Print this page
    
1693 persistent 'comment' field for a zpool
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/fs/zfs/spa.c
          +++ new/usr/src/uts/common/fs/zfs/spa.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24   24   * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  25   25   * Copyright (c) 2011 by Delphix. All rights reserved.
  26   26   */
  27   27  
  28   28  /*
  29   29   * This file contains all the routines used when modifying on-disk SPA state.
  30   30   * This includes opening, importing, destroying, exporting a pool, and syncing a
  31   31   * pool.
  32   32   */
  33   33  
  34   34  #include <sys/zfs_context.h>
  35   35  #include <sys/fm/fs/zfs.h>
  36   36  #include <sys/spa_impl.h>
  37   37  #include <sys/zio.h>
  38   38  #include <sys/zio_checksum.h>
  39   39  #include <sys/dmu.h>
  40   40  #include <sys/dmu_tx.h>
  41   41  #include <sys/zap.h>
  42   42  #include <sys/zil.h>
  43   43  #include <sys/ddt.h>
  44   44  #include <sys/vdev_impl.h>
  45   45  #include <sys/metaslab.h>
  46   46  #include <sys/metaslab_impl.h>
  47   47  #include <sys/uberblock_impl.h>
  48   48  #include <sys/txg.h>
  49   49  #include <sys/avl.h>
  50   50  #include <sys/dmu_traverse.h>
  51   51  #include <sys/dmu_objset.h>
  52   52  #include <sys/unique.h>
  53   53  #include <sys/dsl_pool.h>
  54   54  #include <sys/dsl_dataset.h>
  55   55  #include <sys/dsl_dir.h>
  56   56  #include <sys/dsl_prop.h>
  57   57  #include <sys/dsl_synctask.h>
  58   58  #include <sys/fs/zfs.h>
  59   59  #include <sys/arc.h>
  60   60  #include <sys/callb.h>
  61   61  #include <sys/systeminfo.h>
  62   62  #include <sys/spa_boot.h>
  63   63  #include <sys/zfs_ioctl.h>
  64   64  #include <sys/dsl_scan.h>
  65   65  
  66   66  #ifdef  _KERNEL
  67   67  #include <sys/bootprops.h>
  68   68  #include <sys/callb.h>
  69   69  #include <sys/cpupart.h>
  70   70  #include <sys/pool.h>
  71   71  #include <sys/sysdc.h>
  72   72  #include <sys/zone.h>
  73   73  #endif  /* _KERNEL */
  74   74  
  75   75  #include "zfs_prop.h"
  76   76  #include "zfs_comutil.h"
  77   77  
  78   78  typedef enum zti_modes {
  79   79          zti_mode_fixed,                 /* value is # of threads (min 1) */
  80   80          zti_mode_online_percent,        /* value is % of online CPUs */
  81   81          zti_mode_batch,                 /* cpu-intensive; value is ignored */
  82   82          zti_mode_null,                  /* don't create a taskq */
  83   83          zti_nmodes
  84   84  } zti_modes_t;
  85   85  
  86   86  #define ZTI_FIX(n)      { zti_mode_fixed, (n) }
  87   87  #define ZTI_PCT(n)      { zti_mode_online_percent, (n) }
  88   88  #define ZTI_BATCH       { zti_mode_batch, 0 }
  89   89  #define ZTI_NULL        { zti_mode_null, 0 }
  90   90  
  91   91  #define ZTI_ONE         ZTI_FIX(1)
  92   92  
  93   93  typedef struct zio_taskq_info {
  94   94          enum zti_modes zti_mode;
  95   95          uint_t zti_value;
  96   96  } zio_taskq_info_t;
  97   97  
  98   98  static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
  99   99          "issue", "issue_high", "intr", "intr_high"
 100  100  };
 101  101  
 102  102  /*
 103  103   * Define the taskq threads for the following I/O types:
 104  104   *      NULL, READ, WRITE, FREE, CLAIM, and IOCTL
 105  105   */
 106  106  const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
 107  107          /* ISSUE        ISSUE_HIGH      INTR            INTR_HIGH */
 108  108          { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL },
 109  109          { ZTI_FIX(8),   ZTI_NULL,       ZTI_BATCH,      ZTI_NULL },
 110  110          { ZTI_BATCH,    ZTI_FIX(5),     ZTI_FIX(8),     ZTI_FIX(5) },
 111  111          { ZTI_FIX(100), ZTI_NULL,       ZTI_ONE,        ZTI_NULL },
 112  112          { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL },
 113  113          { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL },
 114  114  };
 115  115  
 116  116  static dsl_syncfunc_t spa_sync_props;
 117  117  static boolean_t spa_has_active_shared_spare(spa_t *spa);
 118  118  static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
 119  119      spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
 120  120      char **ereport);
 121  121  static void spa_vdev_resilver_done(spa_t *spa);
 122  122  
 123  123  uint_t          zio_taskq_batch_pct = 100;      /* 1 thread per cpu in pset */
 124  124  id_t            zio_taskq_psrset_bind = PS_NONE;
 125  125  boolean_t       zio_taskq_sysdc = B_TRUE;       /* use SDC scheduling class */
 126  126  uint_t          zio_taskq_basedc = 80;          /* base duty cycle */
 127  127  
 128  128  boolean_t       spa_create_process = B_TRUE;    /* no process ==> no sysdc */
 129  129  
 130  130  /*
 131  131   * This (illegal) pool name is used when temporarily importing a spa_t in order
 132  132   * to get the vdev stats associated with the imported devices.
 133  133   */
 134  134  #define TRYIMPORT_NAME  "$import"
 135  135  
 136  136  /*
 137  137   * ==========================================================================
 138  138   * SPA properties routines
 139  139   * ==========================================================================
 140  140   */
 141  141  
 142  142  /*
 143  143   * Add a (source=src, propname=propval) list to an nvlist.
 144  144   */
 145  145  static void
 146  146  spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
 147  147      uint64_t intval, zprop_source_t src)
 148  148  {
 149  149          const char *propname = zpool_prop_to_name(prop);
 150  150          nvlist_t *propval;
 151  151  
 152  152          VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 153  153          VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
 154  154  
 155  155          if (strval != NULL)
 156  156                  VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
 157  157          else
 158  158                  VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
 159  159  
 160  160          VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
 161  161          nvlist_free(propval);
 162  162  }
 163  163  
 164  164  /*
 165  165   * Get property values from the spa configuration.
 166  166   */
 167  167  static void
 168  168  spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
 169  169  {
 170  170          uint64_t size;
 171  171          uint64_t alloc;
 172  172          uint64_t cap, version;
 173  173          zprop_source_t src = ZPROP_SRC_NONE;
 174  174          spa_config_dirent_t *dp;
 175  175  
 176  176          ASSERT(MUTEX_HELD(&spa->spa_props_lock));
 177  177  
 178  178          if (spa->spa_root_vdev != NULL) {
 179  179                  alloc = metaslab_class_get_alloc(spa_normal_class(spa));
 180  180                  size = metaslab_class_get_space(spa_normal_class(spa));
 181  181                  spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
 182  182                  spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
 183  183                  spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
 184  184                  spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
 185  185                      size - alloc, src);
 186  186                  spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
 187  187                      (spa_mode(spa) == FREAD), src);
 188  188  
 189  189                  cap = (size == 0) ? 0 : (alloc * 100 / size);
 190  190                  spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
 191  191  
 192  192                  spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
 193  193                      ddt_get_pool_dedup_ratio(spa), src);
 194  194  
 195  195                  spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
 196  196                      spa->spa_root_vdev->vdev_state, src);
 197  197  
  
    | 
      ↓ open down ↓ | 
    197 lines elided | 
    
      ↑ open up ↑ | 
  
 198  198                  version = spa_version(spa);
 199  199                  if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
 200  200                          src = ZPROP_SRC_DEFAULT;
 201  201                  else
 202  202                          src = ZPROP_SRC_LOCAL;
 203  203                  spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
 204  204          }
 205  205  
 206  206          spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
 207  207  
      208 +        if (spa->spa_comment != NULL) {
      209 +                spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
      210 +                    0, ZPROP_SRC_LOCAL);
      211 +        }
      212 +
 208  213          if (spa->spa_root != NULL)
 209  214                  spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
 210  215                      0, ZPROP_SRC_LOCAL);
 211  216  
 212  217          if ((dp = list_head(&spa->spa_config_list)) != NULL) {
 213  218                  if (dp->scd_path == NULL) {
 214  219                          spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 215  220                              "none", 0, ZPROP_SRC_LOCAL);
 216  221                  } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
 217  222                          spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 218  223                              dp->scd_path, 0, ZPROP_SRC_LOCAL);
 219  224                  }
 220  225          }
 221  226  }
 222  227  
 223  228  /*
 224  229   * Get zpool property values.
 225  230   */
 226  231  int
 227  232  spa_prop_get(spa_t *spa, nvlist_t **nvp)
 228  233  {
 229  234          objset_t *mos = spa->spa_meta_objset;
 230  235          zap_cursor_t zc;
 231  236          zap_attribute_t za;
 232  237          int err;
 233  238  
 234  239          VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 235  240  
 236  241          mutex_enter(&spa->spa_props_lock);
 237  242  
 238  243          /*
 239  244           * Get properties from the spa config.
 240  245           */
 241  246          spa_prop_get_config(spa, nvp);
 242  247  
 243  248          /* If no pool property object, no more prop to get. */
 244  249          if (mos == NULL || spa->spa_pool_props_object == 0) {
 245  250                  mutex_exit(&spa->spa_props_lock);
 246  251                  return (0);
 247  252          }
 248  253  
 249  254          /*
 250  255           * Get properties from the MOS pool property object.
 251  256           */
 252  257          for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
 253  258              (err = zap_cursor_retrieve(&zc, &za)) == 0;
 254  259              zap_cursor_advance(&zc)) {
 255  260                  uint64_t intval = 0;
 256  261                  char *strval = NULL;
 257  262                  zprop_source_t src = ZPROP_SRC_DEFAULT;
 258  263                  zpool_prop_t prop;
 259  264  
 260  265                  if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
 261  266                          continue;
 262  267  
 263  268                  switch (za.za_integer_length) {
 264  269                  case 8:
 265  270                          /* integer property */
 266  271                          if (za.za_first_integer !=
 267  272                              zpool_prop_default_numeric(prop))
 268  273                                  src = ZPROP_SRC_LOCAL;
 269  274  
 270  275                          if (prop == ZPOOL_PROP_BOOTFS) {
 271  276                                  dsl_pool_t *dp;
 272  277                                  dsl_dataset_t *ds = NULL;
 273  278  
 274  279                                  dp = spa_get_dsl(spa);
 275  280                                  rw_enter(&dp->dp_config_rwlock, RW_READER);
 276  281                                  if (err = dsl_dataset_hold_obj(dp,
 277  282                                      za.za_first_integer, FTAG, &ds)) {
 278  283                                          rw_exit(&dp->dp_config_rwlock);
 279  284                                          break;
 280  285                                  }
 281  286  
 282  287                                  strval = kmem_alloc(
 283  288                                      MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
 284  289                                      KM_SLEEP);
 285  290                                  dsl_dataset_name(ds, strval);
 286  291                                  dsl_dataset_rele(ds, FTAG);
 287  292                                  rw_exit(&dp->dp_config_rwlock);
 288  293                          } else {
 289  294                                  strval = NULL;
 290  295                                  intval = za.za_first_integer;
 291  296                          }
 292  297  
 293  298                          spa_prop_add_list(*nvp, prop, strval, intval, src);
 294  299  
 295  300                          if (strval != NULL)
 296  301                                  kmem_free(strval,
 297  302                                      MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
 298  303  
 299  304                          break;
 300  305  
 301  306                  case 1:
 302  307                          /* string property */
 303  308                          strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
 304  309                          err = zap_lookup(mos, spa->spa_pool_props_object,
 305  310                              za.za_name, 1, za.za_num_integers, strval);
 306  311                          if (err) {
 307  312                                  kmem_free(strval, za.za_num_integers);
 308  313                                  break;
 309  314                          }
 310  315                          spa_prop_add_list(*nvp, prop, strval, 0, src);
 311  316                          kmem_free(strval, za.za_num_integers);
 312  317                          break;
 313  318  
 314  319                  default:
 315  320                          break;
 316  321                  }
 317  322          }
 318  323          zap_cursor_fini(&zc);
 319  324          mutex_exit(&spa->spa_props_lock);
 320  325  out:
 321  326          if (err && err != ENOENT) {
 322  327                  nvlist_free(*nvp);
 323  328                  *nvp = NULL;
 324  329                  return (err);
 325  330          }
 326  331  
 327  332          return (0);
 328  333  }
 329  334  
 330  335  /*
 331  336   * Validate the given pool properties nvlist and modify the list
 332  337   * for the property values to be set.
 333  338   */
 334  339  static int
 335  340  spa_prop_validate(spa_t *spa, nvlist_t *props)
 336  341  {
  
    | 
      ↓ open down ↓ | 
    119 lines elided | 
    
      ↑ open up ↑ | 
  
 337  342          nvpair_t *elem;
 338  343          int error = 0, reset_bootfs = 0;
 339  344          uint64_t objnum;
 340  345  
 341  346          elem = NULL;
 342  347          while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
 343  348                  zpool_prop_t prop;
 344  349                  char *propname, *strval;
 345  350                  uint64_t intval;
 346  351                  objset_t *os;
 347      -                char *slash;
      352 +                char *slash, *check;
 348  353  
 349  354                  propname = nvpair_name(elem);
 350  355  
 351  356                  if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
 352  357                          return (EINVAL);
 353  358  
 354  359                  switch (prop) {
 355  360                  case ZPOOL_PROP_VERSION:
 356  361                          error = nvpair_value_uint64(elem, &intval);
 357  362                          if (!error &&
 358  363                              (intval < spa_version(spa) || intval > SPA_VERSION))
 359  364                                  error = EINVAL;
 360  365                          break;
 361  366  
 362  367                  case ZPOOL_PROP_DELEGATION:
 363  368                  case ZPOOL_PROP_AUTOREPLACE:
 364  369                  case ZPOOL_PROP_LISTSNAPS:
 365  370                  case ZPOOL_PROP_AUTOEXPAND:
 366  371                          error = nvpair_value_uint64(elem, &intval);
 367  372                          if (!error && intval > 1)
 368  373                                  error = EINVAL;
 369  374                          break;
 370  375  
 371  376                  case ZPOOL_PROP_BOOTFS:
 372  377                          /*
 373  378                           * If the pool version is less than SPA_VERSION_BOOTFS,
 374  379                           * or the pool is still being created (version == 0),
 375  380                           * the bootfs property cannot be set.
 376  381                           */
 377  382                          if (spa_version(spa) < SPA_VERSION_BOOTFS) {
 378  383                                  error = ENOTSUP;
 379  384                                  break;
 380  385                          }
 381  386  
 382  387                          /*
 383  388                           * Make sure the vdev config is bootable
 384  389                           */
 385  390                          if (!vdev_is_bootable(spa->spa_root_vdev)) {
 386  391                                  error = ENOTSUP;
 387  392                                  break;
 388  393                          }
 389  394  
 390  395                          reset_bootfs = 1;
 391  396  
 392  397                          error = nvpair_value_string(elem, &strval);
 393  398  
 394  399                          if (!error) {
 395  400                                  uint64_t compress;
 396  401  
 397  402                                  if (strval == NULL || strval[0] == '\0') {
 398  403                                          objnum = zpool_prop_default_numeric(
 399  404                                              ZPOOL_PROP_BOOTFS);
 400  405                                          break;
 401  406                                  }
 402  407  
 403  408                                  if (error = dmu_objset_hold(strval, FTAG, &os))
 404  409                                          break;
 405  410  
 406  411                                  /* Must be ZPL and not gzip compressed. */
 407  412  
 408  413                                  if (dmu_objset_type(os) != DMU_OST_ZFS) {
 409  414                                          error = ENOTSUP;
 410  415                                  } else if ((error = dsl_prop_get_integer(strval,
 411  416                                      zfs_prop_to_name(ZFS_PROP_COMPRESSION),
 412  417                                      &compress, NULL)) == 0 &&
 413  418                                      !BOOTFS_COMPRESS_VALID(compress)) {
 414  419                                          error = ENOTSUP;
 415  420                                  } else {
 416  421                                          objnum = dmu_objset_id(os);
 417  422                                  }
 418  423                                  dmu_objset_rele(os, FTAG);
 419  424                          }
 420  425                          break;
 421  426  
 422  427                  case ZPOOL_PROP_FAILUREMODE:
 423  428                          error = nvpair_value_uint64(elem, &intval);
 424  429                          if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
 425  430                              intval > ZIO_FAILURE_MODE_PANIC))
 426  431                                  error = EINVAL;
 427  432  
 428  433                          /*
 429  434                           * This is a special case which only occurs when
 430  435                           * the pool has completely failed. This allows
 431  436                           * the user to change the in-core failmode property
 432  437                           * without syncing it out to disk (I/Os might
 433  438                           * currently be blocked). We do this by returning
 434  439                           * EIO to the caller (spa_prop_set) to trick it
 435  440                           * into thinking we encountered a property validation
 436  441                           * error.
 437  442                           */
 438  443                          if (!error && spa_suspended(spa)) {
 439  444                                  spa->spa_failmode = intval;
 440  445                                  error = EIO;
 441  446                          }
 442  447                          break;
 443  448  
 444  449                  case ZPOOL_PROP_CACHEFILE:
 445  450                          if ((error = nvpair_value_string(elem, &strval)) != 0)
 446  451                                  break;
 447  452  
 448  453                          if (strval[0] == '\0')
 449  454                                  break;
 450  455  
 451  456                          if (strcmp(strval, "none") == 0)
 452  457                                  break;
 453  458  
 454  459                          if (strval[0] != '/') {
 455  460                                  error = EINVAL;
 456  461                                  break;
  
    | 
      ↓ open down ↓ | 
    99 lines elided | 
    
      ↑ open up ↑ | 
  
 457  462                          }
 458  463  
 459  464                          slash = strrchr(strval, '/');
 460  465                          ASSERT(slash != NULL);
 461  466  
 462  467                          if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
 463  468                              strcmp(slash, "/..") == 0)
 464  469                                  error = EINVAL;
 465  470                          break;
 466  471  
      472 +                case ZPOOL_PROP_COMMENT:
      473 +                        if ((error = nvpair_value_string(elem, &strval)) != 0)
      474 +                                break;
      475 +                        for (check = strval; *check != '\0'; check++) {
      476 +                                /*
      477 +                                 * The kernel doesn't have an easy isprint()
      478 +                                 * check.  For this kernel check, we merely
      479 +                                 * check ASCII apart from DEL.  Fix this if
      480 +                                 * there is an easy-to-use kernel isprint().
      481 +                                 */
      482 +                                if (*check >= 0x7f) {
      483 +                                        error = EINVAL;
      484 +                                        break;
      485 +                                }
      486 +                                check++;
      487 +                        }
      488 +                        if (strlen(strval) > ZPROP_MAX_COMMENT)
      489 +                                error = E2BIG;
      490 +                        break;
      491 +
 467  492                  case ZPOOL_PROP_DEDUPDITTO:
 468  493                          if (spa_version(spa) < SPA_VERSION_DEDUP)
 469  494                                  error = ENOTSUP;
 470  495                          else
 471  496                                  error = nvpair_value_uint64(elem, &intval);
 472  497                          if (error == 0 &&
 473  498                              intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
 474  499                                  error = EINVAL;
 475  500                          break;
 476  501                  }
 477  502  
 478  503                  if (error)
 479  504                          break;
 480  505          }
 481  506  
 482  507          if (!error && reset_bootfs) {
 483  508                  error = nvlist_remove(props,
 484  509                      zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
 485  510  
 486  511                  if (!error) {
 487  512                          error = nvlist_add_uint64(props,
 488  513                              zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
 489  514                  }
 490  515          }
 491  516  
 492  517          return (error);
 493  518  }
 494  519  
 495  520  void
 496  521  spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
 497  522  {
 498  523          char *cachefile;
 499  524          spa_config_dirent_t *dp;
 500  525  
 501  526          if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
 502  527              &cachefile) != 0)
 503  528                  return;
 504  529  
 505  530          dp = kmem_alloc(sizeof (spa_config_dirent_t),
 506  531              KM_SLEEP);
 507  532  
 508  533          if (cachefile[0] == '\0')
 509  534                  dp->scd_path = spa_strdup(spa_config_path);
 510  535          else if (strcmp(cachefile, "none") == 0)
 511  536                  dp->scd_path = NULL;
 512  537          else
 513  538                  dp->scd_path = spa_strdup(cachefile);
 514  539  
 515  540          list_insert_head(&spa->spa_config_list, dp);
 516  541          if (need_sync)
 517  542                  spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
 518  543  }
 519  544  
 520  545  int
 521  546  spa_prop_set(spa_t *spa, nvlist_t *nvp)
 522  547  {
 523  548          int error;
 524  549          nvpair_t *elem;
 525  550          boolean_t need_sync = B_FALSE;
 526  551          zpool_prop_t prop;
 527  552  
 528  553          if ((error = spa_prop_validate(spa, nvp)) != 0)
 529  554                  return (error);
 530  555  
 531  556          elem = NULL;
 532  557          while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
 533  558                  if ((prop = zpool_name_to_prop(
 534  559                      nvpair_name(elem))) == ZPROP_INVAL)
 535  560                          return (EINVAL);
 536  561  
 537  562                  if (prop == ZPOOL_PROP_CACHEFILE ||
 538  563                      prop == ZPOOL_PROP_ALTROOT ||
 539  564                      prop == ZPOOL_PROP_READONLY)
 540  565                          continue;
 541  566  
 542  567                  need_sync = B_TRUE;
 543  568                  break;
 544  569          }
 545  570  
 546  571          if (need_sync)
 547  572                  return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
 548  573                      spa, nvp, 3));
 549  574          else
 550  575                  return (0);
 551  576  }
 552  577  
 553  578  /*
 554  579   * If the bootfs property value is dsobj, clear it.
 555  580   */
 556  581  void
 557  582  spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
 558  583  {
 559  584          if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
 560  585                  VERIFY(zap_remove(spa->spa_meta_objset,
 561  586                      spa->spa_pool_props_object,
 562  587                      zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
 563  588                  spa->spa_bootfs = 0;
 564  589          }
 565  590  }
 566  591  
 567  592  /*
 568  593   * Change the GUID for the pool.  This is done so that we can later
 569  594   * re-import a pool built from a clone of our own vdevs.  We will modify
 570  595   * the root vdev's guid, our own pool guid, and then mark all of our
 571  596   * vdevs dirty.  Note that we must make sure that all our vdevs are
 572  597   * online when we do this, or else any vdevs that weren't present
 573  598   * would be orphaned from our pool.  We are also going to issue a
 574  599   * sysevent to update any watchers.
 575  600   */
 576  601  int
 577  602  spa_change_guid(spa_t *spa)
 578  603  {
 579  604          uint64_t        oldguid, newguid;
 580  605          uint64_t        txg;
 581  606  
 582  607          if (!(spa_mode_global & FWRITE))
 583  608                  return (EROFS);
 584  609  
 585  610          txg = spa_vdev_enter(spa);
 586  611  
 587  612          if (spa->spa_root_vdev->vdev_state != VDEV_STATE_HEALTHY)
 588  613                  return (spa_vdev_exit(spa, NULL, txg, ENXIO));
 589  614  
 590  615          oldguid = spa_guid(spa);
 591  616          newguid = spa_generate_guid(NULL);
 592  617          ASSERT3U(oldguid, !=, newguid);
 593  618  
 594  619          spa->spa_root_vdev->vdev_guid = newguid;
 595  620          spa->spa_root_vdev->vdev_guid_sum += (newguid - oldguid);
 596  621  
 597  622          vdev_config_dirty(spa->spa_root_vdev);
 598  623  
 599  624          spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
 600  625  
 601  626          return (spa_vdev_exit(spa, NULL, txg, 0));
 602  627  }
 603  628  
 604  629  /*
 605  630   * ==========================================================================
 606  631   * SPA state manipulation (open/create/destroy/import/export)
 607  632   * ==========================================================================
 608  633   */
 609  634  
 610  635  static int
 611  636  spa_error_entry_compare(const void *a, const void *b)
 612  637  {
 613  638          spa_error_entry_t *sa = (spa_error_entry_t *)a;
 614  639          spa_error_entry_t *sb = (spa_error_entry_t *)b;
 615  640          int ret;
 616  641  
 617  642          ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
 618  643              sizeof (zbookmark_t));
 619  644  
 620  645          if (ret < 0)
 621  646                  return (-1);
 622  647          else if (ret > 0)
 623  648                  return (1);
 624  649          else
 625  650                  return (0);
 626  651  }
 627  652  
 628  653  /*
 629  654   * Utility function which retrieves copies of the current logs and
 630  655   * re-initializes them in the process.
 631  656   */
 632  657  void
 633  658  spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
 634  659  {
 635  660          ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
 636  661  
 637  662          bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
 638  663          bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
 639  664  
 640  665          avl_create(&spa->spa_errlist_scrub,
 641  666              spa_error_entry_compare, sizeof (spa_error_entry_t),
 642  667              offsetof(spa_error_entry_t, se_avl));
 643  668          avl_create(&spa->spa_errlist_last,
 644  669              spa_error_entry_compare, sizeof (spa_error_entry_t),
 645  670              offsetof(spa_error_entry_t, se_avl));
 646  671  }
 647  672  
 648  673  static taskq_t *
 649  674  spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
 650  675      uint_t value)
 651  676  {
 652  677          uint_t flags = 0;
 653  678          boolean_t batch = B_FALSE;
 654  679  
 655  680          switch (mode) {
 656  681          case zti_mode_null:
 657  682                  return (NULL);          /* no taskq needed */
 658  683  
 659  684          case zti_mode_fixed:
 660  685                  ASSERT3U(value, >=, 1);
 661  686                  value = MAX(value, 1);
 662  687                  break;
 663  688  
 664  689          case zti_mode_batch:
 665  690                  batch = B_TRUE;
 666  691                  flags |= TASKQ_THREADS_CPU_PCT;
 667  692                  value = zio_taskq_batch_pct;
 668  693                  break;
 669  694  
 670  695          case zti_mode_online_percent:
 671  696                  flags |= TASKQ_THREADS_CPU_PCT;
 672  697                  break;
 673  698  
 674  699          default:
 675  700                  panic("unrecognized mode for %s taskq (%u:%u) in "
 676  701                      "spa_activate()",
 677  702                      name, mode, value);
 678  703                  break;
 679  704          }
 680  705  
 681  706          if (zio_taskq_sysdc && spa->spa_proc != &p0) {
 682  707                  if (batch)
 683  708                          flags |= TASKQ_DC_BATCH;
 684  709  
 685  710                  return (taskq_create_sysdc(name, value, 50, INT_MAX,
 686  711                      spa->spa_proc, zio_taskq_basedc, flags));
 687  712          }
 688  713          return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
 689  714              spa->spa_proc, flags));
 690  715  }
 691  716  
 692  717  static void
 693  718  spa_create_zio_taskqs(spa_t *spa)
 694  719  {
 695  720          for (int t = 0; t < ZIO_TYPES; t++) {
 696  721                  for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
 697  722                          const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
 698  723                          enum zti_modes mode = ztip->zti_mode;
 699  724                          uint_t value = ztip->zti_value;
 700  725                          char name[32];
 701  726  
 702  727                          (void) snprintf(name, sizeof (name),
 703  728                              "%s_%s", zio_type_name[t], zio_taskq_types[q]);
 704  729  
 705  730                          spa->spa_zio_taskq[t][q] =
 706  731                              spa_taskq_create(spa, name, mode, value);
 707  732                  }
 708  733          }
 709  734  }
 710  735  
 711  736  #ifdef _KERNEL
 712  737  static void
 713  738  spa_thread(void *arg)
 714  739  {
 715  740          callb_cpr_t cprinfo;
 716  741  
 717  742          spa_t *spa = arg;
 718  743          user_t *pu = PTOU(curproc);
 719  744  
 720  745          CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
 721  746              spa->spa_name);
 722  747  
 723  748          ASSERT(curproc != &p0);
 724  749          (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
 725  750              "zpool-%s", spa->spa_name);
 726  751          (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
 727  752  
 728  753          /* bind this thread to the requested psrset */
 729  754          if (zio_taskq_psrset_bind != PS_NONE) {
 730  755                  pool_lock();
 731  756                  mutex_enter(&cpu_lock);
 732  757                  mutex_enter(&pidlock);
 733  758                  mutex_enter(&curproc->p_lock);
 734  759  
 735  760                  if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
 736  761                      0, NULL, NULL) == 0)  {
 737  762                          curthread->t_bind_pset = zio_taskq_psrset_bind;
 738  763                  } else {
 739  764                          cmn_err(CE_WARN,
 740  765                              "Couldn't bind process for zfs pool \"%s\" to "
 741  766                              "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
 742  767                  }
 743  768  
 744  769                  mutex_exit(&curproc->p_lock);
 745  770                  mutex_exit(&pidlock);
 746  771                  mutex_exit(&cpu_lock);
 747  772                  pool_unlock();
 748  773          }
 749  774  
 750  775          if (zio_taskq_sysdc) {
 751  776                  sysdc_thread_enter(curthread, 100, 0);
 752  777          }
 753  778  
 754  779          spa->spa_proc = curproc;
 755  780          spa->spa_did = curthread->t_did;
 756  781  
 757  782          spa_create_zio_taskqs(spa);
 758  783  
 759  784          mutex_enter(&spa->spa_proc_lock);
 760  785          ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
 761  786  
 762  787          spa->spa_proc_state = SPA_PROC_ACTIVE;
 763  788          cv_broadcast(&spa->spa_proc_cv);
 764  789  
 765  790          CALLB_CPR_SAFE_BEGIN(&cprinfo);
 766  791          while (spa->spa_proc_state == SPA_PROC_ACTIVE)
 767  792                  cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
 768  793          CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
 769  794  
 770  795          ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
 771  796          spa->spa_proc_state = SPA_PROC_GONE;
 772  797          spa->spa_proc = &p0;
 773  798          cv_broadcast(&spa->spa_proc_cv);
 774  799          CALLB_CPR_EXIT(&cprinfo);       /* drops spa_proc_lock */
 775  800  
 776  801          mutex_enter(&curproc->p_lock);
 777  802          lwp_exit();
 778  803  }
 779  804  #endif
 780  805  
 781  806  /*
 782  807   * Activate an uninitialized pool.
 783  808   */
 784  809  static void
 785  810  spa_activate(spa_t *spa, int mode)
 786  811  {
 787  812          ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
 788  813  
 789  814          spa->spa_state = POOL_STATE_ACTIVE;
 790  815          spa->spa_mode = mode;
 791  816  
 792  817          spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
 793  818          spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
 794  819  
 795  820          /* Try to create a covering process */
 796  821          mutex_enter(&spa->spa_proc_lock);
 797  822          ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
 798  823          ASSERT(spa->spa_proc == &p0);
 799  824          spa->spa_did = 0;
 800  825  
 801  826          /* Only create a process if we're going to be around a while. */
 802  827          if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
 803  828                  if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
 804  829                      NULL, 0) == 0) {
 805  830                          spa->spa_proc_state = SPA_PROC_CREATED;
 806  831                          while (spa->spa_proc_state == SPA_PROC_CREATED) {
 807  832                                  cv_wait(&spa->spa_proc_cv,
 808  833                                      &spa->spa_proc_lock);
 809  834                          }
 810  835                          ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
 811  836                          ASSERT(spa->spa_proc != &p0);
 812  837                          ASSERT(spa->spa_did != 0);
 813  838                  } else {
 814  839  #ifdef _KERNEL
 815  840                          cmn_err(CE_WARN,
 816  841                              "Couldn't create process for zfs pool \"%s\"\n",
 817  842                              spa->spa_name);
 818  843  #endif
 819  844                  }
 820  845          }
 821  846          mutex_exit(&spa->spa_proc_lock);
 822  847  
 823  848          /* If we didn't create a process, we need to create our taskqs. */
 824  849          if (spa->spa_proc == &p0) {
 825  850                  spa_create_zio_taskqs(spa);
 826  851          }
 827  852  
 828  853          list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
 829  854              offsetof(vdev_t, vdev_config_dirty_node));
 830  855          list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
 831  856              offsetof(vdev_t, vdev_state_dirty_node));
 832  857  
 833  858          txg_list_create(&spa->spa_vdev_txg_list,
 834  859              offsetof(struct vdev, vdev_txg_node));
 835  860  
 836  861          avl_create(&spa->spa_errlist_scrub,
 837  862              spa_error_entry_compare, sizeof (spa_error_entry_t),
 838  863              offsetof(spa_error_entry_t, se_avl));
 839  864          avl_create(&spa->spa_errlist_last,
 840  865              spa_error_entry_compare, sizeof (spa_error_entry_t),
 841  866              offsetof(spa_error_entry_t, se_avl));
 842  867  }
 843  868  
 844  869  /*
 845  870   * Opposite of spa_activate().
 846  871   */
 847  872  static void
 848  873  spa_deactivate(spa_t *spa)
 849  874  {
 850  875          ASSERT(spa->spa_sync_on == B_FALSE);
 851  876          ASSERT(spa->spa_dsl_pool == NULL);
 852  877          ASSERT(spa->spa_root_vdev == NULL);
 853  878          ASSERT(spa->spa_async_zio_root == NULL);
 854  879          ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
 855  880  
 856  881          txg_list_destroy(&spa->spa_vdev_txg_list);
 857  882  
 858  883          list_destroy(&spa->spa_config_dirty_list);
 859  884          list_destroy(&spa->spa_state_dirty_list);
 860  885  
 861  886          for (int t = 0; t < ZIO_TYPES; t++) {
 862  887                  for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
 863  888                          if (spa->spa_zio_taskq[t][q] != NULL)
 864  889                                  taskq_destroy(spa->spa_zio_taskq[t][q]);
 865  890                          spa->spa_zio_taskq[t][q] = NULL;
 866  891                  }
 867  892          }
 868  893  
 869  894          metaslab_class_destroy(spa->spa_normal_class);
 870  895          spa->spa_normal_class = NULL;
 871  896  
 872  897          metaslab_class_destroy(spa->spa_log_class);
 873  898          spa->spa_log_class = NULL;
 874  899  
 875  900          /*
 876  901           * If this was part of an import or the open otherwise failed, we may
 877  902           * still have errors left in the queues.  Empty them just in case.
 878  903           */
 879  904          spa_errlog_drain(spa);
 880  905  
 881  906          avl_destroy(&spa->spa_errlist_scrub);
 882  907          avl_destroy(&spa->spa_errlist_last);
 883  908  
 884  909          spa->spa_state = POOL_STATE_UNINITIALIZED;
 885  910  
 886  911          mutex_enter(&spa->spa_proc_lock);
 887  912          if (spa->spa_proc_state != SPA_PROC_NONE) {
 888  913                  ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
 889  914                  spa->spa_proc_state = SPA_PROC_DEACTIVATE;
 890  915                  cv_broadcast(&spa->spa_proc_cv);
 891  916                  while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
 892  917                          ASSERT(spa->spa_proc != &p0);
 893  918                          cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
 894  919                  }
 895  920                  ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
 896  921                  spa->spa_proc_state = SPA_PROC_NONE;
 897  922          }
 898  923          ASSERT(spa->spa_proc == &p0);
 899  924          mutex_exit(&spa->spa_proc_lock);
 900  925  
 901  926          /*
 902  927           * We want to make sure spa_thread() has actually exited the ZFS
 903  928           * module, so that the module can't be unloaded out from underneath
 904  929           * it.
 905  930           */
 906  931          if (spa->spa_did != 0) {
 907  932                  thread_join(spa->spa_did);
 908  933                  spa->spa_did = 0;
 909  934          }
 910  935  }
 911  936  
 912  937  /*
 913  938   * Verify a pool configuration, and construct the vdev tree appropriately.  This
 914  939   * will create all the necessary vdevs in the appropriate layout, with each vdev
 915  940   * in the CLOSED state.  This will prep the pool before open/creation/import.
 916  941   * All vdev validation is done by the vdev_alloc() routine.
 917  942   */
 918  943  static int
 919  944  spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
 920  945      uint_t id, int atype)
 921  946  {
 922  947          nvlist_t **child;
 923  948          uint_t children;
 924  949          int error;
 925  950  
 926  951          if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
 927  952                  return (error);
 928  953  
 929  954          if ((*vdp)->vdev_ops->vdev_op_leaf)
 930  955                  return (0);
 931  956  
 932  957          error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
 933  958              &child, &children);
 934  959  
 935  960          if (error == ENOENT)
 936  961                  return (0);
 937  962  
 938  963          if (error) {
 939  964                  vdev_free(*vdp);
 940  965                  *vdp = NULL;
 941  966                  return (EINVAL);
 942  967          }
 943  968  
 944  969          for (int c = 0; c < children; c++) {
 945  970                  vdev_t *vd;
 946  971                  if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
 947  972                      atype)) != 0) {
 948  973                          vdev_free(*vdp);
 949  974                          *vdp = NULL;
 950  975                          return (error);
 951  976                  }
 952  977          }
 953  978  
 954  979          ASSERT(*vdp != NULL);
 955  980  
 956  981          return (0);
 957  982  }
 958  983  
 959  984  /*
 960  985   * Opposite of spa_load().
 961  986   */
 962  987  static void
 963  988  spa_unload(spa_t *spa)
 964  989  {
 965  990          int i;
 966  991  
 967  992          ASSERT(MUTEX_HELD(&spa_namespace_lock));
 968  993  
 969  994          /*
 970  995           * Stop async tasks.
 971  996           */
 972  997          spa_async_suspend(spa);
 973  998  
 974  999          /*
 975 1000           * Stop syncing.
 976 1001           */
 977 1002          if (spa->spa_sync_on) {
 978 1003                  txg_sync_stop(spa->spa_dsl_pool);
 979 1004                  spa->spa_sync_on = B_FALSE;
 980 1005          }
 981 1006  
 982 1007          /*
 983 1008           * Wait for any outstanding async I/O to complete.
 984 1009           */
 985 1010          if (spa->spa_async_zio_root != NULL) {
 986 1011                  (void) zio_wait(spa->spa_async_zio_root);
 987 1012                  spa->spa_async_zio_root = NULL;
 988 1013          }
 989 1014  
 990 1015          bpobj_close(&spa->spa_deferred_bpobj);
 991 1016  
 992 1017          /*
 993 1018           * Close the dsl pool.
 994 1019           */
 995 1020          if (spa->spa_dsl_pool) {
 996 1021                  dsl_pool_close(spa->spa_dsl_pool);
 997 1022                  spa->spa_dsl_pool = NULL;
 998 1023                  spa->spa_meta_objset = NULL;
 999 1024          }
1000 1025  
1001 1026          ddt_unload(spa);
1002 1027  
1003 1028          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1004 1029  
1005 1030          /*
1006 1031           * Drop and purge level 2 cache
1007 1032           */
1008 1033          spa_l2cache_drop(spa);
1009 1034  
1010 1035          /*
1011 1036           * Close all vdevs.
1012 1037           */
1013 1038          if (spa->spa_root_vdev)
1014 1039                  vdev_free(spa->spa_root_vdev);
1015 1040          ASSERT(spa->spa_root_vdev == NULL);
1016 1041  
1017 1042          for (i = 0; i < spa->spa_spares.sav_count; i++)
1018 1043                  vdev_free(spa->spa_spares.sav_vdevs[i]);
1019 1044          if (spa->spa_spares.sav_vdevs) {
1020 1045                  kmem_free(spa->spa_spares.sav_vdevs,
1021 1046                      spa->spa_spares.sav_count * sizeof (void *));
1022 1047                  spa->spa_spares.sav_vdevs = NULL;
1023 1048          }
1024 1049          if (spa->spa_spares.sav_config) {
1025 1050                  nvlist_free(spa->spa_spares.sav_config);
1026 1051                  spa->spa_spares.sav_config = NULL;
1027 1052          }
1028 1053          spa->spa_spares.sav_count = 0;
1029 1054  
1030 1055          for (i = 0; i < spa->spa_l2cache.sav_count; i++)
1031 1056                  vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1032 1057          if (spa->spa_l2cache.sav_vdevs) {
1033 1058                  kmem_free(spa->spa_l2cache.sav_vdevs,
1034 1059                      spa->spa_l2cache.sav_count * sizeof (void *));
  
    | 
      ↓ open down ↓ | 
    558 lines elided | 
    
      ↑ open up ↑ | 
  
1035 1060                  spa->spa_l2cache.sav_vdevs = NULL;
1036 1061          }
1037 1062          if (spa->spa_l2cache.sav_config) {
1038 1063                  nvlist_free(spa->spa_l2cache.sav_config);
1039 1064                  spa->spa_l2cache.sav_config = NULL;
1040 1065          }
1041 1066          spa->spa_l2cache.sav_count = 0;
1042 1067  
1043 1068          spa->spa_async_suspended = 0;
1044 1069  
     1070 +        if (spa->spa_comment != NULL) {
     1071 +                spa_strfree(spa->spa_comment);
     1072 +                spa->spa_comment = NULL;
     1073 +        }
     1074 +
1045 1075          spa_config_exit(spa, SCL_ALL, FTAG);
1046 1076  }
1047 1077  
1048 1078  /*
1049 1079   * Load (or re-load) the current list of vdevs describing the active spares for
1050 1080   * this pool.  When this is called, we have some form of basic information in
1051 1081   * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1052 1082   * then re-generate a more complete list including status information.
1053 1083   */
1054 1084  static void
1055 1085  spa_load_spares(spa_t *spa)
1056 1086  {
1057 1087          nvlist_t **spares;
1058 1088          uint_t nspares;
1059 1089          int i;
1060 1090          vdev_t *vd, *tvd;
1061 1091  
1062 1092          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1063 1093  
1064 1094          /*
1065 1095           * First, close and free any existing spare vdevs.
1066 1096           */
1067 1097          for (i = 0; i < spa->spa_spares.sav_count; i++) {
1068 1098                  vd = spa->spa_spares.sav_vdevs[i];
1069 1099  
1070 1100                  /* Undo the call to spa_activate() below */
1071 1101                  if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1072 1102                      B_FALSE)) != NULL && tvd->vdev_isspare)
1073 1103                          spa_spare_remove(tvd);
1074 1104                  vdev_close(vd);
1075 1105                  vdev_free(vd);
1076 1106          }
1077 1107  
1078 1108          if (spa->spa_spares.sav_vdevs)
1079 1109                  kmem_free(spa->spa_spares.sav_vdevs,
1080 1110                      spa->spa_spares.sav_count * sizeof (void *));
1081 1111  
1082 1112          if (spa->spa_spares.sav_config == NULL)
1083 1113                  nspares = 0;
1084 1114          else
1085 1115                  VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1086 1116                      ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1087 1117  
1088 1118          spa->spa_spares.sav_count = (int)nspares;
1089 1119          spa->spa_spares.sav_vdevs = NULL;
1090 1120  
1091 1121          if (nspares == 0)
1092 1122                  return;
1093 1123  
1094 1124          /*
1095 1125           * Construct the array of vdevs, opening them to get status in the
1096 1126           * process.   For each spare, there is potentially two different vdev_t
1097 1127           * structures associated with it: one in the list of spares (used only
1098 1128           * for basic validation purposes) and one in the active vdev
1099 1129           * configuration (if it's spared in).  During this phase we open and
1100 1130           * validate each vdev on the spare list.  If the vdev also exists in the
1101 1131           * active configuration, then we also mark this vdev as an active spare.
1102 1132           */
1103 1133          spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1104 1134              KM_SLEEP);
1105 1135          for (i = 0; i < spa->spa_spares.sav_count; i++) {
1106 1136                  VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1107 1137                      VDEV_ALLOC_SPARE) == 0);
1108 1138                  ASSERT(vd != NULL);
1109 1139  
1110 1140                  spa->spa_spares.sav_vdevs[i] = vd;
1111 1141  
1112 1142                  if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1113 1143                      B_FALSE)) != NULL) {
1114 1144                          if (!tvd->vdev_isspare)
1115 1145                                  spa_spare_add(tvd);
1116 1146  
1117 1147                          /*
1118 1148                           * We only mark the spare active if we were successfully
1119 1149                           * able to load the vdev.  Otherwise, importing a pool
1120 1150                           * with a bad active spare would result in strange
1121 1151                           * behavior, because multiple pool would think the spare
1122 1152                           * is actively in use.
1123 1153                           *
1124 1154                           * There is a vulnerability here to an equally bizarre
1125 1155                           * circumstance, where a dead active spare is later
1126 1156                           * brought back to life (onlined or otherwise).  Given
1127 1157                           * the rarity of this scenario, and the extra complexity
1128 1158                           * it adds, we ignore the possibility.
1129 1159                           */
1130 1160                          if (!vdev_is_dead(tvd))
1131 1161                                  spa_spare_activate(tvd);
1132 1162                  }
1133 1163  
1134 1164                  vd->vdev_top = vd;
1135 1165                  vd->vdev_aux = &spa->spa_spares;
1136 1166  
1137 1167                  if (vdev_open(vd) != 0)
1138 1168                          continue;
1139 1169  
1140 1170                  if (vdev_validate_aux(vd) == 0)
1141 1171                          spa_spare_add(vd);
1142 1172          }
1143 1173  
1144 1174          /*
1145 1175           * Recompute the stashed list of spares, with status information
1146 1176           * this time.
1147 1177           */
1148 1178          VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1149 1179              DATA_TYPE_NVLIST_ARRAY) == 0);
1150 1180  
1151 1181          spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1152 1182              KM_SLEEP);
1153 1183          for (i = 0; i < spa->spa_spares.sav_count; i++)
1154 1184                  spares[i] = vdev_config_generate(spa,
1155 1185                      spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1156 1186          VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1157 1187              ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1158 1188          for (i = 0; i < spa->spa_spares.sav_count; i++)
1159 1189                  nvlist_free(spares[i]);
1160 1190          kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1161 1191  }
1162 1192  
1163 1193  /*
1164 1194   * Load (or re-load) the current list of vdevs describing the active l2cache for
1165 1195   * this pool.  When this is called, we have some form of basic information in
1166 1196   * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1167 1197   * then re-generate a more complete list including status information.
1168 1198   * Devices which are already active have their details maintained, and are
1169 1199   * not re-opened.
1170 1200   */
1171 1201  static void
1172 1202  spa_load_l2cache(spa_t *spa)
1173 1203  {
1174 1204          nvlist_t **l2cache;
1175 1205          uint_t nl2cache;
1176 1206          int i, j, oldnvdevs;
1177 1207          uint64_t guid;
1178 1208          vdev_t *vd, **oldvdevs, **newvdevs;
1179 1209          spa_aux_vdev_t *sav = &spa->spa_l2cache;
1180 1210  
1181 1211          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1182 1212  
1183 1213          if (sav->sav_config != NULL) {
1184 1214                  VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1185 1215                      ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1186 1216                  newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1187 1217          } else {
1188 1218                  nl2cache = 0;
1189 1219          }
1190 1220  
1191 1221          oldvdevs = sav->sav_vdevs;
1192 1222          oldnvdevs = sav->sav_count;
1193 1223          sav->sav_vdevs = NULL;
1194 1224          sav->sav_count = 0;
1195 1225  
1196 1226          /*
1197 1227           * Process new nvlist of vdevs.
1198 1228           */
1199 1229          for (i = 0; i < nl2cache; i++) {
1200 1230                  VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1201 1231                      &guid) == 0);
1202 1232  
1203 1233                  newvdevs[i] = NULL;
1204 1234                  for (j = 0; j < oldnvdevs; j++) {
1205 1235                          vd = oldvdevs[j];
1206 1236                          if (vd != NULL && guid == vd->vdev_guid) {
1207 1237                                  /*
1208 1238                                   * Retain previous vdev for add/remove ops.
1209 1239                                   */
1210 1240                                  newvdevs[i] = vd;
1211 1241                                  oldvdevs[j] = NULL;
1212 1242                                  break;
1213 1243                          }
1214 1244                  }
1215 1245  
1216 1246                  if (newvdevs[i] == NULL) {
1217 1247                          /*
1218 1248                           * Create new vdev
1219 1249                           */
1220 1250                          VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1221 1251                              VDEV_ALLOC_L2CACHE) == 0);
1222 1252                          ASSERT(vd != NULL);
1223 1253                          newvdevs[i] = vd;
1224 1254  
1225 1255                          /*
1226 1256                           * Commit this vdev as an l2cache device,
1227 1257                           * even if it fails to open.
1228 1258                           */
1229 1259                          spa_l2cache_add(vd);
1230 1260  
1231 1261                          vd->vdev_top = vd;
1232 1262                          vd->vdev_aux = sav;
1233 1263  
1234 1264                          spa_l2cache_activate(vd);
1235 1265  
1236 1266                          if (vdev_open(vd) != 0)
1237 1267                                  continue;
1238 1268  
1239 1269                          (void) vdev_validate_aux(vd);
1240 1270  
1241 1271                          if (!vdev_is_dead(vd))
1242 1272                                  l2arc_add_vdev(spa, vd);
1243 1273                  }
1244 1274          }
1245 1275  
1246 1276          /*
1247 1277           * Purge vdevs that were dropped
1248 1278           */
1249 1279          for (i = 0; i < oldnvdevs; i++) {
1250 1280                  uint64_t pool;
1251 1281  
1252 1282                  vd = oldvdevs[i];
1253 1283                  if (vd != NULL) {
1254 1284                          if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1255 1285                              pool != 0ULL && l2arc_vdev_present(vd))
1256 1286                                  l2arc_remove_vdev(vd);
1257 1287                          (void) vdev_close(vd);
1258 1288                          spa_l2cache_remove(vd);
1259 1289                  }
1260 1290          }
1261 1291  
1262 1292          if (oldvdevs)
1263 1293                  kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1264 1294  
1265 1295          if (sav->sav_config == NULL)
1266 1296                  goto out;
1267 1297  
1268 1298          sav->sav_vdevs = newvdevs;
1269 1299          sav->sav_count = (int)nl2cache;
1270 1300  
1271 1301          /*
1272 1302           * Recompute the stashed list of l2cache devices, with status
1273 1303           * information this time.
1274 1304           */
1275 1305          VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1276 1306              DATA_TYPE_NVLIST_ARRAY) == 0);
1277 1307  
1278 1308          l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1279 1309          for (i = 0; i < sav->sav_count; i++)
1280 1310                  l2cache[i] = vdev_config_generate(spa,
1281 1311                      sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1282 1312          VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1283 1313              ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1284 1314  out:
1285 1315          for (i = 0; i < sav->sav_count; i++)
1286 1316                  nvlist_free(l2cache[i]);
1287 1317          if (sav->sav_count)
1288 1318                  kmem_free(l2cache, sav->sav_count * sizeof (void *));
1289 1319  }
1290 1320  
1291 1321  static int
1292 1322  load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1293 1323  {
1294 1324          dmu_buf_t *db;
1295 1325          char *packed = NULL;
1296 1326          size_t nvsize = 0;
1297 1327          int error;
1298 1328          *value = NULL;
1299 1329  
1300 1330          VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1301 1331          nvsize = *(uint64_t *)db->db_data;
1302 1332          dmu_buf_rele(db, FTAG);
1303 1333  
1304 1334          packed = kmem_alloc(nvsize, KM_SLEEP);
1305 1335          error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1306 1336              DMU_READ_PREFETCH);
1307 1337          if (error == 0)
1308 1338                  error = nvlist_unpack(packed, nvsize, value, 0);
1309 1339          kmem_free(packed, nvsize);
1310 1340  
1311 1341          return (error);
1312 1342  }
1313 1343  
1314 1344  /*
1315 1345   * Checks to see if the given vdev could not be opened, in which case we post a
1316 1346   * sysevent to notify the autoreplace code that the device has been removed.
1317 1347   */
1318 1348  static void
1319 1349  spa_check_removed(vdev_t *vd)
1320 1350  {
1321 1351          for (int c = 0; c < vd->vdev_children; c++)
1322 1352                  spa_check_removed(vd->vdev_child[c]);
1323 1353  
1324 1354          if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1325 1355                  zfs_post_autoreplace(vd->vdev_spa, vd);
1326 1356                  spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1327 1357          }
1328 1358  }
1329 1359  
1330 1360  /*
1331 1361   * Validate the current config against the MOS config
1332 1362   */
1333 1363  static boolean_t
1334 1364  spa_config_valid(spa_t *spa, nvlist_t *config)
1335 1365  {
1336 1366          vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1337 1367          nvlist_t *nv;
1338 1368  
1339 1369          VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1340 1370  
1341 1371          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1342 1372          VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1343 1373  
1344 1374          ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1345 1375  
1346 1376          /*
1347 1377           * If we're doing a normal import, then build up any additional
1348 1378           * diagnostic information about missing devices in this config.
1349 1379           * We'll pass this up to the user for further processing.
1350 1380           */
1351 1381          if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1352 1382                  nvlist_t **child, *nv;
1353 1383                  uint64_t idx = 0;
1354 1384  
1355 1385                  child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1356 1386                      KM_SLEEP);
1357 1387                  VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1358 1388  
1359 1389                  for (int c = 0; c < rvd->vdev_children; c++) {
1360 1390                          vdev_t *tvd = rvd->vdev_child[c];
1361 1391                          vdev_t *mtvd  = mrvd->vdev_child[c];
1362 1392  
1363 1393                          if (tvd->vdev_ops == &vdev_missing_ops &&
1364 1394                              mtvd->vdev_ops != &vdev_missing_ops &&
1365 1395                              mtvd->vdev_islog)
1366 1396                                  child[idx++] = vdev_config_generate(spa, mtvd,
1367 1397                                      B_FALSE, 0);
1368 1398                  }
1369 1399  
1370 1400                  if (idx) {
1371 1401                          VERIFY(nvlist_add_nvlist_array(nv,
1372 1402                              ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1373 1403                          VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1374 1404                              ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1375 1405  
1376 1406                          for (int i = 0; i < idx; i++)
1377 1407                                  nvlist_free(child[i]);
1378 1408                  }
1379 1409                  nvlist_free(nv);
1380 1410                  kmem_free(child, rvd->vdev_children * sizeof (char **));
1381 1411          }
1382 1412  
1383 1413          /*
1384 1414           * Compare the root vdev tree with the information we have
1385 1415           * from the MOS config (mrvd). Check each top-level vdev
1386 1416           * with the corresponding MOS config top-level (mtvd).
1387 1417           */
1388 1418          for (int c = 0; c < rvd->vdev_children; c++) {
1389 1419                  vdev_t *tvd = rvd->vdev_child[c];
1390 1420                  vdev_t *mtvd  = mrvd->vdev_child[c];
1391 1421  
1392 1422                  /*
1393 1423                   * Resolve any "missing" vdevs in the current configuration.
1394 1424                   * If we find that the MOS config has more accurate information
1395 1425                   * about the top-level vdev then use that vdev instead.
1396 1426                   */
1397 1427                  if (tvd->vdev_ops == &vdev_missing_ops &&
1398 1428                      mtvd->vdev_ops != &vdev_missing_ops) {
1399 1429  
1400 1430                          if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1401 1431                                  continue;
1402 1432  
1403 1433                          /*
1404 1434                           * Device specific actions.
1405 1435                           */
1406 1436                          if (mtvd->vdev_islog) {
1407 1437                                  spa_set_log_state(spa, SPA_LOG_CLEAR);
1408 1438                          } else {
1409 1439                                  /*
1410 1440                                   * XXX - once we have 'readonly' pool
1411 1441                                   * support we should be able to handle
1412 1442                                   * missing data devices by transitioning
1413 1443                                   * the pool to readonly.
1414 1444                                   */
1415 1445                                  continue;
1416 1446                          }
1417 1447  
1418 1448                          /*
1419 1449                           * Swap the missing vdev with the data we were
1420 1450                           * able to obtain from the MOS config.
1421 1451                           */
1422 1452                          vdev_remove_child(rvd, tvd);
1423 1453                          vdev_remove_child(mrvd, mtvd);
1424 1454  
1425 1455                          vdev_add_child(rvd, mtvd);
1426 1456                          vdev_add_child(mrvd, tvd);
1427 1457  
1428 1458                          spa_config_exit(spa, SCL_ALL, FTAG);
1429 1459                          vdev_load(mtvd);
1430 1460                          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1431 1461  
1432 1462                          vdev_reopen(rvd);
1433 1463                  } else if (mtvd->vdev_islog) {
1434 1464                          /*
1435 1465                           * Load the slog device's state from the MOS config
1436 1466                           * since it's possible that the label does not
1437 1467                           * contain the most up-to-date information.
1438 1468                           */
1439 1469                          vdev_load_log_state(tvd, mtvd);
1440 1470                          vdev_reopen(tvd);
1441 1471                  }
1442 1472          }
1443 1473          vdev_free(mrvd);
1444 1474          spa_config_exit(spa, SCL_ALL, FTAG);
1445 1475  
1446 1476          /*
1447 1477           * Ensure we were able to validate the config.
1448 1478           */
1449 1479          return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1450 1480  }
1451 1481  
1452 1482  /*
1453 1483   * Check for missing log devices
1454 1484   */
1455 1485  static int
1456 1486  spa_check_logs(spa_t *spa)
1457 1487  {
1458 1488          switch (spa->spa_log_state) {
1459 1489          case SPA_LOG_MISSING:
1460 1490                  /* need to recheck in case slog has been restored */
1461 1491          case SPA_LOG_UNKNOWN:
1462 1492                  if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1463 1493                      DS_FIND_CHILDREN)) {
1464 1494                          spa_set_log_state(spa, SPA_LOG_MISSING);
1465 1495                          return (1);
1466 1496                  }
1467 1497                  break;
1468 1498          }
1469 1499          return (0);
1470 1500  }
1471 1501  
1472 1502  static boolean_t
1473 1503  spa_passivate_log(spa_t *spa)
1474 1504  {
1475 1505          vdev_t *rvd = spa->spa_root_vdev;
1476 1506          boolean_t slog_found = B_FALSE;
1477 1507  
1478 1508          ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1479 1509  
1480 1510          if (!spa_has_slogs(spa))
1481 1511                  return (B_FALSE);
1482 1512  
1483 1513          for (int c = 0; c < rvd->vdev_children; c++) {
1484 1514                  vdev_t *tvd = rvd->vdev_child[c];
1485 1515                  metaslab_group_t *mg = tvd->vdev_mg;
1486 1516  
1487 1517                  if (tvd->vdev_islog) {
1488 1518                          metaslab_group_passivate(mg);
1489 1519                          slog_found = B_TRUE;
1490 1520                  }
1491 1521          }
1492 1522  
1493 1523          return (slog_found);
1494 1524  }
1495 1525  
1496 1526  static void
1497 1527  spa_activate_log(spa_t *spa)
1498 1528  {
1499 1529          vdev_t *rvd = spa->spa_root_vdev;
1500 1530  
1501 1531          ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1502 1532  
1503 1533          for (int c = 0; c < rvd->vdev_children; c++) {
1504 1534                  vdev_t *tvd = rvd->vdev_child[c];
1505 1535                  metaslab_group_t *mg = tvd->vdev_mg;
1506 1536  
1507 1537                  if (tvd->vdev_islog)
1508 1538                          metaslab_group_activate(mg);
1509 1539          }
1510 1540  }
1511 1541  
1512 1542  int
1513 1543  spa_offline_log(spa_t *spa)
1514 1544  {
1515 1545          int error = 0;
1516 1546  
1517 1547          if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1518 1548              NULL, DS_FIND_CHILDREN)) == 0) {
1519 1549  
1520 1550                  /*
1521 1551                   * We successfully offlined the log device, sync out the
1522 1552                   * current txg so that the "stubby" block can be removed
1523 1553                   * by zil_sync().
1524 1554                   */
1525 1555                  txg_wait_synced(spa->spa_dsl_pool, 0);
1526 1556          }
1527 1557          return (error);
1528 1558  }
1529 1559  
1530 1560  static void
1531 1561  spa_aux_check_removed(spa_aux_vdev_t *sav)
1532 1562  {
1533 1563          for (int i = 0; i < sav->sav_count; i++)
1534 1564                  spa_check_removed(sav->sav_vdevs[i]);
1535 1565  }
1536 1566  
1537 1567  void
1538 1568  spa_claim_notify(zio_t *zio)
1539 1569  {
1540 1570          spa_t *spa = zio->io_spa;
1541 1571  
1542 1572          if (zio->io_error)
1543 1573                  return;
1544 1574  
1545 1575          mutex_enter(&spa->spa_props_lock);      /* any mutex will do */
1546 1576          if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1547 1577                  spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1548 1578          mutex_exit(&spa->spa_props_lock);
1549 1579  }
1550 1580  
1551 1581  typedef struct spa_load_error {
1552 1582          uint64_t        sle_meta_count;
1553 1583          uint64_t        sle_data_count;
1554 1584  } spa_load_error_t;
1555 1585  
1556 1586  static void
1557 1587  spa_load_verify_done(zio_t *zio)
1558 1588  {
1559 1589          blkptr_t *bp = zio->io_bp;
1560 1590          spa_load_error_t *sle = zio->io_private;
1561 1591          dmu_object_type_t type = BP_GET_TYPE(bp);
1562 1592          int error = zio->io_error;
1563 1593  
1564 1594          if (error) {
1565 1595                  if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1566 1596                      type != DMU_OT_INTENT_LOG)
1567 1597                          atomic_add_64(&sle->sle_meta_count, 1);
1568 1598                  else
1569 1599                          atomic_add_64(&sle->sle_data_count, 1);
1570 1600          }
1571 1601          zio_data_buf_free(zio->io_data, zio->io_size);
1572 1602  }
1573 1603  
1574 1604  /*ARGSUSED*/
1575 1605  static int
1576 1606  spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1577 1607      arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1578 1608  {
1579 1609          if (bp != NULL) {
1580 1610                  zio_t *rio = arg;
1581 1611                  size_t size = BP_GET_PSIZE(bp);
1582 1612                  void *data = zio_data_buf_alloc(size);
1583 1613  
1584 1614                  zio_nowait(zio_read(rio, spa, bp, data, size,
1585 1615                      spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1586 1616                      ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1587 1617                      ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1588 1618          }
1589 1619          return (0);
1590 1620  }
1591 1621  
1592 1622  static int
1593 1623  spa_load_verify(spa_t *spa)
1594 1624  {
1595 1625          zio_t *rio;
1596 1626          spa_load_error_t sle = { 0 };
1597 1627          zpool_rewind_policy_t policy;
1598 1628          boolean_t verify_ok = B_FALSE;
1599 1629          int error;
1600 1630  
1601 1631          zpool_get_rewind_policy(spa->spa_config, &policy);
1602 1632  
1603 1633          if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1604 1634                  return (0);
1605 1635  
1606 1636          rio = zio_root(spa, NULL, &sle,
1607 1637              ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1608 1638  
1609 1639          error = traverse_pool(spa, spa->spa_verify_min_txg,
1610 1640              TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1611 1641  
1612 1642          (void) zio_wait(rio);
1613 1643  
1614 1644          spa->spa_load_meta_errors = sle.sle_meta_count;
1615 1645          spa->spa_load_data_errors = sle.sle_data_count;
1616 1646  
1617 1647          if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1618 1648              sle.sle_data_count <= policy.zrp_maxdata) {
1619 1649                  int64_t loss = 0;
1620 1650  
1621 1651                  verify_ok = B_TRUE;
1622 1652                  spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1623 1653                  spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1624 1654  
1625 1655                  loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1626 1656                  VERIFY(nvlist_add_uint64(spa->spa_load_info,
1627 1657                      ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1628 1658                  VERIFY(nvlist_add_int64(spa->spa_load_info,
1629 1659                      ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1630 1660                  VERIFY(nvlist_add_uint64(spa->spa_load_info,
1631 1661                      ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1632 1662          } else {
1633 1663                  spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1634 1664          }
1635 1665  
1636 1666          if (error) {
1637 1667                  if (error != ENXIO && error != EIO)
1638 1668                          error = EIO;
1639 1669                  return (error);
1640 1670          }
1641 1671  
1642 1672          return (verify_ok ? 0 : EIO);
1643 1673  }
1644 1674  
1645 1675  /*
1646 1676   * Find a value in the pool props object.
1647 1677   */
1648 1678  static void
1649 1679  spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1650 1680  {
1651 1681          (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1652 1682              zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1653 1683  }
1654 1684  
1655 1685  /*
1656 1686   * Find a value in the pool directory object.
1657 1687   */
1658 1688  static int
1659 1689  spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1660 1690  {
1661 1691          return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1662 1692              name, sizeof (uint64_t), 1, val));
1663 1693  }
1664 1694  
1665 1695  static int
1666 1696  spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1667 1697  {
1668 1698          vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1669 1699          return (err);
1670 1700  }
1671 1701  
1672 1702  /*
1673 1703   * Fix up config after a partly-completed split.  This is done with the
1674 1704   * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1675 1705   * pool have that entry in their config, but only the splitting one contains
1676 1706   * a list of all the guids of the vdevs that are being split off.
1677 1707   *
1678 1708   * This function determines what to do with that list: either rejoin
1679 1709   * all the disks to the pool, or complete the splitting process.  To attempt
1680 1710   * the rejoin, each disk that is offlined is marked online again, and
1681 1711   * we do a reopen() call.  If the vdev label for every disk that was
1682 1712   * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1683 1713   * then we call vdev_split() on each disk, and complete the split.
1684 1714   *
1685 1715   * Otherwise we leave the config alone, with all the vdevs in place in
1686 1716   * the original pool.
1687 1717   */
1688 1718  static void
1689 1719  spa_try_repair(spa_t *spa, nvlist_t *config)
1690 1720  {
1691 1721          uint_t extracted;
1692 1722          uint64_t *glist;
1693 1723          uint_t i, gcount;
1694 1724          nvlist_t *nvl;
1695 1725          vdev_t **vd;
1696 1726          boolean_t attempt_reopen;
1697 1727  
1698 1728          if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1699 1729                  return;
1700 1730  
1701 1731          /* check that the config is complete */
1702 1732          if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1703 1733              &glist, &gcount) != 0)
1704 1734                  return;
1705 1735  
1706 1736          vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1707 1737  
1708 1738          /* attempt to online all the vdevs & validate */
1709 1739          attempt_reopen = B_TRUE;
1710 1740          for (i = 0; i < gcount; i++) {
1711 1741                  if (glist[i] == 0)      /* vdev is hole */
1712 1742                          continue;
1713 1743  
1714 1744                  vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1715 1745                  if (vd[i] == NULL) {
1716 1746                          /*
1717 1747                           * Don't bother attempting to reopen the disks;
1718 1748                           * just do the split.
1719 1749                           */
1720 1750                          attempt_reopen = B_FALSE;
1721 1751                  } else {
1722 1752                          /* attempt to re-online it */
1723 1753                          vd[i]->vdev_offline = B_FALSE;
1724 1754                  }
1725 1755          }
1726 1756  
1727 1757          if (attempt_reopen) {
1728 1758                  vdev_reopen(spa->spa_root_vdev);
1729 1759  
1730 1760                  /* check each device to see what state it's in */
1731 1761                  for (extracted = 0, i = 0; i < gcount; i++) {
1732 1762                          if (vd[i] != NULL &&
1733 1763                              vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1734 1764                                  break;
1735 1765                          ++extracted;
1736 1766                  }
1737 1767          }
1738 1768  
1739 1769          /*
1740 1770           * If every disk has been moved to the new pool, or if we never
1741 1771           * even attempted to look at them, then we split them off for
1742 1772           * good.
1743 1773           */
1744 1774          if (!attempt_reopen || gcount == extracted) {
1745 1775                  for (i = 0; i < gcount; i++)
1746 1776                          if (vd[i] != NULL)
1747 1777                                  vdev_split(vd[i]);
1748 1778                  vdev_reopen(spa->spa_root_vdev);
1749 1779          }
  
    | 
      ↓ open down ↓ | 
    695 lines elided | 
    
      ↑ open up ↑ | 
  
1750 1780  
1751 1781          kmem_free(vd, gcount * sizeof (vdev_t *));
1752 1782  }
1753 1783  
1754 1784  static int
1755 1785  spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1756 1786      boolean_t mosconfig)
1757 1787  {
1758 1788          nvlist_t *config = spa->spa_config;
1759 1789          char *ereport = FM_EREPORT_ZFS_POOL;
     1790 +        char *comment;
1760 1791          int error;
1761 1792          uint64_t pool_guid;
1762 1793          nvlist_t *nvl;
1763 1794  
1764 1795          if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1765 1796                  return (EINVAL);
1766 1797  
     1798 +        ASSERT(spa->spa_comment == NULL);
     1799 +        if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
     1800 +                spa->spa_comment = spa_strdup(comment);
     1801 +
1767 1802          /*
1768 1803           * Versioning wasn't explicitly added to the label until later, so if
1769 1804           * it's not present treat it as the initial version.
1770 1805           */
1771 1806          if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1772 1807              &spa->spa_ubsync.ub_version) != 0)
1773 1808                  spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1774 1809  
1775 1810          (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1776 1811              &spa->spa_config_txg);
1777 1812  
1778 1813          if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1779 1814              spa_guid_exists(pool_guid, 0)) {
1780 1815                  error = EEXIST;
1781 1816          } else {
1782 1817                  spa->spa_config_guid = pool_guid;
1783 1818  
1784 1819                  if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1785 1820                      &nvl) == 0) {
1786 1821                          VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1787 1822                              KM_SLEEP) == 0);
1788 1823                  }
1789 1824  
1790 1825                  gethrestime(&spa->spa_loaded_ts);
1791 1826                  error = spa_load_impl(spa, pool_guid, config, state, type,
1792 1827                      mosconfig, &ereport);
1793 1828          }
1794 1829  
1795 1830          spa->spa_minref = refcount_count(&spa->spa_refcount);
1796 1831          if (error) {
1797 1832                  if (error != EEXIST) {
1798 1833                          spa->spa_loaded_ts.tv_sec = 0;
1799 1834                          spa->spa_loaded_ts.tv_nsec = 0;
1800 1835                  }
1801 1836                  if (error != EBADF) {
1802 1837                          zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1803 1838                  }
1804 1839          }
1805 1840          spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1806 1841          spa->spa_ena = 0;
1807 1842  
1808 1843          return (error);
1809 1844  }
1810 1845  
1811 1846  /*
1812 1847   * Load an existing storage pool, using the pool's builtin spa_config as a
1813 1848   * source of configuration information.
1814 1849   */
1815 1850  static int
1816 1851  spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1817 1852      spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1818 1853      char **ereport)
1819 1854  {
1820 1855          int error = 0;
1821 1856          nvlist_t *nvroot = NULL;
1822 1857          vdev_t *rvd;
1823 1858          uberblock_t *ub = &spa->spa_uberblock;
1824 1859          uint64_t children, config_cache_txg = spa->spa_config_txg;
1825 1860          int orig_mode = spa->spa_mode;
1826 1861          int parse;
1827 1862          uint64_t obj;
1828 1863  
1829 1864          /*
1830 1865           * If this is an untrusted config, access the pool in read-only mode.
1831 1866           * This prevents things like resilvering recently removed devices.
1832 1867           */
1833 1868          if (!mosconfig)
1834 1869                  spa->spa_mode = FREAD;
1835 1870  
1836 1871          ASSERT(MUTEX_HELD(&spa_namespace_lock));
1837 1872  
1838 1873          spa->spa_load_state = state;
1839 1874  
1840 1875          if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1841 1876                  return (EINVAL);
1842 1877  
1843 1878          parse = (type == SPA_IMPORT_EXISTING ?
1844 1879              VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1845 1880  
1846 1881          /*
1847 1882           * Create "The Godfather" zio to hold all async IOs
1848 1883           */
1849 1884          spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1850 1885              ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1851 1886  
1852 1887          /*
1853 1888           * Parse the configuration into a vdev tree.  We explicitly set the
1854 1889           * value that will be returned by spa_version() since parsing the
1855 1890           * configuration requires knowing the version number.
1856 1891           */
1857 1892          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1858 1893          error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1859 1894          spa_config_exit(spa, SCL_ALL, FTAG);
1860 1895  
1861 1896          if (error != 0)
1862 1897                  return (error);
1863 1898  
1864 1899          ASSERT(spa->spa_root_vdev == rvd);
1865 1900  
1866 1901          if (type != SPA_IMPORT_ASSEMBLE) {
1867 1902                  ASSERT(spa_guid(spa) == pool_guid);
1868 1903          }
1869 1904  
1870 1905          /*
1871 1906           * Try to open all vdevs, loading each label in the process.
1872 1907           */
1873 1908          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1874 1909          error = vdev_open(rvd);
1875 1910          spa_config_exit(spa, SCL_ALL, FTAG);
1876 1911          if (error != 0)
1877 1912                  return (error);
1878 1913  
1879 1914          /*
1880 1915           * We need to validate the vdev labels against the configuration that
1881 1916           * we have in hand, which is dependent on the setting of mosconfig. If
1882 1917           * mosconfig is true then we're validating the vdev labels based on
1883 1918           * that config.  Otherwise, we're validating against the cached config
1884 1919           * (zpool.cache) that was read when we loaded the zfs module, and then
1885 1920           * later we will recursively call spa_load() and validate against
1886 1921           * the vdev config.
1887 1922           *
1888 1923           * If we're assembling a new pool that's been split off from an
1889 1924           * existing pool, the labels haven't yet been updated so we skip
1890 1925           * validation for now.
1891 1926           */
1892 1927          if (type != SPA_IMPORT_ASSEMBLE) {
1893 1928                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1894 1929                  error = vdev_validate(rvd);
1895 1930                  spa_config_exit(spa, SCL_ALL, FTAG);
1896 1931  
1897 1932                  if (error != 0)
1898 1933                          return (error);
1899 1934  
1900 1935                  if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1901 1936                          return (ENXIO);
1902 1937          }
1903 1938  
1904 1939          /*
1905 1940           * Find the best uberblock.
1906 1941           */
1907 1942          vdev_uberblock_load(NULL, rvd, ub);
1908 1943  
1909 1944          /*
1910 1945           * If we weren't able to find a single valid uberblock, return failure.
1911 1946           */
1912 1947          if (ub->ub_txg == 0)
1913 1948                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
1914 1949  
1915 1950          /*
1916 1951           * If the pool is newer than the code, we can't open it.
1917 1952           */
1918 1953          if (ub->ub_version > SPA_VERSION)
1919 1954                  return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
1920 1955  
1921 1956          /*
1922 1957           * If the vdev guid sum doesn't match the uberblock, we have an
1923 1958           * incomplete configuration.  We first check to see if the pool
1924 1959           * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
1925 1960           * If it is, defer the vdev_guid_sum check till later so we
1926 1961           * can handle missing vdevs.
1927 1962           */
1928 1963          if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
1929 1964              &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
1930 1965              rvd->vdev_guid_sum != ub->ub_guid_sum)
1931 1966                  return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
1932 1967  
1933 1968          if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
1934 1969                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1935 1970                  spa_try_repair(spa, config);
1936 1971                  spa_config_exit(spa, SCL_ALL, FTAG);
1937 1972                  nvlist_free(spa->spa_config_splitting);
1938 1973                  spa->spa_config_splitting = NULL;
1939 1974          }
1940 1975  
1941 1976          /*
1942 1977           * Initialize internal SPA structures.
1943 1978           */
1944 1979          spa->spa_state = POOL_STATE_ACTIVE;
1945 1980          spa->spa_ubsync = spa->spa_uberblock;
1946 1981          spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1947 1982              TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
1948 1983          spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1949 1984              spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1950 1985          spa->spa_claim_max_txg = spa->spa_first_txg;
1951 1986          spa->spa_prev_software_version = ub->ub_software_version;
1952 1987  
1953 1988          error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1954 1989          if (error)
1955 1990                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1956 1991          spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1957 1992  
1958 1993          if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
1959 1994                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1960 1995  
1961 1996          if (!mosconfig) {
1962 1997                  uint64_t hostid;
1963 1998                  nvlist_t *policy = NULL, *nvconfig;
1964 1999  
1965 2000                  if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
1966 2001                          return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1967 2002  
1968 2003                  if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
1969 2004                      ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1970 2005                          char *hostname;
1971 2006                          unsigned long myhostid = 0;
1972 2007  
1973 2008                          VERIFY(nvlist_lookup_string(nvconfig,
1974 2009                              ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1975 2010  
1976 2011  #ifdef  _KERNEL
1977 2012                          myhostid = zone_get_hostid(NULL);
1978 2013  #else   /* _KERNEL */
1979 2014                          /*
1980 2015                           * We're emulating the system's hostid in userland, so
1981 2016                           * we can't use zone_get_hostid().
1982 2017                           */
1983 2018                          (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1984 2019  #endif  /* _KERNEL */
1985 2020                          if (hostid != 0 && myhostid != 0 &&
1986 2021                              hostid != myhostid) {
1987 2022                                  nvlist_free(nvconfig);
1988 2023                                  cmn_err(CE_WARN, "pool '%s' could not be "
1989 2024                                      "loaded as it was last accessed by "
1990 2025                                      "another system (host: %s hostid: 0x%lx). "
1991 2026                                      "See: http://www.sun.com/msg/ZFS-8000-EY",
1992 2027                                      spa_name(spa), hostname,
1993 2028                                      (unsigned long)hostid);
1994 2029                                  return (EBADF);
1995 2030                          }
1996 2031                  }
1997 2032                  if (nvlist_lookup_nvlist(spa->spa_config,
1998 2033                      ZPOOL_REWIND_POLICY, &policy) == 0)
1999 2034                          VERIFY(nvlist_add_nvlist(nvconfig,
2000 2035                              ZPOOL_REWIND_POLICY, policy) == 0);
2001 2036  
2002 2037                  spa_config_set(spa, nvconfig);
2003 2038                  spa_unload(spa);
2004 2039                  spa_deactivate(spa);
2005 2040                  spa_activate(spa, orig_mode);
2006 2041  
2007 2042                  return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2008 2043          }
2009 2044  
2010 2045          if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2011 2046                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2012 2047          error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2013 2048          if (error != 0)
2014 2049                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2015 2050  
2016 2051          /*
2017 2052           * Load the bit that tells us to use the new accounting function
2018 2053           * (raid-z deflation).  If we have an older pool, this will not
2019 2054           * be present.
2020 2055           */
2021 2056          error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2022 2057          if (error != 0 && error != ENOENT)
2023 2058                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2024 2059  
2025 2060          error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2026 2061              &spa->spa_creation_version);
2027 2062          if (error != 0 && error != ENOENT)
2028 2063                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2029 2064  
2030 2065          /*
2031 2066           * Load the persistent error log.  If we have an older pool, this will
2032 2067           * not be present.
2033 2068           */
2034 2069          error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2035 2070          if (error != 0 && error != ENOENT)
2036 2071                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2037 2072  
2038 2073          error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2039 2074              &spa->spa_errlog_scrub);
2040 2075          if (error != 0 && error != ENOENT)
2041 2076                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2042 2077  
2043 2078          /*
2044 2079           * Load the history object.  If we have an older pool, this
2045 2080           * will not be present.
2046 2081           */
2047 2082          error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2048 2083          if (error != 0 && error != ENOENT)
2049 2084                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2050 2085  
2051 2086          /*
2052 2087           * If we're assembling the pool from the split-off vdevs of
2053 2088           * an existing pool, we don't want to attach the spares & cache
2054 2089           * devices.
2055 2090           */
2056 2091  
2057 2092          /*
2058 2093           * Load any hot spares for this pool.
2059 2094           */
2060 2095          error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2061 2096          if (error != 0 && error != ENOENT)
2062 2097                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2063 2098          if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2064 2099                  ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2065 2100                  if (load_nvlist(spa, spa->spa_spares.sav_object,
2066 2101                      &spa->spa_spares.sav_config) != 0)
2067 2102                          return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2068 2103  
2069 2104                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2070 2105                  spa_load_spares(spa);
2071 2106                  spa_config_exit(spa, SCL_ALL, FTAG);
2072 2107          } else if (error == 0) {
2073 2108                  spa->spa_spares.sav_sync = B_TRUE;
2074 2109          }
2075 2110  
2076 2111          /*
2077 2112           * Load any level 2 ARC devices for this pool.
2078 2113           */
2079 2114          error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2080 2115              &spa->spa_l2cache.sav_object);
2081 2116          if (error != 0 && error != ENOENT)
2082 2117                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2083 2118          if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2084 2119                  ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2085 2120                  if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2086 2121                      &spa->spa_l2cache.sav_config) != 0)
2087 2122                          return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2088 2123  
2089 2124                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2090 2125                  spa_load_l2cache(spa);
2091 2126                  spa_config_exit(spa, SCL_ALL, FTAG);
2092 2127          } else if (error == 0) {
2093 2128                  spa->spa_l2cache.sav_sync = B_TRUE;
2094 2129          }
2095 2130  
2096 2131          spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2097 2132  
2098 2133          error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2099 2134          if (error && error != ENOENT)
2100 2135                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2101 2136  
2102 2137          if (error == 0) {
2103 2138                  uint64_t autoreplace;
2104 2139  
2105 2140                  spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2106 2141                  spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2107 2142                  spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2108 2143                  spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2109 2144                  spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2110 2145                  spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2111 2146                      &spa->spa_dedup_ditto);
2112 2147  
2113 2148                  spa->spa_autoreplace = (autoreplace != 0);
2114 2149          }
2115 2150  
2116 2151          /*
2117 2152           * If the 'autoreplace' property is set, then post a resource notifying
2118 2153           * the ZFS DE that it should not issue any faults for unopenable
2119 2154           * devices.  We also iterate over the vdevs, and post a sysevent for any
2120 2155           * unopenable vdevs so that the normal autoreplace handler can take
2121 2156           * over.
2122 2157           */
2123 2158          if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2124 2159                  spa_check_removed(spa->spa_root_vdev);
2125 2160                  /*
2126 2161                   * For the import case, this is done in spa_import(), because
2127 2162                   * at this point we're using the spare definitions from
2128 2163                   * the MOS config, not necessarily from the userland config.
2129 2164                   */
2130 2165                  if (state != SPA_LOAD_IMPORT) {
2131 2166                          spa_aux_check_removed(&spa->spa_spares);
2132 2167                          spa_aux_check_removed(&spa->spa_l2cache);
2133 2168                  }
2134 2169          }
2135 2170  
2136 2171          /*
2137 2172           * Load the vdev state for all toplevel vdevs.
2138 2173           */
2139 2174          vdev_load(rvd);
2140 2175  
2141 2176          /*
2142 2177           * Propagate the leaf DTLs we just loaded all the way up the tree.
2143 2178           */
2144 2179          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2145 2180          vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2146 2181          spa_config_exit(spa, SCL_ALL, FTAG);
2147 2182  
2148 2183          /*
2149 2184           * Load the DDTs (dedup tables).
2150 2185           */
2151 2186          error = ddt_load(spa);
2152 2187          if (error != 0)
2153 2188                  return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2154 2189  
2155 2190          spa_update_dspace(spa);
2156 2191  
2157 2192          /*
2158 2193           * Validate the config, using the MOS config to fill in any
2159 2194           * information which might be missing.  If we fail to validate
2160 2195           * the config then declare the pool unfit for use. If we're
2161 2196           * assembling a pool from a split, the log is not transferred
2162 2197           * over.
2163 2198           */
2164 2199          if (type != SPA_IMPORT_ASSEMBLE) {
2165 2200                  nvlist_t *nvconfig;
2166 2201  
2167 2202                  if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2168 2203                          return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2169 2204  
2170 2205                  if (!spa_config_valid(spa, nvconfig)) {
2171 2206                          nvlist_free(nvconfig);
2172 2207                          return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2173 2208                              ENXIO));
2174 2209                  }
2175 2210                  nvlist_free(nvconfig);
2176 2211  
2177 2212                  /*
2178 2213                   * Now that we've validate the config, check the state of the
2179 2214                   * root vdev.  If it can't be opened, it indicates one or
2180 2215                   * more toplevel vdevs are faulted.
2181 2216                   */
2182 2217                  if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2183 2218                          return (ENXIO);
2184 2219  
2185 2220                  if (spa_check_logs(spa)) {
2186 2221                          *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2187 2222                          return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2188 2223                  }
2189 2224          }
2190 2225  
2191 2226          /*
2192 2227           * We've successfully opened the pool, verify that we're ready
2193 2228           * to start pushing transactions.
2194 2229           */
2195 2230          if (state != SPA_LOAD_TRYIMPORT) {
2196 2231                  if (error = spa_load_verify(spa))
2197 2232                          return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2198 2233                              error));
2199 2234          }
2200 2235  
2201 2236          if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2202 2237              spa->spa_load_max_txg == UINT64_MAX)) {
2203 2238                  dmu_tx_t *tx;
2204 2239                  int need_update = B_FALSE;
2205 2240  
2206 2241                  ASSERT(state != SPA_LOAD_TRYIMPORT);
2207 2242  
2208 2243                  /*
2209 2244                   * Claim log blocks that haven't been committed yet.
2210 2245                   * This must all happen in a single txg.
2211 2246                   * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2212 2247                   * invoked from zil_claim_log_block()'s i/o done callback.
2213 2248                   * Price of rollback is that we abandon the log.
2214 2249                   */
2215 2250                  spa->spa_claiming = B_TRUE;
2216 2251  
2217 2252                  tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2218 2253                      spa_first_txg(spa));
2219 2254                  (void) dmu_objset_find(spa_name(spa),
2220 2255                      zil_claim, tx, DS_FIND_CHILDREN);
2221 2256                  dmu_tx_commit(tx);
2222 2257  
2223 2258                  spa->spa_claiming = B_FALSE;
2224 2259  
2225 2260                  spa_set_log_state(spa, SPA_LOG_GOOD);
2226 2261                  spa->spa_sync_on = B_TRUE;
2227 2262                  txg_sync_start(spa->spa_dsl_pool);
2228 2263  
2229 2264                  /*
2230 2265                   * Wait for all claims to sync.  We sync up to the highest
2231 2266                   * claimed log block birth time so that claimed log blocks
2232 2267                   * don't appear to be from the future.  spa_claim_max_txg
2233 2268                   * will have been set for us by either zil_check_log_chain()
2234 2269                   * (invoked from spa_check_logs()) or zil_claim() above.
2235 2270                   */
2236 2271                  txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2237 2272  
2238 2273                  /*
2239 2274                   * If the config cache is stale, or we have uninitialized
2240 2275                   * metaslabs (see spa_vdev_add()), then update the config.
2241 2276                   *
2242 2277                   * If this is a verbatim import, trust the current
2243 2278                   * in-core spa_config and update the disk labels.
2244 2279                   */
2245 2280                  if (config_cache_txg != spa->spa_config_txg ||
2246 2281                      state == SPA_LOAD_IMPORT ||
2247 2282                      state == SPA_LOAD_RECOVER ||
2248 2283                      (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2249 2284                          need_update = B_TRUE;
2250 2285  
2251 2286                  for (int c = 0; c < rvd->vdev_children; c++)
2252 2287                          if (rvd->vdev_child[c]->vdev_ms_array == 0)
2253 2288                                  need_update = B_TRUE;
2254 2289  
2255 2290                  /*
2256 2291                   * Update the config cache asychronously in case we're the
2257 2292                   * root pool, in which case the config cache isn't writable yet.
2258 2293                   */
2259 2294                  if (need_update)
2260 2295                          spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2261 2296  
2262 2297                  /*
2263 2298                   * Check all DTLs to see if anything needs resilvering.
2264 2299                   */
2265 2300                  if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2266 2301                      vdev_resilver_needed(rvd, NULL, NULL))
2267 2302                          spa_async_request(spa, SPA_ASYNC_RESILVER);
2268 2303  
2269 2304                  /*
2270 2305                   * Delete any inconsistent datasets.
2271 2306                   */
2272 2307                  (void) dmu_objset_find(spa_name(spa),
2273 2308                      dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2274 2309  
2275 2310                  /*
2276 2311                   * Clean up any stale temporary dataset userrefs.
2277 2312                   */
2278 2313                  dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2279 2314          }
2280 2315  
2281 2316          return (0);
2282 2317  }
2283 2318  
2284 2319  static int
2285 2320  spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2286 2321  {
2287 2322          int mode = spa->spa_mode;
2288 2323  
2289 2324          spa_unload(spa);
2290 2325          spa_deactivate(spa);
2291 2326  
2292 2327          spa->spa_load_max_txg--;
2293 2328  
2294 2329          spa_activate(spa, mode);
2295 2330          spa_async_suspend(spa);
2296 2331  
2297 2332          return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2298 2333  }
2299 2334  
2300 2335  static int
2301 2336  spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2302 2337      uint64_t max_request, int rewind_flags)
2303 2338  {
2304 2339          nvlist_t *config = NULL;
2305 2340          int load_error, rewind_error;
2306 2341          uint64_t safe_rewind_txg;
2307 2342          uint64_t min_txg;
2308 2343  
2309 2344          if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2310 2345                  spa->spa_load_max_txg = spa->spa_load_txg;
2311 2346                  spa_set_log_state(spa, SPA_LOG_CLEAR);
2312 2347          } else {
2313 2348                  spa->spa_load_max_txg = max_request;
2314 2349          }
2315 2350  
2316 2351          load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2317 2352              mosconfig);
2318 2353          if (load_error == 0)
2319 2354                  return (0);
2320 2355  
2321 2356          if (spa->spa_root_vdev != NULL)
2322 2357                  config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2323 2358  
2324 2359          spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2325 2360          spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2326 2361  
2327 2362          if (rewind_flags & ZPOOL_NEVER_REWIND) {
2328 2363                  nvlist_free(config);
2329 2364                  return (load_error);
2330 2365          }
2331 2366  
2332 2367          /* Price of rolling back is discarding txgs, including log */
2333 2368          if (state == SPA_LOAD_RECOVER)
2334 2369                  spa_set_log_state(spa, SPA_LOG_CLEAR);
2335 2370  
2336 2371          spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2337 2372          safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2338 2373          min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2339 2374              TXG_INITIAL : safe_rewind_txg;
2340 2375  
2341 2376          /*
2342 2377           * Continue as long as we're finding errors, we're still within
2343 2378           * the acceptable rewind range, and we're still finding uberblocks
2344 2379           */
2345 2380          while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2346 2381              spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2347 2382                  if (spa->spa_load_max_txg < safe_rewind_txg)
2348 2383                          spa->spa_extreme_rewind = B_TRUE;
2349 2384                  rewind_error = spa_load_retry(spa, state, mosconfig);
2350 2385          }
2351 2386  
2352 2387          spa->spa_extreme_rewind = B_FALSE;
2353 2388          spa->spa_load_max_txg = UINT64_MAX;
2354 2389  
2355 2390          if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2356 2391                  spa_config_set(spa, config);
2357 2392  
2358 2393          return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
2359 2394  }
2360 2395  
2361 2396  /*
2362 2397   * Pool Open/Import
2363 2398   *
2364 2399   * The import case is identical to an open except that the configuration is sent
2365 2400   * down from userland, instead of grabbed from the configuration cache.  For the
2366 2401   * case of an open, the pool configuration will exist in the
2367 2402   * POOL_STATE_UNINITIALIZED state.
2368 2403   *
2369 2404   * The stats information (gen/count/ustats) is used to gather vdev statistics at
2370 2405   * the same time open the pool, without having to keep around the spa_t in some
2371 2406   * ambiguous state.
2372 2407   */
2373 2408  static int
2374 2409  spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2375 2410      nvlist_t **config)
2376 2411  {
2377 2412          spa_t *spa;
2378 2413          spa_load_state_t state = SPA_LOAD_OPEN;
2379 2414          int error;
2380 2415          int locked = B_FALSE;
2381 2416  
2382 2417          *spapp = NULL;
2383 2418  
2384 2419          /*
2385 2420           * As disgusting as this is, we need to support recursive calls to this
2386 2421           * function because dsl_dir_open() is called during spa_load(), and ends
2387 2422           * up calling spa_open() again.  The real fix is to figure out how to
2388 2423           * avoid dsl_dir_open() calling this in the first place.
2389 2424           */
2390 2425          if (mutex_owner(&spa_namespace_lock) != curthread) {
2391 2426                  mutex_enter(&spa_namespace_lock);
2392 2427                  locked = B_TRUE;
2393 2428          }
2394 2429  
2395 2430          if ((spa = spa_lookup(pool)) == NULL) {
2396 2431                  if (locked)
2397 2432                          mutex_exit(&spa_namespace_lock);
2398 2433                  return (ENOENT);
2399 2434          }
2400 2435  
2401 2436          if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2402 2437                  zpool_rewind_policy_t policy;
2403 2438  
2404 2439                  zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2405 2440                      &policy);
2406 2441                  if (policy.zrp_request & ZPOOL_DO_REWIND)
2407 2442                          state = SPA_LOAD_RECOVER;
2408 2443  
2409 2444                  spa_activate(spa, spa_mode_global);
2410 2445  
2411 2446                  if (state != SPA_LOAD_RECOVER)
2412 2447                          spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2413 2448  
2414 2449                  error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2415 2450                      policy.zrp_request);
2416 2451  
2417 2452                  if (error == EBADF) {
2418 2453                          /*
2419 2454                           * If vdev_validate() returns failure (indicated by
2420 2455                           * EBADF), it indicates that one of the vdevs indicates
2421 2456                           * that the pool has been exported or destroyed.  If
2422 2457                           * this is the case, the config cache is out of sync and
2423 2458                           * we should remove the pool from the namespace.
2424 2459                           */
2425 2460                          spa_unload(spa);
2426 2461                          spa_deactivate(spa);
2427 2462                          spa_config_sync(spa, B_TRUE, B_TRUE);
2428 2463                          spa_remove(spa);
2429 2464                          if (locked)
2430 2465                                  mutex_exit(&spa_namespace_lock);
2431 2466                          return (ENOENT);
2432 2467                  }
2433 2468  
2434 2469                  if (error) {
2435 2470                          /*
2436 2471                           * We can't open the pool, but we still have useful
2437 2472                           * information: the state of each vdev after the
2438 2473                           * attempted vdev_open().  Return this to the user.
2439 2474                           */
2440 2475                          if (config != NULL && spa->spa_config) {
2441 2476                                  VERIFY(nvlist_dup(spa->spa_config, config,
2442 2477                                      KM_SLEEP) == 0);
2443 2478                                  VERIFY(nvlist_add_nvlist(*config,
2444 2479                                      ZPOOL_CONFIG_LOAD_INFO,
2445 2480                                      spa->spa_load_info) == 0);
2446 2481                          }
2447 2482                          spa_unload(spa);
2448 2483                          spa_deactivate(spa);
2449 2484                          spa->spa_last_open_failed = error;
2450 2485                          if (locked)
2451 2486                                  mutex_exit(&spa_namespace_lock);
2452 2487                          *spapp = NULL;
2453 2488                          return (error);
2454 2489                  }
2455 2490          }
2456 2491  
2457 2492          spa_open_ref(spa, tag);
2458 2493  
2459 2494          if (config != NULL)
2460 2495                  *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2461 2496  
2462 2497          /*
2463 2498           * If we've recovered the pool, pass back any information we
2464 2499           * gathered while doing the load.
2465 2500           */
2466 2501          if (state == SPA_LOAD_RECOVER) {
2467 2502                  VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2468 2503                      spa->spa_load_info) == 0);
2469 2504          }
2470 2505  
2471 2506          if (locked) {
2472 2507                  spa->spa_last_open_failed = 0;
2473 2508                  spa->spa_last_ubsync_txg = 0;
2474 2509                  spa->spa_load_txg = 0;
2475 2510                  mutex_exit(&spa_namespace_lock);
2476 2511          }
2477 2512  
2478 2513          *spapp = spa;
2479 2514  
2480 2515          return (0);
2481 2516  }
2482 2517  
2483 2518  int
2484 2519  spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2485 2520      nvlist_t **config)
2486 2521  {
2487 2522          return (spa_open_common(name, spapp, tag, policy, config));
2488 2523  }
2489 2524  
2490 2525  int
2491 2526  spa_open(const char *name, spa_t **spapp, void *tag)
2492 2527  {
2493 2528          return (spa_open_common(name, spapp, tag, NULL, NULL));
2494 2529  }
2495 2530  
2496 2531  /*
2497 2532   * Lookup the given spa_t, incrementing the inject count in the process,
2498 2533   * preventing it from being exported or destroyed.
2499 2534   */
2500 2535  spa_t *
2501 2536  spa_inject_addref(char *name)
2502 2537  {
2503 2538          spa_t *spa;
2504 2539  
2505 2540          mutex_enter(&spa_namespace_lock);
2506 2541          if ((spa = spa_lookup(name)) == NULL) {
2507 2542                  mutex_exit(&spa_namespace_lock);
2508 2543                  return (NULL);
2509 2544          }
2510 2545          spa->spa_inject_ref++;
2511 2546          mutex_exit(&spa_namespace_lock);
2512 2547  
2513 2548          return (spa);
2514 2549  }
2515 2550  
2516 2551  void
2517 2552  spa_inject_delref(spa_t *spa)
2518 2553  {
2519 2554          mutex_enter(&spa_namespace_lock);
2520 2555          spa->spa_inject_ref--;
2521 2556          mutex_exit(&spa_namespace_lock);
2522 2557  }
2523 2558  
2524 2559  /*
2525 2560   * Add spares device information to the nvlist.
2526 2561   */
2527 2562  static void
2528 2563  spa_add_spares(spa_t *spa, nvlist_t *config)
2529 2564  {
2530 2565          nvlist_t **spares;
2531 2566          uint_t i, nspares;
2532 2567          nvlist_t *nvroot;
2533 2568          uint64_t guid;
2534 2569          vdev_stat_t *vs;
2535 2570          uint_t vsc;
2536 2571          uint64_t pool;
2537 2572  
2538 2573          ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2539 2574  
2540 2575          if (spa->spa_spares.sav_count == 0)
2541 2576                  return;
2542 2577  
2543 2578          VERIFY(nvlist_lookup_nvlist(config,
2544 2579              ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2545 2580          VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2546 2581              ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2547 2582          if (nspares != 0) {
2548 2583                  VERIFY(nvlist_add_nvlist_array(nvroot,
2549 2584                      ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2550 2585                  VERIFY(nvlist_lookup_nvlist_array(nvroot,
2551 2586                      ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2552 2587  
2553 2588                  /*
2554 2589                   * Go through and find any spares which have since been
2555 2590                   * repurposed as an active spare.  If this is the case, update
2556 2591                   * their status appropriately.
2557 2592                   */
2558 2593                  for (i = 0; i < nspares; i++) {
2559 2594                          VERIFY(nvlist_lookup_uint64(spares[i],
2560 2595                              ZPOOL_CONFIG_GUID, &guid) == 0);
2561 2596                          if (spa_spare_exists(guid, &pool, NULL) &&
2562 2597                              pool != 0ULL) {
2563 2598                                  VERIFY(nvlist_lookup_uint64_array(
2564 2599                                      spares[i], ZPOOL_CONFIG_VDEV_STATS,
2565 2600                                      (uint64_t **)&vs, &vsc) == 0);
2566 2601                                  vs->vs_state = VDEV_STATE_CANT_OPEN;
2567 2602                                  vs->vs_aux = VDEV_AUX_SPARED;
2568 2603                          }
2569 2604                  }
2570 2605          }
2571 2606  }
2572 2607  
2573 2608  /*
2574 2609   * Add l2cache device information to the nvlist, including vdev stats.
2575 2610   */
2576 2611  static void
2577 2612  spa_add_l2cache(spa_t *spa, nvlist_t *config)
2578 2613  {
2579 2614          nvlist_t **l2cache;
2580 2615          uint_t i, j, nl2cache;
2581 2616          nvlist_t *nvroot;
2582 2617          uint64_t guid;
2583 2618          vdev_t *vd;
2584 2619          vdev_stat_t *vs;
2585 2620          uint_t vsc;
2586 2621  
2587 2622          ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2588 2623  
2589 2624          if (spa->spa_l2cache.sav_count == 0)
2590 2625                  return;
2591 2626  
2592 2627          VERIFY(nvlist_lookup_nvlist(config,
2593 2628              ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2594 2629          VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2595 2630              ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2596 2631          if (nl2cache != 0) {
2597 2632                  VERIFY(nvlist_add_nvlist_array(nvroot,
2598 2633                      ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2599 2634                  VERIFY(nvlist_lookup_nvlist_array(nvroot,
2600 2635                      ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2601 2636  
2602 2637                  /*
2603 2638                   * Update level 2 cache device stats.
2604 2639                   */
2605 2640  
2606 2641                  for (i = 0; i < nl2cache; i++) {
2607 2642                          VERIFY(nvlist_lookup_uint64(l2cache[i],
2608 2643                              ZPOOL_CONFIG_GUID, &guid) == 0);
2609 2644  
2610 2645                          vd = NULL;
2611 2646                          for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2612 2647                                  if (guid ==
2613 2648                                      spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2614 2649                                          vd = spa->spa_l2cache.sav_vdevs[j];
2615 2650                                          break;
2616 2651                                  }
2617 2652                          }
2618 2653                          ASSERT(vd != NULL);
2619 2654  
2620 2655                          VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2621 2656                              ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2622 2657                              == 0);
2623 2658                          vdev_get_stats(vd, vs);
2624 2659                  }
2625 2660          }
2626 2661  }
2627 2662  
2628 2663  int
2629 2664  spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2630 2665  {
2631 2666          int error;
2632 2667          spa_t *spa;
2633 2668  
2634 2669          *config = NULL;
2635 2670          error = spa_open_common(name, &spa, FTAG, NULL, config);
2636 2671  
2637 2672          if (spa != NULL) {
2638 2673                  /*
2639 2674                   * This still leaves a window of inconsistency where the spares
2640 2675                   * or l2cache devices could change and the config would be
2641 2676                   * self-inconsistent.
2642 2677                   */
2643 2678                  spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2644 2679  
2645 2680                  if (*config != NULL) {
2646 2681                          uint64_t loadtimes[2];
2647 2682  
2648 2683                          loadtimes[0] = spa->spa_loaded_ts.tv_sec;
2649 2684                          loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
2650 2685                          VERIFY(nvlist_add_uint64_array(*config,
2651 2686                              ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
2652 2687  
2653 2688                          VERIFY(nvlist_add_uint64(*config,
2654 2689                              ZPOOL_CONFIG_ERRCOUNT,
2655 2690                              spa_get_errlog_size(spa)) == 0);
2656 2691  
2657 2692                          if (spa_suspended(spa))
2658 2693                                  VERIFY(nvlist_add_uint64(*config,
2659 2694                                      ZPOOL_CONFIG_SUSPENDED,
2660 2695                                      spa->spa_failmode) == 0);
2661 2696  
2662 2697                          spa_add_spares(spa, *config);
2663 2698                          spa_add_l2cache(spa, *config);
2664 2699                  }
2665 2700          }
2666 2701  
2667 2702          /*
2668 2703           * We want to get the alternate root even for faulted pools, so we cheat
2669 2704           * and call spa_lookup() directly.
2670 2705           */
2671 2706          if (altroot) {
2672 2707                  if (spa == NULL) {
2673 2708                          mutex_enter(&spa_namespace_lock);
2674 2709                          spa = spa_lookup(name);
2675 2710                          if (spa)
2676 2711                                  spa_altroot(spa, altroot, buflen);
2677 2712                          else
2678 2713                                  altroot[0] = '\0';
2679 2714                          spa = NULL;
2680 2715                          mutex_exit(&spa_namespace_lock);
2681 2716                  } else {
2682 2717                          spa_altroot(spa, altroot, buflen);
2683 2718                  }
2684 2719          }
2685 2720  
2686 2721          if (spa != NULL) {
2687 2722                  spa_config_exit(spa, SCL_CONFIG, FTAG);
2688 2723                  spa_close(spa, FTAG);
2689 2724          }
2690 2725  
2691 2726          return (error);
2692 2727  }
2693 2728  
2694 2729  /*
2695 2730   * Validate that the auxiliary device array is well formed.  We must have an
2696 2731   * array of nvlists, each which describes a valid leaf vdev.  If this is an
2697 2732   * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2698 2733   * specified, as long as they are well-formed.
2699 2734   */
2700 2735  static int
2701 2736  spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2702 2737      spa_aux_vdev_t *sav, const char *config, uint64_t version,
2703 2738      vdev_labeltype_t label)
2704 2739  {
2705 2740          nvlist_t **dev;
2706 2741          uint_t i, ndev;
2707 2742          vdev_t *vd;
2708 2743          int error;
2709 2744  
2710 2745          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2711 2746  
2712 2747          /*
2713 2748           * It's acceptable to have no devs specified.
2714 2749           */
2715 2750          if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2716 2751                  return (0);
2717 2752  
2718 2753          if (ndev == 0)
2719 2754                  return (EINVAL);
2720 2755  
2721 2756          /*
2722 2757           * Make sure the pool is formatted with a version that supports this
2723 2758           * device type.
2724 2759           */
2725 2760          if (spa_version(spa) < version)
2726 2761                  return (ENOTSUP);
2727 2762  
2728 2763          /*
2729 2764           * Set the pending device list so we correctly handle device in-use
2730 2765           * checking.
2731 2766           */
2732 2767          sav->sav_pending = dev;
2733 2768          sav->sav_npending = ndev;
2734 2769  
2735 2770          for (i = 0; i < ndev; i++) {
2736 2771                  if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2737 2772                      mode)) != 0)
2738 2773                          goto out;
2739 2774  
2740 2775                  if (!vd->vdev_ops->vdev_op_leaf) {
2741 2776                          vdev_free(vd);
2742 2777                          error = EINVAL;
2743 2778                          goto out;
2744 2779                  }
2745 2780  
2746 2781                  /*
2747 2782                   * The L2ARC currently only supports disk devices in
2748 2783                   * kernel context.  For user-level testing, we allow it.
2749 2784                   */
2750 2785  #ifdef _KERNEL
2751 2786                  if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2752 2787                      strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2753 2788                          error = ENOTBLK;
2754 2789                          goto out;
2755 2790                  }
2756 2791  #endif
2757 2792                  vd->vdev_top = vd;
2758 2793  
2759 2794                  if ((error = vdev_open(vd)) == 0 &&
2760 2795                      (error = vdev_label_init(vd, crtxg, label)) == 0) {
2761 2796                          VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2762 2797                              vd->vdev_guid) == 0);
2763 2798                  }
2764 2799  
2765 2800                  vdev_free(vd);
2766 2801  
2767 2802                  if (error &&
2768 2803                      (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2769 2804                          goto out;
2770 2805                  else
2771 2806                          error = 0;
2772 2807          }
2773 2808  
2774 2809  out:
2775 2810          sav->sav_pending = NULL;
2776 2811          sav->sav_npending = 0;
2777 2812          return (error);
2778 2813  }
2779 2814  
2780 2815  static int
2781 2816  spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2782 2817  {
2783 2818          int error;
2784 2819  
2785 2820          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2786 2821  
2787 2822          if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2788 2823              &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2789 2824              VDEV_LABEL_SPARE)) != 0) {
2790 2825                  return (error);
2791 2826          }
2792 2827  
2793 2828          return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2794 2829              &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2795 2830              VDEV_LABEL_L2CACHE));
2796 2831  }
2797 2832  
2798 2833  static void
2799 2834  spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2800 2835      const char *config)
2801 2836  {
2802 2837          int i;
2803 2838  
2804 2839          if (sav->sav_config != NULL) {
2805 2840                  nvlist_t **olddevs;
2806 2841                  uint_t oldndevs;
2807 2842                  nvlist_t **newdevs;
2808 2843  
2809 2844                  /*
2810 2845                   * Generate new dev list by concatentating with the
2811 2846                   * current dev list.
2812 2847                   */
2813 2848                  VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2814 2849                      &olddevs, &oldndevs) == 0);
2815 2850  
2816 2851                  newdevs = kmem_alloc(sizeof (void *) *
2817 2852                      (ndevs + oldndevs), KM_SLEEP);
2818 2853                  for (i = 0; i < oldndevs; i++)
2819 2854                          VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2820 2855                              KM_SLEEP) == 0);
2821 2856                  for (i = 0; i < ndevs; i++)
2822 2857                          VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2823 2858                              KM_SLEEP) == 0);
2824 2859  
2825 2860                  VERIFY(nvlist_remove(sav->sav_config, config,
2826 2861                      DATA_TYPE_NVLIST_ARRAY) == 0);
2827 2862  
2828 2863                  VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2829 2864                      config, newdevs, ndevs + oldndevs) == 0);
2830 2865                  for (i = 0; i < oldndevs + ndevs; i++)
2831 2866                          nvlist_free(newdevs[i]);
2832 2867                  kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2833 2868          } else {
2834 2869                  /*
2835 2870                   * Generate a new dev list.
2836 2871                   */
2837 2872                  VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2838 2873                      KM_SLEEP) == 0);
2839 2874                  VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2840 2875                      devs, ndevs) == 0);
2841 2876          }
2842 2877  }
2843 2878  
2844 2879  /*
2845 2880   * Stop and drop level 2 ARC devices
2846 2881   */
2847 2882  void
2848 2883  spa_l2cache_drop(spa_t *spa)
2849 2884  {
2850 2885          vdev_t *vd;
2851 2886          int i;
2852 2887          spa_aux_vdev_t *sav = &spa->spa_l2cache;
2853 2888  
2854 2889          for (i = 0; i < sav->sav_count; i++) {
2855 2890                  uint64_t pool;
2856 2891  
2857 2892                  vd = sav->sav_vdevs[i];
2858 2893                  ASSERT(vd != NULL);
2859 2894  
2860 2895                  if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2861 2896                      pool != 0ULL && l2arc_vdev_present(vd))
2862 2897                          l2arc_remove_vdev(vd);
2863 2898                  if (vd->vdev_isl2cache)
2864 2899                          spa_l2cache_remove(vd);
2865 2900                  vdev_clear_stats(vd);
2866 2901                  (void) vdev_close(vd);
2867 2902          }
2868 2903  }
2869 2904  
2870 2905  /*
2871 2906   * Pool Creation
2872 2907   */
2873 2908  int
2874 2909  spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2875 2910      const char *history_str, nvlist_t *zplprops)
2876 2911  {
2877 2912          spa_t *spa;
2878 2913          char *altroot = NULL;
2879 2914          vdev_t *rvd;
2880 2915          dsl_pool_t *dp;
2881 2916          dmu_tx_t *tx;
2882 2917          int error = 0;
2883 2918          uint64_t txg = TXG_INITIAL;
2884 2919          nvlist_t **spares, **l2cache;
2885 2920          uint_t nspares, nl2cache;
2886 2921          uint64_t version, obj;
2887 2922  
2888 2923          /*
2889 2924           * If this pool already exists, return failure.
2890 2925           */
2891 2926          mutex_enter(&spa_namespace_lock);
2892 2927          if (spa_lookup(pool) != NULL) {
2893 2928                  mutex_exit(&spa_namespace_lock);
2894 2929                  return (EEXIST);
2895 2930          }
2896 2931  
2897 2932          /*
2898 2933           * Allocate a new spa_t structure.
2899 2934           */
2900 2935          (void) nvlist_lookup_string(props,
2901 2936              zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2902 2937          spa = spa_add(pool, NULL, altroot);
2903 2938          spa_activate(spa, spa_mode_global);
2904 2939  
2905 2940          if (props && (error = spa_prop_validate(spa, props))) {
2906 2941                  spa_deactivate(spa);
2907 2942                  spa_remove(spa);
2908 2943                  mutex_exit(&spa_namespace_lock);
2909 2944                  return (error);
2910 2945          }
2911 2946  
2912 2947          if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2913 2948              &version) != 0)
2914 2949                  version = SPA_VERSION;
2915 2950          ASSERT(version <= SPA_VERSION);
2916 2951  
2917 2952          spa->spa_first_txg = txg;
2918 2953          spa->spa_uberblock.ub_txg = txg - 1;
2919 2954          spa->spa_uberblock.ub_version = version;
2920 2955          spa->spa_ubsync = spa->spa_uberblock;
2921 2956  
2922 2957          /*
2923 2958           * Create "The Godfather" zio to hold all async IOs
2924 2959           */
2925 2960          spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2926 2961              ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2927 2962  
2928 2963          /*
2929 2964           * Create the root vdev.
2930 2965           */
2931 2966          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2932 2967  
2933 2968          error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2934 2969  
2935 2970          ASSERT(error != 0 || rvd != NULL);
2936 2971          ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2937 2972  
2938 2973          if (error == 0 && !zfs_allocatable_devs(nvroot))
2939 2974                  error = EINVAL;
2940 2975  
2941 2976          if (error == 0 &&
2942 2977              (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2943 2978              (error = spa_validate_aux(spa, nvroot, txg,
2944 2979              VDEV_ALLOC_ADD)) == 0) {
2945 2980                  for (int c = 0; c < rvd->vdev_children; c++) {
2946 2981                          vdev_metaslab_set_size(rvd->vdev_child[c]);
2947 2982                          vdev_expand(rvd->vdev_child[c], txg);
2948 2983                  }
2949 2984          }
2950 2985  
2951 2986          spa_config_exit(spa, SCL_ALL, FTAG);
2952 2987  
2953 2988          if (error != 0) {
2954 2989                  spa_unload(spa);
2955 2990                  spa_deactivate(spa);
2956 2991                  spa_remove(spa);
2957 2992                  mutex_exit(&spa_namespace_lock);
2958 2993                  return (error);
2959 2994          }
2960 2995  
2961 2996          /*
2962 2997           * Get the list of spares, if specified.
2963 2998           */
2964 2999          if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2965 3000              &spares, &nspares) == 0) {
2966 3001                  VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2967 3002                      KM_SLEEP) == 0);
2968 3003                  VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2969 3004                      ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2970 3005                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2971 3006                  spa_load_spares(spa);
2972 3007                  spa_config_exit(spa, SCL_ALL, FTAG);
2973 3008                  spa->spa_spares.sav_sync = B_TRUE;
2974 3009          }
2975 3010  
2976 3011          /*
2977 3012           * Get the list of level 2 cache devices, if specified.
2978 3013           */
2979 3014          if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2980 3015              &l2cache, &nl2cache) == 0) {
2981 3016                  VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2982 3017                      NV_UNIQUE_NAME, KM_SLEEP) == 0);
2983 3018                  VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2984 3019                      ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2985 3020                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2986 3021                  spa_load_l2cache(spa);
2987 3022                  spa_config_exit(spa, SCL_ALL, FTAG);
2988 3023                  spa->spa_l2cache.sav_sync = B_TRUE;
2989 3024          }
2990 3025  
2991 3026          spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2992 3027          spa->spa_meta_objset = dp->dp_meta_objset;
2993 3028  
2994 3029          /*
2995 3030           * Create DDTs (dedup tables).
2996 3031           */
2997 3032          ddt_create(spa);
2998 3033  
2999 3034          spa_update_dspace(spa);
3000 3035  
3001 3036          tx = dmu_tx_create_assigned(dp, txg);
3002 3037  
3003 3038          /*
3004 3039           * Create the pool config object.
3005 3040           */
3006 3041          spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3007 3042              DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3008 3043              DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3009 3044  
3010 3045          if (zap_add(spa->spa_meta_objset,
3011 3046              DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3012 3047              sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3013 3048                  cmn_err(CE_PANIC, "failed to add pool config");
3014 3049          }
3015 3050  
3016 3051          if (zap_add(spa->spa_meta_objset,
3017 3052              DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3018 3053              sizeof (uint64_t), 1, &version, tx) != 0) {
3019 3054                  cmn_err(CE_PANIC, "failed to add pool version");
3020 3055          }
3021 3056  
3022 3057          /* Newly created pools with the right version are always deflated. */
3023 3058          if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3024 3059                  spa->spa_deflate = TRUE;
3025 3060                  if (zap_add(spa->spa_meta_objset,
3026 3061                      DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3027 3062                      sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3028 3063                          cmn_err(CE_PANIC, "failed to add deflate");
3029 3064                  }
3030 3065          }
3031 3066  
3032 3067          /*
3033 3068           * Create the deferred-free bpobj.  Turn off compression
3034 3069           * because sync-to-convergence takes longer if the blocksize
3035 3070           * keeps changing.
3036 3071           */
3037 3072          obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3038 3073          dmu_object_set_compress(spa->spa_meta_objset, obj,
3039 3074              ZIO_COMPRESS_OFF, tx);
3040 3075          if (zap_add(spa->spa_meta_objset,
3041 3076              DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3042 3077              sizeof (uint64_t), 1, &obj, tx) != 0) {
3043 3078                  cmn_err(CE_PANIC, "failed to add bpobj");
3044 3079          }
3045 3080          VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3046 3081              spa->spa_meta_objset, obj));
3047 3082  
3048 3083          /*
3049 3084           * Create the pool's history object.
3050 3085           */
3051 3086          if (version >= SPA_VERSION_ZPOOL_HISTORY)
3052 3087                  spa_history_create_obj(spa, tx);
3053 3088  
3054 3089          /*
3055 3090           * Set pool properties.
3056 3091           */
3057 3092          spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3058 3093          spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3059 3094          spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3060 3095          spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3061 3096  
3062 3097          if (props != NULL) {
3063 3098                  spa_configfile_set(spa, props, B_FALSE);
3064 3099                  spa_sync_props(spa, props, tx);
3065 3100          }
3066 3101  
3067 3102          dmu_tx_commit(tx);
3068 3103  
3069 3104          spa->spa_sync_on = B_TRUE;
3070 3105          txg_sync_start(spa->spa_dsl_pool);
3071 3106  
3072 3107          /*
3073 3108           * We explicitly wait for the first transaction to complete so that our
3074 3109           * bean counters are appropriately updated.
3075 3110           */
3076 3111          txg_wait_synced(spa->spa_dsl_pool, txg);
3077 3112  
3078 3113          spa_config_sync(spa, B_FALSE, B_TRUE);
3079 3114  
3080 3115          if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3081 3116                  (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3082 3117          spa_history_log_version(spa, LOG_POOL_CREATE);
3083 3118  
3084 3119          spa->spa_minref = refcount_count(&spa->spa_refcount);
3085 3120  
3086 3121          mutex_exit(&spa_namespace_lock);
3087 3122  
3088 3123          return (0);
3089 3124  }
3090 3125  
3091 3126  #ifdef _KERNEL
3092 3127  /*
3093 3128   * Get the root pool information from the root disk, then import the root pool
3094 3129   * during the system boot up time.
3095 3130   */
3096 3131  extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3097 3132  
3098 3133  static nvlist_t *
3099 3134  spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3100 3135  {
3101 3136          nvlist_t *config;
3102 3137          nvlist_t *nvtop, *nvroot;
3103 3138          uint64_t pgid;
3104 3139  
3105 3140          if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3106 3141                  return (NULL);
3107 3142  
3108 3143          /*
3109 3144           * Add this top-level vdev to the child array.
3110 3145           */
3111 3146          VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3112 3147              &nvtop) == 0);
3113 3148          VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3114 3149              &pgid) == 0);
3115 3150          VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3116 3151  
3117 3152          /*
3118 3153           * Put this pool's top-level vdevs into a root vdev.
3119 3154           */
3120 3155          VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3121 3156          VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3122 3157              VDEV_TYPE_ROOT) == 0);
3123 3158          VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3124 3159          VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3125 3160          VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3126 3161              &nvtop, 1) == 0);
3127 3162  
3128 3163          /*
3129 3164           * Replace the existing vdev_tree with the new root vdev in
3130 3165           * this pool's configuration (remove the old, add the new).
3131 3166           */
3132 3167          VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3133 3168          nvlist_free(nvroot);
3134 3169          return (config);
3135 3170  }
3136 3171  
3137 3172  /*
3138 3173   * Walk the vdev tree and see if we can find a device with "better"
3139 3174   * configuration. A configuration is "better" if the label on that
3140 3175   * device has a more recent txg.
3141 3176   */
3142 3177  static void
3143 3178  spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3144 3179  {
3145 3180          for (int c = 0; c < vd->vdev_children; c++)
3146 3181                  spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3147 3182  
3148 3183          if (vd->vdev_ops->vdev_op_leaf) {
3149 3184                  nvlist_t *label;
3150 3185                  uint64_t label_txg;
3151 3186  
3152 3187                  if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3153 3188                      &label) != 0)
3154 3189                          return;
3155 3190  
3156 3191                  VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3157 3192                      &label_txg) == 0);
3158 3193  
3159 3194                  /*
3160 3195                   * Do we have a better boot device?
3161 3196                   */
3162 3197                  if (label_txg > *txg) {
3163 3198                          *txg = label_txg;
3164 3199                          *avd = vd;
3165 3200                  }
3166 3201                  nvlist_free(label);
3167 3202          }
3168 3203  }
3169 3204  
3170 3205  /*
3171 3206   * Import a root pool.
3172 3207   *
3173 3208   * For x86. devpath_list will consist of devid and/or physpath name of
3174 3209   * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3175 3210   * The GRUB "findroot" command will return the vdev we should boot.
3176 3211   *
3177 3212   * For Sparc, devpath_list consists the physpath name of the booting device
3178 3213   * no matter the rootpool is a single device pool or a mirrored pool.
3179 3214   * e.g.
3180 3215   *      "/pci@1f,0/ide@d/disk@0,0:a"
3181 3216   */
3182 3217  int
3183 3218  spa_import_rootpool(char *devpath, char *devid)
3184 3219  {
3185 3220          spa_t *spa;
3186 3221          vdev_t *rvd, *bvd, *avd = NULL;
3187 3222          nvlist_t *config, *nvtop;
3188 3223          uint64_t guid, txg;
3189 3224          char *pname;
3190 3225          int error;
3191 3226  
3192 3227          /*
3193 3228           * Read the label from the boot device and generate a configuration.
3194 3229           */
3195 3230          config = spa_generate_rootconf(devpath, devid, &guid);
3196 3231  #if defined(_OBP) && defined(_KERNEL)
3197 3232          if (config == NULL) {
3198 3233                  if (strstr(devpath, "/iscsi/ssd") != NULL) {
3199 3234                          /* iscsi boot */
3200 3235                          get_iscsi_bootpath_phy(devpath);
3201 3236                          config = spa_generate_rootconf(devpath, devid, &guid);
3202 3237                  }
3203 3238          }
3204 3239  #endif
3205 3240          if (config == NULL) {
3206 3241                  cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
3207 3242                      devpath);
3208 3243                  return (EIO);
3209 3244          }
3210 3245  
3211 3246          VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3212 3247              &pname) == 0);
3213 3248          VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3214 3249  
3215 3250          mutex_enter(&spa_namespace_lock);
3216 3251          if ((spa = spa_lookup(pname)) != NULL) {
3217 3252                  /*
3218 3253                   * Remove the existing root pool from the namespace so that we
3219 3254                   * can replace it with the correct config we just read in.
3220 3255                   */
3221 3256                  spa_remove(spa);
3222 3257          }
3223 3258  
3224 3259          spa = spa_add(pname, config, NULL);
3225 3260          spa->spa_is_root = B_TRUE;
3226 3261          spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3227 3262  
3228 3263          /*
3229 3264           * Build up a vdev tree based on the boot device's label config.
3230 3265           */
3231 3266          VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3232 3267              &nvtop) == 0);
3233 3268          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3234 3269          error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3235 3270              VDEV_ALLOC_ROOTPOOL);
3236 3271          spa_config_exit(spa, SCL_ALL, FTAG);
3237 3272          if (error) {
3238 3273                  mutex_exit(&spa_namespace_lock);
3239 3274                  nvlist_free(config);
3240 3275                  cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3241 3276                      pname);
3242 3277                  return (error);
3243 3278          }
3244 3279  
3245 3280          /*
3246 3281           * Get the boot vdev.
3247 3282           */
3248 3283          if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3249 3284                  cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3250 3285                      (u_longlong_t)guid);
3251 3286                  error = ENOENT;
3252 3287                  goto out;
3253 3288          }
3254 3289  
3255 3290          /*
3256 3291           * Determine if there is a better boot device.
3257 3292           */
3258 3293          avd = bvd;
3259 3294          spa_alt_rootvdev(rvd, &avd, &txg);
3260 3295          if (avd != bvd) {
3261 3296                  cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3262 3297                      "try booting from '%s'", avd->vdev_path);
3263 3298                  error = EINVAL;
3264 3299                  goto out;
3265 3300          }
3266 3301  
3267 3302          /*
3268 3303           * If the boot device is part of a spare vdev then ensure that
3269 3304           * we're booting off the active spare.
3270 3305           */
3271 3306          if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3272 3307              !bvd->vdev_isspare) {
3273 3308                  cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3274 3309                      "try booting from '%s'",
3275 3310                      bvd->vdev_parent->
3276 3311                      vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3277 3312                  error = EINVAL;
3278 3313                  goto out;
3279 3314          }
3280 3315  
3281 3316          error = 0;
3282 3317          spa_history_log_version(spa, LOG_POOL_IMPORT);
3283 3318  out:
3284 3319          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3285 3320          vdev_free(rvd);
3286 3321          spa_config_exit(spa, SCL_ALL, FTAG);
3287 3322          mutex_exit(&spa_namespace_lock);
3288 3323  
3289 3324          nvlist_free(config);
3290 3325          return (error);
3291 3326  }
3292 3327  
3293 3328  #endif
3294 3329  
3295 3330  /*
3296 3331   * Import a non-root pool into the system.
3297 3332   */
3298 3333  int
3299 3334  spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3300 3335  {
3301 3336          spa_t *spa;
3302 3337          char *altroot = NULL;
3303 3338          spa_load_state_t state = SPA_LOAD_IMPORT;
3304 3339          zpool_rewind_policy_t policy;
3305 3340          uint64_t mode = spa_mode_global;
3306 3341          uint64_t readonly = B_FALSE;
3307 3342          int error;
3308 3343          nvlist_t *nvroot;
3309 3344          nvlist_t **spares, **l2cache;
3310 3345          uint_t nspares, nl2cache;
3311 3346  
3312 3347          /*
3313 3348           * If a pool with this name exists, return failure.
3314 3349           */
3315 3350          mutex_enter(&spa_namespace_lock);
3316 3351          if (spa_lookup(pool) != NULL) {
3317 3352                  mutex_exit(&spa_namespace_lock);
3318 3353                  return (EEXIST);
3319 3354          }
3320 3355  
3321 3356          /*
3322 3357           * Create and initialize the spa structure.
3323 3358           */
3324 3359          (void) nvlist_lookup_string(props,
3325 3360              zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3326 3361          (void) nvlist_lookup_uint64(props,
3327 3362              zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3328 3363          if (readonly)
3329 3364                  mode = FREAD;
3330 3365          spa = spa_add(pool, config, altroot);
3331 3366          spa->spa_import_flags = flags;
3332 3367  
3333 3368          /*
3334 3369           * Verbatim import - Take a pool and insert it into the namespace
3335 3370           * as if it had been loaded at boot.
3336 3371           */
3337 3372          if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3338 3373                  if (props != NULL)
3339 3374                          spa_configfile_set(spa, props, B_FALSE);
3340 3375  
3341 3376                  spa_config_sync(spa, B_FALSE, B_TRUE);
3342 3377  
3343 3378                  mutex_exit(&spa_namespace_lock);
3344 3379                  spa_history_log_version(spa, LOG_POOL_IMPORT);
3345 3380  
3346 3381                  return (0);
3347 3382          }
3348 3383  
3349 3384          spa_activate(spa, mode);
3350 3385  
3351 3386          /*
3352 3387           * Don't start async tasks until we know everything is healthy.
3353 3388           */
3354 3389          spa_async_suspend(spa);
3355 3390  
3356 3391          zpool_get_rewind_policy(config, &policy);
3357 3392          if (policy.zrp_request & ZPOOL_DO_REWIND)
3358 3393                  state = SPA_LOAD_RECOVER;
3359 3394  
3360 3395          /*
3361 3396           * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3362 3397           * because the user-supplied config is actually the one to trust when
3363 3398           * doing an import.
3364 3399           */
3365 3400          if (state != SPA_LOAD_RECOVER)
3366 3401                  spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3367 3402  
3368 3403          error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3369 3404              policy.zrp_request);
3370 3405  
3371 3406          /*
3372 3407           * Propagate anything learned while loading the pool and pass it
3373 3408           * back to caller (i.e. rewind info, missing devices, etc).
3374 3409           */
3375 3410          VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3376 3411              spa->spa_load_info) == 0);
3377 3412  
3378 3413          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3379 3414          /*
3380 3415           * Toss any existing sparelist, as it doesn't have any validity
3381 3416           * anymore, and conflicts with spa_has_spare().
3382 3417           */
3383 3418          if (spa->spa_spares.sav_config) {
3384 3419                  nvlist_free(spa->spa_spares.sav_config);
3385 3420                  spa->spa_spares.sav_config = NULL;
3386 3421                  spa_load_spares(spa);
3387 3422          }
3388 3423          if (spa->spa_l2cache.sav_config) {
3389 3424                  nvlist_free(spa->spa_l2cache.sav_config);
3390 3425                  spa->spa_l2cache.sav_config = NULL;
3391 3426                  spa_load_l2cache(spa);
3392 3427          }
3393 3428  
3394 3429          VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3395 3430              &nvroot) == 0);
3396 3431          if (error == 0)
3397 3432                  error = spa_validate_aux(spa, nvroot, -1ULL,
3398 3433                      VDEV_ALLOC_SPARE);
3399 3434          if (error == 0)
3400 3435                  error = spa_validate_aux(spa, nvroot, -1ULL,
3401 3436                      VDEV_ALLOC_L2CACHE);
3402 3437          spa_config_exit(spa, SCL_ALL, FTAG);
3403 3438  
3404 3439          if (props != NULL)
3405 3440                  spa_configfile_set(spa, props, B_FALSE);
3406 3441  
3407 3442          if (error != 0 || (props && spa_writeable(spa) &&
3408 3443              (error = spa_prop_set(spa, props)))) {
3409 3444                  spa_unload(spa);
3410 3445                  spa_deactivate(spa);
3411 3446                  spa_remove(spa);
3412 3447                  mutex_exit(&spa_namespace_lock);
3413 3448                  return (error);
3414 3449          }
3415 3450  
3416 3451          spa_async_resume(spa);
3417 3452  
3418 3453          /*
3419 3454           * Override any spares and level 2 cache devices as specified by
3420 3455           * the user, as these may have correct device names/devids, etc.
3421 3456           */
3422 3457          if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3423 3458              &spares, &nspares) == 0) {
3424 3459                  if (spa->spa_spares.sav_config)
3425 3460                          VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3426 3461                              ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3427 3462                  else
3428 3463                          VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3429 3464                              NV_UNIQUE_NAME, KM_SLEEP) == 0);
3430 3465                  VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3431 3466                      ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3432 3467                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3433 3468                  spa_load_spares(spa);
3434 3469                  spa_config_exit(spa, SCL_ALL, FTAG);
3435 3470                  spa->spa_spares.sav_sync = B_TRUE;
3436 3471          }
3437 3472          if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3438 3473              &l2cache, &nl2cache) == 0) {
3439 3474                  if (spa->spa_l2cache.sav_config)
3440 3475                          VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3441 3476                              ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3442 3477                  else
3443 3478                          VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3444 3479                              NV_UNIQUE_NAME, KM_SLEEP) == 0);
3445 3480                  VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3446 3481                      ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3447 3482                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3448 3483                  spa_load_l2cache(spa);
3449 3484                  spa_config_exit(spa, SCL_ALL, FTAG);
3450 3485                  spa->spa_l2cache.sav_sync = B_TRUE;
3451 3486          }
3452 3487  
3453 3488          /*
3454 3489           * Check for any removed devices.
3455 3490           */
3456 3491          if (spa->spa_autoreplace) {
3457 3492                  spa_aux_check_removed(&spa->spa_spares);
3458 3493                  spa_aux_check_removed(&spa->spa_l2cache);
3459 3494          }
3460 3495  
3461 3496          if (spa_writeable(spa)) {
3462 3497                  /*
3463 3498                   * Update the config cache to include the newly-imported pool.
3464 3499                   */
3465 3500                  spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3466 3501          }
3467 3502  
3468 3503          /*
3469 3504           * It's possible that the pool was expanded while it was exported.
3470 3505           * We kick off an async task to handle this for us.
3471 3506           */
3472 3507          spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3473 3508  
3474 3509          mutex_exit(&spa_namespace_lock);
3475 3510          spa_history_log_version(spa, LOG_POOL_IMPORT);
3476 3511  
3477 3512          return (0);
3478 3513  }
3479 3514  
3480 3515  nvlist_t *
3481 3516  spa_tryimport(nvlist_t *tryconfig)
3482 3517  {
3483 3518          nvlist_t *config = NULL;
3484 3519          char *poolname;
3485 3520          spa_t *spa;
3486 3521          uint64_t state;
3487 3522          int error;
3488 3523  
3489 3524          if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3490 3525                  return (NULL);
3491 3526  
3492 3527          if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3493 3528                  return (NULL);
3494 3529  
3495 3530          /*
3496 3531           * Create and initialize the spa structure.
3497 3532           */
3498 3533          mutex_enter(&spa_namespace_lock);
3499 3534          spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3500 3535          spa_activate(spa, FREAD);
3501 3536  
3502 3537          /*
3503 3538           * Pass off the heavy lifting to spa_load().
3504 3539           * Pass TRUE for mosconfig because the user-supplied config
3505 3540           * is actually the one to trust when doing an import.
3506 3541           */
3507 3542          error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3508 3543  
3509 3544          /*
3510 3545           * If 'tryconfig' was at least parsable, return the current config.
3511 3546           */
3512 3547          if (spa->spa_root_vdev != NULL) {
3513 3548                  config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3514 3549                  VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3515 3550                      poolname) == 0);
3516 3551                  VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3517 3552                      state) == 0);
3518 3553                  VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3519 3554                      spa->spa_uberblock.ub_timestamp) == 0);
3520 3555  
3521 3556                  /*
3522 3557                   * If the bootfs property exists on this pool then we
3523 3558                   * copy it out so that external consumers can tell which
3524 3559                   * pools are bootable.
3525 3560                   */
3526 3561                  if ((!error || error == EEXIST) && spa->spa_bootfs) {
3527 3562                          char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3528 3563  
3529 3564                          /*
3530 3565                           * We have to play games with the name since the
3531 3566                           * pool was opened as TRYIMPORT_NAME.
3532 3567                           */
3533 3568                          if (dsl_dsobj_to_dsname(spa_name(spa),
3534 3569                              spa->spa_bootfs, tmpname) == 0) {
3535 3570                                  char *cp;
3536 3571                                  char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3537 3572  
3538 3573                                  cp = strchr(tmpname, '/');
3539 3574                                  if (cp == NULL) {
3540 3575                                          (void) strlcpy(dsname, tmpname,
3541 3576                                              MAXPATHLEN);
3542 3577                                  } else {
3543 3578                                          (void) snprintf(dsname, MAXPATHLEN,
3544 3579                                              "%s/%s", poolname, ++cp);
3545 3580                                  }
3546 3581                                  VERIFY(nvlist_add_string(config,
3547 3582                                      ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3548 3583                                  kmem_free(dsname, MAXPATHLEN);
3549 3584                          }
3550 3585                          kmem_free(tmpname, MAXPATHLEN);
3551 3586                  }
3552 3587  
3553 3588                  /*
3554 3589                   * Add the list of hot spares and level 2 cache devices.
3555 3590                   */
3556 3591                  spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3557 3592                  spa_add_spares(spa, config);
3558 3593                  spa_add_l2cache(spa, config);
3559 3594                  spa_config_exit(spa, SCL_CONFIG, FTAG);
3560 3595          }
3561 3596  
3562 3597          spa_unload(spa);
3563 3598          spa_deactivate(spa);
3564 3599          spa_remove(spa);
3565 3600          mutex_exit(&spa_namespace_lock);
3566 3601  
3567 3602          return (config);
3568 3603  }
3569 3604  
3570 3605  /*
3571 3606   * Pool export/destroy
3572 3607   *
3573 3608   * The act of destroying or exporting a pool is very simple.  We make sure there
3574 3609   * is no more pending I/O and any references to the pool are gone.  Then, we
3575 3610   * update the pool state and sync all the labels to disk, removing the
3576 3611   * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3577 3612   * we don't sync the labels or remove the configuration cache.
3578 3613   */
3579 3614  static int
3580 3615  spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3581 3616      boolean_t force, boolean_t hardforce)
3582 3617  {
3583 3618          spa_t *spa;
3584 3619  
3585 3620          if (oldconfig)
3586 3621                  *oldconfig = NULL;
3587 3622  
3588 3623          if (!(spa_mode_global & FWRITE))
3589 3624                  return (EROFS);
3590 3625  
3591 3626          mutex_enter(&spa_namespace_lock);
3592 3627          if ((spa = spa_lookup(pool)) == NULL) {
3593 3628                  mutex_exit(&spa_namespace_lock);
3594 3629                  return (ENOENT);
3595 3630          }
3596 3631  
3597 3632          /*
3598 3633           * Put a hold on the pool, drop the namespace lock, stop async tasks,
3599 3634           * reacquire the namespace lock, and see if we can export.
3600 3635           */
3601 3636          spa_open_ref(spa, FTAG);
3602 3637          mutex_exit(&spa_namespace_lock);
3603 3638          spa_async_suspend(spa);
3604 3639          mutex_enter(&spa_namespace_lock);
3605 3640          spa_close(spa, FTAG);
3606 3641  
3607 3642          /*
3608 3643           * The pool will be in core if it's openable,
3609 3644           * in which case we can modify its state.
3610 3645           */
3611 3646          if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3612 3647                  /*
3613 3648                   * Objsets may be open only because they're dirty, so we
3614 3649                   * have to force it to sync before checking spa_refcnt.
3615 3650                   */
3616 3651                  txg_wait_synced(spa->spa_dsl_pool, 0);
3617 3652  
3618 3653                  /*
3619 3654                   * A pool cannot be exported or destroyed if there are active
3620 3655                   * references.  If we are resetting a pool, allow references by
3621 3656                   * fault injection handlers.
3622 3657                   */
3623 3658                  if (!spa_refcount_zero(spa) ||
3624 3659                      (spa->spa_inject_ref != 0 &&
3625 3660                      new_state != POOL_STATE_UNINITIALIZED)) {
3626 3661                          spa_async_resume(spa);
3627 3662                          mutex_exit(&spa_namespace_lock);
3628 3663                          return (EBUSY);
3629 3664                  }
3630 3665  
3631 3666                  /*
3632 3667                   * A pool cannot be exported if it has an active shared spare.
3633 3668                   * This is to prevent other pools stealing the active spare
3634 3669                   * from an exported pool. At user's own will, such pool can
3635 3670                   * be forcedly exported.
3636 3671                   */
3637 3672                  if (!force && new_state == POOL_STATE_EXPORTED &&
3638 3673                      spa_has_active_shared_spare(spa)) {
3639 3674                          spa_async_resume(spa);
3640 3675                          mutex_exit(&spa_namespace_lock);
3641 3676                          return (EXDEV);
3642 3677                  }
3643 3678  
3644 3679                  /*
3645 3680                   * We want this to be reflected on every label,
3646 3681                   * so mark them all dirty.  spa_unload() will do the
3647 3682                   * final sync that pushes these changes out.
3648 3683                   */
3649 3684                  if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3650 3685                          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3651 3686                          spa->spa_state = new_state;
3652 3687                          spa->spa_final_txg = spa_last_synced_txg(spa) +
3653 3688                              TXG_DEFER_SIZE + 1;
3654 3689                          vdev_config_dirty(spa->spa_root_vdev);
3655 3690                          spa_config_exit(spa, SCL_ALL, FTAG);
3656 3691                  }
3657 3692          }
3658 3693  
3659 3694          spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3660 3695  
3661 3696          if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3662 3697                  spa_unload(spa);
3663 3698                  spa_deactivate(spa);
3664 3699          }
3665 3700  
3666 3701          if (oldconfig && spa->spa_config)
3667 3702                  VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3668 3703  
3669 3704          if (new_state != POOL_STATE_UNINITIALIZED) {
3670 3705                  if (!hardforce)
3671 3706                          spa_config_sync(spa, B_TRUE, B_TRUE);
3672 3707                  spa_remove(spa);
3673 3708          }
3674 3709          mutex_exit(&spa_namespace_lock);
3675 3710  
3676 3711          return (0);
3677 3712  }
3678 3713  
3679 3714  /*
3680 3715   * Destroy a storage pool.
3681 3716   */
3682 3717  int
3683 3718  spa_destroy(char *pool)
3684 3719  {
3685 3720          return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3686 3721              B_FALSE, B_FALSE));
3687 3722  }
3688 3723  
3689 3724  /*
3690 3725   * Export a storage pool.
3691 3726   */
3692 3727  int
3693 3728  spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3694 3729      boolean_t hardforce)
3695 3730  {
3696 3731          return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3697 3732              force, hardforce));
3698 3733  }
3699 3734  
3700 3735  /*
3701 3736   * Similar to spa_export(), this unloads the spa_t without actually removing it
3702 3737   * from the namespace in any way.
3703 3738   */
3704 3739  int
3705 3740  spa_reset(char *pool)
3706 3741  {
3707 3742          return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3708 3743              B_FALSE, B_FALSE));
3709 3744  }
3710 3745  
3711 3746  /*
3712 3747   * ==========================================================================
3713 3748   * Device manipulation
3714 3749   * ==========================================================================
3715 3750   */
3716 3751  
3717 3752  /*
3718 3753   * Add a device to a storage pool.
3719 3754   */
3720 3755  int
3721 3756  spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3722 3757  {
3723 3758          uint64_t txg, id;
3724 3759          int error;
3725 3760          vdev_t *rvd = spa->spa_root_vdev;
3726 3761          vdev_t *vd, *tvd;
3727 3762          nvlist_t **spares, **l2cache;
3728 3763          uint_t nspares, nl2cache;
3729 3764  
3730 3765          ASSERT(spa_writeable(spa));
3731 3766  
3732 3767          txg = spa_vdev_enter(spa);
3733 3768  
3734 3769          if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3735 3770              VDEV_ALLOC_ADD)) != 0)
3736 3771                  return (spa_vdev_exit(spa, NULL, txg, error));
3737 3772  
3738 3773          spa->spa_pending_vdev = vd;     /* spa_vdev_exit() will clear this */
3739 3774  
3740 3775          if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3741 3776              &nspares) != 0)
3742 3777                  nspares = 0;
3743 3778  
3744 3779          if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3745 3780              &nl2cache) != 0)
3746 3781                  nl2cache = 0;
3747 3782  
3748 3783          if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3749 3784                  return (spa_vdev_exit(spa, vd, txg, EINVAL));
3750 3785  
3751 3786          if (vd->vdev_children != 0 &&
3752 3787              (error = vdev_create(vd, txg, B_FALSE)) != 0)
3753 3788                  return (spa_vdev_exit(spa, vd, txg, error));
3754 3789  
3755 3790          /*
3756 3791           * We must validate the spares and l2cache devices after checking the
3757 3792           * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
3758 3793           */
3759 3794          if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3760 3795                  return (spa_vdev_exit(spa, vd, txg, error));
3761 3796  
3762 3797          /*
3763 3798           * Transfer each new top-level vdev from vd to rvd.
3764 3799           */
3765 3800          for (int c = 0; c < vd->vdev_children; c++) {
3766 3801  
3767 3802                  /*
3768 3803                   * Set the vdev id to the first hole, if one exists.
3769 3804                   */
3770 3805                  for (id = 0; id < rvd->vdev_children; id++) {
3771 3806                          if (rvd->vdev_child[id]->vdev_ishole) {
3772 3807                                  vdev_free(rvd->vdev_child[id]);
3773 3808                                  break;
3774 3809                          }
3775 3810                  }
3776 3811                  tvd = vd->vdev_child[c];
3777 3812                  vdev_remove_child(vd, tvd);
3778 3813                  tvd->vdev_id = id;
3779 3814                  vdev_add_child(rvd, tvd);
3780 3815                  vdev_config_dirty(tvd);
3781 3816          }
3782 3817  
3783 3818          if (nspares != 0) {
3784 3819                  spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3785 3820                      ZPOOL_CONFIG_SPARES);
3786 3821                  spa_load_spares(spa);
3787 3822                  spa->spa_spares.sav_sync = B_TRUE;
3788 3823          }
3789 3824  
3790 3825          if (nl2cache != 0) {
3791 3826                  spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3792 3827                      ZPOOL_CONFIG_L2CACHE);
3793 3828                  spa_load_l2cache(spa);
3794 3829                  spa->spa_l2cache.sav_sync = B_TRUE;
3795 3830          }
3796 3831  
3797 3832          /*
3798 3833           * We have to be careful when adding new vdevs to an existing pool.
3799 3834           * If other threads start allocating from these vdevs before we
3800 3835           * sync the config cache, and we lose power, then upon reboot we may
3801 3836           * fail to open the pool because there are DVAs that the config cache
3802 3837           * can't translate.  Therefore, we first add the vdevs without
3803 3838           * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3804 3839           * and then let spa_config_update() initialize the new metaslabs.
3805 3840           *
3806 3841           * spa_load() checks for added-but-not-initialized vdevs, so that
3807 3842           * if we lose power at any point in this sequence, the remaining
3808 3843           * steps will be completed the next time we load the pool.
3809 3844           */
3810 3845          (void) spa_vdev_exit(spa, vd, txg, 0);
3811 3846  
3812 3847          mutex_enter(&spa_namespace_lock);
3813 3848          spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3814 3849          mutex_exit(&spa_namespace_lock);
3815 3850  
3816 3851          return (0);
3817 3852  }
3818 3853  
3819 3854  /*
3820 3855   * Attach a device to a mirror.  The arguments are the path to any device
3821 3856   * in the mirror, and the nvroot for the new device.  If the path specifies
3822 3857   * a device that is not mirrored, we automatically insert the mirror vdev.
3823 3858   *
3824 3859   * If 'replacing' is specified, the new device is intended to replace the
3825 3860   * existing device; in this case the two devices are made into their own
3826 3861   * mirror using the 'replacing' vdev, which is functionally identical to
3827 3862   * the mirror vdev (it actually reuses all the same ops) but has a few
3828 3863   * extra rules: you can't attach to it after it's been created, and upon
3829 3864   * completion of resilvering, the first disk (the one being replaced)
3830 3865   * is automatically detached.
3831 3866   */
3832 3867  int
3833 3868  spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3834 3869  {
3835 3870          uint64_t txg, dtl_max_txg;
3836 3871          vdev_t *rvd = spa->spa_root_vdev;
3837 3872          vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3838 3873          vdev_ops_t *pvops;
3839 3874          char *oldvdpath, *newvdpath;
3840 3875          int newvd_isspare;
3841 3876          int error;
3842 3877  
3843 3878          ASSERT(spa_writeable(spa));
3844 3879  
3845 3880          txg = spa_vdev_enter(spa);
3846 3881  
3847 3882          oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3848 3883  
3849 3884          if (oldvd == NULL)
3850 3885                  return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3851 3886  
3852 3887          if (!oldvd->vdev_ops->vdev_op_leaf)
3853 3888                  return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3854 3889  
3855 3890          pvd = oldvd->vdev_parent;
3856 3891  
3857 3892          if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3858 3893              VDEV_ALLOC_ADD)) != 0)
3859 3894                  return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3860 3895  
3861 3896          if (newrootvd->vdev_children != 1)
3862 3897                  return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3863 3898  
3864 3899          newvd = newrootvd->vdev_child[0];
3865 3900  
3866 3901          if (!newvd->vdev_ops->vdev_op_leaf)
3867 3902                  return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3868 3903  
3869 3904          if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3870 3905                  return (spa_vdev_exit(spa, newrootvd, txg, error));
3871 3906  
3872 3907          /*
3873 3908           * Spares can't replace logs
3874 3909           */
3875 3910          if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3876 3911                  return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3877 3912  
3878 3913          if (!replacing) {
3879 3914                  /*
3880 3915                   * For attach, the only allowable parent is a mirror or the root
3881 3916                   * vdev.
3882 3917                   */
3883 3918                  if (pvd->vdev_ops != &vdev_mirror_ops &&
3884 3919                      pvd->vdev_ops != &vdev_root_ops)
3885 3920                          return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3886 3921  
3887 3922                  pvops = &vdev_mirror_ops;
3888 3923          } else {
3889 3924                  /*
3890 3925                   * Active hot spares can only be replaced by inactive hot
3891 3926                   * spares.
3892 3927                   */
3893 3928                  if (pvd->vdev_ops == &vdev_spare_ops &&
3894 3929                      oldvd->vdev_isspare &&
3895 3930                      !spa_has_spare(spa, newvd->vdev_guid))
3896 3931                          return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3897 3932  
3898 3933                  /*
3899 3934                   * If the source is a hot spare, and the parent isn't already a
3900 3935                   * spare, then we want to create a new hot spare.  Otherwise, we
3901 3936                   * want to create a replacing vdev.  The user is not allowed to
3902 3937                   * attach to a spared vdev child unless the 'isspare' state is
3903 3938                   * the same (spare replaces spare, non-spare replaces
3904 3939                   * non-spare).
3905 3940                   */
3906 3941                  if (pvd->vdev_ops == &vdev_replacing_ops &&
3907 3942                      spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
3908 3943                          return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3909 3944                  } else if (pvd->vdev_ops == &vdev_spare_ops &&
3910 3945                      newvd->vdev_isspare != oldvd->vdev_isspare) {
3911 3946                          return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3912 3947                  }
3913 3948  
3914 3949                  if (newvd->vdev_isspare)
3915 3950                          pvops = &vdev_spare_ops;
3916 3951                  else
3917 3952                          pvops = &vdev_replacing_ops;
3918 3953          }
3919 3954  
3920 3955          /*
3921 3956           * Make sure the new device is big enough.
3922 3957           */
3923 3958          if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3924 3959                  return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3925 3960  
3926 3961          /*
3927 3962           * The new device cannot have a higher alignment requirement
3928 3963           * than the top-level vdev.
3929 3964           */
3930 3965          if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3931 3966                  return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3932 3967  
3933 3968          /*
3934 3969           * If this is an in-place replacement, update oldvd's path and devid
3935 3970           * to make it distinguishable from newvd, and unopenable from now on.
3936 3971           */
3937 3972          if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3938 3973                  spa_strfree(oldvd->vdev_path);
3939 3974                  oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3940 3975                      KM_SLEEP);
3941 3976                  (void) sprintf(oldvd->vdev_path, "%s/%s",
3942 3977                      newvd->vdev_path, "old");
3943 3978                  if (oldvd->vdev_devid != NULL) {
3944 3979                          spa_strfree(oldvd->vdev_devid);
3945 3980                          oldvd->vdev_devid = NULL;
3946 3981                  }
3947 3982          }
3948 3983  
3949 3984          /* mark the device being resilvered */
3950 3985          newvd->vdev_resilvering = B_TRUE;
3951 3986  
3952 3987          /*
3953 3988           * If the parent is not a mirror, or if we're replacing, insert the new
3954 3989           * mirror/replacing/spare vdev above oldvd.
3955 3990           */
3956 3991          if (pvd->vdev_ops != pvops)
3957 3992                  pvd = vdev_add_parent(oldvd, pvops);
3958 3993  
3959 3994          ASSERT(pvd->vdev_top->vdev_parent == rvd);
3960 3995          ASSERT(pvd->vdev_ops == pvops);
3961 3996          ASSERT(oldvd->vdev_parent == pvd);
3962 3997  
3963 3998          /*
3964 3999           * Extract the new device from its root and add it to pvd.
3965 4000           */
3966 4001          vdev_remove_child(newrootvd, newvd);
3967 4002          newvd->vdev_id = pvd->vdev_children;
3968 4003          newvd->vdev_crtxg = oldvd->vdev_crtxg;
3969 4004          vdev_add_child(pvd, newvd);
3970 4005  
3971 4006          tvd = newvd->vdev_top;
3972 4007          ASSERT(pvd->vdev_top == tvd);
3973 4008          ASSERT(tvd->vdev_parent == rvd);
3974 4009  
3975 4010          vdev_config_dirty(tvd);
3976 4011  
3977 4012          /*
3978 4013           * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
3979 4014           * for any dmu_sync-ed blocks.  It will propagate upward when
3980 4015           * spa_vdev_exit() calls vdev_dtl_reassess().
3981 4016           */
3982 4017          dtl_max_txg = txg + TXG_CONCURRENT_STATES;
3983 4018  
3984 4019          vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
3985 4020              dtl_max_txg - TXG_INITIAL);
3986 4021  
3987 4022          if (newvd->vdev_isspare) {
3988 4023                  spa_spare_activate(newvd);
3989 4024                  spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3990 4025          }
3991 4026  
3992 4027          oldvdpath = spa_strdup(oldvd->vdev_path);
3993 4028          newvdpath = spa_strdup(newvd->vdev_path);
3994 4029          newvd_isspare = newvd->vdev_isspare;
3995 4030  
3996 4031          /*
3997 4032           * Mark newvd's DTL dirty in this txg.
3998 4033           */
3999 4034          vdev_dirty(tvd, VDD_DTL, newvd, txg);
4000 4035  
4001 4036          /*
4002 4037           * Restart the resilver
4003 4038           */
4004 4039          dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4005 4040  
4006 4041          /*
4007 4042           * Commit the config
4008 4043           */
4009 4044          (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4010 4045  
4011 4046          spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4012 4047              "%s vdev=%s %s vdev=%s",
4013 4048              replacing && newvd_isspare ? "spare in" :
4014 4049              replacing ? "replace" : "attach", newvdpath,
4015 4050              replacing ? "for" : "to", oldvdpath);
4016 4051  
4017 4052          spa_strfree(oldvdpath);
4018 4053          spa_strfree(newvdpath);
4019 4054  
4020 4055          if (spa->spa_bootfs)
4021 4056                  spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4022 4057  
4023 4058          return (0);
4024 4059  }
4025 4060  
4026 4061  /*
4027 4062   * Detach a device from a mirror or replacing vdev.
4028 4063   * If 'replace_done' is specified, only detach if the parent
4029 4064   * is a replacing vdev.
4030 4065   */
4031 4066  int
4032 4067  spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4033 4068  {
4034 4069          uint64_t txg;
4035 4070          int error;
4036 4071          vdev_t *rvd = spa->spa_root_vdev;
4037 4072          vdev_t *vd, *pvd, *cvd, *tvd;
4038 4073          boolean_t unspare = B_FALSE;
4039 4074          uint64_t unspare_guid;
4040 4075          char *vdpath;
4041 4076  
4042 4077          ASSERT(spa_writeable(spa));
4043 4078  
4044 4079          txg = spa_vdev_enter(spa);
4045 4080  
4046 4081          vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4047 4082  
4048 4083          if (vd == NULL)
4049 4084                  return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4050 4085  
4051 4086          if (!vd->vdev_ops->vdev_op_leaf)
4052 4087                  return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4053 4088  
4054 4089          pvd = vd->vdev_parent;
4055 4090  
4056 4091          /*
4057 4092           * If the parent/child relationship is not as expected, don't do it.
4058 4093           * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4059 4094           * vdev that's replacing B with C.  The user's intent in replacing
4060 4095           * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4061 4096           * the replace by detaching C, the expected behavior is to end up
4062 4097           * M(A,B).  But suppose that right after deciding to detach C,
4063 4098           * the replacement of B completes.  We would have M(A,C), and then
4064 4099           * ask to detach C, which would leave us with just A -- not what
4065 4100           * the user wanted.  To prevent this, we make sure that the
4066 4101           * parent/child relationship hasn't changed -- in this example,
4067 4102           * that C's parent is still the replacing vdev R.
4068 4103           */
4069 4104          if (pvd->vdev_guid != pguid && pguid != 0)
4070 4105                  return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4071 4106  
4072 4107          /*
4073 4108           * Only 'replacing' or 'spare' vdevs can be replaced.
4074 4109           */
4075 4110          if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4076 4111              pvd->vdev_ops != &vdev_spare_ops)
4077 4112                  return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4078 4113  
4079 4114          ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4080 4115              spa_version(spa) >= SPA_VERSION_SPARES);
4081 4116  
4082 4117          /*
4083 4118           * Only mirror, replacing, and spare vdevs support detach.
4084 4119           */
4085 4120          if (pvd->vdev_ops != &vdev_replacing_ops &&
4086 4121              pvd->vdev_ops != &vdev_mirror_ops &&
4087 4122              pvd->vdev_ops != &vdev_spare_ops)
4088 4123                  return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4089 4124  
4090 4125          /*
4091 4126           * If this device has the only valid copy of some data,
4092 4127           * we cannot safely detach it.
4093 4128           */
4094 4129          if (vdev_dtl_required(vd))
4095 4130                  return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4096 4131  
4097 4132          ASSERT(pvd->vdev_children >= 2);
4098 4133  
4099 4134          /*
4100 4135           * If we are detaching the second disk from a replacing vdev, then
4101 4136           * check to see if we changed the original vdev's path to have "/old"
4102 4137           * at the end in spa_vdev_attach().  If so, undo that change now.
4103 4138           */
4104 4139          if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4105 4140              vd->vdev_path != NULL) {
4106 4141                  size_t len = strlen(vd->vdev_path);
4107 4142  
4108 4143                  for (int c = 0; c < pvd->vdev_children; c++) {
4109 4144                          cvd = pvd->vdev_child[c];
4110 4145  
4111 4146                          if (cvd == vd || cvd->vdev_path == NULL)
4112 4147                                  continue;
4113 4148  
4114 4149                          if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4115 4150                              strcmp(cvd->vdev_path + len, "/old") == 0) {
4116 4151                                  spa_strfree(cvd->vdev_path);
4117 4152                                  cvd->vdev_path = spa_strdup(vd->vdev_path);
4118 4153                                  break;
4119 4154                          }
4120 4155                  }
4121 4156          }
4122 4157  
4123 4158          /*
4124 4159           * If we are detaching the original disk from a spare, then it implies
4125 4160           * that the spare should become a real disk, and be removed from the
4126 4161           * active spare list for the pool.
4127 4162           */
4128 4163          if (pvd->vdev_ops == &vdev_spare_ops &&
4129 4164              vd->vdev_id == 0 &&
4130 4165              pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4131 4166                  unspare = B_TRUE;
4132 4167  
4133 4168          /*
4134 4169           * Erase the disk labels so the disk can be used for other things.
4135 4170           * This must be done after all other error cases are handled,
4136 4171           * but before we disembowel vd (so we can still do I/O to it).
4137 4172           * But if we can't do it, don't treat the error as fatal --
4138 4173           * it may be that the unwritability of the disk is the reason
4139 4174           * it's being detached!
4140 4175           */
4141 4176          error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4142 4177  
4143 4178          /*
4144 4179           * Remove vd from its parent and compact the parent's children.
4145 4180           */
4146 4181          vdev_remove_child(pvd, vd);
4147 4182          vdev_compact_children(pvd);
4148 4183  
4149 4184          /*
4150 4185           * Remember one of the remaining children so we can get tvd below.
4151 4186           */
4152 4187          cvd = pvd->vdev_child[pvd->vdev_children - 1];
4153 4188  
4154 4189          /*
4155 4190           * If we need to remove the remaining child from the list of hot spares,
4156 4191           * do it now, marking the vdev as no longer a spare in the process.
4157 4192           * We must do this before vdev_remove_parent(), because that can
4158 4193           * change the GUID if it creates a new toplevel GUID.  For a similar
4159 4194           * reason, we must remove the spare now, in the same txg as the detach;
4160 4195           * otherwise someone could attach a new sibling, change the GUID, and
4161 4196           * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4162 4197           */
4163 4198          if (unspare) {
4164 4199                  ASSERT(cvd->vdev_isspare);
4165 4200                  spa_spare_remove(cvd);
4166 4201                  unspare_guid = cvd->vdev_guid;
4167 4202                  (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4168 4203                  cvd->vdev_unspare = B_TRUE;
4169 4204          }
4170 4205  
4171 4206          /*
4172 4207           * If the parent mirror/replacing vdev only has one child,
4173 4208           * the parent is no longer needed.  Remove it from the tree.
4174 4209           */
4175 4210          if (pvd->vdev_children == 1) {
4176 4211                  if (pvd->vdev_ops == &vdev_spare_ops)
4177 4212                          cvd->vdev_unspare = B_FALSE;
4178 4213                  vdev_remove_parent(cvd);
4179 4214                  cvd->vdev_resilvering = B_FALSE;
4180 4215          }
4181 4216  
4182 4217  
4183 4218          /*
4184 4219           * We don't set tvd until now because the parent we just removed
4185 4220           * may have been the previous top-level vdev.
4186 4221           */
4187 4222          tvd = cvd->vdev_top;
4188 4223          ASSERT(tvd->vdev_parent == rvd);
4189 4224  
4190 4225          /*
4191 4226           * Reevaluate the parent vdev state.
4192 4227           */
4193 4228          vdev_propagate_state(cvd);
4194 4229  
4195 4230          /*
4196 4231           * If the 'autoexpand' property is set on the pool then automatically
4197 4232           * try to expand the size of the pool. For example if the device we
4198 4233           * just detached was smaller than the others, it may be possible to
4199 4234           * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4200 4235           * first so that we can obtain the updated sizes of the leaf vdevs.
4201 4236           */
4202 4237          if (spa->spa_autoexpand) {
4203 4238                  vdev_reopen(tvd);
4204 4239                  vdev_expand(tvd, txg);
4205 4240          }
4206 4241  
4207 4242          vdev_config_dirty(tvd);
4208 4243  
4209 4244          /*
4210 4245           * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4211 4246           * vd->vdev_detached is set and free vd's DTL object in syncing context.
4212 4247           * But first make sure we're not on any *other* txg's DTL list, to
4213 4248           * prevent vd from being accessed after it's freed.
4214 4249           */
4215 4250          vdpath = spa_strdup(vd->vdev_path);
4216 4251          for (int t = 0; t < TXG_SIZE; t++)
4217 4252                  (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4218 4253          vd->vdev_detached = B_TRUE;
4219 4254          vdev_dirty(tvd, VDD_DTL, vd, txg);
4220 4255  
4221 4256          spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4222 4257  
4223 4258          /* hang on to the spa before we release the lock */
4224 4259          spa_open_ref(spa, FTAG);
4225 4260  
4226 4261          error = spa_vdev_exit(spa, vd, txg, 0);
4227 4262  
4228 4263          spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4229 4264              "vdev=%s", vdpath);
4230 4265          spa_strfree(vdpath);
4231 4266  
4232 4267          /*
4233 4268           * If this was the removal of the original device in a hot spare vdev,
4234 4269           * then we want to go through and remove the device from the hot spare
4235 4270           * list of every other pool.
4236 4271           */
4237 4272          if (unspare) {
4238 4273                  spa_t *altspa = NULL;
4239 4274  
4240 4275                  mutex_enter(&spa_namespace_lock);
4241 4276                  while ((altspa = spa_next(altspa)) != NULL) {
4242 4277                          if (altspa->spa_state != POOL_STATE_ACTIVE ||
4243 4278                              altspa == spa)
4244 4279                                  continue;
4245 4280  
4246 4281                          spa_open_ref(altspa, FTAG);
4247 4282                          mutex_exit(&spa_namespace_lock);
4248 4283                          (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4249 4284                          mutex_enter(&spa_namespace_lock);
4250 4285                          spa_close(altspa, FTAG);
4251 4286                  }
4252 4287                  mutex_exit(&spa_namespace_lock);
4253 4288  
4254 4289                  /* search the rest of the vdevs for spares to remove */
4255 4290                  spa_vdev_resilver_done(spa);
4256 4291          }
4257 4292  
4258 4293          /* all done with the spa; OK to release */
4259 4294          mutex_enter(&spa_namespace_lock);
4260 4295          spa_close(spa, FTAG);
4261 4296          mutex_exit(&spa_namespace_lock);
4262 4297  
4263 4298          return (error);
4264 4299  }
4265 4300  
4266 4301  /*
4267 4302   * Split a set of devices from their mirrors, and create a new pool from them.
4268 4303   */
4269 4304  int
4270 4305  spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4271 4306      nvlist_t *props, boolean_t exp)
4272 4307  {
4273 4308          int error = 0;
4274 4309          uint64_t txg, *glist;
4275 4310          spa_t *newspa;
4276 4311          uint_t c, children, lastlog;
4277 4312          nvlist_t **child, *nvl, *tmp;
4278 4313          dmu_tx_t *tx;
4279 4314          char *altroot = NULL;
4280 4315          vdev_t *rvd, **vml = NULL;                      /* vdev modify list */
4281 4316          boolean_t activate_slog;
4282 4317  
4283 4318          ASSERT(spa_writeable(spa));
4284 4319  
4285 4320          txg = spa_vdev_enter(spa);
4286 4321  
4287 4322          /* clear the log and flush everything up to now */
4288 4323          activate_slog = spa_passivate_log(spa);
4289 4324          (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4290 4325          error = spa_offline_log(spa);
4291 4326          txg = spa_vdev_config_enter(spa);
4292 4327  
4293 4328          if (activate_slog)
4294 4329                  spa_activate_log(spa);
4295 4330  
4296 4331          if (error != 0)
4297 4332                  return (spa_vdev_exit(spa, NULL, txg, error));
4298 4333  
4299 4334          /* check new spa name before going any further */
4300 4335          if (spa_lookup(newname) != NULL)
4301 4336                  return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4302 4337  
4303 4338          /*
4304 4339           * scan through all the children to ensure they're all mirrors
4305 4340           */
4306 4341          if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4307 4342              nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4308 4343              &children) != 0)
4309 4344                  return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4310 4345  
4311 4346          /* first, check to ensure we've got the right child count */
4312 4347          rvd = spa->spa_root_vdev;
4313 4348          lastlog = 0;
4314 4349          for (c = 0; c < rvd->vdev_children; c++) {
4315 4350                  vdev_t *vd = rvd->vdev_child[c];
4316 4351  
4317 4352                  /* don't count the holes & logs as children */
4318 4353                  if (vd->vdev_islog || vd->vdev_ishole) {
4319 4354                          if (lastlog == 0)
4320 4355                                  lastlog = c;
4321 4356                          continue;
4322 4357                  }
4323 4358  
4324 4359                  lastlog = 0;
4325 4360          }
4326 4361          if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4327 4362                  return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4328 4363  
4329 4364          /* next, ensure no spare or cache devices are part of the split */
4330 4365          if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4331 4366              nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4332 4367                  return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4333 4368  
4334 4369          vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4335 4370          glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4336 4371  
4337 4372          /* then, loop over each vdev and validate it */
4338 4373          for (c = 0; c < children; c++) {
4339 4374                  uint64_t is_hole = 0;
4340 4375  
4341 4376                  (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4342 4377                      &is_hole);
4343 4378  
4344 4379                  if (is_hole != 0) {
4345 4380                          if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4346 4381                              spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4347 4382                                  continue;
4348 4383                          } else {
4349 4384                                  error = EINVAL;
4350 4385                                  break;
4351 4386                          }
4352 4387                  }
4353 4388  
4354 4389                  /* which disk is going to be split? */
4355 4390                  if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4356 4391                      &glist[c]) != 0) {
4357 4392                          error = EINVAL;
4358 4393                          break;
4359 4394                  }
4360 4395  
4361 4396                  /* look it up in the spa */
4362 4397                  vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4363 4398                  if (vml[c] == NULL) {
4364 4399                          error = ENODEV;
4365 4400                          break;
4366 4401                  }
4367 4402  
4368 4403                  /* make sure there's nothing stopping the split */
4369 4404                  if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4370 4405                      vml[c]->vdev_islog ||
4371 4406                      vml[c]->vdev_ishole ||
4372 4407                      vml[c]->vdev_isspare ||
4373 4408                      vml[c]->vdev_isl2cache ||
4374 4409                      !vdev_writeable(vml[c]) ||
4375 4410                      vml[c]->vdev_children != 0 ||
4376 4411                      vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4377 4412                      c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4378 4413                          error = EINVAL;
4379 4414                          break;
4380 4415                  }
4381 4416  
4382 4417                  if (vdev_dtl_required(vml[c])) {
4383 4418                          error = EBUSY;
4384 4419                          break;
4385 4420                  }
4386 4421  
4387 4422                  /* we need certain info from the top level */
4388 4423                  VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4389 4424                      vml[c]->vdev_top->vdev_ms_array) == 0);
4390 4425                  VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4391 4426                      vml[c]->vdev_top->vdev_ms_shift) == 0);
4392 4427                  VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4393 4428                      vml[c]->vdev_top->vdev_asize) == 0);
4394 4429                  VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4395 4430                      vml[c]->vdev_top->vdev_ashift) == 0);
4396 4431          }
4397 4432  
4398 4433          if (error != 0) {
4399 4434                  kmem_free(vml, children * sizeof (vdev_t *));
4400 4435                  kmem_free(glist, children * sizeof (uint64_t));
4401 4436                  return (spa_vdev_exit(spa, NULL, txg, error));
4402 4437          }
4403 4438  
4404 4439          /* stop writers from using the disks */
4405 4440          for (c = 0; c < children; c++) {
4406 4441                  if (vml[c] != NULL)
4407 4442                          vml[c]->vdev_offline = B_TRUE;
4408 4443          }
4409 4444          vdev_reopen(spa->spa_root_vdev);
4410 4445  
4411 4446          /*
4412 4447           * Temporarily record the splitting vdevs in the spa config.  This
4413 4448           * will disappear once the config is regenerated.
4414 4449           */
4415 4450          VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4416 4451          VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4417 4452              glist, children) == 0);
4418 4453          kmem_free(glist, children * sizeof (uint64_t));
4419 4454  
4420 4455          mutex_enter(&spa->spa_props_lock);
4421 4456          VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4422 4457              nvl) == 0);
4423 4458          mutex_exit(&spa->spa_props_lock);
4424 4459          spa->spa_config_splitting = nvl;
4425 4460          vdev_config_dirty(spa->spa_root_vdev);
4426 4461  
4427 4462          /* configure and create the new pool */
4428 4463          VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4429 4464          VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4430 4465              exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4431 4466          VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4432 4467              spa_version(spa)) == 0);
4433 4468          VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4434 4469              spa->spa_config_txg) == 0);
4435 4470          VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4436 4471              spa_generate_guid(NULL)) == 0);
4437 4472          (void) nvlist_lookup_string(props,
4438 4473              zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4439 4474  
4440 4475          /* add the new pool to the namespace */
4441 4476          newspa = spa_add(newname, config, altroot);
4442 4477          newspa->spa_config_txg = spa->spa_config_txg;
4443 4478          spa_set_log_state(newspa, SPA_LOG_CLEAR);
4444 4479  
4445 4480          /* release the spa config lock, retaining the namespace lock */
4446 4481          spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4447 4482  
4448 4483          if (zio_injection_enabled)
4449 4484                  zio_handle_panic_injection(spa, FTAG, 1);
4450 4485  
4451 4486          spa_activate(newspa, spa_mode_global);
4452 4487          spa_async_suspend(newspa);
4453 4488  
4454 4489          /* create the new pool from the disks of the original pool */
4455 4490          error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4456 4491          if (error)
4457 4492                  goto out;
4458 4493  
4459 4494          /* if that worked, generate a real config for the new pool */
4460 4495          if (newspa->spa_root_vdev != NULL) {
4461 4496                  VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4462 4497                      NV_UNIQUE_NAME, KM_SLEEP) == 0);
4463 4498                  VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4464 4499                      ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4465 4500                  spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4466 4501                      B_TRUE));
4467 4502          }
4468 4503  
4469 4504          /* set the props */
4470 4505          if (props != NULL) {
4471 4506                  spa_configfile_set(newspa, props, B_FALSE);
4472 4507                  error = spa_prop_set(newspa, props);
4473 4508                  if (error)
4474 4509                          goto out;
4475 4510          }
4476 4511  
4477 4512          /* flush everything */
4478 4513          txg = spa_vdev_config_enter(newspa);
4479 4514          vdev_config_dirty(newspa->spa_root_vdev);
4480 4515          (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4481 4516  
4482 4517          if (zio_injection_enabled)
4483 4518                  zio_handle_panic_injection(spa, FTAG, 2);
4484 4519  
4485 4520          spa_async_resume(newspa);
4486 4521  
4487 4522          /* finally, update the original pool's config */
4488 4523          txg = spa_vdev_config_enter(spa);
4489 4524          tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4490 4525          error = dmu_tx_assign(tx, TXG_WAIT);
4491 4526          if (error != 0)
4492 4527                  dmu_tx_abort(tx);
4493 4528          for (c = 0; c < children; c++) {
4494 4529                  if (vml[c] != NULL) {
4495 4530                          vdev_split(vml[c]);
4496 4531                          if (error == 0)
4497 4532                                  spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4498 4533                                      spa, tx, "vdev=%s",
4499 4534                                      vml[c]->vdev_path);
4500 4535                          vdev_free(vml[c]);
4501 4536                  }
4502 4537          }
4503 4538          vdev_config_dirty(spa->spa_root_vdev);
4504 4539          spa->spa_config_splitting = NULL;
4505 4540          nvlist_free(nvl);
4506 4541          if (error == 0)
4507 4542                  dmu_tx_commit(tx);
4508 4543          (void) spa_vdev_exit(spa, NULL, txg, 0);
4509 4544  
4510 4545          if (zio_injection_enabled)
4511 4546                  zio_handle_panic_injection(spa, FTAG, 3);
4512 4547  
4513 4548          /* split is complete; log a history record */
4514 4549          spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4515 4550              "split new pool %s from pool %s", newname, spa_name(spa));
4516 4551  
4517 4552          kmem_free(vml, children * sizeof (vdev_t *));
4518 4553  
4519 4554          /* if we're not going to mount the filesystems in userland, export */
4520 4555          if (exp)
4521 4556                  error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4522 4557                      B_FALSE, B_FALSE);
4523 4558  
4524 4559          return (error);
4525 4560  
4526 4561  out:
4527 4562          spa_unload(newspa);
4528 4563          spa_deactivate(newspa);
4529 4564          spa_remove(newspa);
4530 4565  
4531 4566          txg = spa_vdev_config_enter(spa);
4532 4567  
4533 4568          /* re-online all offlined disks */
4534 4569          for (c = 0; c < children; c++) {
4535 4570                  if (vml[c] != NULL)
4536 4571                          vml[c]->vdev_offline = B_FALSE;
4537 4572          }
4538 4573          vdev_reopen(spa->spa_root_vdev);
4539 4574  
4540 4575          nvlist_free(spa->spa_config_splitting);
4541 4576          spa->spa_config_splitting = NULL;
4542 4577          (void) spa_vdev_exit(spa, NULL, txg, error);
4543 4578  
4544 4579          kmem_free(vml, children * sizeof (vdev_t *));
4545 4580          return (error);
4546 4581  }
4547 4582  
4548 4583  static nvlist_t *
4549 4584  spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4550 4585  {
4551 4586          for (int i = 0; i < count; i++) {
4552 4587                  uint64_t guid;
4553 4588  
4554 4589                  VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4555 4590                      &guid) == 0);
4556 4591  
4557 4592                  if (guid == target_guid)
4558 4593                          return (nvpp[i]);
4559 4594          }
4560 4595  
4561 4596          return (NULL);
4562 4597  }
4563 4598  
4564 4599  static void
4565 4600  spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4566 4601          nvlist_t *dev_to_remove)
4567 4602  {
4568 4603          nvlist_t **newdev = NULL;
4569 4604  
4570 4605          if (count > 1)
4571 4606                  newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4572 4607  
4573 4608          for (int i = 0, j = 0; i < count; i++) {
4574 4609                  if (dev[i] == dev_to_remove)
4575 4610                          continue;
4576 4611                  VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4577 4612          }
4578 4613  
4579 4614          VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4580 4615          VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4581 4616  
4582 4617          for (int i = 0; i < count - 1; i++)
4583 4618                  nvlist_free(newdev[i]);
4584 4619  
4585 4620          if (count > 1)
4586 4621                  kmem_free(newdev, (count - 1) * sizeof (void *));
4587 4622  }
4588 4623  
4589 4624  /*
4590 4625   * Evacuate the device.
4591 4626   */
4592 4627  static int
4593 4628  spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4594 4629  {
4595 4630          uint64_t txg;
4596 4631          int error = 0;
4597 4632  
4598 4633          ASSERT(MUTEX_HELD(&spa_namespace_lock));
4599 4634          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4600 4635          ASSERT(vd == vd->vdev_top);
4601 4636  
4602 4637          /*
4603 4638           * Evacuate the device.  We don't hold the config lock as writer
4604 4639           * since we need to do I/O but we do keep the
4605 4640           * spa_namespace_lock held.  Once this completes the device
4606 4641           * should no longer have any blocks allocated on it.
4607 4642           */
4608 4643          if (vd->vdev_islog) {
4609 4644                  if (vd->vdev_stat.vs_alloc != 0)
4610 4645                          error = spa_offline_log(spa);
4611 4646          } else {
4612 4647                  error = ENOTSUP;
4613 4648          }
4614 4649  
4615 4650          if (error)
4616 4651                  return (error);
4617 4652  
4618 4653          /*
4619 4654           * The evacuation succeeded.  Remove any remaining MOS metadata
4620 4655           * associated with this vdev, and wait for these changes to sync.
4621 4656           */
4622 4657          ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
4623 4658          txg = spa_vdev_config_enter(spa);
4624 4659          vd->vdev_removing = B_TRUE;
4625 4660          vdev_dirty(vd, 0, NULL, txg);
4626 4661          vdev_config_dirty(vd);
4627 4662          spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4628 4663  
4629 4664          return (0);
4630 4665  }
4631 4666  
4632 4667  /*
4633 4668   * Complete the removal by cleaning up the namespace.
4634 4669   */
4635 4670  static void
4636 4671  spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
4637 4672  {
4638 4673          vdev_t *rvd = spa->spa_root_vdev;
4639 4674          uint64_t id = vd->vdev_id;
4640 4675          boolean_t last_vdev = (id == (rvd->vdev_children - 1));
4641 4676  
4642 4677          ASSERT(MUTEX_HELD(&spa_namespace_lock));
4643 4678          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4644 4679          ASSERT(vd == vd->vdev_top);
4645 4680  
4646 4681          /*
4647 4682           * Only remove any devices which are empty.
4648 4683           */
4649 4684          if (vd->vdev_stat.vs_alloc != 0)
4650 4685                  return;
4651 4686  
4652 4687          (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4653 4688  
4654 4689          if (list_link_active(&vd->vdev_state_dirty_node))
4655 4690                  vdev_state_clean(vd);
4656 4691          if (list_link_active(&vd->vdev_config_dirty_node))
4657 4692                  vdev_config_clean(vd);
4658 4693  
4659 4694          vdev_free(vd);
4660 4695  
4661 4696          if (last_vdev) {
4662 4697                  vdev_compact_children(rvd);
4663 4698          } else {
4664 4699                  vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
4665 4700                  vdev_add_child(rvd, vd);
4666 4701          }
4667 4702          vdev_config_dirty(rvd);
4668 4703  
4669 4704          /*
4670 4705           * Reassess the health of our root vdev.
4671 4706           */
4672 4707          vdev_reopen(rvd);
4673 4708  }
4674 4709  
4675 4710  /*
4676 4711   * Remove a device from the pool -
4677 4712   *
4678 4713   * Removing a device from the vdev namespace requires several steps
4679 4714   * and can take a significant amount of time.  As a result we use
4680 4715   * the spa_vdev_config_[enter/exit] functions which allow us to
4681 4716   * grab and release the spa_config_lock while still holding the namespace
4682 4717   * lock.  During each step the configuration is synced out.
4683 4718   */
4684 4719  
4685 4720  /*
4686 4721   * Remove a device from the pool.  Currently, this supports removing only hot
4687 4722   * spares, slogs, and level 2 ARC devices.
4688 4723   */
4689 4724  int
4690 4725  spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
4691 4726  {
4692 4727          vdev_t *vd;
4693 4728          metaslab_group_t *mg;
4694 4729          nvlist_t **spares, **l2cache, *nv;
4695 4730          uint64_t txg = 0;
4696 4731          uint_t nspares, nl2cache;
4697 4732          int error = 0;
4698 4733          boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
4699 4734  
4700 4735          ASSERT(spa_writeable(spa));
4701 4736  
4702 4737          if (!locked)
4703 4738                  txg = spa_vdev_enter(spa);
4704 4739  
4705 4740          vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4706 4741  
4707 4742          if (spa->spa_spares.sav_vdevs != NULL &&
4708 4743              nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4709 4744              ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
4710 4745              (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
4711 4746                  /*
4712 4747                   * Only remove the hot spare if it's not currently in use
4713 4748                   * in this pool.
4714 4749                   */
4715 4750                  if (vd == NULL || unspare) {
4716 4751                          spa_vdev_remove_aux(spa->spa_spares.sav_config,
4717 4752                              ZPOOL_CONFIG_SPARES, spares, nspares, nv);
4718 4753                          spa_load_spares(spa);
4719 4754                          spa->spa_spares.sav_sync = B_TRUE;
4720 4755                  } else {
4721 4756                          error = EBUSY;
4722 4757                  }
4723 4758          } else if (spa->spa_l2cache.sav_vdevs != NULL &&
4724 4759              nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4725 4760              ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
4726 4761              (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
4727 4762                  /*
4728 4763                   * Cache devices can always be removed.
4729 4764                   */
4730 4765                  spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
4731 4766                      ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
4732 4767                  spa_load_l2cache(spa);
4733 4768                  spa->spa_l2cache.sav_sync = B_TRUE;
4734 4769          } else if (vd != NULL && vd->vdev_islog) {
4735 4770                  ASSERT(!locked);
4736 4771                  ASSERT(vd == vd->vdev_top);
4737 4772  
4738 4773                  /*
4739 4774                   * XXX - Once we have bp-rewrite this should
4740 4775                   * become the common case.
4741 4776                   */
4742 4777  
4743 4778                  mg = vd->vdev_mg;
4744 4779  
4745 4780                  /*
4746 4781                   * Stop allocating from this vdev.
4747 4782                   */
4748 4783                  metaslab_group_passivate(mg);
4749 4784  
4750 4785                  /*
4751 4786                   * Wait for the youngest allocations and frees to sync,
4752 4787                   * and then wait for the deferral of those frees to finish.
4753 4788                   */
4754 4789                  spa_vdev_config_exit(spa, NULL,
4755 4790                      txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
4756 4791  
4757 4792                  /*
4758 4793                   * Attempt to evacuate the vdev.
4759 4794                   */
4760 4795                  error = spa_vdev_remove_evacuate(spa, vd);
4761 4796  
4762 4797                  txg = spa_vdev_config_enter(spa);
4763 4798  
4764 4799                  /*
4765 4800                   * If we couldn't evacuate the vdev, unwind.
4766 4801                   */
4767 4802                  if (error) {
4768 4803                          metaslab_group_activate(mg);
4769 4804                          return (spa_vdev_exit(spa, NULL, txg, error));
4770 4805                  }
4771 4806  
4772 4807                  /*
4773 4808                   * Clean up the vdev namespace.
4774 4809                   */
4775 4810                  spa_vdev_remove_from_namespace(spa, vd);
4776 4811  
4777 4812          } else if (vd != NULL) {
4778 4813                  /*
4779 4814                   * Normal vdevs cannot be removed (yet).
4780 4815                   */
4781 4816                  error = ENOTSUP;
4782 4817          } else {
4783 4818                  /*
4784 4819                   * There is no vdev of any kind with the specified guid.
4785 4820                   */
4786 4821                  error = ENOENT;
4787 4822          }
4788 4823  
4789 4824          if (!locked)
4790 4825                  return (spa_vdev_exit(spa, NULL, txg, error));
4791 4826  
4792 4827          return (error);
4793 4828  }
4794 4829  
4795 4830  /*
4796 4831   * Find any device that's done replacing, or a vdev marked 'unspare' that's
4797 4832   * current spared, so we can detach it.
4798 4833   */
4799 4834  static vdev_t *
4800 4835  spa_vdev_resilver_done_hunt(vdev_t *vd)
4801 4836  {
4802 4837          vdev_t *newvd, *oldvd;
4803 4838  
4804 4839          for (int c = 0; c < vd->vdev_children; c++) {
4805 4840                  oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4806 4841                  if (oldvd != NULL)
4807 4842                          return (oldvd);
4808 4843          }
4809 4844  
4810 4845          /*
4811 4846           * Check for a completed replacement.  We always consider the first
4812 4847           * vdev in the list to be the oldest vdev, and the last one to be
4813 4848           * the newest (see spa_vdev_attach() for how that works).  In
4814 4849           * the case where the newest vdev is faulted, we will not automatically
4815 4850           * remove it after a resilver completes.  This is OK as it will require
4816 4851           * user intervention to determine which disk the admin wishes to keep.
4817 4852           */
4818 4853          if (vd->vdev_ops == &vdev_replacing_ops) {
4819 4854                  ASSERT(vd->vdev_children > 1);
4820 4855  
4821 4856                  newvd = vd->vdev_child[vd->vdev_children - 1];
4822 4857                  oldvd = vd->vdev_child[0];
4823 4858  
4824 4859                  if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4825 4860                      vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4826 4861                      !vdev_dtl_required(oldvd))
4827 4862                          return (oldvd);
4828 4863          }
4829 4864  
4830 4865          /*
4831 4866           * Check for a completed resilver with the 'unspare' flag set.
4832 4867           */
4833 4868          if (vd->vdev_ops == &vdev_spare_ops) {
4834 4869                  vdev_t *first = vd->vdev_child[0];
4835 4870                  vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
4836 4871  
4837 4872                  if (last->vdev_unspare) {
4838 4873                          oldvd = first;
4839 4874                          newvd = last;
4840 4875                  } else if (first->vdev_unspare) {
4841 4876                          oldvd = last;
4842 4877                          newvd = first;
4843 4878                  } else {
4844 4879                          oldvd = NULL;
4845 4880                  }
4846 4881  
4847 4882                  if (oldvd != NULL &&
4848 4883                      vdev_dtl_empty(newvd, DTL_MISSING) &&
4849 4884                      vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4850 4885                      !vdev_dtl_required(oldvd))
4851 4886                          return (oldvd);
4852 4887  
4853 4888                  /*
4854 4889                   * If there are more than two spares attached to a disk,
4855 4890                   * and those spares are not required, then we want to
4856 4891                   * attempt to free them up now so that they can be used
4857 4892                   * by other pools.  Once we're back down to a single
4858 4893                   * disk+spare, we stop removing them.
4859 4894                   */
4860 4895                  if (vd->vdev_children > 2) {
4861 4896                          newvd = vd->vdev_child[1];
4862 4897  
4863 4898                          if (newvd->vdev_isspare && last->vdev_isspare &&
4864 4899                              vdev_dtl_empty(last, DTL_MISSING) &&
4865 4900                              vdev_dtl_empty(last, DTL_OUTAGE) &&
4866 4901                              !vdev_dtl_required(newvd))
4867 4902                                  return (newvd);
4868 4903                  }
4869 4904          }
4870 4905  
4871 4906          return (NULL);
4872 4907  }
4873 4908  
4874 4909  static void
4875 4910  spa_vdev_resilver_done(spa_t *spa)
4876 4911  {
4877 4912          vdev_t *vd, *pvd, *ppvd;
4878 4913          uint64_t guid, sguid, pguid, ppguid;
4879 4914  
4880 4915          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4881 4916  
4882 4917          while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4883 4918                  pvd = vd->vdev_parent;
4884 4919                  ppvd = pvd->vdev_parent;
4885 4920                  guid = vd->vdev_guid;
4886 4921                  pguid = pvd->vdev_guid;
4887 4922                  ppguid = ppvd->vdev_guid;
4888 4923                  sguid = 0;
4889 4924                  /*
4890 4925                   * If we have just finished replacing a hot spared device, then
4891 4926                   * we need to detach the parent's first child (the original hot
4892 4927                   * spare) as well.
4893 4928                   */
4894 4929                  if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
4895 4930                      ppvd->vdev_children == 2) {
4896 4931                          ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4897 4932                          sguid = ppvd->vdev_child[1]->vdev_guid;
4898 4933                  }
4899 4934                  spa_config_exit(spa, SCL_ALL, FTAG);
4900 4935                  if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4901 4936                          return;
4902 4937                  if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4903 4938                          return;
4904 4939                  spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4905 4940          }
4906 4941  
4907 4942          spa_config_exit(spa, SCL_ALL, FTAG);
4908 4943  }
4909 4944  
4910 4945  /*
4911 4946   * Update the stored path or FRU for this vdev.
4912 4947   */
4913 4948  int
4914 4949  spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4915 4950      boolean_t ispath)
4916 4951  {
4917 4952          vdev_t *vd;
4918 4953          boolean_t sync = B_FALSE;
4919 4954  
4920 4955          ASSERT(spa_writeable(spa));
4921 4956  
4922 4957          spa_vdev_state_enter(spa, SCL_ALL);
4923 4958  
4924 4959          if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4925 4960                  return (spa_vdev_state_exit(spa, NULL, ENOENT));
4926 4961  
4927 4962          if (!vd->vdev_ops->vdev_op_leaf)
4928 4963                  return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4929 4964  
4930 4965          if (ispath) {
4931 4966                  if (strcmp(value, vd->vdev_path) != 0) {
4932 4967                          spa_strfree(vd->vdev_path);
4933 4968                          vd->vdev_path = spa_strdup(value);
4934 4969                          sync = B_TRUE;
4935 4970                  }
4936 4971          } else {
4937 4972                  if (vd->vdev_fru == NULL) {
4938 4973                          vd->vdev_fru = spa_strdup(value);
4939 4974                          sync = B_TRUE;
4940 4975                  } else if (strcmp(value, vd->vdev_fru) != 0) {
4941 4976                          spa_strfree(vd->vdev_fru);
4942 4977                          vd->vdev_fru = spa_strdup(value);
4943 4978                          sync = B_TRUE;
4944 4979                  }
4945 4980          }
4946 4981  
4947 4982          return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
4948 4983  }
4949 4984  
4950 4985  int
4951 4986  spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4952 4987  {
4953 4988          return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
4954 4989  }
4955 4990  
4956 4991  int
4957 4992  spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
4958 4993  {
4959 4994          return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
4960 4995  }
4961 4996  
4962 4997  /*
4963 4998   * ==========================================================================
4964 4999   * SPA Scanning
4965 5000   * ==========================================================================
4966 5001   */
4967 5002  
4968 5003  int
4969 5004  spa_scan_stop(spa_t *spa)
4970 5005  {
4971 5006          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4972 5007          if (dsl_scan_resilvering(spa->spa_dsl_pool))
4973 5008                  return (EBUSY);
4974 5009          return (dsl_scan_cancel(spa->spa_dsl_pool));
4975 5010  }
4976 5011  
4977 5012  int
4978 5013  spa_scan(spa_t *spa, pool_scan_func_t func)
4979 5014  {
4980 5015          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4981 5016  
4982 5017          if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
4983 5018                  return (ENOTSUP);
4984 5019  
4985 5020          /*
4986 5021           * If a resilver was requested, but there is no DTL on a
4987 5022           * writeable leaf device, we have nothing to do.
4988 5023           */
4989 5024          if (func == POOL_SCAN_RESILVER &&
4990 5025              !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4991 5026                  spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4992 5027                  return (0);
4993 5028          }
4994 5029  
4995 5030          return (dsl_scan(spa->spa_dsl_pool, func));
4996 5031  }
4997 5032  
4998 5033  /*
4999 5034   * ==========================================================================
5000 5035   * SPA async task processing
5001 5036   * ==========================================================================
5002 5037   */
5003 5038  
5004 5039  static void
5005 5040  spa_async_remove(spa_t *spa, vdev_t *vd)
5006 5041  {
5007 5042          if (vd->vdev_remove_wanted) {
5008 5043                  vd->vdev_remove_wanted = B_FALSE;
5009 5044                  vd->vdev_delayed_close = B_FALSE;
5010 5045                  vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5011 5046  
5012 5047                  /*
5013 5048                   * We want to clear the stats, but we don't want to do a full
5014 5049                   * vdev_clear() as that will cause us to throw away
5015 5050                   * degraded/faulted state as well as attempt to reopen the
5016 5051                   * device, all of which is a waste.
5017 5052                   */
5018 5053                  vd->vdev_stat.vs_read_errors = 0;
5019 5054                  vd->vdev_stat.vs_write_errors = 0;
5020 5055                  vd->vdev_stat.vs_checksum_errors = 0;
5021 5056  
5022 5057                  vdev_state_dirty(vd->vdev_top);
5023 5058          }
5024 5059  
5025 5060          for (int c = 0; c < vd->vdev_children; c++)
5026 5061                  spa_async_remove(spa, vd->vdev_child[c]);
5027 5062  }
5028 5063  
5029 5064  static void
5030 5065  spa_async_probe(spa_t *spa, vdev_t *vd)
5031 5066  {
5032 5067          if (vd->vdev_probe_wanted) {
5033 5068                  vd->vdev_probe_wanted = B_FALSE;
5034 5069                  vdev_reopen(vd);        /* vdev_open() does the actual probe */
5035 5070          }
5036 5071  
5037 5072          for (int c = 0; c < vd->vdev_children; c++)
5038 5073                  spa_async_probe(spa, vd->vdev_child[c]);
5039 5074  }
5040 5075  
5041 5076  static void
5042 5077  spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5043 5078  {
5044 5079          sysevent_id_t eid;
5045 5080          nvlist_t *attr;
5046 5081          char *physpath;
5047 5082  
5048 5083          if (!spa->spa_autoexpand)
5049 5084                  return;
5050 5085  
5051 5086          for (int c = 0; c < vd->vdev_children; c++) {
5052 5087                  vdev_t *cvd = vd->vdev_child[c];
5053 5088                  spa_async_autoexpand(spa, cvd);
5054 5089          }
5055 5090  
5056 5091          if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5057 5092                  return;
5058 5093  
5059 5094          physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5060 5095          (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5061 5096  
5062 5097          VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5063 5098          VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5064 5099  
5065 5100          (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5066 5101              ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5067 5102  
5068 5103          nvlist_free(attr);
5069 5104          kmem_free(physpath, MAXPATHLEN);
5070 5105  }
5071 5106  
5072 5107  static void
5073 5108  spa_async_thread(spa_t *spa)
5074 5109  {
5075 5110          int tasks;
5076 5111  
5077 5112          ASSERT(spa->spa_sync_on);
5078 5113  
5079 5114          mutex_enter(&spa->spa_async_lock);
5080 5115          tasks = spa->spa_async_tasks;
5081 5116          spa->spa_async_tasks = 0;
5082 5117          mutex_exit(&spa->spa_async_lock);
5083 5118  
5084 5119          /*
5085 5120           * See if the config needs to be updated.
5086 5121           */
5087 5122          if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5088 5123                  uint64_t old_space, new_space;
5089 5124  
5090 5125                  mutex_enter(&spa_namespace_lock);
5091 5126                  old_space = metaslab_class_get_space(spa_normal_class(spa));
5092 5127                  spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5093 5128                  new_space = metaslab_class_get_space(spa_normal_class(spa));
5094 5129                  mutex_exit(&spa_namespace_lock);
5095 5130  
5096 5131                  /*
5097 5132                   * If the pool grew as a result of the config update,
5098 5133                   * then log an internal history event.
5099 5134                   */
5100 5135                  if (new_space != old_space) {
5101 5136                          spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5102 5137                              spa, NULL,
5103 5138                              "pool '%s' size: %llu(+%llu)",
5104 5139                              spa_name(spa), new_space, new_space - old_space);
5105 5140                  }
5106 5141          }
5107 5142  
5108 5143          /*
5109 5144           * See if any devices need to be marked REMOVED.
5110 5145           */
5111 5146          if (tasks & SPA_ASYNC_REMOVE) {
5112 5147                  spa_vdev_state_enter(spa, SCL_NONE);
5113 5148                  spa_async_remove(spa, spa->spa_root_vdev);
5114 5149                  for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5115 5150                          spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5116 5151                  for (int i = 0; i < spa->spa_spares.sav_count; i++)
5117 5152                          spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5118 5153                  (void) spa_vdev_state_exit(spa, NULL, 0);
5119 5154          }
5120 5155  
5121 5156          if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5122 5157                  spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5123 5158                  spa_async_autoexpand(spa, spa->spa_root_vdev);
5124 5159                  spa_config_exit(spa, SCL_CONFIG, FTAG);
5125 5160          }
5126 5161  
5127 5162          /*
5128 5163           * See if any devices need to be probed.
5129 5164           */
5130 5165          if (tasks & SPA_ASYNC_PROBE) {
5131 5166                  spa_vdev_state_enter(spa, SCL_NONE);
5132 5167                  spa_async_probe(spa, spa->spa_root_vdev);
5133 5168                  (void) spa_vdev_state_exit(spa, NULL, 0);
5134 5169          }
5135 5170  
5136 5171          /*
5137 5172           * If any devices are done replacing, detach them.
5138 5173           */
5139 5174          if (tasks & SPA_ASYNC_RESILVER_DONE)
5140 5175                  spa_vdev_resilver_done(spa);
5141 5176  
5142 5177          /*
5143 5178           * Kick off a resilver.
5144 5179           */
5145 5180          if (tasks & SPA_ASYNC_RESILVER)
5146 5181                  dsl_resilver_restart(spa->spa_dsl_pool, 0);
5147 5182  
5148 5183          /*
5149 5184           * Let the world know that we're done.
5150 5185           */
5151 5186          mutex_enter(&spa->spa_async_lock);
5152 5187          spa->spa_async_thread = NULL;
5153 5188          cv_broadcast(&spa->spa_async_cv);
5154 5189          mutex_exit(&spa->spa_async_lock);
5155 5190          thread_exit();
5156 5191  }
5157 5192  
5158 5193  void
5159 5194  spa_async_suspend(spa_t *spa)
5160 5195  {
5161 5196          mutex_enter(&spa->spa_async_lock);
5162 5197          spa->spa_async_suspended++;
5163 5198          while (spa->spa_async_thread != NULL)
5164 5199                  cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5165 5200          mutex_exit(&spa->spa_async_lock);
5166 5201  }
5167 5202  
5168 5203  void
5169 5204  spa_async_resume(spa_t *spa)
5170 5205  {
5171 5206          mutex_enter(&spa->spa_async_lock);
5172 5207          ASSERT(spa->spa_async_suspended != 0);
5173 5208          spa->spa_async_suspended--;
5174 5209          mutex_exit(&spa->spa_async_lock);
5175 5210  }
5176 5211  
5177 5212  static void
5178 5213  spa_async_dispatch(spa_t *spa)
5179 5214  {
5180 5215          mutex_enter(&spa->spa_async_lock);
5181 5216          if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5182 5217              spa->spa_async_thread == NULL &&
5183 5218              rootdir != NULL && !vn_is_readonly(rootdir))
5184 5219                  spa->spa_async_thread = thread_create(NULL, 0,
5185 5220                      spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5186 5221          mutex_exit(&spa->spa_async_lock);
5187 5222  }
5188 5223  
5189 5224  void
5190 5225  spa_async_request(spa_t *spa, int task)
5191 5226  {
5192 5227          zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5193 5228          mutex_enter(&spa->spa_async_lock);
5194 5229          spa->spa_async_tasks |= task;
5195 5230          mutex_exit(&spa->spa_async_lock);
5196 5231  }
5197 5232  
5198 5233  /*
5199 5234   * ==========================================================================
5200 5235   * SPA syncing routines
5201 5236   * ==========================================================================
5202 5237   */
5203 5238  
5204 5239  static int
5205 5240  bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5206 5241  {
5207 5242          bpobj_t *bpo = arg;
5208 5243          bpobj_enqueue(bpo, bp, tx);
5209 5244          return (0);
5210 5245  }
5211 5246  
5212 5247  static int
5213 5248  spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5214 5249  {
5215 5250          zio_t *zio = arg;
5216 5251  
5217 5252          zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5218 5253              zio->io_flags));
5219 5254          return (0);
5220 5255  }
5221 5256  
5222 5257  static void
5223 5258  spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5224 5259  {
5225 5260          char *packed = NULL;
5226 5261          size_t bufsize;
5227 5262          size_t nvsize = 0;
5228 5263          dmu_buf_t *db;
5229 5264  
5230 5265          VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5231 5266  
5232 5267          /*
5233 5268           * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5234 5269           * information.  This avoids the dbuf_will_dirty() path and
5235 5270           * saves us a pre-read to get data we don't actually care about.
5236 5271           */
5237 5272          bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
5238 5273          packed = kmem_alloc(bufsize, KM_SLEEP);
5239 5274  
5240 5275          VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5241 5276              KM_SLEEP) == 0);
5242 5277          bzero(packed + nvsize, bufsize - nvsize);
5243 5278  
5244 5279          dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5245 5280  
5246 5281          kmem_free(packed, bufsize);
5247 5282  
5248 5283          VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5249 5284          dmu_buf_will_dirty(db, tx);
5250 5285          *(uint64_t *)db->db_data = nvsize;
5251 5286          dmu_buf_rele(db, FTAG);
5252 5287  }
5253 5288  
5254 5289  static void
5255 5290  spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5256 5291      const char *config, const char *entry)
5257 5292  {
5258 5293          nvlist_t *nvroot;
5259 5294          nvlist_t **list;
5260 5295          int i;
5261 5296  
5262 5297          if (!sav->sav_sync)
5263 5298                  return;
5264 5299  
5265 5300          /*
5266 5301           * Update the MOS nvlist describing the list of available devices.
5267 5302           * spa_validate_aux() will have already made sure this nvlist is
5268 5303           * valid and the vdevs are labeled appropriately.
5269 5304           */
5270 5305          if (sav->sav_object == 0) {
5271 5306                  sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5272 5307                      DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5273 5308                      sizeof (uint64_t), tx);
5274 5309                  VERIFY(zap_update(spa->spa_meta_objset,
5275 5310                      DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5276 5311                      &sav->sav_object, tx) == 0);
5277 5312          }
5278 5313  
5279 5314          VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5280 5315          if (sav->sav_count == 0) {
5281 5316                  VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5282 5317          } else {
5283 5318                  list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5284 5319                  for (i = 0; i < sav->sav_count; i++)
5285 5320                          list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5286 5321                              B_FALSE, VDEV_CONFIG_L2CACHE);
5287 5322                  VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5288 5323                      sav->sav_count) == 0);
5289 5324                  for (i = 0; i < sav->sav_count; i++)
5290 5325                          nvlist_free(list[i]);
5291 5326                  kmem_free(list, sav->sav_count * sizeof (void *));
5292 5327          }
5293 5328  
5294 5329          spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5295 5330          nvlist_free(nvroot);
5296 5331  
5297 5332          sav->sav_sync = B_FALSE;
5298 5333  }
5299 5334  
5300 5335  static void
5301 5336  spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5302 5337  {
5303 5338          nvlist_t *config;
5304 5339  
5305 5340          if (list_is_empty(&spa->spa_config_dirty_list))
5306 5341                  return;
5307 5342  
5308 5343          spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5309 5344  
5310 5345          config = spa_config_generate(spa, spa->spa_root_vdev,
5311 5346              dmu_tx_get_txg(tx), B_FALSE);
5312 5347  
5313 5348          spa_config_exit(spa, SCL_STATE, FTAG);
5314 5349  
5315 5350          if (spa->spa_config_syncing)
5316 5351                  nvlist_free(spa->spa_config_syncing);
5317 5352          spa->spa_config_syncing = config;
5318 5353  
5319 5354          spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5320 5355  }
5321 5356  
5322 5357  /*
5323 5358   * Set zpool properties.
5324 5359   */
5325 5360  static void
5326 5361  spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5327 5362  {
5328 5363          spa_t *spa = arg1;
5329 5364          objset_t *mos = spa->spa_meta_objset;
5330 5365          nvlist_t *nvp = arg2;
5331 5366          nvpair_t *elem;
5332 5367          uint64_t intval;
5333 5368          char *strval;
5334 5369          zpool_prop_t prop;
5335 5370          const char *propname;
5336 5371          zprop_type_t proptype;
5337 5372  
5338 5373          mutex_enter(&spa->spa_props_lock);
5339 5374  
5340 5375          elem = NULL;
5341 5376          while ((elem = nvlist_next_nvpair(nvp, elem))) {
5342 5377                  switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5343 5378                  case ZPOOL_PROP_VERSION:
5344 5379                          /*
5345 5380                           * Only set version for non-zpool-creation cases
5346 5381                           * (set/import). spa_create() needs special care
5347 5382                           * for version setting.
5348 5383                           */
5349 5384                          if (tx->tx_txg != TXG_INITIAL) {
5350 5385                                  VERIFY(nvpair_value_uint64(elem,
5351 5386                                      &intval) == 0);
5352 5387                                  ASSERT(intval <= SPA_VERSION);
5353 5388                                  ASSERT(intval >= spa_version(spa));
5354 5389                                  spa->spa_uberblock.ub_version = intval;
5355 5390                                  vdev_config_dirty(spa->spa_root_vdev);
5356 5391                          }
5357 5392                          break;
5358 5393  
5359 5394                  case ZPOOL_PROP_ALTROOT:
5360 5395                          /*
5361 5396                           * 'altroot' is a non-persistent property. It should
5362 5397                           * have been set temporarily at creation or import time.
5363 5398                           */
  
    | 
      ↓ open down ↓ | 
    3587 lines elided | 
    
      ↑ open up ↑ | 
  
5364 5399                          ASSERT(spa->spa_root != NULL);
5365 5400                          break;
5366 5401  
5367 5402                  case ZPOOL_PROP_READONLY:
5368 5403                  case ZPOOL_PROP_CACHEFILE:
5369 5404                          /*
5370 5405                           * 'readonly' and 'cachefile' are also non-persisitent
5371 5406                           * properties.
5372 5407                           */
5373 5408                          break;
     5409 +                case ZPOOL_PROP_COMMENT:
     5410 +                        VERIFY(nvpair_value_string(elem, &strval) == 0);
     5411 +                        if (spa->spa_comment != NULL)
     5412 +                                spa_strfree(spa->spa_comment);
     5413 +                        spa->spa_comment = spa_strdup(strval);
     5414 +                        /*
     5415 +                         * We need to dirty the configuration on all the vdevs
     5416 +                         * so that their labels get updated.  It's unnecessary
     5417 +                         * to do this for pool creation since the vdev's
     5418 +                         * configuratoin has already been dirtied.
     5419 +                         */
     5420 +                        if (tx->tx_txg != TXG_INITIAL)
     5421 +                                vdev_config_dirty(spa->spa_root_vdev);
     5422 +                        break;
5374 5423                  default:
5375 5424                          /*
5376 5425                           * Set pool property values in the poolprops mos object.
5377 5426                           */
5378 5427                          if (spa->spa_pool_props_object == 0) {
5379 5428                                  VERIFY((spa->spa_pool_props_object =
5380 5429                                      zap_create(mos, DMU_OT_POOL_PROPS,
5381 5430                                      DMU_OT_NONE, 0, tx)) > 0);
5382 5431  
5383 5432                                  VERIFY(zap_update(mos,
5384 5433                                      DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5385 5434                                      8, 1, &spa->spa_pool_props_object, tx)
5386 5435                                      == 0);
5387 5436                          }
5388 5437  
5389 5438                          /* normalize the property name */
5390 5439                          propname = zpool_prop_to_name(prop);
5391 5440                          proptype = zpool_prop_get_type(prop);
5392 5441  
5393 5442                          if (nvpair_type(elem) == DATA_TYPE_STRING) {
5394 5443                                  ASSERT(proptype == PROP_TYPE_STRING);
5395 5444                                  VERIFY(nvpair_value_string(elem, &strval) == 0);
5396 5445                                  VERIFY(zap_update(mos,
5397 5446                                      spa->spa_pool_props_object, propname,
5398 5447                                      1, strlen(strval) + 1, strval, tx) == 0);
5399 5448  
5400 5449                          } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5401 5450                                  VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5402 5451  
5403 5452                                  if (proptype == PROP_TYPE_INDEX) {
5404 5453                                          const char *unused;
5405 5454                                          VERIFY(zpool_prop_index_to_string(
5406 5455                                              prop, intval, &unused) == 0);
5407 5456                                  }
5408 5457                                  VERIFY(zap_update(mos,
5409 5458                                      spa->spa_pool_props_object, propname,
5410 5459                                      8, 1, &intval, tx) == 0);
5411 5460                          } else {
5412 5461                                  ASSERT(0); /* not allowed */
5413 5462                          }
5414 5463  
5415 5464                          switch (prop) {
5416 5465                          case ZPOOL_PROP_DELEGATION:
5417 5466                                  spa->spa_delegation = intval;
5418 5467                                  break;
5419 5468                          case ZPOOL_PROP_BOOTFS:
5420 5469                                  spa->spa_bootfs = intval;
5421 5470                                  break;
5422 5471                          case ZPOOL_PROP_FAILUREMODE:
5423 5472                                  spa->spa_failmode = intval;
5424 5473                                  break;
5425 5474                          case ZPOOL_PROP_AUTOEXPAND:
5426 5475                                  spa->spa_autoexpand = intval;
5427 5476                                  if (tx->tx_txg != TXG_INITIAL)
5428 5477                                          spa_async_request(spa,
5429 5478                                              SPA_ASYNC_AUTOEXPAND);
5430 5479                                  break;
5431 5480                          case ZPOOL_PROP_DEDUPDITTO:
5432 5481                                  spa->spa_dedup_ditto = intval;
5433 5482                                  break;
5434 5483                          default:
5435 5484                                  break;
5436 5485                          }
5437 5486                  }
5438 5487  
5439 5488                  /* log internal history if this is not a zpool create */
5440 5489                  if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5441 5490                      tx->tx_txg != TXG_INITIAL) {
5442 5491                          spa_history_log_internal(LOG_POOL_PROPSET,
5443 5492                              spa, tx, "%s %lld %s",
5444 5493                              nvpair_name(elem), intval, spa_name(spa));
5445 5494                  }
5446 5495          }
5447 5496  
5448 5497          mutex_exit(&spa->spa_props_lock);
5449 5498  }
5450 5499  
5451 5500  /*
5452 5501   * Perform one-time upgrade on-disk changes.  spa_version() does not
5453 5502   * reflect the new version this txg, so there must be no changes this
5454 5503   * txg to anything that the upgrade code depends on after it executes.
5455 5504   * Therefore this must be called after dsl_pool_sync() does the sync
5456 5505   * tasks.
5457 5506   */
5458 5507  static void
5459 5508  spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5460 5509  {
5461 5510          dsl_pool_t *dp = spa->spa_dsl_pool;
5462 5511  
5463 5512          ASSERT(spa->spa_sync_pass == 1);
5464 5513  
5465 5514          if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5466 5515              spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5467 5516                  dsl_pool_create_origin(dp, tx);
5468 5517  
5469 5518                  /* Keeping the origin open increases spa_minref */
5470 5519                  spa->spa_minref += 3;
5471 5520          }
5472 5521  
5473 5522          if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5474 5523              spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5475 5524                  dsl_pool_upgrade_clones(dp, tx);
5476 5525          }
5477 5526  
5478 5527          if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5479 5528              spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5480 5529                  dsl_pool_upgrade_dir_clones(dp, tx);
5481 5530  
5482 5531                  /* Keeping the freedir open increases spa_minref */
5483 5532                  spa->spa_minref += 3;
5484 5533          }
5485 5534  }
5486 5535  
5487 5536  /*
5488 5537   * Sync the specified transaction group.  New blocks may be dirtied as
5489 5538   * part of the process, so we iterate until it converges.
5490 5539   */
5491 5540  void
5492 5541  spa_sync(spa_t *spa, uint64_t txg)
5493 5542  {
5494 5543          dsl_pool_t *dp = spa->spa_dsl_pool;
5495 5544          objset_t *mos = spa->spa_meta_objset;
5496 5545          bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5497 5546          bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5498 5547          vdev_t *rvd = spa->spa_root_vdev;
5499 5548          vdev_t *vd;
5500 5549          dmu_tx_t *tx;
5501 5550          int error;
5502 5551  
5503 5552          VERIFY(spa_writeable(spa));
5504 5553  
5505 5554          /*
5506 5555           * Lock out configuration changes.
5507 5556           */
5508 5557          spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5509 5558  
5510 5559          spa->spa_syncing_txg = txg;
5511 5560          spa->spa_sync_pass = 0;
5512 5561  
5513 5562          /*
5514 5563           * If there are any pending vdev state changes, convert them
5515 5564           * into config changes that go out with this transaction group.
5516 5565           */
5517 5566          spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5518 5567          while (list_head(&spa->spa_state_dirty_list) != NULL) {
5519 5568                  /*
5520 5569                   * We need the write lock here because, for aux vdevs,
5521 5570                   * calling vdev_config_dirty() modifies sav_config.
5522 5571                   * This is ugly and will become unnecessary when we
5523 5572                   * eliminate the aux vdev wart by integrating all vdevs
5524 5573                   * into the root vdev tree.
5525 5574                   */
5526 5575                  spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5527 5576                  spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5528 5577                  while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5529 5578                          vdev_state_clean(vd);
5530 5579                          vdev_config_dirty(vd);
5531 5580                  }
5532 5581                  spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5533 5582                  spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5534 5583          }
5535 5584          spa_config_exit(spa, SCL_STATE, FTAG);
5536 5585  
5537 5586          tx = dmu_tx_create_assigned(dp, txg);
5538 5587  
5539 5588          /*
5540 5589           * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5541 5590           * set spa_deflate if we have no raid-z vdevs.
5542 5591           */
5543 5592          if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5544 5593              spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5545 5594                  int i;
5546 5595  
5547 5596                  for (i = 0; i < rvd->vdev_children; i++) {
5548 5597                          vd = rvd->vdev_child[i];
5549 5598                          if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5550 5599                                  break;
5551 5600                  }
5552 5601                  if (i == rvd->vdev_children) {
5553 5602                          spa->spa_deflate = TRUE;
5554 5603                          VERIFY(0 == zap_add(spa->spa_meta_objset,
5555 5604                              DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5556 5605                              sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5557 5606                  }
5558 5607          }
5559 5608  
5560 5609          /*
5561 5610           * If anything has changed in this txg, or if someone is waiting
5562 5611           * for this txg to sync (eg, spa_vdev_remove()), push the
5563 5612           * deferred frees from the previous txg.  If not, leave them
5564 5613           * alone so that we don't generate work on an otherwise idle
5565 5614           * system.
5566 5615           */
5567 5616          if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5568 5617              !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5569 5618              !txg_list_empty(&dp->dp_sync_tasks, txg) ||
5570 5619              ((dsl_scan_active(dp->dp_scan) ||
5571 5620              txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
5572 5621                  zio_t *zio = zio_root(spa, NULL, NULL, 0);
5573 5622                  VERIFY3U(bpobj_iterate(defer_bpo,
5574 5623                      spa_free_sync_cb, zio, tx), ==, 0);
5575 5624                  VERIFY3U(zio_wait(zio), ==, 0);
5576 5625          }
5577 5626  
5578 5627          /*
5579 5628           * Iterate to convergence.
5580 5629           */
5581 5630          do {
5582 5631                  int pass = ++spa->spa_sync_pass;
5583 5632  
5584 5633                  spa_sync_config_object(spa, tx);
5585 5634                  spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5586 5635                      ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5587 5636                  spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5588 5637                      ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5589 5638                  spa_errlog_sync(spa, txg);
5590 5639                  dsl_pool_sync(dp, txg);
5591 5640  
5592 5641                  if (pass <= SYNC_PASS_DEFERRED_FREE) {
5593 5642                          zio_t *zio = zio_root(spa, NULL, NULL, 0);
5594 5643                          bplist_iterate(free_bpl, spa_free_sync_cb,
5595 5644                              zio, tx);
5596 5645                          VERIFY(zio_wait(zio) == 0);
5597 5646                  } else {
5598 5647                          bplist_iterate(free_bpl, bpobj_enqueue_cb,
5599 5648                              defer_bpo, tx);
5600 5649                  }
5601 5650  
5602 5651                  ddt_sync(spa, txg);
5603 5652                  dsl_scan_sync(dp, tx);
5604 5653  
5605 5654                  while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
5606 5655                          vdev_sync(vd, txg);
5607 5656  
5608 5657                  if (pass == 1)
5609 5658                          spa_sync_upgrades(spa, tx);
5610 5659  
5611 5660          } while (dmu_objset_is_dirty(mos, txg));
5612 5661  
5613 5662          /*
5614 5663           * Rewrite the vdev configuration (which includes the uberblock)
5615 5664           * to commit the transaction group.
5616 5665           *
5617 5666           * If there are no dirty vdevs, we sync the uberblock to a few
5618 5667           * random top-level vdevs that are known to be visible in the
5619 5668           * config cache (see spa_vdev_add() for a complete description).
5620 5669           * If there *are* dirty vdevs, sync the uberblock to all vdevs.
5621 5670           */
5622 5671          for (;;) {
5623 5672                  /*
5624 5673                   * We hold SCL_STATE to prevent vdev open/close/etc.
5625 5674                   * while we're attempting to write the vdev labels.
5626 5675                   */
5627 5676                  spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5628 5677  
5629 5678                  if (list_is_empty(&spa->spa_config_dirty_list)) {
5630 5679                          vdev_t *svd[SPA_DVAS_PER_BP];
5631 5680                          int svdcount = 0;
5632 5681                          int children = rvd->vdev_children;
5633 5682                          int c0 = spa_get_random(children);
5634 5683  
5635 5684                          for (int c = 0; c < children; c++) {
5636 5685                                  vd = rvd->vdev_child[(c0 + c) % children];
5637 5686                                  if (vd->vdev_ms_array == 0 || vd->vdev_islog)
5638 5687                                          continue;
5639 5688                                  svd[svdcount++] = vd;
5640 5689                                  if (svdcount == SPA_DVAS_PER_BP)
5641 5690                                          break;
5642 5691                          }
5643 5692                          error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
5644 5693                          if (error != 0)
5645 5694                                  error = vdev_config_sync(svd, svdcount, txg,
5646 5695                                      B_TRUE);
5647 5696                  } else {
5648 5697                          error = vdev_config_sync(rvd->vdev_child,
5649 5698                              rvd->vdev_children, txg, B_FALSE);
5650 5699                          if (error != 0)
5651 5700                                  error = vdev_config_sync(rvd->vdev_child,
5652 5701                                      rvd->vdev_children, txg, B_TRUE);
5653 5702                  }
5654 5703  
5655 5704                  spa_config_exit(spa, SCL_STATE, FTAG);
5656 5705  
5657 5706                  if (error == 0)
5658 5707                          break;
5659 5708                  zio_suspend(spa, NULL);
5660 5709                  zio_resume_wait(spa);
5661 5710          }
5662 5711          dmu_tx_commit(tx);
5663 5712  
5664 5713          /*
5665 5714           * Clear the dirty config list.
5666 5715           */
5667 5716          while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
5668 5717                  vdev_config_clean(vd);
5669 5718  
5670 5719          /*
5671 5720           * Now that the new config has synced transactionally,
5672 5721           * let it become visible to the config cache.
5673 5722           */
5674 5723          if (spa->spa_config_syncing != NULL) {
5675 5724                  spa_config_set(spa, spa->spa_config_syncing);
5676 5725                  spa->spa_config_txg = txg;
5677 5726                  spa->spa_config_syncing = NULL;
5678 5727          }
5679 5728  
5680 5729          spa->spa_ubsync = spa->spa_uberblock;
5681 5730  
5682 5731          dsl_pool_sync_done(dp, txg);
5683 5732  
5684 5733          /*
5685 5734           * Update usable space statistics.
5686 5735           */
5687 5736          while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
5688 5737                  vdev_sync_done(vd, txg);
5689 5738  
5690 5739          spa_update_dspace(spa);
5691 5740  
5692 5741          /*
5693 5742           * It had better be the case that we didn't dirty anything
5694 5743           * since vdev_config_sync().
5695 5744           */
5696 5745          ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
5697 5746          ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
5698 5747          ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
5699 5748  
5700 5749          spa->spa_sync_pass = 0;
5701 5750  
5702 5751          spa_config_exit(spa, SCL_CONFIG, FTAG);
5703 5752  
5704 5753          spa_handle_ignored_writes(spa);
5705 5754  
5706 5755          /*
5707 5756           * If any async tasks have been requested, kick them off.
5708 5757           */
5709 5758          spa_async_dispatch(spa);
5710 5759  }
5711 5760  
5712 5761  /*
5713 5762   * Sync all pools.  We don't want to hold the namespace lock across these
5714 5763   * operations, so we take a reference on the spa_t and drop the lock during the
5715 5764   * sync.
5716 5765   */
5717 5766  void
5718 5767  spa_sync_allpools(void)
5719 5768  {
5720 5769          spa_t *spa = NULL;
5721 5770          mutex_enter(&spa_namespace_lock);
5722 5771          while ((spa = spa_next(spa)) != NULL) {
5723 5772                  if (spa_state(spa) != POOL_STATE_ACTIVE ||
5724 5773                      !spa_writeable(spa) || spa_suspended(spa))
5725 5774                          continue;
5726 5775                  spa_open_ref(spa, FTAG);
5727 5776                  mutex_exit(&spa_namespace_lock);
5728 5777                  txg_wait_synced(spa_get_dsl(spa), 0);
5729 5778                  mutex_enter(&spa_namespace_lock);
5730 5779                  spa_close(spa, FTAG);
5731 5780          }
5732 5781          mutex_exit(&spa_namespace_lock);
5733 5782  }
5734 5783  
5735 5784  /*
5736 5785   * ==========================================================================
5737 5786   * Miscellaneous routines
5738 5787   * ==========================================================================
5739 5788   */
5740 5789  
5741 5790  /*
5742 5791   * Remove all pools in the system.
5743 5792   */
5744 5793  void
5745 5794  spa_evict_all(void)
5746 5795  {
5747 5796          spa_t *spa;
5748 5797  
5749 5798          /*
5750 5799           * Remove all cached state.  All pools should be closed now,
5751 5800           * so every spa in the AVL tree should be unreferenced.
5752 5801           */
5753 5802          mutex_enter(&spa_namespace_lock);
5754 5803          while ((spa = spa_next(NULL)) != NULL) {
5755 5804                  /*
5756 5805                   * Stop async tasks.  The async thread may need to detach
5757 5806                   * a device that's been replaced, which requires grabbing
5758 5807                   * spa_namespace_lock, so we must drop it here.
5759 5808                   */
5760 5809                  spa_open_ref(spa, FTAG);
5761 5810                  mutex_exit(&spa_namespace_lock);
5762 5811                  spa_async_suspend(spa);
5763 5812                  mutex_enter(&spa_namespace_lock);
5764 5813                  spa_close(spa, FTAG);
5765 5814  
5766 5815                  if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5767 5816                          spa_unload(spa);
5768 5817                          spa_deactivate(spa);
5769 5818                  }
5770 5819                  spa_remove(spa);
5771 5820          }
5772 5821          mutex_exit(&spa_namespace_lock);
5773 5822  }
5774 5823  
5775 5824  vdev_t *
5776 5825  spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
5777 5826  {
5778 5827          vdev_t *vd;
5779 5828          int i;
5780 5829  
5781 5830          if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
5782 5831                  return (vd);
5783 5832  
5784 5833          if (aux) {
5785 5834                  for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
5786 5835                          vd = spa->spa_l2cache.sav_vdevs[i];
5787 5836                          if (vd->vdev_guid == guid)
5788 5837                                  return (vd);
5789 5838                  }
5790 5839  
5791 5840                  for (i = 0; i < spa->spa_spares.sav_count; i++) {
5792 5841                          vd = spa->spa_spares.sav_vdevs[i];
5793 5842                          if (vd->vdev_guid == guid)
5794 5843                                  return (vd);
5795 5844                  }
5796 5845          }
5797 5846  
5798 5847          return (NULL);
5799 5848  }
5800 5849  
5801 5850  void
5802 5851  spa_upgrade(spa_t *spa, uint64_t version)
5803 5852  {
5804 5853          ASSERT(spa_writeable(spa));
5805 5854  
5806 5855          spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5807 5856  
5808 5857          /*
5809 5858           * This should only be called for a non-faulted pool, and since a
5810 5859           * future version would result in an unopenable pool, this shouldn't be
5811 5860           * possible.
5812 5861           */
5813 5862          ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
5814 5863          ASSERT(version >= spa->spa_uberblock.ub_version);
5815 5864  
5816 5865          spa->spa_uberblock.ub_version = version;
5817 5866          vdev_config_dirty(spa->spa_root_vdev);
5818 5867  
5819 5868          spa_config_exit(spa, SCL_ALL, FTAG);
5820 5869  
5821 5870          txg_wait_synced(spa_get_dsl(spa), 0);
5822 5871  }
5823 5872  
5824 5873  boolean_t
5825 5874  spa_has_spare(spa_t *spa, uint64_t guid)
5826 5875  {
5827 5876          int i;
5828 5877          uint64_t spareguid;
5829 5878          spa_aux_vdev_t *sav = &spa->spa_spares;
5830 5879  
5831 5880          for (i = 0; i < sav->sav_count; i++)
5832 5881                  if (sav->sav_vdevs[i]->vdev_guid == guid)
5833 5882                          return (B_TRUE);
5834 5883  
5835 5884          for (i = 0; i < sav->sav_npending; i++) {
5836 5885                  if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
5837 5886                      &spareguid) == 0 && spareguid == guid)
5838 5887                          return (B_TRUE);
5839 5888          }
5840 5889  
5841 5890          return (B_FALSE);
5842 5891  }
5843 5892  
5844 5893  /*
5845 5894   * Check if a pool has an active shared spare device.
5846 5895   * Note: reference count of an active spare is 2, as a spare and as a replace
5847 5896   */
5848 5897  static boolean_t
5849 5898  spa_has_active_shared_spare(spa_t *spa)
5850 5899  {
5851 5900          int i, refcnt;
5852 5901          uint64_t pool;
5853 5902          spa_aux_vdev_t *sav = &spa->spa_spares;
5854 5903  
5855 5904          for (i = 0; i < sav->sav_count; i++) {
5856 5905                  if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
5857 5906                      &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
5858 5907                      refcnt > 2)
5859 5908                          return (B_TRUE);
5860 5909          }
5861 5910  
5862 5911          return (B_FALSE);
5863 5912  }
5864 5913  
5865 5914  /*
5866 5915   * Post a sysevent corresponding to the given event.  The 'name' must be one of
5867 5916   * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
5868 5917   * filled in from the spa and (optionally) the vdev.  This doesn't do anything
5869 5918   * in the userland libzpool, as we don't want consumers to misinterpret ztest
5870 5919   * or zdb as real changes.
5871 5920   */
5872 5921  void
5873 5922  spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5874 5923  {
5875 5924  #ifdef _KERNEL
5876 5925          sysevent_t              *ev;
5877 5926          sysevent_attr_list_t    *attr = NULL;
5878 5927          sysevent_value_t        value;
5879 5928          sysevent_id_t           eid;
5880 5929  
5881 5930          ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
5882 5931              SE_SLEEP);
5883 5932  
5884 5933          value.value_type = SE_DATA_TYPE_STRING;
5885 5934          value.value.sv_string = spa_name(spa);
5886 5935          if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5887 5936                  goto done;
5888 5937  
5889 5938          value.value_type = SE_DATA_TYPE_UINT64;
5890 5939          value.value.sv_uint64 = spa_guid(spa);
5891 5940          if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5892 5941                  goto done;
5893 5942  
5894 5943          if (vd) {
5895 5944                  value.value_type = SE_DATA_TYPE_UINT64;
5896 5945                  value.value.sv_uint64 = vd->vdev_guid;
5897 5946                  if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5898 5947                      SE_SLEEP) != 0)
5899 5948                          goto done;
5900 5949  
5901 5950                  if (vd->vdev_path) {
5902 5951                          value.value_type = SE_DATA_TYPE_STRING;
5903 5952                          value.value.sv_string = vd->vdev_path;
5904 5953                          if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5905 5954                              &value, SE_SLEEP) != 0)
5906 5955                                  goto done;
5907 5956                  }
5908 5957          }
5909 5958  
5910 5959          if (sysevent_attach_attributes(ev, attr) != 0)
5911 5960                  goto done;
5912 5961          attr = NULL;
5913 5962  
5914 5963          (void) log_sysevent(ev, SE_SLEEP, &eid);
5915 5964  
5916 5965  done:
5917 5966          if (attr)
5918 5967                  sysevent_free_attr(attr);
5919 5968          sysevent_free(ev);
5920 5969  #endif
5921 5970  }
  
    | 
      ↓ open down ↓ | 
    538 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX