1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * Copyright 2018, Joyent, Inc.
14 */
15
16 /*
17 * This plugin implements the SDC VXLAN Protocol (SVP).
18 *
19 * This plugin is designed to work with a broader distributed system that
20 * mainains a database of mappings and provides a means of looking up data and
21 * provides a stream of updates. While it is named after VXLAN, there isn't
22 * anything specific to VXLAN baked into the protocol at this time, other than
23 * that it requires both an IP address and a port; however, if there's a good
24 * reason to support others here, we can modify that.
25 *
26 * -----------
27 * Terminology
28 * -----------
29 *
30 * Throughout this module we refer to a few different kinds of addresses:
31 *
32 * VL3
33 *
34 * A VL3 address, or virtual layer 3, refers to the layer three addreses
35 * that are used by entities on an overlay network. As far as we're
36 * concerned that means that this is the IP address of an interface on an
37 * overlay network.
38 *
39 * VL2
40 *
41 * A VL2 address, or a virtual layer 2, referes to the link-layer addresses
42 * that are used by entities on an overlay network. As far as we're
43 * concerned that means that this is the MAC addresses of an interface on
44 * an overlay network.
45 *
46 * UL3
47 *
48 * A UL3, or underlay layer 3, refers to the layer three (IP) address on
49 * the underlay network.
50 *
51 * The svp plugin provides lookups from VL3->VL2, eg. the equivalent of an ARP
52 * or NDP query, and then also provides VL2->UL3 lookups.
53 *
54 * -------------------
55 * Protocol Operations
56 * -------------------
57 *
58 * The svp protocol is defined in lib/varpd/svp/common/libvarpd_svp_prot.h. It
59 * defines the basic TCP protocol that we use to communicate to hosts. At this
60 * time, it is not quite 100% implemented in both this plug-in and our primary
61 * server, sdc-portolan (see https://github.com/joyent/sdc-portolan).
62 *
63 * At this time, we don't quite support everything that we need to. Including
64 * the SVP_R_BULK_REQ and SVP_R_SHOOTDOWN.
65 *
66 * ---------------------------------
67 * General Design and Considerations
68 * ---------------------------------
69 *
70 * Every instance of the svp plugin requires the hostname and port of a server
71 * to contact. Though, we have co-opted the port 1296 (the year of the oldest
72 * extant portolan) as our default port.
73 *
74 * Each of the different instance of the plugins has a corresponding remote
75 * backend. The remote backend represents the tuple of the [ host, port ].
76 * Different instances that share the same host and port tuple will use the same
77 * backend.
78 *
79 * The backend is actually in charge of performing lookups, resolving and
80 * updating the set of remote hosts based on the DNS resolution we've been
81 * provided, and taking care of things like shootdowns.
82 *
83 * The whole plugin itself maintains an event loop and a number of threads to
84 * service that event loop. On top of that event loop, we have a simple timer
85 * backend that ticks at one second intervals and performs various callbacks,
86 * such as idle query timers, DNS resolution, connection backoff, etc. Each of
87 * the remote hosts that we obtain is wrapped up in an svp_conn_t, which manages
88 * the connection state, reconnecting, etc.
89 *
90 * All in all, the general way that this all looks like is:
91 *
92 * +----------------------------+
93 * | Plugin Instance |
94 * | svp_t |
95 * | |
96 * | varpd_provider_handle_t * -+-> varpd handle
97 * | uint64_t ----+-> varpd ID
98 * | char * ----+-> remote host
99 * | uint16_t ----+-> remote port
100 * | svp_remote_t * ---+------+-> remote backend
101 * +---------------------+------+
102 * |
103 * v
104 * +----------------------+ +----------------+
105 * | Remote backend |------------------>| Remove Backend |---> ...
106 * | svp_remote_t | | svp_remote_t |
107 * | | +----------------+
108 * | svp_remote_state_t --+-> state flags
109 * | svp_degrade_state_t -+-> degraded reason
110 * | struct addrinfo * --+-> resolved hosts
111 * | uint_t ---+-> active hosts
112 * | uint_t ---+-> DNS generation
113 * | uint_t ---+-> Reference count
114 * | uint_t ---+-> active conns
115 * | uint_t ---+-> degraded conns
116 * | list_t ---+---+-> connection list
117 * +------------------+---+
118 * |
119 * +------------------------------+-----------------+
120 * | | |
121 * v v v
122 * +-------------------+ +----------------
123 * | SVP Connection | | SVP connection | ...
124 * | svp_conn_t | | svp_conn_t |
125 * | | +----------------+
126 * | svp_event_t ----+-> event loop handle
127 * | svp_timer_t ----+-> backoff timer
128 * | svp_timer_t ----+-> query timer
129 * | int ----+-> socket fd
130 * | uint_t ----+-> generation
131 * | uint_t ----+-> current backoff
132 * | svp_conn_flags_t -+-> connection flags
133 * | svp_conn_state_t -+-> connection state
134 * | svp_conn_error_t -+-> connection error
135 * | int ---+-> last errrno
136 * | hrtime_t ---+-> activity timestamp
137 * | svp_conn_out_t ---+-> outgoing data state
138 * | svp_conn_in_t ---+-> incoming data state
139 * | list_t ---+--+-> active queries
140 * +----------------+--+
141 * |
142 * +----------------------------------+-----------------+
143 * | | |
144 * v v v
145 * +--------------------+ +-------------+
146 * | SVP Query | | SVP Query | ...
147 * | svp_query_t | | svp_query_t |
148 * | | +-------------+
149 * | svp_query_f ---+-> callback function
150 * | void * ---+-> callback arg
151 * | svp_query_state_t -+-> state flags
152 * | svp_req_t ---+-> svp prot. header
153 * | svp_query_data_t --+-> read data
154 * | svp_query_data_t --+-> write data
155 * | svp_status_t ---+-> request status
156 * +--------------------+
157 *
158 * The svp_t is the instance that we assoicate with varpd. The instance itself
159 * maintains properties and then when it's started associates with an
160 * svp_remote_t, which is the remote backend. The remote backend itself,
161 * maintains the DNS state and spins up and downs connections based on the
162 * results from DNS. By default, we query DNS every 30 seconds. For more on the
163 * connection life cycle, see the next section.
164 *
165 * By default, each connection maintains its own back off timer and list of
166 * queries it's servicing. Only one request is generally outstanding at a time
167 * and requests are round robined across the various connections.
168 *
169 * The query itself represents the svp request that's going on and keep track of
170 * its state and is a place for data that's read and written to as part of the
171 * request.
172 *
173 * Connections maintain a query timer such that if we have not received data on
174 * a socket for a certain amount of time, we kill that socket and begin a
175 * reconnection cycle with backoff.
176 *
177 * ------------------------
178 * Connection State Machine
179 * ------------------------
180 *
181 * We have a connection pool that's built upon DNS records. DNS describes the
182 * membership of the set of remote peers that make up our pool and we maintain
183 * one connection to each of them. In addition, we maintain an exponential
184 * backoff for each peer and will attempt to reconect immediately before backing
185 * off. The following are the valid states that a connection can be in:
186 *
187 * SVP_CS_ERROR An OS error has occurred on this connection,
188 * such as failure to create a socket or associate
189 * the socket with an event port. We also
190 * transition all connections to this state before
191 * we destroy them.
192 *
193 * SVP_CS_INITIAL This is the initial state of a connection, all
194 * that should exist is an unbound socket.
195 *
196 * SVP_CS_CONNECTING A call to connect has been made and we are
197 * polling for it to complete.
198 *
199 * SVP_CS_BACKOFF A connect attempt has failed and we are
200 * currently backing off, waiting to try again.
201 *
202 * SVP_CS_ACTIVE We have successfully connected to the remote
203 * system.
204 *
205 * SVP_CS_WINDDOWN This connection is going to valhalla. In other
206 * words, a previously active connection is no
207 * longer valid in DNS, so we should curb our use
208 * of it, and reap it as soon as we have other
209 * active connections.
210 *
211 * The following diagram attempts to describe our state transition scheme, and
212 * when we transition from one state to the next.
213 *
214 * |
215 * * New remote IP from DNS resolution,
216 * | not currently active in the system.
217 * |
218 * v Socket Error,
219 * +----------------+ still in DNS
220 * +----------------<---| SVP_CS_INITIAL |<----------------------*--------+
221 * | +----------------+ |
222 * | System | |
223 * | Connection . . . . . success * Successful |
224 * | failed . | connect() |
225 * | . | +-------------------+ |
226 * | +----*---------+ | +-*>| SVP_CS_VERSIONING + |
227 * | | | | | +-------------------+ |
228 * | | | | | V V Set version |
229 * | | | | | | * based on |
230 * | | | | | | | SVP_R_PONG |
231 * | V ^ v ^ | V ^
232 * | +----------------+ +-------------------+ | +---------------+
233 * +<-| SVP_CS_BACKOFF | | SVP_CS_CONNECTING | | | SVP_CS_ACTIVE |
234 * | +----------------+ +-------------------+ | +---------------+
235 * | V ^ V | V V
236 * | Backoff wait * | | | | * Removed
237 * v interval +--------------+ +-----------------<+----+ | from DNS
238 * | finished | |
239 * | V |
240 * | | V
241 * | | +-----------------+
242 * +----------------+----------<-----+-------<----| SVP_CS_WINDDOWN |
243 * | +-----------------+
244 * * . . . Fatal system, not
245 * | socket error or
246 * V quiesced after
247 * +--------------+ removal from DNS
248 * | SVP_CS_ERROR |
249 * +--------------+
250 * |
251 * * . . . Removed from DNS
252 * v
253 * +------------+
254 * | Connection |
255 * | Destroyed |
256 * +------------+
257 *
258 * --------------------------
259 * Connection Event Injection
260 * --------------------------
261 *
262 * For each connection that exists in the system, we have a timer in place that
263 * is in charge of performing timeout activity. It fires once every thirty
264 * seconds or so for a given connection and checks to ensure that we have had
265 * activity for the most recent query on the connection. If not, it terminates
266 * the connection. This is important as if we have sent all our data and are
267 * waiting for the remote end to reply, without enabling something like TCP
268 * keep-alive, we will not be notified that anything that has happened to the
269 * remote connection, for example a panic. In addition, this also protects
270 * against a server that is up, but a portolan that is not making forward
271 * progress.
272 *
273 * When a timeout occurs, we first try to disassociate any active events, which
274 * by definition must exist. Once that's done, we inject a port source user
275 * event. Now, there is a small gotcha. Let's assume for a moment that we have a
276 * pathological portolan. That means that it knows to inject activity right at
277 * the time out window. That means, that the event may be disassociated before
278 * we could get to it. If that's the case, we must _not_ inject the user event
279 * and instead, we'll let the pending event take care of it. We know that the
280 * pending event hasn't hit the main part of the loop yet, otherwise, it would
281 * have released the lock protecting our state and associated the event.
282 *
283 * ------------
284 * Notes on DNS
285 * ------------
286 *
287 * Unfortunately, doing host name resolution in a way that allows us to leverage
288 * the system's resolvers and the system's caching, require us to make blocking
289 * calls in libc via getaddrinfo(3SOCKET). If we can't reach a given server,
290 * that will tie up a thread for quite some time. To work around that fact,
291 * we're going to create a fixed number of threads and we'll use them to service
292 * our DNS requests. While this isn't ideal, until we have a sane means of
293 * integrating a DNS resolution into an event loop with say portfs, it's not
294 * going to be a fun day no matter what we do.
295 *
296 * ------
297 * Timers
298 * ------
299 *
300 * We maintain a single timer based on CLOCK_REALTIME. It's designed to fire
301 * every second. While we'd rather use CLOCK_HIGHRES just to alleviate ourselves
302 * from timer drift; however, as zones may not actually have CLOCK_HIGHRES
303 * access, we don't want them to end up in there. The timer itself is just a
304 * simple avl tree sorted by expiration time, which is stored as a tick in the
305 * future, a tick is just one second.
306 *
307 * ----------
308 * Shootdowns
309 * ----------
310 *
311 * As part of the protocol, we need to be able to handle shootdowns that inform
312 * us some of the information in the system is out of date. This information
313 * needs to be processed promptly; however, the information is hopefully going
314 * to be relatively infrequent relative to the normal flow of information.
315 *
316 * The shoot down information needs to be done on a per-backend basis. The
317 * general design is that we'll have a single query for this which can fire on a
318 * 5-10s period, we randomize the latter part to give us a bit more load
319 * spreading. If we complete because there's no work to do, then we wait the
320 * normal period. If we complete, but there's still work to do, we'll go again
321 * after a second.
322 *
323 * A shootdown has a few different parts. We first receive a list of items to
324 * shootdown. After performing all of those, we need to acknowledge them. When
325 * that's been done successfully, we can move onto the next part. From a
326 * protocol perspective, we make a SVP_R_LOG_REQ, we get a reply, and then after
327 * processing them, send an SVP_R_LOG_RM. Only once that's been acked do we
328 * continue.
329 *
330 * However, one of the challenges that we have is that these invalidations are
331 * just that, an invalidation. For a virtual layer two request, that's fine,
332 * because the kernel supports that. However, for virtual layer three
333 * invalidations, we have a bit more work to do. These protocols, ARP and NDP,
334 * don't really support a notion of just an invalidation, instead you have to
335 * inject the new data in a gratuitous fashion.
336 *
337 * To that end, what we instead do is when we receive a VL3 invalidation, we
338 * turn that info a VL3 request. We hold the general request as outstanding
339 * until we receive all of the callbacks for the VL3 invalidations, at which
340 * point we go through and do the log removal request.
341 */
342
343 #include <umem.h>
344 #include <errno.h>
345 #include <stdlib.h>
346 #include <sys/types.h>
347 #include <sys/socket.h>
348 #include <netinet/in.h>
349 #include <arpa/inet.h>
350 #include <libnvpair.h>
351 #include <strings.h>
352 #include <string.h>
353 #include <assert.h>
354 #include <unistd.h>
355
356 #include <libvarpd_provider.h>
357 #include "libvarpd_svp.h"
358
359 bunyan_logger_t *svp_bunyan;
360 static int svp_defport = 1296;
361 static int svp_defuport = 1339;
362 static umem_cache_t *svp_lookup_cache;
363
364 typedef enum svp_lookup_type {
365 SVP_L_UNKNOWN = 0x0,
366 SVP_L_VL2 = 0x1,
367 SVP_L_VL3 = 0x2,
368 SVP_L_ROUTE = 0x3
369 } svp_lookup_type_t;
370
371 typedef struct svp_lookup {
372 int svl_type;
373 union {
374 struct svl_lookup_vl2 {
375 varpd_query_handle_t *svl_handle;
376 overlay_target_point_t *svl_point;
377 } svl_vl2;
378 struct svl_lookup_vl3 {
379 varpd_arp_handle_t *svl_vah;
380 uint8_t *svl_out;
381 } svl_vl3;
382 struct svl_lookup_route {
383 varpd_query_handle_t *svl_handle;
384 overlay_target_point_t *svl_point;
385 overlay_target_route_t *svl_route;
386 overlay_target_mac_t *svl_mac;
387 } svl_route;
388 } svl_u;
389 svp_query_t svl_query;
390 } svp_lookup_t;
391
392 static const char *varpd_svp_props[] = {
393 "svp/host",
394 "svp/port",
395 "svp/underlay_ip",
396 "svp/underlay_port",
397 "svp/dcid",
398 "svp/router_oui"
399 };
400
401 static const uint8_t svp_bcast[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
402
403 int
404 svp_comparator(const void *l, const void *r)
405 {
406 const svp_t *ls = l;
407 const svp_t *rs = r;
408
409 if (ls->svp_vid > rs->svp_vid)
410 return (1);
411 if (ls->svp_vid < rs->svp_vid)
412 return (-1);
413 return (0);
414 }
415
416 static void
417 svp_vl2_lookup_cb(svp_t *svp, svp_status_t status, const struct in6_addr *uip,
418 const uint16_t uport, void *arg)
419 {
420 svp_lookup_t *svl = arg;
421 overlay_target_point_t *otp;
422
423 assert(svp != NULL);
424 assert(arg != NULL);
425
426 if (status != SVP_S_OK) {
427 libvarpd_plugin_query_reply(svl->svl_u.svl_vl2.svl_handle,
428 VARPD_LOOKUP_DROP);
429 umem_cache_free(svp_lookup_cache, svl);
430 return;
431 }
432
433 otp = svl->svl_u.svl_vl2.svl_point;
434 bcopy(uip, &otp->otp_ip, sizeof (struct in6_addr));
435 otp->otp_port = uport;
436 libvarpd_plugin_query_reply(svl->svl_u.svl_vl2.svl_handle,
437 VARPD_LOOKUP_OK);
438 umem_cache_free(svp_lookup_cache, svl);
439 }
440
441 static void
442 svp_vl3_lookup_cb(svp_t *svp, svp_status_t status, const uint8_t *vl2mac,
443 const struct in6_addr *uip, const uint16_t uport, void *arg)
444 {
445 /* Initialize address-holders to 0 for comparisons-to-zeroes later. */
446 overlay_target_point_t point = { 0 };
447 svp_lookup_t *svl = arg;
448 uint8_t nexthop_mac[6] = { 0, 0, 0, 0, 0, 0 };
449
450 assert(svp != NULL);
451 assert(svl != NULL);
452
453 if (status != SVP_S_OK) {
454 libvarpd_plugin_arp_reply(svl->svl_u.svl_vl3.svl_vah,
455 VARPD_LOOKUP_DROP);
456 umem_cache_free(svp_lookup_cache, svl);
457 return;
458 }
459
460 /* Inject the L2 mapping before the L3 */
461 bcopy(uip, &point.otp_ip, sizeof (struct in6_addr));
462 point.otp_port = uport;
463 libvarpd_inject_varp(svp->svp_hdl, vl2mac, &point);
464
465 bcopy(vl2mac, svl->svl_u.svl_vl3.svl_out, ETHERADDRL);
466 libvarpd_plugin_arp_reply(svl->svl_u.svl_vl3.svl_vah,
467 VARPD_LOOKUP_OK);
468 umem_cache_free(svp_lookup_cache, svl);
469 }
470
471 static void
472 svp_vl2_invalidate_cb(svp_t *svp, const uint8_t *vl2mac)
473 {
474 libvarpd_inject_varp(svp->svp_hdl, vl2mac, NULL);
475 }
476
477 static void
478 svp_vl3_inject_cb(svp_t *svp, const uint16_t vlan, const struct in6_addr *vl3ip,
479 const uint8_t *vl2mac, const uint8_t *targmac)
480 {
481 struct in_addr v4;
482
483 /*
484 * At the moment we don't support any IPv6 related log entries, this
485 * will change soon as we develop a bit more of the IPv6 related
486 * infrastructure so we can properly test the injection.
487 */
488 if (IN6_IS_ADDR_V4MAPPED(vl3ip) == 0) {
489 return;
490 } else {
491 IN6_V4MAPPED_TO_INADDR(vl3ip, &v4);
492 if (targmac == NULL)
493 targmac = svp_bcast;
494 libvarpd_inject_arp(svp->svp_hdl, vlan, vl2mac, &v4, targmac);
495 }
496 }
497
498 /* ARGSUSED */
499 static void
500 svp_shootdown_cb(svp_t *svp, const uint8_t *vl2mac, const struct in6_addr *uip,
501 const uint16_t uport)
502 {
503 /*
504 * We should probably do a conditional invalidation here.
505 */
506 libvarpd_inject_varp(svp->svp_hdl, vl2mac, NULL);
507 }
508
509 static void
510 svp_route_lookup_cb(svp_t *svp, svp_status_t status, uint32_t dcid,
511 uint32_t vnetid, uint16_t vlan, uint8_t *srcmac, uint8_t *dstmac,
512 uint16_t ul3_port, uint8_t *ul3_addr, uint8_t srcpfx, uint8_t dstpfx,
513 void *arg)
514 {
515 svp_lookup_t *svl = arg;
516 overlay_target_point_t *otp;
517 overlay_target_route_t *otr;
518 overlay_target_mac_t *otm;
519
520 if (status != SVP_S_OK) {
521 libvarpd_plugin_query_reply(svl->svl_u.svl_route.svl_handle,
522 VARPD_LOOKUP_DROP);
523 umem_cache_free(svp_lookup_cache, svl);
524 return;
525 }
526
527 otp = svl->svl_u.svl_route.svl_point;
528 bcopy(ul3_addr, &otp->otp_ip, sizeof (struct in6_addr));
529 otp->otp_port = ul3_port;
530
531 otr = svl->svl_u.svl_route.svl_route;
532 otr->otr_vnet = vnetid;
533 otr->otr_vlan = vlan;
534 bcopy(srcmac, otr->otr_srcmac, ETHERADDRL);
535
536 otm = svl->svl_u.svl_route.svl_mac;
537 otm->otm_dcid = dcid;
538 bcopy(dstmac, otm->otm_mac, ETHERADDRL);
539
540 libvarpd_plugin_query_reply(svl->svl_u.svl_route.svl_handle,
541 VARPD_LOOKUP_OK);
542 umem_cache_free(svp_lookup_cache, svl);
543 }
544
545 /*
546 * Tell the overlay instance to flush out entries matcthing this route.
547 * See libvarpd_route_flush() for more.
548 */
549 static void
550 svp_route_shootdown_cb(svp_t *svp, uint8_t *srcip, uint8_t *dstip,
551 uint8_t src_prefixlen, uint8_t dst_prefixlen, uint16_t vlan_id)
552 {
553 libvarpd_route_flush(svp->svp_hdl, srcip, dstip, src_prefixlen,
554 dst_prefixlen, vlan_id);
555 }
556
557 static svp_cb_t svp_defops = {
558 svp_vl2_lookup_cb,
559 svp_vl3_lookup_cb,
560 svp_vl2_invalidate_cb,
561 svp_vl3_inject_cb,
562 svp_shootdown_cb,
563 svp_route_lookup_cb,
564 svp_route_shootdown_cb
565 };
566
567 static boolean_t
568 varpd_svp_valid_dest(overlay_plugin_dest_t dest)
569 {
570 if (dest != (OVERLAY_PLUGIN_D_IP | OVERLAY_PLUGIN_D_PORT))
571 return (B_FALSE);
572
573 return (B_TRUE);
574 }
575
576 static int
577 varpd_svp_create(varpd_provider_handle_t *hdl, void **outp,
578 overlay_plugin_dest_t dest)
579 {
580 int ret;
581 svp_t *svp;
582
583 if (varpd_svp_valid_dest(dest) == B_FALSE)
584 return (ENOTSUP);
585
586 svp = umem_zalloc(sizeof (svp_t), UMEM_DEFAULT);
587 if (svp == NULL)
588 return (ENOMEM);
589
590 if ((ret = mutex_init(&svp->svp_lock, USYNC_THREAD | LOCK_ERRORCHECK,
591 NULL)) != 0) {
592 umem_free(svp, sizeof (svp_t));
593 return (ret);
594 }
595
596 svp->svp_port = svp_defport;
597 svp->svp_uport = svp_defuport;
598 svp->svp_cb = svp_defops;
599 svp->svp_hdl = hdl;
600 svp->svp_vid = libvarpd_plugin_vnetid(svp->svp_hdl);
601 *outp = svp;
602 return (0);
603 }
604
605 static int
606 varpd_svp_start(void *arg)
607 {
608 int ret;
609 svp_remote_t *srp;
610 svp_t *svp = arg;
611
612 mutex_enter(&svp->svp_lock);
613 if (svp->svp_host == NULL || svp->svp_port == 0 ||
614 svp->svp_huip == B_FALSE || svp->svp_uport == 0) {
615 mutex_exit(&svp->svp_lock);
616 return (EAGAIN);
617 }
618 mutex_exit(&svp->svp_lock);
619
620 if ((ret = svp_remote_find(svp->svp_host, svp->svp_port, &svp->svp_uip,
621 &srp)) != 0)
622 return (ret);
623
624 if ((ret = svp_remote_attach(srp, svp)) != 0) {
625 svp_remote_release(srp);
626 return (ret);
627 }
628
629 return (0);
630 }
631
632 static void
633 varpd_svp_stop(void *arg)
634 {
635 svp_t *svp = arg;
636
637 svp_remote_detach(svp);
638 }
639
640 static void
641 varpd_svp_destroy(void *arg)
642 {
643 svp_t *svp = arg;
644
645 if (svp->svp_host != NULL)
646 umem_free(svp->svp_host, strlen(svp->svp_host) + 1);
647
648 if (mutex_destroy(&svp->svp_lock) != 0)
649 libvarpd_panic("failed to destroy svp_t`svp_lock");
650
651 umem_free(svp, sizeof (svp_t));
652 }
653
654 static void
655 varpd_svp_lookup_l3(svp_t *svp, varpd_query_handle_t *vqh,
656 const overlay_targ_lookup_t *otl, overlay_target_point_t *otp,
657 overlay_target_route_t *otr, overlay_target_mac_t *otm)
658 {
659 svp_lookup_t *slp;
660 uint32_t type;
661 const struct in6_addr *src = &otl->otl_addru.otlu_l3.otl3_srcip,
662 *dst = &otl->otl_addru.otlu_l3.otl3_dstip;
663
664 /*
665 * otl is an L3 request, so we have src/dst IPs for the inner packet.
666 * We also have the vlan.
667 *
668 * Assume kernel's overlay module is caching well, so we are directly
669 * going to query (i.e. no caching up here of actual destinations).
670 *
671 * Our existing remote sever (svp_remote), but with the new message
672 * SVP_R_ROUTE_REQ.
673 */
674
675 if (IN6_IS_ADDR_V4MAPPED(src)) {
676 if (!IN6_IS_ADDR_V4MAPPED(dst)) {
677 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
678 return;
679 }
680 type = SVP_VL3_IP;
681 } else {
682 if (IN6_IS_ADDR_V4MAPPED(dst)) {
683 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
684 return;
685 }
686 type = SVP_VL3_IPV6;
687 }
688
689 slp = umem_cache_alloc(svp_lookup_cache, UMEM_DEFAULT);
690 if (slp == NULL) {
691 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
692 return;
693 }
694
695 slp->svl_type = SVP_L_ROUTE;
696 slp->svl_u.svl_route.svl_handle = vqh;
697 slp->svl_u.svl_route.svl_point = otp;
698 slp->svl_u.svl_route.svl_route = otr;
699 slp->svl_u.svl_route.svl_mac = otm;
700
701 svp_remote_route_lookup(svp, &slp->svl_query, src, dst,
702 otl->otl_vnetid, (uint16_t)otl->otl_vlan, slp);
703 }
704
705 static void
706 varpd_svp_lookup(void *arg, varpd_query_handle_t *vqh,
707 const overlay_targ_lookup_t *otl, overlay_target_point_t *otp,
708 overlay_target_route_t *otr, overlay_target_mac_t *otm)
709 {
710 svp_lookup_t *slp;
711 svp_t *svp = arg;
712
713 /*
714 * Shuffle off L3 lookups to their own codepath.
715 */
716 if (otl->otl_l3req) {
717 varpd_svp_lookup_l3(svp, vqh, otl, otp, otr, otm);
718 return;
719 }
720 /*
721 * At this point, the traditional overlay_target_point_t is all that
722 * needs filling in. Zero-out the otr for safety.
723 */
724 bzero(otr, sizeof (*otr));
725
726
727 /*
728 * Check if this is something that we need to proxy, eg. arp or ndp.
729 */
730 if (otl->otl_addru.otlu_l2.otl2_sap == ETHERTYPE_ARP) {
731 libvarpd_plugin_proxy_arp(svp->svp_hdl, vqh, otl);
732 return;
733 }
734
735 if (otl->otl_addru.otlu_l2.otl2_dstaddr[0] == 0x33 &&
736 otl->otl_addru.otlu_l2.otl2_dstaddr[1] == 0x33) {
737 if (otl->otl_addru.otlu_l2.otl2_sap == ETHERTYPE_IPV6) {
738 libvarpd_plugin_proxy_ndp(svp->svp_hdl, vqh, otl);
739 } else {
740 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
741 }
742 return;
743 }
744
745 /*
746 * Watch out for various multicast and broadcast addresses. We've
747 * already taken care of the IPv6 range above. Now we just need to
748 * handle broadcast and if the multicast bit is set, lowest bit of the
749 * first octet of the MAC, then we drop it now.
750 */
751 if (bcmp(otl->otl_addru.otlu_l2.otl2_dstaddr, svp_bcast,
752 ETHERADDRL) == 0 ||
753 (otl->otl_addru.otlu_l2.otl2_dstaddr[0] & 0x01) == 0x01) {
754 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
755 return;
756 }
757
758 /*
759 * If we have a failure to allocate memory for this, that's not good.
760 * However, telling the kernel to just drop this packet is much better
761 * than the alternative at this moment. At least we'll try again and we
762 * may have something more available to us in a little bit.
763 */
764 slp = umem_cache_alloc(svp_lookup_cache, UMEM_DEFAULT);
765 if (slp == NULL) {
766 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
767 return;
768 }
769
770 slp->svl_type = SVP_L_VL2;
771 slp->svl_u.svl_vl2.svl_handle = vqh;
772 slp->svl_u.svl_vl2.svl_point = otp;
773
774 svp_remote_vl2_lookup(svp, &slp->svl_query,
775 otl->otl_addru.otlu_l2.otl2_dstaddr, slp);
776 }
777
778 /* ARGSUSED */
779 static int
780 varpd_svp_nprops(void *arg, uint_t *nprops)
781 {
782 *nprops = sizeof (varpd_svp_props) / sizeof (char *);
783 return (0);
784 }
785
786 /* ARGSUSED */
787 static int
788 varpd_svp_propinfo(void *arg, uint_t propid, varpd_prop_handle_t *vph)
789 {
790 switch (propid) {
791 case 0:
792 /* svp/host */
793 libvarpd_prop_set_name(vph, varpd_svp_props[0]);
794 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
795 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_STRING);
796 libvarpd_prop_set_nodefault(vph);
797 break;
798 case 1:
799 /* svp/port */
800 libvarpd_prop_set_name(vph, varpd_svp_props[1]);
801 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
802 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_UINT);
803 (void) libvarpd_prop_set_default(vph, &svp_defport,
804 sizeof (svp_defport));
805 libvarpd_prop_set_range_uint32(vph, 1, UINT16_MAX);
806 break;
807 case 2:
808 /* svp/underlay_ip */
809 libvarpd_prop_set_name(vph, varpd_svp_props[2]);
810 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
811 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_IP);
812 libvarpd_prop_set_nodefault(vph);
813 break;
814 case 3:
815 /* svp/underlay_port */
816 libvarpd_prop_set_name(vph, varpd_svp_props[3]);
817 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
818 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_UINT);
819 (void) libvarpd_prop_set_default(vph, &svp_defuport,
820 sizeof (svp_defuport));
821 libvarpd_prop_set_range_uint32(vph, 1, UINT16_MAX);
822 break;
823 case 4:
824 /* svp/dcid */
825 libvarpd_prop_set_name(vph, varpd_svp_props[4]);
826 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
827 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_UINT);
828 libvarpd_prop_set_nodefault(vph);
829 libvarpd_prop_set_range_uint32(vph, 1, UINT32_MAX - 1);
830 break;
831 case 5:
832 /* svp/router_oui */
833 libvarpd_prop_set_name(vph, varpd_svp_props[5]);
834 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
835 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_ETHER);
836 libvarpd_prop_set_nodefault(vph);
837 break;
838 default:
839 return (EINVAL);
840 }
841 return (0);
842 }
843
844 static int
845 varpd_svp_getprop(void *arg, const char *pname, void *buf, uint32_t *sizep)
846 {
847 svp_t *svp = arg;
848
849 /* svp/host */
850 if (strcmp(pname, varpd_svp_props[0]) == 0) {
851 size_t len;
852
853 mutex_enter(&svp->svp_lock);
854 if (svp->svp_host == NULL) {
855 *sizep = 0;
856 } else {
857 len = strlen(svp->svp_host) + 1;
858 if (*sizep < len) {
859 mutex_exit(&svp->svp_lock);
860 return (EOVERFLOW);
861 }
862 *sizep = len;
863 (void) strlcpy(buf, svp->svp_host, *sizep);
864 }
865 mutex_exit(&svp->svp_lock);
866 return (0);
867 }
868
869 /* svp/port */
870 if (strcmp(pname, varpd_svp_props[1]) == 0) {
871 uint64_t val;
872
873 if (*sizep < sizeof (uint64_t))
874 return (EOVERFLOW);
875
876 mutex_enter(&svp->svp_lock);
877 if (svp->svp_port == 0) {
878 *sizep = 0;
879 } else {
880 val = svp->svp_port;
881 bcopy(&val, buf, sizeof (uint64_t));
882 *sizep = sizeof (uint64_t);
883 }
884 mutex_exit(&svp->svp_lock);
885 return (0);
886 }
887
888 /* svp/underlay_ip */
889 if (strcmp(pname, varpd_svp_props[2]) == 0) {
890 if (*sizep < sizeof (struct in6_addr))
891 return (EOVERFLOW);
892 mutex_enter(&svp->svp_lock);
893 if (svp->svp_huip == B_FALSE) {
894 *sizep = 0;
895 } else {
896 bcopy(&svp->svp_uip, buf, sizeof (struct in6_addr));
897 *sizep = sizeof (struct in6_addr);
898 }
899 mutex_exit(&svp->svp_lock);
900 return (0);
901 }
902
903 /* svp/underlay_port */
904 if (strcmp(pname, varpd_svp_props[3]) == 0) {
905 uint64_t val;
906
907 if (*sizep < sizeof (uint64_t))
908 return (EOVERFLOW);
909
910 mutex_enter(&svp->svp_lock);
911 if (svp->svp_uport == 0) {
912 *sizep = 0;
913 } else {
914 val = svp->svp_uport;
915 bcopy(&val, buf, sizeof (uint64_t));
916 *sizep = sizeof (uint64_t);
917 }
918
919 mutex_exit(&svp->svp_lock);
920 return (0);
921 }
922
923 /* svp/dcid */
924 if (strcmp(pname, varpd_svp_props[4]) == 0) {
925 uint64_t val;
926
927 if (*sizep < sizeof (uint64_t))
928 return (EOVERFLOW);
929
930 mutex_enter(&svp->svp_lock);
931 if (svp->svp_uport == 0) {
932 *sizep = 0;
933 } else {
934 val = svp->svp_dcid;
935 bcopy(&val, buf, sizeof (uint64_t));
936 *sizep = sizeof (uint64_t);
937 }
938
939 mutex_exit(&svp->svp_lock);
940 return (0);
941 }
942
943 /* svp/router_oui */
944 if (strcmp(pname, varpd_svp_props[5]) == 0) {
945 if (*sizep < ETHERADDRL)
946 return (EOVERFLOW);
947 mutex_enter(&svp->svp_lock);
948
949 if (ether_is_zero(&svp->svp_router_oui)) {
950 *sizep = 0;
951 } else {
952 bcopy(&svp->svp_router_oui, buf, ETHERADDRL);
953 *sizep = ETHERADDRL;
954 }
955
956 mutex_exit(&svp->svp_lock);
957 return (0);
958 }
959 return (EINVAL);
960 }
961
962 static int
963 varpd_svp_setprop(void *arg, const char *pname, const void *buf,
964 const uint32_t size)
965 {
966 svp_t *svp = arg;
967
968 /* svp/host */
969 if (strcmp(pname, varpd_svp_props[0]) == 0) {
970 char *dup;
971 dup = umem_alloc(size, UMEM_DEFAULT);
972 (void) strlcpy(dup, buf, size);
973 if (dup == NULL)
974 return (ENOMEM);
975 mutex_enter(&svp->svp_lock);
976 if (svp->svp_host != NULL)
977 umem_free(svp->svp_host, strlen(svp->svp_host) + 1);
978 svp->svp_host = dup;
979 mutex_exit(&svp->svp_lock);
980 return (0);
981 }
982
983 /* svp/port */
984 if (strcmp(pname, varpd_svp_props[1]) == 0) {
985 const uint64_t *valp = buf;
986 if (size < sizeof (uint64_t))
987 return (EOVERFLOW);
988
989 if (*valp == 0 || *valp > UINT16_MAX)
990 return (EINVAL);
991
992 mutex_enter(&svp->svp_lock);
993 svp->svp_port = (uint16_t)*valp;
994 mutex_exit(&svp->svp_lock);
995 return (0);
996 }
997
998 /* svp/underlay_ip */
999 if (strcmp(pname, varpd_svp_props[2]) == 0) {
1000 const struct in6_addr *ipv6 = buf;
1001
1002 if (size < sizeof (struct in6_addr))
1003 return (EOVERFLOW);
1004
1005 if (IN6_IS_ADDR_V4COMPAT(ipv6))
1006 return (EINVAL);
1007
1008 if (IN6_IS_ADDR_MULTICAST(ipv6))
1009 return (EINVAL);
1010
1011 if (IN6_IS_ADDR_6TO4(ipv6))
1012 return (EINVAL);
1013
1014 if (IN6_IS_ADDR_V4MAPPED(ipv6)) {
1015 ipaddr_t v4;
1016 IN6_V4MAPPED_TO_IPADDR(ipv6, v4);
1017 if (IN_MULTICAST(v4))
1018 return (EINVAL);
1019 }
1020
1021 mutex_enter(&svp->svp_lock);
1022 bcopy(buf, &svp->svp_uip, sizeof (struct in6_addr));
1023 svp->svp_huip = B_TRUE;
1024 mutex_exit(&svp->svp_lock);
1025 return (0);
1026 }
1027
1028 /* svp/underlay_port */
1029 if (strcmp(pname, varpd_svp_props[3]) == 0) {
1030 const uint64_t *valp = buf;
1031 if (size < sizeof (uint64_t))
1032 return (EOVERFLOW);
1033
1034 if (*valp == 0 || *valp > UINT16_MAX)
1035 return (EINVAL);
1036
1037 mutex_enter(&svp->svp_lock);
1038 svp->svp_uport = (uint16_t)*valp;
1039 mutex_exit(&svp->svp_lock);
1040
1041 return (0);
1042 }
1043
1044 /* svp/dcid */
1045 if (strcmp(pname, varpd_svp_props[4]) == 0) {
1046 const uint64_t *valp = buf;
1047 if (size < sizeof (uint64_t))
1048 return (EOVERFLOW);
1049
1050 if (*valp == 0 || *valp > UINT32_MAX - 1)
1051 return (EINVAL);
1052
1053 mutex_enter(&svp->svp_lock);
1054 svp->svp_dcid = (uint32_t)*valp;
1055 mutex_exit(&svp->svp_lock);
1056
1057 return (0);
1058 }
1059
1060 /* svp/router_oui */
1061 if (strcmp(pname, varpd_svp_props[5]) == 0) {
1062 if (size < ETHERADDRL)
1063 return (EOVERFLOW);
1064 mutex_enter(&svp->svp_lock);
1065 bcopy(buf, &svp->svp_router_oui, ETHERADDRL);
1066 /* Zero-out the low three bytes. */
1067 svp->svp_router_oui[3] = 0;
1068 svp->svp_router_oui[4] = 0;
1069 svp->svp_router_oui[5] = 0;
1070 mutex_exit(&svp->svp_lock);
1071 return (0);
1072 }
1073
1074 return (EINVAL);
1075 }
1076
1077 static int
1078 varpd_svp_save(void *arg, nvlist_t *nvp)
1079 {
1080 int ret;
1081 svp_t *svp = arg;
1082
1083 mutex_enter(&svp->svp_lock);
1084 /* svp/host */
1085 if (svp->svp_host != NULL) {
1086 if ((ret = nvlist_add_string(nvp, varpd_svp_props[0],
1087 svp->svp_host)) != 0) {
1088 mutex_exit(&svp->svp_lock);
1089 return (ret);
1090 }
1091 }
1092
1093 /* svp/port */
1094 if (svp->svp_port != 0) {
1095 if ((ret = nvlist_add_uint16(nvp, varpd_svp_props[1],
1096 svp->svp_port)) != 0) {
1097 mutex_exit(&svp->svp_lock);
1098 return (ret);
1099 }
1100 }
1101
1102 /* svp/underlay_ip */
1103 if (svp->svp_huip == B_TRUE) {
1104 char buf[INET6_ADDRSTRLEN];
1105
1106 if (inet_ntop(AF_INET6, &svp->svp_uip, buf, sizeof (buf)) ==
1107 NULL)
1108 libvarpd_panic("unexpected inet_ntop failure: %d",
1109 errno);
1110
1111 if ((ret = nvlist_add_string(nvp, varpd_svp_props[2],
1112 buf)) != 0) {
1113 mutex_exit(&svp->svp_lock);
1114 return (ret);
1115 }
1116 }
1117
1118 /* svp/underlay_port */
1119 if (svp->svp_uport != 0) {
1120 if ((ret = nvlist_add_uint16(nvp, varpd_svp_props[3],
1121 svp->svp_uport)) != 0) {
1122 mutex_exit(&svp->svp_lock);
1123 return (ret);
1124 }
1125 }
1126
1127 /* svp/dcid */
1128 if (svp->svp_dcid != 0) {
1129 if ((ret = nvlist_add_uint32(nvp, varpd_svp_props[4],
1130 svp->svp_dcid)) != 0) {
1131 mutex_exit(&svp->svp_lock);
1132 return (ret);
1133 }
1134 }
1135
1136 /* svp/router_oui */
1137 if (!ether_is_zero(&svp->svp_router_oui)) {
1138 char buf[ETHERADDRSTRL];
1139
1140 if (ether_ntoa_r((struct ether_addr *)&svp->svp_router_oui,
1141 buf) == NULL) {
1142 libvarpd_panic("unexpected ether_ntoa_r failure: %d",
1143 errno);
1144 }
1145
1146 if ((ret = nvlist_add_string(nvp, varpd_svp_props[5],
1147 buf)) != 0) {
1148 mutex_exit(&svp->svp_lock);
1149 return (ret);
1150 }
1151 }
1152
1153 mutex_exit(&svp->svp_lock);
1154 return (0);
1155 }
1156
1157 static int
1158 varpd_svp_restore(nvlist_t *nvp, varpd_provider_handle_t *hdl,
1159 overlay_plugin_dest_t dest, void **outp)
1160 {
1161 int ret;
1162 svp_t *svp;
1163 char *ipstr, *hstr, *etherstr;
1164
1165 if (varpd_svp_valid_dest(dest) == B_FALSE)
1166 return (ENOTSUP);
1167
1168 if ((ret = varpd_svp_create(hdl, (void **)&svp, dest)) != 0)
1169 return (ret);
1170
1171 /* svp/host */
1172 if ((ret = nvlist_lookup_string(nvp, varpd_svp_props[0],
1173 &hstr)) != 0) {
1174 if (ret != ENOENT) {
1175 varpd_svp_destroy(svp);
1176 return (ret);
1177 }
1178 svp->svp_host = NULL;
1179 } else {
1180 size_t blen = strlen(hstr) + 1;
1181 svp->svp_host = umem_alloc(blen, UMEM_DEFAULT);
1182 (void) strlcpy(svp->svp_host, hstr, blen);
1183 }
1184
1185 /* svp/port */
1186 if ((ret = nvlist_lookup_uint16(nvp, varpd_svp_props[1],
1187 &svp->svp_port)) != 0) {
1188 if (ret != ENOENT) {
1189 varpd_svp_destroy(svp);
1190 return (ret);
1191 }
1192 svp->svp_port = 0;
1193 }
1194
1195 /* svp/underlay_ip */
1196 if ((ret = nvlist_lookup_string(nvp, varpd_svp_props[2],
1197 &ipstr)) != 0) {
1198 if (ret != ENOENT) {
1199 varpd_svp_destroy(svp);
1200 return (ret);
1201 }
1202 svp->svp_huip = B_FALSE;
1203 } else {
1204 ret = inet_pton(AF_INET6, ipstr, &svp->svp_uip);
1205 if (ret == -1) {
1206 assert(errno == EAFNOSUPPORT);
1207 libvarpd_panic("unexpected inet_pton failure: %d",
1208 errno);
1209 }
1210
1211 if (ret == 0) {
1212 varpd_svp_destroy(svp);
1213 return (EINVAL);
1214 }
1215 svp->svp_huip = B_TRUE;
1216 }
1217
1218 /* svp/underlay_port */
1219 if ((ret = nvlist_lookup_uint16(nvp, varpd_svp_props[3],
1220 &svp->svp_uport)) != 0) {
1221 if (ret != ENOENT) {
1222 varpd_svp_destroy(svp);
1223 return (ret);
1224 }
1225 svp->svp_uport = 0;
1226 }
1227
1228 /* svp/dcid */
1229 if ((ret = nvlist_lookup_uint32(nvp, varpd_svp_props[4],
1230 &svp->svp_dcid)) != 0) {
1231 if (ret != ENOENT) {
1232 varpd_svp_destroy(svp);
1233 return (ret);
1234 }
1235 svp->svp_dcid = 0;
1236 }
1237
1238 /* svp/router_oui */
1239 if ((ret = nvlist_lookup_string(nvp, varpd_svp_props[5],
1240 ðerstr)) != 0) {
1241 if (ret != ENOENT) {
1242 varpd_svp_destroy(svp);
1243 return (ret);
1244 }
1245 bzero(&svp->svp_router_oui, ETHERADDRL);
1246 } else if (ether_aton_r(etherstr,
1247 (struct ether_addr *)&svp->svp_router_oui) == NULL) {
1248 libvarpd_panic("unexpected ether_aton_r failure: %d", errno);
1249 }
1250
1251 svp->svp_hdl = hdl;
1252 *outp = svp;
1253 return (0);
1254 }
1255
1256 static void
1257 varpd_svp_arp(void *arg, varpd_arp_handle_t *vah, int type,
1258 const struct sockaddr *sock, uint16_t vlan __unused, uint8_t *out)
1259 {
1260 svp_t *svp = arg;
1261 svp_lookup_t *svl;
1262
1263 if (type != VARPD_QTYPE_ETHERNET) {
1264 libvarpd_plugin_arp_reply(vah, VARPD_LOOKUP_DROP);
1265 return;
1266 }
1267
1268 svl = umem_cache_alloc(svp_lookup_cache, UMEM_DEFAULT);
1269 if (svl == NULL) {
1270 libvarpd_plugin_arp_reply(vah, VARPD_LOOKUP_DROP);
1271 return;
1272 }
1273
1274 svl->svl_type = SVP_L_VL3;
1275 svl->svl_u.svl_vl3.svl_vah = vah;
1276 svl->svl_u.svl_vl3.svl_out = out;
1277 svp_remote_vl3_lookup(svp, &svl->svl_query, sock, svl);
1278 }
1279
1280 static const varpd_plugin_ops_t varpd_svp_ops = {
1281 0,
1282 varpd_svp_create,
1283 varpd_svp_start,
1284 varpd_svp_stop,
1285 varpd_svp_destroy,
1286 NULL,
1287 varpd_svp_lookup,
1288 varpd_svp_nprops,
1289 varpd_svp_propinfo,
1290 varpd_svp_getprop,
1291 varpd_svp_setprop,
1292 varpd_svp_save,
1293 varpd_svp_restore,
1294 varpd_svp_arp,
1295 NULL
1296 };
1297
1298 static int
1299 svp_bunyan_init(void)
1300 {
1301 int ret;
1302
1303 if ((ret = bunyan_init("svp", &svp_bunyan)) != 0)
1304 return (ret);
1305 ret = bunyan_stream_add(svp_bunyan, "stderr", BUNYAN_L_INFO,
1306 bunyan_stream_fd, (void *)STDERR_FILENO);
1307 if (ret != 0)
1308 bunyan_fini(svp_bunyan);
1309 return (ret);
1310 }
1311
1312 static void
1313 svp_bunyan_fini(void)
1314 {
1315 if (svp_bunyan != NULL)
1316 bunyan_fini(svp_bunyan);
1317 }
1318
1319 #pragma init(varpd_svp_init)
1320 static void
1321 varpd_svp_init(void)
1322 {
1323 int err;
1324 varpd_plugin_register_t *vpr;
1325
1326 if (svp_bunyan_init() != 0)
1327 return;
1328
1329 if ((err = svp_host_init()) != 0) {
1330 (void) bunyan_error(svp_bunyan, "failed to init host subsystem",
1331 BUNYAN_T_INT32, "error", err,
1332 BUNYAN_T_END);
1333 svp_bunyan_fini();
1334 return;
1335 }
1336
1337 svp_lookup_cache = umem_cache_create("svp_lookup",
1338 sizeof (svp_lookup_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
1339 if (svp_lookup_cache == NULL) {
1340 (void) bunyan_error(svp_bunyan,
1341 "failed to create svp_lookup cache",
1342 BUNYAN_T_INT32, "error", errno,
1343 BUNYAN_T_END);
1344 svp_bunyan_fini();
1345 return;
1346 }
1347
1348 if ((err = svp_event_init()) != 0) {
1349 (void) bunyan_error(svp_bunyan,
1350 "failed to init event subsystem",
1351 BUNYAN_T_INT32, "error", err,
1352 BUNYAN_T_END);
1353 svp_bunyan_fini();
1354 umem_cache_destroy(svp_lookup_cache);
1355 return;
1356 }
1357
1358 if ((err = svp_timer_init()) != 0) {
1359 (void) bunyan_error(svp_bunyan,
1360 "failed to init timer subsystem",
1361 BUNYAN_T_INT32, "error", err,
1362 BUNYAN_T_END);
1363 svp_event_fini();
1364 umem_cache_destroy(svp_lookup_cache);
1365 svp_bunyan_fini();
1366 return;
1367 }
1368
1369 if ((err = svp_remote_init()) != 0) {
1370 (void) bunyan_error(svp_bunyan,
1371 "failed to init remote subsystem",
1372 BUNYAN_T_INT32, "error", err,
1373 BUNYAN_T_END);
1374 svp_event_fini();
1375 umem_cache_destroy(svp_lookup_cache);
1376 svp_bunyan_fini();
1377 return;
1378 }
1379
1380 vpr = libvarpd_plugin_alloc(VARPD_CURRENT_VERSION, &err);
1381 if (vpr == NULL) {
1382 (void) bunyan_error(svp_bunyan,
1383 "failed to alloc varpd plugin",
1384 BUNYAN_T_INT32, "error", err,
1385 BUNYAN_T_END);
1386 svp_remote_fini();
1387 svp_event_fini();
1388 umem_cache_destroy(svp_lookup_cache);
1389 svp_bunyan_fini();
1390 return;
1391 }
1392
1393 vpr->vpr_mode = OVERLAY_TARGET_DYNAMIC;
1394 vpr->vpr_name = "svp";
1395 vpr->vpr_ops = &varpd_svp_ops;
1396
1397 if ((err = libvarpd_plugin_register(vpr)) != 0) {
1398 (void) bunyan_error(svp_bunyan,
1399 "failed to register varpd plugin",
1400 BUNYAN_T_INT32, "error", err,
1401 BUNYAN_T_END);
1402 svp_remote_fini();
1403 svp_event_fini();
1404 umem_cache_destroy(svp_lookup_cache);
1405 svp_bunyan_fini();
1406
1407 }
1408 libvarpd_plugin_free(vpr);
1409 }