Print this page
8381 Convert ipsec_alg_lock from mutex to rwlock
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/inet/sadb.h
+++ new/usr/src/uts/common/inet/sadb.h
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
|
↓ open down ↓ |
13 lines elided |
↑ open up ↑ |
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 23 * Use is subject to license terms.
24 + * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
24 25 */
25 26
26 27 #ifndef _INET_SADB_H
27 28 #define _INET_SADB_H
28 29
29 30 #ifdef __cplusplus
30 31 extern "C" {
31 32 #endif
32 33
33 34 #include <inet/ipsec_info.h>
34 35 #include <sys/crypto/common.h>
35 36 #include <sys/crypto/api.h>
36 37 #include <sys/note.h>
37 38
38 39 #define IPSA_MAX_ADDRLEN 4 /* Max address len. (in 32-bits) for an SA. */
39 40
40 41 #define MAXSALTSIZE 8
41 42
42 43 /*
43 44 * For combined mode ciphers, store the crypto_mechanism_t in the
44 45 * per-packet ipsec_in_t/ipsec_out_t structures. This is because the PARAMS
45 46 * and nonce values change for each packet. For non-combined mode
46 47 * ciphers, these values are constant for the life of the SA.
47 48 */
48 49 typedef struct ipsa_cm_mech_s {
49 50 crypto_mechanism_t combined_mech;
50 51 union {
51 52 CK_AES_CCM_PARAMS paramu_ccm;
52 53 CK_AES_GCM_PARAMS paramu_gcm;
53 54 } paramu;
54 55 uint8_t nonce[MAXSALTSIZE + sizeof (uint64_t)];
55 56 #define param_ulMACSize paramu.paramu_ccm.ulMACSize
56 57 #define param_ulNonceSize paramu.paramu_ccm.ipsa_ulNonceSize
57 58 #define param_ulAuthDataSize paramu.paramu_ccm.ipsa_ulAuthDataSize
58 59 #define param_ulDataSize paramu.paramu_ccm.ipsa_ulDataSize
59 60 #define param_nonce paramu.paramu_ccm.nonce
60 61 #define param_authData paramu.paramu_ccm.authData
61 62 #define param_pIv paramu.paramu_gcm.ipsa_pIv
62 63 #define param_ulIvLen paramu.paramu_gcm.ulIvLen
63 64 #define param_ulIvBits paramu.paramu_gcm.ulIvBits
64 65 #define param_pAAD paramu.paramu_gcm.pAAD
65 66 #define param_ulAADLen paramu.paramu_gcm.ulAADLen
66 67 #define param_ulTagBits paramu.paramu_gcm.ulTagBits
67 68 } ipsa_cm_mech_t;
68 69
69 70 /*
70 71 * The Initialization Vector (also known as IV or Nonce) used to
71 72 * initialize the Block Cipher, is made up of a Counter and a Salt.
72 73 * The Counter is fixed at 64 bits and is incremented for each packet.
73 74 * The Salt value can be any whole byte value upto 64 bits. This is
74 75 * algorithm mode specific and can be configured with ipsecalgs(1m).
75 76 *
76 77 * We only support whole byte salt lengths, this is because the salt is
77 78 * stored in an array of uint8_t's. This is enforced by ipsecalgs(1m)
78 79 * which configures the salt length as a number of bytes. Checks are
79 80 * made to ensure the salt length defined in ipsecalgs(1m) fits in
80 81 * the ipsec_nonce_t.
81 82 *
82 83 * The Salt value remains constant for the life of the SA, the Salt is
83 84 * know to both peers, but NOT transmitted on the network. The Counter
84 85 * portion of the nonce is transmitted over the network with each packet
85 86 * and is confusingly described as the Initialization Vector by RFCs
86 87 * 4309/4106.
87 88 *
88 89 * The maximum Initialization Vector length is 128 bits, if the actual
89 90 * size is less, its padded internally by the algorithm.
90 91 *
91 92 * The nonce structure is defined like this in the SA (ipsa_t)to ensure
92 93 * the Initilization Vector (counter) is 64 bit aligned, because it will
93 94 * be incremented as an uint64_t. The nonce as used by the algorithms is
94 95 * a straight uint8_t array.
95 96 *
96 97 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
97 98 * | | | | |x|x|x|x| |
98 99 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
99 100 * salt_offset <------>
100 101 * ipsa_saltlen <------->
101 102 * ipsa_nonce_buf------^
102 103 * ipsa_salt-------------~~~~~~^
103 104 * ipsa_nonce------------~~~~~~^
104 105 * ipsa_iv-----------------------------^
105 106 */
106 107 typedef struct ipsec_nonce_s {
107 108 uint8_t salt[MAXSALTSIZE];
108 109 uint64_t iv;
109 110 } ipsec_nonce_t;
110 111
111 112 /*
112 113 * IP security association. Synchronization assumes 32-bit loads, so
113 114 * the 64-bit quantities can't even be be read w/o locking it down!
114 115 */
115 116
116 117 /* keying info */
117 118 typedef struct ipsa_key_s {
118 119 uint8_t *sak_key; /* Algorithm key. */
119 120 uint_t sak_keylen; /* Algorithm key length (in bytes). */
120 121 uint_t sak_keybits; /* Algorithm key length (in bits) */
121 122 uint_t sak_algid; /* Algorithm ID number. */
122 123 } ipsa_key_t;
123 124
124 125 typedef struct ipsa_s {
125 126 struct ipsa_s *ipsa_next; /* Next in hash bucket */
126 127 struct ipsa_s **ipsa_ptpn; /* Pointer to previous next pointer. */
127 128 kmutex_t *ipsa_linklock; /* Pointer to hash-chain lock. */
128 129 void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */
129 130 void (*ipsa_noncefunc)(struct ipsa_s *, uchar_t *,
130 131 uint_t, uchar_t *, ipsa_cm_mech_t *, crypto_data_t *);
131 132 /*
132 133 * NOTE: I may need more pointers, depending on future SA
133 134 * requirements.
134 135 */
135 136 ipsa_key_t ipsa_authkeydata;
136 137 #define ipsa_authkey ipsa_authkeydata.sak_key
137 138 #define ipsa_authkeylen ipsa_authkeydata.sak_keylen
138 139 #define ipsa_authkeybits ipsa_authkeydata.sak_keybits
139 140 #define ipsa_auth_alg ipsa_authkeydata.sak_algid
140 141 ipsa_key_t ipsa_encrkeydata;
141 142 #define ipsa_encrkey ipsa_encrkeydata.sak_key
142 143 #define ipsa_encrkeylen ipsa_encrkeydata.sak_keylen
143 144 #define ipsa_encrkeybits ipsa_encrkeydata.sak_keybits
144 145 #define ipsa_encr_alg ipsa_encrkeydata.sak_algid
145 146
146 147 struct ipsid_s *ipsa_src_cid; /* Source certificate identity */
147 148 struct ipsid_s *ipsa_dst_cid; /* Destination certificate identity */
148 149 mblk_t *ipsa_lpkt; /* Packet received while larval (CAS me) */
149 150 mblk_t *ipsa_bpkt_head; /* Packets received while idle */
150 151 mblk_t *ipsa_bpkt_tail;
151 152 #define SADB_MAX_IDLEPKTS 100
152 153 uint8_t ipsa_mblkcnt; /* Number of packets received while idle */
153 154
154 155 /*
155 156 * PF_KEYv2 supports a replay window size of 255. Hence there is a
156 157 * need a bit vector to support a replay window of 255. 256 is a nice
157 158 * round number, so I support that.
158 159 *
159 160 * Use an array of uint64_t for best performance on 64-bit
160 161 * processors. (And hope that 32-bit compilers can handle things
161 162 * okay.) The " >> 6 " is to get the appropriate number of 64-bit
162 163 * ints.
163 164 */
164 165 #define SADB_MAX_REPLAY 256 /* Must be 0 mod 64. */
165 166 uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6];
166 167
167 168 uint64_t ipsa_unique_id; /* Non-zero for unique SAs */
168 169 uint64_t ipsa_unique_mask; /* mask value for unique_id */
169 170
170 171 /*
171 172 * Reference count semantics:
172 173 *
173 174 * An SA has a reference count of 1 if something's pointing
174 175 * to it. This includes being in a hash table. So if an
175 176 * SA is in a hash table, it has a reference count of at least 1.
176 177 *
177 178 * When a ptr. to an IPSA is assigned, you MUST REFHOLD after
178 179 * said assignment. When a ptr. to an IPSA is released
179 180 * you MUST REFRELE. When the refcount hits 0, REFRELE
180 181 * will free the IPSA.
181 182 */
182 183 kmutex_t ipsa_lock; /* Locks non-linkage/refcnt fields. */
183 184 /* Q: Since I may be doing refcnts differently, will I need cv? */
184 185 uint_t ipsa_refcnt; /* Reference count. */
185 186
186 187 /*
187 188 * The following four time fields are the ones monitored by ah_ager()
188 189 * and esp_ager() respectively. They are all absolute wall-clock
189 190 * times. The times of creation (i.e. add time) and first use are
190 191 * pretty straightforward. The soft and hard expire times are
191 192 * derived from the times of first use and creation, plus the minimum
192 193 * expiration times in the fields that follow this.
193 194 *
194 195 * For example, if I had a hard add time of 30 seconds, and a hard
195 196 * use time of 15, the ipsa_hardexpiretime would be time of add, plus
196 197 * 30 seconds. If I USE the SA such that time of first use plus 15
197 198 * seconds would be earlier than the add time plus 30 seconds, then
198 199 * ipsa_hardexpiretime would become this earlier time.
199 200 */
200 201 time_t ipsa_addtime; /* Time I was added. */
201 202 time_t ipsa_usetime; /* Time of my first use. */
202 203 time_t ipsa_lastuse; /* Time of my last use. */
203 204 time_t ipsa_idletime; /* Seconds of idle time */
204 205 time_t ipsa_last_nat_t_ka; /* Time of my last NAT-T keepalive. */
205 206 time_t ipsa_softexpiretime; /* Time of my first soft expire. */
206 207 time_t ipsa_hardexpiretime; /* Time of my first hard expire. */
207 208 time_t ipsa_idleexpiretime; /* Time of my next idle expire time */
208 209
209 210 struct ipsec_nonce_s *ipsa_nonce_buf;
210 211 uint8_t *ipsa_nonce;
211 212 uint_t ipsa_nonce_len;
212 213 uint8_t *ipsa_salt;
213 214 uint_t ipsa_saltbits;
214 215 uint_t ipsa_saltlen;
215 216 uint64_t *ipsa_iv;
216 217
217 218 uint64_t ipsa_iv_hardexpire;
218 219 uint64_t ipsa_iv_softexpire;
219 220 /*
220 221 * The following fields are directly reflected in PF_KEYv2 LIFETIME
221 222 * extensions. The time_ts are in number-of-seconds, and the bytes
222 223 * are in... bytes.
223 224 */
224 225 time_t ipsa_softaddlt; /* Seconds of soft lifetime after add. */
225 226 time_t ipsa_softuselt; /* Seconds of soft lifetime after first use. */
226 227 time_t ipsa_hardaddlt; /* Seconds of hard lifetime after add. */
227 228 time_t ipsa_harduselt; /* Seconds of hard lifetime after first use. */
228 229 time_t ipsa_idleaddlt; /* Seconds of idle time after add */
229 230 time_t ipsa_idleuselt; /* Seconds of idle time after first use */
230 231 uint64_t ipsa_softbyteslt; /* Bytes of soft lifetime. */
231 232 uint64_t ipsa_hardbyteslt; /* Bytes of hard lifetime. */
232 233 uint64_t ipsa_bytes; /* Bytes encrypted/authed by this SA. */
233 234
234 235 /*
235 236 * "Allocations" are a concept mentioned in PF_KEYv2. We do not
236 237 * support them, except to record them per the PF_KEYv2 spec.
237 238 */
238 239 uint_t ipsa_softalloc; /* Allocations allowed (soft). */
239 240 uint_t ipsa_hardalloc; /* Allocations allowed (hard). */
240 241 uint_t ipsa_alloc; /* Allocations made. */
241 242
242 243 uint_t ipsa_type; /* Type of security association. (AH/etc.) */
243 244 uint_t ipsa_state; /* State of my association. */
244 245 uint_t ipsa_replay_wsize; /* Size of replay window */
245 246 uint32_t ipsa_flags; /* Flags for security association. */
246 247 uint32_t ipsa_spi; /* Security parameters index. */
247 248 uint32_t ipsa_replay; /* Highest seen replay value for this SA. */
248 249 uint32_t ipsa_kmp; /* key management proto */
249 250 uint32_t ipsa_kmc; /* key management cookie */
250 251
251 252 boolean_t ipsa_haspeer; /* Has peer in another table. */
252 253
253 254 /*
254 255 * Address storage.
255 256 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc.
256 257 *
257 258 * Address families (per sys/socket.h) guide us. We could have just
258 259 * used sockaddr_storage
259 260 */
260 261 sa_family_t ipsa_addrfam;
261 262 sa_family_t ipsa_innerfam; /* Inner AF can be != src/dst AF. */
262 263
263 264 uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN];
264 265 uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN];
265 266 uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN];
266 267 uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN];
267 268
268 269 uint8_t ipsa_innersrcpfx;
269 270 uint8_t ipsa_innerdstpfx;
270 271
271 272 uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */
272 273 uint16_t ipsa_local_nat_port; /* Local NAT-T port. (0 --> 4500) */
273 274 uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */
274 275
275 276 /* these can only be v4 */
276 277 uint32_t ipsa_natt_addr_loc;
277 278 uint32_t ipsa_natt_addr_rem;
278 279
279 280 /*
280 281 * icmp type and code. *_end are to specify ranges. if only
281 282 * a single value, * and *_end are the same value.
282 283 */
283 284 uint8_t ipsa_icmp_type;
284 285 uint8_t ipsa_icmp_type_end;
285 286 uint8_t ipsa_icmp_code;
286 287 uint8_t ipsa_icmp_code_end;
287 288
288 289 /*
289 290 * For the kernel crypto framework.
290 291 */
291 292 crypto_key_t ipsa_kcfauthkey; /* authentication key */
292 293 crypto_key_t ipsa_kcfencrkey; /* encryption key */
293 294 crypto_ctx_template_t ipsa_authtmpl; /* auth context template */
294 295 crypto_ctx_template_t ipsa_encrtmpl; /* encr context template */
295 296 crypto_mechanism_t ipsa_amech; /* auth mech type and ICV len */
296 297 crypto_mechanism_t ipsa_emech; /* encr mech type */
297 298 size_t ipsa_mac_len; /* auth MAC/ICV length */
298 299 size_t ipsa_iv_len; /* encr IV length */
299 300 size_t ipsa_datalen; /* block length in bytes. */
300 301
301 302 /*
302 303 * Input and output processing functions called from IP.
303 304 * The mblk_t is the data; the IPsec information is in the attributes
304 305 * Returns NULL if the mblk is consumed which it is if there was
305 306 * a failure or if pending. If failure then
306 307 * the ipIfInDiscards/OutDiscards counters are increased.
307 308 */
308 309 mblk_t *(*ipsa_output_func)(mblk_t *, ip_xmit_attr_t *);
309 310 mblk_t *(*ipsa_input_func)(mblk_t *, void *, ip_recv_attr_t *);
310 311
311 312 /*
312 313 * Soft reference to paired SA
313 314 */
314 315 uint32_t ipsa_otherspi;
315 316 netstack_t *ipsa_netstack; /* Does not have a netstack_hold */
316 317
317 318 ts_label_t *ipsa_tsl; /* MLS: label attributes */
318 319 ts_label_t *ipsa_otsl; /* MLS: outer label */
319 320 uint8_t ipsa_mac_exempt; /* MLS: mac exempt flag */
320 321 uchar_t ipsa_opt_storage[IP_MAX_OPT_LENGTH];
321 322 } ipsa_t;
322 323
323 324 /*
324 325 * ipsa_t address handling macros. We want these to be inlined, and deal
325 326 * with 32-bit words to avoid bcmp/bcopy calls.
326 327 *
327 328 * Assume we only have AF_INET and AF_INET6 addresses for now. Also assume
328 329 * that we have 32-bit alignment on everything.
329 330 */
330 331 #define IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \
331 332 (((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \
332 333 ((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0)))
333 334 #define IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \
334 335 ((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \
335 336 (((fam) == AF_INET) || \
336 337 (((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \
337 338 ((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \
338 339 ((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1])))
339 340 #define IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \
340 341 ((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \
341 342 if ((fam) == AF_INET6) {\
342 343 ((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \
343 344 ((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \
344 345 ((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } }
345 346
346 347 /*
347 348 * ipsa_t reference hold/release macros.
348 349 *
349 350 * If you have a pointer, you REFHOLD. If you are releasing a pointer, you
350 351 * REFRELE. An ipsa_t that is newly inserted into the table should have
351 352 * a reference count of 1 (for the table's pointer), plus 1 more for every
352 353 * pointer that is referencing the ipsa_t.
353 354 */
354 355
355 356 #define IPSA_REFHOLD(ipsa) { \
356 357 atomic_inc_32(&(ipsa)->ipsa_refcnt); \
357 358 ASSERT((ipsa)->ipsa_refcnt != 0); \
358 359 }
359 360
360 361 /*
361 362 * Decrement the reference count on the SA.
362 363 * In architectures e.g sun4u, where atomic_add_32_nv is just
363 364 * a cas, we need to maintain the right memory barrier semantics
364 365 * as that of mutex_exit i.e all the loads and stores should complete
365 366 * before the cas is executed. membar_exit() does that here.
366 367 */
367 368
368 369 #define IPSA_REFRELE(ipsa) { \
369 370 ASSERT((ipsa)->ipsa_refcnt != 0); \
370 371 membar_exit(); \
371 372 if (atomic_dec_32_nv(&(ipsa)->ipsa_refcnt) == 0) \
372 373 ((ipsa)->ipsa_freefunc)(ipsa); \
373 374 }
374 375
375 376 /*
376 377 * Security association hash macros and definitions. For now, assume the
377 378 * IPsec model, and hash outbounds on destination address, and inbounds on
378 379 * SPI.
379 380 */
380 381
381 382 #define IPSEC_DEFAULT_HASH_SIZE 256
382 383
383 384 #define INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize))
384 385 #define OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize))
385 386 #define OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \
386 387 (*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \
387 388 (*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3)))
388 389
389 390 /*
390 391 * Syntactic sugar to find the appropriate hash bucket directly.
391 392 */
392 393
393 394 #define INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)])
394 395 #define OUTBOUND_BUCKET_V4(sadb, v4addr) \
395 396 &(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)])
396 397 #define OUTBOUND_BUCKET_V6(sadb, v6addr) \
397 398 &(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)])
398 399
399 400 #define IPSA_F_PFS SADB_SAFLAGS_PFS /* PFS in use for this SA? */
400 401 #define IPSA_F_NOREPFLD SADB_SAFLAGS_NOREPLAY /* No replay field, for */
401 402 /* backward compat. */
402 403 #define IPSA_F_USED SADB_X_SAFLAGS_USED /* SA has been used. */
403 404 #define IPSA_F_UNIQUE SADB_X_SAFLAGS_UNIQUE /* SA is unique */
404 405 #define IPSA_F_AALG1 SADB_X_SAFLAGS_AALG1 /* Auth alg flag 1 */
405 406 #define IPSA_F_AALG2 SADB_X_SAFLAGS_AALG2 /* Auth alg flag 2 */
406 407 #define IPSA_F_EALG1 SADB_X_SAFLAGS_EALG1 /* Encrypt alg flag 1 */
407 408 #define IPSA_F_EALG2 SADB_X_SAFLAGS_EALG2 /* Encrypt alg flag 2 */
408 409
409 410 #define IPSA_F_ASYNC 0x200000 /* Call KCF asynchronously? */
410 411 #define IPSA_F_NATT_LOC SADB_X_SAFLAGS_NATT_LOC
411 412 #define IPSA_F_NATT_REM SADB_X_SAFLAGS_NATT_REM
412 413 #define IPSA_F_BEHIND_NAT SADB_X_SAFLAGS_NATTED
413 414 #define IPSA_F_NATT (SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | \
414 415 SADB_X_SAFLAGS_NATTED)
415 416 #define IPSA_F_CINVALID 0x40000 /* SA shouldn't be cached */
416 417 #define IPSA_F_PAIRED SADB_X_SAFLAGS_PAIRED /* SA is one of a pair */
417 418 #define IPSA_F_OUTBOUND SADB_X_SAFLAGS_OUTBOUND /* SA direction bit */
418 419 #define IPSA_F_INBOUND SADB_X_SAFLAGS_INBOUND /* SA direction bit */
419 420 #define IPSA_F_TUNNEL SADB_X_SAFLAGS_TUNNEL
420 421 /*
421 422 * These flags are only defined here to prevent a flag value collision.
422 423 */
423 424 #define IPSA_F_COMBINED SADB_X_SAFLAGS_EALG1 /* Defined in pfkeyv2.h */
424 425 #define IPSA_F_COUNTERMODE SADB_X_SAFLAGS_EALG2 /* Defined in pfkeyv2.h */
425 426
426 427 /*
427 428 * Sets of flags that are allowed to by set or modified by PF_KEY apps.
428 429 */
429 430 #define AH_UPDATE_SETTABLE_FLAGS \
430 431 (SADB_X_SAFLAGS_PAIRED | SADB_SAFLAGS_NOREPLAY | \
431 432 SADB_X_SAFLAGS_OUTBOUND | SADB_X_SAFLAGS_INBOUND | \
432 433 SADB_X_SAFLAGS_KM1 | SADB_X_SAFLAGS_KM2 | \
433 434 SADB_X_SAFLAGS_KM3 | SADB_X_SAFLAGS_KM4)
434 435
435 436 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */
436 437 #define ESP_UPDATE_SETTABLE_FLAGS (AH_UPDATE_SETTABLE_FLAGS | IPSA_F_NATT)
437 438
438 439 #define AH_ADD_SETTABLE_FLAGS \
439 440 (AH_UPDATE_SETTABLE_FLAGS | SADB_X_SAFLAGS_AALG1 | \
440 441 SADB_X_SAFLAGS_AALG2 | SADB_X_SAFLAGS_TUNNEL | \
441 442 SADB_SAFLAGS_NOREPLAY)
442 443
443 444 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */
444 445 #define ESP_ADD_SETTABLE_FLAGS (AH_ADD_SETTABLE_FLAGS | IPSA_F_NATT | \
445 446 SADB_X_SAFLAGS_EALG1 | SADB_X_SAFLAGS_EALG2)
446 447
447 448
448 449
449 450 /* SA states are important for handling UPDATE PF_KEY messages. */
450 451 #define IPSA_STATE_LARVAL SADB_SASTATE_LARVAL
451 452 #define IPSA_STATE_MATURE SADB_SASTATE_MATURE
452 453 #define IPSA_STATE_DYING SADB_SASTATE_DYING
453 454 #define IPSA_STATE_DEAD SADB_SASTATE_DEAD
454 455 #define IPSA_STATE_IDLE SADB_X_SASTATE_IDLE
455 456 #define IPSA_STATE_ACTIVE_ELSEWHERE SADB_X_SASTATE_ACTIVE_ELSEWHERE
456 457
457 458 /*
458 459 * NOTE: If the document authors do things right in defining algorithms, we'll
459 460 * probably have flags for what all is here w.r.t. replay, ESP w/HMAC,
460 461 * etc.
461 462 */
462 463
463 464 #define IPSA_T_ACQUIRE SEC_TYPE_NONE /* If this typed returned, sa needed */
464 465 #define IPSA_T_AH SEC_TYPE_AH /* IPsec AH association */
465 466 #define IPSA_T_ESP SEC_TYPE_ESP /* IPsec ESP association */
466 467
467 468 #define IPSA_AALG_NONE SADB_AALG_NONE /* No auth. algorithm */
468 469 #define IPSA_AALG_MD5H SADB_AALG_MD5HMAC /* MD5-HMAC algorithm */
469 470 #define IPSA_AALG_SHA1H SADB_AALG_SHA1HMAC /* SHA1-HMAC algorithm */
470 471
471 472 #define IPSA_EALG_NONE SADB_EALG_NONE /* No encryption algorithm */
472 473 #define IPSA_EALG_DES_CBC SADB_EALG_DESCBC
473 474 #define IPSA_EALG_3DES SADB_EALG_3DESCBC
474 475
475 476 /*
476 477 * Protect each ipsa_t bucket (and linkage) with a lock.
477 478 */
478 479
479 480 typedef struct isaf_s {
480 481 ipsa_t *isaf_ipsa;
481 482 kmutex_t isaf_lock;
482 483 uint64_t isaf_gen;
483 484 } isaf_t;
484 485
485 486 /*
486 487 * ACQUIRE record. If AH/ESP/whatever cannot find an association for outbound
487 488 * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record.
488 489 */
489 490
490 491 #define IPSACQ_MAXPACKETS 4 /* Number of packets that can be queued up */
491 492 /* waiting for an ACQUIRE to finish. */
492 493
493 494 typedef struct ipsacq_s {
494 495 struct ipsacq_s *ipsacq_next;
495 496 struct ipsacq_s **ipsacq_ptpn;
496 497 kmutex_t *ipsacq_linklock;
497 498 struct ipsec_policy_s *ipsacq_policy;
498 499 struct ipsec_action_s *ipsacq_act;
499 500
500 501 sa_family_t ipsacq_addrfam; /* Address family. */
501 502 sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */
502 503 int ipsacq_numpackets; /* How many packets queued up so far. */
503 504 uint32_t ipsacq_seq; /* PF_KEY sequence number. */
504 505 uint64_t ipsacq_unique_id; /* Unique ID for SAs that need it. */
505 506
506 507 kmutex_t ipsacq_lock; /* Protects non-linkage fields. */
507 508 time_t ipsacq_expire; /* Wall-clock time when this record expires. */
508 509 mblk_t *ipsacq_mp; /* List of datagrams waiting for an SA. */
509 510
510 511 /* These two point inside the last mblk inserted. */
511 512 uint32_t *ipsacq_srcaddr;
512 513 uint32_t *ipsacq_dstaddr;
513 514
514 515 /* Cache these instead of point so we can mask off accordingly */
515 516 uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN];
516 517 uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN];
517 518
518 519 /* These may change per-acquire. */
519 520 uint16_t ipsacq_srcport;
520 521 uint16_t ipsacq_dstport;
521 522 uint8_t ipsacq_proto;
522 523 uint8_t ipsacq_inner_proto;
523 524 uint8_t ipsacq_innersrcpfx;
524 525 uint8_t ipsacq_innerdstpfx;
525 526
526 527 /* icmp type and code of triggering packet (if applicable) */
527 528 uint8_t ipsacq_icmp_type;
528 529 uint8_t ipsacq_icmp_code;
529 530
530 531 /* label associated with triggering packet */
531 532 ts_label_t *ipsacq_tsl;
532 533 } ipsacq_t;
533 534
534 535 /*
535 536 * Kernel-generated sequence numbers will be no less than 0x80000000 to
536 537 * forestall any cretinous problems with manual keying accidentally updating
537 538 * an ACQUIRE entry.
538 539 */
539 540 #define IACQF_LOWEST_SEQ 0x80000000
540 541
541 542 #define SADB_AGE_INTERVAL_DEFAULT 8000
542 543
543 544 /*
544 545 * ACQUIRE fanout. Protect each linkage with a lock.
545 546 */
546 547
547 548 typedef struct iacqf_s {
548 549 ipsacq_t *iacqf_ipsacq;
549 550 kmutex_t iacqf_lock;
550 551 } iacqf_t;
551 552
552 553 /*
553 554 * A (network protocol, ipsec protocol) specific SADB.
554 555 * (i.e., one each for {ah, esp} and {v4, v6}.
555 556 *
556 557 * Keep outbound assocs in a simple hash table for now.
557 558 * One danger point, multiple SAs for a single dest will clog a bucket.
558 559 * For the future, consider two-level hashing (2nd hash on IPC?), then probe.
559 560 */
560 561
561 562 typedef struct sadb_s
562 563 {
563 564 isaf_t *sdb_of;
564 565 isaf_t *sdb_if;
565 566 iacqf_t *sdb_acq;
566 567 int sdb_hashsize;
567 568 } sadb_t;
568 569
569 570 /*
570 571 * A pair of SADB's (one for v4, one for v6), and related state (including
571 572 * acquire callbacks).
572 573 */
573 574
574 575 typedef struct sadbp_s
575 576 {
576 577 uint32_t s_satype;
577 578 uint32_t *s_acquire_timeout;
578 579 void (*s_acqfn)(ipsacq_t *, mblk_t *, netstack_t *);
579 580 sadb_t s_v4;
580 581 sadb_t s_v6;
581 582 uint32_t s_addflags;
582 583 uint32_t s_updateflags;
583 584 } sadbp_t;
584 585
585 586 /*
586 587 * A pair of SA's for a single connection, the structure contains a
587 588 * pointer to a SA and the SA its paired with (opposite direction) as well
588 589 * as the SA's respective hash buckets.
589 590 */
590 591 typedef struct ipsap_s
591 592 {
592 593 boolean_t in_inbound_table;
593 594 isaf_t *ipsap_bucket;
594 595 ipsa_t *ipsap_sa_ptr;
595 596 isaf_t *ipsap_pbucket;
596 597 ipsa_t *ipsap_psa_ptr;
597 598 } ipsap_t;
598 599
599 600 typedef struct templist_s
600 601 {
601 602 ipsa_t *ipsa;
602 603 struct templist_s *next;
603 604 } templist_t;
604 605
605 606 /* Pointer to an all-zeroes IPv6 address. */
606 607 #define ALL_ZEROES_PTR ((uint32_t *)&ipv6_all_zeros)
607 608
608 609 /*
609 610 * Form unique id from ip_xmit_attr_t.
610 611 */
611 612 #define SA_FORM_UNIQUE_ID(ixa) \
612 613 SA_UNIQUE_ID((ixa)->ixa_ipsec_src_port, (ixa)->ixa_ipsec_dst_port, \
613 614 (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \
614 615 ((ixa)->ixa_ipsec_inaf == AF_INET6 ? \
615 616 IPPROTO_IPV6 : IPPROTO_ENCAP) : \
616 617 (ixa)->ixa_ipsec_proto), \
617 618 (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \
618 619 (ixa)->ixa_ipsec_proto : 0))
619 620
620 621 /*
621 622 * This macro is used to generate unique ids (along with the addresses, both
622 623 * inner and outer) for outbound datagrams that require unique SAs.
623 624 *
624 625 * N.B. casts and unsigned shift amounts discourage unwarranted
625 626 * sign extension of dstport, proto, and iproto.
626 627 *
627 628 * Unique ID is 64-bits allocated as follows (pardon my big-endian bias):
628 629 *
629 630 * 6 4 43 33 11
630 631 * 3 7 09 21 65 0
631 632 * +---------------*-------+-------+--------------+---------------+
632 633 * | MUST-BE-ZERO |<iprot>|<proto>| <src port> | <dest port> |
633 634 * +---------------*-------+-------+--------------+---------------+
634 635 *
635 636 * If there are inner addresses (tunnel mode) the ports come from the
636 637 * inner addresses. If there are no inner addresses, the ports come from
637 638 * the outer addresses (transport mode). Tunnel mode MUST have <proto>
638 639 * set to either IPPROTO_ENCAP or IPPPROTO_IPV6.
639 640 */
640 641 #define SA_UNIQUE_ID(srcport, dstport, proto, iproto) \
641 642 ((srcport) | ((uint64_t)(dstport) << 16U) | \
642 643 ((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U))
643 644
644 645 /*
645 646 * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value
646 647 * from a packet to an SA.
647 648 */
648 649
649 650 #define SA_UNIQUE_MASK(srcport, dstport, proto, iproto) \
650 651 SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0, \
651 652 (dstport != 0) ? 0xffff : 0, \
652 653 (proto != 0) ? 0xff : 0, \
653 654 (iproto != 0) ? 0xff : 0)
654 655
655 656 /*
656 657 * Decompose unique id back into its original fields.
657 658 */
658 659 #define SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff
659 660 #define SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff
660 661 #define SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff)
661 662 #define SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff)
662 663
663 664 typedef struct ipsa_query_s ipsa_query_t;
664 665
665 666 typedef boolean_t (*ipsa_match_fn_t)(ipsa_query_t *, ipsa_t *);
666 667
667 668 #define IPSA_NMATCH 10
668 669
669 670 /*
670 671 * SADB query structure.
671 672 *
672 673 * Provide a generalized mechanism for matching entries in the SADB;
673 674 * one of these structures is initialized using sadb_form_query(),
674 675 * and then can be used as a parameter to sadb_match_query() which returns
675 676 * B_TRUE if the SA matches the query.
676 677 *
677 678 * Under the covers, sadb_form_query populates the matchers[] array with
678 679 * functions which are called one at a time until one fails to match.
679 680 */
680 681 struct ipsa_query_s {
681 682 uint32_t req, match;
682 683 sadb_address_t *srcext, *dstext;
683 684 sadb_ident_t *srcid, *dstid;
684 685 sadb_x_kmc_t *kmcext;
685 686 sadb_sa_t *assoc;
686 687 uint32_t spi;
687 688 struct sockaddr_in *src;
688 689 struct sockaddr_in6 *src6;
689 690 struct sockaddr_in *dst;
690 691 struct sockaddr_in6 *dst6;
691 692 sa_family_t af;
692 693 uint32_t *srcaddr, *dstaddr;
693 694 uint32_t ifindex;
694 695 uint32_t kmc, kmp;
695 696 char *didstr, *sidstr;
696 697 uint16_t didtype, sidtype;
697 698 sadbp_t *spp;
698 699 sadb_t *sp;
699 700 isaf_t *inbound, *outbound;
700 701 uint32_t outhash;
701 702 uint32_t inhash;
702 703 ipsa_match_fn_t matchers[IPSA_NMATCH];
703 704 };
704 705
705 706 #define IPSA_Q_SA 0x00000001
706 707 #define IPSA_Q_DST 0x00000002
707 708 #define IPSA_Q_SRC 0x00000004
708 709 #define IPSA_Q_DSTID 0x00000008
709 710 #define IPSA_Q_SRCID 0x00000010
710 711 #define IPSA_Q_KMC 0x00000020
711 712 #define IPSA_Q_INBOUND 0x00000040 /* fill in inbound isaf_t */
712 713 #define IPSA_Q_OUTBOUND 0x00000080 /* fill in outbound isaf_t */
713 714
714 715 int sadb_form_query(keysock_in_t *, uint32_t, uint32_t, ipsa_query_t *, int *);
715 716 boolean_t sadb_match_query(ipsa_query_t *q, ipsa_t *sa);
716 717
717 718
718 719 /*
719 720 * All functions that return an ipsa_t will return it with IPSA_REFHOLD()
720 721 * already called.
721 722 */
722 723
723 724 /* SA retrieval (inbound and outbound) */
724 725 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *,
725 726 sa_family_t);
726 727 ipsa_t *ipsec_getassocbyconn(isaf_t *, ip_xmit_attr_t *, uint32_t *, uint32_t *,
727 728 sa_family_t, uint8_t, ts_label_t *);
728 729
729 730 /* SA insertion. */
730 731 int sadb_insertassoc(ipsa_t *, isaf_t *);
731 732
732 733 /* SA table construction and destruction. */
733 734 void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *);
734 735 void sadbp_flush(sadbp_t *, netstack_t *);
735 736 void sadbp_destroy(sadbp_t *, netstack_t *);
736 737
737 738 /* SA insertion and deletion. */
738 739 int sadb_insertassoc(ipsa_t *, isaf_t *);
739 740 void sadb_unlinkassoc(ipsa_t *);
740 741
741 742 /* Support routines to interface a keysock consumer to PF_KEY. */
742 743 mblk_t *sadb_keysock_out(minor_t);
743 744 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *, sadb_lifetime_t *);
744 745 int sadb_labelchk(struct keysock_in_s *);
745 746 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *,
746 747 ipsa_t *);
747 748 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t);
748 749 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *),
749 750 void *, timeout_id_t *, int);
750 751 int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *);
751 752 boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *);
752 753 int sadb_addrset(ire_t *);
753 754 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *,
754 755 uint8_t);
755 756
756 757 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, int *, queue_t *);
757 758 int sadb_common_add(queue_t *, mblk_t *, sadb_msg_t *,
758 759 keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *,
759 760 netstack_t *, sadbp_t *);
760 761 void sadb_set_usetime(ipsa_t *);
761 762 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t);
762 763 int sadb_update_sa(mblk_t *, keysock_in_t *, mblk_t **, sadbp_t *,
763 764 int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *),
764 765 netstack_t *, uint8_t);
765 766 void sadb_acquire(mblk_t *, ip_xmit_attr_t *, boolean_t, boolean_t);
766 767 void gcm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
767 768 crypto_data_t *);
768 769 void ccm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
769 770 crypto_data_t *);
770 771 void cbc_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
771 772 crypto_data_t *);
772 773
773 774 void sadb_destroy_acquire(ipsacq_t *, netstack_t *);
774 775 struct ipsec_stack;
775 776 mblk_t *sadb_setup_acquire(ipsacq_t *, uint8_t, struct ipsec_stack *);
776 777 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *, uint_t);
777 778 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *);
778 779 boolean_t sadb_replay_check(ipsa_t *, uint32_t);
779 780 boolean_t sadb_replay_peek(ipsa_t *, uint32_t);
780 781 int sadb_dump(queue_t *, mblk_t *, keysock_in_t *, sadb_t *);
781 782 void sadb_replay_delete(ipsa_t *);
782 783 void sadb_ager(sadb_t *, queue_t *, int, netstack_t *);
783 784
784 785 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *,
785 786 uint_t *, uint_t, short);
786 787 void sadb_sa_refrele(void *target);
787 788 mblk_t *sadb_set_lpkt(ipsa_t *, mblk_t *, ip_recv_attr_t *);
788 789 mblk_t *sadb_clear_lpkt(ipsa_t *);
789 790 void sadb_buf_pkt(ipsa_t *, mblk_t *, ip_recv_attr_t *);
790 791 void sadb_clear_buf_pkt(void *ipkt);
791 792
792 793 /* Note that buf_pkt is the product of ip_recv_attr_to_mblk() */
793 794 #define HANDLE_BUF_PKT(taskq, stack, dropper, buf_pkt) \
794 795 { \
795 796 if (buf_pkt != NULL) { \
796 797 if (taskq_dispatch(taskq, sadb_clear_buf_pkt, \
797 798 (void *) buf_pkt, TQ_NOSLEEP) == 0) { \
798 799 /* Dispatch was unsuccessful drop the packets. */ \
799 800 mblk_t *tmp; \
800 801 while (buf_pkt != NULL) { \
801 802 tmp = buf_pkt->b_next; \
802 803 buf_pkt->b_next = NULL; \
803 804 buf_pkt = ip_recv_attr_free_mblk(buf_pkt); \
804 805 ip_drop_packet(buf_pkt, B_TRUE, NULL, \
805 806 DROPPER(stack, \
806 807 ipds_sadb_inidle_timeout), \
807 808 &dropper); \
808 809 buf_pkt = tmp; \
809 810 } \
810 811 } \
811 812 } \
812 813 } \
813 814
814 815 /*
815 816 * Two IPsec rate-limiting routines.
816 817 */
817 818 /*PRINTFLIKE6*/
818 819 extern void ipsec_rl_strlog(netstack_t *, short, short, char,
819 820 ushort_t, char *, ...)
820 821 __KPRINTFLIKE(6);
821 822 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t,
822 823 void *, int, netstack_t *);
823 824
824 825 /*
825 826 * Algorithm types.
826 827 */
827 828
828 829 #define IPSEC_NALGTYPES 2
829 830
830 831 typedef enum ipsec_algtype {
831 832 IPSEC_ALG_AUTH = 0,
832 833 IPSEC_ALG_ENCR = 1,
833 834 IPSEC_ALG_ALL = 2
834 835 } ipsec_algtype_t;
835 836
836 837 /*
837 838 * Definitions as per IPsec/ISAKMP DOI.
838 839 */
839 840
840 841 #define IPSEC_MAX_ALGS 256
841 842 #define PROTO_IPSEC_AH 2
842 843 #define PROTO_IPSEC_ESP 3
843 844
844 845 /*
845 846 * Common algorithm info.
846 847 */
847 848 typedef struct ipsec_alginfo
848 849 {
849 850 uint8_t alg_id;
850 851 uint8_t alg_flags;
851 852 uint16_t *alg_key_sizes;
852 853 uint16_t *alg_block_sizes;
853 854 uint16_t *alg_params;
854 855 uint16_t alg_nkey_sizes;
855 856 uint16_t alg_ivlen;
856 857 uint16_t alg_icvlen;
857 858 uint8_t alg_saltlen;
858 859 uint16_t alg_nblock_sizes;
859 860 uint16_t alg_nparams;
860 861 uint16_t alg_minbits;
861 862 uint16_t alg_maxbits;
862 863 uint16_t alg_datalen;
863 864 /*
864 865 * increment: number of bits from keysize to keysize
865 866 * default: # of increments from min to default key len
866 867 */
867 868 uint16_t alg_increment;
868 869 uint16_t alg_default;
869 870 uint16_t alg_default_bits;
870 871 /*
871 872 * Min, max, and default key sizes effectively supported
872 873 * by the encryption framework.
873 874 */
874 875 uint16_t alg_ef_minbits;
875 876 uint16_t alg_ef_maxbits;
876 877 uint16_t alg_ef_default;
877 878 uint16_t alg_ef_default_bits;
878 879
879 880 crypto_mech_type_t alg_mech_type; /* KCF mechanism type */
880 881 crypto_mech_name_t alg_mech_name; /* KCF mechanism name */
881 882 } ipsec_alginfo_t;
882 883
883 884 #define alg_datalen alg_block_sizes[0]
884 885 #define ALG_VALID(_alg) ((_alg)->alg_flags & ALG_FLAG_VALID)
885 886
886 887 /*
887 888 * Software crypto execution mode.
888 889 */
889 890 typedef enum {
890 891 IPSEC_ALGS_EXEC_SYNC = 0,
891 892 IPSEC_ALGS_EXEC_ASYNC = 1
892 893 } ipsec_algs_exec_mode_t;
893 894
894 895 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *);
895 896 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *);
896 897 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t,
897 898 netstack_t *ns);
898 899 extern void alg_flag_check(ipsec_alginfo_t *);
899 900 extern void ipsec_alg_free(ipsec_alginfo_t *);
900 901 extern void ipsec_register_prov_update(void);
901 902 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t, netstack_t *);
902 903
903 904 extern int sadb_sens_len_from_label(ts_label_t *);
904 905 extern void sadb_sens_from_label(sadb_sens_t *, int, ts_label_t *, int);
905 906
906 907 /*
907 908 * Context templates management.
|
↓ open down ↓ |
874 lines elided |
↑ open up ↑ |
908 909 */
909 910
910 911 #define IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1)
911 912 #define IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) { \
912 913 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) { \
913 914 mutex_enter(&assoc->ipsa_lock); \
914 915 if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) { \
915 916 ipsec_stack_t *ipss; \
916 917 \
917 918 ipss = assoc->ipsa_netstack->netstack_ipsec; \
918 - mutex_enter(&ipss->ipsec_alg_lock); \
919 + rw_enter(&ipss->ipsec_alg_lock, RW_READER); \
919 920 (void) ipsec_create_ctx_tmpl(_sa, _type); \
920 - mutex_exit(&ipss->ipsec_alg_lock); \
921 + rw_exit(&ipss->ipsec_alg_lock); \
921 922 } \
922 923 mutex_exit(&assoc->ipsa_lock); \
923 924 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) \
924 925 _tmpl = NULL; \
925 926 } \
926 927 }
927 928
928 929 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
929 930 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
930 931
931 932 /* key checking */
932 933 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *);
933 934
934 935 typedef struct ipsec_kstats_s {
935 936 kstat_named_t esp_stat_in_requests;
936 937 kstat_named_t esp_stat_in_discards;
937 938 kstat_named_t esp_stat_lookup_failure;
938 939 kstat_named_t ah_stat_in_requests;
939 940 kstat_named_t ah_stat_in_discards;
940 941 kstat_named_t ah_stat_lookup_failure;
941 942 kstat_named_t sadb_acquire_maxpackets;
942 943 kstat_named_t sadb_acquire_qhiwater;
943 944 } ipsec_kstats_t;
944 945
945 946 /*
946 947 * (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if
947 948 * kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it
948 949 * fails, it will be NULL. Note this is done for all stack instances,
949 950 * so it *could* fail. hence a non-NULL checking is done for
950 951 * IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT
951 952 */
952 953 #define IP_ESP_BUMP_STAT(ipss, x) \
953 954 do { \
954 955 if ((ipss)->ipsec_kstats != NULL) \
955 956 ((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++; \
956 957 _NOTE(CONSTCOND) \
957 958 } while (0)
958 959
959 960 #define IP_AH_BUMP_STAT(ipss, x) \
960 961 do { \
961 962 if ((ipss)->ipsec_kstats != NULL) \
962 963 ((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++; \
963 964 _NOTE(CONSTCOND) \
964 965 } while (0)
965 966
966 967 #define IP_ACQUIRE_STAT(ipss, val, new) \
967 968 do { \
968 969 if ((ipss)->ipsec_kstats != NULL && \
969 970 ((uint64_t)(new)) > \
970 971 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64) \
971 972 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \
972 973 ((uint64_t)(new)); \
973 974 _NOTE(CONSTCOND) \
974 975 } while (0)
975 976
976 977
977 978 #ifdef __cplusplus
978 979 }
979 980 #endif
980 981
981 982 #endif /* _INET_SADB_H */
|
↓ open down ↓ |
51 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX