1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * Copyright 2018 Joyent, Inc.
14 */
15
16 #ifndef _LIBVARPD_SVP_PROT_H
17 #define _LIBVARPD_SVP_PROT_H
18
19 /*
20 * SVP protocol Definitions
21 */
22
23 #include <sys/types.h>
24 #include <inttypes.h>
25 #include <sys/ethernet.h>
26 #include <netinet/in.h>
27
28 #ifdef __cplusplus
29 extern "C" {
30 #endif
31
32 /*
33 * SDC VXLAN Protocol Definitions
34 */
35
36 #define SVP_VERSION_ONE 1
37 #define SVP_VERSION_TWO 2
38 /*
39 * Bump this to 2. Version 1 SVP is a subset of version 2, and can be
40 * determined using an SVP_R_PING as part of connection establishment.
41 * Version-2 specific changes will be highlighed (look for "v2").
42 */
43 #define SVP_CURRENT_VERSION SVP_VERSION_TWO
44
45 typedef struct svp_req {
46 uint16_t svp_ver;
47 uint16_t svp_op;
48 uint32_t svp_size;
49 uint32_t svp_id;
50 uint32_t svp_crc32;
51 } svp_req_t;
52
53 /*
54 * Unless specified, all message types function identically between v1 and v2
55 * of SVP.
56 */
57 typedef enum svp_op {
58 SVP_R_UNKNOWN = 0x00,
59 SVP_R_PING = 0x01,
60 SVP_R_PONG = 0x02,
61 SVP_R_VL2_REQ = 0x03,
62 SVP_R_VL2_ACK = 0x04,
63 SVP_R_VL3_REQ = 0x05,
64 SVP_R_VL3_ACK = 0x06,
65 SVP_R_BULK_REQ = 0x07,
66 SVP_R_BULK_ACK = 0x08,
67 SVP_R_LOG_REQ = 0x09,
68 SVP_R_LOG_ACK = 0x0A,
69 SVP_R_LOG_RM = 0x0B, /* v2 introduces new log type */
70 SVP_R_LOG_RM_ACK = 0x0C, /* See svp_log_route_t */
71 SVP_R_SHOOTDOWN = 0x0D,
72 SVP_R_ROUTE_REQ = 0x0E, /* v2 only */
73 SVP_R_ROUTE_ACK = 0x0F /* v2 only */
74 } svp_op_t;
75
76 typedef enum svp_status {
77 SVP_S_OK = 0x00, /* Everything OK */
78 SVP_S_FATAL = 0x01, /* Fatal error, close connection */
79 SVP_S_NOTFOUND = 0x02, /* Entry not found */
80 SVP_S_BADL3TYPE = 0x03, /* Unknown svp_vl3_type_t */
81 SVP_S_BADBULK = 0x04 /* Unknown svp_bulk_type_t */
82 } svp_status_t;
83
84 /*
85 * A client issues the SVP_R_VL2_REQ whenever it needs to perform a VL2->UL3
86 * lookup. Requests have the following structure:
87 */
88 typedef struct svp_vl2_req {
89 uint8_t sl2r_mac[ETHERADDRL];
90 uint8_t sl2r_pad[2];
91 uint32_t sl2r_vnetid;
92 } svp_vl2_req_t;
93
94 /*
95 * This is the message a server uses to reply to the SVP_R_VL2_REQ. If the
96 * destination on the underlay is an IPv4 address, it should be encoded as an
97 * IPv4-mapped IPv6 address.
98 */
99 typedef struct svp_vl2_ack {
100 uint16_t sl2a_status;
101 uint16_t sl2a_port;
102 uint8_t sl2a_addr[16];
103 } svp_vl2_ack_t;
104
105
106 /*
107 * A client issues the SVP_R_VL3_REQ request whenever it needs to perform a
108 * VL3->VL2 lookup. Note, that this also implicitly performs a VL2->UL3 lookup
109 * as well. The sl3r_type member is used to indicate the kind of lookup type
110 * that we're performing, eg. is it a L3 or L2.
111 */
112 typedef enum svp_vl3_type {
113 SVP_VL3_IP = 0x01,
114 SVP_VL3_IPV6 = 0x02
115 } svp_vl3_type_t;
116
117 typedef struct svp_vl3_req {
118 uint8_t sl3r_ip[16];
119 uint32_t sl3r_type;
120 uint32_t sl3r_vnetid;
121 } svp_vl3_req_t;
122
123 /*
124 * This response, corresponding to the SVP_R_VL3_ACK, includes an answer to both
125 * the VL3->VL2 and the VL2->UL3 requests.
126 */
127 typedef struct svp_vl3_ack {
128 uint32_t sl3a_status;
129 uint8_t sl3a_mac[ETHERADDRL];
130 uint16_t sl3a_uport;
131 uint8_t sl3a_uip[16];
132 } svp_vl3_ack_t;
133
134 /*
135 * SVP_R_BULK_REQ requests a bulk dump of data. Currently we have two kinds of
136 * data tables that we need to dump: VL3->VL2 mappings and VL2->UL3 mappings.
137 * The kind that we want is indicated using the svbr_type member.
138 */
139 typedef enum svp_bulk_type {
140 SVP_BULK_VL2 = 0x01,
141 SVP_BULK_VL3 = 0x02
142 } svp_bulk_type_t;
143
144 typedef struct svp_bulk_req {
145 uint32_t svbr_type;
146 } svp_bulk_req_t;
147
148 /*
149 * When replying to a bulk request (SVP_R_BULK_ACK), data is streamed back
150 * across. The format of the data is currently undefined and as we work on the
151 * system, we'll get a better understanding of what this should look like. A
152 * client may need to stream such a request to disk, or the format will need to
153 * be in a streamable format that allows the client to construct data.
154 */
155 typedef struct svp_bulk_ack {
156 uint32_t svba_status;
157 uint32_t svba_type;
158 uint8_t svba_data[];
159 } svp_bulk_ack_t;
160
161 /*
162 * SVP_R_LOG_REQ requests a log entries from the specified log from the server.
163 * The total number of bytes that the user is ready to receive is in svlr_count.
164 * However, the server should not block for data if none is available and thus
165 * may return less than svlr_count bytes back. We identify the IP address of the
166 * underlay to use here explicitly.
167 */
168 typedef struct svp_log_req {
169 uint32_t svlr_count;
170 uint8_t svlr_ip[16];
171 } svp_log_req_t;
172
173 /*
174 * The server replies to a log request by sending a series of log entries.
175 * These log entries may be a mixture of both vl2 and vl3 records. The reply is
176 * a stream of bytes after the status message whose length is determined baseed
177 * on the header itself. Each entry begins with a uint32_t that describes its
178 * type and then is followed by the remaining data payload. The next entry
179 * follows immediately which again begins with the uint32_t word that describes
180 * what it should be.
181 */
182 typedef enum svp_log_type {
183 SVP_LOG_VL2 = 0x01,
184 SVP_LOG_VL3 = 0x02,
185 SVP_LOG_ROUTE = 0x03 /* v2 only */
186 } svp_log_type_t;
187
188 typedef struct svp_log_vl2 {
189 uint32_t svl2_type; /* Should be SVP_LOG_VL2 */
190 uint8_t svl2_id[16]; /* 16-byte UUID */
191 uint8_t svl2_mac[ETHERADDRL];
192 uint8_t svl2_pad[2];
193 uint32_t svl2_vnetid;
194 } svp_log_vl2_t;
195
196 typedef struct svp_log_vl3 {
197 uint32_t svl3_type; /* Should be SVP_LOG_VL3 */
198 uint8_t svl3_id[16]; /* 16-byte UUID */
199 uint8_t svl3_ip[16];
200 uint8_t svl3_pad[2];
201 uint16_t svl3_vlan;
202 uint32_t svl3_vnetid;
203 } svp_log_vl3_t;
204
205 /*
206 * This log entry only appears on v2 connections.
207 */
208 typedef struct svp_log_route {
209 uint32_t svlr_type; /* Should be SVP_LOG_ROUTE */
210 uint8_t svlr_id[16]; /* 16-byte UUID */
211 uint32_t svlr_src_vnetid; /* Source VXLAN vnetid. */
212 uint32_t svlr_dst_vnetid; /* Dest. VXLAN vnetid. */
213 uint32_t svlr_dcid; /* Remote/dest Data Center ID. */
214 uint8_t svlr_srcip[16]; /* Source IP address base. */
215 uint8_t svlr_dstip[16]; /* Destination IP address base. */
216 uint16_t svlr_dst_vlan; /* Source VLAN id. */
217 uint16_t svlr_src_vlan; /* Destination VLAN id. */
218 uint8_t svlr_src_prefixlen; /* Source IP prefix length. */
219 uint8_t svlr_dst_prefixlen; /* Dest. IP prefix length. */
220 uint16_t svlr_pad; /* So we can be aligned... */
221 } svp_log_route_t;
222
223 typedef struct svp_log_ack {
224 uint32_t svla_status;
225 uint8_t svla_data[];
226 } svp_log_ack_t;
227
228 /*
229 * SVP_R_LOG_RM is used after the client successfully processes a series of the
230 * log stream. It replies to tell the server that it can remove those IDs from
231 * processing. The IDs used are the same IDs that were in the individual
232 * SVP_R_LOG_ACK entries.
233 */
234 typedef struct svp_lrm_req {
235 uint32_t svrr_count;
236 uint8_t svrr_ids[];
237 } svp_lrm_req_t;
238
239 /*
240 * SVP_R_LOG_RM_ACK is used to indicate that a log entry has been successfully
241 * deleted and at this point it makes sense to go and ask for another
242 * SVP_R_LOG_REQ.
243 */
244 typedef struct svp_lrm_ack {
245 uint32_t svra_status;
246 } svp_lrm_ack_t;
247
248 /*
249 * A shootdown (SVP_R_SHOOTDOWN) is used by a CN to reply to another CN that it
250 * sent an invalid entry that could not be processed. This should be a
251 * relatively infrequent occurrence. Unlike the rest of the messages, there is
252 * no reply to it. It's a single request to try and help get us out there. When
253 * a node receives this, it will issue a conditional revocation ioctl, that
254 * removes the entry if and only if, it matches the IP. That way if we've
255 * already gotten an updated entry for this, we don't remove it again.
256 */
257 typedef struct svp_shootdown {
258 uint8_t svsd_mac[ETHERADDRL];
259 uint8_t svsd_pad[2];
260 uint32_t svsd_vnetid;
261 } svp_shootdown_t;
262
263 /*
264 * A route-request (SVP_R_ROUTE_REQ) queries the local SVP server to get a
265 * far-remote (i.e. another Triton Data Center, nee. SDC) SVP server for
266 * far-remote networks. Modern overlay modules will request IP destinations
267 * for remote-Triton networks, but they must know how to reach the
268 * remote-Triton SVP server.
269 *
270 * NOTE: SVP_R_ROUTE_{REQ,ACK} are only present in SVP v2.
271 */
272 typedef struct svp_route_req {
273 uint32_t srr_vnetid; /* Requester's vnet ID. */
274 uint16_t srr_vlan; /* Requester's VLAN ID. */
275 uint16_t srr_pad; /* Zero on xmit, ignore on receipt. */
276 uint8_t srr_srcip[16]; /* VL3 Source IP. */
277 uint8_t srr_dstip[16]; /* VL3 Destination IP. */
278 } svp_route_req_t;
279
280 /*
281 * The far-remote Triton Data Center will answer with the requisite information
282 * to send overlay packets to the appropriate far-remote CNs.
283 */
284 typedef struct svp_route_ack {
285 uint32_t sra_status; /* Status. */
286 uint32_t sra_dcid; /* Far-remote Data Center ID. */
287 uint32_t sra_vnetid; /* Far-remote vnet ID. */
288 uint16_t sra_vlan; /* Far-remote VLAN ID. */
289 uint16_t sra_port; /* Destination UL3 port. */
290 uint8_t sra_ip[16]; /* Destination UL3 address. */
291 uint8_t sra_srcmac[ETHERADDRL]; /* Far-remote VL2 source. */
292 uint8_t sra_dstmac[ETHERADDRL]; /* Far-remote VL2 dest. */
293 uint8_t sra_src_pfx; /* Far-remote VL3 source prefix */
294 uint8_t sra_dst_pfx; /* Far-remote VL3 dest. prefix */
295 } svp_route_ack_t;
296
297 #ifdef __cplusplus
298 }
299 #endif
300
301 #endif /* _LIBVARPD_SVP_PROT_H */