1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * Copyright 2018, Joyent, Inc.
14 */
15
16 /*
17 * This plugin implements the SDC VXLAN Protocol (SVP).
18 *
19 * This plugin is designed to work with a broader distributed system that
20 * mainains a database of mappings and provides a means of looking up data and
21 * provides a stream of updates. While it is named after VXLAN, there isn't
22 * anything specific to VXLAN baked into the protocol at this time, other than
23 * that it requires both an IP address and a port; however, if there's a good
24 * reason to support others here, we can modify that.
25 *
26 * -----------
27 * Terminology
28 * -----------
29 *
30 * Throughout this module we refer to a few different kinds of addresses:
31 *
32 * VL3
33 *
34 * A VL3 address, or virtual layer 3, refers to the layer three addreses
35 * that are used by entities on an overlay network. As far as we're
36 * concerned that means that this is the IP address of an interface on an
37 * overlay network.
38 *
39 * VL2
40 *
41 * A VL2 address, or a virtual layer 2, referes to the link-layer addresses
42 * that are used by entities on an overlay network. As far as we're
43 * concerned that means that this is the MAC addresses of an interface on
44 * an overlay network.
45 *
46 * UL3
47 *
48 * A UL3, or underlay layer 3, refers to the layer three (IP) address on
49 * the underlay network.
50 *
51 * The svp plugin provides lookups from VL3->VL2, eg. the equivalent of an ARP
52 * or NDP query, and then also provides VL2->UL3 lookups.
53 *
54 * -------------------
55 * Protocol Operations
56 * -------------------
57 *
58 * The svp protocol is defined in lib/varpd/svp/common/libvarpd_svp_prot.h. It
59 * defines the basic TCP protocol that we use to communicate to hosts. At this
60 * time, it is not quite 100% implemented in both this plug-in and our primary
61 * server, sdc-portolan (see https://github.com/joyent/sdc-portolan).
62 *
63 * At this time, we don't quite support everything that we need to. Including
64 * the SVP_R_BULK_REQ and SVP_R_SHOOTDOWN.
65 *
66 * ---------------------------------
67 * General Design and Considerations
68 * ---------------------------------
69 *
70 * Every instance of the svp plugin requires the hostname and port of a server
71 * to contact. Though, we have co-opted the port 1296 (the year of the oldest
72 * extant portolan) as our default port.
73 *
74 * Each of the different instance of the plugins has a corresponding remote
75 * backend. The remote backend represents the tuple of the [ host, port ].
76 * Different instances that share the same host and port tuple will use the same
77 * backend.
78 *
79 * The backend is actually in charge of performing lookups, resolving and
80 * updating the set of remote hosts based on the DNS resolution we've been
81 * provided, and taking care of things like shootdowns.
82 *
83 * The whole plugin itself maintains an event loop and a number of threads to
84 * service that event loop. On top of that event loop, we have a simple timer
85 * backend that ticks at one second intervals and performs various callbacks,
86 * such as idle query timers, DNS resolution, connection backoff, etc. Each of
87 * the remote hosts that we obtain is wrapped up in an svp_conn_t, which manages
88 * the connection state, reconnecting, etc.
89 *
90 * All in all, the general way that this all looks like is:
91 *
92 * +----------------------------+
93 * | Plugin Instance |
94 * | svp_t |
95 * | |
96 * | varpd_provider_handle_t * -+-> varpd handle
97 * | uint64_t ----+-> varpd ID
98 * | char * ----+-> remote host
99 * | uint16_t ----+-> remote port
100 * | svp_remote_t * ---+------+-> remote backend
101 * +---------------------+------+
102 * |
103 * v
104 * +----------------------+ +----------------+
105 * | Remote backend |------------------>| Remove Backend |---> ...
106 * | svp_remote_t | | svp_remote_t |
107 * | | +----------------+
108 * | svp_remote_state_t --+-> state flags
109 * | svp_degrade_state_t -+-> degraded reason
110 * | struct addrinfo * --+-> resolved hosts
111 * | uint_t ---+-> active hosts
112 * | uint_t ---+-> DNS generation
113 * | uint_t ---+-> Reference count
114 * | uint_t ---+-> active conns
115 * | uint_t ---+-> degraded conns
116 * | list_t ---+---+-> connection list
117 * +------------------+---+
118 * |
119 * +------------------------------+-----------------+
120 * | | |
121 * v v v
122 * +-------------------+ +----------------
123 * | SVP Connection | | SVP connection | ...
124 * | svp_conn_t | | svp_conn_t |
125 * | | +----------------+
126 * | svp_event_t ----+-> event loop handle
127 * | svp_timer_t ----+-> backoff timer
128 * | svp_timer_t ----+-> query timer
129 * | int ----+-> socket fd
130 * | uint_t ----+-> generation
131 * | uint_t ----+-> current backoff
132 * | svp_conn_flags_t -+-> connection flags
133 * | svp_conn_state_t -+-> connection state
134 * | svp_conn_error_t -+-> connection error
135 * | int ---+-> last errrno
136 * | hrtime_t ---+-> activity timestamp
137 * | svp_conn_out_t ---+-> outgoing data state
138 * | svp_conn_in_t ---+-> incoming data state
139 * | list_t ---+--+-> active queries
140 * +----------------+--+
141 * |
142 * +----------------------------------+-----------------+
143 * | | |
144 * v v v
145 * +--------------------+ +-------------+
146 * | SVP Query | | SVP Query | ...
147 * | svp_query_t | | svp_query_t |
148 * | | +-------------+
149 * | svp_query_f ---+-> callback function
150 * | void * ---+-> callback arg
151 * | svp_query_state_t -+-> state flags
152 * | svp_req_t ---+-> svp prot. header
153 * | svp_query_data_t --+-> read data
154 * | svp_query_data_t --+-> write data
155 * | svp_status_t ---+-> request status
156 * +--------------------+
157 *
158 * The svp_t is the instance that we assoicate with varpd. The instance itself
159 * maintains properties and then when it's started associates with an
160 * svp_remote_t, which is the remote backend. The remote backend itself,
161 * maintains the DNS state and spins up and downs connections based on the
162 * results from DNS. By default, we query DNS every 30 seconds. For more on the
163 * connection life cycle, see the next section.
164 *
165 * By default, each connection maintains its own back off timer and list of
166 * queries it's servicing. Only one request is generally outstanding at a time
167 * and requests are round robined across the various connections.
168 *
169 * The query itself represents the svp request that's going on and keep track of
170 * its state and is a place for data that's read and written to as part of the
171 * request.
172 *
173 * Connections maintain a query timer such that if we have not received data on
174 * a socket for a certain amount of time, we kill that socket and begin a
175 * reconnection cycle with backoff.
176 *
177 * ------------------------
178 * Connection State Machine
179 * ------------------------
180 *
181 * We have a connection pool that's built upon DNS records. DNS describes the
182 * membership of the set of remote peers that make up our pool and we maintain
183 * one connection to each of them. In addition, we maintain an exponential
184 * backoff for each peer and will attempt to reconect immediately before backing
185 * off. The following are the valid states that a connection can be in:
186 *
187 * SVP_CS_ERROR An OS error has occurred on this connection,
188 * such as failure to create a socket or associate
189 * the socket with an event port. We also
190 * transition all connections to this state before
191 * we destroy them.
192 *
193 * SVP_CS_INITIAL This is the initial state of a connection, all
194 * that should exist is an unbound socket.
195 *
196 * SVP_CS_CONNECTING A call to connect has been made and we are
197 * polling for it to complete.
198 *
199 * SVP_CS_BACKOFF A connect attempt has failed and we are
200 * currently backing off, waiting to try again.
201 *
202 * SVP_CS_ACTIVE We have successfully connected to the remote
203 * system.
204 *
205 * SVP_CS_WINDDOWN This connection is going to valhalla. In other
206 * words, a previously active connection is no
207 * longer valid in DNS, so we should curb our use
208 * of it, and reap it as soon as we have other
209 * active connections.
210 *
211 * The following diagram attempts to describe our state transition scheme, and
212 * when we transition from one state to the next.
213 *
214 * |
215 * * New remote IP from DNS resolution,
216 * | not currently active in the system.
217 * |
218 * v Socket Error,
219 * +----------------+ still in DNS
220 * +----------------<---| SVP_CS_INITIAL |<----------------------*--------+
221 * | +----------------+ |
222 * | System | |
223 * | Connection . . . . . success * Successful |
224 * | failed . | connect() |
225 * | . | +-------------------+ |
226 * | +----*---------+ | +-*>| SVP_CS_VERSIONING + |
227 * | | | | | +-------------------+ |
228 * | | | | | V V Set version |
229 * | | | | | | * based on |
230 * | | | | | | | SVP_R_PONG |
231 * | V ^ v ^ | V ^
232 * | +----------------+ +-------------------+ | +---------------+
233 * +<-| SVP_CS_BACKOFF | | SVP_CS_CONNECTING | | | SVP_CS_ACTIVE |
234 * | +----------------+ +-------------------+ | +---------------+
235 * | V ^ V | V V
236 * | Backoff wait * | | | | * Removed
237 * v interval +--------------+ +-----------------<+----+ | from DNS
238 * | finished | |
239 * | V |
240 * | | V
241 * | | +-----------------+
242 * +----------------+----------<-----+-------<----| SVP_CS_WINDDOWN |
243 * | +-----------------+
244 * * . . . Fatal system, not
245 * | socket error or
246 * V quiesced after
247 * +--------------+ removal from DNS
248 * | SVP_CS_ERROR |
249 * +--------------+
250 * |
251 * * . . . Removed from DNS
252 * v
253 * +------------+
254 * | Connection |
255 * | Destroyed |
256 * +------------+
257 *
258 * --------------------------
259 * Connection Event Injection
260 * --------------------------
261 *
262 * For each connection that exists in the system, we have a timer in place that
263 * is in charge of performing timeout activity. It fires once every thirty
264 * seconds or so for a given connection and checks to ensure that we have had
265 * activity for the most recent query on the connection. If not, it terminates
266 * the connection. This is important as if we have sent all our data and are
267 * waiting for the remote end to reply, without enabling something like TCP
268 * keep-alive, we will not be notified that anything that has happened to the
269 * remote connection, for example a panic. In addition, this also protects
270 * against a server that is up, but a portolan that is not making forward
271 * progress.
272 *
273 * When a timeout occurs, we first try to disassociate any active events, which
274 * by definition must exist. Once that's done, we inject a port source user
275 * event. Now, there is a small gotcha. Let's assume for a moment that we have a
276 * pathological portolan. That means that it knows to inject activity right at
277 * the time out window. That means, that the event may be disassociated before
278 * we could get to it. If that's the case, we must _not_ inject the user event
279 * and instead, we'll let the pending event take care of it. We know that the
280 * pending event hasn't hit the main part of the loop yet, otherwise, it would
281 * have released the lock protecting our state and associated the event.
282 *
283 * ------------
284 * Notes on DNS
285 * ------------
286 *
287 * Unfortunately, doing host name resolution in a way that allows us to leverage
288 * the system's resolvers and the system's caching, require us to make blocking
289 * calls in libc via getaddrinfo(3SOCKET). If we can't reach a given server,
290 * that will tie up a thread for quite some time. To work around that fact,
291 * we're going to create a fixed number of threads and we'll use them to service
292 * our DNS requests. While this isn't ideal, until we have a sane means of
293 * integrating a DNS resolution into an event loop with say portfs, it's not
294 * going to be a fun day no matter what we do.
295 *
296 * ------
297 * Timers
298 * ------
299 *
300 * We maintain a single timer based on CLOCK_REALTIME. It's designed to fire
301 * every second. While we'd rather use CLOCK_HIGHRES just to alleviate ourselves
302 * from timer drift; however, as zones may not actually have CLOCK_HIGHRES
303 * access, we don't want them to end up in there. The timer itself is just a
304 * simple avl tree sorted by expiration time, which is stored as a tick in the
305 * future, a tick is just one second.
306 *
307 * ----------
308 * Shootdowns
309 * ----------
310 *
311 * As part of the protocol, we need to be able to handle shootdowns that inform
312 * us some of the information in the system is out of date. This information
313 * needs to be processed promptly; however, the information is hopefully going
314 * to be relatively infrequent relative to the normal flow of information.
315 *
316 * The shoot down information needs to be done on a per-backend basis. The
317 * general design is that we'll have a single query for this which can fire on a
318 * 5-10s period, we randmoize the latter part to give us a bit more load
319 * spreading. If we complete because there's no work to do, then we wait the
320 * normal period. If we complete, but there's still work to do, we'll go again
321 * after a second.
322 *
323 * A shootdown has a few different parts. We first receive a list of items to
324 * shootdown. After performing all of those, we need to acknowledge them. When
325 * that's been done successfully, we can move onto the next part. From a
326 * protocol perspective, we make a SVP_R_LOG_REQ, we get a reply, and then after
327 * processing them, send an SVP_R_LOG_RM. Only once that's been acked do we
328 * continue.
329 *
330 * However, one of the challenges that we have is that these invalidations are
331 * just that, an invalidation. For a virtual layer two request, that's fine,
332 * because the kernel supports that. However, for virtual layer three
333 * invalidations, we have a bit more work to do. These protocols, ARP and NDP,
334 * don't really support a notion of just an invalidation, instead you have to
335 * inject the new data in a gratuitous fashion.
336 *
337 * To that end, what we instead do is when we receive a VL3 invalidation, we
338 * turn that info a VL3 request. We hold the general request as outstanding
339 * until we receive all of the callbacks for the VL3 invalidations, at which
340 * point we go through and do the log removal request.
341 */
342
343 #include <umem.h>
344 #include <errno.h>
345 #include <stdlib.h>
346 #include <sys/types.h>
347 #include <sys/socket.h>
348 #include <netinet/in.h>
349 #include <arpa/inet.h>
350 #include <libnvpair.h>
351 #include <strings.h>
352 #include <string.h>
353 #include <assert.h>
354 #include <unistd.h>
355
356 #include <libvarpd_provider.h>
357 #include "libvarpd_svp.h"
358
359 bunyan_logger_t *svp_bunyan;
360 static int svp_defport = 1296;
361 static int svp_defuport = 1339;
362 static umem_cache_t *svp_lookup_cache;
363
364 typedef enum svp_lookup_type {
365 SVP_L_UNKNOWN = 0x0,
366 SVP_L_VL2 = 0x1,
367 SVP_L_VL3 = 0x2,
368 SVP_L_ROUTE = 0x3
369 } svp_lookup_type_t;
370
371 typedef struct svp_lookup {
372 int svl_type;
373 union {
374 struct svl_lookup_vl2 {
375 varpd_query_handle_t *svl_handle;
376 overlay_target_point_t *svl_point;
377 } svl_vl2;
378 struct svl_lookup_vl3 {
379 varpd_arp_handle_t *svl_vah;
380 uint8_t *svl_out;
381 } svl_vl3;
382 struct svl_lookup_route {
383 varpd_query_handle_t *svl_handle;
384 overlay_target_point_t *svl_point;
385 overlay_target_route_t *svl_route;
386 overlay_target_mac_t *svl_mac;
387 } svl_route;
388 } svl_u;
389 svp_query_t svl_query;
390 } svp_lookup_t;
391
392 static const char *varpd_svp_props[] = {
393 "svp/host",
394 "svp/port",
395 "svp/underlay_ip",
396 "svp/underlay_port",
397 "svp/dcid",
398 "svp/router_oui"
399 };
400
401 static const uint8_t svp_bcast[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
402
403 int
404 svp_comparator(const void *l, const void *r)
405 {
406 const svp_t *ls = l;
407 const svp_t *rs = r;
408
409 if (ls->svp_vid > rs->svp_vid)
410 return (1);
411 if (ls->svp_vid < rs->svp_vid)
412 return (-1);
413 return (0);
414 }
415
416 static void
417 svp_vl2_lookup_cb(svp_t *svp, svp_status_t status, const struct in6_addr *uip,
418 const uint16_t uport, void *arg)
419 {
420 svp_lookup_t *svl = arg;
421 overlay_target_point_t *otp;
422
423 assert(svp != NULL);
424 assert(arg != NULL);
425
426 if (status != SVP_S_OK) {
427 libvarpd_plugin_query_reply(svl->svl_u.svl_vl2.svl_handle,
428 VARPD_LOOKUP_DROP);
429 umem_cache_free(svp_lookup_cache, svl);
430 return;
431 }
432
433 otp = svl->svl_u.svl_vl2.svl_point;
434 bcopy(uip, &otp->otp_ip, sizeof (struct in6_addr));
435 otp->otp_port = uport;
436 libvarpd_plugin_query_reply(svl->svl_u.svl_vl2.svl_handle,
437 VARPD_LOOKUP_OK);
438 umem_cache_free(svp_lookup_cache, svl);
439 }
440
441 static void
442 svp_vl3_lookup_cb(svp_t *svp, svp_status_t status, const uint8_t *vl2mac,
443 const struct in6_addr *uip, const uint16_t uport, void *arg)
444 {
445 /* Initialize address-holders to 0 for comparisons-to-zeroes later. */
446 overlay_target_point_t point = { 0 };
447 svp_lookup_t *svl = arg;
448 uint8_t nexthop_mac[6] = { 0, 0, 0, 0, 0, 0 };
449
450 assert(svp != NULL);
451 assert(svl != NULL);
452
453 if (status != SVP_S_OK) {
454 libvarpd_plugin_arp_reply(svl->svl_u.svl_vl3.svl_vah,
455 VARPD_LOOKUP_DROP);
456 umem_cache_free(svp_lookup_cache, svl);
457 return;
458 }
459
460 /* Inject the L2 mapping before the L3 */
461 bcopy(uip, &point.otp_ip, sizeof (struct in6_addr));
462 point.otp_port = uport;
463 libvarpd_inject_varp(svp->svp_hdl, vl2mac, &point);
464
465 bcopy(vl2mac, svl->svl_u.svl_vl3.svl_out, ETHERADDRL);
466 libvarpd_plugin_arp_reply(svl->svl_u.svl_vl3.svl_vah,
467 VARPD_LOOKUP_OK);
468 umem_cache_free(svp_lookup_cache, svl);
469 }
470
471 static void
472 svp_vl2_invalidate_cb(svp_t *svp, const uint8_t *vl2mac)
473 {
474 libvarpd_inject_varp(svp->svp_hdl, vl2mac, NULL);
475 }
476
477 static void
478 svp_vl3_inject_cb(svp_t *svp, const uint16_t vlan, const struct in6_addr *vl3ip,
479 const uint8_t *vl2mac, const uint8_t *targmac)
480 {
481 struct in_addr v4;
482
483 /*
484 * At the moment we don't support any IPv6 related log entries, this
485 * will change soon as we develop a bit more of the IPv6 related
486 * infrastructure so we can properly test the injection.
487 */
488 if (IN6_IS_ADDR_V4MAPPED(vl3ip) == 0) {
489 return;
490 } else {
491 IN6_V4MAPPED_TO_INADDR(vl3ip, &v4);
492 if (targmac == NULL)
493 targmac = svp_bcast;
494 libvarpd_inject_arp(svp->svp_hdl, vlan, vl2mac, &v4, targmac);
495 }
496 }
497
498 /* ARGSUSED */
499 static void
500 svp_shootdown_cb(svp_t *svp, const uint8_t *vl2mac, const struct in6_addr *uip,
501 const uint16_t uport)
502 {
503 /*
504 * We should probably do a conditional invalidation here.
505 */
506 libvarpd_inject_varp(svp->svp_hdl, vl2mac, NULL);
507 }
508
509 static void
510 svp_route_lookup_cb(svp_t *svp, svp_status_t status, uint32_t dcid,
511 uint32_t vnetid, uint16_t vlan, uint8_t *srcmac, uint8_t *dstmac,
512 uint16_t ul3_port, uint8_t *ul3_addr, uint8_t srcpfx, uint8_t dstpfx,
513 void *arg)
514 {
515 svp_lookup_t *svl = arg;
516 overlay_target_point_t *otp;
517 overlay_target_route_t *otr;
518 overlay_target_mac_t *otm;
519
520 if (status != SVP_S_OK) {
521 libvarpd_plugin_query_reply(svl->svl_u.svl_route.svl_handle,
522 VARPD_LOOKUP_DROP);
523 umem_cache_free(svp_lookup_cache, svl);
524 return;
525 }
526
527 otp = svl->svl_u.svl_route.svl_point;
528 bcopy(ul3_addr, &otp->otp_ip, sizeof (struct in6_addr));
529 otp->otp_port = ul3_port;
530
531 otr = svl->svl_u.svl_route.svl_route;
532 otr->otr_vnet = vnetid;
533 otr->otr_vlan = vlan;
534 bcopy(srcmac, otr->otr_srcmac, ETHERADDRL);
535
536 otm = svl->svl_u.svl_route.svl_mac;
537 otm->otm_dcid = dcid;
538 bcopy(dstmac, otm->otm_mac, ETHERADDRL);
539
540 libvarpd_plugin_query_reply(svl->svl_u.svl_route.svl_handle,
541 VARPD_LOOKUP_OK);
542 umem_cache_free(svp_lookup_cache, svl);
543 }
544
545 static svp_cb_t svp_defops = {
546 svp_vl2_lookup_cb,
547 svp_vl3_lookup_cb,
548 svp_vl2_invalidate_cb,
549 svp_vl3_inject_cb,
550 svp_shootdown_cb,
551 svp_route_lookup_cb,
552 };
553
554 static boolean_t
555 varpd_svp_valid_dest(overlay_plugin_dest_t dest)
556 {
557 if (dest != (OVERLAY_PLUGIN_D_IP | OVERLAY_PLUGIN_D_PORT))
558 return (B_FALSE);
559
560 return (B_TRUE);
561 }
562
563 static int
564 varpd_svp_create(varpd_provider_handle_t *hdl, void **outp,
565 overlay_plugin_dest_t dest)
566 {
567 int ret;
568 svp_t *svp;
569
570 if (varpd_svp_valid_dest(dest) == B_FALSE)
571 return (ENOTSUP);
572
573 svp = umem_zalloc(sizeof (svp_t), UMEM_DEFAULT);
574 if (svp == NULL)
575 return (ENOMEM);
576
577 if ((ret = mutex_init(&svp->svp_lock, USYNC_THREAD | LOCK_ERRORCHECK,
578 NULL)) != 0) {
579 umem_free(svp, sizeof (svp_t));
580 return (ret);
581 }
582
583 svp->svp_port = svp_defport;
584 svp->svp_uport = svp_defuport;
585 svp->svp_cb = svp_defops;
586 svp->svp_hdl = hdl;
587 svp->svp_vid = libvarpd_plugin_vnetid(svp->svp_hdl);
588 *outp = svp;
589 return (0);
590 }
591
592 static int
593 varpd_svp_start(void *arg)
594 {
595 int ret;
596 svp_remote_t *srp;
597 svp_t *svp = arg;
598
599 mutex_enter(&svp->svp_lock);
600 if (svp->svp_host == NULL || svp->svp_port == 0 ||
601 svp->svp_huip == B_FALSE || svp->svp_uport == 0) {
602 mutex_exit(&svp->svp_lock);
603 return (EAGAIN);
604 }
605 mutex_exit(&svp->svp_lock);
606
607 if ((ret = svp_remote_find(svp->svp_host, svp->svp_port, &svp->svp_uip,
608 &srp)) != 0)
609 return (ret);
610
611 if ((ret = svp_remote_attach(srp, svp)) != 0) {
612 svp_remote_release(srp);
613 return (ret);
614 }
615
616 return (0);
617 }
618
619 static void
620 varpd_svp_stop(void *arg)
621 {
622 svp_t *svp = arg;
623
624 svp_remote_detach(svp);
625 }
626
627 static void
628 varpd_svp_destroy(void *arg)
629 {
630 svp_t *svp = arg;
631
632 if (svp->svp_host != NULL)
633 umem_free(svp->svp_host, strlen(svp->svp_host) + 1);
634
635 if (mutex_destroy(&svp->svp_lock) != 0)
636 libvarpd_panic("failed to destroy svp_t`svp_lock");
637
638 umem_free(svp, sizeof (svp_t));
639 }
640
641 static void
642 varpd_svp_lookup_l3(svp_t *svp, varpd_query_handle_t *vqh,
643 const overlay_targ_lookup_t *otl, overlay_target_point_t *otp,
644 overlay_target_route_t *otr, overlay_target_mac_t *otm)
645 {
646 svp_lookup_t *slp;
647 uint32_t type;
648 const struct in6_addr *src = &otl->otl_addru.otlu_l3.otl3_srcip,
649 *dst = &otl->otl_addru.otlu_l3.otl3_dstip;
650
651 /*
652 * otl is an L3 request, so we have src/dst IPs for the inner packet.
653 * We also have the vlan.
654 *
655 * Assume kernel's overlay module is caching well, so we are directly
656 * going to query (i.e. no caching up here of actual destinations).
657 *
658 * Our existing remote sever (svp_remote), but with the new message
659 * SVP_R_ROUTE_REQ.
660 */
661
662 if (IN6_IS_ADDR_V4MAPPED(src)) {
663 if (!IN6_IS_ADDR_V4MAPPED(dst)) {
664 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
665 return;
666 }
667 type = SVP_VL3_IP;
668 } else {
669 if (IN6_IS_ADDR_V4MAPPED(dst)) {
670 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
671 return;
672 }
673 type = SVP_VL3_IPV6;
674 }
675
676 slp = umem_cache_alloc(svp_lookup_cache, UMEM_DEFAULT);
677 if (slp == NULL) {
678 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
679 return;
680 }
681
682 slp->svl_type = SVP_L_ROUTE;
683 slp->svl_u.svl_route.svl_handle = vqh;
684 slp->svl_u.svl_route.svl_point = otp;
685 slp->svl_u.svl_route.svl_route = otr;
686 slp->svl_u.svl_route.svl_mac = otm;
687
688 svp_remote_route_lookup(svp, &slp->svl_query, src, dst,
689 otl->otl_vnetid, (uint16_t)otl->otl_vlan, slp);
690 }
691
692 static void
693 varpd_svp_lookup(void *arg, varpd_query_handle_t *vqh,
694 const overlay_targ_lookup_t *otl, overlay_target_point_t *otp,
695 overlay_target_route_t *otr, overlay_target_mac_t *otm)
696 {
697 svp_lookup_t *slp;
698 svp_t *svp = arg;
699
700 /*
701 * Shuffle off L3 lookups to their own codepath.
702 */
703 if (otl->otl_l3req) {
704 varpd_svp_lookup_l3(svp, vqh, otl, otp, otr, otm);
705 return;
706 }
707 /*
708 * At this point, the traditional overlay_target_point_t is all that
709 * needs filling in. Zero-out the otr for safety.
710 */
711 bzero(otr, sizeof (*otr));
712
713
714 /*
715 * Check if this is something that we need to proxy, eg. arp or ndp.
716 */
717 if (otl->otl_addru.otlu_l2.otl2_sap == ETHERTYPE_ARP) {
718 libvarpd_plugin_proxy_arp(svp->svp_hdl, vqh, otl);
719 return;
720 }
721
722 if (otl->otl_addru.otlu_l2.otl2_dstaddr[0] == 0x33 &&
723 otl->otl_addru.otlu_l2.otl2_dstaddr[1] == 0x33) {
724 if (otl->otl_addru.otlu_l2.otl2_sap == ETHERTYPE_IPV6) {
725 libvarpd_plugin_proxy_ndp(svp->svp_hdl, vqh, otl);
726 } else {
727 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
728 }
729 return;
730 }
731
732 /*
733 * Watch out for various multicast and broadcast addresses. We've
734 * already taken care of the IPv6 range above. Now we just need to
735 * handle broadcast and if the multicast bit is set, lowest bit of the
736 * first octet of the MAC, then we drop it now.
737 */
738 if (bcmp(otl->otl_addru.otlu_l2.otl2_dstaddr, svp_bcast,
739 ETHERADDRL) == 0 ||
740 (otl->otl_addru.otlu_l2.otl2_dstaddr[0] & 0x01) == 0x01) {
741 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
742 return;
743 }
744
745 /*
746 * If we have a failure to allocate memory for this, that's not good.
747 * However, telling the kernel to just drop this packet is much better
748 * than the alternative at this moment. At least we'll try again and we
749 * may have something more available to us in a little bit.
750 */
751 slp = umem_cache_alloc(svp_lookup_cache, UMEM_DEFAULT);
752 if (slp == NULL) {
753 libvarpd_plugin_query_reply(vqh, VARPD_LOOKUP_DROP);
754 return;
755 }
756
757 slp->svl_type = SVP_L_VL2;
758 slp->svl_u.svl_vl2.svl_handle = vqh;
759 slp->svl_u.svl_vl2.svl_point = otp;
760
761 svp_remote_vl2_lookup(svp, &slp->svl_query,
762 otl->otl_addru.otlu_l2.otl2_dstaddr, slp);
763 }
764
765 /* ARGSUSED */
766 static int
767 varpd_svp_nprops(void *arg, uint_t *nprops)
768 {
769 *nprops = sizeof (varpd_svp_props) / sizeof (char *);
770 return (0);
771 }
772
773 /* ARGSUSED */
774 static int
775 varpd_svp_propinfo(void *arg, uint_t propid, varpd_prop_handle_t *vph)
776 {
777 switch (propid) {
778 case 0:
779 /* svp/host */
780 libvarpd_prop_set_name(vph, varpd_svp_props[0]);
781 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
782 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_STRING);
783 libvarpd_prop_set_nodefault(vph);
784 break;
785 case 1:
786 /* svp/port */
787 libvarpd_prop_set_name(vph, varpd_svp_props[1]);
788 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
789 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_UINT);
790 (void) libvarpd_prop_set_default(vph, &svp_defport,
791 sizeof (svp_defport));
792 libvarpd_prop_set_range_uint32(vph, 1, UINT16_MAX);
793 break;
794 case 2:
795 /* svp/underlay_ip */
796 libvarpd_prop_set_name(vph, varpd_svp_props[2]);
797 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
798 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_IP);
799 libvarpd_prop_set_nodefault(vph);
800 break;
801 case 3:
802 /* svp/underlay_port */
803 libvarpd_prop_set_name(vph, varpd_svp_props[3]);
804 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
805 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_UINT);
806 (void) libvarpd_prop_set_default(vph, &svp_defuport,
807 sizeof (svp_defuport));
808 libvarpd_prop_set_range_uint32(vph, 1, UINT16_MAX);
809 break;
810 case 4:
811 /* svp/dcid */
812 libvarpd_prop_set_name(vph, varpd_svp_props[4]);
813 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
814 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_UINT);
815 libvarpd_prop_set_nodefault(vph);
816 libvarpd_prop_set_range_uint32(vph, 1, UINT32_MAX - 1);
817 break;
818 case 5:
819 /* svp/router_oui */
820 libvarpd_prop_set_name(vph, varpd_svp_props[5]);
821 libvarpd_prop_set_prot(vph, OVERLAY_PROP_PERM_RRW);
822 libvarpd_prop_set_type(vph, OVERLAY_PROP_T_ETHER);
823 libvarpd_prop_set_nodefault(vph);
824 break;
825 default:
826 return (EINVAL);
827 }
828 return (0);
829 }
830
831 static int
832 varpd_svp_getprop(void *arg, const char *pname, void *buf, uint32_t *sizep)
833 {
834 svp_t *svp = arg;
835
836 /* svp/host */
837 if (strcmp(pname, varpd_svp_props[0]) == 0) {
838 size_t len;
839
840 mutex_enter(&svp->svp_lock);
841 if (svp->svp_host == NULL) {
842 *sizep = 0;
843 } else {
844 len = strlen(svp->svp_host) + 1;
845 if (*sizep < len) {
846 mutex_exit(&svp->svp_lock);
847 return (EOVERFLOW);
848 }
849 *sizep = len;
850 (void) strlcpy(buf, svp->svp_host, *sizep);
851 }
852 mutex_exit(&svp->svp_lock);
853 return (0);
854 }
855
856 /* svp/port */
857 if (strcmp(pname, varpd_svp_props[1]) == 0) {
858 uint64_t val;
859
860 if (*sizep < sizeof (uint64_t))
861 return (EOVERFLOW);
862
863 mutex_enter(&svp->svp_lock);
864 if (svp->svp_port == 0) {
865 *sizep = 0;
866 } else {
867 val = svp->svp_port;
868 bcopy(&val, buf, sizeof (uint64_t));
869 *sizep = sizeof (uint64_t);
870 }
871 mutex_exit(&svp->svp_lock);
872 return (0);
873 }
874
875 /* svp/underlay_ip */
876 if (strcmp(pname, varpd_svp_props[2]) == 0) {
877 if (*sizep < sizeof (struct in6_addr))
878 return (EOVERFLOW);
879 mutex_enter(&svp->svp_lock);
880 if (svp->svp_huip == B_FALSE) {
881 *sizep = 0;
882 } else {
883 bcopy(&svp->svp_uip, buf, sizeof (struct in6_addr));
884 *sizep = sizeof (struct in6_addr);
885 }
886 mutex_exit(&svp->svp_lock);
887 return (0);
888 }
889
890 /* svp/underlay_port */
891 if (strcmp(pname, varpd_svp_props[3]) == 0) {
892 uint64_t val;
893
894 if (*sizep < sizeof (uint64_t))
895 return (EOVERFLOW);
896
897 mutex_enter(&svp->svp_lock);
898 if (svp->svp_uport == 0) {
899 *sizep = 0;
900 } else {
901 val = svp->svp_uport;
902 bcopy(&val, buf, sizeof (uint64_t));
903 *sizep = sizeof (uint64_t);
904 }
905
906 mutex_exit(&svp->svp_lock);
907 return (0);
908 }
909
910 /* svp/dcid */
911 if (strcmp(pname, varpd_svp_props[4]) == 0) {
912 uint64_t val;
913
914 if (*sizep < sizeof (uint64_t))
915 return (EOVERFLOW);
916
917 mutex_enter(&svp->svp_lock);
918 if (svp->svp_uport == 0) {
919 *sizep = 0;
920 } else {
921 val = svp->svp_dcid;
922 bcopy(&val, buf, sizeof (uint64_t));
923 *sizep = sizeof (uint64_t);
924 }
925
926 mutex_exit(&svp->svp_lock);
927 return (0);
928 }
929
930 /* svp/router_oui */
931 if (strcmp(pname, varpd_svp_props[5]) == 0) {
932 if (*sizep < ETHERADDRL)
933 return (EOVERFLOW);
934 mutex_enter(&svp->svp_lock);
935
936 if (ether_is_zero(&svp->svp_router_oui)) {
937 *sizep = 0;
938 } else {
939 bcopy(&svp->svp_router_oui, buf, ETHERADDRL);
940 *sizep = ETHERADDRL;
941 }
942
943 mutex_exit(&svp->svp_lock);
944 return (0);
945 }
946 return (EINVAL);
947 }
948
949 static int
950 varpd_svp_setprop(void *arg, const char *pname, const void *buf,
951 const uint32_t size)
952 {
953 svp_t *svp = arg;
954
955 /* svp/host */
956 if (strcmp(pname, varpd_svp_props[0]) == 0) {
957 char *dup;
958 dup = umem_alloc(size, UMEM_DEFAULT);
959 (void) strlcpy(dup, buf, size);
960 if (dup == NULL)
961 return (ENOMEM);
962 mutex_enter(&svp->svp_lock);
963 if (svp->svp_host != NULL)
964 umem_free(svp->svp_host, strlen(svp->svp_host) + 1);
965 svp->svp_host = dup;
966 mutex_exit(&svp->svp_lock);
967 return (0);
968 }
969
970 /* svp/port */
971 if (strcmp(pname, varpd_svp_props[1]) == 0) {
972 const uint64_t *valp = buf;
973 if (size < sizeof (uint64_t))
974 return (EOVERFLOW);
975
976 if (*valp == 0 || *valp > UINT16_MAX)
977 return (EINVAL);
978
979 mutex_enter(&svp->svp_lock);
980 svp->svp_port = (uint16_t)*valp;
981 mutex_exit(&svp->svp_lock);
982 return (0);
983 }
984
985 /* svp/underlay_ip */
986 if (strcmp(pname, varpd_svp_props[2]) == 0) {
987 const struct in6_addr *ipv6 = buf;
988
989 if (size < sizeof (struct in6_addr))
990 return (EOVERFLOW);
991
992 if (IN6_IS_ADDR_V4COMPAT(ipv6))
993 return (EINVAL);
994
995 if (IN6_IS_ADDR_MULTICAST(ipv6))
996 return (EINVAL);
997
998 if (IN6_IS_ADDR_6TO4(ipv6))
999 return (EINVAL);
1000
1001 if (IN6_IS_ADDR_V4MAPPED(ipv6)) {
1002 ipaddr_t v4;
1003 IN6_V4MAPPED_TO_IPADDR(ipv6, v4);
1004 if (IN_MULTICAST(v4))
1005 return (EINVAL);
1006 }
1007
1008 mutex_enter(&svp->svp_lock);
1009 bcopy(buf, &svp->svp_uip, sizeof (struct in6_addr));
1010 svp->svp_huip = B_TRUE;
1011 mutex_exit(&svp->svp_lock);
1012 return (0);
1013 }
1014
1015 /* svp/underlay_port */
1016 if (strcmp(pname, varpd_svp_props[3]) == 0) {
1017 const uint64_t *valp = buf;
1018 if (size < sizeof (uint64_t))
1019 return (EOVERFLOW);
1020
1021 if (*valp == 0 || *valp > UINT16_MAX)
1022 return (EINVAL);
1023
1024 mutex_enter(&svp->svp_lock);
1025 svp->svp_uport = (uint16_t)*valp;
1026 mutex_exit(&svp->svp_lock);
1027
1028 return (0);
1029 }
1030
1031 /* svp/dcid */
1032 if (strcmp(pname, varpd_svp_props[4]) == 0) {
1033 const uint64_t *valp = buf;
1034 if (size < sizeof (uint64_t))
1035 return (EOVERFLOW);
1036
1037 if (*valp == 0 || *valp > UINT32_MAX - 1)
1038 return (EINVAL);
1039
1040 mutex_enter(&svp->svp_lock);
1041 svp->svp_dcid = (uint32_t)*valp;
1042 mutex_exit(&svp->svp_lock);
1043
1044 return (0);
1045 }
1046
1047 /* svp/router_oui */
1048 if (strcmp(pname, varpd_svp_props[5]) == 0) {
1049 if (size < ETHERADDRL)
1050 return (EOVERFLOW);
1051 mutex_enter(&svp->svp_lock);
1052 bcopy(buf, &svp->svp_router_oui, ETHERADDRL);
1053 /* Zero-out the low three bytes. */
1054 svp->svp_router_oui[3] = 0;
1055 svp->svp_router_oui[4] = 0;
1056 svp->svp_router_oui[5] = 0;
1057 mutex_exit(&svp->svp_lock);
1058 return (0);
1059 }
1060
1061 return (EINVAL);
1062 }
1063
1064 static int
1065 varpd_svp_save(void *arg, nvlist_t *nvp)
1066 {
1067 int ret;
1068 svp_t *svp = arg;
1069
1070 mutex_enter(&svp->svp_lock);
1071 /* svp/host */
1072 if (svp->svp_host != NULL) {
1073 if ((ret = nvlist_add_string(nvp, varpd_svp_props[0],
1074 svp->svp_host)) != 0) {
1075 mutex_exit(&svp->svp_lock);
1076 return (ret);
1077 }
1078 }
1079
1080 /* svp/port */
1081 if (svp->svp_port != 0) {
1082 if ((ret = nvlist_add_uint16(nvp, varpd_svp_props[1],
1083 svp->svp_port)) != 0) {
1084 mutex_exit(&svp->svp_lock);
1085 return (ret);
1086 }
1087 }
1088
1089 /* svp/underlay_ip */
1090 if (svp->svp_huip == B_TRUE) {
1091 char buf[INET6_ADDRSTRLEN];
1092
1093 if (inet_ntop(AF_INET6, &svp->svp_uip, buf, sizeof (buf)) ==
1094 NULL)
1095 libvarpd_panic("unexpected inet_ntop failure: %d",
1096 errno);
1097
1098 if ((ret = nvlist_add_string(nvp, varpd_svp_props[2],
1099 buf)) != 0) {
1100 mutex_exit(&svp->svp_lock);
1101 return (ret);
1102 }
1103 }
1104
1105 /* svp/underlay_port */
1106 if (svp->svp_uport != 0) {
1107 if ((ret = nvlist_add_uint16(nvp, varpd_svp_props[3],
1108 svp->svp_uport)) != 0) {
1109 mutex_exit(&svp->svp_lock);
1110 return (ret);
1111 }
1112 }
1113
1114 /* svp/dcid */
1115 if (svp->svp_dcid != 0) {
1116 if ((ret = nvlist_add_uint32(nvp, varpd_svp_props[4],
1117 svp->svp_dcid)) != 0) {
1118 mutex_exit(&svp->svp_lock);
1119 return (ret);
1120 }
1121 }
1122
1123 /* svp/router_oui */
1124 if (!ether_is_zero(&svp->svp_router_oui)) {
1125 char buf[ETHERADDRSTRL];
1126
1127 if (ether_ntoa_r((struct ether_addr *)&svp->svp_router_oui,
1128 buf) == NULL) {
1129 libvarpd_panic("unexpected ether_ntoa_r failure: %d",
1130 errno);
1131 }
1132
1133 if ((ret = nvlist_add_string(nvp, varpd_svp_props[5],
1134 buf)) != 0) {
1135 mutex_exit(&svp->svp_lock);
1136 return (ret);
1137 }
1138 }
1139
1140 mutex_exit(&svp->svp_lock);
1141 return (0);
1142 }
1143
1144 static int
1145 varpd_svp_restore(nvlist_t *nvp, varpd_provider_handle_t *hdl,
1146 overlay_plugin_dest_t dest, void **outp)
1147 {
1148 int ret;
1149 svp_t *svp;
1150 char *ipstr, *hstr, *etherstr;
1151
1152 if (varpd_svp_valid_dest(dest) == B_FALSE)
1153 return (ENOTSUP);
1154
1155 if ((ret = varpd_svp_create(hdl, (void **)&svp, dest)) != 0)
1156 return (ret);
1157
1158 /* svp/host */
1159 if ((ret = nvlist_lookup_string(nvp, varpd_svp_props[0],
1160 &hstr)) != 0) {
1161 if (ret != ENOENT) {
1162 varpd_svp_destroy(svp);
1163 return (ret);
1164 }
1165 svp->svp_host = NULL;
1166 } else {
1167 size_t blen = strlen(hstr) + 1;
1168 svp->svp_host = umem_alloc(blen, UMEM_DEFAULT);
1169 (void) strlcpy(svp->svp_host, hstr, blen);
1170 }
1171
1172 /* svp/port */
1173 if ((ret = nvlist_lookup_uint16(nvp, varpd_svp_props[1],
1174 &svp->svp_port)) != 0) {
1175 if (ret != ENOENT) {
1176 varpd_svp_destroy(svp);
1177 return (ret);
1178 }
1179 svp->svp_port = 0;
1180 }
1181
1182 /* svp/underlay_ip */
1183 if ((ret = nvlist_lookup_string(nvp, varpd_svp_props[2],
1184 &ipstr)) != 0) {
1185 if (ret != ENOENT) {
1186 varpd_svp_destroy(svp);
1187 return (ret);
1188 }
1189 svp->svp_huip = B_FALSE;
1190 } else {
1191 ret = inet_pton(AF_INET6, ipstr, &svp->svp_uip);
1192 if (ret == -1) {
1193 assert(errno == EAFNOSUPPORT);
1194 libvarpd_panic("unexpected inet_pton failure: %d",
1195 errno);
1196 }
1197
1198 if (ret == 0) {
1199 varpd_svp_destroy(svp);
1200 return (EINVAL);
1201 }
1202 svp->svp_huip = B_TRUE;
1203 }
1204
1205 /* svp/underlay_port */
1206 if ((ret = nvlist_lookup_uint16(nvp, varpd_svp_props[3],
1207 &svp->svp_uport)) != 0) {
1208 if (ret != ENOENT) {
1209 varpd_svp_destroy(svp);
1210 return (ret);
1211 }
1212 svp->svp_uport = 0;
1213 }
1214
1215 /* svp/dcid */
1216 if ((ret = nvlist_lookup_uint32(nvp, varpd_svp_props[4],
1217 &svp->svp_dcid)) != 0) {
1218 if (ret != ENOENT) {
1219 varpd_svp_destroy(svp);
1220 return (ret);
1221 }
1222 svp->svp_dcid = 0;
1223 }
1224
1225 /* svp/router_oui */
1226 if ((ret = nvlist_lookup_string(nvp, varpd_svp_props[5],
1227 ðerstr)) != 0) {
1228 if (ret != ENOENT) {
1229 varpd_svp_destroy(svp);
1230 return (ret);
1231 }
1232 bzero(&svp->svp_router_oui, ETHERADDRL);
1233 } else if (ether_aton_r(etherstr,
1234 (struct ether_addr *)&svp->svp_router_oui) == NULL) {
1235 libvarpd_panic("unexpected ether_aton_r failure: %d", errno);
1236 }
1237
1238 svp->svp_hdl = hdl;
1239 *outp = svp;
1240 return (0);
1241 }
1242
1243 static void
1244 varpd_svp_arp(void *arg, varpd_arp_handle_t *vah, int type,
1245 const struct sockaddr *sock, uint16_t vlan __unused, uint8_t *out)
1246 {
1247 svp_t *svp = arg;
1248 svp_lookup_t *svl;
1249
1250 if (type != VARPD_QTYPE_ETHERNET) {
1251 libvarpd_plugin_arp_reply(vah, VARPD_LOOKUP_DROP);
1252 return;
1253 }
1254
1255 svl = umem_cache_alloc(svp_lookup_cache, UMEM_DEFAULT);
1256 if (svl == NULL) {
1257 libvarpd_plugin_arp_reply(vah, VARPD_LOOKUP_DROP);
1258 return;
1259 }
1260
1261 svl->svl_type = SVP_L_VL3;
1262 svl->svl_u.svl_vl3.svl_vah = vah;
1263 svl->svl_u.svl_vl3.svl_out = out;
1264 svp_remote_vl3_lookup(svp, &svl->svl_query, sock, svl);
1265 }
1266
1267 static const varpd_plugin_ops_t varpd_svp_ops = {
1268 0,
1269 varpd_svp_create,
1270 varpd_svp_start,
1271 varpd_svp_stop,
1272 varpd_svp_destroy,
1273 NULL,
1274 varpd_svp_lookup,
1275 varpd_svp_nprops,
1276 varpd_svp_propinfo,
1277 varpd_svp_getprop,
1278 varpd_svp_setprop,
1279 varpd_svp_save,
1280 varpd_svp_restore,
1281 varpd_svp_arp,
1282 NULL
1283 };
1284
1285 static int
1286 svp_bunyan_init(void)
1287 {
1288 int ret;
1289
1290 if ((ret = bunyan_init("svp", &svp_bunyan)) != 0)
1291 return (ret);
1292 ret = bunyan_stream_add(svp_bunyan, "stderr", BUNYAN_L_INFO,
1293 bunyan_stream_fd, (void *)STDERR_FILENO);
1294 if (ret != 0)
1295 bunyan_fini(svp_bunyan);
1296 return (ret);
1297 }
1298
1299 static void
1300 svp_bunyan_fini(void)
1301 {
1302 if (svp_bunyan != NULL)
1303 bunyan_fini(svp_bunyan);
1304 }
1305
1306 #pragma init(varpd_svp_init)
1307 static void
1308 varpd_svp_init(void)
1309 {
1310 int err;
1311 varpd_plugin_register_t *vpr;
1312
1313 if (svp_bunyan_init() != 0)
1314 return;
1315
1316 if ((err = svp_host_init()) != 0) {
1317 (void) bunyan_error(svp_bunyan, "failed to init host subsystem",
1318 BUNYAN_T_INT32, "error", err,
1319 BUNYAN_T_END);
1320 svp_bunyan_fini();
1321 return;
1322 }
1323
1324 svp_lookup_cache = umem_cache_create("svp_lookup",
1325 sizeof (svp_lookup_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
1326 if (svp_lookup_cache == NULL) {
1327 (void) bunyan_error(svp_bunyan,
1328 "failed to create svp_lookup cache",
1329 BUNYAN_T_INT32, "error", errno,
1330 BUNYAN_T_END);
1331 svp_bunyan_fini();
1332 return;
1333 }
1334
1335 if ((err = svp_event_init()) != 0) {
1336 (void) bunyan_error(svp_bunyan,
1337 "failed to init event subsystem",
1338 BUNYAN_T_INT32, "error", err,
1339 BUNYAN_T_END);
1340 svp_bunyan_fini();
1341 umem_cache_destroy(svp_lookup_cache);
1342 return;
1343 }
1344
1345 if ((err = svp_timer_init()) != 0) {
1346 (void) bunyan_error(svp_bunyan,
1347 "failed to init timer subsystem",
1348 BUNYAN_T_INT32, "error", err,
1349 BUNYAN_T_END);
1350 svp_event_fini();
1351 umem_cache_destroy(svp_lookup_cache);
1352 svp_bunyan_fini();
1353 return;
1354 }
1355
1356 if ((err = svp_remote_init()) != 0) {
1357 (void) bunyan_error(svp_bunyan,
1358 "failed to init remote subsystem",
1359 BUNYAN_T_INT32, "error", err,
1360 BUNYAN_T_END);
1361 svp_event_fini();
1362 umem_cache_destroy(svp_lookup_cache);
1363 svp_bunyan_fini();
1364 return;
1365 }
1366
1367 vpr = libvarpd_plugin_alloc(VARPD_CURRENT_VERSION, &err);
1368 if (vpr == NULL) {
1369 (void) bunyan_error(svp_bunyan,
1370 "failed to alloc varpd plugin",
1371 BUNYAN_T_INT32, "error", err,
1372 BUNYAN_T_END);
1373 svp_remote_fini();
1374 svp_event_fini();
1375 umem_cache_destroy(svp_lookup_cache);
1376 svp_bunyan_fini();
1377 return;
1378 }
1379
1380 vpr->vpr_mode = OVERLAY_TARGET_DYNAMIC;
1381 vpr->vpr_name = "svp";
1382 vpr->vpr_ops = &varpd_svp_ops;
1383
1384 if ((err = libvarpd_plugin_register(vpr)) != 0) {
1385 (void) bunyan_error(svp_bunyan,
1386 "failed to register varpd plugin",
1387 BUNYAN_T_INT32, "error", err,
1388 BUNYAN_T_END);
1389 svp_remote_fini();
1390 svp_event_fini();
1391 umem_cache_destroy(svp_lookup_cache);
1392 svp_bunyan_fini();
1393
1394 }
1395 libvarpd_plugin_free(vpr);
1396 }