1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
  24  * Use is subject to license terms.
  25  */
  26 
  27 #pragma ident   "%Z%%M% %I%     %E% SMI"
  28 
  29 #include <sys/fasttrap_isa.h>
  30 #include <sys/fasttrap_impl.h>
  31 #include <sys/dtrace.h>
  32 #include <sys/dtrace_impl.h>
  33 #include <sys/cmn_err.h>
  34 #include <sys/regset.h>
  35 #include <sys/privregs.h>
  36 #include <sys/segments.h>
  37 #include <sys/x86_archext.h>
  38 #include <sys/sysmacros.h>
  39 #include <sys/trap.h>
  40 #include <sys/archsystm.h>
  41 
  42 /*
  43  * Lossless User-Land Tracing on x86
  44  * ---------------------------------
  45  *
  46  * The execution of most instructions is not dependent on the address; for
  47  * these instructions it is sufficient to copy them into the user process's
  48  * address space and execute them. To effectively single-step an instruction
  49  * in user-land, we copy out the following sequence of instructions to scratch
  50  * space in the user thread's ulwp_t structure.
  51  *
  52  * We then set the program counter (%eip or %rip) to point to this scratch
  53  * space. Once execution resumes, the original instruction is executed and
  54  * then control flow is redirected to what was originally the subsequent
  55  * instruction. If the kernel attemps to deliver a signal while single-
  56  * stepping, the signal is deferred and the program counter is moved into the
  57  * second sequence of instructions. The second sequence ends in a trap into
  58  * the kernel where the deferred signal is then properly handled and delivered.
  59  *
  60  * For instructions whose execute is position dependent, we perform simple
  61  * emulation. These instructions are limited to control transfer
  62  * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
  63  * of %rip-relative addressing that means that almost any instruction can be
  64  * position dependent. For all the details on how we emulate generic
  65  * instructions included %rip-relative instructions, see the code in
  66  * fasttrap_pid_probe() below where we handle instructions of type
  67  * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
  68  */
  69 
  70 #define FASTTRAP_MODRM_MOD(modrm)       (((modrm) >> 6) & 0x3)
  71 #define FASTTRAP_MODRM_REG(modrm)       (((modrm) >> 3) & 0x7)
  72 #define FASTTRAP_MODRM_RM(modrm)        ((modrm) & 0x7)
  73 #define FASTTRAP_MODRM(mod, reg, rm)    (((mod) << 6) | ((reg) << 3) | (rm))
  74 
  75 #define FASTTRAP_SIB_SCALE(sib)         (((sib) >> 6) & 0x3)
  76 #define FASTTRAP_SIB_INDEX(sib)         (((sib) >> 3) & 0x7)
  77 #define FASTTRAP_SIB_BASE(sib)          ((sib) & 0x7)
  78 
  79 #define FASTTRAP_REX_W(rex)             (((rex) >> 3) & 1)
  80 #define FASTTRAP_REX_R(rex)             (((rex) >> 2) & 1)
  81 #define FASTTRAP_REX_X(rex)             (((rex) >> 1) & 1)
  82 #define FASTTRAP_REX_B(rex)             ((rex) & 1)
  83 #define FASTTRAP_REX(w, r, x, b)        \
  84         (0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
  85 
  86 /*
  87  * Single-byte op-codes.
  88  */
  89 #define FASTTRAP_PUSHL_EBP      0x55
  90 
  91 #define FASTTRAP_JO             0x70
  92 #define FASTTRAP_JNO            0x71
  93 #define FASTTRAP_JB             0x72
  94 #define FASTTRAP_JAE            0x73
  95 #define FASTTRAP_JE             0x74
  96 #define FASTTRAP_JNE            0x75
  97 #define FASTTRAP_JBE            0x76
  98 #define FASTTRAP_JA             0x77
  99 #define FASTTRAP_JS             0x78
 100 #define FASTTRAP_JNS            0x79
 101 #define FASTTRAP_JP             0x7a
 102 #define FASTTRAP_JNP            0x7b
 103 #define FASTTRAP_JL             0x7c
 104 #define FASTTRAP_JGE            0x7d
 105 #define FASTTRAP_JLE            0x7e
 106 #define FASTTRAP_JG             0x7f
 107 
 108 #define FASTTRAP_NOP            0x90
 109 
 110 #define FASTTRAP_MOV_EAX        0xb8
 111 #define FASTTRAP_MOV_ECX        0xb9
 112 
 113 #define FASTTRAP_RET16          0xc2
 114 #define FASTTRAP_RET            0xc3
 115 
 116 #define FASTTRAP_LOOPNZ         0xe0
 117 #define FASTTRAP_LOOPZ          0xe1
 118 #define FASTTRAP_LOOP           0xe2
 119 #define FASTTRAP_JCXZ           0xe3
 120 
 121 #define FASTTRAP_CALL           0xe8
 122 #define FASTTRAP_JMP32          0xe9
 123 #define FASTTRAP_JMP8           0xeb
 124 
 125 #define FASTTRAP_INT3           0xcc
 126 #define FASTTRAP_INT            0xcd
 127 
 128 #define FASTTRAP_2_BYTE_OP      0x0f
 129 #define FASTTRAP_GROUP5_OP      0xff
 130 
 131 /*
 132  * Two-byte op-codes (second byte only).
 133  */
 134 #define FASTTRAP_0F_JO          0x80
 135 #define FASTTRAP_0F_JNO         0x81
 136 #define FASTTRAP_0F_JB          0x82
 137 #define FASTTRAP_0F_JAE         0x83
 138 #define FASTTRAP_0F_JE          0x84
 139 #define FASTTRAP_0F_JNE         0x85
 140 #define FASTTRAP_0F_JBE         0x86
 141 #define FASTTRAP_0F_JA          0x87
 142 #define FASTTRAP_0F_JS          0x88
 143 #define FASTTRAP_0F_JNS         0x89
 144 #define FASTTRAP_0F_JP          0x8a
 145 #define FASTTRAP_0F_JNP         0x8b
 146 #define FASTTRAP_0F_JL          0x8c
 147 #define FASTTRAP_0F_JGE         0x8d
 148 #define FASTTRAP_0F_JLE         0x8e
 149 #define FASTTRAP_0F_JG          0x8f
 150 
 151 #define FASTTRAP_EFLAGS_OF      0x800
 152 #define FASTTRAP_EFLAGS_DF      0x400
 153 #define FASTTRAP_EFLAGS_SF      0x080
 154 #define FASTTRAP_EFLAGS_ZF      0x040
 155 #define FASTTRAP_EFLAGS_AF      0x010
 156 #define FASTTRAP_EFLAGS_PF      0x004
 157 #define FASTTRAP_EFLAGS_CF      0x001
 158 
 159 /*
 160  * Instruction prefixes.
 161  */
 162 #define FASTTRAP_PREFIX_OPERAND 0x66
 163 #define FASTTRAP_PREFIX_ADDRESS 0x67
 164 #define FASTTRAP_PREFIX_CS      0x2E
 165 #define FASTTRAP_PREFIX_DS      0x3E
 166 #define FASTTRAP_PREFIX_ES      0x26
 167 #define FASTTRAP_PREFIX_FS      0x64
 168 #define FASTTRAP_PREFIX_GS      0x65
 169 #define FASTTRAP_PREFIX_SS      0x36
 170 #define FASTTRAP_PREFIX_LOCK    0xF0
 171 #define FASTTRAP_PREFIX_REP     0xF3
 172 #define FASTTRAP_PREFIX_REPNE   0xF2
 173 
 174 #define FASTTRAP_NOREG  0xff
 175 
 176 /*
 177  * Map between instruction register encodings and the kernel constants which
 178  * correspond to indicies into struct regs.
 179  */
 180 #ifdef __amd64
 181 static const uint8_t regmap[16] = {
 182         REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
 183         REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
 184 };
 185 #else
 186 static const uint8_t regmap[8] = {
 187         EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI
 188 };
 189 #endif
 190 
 191 static ulong_t fasttrap_getreg(struct regs *, uint_t);
 192 
 193 static uint64_t
 194 fasttrap_anarg(struct regs *rp, int function_entry, int argno)
 195 {
 196         uint64_t value;
 197         int shift = function_entry ? 1 : 0;
 198 
 199 #ifdef __amd64
 200         if (curproc->p_model == DATAMODEL_LP64) {
 201                 uintptr_t *stack;
 202 
 203                 /*
 204                  * In 64-bit mode, the first six arguments are stored in
 205                  * registers.
 206                  */
 207                 if (argno < 6)
 208                         return ((&rp->r_rdi)[argno]);
 209 
 210                 stack = (uintptr_t *)rp->r_sp;
 211                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 212                 value = dtrace_fulword(&stack[argno - 6 + shift]);
 213                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
 214         } else {
 215 #endif
 216                 uint32_t *stack = (uint32_t *)rp->r_sp;
 217                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 218                 value = dtrace_fuword32(&stack[argno + shift]);
 219                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
 220 #ifdef __amd64
 221         }
 222 #endif
 223 
 224         return (value);
 225 }
 226 
 227 /*ARGSUSED*/
 228 int
 229 fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc,
 230     fasttrap_probe_type_t type)
 231 {
 232         uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
 233         size_t len = FASTTRAP_MAX_INSTR_SIZE;
 234         size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET));
 235         uint_t start = 0;
 236         int rmindex, size;
 237         uint8_t seg, rex = 0;
 238 
 239         /*
 240          * Read the instruction at the given address out of the process's
 241          * address space. We don't have to worry about a debugger
 242          * changing this instruction before we overwrite it with our trap
 243          * instruction since P_PR_LOCK is set. Since instructions can span
 244          * pages, we potentially read the instruction in two parts. If the
 245          * second part fails, we just zero out that part of the instruction.
 246          */
 247         if (uread(p, &instr[0], first, pc) != 0)
 248                 return (-1);
 249         if (len > first &&
 250             uread(p, &instr[first], len - first, pc + first) != 0) {
 251                 bzero(&instr[first], len - first);
 252                 len = first;
 253         }
 254 
 255         /*
 256          * If the disassembly fails, then we have a malformed instruction.
 257          */
 258         if ((size = dtrace_instr_size_isa(instr, p->p_model, &rmindex)) <= 0)
 259                 return (-1);
 260 
 261         /*
 262          * Make sure the disassembler isn't completely broken.
 263          */
 264         ASSERT(-1 <= rmindex && rmindex < size);
 265 
 266         /*
 267          * If the computed size is greater than the number of bytes read,
 268          * then it was a malformed instruction possibly because it fell on a
 269          * page boundary and the subsequent page was missing or because of
 270          * some malicious user.
 271          */
 272         if (size > len)
 273                 return (-1);
 274 
 275         tp->ftt_size = (uint8_t)size;
 276         tp->ftt_segment = FASTTRAP_SEG_NONE;
 277 
 278         /*
 279          * Find the start of the instruction's opcode by processing any
 280          * legacy prefixes.
 281          */
 282         for (;;) {
 283                 seg = 0;
 284                 switch (instr[start]) {
 285                 case FASTTRAP_PREFIX_SS:
 286                         seg++;
 287                         /*FALLTHRU*/
 288                 case FASTTRAP_PREFIX_GS:
 289                         seg++;
 290                         /*FALLTHRU*/
 291                 case FASTTRAP_PREFIX_FS:
 292                         seg++;
 293                         /*FALLTHRU*/
 294                 case FASTTRAP_PREFIX_ES:
 295                         seg++;
 296                         /*FALLTHRU*/
 297                 case FASTTRAP_PREFIX_DS:
 298                         seg++;
 299                         /*FALLTHRU*/
 300                 case FASTTRAP_PREFIX_CS:
 301                         seg++;
 302                         /*FALLTHRU*/
 303                 case FASTTRAP_PREFIX_OPERAND:
 304                 case FASTTRAP_PREFIX_ADDRESS:
 305                 case FASTTRAP_PREFIX_LOCK:
 306                 case FASTTRAP_PREFIX_REP:
 307                 case FASTTRAP_PREFIX_REPNE:
 308                         if (seg != 0) {
 309                                 /*
 310                                  * It's illegal for an instruction to specify
 311                                  * two segment prefixes -- give up on this
 312                                  * illegal instruction.
 313                                  */
 314                                 if (tp->ftt_segment != FASTTRAP_SEG_NONE)
 315                                         return (-1);
 316 
 317                                 tp->ftt_segment = seg;
 318                         }
 319                         start++;
 320                         continue;
 321                 }
 322                 break;
 323         }
 324 
 325 #ifdef __amd64
 326         /*
 327          * Identify the REX prefix on 64-bit processes.
 328          */
 329         if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
 330                 rex = instr[start++];
 331 #endif
 332 
 333         /*
 334          * Now that we're pretty sure that the instruction is okay, copy the
 335          * valid part to the tracepoint.
 336          */
 337         bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
 338 
 339         tp->ftt_type = FASTTRAP_T_COMMON;
 340         if (instr[start] == FASTTRAP_2_BYTE_OP) {
 341                 switch (instr[start + 1]) {
 342                 case FASTTRAP_0F_JO:
 343                 case FASTTRAP_0F_JNO:
 344                 case FASTTRAP_0F_JB:
 345                 case FASTTRAP_0F_JAE:
 346                 case FASTTRAP_0F_JE:
 347                 case FASTTRAP_0F_JNE:
 348                 case FASTTRAP_0F_JBE:
 349                 case FASTTRAP_0F_JA:
 350                 case FASTTRAP_0F_JS:
 351                 case FASTTRAP_0F_JNS:
 352                 case FASTTRAP_0F_JP:
 353                 case FASTTRAP_0F_JNP:
 354                 case FASTTRAP_0F_JL:
 355                 case FASTTRAP_0F_JGE:
 356                 case FASTTRAP_0F_JLE:
 357                 case FASTTRAP_0F_JG:
 358                         tp->ftt_type = FASTTRAP_T_JCC;
 359                         tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
 360                         tp->ftt_dest = pc + tp->ftt_size +
 361                             /* LINTED - alignment */
 362                             *(int32_t *)&instr[start + 2];
 363                         break;
 364                 }
 365         } else if (instr[start] == FASTTRAP_GROUP5_OP) {
 366                 uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
 367                 uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
 368                 uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
 369 
 370                 if (reg == 2 || reg == 4) {
 371                         uint_t i, sz;
 372 
 373                         if (reg == 2)
 374                                 tp->ftt_type = FASTTRAP_T_CALL;
 375                         else
 376                                 tp->ftt_type = FASTTRAP_T_JMP;
 377 
 378                         if (mod == 3)
 379                                 tp->ftt_code = 2;
 380                         else
 381                                 tp->ftt_code = 1;
 382 
 383                         ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
 384 
 385                         /*
 386                          * See AMD x86-64 Architecture Programmer's Manual
 387                          * Volume 3, Section 1.2.7, Table 1-12, and
 388                          * Appendix A.3.1, Table A-15.
 389                          */
 390                         if (mod != 3 && rm == 4) {
 391                                 uint8_t sib = instr[start + 2];
 392                                 uint_t index = FASTTRAP_SIB_INDEX(sib);
 393                                 uint_t base = FASTTRAP_SIB_BASE(sib);
 394 
 395                                 tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
 396 
 397                                 tp->ftt_index = (index == 4) ?
 398                                     FASTTRAP_NOREG :
 399                                     regmap[index | (FASTTRAP_REX_X(rex) << 3)];
 400                                 tp->ftt_base = (mod == 0 && base == 5) ?
 401                                     FASTTRAP_NOREG :
 402                                     regmap[base | (FASTTRAP_REX_B(rex) << 3)];
 403 
 404                                 i = 3;
 405                                 sz = mod == 1 ? 1 : 4;
 406                         } else {
 407                                 /*
 408                                  * In 64-bit mode, mod == 0 and r/m == 5
 409                                  * denotes %rip-relative addressing; in 32-bit
 410                                  * mode, the base register isn't used. In both
 411                                  * modes, there is a 32-bit operand.
 412                                  */
 413                                 if (mod == 0 && rm == 5) {
 414 #ifdef __amd64
 415                                         if (p->p_model == DATAMODEL_LP64)
 416                                                 tp->ftt_base = REG_RIP;
 417                                         else
 418 #endif
 419                                                 tp->ftt_base = FASTTRAP_NOREG;
 420                                         sz = 4;
 421                                 } else  {
 422                                         uint8_t base = rm |
 423                                             (FASTTRAP_REX_B(rex) << 3);
 424 
 425                                         tp->ftt_base = regmap[base];
 426                                         sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
 427                                 }
 428                                 tp->ftt_index = FASTTRAP_NOREG;
 429                                 i = 2;
 430                         }
 431 
 432                         if (sz == 1) {
 433                                 tp->ftt_dest = *(int8_t *)&instr[start + i];
 434                         } else if (sz == 4) {
 435                                 /* LINTED - alignment */
 436                                 tp->ftt_dest = *(int32_t *)&instr[start + i];
 437                         } else {
 438                                 tp->ftt_dest = 0;
 439                         }
 440                 }
 441         } else {
 442                 switch (instr[start]) {
 443                 case FASTTRAP_RET:
 444                         tp->ftt_type = FASTTRAP_T_RET;
 445                         break;
 446 
 447                 case FASTTRAP_RET16:
 448                         tp->ftt_type = FASTTRAP_T_RET16;
 449                         /* LINTED - alignment */
 450                         tp->ftt_dest = *(uint16_t *)&instr[start + 1];
 451                         break;
 452 
 453                 case FASTTRAP_JO:
 454                 case FASTTRAP_JNO:
 455                 case FASTTRAP_JB:
 456                 case FASTTRAP_JAE:
 457                 case FASTTRAP_JE:
 458                 case FASTTRAP_JNE:
 459                 case FASTTRAP_JBE:
 460                 case FASTTRAP_JA:
 461                 case FASTTRAP_JS:
 462                 case FASTTRAP_JNS:
 463                 case FASTTRAP_JP:
 464                 case FASTTRAP_JNP:
 465                 case FASTTRAP_JL:
 466                 case FASTTRAP_JGE:
 467                 case FASTTRAP_JLE:
 468                 case FASTTRAP_JG:
 469                         tp->ftt_type = FASTTRAP_T_JCC;
 470                         tp->ftt_code = instr[start];
 471                         tp->ftt_dest = pc + tp->ftt_size +
 472                             (int8_t)instr[start + 1];
 473                         break;
 474 
 475                 case FASTTRAP_LOOPNZ:
 476                 case FASTTRAP_LOOPZ:
 477                 case FASTTRAP_LOOP:
 478                         tp->ftt_type = FASTTRAP_T_LOOP;
 479                         tp->ftt_code = instr[start];
 480                         tp->ftt_dest = pc + tp->ftt_size +
 481                             (int8_t)instr[start + 1];
 482                         break;
 483 
 484                 case FASTTRAP_JCXZ:
 485                         tp->ftt_type = FASTTRAP_T_JCXZ;
 486                         tp->ftt_dest = pc + tp->ftt_size +
 487                             (int8_t)instr[start + 1];
 488                         break;
 489 
 490                 case FASTTRAP_CALL:
 491                         tp->ftt_type = FASTTRAP_T_CALL;
 492                         tp->ftt_dest = pc + tp->ftt_size +
 493                             /* LINTED - alignment */
 494                             *(int32_t *)&instr[start + 1];
 495                         tp->ftt_code = 0;
 496                         break;
 497 
 498                 case FASTTRAP_JMP32:
 499                         tp->ftt_type = FASTTRAP_T_JMP;
 500                         tp->ftt_dest = pc + tp->ftt_size +
 501                             /* LINTED - alignment */
 502                             *(int32_t *)&instr[start + 1];
 503                         break;
 504                 case FASTTRAP_JMP8:
 505                         tp->ftt_type = FASTTRAP_T_JMP;
 506                         tp->ftt_dest = pc + tp->ftt_size +
 507                             (int8_t)instr[start + 1];
 508                         break;
 509 
 510                 case FASTTRAP_PUSHL_EBP:
 511                         if (start == 0)
 512                                 tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
 513                         break;
 514 
 515                 case FASTTRAP_NOP:
 516 #ifdef __amd64
 517                         ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
 518 
 519                         /*
 520                          * On amd64 we have to be careful not to confuse a nop
 521                          * (actually xchgl %eax, %eax) with an instruction using
 522                          * the same opcode, but that does something different
 523                          * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax).
 524                          */
 525                         if (FASTTRAP_REX_B(rex) == 0)
 526 #endif
 527                                 tp->ftt_type = FASTTRAP_T_NOP;
 528                         break;
 529 
 530                 case FASTTRAP_INT3:
 531                         /*
 532                          * The pid provider shares the int3 trap with debugger
 533                          * breakpoints so we can't instrument them.
 534                          */
 535                         ASSERT(instr[start] == FASTTRAP_INSTR);
 536                         return (-1);
 537 
 538                 case FASTTRAP_INT:
 539                         /*
 540                          * Interrupts seem like they could be traced with
 541                          * no negative implications, but it's possible that
 542                          * a thread could be redirected by the trap handling
 543                          * code which would eventually return to the
 544                          * instruction after the interrupt. If the interrupt
 545                          * were in our scratch space, the subsequent
 546                          * instruction might be overwritten before we return.
 547                          * Accordingly we refuse to instrument any interrupt.
 548                          */
 549                         return (-1);
 550                 }
 551         }
 552 
 553 #ifdef __amd64
 554         if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
 555                 /*
 556                  * If the process is 64-bit and the instruction type is still
 557                  * FASTTRAP_T_COMMON -- meaning we're going to copy it out an
 558                  * execute it -- we need to watch for %rip-relative
 559                  * addressing mode. See the portion of fasttrap_pid_probe()
 560                  * below where we handle tracepoints with type
 561                  * FASTTRAP_T_COMMON for how we emulate instructions that
 562                  * employ %rip-relative addressing.
 563                  */
 564                 if (rmindex != -1) {
 565                         uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
 566                         uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
 567                         uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
 568 
 569                         ASSERT(rmindex > start);
 570 
 571                         if (mod == 0 && rm == 5) {
 572                                 /*
 573                                  * We need to be sure to avoid other
 574                                  * registers used by this instruction. While
 575                                  * the reg field may determine the op code
 576                                  * rather than denoting a register, assuming
 577                                  * that it denotes a register is always safe.
 578                                  * We leave the REX field intact and use
 579                                  * whatever value's there for simplicity.
 580                                  */
 581                                 if (reg != 0) {
 582                                         tp->ftt_ripmode = FASTTRAP_RIP_1 |
 583                                             (FASTTRAP_RIP_X *
 584                                             FASTTRAP_REX_B(rex));
 585                                         rm = 0;
 586                                 } else {
 587                                         tp->ftt_ripmode = FASTTRAP_RIP_2 |
 588                                             (FASTTRAP_RIP_X *
 589                                             FASTTRAP_REX_B(rex));
 590                                         rm = 1;
 591                                 }
 592 
 593                                 tp->ftt_modrm = tp->ftt_instr[rmindex];
 594                                 tp->ftt_instr[rmindex] =
 595                                     FASTTRAP_MODRM(2, reg, rm);
 596                         }
 597                 }
 598         }
 599 #endif
 600 
 601         return (0);
 602 }
 603 
 604 int
 605 fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
 606 {
 607         fasttrap_instr_t instr = FASTTRAP_INSTR;
 608 
 609         if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
 610                 return (-1);
 611 
 612         return (0);
 613 }
 614 
 615 int
 616 fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
 617 {
 618         uint8_t instr;
 619 
 620         /*
 621          * Distinguish between read or write failures and a changed
 622          * instruction.
 623          */
 624         if (uread(p, &instr, 1, tp->ftt_pc) != 0)
 625                 return (0);
 626         if (instr != FASTTRAP_INSTR)
 627                 return (0);
 628         if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
 629                 return (-1);
 630 
 631         return (0);
 632 }
 633 
 634 #ifdef __amd64
 635 static uintptr_t
 636 fasttrap_fulword_noerr(const void *uaddr)
 637 {
 638         uintptr_t ret;
 639 
 640         if (fasttrap_fulword(uaddr, &ret) == 0)
 641                 return (ret);
 642 
 643         return (0);
 644 }
 645 #endif
 646 
 647 static uint32_t
 648 fasttrap_fuword32_noerr(const void *uaddr)
 649 {
 650         uint32_t ret;
 651 
 652         if (fasttrap_fuword32(uaddr, &ret) == 0)
 653                 return (ret);
 654 
 655         return (0);
 656 }
 657 
 658 static void
 659 fasttrap_return_common(struct regs *rp, uintptr_t pc, pid_t pid,
 660     uintptr_t new_pc)
 661 {
 662         fasttrap_tracepoint_t *tp;
 663         fasttrap_bucket_t *bucket;
 664         fasttrap_id_t *id;
 665         kmutex_t *pid_mtx;
 666 
 667         pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
 668         mutex_enter(pid_mtx);
 669         bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
 670 
 671         for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
 672                 if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
 673                     tp->ftt_proc->ftpc_acount != 0)
 674                         break;
 675         }
 676 
 677         /*
 678          * Don't sweat it if we can't find the tracepoint again; unlike
 679          * when we're in fasttrap_pid_probe(), finding the tracepoint here
 680          * is not essential to the correct execution of the process.
 681          */
 682         if (tp == NULL) {
 683                 mutex_exit(pid_mtx);
 684                 return;
 685         }
 686 
 687         for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
 688                 /*
 689                  * If there's a branch that could act as a return site, we
 690                  * need to trace it, and check here if the program counter is
 691                  * external to the function.
 692                  */
 693                 if (tp->ftt_type != FASTTRAP_T_RET &&
 694                     tp->ftt_type != FASTTRAP_T_RET16 &&
 695                     new_pc - id->fti_probe->ftp_faddr <
 696                     id->fti_probe->ftp_fsize)
 697                         continue;
 698 
 699                 dtrace_probe(id->fti_probe->ftp_id,
 700                     pc - id->fti_probe->ftp_faddr,
 701                     rp->r_r0, rp->r_r1, 0, 0);
 702         }
 703 
 704         mutex_exit(pid_mtx);
 705 }
 706 
 707 static void
 708 fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr)
 709 {
 710         sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
 711 
 712         sqp->sq_info.si_signo = SIGSEGV;
 713         sqp->sq_info.si_code = SEGV_MAPERR;
 714         sqp->sq_info.si_addr = (caddr_t)addr;
 715 
 716         mutex_enter(&p->p_lock);
 717         sigaddqa(p, t, sqp);
 718         mutex_exit(&p->p_lock);
 719 
 720         if (t != NULL)
 721                 aston(t);
 722 }
 723 
 724 #ifdef __amd64
 725 static void
 726 fasttrap_usdt_args64(fasttrap_probe_t *probe, struct regs *rp, int argc,
 727     uintptr_t *argv)
 728 {
 729         int i, x, cap = MIN(argc, probe->ftp_nargs);
 730         uintptr_t *stack = (uintptr_t *)rp->r_sp;
 731 
 732         for (i = 0; i < cap; i++) {
 733                 x = probe->ftp_argmap[i];
 734 
 735                 if (x < 6)
 736                         argv[i] = (&rp->r_rdi)[x];
 737                 else
 738                         argv[i] = fasttrap_fulword_noerr(&stack[x]);
 739         }
 740 
 741         for (; i < argc; i++) {
 742                 argv[i] = 0;
 743         }
 744 }
 745 #endif
 746 
 747 static void
 748 fasttrap_usdt_args32(fasttrap_probe_t *probe, struct regs *rp, int argc,
 749     uint32_t *argv)
 750 {
 751         int i, x, cap = MIN(argc, probe->ftp_nargs);
 752         uint32_t *stack = (uint32_t *)rp->r_sp;
 753 
 754         for (i = 0; i < cap; i++) {
 755                 x = probe->ftp_argmap[i];
 756 
 757                 argv[i] = fasttrap_fuword32_noerr(&stack[x]);
 758         }
 759 
 760         for (; i < argc; i++) {
 761                 argv[i] = 0;
 762         }
 763 }
 764 
 765 static int
 766 fasttrap_do_seg(fasttrap_tracepoint_t *tp, struct regs *rp, uintptr_t *addr)
 767 {
 768         proc_t *p = curproc;
 769         user_desc_t *desc;
 770         uint16_t sel, ndx, type;
 771         uintptr_t limit;
 772 
 773         switch (tp->ftt_segment) {
 774         case FASTTRAP_SEG_CS:
 775                 sel = rp->r_cs;
 776                 break;
 777         case FASTTRAP_SEG_DS:
 778                 sel = rp->r_ds;
 779                 break;
 780         case FASTTRAP_SEG_ES:
 781                 sel = rp->r_es;
 782                 break;
 783         case FASTTRAP_SEG_FS:
 784                 sel = rp->r_fs;
 785                 break;
 786         case FASTTRAP_SEG_GS:
 787                 sel = rp->r_gs;
 788                 break;
 789         case FASTTRAP_SEG_SS:
 790                 sel = rp->r_ss;
 791                 break;
 792         }
 793 
 794         /*
 795          * Make sure the given segment register specifies a user priority
 796          * selector rather than a kernel selector.
 797          */
 798         if (!SELISUPL(sel))
 799                 return (-1);
 800 
 801         ndx = SELTOIDX(sel);
 802 
 803         /*
 804          * Check the bounds and grab the descriptor out of the specified
 805          * descriptor table.
 806          */
 807         if (SELISLDT(sel)) {
 808                 if (ndx > p->p_ldtlimit)
 809                         return (-1);
 810 
 811                 desc = p->p_ldt + ndx;
 812 
 813         } else {
 814                 if (ndx >= NGDT)
 815                         return (-1);
 816 
 817                 desc = cpu_get_gdt() + ndx;
 818         }
 819 
 820         /*
 821          * The descriptor must have user privilege level and it must be
 822          * present in memory.
 823          */
 824         if (desc->usd_dpl != SEL_UPL || desc->usd_p != 1)
 825                 return (-1);
 826 
 827         type = desc->usd_type;
 828 
 829         /*
 830          * If the S bit in the type field is not set, this descriptor can
 831          * only be used in system context.
 832          */
 833         if ((type & 0x10) != 0x10)
 834                 return (-1);
 835 
 836         limit = USEGD_GETLIMIT(desc) * (desc->usd_gran ? PAGESIZE : 1);
 837 
 838         if (tp->ftt_segment == FASTTRAP_SEG_CS) {
 839                 /*
 840                  * The code/data bit and readable bit must both be set.
 841                  */
 842                 if ((type & 0xa) != 0xa)
 843                         return (-1);
 844 
 845                 if (*addr > limit)
 846                         return (-1);
 847         } else {
 848                 /*
 849                  * The code/data bit must be clear.
 850                  */
 851                 if ((type & 0x8) != 0)
 852                         return (-1);
 853 
 854                 /*
 855                  * If the expand-down bit is clear, we just check the limit as
 856                  * it would naturally be applied. Otherwise, we need to check
 857                  * that the address is the range [limit + 1 .. 0xffff] or
 858                  * [limit + 1 ... 0xffffffff] depending on if the default
 859                  * operand size bit is set.
 860                  */
 861                 if ((type & 0x4) == 0) {
 862                         if (*addr > limit)
 863                                 return (-1);
 864                 } else if (desc->usd_def32) {
 865                         if (*addr < limit + 1 || 0xffff < *addr)
 866                                 return (-1);
 867                 } else {
 868                         if (*addr < limit + 1 || 0xffffffff < *addr)
 869                                 return (-1);
 870                 }
 871         }
 872 
 873         *addr += USEGD_GETBASE(desc);
 874 
 875         return (0);
 876 }
 877 
 878 int
 879 fasttrap_pid_probe(struct regs *rp)
 880 {
 881         proc_t *p = curproc;
 882         uintptr_t pc = rp->r_pc - 1, new_pc = 0;
 883         fasttrap_bucket_t *bucket;
 884         kmutex_t *pid_mtx;
 885         fasttrap_tracepoint_t *tp, tp_local;
 886         pid_t pid;
 887         dtrace_icookie_t cookie;
 888         uint_t is_enabled = 0;
 889 
 890         /*
 891          * It's possible that a user (in a veritable orgy of bad planning)
 892          * could redirect this thread's flow of control before it reached the
 893          * return probe fasttrap. In this case we need to kill the process
 894          * since it's in a unrecoverable state.
 895          */
 896         if (curthread->t_dtrace_step) {
 897                 ASSERT(curthread->t_dtrace_on);
 898                 fasttrap_sigtrap(p, curthread, pc);
 899                 return (0);
 900         }
 901 
 902         /*
 903          * Clear all user tracing flags.
 904          */
 905         curthread->t_dtrace_ft = 0;
 906         curthread->t_dtrace_pc = 0;
 907         curthread->t_dtrace_npc = 0;
 908         curthread->t_dtrace_scrpc = 0;
 909         curthread->t_dtrace_astpc = 0;
 910 #ifdef __amd64
 911         curthread->t_dtrace_regv = 0;
 912 #endif
 913 
 914         /*
 915          * Treat a child created by a call to vfork(2) as if it were its
 916          * parent. We know that there's only one thread of control in such a
 917          * process: this one.
 918          */
 919         while (p->p_flag & SVFORK) {
 920                 p = p->p_parent;
 921         }
 922 
 923         pid = p->p_pid;
 924         pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
 925         mutex_enter(pid_mtx);
 926         bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
 927 
 928         /*
 929          * Lookup the tracepoint that the process just hit.
 930          */
 931         for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
 932                 if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
 933                     tp->ftt_proc->ftpc_acount != 0)
 934                         break;
 935         }
 936 
 937         /*
 938          * If we couldn't find a matching tracepoint, either a tracepoint has
 939          * been inserted without using the pid<pid> ioctl interface (see
 940          * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
 941          */
 942         if (tp == NULL) {
 943                 mutex_exit(pid_mtx);
 944                 return (-1);
 945         }
 946 
 947         /*
 948          * Set the program counter to the address of the traced instruction
 949          * so that it looks right in ustack() output.
 950          */
 951         rp->r_pc = pc;
 952 
 953         if (tp->ftt_ids != NULL) {
 954                 fasttrap_id_t *id;
 955 
 956 #ifdef __amd64
 957                 if (p->p_model == DATAMODEL_LP64) {
 958                         for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
 959                                 fasttrap_probe_t *probe = id->fti_probe;
 960 
 961                                 if (id->fti_ptype == DTFTP_ENTRY) {
 962                                         /*
 963                                          * We note that this was an entry
 964                                          * probe to help ustack() find the
 965                                          * first caller.
 966                                          */
 967                                         cookie = dtrace_interrupt_disable();
 968                                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
 969                                         dtrace_probe(probe->ftp_id, rp->r_rdi,
 970                                             rp->r_rsi, rp->r_rdx, rp->r_rcx,
 971                                             rp->r_r8);
 972                                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
 973                                         dtrace_interrupt_enable(cookie);
 974                                 } else if (id->fti_ptype == DTFTP_IS_ENABLED) {
 975                                         /*
 976                                          * Note that in this case, we don't
 977                                          * call dtrace_probe() since it's only
 978                                          * an artificial probe meant to change
 979                                          * the flow of control so that it
 980                                          * encounters the true probe.
 981                                          */
 982                                         is_enabled = 1;
 983                                 } else if (probe->ftp_argmap == NULL) {
 984                                         dtrace_probe(probe->ftp_id, rp->r_rdi,
 985                                             rp->r_rsi, rp->r_rdx, rp->r_rcx,
 986                                             rp->r_r8);
 987                                 } else {
 988                                         uintptr_t t[5];
 989 
 990                                         fasttrap_usdt_args64(probe, rp,
 991                                             sizeof (t) / sizeof (t[0]), t);
 992 
 993                                         dtrace_probe(probe->ftp_id, t[0], t[1],
 994                                             t[2], t[3], t[4]);
 995                                 }
 996                         }
 997                 } else {
 998 #endif
 999                         uintptr_t s0, s1, s2, s3, s4, s5;
1000                         uint32_t *stack = (uint32_t *)rp->r_sp;
1001 
1002                         /*
1003                          * In 32-bit mode, all arguments are passed on the
1004                          * stack. If this is a function entry probe, we need
1005                          * to skip the first entry on the stack as it
1006                          * represents the return address rather than a
1007                          * parameter to the function.
1008                          */
1009                         s0 = fasttrap_fuword32_noerr(&stack[0]);
1010                         s1 = fasttrap_fuword32_noerr(&stack[1]);
1011                         s2 = fasttrap_fuword32_noerr(&stack[2]);
1012                         s3 = fasttrap_fuword32_noerr(&stack[3]);
1013                         s4 = fasttrap_fuword32_noerr(&stack[4]);
1014                         s5 = fasttrap_fuword32_noerr(&stack[5]);
1015 
1016                         for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1017                                 fasttrap_probe_t *probe = id->fti_probe;
1018 
1019                                 if (id->fti_ptype == DTFTP_ENTRY) {
1020                                         /*
1021                                          * We note that this was an entry
1022                                          * probe to help ustack() find the
1023                                          * first caller.
1024                                          */
1025                                         cookie = dtrace_interrupt_disable();
1026                                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1027                                         dtrace_probe(probe->ftp_id, s1, s2,
1028                                             s3, s4, s5);
1029                                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1030                                         dtrace_interrupt_enable(cookie);
1031                                 } else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1032                                         /*
1033                                          * Note that in this case, we don't
1034                                          * call dtrace_probe() since it's only
1035                                          * an artificial probe meant to change
1036                                          * the flow of control so that it
1037                                          * encounters the true probe.
1038                                          */
1039                                         is_enabled = 1;
1040                                 } else if (probe->ftp_argmap == NULL) {
1041                                         dtrace_probe(probe->ftp_id, s0, s1,
1042                                             s2, s3, s4);
1043                                 } else {
1044                                         uint32_t t[5];
1045 
1046                                         fasttrap_usdt_args32(probe, rp,
1047                                             sizeof (t) / sizeof (t[0]), t);
1048 
1049                                         dtrace_probe(probe->ftp_id, t[0], t[1],
1050                                             t[2], t[3], t[4]);
1051                                 }
1052                         }
1053 #ifdef __amd64
1054                 }
1055 #endif
1056         }
1057 
1058         /*
1059          * We're about to do a bunch of work so we cache a local copy of
1060          * the tracepoint to emulate the instruction, and then find the
1061          * tracepoint again later if we need to light up any return probes.
1062          */
1063         tp_local = *tp;
1064         mutex_exit(pid_mtx);
1065         tp = &tp_local;
1066 
1067         /*
1068          * Set the program counter to appear as though the traced instruction
1069          * had completely executed. This ensures that fasttrap_getreg() will
1070          * report the expected value for REG_RIP.
1071          */
1072         rp->r_pc = pc + tp->ftt_size;
1073 
1074         /*
1075          * If there's an is-enabled probe connected to this tracepoint it
1076          * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1077          * instruction that was placed there by DTrace when the binary was
1078          * linked. As this probe is, in fact, enabled, we need to stuff 1
1079          * into %eax or %rax. Accordingly, we can bypass all the instruction
1080          * emulation logic since we know the inevitable result. It's possible
1081          * that a user could construct a scenario where the 'is-enabled'
1082          * probe was on some other instruction, but that would be a rather
1083          * exotic way to shoot oneself in the foot.
1084          */
1085         if (is_enabled) {
1086                 rp->r_r0 = 1;
1087                 new_pc = rp->r_pc;
1088                 goto done;
1089         }
1090 
1091         /*
1092          * We emulate certain types of instructions to ensure correctness
1093          * (in the case of position dependent instructions) or optimize
1094          * common cases. The rest we have the thread execute back in user-
1095          * land.
1096          */
1097         switch (tp->ftt_type) {
1098         case FASTTRAP_T_RET:
1099         case FASTTRAP_T_RET16:
1100         {
1101                 uintptr_t dst;
1102                 uintptr_t addr;
1103                 int ret;
1104 
1105                 /*
1106                  * We have to emulate _every_ facet of the behavior of a ret
1107                  * instruction including what happens if the load from %esp
1108                  * fails; in that case, we send a SIGSEGV.
1109                  */
1110 #ifdef __amd64
1111                 if (p->p_model == DATAMODEL_NATIVE) {
1112 #endif
1113                         ret = fasttrap_fulword((void *)rp->r_sp, &dst);
1114                         addr = rp->r_sp + sizeof (uintptr_t);
1115 #ifdef __amd64
1116                 } else {
1117                         uint32_t dst32;
1118                         ret = fasttrap_fuword32((void *)rp->r_sp, &dst32);
1119                         dst = dst32;
1120                         addr = rp->r_sp + sizeof (uint32_t);
1121                 }
1122 #endif
1123 
1124                 if (ret == -1) {
1125                         fasttrap_sigsegv(p, curthread, rp->r_sp);
1126                         new_pc = pc;
1127                         break;
1128                 }
1129 
1130                 if (tp->ftt_type == FASTTRAP_T_RET16)
1131                         addr += tp->ftt_dest;
1132 
1133                 rp->r_sp = addr;
1134                 new_pc = dst;
1135                 break;
1136         }
1137 
1138         case FASTTRAP_T_JCC:
1139         {
1140                 uint_t taken;
1141 
1142                 switch (tp->ftt_code) {
1143                 case FASTTRAP_JO:
1144                         taken = (rp->r_ps & FASTTRAP_EFLAGS_OF) != 0;
1145                         break;
1146                 case FASTTRAP_JNO:
1147                         taken = (rp->r_ps & FASTTRAP_EFLAGS_OF) == 0;
1148                         break;
1149                 case FASTTRAP_JB:
1150                         taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) != 0;
1151                         break;
1152                 case FASTTRAP_JAE:
1153                         taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) == 0;
1154                         break;
1155                 case FASTTRAP_JE:
1156                         taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0;
1157                         break;
1158                 case FASTTRAP_JNE:
1159                         taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0;
1160                         break;
1161                 case FASTTRAP_JBE:
1162                         taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) != 0 ||
1163                             (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0;
1164                         break;
1165                 case FASTTRAP_JA:
1166                         taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) == 0 &&
1167                             (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0;
1168                         break;
1169                 case FASTTRAP_JS:
1170                         taken = (rp->r_ps & FASTTRAP_EFLAGS_SF) != 0;
1171                         break;
1172                 case FASTTRAP_JNS:
1173                         taken = (rp->r_ps & FASTTRAP_EFLAGS_SF) == 0;
1174                         break;
1175                 case FASTTRAP_JP:
1176                         taken = (rp->r_ps & FASTTRAP_EFLAGS_PF) != 0;
1177                         break;
1178                 case FASTTRAP_JNP:
1179                         taken = (rp->r_ps & FASTTRAP_EFLAGS_PF) == 0;
1180                         break;
1181                 case FASTTRAP_JL:
1182                         taken = ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) !=
1183                             ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1184                         break;
1185                 case FASTTRAP_JGE:
1186                         taken = ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) ==
1187                             ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1188                         break;
1189                 case FASTTRAP_JLE:
1190                         taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0 ||
1191                             ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) !=
1192                             ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1193                         break;
1194                 case FASTTRAP_JG:
1195                         taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0 &&
1196                             ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) ==
1197                             ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1198                         break;
1199 
1200                 }
1201 
1202                 if (taken)
1203                         new_pc = tp->ftt_dest;
1204                 else
1205                         new_pc = pc + tp->ftt_size;
1206                 break;
1207         }
1208 
1209         case FASTTRAP_T_LOOP:
1210         {
1211                 uint_t taken;
1212 #ifdef __amd64
1213                 greg_t cx = rp->r_rcx--;
1214 #else
1215                 greg_t cx = rp->r_ecx--;
1216 #endif
1217 
1218                 switch (tp->ftt_code) {
1219                 case FASTTRAP_LOOPNZ:
1220                         taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0 &&
1221                             cx != 0;
1222                         break;
1223                 case FASTTRAP_LOOPZ:
1224                         taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0 &&
1225                             cx != 0;
1226                         break;
1227                 case FASTTRAP_LOOP:
1228                         taken = (cx != 0);
1229                         break;
1230                 }
1231 
1232                 if (taken)
1233                         new_pc = tp->ftt_dest;
1234                 else
1235                         new_pc = pc + tp->ftt_size;
1236                 break;
1237         }
1238 
1239         case FASTTRAP_T_JCXZ:
1240         {
1241 #ifdef __amd64
1242                 greg_t cx = rp->r_rcx;
1243 #else
1244                 greg_t cx = rp->r_ecx;
1245 #endif
1246 
1247                 if (cx == 0)
1248                         new_pc = tp->ftt_dest;
1249                 else
1250                         new_pc = pc + tp->ftt_size;
1251                 break;
1252         }
1253 
1254         case FASTTRAP_T_PUSHL_EBP:
1255         {
1256                 int ret;
1257                 uintptr_t addr;
1258 #ifdef __amd64
1259                 if (p->p_model == DATAMODEL_NATIVE) {
1260 #endif
1261                         addr = rp->r_sp - sizeof (uintptr_t);
1262                         ret = fasttrap_sulword((void *)addr, rp->r_fp);
1263 #ifdef __amd64
1264                 } else {
1265                         addr = rp->r_sp - sizeof (uint32_t);
1266                         ret = fasttrap_suword32((void *)addr,
1267                             (uint32_t)rp->r_fp);
1268                 }
1269 #endif
1270 
1271                 if (ret == -1) {
1272                         fasttrap_sigsegv(p, curthread, addr);
1273                         new_pc = pc;
1274                         break;
1275                 }
1276 
1277                 rp->r_sp = addr;
1278                 new_pc = pc + tp->ftt_size;
1279                 break;
1280         }
1281 
1282         case FASTTRAP_T_NOP:
1283                 new_pc = pc + tp->ftt_size;
1284                 break;
1285 
1286         case FASTTRAP_T_JMP:
1287         case FASTTRAP_T_CALL:
1288                 if (tp->ftt_code == 0) {
1289                         new_pc = tp->ftt_dest;
1290                 } else {
1291                         uintptr_t value, addr = tp->ftt_dest;
1292 
1293                         if (tp->ftt_base != FASTTRAP_NOREG)
1294                                 addr += fasttrap_getreg(rp, tp->ftt_base);
1295                         if (tp->ftt_index != FASTTRAP_NOREG)
1296                                 addr += fasttrap_getreg(rp, tp->ftt_index) <<
1297                                     tp->ftt_scale;
1298 
1299                         if (tp->ftt_code == 1) {
1300                                 /*
1301                                  * If there's a segment prefix for this
1302                                  * instruction, we'll need to check permissions
1303                                  * and bounds on the given selector, and adjust
1304                                  * the address accordingly.
1305                                  */
1306                                 if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1307                                     fasttrap_do_seg(tp, rp, &addr) != 0) {
1308                                         fasttrap_sigsegv(p, curthread, addr);
1309                                         new_pc = pc;
1310                                         break;
1311                                 }
1312 
1313 #ifdef __amd64
1314                                 if (p->p_model == DATAMODEL_NATIVE) {
1315 #endif
1316                                         if (fasttrap_fulword((void *)addr,
1317                                             &value) == -1) {
1318                                                 fasttrap_sigsegv(p, curthread,
1319                                                     addr);
1320                                                 new_pc = pc;
1321                                                 break;
1322                                         }
1323                                         new_pc = value;
1324 #ifdef __amd64
1325                                 } else {
1326                                         uint32_t value32;
1327                                         addr = (uintptr_t)(uint32_t)addr;
1328                                         if (fasttrap_fuword32((void *)addr,
1329                                             &value32) == -1) {
1330                                                 fasttrap_sigsegv(p, curthread,
1331                                                     addr);
1332                                                 new_pc = pc;
1333                                                 break;
1334                                         }
1335                                         new_pc = value32;
1336                                 }
1337 #endif
1338                         } else {
1339                                 new_pc = addr;
1340                         }
1341                 }
1342 
1343                 /*
1344                  * If this is a call instruction, we need to push the return
1345                  * address onto the stack. If this fails, we send the process
1346                  * a SIGSEGV and reset the pc to emulate what would happen if
1347                  * this instruction weren't traced.
1348                  */
1349                 if (tp->ftt_type == FASTTRAP_T_CALL) {
1350                         int ret;
1351                         uintptr_t addr;
1352 #ifdef __amd64
1353                         if (p->p_model == DATAMODEL_NATIVE) {
1354                                 addr = rp->r_sp - sizeof (uintptr_t);
1355                                 ret = fasttrap_sulword((void *)addr,
1356                                     pc + tp->ftt_size);
1357                         } else {
1358 #endif
1359                                 addr = rp->r_sp - sizeof (uint32_t);
1360                                 ret = fasttrap_suword32((void *)addr,
1361                                     (uint32_t)(pc + tp->ftt_size));
1362 #ifdef __amd64
1363                         }
1364 #endif
1365 
1366                         if (ret == -1) {
1367                                 fasttrap_sigsegv(p, curthread, addr);
1368                                 new_pc = pc;
1369                                 break;
1370                         }
1371 
1372                         rp->r_sp = addr;
1373                 }
1374 
1375                 break;
1376 
1377         case FASTTRAP_T_COMMON:
1378         {
1379                 uintptr_t addr;
1380 #if defined(__amd64)
1381                 uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22];
1382 #else
1383                 uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7];
1384 #endif
1385                 uint_t i = 0;
1386                 klwp_t *lwp = ttolwp(curthread);
1387 
1388                 /*
1389                  * Compute the address of the ulwp_t and step over the
1390                  * ul_self pointer. The method used to store the user-land
1391                  * thread pointer is very different on 32- and 64-bit
1392                  * kernels.
1393                  */
1394 #if defined(__amd64)
1395                 if (p->p_model == DATAMODEL_LP64) {
1396                         addr = lwp->lwp_pcb.pcb_fsbase;
1397                         addr += sizeof (void *);
1398                 } else {
1399                         addr = lwp->lwp_pcb.pcb_gsbase;
1400                         addr += sizeof (caddr32_t);
1401                 }
1402 #else
1403                 addr = USEGD_GETBASE(&lwp->lwp_pcb.pcb_gsdesc);
1404                 addr += sizeof (void *);
1405 #endif
1406 
1407                 /*
1408                  * Generic Instruction Tracing
1409                  * ---------------------------
1410                  *
1411                  * This is the layout of the scratch space in the user-land
1412                  * thread structure for our generated instructions.
1413                  *
1414                  *      32-bit mode                     bytes
1415                  *      ------------------------        -----
1416                  * a:   <original instruction>            <= 15
1417                  *      jmp     <pc + tp->ftt_size>        5
1418                  * b:   <original instrction>             <= 15
1419                  *      int     T_DTRACE_RET                2
1420                  *                                      -----
1421                  *                                      <= 37
1422                  *
1423                  *      64-bit mode                     bytes
1424                  *      ------------------------        -----
1425                  * a:   <original instruction>            <= 15
1426                  *      jmp     0(%rip)                     6
1427                  *      <pc + tp->ftt_size>                8
1428                  * b:   <original instruction>            <= 15
1429                  *      int     T_DTRACE_RET                2
1430                  *                                      -----
1431                  *                                      <= 46
1432                  *
1433                  * The %pc is set to a, and curthread->t_dtrace_astpc is set
1434                  * to b. If we encounter a signal on the way out of the
1435                  * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1436                  * so that we execute the original instruction and re-enter
1437                  * the kernel rather than redirecting to the next instruction.
1438                  *
1439                  * If there are return probes (so we know that we're going to
1440                  * need to reenter the kernel after executing the original
1441                  * instruction), the scratch space will just contain the
1442                  * original instruction followed by an interrupt -- the same
1443                  * data as at b.
1444                  *
1445                  * %rip-relative Addressing
1446                  * ------------------------
1447                  *
1448                  * There's a further complication in 64-bit mode due to %rip-
1449                  * relative addressing. While this is clearly a beneficial
1450                  * architectural decision for position independent code, it's
1451                  * hard not to see it as a personal attack against the pid
1452                  * provider since before there was a relatively small set of
1453                  * instructions to emulate; with %rip-relative addressing,
1454                  * almost every instruction can potentially depend on the
1455                  * address at which it's executed. Rather than emulating
1456                  * the broad spectrum of instructions that can now be
1457                  * position dependent, we emulate jumps and others as in
1458                  * 32-bit mode, and take a different tack for instructions
1459                  * using %rip-relative addressing.
1460                  *
1461                  * For every instruction that uses the ModRM byte, the
1462                  * in-kernel disassembler reports its location. We use the
1463                  * ModRM byte to identify that an instruction uses
1464                  * %rip-relative addressing and to see what other registers
1465                  * the instruction uses. To emulate those instructions,
1466                  * we modify the instruction to be %rax-relative rather than
1467                  * %rip-relative (or %rcx-relative if the instruction uses
1468                  * %rax; or %r8- or %r9-relative if the REX.B is present so
1469                  * we don't have to rewrite the REX prefix). We then load
1470                  * the value that %rip would have been into the scratch
1471                  * register and generate an instruction to reset the scratch
1472                  * register back to its original value. The instruction
1473                  * sequence looks like this:
1474                  *
1475                  *      64-mode %rip-relative           bytes
1476                  *      ------------------------        -----
1477                  * a:   <modified instruction>            <= 15
1478                  *      movq    $<value>, %<scratch>            6
1479                  *      jmp     0(%rip)                     6
1480                  *      <pc + tp->ftt_size>                8
1481                  * b:   <modified instruction>    <= 15
1482                  *      int     T_DTRACE_RET                2
1483                  *                                      -----
1484                  *                                         52
1485                  *
1486                  * We set curthread->t_dtrace_regv so that upon receiving
1487                  * a signal we can reset the value of the scratch register.
1488                  */
1489 
1490                 ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
1491 
1492                 curthread->t_dtrace_scrpc = addr;
1493                 bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1494                 i += tp->ftt_size;
1495 
1496 #ifdef __amd64
1497                 if (tp->ftt_ripmode != 0) {
1498                         greg_t *reg;
1499 
1500                         ASSERT(p->p_model == DATAMODEL_LP64);
1501                         ASSERT(tp->ftt_ripmode &
1502                             (FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
1503 
1504                         /*
1505                          * If this was a %rip-relative instruction, we change
1506                          * it to be either a %rax- or %rcx-relative
1507                          * instruction (depending on whether those registers
1508                          * are used as another operand; or %r8- or %r9-
1509                          * relative depending on the value of REX.B). We then
1510                          * set that register and generate a movq instruction
1511                          * to reset the value.
1512                          */
1513                         if (tp->ftt_ripmode & FASTTRAP_RIP_X)
1514                                 scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
1515                         else
1516                                 scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
1517 
1518                         if (tp->ftt_ripmode & FASTTRAP_RIP_1)
1519                                 scratch[i++] = FASTTRAP_MOV_EAX;
1520                         else
1521                                 scratch[i++] = FASTTRAP_MOV_ECX;
1522 
1523                         switch (tp->ftt_ripmode) {
1524                         case FASTTRAP_RIP_1:
1525                                 reg = &rp->r_rax;
1526                                 curthread->t_dtrace_reg = REG_RAX;
1527                                 break;
1528                         case FASTTRAP_RIP_2:
1529                                 reg = &rp->r_rcx;
1530                                 curthread->t_dtrace_reg = REG_RCX;
1531                                 break;
1532                         case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
1533                                 reg = &rp->r_r8;
1534                                 curthread->t_dtrace_reg = REG_R8;
1535                                 break;
1536                         case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
1537                                 reg = &rp->r_r9;
1538                                 curthread->t_dtrace_reg = REG_R9;
1539                                 break;
1540                         }
1541 
1542                         /* LINTED - alignment */
1543                         *(uint64_t *)&scratch[i] = *reg;
1544                         curthread->t_dtrace_regv = *reg;
1545                         *reg = pc + tp->ftt_size;
1546                         i += sizeof (uint64_t);
1547                 }
1548 #endif
1549 
1550                 /*
1551                  * Generate the branch instruction to what would have
1552                  * normally been the subsequent instruction. In 32-bit mode,
1553                  * this is just a relative branch; in 64-bit mode this is a
1554                  * %rip-relative branch that loads the 64-bit pc value
1555                  * immediately after the jmp instruction.
1556                  */
1557 #ifdef __amd64
1558                 if (p->p_model == DATAMODEL_LP64) {
1559                         scratch[i++] = FASTTRAP_GROUP5_OP;
1560                         scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
1561                         /* LINTED - alignment */
1562                         *(uint32_t *)&scratch[i] = 0;
1563                         i += sizeof (uint32_t);
1564                         /* LINTED - alignment */
1565                         *(uint64_t *)&scratch[i] = pc + tp->ftt_size;
1566                         i += sizeof (uint64_t);
1567                 } else {
1568 #endif
1569                         /*
1570                          * Set up the jmp to the next instruction; note that
1571                          * the size of the traced instruction cancels out.
1572                          */
1573                         scratch[i++] = FASTTRAP_JMP32;
1574                         /* LINTED - alignment */
1575                         *(uint32_t *)&scratch[i] = pc - addr - 5;
1576                         i += sizeof (uint32_t);
1577 #ifdef __amd64
1578                 }
1579 #endif
1580 
1581                 curthread->t_dtrace_astpc = addr + i;
1582                 bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1583                 i += tp->ftt_size;
1584                 scratch[i++] = FASTTRAP_INT;
1585                 scratch[i++] = T_DTRACE_RET;
1586 
1587                 ASSERT(i <= sizeof (scratch));
1588 
1589                 if (fasttrap_copyout(scratch, (char *)addr, i)) {
1590                         fasttrap_sigtrap(p, curthread, pc);
1591                         new_pc = pc;
1592                         break;
1593                 }
1594 
1595                 if (tp->ftt_retids != NULL) {
1596                         curthread->t_dtrace_step = 1;
1597                         curthread->t_dtrace_ret = 1;
1598                         new_pc = curthread->t_dtrace_astpc;
1599                 } else {
1600                         new_pc = curthread->t_dtrace_scrpc;
1601                 }
1602 
1603                 curthread->t_dtrace_pc = pc;
1604                 curthread->t_dtrace_npc = pc + tp->ftt_size;
1605                 curthread->t_dtrace_on = 1;
1606                 break;
1607         }
1608 
1609         default:
1610                 panic("fasttrap: mishandled an instruction");
1611         }
1612 
1613 done:
1614         /*
1615          * If there were no return probes when we first found the tracepoint,
1616          * we should feel no obligation to honor any return probes that were
1617          * subsequently enabled -- they'll just have to wait until the next
1618          * time around.
1619          */
1620         if (tp->ftt_retids != NULL) {
1621                 /*
1622                  * We need to wait until the results of the instruction are
1623                  * apparent before invoking any return probes. If this
1624                  * instruction was emulated we can just call
1625                  * fasttrap_return_common(); if it needs to be executed, we
1626                  * need to wait until the user thread returns to the kernel.
1627                  */
1628                 if (tp->ftt_type != FASTTRAP_T_COMMON) {
1629                         /*
1630                          * Set the program counter to the address of the traced
1631                          * instruction so that it looks right in ustack()
1632                          * output. We had previously set it to the end of the
1633                          * instruction to simplify %rip-relative addressing.
1634                          */
1635                         rp->r_pc = pc;
1636 
1637                         fasttrap_return_common(rp, pc, pid, new_pc);
1638                 } else {
1639                         ASSERT(curthread->t_dtrace_ret != 0);
1640                         ASSERT(curthread->t_dtrace_pc == pc);
1641                         ASSERT(curthread->t_dtrace_scrpc != 0);
1642                         ASSERT(new_pc == curthread->t_dtrace_astpc);
1643                 }
1644         }
1645 
1646         rp->r_pc = new_pc;
1647 
1648         return (0);
1649 }
1650 
1651 int
1652 fasttrap_return_probe(struct regs *rp)
1653 {
1654         proc_t *p = curproc;
1655         uintptr_t pc = curthread->t_dtrace_pc;
1656         uintptr_t npc = curthread->t_dtrace_npc;
1657 
1658         curthread->t_dtrace_pc = 0;
1659         curthread->t_dtrace_npc = 0;
1660         curthread->t_dtrace_scrpc = 0;
1661         curthread->t_dtrace_astpc = 0;
1662 
1663         /*
1664          * Treat a child created by a call to vfork(2) as if it were its
1665          * parent. We know that there's only one thread of control in such a
1666          * process: this one.
1667          */
1668         while (p->p_flag & SVFORK) {
1669                 p = p->p_parent;
1670         }
1671 
1672         /*
1673          * We set rp->r_pc to the address of the traced instruction so
1674          * that it appears to dtrace_probe() that we're on the original
1675          * instruction, and so that the user can't easily detect our
1676          * complex web of lies. dtrace_return_probe() (our caller)
1677          * will correctly set %pc after we return.
1678          */
1679         rp->r_pc = pc;
1680 
1681         fasttrap_return_common(rp, pc, p->p_pid, npc);
1682 
1683         return (0);
1684 }
1685 
1686 /*ARGSUSED*/
1687 uint64_t
1688 fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1689     int aframes)
1690 {
1691         return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, 1, argno));
1692 }
1693 
1694 /*ARGSUSED*/
1695 uint64_t
1696 fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1697     int aframes)
1698 {
1699         return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, 0, argno));
1700 }
1701 
1702 static ulong_t
1703 fasttrap_getreg(struct regs *rp, uint_t reg)
1704 {
1705 #ifdef __amd64
1706         switch (reg) {
1707         case REG_R15:           return (rp->r_r15);
1708         case REG_R14:           return (rp->r_r14);
1709         case REG_R13:           return (rp->r_r13);
1710         case REG_R12:           return (rp->r_r12);
1711         case REG_R11:           return (rp->r_r11);
1712         case REG_R10:           return (rp->r_r10);
1713         case REG_R9:            return (rp->r_r9);
1714         case REG_R8:            return (rp->r_r8);
1715         case REG_RDI:           return (rp->r_rdi);
1716         case REG_RSI:           return (rp->r_rsi);
1717         case REG_RBP:           return (rp->r_rbp);
1718         case REG_RBX:           return (rp->r_rbx);
1719         case REG_RDX:           return (rp->r_rdx);
1720         case REG_RCX:           return (rp->r_rcx);
1721         case REG_RAX:           return (rp->r_rax);
1722         case REG_TRAPNO:        return (rp->r_trapno);
1723         case REG_ERR:           return (rp->r_err);
1724         case REG_RIP:           return (rp->r_rip);
1725         case REG_CS:            return (rp->r_cs);
1726         case REG_RFL:           return (rp->r_rfl);
1727         case REG_RSP:           return (rp->r_rsp);
1728         case REG_SS:            return (rp->r_ss);
1729         case REG_FS:            return (rp->r_fs);
1730         case REG_GS:            return (rp->r_gs);
1731         case REG_DS:            return (rp->r_ds);
1732         case REG_ES:            return (rp->r_es);
1733         case REG_FSBASE:        return (rdmsr(MSR_AMD_FSBASE));
1734         case REG_GSBASE:        return (rdmsr(MSR_AMD_GSBASE));
1735         }
1736 
1737         panic("dtrace: illegal register constant");
1738         /*NOTREACHED*/
1739 #else
1740         if (reg >= _NGREG)
1741                 panic("dtrace: illegal register constant");
1742 
1743         return (((greg_t *)&rp->r_gs)[reg]);
1744 #endif
1745 }