hold the global tree lock in read mode.
 396  * Before dropping the global tree lock, need to either increment the ire_refcnt
 397  * to ensure that the radix node can't be deleted.
 398  *
 399  * Tree add - Need to hold the global tree lock in write mode to add a
 400  * radix node. To prevent the node from being deleted, increment the
 401  * irb_refcnt, after the node is added to the tree. The ire itself is
 402  * added later while holding the irb_lock, but not the tree lock.
 403  *
 404  * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
 405  * All associated ires must be inactive (i.e. freed), and irb_refcnt
 406  * must be zero.
 407  *
 408  * Walker - Increment irb_refcnt before calling the walker callback. Hold the
 409  * global tree lock (read mode) for traversal.
 410  *
 411  * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
 412  * hence we will acquire irb_lock while holding ips_ire_dep_lock.
 413  *
 414  * IPsec notes :
 415  *
 416  * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
 417  * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
 418  * ip_xmit_attr_t has the
 419  * information used by the IPsec code for applying the right level of
 420  * protection. The information initialized by IP in the ip_xmit_attr_t
 421  * is determined by the per-socket policy or global policy in the system.
 422  * For inbound datagrams, the ip_recv_attr_t
 423  * starts out with nothing in it. It gets filled
 424  * with the right information if it goes through the AH/ESP code, which
 425  * happens if the incoming packet is secure. The information initialized
 426  * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
 427  * the policy requirements needed by per-socket policy or global policy
 428  * is met or not.
 429  *
 430  * For fully connected sockets i.e dst, src [addr, port] is known,
 431  * conn_policy_cached is set indicating that policy has been cached.
 432  * conn_in_enforce_policy may or may not be set depending on whether
 433  * there is a global policy match or per-socket policy match.
 434  * Policy inheriting happpens in ip_policy_set once the destination is known.
 435  * Once the right policy is set on the conn_t, policy cannot change for
 436  * this socket. This makes life simpler for TCP (UDP ?) where
 437  * re-transmissions go out with the same policy. For symmetry, policy
 438  * is cached for fully connected UDP sockets also. Thus if policy is cached,
 439  * it also implies that policy is latched i.e policy cannot change
 440  * on these sockets. As we have the right policy on the conn, we don't
 441  * have to lookup global policy for every outbound and inbound datagram
 442  * and thus serving as an optimization. Note that a global policy change
 443  * does not affect fully connected sockets if they have policy. If fully
 444  * connected sockets did not have any policy associated with it, global
 445  * policy change may affect them.
 446  *
 447  * IP Flow control notes:
 448  * ---------------------
 449  * Non-TCP streams are flow controlled by IP. The way this is accomplished
 450  * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
 451  * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
 452  * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
 453  * functions.
 454  *
 455  * Per Tx ring udp flow control:
 456  * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
 457  * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
 458  *
 459  * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
 460  * To achieve best performance, outgoing traffic need to be fanned out among
 461  * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
 462  * traffic out of the NIC and it takes a fanout hint. UDP connections pass
 463  * the address of connp as fanout hint to mac_tx(). Under flow controlled
 464  * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
 465  * cookie points to a specific Tx ring that is blocked. The cookie is used to
 466  * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
 467  * point to drain_lists (idl_t's). These drain list will store the blocked UDP
 468  * connp's. The drain list is not a single list but a configurable number of
 469  * lists.
 470  *
 471  * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
 472  * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
 473  * which is equal to 128. This array in turn contains a pointer to idl_t[],
 474  * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
 475  * list will point to the list of connp's that are flow controlled.
 476  *
 477  *                      ---------------   -------   -------   -------
 478  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
 479  *                   |  ---------------   -------   -------   -------
 480  *                   |  ---------------   -------   -------   -------
 481  *                   |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
 482  * ----------------  |  ---------------   -------   -------   -------
 483  * |idl_tx_list[0]|->|  ---------------   -------   -------   -------
 484  * ----------------  |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
 485  *                   |  ---------------   -------   -------   -------
 486  *                   .        .              .         .         .
 487  *                   |  ---------------   -------   -------   -------
 488  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
 489  *                      ---------------   -------   -------   -------
 490  *                      ---------------   -------   -------   -------
 491  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
 492  *                   |  ---------------   -------   -------   -------
 493  *                   |  ---------------   -------   -------   -------
 494  * ----------------  |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
 495  * |idl_tx_list[1]|->|  ---------------   -------   -------   -------
 496  * ----------------  |        .              .         .         .
 497  *                   |  ---------------   -------   -------   -------
 498  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
 499  *                      ---------------   -------   -------   -------
 500  *     .....
 501  * ----------------
 502  * |idl_tx_list[n]|-> ...
 503  * ----------------
 504  *
 505  * When mac_tx() returns a cookie, the cookie is hashed into an index into
 506  * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
 507  * to insert the conn onto.  conn_drain_insert() asserts flow control for the
 508  * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
 509  * Further, conn_blocked is set to indicate that the conn is blocked.
 510  *
 511  * GLDv3 calls ill_flow_enable() when flow control is relieved.  The cookie
 512  * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
 513  * is again hashed to locate the appropriate idl_tx_list, which is then
 514  * drained via conn_walk_drain().  conn_walk_drain() goes through each conn in
 515  * the drain list and calls conn_drain_remove() to clear flow control (via
 516  * calling su_txq_full() or clearing QFULL), and remove the conn from the
 517  * drain list.
 518  *
 519  * Note that the drain list is not a single list but a (configurable) array of
 520  * lists (8 elements by default).  Synchronization between drain insertion and
 521  * flow control wakeup is handled by using idl_txl->txl_lock, and only
 522  * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
 523  *
 524  * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
 525  * On the send side, if the packet cannot be sent down to the driver by IP
 526  * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
 527  * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
 528  * the 0'th drain list.  When ip_wsrv() runs on the ill_wq because flow
 529  * control has been relieved, the blocked conns in the 0'th drain list are
 530  * drained as in the non-STREAMS case.
 531  *
 532  * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
 533  * is done when the conn is inserted into the drain list (conn_drain_insert())
 534  * and cleared when the conn is removed from the it (conn_drain_remove()).
 535  *
 536  * IPQOS notes:
 537  *
 538  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
 539  * and IPQoS modules. IPPF includes hooks in IP at different control points
 540  * (callout positions) which direct packets to IPQoS modules for policy
 541  * processing. Policies, if present, are global.
 542  *
 543  * The callout positions are located in the following paths:
 544  *              o local_in (packets destined for this host)
 545  *              o local_out (packets orginating from this host )
 546  *              o fwd_in  (packets forwarded by this m/c - inbound)
 547  *              o fwd_out (packets forwarded by this m/c - outbound)
 548  * Hooks at these callout points can be enabled/disabled using the ndd variable
 549  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
 550  * By default all the callout positions are enabled.
 551  *
 552  * Outbound (local_out)
 553  * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
 554  *
 555  * Inbound (local_in)
 556  * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
 557  *
 558  * Forwarding (in and out)
 559  * Hooks are placed in ire_recv_forward_v4/v6.
 560  *
 561  * IP Policy Framework processing (IPPF processing)
 562  * Policy processing for a packet is initiated by ip_process, which ascertains
 563  * that the classifier (ipgpc) is loaded and configured, failing which the
 564  * packet resumes normal processing in IP. If the clasifier is present, the
 565  * packet is acted upon by one or more IPQoS modules (action instances), per
 566  * filters configured in ipgpc and resumes normal IP processing thereafter.
 567  * An action instance can drop a packet in course of its processing.
 568  *
 569  * Zones notes:
 570  *
 571  * The partitioning rules for networking are as follows:
 572  * 1) Packets coming from a zone must have a source address belonging to that
 573  * zone.
 574  * 2) Packets coming from a zone can only be sent on a physical interface on
 575  * which the zone has an IP address.
 576  * 3) Between two zones on the same machine, packet delivery is only allowed if
 577  * there's a matching route for the destination and zone in the forwarding
 578  * table.
 579  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
 580  * different zones can bind to the same port with the wildcard address
 581  * (INADDR_ANY).
 582  *
 583  * The granularity of interface partitioning is at the logical interface level.
 584  * Therefore, every zone has its own IP addresses, and incoming packets can be
 585  * attributed to a zone unambiguously. A logical interface is placed into a zone
 586  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
 587  * structure. Rule (1) is implemented by modifying the source address selection
 588  * algorithm so that the list of eligible addresses is filtered based on the
 589  * sending process zone.
 590  *
 591  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
 592  * across all zones, depending on their type. Here is the break-up:
 593  *
 594  * IRE type                             Shared/exclusive
 595  * --------                             ----------------
 596  * IRE_BROADCAST                        Exclusive
 597  * IRE_DEFAULT (default routes)         Shared (*)
 598  * IRE_LOCAL                            Exclusive (x)
 599  * IRE_LOOPBACK                         Exclusive
 600  * IRE_PREFIX (net routes)              Shared (*)
 601  * IRE_IF_NORESOLVER (interface routes) Exclusive
 602  * IRE_IF_RESOLVER (interface routes)   Exclusive
 603  * IRE_IF_CLONE (interface routes)      Exclusive
 604  * IRE_HOST (host routes)               Shared (*)
 605  *
 606  * (*) A zone can only use a default or off-subnet route if the gateway is
 607  * directly reachable from the zone, that is, if the gateway's address matches
 608  * one of the zone's logical interfaces.
 609  *
 610  * (x) IRE_LOCAL are handled a bit differently.
 611  * When ip_restrict_interzone_loopback is set (the default),
 612  * ire_route_recursive restricts loopback using an IRE_LOCAL
 613  * between zone to the case when L2 would have conceptually looped the packet
 614  * back, i.e. the loopback which is required since neither Ethernet drivers
 615  * nor Ethernet hardware loops them back. This is the case when the normal
 616  * routes (ignoring IREs with different zoneids) would send out the packet on
 617  * the same ill as the ill with which is IRE_LOCAL is associated.
 618  *
 619  * Multiple zones can share a common broadcast address; typically all zones
 620  * share the 255.255.255.255 address. Incoming as well as locally originated
 621  * broadcast packets must be dispatched to all the zones on the broadcast
 622  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
 623  * since some zones may not be on the 10.16.72/24 network. To handle this, each
 624  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
 625  * sent to every zone that has an IRE_BROADCAST entry for the destination
 626  * address on the input ill, see ip_input_broadcast().
 627  *
 628  * Applications in different zones can join the same multicast group address.
 629  * The same logic applies for multicast as for broadcast. ip_input_multicast
 630  * dispatches packets to all zones that have members on the physical interface.
 631  */
 632 
 633 /*
 634  * Squeue Fanout flags:
 635  *      0: No fanout.
 636  *      1: Fanout across all squeues
 637  */
 638 boolean_t       ip_squeue_fanout = 0;
 639 
 640 /*
 641  * Maximum dups allowed per packet.
 642  */
 643 uint_t ip_max_frag_dups = 10;
 644 
 645 static int      ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
 646                     cred_t *credp, boolean_t isv6);
 647 static mblk_t   *ip_xmit_attach_llhdr(mblk_t *, nce_t *);
 648 
 649 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
 650 static void     icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
 651 static void     icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
 652     ip_recv_attr_t *);
 653 static void     icmp_options_update(ipha_t *);
 654 static void     icmp_param_problem(mblk_t *, uint8_t,  ip_recv_attr_t *);
 655 static void     icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
 656 static mblk_t   *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
 657 static void     icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
 658     ip_recv_attr_t *);
 659 static void     icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
 660 static void     icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
 661     ip_recv_attr_t *);
 662 
 663 mblk_t          *ip_dlpi_alloc(size_t, t_uscalar_t);
 664 char            *ip_dot_addr(ipaddr_t, char *);
 665 mblk_t          *ip_carve_mp(mblk_t **, ssize_t);
 666 int             ip_close(queue_t *, int);
 667 static char     *ip_dot_saddr(uchar_t *, char *);
 668 static void     ip_lrput(queue_t *, mblk_t *);
 669 ipaddr_t        ip_net_mask(ipaddr_t);
 670 char            *ip_nv_lookup(nv_t *, int);
 671 void    ip_rput(queue_t *, mblk_t *);
 672 static void     ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
 673                     void *dummy_arg);
 674 int             ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
 675 static mblk_t   *ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
 676                     mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
 677 static mblk_t   *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
 678                     ip_stack_t *, boolean_t);
 679 static mblk_t   *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
 680                     boolean_t);
 681 static mblk_t   *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
 682 static mblk_t   *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
 683 static mblk_t   *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
 684 static mblk_t   *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
 685 static mblk_t   *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
 686                     ip_stack_t *ipst, boolean_t);
 687 static mblk_t   *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
 688                     ip_stack_t *ipst, boolean_t);
 689 static mblk_t   *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
 690                     ip_stack_t *ipst);
 691 static mblk_t   *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
 692                     ip_stack_t *ipst);
 693 static mblk_t   *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
 694                     ip_stack_t *ipst);
 695 static mblk_t   *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
 696                     ip_stack_t *ipst);
 697 static mblk_t   *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
 698                     ip_stack_t *ipst);
 699 static mblk_t   *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
 700                     ip_stack_t *ipst);
 701 static mblk_t   *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
 702                     ip_stack_t *ipst);
 703 static mblk_t   *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
 704                     ip_stack_t *ipst);
 705 static void     ip_snmp_get2_v4(ire_t *, iproutedata_t *);
 706 static void     ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
 707 static int      ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *);
 708 static int      ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *);
 709 int             ip_snmp_set(queue_t *, int, int, uchar_t *, int);
 710 
 711 static mblk_t   *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
 712                     mblk_t *);
 713 
 714 static void     conn_drain_init(ip_stack_t *);
 715 static void     conn_drain_fini(ip_stack_t *);
 716 static void     conn_drain(conn_t *connp, boolean_t closing);
 717 
 718 static void     conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
 719 static void     conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
 720 
 721 static void     *ip_stack_init(netstackid_t stackid, netstack_t *ns);
 722 static void     ip_stack_shutdown(netstackid_t stackid, void *arg);
 723 static void     ip_stack_fini(netstackid_t stackid, void *arg);
 724 
 725 static int      ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
 726     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
 727     ire_t *, conn_t *, boolean_t, const in6_addr_t *,  mcast_record_t,
 728     const in6_addr_t *);
 729 
 730 static int      ip_squeue_switch(int);
 731 
 732 static void     *ip_kstat_init(netstackid_t, ip_stack_t *);
 733 static void     ip_kstat_fini(netstackid_t, kstat_t *);
 734 static int      ip_kstat_update(kstat_t *kp, int rw);
 735 static void     *icmp_kstat_init(netstackid_t);
 736 static void     icmp_kstat_fini(netstackid_t, kstat_t *);
 737 static int      icmp_kstat_update(kstat_t *kp, int rw);
 738 static void     *ip_kstat2_init(netstackid_t, ip_stat_t *);
 739 static void     ip_kstat2_fini(netstackid_t, kstat_t *);
 740 
 741 static void     ipobs_init(ip_stack_t *);
 742 static void     ipobs_fini(ip_stack_t *);
 743 
 744 static int      ip_tp_cpu_update(cpu_setup_t, int, void *);
 745 
 746 ipaddr_t        ip_g_all_ones = IP_HOST_MASK;
 747 
 748 static long ip_rput_pullups;
 749 int     dohwcksum = 1;  /* use h/w cksum if supported by the hardware */
 750 
 751 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
 752 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
 753 
 754 int     ip_debug;
 755 
 756 /*
 757  * Multirouting/CGTP stuff
 758  */
 759 int     ip_cgtp_filter_rev = CGTP_FILTER_REV;   /* CGTP hooks version */
 760 
 761 /*
 762  * IP tunables related declarations. Definitions are in ip_tunables.c
 763  */
 764 extern mod_prop_info_t ip_propinfo_tbl[];
 765 extern int ip_propinfo_count;
 766 
 767 /*
 768  * Table of IP ioctls encoding the various properties of the ioctl and
 769  * indexed based on the last byte of the ioctl command. Occasionally there
 770  * is a clash, and there is more than 1 ioctl with the same last byte.
 771  * In such a case 1 ioctl is encoded in the ndx table and the remaining
 772  * ioctls are encoded in the misc table. An entry in the ndx table is
 773  * retrieved by indexing on the last byte of the ioctl command and comparing
 774  * the ioctl command with the value in the ndx table. In the event of a
 775  * mismatch the misc table is then searched sequentially for the desired
 776  * ioctl command.
 777  *
 778  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
 779  */
 780 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
 781         /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 782         /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 783         /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 784         /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 785         /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 786         /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 787         /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 788         /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 789         /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 790         /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 791 
 792         /* 010 */ { SIOCADDRT,  sizeof (struct rtentry), IPI_PRIV,
 793                         MISC_CMD, ip_siocaddrt, NULL },
 794         /* 011 */ { SIOCDELRT,  sizeof (struct rtentry), IPI_PRIV,
 795                         MISC_CMD, ip_siocdelrt, NULL },
 796 
 797         /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 798                         IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
 799         /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
 800                         IF_CMD, ip_sioctl_get_addr, NULL },
 801 
 802         /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 803                         IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
 804         /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
 805                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
 806 
 807         /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
 808                         IPI_PRIV | IPI_WR,
 809                         IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
 810         /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
 811                         IPI_MODOK | IPI_GET_CMD,
 812                         IF_CMD, ip_sioctl_get_flags, NULL },
 813 
 814         /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 815         /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 816 
 817         /* copyin size cannot be coded for SIOCGIFCONF */
 818         /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
 819                         MISC_CMD, ip_sioctl_get_ifconf, NULL },
 820 
 821         /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 822                         IF_CMD, ip_sioctl_mtu, NULL },
 823         /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD,
 824                         IF_CMD, ip_sioctl_get_mtu, NULL },
 825         /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
 826                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
 827         /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 828                         IF_CMD, ip_sioctl_brdaddr, NULL },
 829         /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
 830                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
 831         /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 832                         IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
 833         /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
 834                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
 835         /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
 836                         IF_CMD, ip_sioctl_metric, NULL },
 837         /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 838 
 839         /* See 166-168 below for extended SIOC*XARP ioctls */
 840         /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
 841                         ARP_CMD, ip_sioctl_arp, NULL },
 842         /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
 843                         ARP_CMD, ip_sioctl_arp, NULL },
 844         /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
 845                         ARP_CMD, ip_sioctl_arp, NULL },
 846 
 847         /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 848         /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 849         /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 850         /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 851         /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 852         /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 853         /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 854         /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 855         /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 856         /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 857         /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 858         /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 859         /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 860         /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 861         /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 862         /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 863         /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 864         /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 865         /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 866         /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 867         /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 868 
 869         /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
 870                         MISC_CMD, if_unitsel, if_unitsel_restart },
 871 
 872         /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 873         /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 874         /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 875         /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 876         /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 877         /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 878         /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 879         /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 880         /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 881         /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 882         /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 883         /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 884         /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 885         /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 886         /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 887         /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 888         /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 889         /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 890 
 891         /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
 892                         IPI_PRIV | IPI_WR | IPI_MODOK,
 893                         IF_CMD, ip_sioctl_sifname, NULL },
 894 
 895         /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 896         /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 897         /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 898         /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 899         /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 900         /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 901         /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 902         /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 903         /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 904         /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 905         /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 906         /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 907         /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 908 
 909         /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
 910                         MISC_CMD, ip_sioctl_get_ifnum, NULL },
 911         /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
 912                         IF_CMD, ip_sioctl_get_muxid, NULL },
 913         /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
 914                         IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
 915 
 916         /* Both if and lif variants share same func */
 917         /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
 918                         IF_CMD, ip_sioctl_get_lifindex, NULL },
 919         /* Both if and lif variants share same func */
 920         /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
 921                         IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
 922 
 923         /* copyin size cannot be coded for SIOCGIFCONF */
 924         /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
 925                         MISC_CMD, ip_sioctl_get_ifconf, NULL },
 926         /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 927         /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 928         /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 929         /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 930         /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 931         /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 932         /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 933         /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 934         /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 935         /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 936         /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 937         /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 938         /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 939         /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 940         /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 941         /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 942         /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 943 
 944         /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
 945                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
 946                         ip_sioctl_removeif_restart },
 947         /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
 948                         IPI_GET_CMD | IPI_PRIV | IPI_WR,
 949                         LIF_CMD, ip_sioctl_addif, NULL },
 950 #define SIOCLIFADDR_NDX 112
 951         /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 952                         LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
 953         /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
 954                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
 955         /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 956                         LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
 957         /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
 958                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
 959         /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
 960                         IPI_PRIV | IPI_WR,
 961                         LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
 962         /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
 963                         IPI_GET_CMD | IPI_MODOK,
 964                         LIF_CMD, ip_sioctl_get_flags, NULL },
 965 
 966         /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 967         /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 968 
 969         /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
 970                         ip_sioctl_get_lifconf, NULL },
 971         /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 972                         LIF_CMD, ip_sioctl_mtu, NULL },
 973         /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
 974                         LIF_CMD, ip_sioctl_get_mtu, NULL },
 975         /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
 976                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
 977         /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 978                         LIF_CMD, ip_sioctl_brdaddr, NULL },
 979         /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
 980                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
 981         /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 982                         LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
 983         /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
 984                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
 985         /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 986                         LIF_CMD, ip_sioctl_metric, NULL },
 987         /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
 988                         IPI_PRIV | IPI_WR | IPI_MODOK,
 989                         LIF_CMD, ip_sioctl_slifname,
 990                         ip_sioctl_slifname_restart },
 991 
 992         /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
 993                         MISC_CMD, ip_sioctl_get_lifnum, NULL },
 994         /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
 995                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
 996         /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
 997                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
 998         /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
 999                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1000         /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1001                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1002         /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1003                         LIF_CMD, ip_sioctl_token, NULL },
1004         /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1005                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1006         /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1007                         LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1008         /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1009                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1010         /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1011                         LIF_CMD, ip_sioctl_lnkinfo, NULL },
1012 
1013         /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1014                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1015         /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1016                         LIF_CMD, ip_siocdelndp_v6, NULL },
1017         /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1018                         LIF_CMD, ip_siocqueryndp_v6, NULL },
1019         /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1020                         LIF_CMD, ip_siocsetndp_v6, NULL },
1021         /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1022                         MISC_CMD, ip_sioctl_tmyaddr, NULL },
1023         /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1024                         MISC_CMD, ip_sioctl_tonlink, NULL },
1025         /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1026                         MISC_CMD, ip_sioctl_tmysite, NULL },
1027         /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1028         /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1029         /* IPSECioctls handled in ip_sioctl_copyin_setup itself */
1030         /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1031         /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1032         /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1033         /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1034 
1035         /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1036 
1037         /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1038                         LIF_CMD, ip_sioctl_get_binding, NULL },
1039         /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1040                         IPI_PRIV | IPI_WR,
1041                         LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1042         /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1043                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1044         /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1045                         IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1046 
1047         /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1048         /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1049         /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1050         /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1051 
1052         /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1053 
1054         /* These are handled in ip_sioctl_copyin_setup itself */
1055         /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1056                         MISC_CMD, NULL, NULL },
1057         /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1058                         MISC_CMD, NULL, NULL },
1059         /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1060 
1061         /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1062                         ip_sioctl_get_lifconf, NULL },
1063 
1064         /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1065                         XARP_CMD, ip_sioctl_arp, NULL },
1066         /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1067                         XARP_CMD, ip_sioctl_arp, NULL },
1068         /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1069                         XARP_CMD, ip_sioctl_arp, NULL },
1070 
1071         /* SIOCPOPSOCKFS is not handled by IP */
1072         /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1073 
1074         /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1075                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1076         /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1077                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1078                         ip_sioctl_slifzone_restart },
1079         /* 172-174 are SCTP ioctls and not handled by IP */
1080         /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1081         /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1082         /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1083         /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1084                         IPI_GET_CMD, LIF_CMD,
1085                         ip_sioctl_get_lifusesrc, 0 },
1086         /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1087                         IPI_PRIV | IPI_WR,
1088                         LIF_CMD, ip_sioctl_slifusesrc,
1089                         NULL },
1090         /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1091                         ip_sioctl_get_lifsrcof, NULL },
1092         /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1093                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1094         /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1095                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1096         /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1097                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1098         /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1099                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1100         /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1101         /* SIOCSENABLESDP is handled by SDP */
1102         /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1103         /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1104         /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1105                         IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1106         /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1107         /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1108                         ip_sioctl_ilb_cmd, NULL },
1109         /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1110         /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1111         /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1112                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1113         /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1114                         LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1115         /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1116                         LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1117 };
1118 
1119 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1120 
1121 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1122         { I_LINK,       0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1123         { I_UNLINK,     0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1124         { I_PLINK,      0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1125         { I_PUNLINK,    0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1126         { ND_GET,       0, 0, 0, NULL, NULL },
1127         { ND_SET,       0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1128         { IP_IOCTL,     0, 0, 0, NULL, NULL },
1129         { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1130                 MISC_CMD, mrt_ioctl},
1131         { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD,
1132                 MISC_CMD, mrt_ioctl},
1133         { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1134                 MISC_CMD, mrt_ioctl}
1135 };
1136 
1137 int ip_misc_ioctl_count =
1138     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1139 
1140 int     conn_drain_nthreads;            /* Number of drainers reqd. */
1141                                         /* Settable in /etc/system */
1142 /* Defined in ip_ire.c */
1143 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1144 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1145 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1146 
1147 static nv_t     ire_nv_arr[] = {
1148         { IRE_BROADCAST, "BROADCAST" },
1149         { IRE_LOCAL, "LOCAL" },
1150         { IRE_LOOPBACK, "LOOPBACK" },
1151         { IRE_DEFAULT, "DEFAULT" },
1152         { IRE_PREFIX, "PREFIX" },
1153         { IRE_IF_NORESOLVER, "IF_NORESOL" },
1154         { IRE_IF_RESOLVER, "IF_RESOLV" },
1155         { IRE_IF_CLONE, "IF_CLONE" },
1156         { IRE_HOST, "HOST" },
1157         { IRE_MULTICAST, "MULTICAST" },
1158         { IRE_NOROUTE, "NOROUTE" },
1159         { 0 }
1160 };
1161 
1162 nv_t    *ire_nv_tbl = ire_nv_arr;
1163 
1164 /* Simple ICMP IP Header Template */
1165 static ipha_t icmp_ipha = {
1166         IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1167 };
1168 
1169 struct module_info ip_mod_info = {
1170         IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1171         IP_MOD_LOWAT
1172 };
1173 
1174 /*
1175  * Duplicate static symbols within a module confuses mdb; so we avoid the
1176  * problem by making the symbols here distinct from those in udp.c.
1177  */
1178 
1179 /*
1180  * Entry points for IP as a device and as a module.
1181  * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1182  */
1183 static struct qinit iprinitv4 = {
1184         (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL,
1185         &ip_mod_info
1186 };
1187 
1188 struct qinit iprinitv6 = {
1189         (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL,
1190         &ip_mod_info
1191 };
1192 
1193 static struct qinit ipwinit = {
1194         (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL,
1195         &ip_mod_info
1196 };
1197 
1198 static struct qinit iplrinit = {
1199         (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL,
1200         &ip_mod_info
1201 };
1202 
1203 static struct qinit iplwinit = {
1204         (pfi_t)ip_lwput, NULL, NULL, NULL, NULL,
1205         &ip_mod_info
1206 };
1207 
1208 /* For AF_INET aka /dev/ip */
1209 struct streamtab ipinfov4 = {
1210         &iprinitv4, &ipwinit, &iplrinit, &iplwinit
1211 };
1212 
1213 /* For AF_INET6 aka /dev/ip6 */
1214 struct streamtab ipinfov6 = {
1215         &iprinitv6, &ipwinit, &iplrinit, &iplwinit
1216 };
1217 
1218 #ifdef  DEBUG
1219 boolean_t skip_sctp_cksum = B_FALSE;
1220 #endif
1221 
1222 /*
1223  * Generate an ICMP fragmentation needed message.
1224  * When called from ip_output side a minimal ip_recv_attr_t needs to be
1225  * constructed by the caller.
1226  */
1227 void
1228 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1229 {
1230         icmph_t icmph;
1231         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
1232 
1233         mp = icmp_pkt_err_ok(mp, ira);
1234         if (mp == NULL)
1235                 return;
1236 
1237         bzero(&icmph, sizeof (icmph_t));
1238         icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1239         icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1240         icmph.icmph_du_mtu = htons((uint16_t)mtu);
1241         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1242         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1243 
1244         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1245 }
1246 
1247 /*
1248  * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1249  * If the ICMP message is consumed by IP, i.e., it should not be delivered
1250  * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1251  * Likewise, if the ICMP error is misformed (too short, etc), then it
1252  * returns NULL. The caller uses this to determine whether or not to send
1253  * to raw sockets.
1254  *
1255  * All error messages are passed to the matching transport stream.
1256  *
1257  * The following cases are handled by icmp_inbound:
1258  * 1) It needs to send a reply back and possibly delivering it
1259  *    to the "interested" upper clients.
1260  * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1261  * 3) It needs to change some values in IP only.
1262  * 4) It needs to change some values in IP and upper layers e.g TCP
1263  *    by delivering an error to the upper layers.
1264  *
1265  * We handle the above three cases in the context of IPsec in the
1266  * following way :
1267  *
1268  * 1) Send the reply back in the same way as the request came in.
1269  *    If it came in encrypted, it goes out encrypted. If it came in
1270  *    clear, it goes out in clear. Thus, this will prevent chosen
1271  *    plain text attack.
1272  * 2) The client may or may not expect things to come in secure.
1273  *    If it comes in secure, the policy constraints are checked
1274  *    before delivering it to the upper layers. If it comes in
1275  *    clear, ipsec_inbound_accept_clear will decide whether to
1276  *    accept this in clear or not. In both the cases, if the returned
1277  *    message (IP header + 8 bytes) that caused the icmp message has
1278  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1279  *    sending up. If there are only 8 bytes of returned message, then
1280  *    upper client will not be notified.
1281  * 3) Check with global policy to see whether it matches the constaints.
1282  *    But this will be done only if icmp_accept_messages_in_clear is
1283  *    zero.
1284  * 4) If we need to change both in IP and ULP, then the decision taken
1285  *    while affecting the values in IP and while delivering up to TCP
1286  *    should be the same.
1287  *
1288  *      There are two cases.
1289  *
1290  *      a) If we reject data at the IP layer (ipsec_check_global_policy()
1291  *         failed), we will not deliver it to the ULP, even though they
1292  *         are *willing* to accept in *clear*. This is fine as our global
1293  *         disposition to icmp messages asks us reject the datagram.
1294  *
1295  *      b) If we accept data at the IP layer (ipsec_check_global_policy()
1296  *         succeeded or icmp_accept_messages_in_clear is 1), and not able
1297  *         to deliver it to ULP (policy failed), it can lead to
1298  *         consistency problems. The cases known at this time are
1299  *         ICMP_DESTINATION_UNREACHABLE  messages with following code
1300  *         values :
1301  *
1302  *         - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1303  *           and Upper layer rejects. Then the communication will
1304  *           come to a stop. This is solved by making similar decisions
1305  *           at both levels. Currently, when we are unable to deliver
1306  *           to the Upper Layer (due to policy failures) while IP has
1307  *           adjusted dce_pmtu, the next outbound datagram would
1308  *           generate a local ICMP_FRAGMENTATION_NEEDED message - which
1309  *           will be with the right level of protection. Thus the right
1310  *           value will be communicated even if we are not able to
1311  *           communicate when we get from the wire initially. But this
1312  *           assumes there would be at least one outbound datagram after
1313  *           IP has adjusted its dce_pmtu value. To make things
1314  *           simpler, we accept in clear after the validation of
1315  *           AH/ESP headers.
1316  *
1317  *         - Other ICMP ERRORS : We may not be able to deliver it to the
1318  *           upper layer depending on the level of protection the upper
1319  *           layer expects and the disposition in ipsec_inbound_accept_clear().
1320  *           ipsec_inbound_accept_clear() decides whether a given ICMP error
1321  *           should be accepted in clear when the Upper layer expects secure.
1322  *           Thus the communication may get aborted by some bad ICMP
1323  *           packets.
1324  */
1325 mblk_t *
1326 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1327 {
1328         icmph_t         *icmph;
1329         ipha_t          *ipha;          /* Outer header */
1330         int             ip_hdr_length;  /* Outer header length */
1331         boolean_t       interested;
1332         ipif_t          *ipif;
1333         uint32_t        ts;
1334         uint32_t        *tsp;
1335         timestruc_t     now;
1336         ill_t           *ill = ira->ira_ill;
1337         ip_stack_t      *ipst = ill->ill_ipst;
1338         zoneid_t        zoneid = ira->ira_zoneid;
1339         int             len_needed;
1340         mblk_t          *mp_ret = NULL;
1341 
1342         ipha = (ipha_t *)mp->b_rptr;
1343 
1344         BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1345 
1346         ip_hdr_length = ira->ira_ip_hdr_length;
1347         if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1348                 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1349                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1350                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1351                         freemsg(mp);
1352                         return (NULL);
1353                 }
1354                 /* Last chance to get real. */
1355                 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1356                 if (ipha == NULL) {
1357                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1358                         freemsg(mp);
1359                         return (NULL);
1360                 }
1361         }
1362 
1363         /* The IP header will always be a multiple of four bytes */
1364         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1365         ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1366             icmph->icmph_code));
1367 
1368         /*
1369          * We will set "interested" to "true" if we should pass a copy to
1370          * the transport or if we handle the packet locally.
1371          */
1372         interested = B_FALSE;
1373         switch (icmph->icmph_type) {
1374         case ICMP_ECHO_REPLY:
1375                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1376                 break;
1377         case ICMP_DEST_UNREACHABLE:
1378                 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1379                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1380                 interested = B_TRUE;    /* Pass up to transport */
1381                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1382                 break;
1383         case ICMP_SOURCE_QUENCH:
1384                 interested = B_TRUE;    /* Pass up to transport */
1385                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1386                 break;
1387         case ICMP_REDIRECT:
1388                 if (!ipst->ips_ip_ignore_redirect)
1389                         interested = B_TRUE;
1390                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1391                 break;
1392         case ICMP_ECHO_REQUEST:
1393                 /*
1394                  * Whether to respond to echo requests that come in as IP
1395                  * broadcasts or as IP multicast is subject to debate
1396                  * (what isn't?).  We aim to please, you pick it.
1397                  * Default is do it.
1398                  */
1399                 if (ira->ira_flags & IRAF_MULTICAST) {
1400                         /* multicast: respond based on tunable */
1401                         interested = ipst->ips_ip_g_resp_to_echo_mcast;
1402                 } else if (ira->ira_flags & IRAF_BROADCAST) {
1403                         /* broadcast: respond based on tunable */
1404                         interested = ipst->ips_ip_g_resp_to_echo_bcast;
1405                 } else {
1406                         /* unicast: always respond */
1407                         interested = B_TRUE;
1408                 }
1409                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1410                 if (!interested) {
1411                         /* We never pass these to RAW sockets */
1412                         freemsg(mp);
1413                         return (NULL);
1414                 }
1415 
1416                 /* Check db_ref to make sure we can modify the packet. */
1417                 if (mp->b_datap->db_ref > 1) {
1418                         mblk_t  *mp1;
1419 
1420                         mp1 = copymsg(mp);
1421                         freemsg(mp);
1422                         if (!mp1) {
1423                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1424                                 return (NULL);
1425                         }
1426                         mp = mp1;
1427                         ipha = (ipha_t *)mp->b_rptr;
1428                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1429                 }
1430                 icmph->icmph_type = ICMP_ECHO_REPLY;
1431                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1432                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1433                 return (NULL);
1434 
1435         case ICMP_ROUTER_ADVERTISEMENT:
1436         case ICMP_ROUTER_SOLICITATION:
1437                 break;
1438         case ICMP_TIME_EXCEEDED:
1439                 interested = B_TRUE;    /* Pass up to transport */
1440                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1441                 break;
1442         case ICMP_PARAM_PROBLEM:
1443                 interested = B_TRUE;    /* Pass up to transport */
1444                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1445                 break;
1446         case ICMP_TIME_STAMP_REQUEST:
1447                 /* Response to Time Stamp Requests is local policy. */
1448                 if (ipst->ips_ip_g_resp_to_timestamp) {
1449                         if (ira->ira_flags & IRAF_MULTIBROADCAST)
1450                                 interested =
1451                                     ipst->ips_ip_g_resp_to_timestamp_bcast;
1452                         else
1453                                 interested = B_TRUE;
1454                 }
1455                 if (!interested) {
1456                         /* We never pass these to RAW sockets */
1457                         freemsg(mp);
1458                         return (NULL);
1459                 }
1460 
1461                 /* Make sure we have enough of the packet */
1462                 len_needed = ip_hdr_length + ICMPH_SIZE +
1463                     3 * sizeof (uint32_t);
1464 
1465                 if (mp->b_wptr - mp->b_rptr < len_needed) {
1466                         ipha = ip_pullup(mp, len_needed, ira);
1467                         if (ipha == NULL) {
1468                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1469                                 ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1470                                     mp, ill);
1471                                 freemsg(mp);
1472                                 return (NULL);
1473                         }
1474                         /* Refresh following the pullup. */
1475                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1476                 }
1477                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1478                 /* Check db_ref to make sure we can modify the packet. */
1479                 if (mp->b_datap->db_ref > 1) {
1480                         mblk_t  *mp1;
1481 
1482                         mp1 = copymsg(mp);
1483                         freemsg(mp);
1484                         if (!mp1) {
1485                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1486                                 return (NULL);
1487                         }
1488                         mp = mp1;
1489                         ipha = (ipha_t *)mp->b_rptr;
1490                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1491                 }
1492                 icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1493                 tsp = (uint32_t *)&icmph[1];
1494                 tsp++;          /* Skip past 'originate time' */
1495                 /* Compute # of milliseconds since midnight */
1496                 gethrestime(&now);
1497                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1498                     now.tv_nsec / (NANOSEC / MILLISEC);
1499                 *tsp++ = htonl(ts);     /* Lay in 'receive time' */
1500                 *tsp++ = htonl(ts);     /* Lay in 'send time' */
1501                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1502                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1503                 return (NULL);
1504 
1505         case ICMP_TIME_STAMP_REPLY:
1506                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1507                 break;
1508         case ICMP_INFO_REQUEST:
1509                 /* Per RFC 1122 3.2.2.7, ignore this. */
1510         case ICMP_INFO_REPLY:
1511                 break;
1512         case ICMP_ADDRESS_MASK_REQUEST:
1513                 if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1514                         interested =
1515                             ipst->ips_ip_respond_to_address_mask_broadcast;
1516                 } else {
1517                         interested = B_TRUE;
1518                 }
1519                 if (!interested) {
1520                         /* We never pass these to RAW sockets */
1521                         freemsg(mp);
1522                         return (NULL);
1523                 }
1524                 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1525                 if (mp->b_wptr - mp->b_rptr < len_needed) {
1526                         ipha = ip_pullup(mp, len_needed, ira);
1527                         if (ipha == NULL) {
1528                                 BUMP_MIB(ill->ill_ip_mib,
1529                                     ipIfStatsInTruncatedPkts);
1530                                 ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1531                                     ill);
1532                                 freemsg(mp);
1533                                 return (NULL);
1534                         }
1535                         /* Refresh following the pullup. */
1536                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1537                 }
1538                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1539                 /* Check db_ref to make sure we can modify the packet. */
1540                 if (mp->b_datap->db_ref > 1) {
1541                         mblk_t  *mp1;
1542 
1543                         mp1 = copymsg(mp);
1544                         freemsg(mp);
1545                         if (!mp1) {
1546                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1547                                 return (NULL);
1548                         }
1549                         mp = mp1;
1550                         ipha = (ipha_t *)mp->b_rptr;
1551                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1552                 }
1553                 /*
1554                  * Need the ipif with the mask be the same as the source
1555                  * address of the mask reply. For unicast we have a specific
1556                  * ipif. For multicast/broadcast we only handle onlink
1557                  * senders, and use the source address to pick an ipif.
1558                  */
1559                 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1560                 if (ipif == NULL) {
1561                         /* Broadcast or multicast */
1562                         ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1563                         if (ipif == NULL) {
1564                                 freemsg(mp);
1565                                 return (NULL);
1566                         }
1567                 }
1568                 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1569                 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1570                 ipif_refrele(ipif);
1571                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1572                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1573                 return (NULL);
1574 
1575         case ICMP_ADDRESS_MASK_REPLY:
1576                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1577                 break;
1578         default:
1579                 interested = B_TRUE;    /* Pass up to transport */
1580                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1581                 break;
1582         }
1583         /*
1584          * See if there is an ICMP client to avoid an extra copymsg/freemsg
1585          * if there isn't one.
1586          */
1587         if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1588                 /* If there is an ICMP client and we want one too, copy it. */
1589 
1590                 if (!interested) {
1591                         /* Caller will deliver to RAW sockets */
1592                         return (mp);
1593                 }
1594                 mp_ret = copymsg(mp);
1595                 if (mp_ret == NULL) {
1596                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1597                         ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1598                 }
1599         } else if (!interested) {
1600                 /* Neither we nor raw sockets are interested. Drop packet now */
1601                 freemsg(mp);
1602                 return (NULL);
1603         }
1604 
1605         /*
1606          * ICMP error or redirect packet. Make sure we have enough of
1607          * the header and that db_ref == 1 since we might end up modifying
1608          * the packet.
1609          */
1610         if (mp->b_cont != NULL) {
1611                 if (ip_pullup(mp, -1, ira) == NULL) {
1612                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1613                         ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1614                             mp, ill);
1615                         freemsg(mp);
1616                         return (mp_ret);
1617                 }
1618         }
1619 
1620         if (mp->b_datap->db_ref > 1) {
1621                 mblk_t  *mp1;
1622 
1623                 mp1 = copymsg(mp);
1624                 if (mp1 == NULL) {
1625                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1626                         ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1627                         freemsg(mp);
1628                         return (mp_ret);
1629                 }
1630                 freemsg(mp);
1631                 mp = mp1;
1632         }
1633 
1634         /*
1635          * In case mp has changed, verify the message before any further
1636          * processes.
1637          */
1638         ipha = (ipha_t *)mp->b_rptr;
1639         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1640         if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1641                 freemsg(mp);
1642                 return (mp_ret);
1643         }
1644 
1645         switch (icmph->icmph_type) {
1646         case ICMP_REDIRECT:
1647                 icmp_redirect_v4(mp, ipha, icmph, ira);
1648                 break;
1649         case ICMP_DEST_UNREACHABLE:
1650                 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1651                         /* Update DCE and adjust MTU is icmp header if needed */
1652                         icmp_inbound_too_big_v4(icmph, ira);
1653                 }
1654                 /* FALLTHRU */
1655         default:
1656                 icmp_inbound_error_fanout_v4(mp, icmph, ira);
1657                 break;
1658         }
1659         return (mp_ret);
1660 }
1661 
1662 /*
1663  * Send an ICMP echo, timestamp or address mask reply.
1664  * The caller has already updated the payload part of the packet.
1665  * We handle the ICMP checksum, IP source address selection and feed
1666  * the packet into ip_output_simple.
1667  */
1668 static void
1669 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1670     ip_recv_attr_t *ira)
1671 {
1672         uint_t          ip_hdr_length = ira->ira_ip_hdr_length;
1673         ill_t           *ill = ira->ira_ill;
1674         ip_stack_t      *ipst = ill->ill_ipst;
1675         ip_xmit_attr_t  ixas;
1676 
1677         /* Send out an ICMP packet */
1678         icmph->icmph_checksum = 0;
1679         icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1680         /* Reset time to live. */
1681         ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1682         {
1683                 /* Swap source and destination addresses */
1684                 ipaddr_t tmp;
1685 
1686                 tmp = ipha->ipha_src;
1687                 ipha->ipha_src = ipha->ipha_dst;
1688                 ipha->ipha_dst = tmp;
1689         }
1690         ipha->ipha_ident = 0;
1691         if (!IS_SIMPLE_IPH(ipha))
1692                 icmp_options_update(ipha);
1693 
1694         bzero(&ixas, sizeof (ixas));
1695         ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1696         ixas.ixa_zoneid = ira->ira_zoneid;
1697         ixas.ixa_cred = kcred;
1698         ixas.ixa_cpid = NOPID;
1699         ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
1700         ixas.ixa_ifindex = 0;
1701         ixas.ixa_ipst = ipst;
1702         ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1703 
1704         if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1705                 /*
1706                  * This packet should go out the same way as it
1707                  * came in i.e in clear, independent of the IPsec policy
1708                  * for transmitting packets.
1709                  */
1710                 ixas.ixa_flags |= IXAF_NO_IPSEC;
1711         } else {
1712                 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1713                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1714                         /* Note: mp already consumed and ip_drop_packet done */
1715                         return;
1716                 }
1717         }
1718         if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1719                 /*
1720                  * Not one or our addresses (IRE_LOCALs), thus we let
1721                  * ip_output_simple pick the source.
1722                  */
1723                 ipha->ipha_src = INADDR_ANY;
1724                 ixas.ixa_flags |= IXAF_SET_SOURCE;
1725         }
1726         /* Should we send with DF and use dce_pmtu? */
1727         if (ipst->ips_ipv4_icmp_return_pmtu) {
1728                 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1729                 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1730         }
1731 
1732         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1733 
1734         (void) ip_output_simple(mp, &ixas);
1735         ixa_cleanup(&ixas);
1736 }
1737 
1738 /*
1739  * Verify the ICMP messages for either for ICMP error or redirect packet.
1740  * The caller should have fully pulled up the message. If it's a redirect
1741  * packet, only basic checks on IP header will be done; otherwise, verify
1742  * the packet by looking at the included ULP header.
1743  *
1744  * Called before icmp_inbound_error_fanout_v4 is called.
1745  */
1746 static boolean_t
1747 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1748 {
1749         ill_t           *ill = ira->ira_ill;
1750         int             hdr_length;
1751         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
1752         conn_t          *connp;
1753         ipha_t          *ipha;  /* Inner IP header */
1754 
1755         ipha = (ipha_t *)&icmph[1];
1756         if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1757                 goto truncated;
1758 
1759         hdr_length = IPH_HDR_LENGTH(ipha);
1760 
1761         if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1762                 goto discard_pkt;
1763 
1764         if (hdr_length < sizeof (ipha_t))
1765                 goto truncated;
1766 
1767         if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1768                 goto truncated;
1769 
1770         /*
1771          * Stop here for ICMP_REDIRECT.
1772          */
1773         if (icmph->icmph_type == ICMP_REDIRECT)
1774                 return (B_TRUE);
1775 
1776         /*
1777          * ICMP errors only.
1778          */
1779         switch (ipha->ipha_protocol) {
1780         case IPPROTO_UDP:
1781                 /*
1782                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1783                  * transport header.
1784                  */
1785                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1786                     mp->b_wptr)
1787                         goto truncated;
1788                 break;
1789         case IPPROTO_TCP: {
1790                 tcpha_t         *tcpha;
1791 
1792                 /*
1793                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1794                  * transport header.
1795                  */
1796                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1797                     mp->b_wptr)
1798                         goto truncated;
1799 
1800                 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1801                 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1802                     ipst);
1803                 if (connp == NULL)
1804                         goto discard_pkt;
1805 
1806                 if ((connp->conn_verifyicmp != NULL) &&
1807                     !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1808                         CONN_DEC_REF(connp);
1809                         goto discard_pkt;
1810                 }
1811                 CONN_DEC_REF(connp);
1812                 break;
1813         }
1814         case IPPROTO_SCTP:
1815                 /*
1816                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1817                  * transport header.
1818                  */
1819                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1820                     mp->b_wptr)
1821                         goto truncated;
1822                 break;
1823         case IPPROTO_ESP:
1824         case IPPROTO_AH:
1825                 break;
1826         case IPPROTO_ENCAP:
1827                 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1828                     mp->b_wptr)
1829                         goto truncated;
1830                 break;
1831         default:
1832                 break;
1833         }
1834 
1835         return (B_TRUE);
1836 
1837 discard_pkt:
1838         /* Bogus ICMP error. */
1839         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1840         return (B_FALSE);
1841 
1842 truncated:
1843         /* We pulled up everthing already. Must be truncated */
1844         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1845         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1846         return (B_FALSE);
1847 }
1848 
1849 /* Table from RFC 1191 */
1850 static int icmp_frag_size_table[] =
1851 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1852 
1853 /*
1854  * Process received ICMP Packet too big.
1855  * Just handles the DCE create/update, including using the above table of
1856  * PMTU guesses. The caller is responsible for validating the packet before
1857  * passing it in and also to fanout the ICMP error to any matching transport
1858  * conns. Assumes the message has been fully pulled up and verified.
1859  *
1860  * Before getting here, the caller has called icmp_inbound_verify_v4()
1861  * that should have verified with ULP to prevent undoing the changes we're
1862  * going to make to DCE. For example, TCP might have verified that the packet
1863  * which generated error is in the send window.
1864  *
1865  * In some cases modified this MTU in the ICMP header packet; the caller
1866  * should pass to the matching ULP after this returns.
1867  */
1868 static void
1869 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1870 {
1871         dce_t           *dce;
1872         int             old_mtu;
1873         int             mtu, orig_mtu;
1874         ipaddr_t        dst;
1875         boolean_t       disable_pmtud;
1876         ill_t           *ill = ira->ira_ill;
1877         ip_stack_t      *ipst = ill->ill_ipst;
1878         uint_t          hdr_length;
1879         ipha_t          *ipha;
1880 
1881         /* Caller already pulled up everything. */
1882         ipha = (ipha_t *)&icmph[1];
1883         ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1884             icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1885         ASSERT(ill != NULL);
1886 
1887         hdr_length = IPH_HDR_LENGTH(ipha);
1888 
1889         /*
1890          * We handle path MTU for source routed packets since the DCE
1891          * is looked up using the final destination.
1892          */
1893         dst = ip_get_dst(ipha);
1894 
1895         dce = dce_lookup_and_add_v4(dst, ipst);
1896         if (dce == NULL) {
1897                 /* Couldn't add a unique one - ENOMEM */
1898                 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1899                     ntohl(dst)));
1900                 return;
1901         }
1902 
1903         /* Check for MTU discovery advice as described in RFC 1191 */
1904         mtu = ntohs(icmph->icmph_du_mtu);
1905         orig_mtu = mtu;
1906         disable_pmtud = B_FALSE;
1907 
1908         mutex_enter(&dce->dce_lock);
1909         if (dce->dce_flags & DCEF_PMTU)
1910                 old_mtu = dce->dce_pmtu;
1911         else
1912                 old_mtu = ill->ill_mtu;
1913 
1914         if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1915                 uint32_t length;
1916                 int     i;
1917 
1918                 /*
1919                  * Use the table from RFC 1191 to figure out
1920                  * the next "plateau" based on the length in
1921                  * the original IP packet.
1922                  */
1923                 length = ntohs(ipha->ipha_length);
1924                 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1925                     uint32_t, length);
1926                 if (old_mtu <= length &&
1927                     old_mtu >= length - hdr_length) {
1928                         /*
1929                          * Handle broken BSD 4.2 systems that
1930                          * return the wrong ipha_length in ICMP
1931                          * errors.
1932                          */
1933                         ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1934                             length, old_mtu));
1935                         length -= hdr_length;
1936                 }
1937                 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1938                         if (length > icmp_frag_size_table[i])
1939                                 break;
1940                 }
1941                 if (i == A_CNT(icmp_frag_size_table)) {
1942                         /* Smaller than IP_MIN_MTU! */
1943                         ip1dbg(("Too big for packet size %d\n",
1944                             length));
1945                         disable_pmtud = B_TRUE;
1946                         mtu = ipst->ips_ip_pmtu_min;
1947                 } else {
1948                         mtu = icmp_frag_size_table[i];
1949                         ip1dbg(("Calculated mtu %d, packet size %d, "
1950                             "before %d\n", mtu, length, old_mtu));
1951                         if (mtu < ipst->ips_ip_pmtu_min) {
1952                                 mtu = ipst->ips_ip_pmtu_min;
1953                                 disable_pmtud = B_TRUE;
1954                         }
1955                 }
1956         }
1957         if (disable_pmtud)
1958                 dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1959         else
1960                 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1961 
1962         dce->dce_pmtu = MIN(old_mtu, mtu);
1963         /* Prepare to send the new max frag size for the ULP. */
1964         icmph->icmph_du_zero = 0;
1965         icmph->icmph_du_mtu =  htons((uint16_t)dce->dce_pmtu);
1966         DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1967             dce, int, orig_mtu, int, mtu);
1968 
1969         /* We now have a PMTU for sure */
1970         dce->dce_flags |= DCEF_PMTU;
1971         dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1972         mutex_exit(&dce->dce_lock);
1973         /*
1974          * After dropping the lock the new value is visible to everyone.
1975          * Then we bump the generation number so any cached values reinspect
1976          * the dce_t.
1977          */
1978         dce_increment_generation(dce);
1979         dce_refrele(dce);
1980 }
1981 
1982 /*
1983  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1984  * calls this function.
1985  */
1986 static mblk_t *
1987 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1988 {
1989         int length;
1990 
1991         ASSERT(mp->b_datap->db_type == M_DATA);
1992 
1993         /* icmp_inbound_v4 has already pulled up the whole error packet */
1994         ASSERT(mp->b_cont == NULL);
1995 
1996         /*
1997          * The length that we want to overlay is the inner header
1998          * and what follows it.
1999          */
2000         length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
2001 
2002         /*
2003          * Overlay the inner header and whatever follows it over the
2004          * outer header.
2005          */
2006         bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2007 
2008         /* Adjust for what we removed */
2009         mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2010         return (mp);
2011 }
2012 
2013 /*
2014  * Try to pass the ICMP message upstream in case the ULP cares.
2015  *
2016  * If the packet that caused the ICMP error is secure, we send
2017  * it to AH/ESP to make sure that the attached packet has a
2018  * valid association. ipha in the code below points to the
2019  * IP header of the packet that caused the error.
2020  *
2021  * For IPsec cases, we let the next-layer-up (which has access to
2022  * cached policy on the conn_t, or can query the SPD directly)
2023  * subtract out any IPsec overhead if they must.  We therefore make no
2024  * adjustments here for IPsec overhead.
2025  *
2026  * IFN could have been generated locally or by some router.
2027  *
2028  * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2029  * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2030  *          This happens because IP adjusted its value of MTU on an
2031  *          earlier IFN message and could not tell the upper layer,
2032  *          the new adjusted value of MTU e.g. Packet was encrypted
2033  *          or there was not enough information to fanout to upper
2034  *          layers. Thus on the next outbound datagram, ire_send_wire
2035  *          generates the IFN, where IPsec processing has *not* been
2036  *          done.
2037  *
2038  *          Note that we retain ixa_fragsize across IPsec thus once
2039  *          we have picking ixa_fragsize and entered ipsec_out_process we do
2040  *          no change the fragsize even if the path MTU changes before
2041  *          we reach ip_output_post_ipsec.
2042  *
2043  *          In the local case, IRAF_LOOPBACK will be set indicating
2044  *          that IFN was generated locally.
2045  *
2046  * ROUTER : IFN could be secure or non-secure.
2047  *
2048  *          * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2049  *            packet in error has AH/ESP headers to validate the AH/ESP
2050  *            headers. AH/ESP will verify whether there is a valid SA or
2051  *            not and send it back. We will fanout again if we have more
2052  *            data in the packet.
2053  *
2054  *            If the packet in error does not have AH/ESP, we handle it
2055  *            like any other case.
2056  *
2057  *          * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2058  *            up to AH/ESP for validation. AH/ESP will verify whether there is a
2059  *            valid SA or not and send it back. We will fanout again if
2060  *            we have more data in the packet.
2061  *
2062  *            If the packet in error does not have AH/ESP, we handle it
2063  *            like any other case.
2064  *
2065  * The caller must have called icmp_inbound_verify_v4.
2066  */
2067 static void
2068 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2069 {
2070         uint16_t        *up;    /* Pointer to ports in ULP header */
2071         uint32_t        ports;  /* reversed ports for fanout */
2072         ipha_t          ripha;  /* With reversed addresses */
2073         ipha_t          *ipha;  /* Inner IP header */
2074         uint_t          hdr_length; /* Inner IP header length */
2075         tcpha_t         *tcpha;
2076         conn_t          *connp;
2077         ill_t           *ill = ira->ira_ill;
2078         ip_stack_t      *ipst = ill->ill_ipst;
2079         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
2080         ill_t           *rill = ira->ira_rill;
2081 
2082         /* Caller already pulled up everything. */
2083         ipha = (ipha_t *)&icmph[1];
2084         ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2085         ASSERT(mp->b_cont == NULL);
2086 
2087         hdr_length = IPH_HDR_LENGTH(ipha);
2088         ira->ira_protocol = ipha->ipha_protocol;
2089 
2090         /*
2091          * We need a separate IP header with the source and destination
2092          * addresses reversed to do fanout/classification because the ipha in
2093          * the ICMP error is in the form we sent it out.
2094          */
2095         ripha.ipha_src = ipha->ipha_dst;
2096         ripha.ipha_dst = ipha->ipha_src;
2097         ripha.ipha_protocol = ipha->ipha_protocol;
2098         ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2099 
2100         ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2101             ripha.ipha_protocol, ntohl(ipha->ipha_src),
2102             ntohl(ipha->ipha_dst),
2103             icmph->icmph_type, icmph->icmph_code));
2104 
2105         switch (ipha->ipha_protocol) {
2106         case IPPROTO_UDP:
2107                 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2108 
2109                 /* Attempt to find a client stream based on port. */
2110                 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2111                     ntohs(up[0]), ntohs(up[1])));
2112 
2113                 /* Note that we send error to all matches. */
2114                 ira->ira_flags |= IRAF_ICMP_ERROR;
2115                 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2116                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2117                 return;
2118 
2119         case IPPROTO_TCP:
2120                 /*
2121                  * Find a TCP client stream for this packet.
2122                  * Note that we do a reverse lookup since the header is
2123                  * in the form we sent it out.
2124                  */
2125                 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2126                 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2127                     ipst);
2128                 if (connp == NULL)
2129                         goto discard_pkt;
2130 
2131                 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2132                     (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2133                         mp = ipsec_check_inbound_policy(mp, connp,
2134                             ipha, NULL, ira);
2135                         if (mp == NULL) {
2136                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2137                                 /* Note that mp is NULL */
2138                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2139                                 CONN_DEC_REF(connp);
2140                                 return;
2141                         }
2142                 }
2143 
2144                 ira->ira_flags |= IRAF_ICMP_ERROR;
2145                 ira->ira_ill = ira->ira_rill = NULL;
2146                 if (IPCL_IS_TCP(connp)) {
2147                         SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2148                             connp->conn_recvicmp, connp, ira, SQ_FILL,
2149                             SQTAG_TCP_INPUT_ICMP_ERR);
2150                 } else {
2151                         /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2152                         (connp->conn_recv)(connp, mp, NULL, ira);
2153                         CONN_DEC_REF(connp);
2154                 }
2155                 ira->ira_ill = ill;
2156                 ira->ira_rill = rill;
2157                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2158                 return;
2159 
2160         case IPPROTO_SCTP:
2161                 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2162                 /* Find a SCTP client stream for this packet. */
2163                 ((uint16_t *)&ports)[0] = up[1];
2164                 ((uint16_t *)&ports)[1] = up[0];
2165 
2166                 ira->ira_flags |= IRAF_ICMP_ERROR;
2167                 ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2168                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2169                 return;
2170 
2171         case IPPROTO_ESP:
2172         case IPPROTO_AH:
2173                 if (!ipsec_loaded(ipss)) {
2174                         ip_proto_not_sup(mp, ira);
2175                         return;
2176                 }
2177 
2178                 if (ipha->ipha_protocol == IPPROTO_ESP)
2179                         mp = ipsecesp_icmp_error(mp, ira);
2180                 else
2181                         mp = ipsecah_icmp_error(mp, ira);
2182                 if (mp == NULL)
2183                         return;
2184 
2185                 /* Just in case ipsec didn't preserve the NULL b_cont */
2186                 if (mp->b_cont != NULL) {
2187                         if (!pullupmsg(mp, -1))
2188                                 goto discard_pkt;
2189                 }
2190 
2191                 /*
2192                  * Note that ira_pktlen and ira_ip_hdr_length are no longer
2193                  * correct, but we don't use them any more here.
2194                  *
2195                  * If succesful, the mp has been modified to not include
2196                  * the ESP/AH header so we can fanout to the ULP's icmp
2197                  * error handler.
2198                  */
2199                 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2200                         goto truncated;
2201 
2202                 /* Verify the modified message before any further processes. */
2203                 ipha = (ipha_t *)mp->b_rptr;
2204                 hdr_length = IPH_HDR_LENGTH(ipha);
2205                 icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2206                 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2207                         freemsg(mp);
2208                         return;
2209                 }
2210 
2211                 icmp_inbound_error_fanout_v4(mp, icmph, ira);
2212                 return;
2213 
2214         case IPPROTO_ENCAP: {
2215                 /* Look for self-encapsulated packets that caused an error */
2216                 ipha_t *in_ipha;
2217 
2218                 /*
2219                  * Caller has verified that length has to be
2220                  * at least the size of IP header.
2221                  */
2222                 ASSERT(hdr_length >= sizeof (ipha_t));
2223                 /*
2224                  * Check the sanity of the inner IP header like
2225                  * we did for the outer header.
2226                  */
2227                 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2228                 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2229                         goto discard_pkt;
2230                 }
2231                 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2232                         goto discard_pkt;
2233                 }
2234                 /* Check for Self-encapsulated tunnels */
2235                 if (in_ipha->ipha_src == ipha->ipha_src &&
2236                     in_ipha->ipha_dst == ipha->ipha_dst) {
2237 
2238                         mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2239                             in_ipha);
2240                         if (mp == NULL)
2241                                 goto discard_pkt;
2242 
2243                         /*
2244                          * Just in case self_encap didn't preserve the NULL
2245                          * b_cont
2246                          */
2247                         if (mp->b_cont != NULL) {
2248                                 if (!pullupmsg(mp, -1))
2249                                         goto discard_pkt;
2250                         }
2251                         /*
2252                          * Note that ira_pktlen and ira_ip_hdr_length are no
2253                          * longer correct, but we don't use them any more here.
2254                          */
2255                         if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2256                                 goto truncated;
2257 
2258                         /*
2259                          * Verify the modified message before any further
2260                          * processes.
2261                          */
2262                         ipha = (ipha_t *)mp->b_rptr;
2263                         hdr_length = IPH_HDR_LENGTH(ipha);
2264                         icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2265                         if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2266                                 freemsg(mp);
2267                                 return;
2268                         }
2269 
2270                         /*
2271                          * The packet in error is self-encapsualted.
2272                          * And we are finding it further encapsulated
2273                          * which we could not have possibly generated.
2274                          */
2275                         if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2276                                 goto discard_pkt;
2277                         }
2278                         icmp_inbound_error_fanout_v4(mp, icmph, ira);
2279                         return;
2280                 }
2281                 /* No self-encapsulated */
2282                 /* FALLTHRU */
2283         }
2284         case IPPROTO_IPV6:
2285                 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2286                     &ripha.ipha_dst, ipst)) != NULL) {
2287                         ira->ira_flags |= IRAF_ICMP_ERROR;
2288                         connp->conn_recvicmp(connp, mp, NULL, ira);
2289                         CONN_DEC_REF(connp);
2290                         ira->ira_flags &= ~IRAF_ICMP_ERROR;
2291                         return;
2292                 }
2293                 /*
2294                  * No IP tunnel is interested, fallthrough and see
2295                  * if a raw socket will want it.
2296                  */
2297                 /* FALLTHRU */
2298         default:
2299                 ira->ira_flags |= IRAF_ICMP_ERROR;
2300                 ip_fanout_proto_v4(mp, &ripha, ira);
2301                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2302                 return;
2303         }
2304         /* NOTREACHED */
2305 discard_pkt:
2306         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2307         ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2308         ip_drop_input("ipIfStatsInDiscards", mp, ill);
2309         freemsg(mp);
2310         return;
2311 
2312 truncated:
2313         /* We pulled up everthing already. Must be truncated */
2314         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2315         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2316         freemsg(mp);
2317 }
2318 
2319 /*
2320  * Common IP options parser.
2321  *
2322  * Setup routine: fill in *optp with options-parsing state, then
2323  * tail-call ipoptp_next to return the first option.
2324  */
2325 uint8_t
2326 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2327 {
2328         uint32_t totallen; /* total length of all options */
2329 
2330         totallen = ipha->ipha_version_and_hdr_length -
2331             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2332         totallen <<= 2;
2333         optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2334         optp->ipoptp_end = optp->ipoptp_next + totallen;
2335         optp->ipoptp_flags = 0;
2336         return (ipoptp_next(optp));
2337 }
2338 
2339 /* Like above but without an ipha_t */
2340 uint8_t
2341 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2342 {
2343         optp->ipoptp_next = opt;
2344         optp->ipoptp_end = optp->ipoptp_next + totallen;
2345         optp->ipoptp_flags = 0;
2346         return (ipoptp_next(optp));
2347 }
2348 
2349 /*
2350  * Common IP options parser: extract next option.
2351  */
2352 uint8_t
2353 ipoptp_next(ipoptp_t *optp)
2354 {
2355         uint8_t *end = optp->ipoptp_end;
2356         uint8_t *cur = optp->ipoptp_next;
2357         uint8_t opt, len, pointer;
2358 
2359         /*
2360          * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2361          * has been corrupted.
2362          */
2363         ASSERT(cur <= end);
2364 
2365         if (cur == end)
2366                 return (IPOPT_EOL);
2367 
2368         opt = cur[IPOPT_OPTVAL];
2369 
2370         /*
2371          * Skip any NOP options.
2372          */
2373         while (opt == IPOPT_NOP) {
2374                 cur++;
2375                 if (cur == end)
2376                         return (IPOPT_EOL);
2377                 opt = cur[IPOPT_OPTVAL];
2378         }
2379 
2380         if (opt == IPOPT_EOL)
2381                 return (IPOPT_EOL);
2382 
2383         /*
2384          * Option requiring a length.
2385          */
2386         if ((cur + 1) >= end) {
2387                 optp->ipoptp_flags |= IPOPTP_ERROR;
2388                 return (IPOPT_EOL);
2389         }
2390         len = cur[IPOPT_OLEN];
2391         if (len < 2) {
2392                 optp->ipoptp_flags |= IPOPTP_ERROR;
2393                 return (IPOPT_EOL);
2394         }
2395         optp->ipoptp_cur = cur;
2396         optp->ipoptp_len = len;
2397         optp->ipoptp_next = cur + len;
2398         if (cur + len > end) {
2399                 optp->ipoptp_flags |= IPOPTP_ERROR;
2400                 return (IPOPT_EOL);
2401         }
2402 
2403         /*
2404          * For the options which require a pointer field, make sure
2405          * its there, and make sure it points to either something
2406          * inside this option, or the end of the option.
2407          */
2408         switch (opt) {
2409         case IPOPT_RR:
2410         case IPOPT_TS:
2411         case IPOPT_LSRR:
2412         case IPOPT_SSRR:
2413                 if (len <= IPOPT_OFFSET) {
2414                         optp->ipoptp_flags |= IPOPTP_ERROR;
2415                         return (opt);
2416                 }
2417                 pointer = cur[IPOPT_OFFSET];
2418                 if (pointer - 1 > len) {
2419                         optp->ipoptp_flags |= IPOPTP_ERROR;
2420                         return (opt);
2421                 }
2422                 break;
2423         }
2424 
2425         /*
2426          * Sanity check the pointer field based on the type of the
2427          * option.
2428          */
2429         switch (opt) {
2430         case IPOPT_RR:
2431         case IPOPT_SSRR:
2432         case IPOPT_LSRR:
2433                 if (pointer < IPOPT_MINOFF_SR)
2434                         optp->ipoptp_flags |= IPOPTP_ERROR;
2435                 break;
2436         case IPOPT_TS:
2437                 if (pointer < IPOPT_MINOFF_IT)
2438                         optp->ipoptp_flags |= IPOPTP_ERROR;
2439                 /*
2440                  * Note that the Internet Timestamp option also
2441                  * contains two four bit fields (the Overflow field,
2442                  * and the Flag field), which follow the pointer
2443                  * field.  We don't need to check that these fields
2444                  * fall within the length of the option because this
2445                  * was implicitely done above.  We've checked that the
2446                  * pointer value is at least IPOPT_MINOFF_IT, and that
2447                  * it falls within the option.  Since IPOPT_MINOFF_IT >
2448                  * IPOPT_POS_OV_FLG, we don't need the explicit check.
2449                  */
2450                 ASSERT(len > IPOPT_POS_OV_FLG);
2451                 break;
2452         }
2453 
2454         return (opt);
2455 }
2456 
2457 /*
2458  * Use the outgoing IP header to create an IP_OPTIONS option the way
2459  * it was passed down from the application.
2460  *
2461  * This is compatible with BSD in that it returns
2462  * the reverse source route with the final destination
2463  * as the last entry. The first 4 bytes of the option
2464  * will contain the final destination.
2465  */
2466 int
2467 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2468 {
2469         ipoptp_t        opts;
2470         uchar_t         *opt;
2471         uint8_t         optval;
2472         uint8_t         optlen;
2473         uint32_t        len = 0;
2474         uchar_t         *buf1 = buf;
2475         uint32_t        totallen;
2476         ipaddr_t        dst;
2477         ip_pkt_t        *ipp = &connp->conn_xmit_ipp;
2478 
2479         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2480                 return (0);
2481 
2482         totallen = ipp->ipp_ipv4_options_len;
2483         if (totallen & 0x3)
2484                 return (0);
2485 
2486         buf += IP_ADDR_LEN;     /* Leave room for final destination */
2487         len += IP_ADDR_LEN;
2488         bzero(buf1, IP_ADDR_LEN);
2489 
2490         dst = connp->conn_faddr_v4;
2491 
2492         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2493             optval != IPOPT_EOL;
2494             optval = ipoptp_next(&opts)) {
2495                 int     off;
2496 
2497                 opt = opts.ipoptp_cur;
2498                 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2499                         break;
2500                 }
2501                 optlen = opts.ipoptp_len;
2502 
2503                 switch (optval) {
2504                 case IPOPT_SSRR:
2505                 case IPOPT_LSRR:
2506 
2507                         /*
2508                          * Insert destination as the first entry in the source
2509                          * route and move down the entries on step.
2510                          * The last entry gets placed at buf1.
2511                          */
2512                         buf[IPOPT_OPTVAL] = optval;
2513                         buf[IPOPT_OLEN] = optlen;
2514                         buf[IPOPT_OFFSET] = optlen;
2515 
2516                         off = optlen - IP_ADDR_LEN;
2517                         if (off < 0) {
2518                                 /* No entries in source route */
2519                                 break;
2520                         }
2521                         /* Last entry in source route if not already set */
2522                         if (dst == INADDR_ANY)
2523                                 bcopy(opt + off, buf1, IP_ADDR_LEN);
2524                         off -= IP_ADDR_LEN;
2525 
2526                         while (off > 0) {
2527                                 bcopy(opt + off,
2528                                     buf + off + IP_ADDR_LEN,
2529                                     IP_ADDR_LEN);
2530                                 off -= IP_ADDR_LEN;
2531                         }
2532                         /* ipha_dst into first slot */
2533                         bcopy(&dst, buf + off + IP_ADDR_LEN,
2534                             IP_ADDR_LEN);
2535                         buf += optlen;
2536                         len += optlen;
2537                         break;
2538 
2539                 default:
2540                         bcopy(opt, buf, optlen);
2541                         buf += optlen;
2542                         len += optlen;
2543                         break;
2544                 }
2545         }
2546 done:
2547         /* Pad the resulting options */
2548         while (len & 0x3) {
2549                 *buf++ = IPOPT_EOL;
2550                 len++;
2551         }
2552         return (len);
2553 }
2554 
2555 /*
2556  * Update any record route or timestamp options to include this host.
2557  * Reverse any source route option.
2558  * This routine assumes that the options are well formed i.e. that they
2559  * have already been checked.
2560  */
2561 static void
2562 icmp_options_update(ipha_t *ipha)
2563 {
2564         ipoptp_t        opts;
2565         uchar_t         *opt;
2566         uint8_t         optval;
2567         ipaddr_t        src;            /* Our local address */
2568         ipaddr_t        dst;
2569 
2570         ip2dbg(("icmp_options_update\n"));
2571         src = ipha->ipha_src;
2572         dst = ipha->ipha_dst;
2573 
2574         for (optval = ipoptp_first(&opts, ipha);
2575             optval != IPOPT_EOL;
2576             optval = ipoptp_next(&opts)) {
2577                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2578                 opt = opts.ipoptp_cur;
2579                 ip2dbg(("icmp_options_update: opt %d, len %d\n",
2580                     optval, opts.ipoptp_len));
2581                 switch (optval) {
2582                         int off1, off2;
2583                 case IPOPT_SSRR:
2584                 case IPOPT_LSRR:
2585                         /*
2586                          * Reverse the source route.  The first entry
2587                          * should be the next to last one in the current
2588                          * source route (the last entry is our address).
2589                          * The last entry should be the final destination.
2590                          */
2591                         off1 = IPOPT_MINOFF_SR - 1;
2592                         off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2593                         if (off2 < 0) {
2594                                 /* No entries in source route */
2595                                 ip1dbg((
2596                                     "icmp_options_update: bad src route\n"));
2597                                 break;
2598                         }
2599                         bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2600                         bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2601                         bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2602                         off2 -= IP_ADDR_LEN;
2603 
2604                         while (off1 < off2) {
2605                                 bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2606                                 bcopy((char *)opt + off2, (char *)opt + off1,
2607                                     IP_ADDR_LEN);
2608                                 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2609                                 off1 += IP_ADDR_LEN;
2610                                 off2 -= IP_ADDR_LEN;
2611                         }
2612                         opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2613                         break;
2614                 }
2615         }
2616 }
2617 
2618 /*
2619  * Process received ICMP Redirect messages.
2620  * Assumes the caller has verified that the headers are in the pulled up mblk.
2621  * Consumes mp.
2622  */
2623 static void
2624 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2625 {
2626         ire_t           *ire, *nire;
2627         ire_t           *prev_ire;
2628         ipaddr_t        src, dst, gateway;
2629         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2630         ipha_t          *inner_ipha;    /* Inner IP header */
2631 
2632         /* Caller already pulled up everything. */
2633         inner_ipha = (ipha_t *)&icmph[1];
2634         src = ipha->ipha_src;
2635         dst = inner_ipha->ipha_dst;
2636         gateway = icmph->icmph_rd_gateway;
2637         /* Make sure the new gateway is reachable somehow. */
2638         ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2639             ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2640         /*
2641          * Make sure we had a route for the dest in question and that
2642          * that route was pointing to the old gateway (the source of the
2643          * redirect packet.)
2644          * We do longest match and then compare ire_gateway_addr below.
2645          */
2646         prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2647             NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2648         /*
2649          * Check that
2650          *      the redirect was not from ourselves
2651          *      the new gateway and the old gateway are directly reachable
2652          */
2653         if (prev_ire == NULL || ire == NULL ||
2654             (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2655             (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2656             !(ire->ire_type & IRE_IF_ALL) ||
2657             prev_ire->ire_gateway_addr != src) {
2658                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2659                 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2660                 freemsg(mp);
2661                 if (ire != NULL)
2662                         ire_refrele(ire);
2663                 if (prev_ire != NULL)
2664                         ire_refrele(prev_ire);
2665                 return;
2666         }
2667 
2668         ire_refrele(prev_ire);
2669         ire_refrele(ire);
2670 
2671         /*
2672          * TODO: more precise handling for cases 0, 2, 3, the latter two
2673          * require TOS routing
2674          */
2675         switch (icmph->icmph_code) {
2676         case 0:
2677         case 1:
2678                 /* TODO: TOS specificity for cases 2 and 3 */
2679         case 2:
2680         case 3:
2681                 break;
2682         default:
2683                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2684                 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2685                 freemsg(mp);
2686                 return;
2687         }
2688         /*
2689          * Create a Route Association.  This will allow us to remember that
2690          * someone we believe told us to use the particular gateway.
2691          */
2692         ire = ire_create(
2693             (uchar_t *)&dst,                        /* dest addr */
2694             (uchar_t *)&ip_g_all_ones,              /* mask */
2695             (uchar_t *)&gateway,            /* gateway addr */
2696             IRE_HOST,
2697             NULL,                               /* ill */
2698             ALL_ZONES,
2699             (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2700             NULL,                               /* tsol_gc_t */
2701             ipst);
2702 
2703         if (ire == NULL) {
2704                 freemsg(mp);
2705                 return;
2706         }
2707         nire = ire_add(ire);
2708         /* Check if it was a duplicate entry */
2709         if (nire != NULL && nire != ire) {
2710                 ASSERT(nire->ire_identical_ref > 1);
2711                 ire_delete(nire);
2712                 ire_refrele(nire);
2713                 nire = NULL;
2714         }
2715         ire = nire;
2716         if (ire != NULL) {
2717                 ire_refrele(ire);               /* Held in ire_add */
2718 
2719                 /* tell routing sockets that we received a redirect */
2720                 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2721                     (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2722                     (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2723         }
2724 
2725         /*
2726          * Delete any existing IRE_HOST type redirect ires for this destination.
2727          * This together with the added IRE has the effect of
2728          * modifying an existing redirect.
2729          */
2730         prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2731             ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2732         if (prev_ire != NULL) {
2733                 if (prev_ire ->ire_flags & RTF_DYNAMIC)
2734                         ire_delete(prev_ire);
2735                 ire_refrele(prev_ire);
2736         }
2737 
2738         freemsg(mp);
2739 }
2740 
2741 /*
2742  * Generate an ICMP parameter problem message.
2743  * When called from ip_output side a minimal ip_recv_attr_t needs to be
2744  * constructed by the caller.
2745  */
2746 static void
2747 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2748 {
2749         icmph_t icmph;
2750         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2751 
2752         mp = icmp_pkt_err_ok(mp, ira);
2753         if (mp == NULL)
2754                 return;
2755 
2756         bzero(&icmph, sizeof (icmph_t));
2757         icmph.icmph_type = ICMP_PARAM_PROBLEM;
2758         icmph.icmph_pp_ptr = ptr;
2759         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2760         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2761 }
2762 
2763 /*
2764  * Build and ship an IPv4 ICMP message using the packet data in mp, and
2765  * the ICMP header pointed to by "stuff".  (May be called as writer.)
2766  * Note: assumes that icmp_pkt_err_ok has been called to verify that
2767  * an icmp error packet can be sent.
2768  * Assigns an appropriate source address to the packet. If ipha_dst is
2769  * one of our addresses use it for source. Otherwise let ip_output_simple
2770  * pick the source address.
2771  */
2772 static void
2773 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2774 {
2775         ipaddr_t dst;
2776         icmph_t *icmph;
2777         ipha_t  *ipha;
2778         uint_t  len_needed;
2779         size_t  msg_len;
2780         mblk_t  *mp1;
2781         ipaddr_t src;
2782         ire_t   *ire;
2783         ip_xmit_attr_t ixas;
2784         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2785 
2786         ipha = (ipha_t *)mp->b_rptr;
2787 
2788         bzero(&ixas, sizeof (ixas));
2789         ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2790         ixas.ixa_zoneid = ira->ira_zoneid;
2791         ixas.ixa_ifindex = 0;
2792         ixas.ixa_ipst = ipst;
2793         ixas.ixa_cred = kcred;
2794         ixas.ixa_cpid = NOPID;
2795         ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
2796         ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2797 
2798         if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2799                 /*
2800                  * Apply IPsec based on how IPsec was applied to
2801                  * the packet that had the error.
2802                  *
2803                  * If it was an outbound packet that caused the ICMP
2804                  * error, then the caller will have setup the IRA
2805                  * appropriately.
2806                  */
2807                 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2808                         BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2809                         /* Note: mp already consumed and ip_drop_packet done */
2810                         return;
2811                 }
2812         } else {
2813                 /*
2814                  * This is in clear. The icmp message we are building
2815                  * here should go out in clear, independent of our policy.
2816                  */
2817                 ixas.ixa_flags |= IXAF_NO_IPSEC;
2818         }
2819 
2820         /* Remember our eventual destination */
2821         dst = ipha->ipha_src;
2822 
2823         /*
2824          * If the packet was for one of our unicast addresses, make
2825          * sure we respond with that as the source. Otherwise
2826          * have ip_output_simple pick the source address.
2827          */
2828         ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2829             (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2830             MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2831         if (ire != NULL) {
2832                 ire_refrele(ire);
2833                 src = ipha->ipha_dst;
2834         } else {
2835                 src = INADDR_ANY;
2836                 ixas.ixa_flags |= IXAF_SET_SOURCE;
2837         }
2838 
2839         /*
2840          * Check if we can send back more then 8 bytes in addition to
2841          * the IP header.  We try to send 64 bytes of data and the internal
2842          * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2843          */
2844         len_needed = IPH_HDR_LENGTH(ipha);
2845         if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2846             ipha->ipha_protocol == IPPROTO_IPV6) {
2847                 if (!pullupmsg(mp, -1)) {
2848                         BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2849                         ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2850                         freemsg(mp);
2851                         return;
2852                 }
2853                 ipha = (ipha_t *)mp->b_rptr;
2854 
2855                 if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2856                         len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2857                             len_needed));
2858                 } else {
2859                         ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2860 
2861                         ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2862                         len_needed += ip_hdr_length_v6(mp, ip6h);
2863                 }
2864         }
2865         len_needed += ipst->ips_ip_icmp_return;
2866         msg_len = msgdsize(mp);
2867         if (msg_len > len_needed) {
2868                 (void) adjmsg(mp, len_needed - msg_len);
2869                 msg_len = len_needed;
2870         }
2871         mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2872         if (mp1 == NULL) {
2873                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2874                 freemsg(mp);
2875                 return;
2876         }
2877         mp1->b_cont = mp;
2878         mp = mp1;
2879 
2880         /*
2881          * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2882          * node generates be accepted in peace by all on-host destinations.
2883          * If we do NOT assume that all on-host destinations trust
2884          * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2885          * (Look for IXAF_TRUSTED_ICMP).
2886          */
2887         ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2888 
2889         ipha = (ipha_t *)mp->b_rptr;
2890         mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2891         *ipha = icmp_ipha;
2892         ipha->ipha_src = src;
2893         ipha->ipha_dst = dst;
2894         ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2895         msg_len += sizeof (icmp_ipha) + len;
2896         if (msg_len > IP_MAXPACKET) {
2897                 (void) adjmsg(mp, IP_MAXPACKET - msg_len);
2898                 msg_len = IP_MAXPACKET;
2899         }
2900         ipha->ipha_length = htons((uint16_t)msg_len);
2901         icmph = (icmph_t *)&ipha[1];
2902         bcopy(stuff, icmph, len);
2903         icmph->icmph_checksum = 0;
2904         icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2905         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2906 
2907         (void) ip_output_simple(mp, &ixas);
2908         ixa_cleanup(&ixas);
2909 }
2910 
2911 /*
2912  * Determine if an ICMP error packet can be sent given the rate limit.
2913  * The limit consists of an average frequency (icmp_pkt_err_interval measured
2914  * in milliseconds) and a burst size. Burst size number of packets can
2915  * be sent arbitrarely closely spaced.
2916  * The state is tracked using two variables to implement an approximate
2917  * token bucket filter:
2918  *      icmp_pkt_err_last - lbolt value when the last burst started
2919  *      icmp_pkt_err_sent - number of packets sent in current burst
2920  */
2921 boolean_t
2922 icmp_err_rate_limit(ip_stack_t *ipst)
2923 {
2924         clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2925         uint_t refilled; /* Number of packets refilled in tbf since last */
2926         /* Guard against changes by loading into local variable */
2927         uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2928 
2929         if (err_interval == 0)
2930                 return (B_FALSE);
2931 
2932         if (ipst->ips_icmp_pkt_err_last > now) {
2933                 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2934                 ipst->ips_icmp_pkt_err_last = 0;
2935                 ipst->ips_icmp_pkt_err_sent = 0;
2936         }
2937         /*
2938          * If we are in a burst update the token bucket filter.
2939          * Update the "last" time to be close to "now" but make sure
2940          * we don't loose precision.
2941          */
2942         if (ipst->ips_icmp_pkt_err_sent != 0) {
2943                 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2944                 if (refilled > ipst->ips_icmp_pkt_err_sent) {
2945                         ipst->ips_icmp_pkt_err_sent = 0;
2946                 } else {
2947                         ipst->ips_icmp_pkt_err_sent -= refilled;
2948                         ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2949                 }
2950         }
2951         if (ipst->ips_icmp_pkt_err_sent == 0) {
2952                 /* Start of new burst */
2953                 ipst->ips_icmp_pkt_err_last = now;
2954         }
2955         if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2956                 ipst->ips_icmp_pkt_err_sent++;
2957                 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2958                     ipst->ips_icmp_pkt_err_sent));
2959                 return (B_FALSE);
2960         }
2961         ip1dbg(("icmp_err_rate_limit: dropped\n"));
2962         return (B_TRUE);
2963 }
2964 
2965 /*
2966  * Check if it is ok to send an IPv4 ICMP error packet in
2967  * response to the IPv4 packet in mp.
2968  * Free the message and return null if no
2969  * ICMP error packet should be sent.
2970  */
2971 static mblk_t *
2972 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2973 {
2974         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2975         icmph_t *icmph;
2976         ipha_t  *ipha;
2977         uint_t  len_needed;
2978 
2979         if (!mp)
2980                 return (NULL);
2981         ipha = (ipha_t *)mp->b_rptr;
2982         if (ip_csum_hdr(ipha)) {
2983                 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2984                 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2985                 freemsg(mp);
2986                 return (NULL);
2987         }
2988         if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2989             ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2990             CLASSD(ipha->ipha_dst) ||
2991             CLASSD(ipha->ipha_src) ||
2992             (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2993                 /* Note: only errors to the fragment with offset 0 */
2994                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2995                 freemsg(mp);
2996                 return (NULL);
2997         }
2998         if (ipha->ipha_protocol == IPPROTO_ICMP) {
2999                 /*
3000                  * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3001                  * errors in response to any ICMP errors.
3002                  */
3003                 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3004                 if (mp->b_wptr - mp->b_rptr < len_needed) {
3005                         if (!pullupmsg(mp, len_needed)) {
3006                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3007                                 freemsg(mp);
3008                                 return (NULL);
3009                         }
3010                         ipha = (ipha_t *)mp->b_rptr;
3011                 }
3012                 icmph = (icmph_t *)
3013                     (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3014                 switch (icmph->icmph_type) {
3015                 case ICMP_DEST_UNREACHABLE:
3016                 case ICMP_SOURCE_QUENCH:
3017                 case ICMP_TIME_EXCEEDED:
3018                 case ICMP_PARAM_PROBLEM:
3019                 case ICMP_REDIRECT:
3020                         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3021                         freemsg(mp);
3022                         return (NULL);
3023                 default:
3024                         break;
3025                 }
3026         }
3027         /*
3028          * If this is a labeled system, then check to see if we're allowed to
3029          * send a response to this particular sender.  If not, then just drop.
3030          */
3031         if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3032                 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3033                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3034                 freemsg(mp);
3035                 return (NULL);
3036         }
3037         if (icmp_err_rate_limit(ipst)) {
3038                 /*
3039                  * Only send ICMP error packets every so often.
3040                  * This should be done on a per port/source basis,
3041                  * but for now this will suffice.
3042                  */
3043                 freemsg(mp);
3044                 return (NULL);
3045         }
3046         return (mp);
3047 }
3048 
3049 /*
3050  * Called when a packet was sent out the same link that it arrived on.
3051  * Check if it is ok to send a redirect and then send it.
3052  */
3053 void
3054 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3055     ip_recv_attr_t *ira)
3056 {
3057         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
3058         ipaddr_t        src, nhop;
3059         mblk_t          *mp1;
3060         ire_t           *nhop_ire;
3061 
3062         /*
3063          * Check the source address to see if it originated
3064          * on the same logical subnet it is going back out on.
3065          * If so, we should be able to send it a redirect.
3066          * Avoid sending a redirect if the destination
3067          * is directly connected (i.e., we matched an IRE_ONLINK),
3068          * or if the packet was source routed out this interface.
3069          *
3070          * We avoid sending a redirect if the
3071          * destination is directly connected
3072          * because it is possible that multiple
3073          * IP subnets may have been configured on
3074          * the link, and the source may not
3075          * be on the same subnet as ip destination,
3076          * even though they are on the same
3077          * physical link.
3078          */
3079         if ((ire->ire_type & IRE_ONLINK) ||
3080             ip_source_routed(ipha, ipst))
3081                 return;
3082 
3083         nhop_ire = ire_nexthop(ire);
3084         if (nhop_ire == NULL)
3085                 return;
3086 
3087         nhop = nhop_ire->ire_addr;
3088 
3089         if (nhop_ire->ire_type & IRE_IF_CLONE) {
3090                 ire_t   *ire2;
3091 
3092                 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3093                 mutex_enter(&nhop_ire->ire_lock);
3094                 ire2 = nhop_ire->ire_dep_parent;
3095                 if (ire2 != NULL)
3096                         ire_refhold(ire2);
3097                 mutex_exit(&nhop_ire->ire_lock);
3098                 ire_refrele(nhop_ire);
3099                 nhop_ire = ire2;
3100         }
3101         if (nhop_ire == NULL)
3102                 return;
3103 
3104         ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3105 
3106         src = ipha->ipha_src;
3107 
3108         /*
3109          * We look at the interface ire for the nexthop,
3110          * to see if ipha_src is in the same subnet
3111          * as the nexthop.
3112          */
3113         if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3114                 /*
3115                  * The source is directly connected.
3116                  */
3117                 mp1 = copymsg(mp);
3118                 if (mp1 != NULL) {
3119                         icmp_send_redirect(mp1, nhop, ira);
3120                 }
3121         }
3122         ire_refrele(nhop_ire);
3123 }
3124 
3125 /*
3126  * Generate an ICMP redirect message.
3127  */
3128 static void
3129 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3130 {
3131         icmph_t icmph;
3132         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3133 
3134         mp = icmp_pkt_err_ok(mp, ira);
3135         if (mp == NULL)
3136                 return;
3137 
3138         bzero(&icmph, sizeof (icmph_t));
3139         icmph.icmph_type = ICMP_REDIRECT;
3140         icmph.icmph_code = 1;
3141         icmph.icmph_rd_gateway = gateway;
3142         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3143         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3144 }
3145 
3146 /*
3147  * Generate an ICMP time exceeded message.
3148  */
3149 void
3150 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3151 {
3152         icmph_t icmph;
3153         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3154 
3155         mp = icmp_pkt_err_ok(mp, ira);
3156         if (mp == NULL)
3157                 return;
3158 
3159         bzero(&icmph, sizeof (icmph_t));
3160         icmph.icmph_type = ICMP_TIME_EXCEEDED;
3161         icmph.icmph_code = code;
3162         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3163         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3164 }
3165 
3166 /*
3167  * Generate an ICMP unreachable message.
3168  * When called from ip_output side a minimal ip_recv_attr_t needs to be
3169  * constructed by the caller.
3170  */
3171 void
3172 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3173 {
3174         icmph_t icmph;
3175         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3176 
3177         mp = icmp_pkt_err_ok(mp, ira);
3178         if (mp == NULL)
3179                 return;
3180 
3181         bzero(&icmph, sizeof (icmph_t));
3182         icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3183         icmph.icmph_code = code;
3184         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3185         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3186 }
3187 
3188 /*
3189  * Latch in the IPsec state for a stream based the policy in the listener
3190  * and the actions in the ip_recv_attr_t.
3191  * Called directly from TCP and SCTP.
3192  */
3193 boolean_t
3194 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3195 {
3196         ASSERT(lconnp->conn_policy != NULL);
3197         ASSERT(connp->conn_policy == NULL);
3198 
3199         IPPH_REFHOLD(lconnp->conn_policy);
3200         connp->conn_policy = lconnp->conn_policy;
3201 
3202         if (ira->ira_ipsec_action != NULL) {
3203                 if (connp->conn_latch == NULL) {
3204                         connp->conn_latch = iplatch_create();
3205                         if (connp->conn_latch == NULL)
3206                                 return (B_FALSE);
3207                 }
3208                 ipsec_latch_inbound(connp, ira);
3209         }
3210         return (B_TRUE);
3211 }
3212 
3213 /*
3214  * Verify whether or not the IP address is a valid local address.
3215  * Could be a unicast, including one for a down interface.
3216  * If allow_mcbc then a multicast or broadcast address is also
3217  * acceptable.
3218  *
3219  * In the case of a broadcast/multicast address, however, the
3220  * upper protocol is expected to reset the src address
3221  * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3222  * no packets are emitted with broadcast/multicast address as
3223  * source address (that violates hosts requirements RFC 1122)
3224  * The addresses valid for bind are:
3225  *      (1) - INADDR_ANY (0)
3226  *      (2) - IP address of an UP interface
3227  *      (3) - IP address of a DOWN interface
3228  *      (4) - valid local IP broadcast addresses. In this case
3229  *      the conn will only receive packets destined to
3230  *      the specified broadcast address.
3231  *      (5) - a multicast address. In this case
3232  *      the conn will only receive packets destined to
3233  *      the specified multicast address. Note: the
3234  *      application still has to issue an
3235  *      IP_ADD_MEMBERSHIP socket option.
3236  *
3237  * In all the above cases, the bound address must be valid in the current zone.
3238  * When the address is loopback, multicast or broadcast, there might be many
3239  * matching IREs so bind has to look up based on the zone.
3240  */
3241 ip_laddr_t
3242 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3243     ip_stack_t *ipst, boolean_t allow_mcbc)
3244 {
3245         ire_t *src_ire;
3246 
3247         ASSERT(src_addr != INADDR_ANY);
3248 
3249         src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3250             NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3251 
3252         /*
3253          * If an address other than in6addr_any is requested,
3254          * we verify that it is a valid address for bind
3255          * Note: Following code is in if-else-if form for
3256          * readability compared to a condition check.
3257          */
3258         if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3259                 /*
3260                  * (2) Bind to address of local UP interface
3261                  */
3262                 ire_refrele(src_ire);
3263                 return (IPVL_UNICAST_UP);
3264         } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3265                 /*
3266                  * (4) Bind to broadcast address
3267                  */
3268                 ire_refrele(src_ire);
3269                 if (allow_mcbc)
3270                         return (IPVL_BCAST);
3271                 else
3272                         return (IPVL_BAD);
3273         } else if (CLASSD(src_addr)) {
3274                 /* (5) bind to multicast address. */
3275                 if (src_ire != NULL)
3276                         ire_refrele(src_ire);
3277 
3278                 if (allow_mcbc)
3279                         return (IPVL_MCAST);
3280                 else
3281                         return (IPVL_BAD);
3282         } else {
3283                 ipif_t *ipif;
3284 
3285                 /*
3286                  * (3) Bind to address of local DOWN interface?
3287                  * (ipif_lookup_addr() looks up all interfaces
3288                  * but we do not get here for UP interfaces
3289                  * - case (2) above)
3290                  */
3291                 if (src_ire != NULL)
3292                         ire_refrele(src_ire);
3293 
3294                 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3295                 if (ipif == NULL)
3296                         return (IPVL_BAD);
3297 
3298                 /* Not a useful source? */
3299                 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3300                         ipif_refrele(ipif);
3301                         return (IPVL_BAD);
3302                 }
3303                 ipif_refrele(ipif);
3304                 return (IPVL_UNICAST_DOWN);
3305         }
3306 }
3307 
3308 /*
3309  * Insert in the bind fanout for IPv4 and IPv6.
3310  * The caller should already have used ip_laddr_verify_v*() before calling
3311  * this.
3312  */
3313 int
3314 ip_laddr_fanout_insert(conn_t *connp)
3315 {
3316         int             error;
3317 
3318         /*
3319          * Allow setting new policies. For example, disconnects result
3320          * in us being called. As we would have set conn_policy_cached
3321          * to B_TRUE before, we should set it to B_FALSE, so that policy
3322          * can change after the disconnect.
3323          */
3324         connp->conn_policy_cached = B_FALSE;
3325 
3326         error = ipcl_bind_insert(connp);
3327         if (error != 0) {
3328                 if (connp->conn_anon_port) {
3329                         (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3330                             connp->conn_mlp_type, connp->conn_proto,
3331                             ntohs(connp->conn_lport), B_FALSE);
3332                 }
3333                 connp->conn_mlp_type = mlptSingle;
3334         }
3335         return (error);
3336 }
3337 
3338 /*
3339  * Verify that both the source and destination addresses are valid. If
3340  * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3341  * i.e. have no route to it.  Protocols like TCP want to verify destination
3342  * reachability, while tunnels do not.
3343  *
3344  * Determine the route, the interface, and (optionally) the source address
3345  * to use to reach a given destination.
3346  * Note that we allow connect to broadcast and multicast addresses when
3347  * IPDF_ALLOW_MCBC is set.
3348  * first_hop and dst_addr are normally the same, but if source routing
3349  * they will differ; in that case the first_hop is what we'll use for the
3350  * routing lookup but the dce and label checks will be done on dst_addr,
3351  *
3352  * If uinfo is set, then we fill in the best available information
3353  * we have for the destination. This is based on (in priority order) any
3354  * metrics and path MTU stored in a dce_t, route metrics, and finally the
3355  * ill_mtu/ill_mc_mtu.
3356  *
3357  * Tsol note: If we have a source route then dst_addr != firsthop. But we
3358  * always do the label check on dst_addr.
3359  */
3360 int
3361 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3362     ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3363 {
3364         ire_t           *ire = NULL;
3365         int             error = 0;
3366         ipaddr_t        setsrc;                         /* RTF_SETSRC */
3367         zoneid_t        zoneid = ixa->ixa_zoneid;    /* Honors SO_ALLZONES */
3368         ip_stack_t      *ipst = ixa->ixa_ipst;
3369         dce_t           *dce;
3370         uint_t          pmtu;
3371         uint_t          generation;
3372         nce_t           *nce;
3373         ill_t           *ill = NULL;
3374         boolean_t       multirt = B_FALSE;
3375 
3376         ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3377 
3378         /*
3379          * We never send to zero; the ULPs map it to the loopback address.
3380          * We can't allow it since we use zero to mean unitialized in some
3381          * places.
3382          */
3383         ASSERT(dst_addr != INADDR_ANY);
3384 
3385         if (is_system_labeled()) {
3386                 ts_label_t *tsl = NULL;
3387 
3388                 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3389                     mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3390                 if (error != 0)
3391                         return (error);
3392                 if (tsl != NULL) {
3393                         /* Update the label */
3394                         ip_xmit_attr_replace_tsl(ixa, tsl);
3395                 }
3396         }
3397 
3398         setsrc = INADDR_ANY;
3399         /*
3400          * Select a route; For IPMP interfaces, we would only select
3401          * a "hidden" route (i.e., going through a specific under_ill)
3402          * if ixa_ifindex has been specified.
3403          */
3404         ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3405             &generation, &setsrc, &error, &multirt);
3406         ASSERT(ire != NULL);    /* IRE_NOROUTE if none found */
3407         if (error != 0)
3408                 goto bad_addr;
3409 
3410         /*
3411          * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3412          * If IPDF_VERIFY_DST is set, the destination must be reachable;
3413          * Otherwise the destination needn't be reachable.
3414          *
3415          * If we match on a reject or black hole, then we've got a
3416          * local failure.  May as well fail out the connect() attempt,
3417          * since it's never going to succeed.
3418          */
3419         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3420                 /*
3421                  * If we're verifying destination reachability, we always want
3422                  * to complain here.
3423                  *
3424                  * If we're not verifying destination reachability but the
3425                  * destination has a route, we still want to fail on the
3426                  * temporary address and broadcast address tests.
3427                  *
3428                  * In both cases do we let the code continue so some reasonable
3429                  * information is returned to the caller. That enables the
3430                  * caller to use (and even cache) the IRE. conn_ip_ouput will
3431                  * use the generation mismatch path to check for the unreachable
3432                  * case thereby avoiding any specific check in the main path.
3433                  */
3434                 ASSERT(generation == IRE_GENERATION_VERIFY);
3435                 if (flags & IPDF_VERIFY_DST) {
3436                         /*
3437                          * Set errno but continue to set up ixa_ire to be
3438                          * the RTF_REJECT|RTF_BLACKHOLE IRE.
3439                          * That allows callers to use ip_output to get an
3440                          * ICMP error back.
3441                          */
3442                         if (!(ire->ire_type & IRE_HOST))
3443                                 error = ENETUNREACH;
3444                         else
3445                                 error = EHOSTUNREACH;
3446                 }
3447         }
3448 
3449         if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3450             !(flags & IPDF_ALLOW_MCBC)) {
3451                 ire_refrele(ire);
3452                 ire = ire_reject(ipst, B_FALSE);
3453                 generation = IRE_GENERATION_VERIFY;
3454                 error = ENETUNREACH;
3455         }
3456 
3457         /* Cache things */
3458         if (ixa->ixa_ire != NULL)
3459                 ire_refrele_notr(ixa->ixa_ire);
3460 #ifdef DEBUG
3461         ire_refhold_notr(ire);
3462         ire_refrele(ire);
3463 #endif
3464         ixa->ixa_ire = ire;
3465         ixa->ixa_ire_generation = generation;
3466 
3467         /*
3468          * Ensure that ixa_dce is always set any time that ixa_ire is set,
3469          * since some callers will send a packet to conn_ip_output() even if
3470          * there's an error.
3471          */
3472         if (flags & IPDF_UNIQUE_DCE) {
3473                 /* Fallback to the default dce if allocation fails */
3474                 dce = dce_lookup_and_add_v4(dst_addr, ipst);
3475                 if (dce != NULL)
3476                         generation = dce->dce_generation;
3477                 else
3478                         dce = dce_lookup_v4(dst_addr, ipst, &generation);
3479         } else {
3480                 dce = dce_lookup_v4(dst_addr, ipst, &generation);
3481         }
3482         ASSERT(dce != NULL);
3483         if (ixa->ixa_dce != NULL)
3484                 dce_refrele_notr(ixa->ixa_dce);
3485 #ifdef DEBUG
3486         dce_refhold_notr(dce);
3487         dce_refrele(dce);
3488 #endif
3489         ixa->ixa_dce = dce;
3490         ixa->ixa_dce_generation = generation;
3491 
3492         /*
3493          * For multicast with multirt we have a flag passed back from
3494          * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3495          * possible multicast address.
3496          * We also need a flag for multicast since we can't check
3497          * whether RTF_MULTIRT is set in ixa_ire for multicast.
3498          */
3499         if (multirt) {
3500                 ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3501                 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3502         } else {
3503                 ixa->ixa_postfragfn = ire->ire_postfragfn;
3504                 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3505         }
3506         if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3507                 /* Get an nce to cache. */
3508                 nce = ire_to_nce(ire, firsthop, NULL);
3509                 if (nce == NULL) {
3510                         /* Allocation failure? */
3511                         ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3512                 } else {
3513                         if (ixa->ixa_nce != NULL)
3514                                 nce_refrele(ixa->ixa_nce);
3515                         ixa->ixa_nce = nce;
3516                 }
3517         }
3518 
3519         /*
3520          * If the source address is a loopback address, the
3521          * destination had best be local or multicast.
3522          * If we are sending to an IRE_LOCAL using a loopback source then
3523          * it had better be the same zoneid.
3524          */
3525         if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3526                 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3527                         ire = NULL;     /* Stored in ixa_ire */
3528                         error = EADDRNOTAVAIL;
3529                         goto bad_addr;
3530                 }
3531                 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3532                         ire = NULL;     /* Stored in ixa_ire */
3533                         error = EADDRNOTAVAIL;
3534                         goto bad_addr;
3535                 }
3536         }
3537         if (ire->ire_type & IRE_BROADCAST) {
3538                 /*
3539                  * If the ULP didn't have a specified source, then we
3540                  * make sure we reselect the source when sending
3541                  * broadcasts out different interfaces.
3542                  */
3543                 if (flags & IPDF_SELECT_SRC)
3544                         ixa->ixa_flags |= IXAF_SET_SOURCE;
3545                 else
3546                         ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3547         }
3548 
3549         /*
3550          * Does the caller want us to pick a source address?
3551          */
3552         if (flags & IPDF_SELECT_SRC) {
3553                 ipaddr_t        src_addr;
3554 
3555                 /*
3556                  * We use use ire_nexthop_ill to avoid the under ipmp
3557                  * interface for source address selection. Note that for ipmp
3558                  * probe packets, ixa_ifindex would have been specified, and
3559                  * the ip_select_route() invocation would have picked an ire
3560                  * will ire_ill pointing at an under interface.
3561                  */
3562                 ill = ire_nexthop_ill(ire);
3563 
3564                 /* If unreachable we have no ill but need some source */
3565                 if (ill == NULL) {
3566                         src_addr = htonl(INADDR_LOOPBACK);
3567                         /* Make sure we look for a better source address */
3568                         generation = SRC_GENERATION_VERIFY;
3569                 } else {
3570                         error = ip_select_source_v4(ill, setsrc, dst_addr,
3571                             ixa->ixa_multicast_ifaddr, zoneid,
3572                             ipst, &src_addr, &generation, NULL);
3573                         if (error != 0) {
3574                                 ire = NULL;     /* Stored in ixa_ire */
3575                                 goto bad_addr;
3576                         }
3577                 }
3578 
3579                 /*
3580                  * We allow the source address to to down.
3581                  * However, we check that we don't use the loopback address
3582                  * as a source when sending out on the wire.
3583                  */
3584                 if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3585                     !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3586                     !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3587                         ire = NULL;     /* Stored in ixa_ire */
3588                         error = EADDRNOTAVAIL;
3589                         goto bad_addr;
3590                 }
3591 
3592                 *src_addrp = src_addr;
3593                 ixa->ixa_src_generation = generation;
3594         }
3595 
3596         /*
3597          * Make sure we don't leave an unreachable ixa_nce in place
3598          * since ip_select_route is used when we unplumb i.e., remove
3599          * references on ixa_ire, ixa_nce, and ixa_dce.
3600          */
3601         nce = ixa->ixa_nce;
3602         if (nce != NULL && nce->nce_is_condemned) {
3603                 nce_refrele(nce);
3604                 ixa->ixa_nce = NULL;
3605                 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3606         }
3607 
3608         /*
3609          * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3610          * However, we can't do it for IPv4 multicast or broadcast.
3611          */
3612         if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3613                 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3614 
3615         /*
3616          * Set initial value for fragmentation limit. Either conn_ip_output
3617          * or ULP might updates it when there are routing changes.
3618          * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3619          */
3620         pmtu = ip_get_pmtu(ixa);
3621         ixa->ixa_fragsize = pmtu;
3622         /* Make sure ixa_fragsize and ixa_pmtu remain identical */
3623         if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3624                 ixa->ixa_pmtu = pmtu;
3625 
3626         /*
3627          * Extract information useful for some transports.
3628          * First we look for DCE metrics. Then we take what we have in
3629          * the metrics in the route, where the offlink is used if we have
3630          * one.
3631          */
3632         if (uinfo != NULL) {
3633                 bzero(uinfo, sizeof (*uinfo));
3634 
3635                 if (dce->dce_flags & DCEF_UINFO)
3636                         *uinfo = dce->dce_uinfo;
3637 
3638                 rts_merge_metrics(uinfo, &ire->ire_metrics);
3639 
3640                 /* Allow ire_metrics to decrease the path MTU from above */
3641                 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3642                         uinfo->iulp_mtu = pmtu;
3643 
3644                 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3645                 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3646                 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3647         }
3648 
3649         if (ill != NULL)
3650                 ill_refrele(ill);
3651 
3652         return (error);
3653 
3654 bad_addr:
3655         if (ire != NULL)
3656                 ire_refrele(ire);
3657 
3658         if (ill != NULL)
3659                 ill_refrele(ill);
3660 
3661         /*
3662          * Make sure we don't leave an unreachable ixa_nce in place
3663          * since ip_select_route is used when we unplumb i.e., remove
3664          * references on ixa_ire, ixa_nce, and ixa_dce.
3665          */
3666         nce = ixa->ixa_nce;
3667         if (nce != NULL && nce->nce_is_condemned) {
3668                 nce_refrele(nce);
3669                 ixa->ixa_nce = NULL;
3670                 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3671         }
3672 
3673         return (error);
3674 }
3675 
3676 
3677 /*
3678  * Get the base MTU for the case when path MTU discovery is not used.
3679  * Takes the MTU of the IRE into account.
3680  */
3681 uint_t
3682 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3683 {
3684         uint_t mtu;
3685         uint_t iremtu = ire->ire_metrics.iulp_mtu;
3686 
3687         if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3688                 mtu = ill->ill_mc_mtu;
3689         else
3690                 mtu = ill->ill_mtu;
3691 
3692         if (iremtu != 0 && iremtu < mtu)
3693                 mtu = iremtu;
3694 
3695         return (mtu);
3696 }
3697 
3698 /*
3699  * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3700  * Assumes that ixa_ire, dce, and nce have already been set up.
3701  *
3702  * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3703  * We avoid path MTU discovery if it is disabled with ndd.
3704  * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3705  *
3706  * NOTE: We also used to turn it off for source routed packets. That
3707  * is no longer required since the dce is per final destination.
3708  */
3709 uint_t
3710 ip_get_pmtu(ip_xmit_attr_t *ixa)
3711 {
3712         ip_stack_t      *ipst = ixa->ixa_ipst;
3713         dce_t           *dce;
3714         nce_t           *nce;
3715         ire_t           *ire;
3716         uint_t          pmtu;
3717 
3718         ire = ixa->ixa_ire;
3719         dce = ixa->ixa_dce;
3720         nce = ixa->ixa_nce;
3721 
3722         /*
3723          * If path MTU discovery has been turned off by ndd, then we ignore
3724          * any dce_pmtu and for IPv4 we will not set DF.
3725          */
3726         if (!ipst->ips_ip_path_mtu_discovery)
3727                 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3728 
3729         pmtu = IP_MAXPACKET;
3730         /*
3731          * Decide whether whether IPv4 sets DF
3732          * For IPv6 "no DF" means to use the 1280 mtu
3733          */
3734         if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3735                 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3736         } else {
3737                 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3738                 if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3739                         pmtu = IPV6_MIN_MTU;
3740         }
3741 
3742         /* Check if the PMTU is to old before we use it */
3743         if ((dce->dce_flags & DCEF_PMTU) &&
3744             TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3745             ipst->ips_ip_pathmtu_interval) {
3746                 /*
3747                  * Older than 20 minutes. Drop the path MTU information.
3748                  */
3749                 mutex_enter(&dce->dce_lock);
3750                 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3751                 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3752                 mutex_exit(&dce->dce_lock);
3753                 dce_increment_generation(dce);
3754         }
3755 
3756         /* The metrics on the route can lower the path MTU */
3757         if (ire->ire_metrics.iulp_mtu != 0 &&
3758             ire->ire_metrics.iulp_mtu < pmtu)
3759                 pmtu = ire->ire_metrics.iulp_mtu;
3760 
3761         /*
3762          * If the path MTU is smaller than some minimum, we still use dce_pmtu
3763          * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3764          * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3765          */
3766         if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3767                 if (dce->dce_flags & DCEF_PMTU) {
3768                         if (dce->dce_pmtu < pmtu)
3769                                 pmtu = dce->dce_pmtu;
3770 
3771                         if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3772                                 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3773                                 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3774                         } else {
3775                                 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3776                                 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3777                         }
3778                 } else {
3779                         ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3780                         ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3781                 }
3782         }
3783 
3784         /*
3785          * If we have an IRE_LOCAL we use the loopback mtu instead of
3786          * the ill for going out the wire i.e., IRE_LOCAL gets the same
3787          * mtu as IRE_LOOPBACK.
3788          */
3789         if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3790                 uint_t loopback_mtu;
3791 
3792                 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3793                     ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3794 
3795                 if (loopback_mtu < pmtu)
3796                         pmtu = loopback_mtu;
3797         } else if (nce != NULL) {
3798                 /*
3799                  * Make sure we don't exceed the interface MTU.
3800                  * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3801                  * an ill. We'd use the above IP_MAXPACKET in that case just
3802                  * to tell the transport something larger than zero.
3803                  */
3804                 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3805                         if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3806                                 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3807                         if (nce->nce_common->ncec_ill != nce->nce_ill &&
3808                             nce->nce_ill->ill_mc_mtu < pmtu) {
3809                                 /*
3810                                  * for interfaces in an IPMP group, the mtu of
3811                                  * the nce_ill (under_ill) could be different
3812                                  * from the mtu of the ncec_ill, so we take the
3813                                  * min of the two.
3814                                  */
3815                                 pmtu = nce->nce_ill->ill_mc_mtu;
3816                         }
3817                 } else {
3818                         if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3819                                 pmtu = nce->nce_common->ncec_ill->ill_mtu;
3820                         if (nce->nce_common->ncec_ill != nce->nce_ill &&
3821                             nce->nce_ill->ill_mtu < pmtu) {
3822                                 /*
3823                                  * for interfaces in an IPMP group, the mtu of
3824                                  * the nce_ill (under_ill) could be different
3825                                  * from the mtu of the ncec_ill, so we take the
3826                                  * min of the two.
3827                                  */
3828                                 pmtu = nce->nce_ill->ill_mtu;
3829                         }
3830                 }
3831         }
3832 
3833         /*
3834          * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3835          * Only applies to IPv6.
3836          */
3837         if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3838                 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3839                         switch (ixa->ixa_use_min_mtu) {
3840                         case IPV6_USE_MIN_MTU_MULTICAST:
3841                                 if (ire->ire_type & IRE_MULTICAST)
3842                                         pmtu = IPV6_MIN_MTU;
3843                                 break;
3844                         case IPV6_USE_MIN_MTU_ALWAYS:
3845                                 pmtu = IPV6_MIN_MTU;
3846                                 break;
3847                         case IPV6_USE_MIN_MTU_NEVER:
3848                                 break;
3849                         }
3850                 } else {
3851                         /* Default is IPV6_USE_MIN_MTU_MULTICAST */
3852                         if (ire->ire_type & IRE_MULTICAST)
3853                                 pmtu = IPV6_MIN_MTU;
3854                 }
3855         }
3856 
3857         /*
3858          * After receiving an ICMPv6 "packet too big" message with a
3859          * MTU < 1280, and for multirouted IPv6 packets, the IP layer
3860          * will insert a 8-byte fragment header in every packet. We compensate
3861          * for those cases by returning a smaller path MTU to the ULP.
3862          *
3863          * In the case of CGTP then ip_output will add a fragment header.
3864          * Make sure there is room for it by telling a smaller number
3865          * to the transport.
3866          *
3867          * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3868          * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3869          * which is the size of the packets it can send.
3870          */
3871         if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3872                 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) ||
3873                     (ire->ire_flags & RTF_MULTIRT) ||
3874                     (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3875                         pmtu -= sizeof (ip6_frag_t);
3876                         ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3877                 }
3878         }
3879 
3880         return (pmtu);
3881 }
3882 
3883 /*
3884  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3885  * the final piece where we don't.  Return a pointer to the first mblk in the
3886  * result, and update the pointer to the next mblk to chew on.  If anything
3887  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3888  * NULL pointer.
3889  */
3890 mblk_t *
3891 ip_carve_mp(mblk_t **mpp, ssize_t len)
3892 {
3893         mblk_t  *mp0;
3894         mblk_t  *mp1;
3895         mblk_t  *mp2;
3896 
3897         if (!len || !mpp || !(mp0 = *mpp))
3898                 return (NULL);
3899         /* If we aren't going to consume the first mblk, we need a dup. */
3900         if (mp0->b_wptr - mp0->b_rptr > len) {
3901                 mp1 = dupb(mp0);
3902                 if (mp1) {
3903                         /* Partition the data between the two mblks. */
3904                         mp1->b_wptr = mp1->b_rptr + len;
3905                         mp0->b_rptr = mp1->b_wptr;
3906                         /*
3907                          * after adjustments if mblk not consumed is now
3908                          * unaligned, try to align it. If this fails free
3909                          * all messages and let upper layer recover.
3910                          */
3911                         if (!OK_32PTR(mp0->b_rptr)) {
3912                                 if (!pullupmsg(mp0, -1)) {
3913                                         freemsg(mp0);
3914                                         freemsg(mp1);
3915                                         *mpp = NULL;
3916                                         return (NULL);
3917                                 }
3918                         }
3919                 }
3920                 return (mp1);
3921         }
3922         /* Eat through as many mblks as we need to get len bytes. */
3923         len -= mp0->b_wptr - mp0->b_rptr;
3924         for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3925                 if (mp2->b_wptr - mp2->b_rptr > len) {
3926                         /*
3927                          * We won't consume the entire last mblk.  Like
3928                          * above, dup and partition it.
3929                          */
3930                         mp1->b_cont = dupb(mp2);
3931                         mp1 = mp1->b_cont;
3932                         if (!mp1) {
3933                                 /*
3934                                  * Trouble.  Rather than go to a lot of
3935                                  * trouble to clean up, we free the messages.
3936                                  * This won't be any worse than losing it on
3937                                  * the wire.
3938                                  */
3939                                 freemsg(mp0);
3940                                 freemsg(mp2);
3941                                 *mpp = NULL;
3942                                 return (NULL);
3943                         }
3944                         mp1->b_wptr = mp1->b_rptr + len;
3945                         mp2->b_rptr = mp1->b_wptr;
3946                         /*
3947                          * after adjustments if mblk not consumed is now
3948                          * unaligned, try to align it. If this fails free
3949                          * all messages and let upper layer recover.
3950                          */
3951                         if (!OK_32PTR(mp2->b_rptr)) {
3952                                 if (!pullupmsg(mp2, -1)) {
3953                                         freemsg(mp0);
3954                                         freemsg(mp2);
3955                                         *mpp = NULL;
3956                                         return (NULL);
3957                                 }
3958                         }
3959                         *mpp = mp2;
3960                         return (mp0);
3961                 }
3962                 /* Decrement len by the amount we just got. */
3963                 len -= mp2->b_wptr - mp2->b_rptr;
3964         }
3965         /*
3966          * len should be reduced to zero now.  If not our caller has
3967          * screwed up.
3968          */
3969         if (len) {
3970                 /* Shouldn't happen! */
3971                 freemsg(mp0);
3972                 *mpp = NULL;
3973                 return (NULL);
3974         }
3975         /*
3976          * We consumed up to exactly the end of an mblk.  Detach the part
3977          * we are returning from the rest of the chain.
3978          */
3979         mp1->b_cont = NULL;
3980         *mpp = mp2;
3981         return (mp0);
3982 }
3983 
3984 /* The ill stream is being unplumbed. Called from ip_close */
3985 int
3986 ip_modclose(ill_t *ill)
3987 {
3988         boolean_t success;
3989         ipsq_t  *ipsq;
3990         ipif_t  *ipif;
3991         queue_t *q = ill->ill_rq;
3992         ip_stack_t      *ipst = ill->ill_ipst;
3993         int     i;
3994         arl_ill_common_t *ai = ill->ill_common;
3995 
3996         /*
3997          * The punlink prior to this may have initiated a capability
3998          * negotiation. But ipsq_enter will block until that finishes or
3999          * times out.
4000          */
4001         success = ipsq_enter(ill, B_FALSE, NEW_OP);
4002 
4003         /*
4004          * Open/close/push/pop is guaranteed to be single threaded
4005          * per stream by STREAMS. FS guarantees that all references
4006          * from top are gone before close is called. So there can't
4007          * be another close thread that has set CONDEMNED on this ill.
4008          * and cause ipsq_enter to return failure.
4009          */
4010         ASSERT(success);
4011         ipsq = ill->ill_phyint->phyint_ipsq;
4012 
4013         /*
4014          * Mark it condemned. No new reference will be made to this ill.
4015          * Lookup functions will return an error. Threads that try to
4016          * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4017          * that the refcnt will drop down to zero.
4018          */
4019         mutex_enter(&ill->ill_lock);
4020         ill->ill_state_flags |= ILL_CONDEMNED;
4021         for (ipif = ill->ill_ipif; ipif != NULL;
4022             ipif = ipif->ipif_next) {
4023                 ipif->ipif_state_flags |= IPIF_CONDEMNED;
4024         }
4025         /*
4026          * Wake up anybody waiting to enter the ipsq. ipsq_enter
4027          * returns  error if ILL_CONDEMNED is set
4028          */
4029         cv_broadcast(&ill->ill_cv);
4030         mutex_exit(&ill->ill_lock);
4031 
4032         /*
4033          * Send all the deferred DLPI messages downstream which came in
4034          * during the small window right before ipsq_enter(). We do this
4035          * without waiting for the ACKs because all the ACKs for M_PROTO
4036          * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4037          */
4038         ill_dlpi_send_deferred(ill);
4039 
4040         /*
4041          * Shut down fragmentation reassembly.
4042          * ill_frag_timer won't start a timer again.
4043          * Now cancel any existing timer
4044          */
4045         (void) untimeout(ill->ill_frag_timer_id);
4046         (void) ill_frag_timeout(ill, 0);
4047 
4048         /*
4049          * Call ill_delete to bring down the ipifs, ilms and ill on
4050          * this ill. Then wait for the refcnts to drop to zero.
4051          * ill_is_freeable checks whether the ill is really quiescent.
4052          * Then make sure that threads that are waiting to enter the
4053          * ipsq have seen the error returned by ipsq_enter and have
4054          * gone away. Then we call ill_delete_tail which does the
4055          * DL_UNBIND_REQ with the driver and then qprocsoff.
4056          */
4057         ill_delete(ill);
4058         mutex_enter(&ill->ill_lock);
4059         while (!ill_is_freeable(ill))
4060                 cv_wait(&ill->ill_cv, &ill->ill_lock);
4061 
4062         while (ill->ill_waiters)
4063                 cv_wait(&ill->ill_cv, &ill->ill_lock);
4064 
4065         mutex_exit(&ill->ill_lock);
4066 
4067         /*
4068          * ill_delete_tail drops reference on ill_ipst, but we need to keep
4069          * it held until the end of the function since the cleanup
4070          * below needs to be able to use the ip_stack_t.
4071          */
4072         netstack_hold(ipst->ips_netstack);
4073 
4074         /* qprocsoff is done via ill_delete_tail */
4075         ill_delete_tail(ill);
4076         /*
4077          * synchronously wait for arp stream to unbind. After this, we
4078          * cannot get any data packets up from the driver.
4079          */
4080         arp_unbind_complete(ill);
4081         ASSERT(ill->ill_ipst == NULL);
4082 
4083         /*
4084          * Walk through all conns and qenable those that have queued data.
4085          * Close synchronization needs this to
4086          * be done to ensure that all upper layers blocked
4087          * due to flow control to the closing device
4088          * get unblocked.
4089          */
4090         ip1dbg(("ip_wsrv: walking\n"));
4091         for (i = 0; i < TX_FANOUT_SIZE; i++) {
4092                 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4093         }
4094 
4095         /*
4096          * ai can be null if this is an IPv6 ill, or if the IPv4
4097          * stream is being torn down before ARP was plumbed (e.g.,
4098          * /sbin/ifconfig plumbing a stream twice, and encountering
4099          * an error
4100          */
4101         if (ai != NULL) {
4102                 ASSERT(!ill->ill_isv6);
4103                 mutex_enter(&ai->ai_lock);
4104                 ai->ai_ill = NULL;
4105                 if (ai->ai_arl == NULL) {
4106                         mutex_destroy(&ai->ai_lock);
4107                         kmem_free(ai, sizeof (*ai));
4108                 } else {
4109                         cv_signal(&ai->ai_ill_unplumb_done);
4110                         mutex_exit(&ai->ai_lock);
4111                 }
4112         }
4113 
4114         mutex_enter(&ipst->ips_ip_mi_lock);
4115         mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4116         mutex_exit(&ipst->ips_ip_mi_lock);
4117 
4118         /*
4119          * credp could be null if the open didn't succeed and ip_modopen
4120          * itself calls ip_close.
4121          */
4122         if (ill->ill_credp != NULL)
4123                 crfree(ill->ill_credp);
4124 
4125         mutex_destroy(&ill->ill_saved_ire_lock);
4126         mutex_destroy(&ill->ill_lock);
4127         rw_destroy(&ill->ill_mcast_lock);
4128         mutex_destroy(&ill->ill_mcast_serializer);
4129         list_destroy(&ill->ill_nce);
4130 
4131         /*
4132          * Now we are done with the module close pieces that
4133          * need the netstack_t.
4134          */
4135         netstack_rele(ipst->ips_netstack);
4136 
4137         mi_close_free((IDP)ill);
4138         q->q_ptr = WR(q)->q_ptr = NULL;
4139 
4140         ipsq_exit(ipsq);
4141 
4142         return (0);
4143 }
4144 
4145 /*
4146  * This is called as part of close() for IP, UDP, ICMP, and RTS
4147  * in order to quiesce the conn.
4148  */
4149 void
4150 ip_quiesce_conn(conn_t *connp)
4151 {
4152         boolean_t       drain_cleanup_reqd = B_FALSE;
4153         boolean_t       conn_ioctl_cleanup_reqd = B_FALSE;
4154         boolean_t       ilg_cleanup_reqd = B_FALSE;
4155         ip_stack_t      *ipst;
4156 
4157         ASSERT(!IPCL_IS_TCP(connp));
4158         ipst = connp->conn_netstack->netstack_ip;
4159 
4160         /*
4161          * Mark the conn as closing, and this conn must not be
4162          * inserted in future into any list. Eg. conn_drain_insert(),
4163          * won't insert this conn into the conn_drain_list.
4164          *
4165          * conn_idl, and conn_ilg cannot get set henceforth.
4166          */
4167         mutex_enter(&connp->conn_lock);
4168         ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4169         connp->conn_state_flags |= CONN_CLOSING;
4170         if (connp->conn_idl != NULL)
4171                 drain_cleanup_reqd = B_TRUE;
4172         if (connp->conn_oper_pending_ill != NULL)
4173                 conn_ioctl_cleanup_reqd = B_TRUE;
4174         if (connp->conn_dhcpinit_ill != NULL) {
4175                 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4176                 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4177                 ill_set_inputfn(connp->conn_dhcpinit_ill);
4178                 connp->conn_dhcpinit_ill = NULL;
4179         }
4180         if (connp->conn_ilg != NULL)
4181                 ilg_cleanup_reqd = B_TRUE;
4182         mutex_exit(&connp->conn_lock);
4183 
4184         if (conn_ioctl_cleanup_reqd)
4185                 conn_ioctl_cleanup(connp);
4186 
4187         if (is_system_labeled() && connp->conn_anon_port) {
4188                 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4189                     connp->conn_mlp_type, connp->conn_proto,
4190                     ntohs(connp->conn_lport), B_FALSE);
4191                 connp->conn_anon_port = 0;
4192         }
4193         connp->conn_mlp_type = mlptSingle;
4194 
4195         /*
4196          * Remove this conn from any fanout list it is on.
4197          * and then wait for any threads currently operating
4198          * on this endpoint to finish
4199          */
4200         ipcl_hash_remove(connp);
4201 
4202         /*
4203          * Remove this conn from the drain list, and do any other cleanup that
4204          * may be required.  (TCP conns are never flow controlled, and
4205          * conn_idl will be NULL.)
4206          */
4207         if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4208                 idl_t *idl = connp->conn_idl;
4209 
4210                 mutex_enter(&idl->idl_lock);
4211                 conn_drain(connp, B_TRUE);
4212                 mutex_exit(&idl->idl_lock);
4213         }
4214 
4215         if (connp == ipst->ips_ip_g_mrouter)
4216                 (void) ip_mrouter_done(ipst);
4217 
4218         if (ilg_cleanup_reqd)
4219                 ilg_delete_all(connp);
4220 
4221         /*
4222          * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4223          * callers from write side can't be there now because close
4224          * is in progress. The only other caller is ipcl_walk
4225          * which checks for the condemned flag.
4226          */
4227         mutex_enter(&connp->conn_lock);
4228         connp->conn_state_flags |= CONN_CONDEMNED;
4229         while (connp->conn_ref != 1)
4230                 cv_wait(&connp->conn_cv, &connp->conn_lock);
4231         connp->conn_state_flags |= CONN_QUIESCED;
4232         mutex_exit(&connp->conn_lock);
4233 }
4234 
4235 /* ARGSUSED */
4236 int
4237 ip_close(queue_t *q, int flags)
4238 {
4239         conn_t          *connp;
4240 
4241         /*
4242          * Call the appropriate delete routine depending on whether this is
4243          * a module or device.
4244          */
4245         if (WR(q)->q_next != NULL) {
4246                 /* This is a module close */
4247                 return (ip_modclose((ill_t *)q->q_ptr));
4248         }
4249 
4250         connp = q->q_ptr;
4251         ip_quiesce_conn(connp);
4252 
4253         qprocsoff(q);
4254 
4255         /*
4256          * Now we are truly single threaded on this stream, and can
4257          * delete the things hanging off the connp, and finally the connp.
4258          * We removed this connp from the fanout list, it cannot be
4259          * accessed thru the fanouts, and we already waited for the
4260          * conn_ref to drop to 0. We are already in close, so
4261          * there cannot be any other thread from the top. qprocsoff
4262          * has completed, and service has completed or won't run in
4263          * future.
4264          */
4265         ASSERT(connp->conn_ref == 1);
4266 
4267         inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4268 
4269         connp->conn_ref--;
4270         ipcl_conn_destroy(connp);
4271 
4272         q->q_ptr = WR(q)->q_ptr = NULL;
4273         return (0);
4274 }
4275 
4276 /*
4277  * Wapper around putnext() so that ip_rts_request can merely use
4278  * conn_recv.
4279  */
4280 /*ARGSUSED2*/
4281 static void
4282 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4283 {
4284         conn_t *connp = (conn_t *)arg1;
4285 
4286         putnext(connp->conn_rq, mp);
4287 }
4288 
4289 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4290 /* ARGSUSED */
4291 static void
4292 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4293 {
4294         freemsg(mp);
4295 }
4296 
4297 /*
4298  * Called when the module is about to be unloaded
4299  */
4300 void
4301 ip_ddi_destroy(void)
4302 {
4303         /* This needs to be called before destroying any transports. */
4304         mutex_enter(&cpu_lock);
4305         unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4306         mutex_exit(&cpu_lock);
4307 
4308         tnet_fini();
4309 
4310         icmp_ddi_g_destroy();
4311         rts_ddi_g_destroy();
4312         udp_ddi_g_destroy();
4313         sctp_ddi_g_destroy();
4314         tcp_ddi_g_destroy();
4315         ilb_ddi_g_destroy();
4316         dce_g_destroy();
4317         ipsec_policy_g_destroy();
4318         ipcl_g_destroy();
4319         ip_net_g_destroy();
4320         ip_ire_g_fini();
4321         inet_minor_destroy(ip_minor_arena_sa);
4322 #if defined(_LP64)
4323         inet_minor_destroy(ip_minor_arena_la);
4324 #endif
4325 
4326 #ifdef DEBUG
4327         list_destroy(&ip_thread_list);
4328         rw_destroy(&ip_thread_rwlock);
4329         tsd_destroy(&ip_thread_data);
4330 #endif
4331 
4332         netstack_unregister(NS_IP);
4333 }
4334 
4335 /*
4336  * First step in cleanup.
4337  */
4338 /* ARGSUSED */
4339 static void
4340 ip_stack_shutdown(netstackid_t stackid, void *arg)
4341 {
4342         ip_stack_t *ipst = (ip_stack_t *)arg;
4343 
4344 #ifdef NS_DEBUG
4345         printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4346 #endif
4347 
4348         /*
4349          * Perform cleanup for special interfaces (loopback and IPMP).
4350          */
4351         ip_interface_cleanup(ipst);
4352 
4353         /*
4354          * The *_hook_shutdown()s start the process of notifying any
4355          * consumers that things are going away.... nothing is destroyed.
4356          */
4357         ipv4_hook_shutdown(ipst);
4358         ipv6_hook_shutdown(ipst);
4359         arp_hook_shutdown(ipst);
4360 
4361         mutex_enter(&ipst->ips_capab_taskq_lock);
4362         ipst->ips_capab_taskq_quit = B_TRUE;
4363         cv_signal(&ipst->ips_capab_taskq_cv);
4364         mutex_exit(&ipst->ips_capab_taskq_lock);
4365 }
4366 
4367 /*
4368  * Free the IP stack instance.
4369  */
4370 static void
4371 ip_stack_fini(netstackid_t stackid, void *arg)
4372 {
4373         ip_stack_t *ipst = (ip_stack_t *)arg;
4374         int ret;
4375 
4376 #ifdef NS_DEBUG
4377         printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4378 #endif
4379         /*
4380          * At this point, all of the notifications that the events and
4381          * protocols are going away have been run, meaning that we can
4382          * now set about starting to clean things up.
4383          */
4384         ipobs_fini(ipst);
4385         ipv4_hook_destroy(ipst);
4386         ipv6_hook_destroy(ipst);
4387         arp_hook_destroy(ipst);
4388         ip_net_destroy(ipst);
4389 
4390         ipmp_destroy(ipst);
4391 
4392         ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4393         ipst->ips_ip_mibkp = NULL;
4394         icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4395         ipst->ips_icmp_mibkp = NULL;
4396         ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4397         ipst->ips_ip_kstat = NULL;
4398         bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4399         ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4400         ipst->ips_ip6_kstat = NULL;
4401         bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4402 
4403         kmem_free(ipst->ips_propinfo_tbl,
4404             ip_propinfo_count * sizeof (mod_prop_info_t));
4405         ipst->ips_propinfo_tbl = NULL;
4406 
4407         dce_stack_destroy(ipst);
4408         ip_mrouter_stack_destroy(ipst);
4409 
4410         ret = untimeout(ipst->ips_igmp_timeout_id);
4411         if (ret == -1) {
4412                 ASSERT(ipst->ips_igmp_timeout_id == 0);
4413         } else {
4414                 ASSERT(ipst->ips_igmp_timeout_id != 0);
4415                 ipst->ips_igmp_timeout_id = 0;
4416         }
4417         ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4418         if (ret == -1) {
4419                 ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4420         } else {
4421                 ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4422                 ipst->ips_igmp_slowtimeout_id = 0;
4423         }
4424         ret = untimeout(ipst->ips_mld_timeout_id);
4425         if (ret == -1) {
4426                 ASSERT(ipst->ips_mld_timeout_id == 0);
4427         } else {
4428                 ASSERT(ipst->ips_mld_timeout_id != 0);
4429                 ipst->ips_mld_timeout_id = 0;
4430         }
4431         ret = untimeout(ipst->ips_mld_slowtimeout_id);
4432         if (ret == -1) {
4433                 ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4434         } else {
4435                 ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4436                 ipst->ips_mld_slowtimeout_id = 0;
4437         }
4438 
4439         ip_ire_fini(ipst);
4440         ip6_asp_free(ipst);
4441         conn_drain_fini(ipst);
4442         ipcl_destroy(ipst);
4443 
4444         mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4445         mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4446         kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4447         ipst->ips_ndp4 = NULL;
4448         kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4449         ipst->ips_ndp6 = NULL;
4450 
4451         if (ipst->ips_loopback_ksp != NULL) {
4452                 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4453                 ipst->ips_loopback_ksp = NULL;
4454         }
4455 
4456         mutex_destroy(&ipst->ips_capab_taskq_lock);
4457         cv_destroy(&ipst->ips_capab_taskq_cv);
4458 
4459         rw_destroy(&ipst->ips_srcid_lock);
4460 
4461         mutex_destroy(&ipst->ips_ip_mi_lock);
4462         rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4463 
4464         mutex_destroy(&ipst->ips_igmp_timer_lock);
4465         mutex_destroy(&ipst->ips_mld_timer_lock);
4466         mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4467         mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4468         mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4469         rw_destroy(&ipst->ips_ill_g_lock);
4470 
4471         kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4472         ipst->ips_phyint_g_list = NULL;
4473         kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4474         ipst->ips_ill_g_heads = NULL;
4475 
4476         ldi_ident_release(ipst->ips_ldi_ident);
4477         kmem_free(ipst, sizeof (*ipst));
4478 }
4479 
4480 /*
4481  * This function is called from the TSD destructor, and is used to debug
4482  * reference count issues in IP. See block comment in <inet/ip_if.h> for
4483  * details.
4484  */
4485 static void
4486 ip_thread_exit(void *phash)
4487 {
4488         th_hash_t *thh = phash;
4489 
4490         rw_enter(&ip_thread_rwlock, RW_WRITER);
4491         list_remove(&ip_thread_list, thh);
4492         rw_exit(&ip_thread_rwlock);
4493         mod_hash_destroy_hash(thh->thh_hash);
4494         kmem_free(thh, sizeof (*thh));
4495 }
4496 
4497 /*
4498  * Called when the IP kernel module is loaded into the kernel
4499  */
4500 void
4501 ip_ddi_init(void)
4502 {
4503         ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4504 
4505         /*
4506          * For IP and TCP the minor numbers should start from 2 since we have 4
4507          * initial devices: ip, ip6, tcp, tcp6.
4508          */
4509         /*
4510          * If this is a 64-bit kernel, then create two separate arenas -
4511          * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4512          * other for socket apps in the range 2^^18 through 2^^32-1.
4513          */
4514         ip_minor_arena_la = NULL;
4515         ip_minor_arena_sa = NULL;
4516 #if defined(_LP64)
4517         if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4518             INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4519                 cmn_err(CE_PANIC,
4520                     "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4521         }
4522         if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4523             MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4524                 cmn_err(CE_PANIC,
4525                     "ip_ddi_init: ip_minor_arena_la creation failed\n");
4526         }
4527 #else
4528         if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4529             INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4530                 cmn_err(CE_PANIC,
4531                     "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4532         }
4533 #endif
4534         ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4535 
4536         ipcl_g_init();
4537         ip_ire_g_init();
4538         ip_net_g_init();
4539 
4540 #ifdef DEBUG
4541         tsd_create(&ip_thread_data, ip_thread_exit);
4542         rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4543         list_create(&ip_thread_list, sizeof (th_hash_t),
4544             offsetof(th_hash_t, thh_link));
4545 #endif
4546         ipsec_policy_g_init();
4547         tcp_ddi_g_init();
4548         sctp_ddi_g_init();
4549         dce_g_init();
4550 
4551         /*
4552          * We want to be informed each time a stack is created or
4553          * destroyed in the kernel, so we can maintain the
4554          * set of udp_stack_t's.
4555          */
4556         netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4557             ip_stack_fini);
4558 
4559         tnet_init();
4560 
4561         udp_ddi_g_init();
4562         rts_ddi_g_init();
4563         icmp_ddi_g_init();
4564         ilb_ddi_g_init();
4565 
4566         /* This needs to be called after all transports are initialized. */
4567         mutex_enter(&cpu_lock);
4568         register_cpu_setup_func(ip_tp_cpu_update, NULL);
4569         mutex_exit(&cpu_lock);
4570 }
4571 
4572 /*
4573  * Initialize the IP stack instance.
4574  */
4575 static void *
4576 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4577 {
4578         ip_stack_t      *ipst;
4579         size_t          arrsz;
4580         major_t         major;
4581 
4582 #ifdef NS_DEBUG
4583         printf("ip_stack_init(stack %d)\n", stackid);
4584 #endif
4585 
4586         ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4587         ipst->ips_netstack = ns;
4588 
4589         ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4590             KM_SLEEP);
4591         ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4592             KM_SLEEP);
4593         ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4594         ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4595         mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4596         mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4597 
4598         mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4599         ipst->ips_igmp_deferred_next = INFINITY;
4600         mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4601         ipst->ips_mld_deferred_next = INFINITY;
4602         mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4603         mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4604         mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4605         mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4606         rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4607         rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4608 
4609         ipcl_init(ipst);
4610         ip_ire_init(ipst);
4611         ip6_asp_init(ipst);
4612         ipif_init(ipst);
4613         conn_drain_init(ipst);
4614         ip_mrouter_stack_init(ipst);
4615         dce_stack_init(ipst);
4616 
4617         ipst->ips_ip_multirt_log_interval = 1000;
4618 
4619         ipst->ips_ill_index = 1;
4620 
4621         ipst->ips_saved_ip_forwarding = -1;
4622         ipst->ips_reg_vif_num = ALL_VIFS;    /* Index to Register vif */
4623 
4624         arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4625         ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4626         bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4627 
4628         ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4629         ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4630         ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4631         ipst->ips_ip6_kstat =
4632             ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4633 
4634         ipst->ips_ip_src_id = 1;
4635         rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4636 
4637         ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4638 
4639         ip_net_init(ipst, ns);
4640         ipv4_hook_init(ipst);
4641         ipv6_hook_init(ipst);
4642         arp_hook_init(ipst);
4643         ipmp_init(ipst);
4644         ipobs_init(ipst);
4645 
4646         /*
4647          * Create the taskq dispatcher thread and initialize related stuff.
4648          */
4649         ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4650             ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4651         mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4652         cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4653 
4654         major = mod_name_to_major(INET_NAME);
4655         (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4656         return (ipst);
4657 }
4658 
4659 /*
4660  * Allocate and initialize a DLPI template of the specified length.  (May be
4661  * called as writer.)
4662  */
4663 mblk_t *
4664 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4665 {
4666         mblk_t  *mp;
4667 
4668         mp = allocb(len, BPRI_MED);
4669         if (!mp)
4670                 return (NULL);
4671 
4672         /*
4673          * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4674          * of which we don't seem to use) are sent with M_PCPROTO, and
4675          * that other DLPI are M_PROTO.
4676          */
4677         if (prim == DL_INFO_REQ) {
4678                 mp->b_datap->db_type = M_PCPROTO;
4679         } else {
4680                 mp->b_datap->db_type = M_PROTO;
4681         }
4682 
4683         mp->b_wptr = mp->b_rptr + len;
4684         bzero(mp->b_rptr, len);
4685         ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4686         return (mp);
4687 }
4688 
4689 /*
4690  * Allocate and initialize a DLPI notification.  (May be called as writer.)
4691  */
4692 mblk_t *
4693 ip_dlnotify_alloc(uint_t notification, uint_t data)
4694 {
4695         dl_notify_ind_t *notifyp;
4696         mblk_t          *mp;
4697 
4698         if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4699                 return (NULL);
4700 
4701         notifyp = (dl_notify_ind_t *)mp->b_rptr;
4702         notifyp->dl_notification = notification;
4703         notifyp->dl_data = data;
4704         return (mp);
4705 }
4706 
4707 mblk_t *
4708 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4709 {
4710         dl_notify_ind_t *notifyp;
4711         mblk_t          *mp;
4712 
4713         if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4714                 return (NULL);
4715 
4716         notifyp = (dl_notify_ind_t *)mp->b_rptr;
4717         notifyp->dl_notification = notification;
4718         notifyp->dl_data1 = data1;
4719         notifyp->dl_data2 = data2;
4720         return (mp);
4721 }
4722 
4723 /*
4724  * Debug formatting routine.  Returns a character string representation of the
4725  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
4726  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4727  *
4728  * Once the ndd table-printing interfaces are removed, this can be changed to
4729  * standard dotted-decimal form.
4730  */
4731 char *
4732 ip_dot_addr(ipaddr_t addr, char *buf)
4733 {
4734         uint8_t *ap = (uint8_t *)&addr;
4735 
4736         (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4737             ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4738         return (buf);
4739 }
4740 
4741 /*
4742  * Write the given MAC address as a printable string in the usual colon-
4743  * separated format.
4744  */
4745 const char *
4746 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4747 {
4748         char *bp;
4749 
4750         if (alen == 0 || buflen < 4)
4751                 return ("?");
4752         bp = buf;
4753         for (;;) {
4754                 /*
4755                  * If there are more MAC address bytes available, but we won't
4756                  * have any room to print them, then add "..." to the string
4757                  * instead.  See below for the 'magic number' explanation.
4758                  */
4759                 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4760                         (void) strcpy(bp, "...");
4761                         break;
4762                 }
4763                 (void) sprintf(bp, "%02x", *addr++);
4764                 bp += 2;
4765                 if (--alen == 0)
4766                         break;
4767                 *bp++ = ':';
4768                 buflen -= 3;
4769                 /*
4770                  * At this point, based on the first 'if' statement above,
4771                  * either alen == 1 and buflen >= 3, or alen > 1 and
4772                  * buflen >= 4.  The first case leaves room for the final "xx"
4773                  * number and trailing NUL byte.  The second leaves room for at
4774                  * least "...".  Thus the apparently 'magic' numbers chosen for
4775                  * that statement.
4776                  */
4777         }
4778         return (buf);
4779 }
4780 
4781 /*
4782  * Called when it is conceptually a ULP that would sent the packet
4783  * e.g., port unreachable and protocol unreachable. Check that the packet
4784  * would have passed the IPsec global policy before sending the error.
4785  *
4786  * Send an ICMP error after patching up the packet appropriately.
4787  * Uses ip_drop_input and bumps the appropriate MIB.
4788  */
4789 void
4790 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4791     ip_recv_attr_t *ira)
4792 {
4793         ipha_t          *ipha;
4794         boolean_t       secure;
4795         ill_t           *ill = ira->ira_ill;
4796         ip_stack_t      *ipst = ill->ill_ipst;
4797         netstack_t      *ns = ipst->ips_netstack;
4798         ipsec_stack_t   *ipss = ns->netstack_ipsec;
4799 
4800         secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4801 
4802         /*
4803          * We are generating an icmp error for some inbound packet.
4804          * Called from all ip_fanout_(udp, tcp, proto) functions.
4805          * Before we generate an error, check with global policy
4806          * to see whether this is allowed to enter the system. As
4807          * there is no "conn", we are checking with global policy.
4808          */
4809         ipha = (ipha_t *)mp->b_rptr;
4810         if (secure || ipss->ipsec_inbound_v4_policy_present) {
4811                 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4812                 if (mp == NULL)
4813                         return;
4814         }
4815 
4816         /* We never send errors for protocols that we do implement */
4817         if (ira->ira_protocol == IPPROTO_ICMP ||
4818             ira->ira_protocol == IPPROTO_IGMP) {
4819                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4820                 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4821                 freemsg(mp);
4822                 return;
4823         }
4824         /*
4825          * Have to correct checksum since
4826          * the packet might have been
4827          * fragmented and the reassembly code in ip_rput
4828          * does not restore the IP checksum.
4829          */
4830         ipha->ipha_hdr_checksum = 0;
4831         ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4832 
4833         switch (icmp_type) {
4834         case ICMP_DEST_UNREACHABLE:
4835                 switch (icmp_code) {
4836                 case ICMP_PROTOCOL_UNREACHABLE:
4837                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4838                         ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4839                         break;
4840                 case ICMP_PORT_UNREACHABLE:
4841                         BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4842                         ip_drop_input("ipIfStatsNoPorts", mp, ill);
4843                         break;
4844                 }
4845 
4846                 icmp_unreachable(mp, icmp_code, ira);
4847                 break;
4848         default:
4849 #ifdef DEBUG
4850                 panic("ip_fanout_send_icmp_v4: wrong type");
4851                 /*NOTREACHED*/
4852 #else
4853                 freemsg(mp);
4854                 break;
4855 #endif
4856         }
4857 }
4858 
4859 /*
4860  * Used to send an ICMP error message when a packet is received for
4861  * a protocol that is not supported. The mblk passed as argument
4862  * is consumed by this function.
4863  */
4864 void
4865 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4866 {
4867         ipha_t          *ipha;
4868 
4869         ipha = (ipha_t *)mp->b_rptr;
4870         if (ira->ira_flags & IRAF_IS_IPV4) {
4871                 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4872                 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4873                     ICMP_PROTOCOL_UNREACHABLE, ira);
4874         } else {
4875                 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4876                 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4877                     ICMP6_PARAMPROB_NEXTHEADER, ira);
4878         }
4879 }
4880 
4881 /*
4882  * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4883  * Handles IPv4 and IPv6.
4884  * We are responsible for disposing of mp, such as by freemsg() or putnext()
4885  * Caller is responsible for dropping references to the conn.
4886  */
4887 void
4888 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4889     ip_recv_attr_t *ira)
4890 {
4891         ill_t           *ill = ira->ira_ill;
4892         ip_stack_t      *ipst = ill->ill_ipst;
4893         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
4894         boolean_t       secure;
4895         uint_t          protocol = ira->ira_protocol;
4896         iaflags_t       iraflags = ira->ira_flags;
4897         queue_t         *rq;
4898 
4899         secure = iraflags & IRAF_IPSEC_SECURE;
4900 
4901         rq = connp->conn_rq;
4902         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4903                 switch (protocol) {
4904                 case IPPROTO_ICMPV6:
4905                         BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4906                         break;
4907                 case IPPROTO_ICMP:
4908                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4909                         break;
4910                 default:
4911                         BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4912                         break;
4913                 }
4914                 freemsg(mp);
4915                 return;
4916         }
4917 
4918         ASSERT(!(IPCL_IS_IPTUN(connp)));
4919 
4920         if (((iraflags & IRAF_IS_IPV4) ?
4921             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4922             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4923             secure) {
4924                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
4925                     ip6h, ira);
4926                 if (mp == NULL) {
4927                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4928                         /* Note that mp is NULL */
4929                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
4930                         return;
4931                 }
4932         }
4933 
4934         if (iraflags & IRAF_ICMP_ERROR) {
4935                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
4936         } else {
4937                 ill_t *rill = ira->ira_rill;
4938 
4939                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4940                 ira->ira_ill = ira->ira_rill = NULL;
4941                 /* Send it upstream */
4942                 (connp->conn_recv)(connp, mp, NULL, ira);
4943                 ira->ira_ill = ill;
4944                 ira->ira_rill = rill;
4945         }
4946 }
4947 
4948 /*
4949  * Handle protocols with which IP is less intimate.  There
4950  * can be more than one stream bound to a particular
4951  * protocol.  When this is the case, normally each one gets a copy
4952  * of any incoming packets.
4953  *
4954  * IPsec NOTE :
4955  *
4956  * Don't allow a secure packet going up a non-secure connection.
4957  * We don't allow this because
4958  *
4959  * 1) Reply might go out in clear which will be dropped at
4960  *    the sending side.
4961  * 2) If the reply goes out in clear it will give the
4962  *    adversary enough information for getting the key in
4963  *    most of the cases.
4964  *
4965  * Moreover getting a secure packet when we expect clear
4966  * implies that SA's were added without checking for
4967  * policy on both ends. This should not happen once ISAKMP
4968  * is used to negotiate SAs as SAs will be added only after
4969  * verifying the policy.
4970  *
4971  * Zones notes:
4972  * Earlier in ip_input on a system with multiple shared-IP zones we
4973  * duplicate the multicast and broadcast packets and send them up
4974  * with each explicit zoneid that exists on that ill.
4975  * This means that here we can match the zoneid with SO_ALLZONES being special.
4976  */
4977 void
4978 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
4979 {
4980         mblk_t          *mp1;
4981         ipaddr_t        laddr;
4982         conn_t          *connp, *first_connp, *next_connp;
4983         connf_t         *connfp;
4984         ill_t           *ill = ira->ira_ill;
4985         ip_stack_t      *ipst = ill->ill_ipst;
4986 
4987         laddr = ipha->ipha_dst;
4988 
4989         connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
4990         mutex_enter(&connfp->connf_lock);
4991         connp = connfp->connf_head;
4992         for (connp = connfp->connf_head; connp != NULL;
4993             connp = connp->conn_next) {
4994                 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
4995                 if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
4996                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
4997                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
4998                         break;
4999                 }
5000         }
5001 
5002         if (connp == NULL) {
5003                 /*
5004                  * No one bound to these addresses.  Is
5005                  * there a client that wants all
5006                  * unclaimed datagrams?
5007                  */
5008                 mutex_exit(&connfp->connf_lock);
5009                 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5010                     ICMP_PROTOCOL_UNREACHABLE, ira);
5011                 return;
5012         }
5013 
5014         ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5015 
5016         CONN_INC_REF(connp);
5017         first_connp = connp;
5018         connp = connp->conn_next;
5019 
5020         for (;;) {
5021                 while (connp != NULL) {
5022                         /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5023                         if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5024                             (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5025                             tsol_receive_local(mp, &laddr, IPV4_VERSION,
5026                             ira, connp)))
5027                                 break;
5028                         connp = connp->conn_next;
5029                 }
5030 
5031                 if (connp == NULL) {
5032                         /* No more interested clients */
5033                         connp = first_connp;
5034                         break;
5035                 }
5036                 if (((mp1 = dupmsg(mp)) == NULL) &&
5037                     ((mp1 = copymsg(mp)) == NULL)) {
5038                         /* Memory allocation failed */
5039                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5040                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
5041                         connp = first_connp;
5042                         break;
5043                 }
5044 
5045                 CONN_INC_REF(connp);
5046                 mutex_exit(&connfp->connf_lock);
5047 
5048                 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5049                     ira);
5050 
5051                 mutex_enter(&connfp->connf_lock);
5052                 /* Follow the next pointer before releasing the conn. */
5053                 next_connp = connp->conn_next;
5054                 CONN_DEC_REF(connp);
5055                 connp = next_connp;
5056         }
5057 
5058         /* Last one.  Send it upstream. */
5059         mutex_exit(&connfp->connf_lock);
5060 
5061         ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5062 
5063         CONN_DEC_REF(connp);
5064 }
5065 
5066 /*
5067  * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5068  * pass it along to ESP if the SPI is non-zero.  Returns the mblk if the mblk
5069  * is not consumed.
5070  *
5071  * One of three things can happen, all of which affect the passed-in mblk:
5072  *
5073  * 1.) The packet is stock UDP and gets its zero-SPI stripped.  Return mblk..
5074  *
5075  * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5076  *     ESP packet, and is passed along to ESP for consumption.  Return NULL.
5077  *
5078  * 3.) The packet is an ESP-in-UDP Keepalive.  Drop it and return NULL.
5079  */
5080 mblk_t *
5081 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5082 {
5083         int shift, plen, iph_len;
5084         ipha_t *ipha;
5085         udpha_t *udpha;
5086         uint32_t *spi;
5087         uint32_t esp_ports;
5088         uint8_t *orptr;
5089         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
5090         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
5091 
5092         ipha = (ipha_t *)mp->b_rptr;
5093         iph_len = ira->ira_ip_hdr_length;
5094         plen = ira->ira_pktlen;
5095 
5096         if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5097                 /*
5098                  * Most likely a keepalive for the benefit of an intervening
5099                  * NAT.  These aren't for us, per se, so drop it.
5100                  *
5101                  * RFC 3947/8 doesn't say for sure what to do for 2-3
5102                  * byte packets (keepalives are 1-byte), but we'll drop them
5103                  * also.
5104                  */
5105                 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5106                     DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5107                 return (NULL);
5108         }
5109 
5110         if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5111                 /* might as well pull it all up - it might be ESP. */
5112                 if (!pullupmsg(mp, -1)) {
5113                         ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5114                             DROPPER(ipss, ipds_esp_nomem),
5115                             &ipss->ipsec_dropper);
5116                         return (NULL);
5117                 }
5118 
5119                 ipha = (ipha_t *)mp->b_rptr;
5120         }
5121         spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5122         if (*spi == 0) {
5123                 /* UDP packet - remove 0-spi. */
5124                 shift = sizeof (uint32_t);
5125         } else {
5126                 /* ESP-in-UDP packet - reduce to ESP. */
5127                 ipha->ipha_protocol = IPPROTO_ESP;
5128                 shift = sizeof (udpha_t);
5129         }
5130 
5131         /* Fix IP header */
5132         ira->ira_pktlen = (plen - shift);
5133         ipha->ipha_length = htons(ira->ira_pktlen);
5134         ipha->ipha_hdr_checksum = 0;
5135 
5136         orptr = mp->b_rptr;
5137         mp->b_rptr += shift;
5138 
5139         udpha = (udpha_t *)(orptr + iph_len);
5140         if (*spi == 0) {
5141                 ASSERT((uint8_t *)ipha == orptr);
5142                 udpha->uha_length = htons(plen - shift - iph_len);
5143                 iph_len += sizeof (udpha_t);    /* For the call to ovbcopy(). */
5144                 esp_ports = 0;
5145         } else {
5146                 esp_ports = *((uint32_t *)udpha);
5147                 ASSERT(esp_ports != 0);
5148         }
5149         ovbcopy(orptr, orptr + shift, iph_len);
5150         if (esp_ports != 0) /* Punt up for ESP processing. */ {
5151                 ipha = (ipha_t *)(orptr + shift);
5152 
5153                 ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5154                 ira->ira_esp_udp_ports = esp_ports;
5155                 ip_fanout_v4(mp, ipha, ira);
5156                 return (NULL);
5157         }
5158         return (mp);
5159 }
5160 
5161 /*
5162  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5163  * Handles IPv4 and IPv6.
5164  * We are responsible for disposing of mp, such as by freemsg() or putnext()
5165  * Caller is responsible for dropping references to the conn.
5166  */
5167 void
5168 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5169     ip_recv_attr_t *ira)
5170 {
5171         ill_t           *ill = ira->ira_ill;
5172         ip_stack_t      *ipst = ill->ill_ipst;
5173         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
5174         boolean_t       secure;
5175         iaflags_t       iraflags = ira->ira_flags;
5176 
5177         secure = iraflags & IRAF_IPSEC_SECURE;
5178 
5179         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5180             !canputnext(connp->conn_rq)) {
5181                 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5182                 freemsg(mp);
5183                 return;
5184         }
5185 
5186         if (((iraflags & IRAF_IS_IPV4) ?
5187             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5188             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5189             secure) {
5190                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
5191                     ip6h, ira);
5192                 if (mp == NULL) {
5193                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5194                         /* Note that mp is NULL */
5195                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
5196                         return;
5197                 }
5198         }
5199 
5200         /*
5201          * Since this code is not used for UDP unicast we don't need a NAT_T
5202          * check. Only ip_fanout_v4 has that check.
5203          */
5204         if (ira->ira_flags & IRAF_ICMP_ERROR) {
5205                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
5206         } else {
5207                 ill_t *rill = ira->ira_rill;
5208 
5209                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5210                 ira->ira_ill = ira->ira_rill = NULL;
5211                 /* Send it upstream */
5212                 (connp->conn_recv)(connp, mp, NULL, ira);
5213                 ira->ira_ill = ill;
5214                 ira->ira_rill = rill;
5215         }
5216 }
5217 
5218 /*
5219  * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5220  * (Unicast fanout is handled in ip_input_v4.)
5221  *
5222  * If SO_REUSEADDR is set all multicast and broadcast packets
5223  * will be delivered to all conns bound to the same port.
5224  *
5225  * If there is at least one matching AF_INET receiver, then we will
5226  * ignore any AF_INET6 receivers.
5227  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5228  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5229  * packets.
5230  *
5231  * Zones notes:
5232  * Earlier in ip_input on a system with multiple shared-IP zones we
5233  * duplicate the multicast and broadcast packets and send them up
5234  * with each explicit zoneid that exists on that ill.
5235  * This means that here we can match the zoneid with SO_ALLZONES being special.
5236  */
5237 void
5238 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5239     ip_recv_attr_t *ira)
5240 {
5241         ipaddr_t        laddr;
5242         in6_addr_t      v6faddr;
5243         conn_t          *connp;
5244         connf_t         *connfp;
5245         ipaddr_t        faddr;
5246         ill_t           *ill = ira->ira_ill;
5247         ip_stack_t      *ipst = ill->ill_ipst;
5248 
5249         ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5250 
5251         laddr = ipha->ipha_dst;
5252         faddr = ipha->ipha_src;
5253 
5254         connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5255         mutex_enter(&connfp->connf_lock);
5256         connp = connfp->connf_head;
5257 
5258         /*
5259          * If SO_REUSEADDR has been set on the first we send the
5260          * packet to all clients that have joined the group and
5261          * match the port.
5262          */
5263         while (connp != NULL) {
5264                 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5265                     conn_wantpacket(connp, ira, ipha) &&
5266                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5267                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5268                         break;
5269                 connp = connp->conn_next;
5270         }
5271 
5272         if (connp == NULL)
5273                 goto notfound;
5274 
5275         CONN_INC_REF(connp);
5276 
5277         if (connp->conn_reuseaddr) {
5278                 conn_t          *first_connp = connp;
5279                 conn_t          *next_connp;
5280                 mblk_t          *mp1;
5281 
5282                 connp = connp->conn_next;
5283                 for (;;) {
5284                         while (connp != NULL) {
5285                                 if (IPCL_UDP_MATCH(connp, lport, laddr,
5286                                     fport, faddr) &&
5287                                     conn_wantpacket(connp, ira, ipha) &&
5288                                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5289                                     tsol_receive_local(mp, &laddr, IPV4_VERSION,
5290                                     ira, connp)))
5291                                         break;
5292                                 connp = connp->conn_next;
5293                         }
5294                         if (connp == NULL) {
5295                                 /* No more interested clients */
5296                                 connp = first_connp;
5297                                 break;
5298                         }
5299                         if (((mp1 = dupmsg(mp)) == NULL) &&
5300                             ((mp1 = copymsg(mp)) == NULL)) {
5301                                 /* Memory allocation failed */
5302                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5303                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5304                                 connp = first_connp;
5305                                 break;
5306                         }
5307                         CONN_INC_REF(connp);
5308                         mutex_exit(&connfp->connf_lock);
5309 
5310                         IP_STAT(ipst, ip_udp_fanmb);
5311                         ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5312                             NULL, ira);
5313                         mutex_enter(&connfp->connf_lock);
5314                         /* Follow the next pointer before releasing the conn */
5315                         next_connp = connp->conn_next;
5316                         CONN_DEC_REF(connp);
5317                         connp = next_connp;
5318                 }
5319         }
5320 
5321         /* Last one.  Send it upstream. */
5322         mutex_exit(&connfp->connf_lock);
5323         IP_STAT(ipst, ip_udp_fanmb);
5324         ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5325         CONN_DEC_REF(connp);
5326         return;
5327 
5328 notfound:
5329         mutex_exit(&connfp->connf_lock);
5330         /*
5331          * IPv6 endpoints bound to multicast IPv4-mapped addresses
5332          * have already been matched above, since they live in the IPv4
5333          * fanout tables. This implies we only need to
5334          * check for IPv6 in6addr_any endpoints here.
5335          * Thus we compare using ipv6_all_zeros instead of the destination
5336          * address, except for the multicast group membership lookup which
5337          * uses the IPv4 destination.
5338          */
5339         IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5340         connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5341         mutex_enter(&connfp->connf_lock);
5342         connp = connfp->connf_head;
5343         /*
5344          * IPv4 multicast packet being delivered to an AF_INET6
5345          * in6addr_any endpoint.
5346          * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5347          * and not conn_wantpacket_v6() since any multicast membership is
5348          * for an IPv4-mapped multicast address.
5349          */
5350         while (connp != NULL) {
5351                 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5352                     fport, v6faddr) &&
5353                     conn_wantpacket(connp, ira, ipha) &&
5354                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5355                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5356                         break;
5357                 connp = connp->conn_next;
5358         }
5359 
5360         if (connp == NULL) {
5361                 /*
5362                  * No one bound to this port.  Is
5363                  * there a client that wants all
5364                  * unclaimed datagrams?
5365                  */
5366                 mutex_exit(&connfp->connf_lock);
5367 
5368                 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5369                     NULL) {
5370                         ASSERT(ira->ira_protocol == IPPROTO_UDP);
5371                         ip_fanout_proto_v4(mp, ipha, ira);
5372                 } else {
5373                         /*
5374                          * We used to attempt to send an icmp error here, but
5375                          * since this is known to be a multicast packet
5376                          * and we don't send icmp errors in response to
5377                          * multicast, just drop the packet and give up sooner.
5378                          */
5379                         BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5380                         freemsg(mp);
5381                 }
5382                 return;
5383         }
5384         ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5385 
5386         /*
5387          * If SO_REUSEADDR has been set on the first we send the
5388          * packet to all clients that have joined the group and
5389          * match the port.
5390          */
5391         if (connp->conn_reuseaddr) {
5392                 conn_t          *first_connp = connp;
5393                 conn_t          *next_connp;
5394                 mblk_t          *mp1;
5395 
5396                 CONN_INC_REF(connp);
5397                 connp = connp->conn_next;
5398                 for (;;) {
5399                         while (connp != NULL) {
5400                                 if (IPCL_UDP_MATCH_V6(connp, lport,
5401                                     ipv6_all_zeros, fport, v6faddr) &&
5402                                     conn_wantpacket(connp, ira, ipha) &&
5403                                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5404                                     tsol_receive_local(mp, &laddr, IPV4_VERSION,
5405                                     ira, connp)))
5406                                         break;
5407                                 connp = connp->conn_next;
5408                         }
5409                         if (connp == NULL) {
5410                                 /* No more interested clients */
5411                                 connp = first_connp;
5412                                 break;
5413                         }
5414                         if (((mp1 = dupmsg(mp)) == NULL) &&
5415                             ((mp1 = copymsg(mp)) == NULL)) {
5416                                 /* Memory allocation failed */
5417                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5418                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5419                                 connp = first_connp;
5420                                 break;
5421                         }
5422                         CONN_INC_REF(connp);
5423                         mutex_exit(&connfp->connf_lock);
5424 
5425                         IP_STAT(ipst, ip_udp_fanmb);
5426                         ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5427                             NULL, ira);
5428                         mutex_enter(&connfp->connf_lock);
5429                         /* Follow the next pointer before releasing the conn */
5430                         next_connp = connp->conn_next;
5431                         CONN_DEC_REF(connp);
5432                         connp = next_connp;
5433                 }
5434         }
5435 
5436         /* Last one.  Send it upstream. */
5437         mutex_exit(&connfp->connf_lock);
5438         IP_STAT(ipst, ip_udp_fanmb);
5439         ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5440         CONN_DEC_REF(connp);
5441 }
5442 
5443 /*
5444  * Split an incoming packet's IPv4 options into the label and the other options.
5445  * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5446  * clearing out any leftover label or options.
5447  * Otherwise it just makes ipp point into the packet.
5448  *
5449  * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5450  */
5451 int
5452 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5453 {
5454         uchar_t         *opt;
5455         uint32_t        totallen;
5456         uint32_t        optval;
5457         uint32_t        optlen;
5458 
5459         ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5460         ipp->ipp_hoplimit = ipha->ipha_ttl;
5461         ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5462         IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5463 
5464         /*
5465          * Get length (in 4 byte octets) of IP header options.
5466          */
5467         totallen = ipha->ipha_version_and_hdr_length -
5468             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5469 
5470         if (totallen == 0) {
5471                 if (!allocate)
5472                         return (0);
5473 
5474                 /* Clear out anything from a previous packet */
5475                 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5476                         kmem_free(ipp->ipp_ipv4_options,
5477                             ipp->ipp_ipv4_options_len);
5478                         ipp->ipp_ipv4_options = NULL;
5479                         ipp->ipp_ipv4_options_len = 0;
5480                         ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5481                 }
5482                 if (ipp->ipp_fields & IPPF_LABEL_V4) {
5483                         kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5484                         ipp->ipp_label_v4 = NULL;
5485                         ipp->ipp_label_len_v4 = 0;
5486                         ipp->ipp_fields &= ~IPPF_LABEL_V4;
5487                 }
5488                 return (0);
5489         }
5490 
5491         totallen <<= 2;
5492         opt = (uchar_t *)&ipha[1];
5493         if (!is_system_labeled()) {
5494 
5495         copyall:
5496                 if (!allocate) {
5497                         if (totallen != 0) {
5498                                 ipp->ipp_ipv4_options = opt;
5499                                 ipp->ipp_ipv4_options_len = totallen;
5500                                 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5501                         }
5502                         return (0);
5503                 }
5504                 /* Just copy all of options */
5505                 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5506                         if (totallen == ipp->ipp_ipv4_options_len) {
5507                                 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5508                                 return (0);
5509                         }
5510                         kmem_free(ipp->ipp_ipv4_options,
5511                             ipp->ipp_ipv4_options_len);
5512                         ipp->ipp_ipv4_options = NULL;
5513                         ipp->ipp_ipv4_options_len = 0;
5514                         ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5515                 }
5516                 if (totallen == 0)
5517                         return (0);
5518 
5519                 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5520                 if (ipp->ipp_ipv4_options == NULL)
5521                         return (ENOMEM);
5522                 ipp->ipp_ipv4_options_len = totallen;
5523                 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5524                 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5525                 return (0);
5526         }
5527 
5528         if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5529                 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5530                 ipp->ipp_label_v4 = NULL;
5531                 ipp->ipp_label_len_v4 = 0;
5532                 ipp->ipp_fields &= ~IPPF_LABEL_V4;
5533         }
5534 
5535         /*
5536          * Search for CIPSO option.
5537          * We assume CIPSO is first in options if it is present.
5538          * If it isn't, then ipp_opt_ipv4_options will not include the options
5539          * prior to the CIPSO option.
5540          */
5541         while (totallen != 0) {
5542                 switch (optval = opt[IPOPT_OPTVAL]) {
5543                 case IPOPT_EOL:
5544                         return (0);
5545                 case IPOPT_NOP:
5546                         optlen = 1;
5547                         break;
5548                 default:
5549                         if (totallen <= IPOPT_OLEN)
5550                                 return (EINVAL);
5551                         optlen = opt[IPOPT_OLEN];
5552                         if (optlen < 2)
5553                                 return (EINVAL);
5554                 }
5555                 if (optlen > totallen)
5556                         return (EINVAL);
5557 
5558                 switch (optval) {
5559                 case IPOPT_COMSEC:
5560                         if (!allocate) {
5561                                 ipp->ipp_label_v4 = opt;
5562                                 ipp->ipp_label_len_v4 = optlen;
5563                                 ipp->ipp_fields |= IPPF_LABEL_V4;
5564                         } else {
5565                                 ipp->ipp_label_v4 = kmem_alloc(optlen,
5566                                     KM_NOSLEEP);
5567                                 if (ipp->ipp_label_v4 == NULL)
5568                                         return (ENOMEM);
5569                                 ipp->ipp_label_len_v4 = optlen;
5570                                 ipp->ipp_fields |= IPPF_LABEL_V4;
5571                                 bcopy(opt, ipp->ipp_label_v4, optlen);
5572                         }
5573                         totallen -= optlen;
5574                         opt += optlen;
5575 
5576                         /* Skip padding bytes until we get to a multiple of 4 */
5577                         while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5578                                 totallen--;
5579                                 opt++;
5580                         }
5581                         /* Remaining as ipp_ipv4_options */
5582                         goto copyall;
5583                 }
5584                 totallen -= optlen;
5585                 opt += optlen;
5586         }
5587         /* No CIPSO found; return everything as ipp_ipv4_options */
5588         totallen = ipha->ipha_version_and_hdr_length -
5589             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5590         totallen <<= 2;
5591         opt = (uchar_t *)&ipha[1];
5592         goto copyall;
5593 }
5594 
5595 /*
5596  * Efficient versions of lookup for an IRE when we only
5597  * match the address.
5598  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5599  * Does not handle multicast addresses.
5600  */
5601 uint_t
5602 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5603 {
5604         ire_t *ire;
5605         uint_t result;
5606 
5607         ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5608         ASSERT(ire != NULL);
5609         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5610                 result = IRE_NOROUTE;
5611         else
5612                 result = ire->ire_type;
5613         ire_refrele(ire);
5614         return (result);
5615 }
5616 
5617 /*
5618  * Efficient versions of lookup for an IRE when we only
5619  * match the address.
5620  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5621  * Does not handle multicast addresses.
5622  */
5623 uint_t
5624 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5625 {
5626         ire_t *ire;
5627         uint_t result;
5628 
5629         ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5630         ASSERT(ire != NULL);
5631         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5632                 result = IRE_NOROUTE;
5633         else
5634                 result = ire->ire_type;
5635         ire_refrele(ire);
5636         return (result);
5637 }
5638 
5639 /*
5640  * Nobody should be sending
5641  * packets up this stream
5642  */
5643 static void
5644 ip_lrput(queue_t *q, mblk_t *mp)
5645 {
5646         switch (mp->b_datap->db_type) {
5647         case M_FLUSH:
5648                 /* Turn around */
5649                 if (*mp->b_rptr & FLUSHW) {
5650                         *mp->b_rptr &= ~FLUSHR;
5651                         qreply(q, mp);
5652                         return;
5653                 }
5654                 break;
5655         }
5656         freemsg(mp);
5657 }
5658 
5659 /* Nobody should be sending packets down this stream */
5660 /* ARGSUSED */
5661 void
5662 ip_lwput(queue_t *q, mblk_t *mp)
5663 {
5664         freemsg(mp);
5665 }
5666 
5667 /*
5668  * Move the first hop in any source route to ipha_dst and remove that part of
5669  * the source route.  Called by other protocols.  Errors in option formatting
5670  * are ignored - will be handled by ip_output_options. Return the final
5671  * destination (either ipha_dst or the last entry in a source route.)
5672  */
5673 ipaddr_t
5674 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5675 {
5676         ipoptp_t        opts;
5677         uchar_t         *opt;
5678         uint8_t         optval;
5679         uint8_t         optlen;
5680         ipaddr_t        dst;
5681         int             i;
5682         ip_stack_t      *ipst = ns->netstack_ip;
5683 
5684         ip2dbg(("ip_massage_options\n"));
5685         dst = ipha->ipha_dst;
5686         for (optval = ipoptp_first(&opts, ipha);
5687             optval != IPOPT_EOL;
5688             optval = ipoptp_next(&opts)) {
5689                 opt = opts.ipoptp_cur;
5690                 switch (optval) {
5691                         uint8_t off;
5692                 case IPOPT_SSRR:
5693                 case IPOPT_LSRR:
5694                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5695                                 ip1dbg(("ip_massage_options: bad src route\n"));
5696                                 break;
5697                         }
5698                         optlen = opts.ipoptp_len;
5699                         off = opt[IPOPT_OFFSET];
5700                         off--;
5701                 redo_srr:
5702                         if (optlen < IP_ADDR_LEN ||
5703                             off > optlen - IP_ADDR_LEN) {
5704                                 /* End of source route */
5705                                 ip1dbg(("ip_massage_options: end of SR\n"));
5706                                 break;
5707                         }
5708                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5709                         ip1dbg(("ip_massage_options: next hop 0x%x\n",
5710                             ntohl(dst)));
5711                         /*
5712                          * Check if our address is present more than
5713                          * once as consecutive hops in source route.
5714                          * XXX verify per-interface ip_forwarding
5715                          * for source route?
5716                          */
5717                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5718                                 off += IP_ADDR_LEN;
5719                                 goto redo_srr;
5720                         }
5721                         if (dst == htonl(INADDR_LOOPBACK)) {
5722                                 ip1dbg(("ip_massage_options: loopback addr in "
5723                                     "source route!\n"));
5724                                 break;
5725                         }
5726                         /*
5727                          * Update ipha_dst to be the first hop and remove the
5728                          * first hop from the source route (by overwriting
5729                          * part of the option with NOP options).
5730                          */
5731                         ipha->ipha_dst = dst;
5732                         /* Put the last entry in dst */
5733                         off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5734                             3;
5735                         bcopy(&opt[off], &dst, IP_ADDR_LEN);
5736 
5737                         ip1dbg(("ip_massage_options: last hop 0x%x\n",
5738                             ntohl(dst)));
5739                         /* Move down and overwrite */
5740                         opt[IP_ADDR_LEN] = opt[0];
5741                         opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5742                         opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5743                         for (i = 0; i < IP_ADDR_LEN; i++)
5744                                 opt[i] = IPOPT_NOP;
5745                         break;
5746                 }
5747         }
5748         return (dst);
5749 }
5750 
5751 /*
5752  * Return the network mask
5753  * associated with the specified address.
5754  */
5755 ipaddr_t
5756 ip_net_mask(ipaddr_t addr)
5757 {
5758         uchar_t *up = (uchar_t *)&addr;
5759         ipaddr_t mask = 0;
5760         uchar_t *maskp = (uchar_t *)&mask;
5761 
5762 #if defined(__i386) || defined(__amd64)
5763 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER
5764 #endif
5765 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
5766         maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5767 #endif
5768         if (CLASSD(addr)) {
5769                 maskp[0] = 0xF0;
5770                 return (mask);
5771         }
5772 
5773         /* We assume Class E default netmask to be 32 */
5774         if (CLASSE(addr))
5775                 return (0xffffffffU);
5776 
5777         if (addr == 0)
5778                 return (0);
5779         maskp[0] = 0xFF;
5780         if ((up[0] & 0x80) == 0)
5781                 return (mask);
5782 
5783         maskp[1] = 0xFF;
5784         if ((up[0] & 0xC0) == 0x80)
5785                 return (mask);
5786 
5787         maskp[2] = 0xFF;
5788         if ((up[0] & 0xE0) == 0xC0)
5789                 return (mask);
5790 
5791         /* Otherwise return no mask */
5792         return ((ipaddr_t)0);
5793 }
5794 
5795 /* Name/Value Table Lookup Routine */
5796 char *
5797 ip_nv_lookup(nv_t *nv, int value)
5798 {
5799         if (!nv)
5800                 return (NULL);
5801         for (; nv->nv_name; nv++) {
5802                 if (nv->nv_value == value)
5803                         return (nv->nv_name);
5804         }
5805         return ("unknown");
5806 }
5807 
5808 static int
5809 ip_wait_for_info_ack(ill_t *ill)
5810 {
5811         int err;
5812 
5813         mutex_enter(&ill->ill_lock);
5814         while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5815                 /*
5816                  * Return value of 0 indicates a pending signal.
5817                  */
5818                 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5819                 if (err == 0) {
5820                         mutex_exit(&ill->ill_lock);
5821                         return (EINTR);
5822                 }
5823         }
5824         mutex_exit(&ill->ill_lock);
5825         /*
5826          * ip_rput_other could have set an error  in ill_error on
5827          * receipt of M_ERROR.
5828          */
5829         return (ill->ill_error);
5830 }
5831 
5832 /*
5833  * This is a module open, i.e. this is a control stream for access
5834  * to a DLPI device.  We allocate an ill_t as the instance data in
5835  * this case.
5836  */
5837 static int
5838 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5839 {
5840         ill_t   *ill;
5841         int     err;
5842         zoneid_t zoneid;
5843         netstack_t *ns;
5844         ip_stack_t *ipst;
5845 
5846         /*
5847          * Prevent unprivileged processes from pushing IP so that
5848          * they can't send raw IP.
5849          */
5850         if (secpolicy_net_rawaccess(credp) != 0)
5851                 return (EPERM);
5852 
5853         ns = netstack_find_by_cred(credp);
5854         ASSERT(ns != NULL);
5855         ipst = ns->netstack_ip;
5856         ASSERT(ipst != NULL);
5857 
5858         /*
5859          * For exclusive stacks we set the zoneid to zero
5860          * to make IP operate as if in the global zone.
5861          */
5862         if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5863                 zoneid = GLOBAL_ZONEID;
5864         else
5865                 zoneid = crgetzoneid(credp);
5866 
5867         ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5868         q->q_ptr = WR(q)->q_ptr = ill;
5869         ill->ill_ipst = ipst;
5870         ill->ill_zoneid = zoneid;
5871 
5872         /*
5873          * ill_init initializes the ill fields and then sends down
5874          * down a DL_INFO_REQ after calling qprocson.
5875          */
5876         err = ill_init(q, ill);
5877 
5878         if (err != 0) {
5879                 mi_free(ill);
5880                 netstack_rele(ipst->ips_netstack);
5881                 q->q_ptr = NULL;
5882                 WR(q)->q_ptr = NULL;
5883                 return (err);
5884         }
5885 
5886         /*
5887          * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5888          *
5889          * ill_init initializes the ipsq marking this thread as
5890          * writer
5891          */
5892         ipsq_exit(ill->ill_phyint->phyint_ipsq);
5893         err = ip_wait_for_info_ack(ill);
5894         if (err == 0)
5895                 ill->ill_credp = credp;
5896         else
5897                 goto fail;
5898 
5899         crhold(credp);
5900 
5901         mutex_enter(&ipst->ips_ip_mi_lock);
5902         err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5903             sflag, credp);
5904         mutex_exit(&ipst->ips_ip_mi_lock);
5905 fail:
5906         if (err) {
5907                 (void) ip_close(q, 0);
5908                 return (err);
5909         }
5910         return (0);
5911 }
5912 
5913 /* For /dev/ip aka AF_INET open */
5914 int
5915 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5916 {
5917         return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5918 }
5919 
5920 /* For /dev/ip6 aka AF_INET6 open */
5921 int
5922 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5923 {
5924         return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5925 }
5926 
5927 /* IP open routine. */
5928 int
5929 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5930     boolean_t isv6)
5931 {
5932         conn_t          *connp;
5933         major_t         maj;
5934         zoneid_t        zoneid;
5935         netstack_t      *ns;
5936         ip_stack_t      *ipst;
5937 
5938         /* Allow reopen. */
5939         if (q->q_ptr != NULL)
5940                 return (0);
5941 
5942         if (sflag & MODOPEN) {
5943                 /* This is a module open */
5944                 return (ip_modopen(q, devp, flag, sflag, credp));
5945         }
5946 
5947         if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5948                 /*
5949                  * Non streams based socket looking for a stream
5950                  * to access IP
5951                  */
5952                 return (ip_helper_stream_setup(q, devp, flag, sflag,
5953                     credp, isv6));
5954         }
5955 
5956         ns = netstack_find_by_cred(credp);
5957         ASSERT(ns != NULL);
5958         ipst = ns->netstack_ip;
5959         ASSERT(ipst != NULL);
5960 
5961         /*
5962          * For exclusive stacks we set the zoneid to zero
5963          * to make IP operate as if in the global zone.
5964          */
5965         if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5966                 zoneid = GLOBAL_ZONEID;
5967         else
5968                 zoneid = crgetzoneid(credp);
5969 
5970         /*
5971          * We are opening as a device. This is an IP client stream, and we
5972          * allocate an conn_t as the instance data.
5973          */
5974         connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
5975 
5976         /*
5977          * ipcl_conn_create did a netstack_hold. Undo the hold that was
5978          * done by netstack_find_by_cred()
5979          */
5980         netstack_rele(ipst->ips_netstack);
5981 
5982         connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
5983         /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
5984         connp->conn_ixa->ixa_zoneid = zoneid;
5985         connp->conn_zoneid = zoneid;
5986 
5987         connp->conn_rq = q;
5988         q->q_ptr = WR(q)->q_ptr = connp;
5989 
5990         /* Minor tells us which /dev entry was opened */
5991         if (isv6) {
5992                 connp->conn_family = AF_INET6;
5993                 connp->conn_ipversion = IPV6_VERSION;
5994                 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
5995                 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
5996         } else {
5997                 connp->conn_family = AF_INET;
5998                 connp->conn_ipversion = IPV4_VERSION;
5999                 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6000         }
6001 
6002         if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6003             ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6004                 connp->conn_minor_arena = ip_minor_arena_la;
6005         } else {
6006                 /*
6007                  * Either minor numbers in the large arena were exhausted
6008                  * or a non socket application is doing the open.
6009                  * Try to allocate from the small arena.
6010                  */
6011                 if ((connp->conn_dev =
6012                     inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6013                         /* CONN_DEC_REF takes care of netstack_rele() */
6014                         q->q_ptr = WR(q)->q_ptr = NULL;
6015                         CONN_DEC_REF(connp);
6016                         return (EBUSY);
6017                 }
6018                 connp->conn_minor_arena = ip_minor_arena_sa;
6019         }
6020 
6021         maj = getemajor(*devp);
6022         *devp = makedevice(maj, (minor_t)connp->conn_dev);
6023 
6024         /*
6025          * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6026          */
6027         connp->conn_cred = credp;
6028         connp->conn_cpid = curproc->p_pid;
6029         /* Cache things in ixa without an extra refhold */
6030         ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6031         connp->conn_ixa->ixa_cred = connp->conn_cred;
6032         connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6033         if (is_system_labeled())
6034                 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6035 
6036         /*
6037          * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6038          */
6039         connp->conn_recv = ip_conn_input;
6040         connp->conn_recvicmp = ip_conn_input_icmp;
6041 
6042         crhold(connp->conn_cred);
6043 
6044         /*
6045          * If the caller has the process-wide flag set, then default to MAC
6046          * exempt mode.  This allows read-down to unlabeled hosts.
6047          */
6048         if (getpflags(NET_MAC_AWARE, credp) != 0)
6049                 connp->conn_mac_mode = CONN_MAC_AWARE;
6050 
6051         connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6052 
6053         connp->conn_rq = q;
6054         connp->conn_wq = WR(q);
6055 
6056         /* Non-zero default values */
6057         connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6058 
6059         /*
6060          * Make the conn globally visible to walkers
6061          */
6062         ASSERT(connp->conn_ref == 1);
6063         mutex_enter(&connp->conn_lock);
6064         connp->conn_state_flags &= ~CONN_INCIPIENT;
6065         mutex_exit(&connp->conn_lock);
6066 
6067         qprocson(q);
6068 
6069         return (0);
6070 }
6071 
6072 /*
6073  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6074  * all of them are copied to the conn_t. If the req is "zero", the policy is
6075  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6076  * fields.
6077  * We keep only the latest setting of the policy and thus policy setting
6078  * is not incremental/cumulative.
6079  *
6080  * Requests to set policies with multiple alternative actions will
6081  * go through a different API.
6082  */
6083 int
6084 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6085 {
6086         uint_t ah_req = 0;
6087         uint_t esp_req = 0;
6088         uint_t se_req = 0;
6089         ipsec_act_t *actp = NULL;
6090         uint_t nact;
6091         ipsec_policy_head_t *ph;
6092         boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6093         int error = 0;
6094         netstack_t      *ns = connp->conn_netstack;
6095         ip_stack_t      *ipst = ns->netstack_ip;
6096         ipsec_stack_t   *ipss = ns->netstack_ipsec;
6097 
6098 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6099 
6100         /*
6101          * The IP_SEC_OPT option does not allow variable length parameters,
6102          * hence a request cannot be NULL.
6103          */
6104         if (req == NULL)
6105                 return (EINVAL);
6106 
6107         ah_req = req->ipsr_ah_req;
6108         esp_req = req->ipsr_esp_req;
6109         se_req = req->ipsr_self_encap_req;
6110 
6111         /* Don't allow setting self-encap without one or more of AH/ESP. */
6112         if (se_req != 0 && esp_req == 0 && ah_req == 0)
6113                 return (EINVAL);
6114 
6115         /*
6116          * Are we dealing with a request to reset the policy (i.e.
6117          * zero requests).
6118          */
6119         is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6120             (esp_req & REQ_MASK) == 0 &&
6121             (se_req & REQ_MASK) == 0);
6122 
6123         if (!is_pol_reset) {
6124                 /*
6125                  * If we couldn't load IPsec, fail with "protocol
6126                  * not supported".
6127                  * IPsec may not have been loaded for a request with zero
6128                  * policies, so we don't fail in this case.
6129                  */
6130                 mutex_enter(&ipss->ipsec_loader_lock);
6131                 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6132                         mutex_exit(&ipss->ipsec_loader_lock);
6133                         return (EPROTONOSUPPORT);
6134                 }
6135                 mutex_exit(&ipss->ipsec_loader_lock);
6136 
6137                 /*
6138                  * Test for valid requests. Invalid algorithms
6139                  * need to be tested by IPsec code because new
6140                  * algorithms can be added dynamically.
6141                  */
6142                 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6143                     (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6144                     (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6145                         return (EINVAL);
6146                 }
6147 
6148                 /*
6149                  * Only privileged users can issue these
6150                  * requests.
6151                  */
6152                 if (((ah_req & IPSEC_PREF_NEVER) ||
6153                     (esp_req & IPSEC_PREF_NEVER) ||
6154                     (se_req & IPSEC_PREF_NEVER)) &&
6155                     secpolicy_ip_config(cr, B_FALSE) != 0) {
6156                         return (EPERM);
6157                 }
6158 
6159                 /*
6160                  * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6161                  * are mutually exclusive.
6162                  */
6163                 if (((ah_req & REQ_MASK) == REQ_MASK) ||
6164                     ((esp_req & REQ_MASK) == REQ_MASK) ||
6165                     ((se_req & REQ_MASK) == REQ_MASK)) {
6166                         /* Both of them are set */
6167                         return (EINVAL);
6168                 }
6169         }
6170 
6171         ASSERT(MUTEX_HELD(&connp->conn_lock));
6172 
6173         /*
6174          * If we have already cached policies in conn_connect(), don't
6175          * let them change now. We cache policies for connections
6176          * whose src,dst [addr, port] is known.
6177          */
6178         if (connp->conn_policy_cached) {
6179                 return (EINVAL);
6180         }
6181 
6182         /*
6183          * We have a zero policies, reset the connection policy if already
6184          * set. This will cause the connection to inherit the
6185          * global policy, if any.
6186          */
6187         if (is_pol_reset) {
6188                 if (connp->conn_policy != NULL) {
6189                         IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6190                         connp->conn_policy = NULL;
6191                 }
6192                 connp->conn_in_enforce_policy = B_FALSE;
6193                 connp->conn_out_enforce_policy = B_FALSE;
6194                 return (0);
6195         }
6196 
6197         ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6198             ipst->ips_netstack);
6199         if (ph == NULL)
6200                 goto enomem;
6201 
6202         ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6203         if (actp == NULL)
6204                 goto enomem;
6205 
6206         /*
6207          * Always insert IPv4 policy entries, since they can also apply to
6208          * ipv6 sockets being used in ipv4-compat mode.
6209          */
6210         if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6211             IPSEC_TYPE_INBOUND, ns))
6212                 goto enomem;
6213         is_pol_inserted = B_TRUE;
6214         if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6215             IPSEC_TYPE_OUTBOUND, ns))
6216                 goto enomem;
6217 
6218         /*
6219          * We're looking at a v6 socket, also insert the v6-specific
6220          * entries.
6221          */
6222         if (connp->conn_family == AF_INET6) {
6223                 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6224                     IPSEC_TYPE_INBOUND, ns))
6225                         goto enomem;
6226                 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6227                     IPSEC_TYPE_OUTBOUND, ns))
6228                         goto enomem;
6229         }
6230 
6231         ipsec_actvec_free(actp, nact);
6232 
6233         /*
6234          * If the requests need security, set enforce_policy.
6235          * If the requests are IPSEC_PREF_NEVER, one should
6236          * still set conn_out_enforce_policy so that ip_set_destination
6237          * marks the ip_xmit_attr_t appropriatly. This is needed so that
6238          * for connections that we don't cache policy in at connect time,
6239          * if global policy matches in ip_output_attach_policy, we
6240          * don't wrongly inherit global policy. Similarly, we need
6241          * to set conn_in_enforce_policy also so that we don't verify
6242          * policy wrongly.
6243          */
6244         if ((ah_req & REQ_MASK) != 0 ||
6245             (esp_req & REQ_MASK) != 0 ||
6246             (se_req & REQ_MASK) != 0) {
6247                 connp->conn_in_enforce_policy = B_TRUE;
6248                 connp->conn_out_enforce_policy = B_TRUE;
6249         }
6250 
6251         return (error);
6252 #undef REQ_MASK
6253 
6254         /*
6255          * Common memory-allocation-failure exit path.
6256          */
6257 enomem:
6258         if (actp != NULL)
6259                 ipsec_actvec_free(actp, nact);
6260         if (is_pol_inserted)
6261                 ipsec_polhead_flush(ph, ns);
6262         return (ENOMEM);
6263 }
6264 
6265 /*
6266  * Set socket options for joining and leaving multicast groups.
6267  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6268  * The caller has already check that the option name is consistent with
6269  * the address family of the socket.
6270  */
6271 int
6272 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6273     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6274 {
6275         int             *i1 = (int *)invalp;
6276         int             error = 0;
6277         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
6278         struct ip_mreq  *v4_mreqp;
6279         struct ipv6_mreq *v6_mreqp;
6280         struct group_req *greqp;
6281         ire_t *ire;
6282         boolean_t done = B_FALSE;
6283         ipaddr_t ifaddr;
6284         in6_addr_t v6group;
6285         uint_t ifindex;
6286         boolean_t mcast_opt = B_TRUE;
6287         mcast_record_t fmode;
6288         int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6289             ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6290 
6291         switch (name) {
6292         case IP_ADD_MEMBERSHIP:
6293         case IPV6_JOIN_GROUP:
6294                 mcast_opt = B_FALSE;
6295                 /* FALLTHRU */
6296         case MCAST_JOIN_GROUP:
6297                 fmode = MODE_IS_EXCLUDE;
6298                 optfn = ip_opt_add_group;
6299                 break;
6300 
6301         case IP_DROP_MEMBERSHIP:
6302         case IPV6_LEAVE_GROUP:
6303                 mcast_opt = B_FALSE;
6304                 /* FALLTHRU */
6305         case MCAST_LEAVE_GROUP:
6306                 fmode = MODE_IS_INCLUDE;
6307                 optfn = ip_opt_delete_group;
6308                 break;
6309         default:
6310                 ASSERT(0);
6311         }
6312 
6313         if (mcast_opt) {
6314                 struct sockaddr_in *sin;
6315                 struct sockaddr_in6 *sin6;
6316 
6317                 greqp = (struct group_req *)i1;
6318                 if (greqp->gr_group.ss_family == AF_INET) {
6319                         sin = (struct sockaddr_in *)&(greqp->gr_group);
6320                         IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6321                 } else {
6322                         if (!inet6)
6323                                 return (EINVAL);        /* Not on INET socket */
6324 
6325                         sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6326                         v6group = sin6->sin6_addr;
6327                 }
6328                 ifaddr = INADDR_ANY;
6329                 ifindex = greqp->gr_interface;
6330         } else if (inet6) {
6331                 v6_mreqp = (struct ipv6_mreq *)i1;
6332                 v6group = v6_mreqp->ipv6mr_multiaddr;
6333                 ifaddr = INADDR_ANY;
6334                 ifindex = v6_mreqp->ipv6mr_interface;
6335         } else {
6336                 v4_mreqp = (struct ip_mreq *)i1;
6337                 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6338                 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6339                 ifindex = 0;
6340         }
6341 
6342         /*
6343          * In the multirouting case, we need to replicate
6344          * the request on all interfaces that will take part
6345          * in replication.  We do so because multirouting is
6346          * reflective, thus we will probably receive multi-
6347          * casts on those interfaces.
6348          * The ip_multirt_apply_membership() succeeds if
6349          * the operation succeeds on at least one interface.
6350          */
6351         if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6352                 ipaddr_t group;
6353 
6354                 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6355 
6356                 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6357                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6358                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6359         } else {
6360                 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6361                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6362                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6363         }
6364         if (ire != NULL) {
6365                 if (ire->ire_flags & RTF_MULTIRT) {
6366                         error = ip_multirt_apply_membership(optfn, ire, connp,
6367                             checkonly, &v6group, fmode, &ipv6_all_zeros);
6368                         done = B_TRUE;
6369                 }
6370                 ire_refrele(ire);
6371         }
6372 
6373         if (!done) {
6374                 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6375                     fmode, &ipv6_all_zeros);
6376         }
6377         return (error);
6378 }
6379 
6380 /*
6381  * Set socket options for joining and leaving multicast groups
6382  * for specific sources.
6383  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6384  * The caller has already check that the option name is consistent with
6385  * the address family of the socket.
6386  */
6387 int
6388 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6389     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6390 {
6391         int             *i1 = (int *)invalp;
6392         int             error = 0;
6393         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
6394         struct ip_mreq_source *imreqp;
6395         struct group_source_req *gsreqp;
6396         in6_addr_t v6group, v6src;
6397         uint32_t ifindex;
6398         ipaddr_t ifaddr;
6399         boolean_t mcast_opt = B_TRUE;
6400         mcast_record_t fmode;
6401         ire_t *ire;
6402         boolean_t done = B_FALSE;
6403         int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6404             ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6405 
6406         switch (name) {
6407         case IP_BLOCK_SOURCE:
6408                 mcast_opt = B_FALSE;
6409                 /* FALLTHRU */
6410         case MCAST_BLOCK_SOURCE:
6411                 fmode = MODE_IS_EXCLUDE;
6412                 optfn = ip_opt_add_group;
6413                 break;
6414 
6415         case IP_UNBLOCK_SOURCE:
6416                 mcast_opt = B_FALSE;
6417                 /* FALLTHRU */
6418         case MCAST_UNBLOCK_SOURCE:
6419                 fmode = MODE_IS_EXCLUDE;
6420                 optfn = ip_opt_delete_group;
6421                 break;
6422 
6423         case IP_ADD_SOURCE_MEMBERSHIP:
6424                 mcast_opt = B_FALSE;
6425                 /* FALLTHRU */
6426         case MCAST_JOIN_SOURCE_GROUP:
6427                 fmode = MODE_IS_INCLUDE;
6428                 optfn = ip_opt_add_group;
6429                 break;
6430 
6431         case IP_DROP_SOURCE_MEMBERSHIP:
6432                 mcast_opt = B_FALSE;
6433                 /* FALLTHRU */
6434         case MCAST_LEAVE_SOURCE_GROUP:
6435                 fmode = MODE_IS_INCLUDE;
6436                 optfn = ip_opt_delete_group;
6437                 break;
6438         default:
6439                 ASSERT(0);
6440         }
6441 
6442         if (mcast_opt) {
6443                 gsreqp = (struct group_source_req *)i1;
6444                 ifindex = gsreqp->gsr_interface;
6445                 if (gsreqp->gsr_group.ss_family == AF_INET) {
6446                         struct sockaddr_in *s;
6447                         s = (struct sockaddr_in *)&gsreqp->gsr_group;
6448                         IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6449                         s = (struct sockaddr_in *)&gsreqp->gsr_source;
6450                         IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6451                 } else {
6452                         struct sockaddr_in6 *s6;
6453 
6454                         if (!inet6)
6455                                 return (EINVAL);        /* Not on INET socket */
6456 
6457                         s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6458                         v6group = s6->sin6_addr;
6459                         s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6460                         v6src = s6->sin6_addr;
6461                 }
6462                 ifaddr = INADDR_ANY;
6463         } else {
6464                 imreqp = (struct ip_mreq_source *)i1;
6465                 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6466                 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6467                 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6468                 ifindex = 0;
6469         }
6470 
6471         /*
6472          * Handle src being mapped INADDR_ANY by changing it to unspecified.
6473          */
6474         if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6475                 v6src = ipv6_all_zeros;
6476 
6477         /*
6478          * In the multirouting case, we need to replicate
6479          * the request as noted in the mcast cases above.
6480          */
6481         if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6482                 ipaddr_t group;
6483 
6484                 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6485 
6486                 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6487                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6488                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6489         } else {
6490                 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6491                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6492                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6493         }
6494         if (ire != NULL) {
6495                 if (ire->ire_flags & RTF_MULTIRT) {
6496                         error = ip_multirt_apply_membership(optfn, ire, connp,
6497                             checkonly, &v6group, fmode, &v6src);
6498                         done = B_TRUE;
6499                 }
6500                 ire_refrele(ire);
6501         }
6502         if (!done) {
6503                 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6504                     fmode, &v6src);
6505         }
6506         return (error);
6507 }
6508 
6509 /*
6510  * Given a destination address and a pointer to where to put the information
6511  * this routine fills in the mtuinfo.
6512  * The socket must be connected.
6513  * For sctp conn_faddr is the primary address.
6514  */
6515 int
6516 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6517 {
6518         uint32_t        pmtu = IP_MAXPACKET;
6519         uint_t          scopeid;
6520 
6521         if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6522                 return (-1);
6523 
6524         /* In case we never sent or called ip_set_destination_v4/v6 */
6525         if (ixa->ixa_ire != NULL)
6526                 pmtu = ip_get_pmtu(ixa);
6527 
6528         if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6529                 scopeid = ixa->ixa_scopeid;
6530         else
6531                 scopeid = 0;
6532 
6533         bzero(mtuinfo, sizeof (*mtuinfo));
6534         mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6535         mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6536         mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6537         mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6538         mtuinfo->ip6m_mtu = pmtu;
6539 
6540         return (sizeof (struct ip6_mtuinfo));
6541 }
6542 
6543 /*
6544  * When the src multihoming is changed from weak to [strong, preferred]
6545  * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6546  * and identify routes that were created by user-applications in the
6547  * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6548  * currently defined. These routes are then 'rebound', i.e., their ire_ill
6549  * is selected by finding an interface route for the gateway.
6550  */
6551 /* ARGSUSED */
6552 void
6553 ip_ire_rebind_walker(ire_t *ire, void *notused)
6554 {
6555         if (!ire->ire_unbound || ire->ire_ill != NULL)
6556                 return;
6557         ire_rebind(ire);
6558         ire_delete(ire);
6559 }
6560 
6561 /*
6562  * When the src multihoming is changed from  [strong, preferred] to weak,
6563  * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6564  * set any entries that were created by user-applications in the unbound state
6565  * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6566  */
6567 /* ARGSUSED */
6568 void
6569 ip_ire_unbind_walker(ire_t *ire, void *notused)
6570 {
6571         ire_t *new_ire;
6572 
6573         if (!ire->ire_unbound || ire->ire_ill == NULL)
6574                 return;
6575         if (ire->ire_ipversion == IPV6_VERSION) {
6576                 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6577                     &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6578                     ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6579         } else {
6580                 new_ire = ire_create((uchar_t *)&ire->ire_addr,
6581                     (uchar_t *)&ire->ire_mask,
6582                     (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6583                     ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6584         }
6585         if (new_ire == NULL)
6586                 return;
6587         new_ire->ire_unbound = B_TRUE;
6588         /*
6589          * The bound ire must first be deleted so that we don't return
6590          * the existing one on the attempt to add the unbound new_ire.
6591          */
6592         ire_delete(ire);
6593         new_ire = ire_add(new_ire);
6594         if (new_ire != NULL)
6595                 ire_refrele(new_ire);
6596 }
6597 
6598 /*
6599  * When the settings of ip*_strict_src_multihoming tunables are changed,
6600  * all cached routes need to be recomputed. This recomputation needs to be
6601  * done when going from weaker to stronger modes so that the cached ire
6602  * for the connection does not violate the current ip*_strict_src_multihoming
6603  * setting. It also needs to be done when going from stronger to weaker modes,
6604  * so that we fall back to matching on the longest-matching-route (as opposed
6605  * to a shorter match that may have been selected in the strong mode
6606  * to satisfy src_multihoming settings).
6607  *
6608  * The cached ixa_ire entires for all conn_t entries are marked as
6609  * "verify" so that they will be recomputed for the next packet.
6610  */
6611 void
6612 conn_ire_revalidate(conn_t *connp, void *arg)
6613 {
6614         boolean_t isv6 = (boolean_t)arg;
6615 
6616         if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6617             (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6618                 return;
6619         connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6620 }
6621 
6622 /*
6623  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6624  * When an ipf is passed here for the first time, if
6625  * we already have in-order fragments on the queue, we convert from the fast-
6626  * path reassembly scheme to the hard-case scheme.  From then on, additional
6627  * fragments are reassembled here.  We keep track of the start and end offsets
6628  * of each piece, and the number of holes in the chain.  When the hole count
6629  * goes to zero, we are done!
6630  *
6631  * The ipf_count will be updated to account for any mblk(s) added (pointed to
6632  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6633  * ipfb_count and ill_frag_count by the difference of ipf_count before and
6634  * after the call to ip_reassemble().
6635  */
6636 int
6637 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6638     size_t msg_len)
6639 {
6640         uint_t  end;
6641         mblk_t  *next_mp;
6642         mblk_t  *mp1;
6643         uint_t  offset;
6644         boolean_t incr_dups = B_TRUE;
6645         boolean_t offset_zero_seen = B_FALSE;
6646         boolean_t pkt_boundary_checked = B_FALSE;
6647 
6648         /* If start == 0 then ipf_nf_hdr_len has to be set. */
6649         ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6650 
6651         /* Add in byte count */
6652         ipf->ipf_count += msg_len;
6653         if (ipf->ipf_end) {
6654                 /*
6655                  * We were part way through in-order reassembly, but now there
6656                  * is a hole.  We walk through messages already queued, and
6657                  * mark them for hard case reassembly.  We know that up till
6658                  * now they were in order starting from offset zero.
6659                  */
6660                 offset = 0;
6661                 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6662                         IP_REASS_SET_START(mp1, offset);
6663                         if (offset == 0) {
6664                                 ASSERT(ipf->ipf_nf_hdr_len != 0);
6665                                 offset = -ipf->ipf_nf_hdr_len;
6666                         }
6667                         offset += mp1->b_wptr - mp1->b_rptr;
6668                         IP_REASS_SET_END(mp1, offset);
6669                 }
6670                 /* One hole at the end. */
6671                 ipf->ipf_hole_cnt = 1;
6672                 /* Brand it as a hard case, forever. */
6673                 ipf->ipf_end = 0;
6674         }
6675         /* Walk through all the new pieces. */
6676         do {
6677                 end = start + (mp->b_wptr - mp->b_rptr);
6678                 /*
6679                  * If start is 0, decrease 'end' only for the first mblk of
6680                  * the fragment. Otherwise 'end' can get wrong value in the
6681                  * second pass of the loop if first mblk is exactly the
6682                  * size of ipf_nf_hdr_len.
6683                  */
6684                 if (start == 0 && !offset_zero_seen) {
6685                         /* First segment */
6686                         ASSERT(ipf->ipf_nf_hdr_len != 0);
6687                         end -= ipf->ipf_nf_hdr_len;
6688                         offset_zero_seen = B_TRUE;
6689                 }
6690                 next_mp = mp->b_cont;
6691                 /*
6692                  * We are checking to see if there is any interesing data
6693                  * to process.  If there isn't and the mblk isn't the
6694                  * one which carries the unfragmentable header then we
6695                  * drop it.  It's possible to have just the unfragmentable
6696                  * header come through without any data.  That needs to be
6697                  * saved.
6698                  *
6699                  * If the assert at the top of this function holds then the
6700                  * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
6701                  * is infrequently traveled enough that the test is left in
6702                  * to protect against future code changes which break that
6703                  * invariant.
6704                  */
6705                 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6706                         /* Empty.  Blast it. */
6707                         IP_REASS_SET_START(mp, 0);
6708                         IP_REASS_SET_END(mp, 0);
6709                         /*
6710                          * If the ipf points to the mblk we are about to free,
6711                          * update ipf to point to the next mblk (or NULL
6712                          * if none).
6713                          */
6714                         if (ipf->ipf_mp->b_cont == mp)
6715                                 ipf->ipf_mp->b_cont = next_mp;
6716                         freeb(mp);
6717                         continue;
6718                 }
6719                 mp->b_cont = NULL;
6720                 IP_REASS_SET_START(mp, start);
6721                 IP_REASS_SET_END(mp, end);
6722                 if (!ipf->ipf_tail_mp) {
6723                         ipf->ipf_tail_mp = mp;
6724                         ipf->ipf_mp->b_cont = mp;
6725                         if (start == 0 || !more) {
6726                                 ipf->ipf_hole_cnt = 1;
6727                                 /*
6728                                  * if the first fragment comes in more than one
6729                                  * mblk, this loop will be executed for each
6730                                  * mblk. Need to adjust hole count so exiting
6731                                  * this routine will leave hole count at 1.
6732                                  */
6733                                 if (next_mp)
6734                                         ipf->ipf_hole_cnt++;
6735                         } else
6736                                 ipf->ipf_hole_cnt = 2;
6737                         continue;
6738                 } else if (ipf->ipf_last_frag_seen && !more &&
6739                     !pkt_boundary_checked) {
6740                         /*
6741                          * We check datagram boundary only if this fragment
6742                          * claims to be the last fragment and we have seen a
6743                          * last fragment in the past too. We do this only
6744                          * once for a given fragment.
6745                          *
6746                          * start cannot be 0 here as fragments with start=0
6747                          * and MF=0 gets handled as a complete packet. These
6748                          * fragments should not reach here.
6749                          */
6750 
6751                         if (start + msgdsize(mp) !=
6752                             IP_REASS_END(ipf->ipf_tail_mp)) {
6753                                 /*
6754                                  * We have two fragments both of which claim
6755                                  * to be the last fragment but gives conflicting
6756                                  * information about the whole datagram size.
6757                                  * Something fishy is going on. Drop the
6758                                  * fragment and free up the reassembly list.
6759                                  */
6760                                 return (IP_REASS_FAILED);
6761                         }
6762 
6763                         /*
6764                          * We shouldn't come to this code block again for this
6765                          * particular fragment.
6766                          */
6767                         pkt_boundary_checked = B_TRUE;
6768                 }
6769 
6770                 /* New stuff at or beyond tail? */
6771                 offset = IP_REASS_END(ipf->ipf_tail_mp);
6772                 if (start >= offset) {
6773                         if (ipf->ipf_last_frag_seen) {
6774                                 /* current fragment is beyond last fragment */
6775                                 return (IP_REASS_FAILED);
6776                         }
6777                         /* Link it on end. */
6778                         ipf->ipf_tail_mp->b_cont = mp;
6779                         ipf->ipf_tail_mp = mp;
6780                         if (more) {
6781                                 if (start != offset)
6782                                         ipf->ipf_hole_cnt++;
6783                         } else if (start == offset && next_mp == NULL)
6784                                         ipf->ipf_hole_cnt--;
6785                         continue;
6786                 }
6787                 mp1 = ipf->ipf_mp->b_cont;
6788                 offset = IP_REASS_START(mp1);
6789                 /* New stuff at the front? */
6790                 if (start < offset) {
6791                         if (start == 0) {
6792                                 if (end >= offset) {
6793                                         /* Nailed the hole at the begining. */
6794                                         ipf->ipf_hole_cnt--;
6795                                 }
6796                         } else if (end < offset) {
6797                                 /*
6798                                  * A hole, stuff, and a hole where there used
6799                                  * to be just a hole.
6800                                  */
6801                                 ipf->ipf_hole_cnt++;
6802                         }
6803                         mp->b_cont = mp1;
6804                         /* Check for overlap. */
6805                         while (end > offset) {
6806                                 if (end < IP_REASS_END(mp1)) {
6807                                         mp->b_wptr -= end - offset;
6808                                         IP_REASS_SET_END(mp, offset);
6809                                         BUMP_MIB(ill->ill_ip_mib,
6810                                             ipIfStatsReasmPartDups);
6811                                         break;
6812                                 }
6813                                 /* Did we cover another hole? */
6814                                 if ((mp1->b_cont &&
6815                                     IP_REASS_END(mp1) !=
6816                                     IP_REASS_START(mp1->b_cont) &&
6817                                     end >= IP_REASS_START(mp1->b_cont)) ||
6818                                     (!ipf->ipf_last_frag_seen && !more)) {
6819                                         ipf->ipf_hole_cnt--;
6820                                 }
6821                                 /* Clip out mp1. */
6822                                 if ((mp->b_cont = mp1->b_cont) == NULL) {
6823                                         /*
6824                                          * After clipping out mp1, this guy
6825                                          * is now hanging off the end.
6826                                          */
6827                                         ipf->ipf_tail_mp = mp;
6828                                 }
6829                                 IP_REASS_SET_START(mp1, 0);
6830                                 IP_REASS_SET_END(mp1, 0);
6831                                 /* Subtract byte count */
6832                                 ipf->ipf_count -= mp1->b_datap->db_lim -
6833                                     mp1->b_datap->db_base;
6834                                 freeb(mp1);
6835                                 BUMP_MIB(ill->ill_ip_mib,
6836                                     ipIfStatsReasmPartDups);
6837                                 mp1 = mp->b_cont;
6838                                 if (!mp1)
6839                                         break;
6840                                 offset = IP_REASS_START(mp1);
6841                         }
6842                         ipf->ipf_mp->b_cont = mp;
6843                         continue;
6844                 }
6845                 /*
6846                  * The new piece starts somewhere between the start of the head
6847                  * and before the end of the tail.
6848                  */
6849                 for (; mp1; mp1 = mp1->b_cont) {
6850                         offset = IP_REASS_END(mp1);
6851                         if (start < offset) {
6852                                 if (end <= offset) {
6853                                         /* Nothing new. */
6854                                         IP_REASS_SET_START(mp, 0);
6855                                         IP_REASS_SET_END(mp, 0);
6856                                         /* Subtract byte count */
6857                                         ipf->ipf_count -= mp->b_datap->db_lim -
6858                                             mp->b_datap->db_base;
6859                                         if (incr_dups) {
6860                                                 ipf->ipf_num_dups++;
6861                                                 incr_dups = B_FALSE;
6862                                         }
6863                                         freeb(mp);
6864                                         BUMP_MIB(ill->ill_ip_mib,
6865                                             ipIfStatsReasmDuplicates);
6866                                         break;
6867                                 }
6868                                 /*
6869                                  * Trim redundant stuff off beginning of new
6870                                  * piece.
6871                                  */
6872                                 IP_REASS_SET_START(mp, offset);
6873                                 mp->b_rptr += offset - start;
6874                                 BUMP_MIB(ill->ill_ip_mib,
6875                                     ipIfStatsReasmPartDups);
6876                                 start = offset;
6877                                 if (!mp1->b_cont) {
6878                                         /*
6879                                          * After trimming, this guy is now
6880                                          * hanging off the end.
6881                                          */
6882                                         mp1->b_cont = mp;
6883                                         ipf->ipf_tail_mp = mp;
6884                                         if (!more) {
6885                                                 ipf->ipf_hole_cnt--;
6886                                         }
6887                                         break;
6888                                 }
6889                         }
6890                         if (start >= IP_REASS_START(mp1->b_cont))
6891                                 continue;
6892                         /* Fill a hole */
6893                         if (start > offset)
6894                                 ipf->ipf_hole_cnt++;
6895                         mp->b_cont = mp1->b_cont;
6896                         mp1->b_cont = mp;
6897                         mp1 = mp->b_cont;
6898                         offset = IP_REASS_START(mp1);
6899                         if (end >= offset) {
6900                                 ipf->ipf_hole_cnt--;
6901                                 /* Check for overlap. */
6902                                 while (end > offset) {
6903                                         if (end < IP_REASS_END(mp1)) {
6904                                                 mp->b_wptr -= end - offset;
6905                                                 IP_REASS_SET_END(mp, offset);
6906                                                 /*
6907                                                  * TODO we might bump
6908                                                  * this up twice if there is
6909                                                  * overlap at both ends.
6910                                                  */
6911                                                 BUMP_MIB(ill->ill_ip_mib,
6912                                                     ipIfStatsReasmPartDups);
6913                                                 break;
6914                                         }
6915                                         /* Did we cover another hole? */
6916                                         if ((mp1->b_cont &&
6917                                             IP_REASS_END(mp1)
6918                                             != IP_REASS_START(mp1->b_cont) &&
6919                                             end >=
6920                                             IP_REASS_START(mp1->b_cont)) ||
6921                                             (!ipf->ipf_last_frag_seen &&
6922                                             !more)) {
6923                                                 ipf->ipf_hole_cnt--;
6924                                         }
6925                                         /* Clip out mp1. */
6926                                         if ((mp->b_cont = mp1->b_cont) ==
6927                                             NULL) {
6928                                                 /*
6929                                                  * After clipping out mp1,
6930                                                  * this guy is now hanging
6931                                                  * off the end.
6932                                                  */
6933                                                 ipf->ipf_tail_mp = mp;
6934                                         }
6935                                         IP_REASS_SET_START(mp1, 0);
6936                                         IP_REASS_SET_END(mp1, 0);
6937                                         /* Subtract byte count */
6938                                         ipf->ipf_count -=
6939                                             mp1->b_datap->db_lim -
6940                                             mp1->b_datap->db_base;
6941                                         freeb(mp1);
6942                                         BUMP_MIB(ill->ill_ip_mib,
6943                                             ipIfStatsReasmPartDups);
6944                                         mp1 = mp->b_cont;
6945                                         if (!mp1)
6946                                                 break;
6947                                         offset = IP_REASS_START(mp1);
6948                                 }
6949                         }
6950                         break;
6951                 }
6952         } while (start = end, mp = next_mp);
6953 
6954         /* Fragment just processed could be the last one. Remember this fact */
6955         if (!more)
6956                 ipf->ipf_last_frag_seen = B_TRUE;
6957 
6958         /* Still got holes? */
6959         if (ipf->ipf_hole_cnt)
6960                 return (IP_REASS_PARTIAL);
6961         /* Clean up overloaded fields to avoid upstream disasters. */
6962         for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6963                 IP_REASS_SET_START(mp1, 0);
6964                 IP_REASS_SET_END(mp1, 0);
6965         }
6966         return (IP_REASS_COMPLETE);
6967 }
6968 
6969 /*
6970  * Fragmentation reassembly.  Each ILL has a hash table for
6971  * queuing packets undergoing reassembly for all IPIFs
6972  * associated with the ILL.  The hash is based on the packet
6973  * IP ident field.  The ILL frag hash table was allocated
6974  * as a timer block at the time the ILL was created.  Whenever
6975  * there is anything on the reassembly queue, the timer will
6976  * be running.  Returns the reassembled packet if reassembly completes.
6977  */
6978 mblk_t *
6979 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
6980 {
6981         uint32_t        frag_offset_flags;
6982         mblk_t          *t_mp;
6983         ipaddr_t        dst;
6984         uint8_t         proto = ipha->ipha_protocol;
6985         uint32_t        sum_val;
6986         uint16_t        sum_flags;
6987         ipf_t           *ipf;
6988         ipf_t           **ipfp;
6989         ipfb_t          *ipfb;
6990         uint16_t        ident;
6991         uint32_t        offset;
6992         ipaddr_t        src;
6993         uint_t          hdr_length;
6994         uint32_t        end;
6995         mblk_t          *mp1;
6996         mblk_t          *tail_mp;
6997         size_t          count;
6998         size_t          msg_len;
6999         uint8_t         ecn_info = 0;
7000         uint32_t        packet_size;
7001         boolean_t       pruned = B_FALSE;
7002         ill_t           *ill = ira->ira_ill;
7003         ip_stack_t      *ipst = ill->ill_ipst;
7004 
7005         /*
7006          * Drop the fragmented as early as possible, if
7007          * we don't have resource(s) to re-assemble.
7008          */
7009         if (ipst->ips_ip_reass_queue_bytes == 0) {
7010                 freemsg(mp);
7011                 return (NULL);
7012         }
7013 
7014         /* Check for fragmentation offset; return if there's none */
7015         if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7016             (IPH_MF | IPH_OFFSET)) == 0)
7017                 return (mp);
7018 
7019         /*
7020          * We utilize hardware computed checksum info only for UDP since
7021          * IP fragmentation is a normal occurrence for the protocol.  In
7022          * addition, checksum offload support for IP fragments carrying
7023          * UDP payload is commonly implemented across network adapters.
7024          */
7025         ASSERT(ira->ira_rill != NULL);
7026         if (proto == IPPROTO_UDP && dohwcksum &&
7027             ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7028             (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7029                 mblk_t *mp1 = mp->b_cont;
7030                 int32_t len;
7031 
7032                 /* Record checksum information from the packet */
7033                 sum_val = (uint32_t)DB_CKSUM16(mp);
7034                 sum_flags = DB_CKSUMFLAGS(mp);
7035 
7036                 /* IP payload offset from beginning of mblk */
7037                 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7038 
7039                 if ((sum_flags & HCK_PARTIALCKSUM) &&
7040                     (mp1 == NULL || mp1->b_cont == NULL) &&
7041                     offset >= DB_CKSUMSTART(mp) &&
7042                     ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7043                         uint32_t adj;
7044                         /*
7045                          * Partial checksum has been calculated by hardware
7046                          * and attached to the packet; in addition, any
7047                          * prepended extraneous data is even byte aligned.
7048                          * If any such data exists, we adjust the checksum;
7049                          * this would also handle any postpended data.
7050                          */
7051                         IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7052                             mp, mp1, len, adj);
7053 
7054                         /* One's complement subtract extraneous checksum */
7055                         if (adj >= sum_val)
7056                                 sum_val = ~(adj - sum_val) & 0xFFFF;
7057                         else
7058                                 sum_val -= adj;
7059                 }
7060         } else {
7061                 sum_val = 0;
7062                 sum_flags = 0;
7063         }
7064 
7065         /* Clear hardware checksumming flag */
7066         DB_CKSUMFLAGS(mp) = 0;
7067 
7068         ident = ipha->ipha_ident;
7069         offset = (frag_offset_flags << 3) & 0xFFFF;
7070         src = ipha->ipha_src;
7071         dst = ipha->ipha_dst;
7072         hdr_length = IPH_HDR_LENGTH(ipha);
7073         end = ntohs(ipha->ipha_length) - hdr_length;
7074 
7075         /* If end == 0 then we have a packet with no data, so just free it */
7076         if (end == 0) {
7077                 freemsg(mp);
7078                 return (NULL);
7079         }
7080 
7081         /* Record the ECN field info. */
7082         ecn_info = (ipha->ipha_type_of_service & 0x3);
7083         if (offset != 0) {
7084                 /*
7085                  * If this isn't the first piece, strip the header, and
7086                  * add the offset to the end value.
7087                  */
7088                 mp->b_rptr += hdr_length;
7089                 end += offset;
7090         }
7091 
7092         /* Handle vnic loopback of fragments */
7093         if (mp->b_datap->db_ref > 2)
7094                 msg_len = 0;
7095         else
7096                 msg_len = MBLKSIZE(mp);
7097 
7098         tail_mp = mp;
7099         while (tail_mp->b_cont != NULL) {
7100                 tail_mp = tail_mp->b_cont;
7101                 if (tail_mp->b_datap->db_ref <= 2)
7102                         msg_len += MBLKSIZE(tail_mp);
7103         }
7104 
7105         /* If the reassembly list for this ILL will get too big, prune it */
7106         if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7107             ipst->ips_ip_reass_queue_bytes) {
7108                 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7109                     uint_t, ill->ill_frag_count,
7110                     uint_t, ipst->ips_ip_reass_queue_bytes);
7111                 ill_frag_prune(ill,
7112                     (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7113                     (ipst->ips_ip_reass_queue_bytes - msg_len));
7114                 pruned = B_TRUE;
7115         }
7116 
7117         ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7118         mutex_enter(&ipfb->ipfb_lock);
7119 
7120         ipfp = &ipfb->ipfb_ipf;
7121         /* Try to find an existing fragment queue for this packet. */
7122         for (;;) {
7123                 ipf = ipfp[0];
7124                 if (ipf != NULL) {
7125                         /*
7126                          * It has to match on ident and src/dst address.
7127                          */
7128                         if (ipf->ipf_ident == ident &&
7129                             ipf->ipf_src == src &&
7130                             ipf->ipf_dst == dst &&
7131                             ipf->ipf_protocol == proto) {
7132                                 /*
7133                                  * If we have received too many
7134                                  * duplicate fragments for this packet
7135                                  * free it.
7136                                  */
7137                                 if (ipf->ipf_num_dups > ip_max_frag_dups) {
7138                                         ill_frag_free_pkts(ill, ipfb, ipf, 1);
7139                                         freemsg(mp);
7140                                         mutex_exit(&ipfb->ipfb_lock);
7141                                         return (NULL);
7142                                 }
7143                                 /* Found it. */
7144                                 break;
7145                         }
7146                         ipfp = &ipf->ipf_hash_next;
7147                         continue;
7148                 }
7149 
7150                 /*
7151                  * If we pruned the list, do we want to store this new
7152                  * fragment?. We apply an optimization here based on the
7153                  * fact that most fragments will be received in order.
7154                  * So if the offset of this incoming fragment is zero,
7155                  * it is the first fragment of a new packet. We will
7156                  * keep it.  Otherwise drop the fragment, as we have
7157                  * probably pruned the packet already (since the
7158                  * packet cannot be found).
7159                  */
7160                 if (pruned && offset != 0) {
7161                         mutex_exit(&ipfb->ipfb_lock);
7162                         freemsg(mp);
7163                         return (NULL);
7164                 }
7165 
7166                 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
7167                         /*
7168                          * Too many fragmented packets in this hash
7169                          * bucket. Free the oldest.
7170                          */
7171                         ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7172                 }
7173 
7174                 /* New guy.  Allocate a frag message. */
7175                 mp1 = allocb(sizeof (*ipf), BPRI_MED);
7176                 if (mp1 == NULL) {
7177                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7178                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7179                         freemsg(mp);
7180 reass_done:
7181                         mutex_exit(&ipfb->ipfb_lock);
7182                         return (NULL);
7183                 }
7184 
7185                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7186                 mp1->b_cont = mp;
7187 
7188                 /* Initialize the fragment header. */
7189                 ipf = (ipf_t *)mp1->b_rptr;
7190                 ipf->ipf_mp = mp1;
7191                 ipf->ipf_ptphn = ipfp;
7192                 ipfp[0] = ipf;
7193                 ipf->ipf_hash_next = NULL;
7194                 ipf->ipf_ident = ident;
7195                 ipf->ipf_protocol = proto;
7196                 ipf->ipf_src = src;
7197                 ipf->ipf_dst = dst;
7198                 ipf->ipf_nf_hdr_len = 0;
7199                 /* Record reassembly start time. */
7200                 ipf->ipf_timestamp = gethrestime_sec();
7201                 /* Record ipf generation and account for frag header */
7202                 ipf->ipf_gen = ill->ill_ipf_gen++;
7203                 ipf->ipf_count = MBLKSIZE(mp1);
7204                 ipf->ipf_last_frag_seen = B_FALSE;
7205                 ipf->ipf_ecn = ecn_info;
7206                 ipf->ipf_num_dups = 0;
7207                 ipfb->ipfb_frag_pkts++;
7208                 ipf->ipf_checksum = 0;
7209                 ipf->ipf_checksum_flags = 0;
7210 
7211                 /* Store checksum value in fragment header */
7212                 if (sum_flags != 0) {
7213                         sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7214                         sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7215                         ipf->ipf_checksum = sum_val;
7216                         ipf->ipf_checksum_flags = sum_flags;
7217                 }
7218 
7219                 /*
7220                  * We handle reassembly two ways.  In the easy case,
7221                  * where all the fragments show up in order, we do
7222                  * minimal bookkeeping, and just clip new pieces on
7223                  * the end.  If we ever see a hole, then we go off
7224                  * to ip_reassemble which has to mark the pieces and
7225                  * keep track of the number of holes, etc.  Obviously,
7226                  * the point of having both mechanisms is so we can
7227                  * handle the easy case as efficiently as possible.
7228                  */
7229                 if (offset == 0) {
7230                         /* Easy case, in-order reassembly so far. */
7231                         ipf->ipf_count += msg_len;
7232                         ipf->ipf_tail_mp = tail_mp;
7233                         /*
7234                          * Keep track of next expected offset in
7235                          * ipf_end.
7236                          */
7237                         ipf->ipf_end = end;
7238                         ipf->ipf_nf_hdr_len = hdr_length;
7239                 } else {
7240                         /* Hard case, hole at the beginning. */
7241                         ipf->ipf_tail_mp = NULL;
7242                         /*
7243                          * ipf_end == 0 means that we have given up
7244                          * on easy reassembly.
7245                          */
7246                         ipf->ipf_end = 0;
7247 
7248                         /* Forget checksum offload from now on */
7249                         ipf->ipf_checksum_flags = 0;
7250 
7251                         /*
7252                          * ipf_hole_cnt is set by ip_reassemble.
7253                          * ipf_count is updated by ip_reassemble.
7254                          * No need to check for return value here
7255                          * as we don't expect reassembly to complete
7256                          * or fail for the first fragment itself.
7257                          */
7258                         (void) ip_reassemble(mp, ipf,
7259                             (frag_offset_flags & IPH_OFFSET) << 3,
7260                             (frag_offset_flags & IPH_MF), ill, msg_len);
7261                 }
7262                 /* Update per ipfb and ill byte counts */
7263                 ipfb->ipfb_count += ipf->ipf_count;
7264                 ASSERT(ipfb->ipfb_count > 0);     /* Wraparound */
7265                 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7266                 /* If the frag timer wasn't already going, start it. */
7267                 mutex_enter(&ill->ill_lock);
7268                 ill_frag_timer_start(ill);
7269                 mutex_exit(&ill->ill_lock);
7270                 goto reass_done;
7271         }
7272 
7273         /*
7274          * If the packet's flag has changed (it could be coming up
7275          * from an interface different than the previous, therefore
7276          * possibly different checksum capability), then forget about
7277          * any stored checksum states.  Otherwise add the value to
7278          * the existing one stored in the fragment header.
7279          */
7280         if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7281                 sum_val += ipf->ipf_checksum;
7282                 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7283                 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7284                 ipf->ipf_checksum = sum_val;
7285         } else if (ipf->ipf_checksum_flags != 0) {
7286                 /* Forget checksum offload from now on */
7287                 ipf->ipf_checksum_flags = 0;
7288         }
7289 
7290         /*
7291          * We have a new piece of a datagram which is already being
7292          * reassembled.  Update the ECN info if all IP fragments
7293          * are ECN capable.  If there is one which is not, clear
7294          * all the info.  If there is at least one which has CE
7295          * code point, IP needs to report that up to transport.
7296          */
7297         if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7298                 if (ecn_info == IPH_ECN_CE)
7299                         ipf->ipf_ecn = IPH_ECN_CE;
7300         } else {
7301                 ipf->ipf_ecn = IPH_ECN_NECT;
7302         }
7303         if (offset && ipf->ipf_end == offset) {
7304                 /* The new fragment fits at the end */
7305                 ipf->ipf_tail_mp->b_cont = mp;
7306                 /* Update the byte count */
7307                 ipf->ipf_count += msg_len;
7308                 /* Update per ipfb and ill byte counts */
7309                 ipfb->ipfb_count += msg_len;
7310                 ASSERT(ipfb->ipfb_count > 0);     /* Wraparound */
7311                 atomic_add_32(&ill->ill_frag_count, msg_len);
7312                 if (frag_offset_flags & IPH_MF) {
7313                         /* More to come. */
7314                         ipf->ipf_end = end;
7315                         ipf->ipf_tail_mp = tail_mp;
7316                         goto reass_done;
7317                 }
7318         } else {
7319                 /* Go do the hard cases. */
7320                 int ret;
7321 
7322                 if (offset == 0)
7323                         ipf->ipf_nf_hdr_len = hdr_length;
7324 
7325                 /* Save current byte count */
7326                 count = ipf->ipf_count;
7327                 ret = ip_reassemble(mp, ipf,
7328                     (frag_offset_flags & IPH_OFFSET) << 3,
7329                     (frag_offset_flags & IPH_MF), ill, msg_len);
7330                 /* Count of bytes added and subtracted (freeb()ed) */
7331                 count = ipf->ipf_count - count;
7332                 if (count) {
7333                         /* Update per ipfb and ill byte counts */
7334                         ipfb->ipfb_count += count;
7335                         ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7336                         atomic_add_32(&ill->ill_frag_count, count);
7337                 }
7338                 if (ret == IP_REASS_PARTIAL) {
7339                         goto reass_done;
7340                 } else if (ret == IP_REASS_FAILED) {
7341                         /* Reassembly failed. Free up all resources */
7342                         ill_frag_free_pkts(ill, ipfb, ipf, 1);
7343                         for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7344                                 IP_REASS_SET_START(t_mp, 0);
7345                                 IP_REASS_SET_END(t_mp, 0);
7346                         }
7347                         freemsg(mp);
7348                         goto reass_done;
7349                 }
7350                 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7351         }
7352         /*
7353          * We have completed reassembly.  Unhook the frag header from
7354          * the reassembly list.
7355          *
7356          * Before we free the frag header, record the ECN info
7357          * to report back to the transport.
7358          */
7359         ecn_info = ipf->ipf_ecn;
7360         BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7361         ipfp = ipf->ipf_ptphn;
7362 
7363         /* We need to supply these to caller */
7364         if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7365                 sum_val = ipf->ipf_checksum;
7366         else
7367                 sum_val = 0;
7368 
7369         mp1 = ipf->ipf_mp;
7370         count = ipf->ipf_count;
7371         ipf = ipf->ipf_hash_next;
7372         if (ipf != NULL)
7373                 ipf->ipf_ptphn = ipfp;
7374         ipfp[0] = ipf;
7375         atomic_add_32(&ill->ill_frag_count, -count);
7376         ASSERT(ipfb->ipfb_count >= count);
7377         ipfb->ipfb_count -= count;
7378         ipfb->ipfb_frag_pkts--;
7379         mutex_exit(&ipfb->ipfb_lock);
7380         /* Ditch the frag header. */
7381         mp = mp1->b_cont;
7382 
7383         freeb(mp1);
7384 
7385         /* Restore original IP length in header. */
7386         packet_size = (uint32_t)msgdsize(mp);
7387         if (packet_size > IP_MAXPACKET) {
7388                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7389                 ip_drop_input("Reassembled packet too large", mp, ill);
7390                 freemsg(mp);
7391                 return (NULL);
7392         }
7393 
7394         if (DB_REF(mp) > 1) {
7395                 mblk_t *mp2 = copymsg(mp);
7396 
7397                 if (mp2 == NULL) {
7398                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7399                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7400                         freemsg(mp);
7401                         return (NULL);
7402                 }
7403                 freemsg(mp);
7404                 mp = mp2;
7405         }
7406         ipha = (ipha_t *)mp->b_rptr;
7407 
7408         ipha->ipha_length = htons((uint16_t)packet_size);
7409         /* We're now complete, zip the frag state */
7410         ipha->ipha_fragment_offset_and_flags = 0;
7411         /* Record the ECN info. */
7412         ipha->ipha_type_of_service &= 0xFC;
7413         ipha->ipha_type_of_service |= ecn_info;
7414 
7415         /* Update the receive attributes */
7416         ira->ira_pktlen = packet_size;
7417         ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7418 
7419         /* Reassembly is successful; set checksum information in packet */
7420         DB_CKSUM16(mp) = (uint16_t)sum_val;
7421         DB_CKSUMFLAGS(mp) = sum_flags;
7422         DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7423 
7424         return (mp);
7425 }
7426 
7427 /*
7428  * Pullup function that should be used for IP input in order to
7429  * ensure we do not loose the L2 source address; we need the l2 source
7430  * address for IP_RECVSLLA and for ndp_input.
7431  *
7432  * We return either NULL or b_rptr.
7433  */
7434 void *
7435 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7436 {
7437         ill_t           *ill = ira->ira_ill;
7438 
7439         if (ip_rput_pullups++ == 0) {
7440                 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7441                     "ip_pullup: %s forced us to "
7442                     " pullup pkt, hdr len %ld, hdr addr %p",
7443                     ill->ill_name, len, (void *)mp->b_rptr);
7444         }
7445         if (!(ira->ira_flags & IRAF_L2SRC_SET))
7446                 ip_setl2src(mp, ira, ira->ira_rill);
7447         ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7448         if (!pullupmsg(mp, len))
7449                 return (NULL);
7450         else
7451                 return (mp->b_rptr);
7452 }
7453 
7454 /*
7455  * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7456  * When called from the ULP ira_rill will be NULL hence the caller has to
7457  * pass in the ill.
7458  */
7459 /* ARGSUSED */
7460 void
7461 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7462 {
7463         const uchar_t *addr;
7464         int alen;
7465 
7466         if (ira->ira_flags & IRAF_L2SRC_SET)
7467                 return;
7468 
7469         ASSERT(ill != NULL);
7470         alen = ill->ill_phys_addr_length;
7471         ASSERT(alen <= sizeof (ira->ira_l2src));
7472         if (ira->ira_mhip != NULL &&
7473             (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7474                 bcopy(addr, ira->ira_l2src, alen);
7475         } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7476             (addr = ill->ill_phys_addr) != NULL) {
7477                 bcopy(addr, ira->ira_l2src, alen);
7478         } else {
7479                 bzero(ira->ira_l2src, alen);
7480         }
7481         ira->ira_flags |= IRAF_L2SRC_SET;
7482 }
7483 
7484 /*
7485  * check ip header length and align it.
7486  */
7487 mblk_t *
7488 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7489 {
7490         ill_t   *ill = ira->ira_ill;
7491         ssize_t len;
7492 
7493         len = MBLKL(mp);
7494 
7495         if (!OK_32PTR(mp->b_rptr))
7496                 IP_STAT(ill->ill_ipst, ip_notaligned);
7497         else
7498                 IP_STAT(ill->ill_ipst, ip_recv_pullup);
7499 
7500         /* Guard against bogus device drivers */
7501         if (len < 0) {
7502                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7503                 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7504                 freemsg(mp);
7505                 return (NULL);
7506         }
7507 
7508         if (len == 0) {
7509                 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7510                 mblk_t *mp1 = mp->b_cont;
7511 
7512                 if (!(ira->ira_flags & IRAF_L2SRC_SET))
7513                         ip_setl2src(mp, ira, ira->ira_rill);
7514                 ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7515 
7516                 freeb(mp);
7517                 mp = mp1;
7518                 if (mp == NULL)
7519                         return (NULL);
7520 
7521                 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7522                         return (mp);
7523         }
7524         if (ip_pullup(mp, min_size, ira) == NULL) {
7525                 if (msgdsize(mp) < min_size) {
7526                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7527                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7528                 } else {
7529                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7530                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7531                 }
7532                 freemsg(mp);
7533                 return (NULL);
7534         }
7535         return (mp);
7536 }
7537 
7538 /*
7539  * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7540  */
7541 mblk_t *
7542 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len,
7543     uint_t min_size, ip_recv_attr_t *ira)
7544 {
7545         ill_t   *ill = ira->ira_ill;
7546 
7547         /*
7548          * Make sure we have data length consistent
7549          * with the IP header.
7550          */
7551         if (mp->b_cont == NULL) {
7552                 /* pkt_len is based on ipha_len, not the mblk length */
7553                 if (pkt_len < min_size) {
7554                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7555                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7556                         freemsg(mp);
7557                         return (NULL);
7558                 }
7559                 if (len < 0) {
7560                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7561                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7562                         freemsg(mp);
7563                         return (NULL);
7564                 }
7565                 /* Drop any pad */
7566                 mp->b_wptr = rptr + pkt_len;
7567         } else if ((len += msgdsize(mp->b_cont)) != 0) {
7568                 ASSERT(pkt_len >= min_size);
7569                 if (pkt_len < min_size) {
7570                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7571                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7572                         freemsg(mp);
7573                         return (NULL);
7574                 }
7575                 if (len < 0) {
7576                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7577                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7578                         freemsg(mp);
7579                         return (NULL);
7580                 }
7581                 /* Drop any pad */
7582                 (void) adjmsg(mp, -len);
7583                 /*
7584                  * adjmsg may have freed an mblk from the chain, hence
7585                  * invalidate any hw checksum here. This will force IP to
7586                  * calculate the checksum in sw, but only for this packet.
7587                  */
7588                 DB_CKSUMFLAGS(mp) = 0;
7589                 IP_STAT(ill->ill_ipst, ip_multimblk);
7590         }
7591         return (mp);
7592 }
7593 
7594 /*
7595  * Check that the IPv4 opt_len is consistent with the packet and pullup
7596  * the options.
7597  */
7598 mblk_t *
7599 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7600     ip_recv_attr_t *ira)
7601 {
7602         ill_t   *ill = ira->ira_ill;
7603         ssize_t len;
7604 
7605         /* Assume no IPv6 packets arrive over the IPv4 queue */
7606         if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7607                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7608                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7609                 ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7610                 freemsg(mp);
7611                 return (NULL);
7612         }
7613 
7614         if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7615                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7616                 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7617                 freemsg(mp);
7618                 return (NULL);
7619         }
7620         /*
7621          * Recompute complete header length and make sure we
7622          * have access to all of it.
7623          */
7624         len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7625         if (len > (mp->b_wptr - mp->b_rptr)) {
7626                 if (len > pkt_len) {
7627                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7628                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7629                         freemsg(mp);
7630                         return (NULL);
7631                 }
7632                 if (ip_pullup(mp, len, ira) == NULL) {
7633                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7634                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7635                         freemsg(mp);
7636                         return (NULL);
7637                 }
7638         }
7639         return (mp);
7640 }
7641 
7642 /*
7643  * Returns a new ire, or the same ire, or NULL.
7644  * If a different IRE is returned, then it is held; the caller
7645  * needs to release it.
7646  * In no case is there any hold/release on the ire argument.
7647  */
7648 ire_t *
7649 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7650 {
7651         ire_t           *new_ire;
7652         ill_t           *ire_ill;
7653         uint_t          ifindex;
7654         ip_stack_t      *ipst = ill->ill_ipst;
7655         boolean_t       strict_check = B_FALSE;
7656 
7657         /*
7658          * IPMP common case: if IRE and ILL are in the same group, there's no
7659          * issue (e.g. packet received on an underlying interface matched an
7660          * IRE_LOCAL on its associated group interface).
7661          */
7662         ASSERT(ire->ire_ill != NULL);
7663         if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7664                 return (ire);
7665 
7666         /*
7667          * Do another ire lookup here, using the ingress ill, to see if the
7668          * interface is in a usesrc group.
7669          * As long as the ills belong to the same group, we don't consider
7670          * them to be arriving on the wrong interface. Thus, if the switch
7671          * is doing inbound load spreading, we won't drop packets when the
7672          * ip*_strict_dst_multihoming switch is on.
7673          * We also need to check for IPIF_UNNUMBERED point2point interfaces
7674          * where the local address may not be unique. In this case we were
7675          * at the mercy of the initial ire lookup and the IRE_LOCAL it
7676          * actually returned. The new lookup, which is more specific, should
7677          * only find the IRE_LOCAL associated with the ingress ill if one
7678          * exists.
7679          */
7680         if (ire->ire_ipversion == IPV4_VERSION) {
7681                 if (ipst->ips_ip_strict_dst_multihoming)
7682                         strict_check = B_TRUE;
7683                 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7684                     IRE_LOCAL, ill, ALL_ZONES, NULL,
7685                     (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7686         } else {
7687                 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7688                 if (ipst->ips_ipv6_strict_dst_multihoming)
7689                         strict_check = B_TRUE;
7690                 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7691                     IRE_LOCAL, ill, ALL_ZONES, NULL,
7692                     (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7693         }
7694         /*
7695          * If the same ire that was returned in ip_input() is found then this
7696          * is an indication that usesrc groups are in use. The packet
7697          * arrived on a different ill in the group than the one associated with
7698          * the destination address.  If a different ire was found then the same
7699          * IP address must be hosted on multiple ills. This is possible with
7700          * unnumbered point2point interfaces. We switch to use this new ire in
7701          * order to have accurate interface statistics.
7702          */
7703         if (new_ire != NULL) {
7704                 /* Note: held in one case but not the other? Caller handles */
7705                 if (new_ire != ire)
7706                         return (new_ire);
7707                 /* Unchanged */
7708                 ire_refrele(new_ire);
7709                 return (ire);
7710         }
7711 
7712         /*
7713          * Chase pointers once and store locally.
7714          */
7715         ASSERT(ire->ire_ill != NULL);
7716         ire_ill = ire->ire_ill;
7717         ifindex = ill->ill_usesrc_ifindex;
7718 
7719         /*
7720          * Check if it's a legal address on the 'usesrc' interface.
7721          * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7722          * can just check phyint_ifindex.
7723          */
7724         if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7725                 return (ire);
7726         }
7727 
7728         /*
7729          * If the ip*_strict_dst_multihoming switch is on then we can
7730          * only accept this packet if the interface is marked as routing.
7731          */
7732         if (!(strict_check))
7733                 return (ire);
7734 
7735         if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7736                 return (ire);
7737         }
7738         return (NULL);
7739 }
7740 
7741 /*
7742  * This function is used to construct a mac_header_info_s from a
7743  * DL_UNITDATA_IND message.
7744  * The address fields in the mhi structure points into the message,
7745  * thus the caller can't use those fields after freeing the message.
7746  *
7747  * We determine whether the packet received is a non-unicast packet
7748  * and in doing so, determine whether or not it is broadcast vs multicast.
7749  * For it to be a broadcast packet, we must have the appropriate mblk_t
7750  * hanging off the ill_t.  If this is either not present or doesn't match
7751  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7752  * to be multicast.  Thus NICs that have no broadcast address (or no
7753  * capability for one, such as point to point links) cannot return as
7754  * the packet being broadcast.
7755  */
7756 void
7757 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7758 {
7759         dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7760         mblk_t *bmp;
7761         uint_t extra_offset;
7762 
7763         bzero(mhip, sizeof (struct mac_header_info_s));
7764 
7765         mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7766 
7767         if (ill->ill_sap_length < 0)
7768                 extra_offset = 0;
7769         else
7770                 extra_offset = ill->ill_sap_length;
7771 
7772         mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7773             extra_offset;
7774         mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7775             extra_offset;
7776 
7777         if (!ind->dl_group_address)
7778                 return;
7779 
7780         /* Multicast or broadcast */
7781         mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7782 
7783         if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7784             ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7785             (bmp = ill->ill_bcast_mp) != NULL) {
7786                 dl_unitdata_req_t *dlur;
7787                 uint8_t *bphys_addr;
7788 
7789                 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7790                 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7791                     extra_offset;
7792 
7793                 if (bcmp(mhip->mhi_daddr, bphys_addr,
7794                     ind->dl_dest_addr_length) == 0)
7795                         mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7796         }
7797 }
7798 
7799 /*
7800  * This function is used to construct a mac_header_info_s from a
7801  * M_DATA fastpath message from a DLPI driver.
7802  * The address fields in the mhi structure points into the message,
7803  * thus the caller can't use those fields after freeing the message.
7804  *
7805  * We determine whether the packet received is a non-unicast packet
7806  * and in doing so, determine whether or not it is broadcast vs multicast.
7807  * For it to be a broadcast packet, we must have the appropriate mblk_t
7808  * hanging off the ill_t.  If this is either not present or doesn't match
7809  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7810  * to be multicast.  Thus NICs that have no broadcast address (or no
7811  * capability for one, such as point to point links) cannot return as
7812  * the packet being broadcast.
7813  */
7814 void
7815 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7816 {
7817         mblk_t *bmp;
7818         struct ether_header *pether;
7819 
7820         bzero(mhip, sizeof (struct mac_header_info_s));
7821 
7822         mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7823 
7824         pether = (struct ether_header *)((char *)mp->b_rptr
7825             - sizeof (struct ether_header));
7826 
7827         /*
7828          * Make sure the interface is an ethernet type, since we don't
7829          * know the header format for anything but Ethernet. Also make
7830          * sure we are pointing correctly above db_base.
7831          */
7832         if (ill->ill_type != IFT_ETHER)
7833                 return;
7834 
7835 retry:
7836         if ((uchar_t *)pether < mp->b_datap->db_base)
7837                 return;
7838 
7839         /* Is there a VLAN tag? */
7840         if (ill->ill_isv6) {
7841                 if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7842                         pether = (struct ether_header *)((char *)pether - 4);
7843                         goto retry;
7844                 }
7845         } else {
7846                 if (pether->ether_type != htons(ETHERTYPE_IP)) {
7847                         pether = (struct ether_header *)((char *)pether - 4);
7848                         goto retry;
7849                 }
7850         }
7851         mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7852         mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7853 
7854         if (!(mhip->mhi_daddr[0] & 0x01))
7855                 return;
7856 
7857         /* Multicast or broadcast */
7858         mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7859 
7860         if ((bmp = ill->ill_bcast_mp) != NULL) {
7861                 dl_unitdata_req_t *dlur;
7862                 uint8_t *bphys_addr;
7863                 uint_t  addrlen;
7864 
7865                 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7866                 addrlen = dlur->dl_dest_addr_length;
7867                 if (ill->ill_sap_length < 0) {
7868                         bphys_addr = (uchar_t *)dlur +
7869                             dlur->dl_dest_addr_offset;
7870                         addrlen += ill->ill_sap_length;
7871                 } else {
7872                         bphys_addr = (uchar_t *)dlur +
7873                             dlur->dl_dest_addr_offset +
7874                             ill->ill_sap_length;
7875                         addrlen -= ill->ill_sap_length;
7876                 }
7877                 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7878                         mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7879         }
7880 }
7881 
7882 /*
7883  * Handle anything but M_DATA messages
7884  * We see the DL_UNITDATA_IND which are part
7885  * of the data path, and also the other messages from the driver.
7886  */
7887 void
7888 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7889 {
7890         mblk_t          *first_mp;
7891         struct iocblk   *iocp;
7892         struct mac_header_info_s mhi;
7893 
7894         switch (DB_TYPE(mp)) {
7895         case M_PROTO:
7896         case M_PCPROTO: {
7897                 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7898                     DL_UNITDATA_IND) {
7899                         /* Go handle anything other than data elsewhere. */
7900                         ip_rput_dlpi(ill, mp);
7901                         return;
7902                 }
7903 
7904                 first_mp = mp;
7905                 mp = first_mp->b_cont;
7906                 first_mp->b_cont = NULL;
7907 
7908                 if (mp == NULL) {
7909                         freeb(first_mp);
7910                         return;
7911                 }
7912                 ip_dlur_to_mhi(ill, first_mp, &mhi);
7913                 if (ill->ill_isv6)
7914                         ip_input_v6(ill, NULL, mp, &mhi);
7915                 else
7916                         ip_input(ill, NULL, mp, &mhi);
7917 
7918                 /* Ditch the DLPI header. */
7919                 freeb(first_mp);
7920                 return;
7921         }
7922         case M_IOCACK:
7923                 iocp = (struct iocblk *)mp->b_rptr;
7924                 switch (iocp->ioc_cmd) {
7925                 case DL_IOC_HDR_INFO:
7926                         ill_fastpath_ack(ill, mp);
7927                         return;
7928                 default:
7929                         putnext(ill->ill_rq, mp);
7930                         return;
7931                 }
7932                 /* FALLTHRU */
7933         case M_ERROR:
7934         case M_HANGUP:
7935                 mutex_enter(&ill->ill_lock);
7936                 if (ill->ill_state_flags & ILL_CONDEMNED) {
7937                         mutex_exit(&ill->ill_lock);
7938                         freemsg(mp);
7939                         return;
7940                 }
7941                 ill_refhold_locked(ill);
7942                 mutex_exit(&ill->ill_lock);
7943                 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7944                     B_FALSE);
7945                 return;
7946         case M_CTL:
7947                 putnext(ill->ill_rq, mp);
7948                 return;
7949         case M_IOCNAK:
7950                 ip1dbg(("got iocnak "));
7951                 iocp = (struct iocblk *)mp->b_rptr;
7952                 switch (iocp->ioc_cmd) {
7953                 case DL_IOC_HDR_INFO:
7954                         ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7955                         return;
7956                 default:
7957                         break;
7958                 }
7959                 /* FALLTHRU */
7960         default:
7961                 putnext(ill->ill_rq, mp);
7962                 return;
7963         }
7964 }
7965 
7966 /* Read side put procedure.  Packets coming from the wire arrive here. */
7967 void
7968 ip_rput(queue_t *q, mblk_t *mp)
7969 {
7970         ill_t   *ill;
7971         union DL_primitives *dl;
7972 
7973         ill = (ill_t *)q->q_ptr;
7974 
7975         if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
7976                 /*
7977                  * If things are opening or closing, only accept high-priority
7978                  * DLPI messages.  (On open ill->ill_ipif has not yet been
7979                  * created; on close, things hanging off the ill may have been
7980                  * freed already.)
7981                  */
7982                 dl = (union DL_primitives *)mp->b_rptr;
7983                 if (DB_TYPE(mp) != M_PCPROTO ||
7984                     dl->dl_primitive == DL_UNITDATA_IND) {
7985                         inet_freemsg(mp);
7986                         return;
7987                 }
7988         }
7989         if (DB_TYPE(mp) == M_DATA) {
7990                 struct mac_header_info_s mhi;
7991 
7992                 ip_mdata_to_mhi(ill, mp, &mhi);
7993                 ip_input(ill, NULL, mp, &mhi);
7994         } else {
7995                 ip_rput_notdata(ill, mp);
7996         }
7997 }
7998 
7999 /*
8000  * Move the information to a copy.
8001  */
8002 mblk_t *
8003 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8004 {
8005         mblk_t          *mp1;
8006         ill_t           *ill = ira->ira_ill;
8007         ip_stack_t      *ipst = ill->ill_ipst;
8008 
8009         IP_STAT(ipst, ip_db_ref);
8010 
8011         /* Make sure we have ira_l2src before we loose the original mblk */
8012         if (!(ira->ira_flags & IRAF_L2SRC_SET))
8013                 ip_setl2src(mp, ira, ira->ira_rill);
8014 
8015         mp1 = copymsg(mp);
8016         if (mp1 == NULL) {
8017                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8018                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
8019                 freemsg(mp);
8020                 return (NULL);
8021         }
8022         /* preserve the hardware checksum flags and data, if present */
8023         if (DB_CKSUMFLAGS(mp) != 0) {
8024                 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8025                 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8026                 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8027                 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8028                 DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8029         }
8030         freemsg(mp);
8031         return (mp1);
8032 }
8033 
8034 static void
8035 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8036     t_uscalar_t err)
8037 {
8038         if (dl_err == DL_SYSERR) {
8039                 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8040                     "%s: %s failed: DL_SYSERR (errno %u)\n",
8041                     ill->ill_name, dl_primstr(prim), err);
8042                 return;
8043         }
8044 
8045         (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8046             "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8047             dl_errstr(dl_err));
8048 }
8049 
8050 /*
8051  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8052  * than DL_UNITDATA_IND messages. If we need to process this message
8053  * exclusively, we call qwriter_ip, in which case we also need to call
8054  * ill_refhold before that, since qwriter_ip does an ill_refrele.
8055  */
8056 void
8057 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8058 {
8059         dl_ok_ack_t     *dloa = (dl_ok_ack_t *)mp->b_rptr;
8060         dl_error_ack_t  *dlea = (dl_error_ack_t *)dloa;
8061         queue_t         *q = ill->ill_rq;
8062         t_uscalar_t     prim = dloa->dl_primitive;
8063         t_uscalar_t     reqprim = DL_PRIM_INVAL;
8064 
8065         DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8066             char *, dl_primstr(prim), ill_t *, ill);
8067         ip1dbg(("ip_rput_dlpi"));
8068 
8069         /*
8070          * If we received an ACK but didn't send a request for it, then it
8071          * can't be part of any pending operation; discard up-front.
8072          */
8073         switch (prim) {
8074         case DL_ERROR_ACK:
8075                 reqprim = dlea->dl_error_primitive;
8076                 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8077                     "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8078                     reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8079                     dlea->dl_unix_errno));
8080                 break;
8081         case DL_OK_ACK:
8082                 reqprim = dloa->dl_correct_primitive;
8083                 break;
8084         case DL_INFO_ACK:
8085                 reqprim = DL_INFO_REQ;
8086                 break;
8087         case DL_BIND_ACK:
8088                 reqprim = DL_BIND_REQ;
8089                 break;
8090         case DL_PHYS_ADDR_ACK:
8091                 reqprim = DL_PHYS_ADDR_REQ;
8092                 break;
8093         case DL_NOTIFY_ACK:
8094                 reqprim = DL_NOTIFY_REQ;
8095                 break;
8096         case DL_CAPABILITY_ACK:
8097                 reqprim = DL_CAPABILITY_REQ;
8098                 break;
8099         }
8100 
8101         if (prim != DL_NOTIFY_IND) {
8102                 if (reqprim == DL_PRIM_INVAL ||
8103                     !ill_dlpi_pending(ill, reqprim)) {
8104                         /* Not a DLPI message we support or expected */
8105                         freemsg(mp);
8106                         return;
8107                 }
8108                 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8109                     dl_primstr(reqprim)));
8110         }
8111 
8112         switch (reqprim) {
8113         case DL_UNBIND_REQ:
8114                 /*
8115                  * NOTE: we mark the unbind as complete even if we got a
8116                  * DL_ERROR_ACK, since there's not much else we can do.
8117                  */
8118                 mutex_enter(&ill->ill_lock);
8119                 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8120                 cv_signal(&ill->ill_cv);
8121                 mutex_exit(&ill->ill_lock);
8122                 break;
8123 
8124         case DL_ENABMULTI_REQ:
8125                 if (prim == DL_OK_ACK) {
8126                         if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8127                                 ill->ill_dlpi_multicast_state = IDS_OK;
8128                 }
8129                 break;
8130         }
8131 
8132         /*
8133          * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8134          * need to become writer to continue to process it.  Because an
8135          * exclusive operation doesn't complete until replies to all queued
8136          * DLPI messages have been received, we know we're in the middle of an
8137          * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8138          *
8139          * As required by qwriter_ip(), we refhold the ill; it will refrele.
8140          * Since this is on the ill stream we unconditionally bump up the
8141          * refcount without doing ILL_CAN_LOOKUP().
8142          */
8143         ill_refhold(ill);
8144         if (prim == DL_NOTIFY_IND)
8145                 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8146         else
8147                 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8148 }
8149 
8150 /*
8151  * Handling of DLPI messages that require exclusive access to the ipsq.
8152  *
8153  * Need to do ipsq_pending_mp_get on ioctl completion, which could
8154  * happen here. (along with mi_copy_done)
8155  */
8156 /* ARGSUSED */
8157 static void
8158 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8159 {
8160         dl_ok_ack_t     *dloa = (dl_ok_ack_t *)mp->b_rptr;
8161         dl_error_ack_t  *dlea = (dl_error_ack_t *)dloa;
8162         int             err = 0;
8163         ill_t           *ill = (ill_t *)q->q_ptr;
8164         ipif_t          *ipif = NULL;
8165         mblk_t          *mp1 = NULL;
8166         conn_t          *connp = NULL;
8167         t_uscalar_t     paddrreq;
8168         mblk_t          *mp_hw;
8169         boolean_t       success;
8170         boolean_t       ioctl_aborted = B_FALSE;
8171         boolean_t       log = B_TRUE;
8172 
8173         DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8174             char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8175 
8176         ip1dbg(("ip_rput_dlpi_writer .."));
8177         ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8178         ASSERT(IAM_WRITER_ILL(ill));
8179 
8180         ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8181         /*
8182          * The current ioctl could have been aborted by the user and a new
8183          * ioctl to bring up another ill could have started. We could still
8184          * get a response from the driver later.
8185          */
8186         if (ipif != NULL && ipif->ipif_ill != ill)
8187                 ioctl_aborted = B_TRUE;
8188 
8189         switch (dloa->dl_primitive) {
8190         case DL_ERROR_ACK:
8191                 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8192                     dl_primstr(dlea->dl_error_primitive)));
8193 
8194                 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8195                     char *, dl_primstr(dlea->dl_error_primitive),
8196                     ill_t *, ill);
8197 
8198                 switch (dlea->dl_error_primitive) {
8199                 case DL_DISABMULTI_REQ:
8200                         ill_dlpi_done(ill, dlea->dl_error_primitive);
8201                         break;
8202                 case DL_PROMISCON_REQ:
8203                 case DL_PROMISCOFF_REQ:
8204                 case DL_UNBIND_REQ:
8205                 case DL_ATTACH_REQ:
8206                 case DL_INFO_REQ:
8207                         ill_dlpi_done(ill, dlea->dl_error_primitive);
8208                         break;
8209                 case DL_NOTIFY_REQ:
8210                         ill_dlpi_done(ill, DL_NOTIFY_REQ);
8211                         log = B_FALSE;
8212                         break;
8213                 case DL_PHYS_ADDR_REQ:
8214                         /*
8215                          * For IPv6 only, there are two additional
8216                          * phys_addr_req's sent to the driver to get the
8217                          * IPv6 token and lla. This allows IP to acquire
8218                          * the hardware address format for a given interface
8219                          * without having built in knowledge of the hardware
8220                          * address. ill_phys_addr_pend keeps track of the last
8221                          * DL_PAR sent so we know which response we are
8222                          * dealing with. ill_dlpi_done will update
8223                          * ill_phys_addr_pend when it sends the next req.
8224                          * We don't complete the IOCTL until all three DL_PARs
8225                          * have been attempted, so set *_len to 0 and break.
8226                          */
8227                         paddrreq = ill->ill_phys_addr_pend;
8228                         ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8229                         if (paddrreq == DL_IPV6_TOKEN) {
8230                                 ill->ill_token_length = 0;
8231                                 log = B_FALSE;
8232                                 break;
8233                         } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8234                                 ill->ill_nd_lla_len = 0;
8235                                 log = B_FALSE;
8236                                 break;
8237                         }
8238                         /*
8239                          * Something went wrong with the DL_PHYS_ADDR_REQ.
8240                          * We presumably have an IOCTL hanging out waiting
8241                          * for completion. Find it and complete the IOCTL
8242                          * with the error noted.
8243                          * However, ill_dl_phys was called on an ill queue
8244                          * (from SIOCSLIFNAME), thus conn_pending_ill is not
8245                          * set. But the ioctl is known to be pending on ill_wq.
8246                          */
8247                         if (!ill->ill_ifname_pending)
8248                                 break;
8249                         ill->ill_ifname_pending = 0;
8250                         if (!ioctl_aborted)
8251                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8252                         if (mp1 != NULL) {
8253                                 /*
8254                                  * This operation (SIOCSLIFNAME) must have
8255                                  * happened on the ill. Assert there is no conn
8256                                  */
8257                                 ASSERT(connp == NULL);
8258                                 q = ill->ill_wq;
8259                         }
8260                         break;
8261                 case DL_BIND_REQ:
8262                         ill_dlpi_done(ill, DL_BIND_REQ);
8263                         if (ill->ill_ifname_pending)
8264                                 break;
8265                         mutex_enter(&ill->ill_lock);
8266                         ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8267                         mutex_exit(&ill->ill_lock);
8268                         /*
8269                          * Something went wrong with the bind.  We presumably
8270                          * have an IOCTL hanging out waiting for completion.
8271                          * Find it, take down the interface that was coming
8272                          * up, and complete the IOCTL with the error noted.
8273                          */
8274                         if (!ioctl_aborted)
8275                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8276                         if (mp1 != NULL) {
8277                                 /*
8278                                  * This might be a result of a DL_NOTE_REPLUMB
8279                                  * notification. In that case, connp is NULL.
8280                                  */
8281                                 if (connp != NULL)
8282                                         q = CONNP_TO_WQ(connp);
8283 
8284                                 (void) ipif_down(ipif, NULL, NULL);
8285                                 /* error is set below the switch */
8286                         }
8287                         break;
8288                 case DL_ENABMULTI_REQ:
8289                         ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8290 
8291                         if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8292                                 ill->ill_dlpi_multicast_state = IDS_FAILED;
8293                         if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8294 
8295                                 printf("ip: joining multicasts failed (%d)"
8296                                     " on %s - will use link layer "
8297                                     "broadcasts for multicast\n",
8298                                     dlea->dl_errno, ill->ill_name);
8299 
8300                                 /*
8301                                  * Set up for multi_bcast; We are the
8302                                  * writer, so ok to access ill->ill_ipif
8303                                  * without any lock.
8304                                  */
8305                                 mutex_enter(&ill->ill_phyint->phyint_lock);
8306                                 ill->ill_phyint->phyint_flags |=
8307                                     PHYI_MULTI_BCAST;
8308                                 mutex_exit(&ill->ill_phyint->phyint_lock);
8309 
8310                         }
8311                         freemsg(mp);    /* Don't want to pass this up */
8312                         return;
8313                 case DL_CAPABILITY_REQ:
8314                         ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8315                             "DL_CAPABILITY REQ\n"));
8316                         if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8317                                 ill->ill_dlpi_capab_state = IDCS_FAILED;
8318                         ill_capability_done(ill);
8319                         freemsg(mp);
8320                         return;
8321                 }
8322                 /*
8323                  * Note the error for IOCTL completion (mp1 is set when
8324                  * ready to complete ioctl). If ill_ifname_pending_err is
8325                  * set, an error occured during plumbing (ill_ifname_pending),
8326                  * so we want to report that error.
8327                  *
8328                  * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8329                  * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8330                  * expected to get errack'd if the driver doesn't support
8331                  * these flags (e.g. ethernet). log will be set to B_FALSE
8332                  * if these error conditions are encountered.
8333                  */
8334                 if (mp1 != NULL) {
8335                         if (ill->ill_ifname_pending_err != 0)  {
8336                                 err = ill->ill_ifname_pending_err;
8337                                 ill->ill_ifname_pending_err = 0;
8338                         } else {
8339                                 err = dlea->dl_unix_errno ?
8340                                     dlea->dl_unix_errno : ENXIO;
8341                         }
8342                 /*
8343                  * If we're plumbing an interface and an error hasn't already
8344                  * been saved, set ill_ifname_pending_err to the error passed
8345                  * up. Ignore the error if log is B_FALSE (see comment above).
8346                  */
8347                 } else if (log && ill->ill_ifname_pending &&
8348                     ill->ill_ifname_pending_err == 0) {
8349                         ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8350                             dlea->dl_unix_errno : ENXIO;
8351                 }
8352 
8353                 if (log)
8354                         ip_dlpi_error(ill, dlea->dl_error_primitive,
8355                             dlea->dl_errno, dlea->dl_unix_errno);
8356                 break;
8357         case DL_CAPABILITY_ACK:
8358                 ill_capability_ack(ill, mp);
8359                 /*
8360                  * The message has been handed off to ill_capability_ack
8361                  * and must not be freed below
8362                  */
8363                 mp = NULL;
8364                 break;
8365 
8366         case DL_INFO_ACK:
8367                 /* Call a routine to handle this one. */
8368                 ill_dlpi_done(ill, DL_INFO_REQ);
8369                 ip_ll_subnet_defaults(ill, mp);
8370                 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8371                 return;
8372         case DL_BIND_ACK:
8373                 /*
8374                  * We should have an IOCTL waiting on this unless
8375                  * sent by ill_dl_phys, in which case just return
8376                  */
8377                 ill_dlpi_done(ill, DL_BIND_REQ);
8378 
8379                 if (ill->ill_ifname_pending) {
8380                         DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8381                             ill_t *, ill, mblk_t *, mp);
8382                         break;
8383                 }
8384                 mutex_enter(&ill->ill_lock);
8385                 ill->ill_dl_up = 1;
8386                 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8387                 mutex_exit(&ill->ill_lock);
8388 
8389                 if (!ioctl_aborted)
8390                         mp1 = ipsq_pending_mp_get(ipsq, &connp);
8391                 if (mp1 == NULL) {
8392                         DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8393                         break;
8394                 }
8395                 /*
8396                  * mp1 was added by ill_dl_up(). if that is a result of
8397                  * a DL_NOTE_REPLUMB notification, connp could be NULL.
8398                  */
8399                 if (connp != NULL)
8400                         q = CONNP_TO_WQ(connp);
8401                 /*
8402                  * We are exclusive. So nothing can change even after
8403                  * we get the pending mp.
8404                  */
8405                 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8406                 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8407                 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8408 
8409                 /*
8410                  * Now bring up the resolver; when that is complete, we'll
8411                  * create IREs.  Note that we intentionally mirror what
8412                  * ipif_up() would have done, because we got here by way of
8413                  * ill_dl_up(), which stopped ipif_up()'s processing.
8414                  */
8415                 if (ill->ill_isv6) {
8416                         /*
8417                          * v6 interfaces.
8418                          * Unlike ARP which has to do another bind
8419                          * and attach, once we get here we are
8420                          * done with NDP
8421                          */
8422                         (void) ipif_resolver_up(ipif, Res_act_initial);
8423                         if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8424                                 err = ipif_up_done_v6(ipif);
8425                 } else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8426                         /*
8427                          * ARP and other v4 external resolvers.
8428                          * Leave the pending mblk intact so that
8429                          * the ioctl completes in ip_rput().
8430                          */
8431                         if (connp != NULL)
8432                                 mutex_enter(&connp->conn_lock);
8433                         mutex_enter(&ill->ill_lock);
8434                         success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8435                         mutex_exit(&ill->ill_lock);
8436                         if (connp != NULL)
8437                                 mutex_exit(&connp->conn_lock);
8438                         if (success) {
8439                                 err = ipif_resolver_up(ipif, Res_act_initial);
8440                                 if (err == EINPROGRESS) {
8441                                         freemsg(mp);
8442                                         return;
8443                                 }
8444                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8445                         } else {
8446                                 /* The conn has started closing */
8447                                 err = EINTR;
8448                         }
8449                 } else {
8450                         /*
8451                          * This one is complete. Reply to pending ioctl.
8452                          */
8453                         (void) ipif_resolver_up(ipif, Res_act_initial);
8454                         err = ipif_up_done(ipif);
8455                 }
8456 
8457                 if ((err == 0) && (ill->ill_up_ipifs)) {
8458                         err = ill_up_ipifs(ill, q, mp1);
8459                         if (err == EINPROGRESS) {
8460                                 freemsg(mp);
8461                                 return;
8462                         }
8463                 }
8464 
8465                 /*
8466                  * If we have a moved ipif to bring up, and everything has
8467                  * succeeded to this point, bring it up on the IPMP ill.
8468                  * Otherwise, leave it down -- the admin can try to bring it
8469                  * up by hand if need be.
8470                  */
8471                 if (ill->ill_move_ipif != NULL) {
8472                         if (err != 0) {
8473                                 ill->ill_move_ipif = NULL;
8474                         } else {
8475                                 ipif = ill->ill_move_ipif;
8476                                 ill->ill_move_ipif = NULL;
8477                                 err = ipif_up(ipif, q, mp1);
8478                                 if (err == EINPROGRESS) {
8479                                         freemsg(mp);
8480                                         return;
8481                                 }
8482                         }
8483                 }
8484                 break;
8485 
8486         case DL_NOTIFY_IND: {
8487                 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8488                 uint_t orig_mtu, orig_mc_mtu;
8489 
8490                 switch (notify->dl_notification) {
8491                 case DL_NOTE_PHYS_ADDR:
8492                         err = ill_set_phys_addr(ill, mp);
8493                         break;
8494 
8495                 case DL_NOTE_REPLUMB:
8496                         /*
8497                          * Directly return after calling ill_replumb().
8498                          * Note that we should not free mp as it is reused
8499                          * in the ill_replumb() function.
8500                          */
8501                         err = ill_replumb(ill, mp);
8502                         return;
8503 
8504                 case DL_NOTE_FASTPATH_FLUSH:
8505                         nce_flush(ill, B_FALSE);
8506                         break;
8507 
8508                 case DL_NOTE_SDU_SIZE:
8509                 case DL_NOTE_SDU_SIZE2:
8510                         /*
8511                          * The dce and fragmentation code can cope with
8512                          * this changing while packets are being sent.
8513                          * When packets are sent ip_output will discover
8514                          * a change.
8515                          *
8516                          * Change the MTU size of the interface.
8517                          */
8518                         mutex_enter(&ill->ill_lock);
8519                         orig_mtu = ill->ill_mtu;
8520                         orig_mc_mtu = ill->ill_mc_mtu;
8521                         switch (notify->dl_notification) {
8522                         case DL_NOTE_SDU_SIZE:
8523                                 ill->ill_current_frag =
8524                                     (uint_t)notify->dl_data;
8525                                 ill->ill_mc_mtu = (uint_t)notify->dl_data;
8526                                 break;
8527                         case DL_NOTE_SDU_SIZE2:
8528                                 ill->ill_current_frag =
8529                                     (uint_t)notify->dl_data1;
8530                                 ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8531                                 break;
8532                         }
8533                         if (ill->ill_current_frag > ill->ill_max_frag)
8534                                 ill->ill_max_frag = ill->ill_current_frag;
8535 
8536                         if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8537                                 ill->ill_mtu = ill->ill_current_frag;
8538 
8539                                 /*
8540                                  * If ill_user_mtu was set (via
8541                                  * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8542                                  */
8543                                 if (ill->ill_user_mtu != 0 &&
8544                                     ill->ill_user_mtu < ill->ill_mtu)
8545                                         ill->ill_mtu = ill->ill_user_mtu;
8546 
8547                                 if (ill->ill_user_mtu != 0 &&
8548                                     ill->ill_user_mtu < ill->ill_mc_mtu)
8549                                         ill->ill_mc_mtu = ill->ill_user_mtu;
8550 
8551                                 if (ill->ill_isv6) {
8552                                         if (ill->ill_mtu < IPV6_MIN_MTU)
8553                                                 ill->ill_mtu = IPV6_MIN_MTU;
8554                                         if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8555                                                 ill->ill_mc_mtu = IPV6_MIN_MTU;
8556                                 } else {
8557                                         if (ill->ill_mtu < IP_MIN_MTU)
8558                                                 ill->ill_mtu = IP_MIN_MTU;
8559                                         if (ill->ill_mc_mtu < IP_MIN_MTU)
8560                                                 ill->ill_mc_mtu = IP_MIN_MTU;
8561                                 }
8562                         } else if (ill->ill_mc_mtu > ill->ill_mtu) {
8563                                 ill->ill_mc_mtu = ill->ill_mtu;
8564                         }
8565 
8566                         mutex_exit(&ill->ill_lock);
8567                         /*
8568                          * Make sure all dce_generation checks find out
8569                          * that ill_mtu/ill_mc_mtu has changed.
8570                          */
8571                         if (orig_mtu != ill->ill_mtu ||
8572                             orig_mc_mtu != ill->ill_mc_mtu) {
8573                                 dce_increment_all_generations(ill->ill_isv6,
8574                                     ill->ill_ipst);
8575                         }
8576 
8577                         /*
8578                          * Refresh IPMP meta-interface MTU if necessary.
8579                          */
8580                         if (IS_UNDER_IPMP(ill))
8581                                 ipmp_illgrp_refresh_mtu(ill->ill_grp);
8582                         break;
8583 
8584                 case DL_NOTE_LINK_UP:
8585                 case DL_NOTE_LINK_DOWN: {
8586                         /*
8587                          * We are writer. ill / phyint / ipsq assocs stable.
8588                          * The RUNNING flag reflects the state of the link.
8589                          */
8590                         phyint_t *phyint = ill->ill_phyint;
8591                         uint64_t new_phyint_flags;
8592                         boolean_t changed = B_FALSE;
8593                         boolean_t went_up;
8594 
8595                         went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8596                         mutex_enter(&phyint->phyint_lock);
8597 
8598                         new_phyint_flags = went_up ?
8599                             phyint->phyint_flags | PHYI_RUNNING :
8600                             phyint->phyint_flags & ~PHYI_RUNNING;
8601 
8602                         if (IS_IPMP(ill)) {
8603                                 new_phyint_flags = went_up ?
8604                                     new_phyint_flags & ~PHYI_FAILED :
8605                                     new_phyint_flags | PHYI_FAILED;
8606                         }
8607 
8608                         if (new_phyint_flags != phyint->phyint_flags) {
8609                                 phyint->phyint_flags = new_phyint_flags;
8610                                 changed = B_TRUE;
8611                         }
8612                         mutex_exit(&phyint->phyint_lock);
8613                         /*
8614                          * ill_restart_dad handles the DAD restart and routing
8615                          * socket notification logic.
8616                          */
8617                         if (changed) {
8618                                 ill_restart_dad(phyint->phyint_illv4, went_up);
8619                                 ill_restart_dad(phyint->phyint_illv6, went_up);
8620                         }
8621                         break;
8622                 }
8623                 case DL_NOTE_PROMISC_ON_PHYS: {
8624                         phyint_t *phyint = ill->ill_phyint;
8625 
8626                         mutex_enter(&phyint->phyint_lock);
8627                         phyint->phyint_flags |= PHYI_PROMISC;
8628                         mutex_exit(&phyint->phyint_lock);
8629                         break;
8630                 }
8631                 case DL_NOTE_PROMISC_OFF_PHYS: {
8632                         phyint_t *phyint = ill->ill_phyint;
8633 
8634                         mutex_enter(&phyint->phyint_lock);
8635                         phyint->phyint_flags &= ~PHYI_PROMISC;
8636                         mutex_exit(&phyint->phyint_lock);
8637                         break;
8638                 }
8639                 case DL_NOTE_CAPAB_RENEG:
8640                         /*
8641                          * Something changed on the driver side.
8642                          * It wants us to renegotiate the capabilities
8643                          * on this ill. One possible cause is the aggregation
8644                          * interface under us where a port got added or
8645                          * went away.
8646                          *
8647                          * If the capability negotiation is already done
8648                          * or is in progress, reset the capabilities and
8649                          * mark the ill's ill_capab_reneg to be B_TRUE,
8650                          * so that when the ack comes back, we can start
8651                          * the renegotiation process.
8652                          *
8653                          * Note that if ill_capab_reneg is already B_TRUE
8654                          * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8655                          * the capability resetting request has been sent
8656                          * and the renegotiation has not been started yet;
8657                          * nothing needs to be done in this case.
8658                          */
8659                         ipsq_current_start(ipsq, ill->ill_ipif, 0);
8660                         ill_capability_reset(ill, B_TRUE);
8661                         ipsq_current_finish(ipsq);
8662                         break;
8663 
8664                 case DL_NOTE_ALLOWED_IPS:
8665                         ill_set_allowed_ips(ill, mp);
8666                         break;
8667                 default:
8668                         ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8669                             "type 0x%x for DL_NOTIFY_IND\n",
8670                             notify->dl_notification));
8671                         break;
8672                 }
8673 
8674                 /*
8675                  * As this is an asynchronous operation, we
8676                  * should not call ill_dlpi_done
8677                  */
8678                 break;
8679         }
8680         case DL_NOTIFY_ACK: {
8681                 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8682 
8683                 if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8684                         ill->ill_note_link = 1;
8685                 ill_dlpi_done(ill, DL_NOTIFY_REQ);
8686                 break;
8687         }
8688         case DL_PHYS_ADDR_ACK: {
8689                 /*
8690                  * As part of plumbing the interface via SIOCSLIFNAME,
8691                  * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8692                  * whose answers we receive here.  As each answer is received,
8693                  * we call ill_dlpi_done() to dispatch the next request as
8694                  * we're processing the current one.  Once all answers have
8695                  * been received, we use ipsq_pending_mp_get() to dequeue the
8696                  * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
8697                  * is invoked from an ill queue, conn_oper_pending_ill is not
8698                  * available, but we know the ioctl is pending on ill_wq.)
8699                  */
8700                 uint_t  paddrlen, paddroff;
8701                 uint8_t *addr;
8702 
8703                 paddrreq = ill->ill_phys_addr_pend;
8704                 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8705                 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8706                 addr = mp->b_rptr + paddroff;
8707 
8708                 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8709                 if (paddrreq == DL_IPV6_TOKEN) {
8710                         /*
8711                          * bcopy to low-order bits of ill_token
8712                          *
8713                          * XXX Temporary hack - currently, all known tokens
8714                          * are 64 bits, so I'll cheat for the moment.
8715                          */
8716                         bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8717                         ill->ill_token_length = paddrlen;
8718                         break;
8719                 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8720                         ASSERT(ill->ill_nd_lla_mp == NULL);
8721                         ill_set_ndmp(ill, mp, paddroff, paddrlen);
8722                         mp = NULL;
8723                         break;
8724                 } else if (paddrreq == DL_CURR_DEST_ADDR) {
8725                         ASSERT(ill->ill_dest_addr_mp == NULL);
8726                         ill->ill_dest_addr_mp = mp;
8727                         ill->ill_dest_addr = addr;
8728                         mp = NULL;
8729                         if (ill->ill_isv6) {
8730                                 ill_setdesttoken(ill);
8731                                 ipif_setdestlinklocal(ill->ill_ipif);
8732                         }
8733                         break;
8734                 }
8735 
8736                 ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8737                 ASSERT(ill->ill_phys_addr_mp == NULL);
8738                 if (!ill->ill_ifname_pending)
8739                         break;
8740                 ill->ill_ifname_pending = 0;
8741                 if (!ioctl_aborted)
8742                         mp1 = ipsq_pending_mp_get(ipsq, &connp);
8743                 if (mp1 != NULL) {
8744                         ASSERT(connp == NULL);
8745                         q = ill->ill_wq;
8746                 }
8747                 /*
8748                  * If any error acks received during the plumbing sequence,
8749                  * ill_ifname_pending_err will be set. Break out and send up
8750                  * the error to the pending ioctl.
8751                  */
8752                 if (ill->ill_ifname_pending_err != 0) {
8753                         err = ill->ill_ifname_pending_err;
8754                         ill->ill_ifname_pending_err = 0;
8755                         break;
8756                 }
8757 
8758                 ill->ill_phys_addr_mp = mp;
8759                 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8760                 mp = NULL;
8761 
8762                 /*
8763                  * If paddrlen or ill_phys_addr_length is zero, the DLPI
8764                  * provider doesn't support physical addresses.  We check both
8765                  * paddrlen and ill_phys_addr_length because sppp (PPP) does
8766                  * not have physical addresses, but historically adversises a
8767                  * physical address length of 0 in its DL_INFO_ACK, but 6 in
8768                  * its DL_PHYS_ADDR_ACK.
8769                  */
8770                 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8771                         ill->ill_phys_addr = NULL;
8772                 } else if (paddrlen != ill->ill_phys_addr_length) {
8773                         ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8774                             paddrlen, ill->ill_phys_addr_length));
8775                         err = EINVAL;
8776                         break;
8777                 }
8778 
8779                 if (ill->ill_nd_lla_mp == NULL) {
8780                         if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8781                                 err = ENOMEM;
8782                                 break;
8783                         }
8784                         ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8785                 }
8786 
8787                 if (ill->ill_isv6) {
8788                         ill_setdefaulttoken(ill);
8789                         ipif_setlinklocal(ill->ill_ipif);
8790                 }
8791                 break;
8792         }
8793         case DL_OK_ACK:
8794                 ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8795                     dl_primstr((int)dloa->dl_correct_primitive),
8796                     dloa->dl_correct_primitive));
8797                 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8798                     char *, dl_primstr(dloa->dl_correct_primitive),
8799                     ill_t *, ill);
8800 
8801                 switch (dloa->dl_correct_primitive) {
8802                 case DL_ENABMULTI_REQ:
8803                 case DL_DISABMULTI_REQ:
8804                         ill_dlpi_done(ill, dloa->dl_correct_primitive);
8805                         break;
8806                 case DL_PROMISCON_REQ:
8807                 case DL_PROMISCOFF_REQ:
8808                 case DL_UNBIND_REQ:
8809                 case DL_ATTACH_REQ:
8810                         ill_dlpi_done(ill, dloa->dl_correct_primitive);
8811                         break;
8812                 }
8813                 break;
8814         default:
8815                 break;
8816         }
8817 
8818         freemsg(mp);
8819         if (mp1 == NULL)
8820                 return;
8821 
8822         /*
8823          * The operation must complete without EINPROGRESS since
8824          * ipsq_pending_mp_get() has removed the mblk (mp1).  Otherwise,
8825          * the operation will be stuck forever inside the IPSQ.
8826          */
8827         ASSERT(err != EINPROGRESS);
8828 
8829         DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8830             int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8831             ipif_t *, NULL);
8832 
8833         switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8834         case 0:
8835                 ipsq_current_finish(ipsq);
8836                 break;
8837 
8838         case SIOCSLIFNAME:
8839         case IF_UNITSEL: {
8840                 ill_t *ill_other = ILL_OTHER(ill);
8841 
8842                 /*
8843                  * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8844                  * ill has a peer which is in an IPMP group, then place ill
8845                  * into the same group.  One catch: although ifconfig plumbs
8846                  * the appropriate IPMP meta-interface prior to plumbing this
8847                  * ill, it is possible for multiple ifconfig applications to
8848                  * race (or for another application to adjust plumbing), in
8849                  * which case the IPMP meta-interface we need will be missing.
8850                  * If so, kick the phyint out of the group.
8851                  */
8852                 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8853                         ipmp_grp_t      *grp = ill->ill_phyint->phyint_grp;
8854                         ipmp_illgrp_t   *illg;
8855 
8856                         illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8857                         if (illg == NULL)
8858                                 ipmp_phyint_leave_grp(ill->ill_phyint);
8859                         else
8860                                 ipmp_ill_join_illgrp(ill, illg);
8861                 }
8862 
8863                 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8864                         ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8865                 else
8866                         ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8867                 break;
8868         }
8869         case SIOCLIFADDIF:
8870                 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8871                 break;
8872 
8873         default:
8874                 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8875                 break;
8876         }
8877 }
8878 
8879 /*
8880  * ip_rput_other is called by ip_rput to handle messages modifying the global
8881  * state in IP.  If 'ipsq' is non-NULL, caller is writer on it.
8882  */
8883 /* ARGSUSED */
8884 void
8885 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8886 {
8887         ill_t           *ill = q->q_ptr;
8888         struct iocblk   *iocp;
8889 
8890         ip1dbg(("ip_rput_other "));
8891         if (ipsq != NULL) {
8892                 ASSERT(IAM_WRITER_IPSQ(ipsq));
8893                 ASSERT(ipsq->ipsq_xop ==
8894                     ill->ill_phyint->phyint_ipsq->ipsq_xop);
8895         }
8896 
8897         switch (mp->b_datap->db_type) {
8898         case M_ERROR:
8899         case M_HANGUP:
8900                 /*
8901                  * The device has a problem.  We force the ILL down.  It can
8902                  * be brought up again manually using SIOCSIFFLAGS (via
8903                  * ifconfig or equivalent).
8904                  */
8905                 ASSERT(ipsq != NULL);
8906                 if (mp->b_rptr < mp->b_wptr)
8907                         ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8908                 if (ill->ill_error == 0)
8909                         ill->ill_error = ENXIO;
8910                 if (!ill_down_start(q, mp))
8911                         return;
8912                 ipif_all_down_tail(ipsq, q, mp, NULL);
8913                 break;
8914         case M_IOCNAK: {
8915                 iocp = (struct iocblk *)mp->b_rptr;
8916 
8917                 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8918                 /*
8919                  * If this was the first attempt, turn off the fastpath
8920                  * probing.
8921                  */
8922                 mutex_enter(&ill->ill_lock);
8923                 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8924                         ill->ill_dlpi_fastpath_state = IDS_FAILED;
8925                         mutex_exit(&ill->ill_lock);
8926                         /*
8927                          * don't flush the nce_t entries: we use them
8928                          * as an index to the ncec itself.
8929                          */
8930                         ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8931                             ill->ill_name));
8932                 } else {
8933                         mutex_exit(&ill->ill_lock);
8934                 }
8935                 freemsg(mp);
8936                 break;
8937         }
8938         default:
8939                 ASSERT(0);
8940                 break;
8941         }
8942 }
8943 
8944 /*
8945  * Update any source route, record route or timestamp options
8946  * When it fails it has consumed the message and BUMPed the MIB.
8947  */
8948 boolean_t
8949 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8950     ip_recv_attr_t *ira)
8951 {
8952         ipoptp_t        opts;
8953         uchar_t         *opt;
8954         uint8_t         optval;
8955         uint8_t         optlen;
8956         ipaddr_t        dst;
8957         ipaddr_t        ifaddr;
8958         uint32_t        ts;
8959         timestruc_t     now;
8960         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
8961 
8962         ip2dbg(("ip_forward_options\n"));
8963         dst = ipha->ipha_dst;
8964         for (optval = ipoptp_first(&opts, ipha);
8965             optval != IPOPT_EOL;
8966             optval = ipoptp_next(&opts)) {
8967                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
8968                 opt = opts.ipoptp_cur;
8969                 optlen = opts.ipoptp_len;
8970                 ip2dbg(("ip_forward_options: opt %d, len %d\n",
8971                     optval, opts.ipoptp_len));
8972                 switch (optval) {
8973                         uint32_t off;
8974                 case IPOPT_SSRR:
8975                 case IPOPT_LSRR:
8976                         /* Check if adminstratively disabled */
8977                         if (!ipst->ips_ip_forward_src_routed) {
8978                                 BUMP_MIB(dst_ill->ill_ip_mib,
8979                                     ipIfStatsForwProhibits);
8980                                 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
8981                                     mp, dst_ill);
8982                                 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
8983                                     ira);
8984                                 return (B_FALSE);
8985                         }
8986                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
8987                                 /*
8988                                  * Must be partial since ip_input_options
8989                                  * checked for strict.
8990                                  */
8991                                 break;
8992                         }
8993                         off = opt[IPOPT_OFFSET];
8994                         off--;
8995                 redo_srr:
8996                         if (optlen < IP_ADDR_LEN ||
8997                             off > optlen - IP_ADDR_LEN) {
8998                                 /* End of source route */
8999                                 ip1dbg((
9000                                     "ip_forward_options: end of SR\n"));
9001                                 break;
9002                         }
9003                         /* Pick a reasonable address on the outbound if */
9004                         ASSERT(dst_ill != NULL);
9005                         if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9006                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9007                             NULL) != 0) {
9008                                 /* No source! Shouldn't happen */
9009                                 ifaddr = INADDR_ANY;
9010                         }
9011                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9012                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9013                         ip1dbg(("ip_forward_options: next hop 0x%x\n",
9014                             ntohl(dst)));
9015 
9016                         /*
9017                          * Check if our address is present more than
9018                          * once as consecutive hops in source route.
9019                          */
9020                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9021                                 off += IP_ADDR_LEN;
9022                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9023                                 goto redo_srr;
9024                         }
9025                         ipha->ipha_dst = dst;
9026                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9027                         break;
9028                 case IPOPT_RR:
9029                         off = opt[IPOPT_OFFSET];
9030                         off--;
9031                         if (optlen < IP_ADDR_LEN ||
9032                             off > optlen - IP_ADDR_LEN) {
9033                                 /* No more room - ignore */
9034                                 ip1dbg((
9035                                     "ip_forward_options: end of RR\n"));
9036                                 break;
9037                         }
9038                         /* Pick a reasonable address on the outbound if */
9039                         ASSERT(dst_ill != NULL);
9040                         if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9041                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9042                             NULL) != 0) {
9043                                 /* No source! Shouldn't happen */
9044                                 ifaddr = INADDR_ANY;
9045                         }
9046                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9047                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9048                         break;
9049                 case IPOPT_TS:
9050                         /* Insert timestamp if there is room */
9051                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9052                         case IPOPT_TS_TSONLY:
9053                                 off = IPOPT_TS_TIMELEN;
9054                                 break;
9055                         case IPOPT_TS_PRESPEC:
9056                         case IPOPT_TS_PRESPEC_RFC791:
9057                                 /* Verify that the address matched */
9058                                 off = opt[IPOPT_OFFSET] - 1;
9059                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9060                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9061                                         /* Not for us */
9062                                         break;
9063                                 }
9064                                 /* FALLTHRU */
9065                         case IPOPT_TS_TSANDADDR:
9066                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9067                                 break;
9068                         default:
9069                                 /*
9070                                  * ip_*put_options should have already
9071                                  * dropped this packet.
9072                                  */
9073                                 cmn_err(CE_PANIC, "ip_forward_options: "
9074                                     "unknown IT - bug in ip_input_options?\n");
9075                                 return (B_TRUE);        /* Keep "lint" happy */
9076                         }
9077                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9078                                 /* Increase overflow counter */
9079                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9080                                 opt[IPOPT_POS_OV_FLG] =
9081                                     (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9082                                     (off << 4));
9083                                 break;
9084                         }
9085                         off = opt[IPOPT_OFFSET] - 1;
9086                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9087                         case IPOPT_TS_PRESPEC:
9088                         case IPOPT_TS_PRESPEC_RFC791:
9089                         case IPOPT_TS_TSANDADDR:
9090                                 /* Pick a reasonable addr on the outbound if */
9091                                 ASSERT(dst_ill != NULL);
9092                                 if (ip_select_source_v4(dst_ill, INADDR_ANY,
9093                                     dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9094                                     NULL, NULL) != 0) {
9095                                         /* No source! Shouldn't happen */
9096                                         ifaddr = INADDR_ANY;
9097                                 }
9098                                 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9099                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9100                                 /* FALLTHRU */
9101                         case IPOPT_TS_TSONLY:
9102                                 off = opt[IPOPT_OFFSET] - 1;
9103                                 /* Compute # of milliseconds since midnight */
9104                                 gethrestime(&now);
9105                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9106                                     now.tv_nsec / (NANOSEC / MILLISEC);
9107                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9108                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9109                                 break;
9110                         }
9111                         break;
9112                 }
9113         }
9114         return (B_TRUE);
9115 }
9116 
9117 /*
9118  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9119  * returns 'true' if there are still fragments left on the queue, in
9120  * which case we restart the timer.
9121  */
9122 void
9123 ill_frag_timer(void *arg)
9124 {
9125         ill_t   *ill = (ill_t *)arg;
9126         boolean_t frag_pending;
9127         ip_stack_t *ipst = ill->ill_ipst;
9128         time_t  timeout;
9129 
9130         mutex_enter(&ill->ill_lock);
9131         ASSERT(!ill->ill_fragtimer_executing);
9132         if (ill->ill_state_flags & ILL_CONDEMNED) {
9133                 ill->ill_frag_timer_id = 0;
9134                 mutex_exit(&ill->ill_lock);
9135                 return;
9136         }
9137         ill->ill_fragtimer_executing = 1;
9138         mutex_exit(&ill->ill_lock);
9139 
9140         timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9141             ipst->ips_ip_reassembly_timeout);
9142 
9143         frag_pending = ill_frag_timeout(ill, timeout);
9144 
9145         /*
9146          * Restart the timer, if we have fragments pending or if someone
9147          * wanted us to be scheduled again.
9148          */
9149         mutex_enter(&ill->ill_lock);
9150         ill->ill_fragtimer_executing = 0;
9151         ill->ill_frag_timer_id = 0;
9152         if (frag_pending || ill->ill_fragtimer_needrestart)
9153                 ill_frag_timer_start(ill);
9154         mutex_exit(&ill->ill_lock);
9155 }
9156 
9157 void
9158 ill_frag_timer_start(ill_t *ill)
9159 {
9160         ip_stack_t *ipst = ill->ill_ipst;
9161         clock_t timeo_ms;
9162 
9163         ASSERT(MUTEX_HELD(&ill->ill_lock));
9164 
9165         /* If the ill is closing or opening don't proceed */
9166         if (ill->ill_state_flags & ILL_CONDEMNED)
9167                 return;
9168 
9169         if (ill->ill_fragtimer_executing) {
9170                 /*
9171                  * ill_frag_timer is currently executing. Just record the
9172                  * the fact that we want the timer to be restarted.
9173                  * ill_frag_timer will post a timeout before it returns,
9174                  * ensuring it will be called again.
9175                  */
9176                 ill->ill_fragtimer_needrestart = 1;
9177                 return;
9178         }
9179 
9180         if (ill->ill_frag_timer_id == 0) {
9181                 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9182                     ipst->ips_ip_reassembly_timeout) * SECONDS;
9183 
9184                 /*
9185                  * The timer is neither running nor is the timeout handler
9186                  * executing. Post a timeout so that ill_frag_timer will be
9187                  * called
9188                  */
9189                 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9190                     MSEC_TO_TICK(timeo_ms >> 1));
9191                 ill->ill_fragtimer_needrestart = 0;
9192         }
9193 }
9194 
9195 /*
9196  * Update any source route, record route or timestamp options.
9197  * Check that we are at end of strict source route.
9198  * The options have already been checked for sanity in ip_input_options().
9199  */
9200 boolean_t
9201 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9202 {
9203         ipoptp_t        opts;
9204         uchar_t         *opt;
9205         uint8_t         optval;
9206         uint8_t         optlen;
9207         ipaddr_t        dst;
9208         ipaddr_t        ifaddr;
9209         uint32_t        ts;
9210         timestruc_t     now;
9211         ill_t           *ill = ira->ira_ill;
9212         ip_stack_t      *ipst = ill->ill_ipst;
9213 
9214         ip2dbg(("ip_input_local_options\n"));
9215 
9216         for (optval = ipoptp_first(&opts, ipha);
9217             optval != IPOPT_EOL;
9218             optval = ipoptp_next(&opts)) {
9219                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9220                 opt = opts.ipoptp_cur;
9221                 optlen = opts.ipoptp_len;
9222                 ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9223                     optval, optlen));
9224                 switch (optval) {
9225                         uint32_t off;
9226                 case IPOPT_SSRR:
9227                 case IPOPT_LSRR:
9228                         off = opt[IPOPT_OFFSET];
9229                         off--;
9230                         if (optlen < IP_ADDR_LEN ||
9231                             off > optlen - IP_ADDR_LEN) {
9232                                 /* End of source route */
9233                                 ip1dbg(("ip_input_local_options: end of SR\n"));
9234                                 break;
9235                         }
9236                         /*
9237                          * This will only happen if two consecutive entries
9238                          * in the source route contains our address or if
9239                          * it is a packet with a loose source route which
9240                          * reaches us before consuming the whole source route
9241                          */
9242                         ip1dbg(("ip_input_local_options: not end of SR\n"));
9243                         if (optval == IPOPT_SSRR) {
9244                                 goto bad_src_route;
9245                         }
9246                         /*
9247                          * Hack: instead of dropping the packet truncate the
9248                          * source route to what has been used by filling the
9249                          * rest with IPOPT_NOP.
9250                          */
9251                         opt[IPOPT_OLEN] = (uint8_t)off;
9252                         while (off < optlen) {
9253                                 opt[off++] = IPOPT_NOP;
9254                         }
9255                         break;
9256                 case IPOPT_RR:
9257                         off = opt[IPOPT_OFFSET];
9258                         off--;
9259                         if (optlen < IP_ADDR_LEN ||
9260                             off > optlen - IP_ADDR_LEN) {
9261                                 /* No more room - ignore */
9262                                 ip1dbg((
9263                                     "ip_input_local_options: end of RR\n"));
9264                                 break;
9265                         }
9266                         /* Pick a reasonable address on the outbound if */
9267                         if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9268                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9269                             NULL) != 0) {
9270                                 /* No source! Shouldn't happen */
9271                                 ifaddr = INADDR_ANY;
9272                         }
9273                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9274                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9275                         break;
9276                 case IPOPT_TS:
9277                         /* Insert timestamp if there is romm */
9278                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9279                         case IPOPT_TS_TSONLY:
9280                                 off = IPOPT_TS_TIMELEN;
9281                                 break;
9282                         case IPOPT_TS_PRESPEC:
9283                         case IPOPT_TS_PRESPEC_RFC791:
9284                                 /* Verify that the address matched */
9285                                 off = opt[IPOPT_OFFSET] - 1;
9286                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9287                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9288                                         /* Not for us */
9289                                         break;
9290                                 }
9291                                 /* FALLTHRU */
9292                         case IPOPT_TS_TSANDADDR:
9293                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9294                                 break;
9295                         default:
9296                                 /*
9297                                  * ip_*put_options should have already
9298                                  * dropped this packet.
9299                                  */
9300                                 cmn_err(CE_PANIC, "ip_input_local_options: "
9301                                     "unknown IT - bug in ip_input_options?\n");
9302                                 return (B_TRUE);        /* Keep "lint" happy */
9303                         }
9304                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9305                                 /* Increase overflow counter */
9306                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9307                                 opt[IPOPT_POS_OV_FLG] =
9308                                     (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9309                                     (off << 4));
9310                                 break;
9311                         }
9312                         off = opt[IPOPT_OFFSET] - 1;
9313                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9314                         case IPOPT_TS_PRESPEC:
9315                         case IPOPT_TS_PRESPEC_RFC791:
9316                         case IPOPT_TS_TSANDADDR:
9317                                 /* Pick a reasonable addr on the outbound if */
9318                                 if (ip_select_source_v4(ill, INADDR_ANY,
9319                                     ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9320                                     &ifaddr, NULL, NULL) != 0) {
9321                                         /* No source! Shouldn't happen */
9322                                         ifaddr = INADDR_ANY;
9323                                 }
9324                                 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9325                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9326                                 /* FALLTHRU */
9327                         case IPOPT_TS_TSONLY:
9328                                 off = opt[IPOPT_OFFSET] - 1;
9329                                 /* Compute # of milliseconds since midnight */
9330                                 gethrestime(&now);
9331                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9332                                     now.tv_nsec / (NANOSEC / MILLISEC);
9333                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9334                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9335                                 break;
9336                         }
9337                         break;
9338                 }
9339         }
9340         return (B_TRUE);
9341 
9342 bad_src_route:
9343         /* make sure we clear any indication of a hardware checksum */
9344         DB_CKSUMFLAGS(mp) = 0;
9345         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9346         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9347         return (B_FALSE);
9348 
9349 }
9350 
9351 /*
9352  * Process IP options in an inbound packet.  Always returns the nexthop.
9353  * Normally this is the passed in nexthop, but if there is an option
9354  * that effects the nexthop (such as a source route) that will be returned.
9355  * Sets *errorp if there is an error, in which case an ICMP error has been sent
9356  * and mp freed.
9357  */
9358 ipaddr_t
9359 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9360     ip_recv_attr_t *ira, int *errorp)
9361 {
9362         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
9363         ipoptp_t        opts;
9364         uchar_t         *opt;
9365         uint8_t         optval;
9366         uint8_t         optlen;
9367         intptr_t        code = 0;
9368         ire_t           *ire;
9369 
9370         ip2dbg(("ip_input_options\n"));
9371         *errorp = 0;
9372         for (optval = ipoptp_first(&opts, ipha);
9373             optval != IPOPT_EOL;
9374             optval = ipoptp_next(&opts)) {
9375                 opt = opts.ipoptp_cur;
9376                 optlen = opts.ipoptp_len;
9377                 ip2dbg(("ip_input_options: opt %d, len %d\n",
9378                     optval, optlen));
9379                 /*
9380                  * Note: we need to verify the checksum before we
9381                  * modify anything thus this routine only extracts the next
9382                  * hop dst from any source route.
9383                  */
9384                 switch (optval) {
9385                         uint32_t off;
9386                 case IPOPT_SSRR:
9387                 case IPOPT_LSRR:
9388                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9389                                 if (optval == IPOPT_SSRR) {
9390                                         ip1dbg(("ip_input_options: not next"
9391                                             " strict source route 0x%x\n",
9392                                             ntohl(dst)));
9393                                         code = (char *)&ipha->ipha_dst -
9394                                             (char *)ipha;
9395                                         goto param_prob; /* RouterReq's */
9396                                 }
9397                                 ip2dbg(("ip_input_options: "
9398                                     "not next source route 0x%x\n",
9399                                     ntohl(dst)));
9400                                 break;
9401                         }
9402 
9403                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9404                                 ip1dbg((
9405                                     "ip_input_options: bad option offset\n"));
9406                                 code = (char *)&opt[IPOPT_OLEN] -
9407                                     (char *)ipha;
9408                                 goto param_prob;
9409                         }
9410                         off = opt[IPOPT_OFFSET];
9411                         off--;
9412                 redo_srr:
9413                         if (optlen < IP_ADDR_LEN ||
9414                             off > optlen - IP_ADDR_LEN) {
9415                                 /* End of source route */
9416                                 ip1dbg(("ip_input_options: end of SR\n"));
9417                                 break;
9418                         }
9419                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9420                         ip1dbg(("ip_input_options: next hop 0x%x\n",
9421                             ntohl(dst)));
9422 
9423                         /*
9424                          * Check if our address is present more than
9425                          * once as consecutive hops in source route.
9426                          * XXX verify per-interface ip_forwarding
9427                          * for source route?
9428                          */
9429                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9430                                 off += IP_ADDR_LEN;
9431                                 goto redo_srr;
9432                         }
9433 
9434                         if (dst == htonl(INADDR_LOOPBACK)) {
9435                                 ip1dbg(("ip_input_options: loopback addr in "
9436                                     "source route!\n"));
9437                                 goto bad_src_route;
9438                         }
9439                         /*
9440                          * For strict: verify that dst is directly
9441                          * reachable.
9442                          */
9443                         if (optval == IPOPT_SSRR) {
9444                                 ire = ire_ftable_lookup_v4(dst, 0, 0,
9445                                     IRE_INTERFACE, NULL, ALL_ZONES,
9446                                     ira->ira_tsl,
9447                                     MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9448                                     NULL);
9449                                 if (ire == NULL) {
9450                                         ip1dbg(("ip_input_options: SSRR not "
9451                                             "directly reachable: 0x%x\n",
9452                                             ntohl(dst)));
9453                                         goto bad_src_route;
9454                                 }
9455                                 ire_refrele(ire);
9456                         }
9457                         /*
9458                          * Defer update of the offset and the record route
9459                          * until the packet is forwarded.
9460                          */
9461                         break;
9462                 case IPOPT_RR:
9463                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9464                                 ip1dbg((
9465                                     "ip_input_options: bad option offset\n"));
9466                                 code = (char *)&opt[IPOPT_OLEN] -
9467                                     (char *)ipha;
9468                                 goto param_prob;
9469                         }
9470                         break;
9471                 case IPOPT_TS:
9472                         /*
9473                          * Verify that length >= 5 and that there is either
9474                          * room for another timestamp or that the overflow
9475                          * counter is not maxed out.
9476                          */
9477                         code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9478                         if (optlen < IPOPT_MINLEN_IT) {
9479                                 goto param_prob;
9480                         }
9481                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9482                                 ip1dbg((
9483                                     "ip_input_options: bad option offset\n"));
9484                                 code = (char *)&opt[IPOPT_OFFSET] -
9485                                     (char *)ipha;
9486                                 goto param_prob;
9487                         }
9488                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9489                         case IPOPT_TS_TSONLY:
9490                                 off = IPOPT_TS_TIMELEN;
9491                                 break;
9492                         case IPOPT_TS_TSANDADDR:
9493                         case IPOPT_TS_PRESPEC:
9494                         case IPOPT_TS_PRESPEC_RFC791:
9495                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9496                                 break;
9497                         default:
9498                                 code = (char *)&opt[IPOPT_POS_OV_FLG] -
9499                                     (char *)ipha;
9500                                 goto param_prob;
9501                         }
9502                         if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9503                             (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9504                                 /*
9505                                  * No room and the overflow counter is 15
9506                                  * already.
9507                                  */
9508                                 goto param_prob;
9509                         }
9510                         break;
9511                 }
9512         }
9513 
9514         if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9515                 return (dst);
9516         }
9517 
9518         ip1dbg(("ip_input_options: error processing IP options."));
9519         code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9520 
9521 param_prob:
9522         /* make sure we clear any indication of a hardware checksum */
9523         DB_CKSUMFLAGS(mp) = 0;
9524         ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9525         icmp_param_problem(mp, (uint8_t)code, ira);
9526         *errorp = -1;
9527         return (dst);
9528 
9529 bad_src_route:
9530         /* make sure we clear any indication of a hardware checksum */
9531         DB_CKSUMFLAGS(mp) = 0;
9532         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9533         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9534         *errorp = -1;
9535         return (dst);
9536 }
9537 
9538 /*
9539  * IP & ICMP info in >=14 msg's ...
9540  *  - ip fixed part (mib2_ip_t)
9541  *  - icmp fixed part (mib2_icmp_t)
9542  *  - ipAddrEntryTable (ip 20)          all IPv4 ipifs
9543  *  - ipRouteEntryTable (ip 21)         all IPv4 IREs
9544  *  - ipNetToMediaEntryTable (ip 22)    all IPv4 Neighbor Cache entries
9545  *  - ipRouteAttributeTable (ip 102)    labeled routes
9546  *  - ip multicast membership (ip_member_t)
9547  *  - ip multicast source filtering (ip_grpsrc_t)
9548  *  - igmp fixed part (struct igmpstat)
9549  *  - multicast routing stats (struct mrtstat)
9550  *  - multicast routing vifs (array of struct vifctl)
9551  *  - multicast routing routes (array of struct mfcctl)
9552  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9553  *                                      One per ill plus one generic
9554  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9555  *                                      One per ill plus one generic
9556  *  - ipv6RouteEntry                    all IPv6 IREs
9557  *  - ipv6RouteAttributeTable (ip6 102) labeled routes
9558  *  - ipv6NetToMediaEntry               all IPv6 Neighbor Cache entries
9559  *  - ipv6AddrEntry                     all IPv6 ipifs
9560  *  - ipv6 multicast membership (ipv6_member_t)
9561  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
9562  *
9563  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9564  * already filled in by the caller.
9565  * If legacy_req is true then MIB structures needs to be truncated to their
9566  * legacy sizes before being returned.
9567  * Return value of 0 indicates that no messages were sent and caller
9568  * should free mpctl.
9569  */
9570 int
9571 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9572 {
9573         ip_stack_t *ipst;
9574         sctp_stack_t *sctps;
9575 
9576         if (q->q_next != NULL) {
9577                 ipst = ILLQ_TO_IPST(q);
9578         } else {
9579                 ipst = CONNQ_TO_IPST(q);
9580         }
9581         ASSERT(ipst != NULL);
9582         sctps = ipst->ips_netstack->netstack_sctp;
9583 
9584         if (mpctl == NULL || mpctl->b_cont == NULL) {
9585                 return (0);
9586         }
9587 
9588         /*
9589          * For the purposes of the (broken) packet shell use
9590          * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9591          * to make TCP and UDP appear first in the list of mib items.
9592          * TBD: We could expand this and use it in netstat so that
9593          * the kernel doesn't have to produce large tables (connections,
9594          * routes, etc) when netstat only wants the statistics or a particular
9595          * table.
9596          */
9597         if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9598                 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9599                         return (1);
9600                 }
9601         }
9602 
9603         if (level != MIB2_TCP) {
9604                 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9605                         return (1);
9606                 }
9607         }
9608 
9609         if (level != MIB2_UDP) {
9610                 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9611                         return (1);
9612                 }
9613         }
9614 
9615         if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9616             ipst, legacy_req)) == NULL) {
9617                 return (1);
9618         }
9619 
9620         if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9621             legacy_req)) == NULL) {
9622                 return (1);
9623         }
9624 
9625         if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9626                 return (1);
9627         }
9628 
9629         if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9630                 return (1);
9631         }
9632 
9633         if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9634                 return (1);
9635         }
9636 
9637         if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9638                 return (1);
9639         }
9640 
9641         if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9642             legacy_req)) == NULL) {
9643                 return (1);
9644         }
9645 
9646         if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9647             legacy_req)) == NULL) {
9648                 return (1);
9649         }
9650 
9651         if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9652                 return (1);
9653         }
9654 
9655         if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9656                 return (1);
9657         }
9658 
9659         if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9660                 return (1);
9661         }
9662 
9663         if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9664                 return (1);
9665         }
9666 
9667         if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9668                 return (1);
9669         }
9670 
9671         if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9672                 return (1);
9673         }
9674 
9675         mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9676         if (mpctl == NULL)
9677                 return (1);
9678 
9679         mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9680         if (mpctl == NULL)
9681                 return (1);
9682 
9683         if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9684                 return (1);
9685         }
9686         if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9687                 return (1);
9688         }
9689         freemsg(mpctl);
9690         return (1);
9691 }
9692 
9693 /* Get global (legacy) IPv4 statistics */
9694 static mblk_t *
9695 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9696     ip_stack_t *ipst, boolean_t legacy_req)
9697 {
9698         mib2_ip_t               old_ip_mib;
9699         struct opthdr           *optp;
9700         mblk_t                  *mp2ctl;
9701         mib2_ipAddrEntry_t      mae;
9702 
9703         /*
9704          * make a copy of the original message
9705          */
9706         mp2ctl = copymsg(mpctl);
9707 
9708         /* fixed length IP structure... */
9709         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9710         optp->level = MIB2_IP;
9711         optp->name = 0;
9712         SET_MIB(old_ip_mib.ipForwarding,
9713             (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9714         SET_MIB(old_ip_mib.ipDefaultTTL,
9715             (uint32_t)ipst->ips_ip_def_ttl);
9716         SET_MIB(old_ip_mib.ipReasmTimeout,
9717             ipst->ips_ip_reassembly_timeout);
9718         SET_MIB(old_ip_mib.ipAddrEntrySize,
9719             (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9720             sizeof (mib2_ipAddrEntry_t));
9721         SET_MIB(old_ip_mib.ipRouteEntrySize,
9722             sizeof (mib2_ipRouteEntry_t));
9723         SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9724             sizeof (mib2_ipNetToMediaEntry_t));
9725         SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9726         SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9727         SET_MIB(old_ip_mib.ipRouteAttributeSize,
9728             sizeof (mib2_ipAttributeEntry_t));
9729         SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9730         SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9731 
9732         /*
9733          * Grab the statistics from the new IP MIB
9734          */
9735         SET_MIB(old_ip_mib.ipInReceives,
9736             (uint32_t)ipmib->ipIfStatsHCInReceives);
9737         SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9738         SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9739         SET_MIB(old_ip_mib.ipForwDatagrams,
9740             (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9741         SET_MIB(old_ip_mib.ipInUnknownProtos,
9742             ipmib->ipIfStatsInUnknownProtos);
9743         SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9744         SET_MIB(old_ip_mib.ipInDelivers,
9745             (uint32_t)ipmib->ipIfStatsHCInDelivers);
9746         SET_MIB(old_ip_mib.ipOutRequests,
9747             (uint32_t)ipmib->ipIfStatsHCOutRequests);
9748         SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9749         SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9750         SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9751         SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9752         SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9753         SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9754         SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9755         SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9756 
9757         /* ipRoutingDiscards is not being used */
9758         SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9759         SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9760         SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9761         SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9762         SET_MIB(old_ip_mib.ipReasmDuplicates,
9763             ipmib->ipIfStatsReasmDuplicates);
9764         SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9765         SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9766         SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9767         SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9768         SET_MIB(old_ip_mib.rawipInOverflows,
9769             ipmib->rawipIfStatsInOverflows);
9770 
9771         SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9772         SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9773         SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9774         SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9775         SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9776             ipmib->ipIfStatsOutSwitchIPVersion);
9777 
9778         if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9779             (int)sizeof (old_ip_mib))) {
9780                 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9781                     (uint_t)sizeof (old_ip_mib)));
9782         }
9783 
9784         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9785         ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9786             (int)optp->level, (int)optp->name, (int)optp->len));
9787         qreply(q, mpctl);
9788         return (mp2ctl);
9789 }
9790 
9791 /* Per interface IPv4 statistics */
9792 static mblk_t *
9793 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9794     boolean_t legacy_req)
9795 {
9796         struct opthdr           *optp;
9797         mblk_t                  *mp2ctl;
9798         ill_t                   *ill;
9799         ill_walk_context_t      ctx;
9800         mblk_t                  *mp_tail = NULL;
9801         mib2_ipIfStatsEntry_t   global_ip_mib;
9802         mib2_ipAddrEntry_t      mae;
9803 
9804         /*
9805          * Make a copy of the original message
9806          */
9807         mp2ctl = copymsg(mpctl);
9808 
9809         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9810         optp->level = MIB2_IP;
9811         optp->name = MIB2_IP_TRAFFIC_STATS;
9812         /* Include "unknown interface" ip_mib */
9813         ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9814         ipst->ips_ip_mib.ipIfStatsIfIndex =
9815             MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9816         SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9817             (ipst->ips_ip_forwarding ? 1 : 2));
9818         SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9819             (uint32_t)ipst->ips_ip_def_ttl);
9820         SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9821             sizeof (mib2_ipIfStatsEntry_t));
9822         SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9823             sizeof (mib2_ipAddrEntry_t));
9824         SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9825             sizeof (mib2_ipRouteEntry_t));
9826         SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9827             sizeof (mib2_ipNetToMediaEntry_t));
9828         SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9829             sizeof (ip_member_t));
9830         SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9831             sizeof (ip_grpsrc_t));
9832 
9833         bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9834 
9835         if (legacy_req) {
9836                 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9837                     LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9838         }
9839 
9840         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9841             (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9842                 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9843                     "failed to allocate %u bytes\n",
9844                     (uint_t)sizeof (global_ip_mib)));
9845         }
9846 
9847         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9848         ill = ILL_START_WALK_V4(&ctx, ipst);
9849         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9850                 ill->ill_ip_mib->ipIfStatsIfIndex =
9851                     ill->ill_phyint->phyint_ifindex;
9852                 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9853                     (ipst->ips_ip_forwarding ? 1 : 2));
9854                 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9855                     (uint32_t)ipst->ips_ip_def_ttl);
9856 
9857                 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9858                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9859                     (char *)ill->ill_ip_mib,
9860                     (int)sizeof (*ill->ill_ip_mib))) {
9861                         ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9862                             "failed to allocate %u bytes\n",
9863                             (uint_t)sizeof (*ill->ill_ip_mib)));
9864                 }
9865         }
9866         rw_exit(&ipst->ips_ill_g_lock);
9867 
9868         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9869         ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9870             "level %d, name %d, len %d\n",
9871             (int)optp->level, (int)optp->name, (int)optp->len));
9872         qreply(q, mpctl);
9873 
9874         if (mp2ctl == NULL)
9875                 return (NULL);
9876 
9877         return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9878             legacy_req));
9879 }
9880 
9881 /* Global IPv4 ICMP statistics */
9882 static mblk_t *
9883 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9884 {
9885         struct opthdr           *optp;
9886         mblk_t                  *mp2ctl;
9887 
9888         /*
9889          * Make a copy of the original message
9890          */
9891         mp2ctl = copymsg(mpctl);
9892 
9893         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9894         optp->level = MIB2_ICMP;
9895         optp->name = 0;
9896         if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9897             (int)sizeof (ipst->ips_icmp_mib))) {
9898                 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9899                     (uint_t)sizeof (ipst->ips_icmp_mib)));
9900         }
9901         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9902         ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9903             (int)optp->level, (int)optp->name, (int)optp->len));
9904         qreply(q, mpctl);
9905         return (mp2ctl);
9906 }
9907 
9908 /* Global IPv4 IGMP statistics */
9909 static mblk_t *
9910 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9911 {
9912         struct opthdr           *optp;
9913         mblk_t                  *mp2ctl;
9914 
9915         /*
9916          * make a copy of the original message
9917          */
9918         mp2ctl = copymsg(mpctl);
9919 
9920         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9921         optp->level = EXPER_IGMP;
9922         optp->name = 0;
9923         if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9924             (int)sizeof (ipst->ips_igmpstat))) {
9925                 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9926                     (uint_t)sizeof (ipst->ips_igmpstat)));
9927         }
9928         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9929         ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9930             (int)optp->level, (int)optp->name, (int)optp->len));
9931         qreply(q, mpctl);
9932         return (mp2ctl);
9933 }
9934 
9935 /* Global IPv4 Multicast Routing statistics */
9936 static mblk_t *
9937 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9938 {
9939         struct opthdr           *optp;
9940         mblk_t                  *mp2ctl;
9941 
9942         /*
9943          * make a copy of the original message
9944          */
9945         mp2ctl = copymsg(mpctl);
9946 
9947         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9948         optp->level = EXPER_DVMRP;
9949         optp->name = 0;
9950         if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
9951                 ip0dbg(("ip_mroute_stats: failed\n"));
9952         }
9953         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9954         ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
9955             (int)optp->level, (int)optp->name, (int)optp->len));
9956         qreply(q, mpctl);
9957         return (mp2ctl);
9958 }
9959 
9960 /* IPv4 address information */
9961 static mblk_t *
9962 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9963     boolean_t legacy_req)
9964 {
9965         struct opthdr           *optp;
9966         mblk_t                  *mp2ctl;
9967         mblk_t                  *mp_tail = NULL;
9968         ill_t                   *ill;
9969         ipif_t                  *ipif;
9970         uint_t                  bitval;
9971         mib2_ipAddrEntry_t      mae;
9972         size_t                  mae_size;
9973         zoneid_t                zoneid;
9974         ill_walk_context_t      ctx;
9975 
9976         /*
9977          * make a copy of the original message
9978          */
9979         mp2ctl = copymsg(mpctl);
9980 
9981         mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9982             sizeof (mib2_ipAddrEntry_t);
9983 
9984         /* ipAddrEntryTable */
9985 
9986         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9987         optp->level = MIB2_IP;
9988         optp->name = MIB2_IP_ADDR;
9989         zoneid = Q_TO_CONN(q)->conn_zoneid;
9990 
9991         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9992         ill = ILL_START_WALK_V4(&ctx, ipst);
9993         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9994                 for (ipif = ill->ill_ipif; ipif != NULL;
9995                     ipif = ipif->ipif_next) {
9996                         if (ipif->ipif_zoneid != zoneid &&
9997                             ipif->ipif_zoneid != ALL_ZONES)
9998                                 continue;
9999                         /* Sum of count from dead IRE_LO* and our current */
10000                         mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10001                         if (ipif->ipif_ire_local != NULL) {
10002                                 mae.ipAdEntInfo.ae_ibcnt +=
10003                                     ipif->ipif_ire_local->ire_ib_pkt_count;
10004                         }
10005                         mae.ipAdEntInfo.ae_obcnt = 0;
10006                         mae.ipAdEntInfo.ae_focnt = 0;
10007 
10008                         ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10009                             OCTET_LENGTH);
10010                         mae.ipAdEntIfIndex.o_length =
10011                             mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10012                         mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10013                         mae.ipAdEntNetMask = ipif->ipif_net_mask;
10014                         mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10015                         mae.ipAdEntInfo.ae_subnet_len =
10016                             ip_mask_to_plen(ipif->ipif_net_mask);
10017                         mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10018                         for (bitval = 1;
10019                             bitval &&
10020                             !(bitval & ipif->ipif_brd_addr);
10021                             bitval <<= 1)
10022                                 noop;
10023                         mae.ipAdEntBcastAddr = bitval;
10024                         mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10025                         mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10026                         mae.ipAdEntInfo.ae_metric  = ipif->ipif_ill->ill_metric;
10027                         mae.ipAdEntInfo.ae_broadcast_addr =
10028                             ipif->ipif_brd_addr;
10029                         mae.ipAdEntInfo.ae_pp_dst_addr =
10030                             ipif->ipif_pp_dst_addr;
10031                         mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10032                             ill->ill_flags | ill->ill_phyint->phyint_flags;
10033                         mae.ipAdEntRetransmitTime =
10034                             ill->ill_reachable_retrans_time;
10035 
10036                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10037                             (char *)&mae, (int)mae_size)) {
10038                                 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10039                                     "allocate %u bytes\n", (uint_t)mae_size));
10040                         }
10041                 }
10042         }
10043         rw_exit(&ipst->ips_ill_g_lock);
10044 
10045         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10046         ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10047             (int)optp->level, (int)optp->name, (int)optp->len));
10048         qreply(q, mpctl);
10049         return (mp2ctl);
10050 }
10051 
10052 /* IPv6 address information */
10053 static mblk_t *
10054 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10055     boolean_t legacy_req)
10056 {
10057         struct opthdr           *optp;
10058         mblk_t                  *mp2ctl;
10059         mblk_t                  *mp_tail = NULL;
10060         ill_t                   *ill;
10061         ipif_t                  *ipif;
10062         mib2_ipv6AddrEntry_t    mae6;
10063         size_t                  mae6_size;
10064         zoneid_t                zoneid;
10065         ill_walk_context_t      ctx;
10066 
10067         /*
10068          * make a copy of the original message
10069          */
10070         mp2ctl = copymsg(mpctl);
10071 
10072         mae6_size = (legacy_req) ?
10073             LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10074             sizeof (mib2_ipv6AddrEntry_t);
10075 
10076         /* ipv6AddrEntryTable */
10077 
10078         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10079         optp->level = MIB2_IP6;
10080         optp->name = MIB2_IP6_ADDR;
10081         zoneid = Q_TO_CONN(q)->conn_zoneid;
10082 
10083         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10084         ill = ILL_START_WALK_V6(&ctx, ipst);
10085         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10086                 for (ipif = ill->ill_ipif; ipif != NULL;
10087                     ipif = ipif->ipif_next) {
10088                         if (ipif->ipif_zoneid != zoneid &&
10089                             ipif->ipif_zoneid != ALL_ZONES)
10090                                 continue;
10091                         /* Sum of count from dead IRE_LO* and our current */
10092                         mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10093                         if (ipif->ipif_ire_local != NULL) {
10094                                 mae6.ipv6AddrInfo.ae_ibcnt +=
10095                                     ipif->ipif_ire_local->ire_ib_pkt_count;
10096                         }
10097                         mae6.ipv6AddrInfo.ae_obcnt = 0;
10098                         mae6.ipv6AddrInfo.ae_focnt = 0;
10099 
10100                         ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10101                             OCTET_LENGTH);
10102                         mae6.ipv6AddrIfIndex.o_length =
10103                             mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10104                         mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10105                         mae6.ipv6AddrPfxLength =
10106                             ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10107                         mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10108                         mae6.ipv6AddrInfo.ae_subnet_len =
10109                             mae6.ipv6AddrPfxLength;
10110                         mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10111 
10112                         /* Type: stateless(1), stateful(2), unknown(3) */
10113                         if (ipif->ipif_flags & IPIF_ADDRCONF)
10114                                 mae6.ipv6AddrType = 1;
10115                         else
10116                                 mae6.ipv6AddrType = 2;
10117                         /* Anycast: true(1), false(2) */
10118                         if (ipif->ipif_flags & IPIF_ANYCAST)
10119                                 mae6.ipv6AddrAnycastFlag = 1;
10120                         else
10121                                 mae6.ipv6AddrAnycastFlag = 2;
10122 
10123                         /*
10124                          * Address status: preferred(1), deprecated(2),
10125                          * invalid(3), inaccessible(4), unknown(5)
10126                          */
10127                         if (ipif->ipif_flags & IPIF_NOLOCAL)
10128                                 mae6.ipv6AddrStatus = 3;
10129                         else if (ipif->ipif_flags & IPIF_DEPRECATED)
10130                                 mae6.ipv6AddrStatus = 2;
10131                         else
10132                                 mae6.ipv6AddrStatus = 1;
10133                         mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10134                         mae6.ipv6AddrInfo.ae_metric  =
10135                             ipif->ipif_ill->ill_metric;
10136                         mae6.ipv6AddrInfo.ae_pp_dst_addr =
10137                             ipif->ipif_v6pp_dst_addr;
10138                         mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10139                             ill->ill_flags | ill->ill_phyint->phyint_flags;
10140                         mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10141                         mae6.ipv6AddrIdentifier = ill->ill_token;
10142                         mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10143                         mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10144                         mae6.ipv6AddrRetransmitTime =
10145                             ill->ill_reachable_retrans_time;
10146                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10147                             (char *)&mae6, (int)mae6_size)) {
10148                                 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10149                                     "allocate %u bytes\n",
10150                                     (uint_t)mae6_size));
10151                         }
10152                 }
10153         }
10154         rw_exit(&ipst->ips_ill_g_lock);
10155 
10156         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10157         ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10158             (int)optp->level, (int)optp->name, (int)optp->len));
10159         qreply(q, mpctl);
10160         return (mp2ctl);
10161 }
10162 
10163 /* IPv4 multicast group membership. */
10164 static mblk_t *
10165 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10166 {
10167         struct opthdr           *optp;
10168         mblk_t                  *mp2ctl;
10169         ill_t                   *ill;
10170         ipif_t                  *ipif;
10171         ilm_t                   *ilm;
10172         ip_member_t             ipm;
10173         mblk_t                  *mp_tail = NULL;
10174         ill_walk_context_t      ctx;
10175         zoneid_t                zoneid;
10176 
10177         /*
10178          * make a copy of the original message
10179          */
10180         mp2ctl = copymsg(mpctl);
10181         zoneid = Q_TO_CONN(q)->conn_zoneid;
10182 
10183         /* ipGroupMember table */
10184         optp = (struct opthdr *)&mpctl->b_rptr[
10185             sizeof (struct T_optmgmt_ack)];
10186         optp->level = MIB2_IP;
10187         optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10188 
10189         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10190         ill = ILL_START_WALK_V4(&ctx, ipst);
10191         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10192                 /* Make sure the ill isn't going away. */
10193                 if (!ill_check_and_refhold(ill))
10194                         continue;
10195                 rw_exit(&ipst->ips_ill_g_lock);
10196                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10197                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10198                         if (ilm->ilm_zoneid != zoneid &&
10199                             ilm->ilm_zoneid != ALL_ZONES)
10200                                 continue;
10201 
10202                         /* Is there an ipif for ilm_ifaddr? */
10203                         for (ipif = ill->ill_ipif; ipif != NULL;
10204                             ipif = ipif->ipif_next) {
10205                                 if (!IPIF_IS_CONDEMNED(ipif) &&
10206                                     ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10207                                     ilm->ilm_ifaddr != INADDR_ANY)
10208                                         break;
10209                         }
10210                         if (ipif != NULL) {
10211                                 ipif_get_name(ipif,
10212                                     ipm.ipGroupMemberIfIndex.o_bytes,
10213                                     OCTET_LENGTH);
10214                         } else {
10215                                 ill_get_name(ill,
10216                                     ipm.ipGroupMemberIfIndex.o_bytes,
10217                                     OCTET_LENGTH);
10218                         }
10219                         ipm.ipGroupMemberIfIndex.o_length =
10220                             mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10221 
10222                         ipm.ipGroupMemberAddress = ilm->ilm_addr;
10223                         ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10224                         ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10225                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10226                             (char *)&ipm, (int)sizeof (ipm))) {
10227                                 ip1dbg(("ip_snmp_get_mib2_ip_group: "
10228                                     "failed to allocate %u bytes\n",
10229                                     (uint_t)sizeof (ipm)));
10230                         }
10231                 }
10232                 rw_exit(&ill->ill_mcast_lock);
10233                 ill_refrele(ill);
10234                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10235         }
10236         rw_exit(&ipst->ips_ill_g_lock);
10237         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10238         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10239             (int)optp->level, (int)optp->name, (int)optp->len));
10240         qreply(q, mpctl);
10241         return (mp2ctl);
10242 }
10243 
10244 /* IPv6 multicast group membership. */
10245 static mblk_t *
10246 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10247 {
10248         struct opthdr           *optp;
10249         mblk_t                  *mp2ctl;
10250         ill_t                   *ill;
10251         ilm_t                   *ilm;
10252         ipv6_member_t           ipm6;
10253         mblk_t                  *mp_tail = NULL;
10254         ill_walk_context_t      ctx;
10255         zoneid_t                zoneid;
10256 
10257         /*
10258          * make a copy of the original message
10259          */
10260         mp2ctl = copymsg(mpctl);
10261         zoneid = Q_TO_CONN(q)->conn_zoneid;
10262 
10263         /* ip6GroupMember table */
10264         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10265         optp->level = MIB2_IP6;
10266         optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10267 
10268         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10269         ill = ILL_START_WALK_V6(&ctx, ipst);
10270         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10271                 /* Make sure the ill isn't going away. */
10272                 if (!ill_check_and_refhold(ill))
10273                         continue;
10274                 rw_exit(&ipst->ips_ill_g_lock);
10275                 /*
10276                  * Normally we don't have any members on under IPMP interfaces.
10277                  * We report them as a debugging aid.
10278                  */
10279                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10280                 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10281                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10282                         if (ilm->ilm_zoneid != zoneid &&
10283                             ilm->ilm_zoneid != ALL_ZONES)
10284                                 continue;       /* not this zone */
10285                         ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10286                         ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10287                         ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10288                         if (!snmp_append_data2(mpctl->b_cont,
10289                             &mp_tail,
10290                             (char *)&ipm6, (int)sizeof (ipm6))) {
10291                                 ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10292                                     "failed to allocate %u bytes\n",
10293                                     (uint_t)sizeof (ipm6)));
10294                         }
10295                 }
10296                 rw_exit(&ill->ill_mcast_lock);
10297                 ill_refrele(ill);
10298                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10299         }
10300         rw_exit(&ipst->ips_ill_g_lock);
10301 
10302         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10303         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10304             (int)optp->level, (int)optp->name, (int)optp->len));
10305         qreply(q, mpctl);
10306         return (mp2ctl);
10307 }
10308 
10309 /* IP multicast filtered sources */
10310 static mblk_t *
10311 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10312 {
10313         struct opthdr           *optp;
10314         mblk_t                  *mp2ctl;
10315         ill_t                   *ill;
10316         ipif_t                  *ipif;
10317         ilm_t                   *ilm;
10318         ip_grpsrc_t             ips;
10319         mblk_t                  *mp_tail = NULL;
10320         ill_walk_context_t      ctx;
10321         zoneid_t                zoneid;
10322         int                     i;
10323         slist_t                 *sl;
10324 
10325         /*
10326          * make a copy of the original message
10327          */
10328         mp2ctl = copymsg(mpctl);
10329         zoneid = Q_TO_CONN(q)->conn_zoneid;
10330 
10331         /* ipGroupSource table */
10332         optp = (struct opthdr *)&mpctl->b_rptr[
10333             sizeof (struct T_optmgmt_ack)];
10334         optp->level = MIB2_IP;
10335         optp->name = EXPER_IP_GROUP_SOURCES;
10336 
10337         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10338         ill = ILL_START_WALK_V4(&ctx, ipst);
10339         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10340                 /* Make sure the ill isn't going away. */
10341                 if (!ill_check_and_refhold(ill))
10342                         continue;
10343                 rw_exit(&ipst->ips_ill_g_lock);
10344                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10345                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10346                         sl = ilm->ilm_filter;
10347                         if (ilm->ilm_zoneid != zoneid &&
10348                             ilm->ilm_zoneid != ALL_ZONES)
10349                                 continue;
10350                         if (SLIST_IS_EMPTY(sl))
10351                                 continue;
10352 
10353                         /* Is there an ipif for ilm_ifaddr? */
10354                         for (ipif = ill->ill_ipif; ipif != NULL;
10355                             ipif = ipif->ipif_next) {
10356                                 if (!IPIF_IS_CONDEMNED(ipif) &&
10357                                     ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10358                                     ilm->ilm_ifaddr != INADDR_ANY)
10359                                         break;
10360                         }
10361                         if (ipif != NULL) {
10362                                 ipif_get_name(ipif,
10363                                     ips.ipGroupSourceIfIndex.o_bytes,
10364                                     OCTET_LENGTH);
10365                         } else {
10366                                 ill_get_name(ill,
10367                                     ips.ipGroupSourceIfIndex.o_bytes,
10368                                     OCTET_LENGTH);
10369                         }
10370                         ips.ipGroupSourceIfIndex.o_length =
10371                             mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10372 
10373                         ips.ipGroupSourceGroup = ilm->ilm_addr;
10374                         for (i = 0; i < sl->sl_numsrc; i++) {
10375                                 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10376                                         continue;
10377                                 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10378                                     ips.ipGroupSourceAddress);
10379                                 if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10380                                     (char *)&ips, (int)sizeof (ips)) == 0) {
10381                                         ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10382                                             " failed to allocate %u bytes\n",
10383                                             (uint_t)sizeof (ips)));
10384                                 }
10385                         }
10386                 }
10387                 rw_exit(&ill->ill_mcast_lock);
10388                 ill_refrele(ill);
10389                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10390         }
10391         rw_exit(&ipst->ips_ill_g_lock);
10392         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10393         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10394             (int)optp->level, (int)optp->name, (int)optp->len));
10395         qreply(q, mpctl);
10396         return (mp2ctl);
10397 }
10398 
10399 /* IPv6 multicast filtered sources. */
10400 static mblk_t *
10401 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10402 {
10403         struct opthdr           *optp;
10404         mblk_t                  *mp2ctl;
10405         ill_t                   *ill;
10406         ilm_t                   *ilm;
10407         ipv6_grpsrc_t           ips6;
10408         mblk_t                  *mp_tail = NULL;
10409         ill_walk_context_t      ctx;
10410         zoneid_t                zoneid;
10411         int                     i;
10412         slist_t                 *sl;
10413 
10414         /*
10415          * make a copy of the original message
10416          */
10417         mp2ctl = copymsg(mpctl);
10418         zoneid = Q_TO_CONN(q)->conn_zoneid;
10419 
10420         /* ip6GroupMember table */
10421         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10422         optp->level = MIB2_IP6;
10423         optp->name = EXPER_IP6_GROUP_SOURCES;
10424 
10425         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10426         ill = ILL_START_WALK_V6(&ctx, ipst);
10427         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10428                 /* Make sure the ill isn't going away. */
10429                 if (!ill_check_and_refhold(ill))
10430                         continue;
10431                 rw_exit(&ipst->ips_ill_g_lock);
10432                 /*
10433                  * Normally we don't have any members on under IPMP interfaces.
10434                  * We report them as a debugging aid.
10435                  */
10436                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10437                 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10438                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10439                         sl = ilm->ilm_filter;
10440                         if (ilm->ilm_zoneid != zoneid &&
10441                             ilm->ilm_zoneid != ALL_ZONES)
10442                                 continue;
10443                         if (SLIST_IS_EMPTY(sl))
10444                                 continue;
10445                         ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10446                         for (i = 0; i < sl->sl_numsrc; i++) {
10447                                 ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10448                                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10449                                     (char *)&ips6, (int)sizeof (ips6))) {
10450                                         ip1dbg(("ip_snmp_get_mib2_ip6_"
10451                                             "group_src: failed to allocate "
10452                                             "%u bytes\n",
10453                                             (uint_t)sizeof (ips6)));
10454                                 }
10455                         }
10456                 }
10457                 rw_exit(&ill->ill_mcast_lock);
10458                 ill_refrele(ill);
10459                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10460         }
10461         rw_exit(&ipst->ips_ill_g_lock);
10462 
10463         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10464         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10465             (int)optp->level, (int)optp->name, (int)optp->len));
10466         qreply(q, mpctl);
10467         return (mp2ctl);
10468 }
10469 
10470 /* Multicast routing virtual interface table. */
10471 static mblk_t *
10472 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10473 {
10474         struct opthdr           *optp;
10475         mblk_t                  *mp2ctl;
10476 
10477         /*
10478          * make a copy of the original message
10479          */
10480         mp2ctl = copymsg(mpctl);
10481 
10482         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10483         optp->level = EXPER_DVMRP;
10484         optp->name = EXPER_DVMRP_VIF;
10485         if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10486                 ip0dbg(("ip_mroute_vif: failed\n"));
10487         }
10488         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10489         ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10490             (int)optp->level, (int)optp->name, (int)optp->len));
10491         qreply(q, mpctl);
10492         return (mp2ctl);
10493 }
10494 
10495 /* Multicast routing table. */
10496 static mblk_t *
10497 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10498 {
10499         struct opthdr           *optp;
10500         mblk_t                  *mp2ctl;
10501 
10502         /*
10503          * make a copy of the original message
10504          */
10505         mp2ctl = copymsg(mpctl);
10506 
10507         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10508         optp->level = EXPER_DVMRP;
10509         optp->name = EXPER_DVMRP_MRT;
10510         if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10511                 ip0dbg(("ip_mroute_mrt: failed\n"));
10512         }
10513         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10514         ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10515             (int)optp->level, (int)optp->name, (int)optp->len));
10516         qreply(q, mpctl);
10517         return (mp2ctl);
10518 }
10519 
10520 /*
10521  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10522  * in one IRE walk.
10523  */
10524 static mblk_t *
10525 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10526     ip_stack_t *ipst)
10527 {
10528         struct opthdr   *optp;
10529         mblk_t          *mp2ctl;        /* Returned */
10530         mblk_t          *mp3ctl;        /* nettomedia */
10531         mblk_t          *mp4ctl;        /* routeattrs */
10532         iproutedata_t   ird;
10533         zoneid_t        zoneid;
10534 
10535         /*
10536          * make copies of the original message
10537          *      - mp2ctl is returned unchanged to the caller for his use
10538          *      - mpctl is sent upstream as ipRouteEntryTable
10539          *      - mp3ctl is sent upstream as ipNetToMediaEntryTable
10540          *      - mp4ctl is sent upstream as ipRouteAttributeTable
10541          */
10542         mp2ctl = copymsg(mpctl);
10543         mp3ctl = copymsg(mpctl);
10544         mp4ctl = copymsg(mpctl);
10545         if (mp3ctl == NULL || mp4ctl == NULL) {
10546                 freemsg(mp4ctl);
10547                 freemsg(mp3ctl);
10548                 freemsg(mp2ctl);
10549                 freemsg(mpctl);
10550                 return (NULL);
10551         }
10552 
10553         bzero(&ird, sizeof (ird));
10554 
10555         ird.ird_route.lp_head = mpctl->b_cont;
10556         ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10557         ird.ird_attrs.lp_head = mp4ctl->b_cont;
10558         /*
10559          * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10560          * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10561          * intended a temporary solution until a proper MIB API is provided
10562          * that provides complete filtering/caller-opt-in.
10563          */
10564         if (level == EXPER_IP_AND_ALL_IRES)
10565                 ird.ird_flags |= IRD_REPORT_ALL;
10566 
10567         zoneid = Q_TO_CONN(q)->conn_zoneid;
10568         ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10569 
10570         /* ipRouteEntryTable in mpctl */
10571         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10572         optp->level = MIB2_IP;
10573         optp->name = MIB2_IP_ROUTE;
10574         optp->len = msgdsize(ird.ird_route.lp_head);
10575         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10576             (int)optp->level, (int)optp->name, (int)optp->len));
10577         qreply(q, mpctl);
10578 
10579         /* ipNetToMediaEntryTable in mp3ctl */
10580         ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10581 
10582         optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10583         optp->level = MIB2_IP;
10584         optp->name = MIB2_IP_MEDIA;
10585         optp->len = msgdsize(ird.ird_netmedia.lp_head);
10586         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10587             (int)optp->level, (int)optp->name, (int)optp->len));
10588         qreply(q, mp3ctl);
10589 
10590         /* ipRouteAttributeTable in mp4ctl */
10591         optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10592         optp->level = MIB2_IP;
10593         optp->name = EXPER_IP_RTATTR;
10594         optp->len = msgdsize(ird.ird_attrs.lp_head);
10595         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10596             (int)optp->level, (int)optp->name, (int)optp->len));
10597         if (optp->len == 0)
10598                 freemsg(mp4ctl);
10599         else
10600                 qreply(q, mp4ctl);
10601 
10602         return (mp2ctl);
10603 }
10604 
10605 /*
10606  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10607  * ipv6NetToMediaEntryTable in an NDP walk.
10608  */
10609 static mblk_t *
10610 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10611     ip_stack_t *ipst)
10612 {
10613         struct opthdr   *optp;
10614         mblk_t          *mp2ctl;        /* Returned */
10615         mblk_t          *mp3ctl;        /* nettomedia */
10616         mblk_t          *mp4ctl;        /* routeattrs */
10617         iproutedata_t   ird;
10618         zoneid_t        zoneid;
10619 
10620         /*
10621          * make copies of the original message
10622          *      - mp2ctl is returned unchanged to the caller for his use
10623          *      - mpctl is sent upstream as ipv6RouteEntryTable
10624          *      - mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10625          *      - mp4ctl is sent upstream as ipv6RouteAttributeTable
10626          */
10627         mp2ctl = copymsg(mpctl);
10628         mp3ctl = copymsg(mpctl);
10629         mp4ctl = copymsg(mpctl);
10630         if (mp3ctl == NULL || mp4ctl == NULL) {
10631                 freemsg(mp4ctl);
10632                 freemsg(mp3ctl);
10633                 freemsg(mp2ctl);
10634                 freemsg(mpctl);
10635                 return (NULL);
10636         }
10637 
10638         bzero(&ird, sizeof (ird));
10639 
10640         ird.ird_route.lp_head = mpctl->b_cont;
10641         ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10642         ird.ird_attrs.lp_head = mp4ctl->b_cont;
10643         /*
10644          * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10645          * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10646          * intended a temporary solution until a proper MIB API is provided
10647          * that provides complete filtering/caller-opt-in.
10648          */
10649         if (level == EXPER_IP_AND_ALL_IRES)
10650                 ird.ird_flags |= IRD_REPORT_ALL;
10651 
10652         zoneid = Q_TO_CONN(q)->conn_zoneid;
10653         ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10654 
10655         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10656         optp->level = MIB2_IP6;
10657         optp->name = MIB2_IP6_ROUTE;
10658         optp->len = msgdsize(ird.ird_route.lp_head);
10659         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10660             (int)optp->level, (int)optp->name, (int)optp->len));
10661         qreply(q, mpctl);
10662 
10663         /* ipv6NetToMediaEntryTable in mp3ctl */
10664         ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10665 
10666         optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10667         optp->level = MIB2_IP6;
10668         optp->name = MIB2_IP6_MEDIA;
10669         optp->len = msgdsize(ird.ird_netmedia.lp_head);
10670         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10671             (int)optp->level, (int)optp->name, (int)optp->len));
10672         qreply(q, mp3ctl);
10673 
10674         /* ipv6RouteAttributeTable in mp4ctl */
10675         optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10676         optp->level = MIB2_IP6;
10677         optp->name = EXPER_IP_RTATTR;
10678         optp->len = msgdsize(ird.ird_attrs.lp_head);
10679         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10680             (int)optp->level, (int)optp->name, (int)optp->len));
10681         if (optp->len == 0)
10682                 freemsg(mp4ctl);
10683         else
10684                 qreply(q, mp4ctl);
10685 
10686         return (mp2ctl);
10687 }
10688 
10689 /*
10690  * IPv6 mib: One per ill
10691  */
10692 static mblk_t *
10693 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10694     boolean_t legacy_req)
10695 {
10696         struct opthdr           *optp;
10697         mblk_t                  *mp2ctl;
10698         ill_t                   *ill;
10699         ill_walk_context_t      ctx;
10700         mblk_t                  *mp_tail = NULL;
10701         mib2_ipv6AddrEntry_t    mae6;
10702         mib2_ipIfStatsEntry_t   *ise;
10703         size_t                  ise_size, iae_size;
10704 
10705         /*
10706          * Make a copy of the original message
10707          */
10708         mp2ctl = copymsg(mpctl);
10709 
10710         /* fixed length IPv6 structure ... */
10711 
10712         if (legacy_req) {
10713                 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10714                     mib2_ipIfStatsEntry_t);
10715                 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10716         } else {
10717                 ise_size = sizeof (mib2_ipIfStatsEntry_t);
10718                 iae_size = sizeof (mib2_ipv6AddrEntry_t);
10719         }
10720 
10721         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10722         optp->level = MIB2_IP6;
10723         optp->name = 0;
10724         /* Include "unknown interface" ip6_mib */
10725         ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10726         ipst->ips_ip6_mib.ipIfStatsIfIndex =
10727             MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10728         SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10729             ipst->ips_ipv6_forwarding ? 1 : 2);
10730         SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10731             ipst->ips_ipv6_def_hops);
10732         SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10733             sizeof (mib2_ipIfStatsEntry_t));
10734         SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10735             sizeof (mib2_ipv6AddrEntry_t));
10736         SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10737             sizeof (mib2_ipv6RouteEntry_t));
10738         SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10739             sizeof (mib2_ipv6NetToMediaEntry_t));
10740         SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10741             sizeof (ipv6_member_t));
10742         SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10743             sizeof (ipv6_grpsrc_t));
10744 
10745         /*
10746          * Synchronize 64- and 32-bit counters
10747          */
10748         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10749             ipIfStatsHCInReceives);
10750         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10751             ipIfStatsHCInDelivers);
10752         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10753             ipIfStatsHCOutRequests);
10754         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10755             ipIfStatsHCOutForwDatagrams);
10756         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10757             ipIfStatsHCOutMcastPkts);
10758         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10759             ipIfStatsHCInMcastPkts);
10760 
10761         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10762             (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10763                 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10764                     (uint_t)ise_size));
10765         } else if (legacy_req) {
10766                 /* Adjust the EntrySize fields for legacy requests. */
10767                 ise =
10768                     (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10769                 SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10770                 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10771         }
10772 
10773         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10774         ill = ILL_START_WALK_V6(&ctx, ipst);
10775         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10776                 ill->ill_ip_mib->ipIfStatsIfIndex =
10777                     ill->ill_phyint->phyint_ifindex;
10778                 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10779                     ipst->ips_ipv6_forwarding ? 1 : 2);
10780                 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10781                     ill->ill_max_hops);
10782 
10783                 /*
10784                  * Synchronize 64- and 32-bit counters
10785                  */
10786                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10787                     ipIfStatsHCInReceives);
10788                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10789                     ipIfStatsHCInDelivers);
10790                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10791                     ipIfStatsHCOutRequests);
10792                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10793                     ipIfStatsHCOutForwDatagrams);
10794                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10795                     ipIfStatsHCOutMcastPkts);
10796                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10797                     ipIfStatsHCInMcastPkts);
10798 
10799                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10800                     (char *)ill->ill_ip_mib, (int)ise_size)) {
10801                         ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10802                         "%u bytes\n", (uint_t)ise_size));
10803                 } else if (legacy_req) {
10804                         /* Adjust the EntrySize fields for legacy requests. */
10805                         ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10806                             (int)ise_size);
10807                         SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10808                         SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10809                 }
10810         }
10811         rw_exit(&ipst->ips_ill_g_lock);
10812 
10813         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10814         ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10815             (int)optp->level, (int)optp->name, (int)optp->len));
10816         qreply(q, mpctl);
10817         return (mp2ctl);
10818 }
10819 
10820 /*
10821  * ICMPv6 mib: One per ill
10822  */
10823 static mblk_t *
10824 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10825 {
10826         struct opthdr           *optp;
10827         mblk_t                  *mp2ctl;
10828         ill_t                   *ill;
10829         ill_walk_context_t      ctx;
10830         mblk_t                  *mp_tail = NULL;
10831         /*
10832          * Make a copy of the original message
10833          */
10834         mp2ctl = copymsg(mpctl);
10835 
10836         /* fixed length ICMPv6 structure ... */
10837 
10838         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10839         optp->level = MIB2_ICMP6;
10840         optp->name = 0;
10841         /* Include "unknown interface" icmp6_mib */
10842         ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10843             MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10844         ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10845             sizeof (mib2_ipv6IfIcmpEntry_t);
10846         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10847             (char *)&ipst->ips_icmp6_mib,
10848             (int)sizeof (ipst->ips_icmp6_mib))) {
10849                 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10850                     (uint_t)sizeof (ipst->ips_icmp6_mib)));
10851         }
10852 
10853         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10854         ill = ILL_START_WALK_V6(&ctx, ipst);
10855         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10856                 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10857                     ill->ill_phyint->phyint_ifindex;
10858                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10859                     (char *)ill->ill_icmp6_mib,
10860                     (int)sizeof (*ill->ill_icmp6_mib))) {
10861                         ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10862                             "%u bytes\n",
10863                             (uint_t)sizeof (*ill->ill_icmp6_mib)));
10864                 }
10865         }
10866         rw_exit(&ipst->ips_ill_g_lock);
10867 
10868         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10869         ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10870             (int)optp->level, (int)optp->name, (int)optp->len));
10871         qreply(q, mpctl);
10872         return (mp2ctl);
10873 }
10874 
10875 /*
10876  * ire_walk routine to create both ipRouteEntryTable and
10877  * ipRouteAttributeTable in one IRE walk
10878  */
10879 static void
10880 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10881 {
10882         ill_t                           *ill;
10883         mib2_ipRouteEntry_t             *re;
10884         mib2_ipAttributeEntry_t         iaes;
10885         tsol_ire_gw_secattr_t           *attrp;
10886         tsol_gc_t                       *gc = NULL;
10887         tsol_gcgrp_t                    *gcgrp = NULL;
10888         ip_stack_t                      *ipst = ire->ire_ipst;
10889 
10890         ASSERT(ire->ire_ipversion == IPV4_VERSION);
10891 
10892         if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10893                 if (ire->ire_testhidden)
10894                         return;
10895                 if (ire->ire_type & IRE_IF_CLONE)
10896                         return;
10897         }
10898 
10899         if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10900                 return;
10901 
10902         if ((attrp = ire->ire_gw_secattr) != NULL) {
10903                 mutex_enter(&attrp->igsa_lock);
10904                 if ((gc = attrp->igsa_gc) != NULL) {
10905                         gcgrp = gc->gc_grp;
10906                         ASSERT(gcgrp != NULL);
10907                         rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10908                 }
10909                 mutex_exit(&attrp->igsa_lock);
10910         }
10911         /*
10912          * Return all IRE types for route table... let caller pick and choose
10913          */
10914         re->ipRouteDest = ire->ire_addr;
10915         ill = ire->ire_ill;
10916         re->ipRouteIfIndex.o_length = 0;
10917         if (ill != NULL) {
10918                 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10919                 re->ipRouteIfIndex.o_length =
10920                     mi_strlen(re->ipRouteIfIndex.o_bytes);
10921         }
10922         re->ipRouteMetric1 = -1;
10923         re->ipRouteMetric2 = -1;
10924         re->ipRouteMetric3 = -1;
10925         re->ipRouteMetric4 = -1;
10926 
10927         re->ipRouteNextHop = ire->ire_gateway_addr;
10928         /* indirect(4), direct(3), or invalid(2) */
10929         if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10930                 re->ipRouteType = 2;
10931         else if (ire->ire_type & IRE_ONLINK)
10932                 re->ipRouteType = 3;
10933         else
10934                 re->ipRouteType = 4;
10935 
10936         re->ipRouteProto = -1;
10937         re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10938         re->ipRouteMask = ire->ire_mask;
10939         re->ipRouteMetric5 = -1;
10940         re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10941         if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10942                 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10943 
10944         re->ipRouteInfo.re_frag_flag = 0;
10945         re->ipRouteInfo.re_rtt               = 0;
10946         re->ipRouteInfo.re_src_addr  = 0;
10947         re->ipRouteInfo.re_ref               = ire->ire_refcnt;
10948         re->ipRouteInfo.re_obpkt     = ire->ire_ob_pkt_count;
10949         re->ipRouteInfo.re_ibpkt     = ire->ire_ib_pkt_count;
10950         re->ipRouteInfo.re_flags     = ire->ire_flags;
10951 
10952         /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
10953         if (ire->ire_type & IRE_INTERFACE) {
10954                 ire_t *child;
10955 
10956                 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
10957                 child = ire->ire_dep_children;
10958                 while (child != NULL) {
10959                         re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
10960                         re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
10961                         child = child->ire_dep_sib_next;
10962                 }
10963                 rw_exit(&ipst->ips_ire_dep_lock);
10964         }
10965 
10966         if (ire->ire_flags & RTF_DYNAMIC) {
10967                 re->ipRouteInfo.re_ire_type  = IRE_HOST_REDIRECT;
10968         } else {
10969                 re->ipRouteInfo.re_ire_type  = ire->ire_type;
10970         }
10971 
10972         if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
10973             (char *)re, (int)sizeof (*re))) {
10974                 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
10975                     (uint_t)sizeof (*re)));
10976         }
10977 
10978         if (gc != NULL) {
10979                 iaes.iae_routeidx = ird->ird_idx;
10980                 iaes.iae_doi = gc->gc_db->gcdb_doi;
10981                 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
10982 
10983                 if (!snmp_append_data2(ird->ird_attrs.lp_head,
10984                     &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
10985                         ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
10986                             "bytes\n", (uint_t)sizeof (iaes)));
10987                 }
10988         }
10989 
10990         /* bump route index for next pass */
10991         ird->ird_idx++;
10992 
10993         kmem_free(re, sizeof (*re));
10994         if (gcgrp != NULL)
10995                 rw_exit(&gcgrp->gcgrp_rwlock);
10996 }
10997 
10998 /*
10999  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11000  */
11001 static void
11002 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11003 {
11004         ill_t                           *ill;
11005         mib2_ipv6RouteEntry_t           *re;
11006         mib2_ipAttributeEntry_t         iaes;
11007         tsol_ire_gw_secattr_t           *attrp;
11008         tsol_gc_t                       *gc = NULL;
11009         tsol_gcgrp_t                    *gcgrp = NULL;
11010         ip_stack_t                      *ipst = ire->ire_ipst;
11011 
11012         ASSERT(ire->ire_ipversion == IPV6_VERSION);
11013 
11014         if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11015                 if (ire->ire_testhidden)
11016                         return;
11017                 if (ire->ire_type & IRE_IF_CLONE)
11018                         return;
11019         }
11020 
11021         if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11022                 return;
11023 
11024         if ((attrp = ire->ire_gw_secattr) != NULL) {
11025                 mutex_enter(&attrp->igsa_lock);
11026                 if ((gc = attrp->igsa_gc) != NULL) {
11027                         gcgrp = gc->gc_grp;
11028                         ASSERT(gcgrp != NULL);
11029                         rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11030                 }
11031                 mutex_exit(&attrp->igsa_lock);
11032         }
11033         /*
11034          * Return all IRE types for route table... let caller pick and choose
11035          */
11036         re->ipv6RouteDest = ire->ire_addr_v6;
11037         re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11038         re->ipv6RouteIndex = 0;      /* Unique when multiple with same dest/plen */
11039         re->ipv6RouteIfIndex.o_length = 0;
11040         ill = ire->ire_ill;
11041         if (ill != NULL) {
11042                 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11043                 re->ipv6RouteIfIndex.o_length =
11044                     mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11045         }
11046 
11047         ASSERT(!(ire->ire_type & IRE_BROADCAST));
11048 
11049         mutex_enter(&ire->ire_lock);
11050         re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11051         mutex_exit(&ire->ire_lock);
11052 
11053         /* remote(4), local(3), or discard(2) */
11054         if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11055                 re->ipv6RouteType = 2;
11056         else if (ire->ire_type & IRE_ONLINK)
11057                 re->ipv6RouteType = 3;
11058         else
11059                 re->ipv6RouteType = 4;
11060 
11061         re->ipv6RouteProtocol        = -1;
11062         re->ipv6RoutePolicy  = 0;
11063         re->ipv6RouteAge     = gethrestime_sec() - ire->ire_create_time;
11064         re->ipv6RouteNextHopRDI      = 0;
11065         re->ipv6RouteWeight  = 0;
11066         re->ipv6RouteMetric  = 0;
11067         re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11068         if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11069                 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11070 
11071         re->ipv6RouteInfo.re_frag_flag       = 0;
11072         re->ipv6RouteInfo.re_rtt     = 0;
11073         re->ipv6RouteInfo.re_src_addr        = ipv6_all_zeros;
11074         re->ipv6RouteInfo.re_obpkt   = ire->ire_ob_pkt_count;
11075         re->ipv6RouteInfo.re_ibpkt   = ire->ire_ib_pkt_count;
11076         re->ipv6RouteInfo.re_ref     = ire->ire_refcnt;
11077         re->ipv6RouteInfo.re_flags   = ire->ire_flags;
11078 
11079         /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11080         if (ire->ire_type & IRE_INTERFACE) {
11081                 ire_t *child;
11082 
11083                 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11084                 child = ire->ire_dep_children;
11085                 while (child != NULL) {
11086                         re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11087                         re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11088                         child = child->ire_dep_sib_next;
11089                 }
11090                 rw_exit(&ipst->ips_ire_dep_lock);
11091         }
11092         if (ire->ire_flags & RTF_DYNAMIC) {
11093                 re->ipv6RouteInfo.re_ire_type        = IRE_HOST_REDIRECT;
11094         } else {
11095                 re->ipv6RouteInfo.re_ire_type        = ire->ire_type;
11096         }
11097 
11098         if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11099             (char *)re, (int)sizeof (*re))) {
11100                 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11101                     (uint_t)sizeof (*re)));
11102         }
11103 
11104         if (gc != NULL) {
11105                 iaes.iae_routeidx = ird->ird_idx;
11106                 iaes.iae_doi = gc->gc_db->gcdb_doi;
11107                 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11108 
11109                 if (!snmp_append_data2(ird->ird_attrs.lp_head,
11110                     &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11111                         ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11112                             "bytes\n", (uint_t)sizeof (iaes)));
11113                 }
11114         }
11115 
11116         /* bump route index for next pass */
11117         ird->ird_idx++;
11118 
11119         kmem_free(re, sizeof (*re));
11120         if (gcgrp != NULL)
11121                 rw_exit(&gcgrp->gcgrp_rwlock);
11122 }
11123 
11124 /*
11125  * ncec_walk routine to create ipv6NetToMediaEntryTable
11126  */
11127 static int
11128 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird)
11129 {
11130         ill_t                           *ill;
11131         mib2_ipv6NetToMediaEntry_t      ntme;
11132 
11133         ill = ncec->ncec_ill;
11134         /* skip arpce entries, and loopback ncec entries */
11135         if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11136                 return (0);
11137         /*
11138          * Neighbor cache entry attached to IRE with on-link
11139          * destination.
11140          * We report all IPMP groups on ncec_ill which is normally the upper.
11141          */
11142         ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11143         ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11144         ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11145         if (ncec->ncec_lladdr != NULL) {
11146                 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11147                     ntme.ipv6NetToMediaPhysAddress.o_length);
11148         }
11149         /*
11150          * Note: Returns ND_* states. Should be:
11151          * reachable(1), stale(2), delay(3), probe(4),
11152          * invalid(5), unknown(6)
11153          */
11154         ntme.ipv6NetToMediaState = ncec->ncec_state;
11155         ntme.ipv6NetToMediaLastUpdated = 0;
11156 
11157         /* other(1), dynamic(2), static(3), local(4) */
11158         if (NCE_MYADDR(ncec)) {
11159                 ntme.ipv6NetToMediaType = 4;
11160         } else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11161                 ntme.ipv6NetToMediaType = 1; /* proxy */
11162         } else if (ncec->ncec_flags & NCE_F_STATIC) {
11163                 ntme.ipv6NetToMediaType = 3;
11164         } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11165                 ntme.ipv6NetToMediaType = 1;
11166         } else {
11167                 ntme.ipv6NetToMediaType = 2;
11168         }
11169 
11170         if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11171             &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11172                 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11173                     (uint_t)sizeof (ntme)));
11174         }
11175         return (0);
11176 }
11177 
11178 int
11179 nce2ace(ncec_t *ncec)
11180 {
11181         int flags = 0;
11182 
11183         if (NCE_ISREACHABLE(ncec))
11184                 flags |= ACE_F_RESOLVED;
11185         if (ncec->ncec_flags & NCE_F_AUTHORITY)
11186                 flags |= ACE_F_AUTHORITY;
11187         if (ncec->ncec_flags & NCE_F_PUBLISH)
11188                 flags |= ACE_F_PUBLISH;
11189         if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11190                 flags |= ACE_F_PERMANENT;
11191         if (NCE_MYADDR(ncec))
11192                 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11193         if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11194                 flags |= ACE_F_UNVERIFIED;
11195         if (ncec->ncec_flags & NCE_F_AUTHORITY)
11196                 flags |= ACE_F_AUTHORITY;
11197         if (ncec->ncec_flags & NCE_F_DELAYED)
11198                 flags |= ACE_F_DELAYED;
11199         return (flags);
11200 }
11201 
11202 /*
11203  * ncec_walk routine to create ipNetToMediaEntryTable
11204  */
11205 static int
11206 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird)
11207 {
11208         ill_t                           *ill;
11209         mib2_ipNetToMediaEntry_t        ntme;
11210         const char                      *name = "unknown";
11211         ipaddr_t                        ncec_addr;
11212 
11213         ill = ncec->ncec_ill;
11214         if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11215             ill->ill_net_type == IRE_LOOPBACK)
11216                 return (0);
11217 
11218         /* We report all IPMP groups on ncec_ill which is normally the upper. */
11219         name = ill->ill_name;
11220         /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11221         if (NCE_MYADDR(ncec)) {
11222                 ntme.ipNetToMediaType = 4;
11223         } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11224                 ntme.ipNetToMediaType = 1;
11225         } else {
11226                 ntme.ipNetToMediaType = 3;
11227         }
11228         ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11229         bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11230             ntme.ipNetToMediaIfIndex.o_length);
11231 
11232         IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11233         bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11234 
11235         ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11236         ncec_addr = INADDR_BROADCAST;
11237         bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11238             sizeof (ncec_addr));
11239         /*
11240          * map all the flags to the ACE counterpart.
11241          */
11242         ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11243 
11244         ntme.ipNetToMediaPhysAddress.o_length =
11245             MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11246 
11247         if (!NCE_ISREACHABLE(ncec))
11248                 ntme.ipNetToMediaPhysAddress.o_length = 0;
11249         else {
11250                 if (ncec->ncec_lladdr != NULL) {
11251                         bcopy(ncec->ncec_lladdr,
11252                             ntme.ipNetToMediaPhysAddress.o_bytes,
11253                             ntme.ipNetToMediaPhysAddress.o_length);
11254                 }
11255         }
11256 
11257         if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11258             &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11259                 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11260                     (uint_t)sizeof (ntme)));
11261         }
11262         return (0);
11263 }
11264 
11265 /*
11266  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11267  */
11268 /* ARGSUSED */
11269 int
11270 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11271 {
11272         switch (level) {
11273         case MIB2_IP:
11274         case MIB2_ICMP:
11275                 switch (name) {
11276                 default:
11277                         break;
11278                 }
11279                 return (1);
11280         default:
11281                 return (1);
11282         }
11283 }
11284 
11285 /*
11286  * When there exists both a 64- and 32-bit counter of a particular type
11287  * (i.e., InReceives), only the 64-bit counters are added.
11288  */
11289 void
11290 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11291 {
11292         UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11293         UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11294         UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11295         UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11296         UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11297         UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11298         UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11299         UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11300         UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11301         UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11302         UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11303         UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11304         UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11305         UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11306         UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11307         UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11308         UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11309         UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11310         UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11311         UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11312         UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11313         UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11314             o2->ipIfStatsInWrongIPVersion);
11315         UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11316             o2->ipIfStatsInWrongIPVersion);
11317         UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11318             o2->ipIfStatsOutSwitchIPVersion);
11319         UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11320         UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11321         UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11322             o2->ipIfStatsHCInForwDatagrams);
11323         UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11324         UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11325         UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11326             o2->ipIfStatsHCOutForwDatagrams);
11327         UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11328         UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11329         UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11330         UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11331         UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11332         UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11333         UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11334             o2->ipIfStatsHCOutMcastOctets);
11335         UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11336         UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11337         UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11338         UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11339         UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11340         UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11341         UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11342 }
11343 
11344 void
11345 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11346 {
11347         UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11348         UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11349         UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11350         UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11351         UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11352         UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11353         UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11354         UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11355         UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11356         UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11357             o2->ipv6IfIcmpInRouterSolicits);
11358         UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11359             o2->ipv6IfIcmpInRouterAdvertisements);
11360         UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11361             o2->ipv6IfIcmpInNeighborSolicits);
11362         UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11363             o2->ipv6IfIcmpInNeighborAdvertisements);
11364         UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11365         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11366             o2->ipv6IfIcmpInGroupMembQueries);
11367         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11368             o2->ipv6IfIcmpInGroupMembResponses);
11369         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11370             o2->ipv6IfIcmpInGroupMembReductions);
11371         UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11372         UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11373         UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11374             o2->ipv6IfIcmpOutDestUnreachs);
11375         UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11376             o2->ipv6IfIcmpOutAdminProhibs);
11377         UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11378         UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11379             o2->ipv6IfIcmpOutParmProblems);
11380         UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11381         UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11382         UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11383         UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11384             o2->ipv6IfIcmpOutRouterSolicits);
11385         UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11386             o2->ipv6IfIcmpOutRouterAdvertisements);
11387         UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11388             o2->ipv6IfIcmpOutNeighborSolicits);
11389         UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11390             o2->ipv6IfIcmpOutNeighborAdvertisements);
11391         UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11392         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11393             o2->ipv6IfIcmpOutGroupMembQueries);
11394         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11395             o2->ipv6IfIcmpOutGroupMembResponses);
11396         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11397             o2->ipv6IfIcmpOutGroupMembReductions);
11398         UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11399         UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11400         UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11401             o2->ipv6IfIcmpInBadNeighborAdvertisements);
11402         UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11403             o2->ipv6IfIcmpInBadNeighborSolicitations);
11404         UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11405         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11406             o2->ipv6IfIcmpInGroupMembTotal);
11407         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11408             o2->ipv6IfIcmpInGroupMembBadQueries);
11409         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11410             o2->ipv6IfIcmpInGroupMembBadReports);
11411         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11412             o2->ipv6IfIcmpInGroupMembOurReports);
11413 }
11414 
11415 /*
11416  * Called before the options are updated to check if this packet will
11417  * be source routed from here.
11418  * This routine assumes that the options are well formed i.e. that they
11419  * have already been checked.
11420  */
11421 boolean_t
11422 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11423 {
11424         ipoptp_t        opts;
11425         uchar_t         *opt;
11426         uint8_t         optval;
11427         uint8_t         optlen;
11428         ipaddr_t        dst;
11429 
11430         if (IS_SIMPLE_IPH(ipha)) {
11431                 ip2dbg(("not source routed\n"));
11432                 return (B_FALSE);
11433         }
11434         dst = ipha->ipha_dst;
11435         for (optval = ipoptp_first(&opts, ipha);
11436             optval != IPOPT_EOL;
11437             optval = ipoptp_next(&opts)) {
11438                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11439                 opt = opts.ipoptp_cur;
11440                 optlen = opts.ipoptp_len;
11441                 ip2dbg(("ip_source_routed: opt %d, len %d\n",
11442                     optval, optlen));
11443                 switch (optval) {
11444                         uint32_t off;
11445                 case IPOPT_SSRR:
11446                 case IPOPT_LSRR:
11447                         /*
11448                          * If dst is one of our addresses and there are some
11449                          * entries left in the source route return (true).
11450                          */
11451                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11452                                 ip2dbg(("ip_source_routed: not next"
11453                                     " source route 0x%x\n",
11454                                     ntohl(dst)));
11455                                 return (B_FALSE);
11456                         }
11457                         off = opt[IPOPT_OFFSET];
11458                         off--;
11459                         if (optlen < IP_ADDR_LEN ||
11460                             off > optlen - IP_ADDR_LEN) {
11461                                 /* End of source route */
11462                                 ip1dbg(("ip_source_routed: end of SR\n"));
11463                                 return (B_FALSE);
11464                         }
11465                         return (B_TRUE);
11466                 }
11467         }
11468         ip2dbg(("not source routed\n"));
11469         return (B_FALSE);
11470 }
11471 
11472 /*
11473  * ip_unbind is called by the transports to remove a conn from
11474  * the fanout table.
11475  */
11476 void
11477 ip_unbind(conn_t *connp)
11478 {
11479 
11480         ASSERT(!MUTEX_HELD(&connp->conn_lock));
11481 
11482         if (is_system_labeled() && connp->conn_anon_port) {
11483                 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11484                     connp->conn_mlp_type, connp->conn_proto,
11485                     ntohs(connp->conn_lport), B_FALSE);
11486                 connp->conn_anon_port = 0;
11487         }
11488         connp->conn_mlp_type = mlptSingle;
11489 
11490         ipcl_hash_remove(connp);
11491 }
11492 
11493 /*
11494  * Used for deciding the MSS size for the upper layer. Thus
11495  * we need to check the outbound policy values in the conn.
11496  */
11497 int
11498 conn_ipsec_length(conn_t *connp)
11499 {
11500         ipsec_latch_t *ipl;
11501 
11502         ipl = connp->conn_latch;
11503         if (ipl == NULL)
11504                 return (0);
11505 
11506         if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11507                 return (0);
11508 
11509         return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11510 }
11511 
11512 /*
11513  * Returns an estimate of the IPsec headers size. This is used if
11514  * we don't want to call into IPsec to get the exact size.
11515  */
11516 int
11517 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11518 {
11519         ipsec_action_t *a;
11520 
11521         if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11522                 return (0);
11523 
11524         a = ixa->ixa_ipsec_action;
11525         if (a == NULL) {
11526                 ASSERT(ixa->ixa_ipsec_policy != NULL);
11527                 a = ixa->ixa_ipsec_policy->ipsp_act;
11528         }
11529         ASSERT(a != NULL);
11530 
11531         return (a->ipa_ovhd);
11532 }
11533 
11534 /*
11535  * If there are any source route options, return the true final
11536  * destination. Otherwise, return the destination.
11537  */
11538 ipaddr_t
11539 ip_get_dst(ipha_t *ipha)
11540 {
11541         ipoptp_t        opts;
11542         uchar_t         *opt;
11543         uint8_t         optval;
11544         uint8_t         optlen;
11545         ipaddr_t        dst;
11546         uint32_t off;
11547 
11548         dst = ipha->ipha_dst;
11549 
11550         if (IS_SIMPLE_IPH(ipha))
11551                 return (dst);
11552 
11553         for (optval = ipoptp_first(&opts, ipha);
11554             optval != IPOPT_EOL;
11555             optval = ipoptp_next(&opts)) {
11556                 opt = opts.ipoptp_cur;
11557                 optlen = opts.ipoptp_len;
11558                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11559                 switch (optval) {
11560                 case IPOPT_SSRR:
11561                 case IPOPT_LSRR:
11562                         off = opt[IPOPT_OFFSET];
11563                         /*
11564                          * If one of the conditions is true, it means
11565                          * end of options and dst already has the right
11566                          * value.
11567                          */
11568                         if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11569                                 off = optlen - IP_ADDR_LEN;
11570                                 bcopy(&opt[off], &dst, IP_ADDR_LEN);
11571                         }
11572                         return (dst);
11573                 default:
11574                         break;
11575                 }
11576         }
11577 
11578         return (dst);
11579 }
11580 
11581 /*
11582  * Outbound IP fragmentation routine.
11583  * Assumes the caller has checked whether or not fragmentation should
11584  * be allowed. Here we copy the DF bit from the header to all the generated
11585  * fragments.
11586  */
11587 int
11588 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11589     uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11590     zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11591 {
11592         int             i1;
11593         int             hdr_len;
11594         mblk_t          *hdr_mp;
11595         ipha_t          *ipha;
11596         int             ip_data_end;
11597         int             len;
11598         mblk_t          *mp = mp_orig;
11599         int             offset;
11600         ill_t           *ill = nce->nce_ill;
11601         ip_stack_t      *ipst = ill->ill_ipst;
11602         mblk_t          *carve_mp;
11603         uint32_t        frag_flag;
11604         uint_t          priority = mp->b_band;
11605         int             error = 0;
11606 
11607         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11608 
11609         if (pkt_len != msgdsize(mp)) {
11610                 ip0dbg(("Packet length mismatch: %d, %ld\n",
11611                     pkt_len, msgdsize(mp)));
11612                 freemsg(mp);
11613                 return (EINVAL);
11614         }
11615 
11616         if (max_frag == 0) {
11617                 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11618                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11619                 ip_drop_output("FragFails: zero max_frag", mp, ill);
11620                 freemsg(mp);
11621                 return (EINVAL);
11622         }
11623 
11624         ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11625         ipha = (ipha_t *)mp->b_rptr;
11626         ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11627         frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11628 
11629         /*
11630          * Establish the starting offset.  May not be zero if we are fragging
11631          * a fragment that is being forwarded.
11632          */
11633         offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11634 
11635         /* TODO why is this test needed? */
11636         if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11637                 /* TODO: notify ulp somehow */
11638                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11639                 ip_drop_output("FragFails: bad starting offset", mp, ill);
11640                 freemsg(mp);
11641                 return (EINVAL);
11642         }
11643 
11644         hdr_len = IPH_HDR_LENGTH(ipha);
11645         ipha->ipha_hdr_checksum = 0;
11646 
11647         /*
11648          * Establish the number of bytes maximum per frag, after putting
11649          * in the header.
11650          */
11651         len = (max_frag - hdr_len) & ~7;
11652 
11653         /* Get a copy of the header for the trailing frags */
11654         hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11655             mp);
11656         if (hdr_mp == NULL) {
11657                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11658                 ip_drop_output("FragFails: no hdr_mp", mp, ill);
11659                 freemsg(mp);
11660                 return (ENOBUFS);
11661         }
11662 
11663         /* Store the starting offset, with the MoreFrags flag. */
11664         i1 = offset | IPH_MF | frag_flag;
11665         ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11666 
11667         /* Establish the ending byte offset, based on the starting offset. */
11668         offset <<= 3;
11669         ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11670 
11671         /* Store the length of the first fragment in the IP header. */
11672         i1 = len + hdr_len;
11673         ASSERT(i1 <= IP_MAXPACKET);
11674         ipha->ipha_length = htons((uint16_t)i1);
11675 
11676         /*
11677          * Compute the IP header checksum for the first frag.  We have to
11678          * watch out that we stop at the end of the header.
11679          */
11680         ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11681 
11682         /*
11683          * Now carve off the first frag.  Note that this will include the
11684          * original IP header.
11685          */
11686         if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11687                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11688                 ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11689                 freeb(hdr_mp);
11690                 freemsg(mp_orig);
11691                 return (ENOBUFS);
11692         }
11693 
11694         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11695 
11696         error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11697             ixa_cookie);
11698         if (error != 0 && error != EWOULDBLOCK) {
11699                 /* No point in sending the other fragments */
11700                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11701                 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11702                 freeb(hdr_mp);
11703                 freemsg(mp_orig);
11704                 return (error);
11705         }
11706 
11707         /* No need to redo state machine in loop */
11708         ixaflags &= ~IXAF_REACH_CONF;
11709 
11710         /* Advance the offset to the second frag starting point. */
11711         offset += len;
11712         /*
11713          * Update hdr_len from the copied header - there might be less options
11714          * in the later fragments.
11715          */
11716         hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11717         /* Loop until done. */
11718         for (;;) {
11719                 uint16_t        offset_and_flags;
11720                 uint16_t        ip_len;
11721 
11722                 if (ip_data_end - offset > len) {
11723                         /*
11724                          * Carve off the appropriate amount from the original
11725                          * datagram.
11726                          */
11727                         if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11728                                 mp = NULL;
11729                                 break;
11730                         }
11731                         /*
11732                          * More frags after this one.  Get another copy
11733                          * of the header.
11734                          */
11735                         if (carve_mp->b_datap->db_ref == 1 &&
11736                             hdr_mp->b_wptr - hdr_mp->b_rptr <
11737                             carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11738                                 /* Inline IP header */
11739                                 carve_mp->b_rptr -= hdr_mp->b_wptr -
11740                                     hdr_mp->b_rptr;
11741                                 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11742                                     hdr_mp->b_wptr - hdr_mp->b_rptr);
11743                                 mp = carve_mp;
11744                         } else {
11745                                 if (!(mp = copyb(hdr_mp))) {
11746                                         freemsg(carve_mp);
11747                                         break;
11748                                 }
11749                                 /* Get priority marking, if any. */
11750                                 mp->b_band = priority;
11751                                 mp->b_cont = carve_mp;
11752                         }
11753                         ipha = (ipha_t *)mp->b_rptr;
11754                         offset_and_flags = IPH_MF;
11755                 } else {
11756                         /*
11757                          * Last frag.  Consume the header. Set len to
11758                          * the length of this last piece.
11759                          */
11760                         len = ip_data_end - offset;
11761 
11762                         /*
11763                          * Carve off the appropriate amount from the original
11764                          * datagram.
11765                          */
11766                         if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11767                                 mp = NULL;
11768                                 break;
11769                         }
11770                         if (carve_mp->b_datap->db_ref == 1 &&
11771                             hdr_mp->b_wptr - hdr_mp->b_rptr <
11772                             carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11773                                 /* Inline IP header */
11774                                 carve_mp->b_rptr -= hdr_mp->b_wptr -
11775                                     hdr_mp->b_rptr;
11776                                 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11777                                     hdr_mp->b_wptr - hdr_mp->b_rptr);
11778                                 mp = carve_mp;
11779                                 freeb(hdr_mp);
11780                                 hdr_mp = mp;
11781                         } else {
11782                                 mp = hdr_mp;
11783                                 /* Get priority marking, if any. */
11784                                 mp->b_band = priority;
11785                                 mp->b_cont = carve_mp;
11786                         }
11787                         ipha = (ipha_t *)mp->b_rptr;
11788                         /* A frag of a frag might have IPH_MF non-zero */
11789                         offset_and_flags =
11790                             ntohs(ipha->ipha_fragment_offset_and_flags) &
11791                             IPH_MF;
11792                 }
11793                 offset_and_flags |= (uint16_t)(offset >> 3);
11794                 offset_and_flags |= (uint16_t)frag_flag;
11795                 /* Store the offset and flags in the IP header. */
11796                 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11797 
11798                 /* Store the length in the IP header. */
11799                 ip_len = (uint16_t)(len + hdr_len);
11800                 ipha->ipha_length = htons(ip_len);
11801 
11802                 /*
11803                  * Set the IP header checksum.  Note that mp is just
11804                  * the header, so this is easy to pass to ip_csum.
11805                  */
11806                 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11807 
11808                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11809 
11810                 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11811                     nolzid, ixa_cookie);
11812                 /* All done if we just consumed the hdr_mp. */
11813                 if (mp == hdr_mp) {
11814                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11815                         return (error);
11816                 }
11817                 if (error != 0 && error != EWOULDBLOCK) {
11818                         DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11819                             mblk_t *, hdr_mp);
11820                         /* No point in sending the other fragments */
11821                         break;
11822                 }
11823 
11824                 /* Otherwise, advance and loop. */
11825                 offset += len;
11826         }
11827         /* Clean up following allocation failure. */
11828         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11829         ip_drop_output("FragFails: loop ended", NULL, ill);
11830         if (mp != hdr_mp)
11831                 freeb(hdr_mp);
11832         if (mp != mp_orig)
11833                 freemsg(mp_orig);
11834         return (error);
11835 }
11836 
11837 /*
11838  * Copy the header plus those options which have the copy bit set
11839  */
11840 static mblk_t *
11841 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11842     mblk_t *src)
11843 {
11844         mblk_t  *mp;
11845         uchar_t *up;
11846 
11847         /*
11848          * Quick check if we need to look for options without the copy bit
11849          * set
11850          */
11851         mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11852         if (!mp)
11853                 return (mp);
11854         mp->b_rptr += ipst->ips_ip_wroff_extra;
11855         if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11856                 bcopy(rptr, mp->b_rptr, hdr_len);
11857                 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11858                 return (mp);
11859         }
11860         up  = mp->b_rptr;
11861         bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11862         up += IP_SIMPLE_HDR_LENGTH;
11863         rptr += IP_SIMPLE_HDR_LENGTH;
11864         hdr_len -= IP_SIMPLE_HDR_LENGTH;
11865         while (hdr_len > 0) {
11866                 uint32_t optval;
11867                 uint32_t optlen;
11868 
11869                 optval = *rptr;
11870                 if (optval == IPOPT_EOL)
11871                         break;
11872                 if (optval == IPOPT_NOP)
11873                         optlen = 1;
11874                 else
11875                         optlen = rptr[1];
11876                 if (optval & IPOPT_COPY) {
11877                         bcopy(rptr, up, optlen);
11878                         up += optlen;
11879                 }
11880                 rptr += optlen;
11881                 hdr_len -= optlen;
11882         }
11883         /*
11884          * Make sure that we drop an even number of words by filling
11885          * with EOL to the next word boundary.
11886          */
11887         for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11888             hdr_len & 0x3; hdr_len++)
11889                 *up++ = IPOPT_EOL;
11890         mp->b_wptr = up;
11891         /* Update header length */
11892         mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11893         return (mp);
11894 }
11895 
11896 /*
11897  * Update any source route, record route, or timestamp options when
11898  * sending a packet back to ourselves.
11899  * Check that we are at end of strict source route.
11900  * The options have been sanity checked by ip_output_options().
11901  */
11902 void
11903 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11904 {
11905         ipoptp_t        opts;
11906         uchar_t         *opt;
11907         uint8_t         optval;
11908         uint8_t         optlen;
11909         ipaddr_t        dst;
11910         uint32_t        ts;
11911         timestruc_t     now;
11912 
11913         for (optval = ipoptp_first(&opts, ipha);
11914             optval != IPOPT_EOL;
11915             optval = ipoptp_next(&opts)) {
11916                 opt = opts.ipoptp_cur;
11917                 optlen = opts.ipoptp_len;
11918                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11919                 switch (optval) {
11920                         uint32_t off;
11921                 case IPOPT_SSRR:
11922                 case IPOPT_LSRR:
11923                         off = opt[IPOPT_OFFSET];
11924                         off--;
11925                         if (optlen < IP_ADDR_LEN ||
11926                             off > optlen - IP_ADDR_LEN) {
11927                                 /* End of source route */
11928                                 break;
11929                         }
11930                         /*
11931                          * This will only happen if two consecutive entries
11932                          * in the source route contains our address or if
11933                          * it is a packet with a loose source route which
11934                          * reaches us before consuming the whole source route
11935                          */
11936 
11937                         if (optval == IPOPT_SSRR) {
11938                                 return;
11939                         }
11940                         /*
11941                          * Hack: instead of dropping the packet truncate the
11942                          * source route to what has been used by filling the
11943                          * rest with IPOPT_NOP.
11944                          */
11945                         opt[IPOPT_OLEN] = (uint8_t)off;
11946                         while (off < optlen) {
11947                                 opt[off++] = IPOPT_NOP;
11948                         }
11949                         break;
11950                 case IPOPT_RR:
11951                         off = opt[IPOPT_OFFSET];
11952                         off--;
11953                         if (optlen < IP_ADDR_LEN ||
11954                             off > optlen - IP_ADDR_LEN) {
11955                                 /* No more room - ignore */
11956                                 ip1dbg((
11957                                     "ip_output_local_options: end of RR\n"));
11958                                 break;
11959                         }
11960                         dst = htonl(INADDR_LOOPBACK);
11961                         bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
11962                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
11963                         break;
11964                 case IPOPT_TS:
11965                         /* Insert timestamp if there is romm */
11966                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
11967                         case IPOPT_TS_TSONLY:
11968                                 off = IPOPT_TS_TIMELEN;
11969                                 break;
11970                         case IPOPT_TS_PRESPEC:
11971                         case IPOPT_TS_PRESPEC_RFC791:
11972                                 /* Verify that the address matched */
11973                                 off = opt[IPOPT_OFFSET] - 1;
11974                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
11975                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11976                                         /* Not for us */
11977                                         break;
11978                                 }
11979                                 /* FALLTHRU */
11980                         case IPOPT_TS_TSANDADDR:
11981                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
11982                                 break;
11983                         default:
11984                                 /*
11985                                  * ip_*put_options should have already
11986                                  * dropped this packet.
11987                                  */
11988                                 cmn_err(CE_PANIC, "ip_output_local_options: "
11989                                     "unknown IT - bug in ip_output_options?\n");
11990                                 return; /* Keep "lint" happy */
11991                         }
11992                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
11993                                 /* Increase overflow counter */
11994                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
11995                                 opt[IPOPT_POS_OV_FLG] = (uint8_t)
11996                                     (opt[IPOPT_POS_OV_FLG] & 0x0F) |
11997                                     (off << 4);
11998                                 break;
11999                         }
12000                         off = opt[IPOPT_OFFSET] - 1;
12001                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12002                         case IPOPT_TS_PRESPEC:
12003                         case IPOPT_TS_PRESPEC_RFC791:
12004                         case IPOPT_TS_TSANDADDR:
12005                                 dst = htonl(INADDR_LOOPBACK);
12006                                 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12007                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12008                                 /* FALLTHRU */
12009                         case IPOPT_TS_TSONLY:
12010                                 off = opt[IPOPT_OFFSET] - 1;
12011                                 /* Compute # of milliseconds since midnight */
12012                                 gethrestime(&now);
12013                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12014                                     now.tv_nsec / (NANOSEC / MILLISEC);
12015                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12016                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12017                                 break;
12018                         }
12019                         break;
12020                 }
12021         }
12022 }
12023 
12024 /*
12025  * Prepend an M_DATA fastpath header, and if none present prepend a
12026  * DL_UNITDATA_REQ. Frees the mblk on failure.
12027  *
12028  * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12029  * If there is a change to them, the nce will be deleted (condemned) and
12030  * a new nce_t will be created when packets are sent. Thus we need no locks
12031  * to access those fields.
12032  *
12033  * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12034  * we place b_band in dl_priority.dl_max.
12035  */
12036 static mblk_t *
12037 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12038 {
12039         uint_t  hlen;
12040         mblk_t *mp1;
12041         uint_t  priority;
12042         uchar_t *rptr;
12043 
12044         rptr = mp->b_rptr;
12045 
12046         ASSERT(DB_TYPE(mp) == M_DATA);
12047         priority = mp->b_band;
12048 
12049         ASSERT(nce != NULL);
12050         if ((mp1 = nce->nce_fp_mp) != NULL) {
12051                 hlen = MBLKL(mp1);
12052                 /*
12053                  * Check if we have enough room to prepend fastpath
12054                  * header
12055                  */
12056                 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12057                         rptr -= hlen;
12058                         bcopy(mp1->b_rptr, rptr, hlen);
12059                         /*
12060                          * Set the b_rptr to the start of the link layer
12061                          * header
12062                          */
12063                         mp->b_rptr = rptr;
12064                         return (mp);
12065                 }
12066                 mp1 = copyb(mp1);
12067                 if (mp1 == NULL) {
12068                         ill_t *ill = nce->nce_ill;
12069 
12070                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12071                         ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12072                         freemsg(mp);
12073                         return (NULL);
12074                 }
12075                 mp1->b_band = priority;
12076                 mp1->b_cont = mp;
12077                 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12078                 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12079                 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12080                 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12081                 DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12082                 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12083                 /*
12084                  * XXX disable ICK_VALID and compute checksum
12085                  * here; can happen if nce_fp_mp changes and
12086                  * it can't be copied now due to insufficient
12087                  * space. (unlikely, fp mp can change, but it
12088                  * does not increase in length)
12089                  */
12090                 return (mp1);
12091         }
12092         mp1 = copyb(nce->nce_dlur_mp);
12093 
12094         if (mp1 == NULL) {
12095                 ill_t *ill = nce->nce_ill;
12096 
12097                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12098                 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12099                 freemsg(mp);
12100                 return (NULL);
12101         }
12102         mp1->b_cont = mp;
12103         if (priority != 0) {
12104                 mp1->b_band = priority;
12105                 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12106                     priority;
12107         }
12108         return (mp1);
12109 #undef rptr
12110 }
12111 
12112 /*
12113  * Finish the outbound IPsec processing. This function is called from
12114  * ipsec_out_process() if the IPsec packet was processed
12115  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12116  * asynchronously.
12117  *
12118  * This is common to IPv4 and IPv6.
12119  */
12120 int
12121 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12122 {
12123         iaflags_t       ixaflags = ixa->ixa_flags;
12124         uint_t          pktlen;
12125 
12126 
12127         /* AH/ESP don't update ixa_pktlen when they modify the packet */
12128         if (ixaflags & IXAF_IS_IPV4) {
12129                 ipha_t          *ipha = (ipha_t *)mp->b_rptr;
12130 
12131                 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12132                 pktlen = ntohs(ipha->ipha_length);
12133         } else {
12134                 ip6_t           *ip6h = (ip6_t *)mp->b_rptr;
12135 
12136                 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12137                 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12138         }
12139 
12140         /*
12141          * We release any hard reference on the SAs here to make
12142          * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12143          * on the SAs.
12144          * If in the future we want the hard latching of the SAs in the
12145          * ip_xmit_attr_t then we should remove this.
12146          */
12147         if (ixa->ixa_ipsec_esp_sa != NULL) {
12148                 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12149                 ixa->ixa_ipsec_esp_sa = NULL;
12150         }
12151         if (ixa->ixa_ipsec_ah_sa != NULL) {
12152                 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12153                 ixa->ixa_ipsec_ah_sa = NULL;
12154         }
12155 
12156         /* Do we need to fragment? */
12157         if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12158             pktlen > ixa->ixa_fragsize) {
12159                 if (ixaflags & IXAF_IS_IPV4) {
12160                         ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12161                         /*
12162                          * We check for the DF case in ipsec_out_process
12163                          * hence this only handles the non-DF case.
12164                          */
12165                         return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12166                             pktlen, ixa->ixa_fragsize,
12167                             ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12168                             ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12169                             &ixa->ixa_cookie));
12170                 } else {
12171                         mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12172                         if (mp == NULL) {
12173                                 /* MIB and ip_drop_output already done */
12174                                 return (ENOMEM);
12175                         }
12176                         pktlen += sizeof (ip6_frag_t);
12177                         if (pktlen > ixa->ixa_fragsize) {
12178                                 return (ip_fragment_v6(mp, ixa->ixa_nce,
12179                                     ixa->ixa_flags, pktlen,
12180                                     ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12181                                     ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12182                                     ixa->ixa_postfragfn, &ixa->ixa_cookie));
12183                         }
12184                 }
12185         }
12186         return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12187             pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12188             ixa->ixa_no_loop_zoneid, NULL));
12189 }
12190 
12191 /*
12192  * Finish the inbound IPsec processing. This function is called from
12193  * ipsec_out_process() if the IPsec packet was processed
12194  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12195  * asynchronously.
12196  *
12197  * This is common to IPv4 and IPv6.
12198  */
12199 void
12200 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12201 {
12202         iaflags_t       iraflags = ira->ira_flags;
12203 
12204         /* Length might have changed */
12205         if (iraflags & IRAF_IS_IPV4) {
12206                 ipha_t          *ipha = (ipha_t *)mp->b_rptr;
12207 
12208                 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12209                 ira->ira_pktlen = ntohs(ipha->ipha_length);
12210                 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12211                 ira->ira_protocol = ipha->ipha_protocol;
12212 
12213                 ip_fanout_v4(mp, ipha, ira);
12214         } else {
12215                 ip6_t           *ip6h = (ip6_t *)mp->b_rptr;
12216                 uint8_t         *nexthdrp;
12217 
12218                 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12219                 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12220                 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12221                     &nexthdrp)) {
12222                         /* Malformed packet */
12223                         BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12224                         ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12225                         freemsg(mp);
12226                         return;
12227                 }
12228                 ira->ira_protocol = *nexthdrp;
12229                 ip_fanout_v6(mp, ip6h, ira);
12230         }
12231 }
12232 
12233 /*
12234  * Select which AH & ESP SA's to use (if any) for the outbound packet.
12235  *
12236  * If this function returns B_TRUE, the requested SA's have been filled
12237  * into the ixa_ipsec_*_sa pointers.
12238  *
12239  * If the function returns B_FALSE, the packet has been "consumed", most
12240  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12241  *
12242  * The SA references created by the protocol-specific "select"
12243  * function will be released in ip_output_post_ipsec.
12244  */
12245 static boolean_t
12246 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12247 {
12248         boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12249         ipsec_policy_t *pp;
12250         ipsec_action_t *ap;
12251 
12252         ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12253         ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12254             (ixa->ixa_ipsec_action != NULL));
12255 
12256         ap = ixa->ixa_ipsec_action;
12257         if (ap == NULL) {
12258                 pp = ixa->ixa_ipsec_policy;
12259                 ASSERT(pp != NULL);
12260                 ap = pp->ipsp_act;
12261                 ASSERT(ap != NULL);
12262         }
12263 
12264         /*
12265          * We have an action.  now, let's select SA's.
12266          * A side effect of setting ixa_ipsec_*_sa is that it will
12267          * be cached in the conn_t.
12268          */
12269         if (ap->ipa_want_esp) {
12270                 if (ixa->ixa_ipsec_esp_sa == NULL) {
12271                         need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12272                             IPPROTO_ESP);
12273                 }
12274                 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12275         }
12276 
12277         if (ap->ipa_want_ah) {
12278                 if (ixa->ixa_ipsec_ah_sa == NULL) {
12279                         need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12280                             IPPROTO_AH);
12281                 }
12282                 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12283                 /*
12284                  * The ESP and AH processing order needs to be preserved
12285                  * when both protocols are required (ESP should be applied
12286                  * before AH for an outbound packet). Force an ESP ACQUIRE
12287                  * when both ESP and AH are required, and an AH ACQUIRE
12288                  * is needed.
12289                  */
12290                 if (ap->ipa_want_esp && need_ah_acquire)
12291                         need_esp_acquire = B_TRUE;
12292         }
12293 
12294         /*
12295          * Send an ACQUIRE (extended, regular, or both) if we need one.
12296          * Release SAs that got referenced, but will not be used until we
12297          * acquire _all_ of the SAs we need.
12298          */
12299         if (need_ah_acquire || need_esp_acquire) {
12300                 if (ixa->ixa_ipsec_ah_sa != NULL) {
12301                         IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12302                         ixa->ixa_ipsec_ah_sa = NULL;
12303                 }
12304                 if (ixa->ixa_ipsec_esp_sa != NULL) {
12305                         IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12306                         ixa->ixa_ipsec_esp_sa = NULL;
12307                 }
12308 
12309                 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12310                 return (B_FALSE);
12311         }
12312 
12313         return (B_TRUE);
12314 }
12315 
12316 /*
12317  * Handle IPsec output processing.
12318  * This function is only entered once for a given packet.
12319  * We try to do things synchronously, but if we need to have user-level
12320  * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12321  * will be completed
12322  *  - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12323  *  - when asynchronous ESP is done it will do AH
12324  *
12325  * In all cases we come back in ip_output_post_ipsec() to fragment and
12326  * send out the packet.
12327  */
12328 int
12329 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12330 {
12331         ill_t           *ill = ixa->ixa_nce->nce_ill;
12332         ip_stack_t      *ipst = ixa->ixa_ipst;
12333         ipsec_stack_t   *ipss;
12334         ipsec_policy_t  *pp;
12335         ipsec_action_t  *ap;
12336 
12337         ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12338 
12339         ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12340             (ixa->ixa_ipsec_action != NULL));
12341 
12342         ipss = ipst->ips_netstack->netstack_ipsec;
12343         if (!ipsec_loaded(ipss)) {
12344                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12345                 ip_drop_packet(mp, B_TRUE, ill,
12346                     DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12347                     &ipss->ipsec_dropper);
12348                 return (ENOTSUP);
12349         }
12350 
12351         ap = ixa->ixa_ipsec_action;
12352         if (ap == NULL) {
12353                 pp = ixa->ixa_ipsec_policy;
12354                 ASSERT(pp != NULL);
12355                 ap = pp->ipsp_act;
12356                 ASSERT(ap != NULL);
12357         }
12358 
12359         /* Handle explicit drop action and bypass. */
12360         switch (ap->ipa_act.ipa_type) {
12361         case IPSEC_ACT_DISCARD:
12362         case IPSEC_ACT_REJECT:
12363                 ip_drop_packet(mp, B_FALSE, ill,
12364                     DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12365                 return (EHOSTUNREACH);  /* IPsec policy failure */
12366         case IPSEC_ACT_BYPASS:
12367                 return (ip_output_post_ipsec(mp, ixa));
12368         }
12369 
12370         /*
12371          * The order of processing is first insert a IP header if needed.
12372          * Then insert the ESP header and then the AH header.
12373          */
12374         if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12375                 /*
12376                  * First get the outer IP header before sending
12377                  * it to ESP.
12378                  */
12379                 ipha_t *oipha, *iipha;
12380                 mblk_t *outer_mp, *inner_mp;
12381 
12382                 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12383                         (void) mi_strlog(ill->ill_rq, 0,
12384                             SL_ERROR|SL_TRACE|SL_CONSOLE,
12385                             "ipsec_out_process: "
12386                             "Self-Encapsulation failed: Out of memory\n");
12387                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12388                         ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12389                         freemsg(mp);
12390                         return (ENOBUFS);
12391                 }
12392                 inner_mp = mp;
12393                 ASSERT(inner_mp->b_datap->db_type == M_DATA);
12394                 oipha = (ipha_t *)outer_mp->b_rptr;
12395                 iipha = (ipha_t *)inner_mp->b_rptr;
12396                 *oipha = *iipha;
12397                 outer_mp->b_wptr += sizeof (ipha_t);
12398                 oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12399                     sizeof (ipha_t));
12400                 oipha->ipha_protocol = IPPROTO_ENCAP;
12401                 oipha->ipha_version_and_hdr_length =
12402                     IP_SIMPLE_HDR_VERSION;
12403                 oipha->ipha_hdr_checksum = 0;
12404                 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12405                 outer_mp->b_cont = inner_mp;
12406                 mp = outer_mp;
12407 
12408                 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12409         }
12410 
12411         /* If we need to wait for a SA then we can't return any errno */
12412         if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12413             (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12414             !ipsec_out_select_sa(mp, ixa))
12415                 return (0);
12416 
12417         /*
12418          * By now, we know what SA's to use.  Toss over to ESP & AH
12419          * to do the heavy lifting.
12420          */
12421         if (ap->ipa_want_esp) {
12422                 ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12423 
12424                 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12425                 if (mp == NULL) {
12426                         /*
12427                          * Either it failed or is pending. In the former case
12428                          * ipIfStatsInDiscards was increased.
12429                          */
12430                         return (0);
12431                 }
12432         }
12433 
12434         if (ap->ipa_want_ah) {
12435                 ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12436 
12437                 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12438                 if (mp == NULL) {
12439                         /*
12440                          * Either it failed or is pending. In the former case
12441                          * ipIfStatsInDiscards was increased.
12442                          */
12443                         return (0);
12444                 }
12445         }
12446         /*
12447          * We are done with IPsec processing. Send it over
12448          * the wire.
12449          */
12450         return (ip_output_post_ipsec(mp, ixa));
12451 }
12452 
12453 /*
12454  * ioctls that go through a down/up sequence may need to wait for the down
12455  * to complete. This involves waiting for the ire and ipif refcnts to go down
12456  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12457  */
12458 /* ARGSUSED */
12459 void
12460 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12461 {
12462         struct iocblk *iocp;
12463         mblk_t *mp1;
12464         ip_ioctl_cmd_t *ipip;
12465         int err;
12466         sin_t   *sin;
12467         struct lifreq *lifr;
12468         struct ifreq *ifr;
12469 
12470         iocp = (struct iocblk *)mp->b_rptr;
12471         ASSERT(ipsq != NULL);
12472         /* Existence of mp1 verified in ip_wput_nondata */
12473         mp1 = mp->b_cont->b_cont;
12474         ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12475         if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12476                 /*
12477                  * Special case where ipx_current_ipif is not set:
12478                  * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12479                  * We are here as were not able to complete the operation in
12480                  * ipif_set_values because we could not become exclusive on
12481                  * the new ipsq.
12482                  */
12483                 ill_t *ill = q->q_ptr;
12484                 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12485         }
12486         ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12487 
12488         if (ipip->ipi_cmd_type == IF_CMD) {
12489                 /* This a old style SIOC[GS]IF* command */
12490                 ifr = (struct ifreq *)mp1->b_rptr;
12491                 sin = (sin_t *)&ifr->ifr_addr;
12492         } else if (ipip->ipi_cmd_type == LIF_CMD) {
12493                 /* This a new style SIOC[GS]LIF* command */
12494                 lifr = (struct lifreq *)mp1->b_rptr;
12495                 sin = (sin_t *)&lifr->lifr_addr;
12496         } else {
12497                 sin = NULL;
12498         }
12499 
12500         err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12501             q, mp, ipip, mp1->b_rptr);
12502 
12503         DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12504             int, ipip->ipi_cmd,
12505             ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12506             ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12507 
12508         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12509 }
12510 
12511 /*
12512  * ioctl processing
12513  *
12514  * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12515  * the ioctl command in the ioctl tables, determines the copyin data size
12516  * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12517  *
12518  * ioctl processing then continues when the M_IOCDATA makes its way down to
12519  * ip_wput_nondata().  The ioctl is looked up again in the ioctl table, its
12520  * associated 'conn' is refheld till the end of the ioctl and the general
12521  * ioctl processing function ip_process_ioctl() is called to extract the
12522  * arguments and process the ioctl.  To simplify extraction, ioctl commands
12523  * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12524  * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12525  * is used to extract the ioctl's arguments.
12526  *
12527  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12528  * so goes thru the serialization primitive ipsq_try_enter. Then the
12529  * appropriate function to handle the ioctl is called based on the entry in
12530  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12531  * which also refreleases the 'conn' that was refheld at the start of the
12532  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12533  *
12534  * Many exclusive ioctls go thru an internal down up sequence as part of
12535  * the operation. For example an attempt to change the IP address of an
12536  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12537  * does all the cleanup such as deleting all ires that use this address.
12538  * Then we need to wait till all references to the interface go away.
12539  */
12540 void
12541 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12542 {
12543         struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12544         ip_ioctl_cmd_t *ipip = arg;
12545         ip_extract_func_t *extract_funcp;
12546         cmd_info_t ci;
12547         int err;
12548         boolean_t entered_ipsq = B_FALSE;
12549 
12550         ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12551 
12552         if (ipip == NULL)
12553                 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12554 
12555         /*
12556          * SIOCLIFADDIF needs to go thru a special path since the
12557          * ill may not exist yet. This happens in the case of lo0
12558          * which is created using this ioctl.
12559          */
12560         if (ipip->ipi_cmd == SIOCLIFADDIF) {
12561                 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12562                 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12563                     int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12564                 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12565                 return;
12566         }
12567 
12568         ci.ci_ipif = NULL;
12569         switch (ipip->ipi_cmd_type) {
12570         case MISC_CMD:
12571         case MSFILT_CMD:
12572                 /*
12573                  * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12574                  */
12575                 if (ipip->ipi_cmd == IF_UNITSEL) {
12576                         /* ioctl comes down the ill */
12577                         ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12578                         ipif_refhold(ci.ci_ipif);
12579                 }
12580                 err = 0;
12581                 ci.ci_sin = NULL;
12582                 ci.ci_sin6 = NULL;
12583                 ci.ci_lifr = NULL;
12584                 extract_funcp = NULL;
12585                 break;
12586 
12587         case IF_CMD:
12588         case LIF_CMD:
12589                 extract_funcp = ip_extract_lifreq;
12590                 break;
12591 
12592         case ARP_CMD:
12593         case XARP_CMD:
12594                 extract_funcp = ip_extract_arpreq;
12595                 break;
12596 
12597         default:
12598                 ASSERT(0);
12599         }
12600 
12601         if (extract_funcp != NULL) {
12602                 err = (*extract_funcp)(q, mp, ipip, &ci);
12603                 if (err != 0) {
12604                         DTRACE_PROBE4(ipif__ioctl,
12605                             char *, "ip_process_ioctl finish err",
12606                             int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12607                         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12608                         return;
12609                 }
12610 
12611                 /*
12612                  * All of the extraction functions return a refheld ipif.
12613                  */
12614                 ASSERT(ci.ci_ipif != NULL);
12615         }
12616 
12617         if (!(ipip->ipi_flags & IPI_WR)) {
12618                 /*
12619                  * A return value of EINPROGRESS means the ioctl is
12620                  * either queued and waiting for some reason or has
12621                  * already completed.
12622                  */
12623                 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12624                     ci.ci_lifr);
12625                 if (ci.ci_ipif != NULL) {
12626                         DTRACE_PROBE4(ipif__ioctl,
12627                             char *, "ip_process_ioctl finish RD",
12628                             int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12629                             ipif_t *, ci.ci_ipif);
12630                         ipif_refrele(ci.ci_ipif);
12631                 } else {
12632                         DTRACE_PROBE4(ipif__ioctl,
12633                             char *, "ip_process_ioctl finish RD",
12634                             int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12635                 }
12636                 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12637                 return;
12638         }
12639 
12640         ASSERT(ci.ci_ipif != NULL);
12641 
12642         /*
12643          * If ipsq is non-NULL, we are already being called exclusively
12644          */
12645         ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12646         if (ipsq == NULL) {
12647                 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12648                     NEW_OP, B_TRUE);
12649                 if (ipsq == NULL) {
12650                         ipif_refrele(ci.ci_ipif);
12651                         return;
12652                 }
12653                 entered_ipsq = B_TRUE;
12654         }
12655         /*
12656          * Release the ipif so that ipif_down and friends that wait for
12657          * references to go away are not misled about the current ipif_refcnt
12658          * values. We are writer so we can access the ipif even after releasing
12659          * the ipif.
12660          */
12661         ipif_refrele(ci.ci_ipif);
12662 
12663         ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12664 
12665         /*
12666          * A return value of EINPROGRESS means the ioctl is
12667          * either queued and waiting for some reason or has
12668          * already completed.
12669          */
12670         err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12671 
12672         DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12673             int, ipip->ipi_cmd,
12674             ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12675             ipif_t *, ci.ci_ipif);
12676         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12677 
12678         if (entered_ipsq)
12679                 ipsq_exit(ipsq);
12680 }
12681 
12682 /*
12683  * Complete the ioctl. Typically ioctls use the mi package and need to
12684  * do mi_copyout/mi_copy_done.
12685  */
12686 void
12687 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12688 {
12689         conn_t  *connp = NULL;
12690 
12691         if (err == EINPROGRESS)
12692                 return;
12693 
12694         if (CONN_Q(q)) {
12695                 connp = Q_TO_CONN(q);
12696                 ASSERT(connp->conn_ref >= 2);
12697         }
12698 
12699         switch (mode) {
12700         case COPYOUT:
12701                 if (err == 0)
12702                         mi_copyout(q, mp);
12703                 else
12704                         mi_copy_done(q, mp, err);
12705                 break;
12706 
12707         case NO_COPYOUT:
12708                 mi_copy_done(q, mp, err);
12709                 break;
12710 
12711         default:
12712                 ASSERT(mode == CONN_CLOSE);     /* aborted through CONN_CLOSE */
12713                 break;
12714         }
12715 
12716         /*
12717          * The conn refhold and ioctlref placed on the conn at the start of the
12718          * ioctl are released here.
12719          */
12720         if (connp != NULL) {
12721                 CONN_DEC_IOCTLREF(connp);
12722                 CONN_OPER_PENDING_DONE(connp);
12723         }
12724 
12725         if (ipsq != NULL)
12726                 ipsq_current_finish(ipsq);
12727 }
12728 
12729 /* Handles all non data messages */
12730 void
12731 ip_wput_nondata(queue_t *q, mblk_t *mp)
12732 {
12733         mblk_t          *mp1;
12734         struct iocblk   *iocp;
12735         ip_ioctl_cmd_t  *ipip;
12736         conn_t          *connp;
12737         cred_t          *cr;
12738         char            *proto_str;
12739 
12740         if (CONN_Q(q))
12741                 connp = Q_TO_CONN(q);
12742         else
12743                 connp = NULL;
12744 
12745         switch (DB_TYPE(mp)) {
12746         case M_IOCTL:
12747                 /*
12748                  * IOCTL processing begins in ip_sioctl_copyin_setup which
12749                  * will arrange to copy in associated control structures.
12750                  */
12751                 ip_sioctl_copyin_setup(q, mp);
12752                 return;
12753         case M_IOCDATA:
12754                 /*
12755                  * Ensure that this is associated with one of our trans-
12756                  * parent ioctls.  If it's not ours, discard it if we're
12757                  * running as a driver, or pass it on if we're a module.
12758                  */
12759                 iocp = (struct iocblk *)mp->b_rptr;
12760                 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12761                 if (ipip == NULL) {
12762                         if (q->q_next == NULL) {
12763                                 goto nak;
12764                         } else {
12765                                 putnext(q, mp);
12766                         }
12767                         return;
12768                 }
12769                 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12770                         /*
12771                          * The ioctl is one we recognise, but is not consumed
12772                          * by IP as a module and we are a module, so we drop
12773                          */
12774                         goto nak;
12775                 }
12776 
12777                 /* IOCTL continuation following copyin or copyout. */
12778                 if (mi_copy_state(q, mp, NULL) == -1) {
12779                         /*
12780                          * The copy operation failed.  mi_copy_state already
12781                          * cleaned up, so we're out of here.
12782                          */
12783                         return;
12784                 }
12785                 /*
12786                  * If we just completed a copy in, we become writer and
12787                  * continue processing in ip_sioctl_copyin_done.  If it
12788                  * was a copy out, we call mi_copyout again.  If there is
12789                  * nothing more to copy out, it will complete the IOCTL.
12790                  */
12791                 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12792                         if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12793                                 mi_copy_done(q, mp, EPROTO);
12794                                 return;
12795                         }
12796                         /*
12797                          * Check for cases that need more copying.  A return
12798                          * value of 0 means a second copyin has been started,
12799                          * so we return; a return value of 1 means no more
12800                          * copying is needed, so we continue.
12801                          */
12802                         if (ipip->ipi_cmd_type == MSFILT_CMD &&
12803                             MI_COPY_COUNT(mp) == 1) {
12804                                 if (ip_copyin_msfilter(q, mp) == 0)
12805                                         return;
12806                         }
12807                         /*
12808                          * Refhold the conn, till the ioctl completes. This is
12809                          * needed in case the ioctl ends up in the pending mp
12810                          * list. Every mp in the ipx_pending_mp list must have
12811                          * a refhold on the conn to resume processing. The
12812                          * refhold is released when the ioctl completes
12813                          * (whether normally or abnormally). An ioctlref is also
12814                          * placed on the conn to prevent TCP from removing the
12815                          * queue needed to send the ioctl reply back.
12816                          * In all cases ip_ioctl_finish is called to finish
12817                          * the ioctl and release the refholds.
12818                          */
12819                         if (connp != NULL) {
12820                                 /* This is not a reentry */
12821                                 CONN_INC_REF(connp);
12822                                 CONN_INC_IOCTLREF(connp);
12823                         } else {
12824                                 if (!(ipip->ipi_flags & IPI_MODOK)) {
12825                                         mi_copy_done(q, mp, EINVAL);
12826                                         return;
12827                                 }
12828                         }
12829 
12830                         ip_process_ioctl(NULL, q, mp, ipip);
12831 
12832                 } else {
12833                         mi_copyout(q, mp);
12834                 }
12835                 return;
12836 
12837         case M_IOCNAK:
12838                 /*
12839                  * The only way we could get here is if a resolver didn't like
12840                  * an IOCTL we sent it.  This shouldn't happen.
12841                  */
12842                 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12843                     "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12844                     ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12845                 freemsg(mp);
12846                 return;
12847         case M_IOCACK:
12848                 /* /dev/ip shouldn't see this */
12849                 goto nak;
12850         case M_FLUSH:
12851                 if (*mp->b_rptr & FLUSHW)
12852                         flushq(q, FLUSHALL);
12853                 if (q->q_next) {
12854                         putnext(q, mp);
12855                         return;
12856                 }
12857                 if (*mp->b_rptr & FLUSHR) {
12858                         *mp->b_rptr &= ~FLUSHW;
12859                         qreply(q, mp);
12860                         return;
12861                 }
12862                 freemsg(mp);
12863                 return;
12864         case M_CTL:
12865                 break;
12866         case M_PROTO:
12867         case M_PCPROTO:
12868                 /*
12869                  * The only PROTO messages we expect are SNMP-related.
12870                  */
12871                 switch (((union T_primitives *)mp->b_rptr)->type) {
12872                 case T_SVR4_OPTMGMT_REQ:
12873                         ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12874                             "flags %x\n",
12875                             ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12876 
12877                         if (connp == NULL) {
12878                                 proto_str = "T_SVR4_OPTMGMT_REQ";
12879                                 goto protonak;
12880                         }
12881 
12882                         /*
12883                          * All Solaris components should pass a db_credp
12884                          * for this TPI message, hence we ASSERT.
12885                          * But in case there is some other M_PROTO that looks
12886                          * like a TPI message sent by some other kernel
12887                          * component, we check and return an error.
12888                          */
12889                         cr = msg_getcred(mp, NULL);
12890                         ASSERT(cr != NULL);
12891                         if (cr == NULL) {
12892                                 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12893                                 if (mp != NULL)
12894                                         qreply(q, mp);
12895                                 return;
12896                         }
12897 
12898                         if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12899                                 proto_str = "Bad SNMPCOM request?";
12900                                 goto protonak;
12901                         }
12902                         return;
12903                 default:
12904                         ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12905                             (int)*(uint_t *)mp->b_rptr));
12906                         freemsg(mp);
12907                         return;
12908                 }
12909         default:
12910                 break;
12911         }
12912         if (q->q_next) {
12913                 putnext(q, mp);
12914         } else
12915                 freemsg(mp);
12916         return;
12917 
12918 nak:
12919         iocp->ioc_error = EINVAL;
12920         mp->b_datap->db_type = M_IOCNAK;
12921         iocp->ioc_count = 0;
12922         qreply(q, mp);
12923         return;
12924 
12925 protonak:
12926         cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12927         if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12928                 qreply(q, mp);
12929 }
12930 
12931 /*
12932  * Process IP options in an outbound packet.  Verify that the nexthop in a
12933  * strict source route is onlink.
12934  * Returns non-zero if something fails in which case an ICMP error has been
12935  * sent and mp freed.
12936  *
12937  * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12938  */
12939 int
12940 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12941 {
12942         ipoptp_t        opts;
12943         uchar_t         *opt;
12944         uint8_t         optval;
12945         uint8_t         optlen;
12946         ipaddr_t        dst;
12947         intptr_t        code = 0;
12948         ire_t           *ire;
12949         ip_stack_t      *ipst = ixa->ixa_ipst;
12950         ip_recv_attr_t  iras;
12951 
12952         ip2dbg(("ip_output_options\n"));
12953 
12954         dst = ipha->ipha_dst;
12955         for (optval = ipoptp_first(&opts, ipha);
12956             optval != IPOPT_EOL;
12957             optval = ipoptp_next(&opts)) {
12958                 opt = opts.ipoptp_cur;
12959                 optlen = opts.ipoptp_len;
12960                 ip2dbg(("ip_output_options: opt %d, len %d\n",
12961                     optval, optlen));
12962                 switch (optval) {
12963                         uint32_t off;
12964                 case IPOPT_SSRR:
12965                 case IPOPT_LSRR:
12966                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12967                                 ip1dbg((
12968                                     "ip_output_options: bad option offset\n"));
12969                                 code = (char *)&opt[IPOPT_OLEN] -
12970                                     (char *)ipha;
12971                                 goto param_prob;
12972                         }
12973                         off = opt[IPOPT_OFFSET];
12974                         ip1dbg(("ip_output_options: next hop 0x%x\n",
12975                             ntohl(dst)));
12976                         /*
12977                          * For strict: verify that dst is directly
12978                          * reachable.
12979                          */
12980                         if (optval == IPOPT_SSRR) {
12981                                 ire = ire_ftable_lookup_v4(dst, 0, 0,
12982                                     IRE_INTERFACE, NULL, ALL_ZONES,
12983                                     ixa->ixa_tsl,
12984                                     MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
12985                                     NULL);
12986                                 if (ire == NULL) {
12987                                         ip1dbg(("ip_output_options: SSRR not"
12988                                             " directly reachable: 0x%x\n",
12989                                             ntohl(dst)));
12990                                         goto bad_src_route;
12991                                 }
12992                                 ire_refrele(ire);
12993                         }
12994                         break;
12995                 case IPOPT_RR:
12996                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12997                                 ip1dbg((
12998                                     "ip_output_options: bad option offset\n"));
12999                                 code = (char *)&opt[IPOPT_OLEN] -
13000                                     (char *)ipha;
13001                                 goto param_prob;
13002                         }
13003                         break;
13004                 case IPOPT_TS:
13005                         /*
13006                          * Verify that length >=5 and that there is either
13007                          * room for another timestamp or that the overflow
13008                          * counter is not maxed out.
13009                          */
13010                         code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13011                         if (optlen < IPOPT_MINLEN_IT) {
13012                                 goto param_prob;
13013                         }
13014                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13015                                 ip1dbg((
13016                                     "ip_output_options: bad option offset\n"));
13017                                 code = (char *)&opt[IPOPT_OFFSET] -
13018                                     (char *)ipha;
13019                                 goto param_prob;
13020                         }
13021                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13022                         case IPOPT_TS_TSONLY:
13023                                 off = IPOPT_TS_TIMELEN;
13024                                 break;
13025                         case IPOPT_TS_TSANDADDR:
13026                         case IPOPT_TS_PRESPEC:
13027                         case IPOPT_TS_PRESPEC_RFC791:
13028                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13029                                 break;
13030                         default:
13031                                 code = (char *)&opt[IPOPT_POS_OV_FLG] -
13032                                     (char *)ipha;
13033                                 goto param_prob;
13034                         }
13035                         if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13036                             (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13037                                 /*
13038                                  * No room and the overflow counter is 15
13039                                  * already.
13040                                  */
13041                                 goto param_prob;
13042                         }
13043                         break;
13044                 }
13045         }
13046 
13047         if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13048                 return (0);
13049 
13050         ip1dbg(("ip_output_options: error processing IP options."));
13051         code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13052 
13053 param_prob:
13054         bzero(&iras, sizeof (iras));
13055         iras.ira_ill = iras.ira_rill = ill;
13056         iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13057         iras.ira_rifindex = iras.ira_ruifindex;
13058         iras.ira_flags = IRAF_IS_IPV4;
13059 
13060         ip_drop_output("ip_output_options", mp, ill);
13061         icmp_param_problem(mp, (uint8_t)code, &iras);
13062         ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13063         return (-1);
13064 
13065 bad_src_route:
13066         bzero(&iras, sizeof (iras));
13067         iras.ira_ill = iras.ira_rill = ill;
13068         iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13069         iras.ira_rifindex = iras.ira_ruifindex;
13070         iras.ira_flags = IRAF_IS_IPV4;
13071 
13072         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13073         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13074         ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13075         return (-1);
13076 }
13077 
13078 /*
13079  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13080  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13081  * thru /etc/system.
13082  */
13083 #define CONN_MAXDRAINCNT        64
13084 
13085 static void
13086 conn_drain_init(ip_stack_t *ipst)
13087 {
13088         int i, j;
13089         idl_tx_list_t *itl_tx;
13090 
13091         ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13092 
13093         if ((ipst->ips_conn_drain_list_cnt == 0) ||
13094             (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13095                 /*
13096                  * Default value of the number of drainers is the
13097                  * number of cpus, subject to maximum of 8 drainers.
13098                  */
13099                 if (boot_max_ncpus != -1)
13100                         ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13101                 else
13102                         ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13103         }
13104 
13105         ipst->ips_idl_tx_list =
13106             kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13107         for (i = 0; i < TX_FANOUT_SIZE; i++) {
13108                 itl_tx =  &ipst->ips_idl_tx_list[i];
13109                 itl_tx->txl_drain_list =
13110                     kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13111                     sizeof (idl_t), KM_SLEEP);
13112                 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13113                 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13114                         mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13115                             MUTEX_DEFAULT, NULL);
13116                         itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13117                 }
13118         }
13119 }
13120 
13121 static void
13122 conn_drain_fini(ip_stack_t *ipst)
13123 {
13124         int i;
13125         idl_tx_list_t *itl_tx;
13126 
13127         for (i = 0; i < TX_FANOUT_SIZE; i++) {
13128                 itl_tx =  &ipst->ips_idl_tx_list[i];
13129                 kmem_free(itl_tx->txl_drain_list,
13130                     ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13131         }
13132         kmem_free(ipst->ips_idl_tx_list,
13133             TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13134         ipst->ips_idl_tx_list = NULL;
13135 }
13136 
13137 /*
13138  * Flow control has blocked us from proceeding.  Insert the given conn in one
13139  * of the conn drain lists.  When flow control is unblocked, either ip_wsrv()
13140  * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13141  * will call conn_walk_drain().  See the flow control notes at the top of this
13142  * file for more details.
13143  */
13144 void
13145 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13146 {
13147         idl_t   *idl = tx_list->txl_drain_list;
13148         uint_t  index;
13149         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
13150 
13151         mutex_enter(&connp->conn_lock);
13152         if (connp->conn_state_flags & CONN_CLOSING) {
13153                 /*
13154                  * The conn is closing as a result of which CONN_CLOSING
13155                  * is set. Return.
13156                  */
13157                 mutex_exit(&connp->conn_lock);
13158                 return;
13159         } else if (connp->conn_idl == NULL) {
13160                 /*
13161                  * Assign the next drain list round robin. We dont' use
13162                  * a lock, and thus it may not be strictly round robin.
13163                  * Atomicity of load/stores is enough to make sure that
13164                  * conn_drain_list_index is always within bounds.
13165                  */
13166                 index = tx_list->txl_drain_index;
13167                 ASSERT(index < ipst->ips_conn_drain_list_cnt);
13168                 connp->conn_idl = &tx_list->txl_drain_list[index];
13169                 index++;
13170                 if (index == ipst->ips_conn_drain_list_cnt)
13171                         index = 0;
13172                 tx_list->txl_drain_index = index;
13173         } else {
13174                 ASSERT(connp->conn_idl->idl_itl == tx_list);
13175         }
13176         mutex_exit(&connp->conn_lock);
13177 
13178         idl = connp->conn_idl;
13179         mutex_enter(&idl->idl_lock);
13180         if ((connp->conn_drain_prev != NULL) ||
13181             (connp->conn_state_flags & CONN_CLOSING)) {
13182                 /*
13183                  * The conn is either already in the drain list or closing.
13184                  * (We needed to check for CONN_CLOSING again since close can
13185                  * sneak in between dropping conn_lock and acquiring idl_lock.)
13186                  */
13187                 mutex_exit(&idl->idl_lock);
13188                 return;
13189         }
13190 
13191         /*
13192          * The conn is not in the drain list. Insert it at the
13193          * tail of the drain list. The drain list is circular
13194          * and doubly linked. idl_conn points to the 1st element
13195          * in the list.
13196          */
13197         if (idl->idl_conn == NULL) {
13198                 idl->idl_conn = connp;
13199                 connp->conn_drain_next = connp;
13200                 connp->conn_drain_prev = connp;
13201         } else {
13202                 conn_t *head = idl->idl_conn;
13203 
13204                 connp->conn_drain_next = head;
13205                 connp->conn_drain_prev = head->conn_drain_prev;
13206                 head->conn_drain_prev->conn_drain_next = connp;
13207                 head->conn_drain_prev = connp;
13208         }
13209         /*
13210          * For non streams based sockets assert flow control.
13211          */
13212         conn_setqfull(connp, NULL);
13213         mutex_exit(&idl->idl_lock);
13214 }
13215 
13216 static void
13217 conn_drain_remove(conn_t *connp)
13218 {
13219         idl_t *idl = connp->conn_idl;
13220 
13221         if (idl != NULL) {
13222                 /*
13223                  * Remove ourself from the drain list.
13224                  */
13225                 if (connp->conn_drain_next == connp) {
13226                         /* Singleton in the list */
13227                         ASSERT(connp->conn_drain_prev == connp);
13228                         idl->idl_conn = NULL;
13229                 } else {
13230                         connp->conn_drain_prev->conn_drain_next =
13231                             connp->conn_drain_next;
13232                         connp->conn_drain_next->conn_drain_prev =
13233                             connp->conn_drain_prev;
13234                         if (idl->idl_conn == connp)
13235                                 idl->idl_conn = connp->conn_drain_next;
13236                 }
13237 
13238                 /*
13239                  * NOTE: because conn_idl is associated with a specific drain
13240                  * list which in turn is tied to the index the TX ring
13241                  * (txl_cookie) hashes to, and because the TX ring can change
13242                  * over the lifetime of the conn_t, we must clear conn_idl so
13243                  * a subsequent conn_drain_insert() will set conn_idl again
13244                  * based on the latest txl_cookie.
13245                  */
13246                 connp->conn_idl = NULL;
13247         }
13248         connp->conn_drain_next = NULL;
13249         connp->conn_drain_prev = NULL;
13250 
13251         conn_clrqfull(connp, NULL);
13252         /*
13253          * For streams based sockets open up flow control.
13254          */
13255         if (!IPCL_IS_NONSTR(connp))
13256                 enableok(connp->conn_wq);
13257 }
13258 
13259 /*
13260  * This conn is closing, and we are called from ip_close. OR
13261  * this conn is draining because flow-control on the ill has been relieved.
13262  *
13263  * We must also need to remove conn's on this idl from the list, and also
13264  * inform the sockfs upcalls about the change in flow-control.
13265  */
13266 static void
13267 conn_drain(conn_t *connp, boolean_t closing)
13268 {
13269         idl_t *idl;
13270         conn_t *next_connp;
13271 
13272         /*
13273          * connp->conn_idl is stable at this point, and no lock is needed
13274          * to check it. If we are called from ip_close, close has already
13275          * set CONN_CLOSING, thus freezing the value of conn_idl, and
13276          * called us only because conn_idl is non-null. If we are called thru
13277          * service, conn_idl could be null, but it cannot change because
13278          * service is single-threaded per queue, and there cannot be another
13279          * instance of service trying to call conn_drain_insert on this conn
13280          * now.
13281          */
13282         ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13283 
13284         /*
13285          * If the conn doesn't exist or is not on a drain list, bail.
13286          */
13287         if (connp == NULL || connp->conn_idl == NULL ||
13288             connp->conn_drain_prev == NULL) {
13289                 return;
13290         }
13291 
13292         idl = connp->conn_idl;
13293         ASSERT(MUTEX_HELD(&idl->idl_lock));
13294 
13295         if (!closing) {
13296                 next_connp = connp->conn_drain_next;
13297                 while (next_connp != connp) {
13298                         conn_t *delconnp = next_connp;
13299 
13300                         next_connp = next_connp->conn_drain_next;
13301                         conn_drain_remove(delconnp);
13302                 }
13303                 ASSERT(connp->conn_drain_next == idl->idl_conn);
13304         }
13305         conn_drain_remove(connp);
13306 }
13307 
13308 /*
13309  * Write service routine. Shared perimeter entry point.
13310  * The device queue's messages has fallen below the low water mark and STREAMS
13311  * has backenabled the ill_wq. Send sockfs notification about flow-control on
13312  * each waiting conn.
13313  */
13314 void
13315 ip_wsrv(queue_t *q)
13316 {
13317         ill_t   *ill;
13318 
13319         ill = (ill_t *)q->q_ptr;
13320         if (ill->ill_state_flags == 0) {
13321                 ip_stack_t *ipst = ill->ill_ipst;
13322 
13323                 /*
13324                  * The device flow control has opened up.
13325                  * Walk through conn drain lists and qenable the
13326                  * first conn in each list. This makes sense only
13327                  * if the stream is fully plumbed and setup.
13328                  * Hence the ill_state_flags check above.
13329                  */
13330                 ip1dbg(("ip_wsrv: walking\n"));
13331                 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13332                 enableok(ill->ill_wq);
13333         }
13334 }
13335 
13336 /*
13337  * Callback to disable flow control in IP.
13338  *
13339  * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13340  * is enabled.
13341  *
13342  * When MAC_TX() is not able to send any more packets, dld sets its queue
13343  * to QFULL and enable the STREAMS flow control. Later, when the underlying
13344  * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13345  * function and wakes up corresponding mac worker threads, which in turn
13346  * calls this callback function, and disables flow control.
13347  */
13348 void
13349 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13350 {
13351         ill_t *ill = (ill_t *)arg;
13352         ip_stack_t *ipst = ill->ill_ipst;
13353         idl_tx_list_t *idl_txl;
13354 
13355         idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13356         mutex_enter(&idl_txl->txl_lock);
13357         /* add code to to set a flag to indicate idl_txl is enabled */
13358         conn_walk_drain(ipst, idl_txl);
13359         mutex_exit(&idl_txl->txl_lock);
13360 }
13361 
13362 /*
13363  * Flow control has been relieved and STREAMS has backenabled us; drain
13364  * all the conn lists on `tx_list'.
13365  */
13366 static void
13367 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13368 {
13369         int i;
13370         idl_t *idl;
13371 
13372         IP_STAT(ipst, ip_conn_walk_drain);
13373 
13374         for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13375                 idl = &tx_list->txl_drain_list[i];
13376                 mutex_enter(&idl->idl_lock);
13377                 conn_drain(idl->idl_conn, B_FALSE);
13378                 mutex_exit(&idl->idl_lock);
13379         }
13380 }
13381 
13382 /*
13383  * Determine if the ill and multicast aspects of that packets
13384  * "matches" the conn.
13385  */
13386 boolean_t
13387 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13388 {
13389         ill_t           *ill = ira->ira_rill;
13390         zoneid_t        zoneid = ira->ira_zoneid;
13391         uint_t          in_ifindex;
13392         ipaddr_t        dst, src;
13393 
13394         dst = ipha->ipha_dst;
13395         src = ipha->ipha_src;
13396 
13397         /*
13398          * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13399          * unicast, broadcast and multicast reception to
13400          * conn_incoming_ifindex.
13401          * conn_wantpacket is called for unicast, broadcast and
13402          * multicast packets.
13403          */
13404         in_ifindex = connp->conn_incoming_ifindex;
13405 
13406         /* mpathd can bind to the under IPMP interface, which we allow */
13407         if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13408                 if (!IS_UNDER_IPMP(ill))
13409                         return (B_FALSE);
13410 
13411                 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13412                         return (B_FALSE);
13413         }
13414 
13415         if (!IPCL_ZONE_MATCH(connp, zoneid))
13416                 return (B_FALSE);
13417 
13418         if (!(ira->ira_flags & IRAF_MULTICAST))
13419                 return (B_TRUE);
13420 
13421         if (connp->conn_multi_router) {
13422                 /* multicast packet and multicast router socket: send up */
13423                 return (B_TRUE);
13424         }
13425 
13426         if (ipha->ipha_protocol == IPPROTO_PIM ||
13427             ipha->ipha_protocol == IPPROTO_RSVP)
13428                 return (B_TRUE);
13429 
13430         return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13431 }
13432 
13433 void
13434 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13435 {
13436         if (IPCL_IS_NONSTR(connp)) {
13437                 (*connp->conn_upcalls->su_txq_full)
13438                     (connp->conn_upper_handle, B_TRUE);
13439                 if (flow_stopped != NULL)
13440                         *flow_stopped = B_TRUE;
13441         } else {
13442                 queue_t *q = connp->conn_wq;
13443 
13444                 ASSERT(q != NULL);
13445                 if (!(q->q_flag & QFULL)) {
13446                         mutex_enter(QLOCK(q));
13447                         if (!(q->q_flag & QFULL)) {
13448                                 /* still need to set QFULL */
13449                                 q->q_flag |= QFULL;
13450                                 /* set flow_stopped to true under QLOCK */
13451                                 if (flow_stopped != NULL)
13452                                         *flow_stopped = B_TRUE;
13453                                 mutex_exit(QLOCK(q));
13454                         } else {
13455                                 /* flow_stopped is left unchanged */
13456                                 mutex_exit(QLOCK(q));
13457                         }
13458                 }
13459         }
13460 }
13461 
13462 void
13463 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13464 {
13465         if (IPCL_IS_NONSTR(connp)) {
13466                 (*connp->conn_upcalls->su_txq_full)
13467                     (connp->conn_upper_handle, B_FALSE);
13468                 if (flow_stopped != NULL)
13469                         *flow_stopped = B_FALSE;
13470         } else {
13471                 queue_t *q = connp->conn_wq;
13472 
13473                 ASSERT(q != NULL);
13474                 if (q->q_flag & QFULL) {
13475                         mutex_enter(QLOCK(q));
13476                         if (q->q_flag & QFULL) {
13477                                 q->q_flag &= ~QFULL;
13478                                 /* set flow_stopped to false under QLOCK */
13479                                 if (flow_stopped != NULL)
13480                                         *flow_stopped = B_FALSE;
13481                                 mutex_exit(QLOCK(q));
13482                                 if (q->q_flag & QWANTW)
13483                                         qbackenable(q, 0);
13484                         } else {
13485                                 /* flow_stopped is left unchanged */
13486                                 mutex_exit(QLOCK(q));
13487                         }
13488                 }
13489         }
13490 
13491         mutex_enter(&connp->conn_lock);
13492         connp->conn_blocked = B_FALSE;
13493         mutex_exit(&connp->conn_lock);
13494 }
13495 
13496 /*
13497  * Return the length in bytes of the IPv4 headers (base header, label, and
13498  * other IP options) that will be needed based on the
13499  * ip_pkt_t structure passed by the caller.
13500  *
13501  * The returned length does not include the length of the upper level
13502  * protocol (ULP) header.
13503  * The caller needs to check that the length doesn't exceed the max for IPv4.
13504  */
13505 int
13506 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13507 {
13508         int len;
13509 
13510         len = IP_SIMPLE_HDR_LENGTH;
13511         if (ipp->ipp_fields & IPPF_LABEL_V4) {
13512                 ASSERT(ipp->ipp_label_len_v4 != 0);
13513                 /* We need to round up here */
13514                 len += (ipp->ipp_label_len_v4 + 3) & ~3;
13515         }
13516 
13517         if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13518                 ASSERT(ipp->ipp_ipv4_options_len != 0);
13519                 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13520                 len += ipp->ipp_ipv4_options_len;
13521         }
13522         return (len);
13523 }
13524 
13525 /*
13526  * All-purpose routine to build an IPv4 header with options based
13527  * on the abstract ip_pkt_t.
13528  *
13529  * The caller has to set the source and destination address as well as
13530  * ipha_length. The caller has to massage any source route and compensate
13531  * for the ULP pseudo-header checksum due to the source route.
13532  */
13533 void
13534 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13535     uint8_t protocol)
13536 {
13537         ipha_t  *ipha = (ipha_t *)buf;
13538         uint8_t *cp;
13539 
13540         /* Initialize IPv4 header */
13541         ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13542         ipha->ipha_length = 0;       /* Caller will set later */
13543         ipha->ipha_ident = 0;
13544         ipha->ipha_fragment_offset_and_flags = 0;
13545         ipha->ipha_ttl = ipp->ipp_unicast_hops;
13546         ipha->ipha_protocol = protocol;
13547         ipha->ipha_hdr_checksum = 0;
13548 
13549         if ((ipp->ipp_fields & IPPF_ADDR) &&
13550             IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13551                 ipha->ipha_src = ipp->ipp_addr_v4;
13552 
13553         cp = (uint8_t *)&ipha[1];
13554         if (ipp->ipp_fields & IPPF_LABEL_V4) {
13555                 ASSERT(ipp->ipp_label_len_v4 != 0);
13556                 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13557                 cp += ipp->ipp_label_len_v4;
13558                 /* We need to round up here */
13559                 while ((uintptr_t)cp & 0x3) {
13560                         *cp++ = IPOPT_NOP;
13561                 }
13562         }
13563 
13564         if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13565                 ASSERT(ipp->ipp_ipv4_options_len != 0);
13566                 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13567                 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13568                 cp += ipp->ipp_ipv4_options_len;
13569         }
13570         ipha->ipha_version_and_hdr_length =
13571             (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13572 
13573         ASSERT((int)(cp - buf) == buf_len);
13574 }
13575 
13576 /* Allocate the private structure */
13577 static int
13578 ip_priv_alloc(void **bufp)
13579 {
13580         void    *buf;
13581 
13582         if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13583                 return (ENOMEM);
13584 
13585         *bufp = buf;
13586         return (0);
13587 }
13588 
13589 /* Function to delete the private structure */
13590 void
13591 ip_priv_free(void *buf)
13592 {
13593         ASSERT(buf != NULL);
13594         kmem_free(buf, sizeof (ip_priv_t));
13595 }
13596 
13597 /*
13598  * The entry point for IPPF processing.
13599  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13600  * routine just returns.
13601  *
13602  * When called, ip_process generates an ipp_packet_t structure
13603  * which holds the state information for this packet and invokes the
13604  * the classifier (via ipp_packet_process). The classification, depending on
13605  * configured filters, results in a list of actions for this packet. Invoking
13606  * an action may cause the packet to be dropped, in which case we return NULL.
13607  * proc indicates the callout position for
13608  * this packet and ill is the interface this packet arrived on or will leave
13609  * on (inbound and outbound resp.).
13610  *
13611  * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13612  * on the ill corrsponding to the destination IP address.
13613  */
13614 mblk_t *
13615 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13616 {
13617         ip_priv_t       *priv;
13618         ipp_action_id_t aid;
13619         int             rc = 0;
13620         ipp_packet_t    *pp;
13621 
13622         /* If the classifier is not loaded, return  */
13623         if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13624                 return (mp);
13625         }
13626 
13627         ASSERT(mp != NULL);
13628 
13629         /* Allocate the packet structure */
13630         rc = ipp_packet_alloc(&pp, "ip", aid);
13631         if (rc != 0)
13632                 goto drop;
13633 
13634         /* Allocate the private structure */
13635         rc = ip_priv_alloc((void **)&priv);
13636         if (rc != 0) {
13637                 ipp_packet_free(pp);
13638                 goto drop;
13639         }
13640         priv->proc = proc;
13641         priv->ill_index = ill_get_upper_ifindex(rill);
13642 
13643         ipp_packet_set_private(pp, priv, ip_priv_free);
13644         ipp_packet_set_data(pp, mp);
13645 
13646         /* Invoke the classifier */
13647         rc = ipp_packet_process(&pp);
13648         if (pp != NULL) {
13649                 mp = ipp_packet_get_data(pp);
13650                 ipp_packet_free(pp);
13651                 if (rc != 0)
13652                         goto drop;
13653                 return (mp);
13654         } else {
13655                 /* No mp to trace in ip_drop_input/ip_drop_output  */
13656                 mp = NULL;
13657         }
13658 drop:
13659         if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13660                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13661                 ip_drop_input("ip_process", mp, ill);
13662         } else {
13663                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13664                 ip_drop_output("ip_process", mp, ill);
13665         }
13666         freemsg(mp);
13667         return (NULL);
13668 }
13669 
13670 /*
13671  * Propagate a multicast group membership operation (add/drop) on
13672  * all the interfaces crossed by the related multirt routes.
13673  * The call is considered successful if the operation succeeds
13674  * on at least one interface.
13675  *
13676  * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13677  * multicast addresses with the ire argument being the first one.
13678  * We walk the bucket to find all the of those.
13679  *
13680  * Common to IPv4 and IPv6.
13681  */
13682 static int
13683 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13684     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13685     ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13686     mcast_record_t fmode, const in6_addr_t *v6src)
13687 {
13688         ire_t           *ire_gw;
13689         irb_t           *irb;
13690         int             ifindex;
13691         int             error = 0;
13692         int             result;
13693         ip_stack_t      *ipst = ire->ire_ipst;
13694         ipaddr_t        group;
13695         boolean_t       isv6;
13696         int             match_flags;
13697 
13698         if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13699                 IN6_V4MAPPED_TO_IPADDR(v6group, group);
13700                 isv6 = B_FALSE;
13701         } else {
13702                 isv6 = B_TRUE;
13703         }
13704 
13705         irb = ire->ire_bucket;
13706         ASSERT(irb != NULL);
13707 
13708         result = 0;
13709         irb_refhold(irb);
13710         for (; ire != NULL; ire = ire->ire_next) {
13711                 if ((ire->ire_flags & RTF_MULTIRT) == 0)
13712                         continue;
13713 
13714                 /* We handle -ifp routes by matching on the ill if set */
13715                 match_flags = MATCH_IRE_TYPE;
13716                 if (ire->ire_ill != NULL)
13717                         match_flags |= MATCH_IRE_ILL;
13718 
13719                 if (isv6) {
13720                         if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13721                                 continue;
13722 
13723                         ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13724                             0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13725                             match_flags, 0, ipst, NULL);
13726                 } else {
13727                         if (ire->ire_addr != group)
13728                                 continue;
13729 
13730                         ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13731                             0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13732                             match_flags, 0, ipst, NULL);
13733                 }
13734                 /* No interface route exists for the gateway; skip this ire. */
13735                 if (ire_gw == NULL)
13736                         continue;
13737                 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13738                         ire_refrele(ire_gw);
13739                         continue;
13740                 }
13741                 ASSERT(ire_gw->ire_ill != NULL);     /* IRE_INTERFACE */
13742                 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13743 
13744                 /*
13745                  * The operation is considered a success if
13746                  * it succeeds at least once on any one interface.
13747                  */
13748                 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13749                     fmode, v6src);
13750                 if (error == 0)
13751                         result = CGTP_MCAST_SUCCESS;
13752 
13753                 ire_refrele(ire_gw);
13754         }
13755         irb_refrele(irb);
13756         /*
13757          * Consider the call as successful if we succeeded on at least
13758          * one interface. Otherwise, return the last encountered error.
13759          */
13760         return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13761 }
13762 
13763 /*
13764  * Return the expected CGTP hooks version number.
13765  */
13766 int
13767 ip_cgtp_filter_supported(void)
13768 {
13769         return (ip_cgtp_filter_rev);
13770 }
13771 
13772 /*
13773  * CGTP hooks can be registered by invoking this function.
13774  * Checks that the version number matches.
13775  */
13776 int
13777 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13778 {
13779         netstack_t *ns;
13780         ip_stack_t *ipst;
13781 
13782         if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13783                 return (ENOTSUP);
13784 
13785         ns = netstack_find_by_stackid(stackid);
13786         if (ns == NULL)
13787                 return (EINVAL);
13788         ipst = ns->netstack_ip;
13789         ASSERT(ipst != NULL);
13790 
13791         if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13792                 netstack_rele(ns);
13793                 return (EALREADY);
13794         }
13795 
13796         ipst->ips_ip_cgtp_filter_ops = ops;
13797 
13798         ill_set_inputfn_all(ipst);
13799 
13800         netstack_rele(ns);
13801         return (0);
13802 }
13803 
13804 /*
13805  * CGTP hooks can be unregistered by invoking this function.
13806  * Returns ENXIO if there was no registration.
13807  * Returns EBUSY if the ndd variable has not been turned off.
13808  */
13809 int
13810 ip_cgtp_filter_unregister(netstackid_t stackid)
13811 {
13812         netstack_t *ns;
13813         ip_stack_t *ipst;
13814 
13815         ns = netstack_find_by_stackid(stackid);
13816         if (ns == NULL)
13817                 return (EINVAL);
13818         ipst = ns->netstack_ip;
13819         ASSERT(ipst != NULL);
13820 
13821         if (ipst->ips_ip_cgtp_filter) {
13822                 netstack_rele(ns);
13823                 return (EBUSY);
13824         }
13825 
13826         if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13827                 netstack_rele(ns);
13828                 return (ENXIO);
13829         }
13830         ipst->ips_ip_cgtp_filter_ops = NULL;
13831 
13832         ill_set_inputfn_all(ipst);
13833 
13834         netstack_rele(ns);
13835         return (0);
13836 }
13837 
13838 /*
13839  * Check whether there is a CGTP filter registration.
13840  * Returns non-zero if there is a registration, otherwise returns zero.
13841  * Note: returns zero if bad stackid.
13842  */
13843 int
13844 ip_cgtp_filter_is_registered(netstackid_t stackid)
13845 {
13846         netstack_t *ns;
13847         ip_stack_t *ipst;
13848         int ret;
13849 
13850         ns = netstack_find_by_stackid(stackid);
13851         if (ns == NULL)
13852                 return (0);
13853         ipst = ns->netstack_ip;
13854         ASSERT(ipst != NULL);
13855 
13856         if (ipst->ips_ip_cgtp_filter_ops != NULL)
13857                 ret = 1;
13858         else
13859                 ret = 0;
13860 
13861         netstack_rele(ns);
13862         return (ret);
13863 }
13864 
13865 static int
13866 ip_squeue_switch(int val)
13867 {
13868         int rval;
13869 
13870         switch (val) {
13871         case IP_SQUEUE_ENTER_NODRAIN:
13872                 rval = SQ_NODRAIN;
13873                 break;
13874         case IP_SQUEUE_ENTER:
13875                 rval = SQ_PROCESS;
13876                 break;
13877         case IP_SQUEUE_FILL:
13878         default:
13879                 rval = SQ_FILL;
13880                 break;
13881         }
13882         return (rval);
13883 }
13884 
13885 static void *
13886 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13887 {
13888         kstat_t *ksp;
13889 
13890         ip_stat_t template = {
13891                 { "ip_udp_fannorm",             KSTAT_DATA_UINT64 },
13892                 { "ip_udp_fanmb",               KSTAT_DATA_UINT64 },
13893                 { "ip_recv_pullup",             KSTAT_DATA_UINT64 },
13894                 { "ip_db_ref",                  KSTAT_DATA_UINT64 },
13895                 { "ip_notaligned",              KSTAT_DATA_UINT64 },
13896                 { "ip_multimblk",               KSTAT_DATA_UINT64 },
13897                 { "ip_opt",                     KSTAT_DATA_UINT64 },
13898                 { "ipsec_proto_ahesp",          KSTAT_DATA_UINT64 },
13899                 { "ip_conn_flputbq",            KSTAT_DATA_UINT64 },
13900                 { "ip_conn_walk_drain",         KSTAT_DATA_UINT64 },
13901                 { "ip_out_sw_cksum",            KSTAT_DATA_UINT64 },
13902                 { "ip_out_sw_cksum_bytes",      KSTAT_DATA_UINT64 },
13903                 { "ip_in_sw_cksum",             KSTAT_DATA_UINT64 },
13904                 { "ip_ire_reclaim_calls",       KSTAT_DATA_UINT64 },
13905                 { "ip_ire_reclaim_deleted",     KSTAT_DATA_UINT64 },
13906                 { "ip_nce_reclaim_calls",       KSTAT_DATA_UINT64 },
13907                 { "ip_nce_reclaim_deleted",     KSTAT_DATA_UINT64 },
13908                 { "ip_dce_reclaim_calls",       KSTAT_DATA_UINT64 },
13909                 { "ip_dce_reclaim_deleted",     KSTAT_DATA_UINT64 },
13910                 { "ip_tcp_in_full_hw_cksum_err",        KSTAT_DATA_UINT64 },
13911                 { "ip_tcp_in_part_hw_cksum_err",        KSTAT_DATA_UINT64 },
13912                 { "ip_tcp_in_sw_cksum_err",             KSTAT_DATA_UINT64 },
13913                 { "ip_udp_in_full_hw_cksum_err",        KSTAT_DATA_UINT64 },
13914                 { "ip_udp_in_part_hw_cksum_err",        KSTAT_DATA_UINT64 },
13915                 { "ip_udp_in_sw_cksum_err",     KSTAT_DATA_UINT64 },
13916                 { "conn_in_recvdstaddr",        KSTAT_DATA_UINT64 },
13917                 { "conn_in_recvopts",           KSTAT_DATA_UINT64 },
13918                 { "conn_in_recvif",             KSTAT_DATA_UINT64 },
13919                 { "conn_in_recvslla",           KSTAT_DATA_UINT64 },
13920                 { "conn_in_recvucred",          KSTAT_DATA_UINT64 },
13921                 { "conn_in_recvttl",            KSTAT_DATA_UINT64 },
13922                 { "conn_in_recvhopopts",        KSTAT_DATA_UINT64 },
13923                 { "conn_in_recvhoplimit",       KSTAT_DATA_UINT64 },
13924                 { "conn_in_recvdstopts",        KSTAT_DATA_UINT64 },
13925                 { "conn_in_recvrthdrdstopts",   KSTAT_DATA_UINT64 },
13926                 { "conn_in_recvrthdr",          KSTAT_DATA_UINT64 },
13927                 { "conn_in_recvpktinfo",        KSTAT_DATA_UINT64 },
13928                 { "conn_in_recvtclass",         KSTAT_DATA_UINT64 },
13929                 { "conn_in_timestamp",          KSTAT_DATA_UINT64 },
13930         };
13931 
13932         ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13933             KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13934             KSTAT_FLAG_VIRTUAL, stackid);
13935 
13936         if (ksp == NULL)
13937                 return (NULL);
13938 
13939         bcopy(&template, ip_statisticsp, sizeof (template));
13940         ksp->ks_data = (void *)ip_statisticsp;
13941         ksp->ks_private = (void *)(uintptr_t)stackid;
13942 
13943         kstat_install(ksp);
13944         return (ksp);
13945 }
13946 
13947 static void
13948 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
13949 {
13950         if (ksp != NULL) {
13951                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
13952                 kstat_delete_netstack(ksp, stackid);
13953         }
13954 }
13955 
13956 static void *
13957 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
13958 {
13959         kstat_t *ksp;
13960 
13961         ip_named_kstat_t template = {
13962                 { "forwarding",         KSTAT_DATA_UINT32, 0 },
13963                 { "defaultTTL",         KSTAT_DATA_UINT32, 0 },
13964                 { "inReceives",         KSTAT_DATA_UINT64, 0 },
13965                 { "inHdrErrors",        KSTAT_DATA_UINT32, 0 },
13966                 { "inAddrErrors",       KSTAT_DATA_UINT32, 0 },
13967                 { "forwDatagrams",      KSTAT_DATA_UINT64, 0 },
13968                 { "inUnknownProtos",    KSTAT_DATA_UINT32, 0 },
13969                 { "inDiscards",         KSTAT_DATA_UINT32, 0 },
13970                 { "inDelivers",         KSTAT_DATA_UINT64, 0 },
13971                 { "outRequests",        KSTAT_DATA_UINT64, 0 },
13972                 { "outDiscards",        KSTAT_DATA_UINT32, 0 },
13973                 { "outNoRoutes",        KSTAT_DATA_UINT32, 0 },
13974                 { "reasmTimeout",       KSTAT_DATA_UINT32, 0 },
13975                 { "reasmReqds",         KSTAT_DATA_UINT32, 0 },
13976                 { "reasmOKs",           KSTAT_DATA_UINT32, 0 },
13977                 { "reasmFails",         KSTAT_DATA_UINT32, 0 },
13978                 { "fragOKs",            KSTAT_DATA_UINT32, 0 },
13979                 { "fragFails",          KSTAT_DATA_UINT32, 0 },
13980                 { "fragCreates",        KSTAT_DATA_UINT32, 0 },
13981                 { "addrEntrySize",      KSTAT_DATA_INT32, 0 },
13982                 { "routeEntrySize",     KSTAT_DATA_INT32, 0 },
13983                 { "netToMediaEntrySize",        KSTAT_DATA_INT32, 0 },
13984                 { "routingDiscards",    KSTAT_DATA_UINT32, 0 },
13985                 { "inErrs",             KSTAT_DATA_UINT32, 0 },
13986                 { "noPorts",            KSTAT_DATA_UINT32, 0 },
13987                 { "inCksumErrs",        KSTAT_DATA_UINT32, 0 },
13988                 { "reasmDuplicates",    KSTAT_DATA_UINT32, 0 },
13989                 { "reasmPartDups",      KSTAT_DATA_UINT32, 0 },
13990                 { "forwProhibits",      KSTAT_DATA_UINT32, 0 },
13991                 { "udpInCksumErrs",     KSTAT_DATA_UINT32, 0 },
13992                 { "udpInOverflows",     KSTAT_DATA_UINT32, 0 },
13993                 { "rawipInOverflows",   KSTAT_DATA_UINT32, 0 },
13994                 { "ipsecInSucceeded",   KSTAT_DATA_UINT32, 0 },
13995                 { "ipsecInFailed",      KSTAT_DATA_INT32, 0 },
13996                 { "memberEntrySize",    KSTAT_DATA_INT32, 0 },
13997                 { "inIPv6",             KSTAT_DATA_UINT32, 0 },
13998                 { "outIPv6",            KSTAT_DATA_UINT32, 0 },
13999                 { "outSwitchIPv6",      KSTAT_DATA_UINT32, 0 },
14000         };
14001 
14002         ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14003             NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14004         if (ksp == NULL || ksp->ks_data == NULL)
14005                 return (NULL);
14006 
14007         template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14008         template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14009         template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14010         template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14011         template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14012 
14013         template.netToMediaEntrySize.value.i32 =
14014             sizeof (mib2_ipNetToMediaEntry_t);
14015 
14016         template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14017 
14018         bcopy(&template, ksp->ks_data, sizeof (template));
14019         ksp->ks_update = ip_kstat_update;
14020         ksp->ks_private = (void *)(uintptr_t)stackid;
14021 
14022         kstat_install(ksp);
14023         return (ksp);
14024 }
14025 
14026 static void
14027 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14028 {
14029         if (ksp != NULL) {
14030                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14031                 kstat_delete_netstack(ksp, stackid);
14032         }
14033 }
14034 
14035 static int
14036 ip_kstat_update(kstat_t *kp, int rw)
14037 {
14038         ip_named_kstat_t *ipkp;
14039         mib2_ipIfStatsEntry_t ipmib;
14040         ill_walk_context_t ctx;
14041         ill_t *ill;
14042         netstackid_t    stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14043         netstack_t      *ns;
14044         ip_stack_t      *ipst;
14045 
14046         if (kp == NULL || kp->ks_data == NULL)
14047                 return (EIO);
14048 
14049         if (rw == KSTAT_WRITE)
14050                 return (EACCES);
14051 
14052         ns = netstack_find_by_stackid(stackid);
14053         if (ns == NULL)
14054                 return (-1);
14055         ipst = ns->netstack_ip;
14056         if (ipst == NULL) {
14057                 netstack_rele(ns);
14058                 return (-1);
14059         }
14060         ipkp = (ip_named_kstat_t *)kp->ks_data;
14061 
14062         bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14063         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14064         ill = ILL_START_WALK_V4(&ctx, ipst);
14065         for (; ill != NULL; ill = ill_next(&ctx, ill))
14066                 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14067         rw_exit(&ipst->ips_ill_g_lock);
14068 
14069         ipkp->forwarding.value.ui32 =                ipmib.ipIfStatsForwarding;
14070         ipkp->defaultTTL.value.ui32 =                ipmib.ipIfStatsDefaultTTL;
14071         ipkp->inReceives.value.ui64 =                ipmib.ipIfStatsHCInReceives;
14072         ipkp->inHdrErrors.value.ui32 =               ipmib.ipIfStatsInHdrErrors;
14073         ipkp->inAddrErrors.value.ui32 =              ipmib.ipIfStatsInAddrErrors;
14074         ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14075         ipkp->inUnknownProtos.value.ui32 =   ipmib.ipIfStatsInUnknownProtos;
14076         ipkp->inDiscards.value.ui32 =                ipmib.ipIfStatsInDiscards;
14077         ipkp->inDelivers.value.ui64 =                ipmib.ipIfStatsHCInDelivers;
14078         ipkp->outRequests.value.ui64 =               ipmib.ipIfStatsHCOutRequests;
14079         ipkp->outDiscards.value.ui32 =               ipmib.ipIfStatsOutDiscards;
14080         ipkp->outNoRoutes.value.ui32 =               ipmib.ipIfStatsOutNoRoutes;
14081         ipkp->reasmTimeout.value.ui32 =              ipst->ips_ip_reassembly_timeout;
14082         ipkp->reasmReqds.value.ui32 =                ipmib.ipIfStatsReasmReqds;
14083         ipkp->reasmOKs.value.ui32 =          ipmib.ipIfStatsReasmOKs;
14084         ipkp->reasmFails.value.ui32 =                ipmib.ipIfStatsReasmFails;
14085         ipkp->fragOKs.value.ui32 =           ipmib.ipIfStatsOutFragOKs;
14086         ipkp->fragFails.value.ui32 =         ipmib.ipIfStatsOutFragFails;
14087         ipkp->fragCreates.value.ui32 =               ipmib.ipIfStatsOutFragCreates;
14088 
14089         ipkp->routingDiscards.value.ui32 =   0;
14090         ipkp->inErrs.value.ui32 =            ipmib.tcpIfStatsInErrs;
14091         ipkp->noPorts.value.ui32 =           ipmib.udpIfStatsNoPorts;
14092         ipkp->inCksumErrs.value.ui32 =               ipmib.ipIfStatsInCksumErrs;
14093         ipkp->reasmDuplicates.value.ui32 =   ipmib.ipIfStatsReasmDuplicates;
14094         ipkp->reasmPartDups.value.ui32 =     ipmib.ipIfStatsReasmPartDups;
14095         ipkp->forwProhibits.value.ui32 =     ipmib.ipIfStatsForwProhibits;
14096         ipkp->udpInCksumErrs.value.ui32 =    ipmib.udpIfStatsInCksumErrs;
14097         ipkp->udpInOverflows.value.ui32 =    ipmib.udpIfStatsInOverflows;
14098         ipkp->rawipInOverflows.value.ui32 =  ipmib.rawipIfStatsInOverflows;
14099         ipkp->ipsecInSucceeded.value.ui32 =  ipmib.ipsecIfStatsInSucceeded;
14100         ipkp->ipsecInFailed.value.i32 =              ipmib.ipsecIfStatsInFailed;
14101 
14102         ipkp->inIPv6.value.ui32 =    ipmib.ipIfStatsInWrongIPVersion;
14103         ipkp->outIPv6.value.ui32 =   ipmib.ipIfStatsOutWrongIPVersion;
14104         ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14105 
14106         netstack_rele(ns);
14107 
14108         return (0);
14109 }
14110 
14111 static void *
14112 icmp_kstat_init(netstackid_t stackid)
14113 {
14114         kstat_t *ksp;
14115 
14116         icmp_named_kstat_t template = {
14117                 { "inMsgs",             KSTAT_DATA_UINT32 },
14118                 { "inErrors",           KSTAT_DATA_UINT32 },
14119                 { "inDestUnreachs",     KSTAT_DATA_UINT32 },
14120                 { "inTimeExcds",        KSTAT_DATA_UINT32 },
14121                 { "inParmProbs",        KSTAT_DATA_UINT32 },
14122                 { "inSrcQuenchs",       KSTAT_DATA_UINT32 },
14123                 { "inRedirects",        KSTAT_DATA_UINT32 },
14124                 { "inEchos",            KSTAT_DATA_UINT32 },
14125                 { "inEchoReps",         KSTAT_DATA_UINT32 },
14126                 { "inTimestamps",       KSTAT_DATA_UINT32 },
14127                 { "inTimestampReps",    KSTAT_DATA_UINT32 },
14128                 { "inAddrMasks",        KSTAT_DATA_UINT32 },
14129                 { "inAddrMaskReps",     KSTAT_DATA_UINT32 },
14130                 { "outMsgs",            KSTAT_DATA_UINT32 },
14131                 { "outErrors",          KSTAT_DATA_UINT32 },
14132                 { "outDestUnreachs",    KSTAT_DATA_UINT32 },
14133                 { "outTimeExcds",       KSTAT_DATA_UINT32 },
14134                 { "outParmProbs",       KSTAT_DATA_UINT32 },
14135                 { "outSrcQuenchs",      KSTAT_DATA_UINT32 },
14136                 { "outRedirects",       KSTAT_DATA_UINT32 },
14137                 { "outEchos",           KSTAT_DATA_UINT32 },
14138                 { "outEchoReps",        KSTAT_DATA_UINT32 },
14139                 { "outTimestamps",      KSTAT_DATA_UINT32 },
14140                 { "outTimestampReps",   KSTAT_DATA_UINT32 },
14141                 { "outAddrMasks",       KSTAT_DATA_UINT32 },
14142                 { "outAddrMaskReps",    KSTAT_DATA_UINT32 },
14143                 { "inChksumErrs",       KSTAT_DATA_UINT32 },
14144                 { "inUnknowns",         KSTAT_DATA_UINT32 },
14145                 { "inFragNeeded",       KSTAT_DATA_UINT32 },
14146                 { "outFragNeeded",      KSTAT_DATA_UINT32 },
14147                 { "outDrops",           KSTAT_DATA_UINT32 },
14148                 { "inOverFlows",        KSTAT_DATA_UINT32 },
14149                 { "inBadRedirects",     KSTAT_DATA_UINT32 },
14150         };
14151 
14152         ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14153             NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14154         if (ksp == NULL || ksp->ks_data == NULL)
14155                 return (NULL);
14156 
14157         bcopy(&template, ksp->ks_data, sizeof (template));
14158 
14159         ksp->ks_update = icmp_kstat_update;
14160         ksp->ks_private = (void *)(uintptr_t)stackid;
14161 
14162         kstat_install(ksp);
14163         return (ksp);
14164 }
14165 
14166 static void
14167 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14168 {
14169         if (ksp != NULL) {
14170                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14171                 kstat_delete_netstack(ksp, stackid);
14172         }
14173 }
14174 
14175 static int
14176 icmp_kstat_update(kstat_t *kp, int rw)
14177 {
14178         icmp_named_kstat_t *icmpkp;
14179         netstackid_t    stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14180         netstack_t      *ns;
14181         ip_stack_t      *ipst;
14182 
14183         if ((kp == NULL) || (kp->ks_data == NULL))
14184                 return (EIO);
14185 
14186         if (rw == KSTAT_WRITE)
14187                 return (EACCES);
14188 
14189         ns = netstack_find_by_stackid(stackid);
14190         if (ns == NULL)
14191                 return (-1);
14192         ipst = ns->netstack_ip;
14193         if (ipst == NULL) {
14194                 netstack_rele(ns);
14195                 return (-1);
14196         }
14197         icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14198 
14199         icmpkp->inMsgs.value.ui32 =      ipst->ips_icmp_mib.icmpInMsgs;
14200         icmpkp->inErrors.value.ui32 =            ipst->ips_icmp_mib.icmpInErrors;
14201         icmpkp->inDestUnreachs.value.ui32 =
14202             ipst->ips_icmp_mib.icmpInDestUnreachs;
14203         icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
14204         icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
14205         icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
14206         icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
14207         icmpkp->inEchos.value.ui32 =     ipst->ips_icmp_mib.icmpInEchos;
14208         icmpkp->inEchoReps.value.ui32 =          ipst->ips_icmp_mib.icmpInEchoReps;
14209         icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
14210         icmpkp->inTimestampReps.value.ui32 =
14211             ipst->ips_icmp_mib.icmpInTimestampReps;
14212         icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
14213         icmpkp->inAddrMaskReps.value.ui32 =
14214             ipst->ips_icmp_mib.icmpInAddrMaskReps;
14215         icmpkp->outMsgs.value.ui32 =     ipst->ips_icmp_mib.icmpOutMsgs;
14216         icmpkp->outErrors.value.ui32 =           ipst->ips_icmp_mib.icmpOutErrors;
14217         icmpkp->outDestUnreachs.value.ui32 =
14218             ipst->ips_icmp_mib.icmpOutDestUnreachs;
14219         icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
14220         icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
14221         icmpkp->outSrcQuenchs.value.ui32 =
14222             ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14223         icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
14224         icmpkp->outEchos.value.ui32 =            ipst->ips_icmp_mib.icmpOutEchos;
14225         icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
14226         icmpkp->outTimestamps.value.ui32 =
14227             ipst->ips_icmp_mib.icmpOutTimestamps;
14228         icmpkp->outTimestampReps.value.ui32 =
14229             ipst->ips_icmp_mib.icmpOutTimestampReps;
14230         icmpkp->outAddrMasks.value.ui32 =
14231             ipst->ips_icmp_mib.icmpOutAddrMasks;
14232         icmpkp->outAddrMaskReps.value.ui32 =
14233             ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14234         icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
14235         icmpkp->inUnknowns.value.ui32 =          ipst->ips_icmp_mib.icmpInUnknowns;
14236         icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
14237         icmpkp->outFragNeeded.value.ui32 =
14238             ipst->ips_icmp_mib.icmpOutFragNeeded;
14239         icmpkp->outDrops.value.ui32 =            ipst->ips_icmp_mib.icmpOutDrops;
14240         icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
14241         icmpkp->inBadRedirects.value.ui32 =
14242             ipst->ips_icmp_mib.icmpInBadRedirects;
14243 
14244         netstack_rele(ns);
14245         return (0);
14246 }
14247 
14248 /*
14249  * This is the fanout function for raw socket opened for SCTP.  Note
14250  * that it is called after SCTP checks that there is no socket which
14251  * wants a packet.  Then before SCTP handles this out of the blue packet,
14252  * this function is called to see if there is any raw socket for SCTP.
14253  * If there is and it is bound to the correct address, the packet will
14254  * be sent to that socket.  Note that only one raw socket can be bound to
14255  * a port.  This is assured in ipcl_sctp_hash_insert();
14256  */
14257 void
14258 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14259     ip_recv_attr_t *ira)
14260 {
14261         conn_t          *connp;
14262         queue_t         *rq;
14263         boolean_t       secure;
14264         ill_t           *ill = ira->ira_ill;
14265         ip_stack_t      *ipst = ill->ill_ipst;
14266         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
14267         sctp_stack_t    *sctps = ipst->ips_netstack->netstack_sctp;
14268         iaflags_t       iraflags = ira->ira_flags;
14269         ill_t           *rill = ira->ira_rill;
14270 
14271         secure = iraflags & IRAF_IPSEC_SECURE;
14272 
14273         connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14274             ira, ipst);
14275         if (connp == NULL) {
14276                 /*
14277                  * Although raw sctp is not summed, OOB chunks must be.
14278                  * Drop the packet here if the sctp checksum failed.
14279                  */
14280                 if (iraflags & IRAF_SCTP_CSUM_ERR) {
14281                         SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14282                         freemsg(mp);
14283                         return;
14284                 }
14285                 ira->ira_ill = ira->ira_rill = NULL;
14286                 sctp_ootb_input(mp, ira, ipst);
14287                 ira->ira_ill = ill;
14288                 ira->ira_rill = rill;
14289                 return;
14290         }
14291         rq = connp->conn_rq;
14292         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14293                 CONN_DEC_REF(connp);
14294                 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14295                 freemsg(mp);
14296                 return;
14297         }
14298         if (((iraflags & IRAF_IS_IPV4) ?
14299             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14300             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14301             secure) {
14302                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
14303                     ip6h, ira);
14304                 if (mp == NULL) {
14305                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14306                         /* Note that mp is NULL */
14307                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
14308                         CONN_DEC_REF(connp);
14309                         return;
14310                 }
14311         }
14312 
14313         if (iraflags & IRAF_ICMP_ERROR) {
14314                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
14315         } else {
14316                 ill_t *rill = ira->ira_rill;
14317 
14318                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14319                 /* This is the SOCK_RAW, IPPROTO_SCTP case. */
14320                 ira->ira_ill = ira->ira_rill = NULL;
14321                 (connp->conn_recv)(connp, mp, NULL, ira);
14322                 ira->ira_ill = ill;
14323                 ira->ira_rill = rill;
14324         }
14325         CONN_DEC_REF(connp);
14326 }
14327 
14328 /*
14329  * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14330  * header before the ip payload.
14331  */
14332 static void
14333 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14334 {
14335         int len = (mp->b_wptr - mp->b_rptr);
14336         mblk_t *ip_mp;
14337 
14338         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14339         if (is_fp_mp || len != fp_mp_len) {
14340                 if (len > fp_mp_len) {
14341                         /*
14342                          * fastpath header and ip header in the first mblk
14343                          */
14344                         mp->b_rptr += fp_mp_len;
14345                 } else {
14346                         /*
14347                          * ip_xmit_attach_llhdr had to prepend an mblk to
14348                          * attach the fastpath header before ip header.
14349                          */
14350                         ip_mp = mp->b_cont;
14351                         freeb(mp);
14352                         mp = ip_mp;
14353                         mp->b_rptr += (fp_mp_len - len);
14354                 }
14355         } else {
14356                 ip_mp = mp->b_cont;
14357                 freeb(mp);
14358                 mp = ip_mp;
14359         }
14360         ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14361         freemsg(mp);
14362 }
14363 
14364 /*
14365  * Normal post fragmentation function.
14366  *
14367  * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14368  * using the same state machine.
14369  *
14370  * We return an error on failure. In particular we return EWOULDBLOCK
14371  * when the driver flow controls. In that case this ensures that ip_wsrv runs
14372  * (currently by canputnext failure resulting in backenabling from GLD.)
14373  * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14374  * indication that they can flow control until ip_wsrv() tells then to restart.
14375  *
14376  * If the nce passed by caller is incomplete, this function
14377  * queues the packet and if necessary, sends ARP request and bails.
14378  * If the Neighbor Cache passed is fully resolved, we simply prepend
14379  * the link-layer header to the packet, do ipsec hw acceleration
14380  * work if necessary, and send the packet out on the wire.
14381  */
14382 /* ARGSUSED6 */
14383 int
14384 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14385     uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14386 {
14387         queue_t         *wq;
14388         ill_t           *ill = nce->nce_ill;
14389         ip_stack_t      *ipst = ill->ill_ipst;
14390         uint64_t        delta;
14391         boolean_t       isv6 = ill->ill_isv6;
14392         boolean_t       fp_mp;
14393         ncec_t          *ncec = nce->nce_common;
14394         int64_t         now = LBOLT_FASTPATH64;
14395         boolean_t       is_probe;
14396 
14397         DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14398 
14399         ASSERT(mp != NULL);
14400         ASSERT(mp->b_datap->db_type == M_DATA);
14401         ASSERT(pkt_len == msgdsize(mp));
14402 
14403         /*
14404          * If we have already been here and are coming back after ARP/ND.
14405          * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14406          * in that case since they have seen the packet when it came here
14407          * the first time.
14408          */
14409         if (ixaflags & IXAF_NO_TRACE)
14410                 goto sendit;
14411 
14412         if (ixaflags & IXAF_IS_IPV4) {
14413                 ipha_t *ipha = (ipha_t *)mp->b_rptr;
14414 
14415                 ASSERT(!isv6);
14416                 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14417                 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14418                     !(ixaflags & IXAF_NO_PFHOOK)) {
14419                         int     error;
14420 
14421                         FW_HOOKS(ipst->ips_ip4_physical_out_event,
14422                             ipst->ips_ipv4firewall_physical_out,
14423                             NULL, ill, ipha, mp, mp, 0, ipst, error);
14424                         DTRACE_PROBE1(ip4__physical__out__end,
14425                             mblk_t *, mp);
14426                         if (mp == NULL)
14427                                 return (error);
14428 
14429                         /* The length could have changed */
14430                         pkt_len = msgdsize(mp);
14431                 }
14432                 if (ipst->ips_ip4_observe.he_interested) {
14433                         /*
14434                          * Note that for TX the zoneid is the sending
14435                          * zone, whether or not MLP is in play.
14436                          * Since the szone argument is the IP zoneid (i.e.,
14437                          * zero for exclusive-IP zones) and ipobs wants
14438                          * the system zoneid, we map it here.
14439                          */
14440                         szone = IP_REAL_ZONEID(szone, ipst);
14441 
14442                         /*
14443                          * On the outbound path the destination zone will be
14444                          * unknown as we're sending this packet out on the
14445                          * wire.
14446                          */
14447                         ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14448                             ill, ipst);
14449                 }
14450                 DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14451                     void_ip_t *, ipha,  __dtrace_ipsr_ill_t *, ill,
14452                     ipha_t *, ipha, ip6_t *, NULL, int, 0);
14453         } else {
14454                 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14455 
14456                 ASSERT(isv6);
14457                 ASSERT(pkt_len ==
14458                     ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14459                 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14460                     !(ixaflags & IXAF_NO_PFHOOK)) {
14461                         int     error;
14462 
14463                         FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14464                             ipst->ips_ipv6firewall_physical_out,
14465                             NULL, ill, ip6h, mp, mp, 0, ipst, error);
14466                         DTRACE_PROBE1(ip6__physical__out__end,
14467                             mblk_t *, mp);
14468                         if (mp == NULL)
14469                                 return (error);
14470 
14471                         /* The length could have changed */
14472                         pkt_len = msgdsize(mp);
14473                 }
14474                 if (ipst->ips_ip6_observe.he_interested) {
14475                         /* See above */
14476                         szone = IP_REAL_ZONEID(szone, ipst);
14477 
14478                         ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14479                             ill, ipst);
14480                 }
14481                 DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14482                     void_ip_t *, ip6h,  __dtrace_ipsr_ill_t *, ill,
14483                     ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14484         }
14485 
14486 sendit:
14487         /*
14488          * We check the state without a lock because the state can never
14489          * move "backwards" to initial or incomplete.
14490          */
14491         switch (ncec->ncec_state) {
14492         case ND_REACHABLE:
14493         case ND_STALE:
14494         case ND_DELAY:
14495         case ND_PROBE:
14496                 mp = ip_xmit_attach_llhdr(mp, nce);
14497                 if (mp == NULL) {
14498                         /*
14499                          * ip_xmit_attach_llhdr has increased
14500                          * ipIfStatsOutDiscards and called ip_drop_output()
14501                          */
14502                         return (ENOBUFS);
14503                 }
14504                 /*
14505                  * check if nce_fastpath completed and we tagged on a
14506                  * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14507                  */
14508                 fp_mp = (mp->b_datap->db_type == M_DATA);
14509 
14510                 if (fp_mp &&
14511                     (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14512                         ill_dld_direct_t *idd;
14513 
14514                         idd = &ill->ill_dld_capab->idc_direct;
14515                         /*
14516                          * Send the packet directly to DLD, where it
14517                          * may be queued depending on the availability
14518                          * of transmit resources at the media layer.
14519                          * Return value should be taken into
14520                          * account and flow control the TCP.
14521                          */
14522                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14523                         UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14524                             pkt_len);
14525 
14526                         if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14527                                 (void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14528                                     (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14529                         } else {
14530                                 uintptr_t cookie;
14531 
14532                                 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14533                                     mp, (uintptr_t)xmit_hint, 0)) != 0) {
14534                                         if (ixacookie != NULL)
14535                                                 *ixacookie = cookie;
14536                                         return (EWOULDBLOCK);
14537                                 }
14538                         }
14539                 } else {
14540                         wq = ill->ill_wq;
14541 
14542                         if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14543                             !canputnext(wq)) {
14544                                 if (ixacookie != NULL)
14545                                         *ixacookie = 0;
14546                                 ip_xmit_flowctl_drop(ill, mp, fp_mp,
14547                                     nce->nce_fp_mp != NULL ?
14548                                     MBLKL(nce->nce_fp_mp) : 0);
14549                                 return (EWOULDBLOCK);
14550                         }
14551                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14552                         UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14553                             pkt_len);
14554                         putnext(wq, mp);
14555                 }
14556 
14557                 /*
14558                  * The rest of this function implements Neighbor Unreachability
14559                  * detection. Determine if the ncec is eligible for NUD.
14560                  */
14561                 if (ncec->ncec_flags & NCE_F_NONUD)
14562                         return (0);
14563 
14564                 ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14565 
14566                 /*
14567                  * Check for upper layer advice
14568                  */
14569                 if (ixaflags & IXAF_REACH_CONF) {
14570                         timeout_id_t tid;
14571 
14572                         /*
14573                          * It should be o.k. to check the state without
14574                          * a lock here, at most we lose an advice.
14575                          */
14576                         ncec->ncec_last = TICK_TO_MSEC(now);
14577                         if (ncec->ncec_state != ND_REACHABLE) {
14578                                 mutex_enter(&ncec->ncec_lock);
14579                                 ncec->ncec_state = ND_REACHABLE;
14580                                 tid = ncec->ncec_timeout_id;
14581                                 ncec->ncec_timeout_id = 0;
14582                                 mutex_exit(&ncec->ncec_lock);
14583                                 (void) untimeout(tid);
14584                                 if (ip_debug > 2) {
14585                                         /* ip1dbg */
14586                                         pr_addr_dbg("ip_xmit: state"
14587                                             " for %s changed to"
14588                                             " REACHABLE\n", AF_INET6,
14589                                             &ncec->ncec_addr);
14590                                 }
14591                         }
14592                         return (0);
14593                 }
14594 
14595                 delta =  TICK_TO_MSEC(now) - ncec->ncec_last;
14596                 ip1dbg(("ip_xmit: delta = %" PRId64
14597                     " ill_reachable_time = %d \n", delta,
14598                     ill->ill_reachable_time));
14599                 if (delta > (uint64_t)ill->ill_reachable_time) {
14600                         mutex_enter(&ncec->ncec_lock);
14601                         switch (ncec->ncec_state) {
14602                         case ND_REACHABLE:
14603                                 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14604                                 /* FALLTHROUGH */
14605                         case ND_STALE:
14606                                 /*
14607                                  * ND_REACHABLE is identical to
14608                                  * ND_STALE in this specific case. If
14609                                  * reachable time has expired for this
14610                                  * neighbor (delta is greater than
14611                                  * reachable time), conceptually, the
14612                                  * neighbor cache is no longer in
14613                                  * REACHABLE state, but already in
14614                                  * STALE state.  So the correct
14615                                  * transition here is to ND_DELAY.
14616                                  */
14617                                 ncec->ncec_state = ND_DELAY;
14618                                 mutex_exit(&ncec->ncec_lock);
14619                                 nce_restart_timer(ncec,
14620                                     ipst->ips_delay_first_probe_time);
14621                                 if (ip_debug > 3) {
14622                                         /* ip2dbg */
14623                                         pr_addr_dbg("ip_xmit: state"
14624                                             " for %s changed to"
14625                                             " DELAY\n", AF_INET6,
14626                                             &ncec->ncec_addr);
14627                                 }
14628                                 break;
14629                         case ND_DELAY:
14630                         case ND_PROBE:
14631                                 mutex_exit(&ncec->ncec_lock);
14632                                 /* Timers have already started */
14633                                 break;
14634                         case ND_UNREACHABLE:
14635                                 /*
14636                                  * nce_timer has detected that this ncec
14637                                  * is unreachable and initiated deleting
14638                                  * this ncec.
14639                                  * This is a harmless race where we found the
14640                                  * ncec before it was deleted and have
14641                                  * just sent out a packet using this
14642                                  * unreachable ncec.
14643                                  */
14644                                 mutex_exit(&ncec->ncec_lock);
14645                                 break;
14646                         default:
14647                                 ASSERT(0);
14648                                 mutex_exit(&ncec->ncec_lock);
14649                         }
14650                 }
14651                 return (0);
14652 
14653         case ND_INCOMPLETE:
14654                 /*
14655                  * the state could have changed since we didn't hold the lock.
14656                  * Re-verify state under lock.
14657                  */
14658                 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14659                 mutex_enter(&ncec->ncec_lock);
14660                 if (NCE_ISREACHABLE(ncec)) {
14661                         mutex_exit(&ncec->ncec_lock);
14662                         goto sendit;
14663                 }
14664                 /* queue the packet */
14665                 nce_queue_mp(ncec, mp, is_probe);
14666                 mutex_exit(&ncec->ncec_lock);
14667                 DTRACE_PROBE2(ip__xmit__incomplete,
14668                     (ncec_t *), ncec, (mblk_t *), mp);
14669                 return (0);
14670 
14671         case ND_INITIAL:
14672                 /*
14673                  * State could have changed since we didn't hold the lock, so
14674                  * re-verify state.
14675                  */
14676                 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14677                 mutex_enter(&ncec->ncec_lock);
14678                 if (NCE_ISREACHABLE(ncec))  {
14679                         mutex_exit(&ncec->ncec_lock);
14680                         goto sendit;
14681                 }
14682                 nce_queue_mp(ncec, mp, is_probe);
14683                 if (ncec->ncec_state == ND_INITIAL) {
14684                         ncec->ncec_state = ND_INCOMPLETE;
14685                         mutex_exit(&ncec->ncec_lock);
14686                         /*
14687                          * figure out the source we want to use
14688                          * and resolve it.
14689                          */
14690                         ip_ndp_resolve(ncec);
14691                 } else  {
14692                         mutex_exit(&ncec->ncec_lock);
14693                 }
14694                 return (0);
14695 
14696         case ND_UNREACHABLE:
14697                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14698                 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14699                     mp, ill);
14700                 freemsg(mp);
14701                 return (0);
14702 
14703         default:
14704                 ASSERT(0);
14705                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14706                 ip_drop_output("ipIfStatsOutDiscards - ND_other",
14707                     mp, ill);
14708                 freemsg(mp);
14709                 return (ENETUNREACH);
14710         }
14711 }
14712 
14713 /*
14714  * Return B_TRUE if the buffers differ in length or content.
14715  * This is used for comparing extension header buffers.
14716  * Note that an extension header would be declared different
14717  * even if all that changed was the next header value in that header i.e.
14718  * what really changed is the next extension header.
14719  */
14720 boolean_t
14721 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14722     uint_t blen)
14723 {
14724         if (!b_valid)
14725                 blen = 0;
14726 
14727         if (alen != blen)
14728                 return (B_TRUE);
14729         if (alen == 0)
14730                 return (B_FALSE);       /* Both zero length */
14731         return (bcmp(abuf, bbuf, alen));
14732 }
14733 
14734 /*
14735  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14736  * Return B_FALSE if memory allocation fails - don't change any state!
14737  */
14738 boolean_t
14739 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14740     const void *src, uint_t srclen)
14741 {
14742         void *dst;
14743 
14744         if (!src_valid)
14745                 srclen = 0;
14746 
14747         ASSERT(*dstlenp == 0);
14748         if (src != NULL && srclen != 0) {
14749                 dst = mi_alloc(srclen, BPRI_MED);
14750                 if (dst == NULL)
14751                         return (B_FALSE);
14752         } else {
14753                 dst = NULL;
14754         }
14755         if (*dstp != NULL)
14756                 mi_free(*dstp);
14757         *dstp = dst;
14758         *dstlenp = dst == NULL ? 0 : srclen;
14759         return (B_TRUE);
14760 }
14761 
14762 /*
14763  * Replace what is in *dst, *dstlen with the source.
14764  * Assumes ip_allocbuf has already been called.
14765  */
14766 void
14767 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14768     const void *src, uint_t srclen)
14769 {
14770         if (!src_valid)
14771                 srclen = 0;
14772 
14773         ASSERT(*dstlenp == srclen);
14774         if (src != NULL && srclen != 0)
14775                 bcopy(src, *dstp, srclen);
14776 }
14777 
14778 /*
14779  * Free the storage pointed to by the members of an ip_pkt_t.
14780  */
14781 void
14782 ip_pkt_free(ip_pkt_t *ipp)
14783 {
14784         uint_t  fields = ipp->ipp_fields;
14785 
14786         if (fields & IPPF_HOPOPTS) {
14787                 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14788                 ipp->ipp_hopopts = NULL;
14789                 ipp->ipp_hopoptslen = 0;
14790         }
14791         if (fields & IPPF_RTHDRDSTOPTS) {
14792                 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14793                 ipp->ipp_rthdrdstopts = NULL;
14794                 ipp->ipp_rthdrdstoptslen = 0;
14795         }
14796         if (fields & IPPF_DSTOPTS) {
14797                 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14798                 ipp->ipp_dstopts = NULL;
14799                 ipp->ipp_dstoptslen = 0;
14800         }
14801         if (fields & IPPF_RTHDR) {
14802                 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14803                 ipp->ipp_rthdr = NULL;
14804                 ipp->ipp_rthdrlen = 0;
14805         }
14806         if (fields & IPPF_IPV4_OPTIONS) {
14807                 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14808                 ipp->ipp_ipv4_options = NULL;
14809                 ipp->ipp_ipv4_options_len = 0;
14810         }
14811         if (fields & IPPF_LABEL_V4) {
14812                 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14813                 ipp->ipp_label_v4 = NULL;
14814                 ipp->ipp_label_len_v4 = 0;
14815         }
14816         if (fields & IPPF_LABEL_V6) {
14817                 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14818                 ipp->ipp_label_v6 = NULL;
14819                 ipp->ipp_label_len_v6 = 0;
14820         }
14821         ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14822             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14823 }
14824 
14825 /*
14826  * Copy from src to dst and allocate as needed.
14827  * Returns zero or ENOMEM.
14828  *
14829  * The caller must initialize dst to zero.
14830  */
14831 int
14832 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14833 {
14834         uint_t  fields = src->ipp_fields;
14835 
14836         /* Start with fields that don't require memory allocation */
14837         dst->ipp_fields = fields &
14838             ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14839             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14840 
14841         dst->ipp_addr = src->ipp_addr;
14842         dst->ipp_unicast_hops = src->ipp_unicast_hops;
14843         dst->ipp_hoplimit = src->ipp_hoplimit;
14844         dst->ipp_tclass = src->ipp_tclass;
14845         dst->ipp_type_of_service = src->ipp_type_of_service;
14846 
14847         if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14848             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14849                 return (0);
14850 
14851         if (fields & IPPF_HOPOPTS) {
14852                 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14853                 if (dst->ipp_hopopts == NULL) {
14854                         ip_pkt_free(dst);
14855                         return (ENOMEM);
14856                 }
14857                 dst->ipp_fields |= IPPF_HOPOPTS;
14858                 bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14859                     src->ipp_hopoptslen);
14860                 dst->ipp_hopoptslen = src->ipp_hopoptslen;
14861         }
14862         if (fields & IPPF_RTHDRDSTOPTS) {
14863                 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14864                     kmflag);
14865                 if (dst->ipp_rthdrdstopts == NULL) {
14866                         ip_pkt_free(dst);
14867                         return (ENOMEM);
14868                 }
14869                 dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14870                 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14871                     src->ipp_rthdrdstoptslen);
14872                 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14873         }
14874         if (fields & IPPF_DSTOPTS) {
14875                 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14876                 if (dst->ipp_dstopts == NULL) {
14877                         ip_pkt_free(dst);
14878                         return (ENOMEM);
14879                 }
14880                 dst->ipp_fields |= IPPF_DSTOPTS;
14881                 bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14882                     src->ipp_dstoptslen);
14883                 dst->ipp_dstoptslen = src->ipp_dstoptslen;
14884         }
14885         if (fields & IPPF_RTHDR) {
14886                 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14887                 if (dst->ipp_rthdr == NULL) {
14888                         ip_pkt_free(dst);
14889                         return (ENOMEM);
14890                 }
14891                 dst->ipp_fields |= IPPF_RTHDR;
14892                 bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14893                     src->ipp_rthdrlen);
14894                 dst->ipp_rthdrlen = src->ipp_rthdrlen;
14895         }
14896         if (fields & IPPF_IPV4_OPTIONS) {
14897                 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14898                     kmflag);
14899                 if (dst->ipp_ipv4_options == NULL) {
14900                         ip_pkt_free(dst);
14901                         return (ENOMEM);
14902                 }
14903                 dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14904                 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14905                     src->ipp_ipv4_options_len);
14906                 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14907         }
14908         if (fields & IPPF_LABEL_V4) {
14909                 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14910                 if (dst->ipp_label_v4 == NULL) {
14911                         ip_pkt_free(dst);
14912                         return (ENOMEM);
14913                 }
14914                 dst->ipp_fields |= IPPF_LABEL_V4;
14915                 bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14916                     src->ipp_label_len_v4);
14917                 dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14918         }
14919         if (fields & IPPF_LABEL_V6) {
14920                 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14921                 if (dst->ipp_label_v6 == NULL) {
14922                         ip_pkt_free(dst);
14923                         return (ENOMEM);
14924                 }
14925                 dst->ipp_fields |= IPPF_LABEL_V6;
14926                 bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14927                     src->ipp_label_len_v6);
14928                 dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14929         }
14930         if (fields & IPPF_FRAGHDR) {
14931                 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14932                 if (dst->ipp_fraghdr == NULL) {
14933                         ip_pkt_free(dst);
14934                         return (ENOMEM);
14935                 }
14936                 dst->ipp_fields |= IPPF_FRAGHDR;
14937                 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14938                     src->ipp_fraghdrlen);
14939                 dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14940         }
14941         return (0);
14942 }
14943 
14944 /*
14945  * Returns INADDR_ANY if no source route
14946  */
14947 ipaddr_t
14948 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
14949 {
14950         ipaddr_t        nexthop = INADDR_ANY;
14951         ipoptp_t        opts;
14952         uchar_t         *opt;
14953         uint8_t         optval;
14954         uint8_t         optlen;
14955         uint32_t        totallen;
14956 
14957         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
14958                 return (INADDR_ANY);
14959 
14960         totallen = ipp->ipp_ipv4_options_len;
14961         if (totallen & 0x3)
14962                 return (INADDR_ANY);
14963 
14964         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
14965             optval != IPOPT_EOL;
14966             optval = ipoptp_next(&opts)) {
14967                 opt = opts.ipoptp_cur;
14968                 switch (optval) {
14969                         uint8_t off;
14970                 case IPOPT_SSRR:
14971                 case IPOPT_LSRR:
14972                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
14973                                 break;
14974                         }
14975                         optlen = opts.ipoptp_len;
14976                         off = opt[IPOPT_OFFSET];
14977                         off--;
14978                         if (optlen < IP_ADDR_LEN ||
14979                             off > optlen - IP_ADDR_LEN) {
14980                                 /* End of source route */
14981                                 break;
14982                         }
14983                         bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
14984                         if (nexthop == htonl(INADDR_LOOPBACK)) {
14985                                 /* Ignore */
14986                                 nexthop = INADDR_ANY;
14987                                 break;
14988                         }
14989                         break;
14990                 }
14991         }
14992         return (nexthop);
14993 }
14994 
14995 /*
14996  * Reverse a source route.
14997  */
14998 void
14999 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15000 {
15001         ipaddr_t        tmp;
15002         ipoptp_t        opts;
15003         uchar_t         *opt;
15004         uint8_t         optval;
15005         uint32_t        totallen;
15006 
15007         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15008                 return;
15009 
15010         totallen = ipp->ipp_ipv4_options_len;
15011         if (totallen & 0x3)
15012                 return;
15013 
15014         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15015             optval != IPOPT_EOL;
15016             optval = ipoptp_next(&opts)) {
15017                 uint8_t off1, off2;
15018 
15019                 opt = opts.ipoptp_cur;
15020                 switch (optval) {
15021                 case IPOPT_SSRR:
15022                 case IPOPT_LSRR:
15023                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15024                                 break;
15025                         }
15026                         off1 = IPOPT_MINOFF_SR - 1;
15027                         off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15028                         while (off2 > off1) {
15029                                 bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15030                                 bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15031                                 bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15032                                 off2 -= IP_ADDR_LEN;
15033                                 off1 += IP_ADDR_LEN;
15034                         }
15035                         opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15036                         break;
15037                 }
15038         }
15039 }
15040 
15041 /*
15042  * Returns NULL if no routing header
15043  */
15044 in6_addr_t *
15045 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15046 {
15047         in6_addr_t      *nexthop = NULL;
15048         ip6_rthdr0_t    *rthdr;
15049 
15050         if (!(ipp->ipp_fields & IPPF_RTHDR))
15051                 return (NULL);
15052 
15053         rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15054         if (rthdr->ip6r0_segleft == 0)
15055                 return (NULL);
15056 
15057         nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15058         return (nexthop);
15059 }
15060 
15061 zoneid_t
15062 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15063     zoneid_t lookup_zoneid)
15064 {
15065         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
15066         ire_t           *ire;
15067         int             ire_flags = MATCH_IRE_TYPE;
15068         zoneid_t        zoneid = ALL_ZONES;
15069 
15070         if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15071                 return (ALL_ZONES);
15072 
15073         if (lookup_zoneid != ALL_ZONES)
15074                 ire_flags |= MATCH_IRE_ZONEONLY;
15075         ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15076             NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15077         if (ire != NULL) {
15078                 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15079                 ire_refrele(ire);
15080         }
15081         return (zoneid);
15082 }
15083 
15084 zoneid_t
15085 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15086     ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15087 {
15088         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
15089         ire_t           *ire;
15090         int             ire_flags = MATCH_IRE_TYPE;
15091         zoneid_t        zoneid = ALL_ZONES;
15092 
15093         if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15094                 return (ALL_ZONES);
15095 
15096         if (IN6_IS_ADDR_LINKLOCAL(addr))
15097                 ire_flags |= MATCH_IRE_ILL;
15098 
15099         if (lookup_zoneid != ALL_ZONES)
15100                 ire_flags |= MATCH_IRE_ZONEONLY;
15101         ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15102             ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15103         if (ire != NULL) {
15104                 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15105                 ire_refrele(ire);
15106         }
15107         return (zoneid);
15108 }
15109 
15110 /*
15111  * IP obserability hook support functions.
15112  */
15113 static void
15114 ipobs_init(ip_stack_t *ipst)
15115 {
15116         netid_t id;
15117 
15118         id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15119 
15120         ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15121         VERIFY(ipst->ips_ip4_observe_pr != NULL);
15122 
15123         ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15124         VERIFY(ipst->ips_ip6_observe_pr != NULL);
15125 }
15126 
15127 static void
15128 ipobs_fini(ip_stack_t *ipst)
15129 {
15130 
15131         VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15132         VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15133 }
15134 
15135 /*
15136  * hook_pkt_observe_t is composed in network byte order so that the
15137  * entire mblk_t chain handed into hook_run can be used as-is.
15138  * The caveat is that use of the fields, such as the zone fields,
15139  * requires conversion into host byte order first.
15140  */
15141 void
15142 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15143     const ill_t *ill, ip_stack_t *ipst)
15144 {
15145         hook_pkt_observe_t *hdr;
15146         uint64_t grifindex;
15147         mblk_t *imp;
15148 
15149         imp = allocb(sizeof (*hdr), BPRI_HI);
15150         if (imp == NULL)
15151                 return;
15152 
15153         hdr = (hook_pkt_observe_t *)imp->b_rptr;
15154         /*
15155          * b_wptr is set to make the apparent size of the data in the mblk_t
15156          * to exclude the pointers at the end of hook_pkt_observer_t.
15157          */
15158         imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15159         imp->b_cont = mp;
15160 
15161         ASSERT(DB_TYPE(mp) == M_DATA);
15162 
15163         if (IS_UNDER_IPMP(ill))
15164                 grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15165         else
15166                 grifindex = 0;
15167 
15168         hdr->hpo_version = 1;
15169         hdr->hpo_htype = htons(htype);
15170         hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15171         hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15172         hdr->hpo_grifindex = htonl(grifindex);
15173         hdr->hpo_zsrc = htonl(zsrc);
15174         hdr->hpo_zdst = htonl(zdst);
15175         hdr->hpo_pkt = imp;
15176         hdr->hpo_ctx = ipst->ips_netstack;
15177 
15178         if (ill->ill_isv6) {
15179                 hdr->hpo_family = AF_INET6;
15180                 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15181                     ipst->ips_ipv6observing, (hook_data_t)hdr);
15182         } else {
15183                 hdr->hpo_family = AF_INET;
15184                 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15185                     ipst->ips_ipv4observing, (hook_data_t)hdr);
15186         }
15187 
15188         imp->b_cont = NULL;
15189         freemsg(imp);
15190 }
15191 
15192 /*
15193  * Utility routine that checks if `v4srcp' is a valid address on underlying
15194  * interface `ill'.  If `ipifp' is non-NULL, it's set to a held ipif
15195  * associated with `v4srcp' on success.  NOTE: if this is not called from
15196  * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15197  * group during or after this lookup.
15198  */
15199 boolean_t
15200 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15201 {
15202         ipif_t *ipif;
15203 
15204         ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15205         if (ipif != NULL) {
15206                 if (ipifp != NULL)
15207                         *ipifp = ipif;
15208                 else
15209                         ipif_refrele(ipif);
15210                 return (B_TRUE);
15211         }
15212 
15213         ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15214             *v4srcp));
15215         return (B_FALSE);
15216 }
15217 
15218 /*
15219  * Transport protocol call back function for CPU state change.
15220  */
15221 /* ARGSUSED */
15222 static int
15223 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15224 {
15225         processorid_t cpu_seqid;
15226         netstack_handle_t nh;
15227         netstack_t *ns;
15228 
15229         ASSERT(MUTEX_HELD(&cpu_lock));
15230 
15231         switch (what) {
15232         case CPU_CONFIG:
15233         case CPU_ON:
15234         case CPU_INIT:
15235         case CPU_CPUPART_IN:
15236                 cpu_seqid = cpu[id]->cpu_seqid;
15237                 netstack_next_init(&nh);
15238                 while ((ns = netstack_next(&nh)) != NULL) {
15239                         tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15240                         sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15241                         udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15242                         netstack_rele(ns);
15243                 }
15244                 netstack_next_fini(&nh);
15245                 break;
15246         case CPU_UNCONFIG:
15247         case CPU_OFF:
15248         case CPU_CPUPART_OUT:
15249                 /*
15250                  * Nothing to do.  We don't remove the per CPU stats from
15251                  * the IP stack even when the CPU goes offline.
15252                  */
15253                 break;
15254         default:
15255                 break;
15256         }
15257         return (0);
15258 }