Print this page
OS-3752 Increase IOV_MAX to at least 1024
OS-2834 ship lx brand
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/os/streamio.c
+++ new/usr/src/uts/common/os/streamio.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
|
↓ open down ↓ |
16 lines elided |
↑ open up ↑ |
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
22 22 /* All Rights Reserved */
23 23
24 24
25 25 /*
26 26 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
27 - * Copyright (c) 2014, Joyent, Inc. All rights reserved.
27 + * Copyright 2015, Joyent, Inc. All rights reserved.
28 28 */
29 29
30 30 #include <sys/types.h>
31 31 #include <sys/sysmacros.h>
32 32 #include <sys/param.h>
33 33 #include <sys/errno.h>
34 34 #include <sys/signal.h>
35 35 #include <sys/stat.h>
36 36 #include <sys/proc.h>
37 37 #include <sys/cred.h>
38 38 #include <sys/user.h>
39 39 #include <sys/vnode.h>
40 40 #include <sys/file.h>
41 41 #include <sys/stream.h>
42 42 #include <sys/strsubr.h>
43 43 #include <sys/stropts.h>
44 44 #include <sys/tihdr.h>
45 45 #include <sys/var.h>
46 46 #include <sys/poll.h>
47 47 #include <sys/termio.h>
48 48 #include <sys/ttold.h>
49 49 #include <sys/systm.h>
50 50 #include <sys/uio.h>
51 51 #include <sys/cmn_err.h>
52 52 #include <sys/sad.h>
53 53 #include <sys/netstack.h>
54 54 #include <sys/priocntl.h>
55 55 #include <sys/jioctl.h>
56 56 #include <sys/procset.h>
57 57 #include <sys/session.h>
58 58 #include <sys/kmem.h>
59 59 #include <sys/filio.h>
60 60 #include <sys/vtrace.h>
61 61 #include <sys/debug.h>
62 62 #include <sys/strredir.h>
63 63 #include <sys/fs/fifonode.h>
64 64 #include <sys/fs/snode.h>
65 65 #include <sys/strlog.h>
66 66 #include <sys/strsun.h>
67 67 #include <sys/project.h>
68 68 #include <sys/kbio.h>
69 69 #include <sys/msio.h>
|
↓ open down ↓ |
32 lines elided |
↑ open up ↑ |
70 70 #include <sys/tty.h>
71 71 #include <sys/ptyvar.h>
72 72 #include <sys/vuid_event.h>
73 73 #include <sys/modctl.h>
74 74 #include <sys/sunddi.h>
75 75 #include <sys/sunldi_impl.h>
76 76 #include <sys/autoconf.h>
77 77 #include <sys/policy.h>
78 78 #include <sys/dld.h>
79 79 #include <sys/zone.h>
80 +#include <sys/limits.h>
80 81 #include <c2/audit.h>
81 82
82 83 /*
83 84 * This define helps improve the readability of streams code while
84 85 * still maintaining a very old streams performance enhancement. The
85 86 * performance enhancement basically involved having all callers
86 87 * of straccess() perform the first check that straccess() will do
87 88 * locally before actually calling straccess(). (There by reducing
88 89 * the number of unnecessary calls to straccess().)
89 90 */
90 91 #define i_straccess(x, y) ((stp->sd_sidp == NULL) ? 0 : \
91 92 (stp->sd_vnode->v_type == VFIFO) ? 0 : \
92 93 straccess((x), (y)))
93 94
94 95 /*
95 96 * what is mblk_pull_len?
96 97 *
97 98 * If a streams message consists of many short messages,
98 99 * a performance degradation occurs from copyout overhead.
99 100 * To decrease the per mblk overhead, messages that are
100 101 * likely to consist of many small mblks are pulled up into
101 102 * one continuous chunk of memory.
102 103 *
103 104 * To avoid the processing overhead of examining every
104 105 * mblk, a quick heuristic is used. If the first mblk in
105 106 * the message is shorter than mblk_pull_len, it is likely
106 107 * that the rest of the mblk will be short.
107 108 *
108 109 * This heuristic was decided upon after performance tests
109 110 * indicated that anything more complex slowed down the main
110 111 * code path.
111 112 */
112 113 #define MBLK_PULL_LEN 64
113 114 uint32_t mblk_pull_len = MBLK_PULL_LEN;
114 115
115 116 /*
116 117 * The sgttyb_handling flag controls the handling of the old BSD
117 118 * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows:
118 119 *
119 120 * 0 - Emit no warnings at all and retain old, broken behavior.
120 121 * 1 - Emit no warnings and silently handle new semantics.
121 122 * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used
122 123 * (once per system invocation). Handle with new semantics.
123 124 * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is
124 125 * made (so that offenders drop core and are easy to debug).
125 126 *
126 127 * The "new semantics" are that TIOCGETP returns B38400 for
127 128 * sg_[io]speed if the corresponding value is over B38400, and that
128 129 * TIOCSET[PN] accept B38400 in these cases to mean "retain current
129 130 * bit rate."
130 131 */
131 132 int sgttyb_handling = 1;
132 133 static boolean_t sgttyb_complaint;
133 134
134 135 /* don't push drcompat module by default on Style-2 streams */
135 136 static int push_drcompat = 0;
136 137
137 138 /*
138 139 * id value used to distinguish between different ioctl messages
139 140 */
140 141 static uint32_t ioc_id;
141 142
142 143 static void putback(struct stdata *, queue_t *, mblk_t *, int);
143 144 static void strcleanall(struct vnode *);
144 145 static int strwsrv(queue_t *);
145 146 static int strdocmd(struct stdata *, struct strcmd *, cred_t *);
146 147
147 148 /*
148 149 * qinit and module_info structures for stream head read and write queues
149 150 */
150 151 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW };
151 152 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 };
152 153 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info };
153 154 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info };
154 155 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT,
155 156 FIFOLOWAT };
156 157 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 };
157 158 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info };
158 159 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info };
159 160
160 161 extern kmutex_t strresources; /* protects global resources */
161 162 extern kmutex_t muxifier; /* single-threads multiplexor creation */
162 163
163 164 static boolean_t msghasdata(mblk_t *bp);
164 165 #define msgnodata(bp) (!msghasdata(bp))
165 166
166 167 /*
167 168 * Stream head locking notes:
168 169 * There are four monitors associated with the stream head:
169 170 * 1. v_stream monitor: in stropen() and strclose() v_lock
170 171 * is held while the association of vnode and stream
171 172 * head is established or tested for.
172 173 * 2. open/close/push/pop monitor: sd_lock is held while each
173 174 * thread bids for exclusive access to this monitor
174 175 * for opening or closing a stream. In addition, this
175 176 * monitor is entered during pushes and pops. This
176 177 * guarantees that during plumbing operations there
177 178 * is only one thread trying to change the plumbing.
178 179 * Any other threads present in the stream are only
179 180 * using the plumbing.
180 181 * 3. read/write monitor: in the case of read, a thread holds
181 182 * sd_lock while trying to get data from the stream
182 183 * head queue. if there is none to fulfill a read
183 184 * request, it sets RSLEEP and calls cv_wait_sig() down
184 185 * in strwaitq() to await the arrival of new data.
185 186 * when new data arrives in strrput(), sd_lock is acquired
186 187 * before testing for RSLEEP and calling cv_broadcast().
187 188 * the behavior of strwrite(), strwsrv(), and WSLEEP
188 189 * mirror this.
189 190 * 4. ioctl monitor: sd_lock is gotten to ensure that only one
190 191 * thread is doing an ioctl at a time.
191 192 */
192 193
193 194 static int
194 195 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name,
195 196 int anchor, cred_t *crp, uint_t anchor_zoneid)
196 197 {
197 198 int error;
198 199 fmodsw_impl_t *fp;
199 200
200 201 if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) {
201 202 error = (stp->sd_flag & STRHUP) ? ENXIO : EIO;
202 203 return (error);
203 204 }
204 205 if (stp->sd_pushcnt >= nstrpush) {
205 206 return (EINVAL);
206 207 }
207 208
208 209 if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) {
209 210 stp->sd_flag |= STREOPENFAIL;
210 211 return (EINVAL);
211 212 }
212 213
213 214 /*
214 215 * push new module and call its open routine via qattach
215 216 */
216 217 if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0)
217 218 return (error);
218 219
219 220 /*
220 221 * Check to see if caller wants a STREAMS anchor
221 222 * put at this place in the stream, and add if so.
222 223 */
223 224 mutex_enter(&stp->sd_lock);
224 225 if (anchor == stp->sd_pushcnt) {
225 226 stp->sd_anchor = stp->sd_pushcnt;
226 227 stp->sd_anchorzone = anchor_zoneid;
227 228 }
228 229 mutex_exit(&stp->sd_lock);
229 230
230 231 return (0);
231 232 }
232 233
233 234 /*
234 235 * Open a stream device.
235 236 */
236 237 int
237 238 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp)
238 239 {
239 240 struct stdata *stp;
240 241 queue_t *qp;
241 242 int s;
242 243 dev_t dummydev, savedev;
243 244 struct autopush *ap;
244 245 struct dlautopush dlap;
245 246 int error = 0;
246 247 ssize_t rmin, rmax;
247 248 int cloneopen;
248 249 queue_t *brq;
249 250 major_t major;
250 251 str_stack_t *ss;
251 252 zoneid_t zoneid;
252 253 uint_t anchor;
253 254
254 255 /*
255 256 * If the stream already exists, wait for any open in progress
256 257 * to complete, then call the open function of each module and
257 258 * driver in the stream. Otherwise create the stream.
258 259 */
259 260 TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp);
260 261 retry:
261 262 mutex_enter(&vp->v_lock);
262 263 if ((stp = vp->v_stream) != NULL) {
263 264
264 265 /*
265 266 * Waiting for stream to be created to device
266 267 * due to another open.
267 268 */
268 269 mutex_exit(&vp->v_lock);
269 270
270 271 if (STRMATED(stp)) {
271 272 struct stdata *strmatep = stp->sd_mate;
272 273
273 274 STRLOCKMATES(stp);
274 275 if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
275 276 if (flag & (FNDELAY|FNONBLOCK)) {
276 277 error = EAGAIN;
277 278 mutex_exit(&strmatep->sd_lock);
278 279 goto ckreturn;
279 280 }
280 281 mutex_exit(&stp->sd_lock);
281 282 if (!cv_wait_sig(&strmatep->sd_monitor,
282 283 &strmatep->sd_lock)) {
283 284 error = EINTR;
284 285 mutex_exit(&strmatep->sd_lock);
285 286 mutex_enter(&stp->sd_lock);
286 287 goto ckreturn;
287 288 }
288 289 mutex_exit(&strmatep->sd_lock);
289 290 goto retry;
290 291 }
291 292 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
292 293 if (flag & (FNDELAY|FNONBLOCK)) {
293 294 error = EAGAIN;
294 295 mutex_exit(&strmatep->sd_lock);
295 296 goto ckreturn;
296 297 }
297 298 mutex_exit(&strmatep->sd_lock);
298 299 if (!cv_wait_sig(&stp->sd_monitor,
299 300 &stp->sd_lock)) {
300 301 error = EINTR;
301 302 goto ckreturn;
302 303 }
303 304 mutex_exit(&stp->sd_lock);
304 305 goto retry;
305 306 }
306 307
307 308 if (stp->sd_flag & (STRDERR|STWRERR)) {
308 309 error = EIO;
309 310 mutex_exit(&strmatep->sd_lock);
310 311 goto ckreturn;
311 312 }
312 313
313 314 stp->sd_flag |= STWOPEN;
314 315 STRUNLOCKMATES(stp);
315 316 } else {
316 317 mutex_enter(&stp->sd_lock);
317 318 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
318 319 if (flag & (FNDELAY|FNONBLOCK)) {
319 320 error = EAGAIN;
320 321 goto ckreturn;
321 322 }
322 323 if (!cv_wait_sig(&stp->sd_monitor,
323 324 &stp->sd_lock)) {
324 325 error = EINTR;
325 326 goto ckreturn;
326 327 }
327 328 mutex_exit(&stp->sd_lock);
328 329 goto retry; /* could be clone! */
329 330 }
330 331
331 332 if (stp->sd_flag & (STRDERR|STWRERR)) {
332 333 error = EIO;
333 334 goto ckreturn;
334 335 }
335 336
336 337 stp->sd_flag |= STWOPEN;
337 338 mutex_exit(&stp->sd_lock);
338 339 }
339 340
340 341 /*
341 342 * Open all modules and devices down stream to notify
342 343 * that another user is streaming. For modules, set the
343 344 * last argument to MODOPEN and do not pass any open flags.
344 345 * Ignore dummydev since this is not the first open.
345 346 */
346 347 claimstr(stp->sd_wrq);
347 348 qp = stp->sd_wrq;
348 349 while (_SAMESTR(qp)) {
349 350 qp = qp->q_next;
350 351 if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0)
351 352 break;
352 353 }
353 354 releasestr(stp->sd_wrq);
354 355 mutex_enter(&stp->sd_lock);
355 356 stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR);
356 357 stp->sd_rerror = 0;
357 358 stp->sd_werror = 0;
358 359 ckreturn:
359 360 cv_broadcast(&stp->sd_monitor);
360 361 mutex_exit(&stp->sd_lock);
361 362 return (error);
362 363 }
363 364
364 365 /*
365 366 * This vnode isn't streaming. SPECFS already
366 367 * checked for multiple vnodes pointing to the
367 368 * same stream, so create a stream to the driver.
368 369 */
369 370 qp = allocq();
370 371 stp = shalloc(qp);
371 372
372 373 /*
373 374 * Initialize stream head. shalloc() has given us
374 375 * exclusive access, and we have the vnode locked;
375 376 * we can do whatever we want with stp.
376 377 */
377 378 stp->sd_flag = STWOPEN;
378 379 stp->sd_siglist = NULL;
379 380 stp->sd_pollist.ph_list = NULL;
380 381 stp->sd_sigflags = 0;
381 382 stp->sd_mark = NULL;
382 383 stp->sd_closetime = STRTIMOUT;
383 384 stp->sd_sidp = NULL;
384 385 stp->sd_pgidp = NULL;
385 386 stp->sd_vnode = vp;
386 387 stp->sd_rerror = 0;
387 388 stp->sd_werror = 0;
388 389 stp->sd_wroff = 0;
389 390 stp->sd_tail = 0;
390 391 stp->sd_iocblk = NULL;
391 392 stp->sd_cmdblk = NULL;
392 393 stp->sd_pushcnt = 0;
393 394 stp->sd_qn_minpsz = 0;
394 395 stp->sd_qn_maxpsz = INFPSZ - 1; /* used to check for initialization */
395 396 stp->sd_maxblk = INFPSZ;
396 397 qp->q_ptr = _WR(qp)->q_ptr = stp;
397 398 STREAM(qp) = STREAM(_WR(qp)) = stp;
398 399 vp->v_stream = stp;
399 400 mutex_exit(&vp->v_lock);
400 401 if (vp->v_type == VFIFO) {
401 402 stp->sd_flag |= OLDNDELAY;
402 403 /*
403 404 * This means, both for pipes and fifos
404 405 * strwrite will send SIGPIPE if the other
405 406 * end is closed. For putmsg it depends
406 407 * on whether it is a XPG4_2 application
407 408 * or not
408 409 */
409 410 stp->sd_wput_opt = SW_SIGPIPE;
410 411
411 412 /* setq might sleep in kmem_alloc - avoid holding locks. */
412 413 setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE,
413 414 SQ_CI|SQ_CO, B_FALSE);
414 415
415 416 set_qend(qp);
416 417 stp->sd_strtab = fifo_getinfo();
417 418 _WR(qp)->q_nfsrv = _WR(qp);
418 419 qp->q_nfsrv = qp;
419 420 /*
420 421 * Wake up others that are waiting for stream to be created.
421 422 */
422 423 mutex_enter(&stp->sd_lock);
423 424 /*
424 425 * nothing is be pushed on stream yet, so
425 426 * optimized stream head packetsizes are just that
426 427 * of the read queue
427 428 */
428 429 stp->sd_qn_minpsz = qp->q_minpsz;
429 430 stp->sd_qn_maxpsz = qp->q_maxpsz;
430 431 stp->sd_flag &= ~STWOPEN;
431 432 goto fifo_opendone;
432 433 }
433 434 /* setq might sleep in kmem_alloc - avoid holding locks. */
434 435 setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE);
435 436
436 437 set_qend(qp);
437 438
438 439 /*
439 440 * Open driver and create stream to it (via qattach).
440 441 */
441 442 savedev = *devp;
442 443 cloneopen = (getmajor(*devp) == clone_major);
443 444 if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) {
444 445 mutex_enter(&vp->v_lock);
445 446 vp->v_stream = NULL;
446 447 mutex_exit(&vp->v_lock);
447 448 mutex_enter(&stp->sd_lock);
448 449 cv_broadcast(&stp->sd_monitor);
449 450 mutex_exit(&stp->sd_lock);
450 451 freeq(_RD(qp));
451 452 shfree(stp);
452 453 return (error);
453 454 }
454 455 /*
455 456 * Set sd_strtab after open in order to handle clonable drivers
456 457 */
457 458 stp->sd_strtab = STREAMSTAB(getmajor(*devp));
458 459
459 460 /*
460 461 * Historical note: dummydev used to be be prior to the initial
461 462 * open (via qattach above), which made the value seen
462 463 * inconsistent between an I_PUSH and an autopush of a module.
463 464 */
464 465 dummydev = *devp;
465 466
466 467 /*
467 468 * For clone open of old style (Q not associated) network driver,
468 469 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH
469 470 */
470 471 brq = _RD(_WR(qp)->q_next);
471 472 major = getmajor(*devp);
472 473 if (push_drcompat && cloneopen && NETWORK_DRV(major) &&
473 474 ((brq->q_flag & _QASSOCIATED) == 0)) {
474 475 if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0)
475 476 cmn_err(CE_WARN, "cannot push " DRMODNAME
476 477 " streams module");
477 478 }
478 479
479 480 if (!NETWORK_DRV(major)) {
480 481 savedev = *devp;
481 482 } else {
482 483 /*
483 484 * For network devices, process differently based on the
484 485 * return value from dld_autopush():
485 486 *
486 487 * 0: the passed-in device points to a GLDv3 datalink with
487 488 * per-link autopush configuration; use that configuration
488 489 * and ignore any per-driver autopush configuration.
489 490 *
490 491 * 1: the passed-in device points to a physical GLDv3
491 492 * datalink without per-link autopush configuration. The
492 493 * passed in device was changed to refer to the actual
493 494 * physical device (if it's not already); we use that new
494 495 * device to look up any per-driver autopush configuration.
495 496 *
496 497 * -1: neither of the above cases applied; use the initial
497 498 * device to look up any per-driver autopush configuration.
498 499 */
499 500 switch (dld_autopush(&savedev, &dlap)) {
500 501 case 0:
501 502 zoneid = crgetzoneid(crp);
502 503 for (s = 0; s < dlap.dap_npush; s++) {
503 504 error = push_mod(qp, &dummydev, stp,
504 505 dlap.dap_aplist[s], dlap.dap_anchor, crp,
505 506 zoneid);
506 507 if (error != 0)
507 508 break;
508 509 }
509 510 goto opendone;
510 511 case 1:
511 512 break;
512 513 case -1:
513 514 savedev = *devp;
514 515 break;
515 516 }
516 517 }
517 518 /*
518 519 * Find the autopush configuration based on "savedev". Start with the
519 520 * global zone. If not found check in the local zone.
520 521 */
521 522 zoneid = GLOBAL_ZONEID;
522 523 retryap:
523 524 ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))->
524 525 netstack_str;
525 526 if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) {
526 527 netstack_rele(ss->ss_netstack);
527 528 if (zoneid == GLOBAL_ZONEID) {
528 529 /*
529 530 * None found. Also look in the zone's autopush table.
530 531 */
531 532 zoneid = crgetzoneid(crp);
532 533 if (zoneid != GLOBAL_ZONEID)
533 534 goto retryap;
534 535 }
535 536 goto opendone;
536 537 }
537 538 anchor = ap->ap_anchor;
538 539 zoneid = crgetzoneid(crp);
539 540 for (s = 0; s < ap->ap_npush; s++) {
540 541 error = push_mod(qp, &dummydev, stp, ap->ap_list[s],
541 542 anchor, crp, zoneid);
542 543 if (error != 0)
543 544 break;
544 545 }
545 546 sad_ap_rele(ap, ss);
546 547 netstack_rele(ss->ss_netstack);
547 548
548 549 opendone:
549 550
550 551 /*
551 552 * let specfs know that open failed part way through
552 553 */
553 554 if (error) {
554 555 mutex_enter(&stp->sd_lock);
555 556 stp->sd_flag |= STREOPENFAIL;
556 557 mutex_exit(&stp->sd_lock);
557 558 }
558 559
559 560 /*
560 561 * Wake up others that are waiting for stream to be created.
561 562 */
562 563 mutex_enter(&stp->sd_lock);
563 564 stp->sd_flag &= ~STWOPEN;
564 565
565 566 /*
566 567 * As a performance concern we are caching the values of
567 568 * q_minpsz and q_maxpsz of the module below the stream
568 569 * head in the stream head.
569 570 */
570 571 mutex_enter(QLOCK(stp->sd_wrq->q_next));
571 572 rmin = stp->sd_wrq->q_next->q_minpsz;
572 573 rmax = stp->sd_wrq->q_next->q_maxpsz;
573 574 mutex_exit(QLOCK(stp->sd_wrq->q_next));
574 575
575 576 /* do this processing here as a performance concern */
576 577 if (strmsgsz != 0) {
577 578 if (rmax == INFPSZ)
578 579 rmax = strmsgsz;
579 580 else
580 581 rmax = MIN(strmsgsz, rmax);
581 582 }
582 583
583 584 mutex_enter(QLOCK(stp->sd_wrq));
584 585 stp->sd_qn_minpsz = rmin;
585 586 stp->sd_qn_maxpsz = rmax;
586 587 mutex_exit(QLOCK(stp->sd_wrq));
587 588
588 589 fifo_opendone:
589 590 cv_broadcast(&stp->sd_monitor);
590 591 mutex_exit(&stp->sd_lock);
591 592 return (error);
592 593 }
593 594
594 595 static int strsink(queue_t *, mblk_t *);
595 596 static struct qinit deadrend = {
596 597 strsink, NULL, NULL, NULL, NULL, &strm_info, NULL
597 598 };
598 599 static struct qinit deadwend = {
599 600 NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL
600 601 };
601 602
602 603 /*
603 604 * Close a stream.
604 605 * This is called from closef() on the last close of an open stream.
605 606 * Strclean() will already have removed the siglist and pollist
606 607 * information, so all that remains is to remove all multiplexor links
607 608 * for the stream, pop all the modules (and the driver), and free the
608 609 * stream structure.
609 610 */
610 611
611 612 int
612 613 strclose(struct vnode *vp, int flag, cred_t *crp)
613 614 {
614 615 struct stdata *stp;
615 616 queue_t *qp;
616 617 int rval;
617 618 int freestp = 1;
618 619 queue_t *rmq;
619 620
620 621 TRACE_1(TR_FAC_STREAMS_FR,
621 622 TR_STRCLOSE, "strclose:%p", vp);
622 623 ASSERT(vp->v_stream);
623 624
624 625 stp = vp->v_stream;
625 626 ASSERT(!(stp->sd_flag & STPLEX));
626 627 qp = stp->sd_wrq;
627 628
628 629 /*
629 630 * Needed so that strpoll will return non-zero for this fd.
630 631 * Note that with POLLNOERR STRHUP does still cause POLLHUP.
631 632 */
632 633 mutex_enter(&stp->sd_lock);
633 634 stp->sd_flag |= STRHUP;
634 635 mutex_exit(&stp->sd_lock);
635 636
636 637 /*
637 638 * If the registered process or process group did not have an
638 639 * open instance of this stream then strclean would not be
639 640 * called. Thus at the time of closing all remaining siglist entries
640 641 * are removed.
641 642 */
642 643 if (stp->sd_siglist != NULL)
643 644 strcleanall(vp);
644 645
645 646 ASSERT(stp->sd_siglist == NULL);
646 647 ASSERT(stp->sd_sigflags == 0);
647 648
648 649 if (STRMATED(stp)) {
649 650 struct stdata *strmatep = stp->sd_mate;
650 651 int waited = 1;
651 652
652 653 STRLOCKMATES(stp);
653 654 while (waited) {
654 655 waited = 0;
655 656 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
656 657 mutex_exit(&strmatep->sd_lock);
657 658 cv_wait(&stp->sd_monitor, &stp->sd_lock);
658 659 mutex_exit(&stp->sd_lock);
659 660 STRLOCKMATES(stp);
660 661 waited = 1;
661 662 }
662 663 while (strmatep->sd_flag &
663 664 (STWOPEN|STRCLOSE|STRPLUMB)) {
664 665 mutex_exit(&stp->sd_lock);
665 666 cv_wait(&strmatep->sd_monitor,
666 667 &strmatep->sd_lock);
667 668 mutex_exit(&strmatep->sd_lock);
668 669 STRLOCKMATES(stp);
669 670 waited = 1;
670 671 }
671 672 }
672 673 stp->sd_flag |= STRCLOSE;
673 674 STRUNLOCKMATES(stp);
674 675 } else {
675 676 mutex_enter(&stp->sd_lock);
676 677 stp->sd_flag |= STRCLOSE;
677 678 mutex_exit(&stp->sd_lock);
678 679 }
679 680
680 681 ASSERT(qp->q_first == NULL); /* No more delayed write */
681 682
682 683 /* Check if an I_LINK was ever done on this stream */
683 684 if (stp->sd_flag & STRHASLINKS) {
684 685 netstack_t *ns;
685 686 str_stack_t *ss;
686 687
687 688 ns = netstack_find_by_cred(crp);
688 689 ASSERT(ns != NULL);
689 690 ss = ns->netstack_str;
690 691 ASSERT(ss != NULL);
691 692
692 693 (void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss);
693 694 netstack_rele(ss->ss_netstack);
694 695 }
695 696
696 697 while (_SAMESTR(qp)) {
697 698 /*
698 699 * Holding sd_lock prevents q_next from changing in
699 700 * this stream.
700 701 */
701 702 mutex_enter(&stp->sd_lock);
702 703 if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) {
703 704
704 705 /*
705 706 * sleep until awakened by strwsrv() or timeout
706 707 */
707 708 for (;;) {
708 709 mutex_enter(QLOCK(qp->q_next));
709 710 if (!(qp->q_next->q_mblkcnt)) {
710 711 mutex_exit(QLOCK(qp->q_next));
711 712 break;
712 713 }
713 714 stp->sd_flag |= WSLEEP;
714 715
715 716 /* ensure strwsrv gets enabled */
716 717 qp->q_next->q_flag |= QWANTW;
717 718 mutex_exit(QLOCK(qp->q_next));
718 719 /* get out if we timed out or recv'd a signal */
719 720 if (str_cv_wait(&qp->q_wait, &stp->sd_lock,
720 721 stp->sd_closetime, 0) <= 0) {
721 722 break;
722 723 }
723 724 }
724 725 stp->sd_flag &= ~WSLEEP;
725 726 }
726 727 mutex_exit(&stp->sd_lock);
727 728
728 729 rmq = qp->q_next;
729 730 if (rmq->q_flag & QISDRV) {
730 731 ASSERT(!_SAMESTR(rmq));
731 732 wait_sq_svc(_RD(qp)->q_syncq);
732 733 }
733 734
734 735 qdetach(_RD(rmq), 1, flag, crp, B_FALSE);
735 736 }
736 737
737 738 /*
738 739 * Since we call pollwakeup in close() now, the poll list should
739 740 * be empty in most cases. The only exception is the layered devices
740 741 * (e.g. the console drivers with redirection modules pushed on top
741 742 * of it). We have to do this after calling qdetach() because
742 743 * the redirection module won't have torn down the console
743 744 * redirection until after qdetach() has been invoked.
744 745 */
745 746 if (stp->sd_pollist.ph_list != NULL) {
746 747 pollwakeup(&stp->sd_pollist, POLLERR);
747 748 pollhead_clean(&stp->sd_pollist);
748 749 }
749 750 ASSERT(stp->sd_pollist.ph_list == NULL);
750 751 ASSERT(stp->sd_sidp == NULL);
751 752 ASSERT(stp->sd_pgidp == NULL);
752 753
753 754 /* Prevent qenable from re-enabling the stream head queue */
754 755 disable_svc(_RD(qp));
755 756
756 757 /*
757 758 * Wait until service procedure of each queue is
758 759 * run, if QINSERVICE is set.
759 760 */
760 761 wait_svc(_RD(qp));
761 762
762 763 /*
763 764 * Now, flush both queues.
764 765 */
765 766 flushq(_RD(qp), FLUSHALL);
766 767 flushq(qp, FLUSHALL);
767 768
768 769 /*
769 770 * If the write queue of the stream head is pointing to a
770 771 * read queue, we have a twisted stream. If the read queue
771 772 * is alive, convert the stream head queues into a dead end.
772 773 * If the read queue is dead, free the dead pair.
773 774 */
774 775 if (qp->q_next && !_SAMESTR(qp)) {
775 776 if (qp->q_next->q_qinfo == &deadrend) { /* half-closed pipe */
776 777 flushq(qp->q_next, FLUSHALL); /* ensure no message */
777 778 shfree(qp->q_next->q_stream);
778 779 freeq(qp->q_next);
779 780 freeq(_RD(qp));
780 781 } else if (qp->q_next == _RD(qp)) { /* fifo */
781 782 freeq(_RD(qp));
782 783 } else { /* pipe */
783 784 freestp = 0;
784 785 /*
785 786 * The q_info pointers are never accessed when
786 787 * SQLOCK is held.
787 788 */
788 789 ASSERT(qp->q_syncq == _RD(qp)->q_syncq);
789 790 mutex_enter(SQLOCK(qp->q_syncq));
790 791 qp->q_qinfo = &deadwend;
791 792 _RD(qp)->q_qinfo = &deadrend;
792 793 mutex_exit(SQLOCK(qp->q_syncq));
793 794 }
794 795 } else {
795 796 freeq(_RD(qp)); /* free stream head queue pair */
796 797 }
797 798
798 799 mutex_enter(&vp->v_lock);
799 800 if (stp->sd_iocblk) {
800 801 if (stp->sd_iocblk != (mblk_t *)-1) {
801 802 freemsg(stp->sd_iocblk);
802 803 }
803 804 stp->sd_iocblk = NULL;
804 805 }
805 806 stp->sd_vnode = NULL;
806 807 vp->v_stream = NULL;
807 808 mutex_exit(&vp->v_lock);
808 809 mutex_enter(&stp->sd_lock);
809 810 freemsg(stp->sd_cmdblk);
810 811 stp->sd_cmdblk = NULL;
811 812 stp->sd_flag &= ~STRCLOSE;
812 813 cv_broadcast(&stp->sd_monitor);
813 814 mutex_exit(&stp->sd_lock);
814 815
815 816 if (freestp)
816 817 shfree(stp);
817 818 return (0);
818 819 }
819 820
820 821 static int
821 822 strsink(queue_t *q, mblk_t *bp)
822 823 {
823 824 struct copyresp *resp;
824 825
825 826 switch (bp->b_datap->db_type) {
826 827 case M_FLUSH:
827 828 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
828 829 *bp->b_rptr &= ~FLUSHR;
829 830 bp->b_flag |= MSGNOLOOP;
830 831 /*
831 832 * Protect against the driver passing up
832 833 * messages after it has done a qprocsoff.
833 834 */
834 835 if (_OTHERQ(q)->q_next == NULL)
835 836 freemsg(bp);
836 837 else
837 838 qreply(q, bp);
838 839 } else {
839 840 freemsg(bp);
840 841 }
841 842 break;
842 843
843 844 case M_COPYIN:
844 845 case M_COPYOUT:
845 846 if (bp->b_cont) {
846 847 freemsg(bp->b_cont);
847 848 bp->b_cont = NULL;
848 849 }
849 850 bp->b_datap->db_type = M_IOCDATA;
850 851 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
851 852 resp = (struct copyresp *)bp->b_rptr;
852 853 resp->cp_rval = (caddr_t)1; /* failure */
853 854 /*
854 855 * Protect against the driver passing up
855 856 * messages after it has done a qprocsoff.
856 857 */
857 858 if (_OTHERQ(q)->q_next == NULL)
858 859 freemsg(bp);
859 860 else
860 861 qreply(q, bp);
861 862 break;
862 863
863 864 case M_IOCTL:
864 865 if (bp->b_cont) {
865 866 freemsg(bp->b_cont);
866 867 bp->b_cont = NULL;
867 868 }
868 869 bp->b_datap->db_type = M_IOCNAK;
869 870 /*
870 871 * Protect against the driver passing up
871 872 * messages after it has done a qprocsoff.
872 873 */
873 874 if (_OTHERQ(q)->q_next == NULL)
874 875 freemsg(bp);
875 876 else
876 877 qreply(q, bp);
877 878 break;
878 879
879 880 default:
880 881 freemsg(bp);
881 882 break;
882 883 }
883 884
884 885 return (0);
885 886 }
886 887
887 888 /*
888 889 * Clean up after a process when it closes a stream. This is called
889 890 * from closef for all closes, whereas strclose is called only for the
890 891 * last close on a stream. The siglist is scanned for entries for the
891 892 * current process, and these are removed.
892 893 */
893 894 void
894 895 strclean(struct vnode *vp)
895 896 {
896 897 strsig_t *ssp, *pssp, *tssp;
897 898 stdata_t *stp;
898 899 int update = 0;
899 900
900 901 TRACE_1(TR_FAC_STREAMS_FR,
901 902 TR_STRCLEAN, "strclean:%p", vp);
902 903 stp = vp->v_stream;
903 904 pssp = NULL;
904 905 mutex_enter(&stp->sd_lock);
905 906 ssp = stp->sd_siglist;
906 907 while (ssp) {
907 908 if (ssp->ss_pidp == curproc->p_pidp) {
908 909 tssp = ssp->ss_next;
909 910 if (pssp)
910 911 pssp->ss_next = tssp;
911 912 else
912 913 stp->sd_siglist = tssp;
913 914 mutex_enter(&pidlock);
914 915 PID_RELE(ssp->ss_pidp);
915 916 mutex_exit(&pidlock);
916 917 kmem_free(ssp, sizeof (strsig_t));
917 918 update = 1;
918 919 ssp = tssp;
919 920 } else {
920 921 pssp = ssp;
921 922 ssp = ssp->ss_next;
922 923 }
923 924 }
924 925 if (update) {
925 926 stp->sd_sigflags = 0;
926 927 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
927 928 stp->sd_sigflags |= ssp->ss_events;
928 929 }
929 930 mutex_exit(&stp->sd_lock);
930 931 }
931 932
932 933 /*
933 934 * Used on the last close to remove any remaining items on the siglist.
934 935 * These could be present on the siglist due to I_ESETSIG calls that
935 936 * use process groups or processed that do not have an open file descriptor
936 937 * for this stream (Such entries would not be removed by strclean).
937 938 */
938 939 static void
939 940 strcleanall(struct vnode *vp)
940 941 {
941 942 strsig_t *ssp, *nssp;
942 943 stdata_t *stp;
943 944
944 945 stp = vp->v_stream;
945 946 mutex_enter(&stp->sd_lock);
946 947 ssp = stp->sd_siglist;
947 948 stp->sd_siglist = NULL;
948 949 while (ssp) {
949 950 nssp = ssp->ss_next;
950 951 mutex_enter(&pidlock);
951 952 PID_RELE(ssp->ss_pidp);
952 953 mutex_exit(&pidlock);
953 954 kmem_free(ssp, sizeof (strsig_t));
954 955 ssp = nssp;
955 956 }
956 957 stp->sd_sigflags = 0;
957 958 mutex_exit(&stp->sd_lock);
958 959 }
959 960
960 961 /*
961 962 * Retrieve the next message from the logical stream head read queue
962 963 * using either rwnext (if sync stream) or getq_noenab.
963 964 * It is the callers responsibility to call qbackenable after
964 965 * it is finished with the message. The caller should not call
965 966 * qbackenable until after any putback calls to avoid spurious backenabling.
966 967 */
967 968 mblk_t *
968 969 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first,
969 970 int *errorp)
970 971 {
971 972 mblk_t *bp;
972 973 int error;
973 974 ssize_t rbytes = 0;
974 975
975 976 /* Holding sd_lock prevents the read queue from changing */
976 977 ASSERT(MUTEX_HELD(&stp->sd_lock));
977 978
|
↓ open down ↓ |
888 lines elided |
↑ open up ↑ |
978 979 if (uiop != NULL && stp->sd_struiordq != NULL &&
979 980 q->q_first == NULL &&
980 981 (!first || (stp->sd_wakeq & RSLEEP))) {
981 982 /*
982 983 * Stream supports rwnext() for the read side.
983 984 * If this is the first time we're called by e.g. strread
984 985 * only do the downcall if there is a deferred wakeup
985 986 * (registered in sd_wakeq).
986 987 */
987 988 struiod_t uiod;
989 + struct iovec buf[IOV_MAX_STACK];
990 + int iovlen = 0;
988 991
989 992 if (first)
990 993 stp->sd_wakeq &= ~RSLEEP;
991 994
992 - (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
993 - sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
995 + if (uiop->uio_iovcnt > IOV_MAX_STACK) {
996 + iovlen = uiop->uio_iovcnt * sizeof (iovec_t);
997 + uiod.d_iov = kmem_alloc(iovlen, KM_SLEEP);
998 + } else {
999 + uiod.d_iov = buf;
1000 + }
1001 +
1002 + (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, uiop->uio_iovcnt);
994 1003 uiod.d_mp = 0;
995 1004 /*
996 1005 * Mark that a thread is in rwnext on the read side
997 1006 * to prevent strrput from nacking ioctls immediately.
998 1007 * When the last concurrent rwnext returns
999 1008 * the ioctls are nack'ed.
1000 1009 */
1001 1010 ASSERT(MUTEX_HELD(&stp->sd_lock));
1002 1011 stp->sd_struiodnak++;
1003 1012 /*
1004 1013 * Note: rwnext will drop sd_lock.
1005 1014 */
1006 1015 error = rwnext(q, &uiod);
1007 1016 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
1008 1017 mutex_enter(&stp->sd_lock);
1009 1018 stp->sd_struiodnak--;
1010 1019 while (stp->sd_struiodnak == 0 &&
1011 1020 ((bp = stp->sd_struionak) != NULL)) {
1012 1021 stp->sd_struionak = bp->b_next;
1013 1022 bp->b_next = NULL;
1014 1023 bp->b_datap->db_type = M_IOCNAK;
1015 1024 /*
1016 1025 * Protect against the driver passing up
1017 1026 * messages after it has done a qprocsoff.
1018 1027 */
1019 1028 if (_OTHERQ(q)->q_next == NULL)
1020 1029 freemsg(bp);
1021 1030 else {
|
↓ open down ↓ |
18 lines elided |
↑ open up ↑ |
1022 1031 mutex_exit(&stp->sd_lock);
1023 1032 qreply(q, bp);
1024 1033 mutex_enter(&stp->sd_lock);
1025 1034 }
1026 1035 }
1027 1036 ASSERT(MUTEX_HELD(&stp->sd_lock));
1028 1037 if (error == 0 || error == EWOULDBLOCK) {
1029 1038 if ((bp = uiod.d_mp) != NULL) {
1030 1039 *errorp = 0;
1031 1040 ASSERT(MUTEX_HELD(&stp->sd_lock));
1041 + if (iovlen != 0)
1042 + kmem_free(uiod.d_iov, iovlen);
1032 1043 return (bp);
1033 1044 }
1034 1045 error = 0;
1035 1046 } else if (error == EINVAL) {
1036 1047 /*
1037 1048 * The stream plumbing must have
1038 1049 * changed while we were away, so
1039 1050 * just turn off rwnext()s.
1040 1051 */
1041 1052 error = 0;
1042 1053 } else if (error == EBUSY) {
1043 1054 /*
1044 1055 * The module might have data in transit using putnext
1045 1056 * Fall back on waiting + getq.
1046 1057 */
1047 1058 error = 0;
1048 1059 } else {
1049 1060 *errorp = error;
1050 1061 ASSERT(MUTEX_HELD(&stp->sd_lock));
1062 + if (iovlen != 0)
1063 + kmem_free(uiod.d_iov, iovlen);
1051 1064 return (NULL);
1052 1065 }
1066 +
1067 + if (iovlen != 0)
1068 + kmem_free(uiod.d_iov, iovlen);
1069 +
1053 1070 /*
1054 1071 * Try a getq in case a rwnext() generated mblk
1055 1072 * has bubbled up via strrput().
1056 1073 */
1057 1074 }
1058 1075 *errorp = 0;
1059 1076 ASSERT(MUTEX_HELD(&stp->sd_lock));
1060 1077
1061 1078 /*
1062 1079 * If we have a valid uio, try and use this as a guide for how
1063 1080 * many bytes to retrieve from the queue via getq_noenab().
1064 1081 * Doing this can avoid unneccesary counting of overlong
1065 1082 * messages in putback(). We currently only do this for sockets
1066 1083 * and only if there is no sd_rputdatafunc hook.
1067 1084 *
1068 1085 * The sd_rputdatafunc hook transforms the entire message
1069 1086 * before any bytes in it can be given to a client. So, rbytes
1070 1087 * must be 0 if there is a hook.
1071 1088 */
1072 1089 if ((uiop != NULL) && (stp->sd_vnode->v_type == VSOCK) &&
1073 1090 (stp->sd_rputdatafunc == NULL))
1074 1091 rbytes = uiop->uio_resid;
1075 1092
1076 1093 return (getq_noenab(q, rbytes));
1077 1094 }
1078 1095
1079 1096 /*
1080 1097 * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'.
1081 1098 * If the message does not fit in the uio the remainder of it is returned;
1082 1099 * otherwise NULL is returned. Any embedded zero-length mblk_t's are
1083 1100 * consumed, even if uio_resid reaches zero. On error, `*errorp' is set to
1084 1101 * the error code, the message is consumed, and NULL is returned.
1085 1102 */
1086 1103 static mblk_t *
1087 1104 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp)
1088 1105 {
1089 1106 int error;
1090 1107 ptrdiff_t n;
1091 1108 mblk_t *nbp;
1092 1109
1093 1110 ASSERT(bp->b_wptr >= bp->b_rptr);
1094 1111
1095 1112 do {
1096 1113 if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) {
1097 1114 ASSERT(n > 0);
1098 1115
1099 1116 error = uiomove(bp->b_rptr, n, UIO_READ, uiop);
1100 1117 if (error != 0) {
1101 1118 freemsg(bp);
1102 1119 *errorp = error;
1103 1120 return (NULL);
1104 1121 }
1105 1122 }
1106 1123
1107 1124 bp->b_rptr += n;
1108 1125 while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) {
1109 1126 nbp = bp;
1110 1127 bp = bp->b_cont;
1111 1128 freeb(nbp);
1112 1129 }
1113 1130 } while (bp != NULL && uiop->uio_resid > 0);
1114 1131
1115 1132 *errorp = 0;
1116 1133 return (bp);
1117 1134 }
1118 1135
1119 1136 /*
1120 1137 * Read a stream according to the mode flags in sd_flag:
1121 1138 *
1122 1139 * (default mode) - Byte stream, msg boundaries are ignored
1123 1140 * RD_MSGDIS (msg discard) - Read on msg boundaries and throw away
1124 1141 * any data remaining in msg
1125 1142 * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back
1126 1143 * any remaining data on head of read queue
1127 1144 *
1128 1145 * Consume readable messages on the front of the queue until
1129 1146 * ttolwp(curthread)->lwp_count
1130 1147 * is satisfied, the readable messages are exhausted, or a message
1131 1148 * boundary is reached in a message mode. If no data was read and
1132 1149 * the stream was not opened with the NDELAY flag, block until data arrives.
1133 1150 * Otherwise return the data read and update the count.
1134 1151 *
1135 1152 * In default mode a 0 length message signifies end-of-file and terminates
1136 1153 * a read in progress. The 0 length message is removed from the queue
1137 1154 * only if it is the only message read (no data is read).
1138 1155 *
1139 1156 * An attempt to read an M_PROTO or M_PCPROTO message results in an
1140 1157 * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set.
1141 1158 * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data.
1142 1159 * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message
1143 1160 * are unlinked from and M_DATA blocks in the message, the protos are
1144 1161 * thrown away, and the data is read.
1145 1162 */
1146 1163 /* ARGSUSED */
1147 1164 int
1148 1165 strread(struct vnode *vp, struct uio *uiop, cred_t *crp)
1149 1166 {
1150 1167 struct stdata *stp;
1151 1168 mblk_t *bp, *nbp;
1152 1169 queue_t *q;
1153 1170 int error = 0;
1154 1171 uint_t old_sd_flag;
1155 1172 int first;
1156 1173 char rflg;
1157 1174 uint_t mark; /* Contains MSG*MARK and _LASTMARK */
1158 1175 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */
1159 1176 short delim;
1160 1177 unsigned char pri = 0;
1161 1178 char waitflag;
1162 1179 unsigned char type;
1163 1180
1164 1181 TRACE_1(TR_FAC_STREAMS_FR,
1165 1182 TR_STRREAD_ENTER, "strread:%p", vp);
1166 1183 ASSERT(vp->v_stream);
1167 1184 stp = vp->v_stream;
1168 1185
1169 1186 mutex_enter(&stp->sd_lock);
1170 1187
1171 1188 if ((error = i_straccess(stp, JCREAD)) != 0) {
1172 1189 mutex_exit(&stp->sd_lock);
1173 1190 return (error);
1174 1191 }
1175 1192
1176 1193 if (stp->sd_flag & (STRDERR|STPLEX)) {
1177 1194 error = strgeterr(stp, STRDERR|STPLEX, 0);
1178 1195 if (error != 0) {
1179 1196 mutex_exit(&stp->sd_lock);
1180 1197 return (error);
1181 1198 }
1182 1199 }
1183 1200
1184 1201 /*
1185 1202 * Loop terminates when uiop->uio_resid == 0.
1186 1203 */
1187 1204 rflg = 0;
1188 1205 waitflag = READWAIT;
1189 1206 q = _RD(stp->sd_wrq);
1190 1207 for (;;) {
1191 1208 ASSERT(MUTEX_HELD(&stp->sd_lock));
1192 1209 old_sd_flag = stp->sd_flag;
1193 1210 mark = 0;
1194 1211 delim = 0;
1195 1212 first = 1;
1196 1213 while ((bp = strget(stp, q, uiop, first, &error)) == NULL) {
1197 1214 int done = 0;
1198 1215
1199 1216 ASSERT(MUTEX_HELD(&stp->sd_lock));
1200 1217
1201 1218 if (error != 0)
1202 1219 goto oops;
1203 1220
1204 1221 if (stp->sd_flag & (STRHUP|STREOF)) {
1205 1222 goto oops;
1206 1223 }
1207 1224 if (rflg && !(stp->sd_flag & STRDELIM)) {
1208 1225 goto oops;
1209 1226 }
1210 1227 /*
1211 1228 * If a read(fd,buf,0) has been done, there is no
1212 1229 * need to sleep. We always have zero bytes to
1213 1230 * return.
1214 1231 */
1215 1232 if (uiop->uio_resid == 0) {
1216 1233 goto oops;
1217 1234 }
1218 1235
1219 1236 qbackenable(q, 0);
1220 1237
1221 1238 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT,
1222 1239 "strread calls strwaitq:%p, %p, %p",
1223 1240 vp, uiop, crp);
1224 1241 if ((error = strwaitq(stp, waitflag, uiop->uio_resid,
1225 1242 uiop->uio_fmode, -1, &done)) != 0 || done) {
1226 1243 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE,
1227 1244 "strread error or done:%p, %p, %p",
1228 1245 vp, uiop, crp);
1229 1246 if ((uiop->uio_fmode & FNDELAY) &&
1230 1247 (stp->sd_flag & OLDNDELAY) &&
1231 1248 (error == EAGAIN))
1232 1249 error = 0;
1233 1250 goto oops;
1234 1251 }
1235 1252 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE,
1236 1253 "strread awakes:%p, %p, %p", vp, uiop, crp);
1237 1254 if ((error = i_straccess(stp, JCREAD)) != 0) {
1238 1255 goto oops;
1239 1256 }
1240 1257 first = 0;
1241 1258 }
1242 1259
1243 1260 ASSERT(MUTEX_HELD(&stp->sd_lock));
1244 1261 ASSERT(bp);
1245 1262 pri = bp->b_band;
1246 1263 /*
1247 1264 * Extract any mark information. If the message is not
1248 1265 * completely consumed this information will be put in the mblk
1249 1266 * that is putback.
1250 1267 * If MSGMARKNEXT is set and the message is completely consumed
1251 1268 * the STRATMARK flag will be set below. Likewise, if
1252 1269 * MSGNOTMARKNEXT is set and the message is
1253 1270 * completely consumed STRNOTATMARK will be set.
1254 1271 *
1255 1272 * For some unknown reason strread only breaks the read at the
1256 1273 * last mark.
1257 1274 */
1258 1275 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
1259 1276 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
1260 1277 (MSGMARKNEXT|MSGNOTMARKNEXT));
1261 1278 if (mark != 0 && bp == stp->sd_mark) {
1262 1279 if (rflg) {
1263 1280 putback(stp, q, bp, pri);
1264 1281 goto oops;
1265 1282 }
1266 1283 mark |= _LASTMARK;
1267 1284 stp->sd_mark = NULL;
1268 1285 }
1269 1286 if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM))
1270 1287 delim = 1;
1271 1288 mutex_exit(&stp->sd_lock);
1272 1289
1273 1290 if (STREAM_NEEDSERVICE(stp))
1274 1291 stream_runservice(stp);
1275 1292
1276 1293 type = bp->b_datap->db_type;
1277 1294
1278 1295 switch (type) {
1279 1296
1280 1297 case M_DATA:
1281 1298 ismdata:
1282 1299 if (msgnodata(bp)) {
1283 1300 if (mark || delim) {
1284 1301 freemsg(bp);
1285 1302 } else if (rflg) {
1286 1303
1287 1304 /*
1288 1305 * If already read data put zero
1289 1306 * length message back on queue else
1290 1307 * free msg and return 0.
1291 1308 */
1292 1309 bp->b_band = pri;
1293 1310 mutex_enter(&stp->sd_lock);
1294 1311 putback(stp, q, bp, pri);
1295 1312 mutex_exit(&stp->sd_lock);
1296 1313 } else {
1297 1314 freemsg(bp);
1298 1315 }
1299 1316 error = 0;
1300 1317 goto oops1;
1301 1318 }
1302 1319
1303 1320 rflg = 1;
1304 1321 waitflag |= NOINTR;
1305 1322 bp = struiocopyout(bp, uiop, &error);
1306 1323 if (error != 0)
1307 1324 goto oops1;
1308 1325
1309 1326 mutex_enter(&stp->sd_lock);
1310 1327 if (bp) {
1311 1328 /*
1312 1329 * Have remaining data in message.
1313 1330 * Free msg if in discard mode.
1314 1331 */
1315 1332 if (stp->sd_read_opt & RD_MSGDIS) {
1316 1333 freemsg(bp);
1317 1334 } else {
1318 1335 bp->b_band = pri;
1319 1336 if ((mark & _LASTMARK) &&
1320 1337 (stp->sd_mark == NULL))
1321 1338 stp->sd_mark = bp;
1322 1339 bp->b_flag |= mark & ~_LASTMARK;
1323 1340 if (delim)
1324 1341 bp->b_flag |= MSGDELIM;
1325 1342 if (msgnodata(bp))
1326 1343 freemsg(bp);
1327 1344 else
1328 1345 putback(stp, q, bp, pri);
1329 1346 }
1330 1347 } else {
1331 1348 /*
1332 1349 * Consumed the complete message.
1333 1350 * Move the MSG*MARKNEXT information
1334 1351 * to the stream head just in case
1335 1352 * the read queue becomes empty.
1336 1353 *
1337 1354 * If the stream head was at the mark
1338 1355 * (STRATMARK) before we dropped sd_lock above
1339 1356 * and some data was consumed then we have
1340 1357 * moved past the mark thus STRATMARK is
1341 1358 * cleared. However, if a message arrived in
1342 1359 * strrput during the copyout above causing
1343 1360 * STRATMARK to be set we can not clear that
1344 1361 * flag.
1345 1362 */
1346 1363 if (mark &
1347 1364 (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
1348 1365 if (mark & MSGMARKNEXT) {
1349 1366 stp->sd_flag &= ~STRNOTATMARK;
1350 1367 stp->sd_flag |= STRATMARK;
1351 1368 } else if (mark & MSGNOTMARKNEXT) {
1352 1369 stp->sd_flag &= ~STRATMARK;
1353 1370 stp->sd_flag |= STRNOTATMARK;
1354 1371 } else {
1355 1372 stp->sd_flag &=
1356 1373 ~(STRATMARK|STRNOTATMARK);
1357 1374 }
1358 1375 } else if (rflg && (old_sd_flag & STRATMARK)) {
1359 1376 stp->sd_flag &= ~STRATMARK;
1360 1377 }
1361 1378 }
1362 1379
1363 1380 /*
1364 1381 * Check for signal messages at the front of the read
1365 1382 * queue and generate the signal(s) if appropriate.
1366 1383 * The only signal that can be on queue is M_SIG at
1367 1384 * this point.
1368 1385 */
1369 1386 while ((((bp = q->q_first)) != NULL) &&
1370 1387 (bp->b_datap->db_type == M_SIG)) {
1371 1388 bp = getq_noenab(q, 0);
1372 1389 /*
1373 1390 * sd_lock is held so the content of the
1374 1391 * read queue can not change.
1375 1392 */
1376 1393 ASSERT(bp != NULL && DB_TYPE(bp) == M_SIG);
1377 1394 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
1378 1395 mutex_exit(&stp->sd_lock);
1379 1396 freemsg(bp);
1380 1397 if (STREAM_NEEDSERVICE(stp))
1381 1398 stream_runservice(stp);
1382 1399 mutex_enter(&stp->sd_lock);
1383 1400 }
1384 1401
1385 1402 if ((uiop->uio_resid == 0) || (mark & _LASTMARK) ||
1386 1403 delim ||
1387 1404 (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) {
1388 1405 goto oops;
1389 1406 }
1390 1407 continue;
1391 1408
1392 1409 case M_SIG:
1393 1410 strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band);
1394 1411 freemsg(bp);
1395 1412 mutex_enter(&stp->sd_lock);
1396 1413 continue;
1397 1414
1398 1415 case M_PROTO:
1399 1416 case M_PCPROTO:
1400 1417 /*
1401 1418 * Only data messages are readable.
1402 1419 * Any others generate an error, unless
1403 1420 * RD_PROTDIS or RD_PROTDAT is set.
1404 1421 */
1405 1422 if (stp->sd_read_opt & RD_PROTDAT) {
1406 1423 for (nbp = bp; nbp; nbp = nbp->b_next) {
1407 1424 if ((nbp->b_datap->db_type ==
1408 1425 M_PROTO) ||
1409 1426 (nbp->b_datap->db_type ==
1410 1427 M_PCPROTO)) {
1411 1428 nbp->b_datap->db_type = M_DATA;
1412 1429 } else {
1413 1430 break;
1414 1431 }
1415 1432 }
1416 1433 /*
1417 1434 * clear stream head hi pri flag based on
1418 1435 * first message
1419 1436 */
1420 1437 if (type == M_PCPROTO) {
1421 1438 mutex_enter(&stp->sd_lock);
1422 1439 stp->sd_flag &= ~STRPRI;
1423 1440 mutex_exit(&stp->sd_lock);
1424 1441 }
1425 1442 goto ismdata;
1426 1443 } else if (stp->sd_read_opt & RD_PROTDIS) {
1427 1444 /*
1428 1445 * discard non-data messages
1429 1446 */
1430 1447 while (bp &&
1431 1448 ((bp->b_datap->db_type == M_PROTO) ||
1432 1449 (bp->b_datap->db_type == M_PCPROTO))) {
1433 1450 nbp = unlinkb(bp);
1434 1451 freeb(bp);
1435 1452 bp = nbp;
1436 1453 }
1437 1454 /*
1438 1455 * clear stream head hi pri flag based on
1439 1456 * first message
1440 1457 */
1441 1458 if (type == M_PCPROTO) {
1442 1459 mutex_enter(&stp->sd_lock);
1443 1460 stp->sd_flag &= ~STRPRI;
1444 1461 mutex_exit(&stp->sd_lock);
1445 1462 }
1446 1463 if (bp) {
1447 1464 bp->b_band = pri;
1448 1465 goto ismdata;
1449 1466 } else {
1450 1467 break;
1451 1468 }
1452 1469 }
1453 1470 /* FALLTHRU */
1454 1471 case M_PASSFP:
1455 1472 if ((bp->b_datap->db_type == M_PASSFP) &&
1456 1473 (stp->sd_read_opt & RD_PROTDIS)) {
1457 1474 freemsg(bp);
1458 1475 break;
1459 1476 }
1460 1477 mutex_enter(&stp->sd_lock);
1461 1478 putback(stp, q, bp, pri);
1462 1479 mutex_exit(&stp->sd_lock);
1463 1480 if (rflg == 0)
1464 1481 error = EBADMSG;
1465 1482 goto oops1;
1466 1483
1467 1484 default:
1468 1485 /*
1469 1486 * Garbage on stream head read queue.
1470 1487 */
1471 1488 cmn_err(CE_WARN, "bad %x found at stream head\n",
1472 1489 bp->b_datap->db_type);
1473 1490 freemsg(bp);
1474 1491 goto oops1;
1475 1492 }
1476 1493 mutex_enter(&stp->sd_lock);
1477 1494 }
1478 1495 oops:
1479 1496 mutex_exit(&stp->sd_lock);
1480 1497 oops1:
1481 1498 qbackenable(q, pri);
1482 1499 return (error);
1483 1500 #undef _LASTMARK
1484 1501 }
1485 1502
1486 1503 /*
1487 1504 * Default processing of M_PROTO/M_PCPROTO messages.
1488 1505 * Determine which wakeups and signals are needed.
1489 1506 * This can be replaced by a user-specified procedure for kernel users
1490 1507 * of STREAMS.
1491 1508 */
1492 1509 /* ARGSUSED */
1493 1510 mblk_t *
1494 1511 strrput_proto(vnode_t *vp, mblk_t *mp,
1495 1512 strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1496 1513 strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1497 1514 {
1498 1515 *wakeups = RSLEEP;
1499 1516 *allmsgsigs = 0;
1500 1517
1501 1518 switch (mp->b_datap->db_type) {
1502 1519 case M_PROTO:
1503 1520 if (mp->b_band == 0) {
1504 1521 *firstmsgsigs = S_INPUT | S_RDNORM;
1505 1522 *pollwakeups = POLLIN | POLLRDNORM;
1506 1523 } else {
1507 1524 *firstmsgsigs = S_INPUT | S_RDBAND;
1508 1525 *pollwakeups = POLLIN | POLLRDBAND;
1509 1526 }
1510 1527 break;
1511 1528 case M_PCPROTO:
1512 1529 *firstmsgsigs = S_HIPRI;
1513 1530 *pollwakeups = POLLPRI;
1514 1531 break;
1515 1532 }
1516 1533 return (mp);
1517 1534 }
1518 1535
1519 1536 /*
1520 1537 * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and
1521 1538 * M_PASSFP messages.
1522 1539 * Determine which wakeups and signals are needed.
1523 1540 * This can be replaced by a user-specified procedure for kernel users
1524 1541 * of STREAMS.
1525 1542 */
1526 1543 /* ARGSUSED */
1527 1544 mblk_t *
1528 1545 strrput_misc(vnode_t *vp, mblk_t *mp,
1529 1546 strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1530 1547 strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1531 1548 {
1532 1549 *wakeups = 0;
1533 1550 *firstmsgsigs = 0;
1534 1551 *allmsgsigs = 0;
1535 1552 *pollwakeups = 0;
1536 1553 return (mp);
1537 1554 }
1538 1555
1539 1556 /*
1540 1557 * Stream read put procedure. Called from downstream driver/module
1541 1558 * with messages for the stream head. Data, protocol, and in-stream
1542 1559 * signal messages are placed on the queue, others are handled directly.
1543 1560 */
1544 1561 int
1545 1562 strrput(queue_t *q, mblk_t *bp)
1546 1563 {
1547 1564 struct stdata *stp;
1548 1565 ulong_t rput_opt;
1549 1566 strwakeup_t wakeups;
1550 1567 strsigset_t firstmsgsigs; /* Signals if first message on queue */
1551 1568 strsigset_t allmsgsigs; /* Signals for all messages */
1552 1569 strsigset_t signals; /* Signals events to generate */
1553 1570 strpollset_t pollwakeups;
1554 1571 mblk_t *nextbp;
1555 1572 uchar_t band = 0;
1556 1573 int hipri_sig;
1557 1574
1558 1575 stp = (struct stdata *)q->q_ptr;
1559 1576 /*
1560 1577 * Use rput_opt for optimized access to the SR_ flags except
1561 1578 * SR_POLLIN. That flag has to be checked under sd_lock since it
1562 1579 * is modified by strpoll().
1563 1580 */
1564 1581 rput_opt = stp->sd_rput_opt;
1565 1582
1566 1583 ASSERT(qclaimed(q));
1567 1584 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER,
1568 1585 "strrput called with message type:q %p bp %p", q, bp);
1569 1586
1570 1587 /*
1571 1588 * Perform initial processing and pass to the parameterized functions.
1572 1589 */
1573 1590 ASSERT(bp->b_next == NULL);
1574 1591
1575 1592 switch (bp->b_datap->db_type) {
1576 1593 case M_DATA:
1577 1594 /*
1578 1595 * sockfs is the only consumer of STREOF and when it is set,
1579 1596 * it implies that the receiver is not interested in receiving
1580 1597 * any more data, hence the mblk is freed to prevent unnecessary
1581 1598 * message queueing at the stream head.
1582 1599 */
1583 1600 if (stp->sd_flag == STREOF) {
1584 1601 freemsg(bp);
1585 1602 return (0);
1586 1603 }
1587 1604 if ((rput_opt & SR_IGN_ZEROLEN) &&
1588 1605 bp->b_rptr == bp->b_wptr && msgnodata(bp)) {
1589 1606 /*
1590 1607 * Ignore zero-length M_DATA messages. These might be
1591 1608 * generated by some transports.
1592 1609 * The zero-length M_DATA messages, even if they
1593 1610 * are ignored, should effect the atmark tracking and
1594 1611 * should wake up a thread sleeping in strwaitmark.
1595 1612 */
1596 1613 mutex_enter(&stp->sd_lock);
1597 1614 if (bp->b_flag & MSGMARKNEXT) {
1598 1615 /*
1599 1616 * Record the position of the mark either
1600 1617 * in q_last or in STRATMARK.
1601 1618 */
1602 1619 if (q->q_last != NULL) {
1603 1620 q->q_last->b_flag &= ~MSGNOTMARKNEXT;
1604 1621 q->q_last->b_flag |= MSGMARKNEXT;
1605 1622 } else {
1606 1623 stp->sd_flag &= ~STRNOTATMARK;
1607 1624 stp->sd_flag |= STRATMARK;
1608 1625 }
1609 1626 } else if (bp->b_flag & MSGNOTMARKNEXT) {
1610 1627 /*
1611 1628 * Record that this is not the position of
1612 1629 * the mark either in q_last or in
1613 1630 * STRNOTATMARK.
1614 1631 */
1615 1632 if (q->q_last != NULL) {
1616 1633 q->q_last->b_flag &= ~MSGMARKNEXT;
1617 1634 q->q_last->b_flag |= MSGNOTMARKNEXT;
1618 1635 } else {
1619 1636 stp->sd_flag &= ~STRATMARK;
1620 1637 stp->sd_flag |= STRNOTATMARK;
1621 1638 }
1622 1639 }
1623 1640 if (stp->sd_flag & RSLEEP) {
1624 1641 stp->sd_flag &= ~RSLEEP;
1625 1642 cv_broadcast(&q->q_wait);
1626 1643 }
1627 1644 mutex_exit(&stp->sd_lock);
1628 1645 freemsg(bp);
1629 1646 return (0);
1630 1647 }
1631 1648 wakeups = RSLEEP;
1632 1649 if (bp->b_band == 0) {
1633 1650 firstmsgsigs = S_INPUT | S_RDNORM;
1634 1651 pollwakeups = POLLIN | POLLRDNORM;
1635 1652 } else {
1636 1653 firstmsgsigs = S_INPUT | S_RDBAND;
1637 1654 pollwakeups = POLLIN | POLLRDBAND;
1638 1655 }
1639 1656 if (rput_opt & SR_SIGALLDATA)
1640 1657 allmsgsigs = firstmsgsigs;
1641 1658 else
1642 1659 allmsgsigs = 0;
1643 1660
1644 1661 mutex_enter(&stp->sd_lock);
1645 1662 if ((rput_opt & SR_CONSOL_DATA) &&
1646 1663 (q->q_last != NULL) &&
1647 1664 (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) {
1648 1665 /*
1649 1666 * Consolidate an M_DATA message onto an M_DATA,
1650 1667 * M_PROTO, or M_PCPROTO by merging it with q_last.
1651 1668 * The consolidation does not take place if
1652 1669 * the old message is marked with either of the
1653 1670 * marks or the delim flag or if the new
1654 1671 * message is marked with MSGMARK. The MSGMARK
1655 1672 * check is needed to handle the odd semantics of
1656 1673 * MSGMARK where essentially the whole message
1657 1674 * is to be treated as marked.
1658 1675 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from the
1659 1676 * new message to the front of the b_cont chain.
1660 1677 */
1661 1678 mblk_t *lbp = q->q_last;
1662 1679 unsigned char db_type = lbp->b_datap->db_type;
1663 1680
1664 1681 if ((db_type == M_DATA || db_type == M_PROTO ||
1665 1682 db_type == M_PCPROTO) &&
1666 1683 !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) {
1667 1684 rmvq_noenab(q, lbp);
1668 1685 /*
1669 1686 * The first message in the b_cont list
1670 1687 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
1671 1688 * We need to handle the case where we
1672 1689 * are appending:
1673 1690 *
1674 1691 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
1675 1692 * 2) a MSGMARKNEXT to a plain message.
1676 1693 * 3) a MSGNOTMARKNEXT to a plain message
1677 1694 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
1678 1695 * message.
1679 1696 *
1680 1697 * Thus we never append a MSGMARKNEXT or
1681 1698 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
1682 1699 */
1683 1700 if (bp->b_flag & MSGMARKNEXT) {
1684 1701 lbp->b_flag |= MSGMARKNEXT;
1685 1702 lbp->b_flag &= ~MSGNOTMARKNEXT;
1686 1703 bp->b_flag &= ~MSGMARKNEXT;
1687 1704 } else if (bp->b_flag & MSGNOTMARKNEXT) {
1688 1705 lbp->b_flag |= MSGNOTMARKNEXT;
1689 1706 bp->b_flag &= ~MSGNOTMARKNEXT;
1690 1707 }
1691 1708
1692 1709 linkb(lbp, bp);
1693 1710 bp = lbp;
1694 1711 /*
1695 1712 * The new message logically isn't the first
1696 1713 * even though the q_first check below thinks
1697 1714 * it is. Clear the firstmsgsigs to make it
1698 1715 * not appear to be first.
1699 1716 */
1700 1717 firstmsgsigs = 0;
1701 1718 }
1702 1719 }
1703 1720 break;
1704 1721
1705 1722 case M_PASSFP:
1706 1723 wakeups = RSLEEP;
1707 1724 allmsgsigs = 0;
1708 1725 if (bp->b_band == 0) {
1709 1726 firstmsgsigs = S_INPUT | S_RDNORM;
1710 1727 pollwakeups = POLLIN | POLLRDNORM;
1711 1728 } else {
1712 1729 firstmsgsigs = S_INPUT | S_RDBAND;
1713 1730 pollwakeups = POLLIN | POLLRDBAND;
1714 1731 }
1715 1732 mutex_enter(&stp->sd_lock);
1716 1733 break;
1717 1734
1718 1735 case M_PROTO:
1719 1736 case M_PCPROTO:
1720 1737 ASSERT(stp->sd_rprotofunc != NULL);
1721 1738 bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp,
1722 1739 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1723 1740 #define ALLSIG (S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\
1724 1741 S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)
1725 1742 #define ALLPOLL (POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\
1726 1743 POLLWRBAND)
1727 1744
1728 1745 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1729 1746 ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1730 1747 ASSERT((allmsgsigs & ~ALLSIG) == 0);
1731 1748 ASSERT((pollwakeups & ~ALLPOLL) == 0);
1732 1749
1733 1750 mutex_enter(&stp->sd_lock);
1734 1751 break;
1735 1752
1736 1753 default:
1737 1754 ASSERT(stp->sd_rmiscfunc != NULL);
1738 1755 bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp,
1739 1756 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1740 1757 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1741 1758 ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1742 1759 ASSERT((allmsgsigs & ~ALLSIG) == 0);
1743 1760 ASSERT((pollwakeups & ~ALLPOLL) == 0);
1744 1761 #undef ALLSIG
1745 1762 #undef ALLPOLL
1746 1763 mutex_enter(&stp->sd_lock);
1747 1764 break;
1748 1765 }
1749 1766 ASSERT(MUTEX_HELD(&stp->sd_lock));
1750 1767
1751 1768 /* By default generate superset of signals */
1752 1769 signals = (firstmsgsigs | allmsgsigs);
1753 1770
1754 1771 /*
1755 1772 * The proto and misc functions can return multiple messages
1756 1773 * as a b_next chain. Such messages are processed separately.
1757 1774 */
1758 1775 one_more:
1759 1776 hipri_sig = 0;
1760 1777 if (bp == NULL) {
1761 1778 nextbp = NULL;
1762 1779 } else {
1763 1780 nextbp = bp->b_next;
1764 1781 bp->b_next = NULL;
1765 1782
1766 1783 switch (bp->b_datap->db_type) {
1767 1784 case M_PCPROTO:
1768 1785 /*
1769 1786 * Only one priority protocol message is allowed at the
1770 1787 * stream head at a time.
1771 1788 */
1772 1789 if (stp->sd_flag & STRPRI) {
1773 1790 TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR,
1774 1791 "M_PCPROTO already at head");
1775 1792 freemsg(bp);
1776 1793 mutex_exit(&stp->sd_lock);
1777 1794 goto done;
1778 1795 }
1779 1796 stp->sd_flag |= STRPRI;
1780 1797 hipri_sig = 1;
1781 1798 /* FALLTHRU */
1782 1799 case M_DATA:
1783 1800 case M_PROTO:
1784 1801 case M_PASSFP:
1785 1802 band = bp->b_band;
1786 1803 /*
1787 1804 * Marking doesn't work well when messages
1788 1805 * are marked in more than one band. We only
1789 1806 * remember the last message received, even if
1790 1807 * it is placed on the queue ahead of other
1791 1808 * marked messages.
1792 1809 */
1793 1810 if (bp->b_flag & MSGMARK)
1794 1811 stp->sd_mark = bp;
1795 1812 (void) putq(q, bp);
1796 1813
1797 1814 /*
1798 1815 * If message is a PCPROTO message, always use
1799 1816 * firstmsgsigs to determine if a signal should be
1800 1817 * sent as strrput is the only place to send
1801 1818 * signals for PCPROTO. Other messages are based on
1802 1819 * the STRGETINPROG flag. The flag determines if
1803 1820 * strrput or (k)strgetmsg will be responsible for
1804 1821 * sending the signals, in the firstmsgsigs case.
1805 1822 */
1806 1823 if ((hipri_sig == 1) ||
1807 1824 (((stp->sd_flag & STRGETINPROG) == 0) &&
1808 1825 (q->q_first == bp)))
1809 1826 signals = (firstmsgsigs | allmsgsigs);
1810 1827 else
1811 1828 signals = allmsgsigs;
1812 1829 break;
1813 1830
1814 1831 default:
1815 1832 mutex_exit(&stp->sd_lock);
1816 1833 (void) strrput_nondata(q, bp);
1817 1834 mutex_enter(&stp->sd_lock);
1818 1835 break;
1819 1836 }
1820 1837 }
1821 1838 ASSERT(MUTEX_HELD(&stp->sd_lock));
1822 1839 /*
1823 1840 * Wake sleeping read/getmsg and cancel deferred wakeup
1824 1841 */
1825 1842 if (wakeups & RSLEEP)
1826 1843 stp->sd_wakeq &= ~RSLEEP;
1827 1844
1828 1845 wakeups &= stp->sd_flag;
1829 1846 if (wakeups & RSLEEP) {
1830 1847 stp->sd_flag &= ~RSLEEP;
1831 1848 cv_broadcast(&q->q_wait);
1832 1849 }
1833 1850 if (wakeups & WSLEEP) {
1834 1851 stp->sd_flag &= ~WSLEEP;
1835 1852 cv_broadcast(&_WR(q)->q_wait);
1836 1853 }
1837 1854
1838 1855 if (pollwakeups != 0) {
1839 1856 if (pollwakeups == (POLLIN | POLLRDNORM)) {
1840 1857 /*
1841 1858 * Can't use rput_opt since it was not
1842 1859 * read when sd_lock was held and SR_POLLIN is changed
1843 1860 * by strpoll() under sd_lock.
1844 1861 */
1845 1862 if (!(stp->sd_rput_opt & SR_POLLIN))
1846 1863 goto no_pollwake;
1847 1864 stp->sd_rput_opt &= ~SR_POLLIN;
1848 1865 }
1849 1866 mutex_exit(&stp->sd_lock);
1850 1867 pollwakeup(&stp->sd_pollist, pollwakeups);
1851 1868 mutex_enter(&stp->sd_lock);
1852 1869 }
1853 1870 no_pollwake:
1854 1871
1855 1872 /*
1856 1873 * strsendsig can handle multiple signals with a
1857 1874 * single call.
1858 1875 */
1859 1876 if (stp->sd_sigflags & signals)
1860 1877 strsendsig(stp->sd_siglist, signals, band, 0);
1861 1878 mutex_exit(&stp->sd_lock);
1862 1879
1863 1880
1864 1881 done:
1865 1882 if (nextbp == NULL)
1866 1883 return (0);
1867 1884
1868 1885 /*
1869 1886 * Any signals were handled the first time.
1870 1887 * Wakeups and pollwakeups are redone to avoid any race
1871 1888 * conditions - all the messages are not queued until the
1872 1889 * last message has been processed by strrput.
1873 1890 */
1874 1891 bp = nextbp;
1875 1892 signals = firstmsgsigs = allmsgsigs = 0;
1876 1893 mutex_enter(&stp->sd_lock);
1877 1894 goto one_more;
1878 1895 }
1879 1896
1880 1897 static void
1881 1898 log_dupioc(queue_t *rq, mblk_t *bp)
1882 1899 {
1883 1900 queue_t *wq, *qp;
1884 1901 char *modnames, *mnp, *dname;
1885 1902 size_t maxmodstr;
1886 1903 boolean_t islast;
1887 1904
1888 1905 /*
1889 1906 * Allocate a buffer large enough to hold the names of nstrpush modules
1890 1907 * and one driver, with spaces between and NUL terminator. If we can't
1891 1908 * get memory, then we'll just log the driver name.
1892 1909 */
1893 1910 maxmodstr = nstrpush * (FMNAMESZ + 1);
1894 1911 mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP);
1895 1912
1896 1913 /* march down write side to print log message down to the driver */
1897 1914 wq = WR(rq);
1898 1915
1899 1916 /* make sure q_next doesn't shift around while we're grabbing data */
1900 1917 claimstr(wq);
1901 1918 qp = wq->q_next;
1902 1919 do {
1903 1920 dname = Q2NAME(qp);
1904 1921 islast = !SAMESTR(qp) || qp->q_next == NULL;
1905 1922 if (modnames == NULL) {
1906 1923 /*
1907 1924 * If we don't have memory, then get the driver name in
1908 1925 * the log where we can see it. Note that memory
1909 1926 * pressure is a possible cause of these sorts of bugs.
1910 1927 */
1911 1928 if (islast) {
1912 1929 modnames = dname;
1913 1930 maxmodstr = 0;
1914 1931 }
1915 1932 } else {
1916 1933 mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname);
1917 1934 if (!islast)
1918 1935 *mnp++ = ' ';
1919 1936 }
1920 1937 qp = qp->q_next;
1921 1938 } while (!islast);
1922 1939 releasestr(wq);
1923 1940 /* Cannot happen unless stream head is corrupt. */
1924 1941 ASSERT(modnames != NULL);
1925 1942 (void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1,
1926 1943 SL_CONSOLE|SL_TRACE|SL_ERROR,
1927 1944 "Warning: stream %p received duplicate %X M_IOC%s; module list: %s",
1928 1945 rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd,
1929 1946 (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames);
1930 1947 if (maxmodstr != 0)
1931 1948 kmem_free(modnames, maxmodstr);
1932 1949 }
1933 1950
1934 1951 int
1935 1952 strrput_nondata(queue_t *q, mblk_t *bp)
1936 1953 {
1937 1954 struct stdata *stp;
1938 1955 struct iocblk *iocbp;
1939 1956 struct stroptions *sop;
1940 1957 struct copyreq *reqp;
1941 1958 struct copyresp *resp;
1942 1959 unsigned char bpri;
1943 1960 unsigned char flushed_already = 0;
1944 1961
1945 1962 stp = (struct stdata *)q->q_ptr;
1946 1963
1947 1964 ASSERT(!(stp->sd_flag & STPLEX));
1948 1965 ASSERT(qclaimed(q));
1949 1966
1950 1967 switch (bp->b_datap->db_type) {
1951 1968 case M_ERROR:
1952 1969 /*
1953 1970 * An error has occurred downstream, the errno is in the first
1954 1971 * bytes of the message.
1955 1972 */
1956 1973 if ((bp->b_wptr - bp->b_rptr) == 2) { /* New flavor */
1957 1974 unsigned char rw = 0;
1958 1975
1959 1976 mutex_enter(&stp->sd_lock);
1960 1977 if (*bp->b_rptr != NOERROR) { /* read error */
1961 1978 if (*bp->b_rptr != 0) {
1962 1979 if (stp->sd_flag & STRDERR)
1963 1980 flushed_already |= FLUSHR;
1964 1981 stp->sd_flag |= STRDERR;
1965 1982 rw |= FLUSHR;
1966 1983 } else {
1967 1984 stp->sd_flag &= ~STRDERR;
1968 1985 }
1969 1986 stp->sd_rerror = *bp->b_rptr;
1970 1987 }
1971 1988 bp->b_rptr++;
1972 1989 if (*bp->b_rptr != NOERROR) { /* write error */
1973 1990 if (*bp->b_rptr != 0) {
1974 1991 if (stp->sd_flag & STWRERR)
1975 1992 flushed_already |= FLUSHW;
1976 1993 stp->sd_flag |= STWRERR;
1977 1994 rw |= FLUSHW;
1978 1995 } else {
1979 1996 stp->sd_flag &= ~STWRERR;
1980 1997 }
1981 1998 stp->sd_werror = *bp->b_rptr;
1982 1999 }
1983 2000 if (rw) {
1984 2001 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE,
1985 2002 "strrput cv_broadcast:q %p, bp %p",
1986 2003 q, bp);
1987 2004 cv_broadcast(&q->q_wait); /* readers */
1988 2005 cv_broadcast(&_WR(q)->q_wait); /* writers */
1989 2006 cv_broadcast(&stp->sd_monitor); /* ioctllers */
1990 2007
1991 2008 mutex_exit(&stp->sd_lock);
1992 2009 pollwakeup(&stp->sd_pollist, POLLERR);
1993 2010 mutex_enter(&stp->sd_lock);
1994 2011
1995 2012 if (stp->sd_sigflags & S_ERROR)
1996 2013 strsendsig(stp->sd_siglist, S_ERROR, 0,
1997 2014 ((rw & FLUSHR) ? stp->sd_rerror :
1998 2015 stp->sd_werror));
1999 2016 mutex_exit(&stp->sd_lock);
2000 2017 /*
2001 2018 * Send the M_FLUSH only
2002 2019 * for the first M_ERROR
2003 2020 * message on the stream
2004 2021 */
2005 2022 if (flushed_already == rw) {
2006 2023 freemsg(bp);
2007 2024 return (0);
2008 2025 }
2009 2026
2010 2027 bp->b_datap->db_type = M_FLUSH;
2011 2028 *bp->b_rptr = rw;
2012 2029 bp->b_wptr = bp->b_rptr + 1;
2013 2030 /*
2014 2031 * Protect against the driver
2015 2032 * passing up messages after
2016 2033 * it has done a qprocsoff
2017 2034 */
2018 2035 if (_OTHERQ(q)->q_next == NULL)
2019 2036 freemsg(bp);
2020 2037 else
2021 2038 qreply(q, bp);
2022 2039 return (0);
2023 2040 } else
2024 2041 mutex_exit(&stp->sd_lock);
2025 2042 } else if (*bp->b_rptr != 0) { /* Old flavor */
2026 2043 if (stp->sd_flag & (STRDERR|STWRERR))
2027 2044 flushed_already = FLUSHRW;
2028 2045 mutex_enter(&stp->sd_lock);
2029 2046 stp->sd_flag |= (STRDERR|STWRERR);
2030 2047 stp->sd_rerror = *bp->b_rptr;
2031 2048 stp->sd_werror = *bp->b_rptr;
2032 2049 TRACE_2(TR_FAC_STREAMS_FR,
2033 2050 TR_STRRPUT_WAKE2,
2034 2051 "strrput wakeup #2:q %p, bp %p", q, bp);
2035 2052 cv_broadcast(&q->q_wait); /* the readers */
2036 2053 cv_broadcast(&_WR(q)->q_wait); /* the writers */
2037 2054 cv_broadcast(&stp->sd_monitor); /* ioctllers */
2038 2055
2039 2056 mutex_exit(&stp->sd_lock);
2040 2057 pollwakeup(&stp->sd_pollist, POLLERR);
2041 2058 mutex_enter(&stp->sd_lock);
2042 2059
2043 2060 if (stp->sd_sigflags & S_ERROR)
2044 2061 strsendsig(stp->sd_siglist, S_ERROR, 0,
2045 2062 (stp->sd_werror ? stp->sd_werror :
2046 2063 stp->sd_rerror));
2047 2064 mutex_exit(&stp->sd_lock);
2048 2065
2049 2066 /*
2050 2067 * Send the M_FLUSH only
2051 2068 * for the first M_ERROR
2052 2069 * message on the stream
2053 2070 */
2054 2071 if (flushed_already != FLUSHRW) {
2055 2072 bp->b_datap->db_type = M_FLUSH;
2056 2073 *bp->b_rptr = FLUSHRW;
2057 2074 /*
2058 2075 * Protect against the driver passing up
2059 2076 * messages after it has done a
2060 2077 * qprocsoff.
2061 2078 */
2062 2079 if (_OTHERQ(q)->q_next == NULL)
2063 2080 freemsg(bp);
2064 2081 else
2065 2082 qreply(q, bp);
2066 2083 return (0);
2067 2084 }
2068 2085 }
2069 2086 freemsg(bp);
2070 2087 return (0);
2071 2088
2072 2089 case M_HANGUP:
2073 2090
2074 2091 freemsg(bp);
2075 2092 mutex_enter(&stp->sd_lock);
2076 2093 stp->sd_werror = ENXIO;
2077 2094 stp->sd_flag |= STRHUP;
2078 2095 stp->sd_flag &= ~(WSLEEP|RSLEEP);
2079 2096
2080 2097 /*
2081 2098 * send signal if controlling tty
2082 2099 */
2083 2100
2084 2101 if (stp->sd_sidp) {
2085 2102 prsignal(stp->sd_sidp, SIGHUP);
2086 2103 if (stp->sd_sidp != stp->sd_pgidp)
2087 2104 pgsignal(stp->sd_pgidp, SIGTSTP);
2088 2105 }
2089 2106
2090 2107 /*
2091 2108 * wake up read, write, and exception pollers and
2092 2109 * reset wakeup mechanism.
2093 2110 */
2094 2111 cv_broadcast(&q->q_wait); /* the readers */
2095 2112 cv_broadcast(&_WR(q)->q_wait); /* the writers */
2096 2113 cv_broadcast(&stp->sd_monitor); /* the ioctllers */
2097 2114 strhup(stp);
2098 2115 mutex_exit(&stp->sd_lock);
2099 2116 return (0);
2100 2117
2101 2118 case M_UNHANGUP:
2102 2119 freemsg(bp);
2103 2120 mutex_enter(&stp->sd_lock);
2104 2121 stp->sd_werror = 0;
2105 2122 stp->sd_flag &= ~STRHUP;
2106 2123 mutex_exit(&stp->sd_lock);
2107 2124 return (0);
2108 2125
2109 2126 case M_SIG:
2110 2127 /*
2111 2128 * Someone downstream wants to post a signal. The
2112 2129 * signal to post is contained in the first byte of the
2113 2130 * message. If the message would go on the front of
2114 2131 * the queue, send a signal to the process group
2115 2132 * (if not SIGPOLL) or to the siglist processes
2116 2133 * (SIGPOLL). If something is already on the queue,
2117 2134 * OR if we are delivering a delayed suspend (*sigh*
2118 2135 * another "tty" hack) and there's no one sleeping already,
2119 2136 * just enqueue the message.
2120 2137 */
2121 2138 mutex_enter(&stp->sd_lock);
2122 2139 if (q->q_first || (*bp->b_rptr == SIGTSTP &&
2123 2140 !(stp->sd_flag & RSLEEP))) {
2124 2141 (void) putq(q, bp);
2125 2142 mutex_exit(&stp->sd_lock);
2126 2143 return (0);
2127 2144 }
2128 2145 mutex_exit(&stp->sd_lock);
2129 2146 /* FALLTHRU */
2130 2147
2131 2148 case M_PCSIG:
2132 2149 /*
2133 2150 * Don't enqueue, just post the signal.
2134 2151 */
2135 2152 strsignal(stp, *bp->b_rptr, 0L);
2136 2153 freemsg(bp);
2137 2154 return (0);
2138 2155
2139 2156 case M_CMD:
2140 2157 if (MBLKL(bp) != sizeof (cmdblk_t)) {
2141 2158 freemsg(bp);
2142 2159 return (0);
2143 2160 }
2144 2161
2145 2162 mutex_enter(&stp->sd_lock);
2146 2163 if (stp->sd_flag & STRCMDWAIT) {
2147 2164 ASSERT(stp->sd_cmdblk == NULL);
2148 2165 stp->sd_cmdblk = bp;
2149 2166 cv_broadcast(&stp->sd_monitor);
2150 2167 mutex_exit(&stp->sd_lock);
2151 2168 } else {
2152 2169 mutex_exit(&stp->sd_lock);
2153 2170 freemsg(bp);
2154 2171 }
2155 2172 return (0);
2156 2173
2157 2174 case M_FLUSH:
2158 2175 /*
2159 2176 * Flush queues. The indication of which queues to flush
2160 2177 * is in the first byte of the message. If the read queue
2161 2178 * is specified, then flush it. If FLUSHBAND is set, just
2162 2179 * flush the band specified by the second byte of the message.
2163 2180 *
2164 2181 * If a module has issued a M_SETOPT to not flush hi
2165 2182 * priority messages off of the stream head, then pass this
2166 2183 * flag into the flushq code to preserve such messages.
2167 2184 */
2168 2185
2169 2186 if (*bp->b_rptr & FLUSHR) {
2170 2187 mutex_enter(&stp->sd_lock);
2171 2188 if (*bp->b_rptr & FLUSHBAND) {
2172 2189 ASSERT((bp->b_wptr - bp->b_rptr) >= 2);
2173 2190 flushband(q, *(bp->b_rptr + 1), FLUSHALL);
2174 2191 } else
2175 2192 flushq_common(q, FLUSHALL,
2176 2193 stp->sd_read_opt & RFLUSHPCPROT);
2177 2194 if ((q->q_first == NULL) ||
2178 2195 (q->q_first->b_datap->db_type < QPCTL))
2179 2196 stp->sd_flag &= ~STRPRI;
2180 2197 else {
2181 2198 ASSERT(stp->sd_flag & STRPRI);
2182 2199 }
2183 2200 mutex_exit(&stp->sd_lock);
2184 2201 }
2185 2202 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
2186 2203 *bp->b_rptr &= ~FLUSHR;
2187 2204 bp->b_flag |= MSGNOLOOP;
2188 2205 /*
2189 2206 * Protect against the driver passing up
2190 2207 * messages after it has done a qprocsoff.
2191 2208 */
2192 2209 if (_OTHERQ(q)->q_next == NULL)
2193 2210 freemsg(bp);
2194 2211 else
2195 2212 qreply(q, bp);
2196 2213 return (0);
2197 2214 }
2198 2215 freemsg(bp);
2199 2216 return (0);
2200 2217
2201 2218 case M_IOCACK:
2202 2219 case M_IOCNAK:
2203 2220 iocbp = (struct iocblk *)bp->b_rptr;
2204 2221 /*
2205 2222 * If not waiting for ACK or NAK then just free msg.
2206 2223 * If incorrect id sequence number then just free msg.
2207 2224 * If already have ACK or NAK for user then this is a
2208 2225 * duplicate, display a warning and free the msg.
2209 2226 */
2210 2227 mutex_enter(&stp->sd_lock);
2211 2228 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2212 2229 (stp->sd_iocid != iocbp->ioc_id)) {
2213 2230 /*
2214 2231 * If the ACK/NAK is a dup, display a message
2215 2232 * Dup is when sd_iocid == ioc_id, and
2216 2233 * sd_iocblk == <valid ptr> or -1 (the former
2217 2234 * is when an ioctl has been put on the stream
2218 2235 * head, but has not yet been consumed, the
2219 2236 * later is when it has been consumed).
2220 2237 */
2221 2238 if ((stp->sd_iocid == iocbp->ioc_id) &&
2222 2239 (stp->sd_iocblk != NULL)) {
2223 2240 log_dupioc(q, bp);
2224 2241 }
2225 2242 freemsg(bp);
2226 2243 mutex_exit(&stp->sd_lock);
2227 2244 return (0);
2228 2245 }
2229 2246
2230 2247 /*
2231 2248 * Assign ACK or NAK to user and wake up.
2232 2249 */
2233 2250 stp->sd_iocblk = bp;
2234 2251 cv_broadcast(&stp->sd_monitor);
2235 2252 mutex_exit(&stp->sd_lock);
2236 2253 return (0);
2237 2254
2238 2255 case M_COPYIN:
2239 2256 case M_COPYOUT:
2240 2257 reqp = (struct copyreq *)bp->b_rptr;
2241 2258
2242 2259 /*
2243 2260 * If not waiting for ACK or NAK then just fail request.
2244 2261 * If already have ACK, NAK, or copy request, then just
2245 2262 * fail request.
2246 2263 * If incorrect id sequence number then just fail request.
2247 2264 */
2248 2265 mutex_enter(&stp->sd_lock);
2249 2266 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2250 2267 (stp->sd_iocid != reqp->cq_id)) {
2251 2268 if (bp->b_cont) {
2252 2269 freemsg(bp->b_cont);
2253 2270 bp->b_cont = NULL;
2254 2271 }
2255 2272 bp->b_datap->db_type = M_IOCDATA;
2256 2273 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
2257 2274 resp = (struct copyresp *)bp->b_rptr;
2258 2275 resp->cp_rval = (caddr_t)1; /* failure */
2259 2276 mutex_exit(&stp->sd_lock);
2260 2277 putnext(stp->sd_wrq, bp);
2261 2278 return (0);
2262 2279 }
2263 2280
2264 2281 /*
2265 2282 * Assign copy request to user and wake up.
2266 2283 */
2267 2284 stp->sd_iocblk = bp;
2268 2285 cv_broadcast(&stp->sd_monitor);
2269 2286 mutex_exit(&stp->sd_lock);
2270 2287 return (0);
2271 2288
2272 2289 case M_SETOPTS:
2273 2290 /*
2274 2291 * Set stream head options (read option, write offset,
2275 2292 * min/max packet size, and/or high/low water marks for
2276 2293 * the read side only).
2277 2294 */
2278 2295
2279 2296 bpri = 0;
2280 2297 sop = (struct stroptions *)bp->b_rptr;
2281 2298 mutex_enter(&stp->sd_lock);
2282 2299 if (sop->so_flags & SO_READOPT) {
2283 2300 switch (sop->so_readopt & RMODEMASK) {
2284 2301 case RNORM:
2285 2302 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
2286 2303 break;
2287 2304
2288 2305 case RMSGD:
2289 2306 stp->sd_read_opt =
2290 2307 ((stp->sd_read_opt & ~RD_MSGNODIS) |
2291 2308 RD_MSGDIS);
2292 2309 break;
2293 2310
2294 2311 case RMSGN:
2295 2312 stp->sd_read_opt =
2296 2313 ((stp->sd_read_opt & ~RD_MSGDIS) |
2297 2314 RD_MSGNODIS);
2298 2315 break;
2299 2316 }
2300 2317 switch (sop->so_readopt & RPROTMASK) {
2301 2318 case RPROTNORM:
2302 2319 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
2303 2320 break;
2304 2321
2305 2322 case RPROTDAT:
2306 2323 stp->sd_read_opt =
2307 2324 ((stp->sd_read_opt & ~RD_PROTDIS) |
2308 2325 RD_PROTDAT);
2309 2326 break;
2310 2327
2311 2328 case RPROTDIS:
2312 2329 stp->sd_read_opt =
2313 2330 ((stp->sd_read_opt & ~RD_PROTDAT) |
2314 2331 RD_PROTDIS);
2315 2332 break;
2316 2333 }
2317 2334 switch (sop->so_readopt & RFLUSHMASK) {
2318 2335 case RFLUSHPCPROT:
2319 2336 /*
2320 2337 * This sets the stream head to NOT flush
2321 2338 * M_PCPROTO messages.
2322 2339 */
2323 2340 stp->sd_read_opt |= RFLUSHPCPROT;
2324 2341 break;
2325 2342 }
2326 2343 }
2327 2344 if (sop->so_flags & SO_ERROPT) {
2328 2345 switch (sop->so_erropt & RERRMASK) {
2329 2346 case RERRNORM:
2330 2347 stp->sd_flag &= ~STRDERRNONPERSIST;
2331 2348 break;
2332 2349 case RERRNONPERSIST:
2333 2350 stp->sd_flag |= STRDERRNONPERSIST;
2334 2351 break;
2335 2352 }
2336 2353 switch (sop->so_erropt & WERRMASK) {
2337 2354 case WERRNORM:
2338 2355 stp->sd_flag &= ~STWRERRNONPERSIST;
2339 2356 break;
2340 2357 case WERRNONPERSIST:
2341 2358 stp->sd_flag |= STWRERRNONPERSIST;
2342 2359 break;
2343 2360 }
2344 2361 }
2345 2362 if (sop->so_flags & SO_COPYOPT) {
2346 2363 if (sop->so_copyopt & ZCVMSAFE) {
2347 2364 stp->sd_copyflag |= STZCVMSAFE;
2348 2365 stp->sd_copyflag &= ~STZCVMUNSAFE;
2349 2366 } else if (sop->so_copyopt & ZCVMUNSAFE) {
2350 2367 stp->sd_copyflag |= STZCVMUNSAFE;
2351 2368 stp->sd_copyflag &= ~STZCVMSAFE;
2352 2369 }
2353 2370
2354 2371 if (sop->so_copyopt & COPYCACHED) {
2355 2372 stp->sd_copyflag |= STRCOPYCACHED;
2356 2373 }
2357 2374 }
2358 2375 if (sop->so_flags & SO_WROFF)
2359 2376 stp->sd_wroff = sop->so_wroff;
2360 2377 if (sop->so_flags & SO_TAIL)
2361 2378 stp->sd_tail = sop->so_tail;
2362 2379 if (sop->so_flags & SO_MINPSZ)
2363 2380 q->q_minpsz = sop->so_minpsz;
2364 2381 if (sop->so_flags & SO_MAXPSZ)
2365 2382 q->q_maxpsz = sop->so_maxpsz;
2366 2383 if (sop->so_flags & SO_MAXBLK)
2367 2384 stp->sd_maxblk = sop->so_maxblk;
2368 2385 if (sop->so_flags & SO_HIWAT) {
2369 2386 if (sop->so_flags & SO_BAND) {
2370 2387 if (strqset(q, QHIWAT,
2371 2388 sop->so_band, sop->so_hiwat)) {
2372 2389 cmn_err(CE_WARN, "strrput: could not "
2373 2390 "allocate qband\n");
2374 2391 } else {
2375 2392 bpri = sop->so_band;
2376 2393 }
2377 2394 } else {
2378 2395 q->q_hiwat = sop->so_hiwat;
2379 2396 }
2380 2397 }
2381 2398 if (sop->so_flags & SO_LOWAT) {
2382 2399 if (sop->so_flags & SO_BAND) {
2383 2400 if (strqset(q, QLOWAT,
2384 2401 sop->so_band, sop->so_lowat)) {
2385 2402 cmn_err(CE_WARN, "strrput: could not "
2386 2403 "allocate qband\n");
2387 2404 } else {
2388 2405 bpri = sop->so_band;
2389 2406 }
2390 2407 } else {
2391 2408 q->q_lowat = sop->so_lowat;
2392 2409 }
2393 2410 }
2394 2411 if (sop->so_flags & SO_MREADON)
2395 2412 stp->sd_flag |= SNDMREAD;
2396 2413 if (sop->so_flags & SO_MREADOFF)
2397 2414 stp->sd_flag &= ~SNDMREAD;
2398 2415 if (sop->so_flags & SO_NDELON)
2399 2416 stp->sd_flag |= OLDNDELAY;
2400 2417 if (sop->so_flags & SO_NDELOFF)
2401 2418 stp->sd_flag &= ~OLDNDELAY;
2402 2419 if (sop->so_flags & SO_ISTTY)
2403 2420 stp->sd_flag |= STRISTTY;
2404 2421 if (sop->so_flags & SO_ISNTTY)
2405 2422 stp->sd_flag &= ~STRISTTY;
2406 2423 if (sop->so_flags & SO_TOSTOP)
2407 2424 stp->sd_flag |= STRTOSTOP;
2408 2425 if (sop->so_flags & SO_TONSTOP)
2409 2426 stp->sd_flag &= ~STRTOSTOP;
2410 2427 if (sop->so_flags & SO_DELIM)
2411 2428 stp->sd_flag |= STRDELIM;
2412 2429 if (sop->so_flags & SO_NODELIM)
2413 2430 stp->sd_flag &= ~STRDELIM;
2414 2431
2415 2432 mutex_exit(&stp->sd_lock);
2416 2433 freemsg(bp);
2417 2434
2418 2435 /* Check backenable in case the water marks changed */
2419 2436 qbackenable(q, bpri);
2420 2437 return (0);
2421 2438
2422 2439 /*
2423 2440 * The following set of cases deal with situations where two stream
2424 2441 * heads are connected to each other (twisted streams). These messages
2425 2442 * have no meaning at the stream head.
2426 2443 */
2427 2444 case M_BREAK:
2428 2445 case M_CTL:
2429 2446 case M_DELAY:
2430 2447 case M_START:
2431 2448 case M_STOP:
2432 2449 case M_IOCDATA:
2433 2450 case M_STARTI:
2434 2451 case M_STOPI:
2435 2452 freemsg(bp);
2436 2453 return (0);
2437 2454
2438 2455 case M_IOCTL:
2439 2456 /*
2440 2457 * Always NAK this condition
2441 2458 * (makes no sense)
2442 2459 * If there is one or more threads in the read side
2443 2460 * rwnext we have to defer the nacking until that thread
2444 2461 * returns (in strget).
2445 2462 */
2446 2463 mutex_enter(&stp->sd_lock);
2447 2464 if (stp->sd_struiodnak != 0) {
2448 2465 /*
2449 2466 * Defer NAK to the streamhead. Queue at the end
2450 2467 * the list.
2451 2468 */
2452 2469 mblk_t *mp = stp->sd_struionak;
2453 2470
2454 2471 while (mp && mp->b_next)
2455 2472 mp = mp->b_next;
2456 2473 if (mp)
2457 2474 mp->b_next = bp;
2458 2475 else
2459 2476 stp->sd_struionak = bp;
2460 2477 bp->b_next = NULL;
2461 2478 mutex_exit(&stp->sd_lock);
2462 2479 return (0);
2463 2480 }
2464 2481 mutex_exit(&stp->sd_lock);
2465 2482
2466 2483 bp->b_datap->db_type = M_IOCNAK;
2467 2484 /*
2468 2485 * Protect against the driver passing up
2469 2486 * messages after it has done a qprocsoff.
2470 2487 */
2471 2488 if (_OTHERQ(q)->q_next == NULL)
2472 2489 freemsg(bp);
2473 2490 else
2474 2491 qreply(q, bp);
2475 2492 return (0);
2476 2493
2477 2494 default:
2478 2495 #ifdef DEBUG
2479 2496 cmn_err(CE_WARN,
2480 2497 "bad message type %x received at stream head\n",
2481 2498 bp->b_datap->db_type);
2482 2499 #endif
2483 2500 freemsg(bp);
2484 2501 return (0);
2485 2502 }
2486 2503
2487 2504 /* NOTREACHED */
2488 2505 }
2489 2506
2490 2507 /*
2491 2508 * Check if the stream pointed to by `stp' can be written to, and return an
2492 2509 * error code if not. If `eiohup' is set, then return EIO if STRHUP is set.
2493 2510 * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream,
2494 2511 * then always return EPIPE and send a SIGPIPE to the invoking thread.
2495 2512 */
2496 2513 static int
2497 2514 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok)
2498 2515 {
2499 2516 int error;
2500 2517
2501 2518 ASSERT(MUTEX_HELD(&stp->sd_lock));
2502 2519
2503 2520 /*
2504 2521 * For modem support, POSIX states that on writes, EIO should
2505 2522 * be returned if the stream has been hung up.
2506 2523 */
2507 2524 if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP)
2508 2525 error = EIO;
2509 2526 else
2510 2527 error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0);
2511 2528
2512 2529 if (error != 0) {
2513 2530 if (!(stp->sd_flag & STPLEX) &&
2514 2531 (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) {
2515 2532 tsignal(curthread, SIGPIPE);
2516 2533 error = EPIPE;
2517 2534 }
2518 2535 }
2519 2536
2520 2537 return (error);
2521 2538 }
2522 2539
2523 2540 /*
2524 2541 * Copyin and send data down a stream.
2525 2542 * The caller will allocate and copyin any control part that precedes the
2526 2543 * message and pass that in as mctl.
2527 2544 *
2528 2545 * Caller should *not* hold sd_lock.
2529 2546 * When EWOULDBLOCK is returned the caller has to redo the canputnext
2530 2547 * under sd_lock in order to avoid missing a backenabling wakeup.
2531 2548 *
2532 2549 * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA.
2533 2550 *
2534 2551 * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages.
2535 2552 * For sync streams we can only ignore flow control by reverting to using
2536 2553 * putnext.
|
↓ open down ↓ |
1474 lines elided |
↑ open up ↑ |
2537 2554 *
2538 2555 * If sd_maxblk is less than *iosize this routine might return without
2539 2556 * transferring all of *iosize. In all cases, on return *iosize will contain
2540 2557 * the amount of data that was transferred.
2541 2558 */
2542 2559 static int
2543 2560 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize,
2544 2561 int b_flag, int pri, int flags)
2545 2562 {
2546 2563 struiod_t uiod;
2564 + struct iovec buf[IOV_MAX_STACK];
2565 + int iovlen = 0;
2547 2566 mblk_t *mp;
2548 2567 queue_t *wqp = stp->sd_wrq;
2549 2568 int error = 0;
2550 2569 ssize_t count = *iosize;
2551 2570
2552 2571 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
2553 2572
2554 2573 if (uiop != NULL && count >= 0)
2555 2574 flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0;
2556 2575
2557 2576 if (!(flags & STRUIO_POSTPONE)) {
2558 2577 /*
2559 2578 * Use regular canputnext, strmakedata, putnext sequence.
2560 2579 */
2561 2580 if (pri == 0) {
2562 2581 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2563 2582 freemsg(mctl);
2564 2583 return (EWOULDBLOCK);
2565 2584 }
2566 2585 } else {
2567 2586 if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) {
2568 2587 freemsg(mctl);
2569 2588 return (EWOULDBLOCK);
2570 2589 }
2571 2590 }
2572 2591
2573 2592 if ((error = strmakedata(iosize, uiop, stp, flags,
2574 2593 &mp)) != 0) {
2575 2594 freemsg(mctl);
2576 2595 /*
2577 2596 * need to change return code to ENOMEM
2578 2597 * so that this is not confused with
2579 2598 * flow control, EAGAIN.
2580 2599 */
2581 2600
2582 2601 if (error == EAGAIN)
2583 2602 return (ENOMEM);
2584 2603 else
2585 2604 return (error);
2586 2605 }
2587 2606 if (mctl != NULL) {
2588 2607 if (mctl->b_cont == NULL)
2589 2608 mctl->b_cont = mp;
2590 2609 else if (mp != NULL)
2591 2610 linkb(mctl, mp);
2592 2611 mp = mctl;
2593 2612 } else if (mp == NULL)
2594 2613 return (0);
2595 2614
2596 2615 mp->b_flag |= b_flag;
2597 2616 mp->b_band = (uchar_t)pri;
2598 2617
2599 2618 if (flags & MSG_IGNFLOW) {
2600 2619 /*
2601 2620 * XXX Hack: Don't get stuck running service
2602 2621 * procedures. This is needed for sockfs when
2603 2622 * sending the unbind message out of the rput
2604 2623 * procedure - we don't want a put procedure
2605 2624 * to run service procedures.
2606 2625 */
2607 2626 putnext(wqp, mp);
2608 2627 } else {
2609 2628 stream_willservice(stp);
2610 2629 putnext(wqp, mp);
2611 2630 stream_runservice(stp);
2612 2631 }
2613 2632 return (0);
2614 2633 }
2615 2634 /*
2616 2635 * Stream supports rwnext() for the write side.
2617 2636 */
2618 2637 if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) {
2619 2638 freemsg(mctl);
2620 2639 /*
2621 2640 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled".
2622 2641 */
2623 2642 return (error == EAGAIN ? ENOMEM : error);
2624 2643 }
2625 2644 if (mctl != NULL) {
2626 2645 if (mctl->b_cont == NULL)
2627 2646 mctl->b_cont = mp;
|
↓ open down ↓ |
71 lines elided |
↑ open up ↑ |
2628 2647 else if (mp != NULL)
2629 2648 linkb(mctl, mp);
2630 2649 mp = mctl;
2631 2650 } else if (mp == NULL) {
2632 2651 return (0);
2633 2652 }
2634 2653
2635 2654 mp->b_flag |= b_flag;
2636 2655 mp->b_band = (uchar_t)pri;
2637 2656
2638 - (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
2639 - sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
2657 + if (uiop->uio_iovcnt > IOV_MAX_STACK) {
2658 + iovlen = uiop->uio_iovcnt * sizeof (iovec_t);
2659 + uiod.d_iov = (struct iovec *)kmem_alloc(iovlen, KM_SLEEP);
2660 + } else {
2661 + uiod.d_iov = buf;
2662 + }
2663 +
2664 + (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, uiop->uio_iovcnt);
2640 2665 uiod.d_uio.uio_offset = 0;
2641 2666 uiod.d_mp = mp;
2642 2667 error = rwnext(wqp, &uiod);
2643 2668 if (! uiod.d_mp) {
2644 2669 uioskip(uiop, *iosize);
2670 + if (iovlen != 0)
2671 + kmem_free(uiod.d_iov, iovlen);
2645 2672 return (error);
2646 2673 }
2647 2674 ASSERT(mp == uiod.d_mp);
2648 2675 if (error == EINVAL) {
2649 2676 /*
2650 2677 * The stream plumbing must have changed while
2651 2678 * we were away, so just turn off rwnext()s.
2652 2679 */
2653 2680 error = 0;
2654 2681 } else if (error == EBUSY || error == EWOULDBLOCK) {
2655 2682 /*
2656 2683 * Couldn't enter a perimeter or took a page fault,
2657 2684 * so fall-back to putnext().
2658 2685 */
2659 2686 error = 0;
2660 2687 } else {
2661 2688 freemsg(mp);
2689 + if (iovlen != 0)
2690 + kmem_free(uiod.d_iov, iovlen);
2662 2691 return (error);
2663 2692 }
2664 2693 /* Have to check canput before consuming data from the uio */
2665 2694 if (pri == 0) {
2666 2695 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2667 2696 freemsg(mp);
2697 + if (iovlen != 0)
2698 + kmem_free(uiod.d_iov, iovlen);
2668 2699 return (EWOULDBLOCK);
2669 2700 }
2670 2701 } else {
2671 2702 if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) {
2672 2703 freemsg(mp);
2704 + if (iovlen != 0)
2705 + kmem_free(uiod.d_iov, iovlen);
2673 2706 return (EWOULDBLOCK);
2674 2707 }
2675 2708 }
2676 2709 ASSERT(mp == uiod.d_mp);
2677 2710 /* Copyin data from the uio */
2678 2711 if ((error = struioget(wqp, mp, &uiod, 0)) != 0) {
2679 2712 freemsg(mp);
2713 + if (iovlen != 0)
2714 + kmem_free(uiod.d_iov, iovlen);
2680 2715 return (error);
2681 2716 }
2682 2717 uioskip(uiop, *iosize);
2683 2718 if (flags & MSG_IGNFLOW) {
2684 2719 /*
2685 2720 * XXX Hack: Don't get stuck running service procedures.
2686 2721 * This is needed for sockfs when sending the unbind message
2687 2722 * out of the rput procedure - we don't want a put procedure
2688 2723 * to run service procedures.
2689 2724 */
2690 2725 putnext(wqp, mp);
2691 2726 } else {
2692 2727 stream_willservice(stp);
2693 2728 putnext(wqp, mp);
2694 2729 stream_runservice(stp);
2695 2730 }
2731 + if (iovlen != 0)
2732 + kmem_free(uiod.d_iov, iovlen);
2696 2733 return (0);
2697 2734 }
2698 2735
2699 2736 /*
2700 2737 * Write attempts to break the write request into messages conforming
2701 2738 * with the minimum and maximum packet sizes set downstream.
2702 2739 *
2703 2740 * Write will not block if downstream queue is full and
2704 2741 * O_NDELAY is set, otherwise it will block waiting for the queue to get room.
2705 2742 *
2706 2743 * A write of zero bytes gets packaged into a zero length message and sent
2707 2744 * downstream like any other message.
2708 2745 *
2709 2746 * If buffers of the requested sizes are not available, the write will
2710 2747 * sleep until the buffers become available.
2711 2748 *
2712 2749 * Write (if specified) will supply a write offset in a message if it
2713 2750 * makes sense. This can be specified by downstream modules as part of
2714 2751 * a M_SETOPTS message. Write will not supply the write offset if it
2715 2752 * cannot supply any data in a buffer. In other words, write will never
2716 2753 * send down an empty packet due to a write offset.
2717 2754 */
2718 2755 /* ARGSUSED2 */
2719 2756 int
2720 2757 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp)
2721 2758 {
2722 2759 return (strwrite_common(vp, uiop, crp, 0));
2723 2760 }
2724 2761
2725 2762 /* ARGSUSED2 */
2726 2763 int
2727 2764 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag)
2728 2765 {
2729 2766 struct stdata *stp;
2730 2767 struct queue *wqp;
2731 2768 ssize_t rmin, rmax;
2732 2769 ssize_t iosize;
2733 2770 int waitflag;
2734 2771 int tempmode;
2735 2772 int error = 0;
2736 2773 int b_flag;
2737 2774
2738 2775 ASSERT(vp->v_stream);
2739 2776 stp = vp->v_stream;
2740 2777
2741 2778 mutex_enter(&stp->sd_lock);
2742 2779
2743 2780 if ((error = i_straccess(stp, JCWRITE)) != 0) {
2744 2781 mutex_exit(&stp->sd_lock);
2745 2782 return (error);
2746 2783 }
2747 2784
2748 2785 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
2749 2786 error = strwriteable(stp, B_TRUE, B_TRUE);
2750 2787 if (error != 0) {
2751 2788 mutex_exit(&stp->sd_lock);
2752 2789 return (error);
2753 2790 }
2754 2791 }
2755 2792
2756 2793 mutex_exit(&stp->sd_lock);
2757 2794
2758 2795 wqp = stp->sd_wrq;
2759 2796
2760 2797 /* get these values from them cached in the stream head */
2761 2798 rmin = stp->sd_qn_minpsz;
2762 2799 rmax = stp->sd_qn_maxpsz;
2763 2800
2764 2801 /*
2765 2802 * Check the min/max packet size constraints. If min packet size
2766 2803 * is non-zero, the write cannot be split into multiple messages
2767 2804 * and still guarantee the size constraints.
2768 2805 */
2769 2806 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp);
2770 2807
2771 2808 ASSERT((rmax >= 0) || (rmax == INFPSZ));
2772 2809 if (rmax == 0) {
2773 2810 return (0);
2774 2811 }
2775 2812 if (rmin > 0) {
2776 2813 if (uiop->uio_resid < rmin) {
2777 2814 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2778 2815 "strwrite out:q %p out %d error %d",
2779 2816 wqp, 0, ERANGE);
2780 2817 return (ERANGE);
2781 2818 }
2782 2819 if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) {
2783 2820 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2784 2821 "strwrite out:q %p out %d error %d",
2785 2822 wqp, 1, ERANGE);
2786 2823 return (ERANGE);
2787 2824 }
2788 2825 }
2789 2826
2790 2827 /*
2791 2828 * Do until count satisfied or error.
2792 2829 */
2793 2830 waitflag = WRITEWAIT | wflag;
2794 2831 if (stp->sd_flag & OLDNDELAY)
2795 2832 tempmode = uiop->uio_fmode & ~FNDELAY;
2796 2833 else
2797 2834 tempmode = uiop->uio_fmode;
2798 2835
2799 2836 if (rmax == INFPSZ)
2800 2837 rmax = uiop->uio_resid;
2801 2838
2802 2839 /*
2803 2840 * Note that tempmode does not get used in strput/strmakedata
2804 2841 * but only in strwaitq. The other routines use uio_fmode
2805 2842 * unmodified.
2806 2843 */
2807 2844
2808 2845 /* LINTED: constant in conditional context */
2809 2846 while (1) { /* breaks when uio_resid reaches zero */
2810 2847 /*
2811 2848 * Determine the size of the next message to be
2812 2849 * packaged. May have to break write into several
2813 2850 * messages based on max packet size.
2814 2851 */
2815 2852 iosize = MIN(uiop->uio_resid, rmax);
2816 2853
2817 2854 /*
2818 2855 * Put block downstream when flow control allows it.
2819 2856 */
2820 2857 if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize))
2821 2858 b_flag = MSGDELIM;
2822 2859 else
2823 2860 b_flag = 0;
2824 2861
2825 2862 for (;;) {
2826 2863 int done = 0;
2827 2864
2828 2865 error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0);
2829 2866 if (error == 0)
2830 2867 break;
2831 2868 if (error != EWOULDBLOCK)
2832 2869 goto out;
2833 2870
2834 2871 mutex_enter(&stp->sd_lock);
2835 2872 /*
2836 2873 * Check for a missed wakeup.
2837 2874 * Needed since strput did not hold sd_lock across
2838 2875 * the canputnext.
2839 2876 */
2840 2877 if (canputnext(wqp)) {
2841 2878 /* Try again */
2842 2879 mutex_exit(&stp->sd_lock);
2843 2880 continue;
2844 2881 }
2845 2882 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT,
2846 2883 "strwrite wait:q %p wait", wqp);
2847 2884 if ((error = strwaitq(stp, waitflag, (ssize_t)0,
2848 2885 tempmode, -1, &done)) != 0 || done) {
2849 2886 mutex_exit(&stp->sd_lock);
2850 2887 if ((vp->v_type == VFIFO) &&
2851 2888 (uiop->uio_fmode & FNDELAY) &&
2852 2889 (error == EAGAIN))
2853 2890 error = 0;
2854 2891 goto out;
2855 2892 }
2856 2893 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE,
2857 2894 "strwrite wake:q %p awakes", wqp);
2858 2895 if ((error = i_straccess(stp, JCWRITE)) != 0) {
2859 2896 mutex_exit(&stp->sd_lock);
2860 2897 goto out;
2861 2898 }
2862 2899 mutex_exit(&stp->sd_lock);
2863 2900 }
2864 2901 waitflag |= NOINTR;
2865 2902 TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID,
2866 2903 "strwrite resid:q %p uiop %p", wqp, uiop);
2867 2904 if (uiop->uio_resid) {
2868 2905 /* Recheck for errors - needed for sockets */
2869 2906 if ((stp->sd_wput_opt & SW_RECHECK_ERR) &&
2870 2907 (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) {
2871 2908 mutex_enter(&stp->sd_lock);
2872 2909 error = strwriteable(stp, B_FALSE, B_TRUE);
2873 2910 mutex_exit(&stp->sd_lock);
2874 2911 if (error != 0)
2875 2912 return (error);
2876 2913 }
2877 2914 continue;
2878 2915 }
2879 2916 break;
2880 2917 }
2881 2918 out:
2882 2919 /*
2883 2920 * For historical reasons, applications expect EAGAIN when a data
2884 2921 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN.
2885 2922 */
2886 2923 if (error == ENOMEM)
2887 2924 error = EAGAIN;
2888 2925 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2889 2926 "strwrite out:q %p out %d error %d", wqp, 2, error);
2890 2927 return (error);
2891 2928 }
2892 2929
2893 2930 /*
2894 2931 * Stream head write service routine.
2895 2932 * Its job is to wake up any sleeping writers when a queue
2896 2933 * downstream needs data (part of the flow control in putq and getq).
2897 2934 * It also must wake anyone sleeping on a poll().
2898 2935 * For stream head right below mux module, it must also invoke put procedure
2899 2936 * of next downstream module.
2900 2937 */
2901 2938 int
2902 2939 strwsrv(queue_t *q)
2903 2940 {
2904 2941 struct stdata *stp;
2905 2942 queue_t *tq;
2906 2943 qband_t *qbp;
2907 2944 int i;
2908 2945 qband_t *myqbp;
2909 2946 int isevent;
2910 2947 unsigned char qbf[NBAND]; /* band flushing backenable flags */
2911 2948
2912 2949 TRACE_1(TR_FAC_STREAMS_FR,
2913 2950 TR_STRWSRV, "strwsrv:q %p", q);
2914 2951 stp = (struct stdata *)q->q_ptr;
2915 2952 ASSERT(qclaimed(q));
2916 2953 mutex_enter(&stp->sd_lock);
2917 2954 ASSERT(!(stp->sd_flag & STPLEX));
2918 2955
2919 2956 if (stp->sd_flag & WSLEEP) {
2920 2957 stp->sd_flag &= ~WSLEEP;
2921 2958 cv_broadcast(&q->q_wait);
2922 2959 }
2923 2960 mutex_exit(&stp->sd_lock);
2924 2961
2925 2962 /* The other end of a stream pipe went away. */
2926 2963 if ((tq = q->q_next) == NULL) {
2927 2964 return (0);
2928 2965 }
2929 2966
2930 2967 /* Find the next module forward that has a service procedure */
2931 2968 claimstr(q);
2932 2969 tq = q->q_nfsrv;
2933 2970 ASSERT(tq != NULL);
2934 2971
2935 2972 if ((q->q_flag & QBACK)) {
2936 2973 if ((tq->q_flag & QFULL)) {
2937 2974 mutex_enter(QLOCK(tq));
2938 2975 if (!(tq->q_flag & QFULL)) {
2939 2976 mutex_exit(QLOCK(tq));
2940 2977 goto wakeup;
2941 2978 }
2942 2979 /*
2943 2980 * The queue must have become full again. Set QWANTW
2944 2981 * again so strwsrv will be back enabled when
2945 2982 * the queue becomes non-full next time.
2946 2983 */
2947 2984 tq->q_flag |= QWANTW;
2948 2985 mutex_exit(QLOCK(tq));
2949 2986 } else {
2950 2987 wakeup:
2951 2988 pollwakeup(&stp->sd_pollist, POLLWRNORM);
2952 2989 mutex_enter(&stp->sd_lock);
2953 2990 if (stp->sd_sigflags & S_WRNORM)
2954 2991 strsendsig(stp->sd_siglist, S_WRNORM, 0, 0);
2955 2992 mutex_exit(&stp->sd_lock);
2956 2993 }
2957 2994 }
2958 2995
2959 2996 isevent = 0;
2960 2997 i = 1;
2961 2998 bzero((caddr_t)qbf, NBAND);
2962 2999 mutex_enter(QLOCK(tq));
2963 3000 if ((myqbp = q->q_bandp) != NULL)
2964 3001 for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) {
2965 3002 ASSERT(myqbp);
2966 3003 if ((myqbp->qb_flag & QB_BACK)) {
2967 3004 if (qbp->qb_flag & QB_FULL) {
2968 3005 /*
2969 3006 * The band must have become full again.
2970 3007 * Set QB_WANTW again so strwsrv will
2971 3008 * be back enabled when the band becomes
2972 3009 * non-full next time.
2973 3010 */
2974 3011 qbp->qb_flag |= QB_WANTW;
2975 3012 } else {
2976 3013 isevent = 1;
2977 3014 qbf[i] = 1;
2978 3015 }
2979 3016 }
2980 3017 myqbp = myqbp->qb_next;
2981 3018 i++;
2982 3019 }
2983 3020 mutex_exit(QLOCK(tq));
2984 3021
2985 3022 if (isevent) {
2986 3023 for (i = tq->q_nband; i; i--) {
2987 3024 if (qbf[i]) {
2988 3025 pollwakeup(&stp->sd_pollist, POLLWRBAND);
2989 3026 mutex_enter(&stp->sd_lock);
2990 3027 if (stp->sd_sigflags & S_WRBAND)
2991 3028 strsendsig(stp->sd_siglist, S_WRBAND,
2992 3029 (uchar_t)i, 0);
2993 3030 mutex_exit(&stp->sd_lock);
2994 3031 }
2995 3032 }
2996 3033 }
2997 3034
2998 3035 releasestr(q);
2999 3036 return (0);
3000 3037 }
3001 3038
3002 3039 /*
3003 3040 * Special case of strcopyin/strcopyout for copying
3004 3041 * struct strioctl that can deal with both data
3005 3042 * models.
3006 3043 */
3007 3044
3008 3045 #ifdef _LP64
3009 3046
3010 3047 static int
3011 3048 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3012 3049 {
3013 3050 struct strioctl32 strioc32;
3014 3051 struct strioctl *striocp;
3015 3052
3016 3053 if (copyflag & U_TO_K) {
3017 3054 ASSERT((copyflag & K_TO_K) == 0);
3018 3055
3019 3056 if ((flag & FMODELS) == DATAMODEL_ILP32) {
3020 3057 if (copyin(from, &strioc32, sizeof (strioc32)))
3021 3058 return (EFAULT);
3022 3059
3023 3060 striocp = (struct strioctl *)to;
3024 3061 striocp->ic_cmd = strioc32.ic_cmd;
3025 3062 striocp->ic_timout = strioc32.ic_timout;
3026 3063 striocp->ic_len = strioc32.ic_len;
3027 3064 striocp->ic_dp = (char *)(uintptr_t)strioc32.ic_dp;
3028 3065
3029 3066 } else { /* NATIVE data model */
3030 3067 if (copyin(from, to, sizeof (struct strioctl))) {
3031 3068 return (EFAULT);
3032 3069 } else {
3033 3070 return (0);
3034 3071 }
3035 3072 }
3036 3073 } else {
3037 3074 ASSERT(copyflag & K_TO_K);
3038 3075 bcopy(from, to, sizeof (struct strioctl));
3039 3076 }
3040 3077 return (0);
3041 3078 }
3042 3079
3043 3080 static int
3044 3081 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3045 3082 {
3046 3083 struct strioctl32 strioc32;
3047 3084 struct strioctl *striocp;
3048 3085
3049 3086 if (copyflag & U_TO_K) {
3050 3087 ASSERT((copyflag & K_TO_K) == 0);
3051 3088
3052 3089 if ((flag & FMODELS) == DATAMODEL_ILP32) {
3053 3090 striocp = (struct strioctl *)from;
3054 3091 strioc32.ic_cmd = striocp->ic_cmd;
3055 3092 strioc32.ic_timout = striocp->ic_timout;
3056 3093 strioc32.ic_len = striocp->ic_len;
3057 3094 strioc32.ic_dp = (caddr32_t)(uintptr_t)striocp->ic_dp;
3058 3095 ASSERT((char *)(uintptr_t)strioc32.ic_dp ==
3059 3096 striocp->ic_dp);
3060 3097
3061 3098 if (copyout(&strioc32, to, sizeof (strioc32)))
3062 3099 return (EFAULT);
3063 3100
3064 3101 } else { /* NATIVE data model */
3065 3102 if (copyout(from, to, sizeof (struct strioctl))) {
3066 3103 return (EFAULT);
3067 3104 } else {
3068 3105 return (0);
3069 3106 }
3070 3107 }
3071 3108 } else {
3072 3109 ASSERT(copyflag & K_TO_K);
3073 3110 bcopy(from, to, sizeof (struct strioctl));
3074 3111 }
3075 3112 return (0);
3076 3113 }
3077 3114
3078 3115 #else /* ! _LP64 */
3079 3116
3080 3117 /* ARGSUSED2 */
3081 3118 static int
3082 3119 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3083 3120 {
3084 3121 return (strcopyin(from, to, sizeof (struct strioctl), copyflag));
3085 3122 }
3086 3123
3087 3124 /* ARGSUSED2 */
3088 3125 static int
3089 3126 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3090 3127 {
3091 3128 return (strcopyout(from, to, sizeof (struct strioctl), copyflag));
3092 3129 }
3093 3130
3094 3131 #endif /* _LP64 */
3095 3132
3096 3133 /*
3097 3134 * Determine type of job control semantics expected by user. The
3098 3135 * possibilities are:
3099 3136 * JCREAD - Behaves like read() on fd; send SIGTTIN
3100 3137 * JCWRITE - Behaves like write() on fd; send SIGTTOU if TOSTOP set
3101 3138 * JCSETP - Sets a value in the stream; send SIGTTOU, ignore TOSTOP
3102 3139 * JCGETP - Gets a value in the stream; no signals.
3103 3140 * See straccess in strsubr.c for usage of these values.
3104 3141 *
3105 3142 * This routine also returns -1 for I_STR as a special case; the
3106 3143 * caller must call again with the real ioctl number for
3107 3144 * classification.
3108 3145 */
3109 3146 static int
3110 3147 job_control_type(int cmd)
3111 3148 {
3112 3149 switch (cmd) {
3113 3150 case I_STR:
3114 3151 return (-1);
3115 3152
3116 3153 case I_RECVFD:
3117 3154 case I_E_RECVFD:
3118 3155 return (JCREAD);
3119 3156
3120 3157 case I_FDINSERT:
3121 3158 case I_SENDFD:
3122 3159 return (JCWRITE);
3123 3160
3124 3161 case TCSETA:
3125 3162 case TCSETAW:
3126 3163 case TCSETAF:
3127 3164 case TCSBRK:
3128 3165 case TCXONC:
3129 3166 case TCFLSH:
3130 3167 case TCDSET: /* Obsolete */
3131 3168 case TIOCSWINSZ:
3132 3169 case TCSETS:
3133 3170 case TCSETSW:
3134 3171 case TCSETSF:
3135 3172 case TIOCSETD:
3136 3173 case TIOCHPCL:
3137 3174 case TIOCSETP:
3138 3175 case TIOCSETN:
3139 3176 case TIOCEXCL:
3140 3177 case TIOCNXCL:
3141 3178 case TIOCFLUSH:
3142 3179 case TIOCSETC:
3143 3180 case TIOCLBIS:
3144 3181 case TIOCLBIC:
3145 3182 case TIOCLSET:
3146 3183 case TIOCSBRK:
3147 3184 case TIOCCBRK:
3148 3185 case TIOCSDTR:
3149 3186 case TIOCCDTR:
3150 3187 case TIOCSLTC:
3151 3188 case TIOCSTOP:
3152 3189 case TIOCSTART:
3153 3190 case TIOCSTI:
3154 3191 case TIOCSPGRP:
3155 3192 case TIOCMSET:
3156 3193 case TIOCMBIS:
3157 3194 case TIOCMBIC:
3158 3195 case TIOCREMOTE:
3159 3196 case TIOCSIGNAL:
3160 3197 case LDSETT:
3161 3198 case LDSMAP: /* Obsolete */
3162 3199 case DIOCSETP:
3163 3200 case I_FLUSH:
3164 3201 case I_SRDOPT:
3165 3202 case I_SETSIG:
3166 3203 case I_SWROPT:
3167 3204 case I_FLUSHBAND:
3168 3205 case I_SETCLTIME:
3169 3206 case I_SERROPT:
3170 3207 case I_ESETSIG:
|
↓ open down ↓ |
465 lines elided |
↑ open up ↑ |
3171 3208 case FIONBIO:
3172 3209 case FIOASYNC:
3173 3210 case FIOSETOWN:
3174 3211 case JBOOT: /* Obsolete */
3175 3212 case JTERM: /* Obsolete */
3176 3213 case JTIMOM: /* Obsolete */
3177 3214 case JZOMBOOT: /* Obsolete */
3178 3215 case JAGENT: /* Obsolete */
3179 3216 case JTRUN: /* Obsolete */
3180 3217 case JXTPROTO: /* Obsolete */
3218 + case TIOCSETLD:
3181 3219 return (JCSETP);
3182 3220 }
3183 3221
3184 3222 return (JCGETP);
3185 3223 }
3186 3224
3187 3225 /*
3188 3226 * ioctl for streams
3189 3227 */
3190 3228 int
3191 3229 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag,
3192 3230 cred_t *crp, int *rvalp)
3193 3231 {
3194 3232 struct stdata *stp;
3195 3233 struct strcmd *scp;
3196 3234 struct strioctl strioc;
3197 3235 struct uio uio;
3198 3236 struct iovec iov;
3199 3237 int access;
3200 3238 mblk_t *mp;
3201 3239 int error = 0;
3202 3240 int done = 0;
3203 3241 ssize_t rmin, rmax;
3204 3242 queue_t *wrq;
3205 3243 queue_t *rdq;
3206 3244 boolean_t kioctl = B_FALSE;
3207 3245 uint32_t auditing = AU_AUDITING();
3208 3246
3209 3247 if (flag & FKIOCTL) {
3210 3248 copyflag = K_TO_K;
3211 3249 kioctl = B_TRUE;
3212 3250 }
3213 3251 ASSERT(vp->v_stream);
3214 3252 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
3215 3253 stp = vp->v_stream;
3216 3254
3217 3255 TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER,
3218 3256 "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg);
3219 3257
3220 3258 /*
3221 3259 * If the copy is kernel to kernel, make sure that the FNATIVE
3222 3260 * flag is set. After this it would be a serious error to have
3223 3261 * no model flag.
3224 3262 */
3225 3263 if (copyflag == K_TO_K)
3226 3264 flag = (flag & ~FMODELS) | FNATIVE;
3227 3265
3228 3266 ASSERT((flag & FMODELS) != 0);
3229 3267
3230 3268 wrq = stp->sd_wrq;
3231 3269 rdq = _RD(wrq);
3232 3270
3233 3271 access = job_control_type(cmd);
3234 3272
3235 3273 /* We should never see these here, should be handled by iwscn */
3236 3274 if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR)
3237 3275 return (EINVAL);
3238 3276
3239 3277 mutex_enter(&stp->sd_lock);
3240 3278 if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) {
3241 3279 mutex_exit(&stp->sd_lock);
3242 3280 return (error);
3243 3281 }
3244 3282 mutex_exit(&stp->sd_lock);
3245 3283
3246 3284 /*
3247 3285 * Check for sgttyb-related ioctls first, and complain as
3248 3286 * necessary.
3249 3287 */
3250 3288 switch (cmd) {
3251 3289 case TIOCGETP:
3252 3290 case TIOCSETP:
3253 3291 case TIOCSETN:
3254 3292 if (sgttyb_handling >= 2 && !sgttyb_complaint) {
3255 3293 sgttyb_complaint = B_TRUE;
3256 3294 cmn_err(CE_NOTE,
3257 3295 "application used obsolete TIOC[GS]ET");
3258 3296 }
3259 3297 if (sgttyb_handling >= 3) {
3260 3298 tsignal(curthread, SIGSYS);
3261 3299 return (EIO);
3262 3300 }
3263 3301 break;
3264 3302 }
3265 3303
3266 3304 mutex_enter(&stp->sd_lock);
3267 3305
3268 3306 switch (cmd) {
3269 3307 case I_RECVFD:
3270 3308 case I_E_RECVFD:
3271 3309 case I_PEEK:
3272 3310 case I_NREAD:
3273 3311 case FIONREAD:
3274 3312 case FIORDCHK:
3275 3313 case I_ATMARK:
3276 3314 case FIONBIO:
3277 3315 case FIOASYNC:
3278 3316 if (stp->sd_flag & (STRDERR|STPLEX)) {
3279 3317 error = strgeterr(stp, STRDERR|STPLEX, 0);
3280 3318 if (error != 0) {
3281 3319 mutex_exit(&stp->sd_lock);
3282 3320 return (error);
3283 3321 }
3284 3322 }
3285 3323 break;
3286 3324
3287 3325 default:
3288 3326 if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) {
3289 3327 error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0);
3290 3328 if (error != 0) {
3291 3329 mutex_exit(&stp->sd_lock);
3292 3330 return (error);
3293 3331 }
3294 3332 }
3295 3333 }
3296 3334
3297 3335 mutex_exit(&stp->sd_lock);
3298 3336
3299 3337 switch (cmd) {
3300 3338 default:
3301 3339 /*
3302 3340 * The stream head has hardcoded knowledge of a
3303 3341 * miscellaneous collection of terminal-, keyboard- and
3304 3342 * mouse-related ioctls, enumerated below. This hardcoded
3305 3343 * knowledge allows the stream head to automatically
3306 3344 * convert transparent ioctl requests made by userland
3307 3345 * programs into I_STR ioctls which many old STREAMS
3308 3346 * modules and drivers require.
3309 3347 *
3310 3348 * No new ioctls should ever be added to this list.
3311 3349 * Instead, the STREAMS module or driver should be written
3312 3350 * to either handle transparent ioctls or require any
3313 3351 * userland programs to use I_STR ioctls (by returning
3314 3352 * EINVAL to any transparent ioctl requests).
3315 3353 *
3316 3354 * More importantly, removing ioctls from this list should
3317 3355 * be done with the utmost care, since our STREAMS modules
3318 3356 * and drivers *count* on the stream head performing this
3319 3357 * conversion, and thus may panic while processing
3320 3358 * transparent ioctl request for one of these ioctls (keep
3321 3359 * in mind that third party modules and drivers may have
3322 3360 * similar problems).
3323 3361 */
3324 3362 if (((cmd & IOCTYPE) == LDIOC) ||
3325 3363 ((cmd & IOCTYPE) == tIOC) ||
3326 3364 ((cmd & IOCTYPE) == TIOC) ||
3327 3365 ((cmd & IOCTYPE) == KIOC) ||
3328 3366 ((cmd & IOCTYPE) == MSIOC) ||
3329 3367 ((cmd & IOCTYPE) == VUIOC)) {
3330 3368 /*
3331 3369 * The ioctl is a tty ioctl - set up strioc buffer
3332 3370 * and call strdoioctl() to do the work.
3333 3371 */
3334 3372 if (stp->sd_flag & STRHUP)
3335 3373 return (ENXIO);
3336 3374 strioc.ic_cmd = cmd;
3337 3375 strioc.ic_timout = INFTIM;
3338 3376
3339 3377 switch (cmd) {
3340 3378
3341 3379 case TCXONC:
3342 3380 case TCSBRK:
3343 3381 case TCFLSH:
3344 3382 case TCDSET:
3345 3383 {
3346 3384 int native_arg = (int)arg;
3347 3385 strioc.ic_len = sizeof (int);
3348 3386 strioc.ic_dp = (char *)&native_arg;
3349 3387 return (strdoioctl(stp, &strioc, flag,
3350 3388 K_TO_K, crp, rvalp));
3351 3389 }
3352 3390
3353 3391 case TCSETA:
3354 3392 case TCSETAW:
3355 3393 case TCSETAF:
3356 3394 strioc.ic_len = sizeof (struct termio);
3357 3395 strioc.ic_dp = (char *)arg;
3358 3396 return (strdoioctl(stp, &strioc, flag,
3359 3397 copyflag, crp, rvalp));
3360 3398
3361 3399 case TCSETS:
3362 3400 case TCSETSW:
3363 3401 case TCSETSF:
3364 3402 strioc.ic_len = sizeof (struct termios);
3365 3403 strioc.ic_dp = (char *)arg;
3366 3404 return (strdoioctl(stp, &strioc, flag,
3367 3405 copyflag, crp, rvalp));
3368 3406
3369 3407 case LDSETT:
3370 3408 strioc.ic_len = sizeof (struct termcb);
3371 3409 strioc.ic_dp = (char *)arg;
3372 3410 return (strdoioctl(stp, &strioc, flag,
3373 3411 copyflag, crp, rvalp));
3374 3412
3375 3413 case TIOCSETP:
3376 3414 strioc.ic_len = sizeof (struct sgttyb);
3377 3415 strioc.ic_dp = (char *)arg;
3378 3416 return (strdoioctl(stp, &strioc, flag,
3379 3417 copyflag, crp, rvalp));
3380 3418
3381 3419 case TIOCSTI:
3382 3420 if ((flag & FREAD) == 0 &&
3383 3421 secpolicy_sti(crp) != 0) {
3384 3422 return (EPERM);
3385 3423 }
3386 3424 mutex_enter(&stp->sd_lock);
3387 3425 mutex_enter(&curproc->p_splock);
3388 3426 if (stp->sd_sidp != curproc->p_sessp->s_sidp &&
3389 3427 secpolicy_sti(crp) != 0) {
3390 3428 mutex_exit(&curproc->p_splock);
3391 3429 mutex_exit(&stp->sd_lock);
3392 3430 return (EACCES);
3393 3431 }
3394 3432 mutex_exit(&curproc->p_splock);
3395 3433 mutex_exit(&stp->sd_lock);
3396 3434
3397 3435 strioc.ic_len = sizeof (char);
3398 3436 strioc.ic_dp = (char *)arg;
3399 3437 return (strdoioctl(stp, &strioc, flag,
3400 3438 copyflag, crp, rvalp));
3401 3439
3402 3440 case TIOCSWINSZ:
3403 3441 strioc.ic_len = sizeof (struct winsize);
3404 3442 strioc.ic_dp = (char *)arg;
3405 3443 return (strdoioctl(stp, &strioc, flag,
3406 3444 copyflag, crp, rvalp));
3407 3445
3408 3446 case TIOCSSIZE:
3409 3447 strioc.ic_len = sizeof (struct ttysize);
3410 3448 strioc.ic_dp = (char *)arg;
3411 3449 return (strdoioctl(stp, &strioc, flag,
3412 3450 copyflag, crp, rvalp));
3413 3451
3414 3452 case TIOCSSOFTCAR:
3415 3453 case KIOCTRANS:
3416 3454 case KIOCTRANSABLE:
3417 3455 case KIOCCMD:
3418 3456 case KIOCSDIRECT:
3419 3457 case KIOCSCOMPAT:
3420 3458 case KIOCSKABORTEN:
3421 3459 case KIOCSRPTDELAY:
3422 3460 case KIOCSRPTRATE:
3423 3461 case VUIDSFORMAT:
3424 3462 case TIOCSPPS:
3425 3463 strioc.ic_len = sizeof (int);
3426 3464 strioc.ic_dp = (char *)arg;
3427 3465 return (strdoioctl(stp, &strioc, flag,
3428 3466 copyflag, crp, rvalp));
3429 3467
3430 3468 case KIOCSETKEY:
3431 3469 case KIOCGETKEY:
3432 3470 strioc.ic_len = sizeof (struct kiockey);
3433 3471 strioc.ic_dp = (char *)arg;
3434 3472 return (strdoioctl(stp, &strioc, flag,
3435 3473 copyflag, crp, rvalp));
3436 3474
3437 3475 case KIOCSKEY:
3438 3476 case KIOCGKEY:
3439 3477 strioc.ic_len = sizeof (struct kiockeymap);
3440 3478 strioc.ic_dp = (char *)arg;
3441 3479 return (strdoioctl(stp, &strioc, flag,
3442 3480 copyflag, crp, rvalp));
3443 3481
3444 3482 case KIOCSLED:
3445 3483 /* arg is a pointer to char */
3446 3484 strioc.ic_len = sizeof (char);
3447 3485 strioc.ic_dp = (char *)arg;
3448 3486 return (strdoioctl(stp, &strioc, flag,
3449 3487 copyflag, crp, rvalp));
3450 3488
3451 3489 case MSIOSETPARMS:
3452 3490 strioc.ic_len = sizeof (Ms_parms);
3453 3491 strioc.ic_dp = (char *)arg;
3454 3492 return (strdoioctl(stp, &strioc, flag,
3455 3493 copyflag, crp, rvalp));
3456 3494
3457 3495 case VUIDSADDR:
3458 3496 case VUIDGADDR:
3459 3497 strioc.ic_len = sizeof (struct vuid_addr_probe);
3460 3498 strioc.ic_dp = (char *)arg;
3461 3499 return (strdoioctl(stp, &strioc, flag,
3462 3500 copyflag, crp, rvalp));
3463 3501
3464 3502 /*
3465 3503 * These M_IOCTL's don't require any data to be sent
3466 3504 * downstream, and the driver will allocate and link
3467 3505 * on its own mblk_t upon M_IOCACK -- thus we set
3468 3506 * ic_len to zero and set ic_dp to arg so we know
3469 3507 * where to copyout to later.
3470 3508 */
3471 3509 case TIOCGSOFTCAR:
3472 3510 case TIOCGWINSZ:
3473 3511 case TIOCGSIZE:
3474 3512 case KIOCGTRANS:
3475 3513 case KIOCGTRANSABLE:
3476 3514 case KIOCTYPE:
3477 3515 case KIOCGDIRECT:
3478 3516 case KIOCGCOMPAT:
3479 3517 case KIOCLAYOUT:
3480 3518 case KIOCGLED:
3481 3519 case MSIOGETPARMS:
3482 3520 case MSIOBUTTONS:
3483 3521 case VUIDGFORMAT:
3484 3522 case TIOCGPPS:
3485 3523 case TIOCGPPSEV:
3486 3524 case TCGETA:
3487 3525 case TCGETS:
3488 3526 case LDGETT:
3489 3527 case TIOCGETP:
3490 3528 case KIOCGRPTDELAY:
3491 3529 case KIOCGRPTRATE:
3492 3530 strioc.ic_len = 0;
3493 3531 strioc.ic_dp = (char *)arg;
3494 3532 return (strdoioctl(stp, &strioc, flag,
3495 3533 copyflag, crp, rvalp));
3496 3534 }
3497 3535 }
3498 3536
3499 3537 /*
3500 3538 * Unknown cmd - send it down as a transparent ioctl.
3501 3539 */
3502 3540 strioc.ic_cmd = cmd;
3503 3541 strioc.ic_timout = INFTIM;
3504 3542 strioc.ic_len = TRANSPARENT;
3505 3543 strioc.ic_dp = (char *)&arg;
3506 3544
3507 3545 return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp));
3508 3546
3509 3547 case I_STR:
3510 3548 /*
3511 3549 * Stream ioctl. Read in an strioctl buffer from the user
3512 3550 * along with any data specified and send it downstream.
3513 3551 * Strdoioctl will wait allow only one ioctl message at
3514 3552 * a time, and waits for the acknowledgement.
3515 3553 */
3516 3554
3517 3555 if (stp->sd_flag & STRHUP)
3518 3556 return (ENXIO);
3519 3557
3520 3558 error = strcopyin_strioctl((void *)arg, &strioc, flag,
3521 3559 copyflag);
3522 3560 if (error != 0)
3523 3561 return (error);
3524 3562
3525 3563 if ((strioc.ic_len < 0) || (strioc.ic_timout < -1))
3526 3564 return (EINVAL);
3527 3565
3528 3566 access = job_control_type(strioc.ic_cmd);
3529 3567 mutex_enter(&stp->sd_lock);
3530 3568 if ((access != -1) &&
3531 3569 ((error = i_straccess(stp, access)) != 0)) {
3532 3570 mutex_exit(&stp->sd_lock);
3533 3571 return (error);
3534 3572 }
3535 3573 mutex_exit(&stp->sd_lock);
3536 3574
3537 3575 /*
3538 3576 * The I_STR facility provides a trap door for malicious
3539 3577 * code to send down bogus streamio(7I) ioctl commands to
3540 3578 * unsuspecting STREAMS modules and drivers which expect to
3541 3579 * only get these messages from the stream head.
3542 3580 * Explicitly prohibit any streamio ioctls which can be
3543 3581 * passed downstream by the stream head. Note that we do
3544 3582 * not block all streamio ioctls because the ioctl
3545 3583 * numberspace is not well managed and thus it's possible
3546 3584 * that a module or driver's ioctl numbers may accidentally
3547 3585 * collide with them.
3548 3586 */
3549 3587 switch (strioc.ic_cmd) {
3550 3588 case I_LINK:
3551 3589 case I_PLINK:
3552 3590 case I_UNLINK:
3553 3591 case I_PUNLINK:
3554 3592 case _I_GETPEERCRED:
3555 3593 case _I_PLINK_LH:
3556 3594 return (EINVAL);
3557 3595 }
3558 3596
3559 3597 error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp);
3560 3598 if (error == 0) {
3561 3599 error = strcopyout_strioctl(&strioc, (void *)arg,
3562 3600 flag, copyflag);
3563 3601 }
3564 3602 return (error);
3565 3603
3566 3604 case _I_CMD:
3567 3605 /*
3568 3606 * Like I_STR, but without using M_IOC* messages and without
3569 3607 * copyins/copyouts beyond the passed-in argument.
3570 3608 */
3571 3609 if (stp->sd_flag & STRHUP)
3572 3610 return (ENXIO);
3573 3611
3574 3612 if ((scp = kmem_alloc(sizeof (strcmd_t), KM_NOSLEEP)) == NULL)
3575 3613 return (ENOMEM);
3576 3614
3577 3615 if (copyin((void *)arg, scp, sizeof (strcmd_t))) {
3578 3616 kmem_free(scp, sizeof (strcmd_t));
3579 3617 return (EFAULT);
3580 3618 }
3581 3619
3582 3620 access = job_control_type(scp->sc_cmd);
3583 3621 mutex_enter(&stp->sd_lock);
3584 3622 if (access != -1 && (error = i_straccess(stp, access)) != 0) {
3585 3623 mutex_exit(&stp->sd_lock);
3586 3624 kmem_free(scp, sizeof (strcmd_t));
3587 3625 return (error);
3588 3626 }
3589 3627 mutex_exit(&stp->sd_lock);
3590 3628
3591 3629 *rvalp = 0;
3592 3630 if ((error = strdocmd(stp, scp, crp)) == 0) {
3593 3631 if (copyout(scp, (void *)arg, sizeof (strcmd_t)))
3594 3632 error = EFAULT;
3595 3633 }
3596 3634 kmem_free(scp, sizeof (strcmd_t));
3597 3635 return (error);
3598 3636
3599 3637 case I_NREAD:
3600 3638 /*
3601 3639 * Return number of bytes of data in first message
3602 3640 * in queue in "arg" and return the number of messages
3603 3641 * in queue in return value.
3604 3642 */
3605 3643 {
3606 3644 size_t size;
3607 3645 int retval;
3608 3646 int count = 0;
3609 3647
3610 3648 mutex_enter(QLOCK(rdq));
3611 3649
3612 3650 size = msgdsize(rdq->q_first);
3613 3651 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3614 3652 count++;
3615 3653
3616 3654 mutex_exit(QLOCK(rdq));
3617 3655 if (stp->sd_struiordq) {
3618 3656 infod_t infod;
3619 3657
3620 3658 infod.d_cmd = INFOD_COUNT;
3621 3659 infod.d_count = 0;
3622 3660 if (count == 0) {
3623 3661 infod.d_cmd |= INFOD_FIRSTBYTES;
3624 3662 infod.d_bytes = 0;
3625 3663 }
3626 3664 infod.d_res = 0;
3627 3665 (void) infonext(rdq, &infod);
3628 3666 count += infod.d_count;
3629 3667 if (infod.d_res & INFOD_FIRSTBYTES)
3630 3668 size = infod.d_bytes;
3631 3669 }
3632 3670
3633 3671 /*
3634 3672 * Drop down from size_t to the "int" required by the
3635 3673 * interface. Cap at INT_MAX.
3636 3674 */
3637 3675 retval = MIN(size, INT_MAX);
3638 3676 error = strcopyout(&retval, (void *)arg, sizeof (retval),
3639 3677 copyflag);
3640 3678 if (!error)
3641 3679 *rvalp = count;
3642 3680 return (error);
3643 3681 }
3644 3682
3645 3683 case FIONREAD:
3646 3684 /*
3647 3685 * Return number of bytes of data in all data messages
3648 3686 * in queue in "arg".
3649 3687 */
3650 3688 {
3651 3689 size_t size = 0;
3652 3690 int retval;
3653 3691
3654 3692 mutex_enter(QLOCK(rdq));
3655 3693 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3656 3694 size += msgdsize(mp);
3657 3695 mutex_exit(QLOCK(rdq));
3658 3696
3659 3697 if (stp->sd_struiordq) {
3660 3698 infod_t infod;
3661 3699
3662 3700 infod.d_cmd = INFOD_BYTES;
3663 3701 infod.d_res = 0;
3664 3702 infod.d_bytes = 0;
3665 3703 (void) infonext(rdq, &infod);
3666 3704 size += infod.d_bytes;
3667 3705 }
3668 3706
3669 3707 /*
3670 3708 * Drop down from size_t to the "int" required by the
3671 3709 * interface. Cap at INT_MAX.
3672 3710 */
3673 3711 retval = MIN(size, INT_MAX);
3674 3712 error = strcopyout(&retval, (void *)arg, sizeof (retval),
3675 3713 copyflag);
3676 3714
3677 3715 *rvalp = 0;
3678 3716 return (error);
3679 3717 }
3680 3718 case FIORDCHK:
3681 3719 /*
3682 3720 * FIORDCHK does not use arg value (like FIONREAD),
3683 3721 * instead a count is returned. I_NREAD value may
3684 3722 * not be accurate but safe. The real thing to do is
3685 3723 * to add the msgdsizes of all data messages until
3686 3724 * a non-data message.
3687 3725 */
3688 3726 {
3689 3727 size_t size = 0;
3690 3728
3691 3729 mutex_enter(QLOCK(rdq));
3692 3730 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3693 3731 size += msgdsize(mp);
3694 3732 mutex_exit(QLOCK(rdq));
3695 3733
3696 3734 if (stp->sd_struiordq) {
3697 3735 infod_t infod;
3698 3736
3699 3737 infod.d_cmd = INFOD_BYTES;
3700 3738 infod.d_res = 0;
3701 3739 infod.d_bytes = 0;
3702 3740 (void) infonext(rdq, &infod);
3703 3741 size += infod.d_bytes;
3704 3742 }
3705 3743
3706 3744 /*
3707 3745 * Since ioctl returns an int, and memory sizes under
3708 3746 * LP64 may not fit, we return INT_MAX if the count was
3709 3747 * actually greater.
3710 3748 */
3711 3749 *rvalp = MIN(size, INT_MAX);
3712 3750 return (0);
3713 3751 }
3714 3752
3715 3753 case I_FIND:
3716 3754 /*
3717 3755 * Get module name.
3718 3756 */
3719 3757 {
3720 3758 char mname[FMNAMESZ + 1];
3721 3759 queue_t *q;
3722 3760
3723 3761 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3724 3762 mname, FMNAMESZ + 1, NULL);
3725 3763 if (error)
3726 3764 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3727 3765
3728 3766 /*
3729 3767 * Return EINVAL if we're handed a bogus module name.
3730 3768 */
3731 3769 if (fmodsw_find(mname, FMODSW_LOAD) == NULL) {
3732 3770 TRACE_0(TR_FAC_STREAMS_FR,
3733 3771 TR_I_CANT_FIND, "couldn't I_FIND");
3734 3772 return (EINVAL);
3735 3773 }
3736 3774
3737 3775 *rvalp = 0;
3738 3776
3739 3777 /* Look downstream to see if module is there. */
3740 3778 claimstr(stp->sd_wrq);
3741 3779 for (q = stp->sd_wrq->q_next; q; q = q->q_next) {
3742 3780 if (q->q_flag & QREADR) {
3743 3781 q = NULL;
3744 3782 break;
3745 3783 }
3746 3784 if (strcmp(mname, Q2NAME(q)) == 0)
3747 3785 break;
3748 3786 }
3749 3787 releasestr(stp->sd_wrq);
3750 3788
3751 3789 *rvalp = (q ? 1 : 0);
3752 3790 return (error);
3753 3791 }
3754 3792
3755 3793 case I_PUSH:
3756 3794 case __I_PUSH_NOCTTY:
3757 3795 /*
3758 3796 * Push a module.
3759 3797 * For the case __I_PUSH_NOCTTY push a module but
3760 3798 * do not allocate controlling tty. See bugid 4025044
3761 3799 */
3762 3800
3763 3801 {
3764 3802 char mname[FMNAMESZ + 1];
3765 3803 fmodsw_impl_t *fp;
3766 3804 dev_t dummydev;
3767 3805
3768 3806 if (stp->sd_flag & STRHUP)
3769 3807 return (ENXIO);
3770 3808
3771 3809 /*
3772 3810 * Get module name and look up in fmodsw.
3773 3811 */
3774 3812 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3775 3813 mname, FMNAMESZ + 1, NULL);
3776 3814 if (error)
3777 3815 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3778 3816
3779 3817 if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) ==
3780 3818 NULL)
3781 3819 return (EINVAL);
3782 3820
3783 3821 TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH,
3784 3822 "I_PUSH:fp %p stp %p", fp, stp);
3785 3823
3786 3824 if (error = strstartplumb(stp, flag, cmd)) {
3787 3825 fmodsw_rele(fp);
3788 3826 return (error);
3789 3827 }
3790 3828
3791 3829 /*
3792 3830 * See if any more modules can be pushed on this stream.
3793 3831 * Note that this check must be done after strstartplumb()
3794 3832 * since otherwise multiple threads issuing I_PUSHes on
3795 3833 * the same stream will be able to exceed nstrpush.
3796 3834 */
3797 3835 mutex_enter(&stp->sd_lock);
3798 3836 if (stp->sd_pushcnt >= nstrpush) {
3799 3837 fmodsw_rele(fp);
3800 3838 strendplumb(stp);
3801 3839 mutex_exit(&stp->sd_lock);
3802 3840 return (EINVAL);
3803 3841 }
3804 3842 mutex_exit(&stp->sd_lock);
3805 3843
3806 3844 /*
3807 3845 * Push new module and call its open routine
3808 3846 * via qattach(). Modules don't change device
3809 3847 * numbers, so just ignore dummydev here.
3810 3848 */
3811 3849 dummydev = vp->v_rdev;
3812 3850 if ((error = qattach(rdq, &dummydev, 0, crp, fp,
3813 3851 B_FALSE)) == 0) {
3814 3852 if (vp->v_type == VCHR && /* sorry, no pipes allowed */
3815 3853 (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) {
3816 3854 /*
3817 3855 * try to allocate it as a controlling terminal
3818 3856 */
3819 3857 (void) strctty(stp);
3820 3858 }
3821 3859 }
3822 3860
3823 3861 mutex_enter(&stp->sd_lock);
3824 3862
3825 3863 /*
3826 3864 * As a performance concern we are caching the values of
3827 3865 * q_minpsz and q_maxpsz of the module below the stream
3828 3866 * head in the stream head.
3829 3867 */
3830 3868 mutex_enter(QLOCK(stp->sd_wrq->q_next));
3831 3869 rmin = stp->sd_wrq->q_next->q_minpsz;
3832 3870 rmax = stp->sd_wrq->q_next->q_maxpsz;
3833 3871 mutex_exit(QLOCK(stp->sd_wrq->q_next));
3834 3872
3835 3873 /* Do this processing here as a performance concern */
3836 3874 if (strmsgsz != 0) {
3837 3875 if (rmax == INFPSZ)
3838 3876 rmax = strmsgsz;
3839 3877 else {
3840 3878 if (vp->v_type == VFIFO)
3841 3879 rmax = MIN(PIPE_BUF, rmax);
3842 3880 else rmax = MIN(strmsgsz, rmax);
3843 3881 }
3844 3882 }
3845 3883
3846 3884 mutex_enter(QLOCK(wrq));
3847 3885 stp->sd_qn_minpsz = rmin;
3848 3886 stp->sd_qn_maxpsz = rmax;
3849 3887 mutex_exit(QLOCK(wrq));
3850 3888
3851 3889 strendplumb(stp);
3852 3890 mutex_exit(&stp->sd_lock);
3853 3891 return (error);
3854 3892 }
3855 3893
3856 3894 case I_POP:
3857 3895 {
3858 3896 queue_t *q;
3859 3897
3860 3898 if (stp->sd_flag & STRHUP)
3861 3899 return (ENXIO);
3862 3900 if (!wrq->q_next) /* for broken pipes */
3863 3901 return (EINVAL);
3864 3902
3865 3903 if (error = strstartplumb(stp, flag, cmd))
3866 3904 return (error);
3867 3905
3868 3906 /*
3869 3907 * If there is an anchor on this stream and popping
3870 3908 * the current module would attempt to pop through the
3871 3909 * anchor, then disallow the pop unless we have sufficient
3872 3910 * privileges; take the cheapest (non-locking) check
3873 3911 * first.
3874 3912 */
3875 3913 if (secpolicy_ip_config(crp, B_TRUE) != 0 ||
3876 3914 (stp->sd_anchorzone != crgetzoneid(crp))) {
3877 3915 mutex_enter(&stp->sd_lock);
3878 3916 /*
3879 3917 * Anchors only apply if there's at least one
3880 3918 * module on the stream (sd_pushcnt > 0).
3881 3919 */
3882 3920 if (stp->sd_pushcnt > 0 &&
3883 3921 stp->sd_pushcnt == stp->sd_anchor &&
3884 3922 stp->sd_vnode->v_type != VFIFO) {
3885 3923 strendplumb(stp);
3886 3924 mutex_exit(&stp->sd_lock);
3887 3925 if (stp->sd_anchorzone != crgetzoneid(crp))
3888 3926 return (EINVAL);
3889 3927 /* Audit and report error */
3890 3928 return (secpolicy_ip_config(crp, B_FALSE));
3891 3929 }
3892 3930 mutex_exit(&stp->sd_lock);
3893 3931 }
3894 3932
3895 3933 q = wrq->q_next;
3896 3934 TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP,
3897 3935 "I_POP:%p from %p", q, stp);
3898 3936 if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) {
3899 3937 error = EINVAL;
3900 3938 } else {
3901 3939 qdetach(_RD(q), 1, flag, crp, B_FALSE);
3902 3940 error = 0;
3903 3941 }
3904 3942 mutex_enter(&stp->sd_lock);
3905 3943
3906 3944 /*
3907 3945 * As a performance concern we are caching the values of
3908 3946 * q_minpsz and q_maxpsz of the module below the stream
3909 3947 * head in the stream head.
3910 3948 */
3911 3949 mutex_enter(QLOCK(wrq->q_next));
3912 3950 rmin = wrq->q_next->q_minpsz;
3913 3951 rmax = wrq->q_next->q_maxpsz;
3914 3952 mutex_exit(QLOCK(wrq->q_next));
3915 3953
3916 3954 /* Do this processing here as a performance concern */
3917 3955 if (strmsgsz != 0) {
3918 3956 if (rmax == INFPSZ)
3919 3957 rmax = strmsgsz;
3920 3958 else {
3921 3959 if (vp->v_type == VFIFO)
3922 3960 rmax = MIN(PIPE_BUF, rmax);
3923 3961 else rmax = MIN(strmsgsz, rmax);
3924 3962 }
3925 3963 }
3926 3964
3927 3965 mutex_enter(QLOCK(wrq));
3928 3966 stp->sd_qn_minpsz = rmin;
3929 3967 stp->sd_qn_maxpsz = rmax;
3930 3968 mutex_exit(QLOCK(wrq));
3931 3969
3932 3970 /* If we popped through the anchor, then reset the anchor. */
3933 3971 if (stp->sd_pushcnt < stp->sd_anchor) {
3934 3972 stp->sd_anchor = 0;
3935 3973 stp->sd_anchorzone = 0;
3936 3974 }
3937 3975 strendplumb(stp);
3938 3976 mutex_exit(&stp->sd_lock);
3939 3977 return (error);
3940 3978 }
3941 3979
3942 3980 case _I_MUXID2FD:
3943 3981 {
3944 3982 /*
3945 3983 * Create a fd for a I_PLINK'ed lower stream with a given
3946 3984 * muxid. With the fd, application can send down ioctls,
3947 3985 * like I_LIST, to the previously I_PLINK'ed stream. Note
3948 3986 * that after getting the fd, the application has to do an
3949 3987 * I_PUNLINK on the muxid before it can do any operation
3950 3988 * on the lower stream. This is required by spec1170.
3951 3989 *
3952 3990 * The fd used to do this ioctl should point to the same
3953 3991 * controlling device used to do the I_PLINK. If it uses
3954 3992 * a different stream or an invalid muxid, I_MUXID2FD will
3955 3993 * fail. The error code is set to EINVAL.
3956 3994 *
3957 3995 * The intended use of this interface is the following.
3958 3996 * An application I_PLINK'ed a stream and exits. The fd
3959 3997 * to the lower stream is gone. Another application
3960 3998 * wants to get a fd to the lower stream, it uses I_MUXID2FD.
3961 3999 */
3962 4000 int muxid = (int)arg;
3963 4001 int fd;
3964 4002 linkinfo_t *linkp;
3965 4003 struct file *fp;
3966 4004 netstack_t *ns;
3967 4005 str_stack_t *ss;
3968 4006
3969 4007 /*
3970 4008 * Do not allow the wildcard muxid. This ioctl is not
3971 4009 * intended to find arbitrary link.
3972 4010 */
3973 4011 if (muxid == 0) {
3974 4012 return (EINVAL);
3975 4013 }
3976 4014
3977 4015 ns = netstack_find_by_cred(crp);
3978 4016 ASSERT(ns != NULL);
3979 4017 ss = ns->netstack_str;
3980 4018 ASSERT(ss != NULL);
3981 4019
3982 4020 mutex_enter(&muxifier);
3983 4021 linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss);
3984 4022 if (linkp == NULL) {
3985 4023 mutex_exit(&muxifier);
3986 4024 netstack_rele(ss->ss_netstack);
3987 4025 return (EINVAL);
3988 4026 }
3989 4027
3990 4028 if ((fd = ufalloc(0)) == -1) {
3991 4029 mutex_exit(&muxifier);
3992 4030 netstack_rele(ss->ss_netstack);
3993 4031 return (EMFILE);
3994 4032 }
3995 4033 fp = linkp->li_fpdown;
3996 4034 mutex_enter(&fp->f_tlock);
3997 4035 fp->f_count++;
3998 4036 mutex_exit(&fp->f_tlock);
3999 4037 mutex_exit(&muxifier);
4000 4038 setf(fd, fp);
4001 4039 *rvalp = fd;
4002 4040 netstack_rele(ss->ss_netstack);
4003 4041 return (0);
4004 4042 }
4005 4043
4006 4044 case _I_INSERT:
4007 4045 {
4008 4046 /*
4009 4047 * To insert a module to a given position in a stream.
4010 4048 * In the first release, only allow privileged user
4011 4049 * to use this ioctl. Furthermore, the insert is only allowed
4012 4050 * below an anchor if the zoneid is the same as the zoneid
4013 4051 * which created the anchor.
4014 4052 *
4015 4053 * Note that we do not plan to support this ioctl
4016 4054 * on pipes in the first release. We want to learn more
4017 4055 * about the implications of these ioctls before extending
4018 4056 * their support. And we do not think these features are
4019 4057 * valuable for pipes.
4020 4058 */
4021 4059 STRUCT_DECL(strmodconf, strmodinsert);
4022 4060 char mod_name[FMNAMESZ + 1];
4023 4061 fmodsw_impl_t *fp;
4024 4062 dev_t dummydev;
4025 4063 queue_t *tmp_wrq;
4026 4064 int pos;
4027 4065 boolean_t is_insert;
4028 4066
4029 4067 STRUCT_INIT(strmodinsert, flag);
4030 4068 if (stp->sd_flag & STRHUP)
4031 4069 return (ENXIO);
4032 4070 if (STRMATED(stp))
4033 4071 return (EINVAL);
4034 4072 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4035 4073 return (error);
4036 4074 if (stp->sd_anchor != 0 &&
4037 4075 stp->sd_anchorzone != crgetzoneid(crp))
4038 4076 return (EINVAL);
4039 4077
4040 4078 error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert),
4041 4079 STRUCT_SIZE(strmodinsert), copyflag);
4042 4080 if (error)
4043 4081 return (error);
4044 4082
4045 4083 /*
4046 4084 * Get module name and look up in fmodsw.
4047 4085 */
4048 4086 error = (copyflag & U_TO_K ? copyinstr :
4049 4087 copystr)(STRUCT_FGETP(strmodinsert, mod_name),
4050 4088 mod_name, FMNAMESZ + 1, NULL);
4051 4089 if (error)
4052 4090 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4053 4091
4054 4092 if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) ==
4055 4093 NULL)
4056 4094 return (EINVAL);
4057 4095
4058 4096 if (error = strstartplumb(stp, flag, cmd)) {
4059 4097 fmodsw_rele(fp);
4060 4098 return (error);
4061 4099 }
4062 4100
4063 4101 /*
4064 4102 * Is this _I_INSERT just like an I_PUSH? We need to know
4065 4103 * this because we do some optimizations if this is a
4066 4104 * module being pushed.
4067 4105 */
4068 4106 pos = STRUCT_FGET(strmodinsert, pos);
4069 4107 is_insert = (pos != 0);
4070 4108
4071 4109 /*
4072 4110 * Make sure pos is valid. Even though it is not an I_PUSH,
4073 4111 * we impose the same limit on the number of modules in a
4074 4112 * stream.
4075 4113 */
4076 4114 mutex_enter(&stp->sd_lock);
4077 4115 if (stp->sd_pushcnt >= nstrpush || pos < 0 ||
4078 4116 pos > stp->sd_pushcnt) {
4079 4117 fmodsw_rele(fp);
4080 4118 strendplumb(stp);
4081 4119 mutex_exit(&stp->sd_lock);
4082 4120 return (EINVAL);
4083 4121 }
4084 4122 if (stp->sd_anchor != 0) {
4085 4123 /*
4086 4124 * Is this insert below the anchor?
4087 4125 * Pushcnt hasn't been increased yet hence
4088 4126 * we test for greater than here, and greater or
4089 4127 * equal after qattach.
4090 4128 */
4091 4129 if (pos > (stp->sd_pushcnt - stp->sd_anchor) &&
4092 4130 stp->sd_anchorzone != crgetzoneid(crp)) {
4093 4131 fmodsw_rele(fp);
4094 4132 strendplumb(stp);
4095 4133 mutex_exit(&stp->sd_lock);
4096 4134 return (EPERM);
4097 4135 }
4098 4136 }
4099 4137
4100 4138 mutex_exit(&stp->sd_lock);
4101 4139
4102 4140 /*
4103 4141 * First find the correct position this module to
4104 4142 * be inserted. We don't need to call claimstr()
4105 4143 * as the stream should not be changing at this point.
4106 4144 *
4107 4145 * Insert new module and call its open routine
4108 4146 * via qattach(). Modules don't change device
4109 4147 * numbers, so just ignore dummydev here.
4110 4148 */
4111 4149 for (tmp_wrq = stp->sd_wrq; pos > 0;
4112 4150 tmp_wrq = tmp_wrq->q_next, pos--) {
4113 4151 ASSERT(SAMESTR(tmp_wrq));
4114 4152 }
4115 4153 dummydev = vp->v_rdev;
4116 4154 if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp,
4117 4155 fp, is_insert)) != 0) {
4118 4156 mutex_enter(&stp->sd_lock);
4119 4157 strendplumb(stp);
4120 4158 mutex_exit(&stp->sd_lock);
4121 4159 return (error);
4122 4160 }
4123 4161
4124 4162 mutex_enter(&stp->sd_lock);
4125 4163
4126 4164 /*
4127 4165 * As a performance concern we are caching the values of
4128 4166 * q_minpsz and q_maxpsz of the module below the stream
4129 4167 * head in the stream head.
4130 4168 */
4131 4169 if (!is_insert) {
4132 4170 mutex_enter(QLOCK(stp->sd_wrq->q_next));
4133 4171 rmin = stp->sd_wrq->q_next->q_minpsz;
4134 4172 rmax = stp->sd_wrq->q_next->q_maxpsz;
4135 4173 mutex_exit(QLOCK(stp->sd_wrq->q_next));
4136 4174
4137 4175 /* Do this processing here as a performance concern */
4138 4176 if (strmsgsz != 0) {
4139 4177 if (rmax == INFPSZ) {
4140 4178 rmax = strmsgsz;
4141 4179 } else {
4142 4180 rmax = MIN(strmsgsz, rmax);
4143 4181 }
4144 4182 }
4145 4183
4146 4184 mutex_enter(QLOCK(wrq));
4147 4185 stp->sd_qn_minpsz = rmin;
4148 4186 stp->sd_qn_maxpsz = rmax;
4149 4187 mutex_exit(QLOCK(wrq));
4150 4188 }
4151 4189
4152 4190 /*
4153 4191 * Need to update the anchor value if this module is
4154 4192 * inserted below the anchor point.
4155 4193 */
4156 4194 if (stp->sd_anchor != 0) {
4157 4195 pos = STRUCT_FGET(strmodinsert, pos);
4158 4196 if (pos >= (stp->sd_pushcnt - stp->sd_anchor))
4159 4197 stp->sd_anchor++;
4160 4198 }
4161 4199
4162 4200 strendplumb(stp);
4163 4201 mutex_exit(&stp->sd_lock);
4164 4202 return (0);
4165 4203 }
4166 4204
4167 4205 case _I_REMOVE:
4168 4206 {
4169 4207 /*
4170 4208 * To remove a module with a given name in a stream. The
4171 4209 * caller of this ioctl needs to provide both the name and
4172 4210 * the position of the module to be removed. This eliminates
4173 4211 * the ambiguity of removal if a module is inserted/pushed
4174 4212 * multiple times in a stream. In the first release, only
4175 4213 * allow privileged user to use this ioctl.
4176 4214 * Furthermore, the remove is only allowed
4177 4215 * below an anchor if the zoneid is the same as the zoneid
4178 4216 * which created the anchor.
4179 4217 *
4180 4218 * Note that we do not plan to support this ioctl
4181 4219 * on pipes in the first release. We want to learn more
4182 4220 * about the implications of these ioctls before extending
4183 4221 * their support. And we do not think these features are
4184 4222 * valuable for pipes.
4185 4223 *
4186 4224 * Also note that _I_REMOVE cannot be used to remove a
4187 4225 * driver or the stream head.
4188 4226 */
4189 4227 STRUCT_DECL(strmodconf, strmodremove);
4190 4228 queue_t *q;
4191 4229 int pos;
4192 4230 char mod_name[FMNAMESZ + 1];
4193 4231 boolean_t is_remove;
4194 4232
4195 4233 STRUCT_INIT(strmodremove, flag);
4196 4234 if (stp->sd_flag & STRHUP)
4197 4235 return (ENXIO);
4198 4236 if (STRMATED(stp))
4199 4237 return (EINVAL);
4200 4238 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4201 4239 return (error);
4202 4240 if (stp->sd_anchor != 0 &&
4203 4241 stp->sd_anchorzone != crgetzoneid(crp))
4204 4242 return (EINVAL);
4205 4243
4206 4244 error = strcopyin((void *)arg, STRUCT_BUF(strmodremove),
4207 4245 STRUCT_SIZE(strmodremove), copyflag);
4208 4246 if (error)
4209 4247 return (error);
4210 4248
4211 4249 error = (copyflag & U_TO_K ? copyinstr :
4212 4250 copystr)(STRUCT_FGETP(strmodremove, mod_name),
4213 4251 mod_name, FMNAMESZ + 1, NULL);
4214 4252 if (error)
4215 4253 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4216 4254
4217 4255 if ((error = strstartplumb(stp, flag, cmd)) != 0)
4218 4256 return (error);
4219 4257
4220 4258 /*
4221 4259 * Match the name of given module to the name of module at
4222 4260 * the given position.
4223 4261 */
4224 4262 pos = STRUCT_FGET(strmodremove, pos);
4225 4263
4226 4264 is_remove = (pos != 0);
4227 4265 for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0;
4228 4266 q = q->q_next, pos--)
4229 4267 ;
4230 4268 if (pos > 0 || !SAMESTR(q) ||
4231 4269 strcmp(Q2NAME(q), mod_name) != 0) {
4232 4270 mutex_enter(&stp->sd_lock);
4233 4271 strendplumb(stp);
4234 4272 mutex_exit(&stp->sd_lock);
4235 4273 return (EINVAL);
4236 4274 }
4237 4275
4238 4276 /*
4239 4277 * If the position is at or below an anchor, then the zoneid
4240 4278 * must match the zoneid that created the anchor.
4241 4279 */
4242 4280 if (stp->sd_anchor != 0) {
4243 4281 pos = STRUCT_FGET(strmodremove, pos);
4244 4282 if (pos >= (stp->sd_pushcnt - stp->sd_anchor) &&
4245 4283 stp->sd_anchorzone != crgetzoneid(crp)) {
4246 4284 mutex_enter(&stp->sd_lock);
4247 4285 strendplumb(stp);
4248 4286 mutex_exit(&stp->sd_lock);
4249 4287 return (EPERM);
4250 4288 }
4251 4289 }
4252 4290
4253 4291
4254 4292 ASSERT(!(q->q_flag & QREADR));
4255 4293 qdetach(_RD(q), 1, flag, crp, is_remove);
4256 4294
4257 4295 mutex_enter(&stp->sd_lock);
4258 4296
4259 4297 /*
4260 4298 * As a performance concern we are caching the values of
4261 4299 * q_minpsz and q_maxpsz of the module below the stream
4262 4300 * head in the stream head.
4263 4301 */
4264 4302 if (!is_remove) {
4265 4303 mutex_enter(QLOCK(wrq->q_next));
4266 4304 rmin = wrq->q_next->q_minpsz;
4267 4305 rmax = wrq->q_next->q_maxpsz;
4268 4306 mutex_exit(QLOCK(wrq->q_next));
4269 4307
4270 4308 /* Do this processing here as a performance concern */
4271 4309 if (strmsgsz != 0) {
4272 4310 if (rmax == INFPSZ)
4273 4311 rmax = strmsgsz;
4274 4312 else {
4275 4313 if (vp->v_type == VFIFO)
4276 4314 rmax = MIN(PIPE_BUF, rmax);
4277 4315 else rmax = MIN(strmsgsz, rmax);
4278 4316 }
4279 4317 }
4280 4318
4281 4319 mutex_enter(QLOCK(wrq));
4282 4320 stp->sd_qn_minpsz = rmin;
4283 4321 stp->sd_qn_maxpsz = rmax;
4284 4322 mutex_exit(QLOCK(wrq));
4285 4323 }
4286 4324
4287 4325 /*
4288 4326 * Need to update the anchor value if this module is removed
4289 4327 * at or below the anchor point. If the removed module is at
4290 4328 * the anchor point, remove the anchor for this stream if
4291 4329 * there is no module above the anchor point. Otherwise, if
4292 4330 * the removed module is below the anchor point, decrement the
4293 4331 * anchor point by 1.
4294 4332 */
4295 4333 if (stp->sd_anchor != 0) {
4296 4334 pos = STRUCT_FGET(strmodremove, pos);
4297 4335 if (pos == stp->sd_pushcnt - stp->sd_anchor + 1)
4298 4336 stp->sd_anchor = 0;
4299 4337 else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1))
4300 4338 stp->sd_anchor--;
4301 4339 }
4302 4340
4303 4341 strendplumb(stp);
4304 4342 mutex_exit(&stp->sd_lock);
4305 4343 return (0);
4306 4344 }
4307 4345
4308 4346 case I_ANCHOR:
4309 4347 /*
4310 4348 * Set the anchor position on the stream to reside at
4311 4349 * the top module (in other words, the top module
4312 4350 * cannot be popped). Anchors with a FIFO make no
4313 4351 * obvious sense, so they're not allowed.
4314 4352 */
4315 4353 mutex_enter(&stp->sd_lock);
4316 4354
4317 4355 if (stp->sd_vnode->v_type == VFIFO) {
4318 4356 mutex_exit(&stp->sd_lock);
4319 4357 return (EINVAL);
4320 4358 }
4321 4359 /* Only allow the same zoneid to update the anchor */
4322 4360 if (stp->sd_anchor != 0 &&
4323 4361 stp->sd_anchorzone != crgetzoneid(crp)) {
4324 4362 mutex_exit(&stp->sd_lock);
4325 4363 return (EINVAL);
4326 4364 }
4327 4365 stp->sd_anchor = stp->sd_pushcnt;
4328 4366 stp->sd_anchorzone = crgetzoneid(crp);
4329 4367 mutex_exit(&stp->sd_lock);
4330 4368 return (0);
4331 4369
4332 4370 case I_LOOK:
4333 4371 /*
4334 4372 * Get name of first module downstream.
4335 4373 * If no module, return an error.
4336 4374 */
4337 4375 claimstr(wrq);
4338 4376 if (_SAMESTR(wrq) && wrq->q_next->q_next != NULL) {
4339 4377 char *name = Q2NAME(wrq->q_next);
4340 4378
4341 4379 error = strcopyout(name, (void *)arg, strlen(name) + 1,
4342 4380 copyflag);
4343 4381 releasestr(wrq);
4344 4382 return (error);
4345 4383 }
4346 4384 releasestr(wrq);
4347 4385 return (EINVAL);
4348 4386
4349 4387 case I_LINK:
4350 4388 case I_PLINK:
4351 4389 /*
4352 4390 * Link a multiplexor.
4353 4391 */
4354 4392 return (mlink(vp, cmd, (int)arg, crp, rvalp, 0));
4355 4393
4356 4394 case _I_PLINK_LH:
4357 4395 /*
4358 4396 * Link a multiplexor: Call must originate from kernel.
4359 4397 */
4360 4398 if (kioctl)
4361 4399 return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp));
4362 4400
4363 4401 return (EINVAL);
4364 4402 case I_UNLINK:
4365 4403 case I_PUNLINK:
4366 4404 /*
4367 4405 * Unlink a multiplexor.
4368 4406 * If arg is -1, unlink all links for which this is the
4369 4407 * controlling stream. Otherwise, arg is an index number
4370 4408 * for a link to be removed.
4371 4409 */
4372 4410 {
4373 4411 struct linkinfo *linkp;
4374 4412 int native_arg = (int)arg;
4375 4413 int type;
4376 4414 netstack_t *ns;
4377 4415 str_stack_t *ss;
4378 4416
4379 4417 TRACE_1(TR_FAC_STREAMS_FR,
4380 4418 TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp);
4381 4419 if (vp->v_type == VFIFO) {
4382 4420 return (EINVAL);
4383 4421 }
4384 4422 if (cmd == I_UNLINK)
4385 4423 type = LINKNORMAL;
4386 4424 else /* I_PUNLINK */
4387 4425 type = LINKPERSIST;
4388 4426 if (native_arg == 0) {
4389 4427 return (EINVAL);
4390 4428 }
4391 4429 ns = netstack_find_by_cred(crp);
4392 4430 ASSERT(ns != NULL);
4393 4431 ss = ns->netstack_str;
4394 4432 ASSERT(ss != NULL);
4395 4433
4396 4434 if (native_arg == MUXID_ALL)
4397 4435 error = munlinkall(stp, type, crp, rvalp, ss);
4398 4436 else {
4399 4437 mutex_enter(&muxifier);
4400 4438 if (!(linkp = findlinks(stp, (int)arg, type, ss))) {
4401 4439 /* invalid user supplied index number */
4402 4440 mutex_exit(&muxifier);
4403 4441 netstack_rele(ss->ss_netstack);
4404 4442 return (EINVAL);
4405 4443 }
4406 4444 /* munlink drops the muxifier lock */
4407 4445 error = munlink(stp, linkp, type, crp, rvalp, ss);
4408 4446 }
4409 4447 netstack_rele(ss->ss_netstack);
4410 4448 return (error);
4411 4449 }
4412 4450
4413 4451 case I_FLUSH:
4414 4452 /*
4415 4453 * send a flush message downstream
4416 4454 * flush message can indicate
4417 4455 * FLUSHR - flush read queue
4418 4456 * FLUSHW - flush write queue
4419 4457 * FLUSHRW - flush read/write queue
4420 4458 */
4421 4459 if (stp->sd_flag & STRHUP)
4422 4460 return (ENXIO);
4423 4461 if (arg & ~FLUSHRW)
4424 4462 return (EINVAL);
4425 4463
4426 4464 for (;;) {
4427 4465 if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) {
4428 4466 break;
4429 4467 }
4430 4468 if (error = strwaitbuf(1, BPRI_HI)) {
4431 4469 return (error);
4432 4470 }
4433 4471 }
4434 4472
4435 4473 /*
4436 4474 * Send down an unsupported ioctl and wait for the nack
4437 4475 * in order to allow the M_FLUSH to propagate back
4438 4476 * up to the stream head.
4439 4477 * Replaces if (qready()) runqueues();
4440 4478 */
4441 4479 strioc.ic_cmd = -1; /* The unsupported ioctl */
4442 4480 strioc.ic_timout = 0;
4443 4481 strioc.ic_len = 0;
4444 4482 strioc.ic_dp = NULL;
4445 4483 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4446 4484 *rvalp = 0;
4447 4485 return (0);
4448 4486
4449 4487 case I_FLUSHBAND:
4450 4488 {
4451 4489 struct bandinfo binfo;
4452 4490
4453 4491 error = strcopyin((void *)arg, &binfo, sizeof (binfo),
4454 4492 copyflag);
4455 4493 if (error)
4456 4494 return (error);
4457 4495 if (stp->sd_flag & STRHUP)
4458 4496 return (ENXIO);
4459 4497 if (binfo.bi_flag & ~FLUSHRW)
4460 4498 return (EINVAL);
4461 4499 while (!(mp = allocb(2, BPRI_HI))) {
4462 4500 if (error = strwaitbuf(2, BPRI_HI))
4463 4501 return (error);
4464 4502 }
4465 4503 mp->b_datap->db_type = M_FLUSH;
4466 4504 *mp->b_wptr++ = binfo.bi_flag | FLUSHBAND;
4467 4505 *mp->b_wptr++ = binfo.bi_pri;
4468 4506 putnext(stp->sd_wrq, mp);
4469 4507 /*
4470 4508 * Send down an unsupported ioctl and wait for the nack
4471 4509 * in order to allow the M_FLUSH to propagate back
4472 4510 * up to the stream head.
4473 4511 * Replaces if (qready()) runqueues();
4474 4512 */
4475 4513 strioc.ic_cmd = -1; /* The unsupported ioctl */
4476 4514 strioc.ic_timout = 0;
4477 4515 strioc.ic_len = 0;
4478 4516 strioc.ic_dp = NULL;
4479 4517 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4480 4518 *rvalp = 0;
4481 4519 return (0);
4482 4520 }
4483 4521
4484 4522 case I_SRDOPT:
4485 4523 /*
4486 4524 * Set read options
4487 4525 *
4488 4526 * RNORM - default stream mode
4489 4527 * RMSGN - message no discard
4490 4528 * RMSGD - message discard
4491 4529 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs
4492 4530 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs
4493 4531 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs
4494 4532 */
4495 4533 if (arg & ~(RMODEMASK | RPROTMASK))
4496 4534 return (EINVAL);
4497 4535
4498 4536 if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN))
4499 4537 return (EINVAL);
4500 4538
4501 4539 mutex_enter(&stp->sd_lock);
4502 4540 switch (arg & RMODEMASK) {
4503 4541 case RNORM:
4504 4542 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
4505 4543 break;
4506 4544 case RMSGD:
4507 4545 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) |
4508 4546 RD_MSGDIS;
4509 4547 break;
4510 4548 case RMSGN:
4511 4549 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) |
4512 4550 RD_MSGNODIS;
4513 4551 break;
4514 4552 }
4515 4553
4516 4554 switch (arg & RPROTMASK) {
4517 4555 case RPROTNORM:
4518 4556 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
4519 4557 break;
4520 4558
4521 4559 case RPROTDAT:
4522 4560 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) |
4523 4561 RD_PROTDAT);
4524 4562 break;
4525 4563
4526 4564 case RPROTDIS:
4527 4565 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) |
4528 4566 RD_PROTDIS);
4529 4567 break;
4530 4568 }
4531 4569 mutex_exit(&stp->sd_lock);
4532 4570 return (0);
4533 4571
4534 4572 case I_GRDOPT:
4535 4573 /*
4536 4574 * Get read option and return the value
4537 4575 * to spot pointed to by arg
4538 4576 */
4539 4577 {
4540 4578 int rdopt;
4541 4579
4542 4580 rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD :
4543 4581 ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM));
4544 4582 rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT :
4545 4583 ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM));
4546 4584
4547 4585 return (strcopyout(&rdopt, (void *)arg, sizeof (int),
4548 4586 copyflag));
4549 4587 }
4550 4588
4551 4589 case I_SERROPT:
4552 4590 /*
4553 4591 * Set error options
4554 4592 *
4555 4593 * RERRNORM - persistent read errors
4556 4594 * RERRNONPERSIST - non-persistent read errors
4557 4595 * WERRNORM - persistent write errors
4558 4596 * WERRNONPERSIST - non-persistent write errors
4559 4597 */
4560 4598 if (arg & ~(RERRMASK | WERRMASK))
4561 4599 return (EINVAL);
4562 4600
4563 4601 mutex_enter(&stp->sd_lock);
4564 4602 switch (arg & RERRMASK) {
4565 4603 case RERRNORM:
4566 4604 stp->sd_flag &= ~STRDERRNONPERSIST;
4567 4605 break;
4568 4606 case RERRNONPERSIST:
4569 4607 stp->sd_flag |= STRDERRNONPERSIST;
4570 4608 break;
4571 4609 }
4572 4610 switch (arg & WERRMASK) {
4573 4611 case WERRNORM:
4574 4612 stp->sd_flag &= ~STWRERRNONPERSIST;
4575 4613 break;
4576 4614 case WERRNONPERSIST:
4577 4615 stp->sd_flag |= STWRERRNONPERSIST;
4578 4616 break;
4579 4617 }
4580 4618 mutex_exit(&stp->sd_lock);
4581 4619 return (0);
4582 4620
4583 4621 case I_GERROPT:
4584 4622 /*
4585 4623 * Get error option and return the value
4586 4624 * to spot pointed to by arg
4587 4625 */
4588 4626 {
4589 4627 int erropt = 0;
4590 4628
4591 4629 erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST :
4592 4630 RERRNORM;
4593 4631 erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST :
4594 4632 WERRNORM;
4595 4633 return (strcopyout(&erropt, (void *)arg, sizeof (int),
4596 4634 copyflag));
4597 4635 }
4598 4636
4599 4637 case I_SETSIG:
4600 4638 /*
4601 4639 * Register the calling proc to receive the SIGPOLL
4602 4640 * signal based on the events given in arg. If
4603 4641 * arg is zero, remove the proc from register list.
4604 4642 */
4605 4643 {
4606 4644 strsig_t *ssp, *pssp;
4607 4645 struct pid *pidp;
4608 4646
4609 4647 pssp = NULL;
4610 4648 pidp = curproc->p_pidp;
4611 4649 /*
4612 4650 * Hold sd_lock to prevent traversal of sd_siglist while
4613 4651 * it is modified.
4614 4652 */
4615 4653 mutex_enter(&stp->sd_lock);
4616 4654 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp);
4617 4655 pssp = ssp, ssp = ssp->ss_next)
4618 4656 ;
4619 4657
4620 4658 if (arg) {
4621 4659 if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4622 4660 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4623 4661 mutex_exit(&stp->sd_lock);
4624 4662 return (EINVAL);
4625 4663 }
4626 4664 if ((arg & S_BANDURG) && !(arg & S_RDBAND)) {
4627 4665 mutex_exit(&stp->sd_lock);
4628 4666 return (EINVAL);
4629 4667 }
4630 4668
4631 4669 /*
4632 4670 * If proc not already registered, add it
4633 4671 * to list.
4634 4672 */
4635 4673 if (!ssp) {
4636 4674 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4637 4675 ssp->ss_pidp = pidp;
4638 4676 ssp->ss_pid = pidp->pid_id;
4639 4677 ssp->ss_next = NULL;
4640 4678 if (pssp)
4641 4679 pssp->ss_next = ssp;
4642 4680 else
4643 4681 stp->sd_siglist = ssp;
4644 4682 mutex_enter(&pidlock);
4645 4683 PID_HOLD(pidp);
4646 4684 mutex_exit(&pidlock);
4647 4685 }
4648 4686
4649 4687 /*
4650 4688 * Set events.
4651 4689 */
4652 4690 ssp->ss_events = (int)arg;
4653 4691 } else {
4654 4692 /*
4655 4693 * Remove proc from register list.
4656 4694 */
4657 4695 if (ssp) {
4658 4696 mutex_enter(&pidlock);
4659 4697 PID_RELE(pidp);
4660 4698 mutex_exit(&pidlock);
4661 4699 if (pssp)
4662 4700 pssp->ss_next = ssp->ss_next;
4663 4701 else
4664 4702 stp->sd_siglist = ssp->ss_next;
4665 4703 kmem_free(ssp, sizeof (strsig_t));
4666 4704 } else {
4667 4705 mutex_exit(&stp->sd_lock);
4668 4706 return (EINVAL);
4669 4707 }
4670 4708 }
4671 4709
4672 4710 /*
4673 4711 * Recalculate OR of sig events.
4674 4712 */
4675 4713 stp->sd_sigflags = 0;
4676 4714 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4677 4715 stp->sd_sigflags |= ssp->ss_events;
4678 4716 mutex_exit(&stp->sd_lock);
4679 4717 return (0);
4680 4718 }
4681 4719
4682 4720 case I_GETSIG:
4683 4721 /*
4684 4722 * Return (in arg) the current registration of events
4685 4723 * for which the calling proc is to be signaled.
4686 4724 */
4687 4725 {
4688 4726 struct strsig *ssp;
4689 4727 struct pid *pidp;
4690 4728
4691 4729 pidp = curproc->p_pidp;
4692 4730 mutex_enter(&stp->sd_lock);
4693 4731 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4694 4732 if (ssp->ss_pidp == pidp) {
4695 4733 error = strcopyout(&ssp->ss_events, (void *)arg,
4696 4734 sizeof (int), copyflag);
4697 4735 mutex_exit(&stp->sd_lock);
4698 4736 return (error);
4699 4737 }
4700 4738 mutex_exit(&stp->sd_lock);
4701 4739 return (EINVAL);
4702 4740 }
4703 4741
4704 4742 case I_ESETSIG:
4705 4743 /*
4706 4744 * Register the ss_pid to receive the SIGPOLL
4707 4745 * signal based on the events is ss_events arg. If
4708 4746 * ss_events is zero, remove the proc from register list.
4709 4747 */
4710 4748 {
4711 4749 struct strsig *ssp, *pssp;
4712 4750 struct proc *proc;
4713 4751 struct pid *pidp;
4714 4752 pid_t pid;
4715 4753 struct strsigset ss;
4716 4754
4717 4755 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4718 4756 if (error)
4719 4757 return (error);
4720 4758
4721 4759 pid = ss.ss_pid;
4722 4760
4723 4761 if (ss.ss_events != 0) {
4724 4762 /*
4725 4763 * Permissions check by sending signal 0.
4726 4764 * Note that when kill fails it does a set_errno
4727 4765 * causing the system call to fail.
4728 4766 */
4729 4767 error = kill(pid, 0);
4730 4768 if (error) {
4731 4769 return (error);
4732 4770 }
4733 4771 }
4734 4772 mutex_enter(&pidlock);
4735 4773 if (pid == 0)
4736 4774 proc = curproc;
4737 4775 else if (pid < 0)
4738 4776 proc = pgfind(-pid);
4739 4777 else
4740 4778 proc = prfind(pid);
4741 4779 if (proc == NULL) {
4742 4780 mutex_exit(&pidlock);
4743 4781 return (ESRCH);
4744 4782 }
4745 4783 if (pid < 0)
4746 4784 pidp = proc->p_pgidp;
4747 4785 else
4748 4786 pidp = proc->p_pidp;
4749 4787 ASSERT(pidp);
4750 4788 /*
4751 4789 * Get a hold on the pid structure while referencing it.
4752 4790 * There is a separate PID_HOLD should it be inserted
4753 4791 * in the list below.
4754 4792 */
4755 4793 PID_HOLD(pidp);
4756 4794 mutex_exit(&pidlock);
4757 4795
4758 4796 pssp = NULL;
4759 4797 /*
4760 4798 * Hold sd_lock to prevent traversal of sd_siglist while
4761 4799 * it is modified.
4762 4800 */
4763 4801 mutex_enter(&stp->sd_lock);
4764 4802 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid);
4765 4803 pssp = ssp, ssp = ssp->ss_next)
4766 4804 ;
4767 4805
4768 4806 if (ss.ss_events) {
4769 4807 if (ss.ss_events &
4770 4808 ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4771 4809 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4772 4810 mutex_exit(&stp->sd_lock);
4773 4811 mutex_enter(&pidlock);
4774 4812 PID_RELE(pidp);
4775 4813 mutex_exit(&pidlock);
4776 4814 return (EINVAL);
4777 4815 }
4778 4816 if ((ss.ss_events & S_BANDURG) &&
4779 4817 !(ss.ss_events & S_RDBAND)) {
4780 4818 mutex_exit(&stp->sd_lock);
4781 4819 mutex_enter(&pidlock);
4782 4820 PID_RELE(pidp);
4783 4821 mutex_exit(&pidlock);
4784 4822 return (EINVAL);
4785 4823 }
4786 4824
4787 4825 /*
4788 4826 * If proc not already registered, add it
4789 4827 * to list.
4790 4828 */
4791 4829 if (!ssp) {
4792 4830 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4793 4831 ssp->ss_pidp = pidp;
4794 4832 ssp->ss_pid = pid;
4795 4833 ssp->ss_next = NULL;
4796 4834 if (pssp)
4797 4835 pssp->ss_next = ssp;
4798 4836 else
4799 4837 stp->sd_siglist = ssp;
4800 4838 mutex_enter(&pidlock);
4801 4839 PID_HOLD(pidp);
4802 4840 mutex_exit(&pidlock);
4803 4841 }
4804 4842
4805 4843 /*
4806 4844 * Set events.
4807 4845 */
4808 4846 ssp->ss_events = ss.ss_events;
4809 4847 } else {
4810 4848 /*
4811 4849 * Remove proc from register list.
4812 4850 */
4813 4851 if (ssp) {
4814 4852 mutex_enter(&pidlock);
4815 4853 PID_RELE(pidp);
4816 4854 mutex_exit(&pidlock);
4817 4855 if (pssp)
4818 4856 pssp->ss_next = ssp->ss_next;
4819 4857 else
4820 4858 stp->sd_siglist = ssp->ss_next;
4821 4859 kmem_free(ssp, sizeof (strsig_t));
4822 4860 } else {
4823 4861 mutex_exit(&stp->sd_lock);
4824 4862 mutex_enter(&pidlock);
4825 4863 PID_RELE(pidp);
4826 4864 mutex_exit(&pidlock);
4827 4865 return (EINVAL);
4828 4866 }
4829 4867 }
4830 4868
4831 4869 /*
4832 4870 * Recalculate OR of sig events.
4833 4871 */
4834 4872 stp->sd_sigflags = 0;
4835 4873 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4836 4874 stp->sd_sigflags |= ssp->ss_events;
4837 4875 mutex_exit(&stp->sd_lock);
4838 4876 mutex_enter(&pidlock);
4839 4877 PID_RELE(pidp);
4840 4878 mutex_exit(&pidlock);
4841 4879 return (0);
4842 4880 }
4843 4881
4844 4882 case I_EGETSIG:
4845 4883 /*
4846 4884 * Return (in arg) the current registration of events
4847 4885 * for which the calling proc is to be signaled.
4848 4886 */
4849 4887 {
4850 4888 struct strsig *ssp;
4851 4889 struct proc *proc;
4852 4890 pid_t pid;
4853 4891 struct pid *pidp;
4854 4892 struct strsigset ss;
4855 4893
4856 4894 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4857 4895 if (error)
4858 4896 return (error);
4859 4897
4860 4898 pid = ss.ss_pid;
4861 4899 mutex_enter(&pidlock);
4862 4900 if (pid == 0)
4863 4901 proc = curproc;
4864 4902 else if (pid < 0)
4865 4903 proc = pgfind(-pid);
4866 4904 else
4867 4905 proc = prfind(pid);
4868 4906 if (proc == NULL) {
4869 4907 mutex_exit(&pidlock);
4870 4908 return (ESRCH);
4871 4909 }
4872 4910 if (pid < 0)
4873 4911 pidp = proc->p_pgidp;
4874 4912 else
4875 4913 pidp = proc->p_pidp;
4876 4914
4877 4915 /* Prevent the pidp from being reassigned */
4878 4916 PID_HOLD(pidp);
4879 4917 mutex_exit(&pidlock);
4880 4918
4881 4919 mutex_enter(&stp->sd_lock);
4882 4920 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4883 4921 if (ssp->ss_pid == pid) {
4884 4922 ss.ss_pid = ssp->ss_pid;
4885 4923 ss.ss_events = ssp->ss_events;
4886 4924 error = strcopyout(&ss, (void *)arg,
4887 4925 sizeof (struct strsigset), copyflag);
4888 4926 mutex_exit(&stp->sd_lock);
4889 4927 mutex_enter(&pidlock);
4890 4928 PID_RELE(pidp);
4891 4929 mutex_exit(&pidlock);
4892 4930 return (error);
4893 4931 }
4894 4932 mutex_exit(&stp->sd_lock);
4895 4933 mutex_enter(&pidlock);
4896 4934 PID_RELE(pidp);
4897 4935 mutex_exit(&pidlock);
4898 4936 return (EINVAL);
4899 4937 }
4900 4938
4901 4939 case I_PEEK:
4902 4940 {
4903 4941 STRUCT_DECL(strpeek, strpeek);
4904 4942 size_t n;
4905 4943 mblk_t *fmp, *tmp_mp = NULL;
4906 4944
4907 4945 STRUCT_INIT(strpeek, flag);
4908 4946
4909 4947 error = strcopyin((void *)arg, STRUCT_BUF(strpeek),
4910 4948 STRUCT_SIZE(strpeek), copyflag);
4911 4949 if (error)
4912 4950 return (error);
4913 4951
4914 4952 mutex_enter(QLOCK(rdq));
4915 4953 /*
4916 4954 * Skip the invalid messages
4917 4955 */
4918 4956 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
4919 4957 if (mp->b_datap->db_type != M_SIG)
4920 4958 break;
4921 4959
4922 4960 /*
4923 4961 * If user has requested to peek at a high priority message
4924 4962 * and first message is not, return 0
4925 4963 */
4926 4964 if (mp != NULL) {
4927 4965 if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) &&
4928 4966 queclass(mp) == QNORM) {
4929 4967 *rvalp = 0;
4930 4968 mutex_exit(QLOCK(rdq));
4931 4969 return (0);
4932 4970 }
4933 4971 } else if (stp->sd_struiordq == NULL ||
4934 4972 (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) {
4935 4973 /*
4936 4974 * No mblks to look at at the streamhead and
4937 4975 * 1). This isn't a synch stream or
4938 4976 * 2). This is a synch stream but caller wants high
4939 4977 * priority messages which is not supported by
4940 4978 * the synch stream. (it only supports QNORM)
4941 4979 */
4942 4980 *rvalp = 0;
4943 4981 mutex_exit(QLOCK(rdq));
4944 4982 return (0);
4945 4983 }
4946 4984
4947 4985 fmp = mp;
4948 4986
4949 4987 if (mp && mp->b_datap->db_type == M_PASSFP) {
4950 4988 mutex_exit(QLOCK(rdq));
4951 4989 return (EBADMSG);
4952 4990 }
4953 4991
4954 4992 ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO ||
4955 4993 mp->b_datap->db_type == M_PROTO ||
4956 4994 mp->b_datap->db_type == M_DATA);
4957 4995
4958 4996 if (mp && mp->b_datap->db_type == M_PCPROTO) {
4959 4997 STRUCT_FSET(strpeek, flags, RS_HIPRI);
4960 4998 } else {
4961 4999 STRUCT_FSET(strpeek, flags, 0);
4962 5000 }
4963 5001
4964 5002
4965 5003 if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) {
4966 5004 mutex_exit(QLOCK(rdq));
4967 5005 return (ENOSR);
4968 5006 }
4969 5007 mutex_exit(QLOCK(rdq));
4970 5008
4971 5009 /*
4972 5010 * set mp = tmp_mp, so that I_PEEK processing can continue.
4973 5011 * tmp_mp is used to free the dup'd message.
4974 5012 */
4975 5013 mp = tmp_mp;
4976 5014
4977 5015 uio.uio_fmode = 0;
4978 5016 uio.uio_extflg = UIO_COPY_CACHED;
4979 5017 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
4980 5018 UIO_SYSSPACE;
4981 5019 uio.uio_limit = 0;
4982 5020 /*
4983 5021 * First process PROTO blocks, if any.
4984 5022 * If user doesn't want to get ctl info by setting maxlen <= 0,
4985 5023 * then set len to -1/0 and skip control blocks part.
4986 5024 */
4987 5025 if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0)
4988 5026 STRUCT_FSET(strpeek, ctlbuf.len, -1);
4989 5027 else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0)
4990 5028 STRUCT_FSET(strpeek, ctlbuf.len, 0);
4991 5029 else {
4992 5030 int ctl_part = 0;
4993 5031
4994 5032 iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf);
4995 5033 iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen);
4996 5034 uio.uio_iov = &iov;
4997 5035 uio.uio_resid = iov.iov_len;
4998 5036 uio.uio_loffset = 0;
4999 5037 uio.uio_iovcnt = 1;
5000 5038 while (mp && mp->b_datap->db_type != M_DATA &&
5001 5039 uio.uio_resid >= 0) {
5002 5040 ASSERT(STRUCT_FGET(strpeek, flags) == 0 ?
5003 5041 mp->b_datap->db_type == M_PROTO :
5004 5042 mp->b_datap->db_type == M_PCPROTO);
5005 5043
5006 5044 if ((n = MIN(uio.uio_resid,
5007 5045 mp->b_wptr - mp->b_rptr)) != 0 &&
5008 5046 (error = uiomove((char *)mp->b_rptr, n,
5009 5047 UIO_READ, &uio)) != 0) {
5010 5048 freemsg(tmp_mp);
5011 5049 return (error);
5012 5050 }
5013 5051 ctl_part = 1;
5014 5052 mp = mp->b_cont;
5015 5053 }
5016 5054 /* No ctl message */
5017 5055 if (ctl_part == 0)
5018 5056 STRUCT_FSET(strpeek, ctlbuf.len, -1);
5019 5057 else
5020 5058 STRUCT_FSET(strpeek, ctlbuf.len,
5021 5059 STRUCT_FGET(strpeek, ctlbuf.maxlen) -
5022 5060 uio.uio_resid);
5023 5061 }
5024 5062
5025 5063 /*
5026 5064 * Now process DATA blocks, if any.
5027 5065 * If user doesn't want to get data info by setting maxlen <= 0,
5028 5066 * then set len to -1/0 and skip data blocks part.
5029 5067 */
5030 5068 if (STRUCT_FGET(strpeek, databuf.maxlen) < 0)
5031 5069 STRUCT_FSET(strpeek, databuf.len, -1);
5032 5070 else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0)
5033 5071 STRUCT_FSET(strpeek, databuf.len, 0);
5034 5072 else {
5035 5073 int data_part = 0;
5036 5074
5037 5075 iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf);
5038 5076 iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen);
5039 5077 uio.uio_iov = &iov;
5040 5078 uio.uio_resid = iov.iov_len;
5041 5079 uio.uio_loffset = 0;
5042 5080 uio.uio_iovcnt = 1;
5043 5081 while (mp && uio.uio_resid) {
5044 5082 if (mp->b_datap->db_type == M_DATA) {
5045 5083 if ((n = MIN(uio.uio_resid,
5046 5084 mp->b_wptr - mp->b_rptr)) != 0 &&
5047 5085 (error = uiomove((char *)mp->b_rptr,
5048 5086 n, UIO_READ, &uio)) != 0) {
5049 5087 freemsg(tmp_mp);
5050 5088 return (error);
5051 5089 }
5052 5090 data_part = 1;
5053 5091 }
5054 5092 ASSERT(data_part == 0 ||
5055 5093 mp->b_datap->db_type == M_DATA);
5056 5094 mp = mp->b_cont;
5057 5095 }
5058 5096 /* No data message */
5059 5097 if (data_part == 0)
5060 5098 STRUCT_FSET(strpeek, databuf.len, -1);
5061 5099 else
5062 5100 STRUCT_FSET(strpeek, databuf.len,
5063 5101 STRUCT_FGET(strpeek, databuf.maxlen) -
5064 5102 uio.uio_resid);
5065 5103 }
5066 5104 freemsg(tmp_mp);
5067 5105
5068 5106 /*
5069 5107 * It is a synch stream and user wants to get
5070 5108 * data (maxlen > 0).
5071 5109 * uio setup is done by the codes that process DATA
5072 5110 * blocks above.
5073 5111 */
5074 5112 if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) {
5075 5113 infod_t infod;
5076 5114
5077 5115 infod.d_cmd = INFOD_COPYOUT;
5078 5116 infod.d_res = 0;
5079 5117 infod.d_uiop = &uio;
5080 5118 error = infonext(rdq, &infod);
5081 5119 if (error == EINVAL || error == EBUSY)
5082 5120 error = 0;
5083 5121 if (error)
5084 5122 return (error);
5085 5123 STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek,
5086 5124 databuf.maxlen) - uio.uio_resid);
5087 5125 if (STRUCT_FGET(strpeek, databuf.len) == 0) {
5088 5126 /*
5089 5127 * No data found by the infonext().
5090 5128 */
5091 5129 STRUCT_FSET(strpeek, databuf.len, -1);
5092 5130 }
5093 5131 }
5094 5132 error = strcopyout(STRUCT_BUF(strpeek), (void *)arg,
5095 5133 STRUCT_SIZE(strpeek), copyflag);
5096 5134 if (error) {
5097 5135 return (error);
5098 5136 }
5099 5137 /*
5100 5138 * If there is no message retrieved, set return code to 0
5101 5139 * otherwise, set it to 1.
5102 5140 */
5103 5141 if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 &&
5104 5142 STRUCT_FGET(strpeek, databuf.len) == -1)
5105 5143 *rvalp = 0;
5106 5144 else
5107 5145 *rvalp = 1;
5108 5146 return (0);
5109 5147 }
5110 5148
5111 5149 case I_FDINSERT:
5112 5150 {
5113 5151 STRUCT_DECL(strfdinsert, strfdinsert);
5114 5152 struct file *resftp;
5115 5153 struct stdata *resstp;
5116 5154 t_uscalar_t ival;
5117 5155 ssize_t msgsize;
5118 5156 struct strbuf mctl;
5119 5157
5120 5158 STRUCT_INIT(strfdinsert, flag);
5121 5159 if (stp->sd_flag & STRHUP)
5122 5160 return (ENXIO);
5123 5161 /*
5124 5162 * STRDERR, STWRERR and STPLEX tested above.
5125 5163 */
5126 5164 error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert),
5127 5165 STRUCT_SIZE(strfdinsert), copyflag);
5128 5166 if (error)
5129 5167 return (error);
5130 5168
5131 5169 if (STRUCT_FGET(strfdinsert, offset) < 0 ||
5132 5170 (STRUCT_FGET(strfdinsert, offset) %
5133 5171 sizeof (t_uscalar_t)) != 0)
5134 5172 return (EINVAL);
5135 5173 if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) {
5136 5174 if ((resstp = resftp->f_vnode->v_stream) == NULL) {
5137 5175 releasef(STRUCT_FGET(strfdinsert, fildes));
5138 5176 return (EINVAL);
5139 5177 }
5140 5178 } else
5141 5179 return (EINVAL);
5142 5180
5143 5181 mutex_enter(&resstp->sd_lock);
5144 5182 if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
5145 5183 error = strgeterr(resstp,
5146 5184 STRDERR|STWRERR|STRHUP|STPLEX, 0);
5147 5185 if (error != 0) {
5148 5186 mutex_exit(&resstp->sd_lock);
5149 5187 releasef(STRUCT_FGET(strfdinsert, fildes));
5150 5188 return (error);
5151 5189 }
5152 5190 }
5153 5191 mutex_exit(&resstp->sd_lock);
5154 5192
5155 5193 #ifdef _ILP32
5156 5194 {
5157 5195 queue_t *q;
5158 5196 queue_t *mate = NULL;
5159 5197
5160 5198 /* get read queue of stream terminus */
5161 5199 claimstr(resstp->sd_wrq);
5162 5200 for (q = resstp->sd_wrq->q_next; q->q_next != NULL;
5163 5201 q = q->q_next)
5164 5202 if (!STRMATED(resstp) && STREAM(q) != resstp &&
5165 5203 mate == NULL) {
5166 5204 ASSERT(q->q_qinfo->qi_srvp);
5167 5205 ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp);
5168 5206 claimstr(q);
5169 5207 mate = q;
5170 5208 }
5171 5209 q = _RD(q);
5172 5210 if (mate)
5173 5211 releasestr(mate);
5174 5212 releasestr(resstp->sd_wrq);
5175 5213 ival = (t_uscalar_t)q;
5176 5214 }
5177 5215 #else
5178 5216 ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev);
5179 5217 #endif /* _ILP32 */
5180 5218
5181 5219 if (STRUCT_FGET(strfdinsert, ctlbuf.len) <
5182 5220 STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) {
5183 5221 releasef(STRUCT_FGET(strfdinsert, fildes));
5184 5222 return (EINVAL);
5185 5223 }
5186 5224
5187 5225 /*
5188 5226 * Check for legal flag value.
5189 5227 */
5190 5228 if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) {
5191 5229 releasef(STRUCT_FGET(strfdinsert, fildes));
5192 5230 return (EINVAL);
5193 5231 }
5194 5232
5195 5233 /* get these values from those cached in the stream head */
5196 5234 mutex_enter(QLOCK(stp->sd_wrq));
5197 5235 rmin = stp->sd_qn_minpsz;
5198 5236 rmax = stp->sd_qn_maxpsz;
5199 5237 mutex_exit(QLOCK(stp->sd_wrq));
5200 5238
5201 5239 /*
5202 5240 * Make sure ctl and data sizes together fall within
5203 5241 * the limits of the max and min receive packet sizes
5204 5242 * and do not exceed system limit. A negative data
5205 5243 * length means that no data part is to be sent.
5206 5244 */
5207 5245 ASSERT((rmax >= 0) || (rmax == INFPSZ));
5208 5246 if (rmax == 0) {
5209 5247 releasef(STRUCT_FGET(strfdinsert, fildes));
5210 5248 return (ERANGE);
5211 5249 }
5212 5250 if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0)
5213 5251 msgsize = 0;
5214 5252 if ((msgsize < rmin) ||
5215 5253 ((msgsize > rmax) && (rmax != INFPSZ)) ||
5216 5254 (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) {
5217 5255 releasef(STRUCT_FGET(strfdinsert, fildes));
5218 5256 return (ERANGE);
5219 5257 }
5220 5258
5221 5259 mutex_enter(&stp->sd_lock);
5222 5260 while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) &&
5223 5261 !canputnext(stp->sd_wrq)) {
5224 5262 if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0,
5225 5263 flag, -1, &done)) != 0 || done) {
5226 5264 mutex_exit(&stp->sd_lock);
5227 5265 releasef(STRUCT_FGET(strfdinsert, fildes));
5228 5266 return (error);
5229 5267 }
5230 5268 if ((error = i_straccess(stp, access)) != 0) {
5231 5269 mutex_exit(&stp->sd_lock);
5232 5270 releasef(
5233 5271 STRUCT_FGET(strfdinsert, fildes));
5234 5272 return (error);
5235 5273 }
5236 5274 }
5237 5275 mutex_exit(&stp->sd_lock);
5238 5276
5239 5277 /*
5240 5278 * Copy strfdinsert.ctlbuf into native form of
5241 5279 * ctlbuf to pass down into strmakemsg().
5242 5280 */
5243 5281 mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen);
5244 5282 mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len);
5245 5283 mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf);
5246 5284
5247 5285 iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf);
5248 5286 iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len);
5249 5287 uio.uio_iov = &iov;
5250 5288 uio.uio_iovcnt = 1;
5251 5289 uio.uio_loffset = 0;
5252 5290 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
5253 5291 UIO_SYSSPACE;
5254 5292 uio.uio_fmode = 0;
5255 5293 uio.uio_extflg = UIO_COPY_CACHED;
5256 5294 uio.uio_resid = iov.iov_len;
5257 5295 if ((error = strmakemsg(&mctl,
5258 5296 &msgsize, &uio, stp,
5259 5297 STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) {
5260 5298 STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5261 5299 releasef(STRUCT_FGET(strfdinsert, fildes));
5262 5300 return (error);
5263 5301 }
5264 5302
5265 5303 STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5266 5304
5267 5305 /*
5268 5306 * Place the possibly reencoded queue pointer 'offset' bytes
5269 5307 * from the start of the control portion of the message.
5270 5308 */
5271 5309 *((t_uscalar_t *)(mp->b_rptr +
5272 5310 STRUCT_FGET(strfdinsert, offset))) = ival;
5273 5311
5274 5312 /*
5275 5313 * Put message downstream.
5276 5314 */
5277 5315 stream_willservice(stp);
5278 5316 putnext(stp->sd_wrq, mp);
5279 5317 stream_runservice(stp);
5280 5318 releasef(STRUCT_FGET(strfdinsert, fildes));
5281 5319 return (error);
5282 5320 }
5283 5321
5284 5322 case I_SENDFD:
5285 5323 {
5286 5324 struct file *fp;
5287 5325
5288 5326 if ((fp = getf((int)arg)) == NULL)
5289 5327 return (EBADF);
5290 5328 error = do_sendfp(stp, fp, crp);
5291 5329 if (auditing) {
5292 5330 audit_fdsend((int)arg, fp, error);
5293 5331 }
5294 5332 releasef((int)arg);
5295 5333 return (error);
5296 5334 }
5297 5335
5298 5336 case I_RECVFD:
5299 5337 case I_E_RECVFD:
5300 5338 {
5301 5339 struct k_strrecvfd *srf;
5302 5340 int i, fd;
5303 5341
5304 5342 mutex_enter(&stp->sd_lock);
5305 5343 while (!(mp = getq(rdq))) {
5306 5344 if (stp->sd_flag & (STRHUP|STREOF)) {
5307 5345 mutex_exit(&stp->sd_lock);
5308 5346 return (ENXIO);
5309 5347 }
5310 5348 if ((error = strwaitq(stp, GETWAIT, (ssize_t)0,
5311 5349 flag, -1, &done)) != 0 || done) {
5312 5350 mutex_exit(&stp->sd_lock);
5313 5351 return (error);
5314 5352 }
5315 5353 if ((error = i_straccess(stp, access)) != 0) {
5316 5354 mutex_exit(&stp->sd_lock);
5317 5355 return (error);
5318 5356 }
5319 5357 }
5320 5358 if (mp->b_datap->db_type != M_PASSFP) {
5321 5359 putback(stp, rdq, mp, mp->b_band);
5322 5360 mutex_exit(&stp->sd_lock);
5323 5361 return (EBADMSG);
5324 5362 }
5325 5363 mutex_exit(&stp->sd_lock);
5326 5364
5327 5365 srf = (struct k_strrecvfd *)mp->b_rptr;
5328 5366 if ((fd = ufalloc(0)) == -1) {
5329 5367 mutex_enter(&stp->sd_lock);
5330 5368 putback(stp, rdq, mp, mp->b_band);
5331 5369 mutex_exit(&stp->sd_lock);
5332 5370 return (EMFILE);
5333 5371 }
5334 5372 if (cmd == I_RECVFD) {
5335 5373 struct o_strrecvfd ostrfd;
5336 5374
5337 5375 /* check to see if uid/gid values are too large. */
5338 5376
5339 5377 if (srf->uid > (o_uid_t)USHRT_MAX ||
5340 5378 srf->gid > (o_gid_t)USHRT_MAX) {
5341 5379 mutex_enter(&stp->sd_lock);
5342 5380 putback(stp, rdq, mp, mp->b_band);
5343 5381 mutex_exit(&stp->sd_lock);
5344 5382 setf(fd, NULL); /* release fd entry */
5345 5383 return (EOVERFLOW);
5346 5384 }
5347 5385
5348 5386 ostrfd.fd = fd;
5349 5387 ostrfd.uid = (o_uid_t)srf->uid;
5350 5388 ostrfd.gid = (o_gid_t)srf->gid;
5351 5389
5352 5390 /* Null the filler bits */
5353 5391 for (i = 0; i < 8; i++)
5354 5392 ostrfd.fill[i] = 0;
5355 5393
5356 5394 error = strcopyout(&ostrfd, (void *)arg,
5357 5395 sizeof (struct o_strrecvfd), copyflag);
5358 5396 } else { /* I_E_RECVFD */
5359 5397 struct strrecvfd strfd;
5360 5398
5361 5399 strfd.fd = fd;
5362 5400 strfd.uid = srf->uid;
5363 5401 strfd.gid = srf->gid;
5364 5402
5365 5403 /* null the filler bits */
5366 5404 for (i = 0; i < 8; i++)
5367 5405 strfd.fill[i] = 0;
5368 5406
5369 5407 error = strcopyout(&strfd, (void *)arg,
5370 5408 sizeof (struct strrecvfd), copyflag);
5371 5409 }
5372 5410
5373 5411 if (error) {
5374 5412 setf(fd, NULL); /* release fd entry */
5375 5413 mutex_enter(&stp->sd_lock);
5376 5414 putback(stp, rdq, mp, mp->b_band);
5377 5415 mutex_exit(&stp->sd_lock);
5378 5416 return (error);
5379 5417 }
5380 5418 if (auditing) {
5381 5419 audit_fdrecv(fd, srf->fp);
5382 5420 }
5383 5421
5384 5422 /*
5385 5423 * Always increment f_count since the freemsg() below will
5386 5424 * always call free_passfp() which performs a closef().
5387 5425 */
5388 5426 mutex_enter(&srf->fp->f_tlock);
5389 5427 srf->fp->f_count++;
5390 5428 mutex_exit(&srf->fp->f_tlock);
5391 5429 setf(fd, srf->fp);
5392 5430 freemsg(mp);
5393 5431 return (0);
5394 5432 }
5395 5433
5396 5434 case I_SWROPT:
5397 5435 /*
5398 5436 * Set/clear the write options. arg is a bit
5399 5437 * mask with any of the following bits set...
5400 5438 * SNDZERO - send zero length message
5401 5439 * SNDPIPE - send sigpipe to process if
5402 5440 * sd_werror is set and process is
5403 5441 * doing a write or putmsg.
5404 5442 * The new stream head write options should reflect
5405 5443 * what is in arg.
5406 5444 */
5407 5445 if (arg & ~(SNDZERO|SNDPIPE))
5408 5446 return (EINVAL);
5409 5447
5410 5448 mutex_enter(&stp->sd_lock);
5411 5449 stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO);
5412 5450 if (arg & SNDZERO)
5413 5451 stp->sd_wput_opt |= SW_SNDZERO;
5414 5452 if (arg & SNDPIPE)
5415 5453 stp->sd_wput_opt |= SW_SIGPIPE;
5416 5454 mutex_exit(&stp->sd_lock);
5417 5455 return (0);
5418 5456
5419 5457 case I_GWROPT:
5420 5458 {
5421 5459 int wropt = 0;
5422 5460
5423 5461 if (stp->sd_wput_opt & SW_SNDZERO)
5424 5462 wropt |= SNDZERO;
5425 5463 if (stp->sd_wput_opt & SW_SIGPIPE)
5426 5464 wropt |= SNDPIPE;
5427 5465 return (strcopyout(&wropt, (void *)arg, sizeof (wropt),
5428 5466 copyflag));
5429 5467 }
5430 5468
5431 5469 case I_LIST:
5432 5470 /*
5433 5471 * Returns all the modules found on this stream,
5434 5472 * upto the driver. If argument is NULL, return the
5435 5473 * number of modules (including driver). If argument
5436 5474 * is not NULL, copy the names into the structure
5437 5475 * provided.
5438 5476 */
5439 5477
5440 5478 {
5441 5479 queue_t *q;
5442 5480 char *qname;
5443 5481 int i, nmods;
5444 5482 struct str_mlist *mlist;
5445 5483 STRUCT_DECL(str_list, strlist);
5446 5484
5447 5485 if (arg == NULL) { /* Return number of modules plus driver */
5448 5486 if (stp->sd_vnode->v_type == VFIFO)
5449 5487 *rvalp = stp->sd_pushcnt;
5450 5488 else
5451 5489 *rvalp = stp->sd_pushcnt + 1;
5452 5490 return (0);
5453 5491 }
5454 5492
5455 5493 STRUCT_INIT(strlist, flag);
5456 5494
5457 5495 error = strcopyin((void *)arg, STRUCT_BUF(strlist),
5458 5496 STRUCT_SIZE(strlist), copyflag);
5459 5497 if (error != 0)
5460 5498 return (error);
5461 5499
5462 5500 mlist = STRUCT_FGETP(strlist, sl_modlist);
5463 5501 nmods = STRUCT_FGET(strlist, sl_nmods);
5464 5502 if (nmods <= 0)
5465 5503 return (EINVAL);
5466 5504
5467 5505 claimstr(stp->sd_wrq);
5468 5506 q = stp->sd_wrq;
5469 5507 for (i = 0; i < nmods && _SAMESTR(q); i++, q = q->q_next) {
5470 5508 qname = Q2NAME(q->q_next);
5471 5509 error = strcopyout(qname, &mlist[i], strlen(qname) + 1,
5472 5510 copyflag);
5473 5511 if (error != 0) {
5474 5512 releasestr(stp->sd_wrq);
5475 5513 return (error);
5476 5514 }
5477 5515 }
5478 5516 releasestr(stp->sd_wrq);
5479 5517 return (strcopyout(&i, (void *)arg, sizeof (int), copyflag));
5480 5518 }
5481 5519
5482 5520 case I_CKBAND:
5483 5521 {
5484 5522 queue_t *q;
5485 5523 qband_t *qbp;
5486 5524
5487 5525 if ((arg < 0) || (arg >= NBAND))
5488 5526 return (EINVAL);
5489 5527 q = _RD(stp->sd_wrq);
5490 5528 mutex_enter(QLOCK(q));
5491 5529 if (arg > (int)q->q_nband) {
5492 5530 *rvalp = 0;
5493 5531 } else {
5494 5532 if (arg == 0) {
5495 5533 if (q->q_first)
5496 5534 *rvalp = 1;
5497 5535 else
5498 5536 *rvalp = 0;
5499 5537 } else {
5500 5538 qbp = q->q_bandp;
5501 5539 while (--arg > 0)
5502 5540 qbp = qbp->qb_next;
5503 5541 if (qbp->qb_first)
5504 5542 *rvalp = 1;
5505 5543 else
5506 5544 *rvalp = 0;
5507 5545 }
5508 5546 }
5509 5547 mutex_exit(QLOCK(q));
5510 5548 return (0);
5511 5549 }
5512 5550
5513 5551 case I_GETBAND:
5514 5552 {
5515 5553 int intpri;
5516 5554 queue_t *q;
5517 5555
5518 5556 q = _RD(stp->sd_wrq);
5519 5557 mutex_enter(QLOCK(q));
5520 5558 mp = q->q_first;
5521 5559 if (!mp) {
5522 5560 mutex_exit(QLOCK(q));
5523 5561 return (ENODATA);
5524 5562 }
5525 5563 intpri = (int)mp->b_band;
5526 5564 error = strcopyout(&intpri, (void *)arg, sizeof (int),
5527 5565 copyflag);
5528 5566 mutex_exit(QLOCK(q));
5529 5567 return (error);
5530 5568 }
5531 5569
5532 5570 case I_ATMARK:
5533 5571 {
5534 5572 queue_t *q;
5535 5573
5536 5574 if (arg & ~(ANYMARK|LASTMARK))
5537 5575 return (EINVAL);
5538 5576 q = _RD(stp->sd_wrq);
5539 5577 mutex_enter(&stp->sd_lock);
5540 5578 if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) {
5541 5579 *rvalp = 1;
5542 5580 } else {
5543 5581 mutex_enter(QLOCK(q));
5544 5582 mp = q->q_first;
5545 5583
5546 5584 if (mp == NULL)
5547 5585 *rvalp = 0;
5548 5586 else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK))
5549 5587 *rvalp = 1;
5550 5588 else if ((arg == LASTMARK) && (mp == stp->sd_mark))
5551 5589 *rvalp = 1;
5552 5590 else
5553 5591 *rvalp = 0;
5554 5592 mutex_exit(QLOCK(q));
5555 5593 }
5556 5594 mutex_exit(&stp->sd_lock);
5557 5595 return (0);
5558 5596 }
5559 5597
5560 5598 case I_CANPUT:
5561 5599 {
5562 5600 char band;
5563 5601
5564 5602 if ((arg < 0) || (arg >= NBAND))
5565 5603 return (EINVAL);
5566 5604 band = (char)arg;
5567 5605 *rvalp = bcanputnext(stp->sd_wrq, band);
5568 5606 return (0);
5569 5607 }
5570 5608
5571 5609 case I_SETCLTIME:
5572 5610 {
5573 5611 int closetime;
5574 5612
5575 5613 error = strcopyin((void *)arg, &closetime, sizeof (int),
5576 5614 copyflag);
5577 5615 if (error)
5578 5616 return (error);
5579 5617 if (closetime < 0)
5580 5618 return (EINVAL);
5581 5619
5582 5620 stp->sd_closetime = closetime;
5583 5621 return (0);
5584 5622 }
5585 5623
5586 5624 case I_GETCLTIME:
5587 5625 {
5588 5626 int closetime;
5589 5627
5590 5628 closetime = stp->sd_closetime;
5591 5629 return (strcopyout(&closetime, (void *)arg, sizeof (int),
5592 5630 copyflag));
5593 5631 }
5594 5632
5595 5633 case TIOCGSID:
5596 5634 {
5597 5635 pid_t sid;
5598 5636
5599 5637 mutex_enter(&stp->sd_lock);
5600 5638 if (stp->sd_sidp == NULL) {
5601 5639 mutex_exit(&stp->sd_lock);
5602 5640 return (ENOTTY);
5603 5641 }
5604 5642 sid = stp->sd_sidp->pid_id;
5605 5643 mutex_exit(&stp->sd_lock);
5606 5644 return (strcopyout(&sid, (void *)arg, sizeof (pid_t),
5607 5645 copyflag));
5608 5646 }
5609 5647
5610 5648 case TIOCSPGRP:
5611 5649 {
5612 5650 pid_t pgrp;
5613 5651 proc_t *q;
5614 5652 pid_t sid, fg_pgid, bg_pgid;
5615 5653
5616 5654 if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t),
5617 5655 copyflag))
5618 5656 return (error);
5619 5657 mutex_enter(&stp->sd_lock);
5620 5658 mutex_enter(&pidlock);
5621 5659 if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) {
5622 5660 mutex_exit(&pidlock);
5623 5661 mutex_exit(&stp->sd_lock);
5624 5662 return (ENOTTY);
5625 5663 }
5626 5664 if (pgrp == stp->sd_pgidp->pid_id) {
5627 5665 mutex_exit(&pidlock);
5628 5666 mutex_exit(&stp->sd_lock);
5629 5667 return (0);
5630 5668 }
5631 5669 if (pgrp <= 0 || pgrp >= maxpid) {
5632 5670 mutex_exit(&pidlock);
5633 5671 mutex_exit(&stp->sd_lock);
5634 5672 return (EINVAL);
5635 5673 }
5636 5674 if ((q = pgfind(pgrp)) == NULL ||
5637 5675 q->p_sessp != ttoproc(curthread)->p_sessp) {
5638 5676 mutex_exit(&pidlock);
5639 5677 mutex_exit(&stp->sd_lock);
5640 5678 return (EPERM);
5641 5679 }
5642 5680 sid = stp->sd_sidp->pid_id;
5643 5681 fg_pgid = q->p_pgrp;
5644 5682 bg_pgid = stp->sd_pgidp->pid_id;
5645 5683 CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid);
5646 5684 PID_RELE(stp->sd_pgidp);
5647 5685 ctty_clear_sighuped();
5648 5686 stp->sd_pgidp = q->p_pgidp;
5649 5687 PID_HOLD(stp->sd_pgidp);
5650 5688 mutex_exit(&pidlock);
5651 5689 mutex_exit(&stp->sd_lock);
5652 5690 return (0);
5653 5691 }
5654 5692
5655 5693 case TIOCGPGRP:
5656 5694 {
5657 5695 pid_t pgrp;
5658 5696
5659 5697 mutex_enter(&stp->sd_lock);
5660 5698 if (stp->sd_sidp == NULL) {
5661 5699 mutex_exit(&stp->sd_lock);
5662 5700 return (ENOTTY);
5663 5701 }
5664 5702 pgrp = stp->sd_pgidp->pid_id;
5665 5703 mutex_exit(&stp->sd_lock);
5666 5704 return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t),
5667 5705 copyflag));
5668 5706 }
5669 5707
5670 5708 case TIOCSCTTY:
5671 5709 {
5672 5710 return (strctty(stp));
5673 5711 }
5674 5712
5675 5713 case TIOCNOTTY:
5676 5714 {
5677 5715 /* freectty() always assumes curproc. */
5678 5716 if (freectty(B_FALSE) != 0)
5679 5717 return (0);
5680 5718 return (ENOTTY);
5681 5719 }
5682 5720
5683 5721 case FIONBIO:
5684 5722 case FIOASYNC:
5685 5723 return (0); /* handled by the upper layer */
5686 5724 }
5687 5725 }
5688 5726
5689 5727 /*
5690 5728 * Custom free routine used for M_PASSFP messages.
5691 5729 */
5692 5730 static void
5693 5731 free_passfp(struct k_strrecvfd *srf)
5694 5732 {
5695 5733 (void) closef(srf->fp);
5696 5734 kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t));
5697 5735 }
5698 5736
5699 5737 /* ARGSUSED */
5700 5738 int
5701 5739 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr)
5702 5740 {
5703 5741 queue_t *qp, *nextqp;
5704 5742 struct k_strrecvfd *srf;
5705 5743 mblk_t *mp;
5706 5744 frtn_t *frtnp;
5707 5745 size_t bufsize;
5708 5746 queue_t *mate = NULL;
5709 5747 syncq_t *sq = NULL;
5710 5748 int retval = 0;
5711 5749
5712 5750 if (stp->sd_flag & STRHUP)
5713 5751 return (ENXIO);
5714 5752
5715 5753 claimstr(stp->sd_wrq);
5716 5754
5717 5755 /* Fastpath, we have a pipe, and we are already mated, use it. */
5718 5756 if (STRMATED(stp)) {
5719 5757 qp = _RD(stp->sd_mate->sd_wrq);
5720 5758 claimstr(qp);
5721 5759 mate = qp;
5722 5760 } else { /* Not already mated. */
5723 5761
5724 5762 /*
5725 5763 * Walk the stream to the end of this one.
5726 5764 * assumes that the claimstr() will prevent
5727 5765 * plumbing between the stream head and the
5728 5766 * driver from changing
5729 5767 */
5730 5768 qp = stp->sd_wrq;
5731 5769
5732 5770 /*
5733 5771 * Loop until we reach the end of this stream.
5734 5772 * On completion, qp points to the write queue
5735 5773 * at the end of the stream, or the read queue
5736 5774 * at the stream head if this is a fifo.
5737 5775 */
5738 5776 while (((qp = qp->q_next) != NULL) && _SAMESTR(qp))
5739 5777 ;
5740 5778
5741 5779 /*
5742 5780 * Just in case we get a q_next which is NULL, but
5743 5781 * not at the end of the stream. This is actually
5744 5782 * broken, so we set an assert to catch it in
5745 5783 * debug, and set an error and return if not debug.
5746 5784 */
5747 5785 ASSERT(qp);
5748 5786 if (qp == NULL) {
5749 5787 releasestr(stp->sd_wrq);
5750 5788 return (EINVAL);
5751 5789 }
5752 5790
5753 5791 /*
5754 5792 * Enter the syncq for the driver, so (hopefully)
5755 5793 * the queue values will not change on us.
5756 5794 * XXXX - This will only prevent the race IFF only
5757 5795 * the write side modifies the q_next member, and
5758 5796 * the put procedure is protected by at least
5759 5797 * MT_PERQ.
5760 5798 */
5761 5799 if ((sq = qp->q_syncq) != NULL)
5762 5800 entersq(sq, SQ_PUT);
5763 5801
5764 5802 /* Now get the q_next value from this qp. */
5765 5803 nextqp = qp->q_next;
5766 5804
5767 5805 /*
5768 5806 * If nextqp exists and the other stream is different
5769 5807 * from this one claim the stream, set the mate, and
5770 5808 * get the read queue at the stream head of the other
5771 5809 * stream. Assumes that nextqp was at least valid when
5772 5810 * we got it. Hopefully the entersq of the driver
5773 5811 * will prevent it from changing on us.
5774 5812 */
5775 5813 if ((nextqp != NULL) && (STREAM(nextqp) != stp)) {
5776 5814 ASSERT(qp->q_qinfo->qi_srvp);
5777 5815 ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp);
5778 5816 ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp);
5779 5817 claimstr(nextqp);
5780 5818
5781 5819 /* Make sure we still have a q_next */
5782 5820 if (nextqp != qp->q_next) {
5783 5821 releasestr(stp->sd_wrq);
5784 5822 releasestr(nextqp);
5785 5823 return (EINVAL);
5786 5824 }
5787 5825
5788 5826 qp = _RD(STREAM(nextqp)->sd_wrq);
5789 5827 mate = qp;
5790 5828 }
5791 5829 /* If we entered the synq above, leave it. */
5792 5830 if (sq != NULL)
5793 5831 leavesq(sq, SQ_PUT);
5794 5832 } /* STRMATED(STP) */
5795 5833
5796 5834 /* XXX prevents substitution of the ops vector */
5797 5835 if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) {
5798 5836 retval = EINVAL;
5799 5837 goto out;
5800 5838 }
5801 5839
5802 5840 if (qp->q_flag & QFULL) {
5803 5841 retval = EAGAIN;
5804 5842 goto out;
5805 5843 }
5806 5844
5807 5845 /*
5808 5846 * Since M_PASSFP messages include a file descriptor, we use
5809 5847 * esballoc() and specify a custom free routine (free_passfp()) that
5810 5848 * will close the descriptor as part of freeing the message. For
5811 5849 * convenience, we stash the frtn_t right after the data block.
5812 5850 */
5813 5851 bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t);
5814 5852 srf = kmem_alloc(bufsize, KM_NOSLEEP);
5815 5853 if (srf == NULL) {
5816 5854 retval = EAGAIN;
5817 5855 goto out;
5818 5856 }
5819 5857
5820 5858 frtnp = (frtn_t *)(srf + 1);
5821 5859 frtnp->free_arg = (caddr_t)srf;
5822 5860 frtnp->free_func = free_passfp;
5823 5861
5824 5862 mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp);
5825 5863 if (mp == NULL) {
5826 5864 kmem_free(srf, bufsize);
5827 5865 retval = EAGAIN;
5828 5866 goto out;
5829 5867 }
5830 5868 mp->b_wptr += sizeof (struct k_strrecvfd);
5831 5869 mp->b_datap->db_type = M_PASSFP;
5832 5870
5833 5871 srf->fp = fp;
5834 5872 srf->uid = crgetuid(curthread->t_cred);
5835 5873 srf->gid = crgetgid(curthread->t_cred);
5836 5874 mutex_enter(&fp->f_tlock);
5837 5875 fp->f_count++;
5838 5876 mutex_exit(&fp->f_tlock);
5839 5877
5840 5878 put(qp, mp);
5841 5879 out:
5842 5880 releasestr(stp->sd_wrq);
5843 5881 if (mate)
5844 5882 releasestr(mate);
5845 5883 return (retval);
5846 5884 }
5847 5885
5848 5886 /*
5849 5887 * Send an ioctl message downstream and wait for acknowledgement.
5850 5888 * flags may be set to either U_TO_K or K_TO_K and a combination
5851 5889 * of STR_NOERROR or STR_NOSIG
5852 5890 * STR_NOSIG: Signals are essentially ignored or held and have
5853 5891 * no effect for the duration of the call.
5854 5892 * STR_NOERROR: Ignores stream head read, write and hup errors.
5855 5893 * Additionally, if an existing ioctl times out, it is assumed
5856 5894 * lost and and this ioctl will continue as if the previous ioctl had
5857 5895 * finished. ETIME may be returned if this ioctl times out (i.e.
5858 5896 * ic_timout is not INFTIM). Non-stream head errors may be returned if
5859 5897 * the ioc_error indicates that the driver/module had problems,
5860 5898 * an EFAULT was found when accessing user data, a lack of
5861 5899 * resources, etc.
5862 5900 */
5863 5901 int
5864 5902 strdoioctl(
5865 5903 struct stdata *stp,
5866 5904 struct strioctl *strioc,
5867 5905 int fflags, /* file flags with model info */
5868 5906 int flag,
5869 5907 cred_t *crp,
5870 5908 int *rvalp)
5871 5909 {
5872 5910 mblk_t *bp;
5873 5911 struct iocblk *iocbp;
5874 5912 struct copyreq *reqp;
5875 5913 struct copyresp *resp;
5876 5914 int id;
5877 5915 int transparent = 0;
5878 5916 int error = 0;
5879 5917 int len = 0;
5880 5918 caddr_t taddr;
5881 5919 int copyflag = (flag & (U_TO_K | K_TO_K));
5882 5920 int sigflag = (flag & STR_NOSIG);
5883 5921 int errs;
5884 5922 uint_t waitflags;
5885 5923 boolean_t set_iocwaitne = B_FALSE;
5886 5924
5887 5925 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
5888 5926 ASSERT((fflags & FMODELS) != 0);
5889 5927
5890 5928 TRACE_2(TR_FAC_STREAMS_FR,
5891 5929 TR_STRDOIOCTL,
5892 5930 "strdoioctl:stp %p strioc %p", stp, strioc);
5893 5931 if (strioc->ic_len == TRANSPARENT) { /* send arg in M_DATA block */
5894 5932 transparent = 1;
5895 5933 strioc->ic_len = sizeof (intptr_t);
5896 5934 }
5897 5935
5898 5936 if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz))
5899 5937 return (EINVAL);
5900 5938
5901 5939 if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error,
5902 5940 crp, curproc->p_pid)) == NULL)
5903 5941 return (error);
5904 5942
5905 5943 bzero(bp->b_wptr, sizeof (union ioctypes));
5906 5944
5907 5945 iocbp = (struct iocblk *)bp->b_wptr;
5908 5946 iocbp->ioc_count = strioc->ic_len;
5909 5947 iocbp->ioc_cmd = strioc->ic_cmd;
5910 5948 iocbp->ioc_flag = (fflags & FMODELS);
5911 5949
5912 5950 crhold(crp);
5913 5951 iocbp->ioc_cr = crp;
5914 5952 DB_TYPE(bp) = M_IOCTL;
5915 5953 bp->b_wptr += sizeof (struct iocblk);
5916 5954
5917 5955 if (flag & STR_NOERROR)
5918 5956 errs = STPLEX;
5919 5957 else
5920 5958 errs = STRHUP|STRDERR|STWRERR|STPLEX;
5921 5959
5922 5960 /*
5923 5961 * If there is data to copy into ioctl block, do so.
5924 5962 */
5925 5963 if (iocbp->ioc_count > 0) {
5926 5964 if (transparent)
5927 5965 /*
5928 5966 * Note: STR_NOERROR does not have an effect
5929 5967 * in putiocd()
5930 5968 */
5931 5969 id = K_TO_K | sigflag;
5932 5970 else
5933 5971 id = flag;
5934 5972 if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) {
5935 5973 freemsg(bp);
5936 5974 crfree(crp);
5937 5975 return (error);
5938 5976 }
5939 5977
5940 5978 /*
5941 5979 * We could have slept copying in user pages.
5942 5980 * Recheck the stream head state (the other end
5943 5981 * of a pipe could have gone away).
5944 5982 */
5945 5983 if (stp->sd_flag & errs) {
5946 5984 mutex_enter(&stp->sd_lock);
5947 5985 error = strgeterr(stp, errs, 0);
5948 5986 mutex_exit(&stp->sd_lock);
5949 5987 if (error != 0) {
5950 5988 freemsg(bp);
5951 5989 crfree(crp);
5952 5990 return (error);
5953 5991 }
5954 5992 }
5955 5993 }
5956 5994 if (transparent)
5957 5995 iocbp->ioc_count = TRANSPARENT;
5958 5996
5959 5997 /*
5960 5998 * Block for up to STRTIMOUT milliseconds if there is an outstanding
5961 5999 * ioctl for this stream already running. All processes
5962 6000 * sleeping here will be awakened as a result of an ACK
5963 6001 * or NAK being received for the outstanding ioctl, or
5964 6002 * as a result of the timer expiring on the outstanding
5965 6003 * ioctl (a failure), or as a result of any waiting
5966 6004 * process's timer expiring (also a failure).
5967 6005 */
5968 6006
5969 6007 error = 0;
5970 6008 mutex_enter(&stp->sd_lock);
5971 6009 while ((stp->sd_flag & IOCWAIT) ||
5972 6010 (!set_iocwaitne && (stp->sd_flag & IOCWAITNE))) {
5973 6011 clock_t cv_rval;
5974 6012
5975 6013 TRACE_0(TR_FAC_STREAMS_FR,
5976 6014 TR_STRDOIOCTL_WAIT,
5977 6015 "strdoioctl sleeps - IOCWAIT");
5978 6016 cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock,
5979 6017 STRTIMOUT, sigflag);
5980 6018 if (cv_rval <= 0) {
5981 6019 if (cv_rval == 0) {
5982 6020 error = EINTR;
5983 6021 } else {
5984 6022 if (flag & STR_NOERROR) {
5985 6023 /*
5986 6024 * Terminating current ioctl in
5987 6025 * progress -- assume it got lost and
5988 6026 * wake up the other thread so that the
5989 6027 * operation completes.
5990 6028 */
5991 6029 if (!(stp->sd_flag & IOCWAITNE)) {
5992 6030 set_iocwaitne = B_TRUE;
5993 6031 stp->sd_flag |= IOCWAITNE;
5994 6032 cv_broadcast(&stp->sd_monitor);
5995 6033 }
5996 6034 /*
5997 6035 * Otherwise, there's a running
5998 6036 * STR_NOERROR -- we have no choice
5999 6037 * here but to wait forever (or until
6000 6038 * interrupted).
6001 6039 */
6002 6040 } else {
6003 6041 /*
6004 6042 * pending ioctl has caused
6005 6043 * us to time out
6006 6044 */
6007 6045 error = ETIME;
6008 6046 }
6009 6047 }
6010 6048 } else if ((stp->sd_flag & errs)) {
6011 6049 error = strgeterr(stp, errs, 0);
6012 6050 }
6013 6051 if (error) {
6014 6052 mutex_exit(&stp->sd_lock);
6015 6053 freemsg(bp);
6016 6054 crfree(crp);
6017 6055 return (error);
6018 6056 }
6019 6057 }
6020 6058
6021 6059 /*
6022 6060 * Have control of ioctl mechanism.
6023 6061 * Send down ioctl packet and wait for response.
6024 6062 */
6025 6063 if (stp->sd_iocblk != (mblk_t *)-1) {
6026 6064 freemsg(stp->sd_iocblk);
6027 6065 }
6028 6066 stp->sd_iocblk = NULL;
6029 6067
6030 6068 /*
6031 6069 * If this is marked with 'noerror' (internal; mostly
6032 6070 * I_{P,}{UN,}LINK), then make sure nobody else is able to get
6033 6071 * in here by setting IOCWAITNE.
6034 6072 */
6035 6073 waitflags = IOCWAIT;
6036 6074 if (flag & STR_NOERROR)
6037 6075 waitflags |= IOCWAITNE;
6038 6076
6039 6077 stp->sd_flag |= waitflags;
6040 6078
6041 6079 /*
6042 6080 * Assign sequence number.
6043 6081 */
6044 6082 iocbp->ioc_id = stp->sd_iocid = getiocseqno();
6045 6083
6046 6084 mutex_exit(&stp->sd_lock);
6047 6085
6048 6086 TRACE_1(TR_FAC_STREAMS_FR,
6049 6087 TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp);
6050 6088 stream_willservice(stp);
6051 6089 putnext(stp->sd_wrq, bp);
6052 6090 stream_runservice(stp);
6053 6091
6054 6092 /*
6055 6093 * Timed wait for acknowledgment. The wait time is limited by the
6056 6094 * timeout value, which must be a positive integer (number of
6057 6095 * milliseconds) to wait, or 0 (use default value of STRTIMOUT
6058 6096 * milliseconds), or -1 (wait forever). This will be awakened
6059 6097 * either by an ACK/NAK message arriving, the timer expiring, or
6060 6098 * the timer expiring on another ioctl waiting for control of the
6061 6099 * mechanism.
6062 6100 */
6063 6101 waitioc:
6064 6102 mutex_enter(&stp->sd_lock);
6065 6103
6066 6104
6067 6105 /*
6068 6106 * If the reply has already arrived, don't sleep. If awakened from
6069 6107 * the sleep, fail only if the reply has not arrived by then.
6070 6108 * Otherwise, process the reply.
6071 6109 */
6072 6110 while (!stp->sd_iocblk) {
6073 6111 clock_t cv_rval;
6074 6112
6075 6113 if (stp->sd_flag & errs) {
6076 6114 error = strgeterr(stp, errs, 0);
6077 6115 if (error != 0) {
6078 6116 stp->sd_flag &= ~waitflags;
6079 6117 cv_broadcast(&stp->sd_iocmonitor);
6080 6118 mutex_exit(&stp->sd_lock);
6081 6119 crfree(crp);
6082 6120 return (error);
6083 6121 }
6084 6122 }
6085 6123
6086 6124 TRACE_0(TR_FAC_STREAMS_FR,
6087 6125 TR_STRDOIOCTL_WAIT2,
6088 6126 "strdoioctl sleeps awaiting reply");
6089 6127 ASSERT(error == 0);
6090 6128
6091 6129 cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock,
6092 6130 (strioc->ic_timout ?
6093 6131 strioc->ic_timout * 1000 : STRTIMOUT), sigflag);
6094 6132
6095 6133 /*
6096 6134 * There are four possible cases here: interrupt, timeout,
6097 6135 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a
6098 6136 * valid M_IOCTL reply).
6099 6137 *
6100 6138 * If we've been awakened by a STR_NOERROR ioctl on some other
6101 6139 * thread, then sd_iocblk will still be NULL, and IOCWAITNE
6102 6140 * will be set. Pretend as if we just timed out. Note that
6103 6141 * this other thread waited at least STRTIMOUT before trying to
6104 6142 * awaken our thread, so this is indistinguishable (even for
6105 6143 * INFTIM) from the case where we failed with ETIME waiting on
6106 6144 * IOCWAIT in the prior loop.
6107 6145 */
6108 6146 if (cv_rval > 0 && !(flag & STR_NOERROR) &&
6109 6147 stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) {
6110 6148 cv_rval = -1;
6111 6149 }
6112 6150
6113 6151 /*
6114 6152 * note: STR_NOERROR does not protect
6115 6153 * us here.. use ic_timout < 0
6116 6154 */
6117 6155 if (cv_rval <= 0) {
6118 6156 if (cv_rval == 0) {
6119 6157 error = EINTR;
6120 6158 } else {
6121 6159 error = ETIME;
6122 6160 }
6123 6161 /*
6124 6162 * A message could have come in after we were scheduled
6125 6163 * but before we were actually run.
6126 6164 */
6127 6165 bp = stp->sd_iocblk;
6128 6166 stp->sd_iocblk = NULL;
6129 6167 if (bp != NULL) {
6130 6168 if ((bp->b_datap->db_type == M_COPYIN) ||
6131 6169 (bp->b_datap->db_type == M_COPYOUT)) {
6132 6170 mutex_exit(&stp->sd_lock);
6133 6171 if (bp->b_cont) {
6134 6172 freemsg(bp->b_cont);
6135 6173 bp->b_cont = NULL;
6136 6174 }
6137 6175 bp->b_datap->db_type = M_IOCDATA;
6138 6176 bp->b_wptr = bp->b_rptr +
6139 6177 sizeof (struct copyresp);
6140 6178 resp = (struct copyresp *)bp->b_rptr;
6141 6179 resp->cp_rval =
6142 6180 (caddr_t)1; /* failure */
6143 6181 stream_willservice(stp);
6144 6182 putnext(stp->sd_wrq, bp);
6145 6183 stream_runservice(stp);
6146 6184 mutex_enter(&stp->sd_lock);
6147 6185 } else {
6148 6186 freemsg(bp);
6149 6187 }
6150 6188 }
6151 6189 stp->sd_flag &= ~waitflags;
6152 6190 cv_broadcast(&stp->sd_iocmonitor);
6153 6191 mutex_exit(&stp->sd_lock);
6154 6192 crfree(crp);
6155 6193 return (error);
6156 6194 }
6157 6195 }
6158 6196 bp = stp->sd_iocblk;
6159 6197 /*
6160 6198 * Note: it is strictly impossible to get here with sd_iocblk set to
6161 6199 * -1. This is because the initial loop above doesn't allow any new
6162 6200 * ioctls into the fray until all others have passed this point.
6163 6201 */
6164 6202 ASSERT(bp != NULL && bp != (mblk_t *)-1);
6165 6203 TRACE_1(TR_FAC_STREAMS_FR,
6166 6204 TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp);
6167 6205 if ((bp->b_datap->db_type == M_IOCACK) ||
6168 6206 (bp->b_datap->db_type == M_IOCNAK)) {
6169 6207 /* for detection of duplicate ioctl replies */
6170 6208 stp->sd_iocblk = (mblk_t *)-1;
6171 6209 stp->sd_flag &= ~waitflags;
6172 6210 cv_broadcast(&stp->sd_iocmonitor);
6173 6211 mutex_exit(&stp->sd_lock);
6174 6212 } else {
6175 6213 /*
6176 6214 * flags not cleared here because we're still doing
6177 6215 * copy in/out for ioctl.
6178 6216 */
6179 6217 stp->sd_iocblk = NULL;
6180 6218 mutex_exit(&stp->sd_lock);
6181 6219 }
6182 6220
6183 6221
6184 6222 /*
6185 6223 * Have received acknowledgment.
6186 6224 */
6187 6225
6188 6226 switch (bp->b_datap->db_type) {
6189 6227 case M_IOCACK:
6190 6228 /*
6191 6229 * Positive ack.
6192 6230 */
6193 6231 iocbp = (struct iocblk *)bp->b_rptr;
6194 6232
6195 6233 /*
6196 6234 * Set error if indicated.
6197 6235 */
6198 6236 if (iocbp->ioc_error) {
6199 6237 error = iocbp->ioc_error;
6200 6238 break;
6201 6239 }
6202 6240
6203 6241 /*
6204 6242 * Set return value.
6205 6243 */
6206 6244 *rvalp = iocbp->ioc_rval;
6207 6245
6208 6246 /*
6209 6247 * Data may have been returned in ACK message (ioc_count > 0).
6210 6248 * If so, copy it out to the user's buffer.
6211 6249 */
6212 6250 if (iocbp->ioc_count && !transparent) {
6213 6251 if (error = getiocd(bp, strioc->ic_dp, copyflag))
6214 6252 break;
6215 6253 }
6216 6254 if (!transparent) {
6217 6255 if (len) /* an M_COPYOUT was used with I_STR */
6218 6256 strioc->ic_len = len;
6219 6257 else
6220 6258 strioc->ic_len = (int)iocbp->ioc_count;
6221 6259 }
6222 6260 break;
6223 6261
6224 6262 case M_IOCNAK:
6225 6263 /*
6226 6264 * Negative ack.
6227 6265 *
6228 6266 * The only thing to do is set error as specified
6229 6267 * in neg ack packet.
6230 6268 */
6231 6269 iocbp = (struct iocblk *)bp->b_rptr;
6232 6270
6233 6271 error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL);
6234 6272 break;
6235 6273
6236 6274 case M_COPYIN:
6237 6275 /*
6238 6276 * Driver or module has requested user ioctl data.
6239 6277 */
6240 6278 reqp = (struct copyreq *)bp->b_rptr;
6241 6279
6242 6280 /*
6243 6281 * M_COPYIN should *never* have a message attached, though
6244 6282 * it's harmless if it does -- thus, panic on a DEBUG
6245 6283 * kernel and just free it on a non-DEBUG build.
6246 6284 */
6247 6285 ASSERT(bp->b_cont == NULL);
6248 6286 if (bp->b_cont != NULL) {
6249 6287 freemsg(bp->b_cont);
6250 6288 bp->b_cont = NULL;
6251 6289 }
6252 6290
6253 6291 error = putiocd(bp, reqp->cq_addr, flag, crp);
6254 6292 if (error && bp->b_cont) {
6255 6293 freemsg(bp->b_cont);
6256 6294 bp->b_cont = NULL;
6257 6295 }
6258 6296
6259 6297 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6260 6298 bp->b_datap->db_type = M_IOCDATA;
6261 6299
6262 6300 mblk_setcred(bp, crp, curproc->p_pid);
6263 6301 resp = (struct copyresp *)bp->b_rptr;
6264 6302 resp->cp_rval = (caddr_t)(uintptr_t)error;
6265 6303 resp->cp_flag = (fflags & FMODELS);
6266 6304
6267 6305 stream_willservice(stp);
6268 6306 putnext(stp->sd_wrq, bp);
6269 6307 stream_runservice(stp);
6270 6308
6271 6309 if (error) {
6272 6310 mutex_enter(&stp->sd_lock);
6273 6311 stp->sd_flag &= ~waitflags;
6274 6312 cv_broadcast(&stp->sd_iocmonitor);
6275 6313 mutex_exit(&stp->sd_lock);
6276 6314 crfree(crp);
6277 6315 return (error);
6278 6316 }
6279 6317
6280 6318 goto waitioc;
6281 6319
6282 6320 case M_COPYOUT:
6283 6321 /*
6284 6322 * Driver or module has ioctl data for a user.
6285 6323 */
6286 6324 reqp = (struct copyreq *)bp->b_rptr;
6287 6325 ASSERT(bp->b_cont != NULL);
6288 6326
6289 6327 /*
6290 6328 * Always (transparent or non-transparent )
6291 6329 * use the address specified in the request
6292 6330 */
6293 6331 taddr = reqp->cq_addr;
6294 6332 if (!transparent)
6295 6333 len = (int)reqp->cq_size;
6296 6334
6297 6335 /* copyout data to the provided address */
6298 6336 error = getiocd(bp, taddr, copyflag);
6299 6337
6300 6338 freemsg(bp->b_cont);
6301 6339 bp->b_cont = NULL;
6302 6340
6303 6341 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6304 6342 bp->b_datap->db_type = M_IOCDATA;
6305 6343
6306 6344 mblk_setcred(bp, crp, curproc->p_pid);
6307 6345 resp = (struct copyresp *)bp->b_rptr;
6308 6346 resp->cp_rval = (caddr_t)(uintptr_t)error;
6309 6347 resp->cp_flag = (fflags & FMODELS);
6310 6348
6311 6349 stream_willservice(stp);
6312 6350 putnext(stp->sd_wrq, bp);
6313 6351 stream_runservice(stp);
6314 6352
6315 6353 if (error) {
6316 6354 mutex_enter(&stp->sd_lock);
6317 6355 stp->sd_flag &= ~waitflags;
6318 6356 cv_broadcast(&stp->sd_iocmonitor);
6319 6357 mutex_exit(&stp->sd_lock);
6320 6358 crfree(crp);
6321 6359 return (error);
6322 6360 }
6323 6361 goto waitioc;
6324 6362
6325 6363 default:
6326 6364 ASSERT(0);
6327 6365 mutex_enter(&stp->sd_lock);
6328 6366 stp->sd_flag &= ~waitflags;
6329 6367 cv_broadcast(&stp->sd_iocmonitor);
6330 6368 mutex_exit(&stp->sd_lock);
6331 6369 break;
6332 6370 }
6333 6371
6334 6372 freemsg(bp);
6335 6373 crfree(crp);
6336 6374 return (error);
6337 6375 }
6338 6376
6339 6377 /*
6340 6378 * Send an M_CMD message downstream and wait for a reply. This is a ptools
6341 6379 * special used to retrieve information from modules/drivers a stream without
6342 6380 * being subjected to flow control or interfering with pending messages on the
6343 6381 * stream (e.g. an ioctl in flight).
6344 6382 */
6345 6383 int
6346 6384 strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp)
6347 6385 {
6348 6386 mblk_t *mp;
6349 6387 struct cmdblk *cmdp;
6350 6388 int error = 0;
6351 6389 int errs = STRHUP|STRDERR|STWRERR|STPLEX;
6352 6390 clock_t rval, timeout = STRTIMOUT;
6353 6391
6354 6392 if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) ||
6355 6393 scp->sc_timeout < -1)
6356 6394 return (EINVAL);
6357 6395
6358 6396 if (scp->sc_timeout > 0)
6359 6397 timeout = scp->sc_timeout * MILLISEC;
6360 6398
6361 6399 if ((mp = allocb_cred(sizeof (struct cmdblk), crp,
6362 6400 curproc->p_pid)) == NULL)
6363 6401 return (ENOMEM);
6364 6402
6365 6403 crhold(crp);
6366 6404
6367 6405 cmdp = (struct cmdblk *)mp->b_wptr;
6368 6406 cmdp->cb_cr = crp;
6369 6407 cmdp->cb_cmd = scp->sc_cmd;
6370 6408 cmdp->cb_len = scp->sc_len;
6371 6409 cmdp->cb_error = 0;
6372 6410 mp->b_wptr += sizeof (struct cmdblk);
6373 6411
6374 6412 DB_TYPE(mp) = M_CMD;
6375 6413 DB_CPID(mp) = curproc->p_pid;
6376 6414
6377 6415 /*
6378 6416 * Copy in the payload.
6379 6417 */
6380 6418 if (cmdp->cb_len > 0) {
6381 6419 mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp,
6382 6420 curproc->p_pid);
6383 6421 if (mp->b_cont == NULL) {
6384 6422 error = ENOMEM;
6385 6423 goto out;
6386 6424 }
6387 6425
6388 6426 /* cb_len comes from sc_len, which has already been checked */
6389 6427 ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf));
6390 6428 (void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len);
6391 6429 mp->b_cont->b_wptr += cmdp->cb_len;
6392 6430 DB_CPID(mp->b_cont) = curproc->p_pid;
6393 6431 }
6394 6432
6395 6433 /*
6396 6434 * Since this mechanism is strictly for ptools, and since only one
6397 6435 * process can be grabbed at a time, we simply fail if there's
6398 6436 * currently an operation pending.
6399 6437 */
6400 6438 mutex_enter(&stp->sd_lock);
6401 6439 if (stp->sd_flag & STRCMDWAIT) {
6402 6440 mutex_exit(&stp->sd_lock);
6403 6441 error = EBUSY;
6404 6442 goto out;
6405 6443 }
6406 6444 stp->sd_flag |= STRCMDWAIT;
6407 6445 ASSERT(stp->sd_cmdblk == NULL);
6408 6446 mutex_exit(&stp->sd_lock);
6409 6447
6410 6448 putnext(stp->sd_wrq, mp);
6411 6449 mp = NULL;
6412 6450
6413 6451 /*
6414 6452 * Timed wait for acknowledgment. If the reply has already arrived,
6415 6453 * don't sleep. If awakened from the sleep, fail only if the reply
6416 6454 * has not arrived by then. Otherwise, process the reply.
6417 6455 */
6418 6456 mutex_enter(&stp->sd_lock);
6419 6457 while (stp->sd_cmdblk == NULL) {
6420 6458 if (stp->sd_flag & errs) {
6421 6459 if ((error = strgeterr(stp, errs, 0)) != 0)
6422 6460 goto waitout;
6423 6461 }
6424 6462
6425 6463 rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0);
6426 6464 if (stp->sd_cmdblk != NULL)
6427 6465 break;
6428 6466
6429 6467 if (rval <= 0) {
6430 6468 error = (rval == 0) ? EINTR : ETIME;
6431 6469 goto waitout;
6432 6470 }
6433 6471 }
6434 6472
6435 6473 /*
6436 6474 * We received a reply.
6437 6475 */
6438 6476 mp = stp->sd_cmdblk;
6439 6477 stp->sd_cmdblk = NULL;
6440 6478 ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD);
6441 6479 ASSERT(stp->sd_flag & STRCMDWAIT);
6442 6480 stp->sd_flag &= ~STRCMDWAIT;
6443 6481 mutex_exit(&stp->sd_lock);
6444 6482
6445 6483 cmdp = (struct cmdblk *)mp->b_rptr;
6446 6484 if ((error = cmdp->cb_error) != 0)
6447 6485 goto out;
6448 6486
6449 6487 /*
6450 6488 * Data may have been returned in the reply (cb_len > 0).
6451 6489 * If so, copy it out to the user's buffer.
6452 6490 */
6453 6491 if (cmdp->cb_len > 0) {
6454 6492 if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) {
6455 6493 error = EPROTO;
6456 6494 goto out;
6457 6495 }
6458 6496
6459 6497 cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf));
6460 6498 (void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len);
6461 6499 }
6462 6500 scp->sc_len = cmdp->cb_len;
6463 6501 out:
6464 6502 freemsg(mp);
6465 6503 crfree(crp);
6466 6504 return (error);
6467 6505 waitout:
6468 6506 ASSERT(stp->sd_cmdblk == NULL);
6469 6507 stp->sd_flag &= ~STRCMDWAIT;
6470 6508 mutex_exit(&stp->sd_lock);
6471 6509 crfree(crp);
6472 6510 return (error);
6473 6511 }
6474 6512
6475 6513 /*
6476 6514 * For the SunOS keyboard driver.
6477 6515 * Return the next available "ioctl" sequence number.
6478 6516 * Exported, so that streams modules can send "ioctl" messages
6479 6517 * downstream from their open routine.
6480 6518 */
6481 6519 int
6482 6520 getiocseqno(void)
6483 6521 {
6484 6522 int i;
6485 6523
6486 6524 mutex_enter(&strresources);
6487 6525 i = ++ioc_id;
6488 6526 mutex_exit(&strresources);
6489 6527 return (i);
6490 6528 }
6491 6529
6492 6530 /*
6493 6531 * Get the next message from the read queue. If the message is
6494 6532 * priority, STRPRI will have been set by strrput(). This flag
6495 6533 * should be reset only when the entire message at the front of the
6496 6534 * queue as been consumed.
6497 6535 *
6498 6536 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
6499 6537 */
6500 6538 int
6501 6539 strgetmsg(
6502 6540 struct vnode *vp,
6503 6541 struct strbuf *mctl,
6504 6542 struct strbuf *mdata,
6505 6543 unsigned char *prip,
6506 6544 int *flagsp,
6507 6545 int fmode,
6508 6546 rval_t *rvp)
6509 6547 {
6510 6548 struct stdata *stp;
6511 6549 mblk_t *bp, *nbp;
6512 6550 mblk_t *savemp = NULL;
6513 6551 mblk_t *savemptail = NULL;
6514 6552 uint_t old_sd_flag;
6515 6553 int flg;
6516 6554 int more = 0;
6517 6555 int error = 0;
6518 6556 char first = 1;
6519 6557 uint_t mark; /* Contains MSG*MARK and _LASTMARK */
6520 6558 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */
6521 6559 unsigned char pri = 0;
6522 6560 queue_t *q;
6523 6561 int pr = 0; /* Partial read successful */
6524 6562 struct uio uios;
6525 6563 struct uio *uiop = &uios;
6526 6564 struct iovec iovs;
6527 6565 unsigned char type;
6528 6566
6529 6567 TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER,
6530 6568 "strgetmsg:%p", vp);
6531 6569
6532 6570 ASSERT(vp->v_stream);
6533 6571 stp = vp->v_stream;
6534 6572 rvp->r_val1 = 0;
6535 6573
6536 6574 mutex_enter(&stp->sd_lock);
6537 6575
6538 6576 if ((error = i_straccess(stp, JCREAD)) != 0) {
6539 6577 mutex_exit(&stp->sd_lock);
6540 6578 return (error);
6541 6579 }
6542 6580
6543 6581 if (stp->sd_flag & (STRDERR|STPLEX)) {
6544 6582 error = strgeterr(stp, STRDERR|STPLEX, 0);
6545 6583 if (error != 0) {
6546 6584 mutex_exit(&stp->sd_lock);
6547 6585 return (error);
6548 6586 }
6549 6587 }
6550 6588 mutex_exit(&stp->sd_lock);
6551 6589
6552 6590 switch (*flagsp) {
6553 6591 case MSG_HIPRI:
6554 6592 if (*prip != 0)
6555 6593 return (EINVAL);
6556 6594 break;
6557 6595
6558 6596 case MSG_ANY:
6559 6597 case MSG_BAND:
6560 6598 break;
6561 6599
6562 6600 default:
6563 6601 return (EINVAL);
6564 6602 }
6565 6603 /*
6566 6604 * Setup uio and iov for data part
6567 6605 */
6568 6606 iovs.iov_base = mdata->buf;
6569 6607 iovs.iov_len = mdata->maxlen;
6570 6608 uios.uio_iov = &iovs;
6571 6609 uios.uio_iovcnt = 1;
6572 6610 uios.uio_loffset = 0;
6573 6611 uios.uio_segflg = UIO_USERSPACE;
6574 6612 uios.uio_fmode = 0;
6575 6613 uios.uio_extflg = UIO_COPY_CACHED;
6576 6614 uios.uio_resid = mdata->maxlen;
6577 6615 uios.uio_offset = 0;
6578 6616
6579 6617 q = _RD(stp->sd_wrq);
6580 6618 mutex_enter(&stp->sd_lock);
6581 6619 old_sd_flag = stp->sd_flag;
6582 6620 mark = 0;
6583 6621 for (;;) {
6584 6622 int done = 0;
6585 6623 mblk_t *q_first = q->q_first;
6586 6624
6587 6625 /*
6588 6626 * Get the next message of appropriate priority
6589 6627 * from the stream head. If the caller is interested
6590 6628 * in band or hipri messages, then they should already
6591 6629 * be enqueued at the stream head. On the other hand
6592 6630 * if the caller wants normal (band 0) messages, they
6593 6631 * might be deferred in a synchronous stream and they
6594 6632 * will need to be pulled up.
6595 6633 *
6596 6634 * After we have dequeued a message, we might find that
6597 6635 * it was a deferred M_SIG that was enqueued at the
6598 6636 * stream head. It must now be posted as part of the
6599 6637 * read by calling strsignal_nolock().
6600 6638 *
6601 6639 * Also note that strrput does not enqueue an M_PCSIG,
6602 6640 * and there cannot be more than one hipri message,
6603 6641 * so there was no need to have the M_PCSIG case.
6604 6642 *
6605 6643 * At some time it might be nice to try and wrap the
6606 6644 * functionality of kstrgetmsg() and strgetmsg() into
6607 6645 * a common routine so to reduce the amount of replicated
6608 6646 * code (since they are extremely similar).
6609 6647 */
6610 6648 if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) {
6611 6649 /* Asking for normal, band0 data */
6612 6650 bp = strget(stp, q, uiop, first, &error);
6613 6651 ASSERT(MUTEX_HELD(&stp->sd_lock));
6614 6652 if (bp != NULL) {
6615 6653 if (DB_TYPE(bp) == M_SIG) {
6616 6654 strsignal_nolock(stp, *bp->b_rptr,
6617 6655 bp->b_band);
6618 6656 freemsg(bp);
6619 6657 continue;
6620 6658 } else {
6621 6659 break;
6622 6660 }
6623 6661 }
6624 6662 if (error != 0)
6625 6663 goto getmout;
6626 6664
6627 6665 /*
6628 6666 * We can't depend on the value of STRPRI here because
6629 6667 * the stream head may be in transit. Therefore, we
6630 6668 * must look at the type of the first message to
6631 6669 * determine if a high priority messages is waiting
6632 6670 */
6633 6671 } else if ((*flagsp & MSG_HIPRI) && q_first != NULL &&
6634 6672 DB_TYPE(q_first) >= QPCTL &&
6635 6673 (bp = getq_noenab(q, 0)) != NULL) {
6636 6674 /* Asked for HIPRI and got one */
6637 6675 ASSERT(DB_TYPE(bp) >= QPCTL);
6638 6676 break;
6639 6677 } else if ((*flagsp & MSG_BAND) && q_first != NULL &&
6640 6678 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) &&
6641 6679 (bp = getq_noenab(q, 0)) != NULL) {
6642 6680 /*
6643 6681 * Asked for at least band "prip" and got either at
6644 6682 * least that band or a hipri message.
6645 6683 */
6646 6684 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL);
6647 6685 if (DB_TYPE(bp) == M_SIG) {
6648 6686 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
6649 6687 freemsg(bp);
6650 6688 continue;
6651 6689 } else {
6652 6690 break;
6653 6691 }
6654 6692 }
6655 6693
6656 6694 /* No data. Time to sleep? */
6657 6695 qbackenable(q, 0);
6658 6696
6659 6697 /*
6660 6698 * If STRHUP or STREOF, return 0 length control and data.
6661 6699 * If resid is 0, then a read(fd,buf,0) was done. Do not
6662 6700 * sleep to satisfy this request because by default we have
6663 6701 * zero bytes to return.
6664 6702 */
6665 6703 if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 &&
6666 6704 mdata->maxlen == 0)) {
6667 6705 mctl->len = mdata->len = 0;
6668 6706 *flagsp = 0;
6669 6707 mutex_exit(&stp->sd_lock);
6670 6708 return (0);
6671 6709 }
6672 6710 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT,
6673 6711 "strgetmsg calls strwaitq:%p, %p",
6674 6712 vp, uiop);
6675 6713 if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1,
6676 6714 &done)) != 0) || done) {
6677 6715 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE,
6678 6716 "strgetmsg error or done:%p, %p",
6679 6717 vp, uiop);
6680 6718 mutex_exit(&stp->sd_lock);
6681 6719 return (error);
6682 6720 }
6683 6721 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE,
6684 6722 "strgetmsg awakes:%p, %p", vp, uiop);
6685 6723 if ((error = i_straccess(stp, JCREAD)) != 0) {
6686 6724 mutex_exit(&stp->sd_lock);
6687 6725 return (error);
6688 6726 }
6689 6727 first = 0;
6690 6728 }
6691 6729 ASSERT(bp != NULL);
6692 6730 /*
6693 6731 * Extract any mark information. If the message is not completely
6694 6732 * consumed this information will be put in the mblk
6695 6733 * that is putback.
6696 6734 * If MSGMARKNEXT is set and the message is completely consumed
6697 6735 * the STRATMARK flag will be set below. Likewise, if
6698 6736 * MSGNOTMARKNEXT is set and the message is
6699 6737 * completely consumed STRNOTATMARK will be set.
6700 6738 */
6701 6739 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
6702 6740 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
6703 6741 (MSGMARKNEXT|MSGNOTMARKNEXT));
6704 6742 if (mark != 0 && bp == stp->sd_mark) {
6705 6743 mark |= _LASTMARK;
6706 6744 stp->sd_mark = NULL;
6707 6745 }
6708 6746 /*
6709 6747 * keep track of the original message type and priority
6710 6748 */
6711 6749 pri = bp->b_band;
6712 6750 type = bp->b_datap->db_type;
6713 6751 if (type == M_PASSFP) {
6714 6752 if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
6715 6753 stp->sd_mark = bp;
6716 6754 bp->b_flag |= mark & ~_LASTMARK;
6717 6755 putback(stp, q, bp, pri);
6718 6756 qbackenable(q, pri);
6719 6757 mutex_exit(&stp->sd_lock);
6720 6758 return (EBADMSG);
6721 6759 }
6722 6760 ASSERT(type != M_SIG);
6723 6761
6724 6762 /*
6725 6763 * Set this flag so strrput will not generate signals. Need to
6726 6764 * make sure this flag is cleared before leaving this routine
6727 6765 * else signals will stop being sent.
6728 6766 */
6729 6767 stp->sd_flag |= STRGETINPROG;
6730 6768 mutex_exit(&stp->sd_lock);
6731 6769
6732 6770 if (STREAM_NEEDSERVICE(stp))
6733 6771 stream_runservice(stp);
6734 6772
6735 6773 /*
6736 6774 * Set HIPRI flag if message is priority.
6737 6775 */
6738 6776 if (type >= QPCTL)
6739 6777 flg = MSG_HIPRI;
6740 6778 else
6741 6779 flg = MSG_BAND;
6742 6780
6743 6781 /*
6744 6782 * First process PROTO or PCPROTO blocks, if any.
6745 6783 */
6746 6784 if (mctl->maxlen >= 0 && type != M_DATA) {
6747 6785 size_t n, bcnt;
6748 6786 char *ubuf;
6749 6787
6750 6788 bcnt = mctl->maxlen;
6751 6789 ubuf = mctl->buf;
6752 6790 while (bp != NULL && bp->b_datap->db_type != M_DATA) {
6753 6791 if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 &&
6754 6792 copyout(bp->b_rptr, ubuf, n)) {
6755 6793 error = EFAULT;
6756 6794 mutex_enter(&stp->sd_lock);
6757 6795 /*
6758 6796 * clear stream head pri flag based on
6759 6797 * first message type
6760 6798 */
6761 6799 if (type >= QPCTL) {
6762 6800 ASSERT(type == M_PCPROTO);
6763 6801 stp->sd_flag &= ~STRPRI;
6764 6802 }
6765 6803 more = 0;
6766 6804 freemsg(bp);
6767 6805 goto getmout;
6768 6806 }
6769 6807 ubuf += n;
6770 6808 bp->b_rptr += n;
6771 6809 if (bp->b_rptr >= bp->b_wptr) {
6772 6810 nbp = bp;
6773 6811 bp = bp->b_cont;
6774 6812 freeb(nbp);
6775 6813 }
6776 6814 ASSERT(n <= bcnt);
6777 6815 bcnt -= n;
6778 6816 if (bcnt == 0)
6779 6817 break;
6780 6818 }
6781 6819 mctl->len = mctl->maxlen - bcnt;
6782 6820 } else
6783 6821 mctl->len = -1;
6784 6822
6785 6823 if (bp && bp->b_datap->db_type != M_DATA) {
6786 6824 /*
6787 6825 * More PROTO blocks in msg.
6788 6826 */
6789 6827 more |= MORECTL;
6790 6828 savemp = bp;
6791 6829 while (bp && bp->b_datap->db_type != M_DATA) {
6792 6830 savemptail = bp;
6793 6831 bp = bp->b_cont;
6794 6832 }
6795 6833 savemptail->b_cont = NULL;
6796 6834 }
6797 6835
6798 6836 /*
6799 6837 * Now process DATA blocks, if any.
6800 6838 */
6801 6839 if (mdata->maxlen >= 0 && bp) {
6802 6840 /*
6803 6841 * struiocopyout will consume a potential zero-length
6804 6842 * M_DATA even if uio_resid is zero.
6805 6843 */
6806 6844 size_t oldresid = uiop->uio_resid;
6807 6845
6808 6846 bp = struiocopyout(bp, uiop, &error);
6809 6847 if (error != 0) {
6810 6848 mutex_enter(&stp->sd_lock);
6811 6849 /*
6812 6850 * clear stream head hi pri flag based on
6813 6851 * first message
6814 6852 */
6815 6853 if (type >= QPCTL) {
6816 6854 ASSERT(type == M_PCPROTO);
6817 6855 stp->sd_flag &= ~STRPRI;
6818 6856 }
6819 6857 more = 0;
6820 6858 freemsg(savemp);
6821 6859 goto getmout;
6822 6860 }
6823 6861 /*
6824 6862 * (pr == 1) indicates a partial read.
6825 6863 */
6826 6864 if (oldresid > uiop->uio_resid)
6827 6865 pr = 1;
6828 6866 mdata->len = mdata->maxlen - uiop->uio_resid;
6829 6867 } else
6830 6868 mdata->len = -1;
6831 6869
6832 6870 if (bp) { /* more data blocks in msg */
6833 6871 more |= MOREDATA;
6834 6872 if (savemp)
6835 6873 savemptail->b_cont = bp;
6836 6874 else
6837 6875 savemp = bp;
6838 6876 }
6839 6877
6840 6878 mutex_enter(&stp->sd_lock);
6841 6879 if (savemp) {
6842 6880 if (pr && (savemp->b_datap->db_type == M_DATA) &&
6843 6881 msgnodata(savemp)) {
6844 6882 /*
6845 6883 * Avoid queuing a zero-length tail part of
6846 6884 * a message. pr=1 indicates that we read some of
6847 6885 * the message.
6848 6886 */
6849 6887 freemsg(savemp);
6850 6888 more &= ~MOREDATA;
6851 6889 /*
6852 6890 * clear stream head hi pri flag based on
6853 6891 * first message
6854 6892 */
6855 6893 if (type >= QPCTL) {
6856 6894 ASSERT(type == M_PCPROTO);
6857 6895 stp->sd_flag &= ~STRPRI;
6858 6896 }
6859 6897 } else {
6860 6898 savemp->b_band = pri;
6861 6899 /*
6862 6900 * If the first message was HIPRI and the one we're
6863 6901 * putting back isn't, then clear STRPRI, otherwise
6864 6902 * set STRPRI again. Note that we must set STRPRI
6865 6903 * again since the flush logic in strrput_nondata()
6866 6904 * may have cleared it while we had sd_lock dropped.
6867 6905 */
6868 6906 if (type >= QPCTL) {
6869 6907 ASSERT(type == M_PCPROTO);
6870 6908 if (queclass(savemp) < QPCTL)
6871 6909 stp->sd_flag &= ~STRPRI;
6872 6910 else
6873 6911 stp->sd_flag |= STRPRI;
6874 6912 } else if (queclass(savemp) >= QPCTL) {
6875 6913 /*
6876 6914 * The first message was not a HIPRI message,
6877 6915 * but the one we are about to putback is.
6878 6916 * For simplicitly, we do not allow for HIPRI
6879 6917 * messages to be embedded in the message
6880 6918 * body, so just force it to same type as
6881 6919 * first message.
6882 6920 */
6883 6921 ASSERT(type == M_DATA || type == M_PROTO);
6884 6922 ASSERT(savemp->b_datap->db_type == M_PCPROTO);
6885 6923 savemp->b_datap->db_type = type;
6886 6924 }
6887 6925 if (mark != 0) {
6888 6926 savemp->b_flag |= mark & ~_LASTMARK;
6889 6927 if ((mark & _LASTMARK) &&
6890 6928 (stp->sd_mark == NULL)) {
6891 6929 /*
6892 6930 * If another marked message arrived
6893 6931 * while sd_lock was not held sd_mark
6894 6932 * would be non-NULL.
6895 6933 */
6896 6934 stp->sd_mark = savemp;
6897 6935 }
6898 6936 }
6899 6937 putback(stp, q, savemp, pri);
6900 6938 }
6901 6939 } else {
6902 6940 /*
6903 6941 * The complete message was consumed.
6904 6942 *
6905 6943 * If another M_PCPROTO arrived while sd_lock was not held
6906 6944 * it would have been discarded since STRPRI was still set.
6907 6945 *
6908 6946 * Move the MSG*MARKNEXT information
6909 6947 * to the stream head just in case
6910 6948 * the read queue becomes empty.
6911 6949 * clear stream head hi pri flag based on
6912 6950 * first message
6913 6951 *
6914 6952 * If the stream head was at the mark
6915 6953 * (STRATMARK) before we dropped sd_lock above
6916 6954 * and some data was consumed then we have
6917 6955 * moved past the mark thus STRATMARK is
6918 6956 * cleared. However, if a message arrived in
6919 6957 * strrput during the copyout above causing
6920 6958 * STRATMARK to be set we can not clear that
6921 6959 * flag.
6922 6960 */
6923 6961 if (type >= QPCTL) {
6924 6962 ASSERT(type == M_PCPROTO);
6925 6963 stp->sd_flag &= ~STRPRI;
6926 6964 }
6927 6965 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
6928 6966 if (mark & MSGMARKNEXT) {
6929 6967 stp->sd_flag &= ~STRNOTATMARK;
6930 6968 stp->sd_flag |= STRATMARK;
6931 6969 } else if (mark & MSGNOTMARKNEXT) {
6932 6970 stp->sd_flag &= ~STRATMARK;
6933 6971 stp->sd_flag |= STRNOTATMARK;
6934 6972 } else {
6935 6973 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
6936 6974 }
6937 6975 } else if (pr && (old_sd_flag & STRATMARK)) {
6938 6976 stp->sd_flag &= ~STRATMARK;
6939 6977 }
6940 6978 }
6941 6979
6942 6980 *flagsp = flg;
6943 6981 *prip = pri;
6944 6982
6945 6983 /*
6946 6984 * Getmsg cleanup processing - if the state of the queue has changed
6947 6985 * some signals may need to be sent and/or poll awakened.
6948 6986 */
6949 6987 getmout:
6950 6988 qbackenable(q, pri);
6951 6989
6952 6990 /*
6953 6991 * We dropped the stream head lock above. Send all M_SIG messages
6954 6992 * before processing stream head for SIGPOLL messages.
6955 6993 */
6956 6994 ASSERT(MUTEX_HELD(&stp->sd_lock));
6957 6995 while ((bp = q->q_first) != NULL &&
6958 6996 (bp->b_datap->db_type == M_SIG)) {
6959 6997 /*
6960 6998 * sd_lock is held so the content of the read queue can not
6961 6999 * change.
6962 7000 */
6963 7001 bp = getq(q);
6964 7002 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
6965 7003
6966 7004 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
6967 7005 mutex_exit(&stp->sd_lock);
6968 7006 freemsg(bp);
6969 7007 if (STREAM_NEEDSERVICE(stp))
6970 7008 stream_runservice(stp);
6971 7009 mutex_enter(&stp->sd_lock);
6972 7010 }
6973 7011
6974 7012 /*
6975 7013 * stream head cannot change while we make the determination
6976 7014 * whether or not to send a signal. Drop the flag to allow strrput
6977 7015 * to send firstmsgsigs again.
6978 7016 */
6979 7017 stp->sd_flag &= ~STRGETINPROG;
6980 7018
6981 7019 /*
6982 7020 * If the type of message at the front of the queue changed
6983 7021 * due to the receive the appropriate signals and pollwakeup events
6984 7022 * are generated. The type of changes are:
6985 7023 * Processed a hipri message, q_first is not hipri.
6986 7024 * Processed a band X message, and q_first is band Y.
6987 7025 * The generated signals and pollwakeups are identical to what
6988 7026 * strrput() generates should the message that is now on q_first
6989 7027 * arrive to an empty read queue.
6990 7028 *
6991 7029 * Note: only strrput will send a signal for a hipri message.
6992 7030 */
6993 7031 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
6994 7032 strsigset_t signals = 0;
6995 7033 strpollset_t pollwakeups = 0;
6996 7034
6997 7035 if (flg & MSG_HIPRI) {
6998 7036 /*
6999 7037 * Removed a hipri message. Regular data at
7000 7038 * the front of the queue.
7001 7039 */
7002 7040 if (bp->b_band == 0) {
7003 7041 signals = S_INPUT | S_RDNORM;
7004 7042 pollwakeups = POLLIN | POLLRDNORM;
7005 7043 } else {
7006 7044 signals = S_INPUT | S_RDBAND;
7007 7045 pollwakeups = POLLIN | POLLRDBAND;
7008 7046 }
7009 7047 } else if (pri != bp->b_band) {
7010 7048 /*
7011 7049 * The band is different for the new q_first.
7012 7050 */
7013 7051 if (bp->b_band == 0) {
7014 7052 signals = S_RDNORM;
7015 7053 pollwakeups = POLLIN | POLLRDNORM;
7016 7054 } else {
7017 7055 signals = S_RDBAND;
7018 7056 pollwakeups = POLLIN | POLLRDBAND;
7019 7057 }
7020 7058 }
7021 7059
7022 7060 if (pollwakeups != 0) {
7023 7061 if (pollwakeups == (POLLIN | POLLRDNORM)) {
7024 7062 if (!(stp->sd_rput_opt & SR_POLLIN))
7025 7063 goto no_pollwake;
7026 7064 stp->sd_rput_opt &= ~SR_POLLIN;
7027 7065 }
7028 7066 mutex_exit(&stp->sd_lock);
7029 7067 pollwakeup(&stp->sd_pollist, pollwakeups);
7030 7068 mutex_enter(&stp->sd_lock);
7031 7069 }
7032 7070 no_pollwake:
7033 7071
7034 7072 if (stp->sd_sigflags & signals)
7035 7073 strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7036 7074 }
7037 7075 mutex_exit(&stp->sd_lock);
7038 7076
7039 7077 rvp->r_val1 = more;
7040 7078 return (error);
7041 7079 #undef _LASTMARK
7042 7080 }
7043 7081
7044 7082 /*
7045 7083 * Get the next message from the read queue. If the message is
7046 7084 * priority, STRPRI will have been set by strrput(). This flag
7047 7085 * should be reset only when the entire message at the front of the
7048 7086 * queue as been consumed.
7049 7087 *
7050 7088 * If uiop is NULL all data is returned in mctlp.
7051 7089 * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed
7052 7090 * not enabled.
7053 7091 * The timeout parameter is in milliseconds; -1 for infinity.
7054 7092 * This routine handles the consolidation private flags:
7055 7093 * MSG_IGNERROR Ignore any stream head error except STPLEX.
7056 7094 * MSG_DELAYERROR Defer the error check until the queue is empty.
7057 7095 * MSG_HOLDSIG Hold signals while waiting for data.
7058 7096 * MSG_IPEEK Only peek at messages.
7059 7097 * MSG_DISCARDTAIL Discard the tail M_DATA part of the message
7060 7098 * that doesn't fit.
7061 7099 * MSG_NOMARK If the message is marked leave it on the queue.
7062 7100 *
7063 7101 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
7064 7102 */
7065 7103 int
7066 7104 kstrgetmsg(
7067 7105 struct vnode *vp,
7068 7106 mblk_t **mctlp,
7069 7107 struct uio *uiop,
7070 7108 unsigned char *prip,
7071 7109 int *flagsp,
7072 7110 clock_t timout,
7073 7111 rval_t *rvp)
7074 7112 {
7075 7113 struct stdata *stp;
7076 7114 mblk_t *bp, *nbp;
7077 7115 mblk_t *savemp = NULL;
7078 7116 mblk_t *savemptail = NULL;
7079 7117 int flags;
7080 7118 uint_t old_sd_flag;
7081 7119 int flg;
7082 7120 int more = 0;
7083 7121 int error = 0;
7084 7122 char first = 1;
7085 7123 uint_t mark; /* Contains MSG*MARK and _LASTMARK */
7086 7124 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */
7087 7125 unsigned char pri = 0;
7088 7126 queue_t *q;
7089 7127 int pr = 0; /* Partial read successful */
7090 7128 unsigned char type;
7091 7129
7092 7130 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER,
7093 7131 "kstrgetmsg:%p", vp);
7094 7132
7095 7133 ASSERT(vp->v_stream);
7096 7134 stp = vp->v_stream;
7097 7135 rvp->r_val1 = 0;
7098 7136
7099 7137 mutex_enter(&stp->sd_lock);
7100 7138
7101 7139 if ((error = i_straccess(stp, JCREAD)) != 0) {
7102 7140 mutex_exit(&stp->sd_lock);
7103 7141 return (error);
7104 7142 }
7105 7143
7106 7144 flags = *flagsp;
7107 7145 if (stp->sd_flag & (STRDERR|STPLEX)) {
7108 7146 if ((stp->sd_flag & STPLEX) ||
7109 7147 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) {
7110 7148 error = strgeterr(stp, STRDERR|STPLEX,
7111 7149 (flags & MSG_IPEEK));
7112 7150 if (error != 0) {
7113 7151 mutex_exit(&stp->sd_lock);
7114 7152 return (error);
7115 7153 }
7116 7154 }
7117 7155 }
7118 7156 mutex_exit(&stp->sd_lock);
7119 7157
7120 7158 switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) {
7121 7159 case MSG_HIPRI:
7122 7160 if (*prip != 0)
7123 7161 return (EINVAL);
7124 7162 break;
7125 7163
7126 7164 case MSG_ANY:
7127 7165 case MSG_BAND:
7128 7166 break;
7129 7167
7130 7168 default:
7131 7169 return (EINVAL);
7132 7170 }
7133 7171
7134 7172 retry:
7135 7173 q = _RD(stp->sd_wrq);
7136 7174 mutex_enter(&stp->sd_lock);
7137 7175 old_sd_flag = stp->sd_flag;
7138 7176 mark = 0;
7139 7177 for (;;) {
7140 7178 int done = 0;
7141 7179 int waitflag;
7142 7180 int fmode;
7143 7181 mblk_t *q_first = q->q_first;
7144 7182
7145 7183 /*
7146 7184 * This section of the code operates just like the code
7147 7185 * in strgetmsg(). There is a comment there about what
7148 7186 * is going on here.
7149 7187 */
7150 7188 if (!(flags & (MSG_HIPRI|MSG_BAND))) {
7151 7189 /* Asking for normal, band0 data */
7152 7190 bp = strget(stp, q, uiop, first, &error);
7153 7191 ASSERT(MUTEX_HELD(&stp->sd_lock));
7154 7192 if (bp != NULL) {
7155 7193 if (DB_TYPE(bp) == M_SIG) {
7156 7194 strsignal_nolock(stp, *bp->b_rptr,
7157 7195 bp->b_band);
7158 7196 freemsg(bp);
7159 7197 continue;
7160 7198 } else {
7161 7199 break;
7162 7200 }
7163 7201 }
7164 7202 if (error != 0) {
7165 7203 goto getmout;
7166 7204 }
7167 7205 /*
7168 7206 * We can't depend on the value of STRPRI here because
7169 7207 * the stream head may be in transit. Therefore, we
7170 7208 * must look at the type of the first message to
7171 7209 * determine if a high priority messages is waiting
7172 7210 */
7173 7211 } else if ((flags & MSG_HIPRI) && q_first != NULL &&
7174 7212 DB_TYPE(q_first) >= QPCTL &&
7175 7213 (bp = getq_noenab(q, 0)) != NULL) {
7176 7214 ASSERT(DB_TYPE(bp) >= QPCTL);
7177 7215 break;
7178 7216 } else if ((flags & MSG_BAND) && q_first != NULL &&
7179 7217 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) &&
7180 7218 (bp = getq_noenab(q, 0)) != NULL) {
7181 7219 /*
7182 7220 * Asked for at least band "prip" and got either at
7183 7221 * least that band or a hipri message.
7184 7222 */
7185 7223 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL);
7186 7224 if (DB_TYPE(bp) == M_SIG) {
7187 7225 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
7188 7226 freemsg(bp);
7189 7227 continue;
7190 7228 } else {
7191 7229 break;
7192 7230 }
7193 7231 }
7194 7232
7195 7233 /* No data. Time to sleep? */
7196 7234 qbackenable(q, 0);
7197 7235
7198 7236 /*
7199 7237 * Delayed error notification?
7200 7238 */
7201 7239 if ((stp->sd_flag & (STRDERR|STPLEX)) &&
7202 7240 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) {
7203 7241 error = strgeterr(stp, STRDERR|STPLEX,
7204 7242 (flags & MSG_IPEEK));
7205 7243 if (error != 0) {
7206 7244 mutex_exit(&stp->sd_lock);
7207 7245 return (error);
7208 7246 }
7209 7247 }
7210 7248
7211 7249 /*
7212 7250 * If STRHUP or STREOF, return 0 length control and data.
7213 7251 * If a read(fd,buf,0) has been done, do not sleep, just
7214 7252 * return.
7215 7253 *
7216 7254 * If mctlp == NULL and uiop == NULL, then the code will
7217 7255 * do the strwaitq. This is an understood way of saying
7218 7256 * sleep "polling" until a message is received.
7219 7257 */
7220 7258 if ((stp->sd_flag & (STRHUP|STREOF)) ||
7221 7259 (uiop != NULL && uiop->uio_resid == 0)) {
7222 7260 if (mctlp != NULL)
7223 7261 *mctlp = NULL;
7224 7262 *flagsp = 0;
7225 7263 mutex_exit(&stp->sd_lock);
7226 7264 return (0);
7227 7265 }
7228 7266
7229 7267 waitflag = GETWAIT;
7230 7268 if (flags &
7231 7269 (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) {
7232 7270 if (flags & MSG_HOLDSIG)
7233 7271 waitflag |= STR_NOSIG;
7234 7272 if (flags & MSG_IGNERROR)
7235 7273 waitflag |= STR_NOERROR;
7236 7274 if (flags & MSG_IPEEK)
7237 7275 waitflag |= STR_PEEK;
7238 7276 if (flags & MSG_DELAYERROR)
7239 7277 waitflag |= STR_DELAYERR;
7240 7278 }
7241 7279 if (uiop != NULL)
7242 7280 fmode = uiop->uio_fmode;
7243 7281 else
7244 7282 fmode = 0;
7245 7283
7246 7284 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT,
7247 7285 "kstrgetmsg calls strwaitq:%p, %p",
7248 7286 vp, uiop);
7249 7287 if (((error = strwaitq(stp, waitflag, (ssize_t)0,
7250 7288 fmode, timout, &done))) != 0 || done) {
7251 7289 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE,
7252 7290 "kstrgetmsg error or done:%p, %p",
7253 7291 vp, uiop);
7254 7292 mutex_exit(&stp->sd_lock);
7255 7293 return (error);
7256 7294 }
7257 7295 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE,
7258 7296 "kstrgetmsg awakes:%p, %p", vp, uiop);
7259 7297 if ((error = i_straccess(stp, JCREAD)) != 0) {
7260 7298 mutex_exit(&stp->sd_lock);
7261 7299 return (error);
7262 7300 }
7263 7301 first = 0;
7264 7302 }
7265 7303 ASSERT(bp != NULL);
7266 7304 /*
7267 7305 * Extract any mark information. If the message is not completely
7268 7306 * consumed this information will be put in the mblk
7269 7307 * that is putback.
7270 7308 * If MSGMARKNEXT is set and the message is completely consumed
7271 7309 * the STRATMARK flag will be set below. Likewise, if
7272 7310 * MSGNOTMARKNEXT is set and the message is
7273 7311 * completely consumed STRNOTATMARK will be set.
7274 7312 */
7275 7313 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
7276 7314 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
7277 7315 (MSGMARKNEXT|MSGNOTMARKNEXT));
7278 7316 pri = bp->b_band;
7279 7317 if (mark != 0) {
7280 7318 /*
7281 7319 * If the caller doesn't want the mark return.
7282 7320 * Used to implement MSG_WAITALL in sockets.
7283 7321 */
7284 7322 if (flags & MSG_NOMARK) {
7285 7323 putback(stp, q, bp, pri);
7286 7324 qbackenable(q, pri);
7287 7325 mutex_exit(&stp->sd_lock);
7288 7326 return (EWOULDBLOCK);
7289 7327 }
7290 7328 if (bp == stp->sd_mark) {
7291 7329 mark |= _LASTMARK;
7292 7330 stp->sd_mark = NULL;
7293 7331 }
7294 7332 }
7295 7333
7296 7334 /*
7297 7335 * keep track of the first message type
7298 7336 */
7299 7337 type = bp->b_datap->db_type;
7300 7338
7301 7339 if (bp->b_datap->db_type == M_PASSFP) {
7302 7340 if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7303 7341 stp->sd_mark = bp;
7304 7342 bp->b_flag |= mark & ~_LASTMARK;
7305 7343 putback(stp, q, bp, pri);
7306 7344 qbackenable(q, pri);
7307 7345 mutex_exit(&stp->sd_lock);
7308 7346 return (EBADMSG);
7309 7347 }
7310 7348 ASSERT(type != M_SIG);
7311 7349
7312 7350 if (flags & MSG_IPEEK) {
7313 7351 /*
7314 7352 * Clear any struioflag - we do the uiomove over again
7315 7353 * when peeking since it simplifies the code.
7316 7354 *
7317 7355 * Dup the message and put the original back on the queue.
7318 7356 * If dupmsg() fails, try again with copymsg() to see if
7319 7357 * there is indeed a shortage of memory. dupmsg() may fail
7320 7358 * if db_ref in any of the messages reaches its limit.
7321 7359 */
7322 7360
7323 7361 if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) {
7324 7362 /*
7325 7363 * Restore the state of the stream head since we
7326 7364 * need to drop sd_lock (strwaitbuf is sleeping).
7327 7365 */
7328 7366 size_t size = msgdsize(bp);
7329 7367
7330 7368 if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7331 7369 stp->sd_mark = bp;
7332 7370 bp->b_flag |= mark & ~_LASTMARK;
7333 7371 putback(stp, q, bp, pri);
7334 7372 mutex_exit(&stp->sd_lock);
7335 7373 error = strwaitbuf(size, BPRI_HI);
7336 7374 if (error) {
7337 7375 /*
7338 7376 * There is no net change to the queue thus
7339 7377 * no need to qbackenable.
7340 7378 */
7341 7379 return (error);
7342 7380 }
7343 7381 goto retry;
7344 7382 }
7345 7383
7346 7384 if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7347 7385 stp->sd_mark = bp;
7348 7386 bp->b_flag |= mark & ~_LASTMARK;
7349 7387 putback(stp, q, bp, pri);
7350 7388 bp = nbp;
7351 7389 }
7352 7390
7353 7391 /*
7354 7392 * Set this flag so strrput will not generate signals. Need to
7355 7393 * make sure this flag is cleared before leaving this routine
7356 7394 * else signals will stop being sent.
7357 7395 */
7358 7396 stp->sd_flag |= STRGETINPROG;
7359 7397 mutex_exit(&stp->sd_lock);
7360 7398
7361 7399 if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) {
7362 7400 mblk_t *tmp, *prevmp;
7363 7401
7364 7402 /*
7365 7403 * Put first non-data mblk back to stream head and
7366 7404 * cut the mblk chain so sd_rputdatafunc only sees
7367 7405 * M_DATA mblks. We can skip the first mblk since it
7368 7406 * is M_DATA according to the condition above.
7369 7407 */
7370 7408 for (prevmp = bp, tmp = bp->b_cont; tmp != NULL;
7371 7409 prevmp = tmp, tmp = tmp->b_cont) {
7372 7410 if (DB_TYPE(tmp) != M_DATA) {
7373 7411 prevmp->b_cont = NULL;
7374 7412 mutex_enter(&stp->sd_lock);
7375 7413 putback(stp, q, tmp, tmp->b_band);
7376 7414 mutex_exit(&stp->sd_lock);
7377 7415 break;
7378 7416 }
7379 7417 }
7380 7418
7381 7419 bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp,
7382 7420 NULL, NULL, NULL, NULL);
7383 7421
7384 7422 if (bp == NULL)
7385 7423 goto retry;
7386 7424 }
7387 7425
7388 7426 if (STREAM_NEEDSERVICE(stp))
7389 7427 stream_runservice(stp);
7390 7428
7391 7429 /*
7392 7430 * Set HIPRI flag if message is priority.
7393 7431 */
7394 7432 if (type >= QPCTL)
7395 7433 flg = MSG_HIPRI;
7396 7434 else
7397 7435 flg = MSG_BAND;
7398 7436
7399 7437 /*
7400 7438 * First process PROTO or PCPROTO blocks, if any.
7401 7439 */
7402 7440 if (mctlp != NULL && type != M_DATA) {
7403 7441 mblk_t *nbp;
7404 7442
7405 7443 *mctlp = bp;
7406 7444 while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA)
7407 7445 bp = bp->b_cont;
7408 7446 nbp = bp->b_cont;
7409 7447 bp->b_cont = NULL;
7410 7448 bp = nbp;
7411 7449 }
7412 7450
7413 7451 if (bp && bp->b_datap->db_type != M_DATA) {
7414 7452 /*
7415 7453 * More PROTO blocks in msg. Will only happen if mctlp is NULL.
7416 7454 */
7417 7455 more |= MORECTL;
7418 7456 savemp = bp;
7419 7457 while (bp && bp->b_datap->db_type != M_DATA) {
7420 7458 savemptail = bp;
7421 7459 bp = bp->b_cont;
7422 7460 }
7423 7461 savemptail->b_cont = NULL;
7424 7462 }
7425 7463
7426 7464 /*
7427 7465 * Now process DATA blocks, if any.
7428 7466 */
7429 7467 if (uiop == NULL) {
7430 7468 /* Append data to tail of mctlp */
7431 7469
7432 7470 if (mctlp != NULL) {
7433 7471 mblk_t **mpp = mctlp;
7434 7472
7435 7473 while (*mpp != NULL)
7436 7474 mpp = &((*mpp)->b_cont);
7437 7475 *mpp = bp;
7438 7476 bp = NULL;
7439 7477 }
7440 7478 } else if (uiop->uio_resid >= 0 && bp) {
7441 7479 size_t oldresid = uiop->uio_resid;
7442 7480
7443 7481 /*
7444 7482 * If a streams message is likely to consist
7445 7483 * of many small mblks, it is pulled up into
7446 7484 * one continuous chunk of memory.
7447 7485 * The size of the first mblk may be bogus because
7448 7486 * successive read() calls on the socket reduce
7449 7487 * the size of this mblk until it is exhausted
7450 7488 * and then the code walks on to the next. Thus
7451 7489 * the size of the mblk may not be the original size
7452 7490 * that was passed up, it's simply a remainder
7453 7491 * and hence can be very small without any
7454 7492 * implication that the packet is badly fragmented.
7455 7493 * So the size of the possible second mblk is
7456 7494 * used to spot a badly fragmented packet.
7457 7495 * see longer comment at top of page
7458 7496 * by mblk_pull_len declaration.
7459 7497 */
7460 7498
7461 7499 if (bp->b_cont != NULL && MBLKL(bp->b_cont) < mblk_pull_len) {
7462 7500 (void) pullupmsg(bp, -1);
7463 7501 }
7464 7502
7465 7503 bp = struiocopyout(bp, uiop, &error);
7466 7504 if (error != 0) {
7467 7505 if (mctlp != NULL) {
7468 7506 freemsg(*mctlp);
7469 7507 *mctlp = NULL;
7470 7508 } else
7471 7509 freemsg(savemp);
7472 7510 mutex_enter(&stp->sd_lock);
7473 7511 /*
7474 7512 * clear stream head hi pri flag based on
7475 7513 * first message
7476 7514 */
7477 7515 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7478 7516 ASSERT(type == M_PCPROTO);
7479 7517 stp->sd_flag &= ~STRPRI;
7480 7518 }
7481 7519 more = 0;
7482 7520 goto getmout;
7483 7521 }
7484 7522 /*
7485 7523 * (pr == 1) indicates a partial read.
7486 7524 */
7487 7525 if (oldresid > uiop->uio_resid)
7488 7526 pr = 1;
7489 7527 }
7490 7528
7491 7529 if (bp) { /* more data blocks in msg */
7492 7530 more |= MOREDATA;
7493 7531 if (savemp)
7494 7532 savemptail->b_cont = bp;
7495 7533 else
7496 7534 savemp = bp;
7497 7535 }
7498 7536
7499 7537 mutex_enter(&stp->sd_lock);
7500 7538 if (savemp) {
7501 7539 if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) {
7502 7540 /*
7503 7541 * When MSG_DISCARDTAIL is set or
7504 7542 * when peeking discard any tail. When peeking this
7505 7543 * is the tail of the dup that was copied out - the
7506 7544 * message has already been putback on the queue.
7507 7545 * Return MOREDATA to the caller even though the data
7508 7546 * is discarded. This is used by sockets (to
7509 7547 * set MSG_TRUNC).
7510 7548 */
7511 7549 freemsg(savemp);
7512 7550 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7513 7551 ASSERT(type == M_PCPROTO);
7514 7552 stp->sd_flag &= ~STRPRI;
7515 7553 }
7516 7554 } else if (pr && (savemp->b_datap->db_type == M_DATA) &&
7517 7555 msgnodata(savemp)) {
7518 7556 /*
7519 7557 * Avoid queuing a zero-length tail part of
7520 7558 * a message. pr=1 indicates that we read some of
7521 7559 * the message.
7522 7560 */
7523 7561 freemsg(savemp);
7524 7562 more &= ~MOREDATA;
7525 7563 if (type >= QPCTL) {
7526 7564 ASSERT(type == M_PCPROTO);
7527 7565 stp->sd_flag &= ~STRPRI;
7528 7566 }
7529 7567 } else {
7530 7568 savemp->b_band = pri;
7531 7569 /*
7532 7570 * If the first message was HIPRI and the one we're
7533 7571 * putting back isn't, then clear STRPRI, otherwise
7534 7572 * set STRPRI again. Note that we must set STRPRI
7535 7573 * again since the flush logic in strrput_nondata()
7536 7574 * may have cleared it while we had sd_lock dropped.
7537 7575 */
7538 7576
7539 7577 if (type >= QPCTL) {
7540 7578 ASSERT(type == M_PCPROTO);
7541 7579 if (queclass(savemp) < QPCTL)
7542 7580 stp->sd_flag &= ~STRPRI;
7543 7581 else
7544 7582 stp->sd_flag |= STRPRI;
7545 7583 } else if (queclass(savemp) >= QPCTL) {
7546 7584 /*
7547 7585 * The first message was not a HIPRI message,
7548 7586 * but the one we are about to putback is.
7549 7587 * For simplicitly, we do not allow for HIPRI
7550 7588 * messages to be embedded in the message
7551 7589 * body, so just force it to same type as
7552 7590 * first message.
7553 7591 */
7554 7592 ASSERT(type == M_DATA || type == M_PROTO);
7555 7593 ASSERT(savemp->b_datap->db_type == M_PCPROTO);
7556 7594 savemp->b_datap->db_type = type;
7557 7595 }
7558 7596 if (mark != 0) {
7559 7597 if ((mark & _LASTMARK) &&
7560 7598 (stp->sd_mark == NULL)) {
7561 7599 /*
7562 7600 * If another marked message arrived
7563 7601 * while sd_lock was not held sd_mark
7564 7602 * would be non-NULL.
7565 7603 */
7566 7604 stp->sd_mark = savemp;
7567 7605 }
7568 7606 savemp->b_flag |= mark & ~_LASTMARK;
7569 7607 }
7570 7608 putback(stp, q, savemp, pri);
7571 7609 }
7572 7610 } else if (!(flags & MSG_IPEEK)) {
7573 7611 /*
7574 7612 * The complete message was consumed.
7575 7613 *
7576 7614 * If another M_PCPROTO arrived while sd_lock was not held
7577 7615 * it would have been discarded since STRPRI was still set.
7578 7616 *
7579 7617 * Move the MSG*MARKNEXT information
7580 7618 * to the stream head just in case
7581 7619 * the read queue becomes empty.
7582 7620 * clear stream head hi pri flag based on
7583 7621 * first message
7584 7622 *
7585 7623 * If the stream head was at the mark
7586 7624 * (STRATMARK) before we dropped sd_lock above
7587 7625 * and some data was consumed then we have
7588 7626 * moved past the mark thus STRATMARK is
7589 7627 * cleared. However, if a message arrived in
7590 7628 * strrput during the copyout above causing
7591 7629 * STRATMARK to be set we can not clear that
7592 7630 * flag.
7593 7631 * XXX A "perimeter" would help by single-threading strrput,
7594 7632 * strread, strgetmsg and kstrgetmsg.
7595 7633 */
7596 7634 if (type >= QPCTL) {
7597 7635 ASSERT(type == M_PCPROTO);
7598 7636 stp->sd_flag &= ~STRPRI;
7599 7637 }
7600 7638 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
7601 7639 if (mark & MSGMARKNEXT) {
7602 7640 stp->sd_flag &= ~STRNOTATMARK;
7603 7641 stp->sd_flag |= STRATMARK;
7604 7642 } else if (mark & MSGNOTMARKNEXT) {
7605 7643 stp->sd_flag &= ~STRATMARK;
7606 7644 stp->sd_flag |= STRNOTATMARK;
7607 7645 } else {
7608 7646 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
7609 7647 }
7610 7648 } else if (pr && (old_sd_flag & STRATMARK)) {
7611 7649 stp->sd_flag &= ~STRATMARK;
7612 7650 }
7613 7651 }
7614 7652
7615 7653 *flagsp = flg;
7616 7654 *prip = pri;
7617 7655
7618 7656 /*
7619 7657 * Getmsg cleanup processing - if the state of the queue has changed
7620 7658 * some signals may need to be sent and/or poll awakened.
7621 7659 */
7622 7660 getmout:
7623 7661 qbackenable(q, pri);
7624 7662
7625 7663 /*
7626 7664 * We dropped the stream head lock above. Send all M_SIG messages
7627 7665 * before processing stream head for SIGPOLL messages.
7628 7666 */
7629 7667 ASSERT(MUTEX_HELD(&stp->sd_lock));
7630 7668 while ((bp = q->q_first) != NULL &&
7631 7669 (bp->b_datap->db_type == M_SIG)) {
7632 7670 /*
7633 7671 * sd_lock is held so the content of the read queue can not
7634 7672 * change.
7635 7673 */
7636 7674 bp = getq(q);
7637 7675 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
7638 7676
7639 7677 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
7640 7678 mutex_exit(&stp->sd_lock);
7641 7679 freemsg(bp);
7642 7680 if (STREAM_NEEDSERVICE(stp))
7643 7681 stream_runservice(stp);
7644 7682 mutex_enter(&stp->sd_lock);
7645 7683 }
7646 7684
7647 7685 /*
7648 7686 * stream head cannot change while we make the determination
7649 7687 * whether or not to send a signal. Drop the flag to allow strrput
7650 7688 * to send firstmsgsigs again.
7651 7689 */
7652 7690 stp->sd_flag &= ~STRGETINPROG;
7653 7691
7654 7692 /*
7655 7693 * If the type of message at the front of the queue changed
7656 7694 * due to the receive the appropriate signals and pollwakeup events
7657 7695 * are generated. The type of changes are:
7658 7696 * Processed a hipri message, q_first is not hipri.
7659 7697 * Processed a band X message, and q_first is band Y.
7660 7698 * The generated signals and pollwakeups are identical to what
7661 7699 * strrput() generates should the message that is now on q_first
7662 7700 * arrive to an empty read queue.
7663 7701 *
7664 7702 * Note: only strrput will send a signal for a hipri message.
7665 7703 */
7666 7704 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
7667 7705 strsigset_t signals = 0;
7668 7706 strpollset_t pollwakeups = 0;
7669 7707
7670 7708 if (flg & MSG_HIPRI) {
7671 7709 /*
7672 7710 * Removed a hipri message. Regular data at
7673 7711 * the front of the queue.
7674 7712 */
7675 7713 if (bp->b_band == 0) {
7676 7714 signals = S_INPUT | S_RDNORM;
7677 7715 pollwakeups = POLLIN | POLLRDNORM;
7678 7716 } else {
7679 7717 signals = S_INPUT | S_RDBAND;
7680 7718 pollwakeups = POLLIN | POLLRDBAND;
7681 7719 }
7682 7720 } else if (pri != bp->b_band) {
7683 7721 /*
7684 7722 * The band is different for the new q_first.
7685 7723 */
7686 7724 if (bp->b_band == 0) {
7687 7725 signals = S_RDNORM;
7688 7726 pollwakeups = POLLIN | POLLRDNORM;
7689 7727 } else {
7690 7728 signals = S_RDBAND;
7691 7729 pollwakeups = POLLIN | POLLRDBAND;
7692 7730 }
7693 7731 }
7694 7732
7695 7733 if (pollwakeups != 0) {
7696 7734 if (pollwakeups == (POLLIN | POLLRDNORM)) {
7697 7735 if (!(stp->sd_rput_opt & SR_POLLIN))
7698 7736 goto no_pollwake;
7699 7737 stp->sd_rput_opt &= ~SR_POLLIN;
7700 7738 }
7701 7739 mutex_exit(&stp->sd_lock);
7702 7740 pollwakeup(&stp->sd_pollist, pollwakeups);
7703 7741 mutex_enter(&stp->sd_lock);
7704 7742 }
7705 7743 no_pollwake:
7706 7744
7707 7745 if (stp->sd_sigflags & signals)
7708 7746 strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7709 7747 }
7710 7748 mutex_exit(&stp->sd_lock);
7711 7749
7712 7750 rvp->r_val1 = more;
7713 7751 return (error);
7714 7752 #undef _LASTMARK
7715 7753 }
7716 7754
7717 7755 /*
7718 7756 * Put a message downstream.
7719 7757 *
7720 7758 * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7721 7759 */
7722 7760 int
7723 7761 strputmsg(
7724 7762 struct vnode *vp,
7725 7763 struct strbuf *mctl,
7726 7764 struct strbuf *mdata,
7727 7765 unsigned char pri,
7728 7766 int flag,
7729 7767 int fmode)
7730 7768 {
7731 7769 struct stdata *stp;
7732 7770 queue_t *wqp;
7733 7771 mblk_t *mp;
7734 7772 ssize_t msgsize;
7735 7773 ssize_t rmin, rmax;
7736 7774 int error;
7737 7775 struct uio uios;
7738 7776 struct uio *uiop = &uios;
7739 7777 struct iovec iovs;
7740 7778 int xpg4 = 0;
7741 7779
7742 7780 ASSERT(vp->v_stream);
7743 7781 stp = vp->v_stream;
7744 7782 wqp = stp->sd_wrq;
7745 7783
7746 7784 /*
7747 7785 * If it is an XPG4 application, we need to send
7748 7786 * SIGPIPE below
7749 7787 */
7750 7788
7751 7789 xpg4 = (flag & MSG_XPG4) ? 1 : 0;
7752 7790 flag &= ~MSG_XPG4;
7753 7791
7754 7792 if (AU_AUDITING())
7755 7793 audit_strputmsg(vp, mctl, mdata, pri, flag, fmode);
7756 7794
7757 7795 mutex_enter(&stp->sd_lock);
7758 7796
7759 7797 if ((error = i_straccess(stp, JCWRITE)) != 0) {
7760 7798 mutex_exit(&stp->sd_lock);
7761 7799 return (error);
7762 7800 }
7763 7801
7764 7802 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7765 7803 error = strwriteable(stp, B_FALSE, xpg4);
7766 7804 if (error != 0) {
7767 7805 mutex_exit(&stp->sd_lock);
7768 7806 return (error);
7769 7807 }
7770 7808 }
7771 7809
7772 7810 mutex_exit(&stp->sd_lock);
7773 7811
7774 7812 /*
7775 7813 * Check for legal flag value.
7776 7814 */
7777 7815 switch (flag) {
7778 7816 case MSG_HIPRI:
7779 7817 if ((mctl->len < 0) || (pri != 0))
7780 7818 return (EINVAL);
7781 7819 break;
7782 7820 case MSG_BAND:
7783 7821 break;
7784 7822
7785 7823 default:
7786 7824 return (EINVAL);
7787 7825 }
7788 7826
7789 7827 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN,
7790 7828 "strputmsg in:stp %p", stp);
7791 7829
7792 7830 /* get these values from those cached in the stream head */
7793 7831 rmin = stp->sd_qn_minpsz;
7794 7832 rmax = stp->sd_qn_maxpsz;
7795 7833
7796 7834 /*
7797 7835 * Make sure ctl and data sizes together fall within the
7798 7836 * limits of the max and min receive packet sizes and do
7799 7837 * not exceed system limit.
7800 7838 */
7801 7839 ASSERT((rmax >= 0) || (rmax == INFPSZ));
7802 7840 if (rmax == 0) {
7803 7841 return (ERANGE);
7804 7842 }
7805 7843 /*
7806 7844 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
7807 7845 * Needed to prevent partial failures in the strmakedata loop.
7808 7846 */
7809 7847 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
7810 7848 rmax = stp->sd_maxblk;
7811 7849
7812 7850 if ((msgsize = mdata->len) < 0) {
7813 7851 msgsize = 0;
7814 7852 rmin = 0; /* no range check for NULL data part */
7815 7853 }
7816 7854 if ((msgsize < rmin) ||
7817 7855 ((msgsize > rmax) && (rmax != INFPSZ)) ||
7818 7856 (mctl->len > strctlsz)) {
7819 7857 return (ERANGE);
7820 7858 }
7821 7859
7822 7860 /*
7823 7861 * Setup uio and iov for data part
7824 7862 */
7825 7863 iovs.iov_base = mdata->buf;
7826 7864 iovs.iov_len = msgsize;
7827 7865 uios.uio_iov = &iovs;
7828 7866 uios.uio_iovcnt = 1;
7829 7867 uios.uio_loffset = 0;
7830 7868 uios.uio_segflg = UIO_USERSPACE;
7831 7869 uios.uio_fmode = fmode;
7832 7870 uios.uio_extflg = UIO_COPY_DEFAULT;
7833 7871 uios.uio_resid = msgsize;
7834 7872 uios.uio_offset = 0;
7835 7873
7836 7874 /* Ignore flow control in strput for HIPRI */
7837 7875 if (flag & MSG_HIPRI)
7838 7876 flag |= MSG_IGNFLOW;
7839 7877
7840 7878 for (;;) {
7841 7879 int done = 0;
7842 7880
7843 7881 /*
7844 7882 * strput will always free the ctl mblk - even when strput
7845 7883 * fails.
7846 7884 */
7847 7885 if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) {
7848 7886 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7849 7887 "strputmsg out:stp %p out %d error %d",
7850 7888 stp, 1, error);
7851 7889 return (error);
7852 7890 }
7853 7891 /*
7854 7892 * Verify that the whole message can be transferred by
7855 7893 * strput.
7856 7894 */
7857 7895 ASSERT(stp->sd_maxblk == INFPSZ ||
7858 7896 stp->sd_maxblk >= mdata->len);
7859 7897
7860 7898 msgsize = mdata->len;
7861 7899 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
7862 7900 mdata->len = msgsize;
7863 7901
7864 7902 if (error == 0)
7865 7903 break;
7866 7904
7867 7905 if (error != EWOULDBLOCK)
7868 7906 goto out;
7869 7907
7870 7908 mutex_enter(&stp->sd_lock);
7871 7909 /*
7872 7910 * Check for a missed wakeup.
7873 7911 * Needed since strput did not hold sd_lock across
7874 7912 * the canputnext.
7875 7913 */
7876 7914 if (bcanputnext(wqp, pri)) {
7877 7915 /* Try again */
7878 7916 mutex_exit(&stp->sd_lock);
7879 7917 continue;
7880 7918 }
7881 7919 TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT,
7882 7920 "strputmsg wait:stp %p waits pri %d", stp, pri);
7883 7921 if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1,
7884 7922 &done)) != 0) || done) {
7885 7923 mutex_exit(&stp->sd_lock);
7886 7924 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7887 7925 "strputmsg out:q %p out %d error %d",
7888 7926 stp, 0, error);
7889 7927 return (error);
7890 7928 }
7891 7929 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE,
7892 7930 "strputmsg wake:stp %p wakes", stp);
7893 7931 if ((error = i_straccess(stp, JCWRITE)) != 0) {
7894 7932 mutex_exit(&stp->sd_lock);
7895 7933 return (error);
7896 7934 }
7897 7935 mutex_exit(&stp->sd_lock);
7898 7936 }
7899 7937 out:
7900 7938 /*
7901 7939 * For historic reasons, applications expect EAGAIN
7902 7940 * when data mblk could not be allocated. so change
7903 7941 * ENOMEM back to EAGAIN
7904 7942 */
7905 7943 if (error == ENOMEM)
7906 7944 error = EAGAIN;
7907 7945 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7908 7946 "strputmsg out:stp %p out %d error %d", stp, 2, error);
7909 7947 return (error);
7910 7948 }
7911 7949
7912 7950 /*
7913 7951 * Put a message downstream.
7914 7952 * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop.
7915 7953 * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio
7916 7954 * and the fmode parameter.
7917 7955 *
7918 7956 * This routine handles the consolidation private flags:
7919 7957 * MSG_IGNERROR Ignore any stream head error except STPLEX.
7920 7958 * MSG_HOLDSIG Hold signals while waiting for data.
7921 7959 * MSG_IGNFLOW Don't check streams flow control.
7922 7960 *
7923 7961 * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7924 7962 */
7925 7963 int
7926 7964 kstrputmsg(
7927 7965 struct vnode *vp,
7928 7966 mblk_t *mctl,
7929 7967 struct uio *uiop,
7930 7968 ssize_t msgsize,
7931 7969 unsigned char pri,
7932 7970 int flag,
7933 7971 int fmode)
7934 7972 {
7935 7973 struct stdata *stp;
7936 7974 queue_t *wqp;
7937 7975 ssize_t rmin, rmax;
7938 7976 int error;
7939 7977
7940 7978 ASSERT(vp->v_stream);
7941 7979 stp = vp->v_stream;
7942 7980 wqp = stp->sd_wrq;
7943 7981 if (AU_AUDITING())
7944 7982 audit_strputmsg(vp, NULL, NULL, pri, flag, fmode);
7945 7983 if (mctl == NULL)
7946 7984 return (EINVAL);
7947 7985
7948 7986 mutex_enter(&stp->sd_lock);
7949 7987
7950 7988 if ((error = i_straccess(stp, JCWRITE)) != 0) {
7951 7989 mutex_exit(&stp->sd_lock);
7952 7990 freemsg(mctl);
7953 7991 return (error);
7954 7992 }
7955 7993
7956 7994 if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) {
7957 7995 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7958 7996 error = strwriteable(stp, B_FALSE, B_TRUE);
7959 7997 if (error != 0) {
7960 7998 mutex_exit(&stp->sd_lock);
7961 7999 freemsg(mctl);
7962 8000 return (error);
7963 8001 }
7964 8002 }
7965 8003 }
7966 8004
7967 8005 mutex_exit(&stp->sd_lock);
7968 8006
7969 8007 /*
7970 8008 * Check for legal flag value.
7971 8009 */
7972 8010 switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) {
7973 8011 case MSG_HIPRI:
7974 8012 if (pri != 0) {
7975 8013 freemsg(mctl);
7976 8014 return (EINVAL);
7977 8015 }
7978 8016 break;
7979 8017 case MSG_BAND:
7980 8018 break;
7981 8019 default:
7982 8020 freemsg(mctl);
7983 8021 return (EINVAL);
7984 8022 }
7985 8023
7986 8024 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN,
7987 8025 "kstrputmsg in:stp %p", stp);
7988 8026
7989 8027 /* get these values from those cached in the stream head */
7990 8028 rmin = stp->sd_qn_minpsz;
7991 8029 rmax = stp->sd_qn_maxpsz;
7992 8030
7993 8031 /*
7994 8032 * Make sure ctl and data sizes together fall within the
7995 8033 * limits of the max and min receive packet sizes and do
7996 8034 * not exceed system limit.
7997 8035 */
7998 8036 ASSERT((rmax >= 0) || (rmax == INFPSZ));
7999 8037 if (rmax == 0) {
8000 8038 freemsg(mctl);
8001 8039 return (ERANGE);
8002 8040 }
8003 8041 /*
8004 8042 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
8005 8043 * Needed to prevent partial failures in the strmakedata loop.
8006 8044 */
8007 8045 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
8008 8046 rmax = stp->sd_maxblk;
8009 8047
8010 8048 if (uiop == NULL) {
8011 8049 msgsize = -1;
8012 8050 rmin = -1; /* no range check for NULL data part */
8013 8051 } else {
8014 8052 /* Use uio flags as well as the fmode parameter flags */
8015 8053 fmode |= uiop->uio_fmode;
8016 8054
8017 8055 if ((msgsize < rmin) ||
8018 8056 ((msgsize > rmax) && (rmax != INFPSZ))) {
8019 8057 freemsg(mctl);
8020 8058 return (ERANGE);
8021 8059 }
8022 8060 }
8023 8061
8024 8062 /* Ignore flow control in strput for HIPRI */
8025 8063 if (flag & MSG_HIPRI)
8026 8064 flag |= MSG_IGNFLOW;
8027 8065
8028 8066 for (;;) {
8029 8067 int done = 0;
8030 8068 int waitflag;
8031 8069 mblk_t *mp;
8032 8070
8033 8071 /*
8034 8072 * strput will always free the ctl mblk - even when strput
8035 8073 * fails. If MSG_IGNFLOW is set then any error returned
8036 8074 * will cause us to break the loop, so we don't need a copy
8037 8075 * of the message. If MSG_IGNFLOW is not set, then we can
8038 8076 * get hit by flow control and be forced to try again. In
8039 8077 * this case we need to have a copy of the message. We
8040 8078 * do this using copymsg since the message may get modified
8041 8079 * by something below us.
8042 8080 *
8043 8081 * We've observed that many TPI providers do not check db_ref
8044 8082 * on the control messages but blindly reuse them for the
8045 8083 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more
8046 8084 * friendly to such providers than using dupmsg. Also, note
8047 8085 * that sockfs uses MSG_IGNFLOW for all TPI control messages.
8048 8086 * Only data messages are subject to flow control, hence
8049 8087 * subject to this copymsg.
8050 8088 */
8051 8089 if (flag & MSG_IGNFLOW) {
8052 8090 mp = mctl;
8053 8091 mctl = NULL;
8054 8092 } else {
8055 8093 do {
8056 8094 /*
8057 8095 * If a message has a free pointer, the message
8058 8096 * must be dupmsg to maintain this pointer.
8059 8097 * Code using this facility must be sure
8060 8098 * that modules below will not change the
8061 8099 * contents of the dblk without checking db_ref
8062 8100 * first. If db_ref is > 1, then the module
8063 8101 * needs to do a copymsg first. Otherwise,
8064 8102 * the contents of the dblk may become
8065 8103 * inconsistent because the freesmg/freeb below
8066 8104 * may end up calling atomic_add_32_nv.
8067 8105 * The atomic_add_32_nv in freeb (accessing
8068 8106 * all of db_ref, db_type, db_flags, and
8069 8107 * db_struioflag) does not prevent other threads
8070 8108 * from concurrently trying to modify e.g.
8071 8109 * db_type.
8072 8110 */
8073 8111 if (mctl->b_datap->db_frtnp != NULL)
8074 8112 mp = dupmsg(mctl);
8075 8113 else
8076 8114 mp = copymsg(mctl);
8077 8115
8078 8116 if (mp != NULL)
8079 8117 break;
8080 8118
8081 8119 error = strwaitbuf(msgdsize(mctl), BPRI_MED);
8082 8120 if (error) {
8083 8121 freemsg(mctl);
8084 8122 return (error);
8085 8123 }
8086 8124 } while (mp == NULL);
8087 8125 }
8088 8126 /*
8089 8127 * Verify that all of msgsize can be transferred by
8090 8128 * strput.
8091 8129 */
8092 8130 ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize);
8093 8131 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
8094 8132 if (error == 0)
8095 8133 break;
8096 8134
8097 8135 if (error != EWOULDBLOCK)
8098 8136 goto out;
8099 8137
8100 8138 /*
8101 8139 * IF MSG_IGNFLOW is set we should have broken out of loop
8102 8140 * above.
8103 8141 */
8104 8142 ASSERT(!(flag & MSG_IGNFLOW));
8105 8143 mutex_enter(&stp->sd_lock);
8106 8144 /*
8107 8145 * Check for a missed wakeup.
8108 8146 * Needed since strput did not hold sd_lock across
8109 8147 * the canputnext.
8110 8148 */
8111 8149 if (bcanputnext(wqp, pri)) {
8112 8150 /* Try again */
8113 8151 mutex_exit(&stp->sd_lock);
8114 8152 continue;
8115 8153 }
8116 8154 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT,
8117 8155 "kstrputmsg wait:stp %p waits pri %d", stp, pri);
8118 8156
8119 8157 waitflag = WRITEWAIT;
8120 8158 if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) {
8121 8159 if (flag & MSG_HOLDSIG)
8122 8160 waitflag |= STR_NOSIG;
8123 8161 if (flag & MSG_IGNERROR)
8124 8162 waitflag |= STR_NOERROR;
8125 8163 }
8126 8164 if (((error = strwaitq(stp, waitflag,
8127 8165 (ssize_t)0, fmode, -1, &done)) != 0) || done) {
8128 8166 mutex_exit(&stp->sd_lock);
8129 8167 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8130 8168 "kstrputmsg out:stp %p out %d error %d",
8131 8169 stp, 0, error);
8132 8170 freemsg(mctl);
8133 8171 return (error);
8134 8172 }
8135 8173 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE,
8136 8174 "kstrputmsg wake:stp %p wakes", stp);
8137 8175 if ((error = i_straccess(stp, JCWRITE)) != 0) {
8138 8176 mutex_exit(&stp->sd_lock);
8139 8177 freemsg(mctl);
8140 8178 return (error);
8141 8179 }
8142 8180 mutex_exit(&stp->sd_lock);
8143 8181 }
8144 8182 out:
8145 8183 freemsg(mctl);
8146 8184 /*
8147 8185 * For historic reasons, applications expect EAGAIN
8148 8186 * when data mblk could not be allocated. so change
8149 8187 * ENOMEM back to EAGAIN
8150 8188 */
8151 8189 if (error == ENOMEM)
8152 8190 error = EAGAIN;
8153 8191 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8154 8192 "kstrputmsg out:stp %p out %d error %d", stp, 2, error);
8155 8193 return (error);
8156 8194 }
8157 8195
8158 8196 /*
8159 8197 * Determines whether the necessary conditions are set on a stream
8160 8198 * for it to be readable, writeable, or have exceptions.
8161 8199 *
8162 8200 * strpoll handles the consolidation private events:
8163 8201 * POLLNOERR Do not return POLLERR even if there are stream
8164 8202 * head errors.
8165 8203 * Used by sockfs.
8166 8204 * POLLRDDATA Do not return POLLIN unless at least one message on
8167 8205 * the queue contains one or more M_DATA mblks. Thus
8168 8206 * when this flag is set a queue with only
8169 8207 * M_PROTO/M_PCPROTO mblks does not return POLLIN.
8170 8208 * Used by sockfs to ignore T_EXDATA_IND messages.
8171 8209 *
8172 8210 * Note: POLLRDDATA assumes that synch streams only return messages with
8173 8211 * an M_DATA attached (i.e. not messages consisting of only
8174 8212 * an M_PROTO/M_PCPROTO part).
8175 8213 */
8176 8214 int
8177 8215 strpoll(
8178 8216 struct stdata *stp,
8179 8217 short events_arg,
8180 8218 int anyyet,
8181 8219 short *reventsp,
8182 8220 struct pollhead **phpp)
8183 8221 {
8184 8222 int events = (ushort_t)events_arg;
8185 8223 int retevents = 0;
8186 8224 mblk_t *mp;
8187 8225 qband_t *qbp;
8188 8226 long sd_flags = stp->sd_flag;
8189 8227 int headlocked = 0;
8190 8228
8191 8229 /*
8192 8230 * For performance, a single 'if' tests for most possible edge
8193 8231 * conditions in one shot
8194 8232 */
8195 8233 if (sd_flags & (STPLEX | STRDERR | STWRERR)) {
8196 8234 if (sd_flags & STPLEX) {
8197 8235 *reventsp = POLLNVAL;
8198 8236 return (EINVAL);
8199 8237 }
8200 8238 if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) &&
8201 8239 (sd_flags & STRDERR)) ||
8202 8240 ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) &&
8203 8241 (sd_flags & STWRERR))) {
8204 8242 if (!(events & POLLNOERR)) {
8205 8243 *reventsp = POLLERR;
8206 8244 return (0);
8207 8245 }
8208 8246 }
8209 8247 }
8210 8248 if (sd_flags & STRHUP) {
8211 8249 retevents |= POLLHUP;
8212 8250 } else if (events & (POLLWRNORM | POLLWRBAND)) {
8213 8251 queue_t *tq;
8214 8252 queue_t *qp = stp->sd_wrq;
8215 8253
8216 8254 claimstr(qp);
8217 8255 /* Find next module forward that has a service procedure */
8218 8256 tq = qp->q_next->q_nfsrv;
8219 8257 ASSERT(tq != NULL);
8220 8258
8221 8259 if (polllock(&stp->sd_pollist, QLOCK(tq)) != 0) {
8222 8260 releasestr(qp);
8223 8261 *reventsp = POLLNVAL;
8224 8262 return (0);
8225 8263 }
8226 8264 if (events & POLLWRNORM) {
8227 8265 queue_t *sqp;
8228 8266
8229 8267 if (tq->q_flag & QFULL)
8230 8268 /* ensure backq svc procedure runs */
8231 8269 tq->q_flag |= QWANTW;
8232 8270 else if ((sqp = stp->sd_struiowrq) != NULL) {
8233 8271 /* Check sync stream barrier write q */
8234 8272 mutex_exit(QLOCK(tq));
8235 8273 if (polllock(&stp->sd_pollist,
8236 8274 QLOCK(sqp)) != 0) {
8237 8275 releasestr(qp);
8238 8276 *reventsp = POLLNVAL;
8239 8277 return (0);
8240 8278 }
8241 8279 if (sqp->q_flag & QFULL)
8242 8280 /* ensure pollwakeup() is done */
8243 8281 sqp->q_flag |= QWANTWSYNC;
8244 8282 else
8245 8283 retevents |= POLLOUT;
8246 8284 /* More write events to process ??? */
8247 8285 if (! (events & POLLWRBAND)) {
8248 8286 mutex_exit(QLOCK(sqp));
8249 8287 releasestr(qp);
8250 8288 goto chkrd;
8251 8289 }
8252 8290 mutex_exit(QLOCK(sqp));
8253 8291 if (polllock(&stp->sd_pollist,
8254 8292 QLOCK(tq)) != 0) {
8255 8293 releasestr(qp);
8256 8294 *reventsp = POLLNVAL;
8257 8295 return (0);
8258 8296 }
8259 8297 } else
8260 8298 retevents |= POLLOUT;
8261 8299 }
8262 8300 if (events & POLLWRBAND) {
8263 8301 qbp = tq->q_bandp;
8264 8302 if (qbp) {
8265 8303 while (qbp) {
8266 8304 if (qbp->qb_flag & QB_FULL)
8267 8305 qbp->qb_flag |= QB_WANTW;
8268 8306 else
8269 8307 retevents |= POLLWRBAND;
8270 8308 qbp = qbp->qb_next;
8271 8309 }
8272 8310 } else {
8273 8311 retevents |= POLLWRBAND;
8274 8312 }
8275 8313 }
8276 8314 mutex_exit(QLOCK(tq));
8277 8315 releasestr(qp);
8278 8316 }
8279 8317 chkrd:
8280 8318 if (sd_flags & STRPRI) {
8281 8319 retevents |= (events & POLLPRI);
8282 8320 } else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) {
8283 8321 queue_t *qp = _RD(stp->sd_wrq);
8284 8322 int normevents = (events & (POLLIN | POLLRDNORM));
8285 8323
8286 8324 /*
8287 8325 * Note: Need to do polllock() here since ps_lock may be
8288 8326 * held. See bug 4191544.
8289 8327 */
8290 8328 if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) {
8291 8329 *reventsp = POLLNVAL;
8292 8330 return (0);
8293 8331 }
8294 8332 headlocked = 1;
8295 8333 mp = qp->q_first;
8296 8334 while (mp) {
8297 8335 /*
8298 8336 * For POLLRDDATA we scan b_cont and b_next until we
8299 8337 * find an M_DATA.
8300 8338 */
8301 8339 if ((events & POLLRDDATA) &&
8302 8340 mp->b_datap->db_type != M_DATA) {
8303 8341 mblk_t *nmp = mp->b_cont;
8304 8342
8305 8343 while (nmp != NULL &&
8306 8344 nmp->b_datap->db_type != M_DATA)
8307 8345 nmp = nmp->b_cont;
8308 8346 if (nmp == NULL) {
8309 8347 mp = mp->b_next;
8310 8348 continue;
8311 8349 }
8312 8350 }
8313 8351 if (mp->b_band == 0)
8314 8352 retevents |= normevents;
8315 8353 else
8316 8354 retevents |= (events & (POLLIN | POLLRDBAND));
8317 8355 break;
8318 8356 }
8319 8357 if (! (retevents & normevents) &&
8320 8358 (stp->sd_wakeq & RSLEEP)) {
8321 8359 /*
8322 8360 * Sync stream barrier read queue has data.
8323 8361 */
8324 8362 retevents |= normevents;
8325 8363 }
8326 8364 /* Treat eof as normal data */
8327 8365 if (sd_flags & STREOF)
8328 8366 retevents |= normevents;
8329 8367 }
8330 8368
8331 8369 *reventsp = (short)retevents;
8332 8370 if (retevents && !(events & POLLET)) {
8333 8371 if (headlocked)
8334 8372 mutex_exit(&stp->sd_lock);
8335 8373 return (0);
8336 8374 }
8337 8375
8338 8376 /*
8339 8377 * If poll() has not found any events yet, set up event cell
8340 8378 * to wake up the poll if a requested event occurs on this
8341 8379 * stream. Check for collisions with outstanding poll requests.
8342 8380 */
8343 8381 if (!anyyet) {
8344 8382 *phpp = &stp->sd_pollist;
8345 8383 if (headlocked == 0) {
8346 8384 if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) {
8347 8385 *reventsp = POLLNVAL;
8348 8386 return (0);
8349 8387 }
8350 8388 headlocked = 1;
8351 8389 }
8352 8390 stp->sd_rput_opt |= SR_POLLIN;
8353 8391 }
8354 8392 if (headlocked)
8355 8393 mutex_exit(&stp->sd_lock);
8356 8394 return (0);
8357 8395 }
8358 8396
8359 8397 /*
8360 8398 * The purpose of putback() is to assure sleeping polls/reads
8361 8399 * are awakened when there are no new messages arriving at the,
8362 8400 * stream head, and a message is placed back on the read queue.
8363 8401 *
8364 8402 * sd_lock must be held when messages are placed back on stream
8365 8403 * head. (getq() holds sd_lock when it removes messages from
8366 8404 * the queue)
8367 8405 */
8368 8406
8369 8407 static void
8370 8408 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band)
8371 8409 {
8372 8410 mblk_t *qfirst;
8373 8411 ASSERT(MUTEX_HELD(&stp->sd_lock));
8374 8412
8375 8413 /*
8376 8414 * As a result of lock-step ordering around q_lock and sd_lock,
8377 8415 * it's possible for function calls like putnext() and
8378 8416 * canputnext() to get an inaccurate picture of how much
8379 8417 * data is really being processed at the stream head.
8380 8418 * We only consolidate with existing messages on the queue
8381 8419 * if the length of the message we want to put back is smaller
8382 8420 * than the queue hiwater mark.
8383 8421 */
8384 8422 if ((stp->sd_rput_opt & SR_CONSOL_DATA) &&
8385 8423 (DB_TYPE(bp) == M_DATA) && ((qfirst = q->q_first) != NULL) &&
8386 8424 (DB_TYPE(qfirst) == M_DATA) &&
8387 8425 ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0) &&
8388 8426 ((bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT)) == 0) &&
8389 8427 (mp_cont_len(bp, NULL) < q->q_hiwat)) {
8390 8428 /*
8391 8429 * We use the same logic as defined in strrput()
8392 8430 * but in reverse as we are putting back onto the
8393 8431 * queue and want to retain byte ordering.
8394 8432 * Consolidate M_DATA messages with M_DATA ONLY.
8395 8433 * strrput() allows the consolidation of M_DATA onto
8396 8434 * M_PROTO | M_PCPROTO but not the other way round.
8397 8435 *
8398 8436 * The consolidation does not take place if the message
8399 8437 * we are returning to the queue is marked with either
8400 8438 * of the marks or the delim flag or if q_first
8401 8439 * is marked with MSGMARK. The MSGMARK check is needed to
8402 8440 * handle the odd semantics of MSGMARK where essentially
8403 8441 * the whole message is to be treated as marked.
8404 8442 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first
8405 8443 * to the front of the b_cont chain.
8406 8444 */
8407 8445 rmvq_noenab(q, qfirst);
8408 8446
8409 8447 /*
8410 8448 * The first message in the b_cont list
8411 8449 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
8412 8450 * We need to handle the case where we
8413 8451 * are appending:
8414 8452 *
8415 8453 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
8416 8454 * 2) a MSGMARKNEXT to a plain message.
8417 8455 * 3) a MSGNOTMARKNEXT to a plain message
8418 8456 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
8419 8457 * message.
8420 8458 *
8421 8459 * Thus we never append a MSGMARKNEXT or
8422 8460 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
8423 8461 */
8424 8462 if (qfirst->b_flag & MSGMARKNEXT) {
8425 8463 bp->b_flag |= MSGMARKNEXT;
8426 8464 bp->b_flag &= ~MSGNOTMARKNEXT;
8427 8465 qfirst->b_flag &= ~MSGMARKNEXT;
8428 8466 } else if (qfirst->b_flag & MSGNOTMARKNEXT) {
8429 8467 bp->b_flag |= MSGNOTMARKNEXT;
8430 8468 qfirst->b_flag &= ~MSGNOTMARKNEXT;
8431 8469 }
8432 8470
8433 8471 linkb(bp, qfirst);
8434 8472 }
8435 8473 (void) putbq(q, bp);
8436 8474
8437 8475 /*
8438 8476 * A message may have come in when the sd_lock was dropped in the
8439 8477 * calling routine. If this is the case and STR*ATMARK info was
8440 8478 * received, need to move that from the stream head to the q_last
8441 8479 * so that SIOCATMARK can return the proper value.
8442 8480 */
8443 8481 if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) {
8444 8482 unsigned short *flagp = &q->q_last->b_flag;
8445 8483 uint_t b_flag = (uint_t)*flagp;
8446 8484
8447 8485 if (stp->sd_flag & STRATMARK) {
8448 8486 b_flag &= ~MSGNOTMARKNEXT;
8449 8487 b_flag |= MSGMARKNEXT;
8450 8488 stp->sd_flag &= ~STRATMARK;
8451 8489 } else {
8452 8490 b_flag &= ~MSGMARKNEXT;
8453 8491 b_flag |= MSGNOTMARKNEXT;
8454 8492 stp->sd_flag &= ~STRNOTATMARK;
8455 8493 }
8456 8494 *flagp = (unsigned short) b_flag;
8457 8495 }
8458 8496
8459 8497 #ifdef DEBUG
8460 8498 /*
8461 8499 * Make sure that the flags are not messed up.
8462 8500 */
8463 8501 {
8464 8502 mblk_t *mp;
8465 8503 mp = q->q_last;
8466 8504 while (mp != NULL) {
8467 8505 ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
8468 8506 (MSGMARKNEXT|MSGNOTMARKNEXT));
8469 8507 mp = mp->b_cont;
8470 8508 }
8471 8509 }
8472 8510 #endif
8473 8511 if (q->q_first == bp) {
8474 8512 short pollevents;
8475 8513
8476 8514 if (stp->sd_flag & RSLEEP) {
8477 8515 stp->sd_flag &= ~RSLEEP;
8478 8516 cv_broadcast(&q->q_wait);
8479 8517 }
8480 8518 if (stp->sd_flag & STRPRI) {
8481 8519 pollevents = POLLPRI;
8482 8520 } else {
8483 8521 if (band == 0) {
8484 8522 if (!(stp->sd_rput_opt & SR_POLLIN))
8485 8523 return;
8486 8524 stp->sd_rput_opt &= ~SR_POLLIN;
8487 8525 pollevents = POLLIN | POLLRDNORM;
8488 8526 } else {
8489 8527 pollevents = POLLIN | POLLRDBAND;
8490 8528 }
8491 8529 }
8492 8530 mutex_exit(&stp->sd_lock);
8493 8531 pollwakeup(&stp->sd_pollist, pollevents);
8494 8532 mutex_enter(&stp->sd_lock);
8495 8533 }
8496 8534 }
8497 8535
8498 8536 /*
8499 8537 * Return the held vnode attached to the stream head of a
8500 8538 * given queue
8501 8539 * It is the responsibility of the calling routine to ensure
8502 8540 * that the queue does not go away (e.g. pop).
8503 8541 */
8504 8542 vnode_t *
8505 8543 strq2vp(queue_t *qp)
8506 8544 {
8507 8545 vnode_t *vp;
8508 8546 vp = STREAM(qp)->sd_vnode;
8509 8547 ASSERT(vp != NULL);
8510 8548 VN_HOLD(vp);
8511 8549 return (vp);
8512 8550 }
8513 8551
8514 8552 /*
8515 8553 * return the stream head write queue for the given vp
8516 8554 * It is the responsibility of the calling routine to ensure
8517 8555 * that the stream or vnode do not close.
8518 8556 */
8519 8557 queue_t *
8520 8558 strvp2wq(vnode_t *vp)
8521 8559 {
8522 8560 ASSERT(vp->v_stream != NULL);
8523 8561 return (vp->v_stream->sd_wrq);
8524 8562 }
8525 8563
8526 8564 /*
8527 8565 * pollwakeup stream head
8528 8566 * It is the responsibility of the calling routine to ensure
8529 8567 * that the stream or vnode do not close.
8530 8568 */
8531 8569 void
8532 8570 strpollwakeup(vnode_t *vp, short event)
8533 8571 {
8534 8572 ASSERT(vp->v_stream);
8535 8573 pollwakeup(&vp->v_stream->sd_pollist, event);
8536 8574 }
8537 8575
8538 8576 /*
8539 8577 * Mate the stream heads of two vnodes together. If the two vnodes are the
8540 8578 * same, we just make the write-side point at the read-side -- otherwise,
8541 8579 * we do a full mate. Only works on vnodes associated with streams that are
8542 8580 * still being built and thus have only a stream head.
8543 8581 */
8544 8582 void
8545 8583 strmate(vnode_t *vp1, vnode_t *vp2)
8546 8584 {
8547 8585 queue_t *wrq1 = strvp2wq(vp1);
8548 8586 queue_t *wrq2 = strvp2wq(vp2);
8549 8587
8550 8588 /*
8551 8589 * Verify that there are no modules on the stream yet. We also
8552 8590 * rely on the stream head always having a service procedure to
8553 8591 * avoid tweaking q_nfsrv.
8554 8592 */
8555 8593 ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL);
8556 8594 ASSERT(wrq1->q_qinfo->qi_srvp != NULL);
8557 8595 ASSERT(wrq2->q_qinfo->qi_srvp != NULL);
8558 8596
8559 8597 /*
8560 8598 * If the queues are the same, just twist; otherwise do a full mate.
8561 8599 */
8562 8600 if (wrq1 == wrq2) {
8563 8601 wrq1->q_next = _RD(wrq1);
8564 8602 } else {
8565 8603 wrq1->q_next = _RD(wrq2);
8566 8604 wrq2->q_next = _RD(wrq1);
8567 8605 STREAM(wrq1)->sd_mate = STREAM(wrq2);
8568 8606 STREAM(wrq1)->sd_flag |= STRMATE;
8569 8607 STREAM(wrq2)->sd_mate = STREAM(wrq1);
8570 8608 STREAM(wrq2)->sd_flag |= STRMATE;
8571 8609 }
8572 8610 }
8573 8611
8574 8612 /*
8575 8613 * XXX will go away when console is correctly fixed.
8576 8614 * Clean up the console PIDS, from previous I_SETSIG,
8577 8615 * called only for cnopen which never calls strclean().
8578 8616 */
8579 8617 void
8580 8618 str_cn_clean(struct vnode *vp)
8581 8619 {
8582 8620 strsig_t *ssp, *pssp, *tssp;
8583 8621 struct stdata *stp;
8584 8622 struct pid *pidp;
8585 8623 int update = 0;
8586 8624
8587 8625 ASSERT(vp->v_stream);
8588 8626 stp = vp->v_stream;
8589 8627 pssp = NULL;
8590 8628 mutex_enter(&stp->sd_lock);
8591 8629 ssp = stp->sd_siglist;
8592 8630 while (ssp) {
8593 8631 mutex_enter(&pidlock);
8594 8632 pidp = ssp->ss_pidp;
8595 8633 /*
8596 8634 * Get rid of PID if the proc is gone.
8597 8635 */
8598 8636 if (pidp->pid_prinactive) {
8599 8637 tssp = ssp->ss_next;
8600 8638 if (pssp)
8601 8639 pssp->ss_next = tssp;
8602 8640 else
8603 8641 stp->sd_siglist = tssp;
8604 8642 ASSERT(pidp->pid_ref <= 1);
8605 8643 PID_RELE(ssp->ss_pidp);
8606 8644 mutex_exit(&pidlock);
8607 8645 kmem_free(ssp, sizeof (strsig_t));
8608 8646 update = 1;
8609 8647 ssp = tssp;
8610 8648 continue;
8611 8649 } else
8612 8650 mutex_exit(&pidlock);
8613 8651 pssp = ssp;
8614 8652 ssp = ssp->ss_next;
8615 8653 }
8616 8654 if (update) {
8617 8655 stp->sd_sigflags = 0;
8618 8656 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
8619 8657 stp->sd_sigflags |= ssp->ss_events;
8620 8658 }
8621 8659 mutex_exit(&stp->sd_lock);
8622 8660 }
8623 8661
8624 8662 /*
8625 8663 * Return B_TRUE if there is data in the message, B_FALSE otherwise.
8626 8664 */
8627 8665 static boolean_t
8628 8666 msghasdata(mblk_t *bp)
8629 8667 {
8630 8668 for (; bp; bp = bp->b_cont)
8631 8669 if (bp->b_datap->db_type == M_DATA) {
8632 8670 ASSERT(bp->b_wptr >= bp->b_rptr);
8633 8671 if (bp->b_wptr > bp->b_rptr)
8634 8672 return (B_TRUE);
8635 8673 }
8636 8674 return (B_FALSE);
8637 8675 }
|
↓ open down ↓ |
5447 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX