1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #ifndef _INET_SADB_H
28 #define _INET_SADB_H
29
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
33
34 #include <inet/ipsec_info.h>
35 #include <sys/crypto/common.h>
36 #include <sys/crypto/api.h>
37 #include <sys/note.h>
38
39 #define IPSA_MAX_ADDRLEN 4 /* Max address len. (in 32-bits) for an SA. */
40
41 #define MAXSALTSIZE 8
42
43 /*
44 * For combined mode ciphers, store the crypto_mechanism_t in the
45 * per-packet ipsec_in_t/ipsec_out_t structures. This is because the PARAMS
46 * and nonce values change for each packet. For non-combined mode
47 * ciphers, these values are constant for the life of the SA.
48 */
49 typedef struct ipsa_cm_mech_s {
50 crypto_mechanism_t combined_mech;
51 union {
52 CK_AES_CCM_PARAMS paramu_ccm;
53 CK_AES_GCM_PARAMS paramu_gcm;
54 } paramu;
55 uint8_t nonce[MAXSALTSIZE + sizeof (uint64_t)];
56 #define param_ulMACSize paramu.paramu_ccm.ulMACSize
57 #define param_ulNonceSize paramu.paramu_ccm.ipsa_ulNonceSize
58 #define param_ulAuthDataSize paramu.paramu_ccm.ipsa_ulAuthDataSize
59 #define param_ulDataSize paramu.paramu_ccm.ipsa_ulDataSize
60 #define param_nonce paramu.paramu_ccm.nonce
61 #define param_authData paramu.paramu_ccm.authData
62 #define param_pIv paramu.paramu_gcm.ipsa_pIv
63 #define param_ulIvLen paramu.paramu_gcm.ulIvLen
64 #define param_ulIvBits paramu.paramu_gcm.ulIvBits
65 #define param_pAAD paramu.paramu_gcm.pAAD
66 #define param_ulAADLen paramu.paramu_gcm.ulAADLen
67 #define param_ulTagBits paramu.paramu_gcm.ulTagBits
68 } ipsa_cm_mech_t;
69
70 /*
71 * The Initialization Vector (also known as IV or Nonce) used to
72 * initialize the Block Cipher, is made up of a Counter and a Salt.
73 * The Counter is fixed at 64 bits and is incremented for each packet.
74 * The Salt value can be any whole byte value upto 64 bits. This is
75 * algorithm mode specific and can be configured with ipsecalgs(1m).
76 *
77 * We only support whole byte salt lengths, this is because the salt is
78 * stored in an array of uint8_t's. This is enforced by ipsecalgs(1m)
79 * which configures the salt length as a number of bytes. Checks are
80 * made to ensure the salt length defined in ipsecalgs(1m) fits in
81 * the ipsec_nonce_t.
82 *
83 * The Salt value remains constant for the life of the SA, the Salt is
84 * know to both peers, but NOT transmitted on the network. The Counter
85 * portion of the nonce is transmitted over the network with each packet
86 * and is confusingly described as the Initialization Vector by RFCs
87 * 4309/4106.
88 *
89 * The maximum Initialization Vector length is 128 bits, if the actual
90 * size is less, its padded internally by the algorithm.
91 *
92 * The nonce structure is defined like this in the SA (ipsa_t)to ensure
93 * the Initilization Vector (counter) is 64 bit aligned, because it will
94 * be incremented as an uint64_t. The nonce as used by the algorithms is
95 * a straight uint8_t array.
96 *
97 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
98 * | | | | |x|x|x|x| |
99 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
100 * salt_offset <------>
101 * ipsa_saltlen <------->
102 * ipsa_nonce_buf------^
103 * ipsa_salt-------------~~~~~~^
104 * ipsa_nonce------------~~~~~~^
105 * ipsa_iv-----------------------------^
106 */
107 typedef struct ipsec_nonce_s {
108 uint8_t salt[MAXSALTSIZE];
109 uint64_t iv;
110 } ipsec_nonce_t;
111
112 /*
113 * IP security association. Synchronization assumes 32-bit loads, so
114 * the 64-bit quantities can't even be be read w/o locking it down!
115 */
116
117 /* keying info */
118 typedef struct ipsa_key_s {
119 uint8_t *sak_key; /* Algorithm key. */
120 uint_t sak_keylen; /* Algorithm key length (in bytes). */
121 uint_t sak_keybits; /* Algorithm key length (in bits) */
122 uint_t sak_algid; /* Algorithm ID number. */
123 } ipsa_key_t;
124
125 typedef struct ipsa_s {
126 struct ipsa_s *ipsa_next; /* Next in hash bucket */
127 struct ipsa_s **ipsa_ptpn; /* Pointer to previous next pointer. */
128 kmutex_t *ipsa_linklock; /* Pointer to hash-chain lock. */
129 void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */
130 void (*ipsa_noncefunc)(struct ipsa_s *, uchar_t *,
131 uint_t, uchar_t *, ipsa_cm_mech_t *, crypto_data_t *);
132 /*
133 * NOTE: I may need more pointers, depending on future SA
134 * requirements.
135 */
136 ipsa_key_t ipsa_authkeydata;
137 #define ipsa_authkey ipsa_authkeydata.sak_key
138 #define ipsa_authkeylen ipsa_authkeydata.sak_keylen
139 #define ipsa_authkeybits ipsa_authkeydata.sak_keybits
140 #define ipsa_auth_alg ipsa_authkeydata.sak_algid
141 ipsa_key_t ipsa_encrkeydata;
142 #define ipsa_encrkey ipsa_encrkeydata.sak_key
143 #define ipsa_encrkeylen ipsa_encrkeydata.sak_keylen
144 #define ipsa_encrkeybits ipsa_encrkeydata.sak_keybits
145 #define ipsa_encr_alg ipsa_encrkeydata.sak_algid
146
147 struct ipsid_s *ipsa_src_cid; /* Source certificate identity */
148 struct ipsid_s *ipsa_dst_cid; /* Destination certificate identity */
149 mblk_t *ipsa_lpkt; /* Packet received while larval (CAS me) */
150 mblk_t *ipsa_bpkt_head; /* Packets received while idle */
151 mblk_t *ipsa_bpkt_tail;
152 #define SADB_MAX_IDLEPKTS 100
153 uint8_t ipsa_mblkcnt; /* Number of packets received while idle */
154
155 /*
156 * PF_KEYv2 supports a replay window size of 255. Hence there is a
157 * need a bit vector to support a replay window of 255. 256 is a nice
158 * round number, so I support that.
159 *
160 * Use an array of uint64_t for best performance on 64-bit
161 * processors. (And hope that 32-bit compilers can handle things
162 * okay.) The " >> 6 " is to get the appropriate number of 64-bit
163 * ints.
164 */
165 #define SADB_MAX_REPLAY 256 /* Must be 0 mod 64. */
166 uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6];
167
168 uint64_t ipsa_unique_id; /* Non-zero for unique SAs */
169 uint64_t ipsa_unique_mask; /* mask value for unique_id */
170
171 /*
172 * Reference count semantics:
173 *
174 * An SA has a reference count of 1 if something's pointing
175 * to it. This includes being in a hash table. So if an
176 * SA is in a hash table, it has a reference count of at least 1.
177 *
178 * When a ptr. to an IPSA is assigned, you MUST REFHOLD after
179 * said assignment. When a ptr. to an IPSA is released
180 * you MUST REFRELE. When the refcount hits 0, REFRELE
181 * will free the IPSA.
182 */
183 kmutex_t ipsa_lock; /* Locks non-linkage/refcnt fields. */
184 /* Q: Since I may be doing refcnts differently, will I need cv? */
185 uint_t ipsa_refcnt; /* Reference count. */
186
187 /*
188 * The following four time fields are the ones monitored by ah_ager()
189 * and esp_ager() respectively. They are all absolute wall-clock
190 * times. The times of creation (i.e. add time) and first use are
191 * pretty straightforward. The soft and hard expire times are
192 * derived from the times of first use and creation, plus the minimum
193 * expiration times in the fields that follow this.
194 *
195 * For example, if I had a hard add time of 30 seconds, and a hard
196 * use time of 15, the ipsa_hardexpiretime would be time of add, plus
197 * 30 seconds. If I USE the SA such that time of first use plus 15
198 * seconds would be earlier than the add time plus 30 seconds, then
199 * ipsa_hardexpiretime would become this earlier time.
200 */
201 time_t ipsa_addtime; /* Time I was added. */
202 time_t ipsa_usetime; /* Time of my first use. */
203 time_t ipsa_lastuse; /* Time of my last use. */
204 time_t ipsa_idletime; /* Seconds of idle time */
205 time_t ipsa_last_nat_t_ka; /* Time of my last NAT-T keepalive. */
206 time_t ipsa_softexpiretime; /* Time of my first soft expire. */
207 time_t ipsa_hardexpiretime; /* Time of my first hard expire. */
208 time_t ipsa_idleexpiretime; /* Time of my next idle expire time */
209
210 struct ipsec_nonce_s *ipsa_nonce_buf;
211 uint8_t *ipsa_nonce;
212 uint_t ipsa_nonce_len;
213 uint8_t *ipsa_salt;
214 uint_t ipsa_saltbits;
215 uint_t ipsa_saltlen;
216 uint64_t *ipsa_iv;
217
218 uint64_t ipsa_iv_hardexpire;
219 uint64_t ipsa_iv_softexpire;
220 /*
221 * The following fields are directly reflected in PF_KEYv2 LIFETIME
222 * extensions. The time_ts are in number-of-seconds, and the bytes
223 * are in... bytes.
224 */
225 time_t ipsa_softaddlt; /* Seconds of soft lifetime after add. */
226 time_t ipsa_softuselt; /* Seconds of soft lifetime after first use. */
227 time_t ipsa_hardaddlt; /* Seconds of hard lifetime after add. */
228 time_t ipsa_harduselt; /* Seconds of hard lifetime after first use. */
229 time_t ipsa_idleaddlt; /* Seconds of idle time after add */
230 time_t ipsa_idleuselt; /* Seconds of idle time after first use */
231 uint64_t ipsa_softbyteslt; /* Bytes of soft lifetime. */
232 uint64_t ipsa_hardbyteslt; /* Bytes of hard lifetime. */
233 uint64_t ipsa_bytes; /* Bytes encrypted/authed by this SA. */
234
235 /*
236 * "Allocations" are a concept mentioned in PF_KEYv2. We do not
237 * support them, except to record them per the PF_KEYv2 spec.
238 */
239 uint_t ipsa_softalloc; /* Allocations allowed (soft). */
240 uint_t ipsa_hardalloc; /* Allocations allowed (hard). */
241 uint_t ipsa_alloc; /* Allocations made. */
242
243 uint_t ipsa_type; /* Type of security association. (AH/etc.) */
244 uint_t ipsa_state; /* State of my association. */
245 uint_t ipsa_replay_wsize; /* Size of replay window */
246 uint32_t ipsa_flags; /* Flags for security association. */
247 uint32_t ipsa_spi; /* Security parameters index. */
248 uint32_t ipsa_replay; /* Highest seen replay value for this SA. */
249 uint32_t ipsa_kmp; /* key management proto */
250 uint32_t ipsa_kmc; /* key management cookie */
251
252 boolean_t ipsa_haspeer; /* Has peer in another table. */
253
254 /*
255 * Address storage.
256 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc.
257 *
258 * Address families (per sys/socket.h) guide us. We could have just
259 * used sockaddr_storage
260 */
261 sa_family_t ipsa_addrfam;
262 sa_family_t ipsa_innerfam; /* Inner AF can be != src/dst AF. */
263
264 uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN];
265 uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN];
266 uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN];
267 uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN];
268
269 uint8_t ipsa_innersrcpfx;
270 uint8_t ipsa_innerdstpfx;
271
272 uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */
273 uint16_t ipsa_local_nat_port; /* Local NAT-T port. (0 --> 4500) */
274 uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */
275
276 /* these can only be v4 */
277 uint32_t ipsa_natt_addr_loc;
278 uint32_t ipsa_natt_addr_rem;
279
280 /*
281 * icmp type and code. *_end are to specify ranges. if only
282 * a single value, * and *_end are the same value.
283 */
284 uint8_t ipsa_icmp_type;
285 uint8_t ipsa_icmp_type_end;
286 uint8_t ipsa_icmp_code;
287 uint8_t ipsa_icmp_code_end;
288
289 /*
290 * For the kernel crypto framework.
291 */
292 crypto_key_t ipsa_kcfauthkey; /* authentication key */
293 crypto_key_t ipsa_kcfencrkey; /* encryption key */
294 crypto_ctx_template_t ipsa_authtmpl; /* auth context template */
295 crypto_ctx_template_t ipsa_encrtmpl; /* encr context template */
296 crypto_mechanism_t ipsa_amech; /* auth mech type and ICV len */
297 crypto_mechanism_t ipsa_emech; /* encr mech type */
298 size_t ipsa_mac_len; /* auth MAC/ICV length */
299 size_t ipsa_iv_len; /* encr IV length */
300 size_t ipsa_datalen; /* block length in bytes. */
301
302 /*
303 * Input and output processing functions called from IP.
304 * The mblk_t is the data; the IPsec information is in the attributes
305 * Returns NULL if the mblk is consumed which it is if there was
306 * a failure or if pending. If failure then
307 * the ipIfInDiscards/OutDiscards counters are increased.
308 */
309 mblk_t *(*ipsa_output_func)(mblk_t *, ip_xmit_attr_t *);
310 mblk_t *(*ipsa_input_func)(mblk_t *, void *, ip_recv_attr_t *);
311
312 /*
313 * Soft reference to paired SA
314 */
315 uint32_t ipsa_otherspi;
316 netstack_t *ipsa_netstack; /* Does not have a netstack_hold */
317
318 ts_label_t *ipsa_tsl; /* MLS: label attributes */
319 ts_label_t *ipsa_otsl; /* MLS: outer label */
320 uint8_t ipsa_mac_exempt; /* MLS: mac exempt flag */
321 uchar_t ipsa_opt_storage[IP_MAX_OPT_LENGTH];
322 } ipsa_t;
323
324 /*
325 * ipsa_t address handling macros. We want these to be inlined, and deal
326 * with 32-bit words to avoid bcmp/bcopy calls.
327 *
328 * Assume we only have AF_INET and AF_INET6 addresses for now. Also assume
329 * that we have 32-bit alignment on everything.
330 */
331 #define IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \
332 (((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \
333 ((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0)))
334 #define IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \
335 ((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \
336 (((fam) == AF_INET) || \
337 (((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \
338 ((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \
339 ((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1])))
340 #define IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \
341 ((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \
342 if ((fam) == AF_INET6) {\
343 ((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \
344 ((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \
345 ((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } }
346
347 /*
348 * ipsa_t reference hold/release macros.
349 *
350 * If you have a pointer, you REFHOLD. If you are releasing a pointer, you
351 * REFRELE. An ipsa_t that is newly inserted into the table should have
352 * a reference count of 1 (for the table's pointer), plus 1 more for every
353 * pointer that is referencing the ipsa_t.
354 */
355
356 #define IPSA_REFHOLD(ipsa) { \
357 atomic_inc_32(&(ipsa)->ipsa_refcnt); \
358 ASSERT((ipsa)->ipsa_refcnt != 0); \
359 }
360
361 /*
362 * Decrement the reference count on the SA.
363 * In architectures e.g sun4u, where atomic_add_32_nv is just
364 * a cas, we need to maintain the right memory barrier semantics
365 * as that of mutex_exit i.e all the loads and stores should complete
366 * before the cas is executed. membar_exit() does that here.
367 */
368
369 #define IPSA_REFRELE(ipsa) { \
370 ASSERT((ipsa)->ipsa_refcnt != 0); \
371 membar_exit(); \
372 if (atomic_dec_32_nv(&(ipsa)->ipsa_refcnt) == 0) \
373 ((ipsa)->ipsa_freefunc)(ipsa); \
374 }
375
376 /*
377 * Security association hash macros and definitions. For now, assume the
378 * IPsec model, and hash outbounds on destination address, and inbounds on
379 * SPI.
380 */
381
382 #define IPSEC_DEFAULT_HASH_SIZE 256
383
384 #define INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize))
385 #define OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize))
386 #define OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \
387 (*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \
388 (*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3)))
389
390 /*
391 * Syntactic sugar to find the appropriate hash bucket directly.
392 */
393
394 #define INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)])
395 #define OUTBOUND_BUCKET_V4(sadb, v4addr) \
396 &(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)])
397 #define OUTBOUND_BUCKET_V6(sadb, v6addr) \
398 &(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)])
399
400 #define IPSA_F_PFS SADB_SAFLAGS_PFS /* PFS in use for this SA? */
401 #define IPSA_F_NOREPFLD SADB_SAFLAGS_NOREPLAY /* No replay field, for */
402 /* backward compat. */
403 #define IPSA_F_USED SADB_X_SAFLAGS_USED /* SA has been used. */
404 #define IPSA_F_UNIQUE SADB_X_SAFLAGS_UNIQUE /* SA is unique */
405 #define IPSA_F_AALG1 SADB_X_SAFLAGS_AALG1 /* Auth alg flag 1 */
406 #define IPSA_F_AALG2 SADB_X_SAFLAGS_AALG2 /* Auth alg flag 2 */
407 #define IPSA_F_EALG1 SADB_X_SAFLAGS_EALG1 /* Encrypt alg flag 1 */
408 #define IPSA_F_EALG2 SADB_X_SAFLAGS_EALG2 /* Encrypt alg flag 2 */
409
410 #define IPSA_F_ASYNC 0x200000 /* Call KCF asynchronously? */
411 #define IPSA_F_NATT_LOC SADB_X_SAFLAGS_NATT_LOC
412 #define IPSA_F_NATT_REM SADB_X_SAFLAGS_NATT_REM
413 #define IPSA_F_BEHIND_NAT SADB_X_SAFLAGS_NATTED
414 #define IPSA_F_NATT (SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | \
415 SADB_X_SAFLAGS_NATTED)
416 #define IPSA_F_CINVALID 0x40000 /* SA shouldn't be cached */
417 #define IPSA_F_PAIRED SADB_X_SAFLAGS_PAIRED /* SA is one of a pair */
418 #define IPSA_F_OUTBOUND SADB_X_SAFLAGS_OUTBOUND /* SA direction bit */
419 #define IPSA_F_INBOUND SADB_X_SAFLAGS_INBOUND /* SA direction bit */
420 #define IPSA_F_TUNNEL SADB_X_SAFLAGS_TUNNEL
421 /*
422 * These flags are only defined here to prevent a flag value collision.
423 */
424 #define IPSA_F_COMBINED SADB_X_SAFLAGS_EALG1 /* Defined in pfkeyv2.h */
425 #define IPSA_F_COUNTERMODE SADB_X_SAFLAGS_EALG2 /* Defined in pfkeyv2.h */
426
427 /*
428 * Sets of flags that are allowed to by set or modified by PF_KEY apps.
429 */
430 #define AH_UPDATE_SETTABLE_FLAGS \
431 (SADB_X_SAFLAGS_PAIRED | SADB_SAFLAGS_NOREPLAY | \
432 SADB_X_SAFLAGS_OUTBOUND | SADB_X_SAFLAGS_INBOUND | \
433 SADB_X_SAFLAGS_KM1 | SADB_X_SAFLAGS_KM2 | \
434 SADB_X_SAFLAGS_KM3 | SADB_X_SAFLAGS_KM4)
435
436 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */
437 #define ESP_UPDATE_SETTABLE_FLAGS (AH_UPDATE_SETTABLE_FLAGS | IPSA_F_NATT)
438
439 #define AH_ADD_SETTABLE_FLAGS \
440 (AH_UPDATE_SETTABLE_FLAGS | SADB_X_SAFLAGS_AALG1 | \
441 SADB_X_SAFLAGS_AALG2 | SADB_X_SAFLAGS_TUNNEL | \
442 SADB_SAFLAGS_NOREPLAY)
443
444 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */
445 #define ESP_ADD_SETTABLE_FLAGS (AH_ADD_SETTABLE_FLAGS | IPSA_F_NATT | \
446 SADB_X_SAFLAGS_EALG1 | SADB_X_SAFLAGS_EALG2)
447
448
449
450 /* SA states are important for handling UPDATE PF_KEY messages. */
451 #define IPSA_STATE_LARVAL SADB_SASTATE_LARVAL
452 #define IPSA_STATE_MATURE SADB_SASTATE_MATURE
453 #define IPSA_STATE_DYING SADB_SASTATE_DYING
454 #define IPSA_STATE_DEAD SADB_SASTATE_DEAD
455 #define IPSA_STATE_IDLE SADB_X_SASTATE_IDLE
456 #define IPSA_STATE_ACTIVE_ELSEWHERE SADB_X_SASTATE_ACTIVE_ELSEWHERE
457
458 /*
459 * NOTE: If the document authors do things right in defining algorithms, we'll
460 * probably have flags for what all is here w.r.t. replay, ESP w/HMAC,
461 * etc.
462 */
463
464 #define IPSA_T_ACQUIRE SEC_TYPE_NONE /* If this typed returned, sa needed */
465 #define IPSA_T_AH SEC_TYPE_AH /* IPsec AH association */
466 #define IPSA_T_ESP SEC_TYPE_ESP /* IPsec ESP association */
467
468 #define IPSA_AALG_NONE SADB_AALG_NONE /* No auth. algorithm */
469 #define IPSA_AALG_MD5H SADB_AALG_MD5HMAC /* MD5-HMAC algorithm */
470 #define IPSA_AALG_SHA1H SADB_AALG_SHA1HMAC /* SHA1-HMAC algorithm */
471
472 #define IPSA_EALG_NONE SADB_EALG_NONE /* No encryption algorithm */
473 #define IPSA_EALG_DES_CBC SADB_EALG_DESCBC
474 #define IPSA_EALG_3DES SADB_EALG_3DESCBC
475
476 /*
477 * Protect each ipsa_t bucket (and linkage) with a lock.
478 */
479
480 typedef struct isaf_s {
481 ipsa_t *isaf_ipsa;
482 kmutex_t isaf_lock;
483 uint64_t isaf_gen;
484 } isaf_t;
485
486 /*
487 * ACQUIRE record. If AH/ESP/whatever cannot find an association for outbound
488 * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record.
489 */
490
491 #define IPSACQ_MAXPACKETS 4 /* Number of packets that can be queued up */
492 /* waiting for an ACQUIRE to finish. */
493
494 typedef struct ipsacq_s {
495 struct ipsacq_s *ipsacq_next;
496 struct ipsacq_s **ipsacq_ptpn;
497 kmutex_t *ipsacq_linklock;
498 struct ipsec_policy_s *ipsacq_policy;
499 struct ipsec_action_s *ipsacq_act;
500
501 sa_family_t ipsacq_addrfam; /* Address family. */
502 sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */
503 int ipsacq_numpackets; /* How many packets queued up so far. */
504 uint32_t ipsacq_seq; /* PF_KEY sequence number. */
505 uint64_t ipsacq_unique_id; /* Unique ID for SAs that need it. */
506
507 kmutex_t ipsacq_lock; /* Protects non-linkage fields. */
508 time_t ipsacq_expire; /* Wall-clock time when this record expires. */
509 mblk_t *ipsacq_mp; /* List of datagrams waiting for an SA. */
510
511 /* These two point inside the last mblk inserted. */
512 uint32_t *ipsacq_srcaddr;
513 uint32_t *ipsacq_dstaddr;
514
515 /* Cache these instead of point so we can mask off accordingly */
516 uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN];
517 uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN];
518
519 /* These may change per-acquire. */
520 uint16_t ipsacq_srcport;
521 uint16_t ipsacq_dstport;
522 uint8_t ipsacq_proto;
523 uint8_t ipsacq_inner_proto;
524 uint8_t ipsacq_innersrcpfx;
525 uint8_t ipsacq_innerdstpfx;
526
527 /* icmp type and code of triggering packet (if applicable) */
528 uint8_t ipsacq_icmp_type;
529 uint8_t ipsacq_icmp_code;
530
531 /* label associated with triggering packet */
532 ts_label_t *ipsacq_tsl;
533 } ipsacq_t;
534
535 /*
536 * Kernel-generated sequence numbers will be no less than 0x80000000 to
537 * forestall any cretinous problems with manual keying accidentally updating
538 * an ACQUIRE entry.
539 */
540 #define IACQF_LOWEST_SEQ 0x80000000
541
542 #define SADB_AGE_INTERVAL_DEFAULT 8000
543
544 /*
545 * ACQUIRE fanout. Protect each linkage with a lock.
546 */
547
548 typedef struct iacqf_s {
549 ipsacq_t *iacqf_ipsacq;
550 kmutex_t iacqf_lock;
551 } iacqf_t;
552
553 /*
554 * A (network protocol, ipsec protocol) specific SADB.
555 * (i.e., one each for {ah, esp} and {v4, v6}.
556 *
557 * Keep outbound assocs in a simple hash table for now.
558 * One danger point, multiple SAs for a single dest will clog a bucket.
559 * For the future, consider two-level hashing (2nd hash on IPC?), then probe.
560 */
561
562 typedef struct sadb_s
563 {
564 isaf_t *sdb_of;
565 isaf_t *sdb_if;
566 iacqf_t *sdb_acq;
567 int sdb_hashsize;
568 } sadb_t;
569
570 /*
571 * A pair of SADB's (one for v4, one for v6), and related state (including
572 * acquire callbacks).
573 */
574
575 typedef struct sadbp_s
576 {
577 uint32_t s_satype;
578 uint32_t *s_acquire_timeout;
579 void (*s_acqfn)(ipsacq_t *, mblk_t *, netstack_t *);
580 sadb_t s_v4;
581 sadb_t s_v6;
582 uint32_t s_addflags;
583 uint32_t s_updateflags;
584 } sadbp_t;
585
586 /*
587 * A pair of SA's for a single connection, the structure contains a
588 * pointer to a SA and the SA its paired with (opposite direction) as well
589 * as the SA's respective hash buckets.
590 */
591 typedef struct ipsap_s
592 {
593 boolean_t in_inbound_table;
594 isaf_t *ipsap_bucket;
595 ipsa_t *ipsap_sa_ptr;
596 isaf_t *ipsap_pbucket;
597 ipsa_t *ipsap_psa_ptr;
598 } ipsap_t;
599
600 typedef struct templist_s
601 {
602 ipsa_t *ipsa;
603 struct templist_s *next;
604 } templist_t;
605
606 /* Pointer to an all-zeroes IPv6 address. */
607 #define ALL_ZEROES_PTR ((uint32_t *)&ipv6_all_zeros)
608
609 /*
610 * Form unique id from ip_xmit_attr_t.
611 */
612 #define SA_FORM_UNIQUE_ID(ixa) \
613 SA_UNIQUE_ID((ixa)->ixa_ipsec_src_port, (ixa)->ixa_ipsec_dst_port, \
614 (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \
615 ((ixa)->ixa_ipsec_inaf == AF_INET6 ? \
616 IPPROTO_IPV6 : IPPROTO_ENCAP) : \
617 (ixa)->ixa_ipsec_proto), \
618 (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \
619 (ixa)->ixa_ipsec_proto : 0))
620
621 /*
622 * This macro is used to generate unique ids (along with the addresses, both
623 * inner and outer) for outbound datagrams that require unique SAs.
624 *
625 * N.B. casts and unsigned shift amounts discourage unwarranted
626 * sign extension of dstport, proto, and iproto.
627 *
628 * Unique ID is 64-bits allocated as follows (pardon my big-endian bias):
629 *
630 * 6 4 43 33 11
631 * 3 7 09 21 65 0
632 * +---------------*-------+-------+--------------+---------------+
633 * | MUST-BE-ZERO |<iprot>|<proto>| <src port> | <dest port> |
634 * +---------------*-------+-------+--------------+---------------+
635 *
636 * If there are inner addresses (tunnel mode) the ports come from the
637 * inner addresses. If there are no inner addresses, the ports come from
638 * the outer addresses (transport mode). Tunnel mode MUST have <proto>
639 * set to either IPPROTO_ENCAP or IPPPROTO_IPV6.
640 */
641 #define SA_UNIQUE_ID(srcport, dstport, proto, iproto) \
642 ((srcport) | ((uint64_t)(dstport) << 16U) | \
643 ((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U))
644
645 /*
646 * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value
647 * from a packet to an SA.
648 */
649
650 #define SA_UNIQUE_MASK(srcport, dstport, proto, iproto) \
651 SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0, \
652 (dstport != 0) ? 0xffff : 0, \
653 (proto != 0) ? 0xff : 0, \
654 (iproto != 0) ? 0xff : 0)
655
656 /*
657 * Decompose unique id back into its original fields.
658 */
659 #define SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff
660 #define SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff
661 #define SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff)
662 #define SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff)
663
664 typedef struct ipsa_query_s ipsa_query_t;
665
666 typedef boolean_t (*ipsa_match_fn_t)(ipsa_query_t *, ipsa_t *);
667
668 #define IPSA_NMATCH 10
669
670 /*
671 * SADB query structure.
672 *
673 * Provide a generalized mechanism for matching entries in the SADB;
674 * one of these structures is initialized using sadb_form_query(),
675 * and then can be used as a parameter to sadb_match_query() which returns
676 * B_TRUE if the SA matches the query.
677 *
678 * Under the covers, sadb_form_query populates the matchers[] array with
679 * functions which are called one at a time until one fails to match.
680 */
681 struct ipsa_query_s {
682 uint32_t req, match;
683 sadb_address_t *srcext, *dstext;
684 sadb_ident_t *srcid, *dstid;
685 sadb_x_kmc_t *kmcext;
686 sadb_sa_t *assoc;
687 uint32_t spi;
688 struct sockaddr_in *src;
689 struct sockaddr_in6 *src6;
690 struct sockaddr_in *dst;
691 struct sockaddr_in6 *dst6;
692 sa_family_t af;
693 uint32_t *srcaddr, *dstaddr;
694 uint32_t ifindex;
695 uint32_t kmc, kmp;
696 char *didstr, *sidstr;
697 uint16_t didtype, sidtype;
698 sadbp_t *spp;
699 sadb_t *sp;
700 isaf_t *inbound, *outbound;
701 uint32_t outhash;
702 uint32_t inhash;
703 ipsa_match_fn_t matchers[IPSA_NMATCH];
704 };
705
706 #define IPSA_Q_SA 0x00000001
707 #define IPSA_Q_DST 0x00000002
708 #define IPSA_Q_SRC 0x00000004
709 #define IPSA_Q_DSTID 0x00000008
710 #define IPSA_Q_SRCID 0x00000010
711 #define IPSA_Q_KMC 0x00000020
712 #define IPSA_Q_INBOUND 0x00000040 /* fill in inbound isaf_t */
713 #define IPSA_Q_OUTBOUND 0x00000080 /* fill in outbound isaf_t */
714
715 int sadb_form_query(keysock_in_t *, uint32_t, uint32_t, ipsa_query_t *, int *);
716 boolean_t sadb_match_query(ipsa_query_t *q, ipsa_t *sa);
717
718
719 /*
720 * All functions that return an ipsa_t will return it with IPSA_REFHOLD()
721 * already called.
722 */
723
724 /* SA retrieval (inbound and outbound) */
725 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *,
726 sa_family_t);
727 ipsa_t *ipsec_getassocbyconn(isaf_t *, ip_xmit_attr_t *, uint32_t *, uint32_t *,
728 sa_family_t, uint8_t, ts_label_t *);
729
730 /* SA insertion. */
731 int sadb_insertassoc(ipsa_t *, isaf_t *);
732
733 /* SA table construction and destruction. */
734 void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *);
735 void sadbp_flush(sadbp_t *, netstack_t *);
736 void sadbp_destroy(sadbp_t *, netstack_t *);
737
738 /* SA insertion and deletion. */
739 int sadb_insertassoc(ipsa_t *, isaf_t *);
740 void sadb_unlinkassoc(ipsa_t *);
741
742 /* Support routines to interface a keysock consumer to PF_KEY. */
743 mblk_t *sadb_keysock_out(minor_t);
744 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *, sadb_lifetime_t *);
745 int sadb_labelchk(struct keysock_in_s *);
746 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *,
747 ipsa_t *);
748 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t);
749 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *),
750 void *, timeout_id_t *, int);
751 int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *);
752 boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *);
753 int sadb_addrset(ire_t *);
754 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *,
755 uint8_t);
756
757 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, int *, queue_t *);
758 int sadb_common_add(queue_t *, mblk_t *, sadb_msg_t *,
759 keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *,
760 netstack_t *, sadbp_t *);
761 void sadb_set_usetime(ipsa_t *);
762 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t);
763 int sadb_update_sa(mblk_t *, keysock_in_t *, mblk_t **, sadbp_t *,
764 int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *),
765 netstack_t *, uint8_t);
766 void sadb_acquire(mblk_t *, ip_xmit_attr_t *, boolean_t, boolean_t);
767 void gcm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
768 crypto_data_t *);
769 void ccm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
770 crypto_data_t *);
771 void cbc_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
772 crypto_data_t *);
773
774 void sadb_destroy_acquire(ipsacq_t *, netstack_t *);
775 struct ipsec_stack;
776 mblk_t *sadb_setup_acquire(ipsacq_t *, uint8_t, struct ipsec_stack *);
777 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *, uint_t);
778 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *);
779 boolean_t sadb_replay_check(ipsa_t *, uint32_t);
780 boolean_t sadb_replay_peek(ipsa_t *, uint32_t);
781 int sadb_dump(queue_t *, mblk_t *, keysock_in_t *, sadb_t *);
782 void sadb_replay_delete(ipsa_t *);
783 void sadb_ager(sadb_t *, queue_t *, int, netstack_t *);
784
785 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *,
786 uint_t *, uint_t, short);
787 void sadb_sa_refrele(void *target);
788 mblk_t *sadb_set_lpkt(ipsa_t *, mblk_t *, ip_recv_attr_t *);
789 mblk_t *sadb_clear_lpkt(ipsa_t *);
790 void sadb_buf_pkt(ipsa_t *, mblk_t *, ip_recv_attr_t *);
791 void sadb_clear_buf_pkt(void *ipkt);
792
793 /* Note that buf_pkt is the product of ip_recv_attr_to_mblk() */
794 #define HANDLE_BUF_PKT(taskq, stack, dropper, buf_pkt) \
795 { \
796 if (buf_pkt != NULL) { \
797 if (taskq_dispatch(taskq, sadb_clear_buf_pkt, \
798 (void *) buf_pkt, TQ_NOSLEEP) == 0) { \
799 /* Dispatch was unsuccessful drop the packets. */ \
800 mblk_t *tmp; \
801 while (buf_pkt != NULL) { \
802 tmp = buf_pkt->b_next; \
803 buf_pkt->b_next = NULL; \
804 buf_pkt = ip_recv_attr_free_mblk(buf_pkt); \
805 ip_drop_packet(buf_pkt, B_TRUE, NULL, \
806 DROPPER(stack, \
807 ipds_sadb_inidle_timeout), \
808 &dropper); \
809 buf_pkt = tmp; \
810 } \
811 } \
812 } \
813 } \
814
815 /*
816 * Two IPsec rate-limiting routines.
817 */
818 /*PRINTFLIKE6*/
819 extern void ipsec_rl_strlog(netstack_t *, short, short, char,
820 ushort_t, char *, ...)
821 __KPRINTFLIKE(6);
822 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t,
823 void *, int, netstack_t *);
824
825 /*
826 * Algorithm types.
827 */
828
829 #define IPSEC_NALGTYPES 2
830
831 typedef enum ipsec_algtype {
832 IPSEC_ALG_AUTH = 0,
833 IPSEC_ALG_ENCR = 1,
834 IPSEC_ALG_ALL = 2
835 } ipsec_algtype_t;
836
837 /*
838 * Definitions as per IPsec/ISAKMP DOI.
839 */
840
841 #define IPSEC_MAX_ALGS 256
842 #define PROTO_IPSEC_AH 2
843 #define PROTO_IPSEC_ESP 3
844
845 /*
846 * Common algorithm info.
847 */
848 typedef struct ipsec_alginfo
849 {
850 uint8_t alg_id;
851 uint8_t alg_flags;
852 uint16_t *alg_key_sizes;
853 uint16_t *alg_block_sizes;
854 uint16_t *alg_params;
855 uint16_t alg_nkey_sizes;
856 uint16_t alg_ivlen;
857 uint16_t alg_icvlen;
858 uint8_t alg_saltlen;
859 uint16_t alg_nblock_sizes;
860 uint16_t alg_nparams;
861 uint16_t alg_minbits;
862 uint16_t alg_maxbits;
863 uint16_t alg_datalen;
864 /*
865 * increment: number of bits from keysize to keysize
866 * default: # of increments from min to default key len
867 */
868 uint16_t alg_increment;
869 uint16_t alg_default;
870 uint16_t alg_default_bits;
871 /*
872 * Min, max, and default key sizes effectively supported
873 * by the encryption framework.
874 */
875 uint16_t alg_ef_minbits;
876 uint16_t alg_ef_maxbits;
877 uint16_t alg_ef_default;
878 uint16_t alg_ef_default_bits;
879
880 crypto_mech_type_t alg_mech_type; /* KCF mechanism type */
881 crypto_mech_name_t alg_mech_name; /* KCF mechanism name */
882 } ipsec_alginfo_t;
883
884 #define alg_datalen alg_block_sizes[0]
885 #define ALG_VALID(_alg) ((_alg)->alg_flags & ALG_FLAG_VALID)
886
887 /*
888 * Software crypto execution mode.
889 */
890 typedef enum {
891 IPSEC_ALGS_EXEC_SYNC = 0,
892 IPSEC_ALGS_EXEC_ASYNC = 1
893 } ipsec_algs_exec_mode_t;
894
895 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *);
896 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *);
897 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t,
898 netstack_t *ns);
899 extern void alg_flag_check(ipsec_alginfo_t *);
900 extern void ipsec_alg_free(ipsec_alginfo_t *);
901 extern void ipsec_register_prov_update(void);
902 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t, netstack_t *);
903
904 extern int sadb_sens_len_from_label(ts_label_t *);
905 extern void sadb_sens_from_label(sadb_sens_t *, int, ts_label_t *, int);
906
907 /*
908 * Context templates management.
909 */
910
911 #define IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1)
912 #define IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) { \
913 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) { \
914 mutex_enter(&assoc->ipsa_lock); \
915 if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) { \
916 ipsec_stack_t *ipss; \
917 \
918 ipss = assoc->ipsa_netstack->netstack_ipsec; \
919 rw_enter(&ipss->ipsec_alg_lock, RW_READER); \
920 (void) ipsec_create_ctx_tmpl(_sa, _type); \
921 rw_exit(&ipss->ipsec_alg_lock); \
922 } \
923 mutex_exit(&assoc->ipsa_lock); \
924 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) \
925 _tmpl = NULL; \
926 } \
927 }
928
929 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
930 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
931
932 /* key checking */
933 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *);
934
935 typedef struct ipsec_kstats_s {
936 kstat_named_t esp_stat_in_requests;
937 kstat_named_t esp_stat_in_discards;
938 kstat_named_t esp_stat_lookup_failure;
939 kstat_named_t ah_stat_in_requests;
940 kstat_named_t ah_stat_in_discards;
941 kstat_named_t ah_stat_lookup_failure;
942 kstat_named_t sadb_acquire_maxpackets;
943 kstat_named_t sadb_acquire_qhiwater;
944 } ipsec_kstats_t;
945
946 /*
947 * (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if
948 * kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it
949 * fails, it will be NULL. Note this is done for all stack instances,
950 * so it *could* fail. hence a non-NULL checking is done for
951 * IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT
952 */
953 #define IP_ESP_BUMP_STAT(ipss, x) \
954 do { \
955 if ((ipss)->ipsec_kstats != NULL) \
956 ((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++; \
957 _NOTE(CONSTCOND) \
958 } while (0)
959
960 #define IP_AH_BUMP_STAT(ipss, x) \
961 do { \
962 if ((ipss)->ipsec_kstats != NULL) \
963 ((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++; \
964 _NOTE(CONSTCOND) \
965 } while (0)
966
967 #define IP_ACQUIRE_STAT(ipss, val, new) \
968 do { \
969 if ((ipss)->ipsec_kstats != NULL && \
970 ((uint64_t)(new)) > \
971 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64) \
972 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \
973 ((uint64_t)(new)); \
974 _NOTE(CONSTCOND) \
975 } while (0)
976
977
978 #ifdef __cplusplus
979 }
980 #endif
981
982 #endif /* _INET_SADB_H */