Print this page
    
OS-4162 system appears (mostly) hung on kmem_move taskq
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/os/kmem.c
          +++ new/usr/src/uts/common/os/kmem.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  /*
  22   22   * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
  23   23   * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
  24   24   * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
  25   25   */
  26   26  
  27   27  /*
  28   28   * Kernel memory allocator, as described in the following two papers and a
  29   29   * statement about the consolidator:
  30   30   *
  31   31   * Jeff Bonwick,
  32   32   * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
  33   33   * Proceedings of the Summer 1994 Usenix Conference.
  34   34   * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
  35   35   *
  36   36   * Jeff Bonwick and Jonathan Adams,
  37   37   * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
  38   38   * Arbitrary Resources.
  39   39   * Proceedings of the 2001 Usenix Conference.
  40   40   * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
  41   41   *
  42   42   * kmem Slab Consolidator Big Theory Statement:
  43   43   *
  44   44   * 1. Motivation
  45   45   *
  46   46   * As stated in Bonwick94, slabs provide the following advantages over other
  47   47   * allocation structures in terms of memory fragmentation:
  48   48   *
  49   49   *  - Internal fragmentation (per-buffer wasted space) is minimal.
  50   50   *  - Severe external fragmentation (unused buffers on the free list) is
  51   51   *    unlikely.
  52   52   *
  53   53   * Segregating objects by size eliminates one source of external fragmentation,
  54   54   * and according to Bonwick:
  55   55   *
  56   56   *   The other reason that slabs reduce external fragmentation is that all
  57   57   *   objects in a slab are of the same type, so they have the same lifetime
  58   58   *   distribution. The resulting segregation of short-lived and long-lived
  59   59   *   objects at slab granularity reduces the likelihood of an entire page being
  60   60   *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
  61   61   *
  62   62   * While unlikely, severe external fragmentation remains possible. Clients that
  63   63   * allocate both short- and long-lived objects from the same cache cannot
  64   64   * anticipate the distribution of long-lived objects within the allocator's slab
  65   65   * implementation. Even a small percentage of long-lived objects distributed
  66   66   * randomly across many slabs can lead to a worst case scenario where the client
  67   67   * frees the majority of its objects and the system gets back almost none of the
  68   68   * slabs. Despite the client doing what it reasonably can to help the system
  69   69   * reclaim memory, the allocator cannot shake free enough slabs because of
  70   70   * lonely allocations stubbornly hanging on. Although the allocator is in a
  71   71   * position to diagnose the fragmentation, there is nothing that the allocator
  72   72   * by itself can do about it. It only takes a single allocated object to prevent
  73   73   * an entire slab from being reclaimed, and any object handed out by
  74   74   * kmem_cache_alloc() is by definition in the client's control. Conversely,
  75   75   * although the client is in a position to move a long-lived object, it has no
  76   76   * way of knowing if the object is causing fragmentation, and if so, where to
  77   77   * move it. A solution necessarily requires further cooperation between the
  78   78   * allocator and the client.
  79   79   *
  80   80   * 2. Move Callback
  81   81   *
  82   82   * The kmem slab consolidator therefore adds a move callback to the
  83   83   * allocator/client interface, improving worst-case external fragmentation in
  84   84   * kmem caches that supply a function to move objects from one memory location
  85   85   * to another. In a situation of low memory kmem attempts to consolidate all of
  86   86   * a cache's slabs at once; otherwise it works slowly to bring external
  87   87   * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
  88   88   * thereby helping to avoid a low memory situation in the future.
  89   89   *
  90   90   * The callback has the following signature:
  91   91   *
  92   92   *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
  93   93   *
  94   94   * It supplies the kmem client with two addresses: the allocated object that
  95   95   * kmem wants to move and a buffer selected by kmem for the client to use as the
  96   96   * copy destination. The callback is kmem's way of saying "Please get off of
  97   97   * this buffer and use this one instead." kmem knows where it wants to move the
  98   98   * object in order to best reduce fragmentation. All the client needs to know
  99   99   * about the second argument (void *new) is that it is an allocated, constructed
 100  100   * object ready to take the contents of the old object. When the move function
 101  101   * is called, the system is likely to be low on memory, and the new object
 102  102   * spares the client from having to worry about allocating memory for the
 103  103   * requested move. The third argument supplies the size of the object, in case a
 104  104   * single move function handles multiple caches whose objects differ only in
 105  105   * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
 106  106   * user argument passed to the constructor, destructor, and reclaim functions is
 107  107   * also passed to the move callback.
 108  108   *
 109  109   * 2.1 Setting the Move Callback
 110  110   *
 111  111   * The client sets the move callback after creating the cache and before
 112  112   * allocating from it:
 113  113   *
 114  114   *      object_cache = kmem_cache_create(...);
 115  115   *      kmem_cache_set_move(object_cache, object_move);
 116  116   *
 117  117   * 2.2 Move Callback Return Values
 118  118   *
 119  119   * Only the client knows about its own data and when is a good time to move it.
 120  120   * The client is cooperating with kmem to return unused memory to the system,
 121  121   * and kmem respectfully accepts this help at the client's convenience. When
 122  122   * asked to move an object, the client can respond with any of the following:
 123  123   *
 124  124   *   typedef enum kmem_cbrc {
 125  125   *           KMEM_CBRC_YES,
 126  126   *           KMEM_CBRC_NO,
 127  127   *           KMEM_CBRC_LATER,
 128  128   *           KMEM_CBRC_DONT_NEED,
 129  129   *           KMEM_CBRC_DONT_KNOW
 130  130   *   } kmem_cbrc_t;
 131  131   *
 132  132   * The client must not explicitly kmem_cache_free() either of the objects passed
 133  133   * to the callback, since kmem wants to free them directly to the slab layer
 134  134   * (bypassing the per-CPU magazine layer). The response tells kmem which of the
 135  135   * objects to free:
 136  136   *
 137  137   *       YES: (Did it) The client moved the object, so kmem frees the old one.
 138  138   *        NO: (Never) The client refused, so kmem frees the new object (the
 139  139   *            unused copy destination). kmem also marks the slab of the old
 140  140   *            object so as not to bother the client with further callbacks for
 141  141   *            that object as long as the slab remains on the partial slab list.
 142  142   *            (The system won't be getting the slab back as long as the
 143  143   *            immovable object holds it hostage, so there's no point in moving
 144  144   *            any of its objects.)
 145  145   *     LATER: The client is using the object and cannot move it now, so kmem
 146  146   *            frees the new object (the unused copy destination). kmem still
 147  147   *            attempts to move other objects off the slab, since it expects to
 148  148   *            succeed in clearing the slab in a later callback. The client
 149  149   *            should use LATER instead of NO if the object is likely to become
 150  150   *            movable very soon.
 151  151   * DONT_NEED: The client no longer needs the object, so kmem frees the old along
 152  152   *            with the new object (the unused copy destination). This response
 153  153   *            is the client's opportunity to be a model citizen and give back as
 154  154   *            much as it can.
 155  155   * DONT_KNOW: The client does not know about the object because
 156  156   *            a) the client has just allocated the object and not yet put it
 157  157   *               wherever it expects to find known objects
 158  158   *            b) the client has removed the object from wherever it expects to
 159  159   *               find known objects and is about to free it, or
 160  160   *            c) the client has freed the object.
 161  161   *            In all these cases (a, b, and c) kmem frees the new object (the
 162  162   *            unused copy destination) and searches for the old object in the
 163  163   *            magazine layer. If found, the object is removed from the magazine
 164  164   *            layer and freed to the slab layer so it will no longer hold the
 165  165   *            slab hostage.
 166  166   *
 167  167   * 2.3 Object States
 168  168   *
 169  169   * Neither kmem nor the client can be assumed to know the object's whereabouts
 170  170   * at the time of the callback. An object belonging to a kmem cache may be in
 171  171   * any of the following states:
 172  172   *
 173  173   * 1. Uninitialized on the slab
 174  174   * 2. Allocated from the slab but not constructed (still uninitialized)
 175  175   * 3. Allocated from the slab, constructed, but not yet ready for business
 176  176   *    (not in a valid state for the move callback)
 177  177   * 4. In use (valid and known to the client)
 178  178   * 5. About to be freed (no longer in a valid state for the move callback)
 179  179   * 6. Freed to a magazine (still constructed)
 180  180   * 7. Allocated from a magazine, not yet ready for business (not in a valid
 181  181   *    state for the move callback), and about to return to state #4
 182  182   * 8. Deconstructed on a magazine that is about to be freed
 183  183   * 9. Freed to the slab
 184  184   *
 185  185   * Since the move callback may be called at any time while the object is in any
 186  186   * of the above states (except state #1), the client needs a safe way to
 187  187   * determine whether or not it knows about the object. Specifically, the client
 188  188   * needs to know whether or not the object is in state #4, the only state in
 189  189   * which a move is valid. If the object is in any other state, the client should
 190  190   * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
 191  191   * the object's fields.
 192  192   *
 193  193   * Note that although an object may be in state #4 when kmem initiates the move
 194  194   * request, the object may no longer be in that state by the time kmem actually
 195  195   * calls the move function. Not only does the client free objects
 196  196   * asynchronously, kmem itself puts move requests on a queue where thay are
 197  197   * pending until kmem processes them from another context. Also, objects freed
 198  198   * to a magazine appear allocated from the point of view of the slab layer, so
 199  199   * kmem may even initiate requests for objects in a state other than state #4.
 200  200   *
 201  201   * 2.3.1 Magazine Layer
 202  202   *
 203  203   * An important insight revealed by the states listed above is that the magazine
 204  204   * layer is populated only by kmem_cache_free(). Magazines of constructed
 205  205   * objects are never populated directly from the slab layer (which contains raw,
 206  206   * unconstructed objects). Whenever an allocation request cannot be satisfied
 207  207   * from the magazine layer, the magazines are bypassed and the request is
 208  208   * satisfied from the slab layer (creating a new slab if necessary). kmem calls
 209  209   * the object constructor only when allocating from the slab layer, and only in
 210  210   * response to kmem_cache_alloc() or to prepare the destination buffer passed in
 211  211   * the move callback. kmem does not preconstruct objects in anticipation of
 212  212   * kmem_cache_alloc().
 213  213   *
 214  214   * 2.3.2 Object Constructor and Destructor
 215  215   *
 216  216   * If the client supplies a destructor, it must be valid to call the destructor
 217  217   * on a newly created object (immediately after the constructor).
 218  218   *
 219  219   * 2.4 Recognizing Known Objects
 220  220   *
 221  221   * There is a simple test to determine safely whether or not the client knows
 222  222   * about a given object in the move callback. It relies on the fact that kmem
 223  223   * guarantees that the object of the move callback has only been touched by the
 224  224   * client itself or else by kmem. kmem does this by ensuring that none of the
 225  225   * cache's slabs are freed to the virtual memory (VM) subsystem while a move
 226  226   * callback is pending. When the last object on a slab is freed, if there is a
 227  227   * pending move, kmem puts the slab on a per-cache dead list and defers freeing
 228  228   * slabs on that list until all pending callbacks are completed. That way,
 229  229   * clients can be certain that the object of a move callback is in one of the
 230  230   * states listed above, making it possible to distinguish known objects (in
 231  231   * state #4) using the two low order bits of any pointer member (with the
 232  232   * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
 233  233   * platforms).
 234  234   *
 235  235   * The test works as long as the client always transitions objects from state #4
 236  236   * (known, in use) to state #5 (about to be freed, invalid) by setting the low
 237  237   * order bit of the client-designated pointer member. Since kmem only writes
 238  238   * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
 239  239   * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
 240  240   * guaranteed to set at least one of the two low order bits. Therefore, given an
 241  241   * object with a back pointer to a 'container_t *o_container', the client can
 242  242   * test
 243  243   *
 244  244   *      container_t *container = object->o_container;
 245  245   *      if ((uintptr_t)container & 0x3) {
 246  246   *              return (KMEM_CBRC_DONT_KNOW);
 247  247   *      }
 248  248   *
 249  249   * Typically, an object will have a pointer to some structure with a list or
 250  250   * hash where objects from the cache are kept while in use. Assuming that the
 251  251   * client has some way of knowing that the container structure is valid and will
 252  252   * not go away during the move, and assuming that the structure includes a lock
 253  253   * to protect whatever collection is used, then the client would continue as
 254  254   * follows:
 255  255   *
 256  256   *      // Ensure that the container structure does not go away.
 257  257   *      if (container_hold(container) == 0) {
 258  258   *              return (KMEM_CBRC_DONT_KNOW);
 259  259   *      }
 260  260   *      mutex_enter(&container->c_objects_lock);
 261  261   *      if (container != object->o_container) {
 262  262   *              mutex_exit(&container->c_objects_lock);
 263  263   *              container_rele(container);
 264  264   *              return (KMEM_CBRC_DONT_KNOW);
 265  265   *      }
 266  266   *
 267  267   * At this point the client knows that the object cannot be freed as long as
 268  268   * c_objects_lock is held. Note that after acquiring the lock, the client must
 269  269   * recheck the o_container pointer in case the object was removed just before
 270  270   * acquiring the lock.
 271  271   *
 272  272   * When the client is about to free an object, it must first remove that object
 273  273   * from the list, hash, or other structure where it is kept. At that time, to
 274  274   * mark the object so it can be distinguished from the remaining, known objects,
 275  275   * the client sets the designated low order bit:
 276  276   *
 277  277   *      mutex_enter(&container->c_objects_lock);
 278  278   *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
 279  279   *      list_remove(&container->c_objects, object);
 280  280   *      mutex_exit(&container->c_objects_lock);
 281  281   *
 282  282   * In the common case, the object is freed to the magazine layer, where it may
 283  283   * be reused on a subsequent allocation without the overhead of calling the
 284  284   * constructor. While in the magazine it appears allocated from the point of
 285  285   * view of the slab layer, making it a candidate for the move callback. Most
 286  286   * objects unrecognized by the client in the move callback fall into this
 287  287   * category and are cheaply distinguished from known objects by the test
 288  288   * described earlier. Since recognition is cheap for the client, and searching
 289  289   * magazines is expensive for kmem, kmem defers searching until the client first
 290  290   * returns KMEM_CBRC_DONT_KNOW. As long as the needed effort is reasonable, kmem
 291  291   * elsewhere does what it can to avoid bothering the client unnecessarily.
 292  292   *
 293  293   * Invalidating the designated pointer member before freeing the object marks
 294  294   * the object to be avoided in the callback, and conversely, assigning a valid
 295  295   * value to the designated pointer member after allocating the object makes the
 296  296   * object fair game for the callback:
 297  297   *
 298  298   *      ... allocate object ...
 299  299   *      ... set any initial state not set by the constructor ...
 300  300   *
 301  301   *      mutex_enter(&container->c_objects_lock);
 302  302   *      list_insert_tail(&container->c_objects, object);
 303  303   *      membar_producer();
 304  304   *      object->o_container = container;
 305  305   *      mutex_exit(&container->c_objects_lock);
 306  306   *
 307  307   * Note that everything else must be valid before setting o_container makes the
 308  308   * object fair game for the move callback. The membar_producer() call ensures
 309  309   * that all the object's state is written to memory before setting the pointer
 310  310   * that transitions the object from state #3 or #7 (allocated, constructed, not
 311  311   * yet in use) to state #4 (in use, valid). That's important because the move
 312  312   * function has to check the validity of the pointer before it can safely
 313  313   * acquire the lock protecting the collection where it expects to find known
 314  314   * objects.
 315  315   *
 316  316   * This method of distinguishing known objects observes the usual symmetry:
 317  317   * invalidating the designated pointer is the first thing the client does before
 318  318   * freeing the object, and setting the designated pointer is the last thing the
 319  319   * client does after allocating the object. Of course, the client is not
 320  320   * required to use this method. Fundamentally, how the client recognizes known
 321  321   * objects is completely up to the client, but this method is recommended as an
 322  322   * efficient and safe way to take advantage of the guarantees made by kmem. If
 323  323   * the entire object is arbitrary data without any markable bits from a suitable
 324  324   * pointer member, then the client must find some other method, such as
 325  325   * searching a hash table of known objects.
 326  326   *
 327  327   * 2.5 Preventing Objects From Moving
 328  328   *
 329  329   * Besides a way to distinguish known objects, the other thing that the client
 330  330   * needs is a strategy to ensure that an object will not move while the client
 331  331   * is actively using it. The details of satisfying this requirement tend to be
 332  332   * highly cache-specific. It might seem that the same rules that let a client
 333  333   * remove an object safely should also decide when an object can be moved
 334  334   * safely. However, any object state that makes a removal attempt invalid is
 335  335   * likely to be long-lasting for objects that the client does not expect to
 336  336   * remove. kmem knows nothing about the object state and is equally likely (from
 337  337   * the client's point of view) to request a move for any object in the cache,
 338  338   * whether prepared for removal or not. Even a low percentage of objects stuck
 339  339   * in place by unremovability will defeat the consolidator if the stuck objects
 340  340   * are the same long-lived allocations likely to hold slabs hostage.
 341  341   * Fundamentally, the consolidator is not aimed at common cases. Severe external
 342  342   * fragmentation is a worst case scenario manifested as sparsely allocated
 343  343   * slabs, by definition a low percentage of the cache's objects. When deciding
 344  344   * what makes an object movable, keep in mind the goal of the consolidator: to
 345  345   * bring worst-case external fragmentation within the limits guaranteed for
 346  346   * internal fragmentation. Removability is a poor criterion if it is likely to
 347  347   * exclude more than an insignificant percentage of objects for long periods of
 348  348   * time.
 349  349   *
 350  350   * A tricky general solution exists, and it has the advantage of letting you
 351  351   * move any object at almost any moment, practically eliminating the likelihood
 352  352   * that an object can hold a slab hostage. However, if there is a cache-specific
 353  353   * way to ensure that an object is not actively in use in the vast majority of
 354  354   * cases, a simpler solution that leverages this cache-specific knowledge is
 355  355   * preferred.
 356  356   *
 357  357   * 2.5.1 Cache-Specific Solution
 358  358   *
 359  359   * As an example of a cache-specific solution, the ZFS znode cache takes
 360  360   * advantage of the fact that the vast majority of znodes are only being
 361  361   * referenced from the DNLC. (A typical case might be a few hundred in active
 362  362   * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
 363  363   * client has established that it recognizes the znode and can access its fields
 364  364   * safely (using the method described earlier), it then tests whether the znode
 365  365   * is referenced by anything other than the DNLC. If so, it assumes that the
 366  366   * znode may be in active use and is unsafe to move, so it drops its locks and
 367  367   * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
 368  368   * else znodes are used, no change is needed to protect against the possibility
 369  369   * of the znode moving. The disadvantage is that it remains possible for an
 370  370   * application to hold a znode slab hostage with an open file descriptor.
 371  371   * However, this case ought to be rare and the consolidator has a way to deal
 372  372   * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
 373  373   * object, kmem eventually stops believing it and treats the slab as if the
 374  374   * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
 375  375   * then focus on getting it off of the partial slab list by allocating rather
 376  376   * than freeing all of its objects. (Either way of getting a slab off the
 377  377   * free list reduces fragmentation.)
 378  378   *
 379  379   * 2.5.2 General Solution
 380  380   *
 381  381   * The general solution, on the other hand, requires an explicit hold everywhere
 382  382   * the object is used to prevent it from moving. To keep the client locking
 383  383   * strategy as uncomplicated as possible, kmem guarantees the simplifying
 384  384   * assumption that move callbacks are sequential, even across multiple caches.
 385  385   * Internally, a global queue processed by a single thread supports all caches
 386  386   * implementing the callback function. No matter how many caches supply a move
 387  387   * function, the consolidator never moves more than one object at a time, so the
 388  388   * client does not have to worry about tricky lock ordering involving several
 389  389   * related objects from different kmem caches.
 390  390   *
 391  391   * The general solution implements the explicit hold as a read-write lock, which
 392  392   * allows multiple readers to access an object from the cache simultaneously
 393  393   * while a single writer is excluded from moving it. A single rwlock for the
 394  394   * entire cache would lock out all threads from using any of the cache's objects
 395  395   * even though only a single object is being moved, so to reduce contention,
 396  396   * the client can fan out the single rwlock into an array of rwlocks hashed by
 397  397   * the object address, making it probable that moving one object will not
 398  398   * prevent other threads from using a different object. The rwlock cannot be a
 399  399   * member of the object itself, because the possibility of the object moving
 400  400   * makes it unsafe to access any of the object's fields until the lock is
 401  401   * acquired.
 402  402   *
 403  403   * Assuming a small, fixed number of locks, it's possible that multiple objects
 404  404   * will hash to the same lock. A thread that needs to use multiple objects in
 405  405   * the same function may acquire the same lock multiple times. Since rwlocks are
 406  406   * reentrant for readers, and since there is never more than a single writer at
 407  407   * a time (assuming that the client acquires the lock as a writer only when
 408  408   * moving an object inside the callback), there would seem to be no problem.
 409  409   * However, a client locking multiple objects in the same function must handle
 410  410   * one case of potential deadlock: Assume that thread A needs to prevent both
 411  411   * object 1 and object 2 from moving, and thread B, the callback, meanwhile
 412  412   * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
 413  413   * same lock, that thread A will acquire the lock for object 1 as a reader
 414  414   * before thread B sets the lock's write-wanted bit, preventing thread A from
 415  415   * reacquiring the lock for object 2 as a reader. Unable to make forward
 416  416   * progress, thread A will never release the lock for object 1, resulting in
 417  417   * deadlock.
 418  418   *
 419  419   * There are two ways of avoiding the deadlock just described. The first is to
 420  420   * use rw_tryenter() rather than rw_enter() in the callback function when
 421  421   * attempting to acquire the lock as a writer. If tryenter discovers that the
 422  422   * same object (or another object hashed to the same lock) is already in use, it
 423  423   * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
 424  424   * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
 425  425   * since it allows a thread to acquire the lock as a reader in spite of a
 426  426   * waiting writer. This second approach insists on moving the object now, no
 427  427   * matter how many readers the move function must wait for in order to do so,
 428  428   * and could delay the completion of the callback indefinitely (blocking
 429  429   * callbacks to other clients). In practice, a less insistent callback using
 430  430   * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
 431  431   * little reason to use anything else.
 432  432   *
 433  433   * Avoiding deadlock is not the only problem that an implementation using an
 434  434   * explicit hold needs to solve. Locking the object in the first place (to
 435  435   * prevent it from moving) remains a problem, since the object could move
 436  436   * between the time you obtain a pointer to the object and the time you acquire
 437  437   * the rwlock hashed to that pointer value. Therefore the client needs to
 438  438   * recheck the value of the pointer after acquiring the lock, drop the lock if
 439  439   * the value has changed, and try again. This requires a level of indirection:
 440  440   * something that points to the object rather than the object itself, that the
 441  441   * client can access safely while attempting to acquire the lock. (The object
 442  442   * itself cannot be referenced safely because it can move at any time.)
 443  443   * The following lock-acquisition function takes whatever is safe to reference
 444  444   * (arg), follows its pointer to the object (using function f), and tries as
 445  445   * often as necessary to acquire the hashed lock and verify that the object
 446  446   * still has not moved:
 447  447   *
 448  448   *      object_t *
 449  449   *      object_hold(object_f f, void *arg)
 450  450   *      {
 451  451   *              object_t *op;
 452  452   *
 453  453   *              op = f(arg);
 454  454   *              if (op == NULL) {
 455  455   *                      return (NULL);
 456  456   *              }
 457  457   *
 458  458   *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
 459  459   *              while (op != f(arg)) {
 460  460   *                      rw_exit(OBJECT_RWLOCK(op));
 461  461   *                      op = f(arg);
 462  462   *                      if (op == NULL) {
 463  463   *                              break;
 464  464   *                      }
 465  465   *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
 466  466   *              }
 467  467   *
 468  468   *              return (op);
 469  469   *      }
 470  470   *
 471  471   * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
 472  472   * lock reacquisition loop, while necessary, almost never executes. The function
 473  473   * pointer f (used to obtain the object pointer from arg) has the following type
 474  474   * definition:
 475  475   *
 476  476   *      typedef object_t *(*object_f)(void *arg);
 477  477   *
 478  478   * An object_f implementation is likely to be as simple as accessing a structure
 479  479   * member:
 480  480   *
 481  481   *      object_t *
 482  482   *      s_object(void *arg)
 483  483   *      {
 484  484   *              something_t *sp = arg;
 485  485   *              return (sp->s_object);
 486  486   *      }
 487  487   *
 488  488   * The flexibility of a function pointer allows the path to the object to be
 489  489   * arbitrarily complex and also supports the notion that depending on where you
 490  490   * are using the object, you may need to get it from someplace different.
 491  491   *
 492  492   * The function that releases the explicit hold is simpler because it does not
 493  493   * have to worry about the object moving:
 494  494   *
 495  495   *      void
 496  496   *      object_rele(object_t *op)
 497  497   *      {
 498  498   *              rw_exit(OBJECT_RWLOCK(op));
 499  499   *      }
 500  500   *
 501  501   * The caller is spared these details so that obtaining and releasing an
 502  502   * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
 503  503   * of object_hold() only needs to know that the returned object pointer is valid
 504  504   * if not NULL and that the object will not move until released.
 505  505   *
 506  506   * Although object_hold() prevents an object from moving, it does not prevent it
 507  507   * from being freed. The caller must take measures before calling object_hold()
 508  508   * (afterwards is too late) to ensure that the held object cannot be freed. The
 509  509   * caller must do so without accessing the unsafe object reference, so any lock
 510  510   * or reference count used to ensure the continued existence of the object must
 511  511   * live outside the object itself.
 512  512   *
 513  513   * Obtaining a new object is a special case where an explicit hold is impossible
 514  514   * for the caller. Any function that returns a newly allocated object (either as
 515  515   * a return value, or as an in-out paramter) must return it already held; after
 516  516   * the caller gets it is too late, since the object cannot be safely accessed
 517  517   * without the level of indirection described earlier. The following
 518  518   * object_alloc() example uses the same code shown earlier to transition a new
 519  519   * object into the state of being recognized (by the client) as a known object.
 520  520   * The function must acquire the hold (rw_enter) before that state transition
 521  521   * makes the object movable:
 522  522   *
 523  523   *      static object_t *
 524  524   *      object_alloc(container_t *container)
 525  525   *      {
 526  526   *              object_t *object = kmem_cache_alloc(object_cache, 0);
 527  527   *              ... set any initial state not set by the constructor ...
 528  528   *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
 529  529   *              mutex_enter(&container->c_objects_lock);
 530  530   *              list_insert_tail(&container->c_objects, object);
 531  531   *              membar_producer();
 532  532   *              object->o_container = container;
 533  533   *              mutex_exit(&container->c_objects_lock);
 534  534   *              return (object);
 535  535   *      }
 536  536   *
 537  537   * Functions that implicitly acquire an object hold (any function that calls
 538  538   * object_alloc() to supply an object for the caller) need to be carefully noted
 539  539   * so that the matching object_rele() is not neglected. Otherwise, leaked holds
 540  540   * prevent all objects hashed to the affected rwlocks from ever being moved.
 541  541   *
 542  542   * The pointer to a held object can be hashed to the holding rwlock even after
 543  543   * the object has been freed. Although it is possible to release the hold
 544  544   * after freeing the object, you may decide to release the hold implicitly in
 545  545   * whatever function frees the object, so as to release the hold as soon as
 546  546   * possible, and for the sake of symmetry with the function that implicitly
 547  547   * acquires the hold when it allocates the object. Here, object_free() releases
 548  548   * the hold acquired by object_alloc(). Its implicit object_rele() forms a
 549  549   * matching pair with object_hold():
 550  550   *
 551  551   *      void
 552  552   *      object_free(object_t *object)
 553  553   *      {
 554  554   *              container_t *container;
 555  555   *
 556  556   *              ASSERT(object_held(object));
 557  557   *              container = object->o_container;
 558  558   *              mutex_enter(&container->c_objects_lock);
 559  559   *              object->o_container =
 560  560   *                  (void *)((uintptr_t)object->o_container | 0x1);
 561  561   *              list_remove(&container->c_objects, object);
 562  562   *              mutex_exit(&container->c_objects_lock);
 563  563   *              object_rele(object);
 564  564   *              kmem_cache_free(object_cache, object);
 565  565   *      }
 566  566   *
 567  567   * Note that object_free() cannot safely accept an object pointer as an argument
 568  568   * unless the object is already held. Any function that calls object_free()
 569  569   * needs to be carefully noted since it similarly forms a matching pair with
 570  570   * object_hold().
 571  571   *
 572  572   * To complete the picture, the following callback function implements the
 573  573   * general solution by moving objects only if they are currently unheld:
 574  574   *
 575  575   *      static kmem_cbrc_t
 576  576   *      object_move(void *buf, void *newbuf, size_t size, void *arg)
 577  577   *      {
 578  578   *              object_t *op = buf, *np = newbuf;
 579  579   *              container_t *container;
 580  580   *
 581  581   *              container = op->o_container;
 582  582   *              if ((uintptr_t)container & 0x3) {
 583  583   *                      return (KMEM_CBRC_DONT_KNOW);
 584  584   *              }
 585  585   *
 586  586   *              // Ensure that the container structure does not go away.
 587  587   *              if (container_hold(container) == 0) {
 588  588   *                      return (KMEM_CBRC_DONT_KNOW);
 589  589   *              }
 590  590   *
 591  591   *              mutex_enter(&container->c_objects_lock);
 592  592   *              if (container != op->o_container) {
 593  593   *                      mutex_exit(&container->c_objects_lock);
 594  594   *                      container_rele(container);
 595  595   *                      return (KMEM_CBRC_DONT_KNOW);
 596  596   *              }
 597  597   *
 598  598   *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
 599  599   *                      mutex_exit(&container->c_objects_lock);
 600  600   *                      container_rele(container);
 601  601   *                      return (KMEM_CBRC_LATER);
 602  602   *              }
 603  603   *
 604  604   *              object_move_impl(op, np); // critical section
 605  605   *              rw_exit(OBJECT_RWLOCK(op));
 606  606   *
 607  607   *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
 608  608   *              list_link_replace(&op->o_link_node, &np->o_link_node);
 609  609   *              mutex_exit(&container->c_objects_lock);
 610  610   *              container_rele(container);
 611  611   *              return (KMEM_CBRC_YES);
 612  612   *      }
 613  613   *
 614  614   * Note that object_move() must invalidate the designated o_container pointer of
 615  615   * the old object in the same way that object_free() does, since kmem will free
 616  616   * the object in response to the KMEM_CBRC_YES return value.
 617  617   *
 618  618   * The lock order in object_move() differs from object_alloc(), which locks
 619  619   * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
 620  620   * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
 621  621   * not a problem. Holding the lock on the object list in the example above
 622  622   * through the entire callback not only prevents the object from going away, it
 623  623   * also allows you to lock the list elsewhere and know that none of its elements
 624  624   * will move during iteration.
 625  625   *
 626  626   * Adding an explicit hold everywhere an object from the cache is used is tricky
 627  627   * and involves much more change to client code than a cache-specific solution
 628  628   * that leverages existing state to decide whether or not an object is
 629  629   * movable. However, this approach has the advantage that no object remains
 630  630   * immovable for any significant length of time, making it extremely unlikely
 631  631   * that long-lived allocations can continue holding slabs hostage; and it works
 632  632   * for any cache.
 633  633   *
 634  634   * 3. Consolidator Implementation
 635  635   *
 636  636   * Once the client supplies a move function that a) recognizes known objects and
 637  637   * b) avoids moving objects that are actively in use, the remaining work is up
 638  638   * to the consolidator to decide which objects to move and when to issue
 639  639   * callbacks.
 640  640   *
 641  641   * The consolidator relies on the fact that a cache's slabs are ordered by
 642  642   * usage. Each slab has a fixed number of objects. Depending on the slab's
 643  643   * "color" (the offset of the first object from the beginning of the slab;
 644  644   * offsets are staggered to mitigate false sharing of cache lines) it is either
 645  645   * the maximum number of objects per slab determined at cache creation time or
 646  646   * else the number closest to the maximum that fits within the space remaining
 647  647   * after the initial offset. A completely allocated slab may contribute some
 648  648   * internal fragmentation (per-slab overhead) but no external fragmentation, so
 649  649   * it is of no interest to the consolidator. At the other extreme, slabs whose
 650  650   * objects have all been freed to the slab are released to the virtual memory
 651  651   * (VM) subsystem (objects freed to magazines are still allocated as far as the
 652  652   * slab is concerned). External fragmentation exists when there are slabs
 653  653   * somewhere between these extremes. A partial slab has at least one but not all
 654  654   * of its objects allocated. The more partial slabs, and the fewer allocated
 655  655   * objects on each of them, the higher the fragmentation. Hence the
 656  656   * consolidator's overall strategy is to reduce the number of partial slabs by
 657  657   * moving allocated objects from the least allocated slabs to the most allocated
 658  658   * slabs.
 659  659   *
 660  660   * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
 661  661   * slabs are kept separately in an unordered list. Since the majority of slabs
 662  662   * tend to be completely allocated (a typical unfragmented cache may have
 663  663   * thousands of complete slabs and only a single partial slab), separating
 664  664   * complete slabs improves the efficiency of partial slab ordering, since the
 665  665   * complete slabs do not affect the depth or balance of the AVL tree. This
 666  666   * ordered sequence of partial slabs acts as a "free list" supplying objects for
 667  667   * allocation requests.
 668  668   *
 669  669   * Objects are always allocated from the first partial slab in the free list,
 670  670   * where the allocation is most likely to eliminate a partial slab (by
 671  671   * completely allocating it). Conversely, when a single object from a completely
 672  672   * allocated slab is freed to the slab, that slab is added to the front of the
 673  673   * free list. Since most free list activity involves highly allocated slabs
 674  674   * coming and going at the front of the list, slabs tend naturally toward the
 675  675   * ideal order: highly allocated at the front, sparsely allocated at the back.
 676  676   * Slabs with few allocated objects are likely to become completely free if they
 677  677   * keep a safe distance away from the front of the free list. Slab misorders
 678  678   * interfere with the natural tendency of slabs to become completely free or
 679  679   * completely allocated. For example, a slab with a single allocated object
 680  680   * needs only a single free to escape the cache; its natural desire is
 681  681   * frustrated when it finds itself at the front of the list where a second
 682  682   * allocation happens just before the free could have released it. Another slab
 683  683   * with all but one object allocated might have supplied the buffer instead, so
 684  684   * that both (as opposed to neither) of the slabs would have been taken off the
 685  685   * free list.
 686  686   *
 687  687   * Although slabs tend naturally toward the ideal order, misorders allowed by a
 688  688   * simple list implementation defeat the consolidator's strategy of merging
 689  689   * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
 690  690   * needs another way to fix misorders to optimize its callback strategy. One
 691  691   * approach is to periodically scan a limited number of slabs, advancing a
 692  692   * marker to hold the current scan position, and to move extreme misorders to
 693  693   * the front or back of the free list and to the front or back of the current
 694  694   * scan range. By making consecutive scan ranges overlap by one slab, the least
 695  695   * allocated slab in the current range can be carried along from the end of one
 696  696   * scan to the start of the next.
 697  697   *
 698  698   * Maintaining partial slabs in an AVL tree relieves kmem of this additional
 699  699   * task, however. Since most of the cache's activity is in the magazine layer,
 700  700   * and allocations from the slab layer represent only a startup cost, the
 701  701   * overhead of maintaining a balanced tree is not a significant concern compared
 702  702   * to the opportunity of reducing complexity by eliminating the partial slab
 703  703   * scanner just described. The overhead of an AVL tree is minimized by
 704  704   * maintaining only partial slabs in the tree and keeping completely allocated
 705  705   * slabs separately in a list. To avoid increasing the size of the slab
 706  706   * structure the AVL linkage pointers are reused for the slab's list linkage,
 707  707   * since the slab will always be either partial or complete, never stored both
 708  708   * ways at the same time. To further minimize the overhead of the AVL tree the
 709  709   * compare function that orders partial slabs by usage divides the range of
 710  710   * allocated object counts into bins such that counts within the same bin are
 711  711   * considered equal. Binning partial slabs makes it less likely that allocating
 712  712   * or freeing a single object will change the slab's order, requiring a tree
 713  713   * reinsertion (an avl_remove() followed by an avl_add(), both potentially
 714  714   * requiring some rebalancing of the tree). Allocation counts closest to
 715  715   * completely free and completely allocated are left unbinned (finely sorted) to
 716  716   * better support the consolidator's strategy of merging slabs at either
 717  717   * extreme.
 718  718   *
 719  719   * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
 720  720   *
 721  721   * The consolidator piggybacks on the kmem maintenance thread and is called on
 722  722   * the same interval as kmem_cache_update(), once per cache every fifteen
 723  723   * seconds. kmem maintains a running count of unallocated objects in the slab
 724  724   * layer (cache_bufslab). The consolidator checks whether that number exceeds
 725  725   * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
 726  726   * there is a significant number of slabs in the cache (arbitrarily a minimum
 727  727   * 101 total slabs). Unused objects that have fallen out of the magazine layer's
 728  728   * working set are included in the assessment, and magazines in the depot are
 729  729   * reaped if those objects would lift cache_bufslab above the fragmentation
 730  730   * threshold. Once the consolidator decides that a cache is fragmented, it looks
 731  731   * for a candidate slab to reclaim, starting at the end of the partial slab free
 732  732   * list and scanning backwards. At first the consolidator is choosy: only a slab
 733  733   * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
 734  734   * single allocated object, regardless of percentage). If there is difficulty
 735  735   * finding a candidate slab, kmem raises the allocation threshold incrementally,
 736  736   * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
 737  737   * external fragmentation (unused objects on the free list) below 12.5% (1/8),
 738  738   * even in the worst case of every slab in the cache being almost 7/8 allocated.
 739  739   * The threshold can also be lowered incrementally when candidate slabs are easy
 740  740   * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
 741  741   * is no longer fragmented.
 742  742   *
 743  743   * 3.2 Generating Callbacks
 744  744   *
 745  745   * Once an eligible slab is chosen, a callback is generated for every allocated
 746  746   * object on the slab, in the hope that the client will move everything off the
 747  747   * slab and make it reclaimable. Objects selected as move destinations are
 748  748   * chosen from slabs at the front of the free list. Assuming slabs in the ideal
 749  749   * order (most allocated at the front, least allocated at the back) and a
 750  750   * cooperative client, the consolidator will succeed in removing slabs from both
 751  751   * ends of the free list, completely allocating on the one hand and completely
 752  752   * freeing on the other. Objects selected as move destinations are allocated in
 753  753   * the kmem maintenance thread where move requests are enqueued. A separate
 754  754   * callback thread removes pending callbacks from the queue and calls the
 755  755   * client. The separate thread ensures that client code (the move function) does
 756  756   * not interfere with internal kmem maintenance tasks. A map of pending
 757  757   * callbacks keyed by object address (the object to be moved) is checked to
 758  758   * ensure that duplicate callbacks are not generated for the same object.
 759  759   * Allocating the move destination (the object to move to) prevents subsequent
 760  760   * callbacks from selecting the same destination as an earlier pending callback.
 761  761   *
 762  762   * Move requests can also be generated by kmem_cache_reap() when the system is
 763  763   * desperate for memory and by kmem_cache_move_notify(), called by the client to
 764  764   * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
 765  765   * The map of pending callbacks is protected by the same lock that protects the
 766  766   * slab layer.
 767  767   *
 768  768   * When the system is desperate for memory, kmem does not bother to determine
 769  769   * whether or not the cache exceeds the fragmentation threshold, but tries to
 770  770   * consolidate as many slabs as possible. Normally, the consolidator chews
 771  771   * slowly, one sparsely allocated slab at a time during each maintenance
 772  772   * interval that the cache is fragmented. When desperate, the consolidator
 773  773   * starts at the last partial slab and enqueues callbacks for every allocated
 774  774   * object on every partial slab, working backwards until it reaches the first
 775  775   * partial slab. The first partial slab, meanwhile, advances in pace with the
 776  776   * consolidator as allocations to supply move destinations for the enqueued
 777  777   * callbacks use up the highly allocated slabs at the front of the free list.
 778  778   * Ideally, the overgrown free list collapses like an accordion, starting at
 779  779   * both ends and ending at the center with a single partial slab.
 780  780   *
 781  781   * 3.3 Client Responses
 782  782   *
 783  783   * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
 784  784   * marks the slab that supplied the stuck object non-reclaimable and moves it to
 785  785   * front of the free list. The slab remains marked as long as it remains on the
 786  786   * free list, and it appears more allocated to the partial slab compare function
 787  787   * than any unmarked slab, no matter how many of its objects are allocated.
 788  788   * Since even one immovable object ties up the entire slab, the goal is to
 789  789   * completely allocate any slab that cannot be completely freed. kmem does not
 790  790   * bother generating callbacks to move objects from a marked slab unless the
 791  791   * system is desperate.
 792  792   *
 793  793   * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
 794  794   * slab. If the client responds LATER too many times, kmem disbelieves and
 795  795   * treats the response as a NO. The count is cleared when the slab is taken off
 796  796   * the partial slab list or when the client moves one of the slab's objects.
 797  797   *
 798  798   * 4. Observability
 799  799   *
 800  800   * A kmem cache's external fragmentation is best observed with 'mdb -k' using
 801  801   * the ::kmem_slabs dcmd. For a complete description of the command, enter
 802  802   * '::help kmem_slabs' at the mdb prompt.
 803  803   */
 804  804  
 805  805  #include <sys/kmem_impl.h>
 806  806  #include <sys/vmem_impl.h>
 807  807  #include <sys/param.h>
 808  808  #include <sys/sysmacros.h>
 809  809  #include <sys/vm.h>
 810  810  #include <sys/proc.h>
 811  811  #include <sys/tuneable.h>
 812  812  #include <sys/systm.h>
 813  813  #include <sys/cmn_err.h>
 814  814  #include <sys/debug.h>
 815  815  #include <sys/sdt.h>
 816  816  #include <sys/mutex.h>
 817  817  #include <sys/bitmap.h>
 818  818  #include <sys/atomic.h>
 819  819  #include <sys/kobj.h>
 820  820  #include <sys/disp.h>
 821  821  #include <vm/seg_kmem.h>
 822  822  #include <sys/log.h>
 823  823  #include <sys/callb.h>
 824  824  #include <sys/taskq.h>
 825  825  #include <sys/modctl.h>
 826  826  #include <sys/reboot.h>
 827  827  #include <sys/id32.h>
 828  828  #include <sys/zone.h>
 829  829  #include <sys/netstack.h>
 830  830  #ifdef  DEBUG
 831  831  #include <sys/random.h>
 832  832  #endif
 833  833  
 834  834  extern void streams_msg_init(void);
 835  835  extern int segkp_fromheap;
 836  836  extern void segkp_cache_free(void);
 837  837  extern int callout_init_done;
 838  838  
 839  839  struct kmem_cache_kstat {
 840  840          kstat_named_t   kmc_buf_size;
 841  841          kstat_named_t   kmc_align;
 842  842          kstat_named_t   kmc_chunk_size;
 843  843          kstat_named_t   kmc_slab_size;
 844  844          kstat_named_t   kmc_alloc;
 845  845          kstat_named_t   kmc_alloc_fail;
 846  846          kstat_named_t   kmc_free;
 847  847          kstat_named_t   kmc_depot_alloc;
 848  848          kstat_named_t   kmc_depot_free;
 849  849          kstat_named_t   kmc_depot_contention;
 850  850          kstat_named_t   kmc_slab_alloc;
 851  851          kstat_named_t   kmc_slab_free;
 852  852          kstat_named_t   kmc_buf_constructed;
 853  853          kstat_named_t   kmc_buf_avail;
 854  854          kstat_named_t   kmc_buf_inuse;
 855  855          kstat_named_t   kmc_buf_total;
 856  856          kstat_named_t   kmc_buf_max;
 857  857          kstat_named_t   kmc_slab_create;
 858  858          kstat_named_t   kmc_slab_destroy;
 859  859          kstat_named_t   kmc_vmem_source;
 860  860          kstat_named_t   kmc_hash_size;
 861  861          kstat_named_t   kmc_hash_lookup_depth;
 862  862          kstat_named_t   kmc_hash_rescale;
 863  863          kstat_named_t   kmc_full_magazines;
 864  864          kstat_named_t   kmc_empty_magazines;
 865  865          kstat_named_t   kmc_magazine_size;
 866  866          kstat_named_t   kmc_reap; /* number of kmem_cache_reap() calls */
 867  867          kstat_named_t   kmc_defrag; /* attempts to defrag all partial slabs */
 868  868          kstat_named_t   kmc_scan; /* attempts to defrag one partial slab */
 869  869          kstat_named_t   kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
 870  870          kstat_named_t   kmc_move_yes;
 871  871          kstat_named_t   kmc_move_no;
 872  872          kstat_named_t   kmc_move_later;
 873  873          kstat_named_t   kmc_move_dont_need;
 874  874          kstat_named_t   kmc_move_dont_know; /* obj unrecognized by client ... */
 875  875          kstat_named_t   kmc_move_hunt_found; /* ... but found in mag layer */
 876  876          kstat_named_t   kmc_move_slabs_freed; /* slabs freed by consolidator */
 877  877          kstat_named_t   kmc_move_reclaimable; /* buffers, if consolidator ran */
 878  878  } kmem_cache_kstat = {
 879  879          { "buf_size",           KSTAT_DATA_UINT64 },
 880  880          { "align",              KSTAT_DATA_UINT64 },
 881  881          { "chunk_size",         KSTAT_DATA_UINT64 },
 882  882          { "slab_size",          KSTAT_DATA_UINT64 },
 883  883          { "alloc",              KSTAT_DATA_UINT64 },
 884  884          { "alloc_fail",         KSTAT_DATA_UINT64 },
 885  885          { "free",               KSTAT_DATA_UINT64 },
 886  886          { "depot_alloc",        KSTAT_DATA_UINT64 },
 887  887          { "depot_free",         KSTAT_DATA_UINT64 },
 888  888          { "depot_contention",   KSTAT_DATA_UINT64 },
 889  889          { "slab_alloc",         KSTAT_DATA_UINT64 },
 890  890          { "slab_free",          KSTAT_DATA_UINT64 },
 891  891          { "buf_constructed",    KSTAT_DATA_UINT64 },
 892  892          { "buf_avail",          KSTAT_DATA_UINT64 },
 893  893          { "buf_inuse",          KSTAT_DATA_UINT64 },
 894  894          { "buf_total",          KSTAT_DATA_UINT64 },
 895  895          { "buf_max",            KSTAT_DATA_UINT64 },
 896  896          { "slab_create",        KSTAT_DATA_UINT64 },
 897  897          { "slab_destroy",       KSTAT_DATA_UINT64 },
 898  898          { "vmem_source",        KSTAT_DATA_UINT64 },
 899  899          { "hash_size",          KSTAT_DATA_UINT64 },
 900  900          { "hash_lookup_depth",  KSTAT_DATA_UINT64 },
 901  901          { "hash_rescale",       KSTAT_DATA_UINT64 },
 902  902          { "full_magazines",     KSTAT_DATA_UINT64 },
 903  903          { "empty_magazines",    KSTAT_DATA_UINT64 },
 904  904          { "magazine_size",      KSTAT_DATA_UINT64 },
 905  905          { "reap",               KSTAT_DATA_UINT64 },
 906  906          { "defrag",             KSTAT_DATA_UINT64 },
 907  907          { "scan",               KSTAT_DATA_UINT64 },
 908  908          { "move_callbacks",     KSTAT_DATA_UINT64 },
 909  909          { "move_yes",           KSTAT_DATA_UINT64 },
 910  910          { "move_no",            KSTAT_DATA_UINT64 },
 911  911          { "move_later",         KSTAT_DATA_UINT64 },
 912  912          { "move_dont_need",     KSTAT_DATA_UINT64 },
 913  913          { "move_dont_know",     KSTAT_DATA_UINT64 },
 914  914          { "move_hunt_found",    KSTAT_DATA_UINT64 },
 915  915          { "move_slabs_freed",   KSTAT_DATA_UINT64 },
 916  916          { "move_reclaimable",   KSTAT_DATA_UINT64 },
 917  917  };
 918  918  
 919  919  static kmutex_t kmem_cache_kstat_lock;
 920  920  
 921  921  /*
 922  922   * The default set of caches to back kmem_alloc().
 923  923   * These sizes should be reevaluated periodically.
 924  924   *
 925  925   * We want allocations that are multiples of the coherency granularity
 926  926   * (64 bytes) to be satisfied from a cache which is a multiple of 64
 927  927   * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
 928  928   * the next kmem_cache_size greater than or equal to it must be a
 929  929   * multiple of 64.
 930  930   *
 931  931   * We split the table into two sections:  size <= 4k and size > 4k.  This
 932  932   * saves a lot of space and cache footprint in our cache tables.
 933  933   */
 934  934  static const int kmem_alloc_sizes[] = {
 935  935          1 * 8,
 936  936          2 * 8,
 937  937          3 * 8,
 938  938          4 * 8,          5 * 8,          6 * 8,          7 * 8,
 939  939          4 * 16,         5 * 16,         6 * 16,         7 * 16,
 940  940          4 * 32,         5 * 32,         6 * 32,         7 * 32,
 941  941          4 * 64,         5 * 64,         6 * 64,         7 * 64,
 942  942          4 * 128,        5 * 128,        6 * 128,        7 * 128,
 943  943          P2ALIGN(8192 / 7, 64),
 944  944          P2ALIGN(8192 / 6, 64),
 945  945          P2ALIGN(8192 / 5, 64),
 946  946          P2ALIGN(8192 / 4, 64),
 947  947          P2ALIGN(8192 / 3, 64),
 948  948          P2ALIGN(8192 / 2, 64),
 949  949  };
 950  950  
 951  951  static const int kmem_big_alloc_sizes[] = {
 952  952          2 * 4096,       3 * 4096,
 953  953          2 * 8192,       3 * 8192,
 954  954          4 * 8192,       5 * 8192,       6 * 8192,       7 * 8192,
 955  955          8 * 8192,       9 * 8192,       10 * 8192,      11 * 8192,
 956  956          12 * 8192,      13 * 8192,      14 * 8192,      15 * 8192,
 957  957          16 * 8192
 958  958  };
 959  959  
 960  960  #define KMEM_MAXBUF             4096
 961  961  #define KMEM_BIG_MAXBUF_32BIT   32768
 962  962  #define KMEM_BIG_MAXBUF         131072
 963  963  
 964  964  #define KMEM_BIG_MULTIPLE       4096    /* big_alloc_sizes must be a multiple */
 965  965  #define KMEM_BIG_SHIFT          12      /* lg(KMEM_BIG_MULTIPLE) */
 966  966  
 967  967  static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
 968  968  static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
 969  969  
 970  970  #define KMEM_ALLOC_TABLE_MAX    (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
 971  971  static size_t kmem_big_alloc_table_max = 0;     /* # of filled elements */
 972  972  
 973  973  static kmem_magtype_t kmem_magtype[] = {
 974  974          { 1,    8,      3200,   65536   },
 975  975          { 3,    16,     256,    32768   },
 976  976          { 7,    32,     64,     16384   },
 977  977          { 15,   64,     0,      8192    },
 978  978          { 31,   64,     0,      4096    },
 979  979          { 47,   64,     0,      2048    },
 980  980          { 63,   64,     0,      1024    },
 981  981          { 95,   64,     0,      512     },
 982  982          { 143,  64,     0,      0       },
 983  983  };
 984  984  
 985  985  static uint32_t kmem_reaping;
 986  986  static uint32_t kmem_reaping_idspace;
 987  987  
 988  988  /*
 989  989   * kmem tunables
 990  990   */
 991  991  clock_t kmem_reap_interval;     /* cache reaping rate [15 * HZ ticks] */
 992  992  int kmem_depot_contention = 3;  /* max failed tryenters per real interval */
 993  993  pgcnt_t kmem_reapahead = 0;     /* start reaping N pages before pageout */
 994  994  int kmem_panic = 1;             /* whether to panic on error */
 995  995  int kmem_logging = 1;           /* kmem_log_enter() override */
 996  996  uint32_t kmem_mtbf = 0;         /* mean time between failures [default: off] */
 997  997  size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
 998  998  size_t kmem_content_log_size;   /* content log size [2% of memory] */
 999  999  size_t kmem_failure_log_size;   /* failure log [4 pages per CPU] */
1000 1000  size_t kmem_slab_log_size;      /* slab create log [4 pages per CPU] */
1001 1001  size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
1002 1002  size_t kmem_lite_minsize = 0;   /* minimum buffer size for KMF_LITE */
1003 1003  size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
1004 1004  int kmem_lite_pcs = 4;          /* number of PCs to store in KMF_LITE mode */
1005 1005  size_t kmem_maxverify;          /* maximum bytes to inspect in debug routines */
1006 1006  size_t kmem_minfirewall;        /* hardware-enforced redzone threshold */
1007 1007  
1008 1008  #ifdef _LP64
1009 1009  size_t  kmem_max_cached = KMEM_BIG_MAXBUF;      /* maximum kmem_alloc cache */
1010 1010  #else
1011 1011  size_t  kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1012 1012  #endif
1013 1013  
1014 1014  #ifdef DEBUG
1015 1015  int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
1016 1016  #else
1017 1017  int kmem_flags = 0;
1018 1018  #endif
1019 1019  int kmem_ready;
1020 1020  
1021 1021  static kmem_cache_t     *kmem_slab_cache;
1022 1022  static kmem_cache_t     *kmem_bufctl_cache;
1023 1023  static kmem_cache_t     *kmem_bufctl_audit_cache;
1024 1024  
1025 1025  static kmutex_t         kmem_cache_lock;        /* inter-cache linkage only */
1026 1026  static list_t           kmem_caches;
1027 1027  
1028 1028  static taskq_t          *kmem_taskq;
1029 1029  static kmutex_t         kmem_flags_lock;
1030 1030  static vmem_t           *kmem_metadata_arena;
1031 1031  static vmem_t           *kmem_msb_arena;        /* arena for metadata caches */
1032 1032  static vmem_t           *kmem_cache_arena;
1033 1033  static vmem_t           *kmem_hash_arena;
1034 1034  static vmem_t           *kmem_log_arena;
1035 1035  static vmem_t           *kmem_oversize_arena;
1036 1036  static vmem_t           *kmem_va_arena;
1037 1037  static vmem_t           *kmem_default_arena;
1038 1038  static vmem_t           *kmem_firewall_va_arena;
1039 1039  static vmem_t           *kmem_firewall_arena;
1040 1040  
1041 1041  /*
1042 1042   * Define KMEM_STATS to turn on statistic gathering. By default, it is only
1043 1043   * turned on when DEBUG is also defined.
1044 1044   */
1045 1045  #ifdef  DEBUG
1046 1046  #define KMEM_STATS
1047 1047  #endif  /* DEBUG */
1048 1048  
1049 1049  #ifdef  KMEM_STATS
1050 1050  #define KMEM_STAT_ADD(stat)                     ((stat)++)
1051 1051  #define KMEM_STAT_COND_ADD(cond, stat)          ((void) (!(cond) || (stat)++))
1052 1052  #else
1053 1053  #define KMEM_STAT_ADD(stat)                     /* nothing */
1054 1054  #define KMEM_STAT_COND_ADD(cond, stat)          /* nothing */
1055 1055  #endif  /* KMEM_STATS */
1056 1056  
1057 1057  /*
1058 1058   * kmem slab consolidator thresholds (tunables)
1059 1059   */
1060 1060  size_t kmem_frag_minslabs = 101;        /* minimum total slabs */
1061 1061  size_t kmem_frag_numer = 1;             /* free buffers (numerator) */
1062 1062  size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1063 1063  /*
1064 1064   * Maximum number of slabs from which to move buffers during a single
1065 1065   * maintenance interval while the system is not low on memory.
1066 1066   */
1067 1067  size_t kmem_reclaim_max_slabs = 1;
1068 1068  /*
1069 1069   * Number of slabs to scan backwards from the end of the partial slab list
1070 1070   * when searching for buffers to relocate.
1071 1071   */
1072 1072  size_t kmem_reclaim_scan_range = 12;
1073 1073  
1074 1074  #ifdef  KMEM_STATS
1075 1075  static struct {
1076 1076          uint64_t kms_callbacks;
1077 1077          uint64_t kms_yes;
1078 1078          uint64_t kms_no;
1079 1079          uint64_t kms_later;
1080 1080          uint64_t kms_dont_need;
1081 1081          uint64_t kms_dont_know;
1082 1082          uint64_t kms_hunt_found_mag;
1083 1083          uint64_t kms_hunt_found_slab;
1084 1084          uint64_t kms_hunt_alloc_fail;
1085 1085          uint64_t kms_hunt_lucky;
1086 1086          uint64_t kms_notify;
1087 1087          uint64_t kms_notify_callbacks;
1088 1088          uint64_t kms_disbelief;
1089 1089          uint64_t kms_already_pending;
1090 1090          uint64_t kms_callback_alloc_fail;
1091 1091          uint64_t kms_callback_taskq_fail;
1092 1092          uint64_t kms_endscan_slab_dead;
1093 1093          uint64_t kms_endscan_slab_destroyed;
1094 1094          uint64_t kms_endscan_nomem;
1095 1095          uint64_t kms_endscan_refcnt_changed;
1096 1096          uint64_t kms_endscan_nomove_changed;
1097 1097          uint64_t kms_endscan_freelist;
1098 1098          uint64_t kms_avl_update;
1099 1099          uint64_t kms_avl_noupdate;
1100 1100          uint64_t kms_no_longer_reclaimable;
1101 1101          uint64_t kms_notify_no_longer_reclaimable;
1102 1102          uint64_t kms_notify_slab_dead;
1103 1103          uint64_t kms_notify_slab_destroyed;
1104 1104          uint64_t kms_alloc_fail;
1105 1105          uint64_t kms_constructor_fail;
1106 1106          uint64_t kms_dead_slabs_freed;
1107 1107          uint64_t kms_defrags;
1108 1108          uint64_t kms_scans;
1109 1109          uint64_t kms_scan_depot_ws_reaps;
1110 1110          uint64_t kms_debug_reaps;
1111 1111          uint64_t kms_debug_scans;
1112 1112  } kmem_move_stats;
1113 1113  #endif  /* KMEM_STATS */
1114 1114  
1115 1115  /* consolidator knobs */
1116 1116  static boolean_t kmem_move_noreap;
1117 1117  static boolean_t kmem_move_blocked;
1118 1118  static boolean_t kmem_move_fulltilt;
1119 1119  static boolean_t kmem_move_any_partial;
1120 1120  
1121 1121  #ifdef  DEBUG
1122 1122  /*
1123 1123   * kmem consolidator debug tunables:
1124 1124   * Ensure code coverage by occasionally running the consolidator even when the
1125 1125   * caches are not fragmented (they may never be). These intervals are mean time
1126 1126   * in cache maintenance intervals (kmem_cache_update).
1127 1127   */
1128 1128  uint32_t kmem_mtb_move = 60;    /* defrag 1 slab (~15min) */
1129 1129  uint32_t kmem_mtb_reap = 1800;  /* defrag all slabs (~7.5hrs) */
1130 1130  #endif  /* DEBUG */
1131 1131  
1132 1132  static kmem_cache_t     *kmem_defrag_cache;
1133 1133  static kmem_cache_t     *kmem_move_cache;
1134 1134  static taskq_t          *kmem_move_taskq;
1135 1135  
1136 1136  static void kmem_cache_scan(kmem_cache_t *);
1137 1137  static void kmem_cache_defrag(kmem_cache_t *);
1138 1138  static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1139 1139  
1140 1140  
1141 1141  kmem_log_header_t       *kmem_transaction_log;
1142 1142  kmem_log_header_t       *kmem_content_log;
1143 1143  kmem_log_header_t       *kmem_failure_log;
1144 1144  kmem_log_header_t       *kmem_slab_log;
1145 1145  
1146 1146  static int              kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1147 1147  
1148 1148  #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller)                       \
1149 1149          if ((count) > 0) {                                              \
1150 1150                  pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history;    \
1151 1151                  pc_t *_e;                                               \
1152 1152                  /* memmove() the old entries down one notch */          \
1153 1153                  for (_e = &_s[(count) - 1]; _e > _s; _e--)              \
1154 1154                          *_e = *(_e - 1);                                \
1155 1155                  *_s = (uintptr_t)(caller);                              \
1156 1156          }
1157 1157  
1158 1158  #define KMERR_MODIFIED  0       /* buffer modified while on freelist */
1159 1159  #define KMERR_REDZONE   1       /* redzone violation (write past end of buf) */
1160 1160  #define KMERR_DUPFREE   2       /* freed a buffer twice */
1161 1161  #define KMERR_BADADDR   3       /* freed a bad (unallocated) address */
1162 1162  #define KMERR_BADBUFTAG 4       /* buftag corrupted */
1163 1163  #define KMERR_BADBUFCTL 5       /* bufctl corrupted */
1164 1164  #define KMERR_BADCACHE  6       /* freed a buffer to the wrong cache */
1165 1165  #define KMERR_BADSIZE   7       /* alloc size != free size */
1166 1166  #define KMERR_BADBASE   8       /* buffer base address wrong */
1167 1167  
1168 1168  struct {
1169 1169          hrtime_t        kmp_timestamp;  /* timestamp of panic */
1170 1170          int             kmp_error;      /* type of kmem error */
1171 1171          void            *kmp_buffer;    /* buffer that induced panic */
1172 1172          void            *kmp_realbuf;   /* real start address for buffer */
1173 1173          kmem_cache_t    *kmp_cache;     /* buffer's cache according to client */
1174 1174          kmem_cache_t    *kmp_realcache; /* actual cache containing buffer */
1175 1175          kmem_slab_t     *kmp_slab;      /* slab accoring to kmem_findslab() */
1176 1176          kmem_bufctl_t   *kmp_bufctl;    /* bufctl */
1177 1177  } kmem_panic_info;
1178 1178  
1179 1179  
1180 1180  static void
1181 1181  copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1182 1182  {
1183 1183          uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1184 1184          uint64_t *buf = buf_arg;
1185 1185  
1186 1186          while (buf < bufend)
1187 1187                  *buf++ = pattern;
1188 1188  }
1189 1189  
1190 1190  static void *
1191 1191  verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1192 1192  {
1193 1193          uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1194 1194          uint64_t *buf;
1195 1195  
1196 1196          for (buf = buf_arg; buf < bufend; buf++)
1197 1197                  if (*buf != pattern)
1198 1198                          return (buf);
1199 1199          return (NULL);
1200 1200  }
1201 1201  
1202 1202  static void *
1203 1203  verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1204 1204  {
1205 1205          uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1206 1206          uint64_t *buf;
1207 1207  
1208 1208          for (buf = buf_arg; buf < bufend; buf++) {
1209 1209                  if (*buf != old) {
1210 1210                          copy_pattern(old, buf_arg,
1211 1211                              (char *)buf - (char *)buf_arg);
1212 1212                          return (buf);
1213 1213                  }
1214 1214                  *buf = new;
1215 1215          }
1216 1216  
1217 1217          return (NULL);
1218 1218  }
1219 1219  
1220 1220  static void
1221 1221  kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1222 1222  {
1223 1223          kmem_cache_t *cp;
1224 1224  
1225 1225          mutex_enter(&kmem_cache_lock);
1226 1226          for (cp = list_head(&kmem_caches); cp != NULL;
1227 1227              cp = list_next(&kmem_caches, cp))
1228 1228                  if (tq != NULL)
1229 1229                          (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1230 1230                              tqflag);
1231 1231                  else
1232 1232                          func(cp);
1233 1233          mutex_exit(&kmem_cache_lock);
1234 1234  }
1235 1235  
1236 1236  static void
1237 1237  kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1238 1238  {
1239 1239          kmem_cache_t *cp;
1240 1240  
1241 1241          mutex_enter(&kmem_cache_lock);
1242 1242          for (cp = list_head(&kmem_caches); cp != NULL;
1243 1243              cp = list_next(&kmem_caches, cp)) {
1244 1244                  if (!(cp->cache_cflags & KMC_IDENTIFIER))
1245 1245                          continue;
1246 1246                  if (tq != NULL)
1247 1247                          (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1248 1248                              tqflag);
1249 1249                  else
1250 1250                          func(cp);
1251 1251          }
1252 1252          mutex_exit(&kmem_cache_lock);
1253 1253  }
1254 1254  
1255 1255  /*
1256 1256   * Debugging support.  Given a buffer address, find its slab.
1257 1257   */
1258 1258  static kmem_slab_t *
1259 1259  kmem_findslab(kmem_cache_t *cp, void *buf)
1260 1260  {
1261 1261          kmem_slab_t *sp;
1262 1262  
1263 1263          mutex_enter(&cp->cache_lock);
1264 1264          for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1265 1265              sp = list_next(&cp->cache_complete_slabs, sp)) {
1266 1266                  if (KMEM_SLAB_MEMBER(sp, buf)) {
1267 1267                          mutex_exit(&cp->cache_lock);
1268 1268                          return (sp);
1269 1269                  }
1270 1270          }
1271 1271          for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1272 1272              sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1273 1273                  if (KMEM_SLAB_MEMBER(sp, buf)) {
1274 1274                          mutex_exit(&cp->cache_lock);
1275 1275                          return (sp);
1276 1276                  }
1277 1277          }
1278 1278          mutex_exit(&cp->cache_lock);
1279 1279  
1280 1280          return (NULL);
1281 1281  }
1282 1282  
1283 1283  static void
1284 1284  kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1285 1285  {
1286 1286          kmem_buftag_t *btp = NULL;
1287 1287          kmem_bufctl_t *bcp = NULL;
1288 1288          kmem_cache_t *cp = cparg;
1289 1289          kmem_slab_t *sp;
1290 1290          uint64_t *off;
1291 1291          void *buf = bufarg;
1292 1292  
1293 1293          kmem_logging = 0;       /* stop logging when a bad thing happens */
1294 1294  
1295 1295          kmem_panic_info.kmp_timestamp = gethrtime();
1296 1296  
1297 1297          sp = kmem_findslab(cp, buf);
1298 1298          if (sp == NULL) {
1299 1299                  for (cp = list_tail(&kmem_caches); cp != NULL;
1300 1300                      cp = list_prev(&kmem_caches, cp)) {
1301 1301                          if ((sp = kmem_findslab(cp, buf)) != NULL)
1302 1302                                  break;
1303 1303                  }
1304 1304          }
1305 1305  
1306 1306          if (sp == NULL) {
1307 1307                  cp = NULL;
1308 1308                  error = KMERR_BADADDR;
1309 1309          } else {
1310 1310                  if (cp != cparg)
1311 1311                          error = KMERR_BADCACHE;
1312 1312                  else
1313 1313                          buf = (char *)bufarg - ((uintptr_t)bufarg -
1314 1314                              (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1315 1315                  if (buf != bufarg)
1316 1316                          error = KMERR_BADBASE;
1317 1317                  if (cp->cache_flags & KMF_BUFTAG)
1318 1318                          btp = KMEM_BUFTAG(cp, buf);
1319 1319                  if (cp->cache_flags & KMF_HASH) {
1320 1320                          mutex_enter(&cp->cache_lock);
1321 1321                          for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1322 1322                                  if (bcp->bc_addr == buf)
1323 1323                                          break;
1324 1324                          mutex_exit(&cp->cache_lock);
1325 1325                          if (bcp == NULL && btp != NULL)
1326 1326                                  bcp = btp->bt_bufctl;
1327 1327                          if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1328 1328                              NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1329 1329                              bcp->bc_addr != buf) {
1330 1330                                  error = KMERR_BADBUFCTL;
1331 1331                                  bcp = NULL;
1332 1332                          }
1333 1333                  }
1334 1334          }
1335 1335  
1336 1336          kmem_panic_info.kmp_error = error;
1337 1337          kmem_panic_info.kmp_buffer = bufarg;
1338 1338          kmem_panic_info.kmp_realbuf = buf;
1339 1339          kmem_panic_info.kmp_cache = cparg;
1340 1340          kmem_panic_info.kmp_realcache = cp;
1341 1341          kmem_panic_info.kmp_slab = sp;
1342 1342          kmem_panic_info.kmp_bufctl = bcp;
1343 1343  
1344 1344          printf("kernel memory allocator: ");
1345 1345  
1346 1346          switch (error) {
1347 1347  
1348 1348          case KMERR_MODIFIED:
1349 1349                  printf("buffer modified after being freed\n");
1350 1350                  off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1351 1351                  if (off == NULL)        /* shouldn't happen */
1352 1352                          off = buf;
1353 1353                  printf("modification occurred at offset 0x%lx "
1354 1354                      "(0x%llx replaced by 0x%llx)\n",
1355 1355                      (uintptr_t)off - (uintptr_t)buf,
1356 1356                      (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1357 1357                  break;
1358 1358  
1359 1359          case KMERR_REDZONE:
1360 1360                  printf("redzone violation: write past end of buffer\n");
1361 1361                  break;
1362 1362  
1363 1363          case KMERR_BADADDR:
1364 1364                  printf("invalid free: buffer not in cache\n");
1365 1365                  break;
1366 1366  
1367 1367          case KMERR_DUPFREE:
1368 1368                  printf("duplicate free: buffer freed twice\n");
1369 1369                  break;
1370 1370  
1371 1371          case KMERR_BADBUFTAG:
1372 1372                  printf("boundary tag corrupted\n");
1373 1373                  printf("bcp ^ bxstat = %lx, should be %lx\n",
1374 1374                      (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1375 1375                      KMEM_BUFTAG_FREE);
1376 1376                  break;
1377 1377  
1378 1378          case KMERR_BADBUFCTL:
1379 1379                  printf("bufctl corrupted\n");
1380 1380                  break;
1381 1381  
1382 1382          case KMERR_BADCACHE:
1383 1383                  printf("buffer freed to wrong cache\n");
1384 1384                  printf("buffer was allocated from %s,\n", cp->cache_name);
1385 1385                  printf("caller attempting free to %s.\n", cparg->cache_name);
1386 1386                  break;
1387 1387  
1388 1388          case KMERR_BADSIZE:
1389 1389                  printf("bad free: free size (%u) != alloc size (%u)\n",
1390 1390                      KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1391 1391                      KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1392 1392                  break;
1393 1393  
1394 1394          case KMERR_BADBASE:
1395 1395                  printf("bad free: free address (%p) != alloc address (%p)\n",
1396 1396                      bufarg, buf);
1397 1397                  break;
1398 1398          }
1399 1399  
1400 1400          printf("buffer=%p  bufctl=%p  cache: %s\n",
1401 1401              bufarg, (void *)bcp, cparg->cache_name);
1402 1402  
1403 1403          if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1404 1404              error != KMERR_BADBUFCTL) {
1405 1405                  int d;
1406 1406                  timestruc_t ts;
1407 1407                  kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1408 1408  
1409 1409                  hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1410 1410                  printf("previous transaction on buffer %p:\n", buf);
1411 1411                  printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
1412 1412                      (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1413 1413                      (void *)sp, cp->cache_name);
1414 1414                  for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1415 1415                          ulong_t off;
1416 1416                          char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1417 1417                          printf("%s+%lx\n", sym ? sym : "?", off);
1418 1418                  }
1419 1419          }
1420 1420          if (kmem_panic > 0)
1421 1421                  panic("kernel heap corruption detected");
1422 1422          if (kmem_panic == 0)
1423 1423                  debug_enter(NULL);
1424 1424          kmem_logging = 1;       /* resume logging */
1425 1425  }
1426 1426  
1427 1427  static kmem_log_header_t *
1428 1428  kmem_log_init(size_t logsize)
1429 1429  {
1430 1430          kmem_log_header_t *lhp;
1431 1431          int nchunks = 4 * max_ncpus;
1432 1432          size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1433 1433          int i;
1434 1434  
1435 1435          /*
1436 1436           * Make sure that lhp->lh_cpu[] is nicely aligned
1437 1437           * to prevent false sharing of cache lines.
1438 1438           */
1439 1439          lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1440 1440          lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1441 1441              NULL, NULL, VM_SLEEP);
1442 1442          bzero(lhp, lhsize);
1443 1443  
1444 1444          mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1445 1445          lhp->lh_nchunks = nchunks;
1446 1446          lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1447 1447          lhp->lh_base = vmem_alloc(kmem_log_arena,
1448 1448              lhp->lh_chunksize * nchunks, VM_SLEEP);
1449 1449          lhp->lh_free = vmem_alloc(kmem_log_arena,
1450 1450              nchunks * sizeof (int), VM_SLEEP);
1451 1451          bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1452 1452  
1453 1453          for (i = 0; i < max_ncpus; i++) {
1454 1454                  kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1455 1455                  mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1456 1456                  clhp->clh_chunk = i;
1457 1457          }
1458 1458  
1459 1459          for (i = max_ncpus; i < nchunks; i++)
1460 1460                  lhp->lh_free[i] = i;
1461 1461  
1462 1462          lhp->lh_head = max_ncpus;
1463 1463          lhp->lh_tail = 0;
1464 1464  
1465 1465          return (lhp);
1466 1466  }
1467 1467  
1468 1468  static void *
1469 1469  kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1470 1470  {
1471 1471          void *logspace;
1472 1472          kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid];
1473 1473  
1474 1474          if (lhp == NULL || kmem_logging == 0 || panicstr)
1475 1475                  return (NULL);
1476 1476  
1477 1477          mutex_enter(&clhp->clh_lock);
1478 1478          clhp->clh_hits++;
1479 1479          if (size > clhp->clh_avail) {
1480 1480                  mutex_enter(&lhp->lh_lock);
1481 1481                  lhp->lh_hits++;
1482 1482                  lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1483 1483                  lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1484 1484                  clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1485 1485                  lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1486 1486                  clhp->clh_current = lhp->lh_base +
1487 1487                      clhp->clh_chunk * lhp->lh_chunksize;
1488 1488                  clhp->clh_avail = lhp->lh_chunksize;
1489 1489                  if (size > lhp->lh_chunksize)
1490 1490                          size = lhp->lh_chunksize;
1491 1491                  mutex_exit(&lhp->lh_lock);
1492 1492          }
1493 1493          logspace = clhp->clh_current;
1494 1494          clhp->clh_current += size;
1495 1495          clhp->clh_avail -= size;
1496 1496          bcopy(data, logspace, size);
1497 1497          mutex_exit(&clhp->clh_lock);
1498 1498          return (logspace);
1499 1499  }
1500 1500  
1501 1501  #define KMEM_AUDIT(lp, cp, bcp)                                         \
1502 1502  {                                                                       \
1503 1503          kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);       \
1504 1504          _bcp->bc_timestamp = gethrtime();                               \
1505 1505          _bcp->bc_thread = curthread;                                    \
1506 1506          _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);  \
1507 1507          _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));  \
1508 1508  }
1509 1509  
1510 1510  static void
1511 1511  kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1512 1512      kmem_slab_t *sp, void *addr)
1513 1513  {
1514 1514          kmem_bufctl_audit_t bca;
1515 1515  
1516 1516          bzero(&bca, sizeof (kmem_bufctl_audit_t));
1517 1517          bca.bc_addr = addr;
1518 1518          bca.bc_slab = sp;
1519 1519          bca.bc_cache = cp;
1520 1520          KMEM_AUDIT(lp, cp, &bca);
1521 1521  }
1522 1522  
1523 1523  /*
1524 1524   * Create a new slab for cache cp.
1525 1525   */
1526 1526  static kmem_slab_t *
1527 1527  kmem_slab_create(kmem_cache_t *cp, int kmflag)
1528 1528  {
1529 1529          size_t slabsize = cp->cache_slabsize;
1530 1530          size_t chunksize = cp->cache_chunksize;
1531 1531          int cache_flags = cp->cache_flags;
1532 1532          size_t color, chunks;
1533 1533          char *buf, *slab;
1534 1534          kmem_slab_t *sp;
1535 1535          kmem_bufctl_t *bcp;
1536 1536          vmem_t *vmp = cp->cache_arena;
1537 1537  
1538 1538          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1539 1539  
1540 1540          color = cp->cache_color + cp->cache_align;
1541 1541          if (color > cp->cache_maxcolor)
1542 1542                  color = cp->cache_mincolor;
1543 1543          cp->cache_color = color;
1544 1544  
1545 1545          slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1546 1546  
1547 1547          if (slab == NULL)
1548 1548                  goto vmem_alloc_failure;
1549 1549  
1550 1550          ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1551 1551  
1552 1552          /*
1553 1553           * Reverify what was already checked in kmem_cache_set_move(), since the
1554 1554           * consolidator depends (for correctness) on slabs being initialized
1555 1555           * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1556 1556           * clients to distinguish uninitialized memory from known objects).
1557 1557           */
1558 1558          ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1559 1559          if (!(cp->cache_cflags & KMC_NOTOUCH))
1560 1560                  copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1561 1561  
1562 1562          if (cache_flags & KMF_HASH) {
1563 1563                  if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1564 1564                          goto slab_alloc_failure;
1565 1565                  chunks = (slabsize - color) / chunksize;
1566 1566          } else {
1567 1567                  sp = KMEM_SLAB(cp, slab);
1568 1568                  chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1569 1569          }
1570 1570  
1571 1571          sp->slab_cache  = cp;
1572 1572          sp->slab_head   = NULL;
1573 1573          sp->slab_refcnt = 0;
1574 1574          sp->slab_base   = buf = slab + color;
1575 1575          sp->slab_chunks = chunks;
1576 1576          sp->slab_stuck_offset = (uint32_t)-1;
1577 1577          sp->slab_later_count = 0;
1578 1578          sp->slab_flags = 0;
1579 1579  
1580 1580          ASSERT(chunks > 0);
1581 1581          while (chunks-- != 0) {
1582 1582                  if (cache_flags & KMF_HASH) {
1583 1583                          bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1584 1584                          if (bcp == NULL)
1585 1585                                  goto bufctl_alloc_failure;
1586 1586                          if (cache_flags & KMF_AUDIT) {
1587 1587                                  kmem_bufctl_audit_t *bcap =
1588 1588                                      (kmem_bufctl_audit_t *)bcp;
1589 1589                                  bzero(bcap, sizeof (kmem_bufctl_audit_t));
1590 1590                                  bcap->bc_cache = cp;
1591 1591                          }
1592 1592                          bcp->bc_addr = buf;
1593 1593                          bcp->bc_slab = sp;
1594 1594                  } else {
1595 1595                          bcp = KMEM_BUFCTL(cp, buf);
1596 1596                  }
1597 1597                  if (cache_flags & KMF_BUFTAG) {
1598 1598                          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1599 1599                          btp->bt_redzone = KMEM_REDZONE_PATTERN;
1600 1600                          btp->bt_bufctl = bcp;
1601 1601                          btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1602 1602                          if (cache_flags & KMF_DEADBEEF) {
1603 1603                                  copy_pattern(KMEM_FREE_PATTERN, buf,
1604 1604                                      cp->cache_verify);
1605 1605                          }
1606 1606                  }
1607 1607                  bcp->bc_next = sp->slab_head;
1608 1608                  sp->slab_head = bcp;
1609 1609                  buf += chunksize;
1610 1610          }
1611 1611  
1612 1612          kmem_log_event(kmem_slab_log, cp, sp, slab);
1613 1613  
1614 1614          return (sp);
1615 1615  
1616 1616  bufctl_alloc_failure:
1617 1617  
1618 1618          while ((bcp = sp->slab_head) != NULL) {
1619 1619                  sp->slab_head = bcp->bc_next;
1620 1620                  kmem_cache_free(cp->cache_bufctl_cache, bcp);
1621 1621          }
1622 1622          kmem_cache_free(kmem_slab_cache, sp);
1623 1623  
1624 1624  slab_alloc_failure:
1625 1625  
1626 1626          vmem_free(vmp, slab, slabsize);
1627 1627  
1628 1628  vmem_alloc_failure:
1629 1629  
1630 1630          kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1631 1631          atomic_inc_64(&cp->cache_alloc_fail);
1632 1632  
1633 1633          return (NULL);
1634 1634  }
1635 1635  
1636 1636  /*
1637 1637   * Destroy a slab.
1638 1638   */
1639 1639  static void
1640 1640  kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1641 1641  {
1642 1642          vmem_t *vmp = cp->cache_arena;
1643 1643          void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1644 1644  
1645 1645          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1646 1646          ASSERT(sp->slab_refcnt == 0);
1647 1647  
1648 1648          if (cp->cache_flags & KMF_HASH) {
1649 1649                  kmem_bufctl_t *bcp;
1650 1650                  while ((bcp = sp->slab_head) != NULL) {
1651 1651                          sp->slab_head = bcp->bc_next;
1652 1652                          kmem_cache_free(cp->cache_bufctl_cache, bcp);
1653 1653                  }
1654 1654                  kmem_cache_free(kmem_slab_cache, sp);
1655 1655          }
1656 1656          vmem_free(vmp, slab, cp->cache_slabsize);
1657 1657  }
1658 1658  
1659 1659  static void *
1660 1660  kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
1661 1661  {
1662 1662          kmem_bufctl_t *bcp, **hash_bucket;
1663 1663          void *buf;
1664 1664          boolean_t new_slab = (sp->slab_refcnt == 0);
1665 1665  
1666 1666          ASSERT(MUTEX_HELD(&cp->cache_lock));
1667 1667          /*
1668 1668           * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1669 1669           * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1670 1670           * slab is newly created.
1671 1671           */
1672 1672          ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1673 1673              (sp == avl_first(&cp->cache_partial_slabs))));
1674 1674          ASSERT(sp->slab_cache == cp);
1675 1675  
1676 1676          cp->cache_slab_alloc++;
1677 1677          cp->cache_bufslab--;
1678 1678          sp->slab_refcnt++;
1679 1679  
1680 1680          bcp = sp->slab_head;
1681 1681          sp->slab_head = bcp->bc_next;
1682 1682  
1683 1683          if (cp->cache_flags & KMF_HASH) {
1684 1684                  /*
1685 1685                   * Add buffer to allocated-address hash table.
1686 1686                   */
1687 1687                  buf = bcp->bc_addr;
1688 1688                  hash_bucket = KMEM_HASH(cp, buf);
1689 1689                  bcp->bc_next = *hash_bucket;
1690 1690                  *hash_bucket = bcp;
1691 1691                  if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1692 1692                          KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1693 1693                  }
1694 1694          } else {
1695 1695                  buf = KMEM_BUF(cp, bcp);
1696 1696          }
1697 1697  
1698 1698          ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1699 1699  
1700 1700          if (sp->slab_head == NULL) {
1701 1701                  ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1702 1702                  if (new_slab) {
1703 1703                          ASSERT(sp->slab_chunks == 1);
1704 1704                  } else {
1705 1705                          ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1706 1706                          avl_remove(&cp->cache_partial_slabs, sp);
1707 1707                          sp->slab_later_count = 0; /* clear history */
1708 1708                          sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1709 1709                          sp->slab_stuck_offset = (uint32_t)-1;
1710 1710                  }
1711 1711                  list_insert_head(&cp->cache_complete_slabs, sp);
1712 1712                  cp->cache_complete_slab_count++;
1713 1713                  return (buf);
1714 1714          }
1715 1715  
1716 1716          ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1717 1717          /*
1718 1718           * Peek to see if the magazine layer is enabled before
1719 1719           * we prefill.  We're not holding the cpu cache lock,
1720 1720           * so the peek could be wrong, but there's no harm in it.
1721 1721           */
1722 1722          if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1723 1723              (KMEM_CPU_CACHE(cp)->cc_magsize != 0))  {
1724 1724                  kmem_slab_prefill(cp, sp);
1725 1725                  return (buf);
1726 1726          }
1727 1727  
1728 1728          if (new_slab) {
1729 1729                  avl_add(&cp->cache_partial_slabs, sp);
1730 1730                  return (buf);
1731 1731          }
1732 1732  
1733 1733          /*
1734 1734           * The slab is now more allocated than it was, so the
1735 1735           * order remains unchanged.
1736 1736           */
1737 1737          ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1738 1738          return (buf);
1739 1739  }
1740 1740  
1741 1741  /*
1742 1742   * Allocate a raw (unconstructed) buffer from cp's slab layer.
1743 1743   */
1744 1744  static void *
1745 1745  kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1746 1746  {
1747 1747          kmem_slab_t *sp;
1748 1748          void *buf;
1749 1749          boolean_t test_destructor;
1750 1750  
1751 1751          mutex_enter(&cp->cache_lock);
1752 1752          test_destructor = (cp->cache_slab_alloc == 0);
1753 1753          sp = avl_first(&cp->cache_partial_slabs);
1754 1754          if (sp == NULL) {
1755 1755                  ASSERT(cp->cache_bufslab == 0);
1756 1756  
1757 1757                  /*
1758 1758                   * The freelist is empty.  Create a new slab.
1759 1759                   */
1760 1760                  mutex_exit(&cp->cache_lock);
1761 1761                  if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1762 1762                          return (NULL);
1763 1763                  }
1764 1764                  mutex_enter(&cp->cache_lock);
1765 1765                  cp->cache_slab_create++;
1766 1766                  if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1767 1767                          cp->cache_bufmax = cp->cache_buftotal;
1768 1768                  cp->cache_bufslab += sp->slab_chunks;
1769 1769          }
1770 1770  
1771 1771          buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1772 1772          ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1773 1773              (cp->cache_complete_slab_count +
1774 1774              avl_numnodes(&cp->cache_partial_slabs) +
1775 1775              (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1776 1776          mutex_exit(&cp->cache_lock);
1777 1777  
1778 1778          if (test_destructor && cp->cache_destructor != NULL) {
1779 1779                  /*
1780 1780                   * On the first kmem_slab_alloc(), assert that it is valid to
1781 1781                   * call the destructor on a newly constructed object without any
1782 1782                   * client involvement.
1783 1783                   */
1784 1784                  if ((cp->cache_constructor == NULL) ||
1785 1785                      cp->cache_constructor(buf, cp->cache_private,
1786 1786                      kmflag) == 0) {
1787 1787                          cp->cache_destructor(buf, cp->cache_private);
1788 1788                  }
1789 1789                  copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
1790 1790                      cp->cache_bufsize);
1791 1791                  if (cp->cache_flags & KMF_DEADBEEF) {
1792 1792                          copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1793 1793                  }
1794 1794          }
1795 1795  
1796 1796          return (buf);
1797 1797  }
1798 1798  
1799 1799  static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1800 1800  
1801 1801  /*
1802 1802   * Free a raw (unconstructed) buffer to cp's slab layer.
1803 1803   */
1804 1804  static void
1805 1805  kmem_slab_free(kmem_cache_t *cp, void *buf)
1806 1806  {
1807 1807          kmem_slab_t *sp;
1808 1808          kmem_bufctl_t *bcp, **prev_bcpp;
1809 1809  
1810 1810          ASSERT(buf != NULL);
1811 1811  
1812 1812          mutex_enter(&cp->cache_lock);
1813 1813          cp->cache_slab_free++;
1814 1814  
1815 1815          if (cp->cache_flags & KMF_HASH) {
1816 1816                  /*
1817 1817                   * Look up buffer in allocated-address hash table.
1818 1818                   */
1819 1819                  prev_bcpp = KMEM_HASH(cp, buf);
1820 1820                  while ((bcp = *prev_bcpp) != NULL) {
1821 1821                          if (bcp->bc_addr == buf) {
1822 1822                                  *prev_bcpp = bcp->bc_next;
1823 1823                                  sp = bcp->bc_slab;
1824 1824                                  break;
1825 1825                          }
1826 1826                          cp->cache_lookup_depth++;
1827 1827                          prev_bcpp = &bcp->bc_next;
1828 1828                  }
1829 1829          } else {
1830 1830                  bcp = KMEM_BUFCTL(cp, buf);
1831 1831                  sp = KMEM_SLAB(cp, buf);
1832 1832          }
1833 1833  
1834 1834          if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1835 1835                  mutex_exit(&cp->cache_lock);
1836 1836                  kmem_error(KMERR_BADADDR, cp, buf);
1837 1837                  return;
1838 1838          }
1839 1839  
1840 1840          if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1841 1841                  /*
1842 1842                   * If this is the buffer that prevented the consolidator from
1843 1843                   * clearing the slab, we can reset the slab flags now that the
1844 1844                   * buffer is freed. (It makes sense to do this in
1845 1845                   * kmem_cache_free(), where the client gives up ownership of the
1846 1846                   * buffer, but on the hot path the test is too expensive.)
1847 1847                   */
1848 1848                  kmem_slab_move_yes(cp, sp, buf);
1849 1849          }
1850 1850  
1851 1851          if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1852 1852                  if (cp->cache_flags & KMF_CONTENTS)
1853 1853                          ((kmem_bufctl_audit_t *)bcp)->bc_contents =
1854 1854                              kmem_log_enter(kmem_content_log, buf,
1855 1855                              cp->cache_contents);
1856 1856                  KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1857 1857          }
1858 1858  
1859 1859          bcp->bc_next = sp->slab_head;
1860 1860          sp->slab_head = bcp;
1861 1861  
1862 1862          cp->cache_bufslab++;
1863 1863          ASSERT(sp->slab_refcnt >= 1);
1864 1864  
1865 1865          if (--sp->slab_refcnt == 0) {
1866 1866                  /*
1867 1867                   * There are no outstanding allocations from this slab,
1868 1868                   * so we can reclaim the memory.
1869 1869                   */
1870 1870                  if (sp->slab_chunks == 1) {
1871 1871                          list_remove(&cp->cache_complete_slabs, sp);
1872 1872                          cp->cache_complete_slab_count--;
1873 1873                  } else {
1874 1874                          avl_remove(&cp->cache_partial_slabs, sp);
1875 1875                  }
1876 1876  
1877 1877                  cp->cache_buftotal -= sp->slab_chunks;
1878 1878                  cp->cache_bufslab -= sp->slab_chunks;
1879 1879                  /*
1880 1880                   * Defer releasing the slab to the virtual memory subsystem
1881 1881                   * while there is a pending move callback, since we guarantee
1882 1882                   * that buffers passed to the move callback have only been
1883 1883                   * touched by kmem or by the client itself. Since the memory
1884 1884                   * patterns baddcafe (uninitialized) and deadbeef (freed) both
1885 1885                   * set at least one of the two lowest order bits, the client can
1886 1886                   * test those bits in the move callback to determine whether or
1887 1887                   * not it knows about the buffer (assuming that the client also
1888 1888                   * sets one of those low order bits whenever it frees a buffer).
1889 1889                   */
1890 1890                  if (cp->cache_defrag == NULL ||
1891 1891                      (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1892 1892                      !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1893 1893                          cp->cache_slab_destroy++;
1894 1894                          mutex_exit(&cp->cache_lock);
1895 1895                          kmem_slab_destroy(cp, sp);
1896 1896                  } else {
1897 1897                          list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1898 1898                          /*
1899 1899                           * Slabs are inserted at both ends of the deadlist to
1900 1900                           * distinguish between slabs freed while move callbacks
1901 1901                           * are pending (list head) and a slab freed while the
1902 1902                           * lock is dropped in kmem_move_buffers() (list tail) so
1903 1903                           * that in both cases slab_destroy() is called from the
1904 1904                           * right context.
1905 1905                           */
1906 1906                          if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1907 1907                                  list_insert_tail(deadlist, sp);
1908 1908                          } else {
1909 1909                                  list_insert_head(deadlist, sp);
1910 1910                          }
1911 1911                          cp->cache_defrag->kmd_deadcount++;
1912 1912                          mutex_exit(&cp->cache_lock);
1913 1913                  }
1914 1914                  return;
1915 1915          }
1916 1916  
1917 1917          if (bcp->bc_next == NULL) {
1918 1918                  /* Transition the slab from completely allocated to partial. */
1919 1919                  ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1920 1920                  ASSERT(sp->slab_chunks > 1);
1921 1921                  list_remove(&cp->cache_complete_slabs, sp);
1922 1922                  cp->cache_complete_slab_count--;
1923 1923                  avl_add(&cp->cache_partial_slabs, sp);
1924 1924          } else {
1925 1925  #ifdef  DEBUG
1926 1926                  if (avl_update_gt(&cp->cache_partial_slabs, sp)) {
1927 1927                          KMEM_STAT_ADD(kmem_move_stats.kms_avl_update);
1928 1928                  } else {
1929 1929                          KMEM_STAT_ADD(kmem_move_stats.kms_avl_noupdate);
1930 1930                  }
1931 1931  #else
1932 1932                  (void) avl_update_gt(&cp->cache_partial_slabs, sp);
1933 1933  #endif
1934 1934          }
1935 1935  
1936 1936          ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1937 1937              (cp->cache_complete_slab_count +
1938 1938              avl_numnodes(&cp->cache_partial_slabs) +
1939 1939              (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1940 1940          mutex_exit(&cp->cache_lock);
1941 1941  }
1942 1942  
1943 1943  /*
1944 1944   * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1945 1945   */
1946 1946  static int
1947 1947  kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1948 1948      caddr_t caller)
1949 1949  {
1950 1950          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1951 1951          kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1952 1952          uint32_t mtbf;
1953 1953  
1954 1954          if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1955 1955                  kmem_error(KMERR_BADBUFTAG, cp, buf);
1956 1956                  return (-1);
1957 1957          }
1958 1958  
1959 1959          btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1960 1960  
1961 1961          if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1962 1962                  kmem_error(KMERR_BADBUFCTL, cp, buf);
1963 1963                  return (-1);
1964 1964          }
1965 1965  
1966 1966          if (cp->cache_flags & KMF_DEADBEEF) {
1967 1967                  if (!construct && (cp->cache_flags & KMF_LITE)) {
1968 1968                          if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1969 1969                                  kmem_error(KMERR_MODIFIED, cp, buf);
1970 1970                                  return (-1);
1971 1971                          }
1972 1972                          if (cp->cache_constructor != NULL)
1973 1973                                  *(uint64_t *)buf = btp->bt_redzone;
1974 1974                          else
1975 1975                                  *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1976 1976                  } else {
1977 1977                          construct = 1;
1978 1978                          if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1979 1979                              KMEM_UNINITIALIZED_PATTERN, buf,
1980 1980                              cp->cache_verify)) {
1981 1981                                  kmem_error(KMERR_MODIFIED, cp, buf);
1982 1982                                  return (-1);
1983 1983                          }
1984 1984                  }
1985 1985          }
1986 1986          btp->bt_redzone = KMEM_REDZONE_PATTERN;
1987 1987  
1988 1988          if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1989 1989              gethrtime() % mtbf == 0 &&
1990 1990              (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1991 1991                  kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1992 1992                  if (!construct && cp->cache_destructor != NULL)
1993 1993                          cp->cache_destructor(buf, cp->cache_private);
1994 1994          } else {
1995 1995                  mtbf = 0;
1996 1996          }
1997 1997  
1998 1998          if (mtbf || (construct && cp->cache_constructor != NULL &&
1999 1999              cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
2000 2000                  atomic_inc_64(&cp->cache_alloc_fail);
2001 2001                  btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
2002 2002                  if (cp->cache_flags & KMF_DEADBEEF)
2003 2003                          copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2004 2004                  kmem_slab_free(cp, buf);
2005 2005                  return (1);
2006 2006          }
2007 2007  
2008 2008          if (cp->cache_flags & KMF_AUDIT) {
2009 2009                  KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2010 2010          }
2011 2011  
2012 2012          if ((cp->cache_flags & KMF_LITE) &&
2013 2013              !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2014 2014                  KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2015 2015          }
2016 2016  
2017 2017          return (0);
2018 2018  }
2019 2019  
2020 2020  static int
2021 2021  kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
2022 2022  {
2023 2023          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2024 2024          kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
2025 2025          kmem_slab_t *sp;
2026 2026  
2027 2027          if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
2028 2028                  if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
2029 2029                          kmem_error(KMERR_DUPFREE, cp, buf);
2030 2030                          return (-1);
2031 2031                  }
2032 2032                  sp = kmem_findslab(cp, buf);
2033 2033                  if (sp == NULL || sp->slab_cache != cp)
2034 2034                          kmem_error(KMERR_BADADDR, cp, buf);
2035 2035                  else
2036 2036                          kmem_error(KMERR_REDZONE, cp, buf);
2037 2037                  return (-1);
2038 2038          }
2039 2039  
2040 2040          btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
2041 2041  
2042 2042          if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
2043 2043                  kmem_error(KMERR_BADBUFCTL, cp, buf);
2044 2044                  return (-1);
2045 2045          }
2046 2046  
2047 2047          if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
2048 2048                  kmem_error(KMERR_REDZONE, cp, buf);
2049 2049                  return (-1);
2050 2050          }
2051 2051  
2052 2052          if (cp->cache_flags & KMF_AUDIT) {
2053 2053                  if (cp->cache_flags & KMF_CONTENTS)
2054 2054                          bcp->bc_contents = kmem_log_enter(kmem_content_log,
2055 2055                              buf, cp->cache_contents);
2056 2056                  KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2057 2057          }
2058 2058  
2059 2059          if ((cp->cache_flags & KMF_LITE) &&
2060 2060              !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2061 2061                  KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2062 2062          }
2063 2063  
2064 2064          if (cp->cache_flags & KMF_DEADBEEF) {
2065 2065                  if (cp->cache_flags & KMF_LITE)
2066 2066                          btp->bt_redzone = *(uint64_t *)buf;
2067 2067                  else if (cp->cache_destructor != NULL)
2068 2068                          cp->cache_destructor(buf, cp->cache_private);
2069 2069  
2070 2070                  copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2071 2071          }
2072 2072  
2073 2073          return (0);
2074 2074  }
2075 2075  
2076 2076  /*
2077 2077   * Free each object in magazine mp to cp's slab layer, and free mp itself.
2078 2078   */
2079 2079  static void
2080 2080  kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2081 2081  {
2082 2082          int round;
2083 2083  
2084 2084          ASSERT(!list_link_active(&cp->cache_link) ||
2085 2085              taskq_member(kmem_taskq, curthread));
2086 2086  
2087 2087          for (round = 0; round < nrounds; round++) {
2088 2088                  void *buf = mp->mag_round[round];
2089 2089  
2090 2090                  if (cp->cache_flags & KMF_DEADBEEF) {
2091 2091                          if (verify_pattern(KMEM_FREE_PATTERN, buf,
2092 2092                              cp->cache_verify) != NULL) {
2093 2093                                  kmem_error(KMERR_MODIFIED, cp, buf);
2094 2094                                  continue;
2095 2095                          }
2096 2096                          if ((cp->cache_flags & KMF_LITE) &&
2097 2097                              cp->cache_destructor != NULL) {
2098 2098                                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2099 2099                                  *(uint64_t *)buf = btp->bt_redzone;
2100 2100                                  cp->cache_destructor(buf, cp->cache_private);
2101 2101                                  *(uint64_t *)buf = KMEM_FREE_PATTERN;
2102 2102                          }
2103 2103                  } else if (cp->cache_destructor != NULL) {
2104 2104                          cp->cache_destructor(buf, cp->cache_private);
2105 2105                  }
2106 2106  
2107 2107                  kmem_slab_free(cp, buf);
2108 2108          }
2109 2109          ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2110 2110          kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2111 2111  }
2112 2112  
2113 2113  /*
2114 2114   * Allocate a magazine from the depot.
2115 2115   */
2116 2116  static kmem_magazine_t *
2117 2117  kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2118 2118  {
2119 2119          kmem_magazine_t *mp;
2120 2120  
2121 2121          /*
2122 2122           * If we can't get the depot lock without contention,
2123 2123           * update our contention count.  We use the depot
2124 2124           * contention rate to determine whether we need to
2125 2125           * increase the magazine size for better scalability.
2126 2126           */
2127 2127          if (!mutex_tryenter(&cp->cache_depot_lock)) {
2128 2128                  mutex_enter(&cp->cache_depot_lock);
2129 2129                  cp->cache_depot_contention++;
2130 2130          }
2131 2131  
2132 2132          if ((mp = mlp->ml_list) != NULL) {
2133 2133                  ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2134 2134                  mlp->ml_list = mp->mag_next;
2135 2135                  if (--mlp->ml_total < mlp->ml_min)
2136 2136                          mlp->ml_min = mlp->ml_total;
2137 2137                  mlp->ml_alloc++;
2138 2138          }
2139 2139  
2140 2140          mutex_exit(&cp->cache_depot_lock);
2141 2141  
2142 2142          return (mp);
2143 2143  }
2144 2144  
2145 2145  /*
2146 2146   * Free a magazine to the depot.
2147 2147   */
2148 2148  static void
2149 2149  kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2150 2150  {
2151 2151          mutex_enter(&cp->cache_depot_lock);
2152 2152          ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2153 2153          mp->mag_next = mlp->ml_list;
2154 2154          mlp->ml_list = mp;
2155 2155          mlp->ml_total++;
2156 2156          mutex_exit(&cp->cache_depot_lock);
2157 2157  }
2158 2158  
2159 2159  /*
2160 2160   * Update the working set statistics for cp's depot.
2161 2161   */
2162 2162  static void
2163 2163  kmem_depot_ws_update(kmem_cache_t *cp)
2164 2164  {
2165 2165          mutex_enter(&cp->cache_depot_lock);
2166 2166          cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2167 2167          cp->cache_full.ml_min = cp->cache_full.ml_total;
2168 2168          cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2169 2169          cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2170 2170          mutex_exit(&cp->cache_depot_lock);
2171 2171  }
2172 2172  
2173 2173  /*
2174 2174   * Set the working set statistics for cp's depot to zero.  (Everything is
2175 2175   * eligible for reaping.)
2176 2176   */
2177 2177  static void
2178 2178  kmem_depot_ws_zero(kmem_cache_t *cp)
2179 2179  {
2180 2180          mutex_enter(&cp->cache_depot_lock);
2181 2181          cp->cache_full.ml_reaplimit = cp->cache_full.ml_total;
2182 2182          cp->cache_full.ml_min = cp->cache_full.ml_total;
2183 2183          cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total;
2184 2184          cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2185 2185          mutex_exit(&cp->cache_depot_lock);
2186 2186  }
2187 2187  
2188 2188  /*
2189 2189   * The number of bytes to reap before we call kpreempt(). The default (1MB)
2190 2190   * causes us to preempt reaping up to hundreds of times per second. Using a
2191 2191   * larger value (1GB) causes this to have virtually no effect.
2192 2192   */
2193 2193  size_t kmem_reap_preempt_bytes = 1024 * 1024;
2194 2194  
2195 2195  /*
2196 2196   * Reap all magazines that have fallen out of the depot's working set.
2197 2197   */
2198 2198  static void
2199 2199  kmem_depot_ws_reap(kmem_cache_t *cp)
2200 2200  {
2201 2201          size_t bytes = 0;
2202 2202          long reap;
2203 2203          kmem_magazine_t *mp;
2204 2204  
2205 2205          ASSERT(!list_link_active(&cp->cache_link) ||
2206 2206              taskq_member(kmem_taskq, curthread));
2207 2207  
2208 2208          reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2209 2209          while (reap-- &&
2210 2210              (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) {
2211 2211                  kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2212 2212                  bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2213 2213                  if (bytes > kmem_reap_preempt_bytes) {
2214 2214                          kpreempt(KPREEMPT_SYNC);
2215 2215                          bytes = 0;
2216 2216                  }
2217 2217          }
2218 2218  
2219 2219          reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2220 2220          while (reap-- &&
2221 2221              (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) {
2222 2222                  kmem_magazine_destroy(cp, mp, 0);
2223 2223                  bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2224 2224                  if (bytes > kmem_reap_preempt_bytes) {
2225 2225                          kpreempt(KPREEMPT_SYNC);
2226 2226                          bytes = 0;
2227 2227                  }
2228 2228          }
2229 2229  }
2230 2230  
2231 2231  static void
2232 2232  kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2233 2233  {
2234 2234          ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2235 2235              (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2236 2236          ASSERT(ccp->cc_magsize > 0);
2237 2237  
2238 2238          ccp->cc_ploaded = ccp->cc_loaded;
2239 2239          ccp->cc_prounds = ccp->cc_rounds;
2240 2240          ccp->cc_loaded = mp;
2241 2241          ccp->cc_rounds = rounds;
2242 2242  }
2243 2243  
2244 2244  /*
2245 2245   * Intercept kmem alloc/free calls during crash dump in order to avoid
2246 2246   * changing kmem state while memory is being saved to the dump device.
2247 2247   * Otherwise, ::kmem_verify will report "corrupt buffers".  Note that
2248 2248   * there are no locks because only one CPU calls kmem during a crash
2249 2249   * dump. To enable this feature, first create the associated vmem
2250 2250   * arena with VMC_DUMPSAFE.
2251 2251   */
2252 2252  static void *kmem_dump_start;   /* start of pre-reserved heap */
2253 2253  static void *kmem_dump_end;     /* end of heap area */
2254 2254  static void *kmem_dump_curr;    /* current free heap pointer */
2255 2255  static size_t kmem_dump_size;   /* size of heap area */
2256 2256  
2257 2257  /* append to each buf created in the pre-reserved heap */
2258 2258  typedef struct kmem_dumpctl {
2259 2259          void    *kdc_next;      /* cache dump free list linkage */
2260 2260  } kmem_dumpctl_t;
2261 2261  
2262 2262  #define KMEM_DUMPCTL(cp, buf)   \
2263 2263          ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
2264 2264              sizeof (void *)))
2265 2265  
2266 2266  /* Keep some simple stats. */
2267 2267  #define KMEM_DUMP_LOGS  (100)
2268 2268  
2269 2269  typedef struct kmem_dump_log {
2270 2270          kmem_cache_t    *kdl_cache;
2271 2271          uint_t          kdl_allocs;             /* # of dump allocations */
2272 2272          uint_t          kdl_frees;              /* # of dump frees */
2273 2273          uint_t          kdl_alloc_fails;        /* # of allocation failures */
2274 2274          uint_t          kdl_free_nondump;       /* # of non-dump frees */
2275 2275          uint_t          kdl_unsafe;             /* cache was used, but unsafe */
2276 2276  } kmem_dump_log_t;
2277 2277  
2278 2278  static kmem_dump_log_t *kmem_dump_log;
2279 2279  static int kmem_dump_log_idx;
2280 2280  
2281 2281  #define KDI_LOG(cp, stat) {                                             \
2282 2282          kmem_dump_log_t *kdl;                                           \
2283 2283          if ((kdl = (kmem_dump_log_t *)((cp)->cache_dumplog)) != NULL) { \
2284 2284                  kdl->stat++;                                            \
2285 2285          } else if (kmem_dump_log_idx < KMEM_DUMP_LOGS) {                \
2286 2286                  kdl = &kmem_dump_log[kmem_dump_log_idx++];              \
2287 2287                  kdl->stat++;                                            \
2288 2288                  kdl->kdl_cache = (cp);                                  \
2289 2289                  (cp)->cache_dumplog = kdl;                              \
2290 2290          }                                                               \
2291 2291  }
2292 2292  
2293 2293  /* set non zero for full report */
2294 2294  uint_t kmem_dump_verbose = 0;
2295 2295  
2296 2296  /* stats for overize heap */
2297 2297  uint_t kmem_dump_oversize_allocs = 0;
2298 2298  uint_t kmem_dump_oversize_max = 0;
2299 2299  
2300 2300  static void
2301 2301  kmem_dumppr(char **pp, char *e, const char *format, ...)
2302 2302  {
2303 2303          char *p = *pp;
2304 2304  
2305 2305          if (p < e) {
2306 2306                  int n;
2307 2307                  va_list ap;
2308 2308  
2309 2309                  va_start(ap, format);
2310 2310                  n = vsnprintf(p, e - p, format, ap);
2311 2311                  va_end(ap);
2312 2312                  *pp = p + n;
2313 2313          }
2314 2314  }
2315 2315  
2316 2316  /*
2317 2317   * Called when dumpadm(1M) configures dump parameters.
2318 2318   */
2319 2319  void
2320 2320  kmem_dump_init(size_t size)
2321 2321  {
2322 2322          if (kmem_dump_start != NULL)
2323 2323                  kmem_free(kmem_dump_start, kmem_dump_size);
2324 2324  
2325 2325          if (kmem_dump_log == NULL)
2326 2326                  kmem_dump_log = (kmem_dump_log_t *)kmem_zalloc(KMEM_DUMP_LOGS *
2327 2327                      sizeof (kmem_dump_log_t), KM_SLEEP);
2328 2328  
2329 2329          kmem_dump_start = kmem_alloc(size, KM_SLEEP);
2330 2330  
2331 2331          if (kmem_dump_start != NULL) {
2332 2332                  kmem_dump_size = size;
2333 2333                  kmem_dump_curr = kmem_dump_start;
2334 2334                  kmem_dump_end = (void *)((char *)kmem_dump_start + size);
2335 2335                  copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
2336 2336          } else {
2337 2337                  kmem_dump_size = 0;
2338 2338                  kmem_dump_curr = NULL;
2339 2339                  kmem_dump_end = NULL;
2340 2340          }
2341 2341  }
2342 2342  
2343 2343  /*
2344 2344   * Set flag for each kmem_cache_t if is safe to use alternate dump
2345 2345   * memory. Called just before panic crash dump starts. Set the flag
2346 2346   * for the calling CPU.
2347 2347   */
2348 2348  void
2349 2349  kmem_dump_begin(void)
2350 2350  {
2351 2351          ASSERT(panicstr != NULL);
2352 2352          if (kmem_dump_start != NULL) {
2353 2353                  kmem_cache_t *cp;
2354 2354  
2355 2355                  for (cp = list_head(&kmem_caches); cp != NULL;
2356 2356                      cp = list_next(&kmem_caches, cp)) {
2357 2357                          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2358 2358  
2359 2359                          if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
2360 2360                                  cp->cache_flags |= KMF_DUMPDIVERT;
2361 2361                                  ccp->cc_flags |= KMF_DUMPDIVERT;
2362 2362                                  ccp->cc_dump_rounds = ccp->cc_rounds;
2363 2363                                  ccp->cc_dump_prounds = ccp->cc_prounds;
2364 2364                                  ccp->cc_rounds = ccp->cc_prounds = -1;
2365 2365                          } else {
2366 2366                                  cp->cache_flags |= KMF_DUMPUNSAFE;
2367 2367                                  ccp->cc_flags |= KMF_DUMPUNSAFE;
2368 2368                          }
2369 2369                  }
2370 2370          }
2371 2371  }
2372 2372  
2373 2373  /*
2374 2374   * finished dump intercept
2375 2375   * print any warnings on the console
2376 2376   * return verbose information to dumpsys() in the given buffer
2377 2377   */
2378 2378  size_t
2379 2379  kmem_dump_finish(char *buf, size_t size)
2380 2380  {
2381 2381          int kdi_idx;
2382 2382          int kdi_end = kmem_dump_log_idx;
2383 2383          int percent = 0;
2384 2384          int header = 0;
2385 2385          int warn = 0;
2386 2386          size_t used;
2387 2387          kmem_cache_t *cp;
2388 2388          kmem_dump_log_t *kdl;
2389 2389          char *e = buf + size;
2390 2390          char *p = buf;
2391 2391  
2392 2392          if (kmem_dump_size == 0 || kmem_dump_verbose == 0)
2393 2393                  return (0);
2394 2394  
2395 2395          used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
2396 2396          percent = (used * 100) / kmem_dump_size;
2397 2397  
2398 2398          kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
2399 2399          kmem_dumppr(&p, e, "used bytes,%ld\n", used);
2400 2400          kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
2401 2401          kmem_dumppr(&p, e, "Oversize allocs,%d\n",
2402 2402              kmem_dump_oversize_allocs);
2403 2403          kmem_dumppr(&p, e, "Oversize max size,%ld\n",
2404 2404              kmem_dump_oversize_max);
2405 2405  
2406 2406          for (kdi_idx = 0; kdi_idx < kdi_end; kdi_idx++) {
2407 2407                  kdl = &kmem_dump_log[kdi_idx];
2408 2408                  cp = kdl->kdl_cache;
2409 2409                  if (cp == NULL)
2410 2410                          break;
2411 2411                  if (kdl->kdl_alloc_fails)
2412 2412                          ++warn;
2413 2413                  if (header == 0) {
2414 2414                          kmem_dumppr(&p, e,
2415 2415                              "Cache Name,Allocs,Frees,Alloc Fails,"
2416 2416                              "Nondump Frees,Unsafe Allocs/Frees\n");
2417 2417                          header = 1;
2418 2418                  }
2419 2419                  kmem_dumppr(&p, e, "%s,%d,%d,%d,%d,%d\n",
2420 2420                      cp->cache_name, kdl->kdl_allocs, kdl->kdl_frees,
2421 2421                      kdl->kdl_alloc_fails, kdl->kdl_free_nondump,
2422 2422                      kdl->kdl_unsafe);
2423 2423          }
2424 2424  
2425 2425          /* return buffer size used */
2426 2426          if (p < e)
2427 2427                  bzero(p, e - p);
2428 2428          return (p - buf);
2429 2429  }
2430 2430  
2431 2431  /*
2432 2432   * Allocate a constructed object from alternate dump memory.
2433 2433   */
2434 2434  void *
2435 2435  kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
2436 2436  {
2437 2437          void *buf;
2438 2438          void *curr;
2439 2439          char *bufend;
2440 2440  
2441 2441          /* return a constructed object */
2442 2442          if ((buf = cp->cache_dumpfreelist) != NULL) {
2443 2443                  cp->cache_dumpfreelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
2444 2444                  KDI_LOG(cp, kdl_allocs);
2445 2445                  return (buf);
2446 2446          }
2447 2447  
2448 2448          /* create a new constructed object */
2449 2449          curr = kmem_dump_curr;
2450 2450          buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
2451 2451          bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
2452 2452  
2453 2453          /* hat layer objects cannot cross a page boundary */
2454 2454          if (cp->cache_align < PAGESIZE) {
2455 2455                  char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
2456 2456                  if (bufend > page) {
2457 2457                          bufend += page - (char *)buf;
2458 2458                          buf = (void *)page;
2459 2459                  }
2460 2460          }
2461 2461  
2462 2462          /* fall back to normal alloc if reserved area is used up */
2463 2463          if (bufend > (char *)kmem_dump_end) {
2464 2464                  kmem_dump_curr = kmem_dump_end;
2465 2465                  KDI_LOG(cp, kdl_alloc_fails);
2466 2466                  return (NULL);
2467 2467          }
2468 2468  
2469 2469          /*
2470 2470           * Must advance curr pointer before calling a constructor that
2471 2471           * may also allocate memory.
2472 2472           */
2473 2473          kmem_dump_curr = bufend;
2474 2474  
2475 2475          /* run constructor */
2476 2476          if (cp->cache_constructor != NULL &&
2477 2477              cp->cache_constructor(buf, cp->cache_private, kmflag)
2478 2478              != 0) {
2479 2479  #ifdef DEBUG
2480 2480                  printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
2481 2481                      cp->cache_name, (void *)cp);
2482 2482  #endif
2483 2483                  /* reset curr pointer iff no allocs were done */
2484 2484                  if (kmem_dump_curr == bufend)
2485 2485                          kmem_dump_curr = curr;
2486 2486  
2487 2487                  /* fall back to normal alloc if the constructor fails */
2488 2488                  KDI_LOG(cp, kdl_alloc_fails);
2489 2489                  return (NULL);
2490 2490          }
2491 2491  
2492 2492          KDI_LOG(cp, kdl_allocs);
2493 2493          return (buf);
2494 2494  }
2495 2495  
2496 2496  /*
2497 2497   * Free a constructed object in alternate dump memory.
2498 2498   */
2499 2499  int
2500 2500  kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
2501 2501  {
2502 2502          /* save constructed buffers for next time */
2503 2503          if ((char *)buf >= (char *)kmem_dump_start &&
2504 2504              (char *)buf < (char *)kmem_dump_end) {
2505 2505                  KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dumpfreelist;
2506 2506                  cp->cache_dumpfreelist = buf;
2507 2507                  KDI_LOG(cp, kdl_frees);
2508 2508                  return (0);
2509 2509          }
2510 2510  
2511 2511          /* count all non-dump buf frees */
2512 2512          KDI_LOG(cp, kdl_free_nondump);
2513 2513  
2514 2514          /* just drop buffers that were allocated before dump started */
2515 2515          if (kmem_dump_curr < kmem_dump_end)
2516 2516                  return (0);
2517 2517  
2518 2518          /* fall back to normal free if reserved area is used up */
2519 2519          return (1);
2520 2520  }
2521 2521  
2522 2522  /*
2523 2523   * Allocate a constructed object from cache cp.
2524 2524   */
2525 2525  void *
2526 2526  kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2527 2527  {
2528 2528          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2529 2529          kmem_magazine_t *fmp;
2530 2530          void *buf;
2531 2531  
2532 2532          mutex_enter(&ccp->cc_lock);
2533 2533          for (;;) {
2534 2534                  /*
2535 2535                   * If there's an object available in the current CPU's
2536 2536                   * loaded magazine, just take it and return.
2537 2537                   */
2538 2538                  if (ccp->cc_rounds > 0) {
2539 2539                          buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2540 2540                          ccp->cc_alloc++;
2541 2541                          mutex_exit(&ccp->cc_lock);
2542 2542                          if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
2543 2543                                  if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2544 2544                                          ASSERT(!(ccp->cc_flags &
2545 2545                                              KMF_DUMPDIVERT));
2546 2546                                          KDI_LOG(cp, kdl_unsafe);
2547 2547                                  }
2548 2548                                  if ((ccp->cc_flags & KMF_BUFTAG) &&
2549 2549                                      kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2550 2550                                      caller()) != 0) {
2551 2551                                          if (kmflag & KM_NOSLEEP)
2552 2552                                                  return (NULL);
2553 2553                                          mutex_enter(&ccp->cc_lock);
2554 2554                                          continue;
2555 2555                                  }
2556 2556                          }
2557 2557                          return (buf);
2558 2558                  }
2559 2559  
2560 2560                  /*
2561 2561                   * The loaded magazine is empty.  If the previously loaded
2562 2562                   * magazine was full, exchange them and try again.
2563 2563                   */
2564 2564                  if (ccp->cc_prounds > 0) {
2565 2565                          kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2566 2566                          continue;
2567 2567                  }
2568 2568  
2569 2569                  /*
2570 2570                   * Return an alternate buffer at dump time to preserve
2571 2571                   * the heap.
2572 2572                   */
2573 2573                  if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2574 2574                          if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2575 2575                                  ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2576 2576                                  /* log it so that we can warn about it */
2577 2577                                  KDI_LOG(cp, kdl_unsafe);
2578 2578                          } else {
2579 2579                                  if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
2580 2580                                      NULL) {
2581 2581                                          mutex_exit(&ccp->cc_lock);
2582 2582                                          return (buf);
2583 2583                                  }
2584 2584                                  break;          /* fall back to slab layer */
2585 2585                          }
2586 2586                  }
2587 2587  
2588 2588                  /*
2589 2589                   * If the magazine layer is disabled, break out now.
2590 2590                   */
2591 2591                  if (ccp->cc_magsize == 0)
2592 2592                          break;
2593 2593  
2594 2594                  /*
2595 2595                   * Try to get a full magazine from the depot.
2596 2596                   */
2597 2597                  fmp = kmem_depot_alloc(cp, &cp->cache_full);
2598 2598                  if (fmp != NULL) {
2599 2599                          if (ccp->cc_ploaded != NULL)
2600 2600                                  kmem_depot_free(cp, &cp->cache_empty,
2601 2601                                      ccp->cc_ploaded);
2602 2602                          kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2603 2603                          continue;
2604 2604                  }
2605 2605  
2606 2606                  /*
2607 2607                   * There are no full magazines in the depot,
2608 2608                   * so fall through to the slab layer.
2609 2609                   */
2610 2610                  break;
2611 2611          }
2612 2612          mutex_exit(&ccp->cc_lock);
2613 2613  
2614 2614          /*
2615 2615           * We couldn't allocate a constructed object from the magazine layer,
2616 2616           * so get a raw buffer from the slab layer and apply its constructor.
2617 2617           */
2618 2618          buf = kmem_slab_alloc(cp, kmflag);
2619 2619  
2620 2620          if (buf == NULL)
2621 2621                  return (NULL);
2622 2622  
2623 2623          if (cp->cache_flags & KMF_BUFTAG) {
2624 2624                  /*
2625 2625                   * Make kmem_cache_alloc_debug() apply the constructor for us.
2626 2626                   */
2627 2627                  int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2628 2628                  if (rc != 0) {
2629 2629                          if (kmflag & KM_NOSLEEP)
2630 2630                                  return (NULL);
2631 2631                          /*
2632 2632                           * kmem_cache_alloc_debug() detected corruption
2633 2633                           * but didn't panic (kmem_panic <= 0). We should not be
2634 2634                           * here because the constructor failed (indicated by a
2635 2635                           * return code of 1). Try again.
2636 2636                           */
2637 2637                          ASSERT(rc == -1);
2638 2638                          return (kmem_cache_alloc(cp, kmflag));
2639 2639                  }
2640 2640                  return (buf);
2641 2641          }
2642 2642  
2643 2643          if (cp->cache_constructor != NULL &&
2644 2644              cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2645 2645                  atomic_inc_64(&cp->cache_alloc_fail);
2646 2646                  kmem_slab_free(cp, buf);
2647 2647                  return (NULL);
2648 2648          }
2649 2649  
2650 2650          return (buf);
2651 2651  }
2652 2652  
2653 2653  /*
2654 2654   * The freed argument tells whether or not kmem_cache_free_debug() has already
2655 2655   * been called so that we can avoid the duplicate free error. For example, a
2656 2656   * buffer on a magazine has already been freed by the client but is still
2657 2657   * constructed.
2658 2658   */
2659 2659  static void
2660 2660  kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2661 2661  {
2662 2662          if (!freed && (cp->cache_flags & KMF_BUFTAG))
2663 2663                  if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2664 2664                          return;
2665 2665  
2666 2666          /*
2667 2667           * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2668 2668           * kmem_cache_free_debug() will have already applied the destructor.
2669 2669           */
2670 2670          if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2671 2671              cp->cache_destructor != NULL) {
2672 2672                  if (cp->cache_flags & KMF_DEADBEEF) {   /* KMF_LITE implied */
2673 2673                          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2674 2674                          *(uint64_t *)buf = btp->bt_redzone;
2675 2675                          cp->cache_destructor(buf, cp->cache_private);
2676 2676                          *(uint64_t *)buf = KMEM_FREE_PATTERN;
2677 2677                  } else {
2678 2678                          cp->cache_destructor(buf, cp->cache_private);
2679 2679                  }
2680 2680          }
2681 2681  
2682 2682          kmem_slab_free(cp, buf);
2683 2683  }
2684 2684  
2685 2685  /*
2686 2686   * Used when there's no room to free a buffer to the per-CPU cache.
2687 2687   * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2688 2688   * caller should try freeing to the per-CPU cache again.
2689 2689   * Note that we don't directly install the magazine in the cpu cache,
2690 2690   * since its state may have changed wildly while the lock was dropped.
2691 2691   */
2692 2692  static int
2693 2693  kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2694 2694  {
2695 2695          kmem_magazine_t *emp;
2696 2696          kmem_magtype_t *mtp;
2697 2697  
2698 2698          ASSERT(MUTEX_HELD(&ccp->cc_lock));
2699 2699          ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2700 2700              ((uint_t)ccp->cc_rounds == -1)) &&
2701 2701              ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2702 2702              ((uint_t)ccp->cc_prounds == -1)));
2703 2703  
2704 2704          emp = kmem_depot_alloc(cp, &cp->cache_empty);
2705 2705          if (emp != NULL) {
2706 2706                  if (ccp->cc_ploaded != NULL)
2707 2707                          kmem_depot_free(cp, &cp->cache_full,
2708 2708                              ccp->cc_ploaded);
2709 2709                  kmem_cpu_reload(ccp, emp, 0);
2710 2710                  return (1);
2711 2711          }
2712 2712          /*
2713 2713           * There are no empty magazines in the depot,
2714 2714           * so try to allocate a new one.  We must drop all locks
2715 2715           * across kmem_cache_alloc() because lower layers may
2716 2716           * attempt to allocate from this cache.
2717 2717           */
2718 2718          mtp = cp->cache_magtype;
2719 2719          mutex_exit(&ccp->cc_lock);
2720 2720          emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2721 2721          mutex_enter(&ccp->cc_lock);
2722 2722  
2723 2723          if (emp != NULL) {
2724 2724                  /*
2725 2725                   * We successfully allocated an empty magazine.
2726 2726                   * However, we had to drop ccp->cc_lock to do it,
2727 2727                   * so the cache's magazine size may have changed.
2728 2728                   * If so, free the magazine and try again.
2729 2729                   */
2730 2730                  if (ccp->cc_magsize != mtp->mt_magsize) {
2731 2731                          mutex_exit(&ccp->cc_lock);
2732 2732                          kmem_cache_free(mtp->mt_cache, emp);
2733 2733                          mutex_enter(&ccp->cc_lock);
2734 2734                          return (1);
2735 2735                  }
2736 2736  
2737 2737                  /*
2738 2738                   * We got a magazine of the right size.  Add it to
2739 2739                   * the depot and try the whole dance again.
2740 2740                   */
2741 2741                  kmem_depot_free(cp, &cp->cache_empty, emp);
2742 2742                  return (1);
2743 2743          }
2744 2744  
2745 2745          /*
2746 2746           * We couldn't allocate an empty magazine,
2747 2747           * so fall through to the slab layer.
2748 2748           */
2749 2749          return (0);
2750 2750  }
2751 2751  
2752 2752  /*
2753 2753   * Free a constructed object to cache cp.
2754 2754   */
2755 2755  void
2756 2756  kmem_cache_free(kmem_cache_t *cp, void *buf)
2757 2757  {
2758 2758          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2759 2759  
2760 2760          /*
2761 2761           * The client must not free either of the buffers passed to the move
2762 2762           * callback function.
2763 2763           */
2764 2764          ASSERT(cp->cache_defrag == NULL ||
2765 2765              cp->cache_defrag->kmd_thread != curthread ||
2766 2766              (buf != cp->cache_defrag->kmd_from_buf &&
2767 2767              buf != cp->cache_defrag->kmd_to_buf));
2768 2768  
2769 2769          if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2770 2770                  if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2771 2771                          ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2772 2772                          /* log it so that we can warn about it */
2773 2773                          KDI_LOG(cp, kdl_unsafe);
2774 2774                  } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2775 2775                          return;
2776 2776                  }
2777 2777                  if (ccp->cc_flags & KMF_BUFTAG) {
2778 2778                          if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2779 2779                                  return;
2780 2780                  }
2781 2781          }
2782 2782  
2783 2783          mutex_enter(&ccp->cc_lock);
2784 2784          /*
2785 2785           * Any changes to this logic should be reflected in kmem_slab_prefill()
2786 2786           */
2787 2787          for (;;) {
2788 2788                  /*
2789 2789                   * If there's a slot available in the current CPU's
2790 2790                   * loaded magazine, just put the object there and return.
2791 2791                   */
2792 2792                  if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2793 2793                          ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2794 2794                          ccp->cc_free++;
2795 2795                          mutex_exit(&ccp->cc_lock);
2796 2796                          return;
2797 2797                  }
2798 2798  
2799 2799                  /*
2800 2800                   * The loaded magazine is full.  If the previously loaded
2801 2801                   * magazine was empty, exchange them and try again.
2802 2802                   */
2803 2803                  if (ccp->cc_prounds == 0) {
2804 2804                          kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2805 2805                          continue;
2806 2806                  }
2807 2807  
2808 2808                  /*
2809 2809                   * If the magazine layer is disabled, break out now.
2810 2810                   */
2811 2811                  if (ccp->cc_magsize == 0)
2812 2812                          break;
2813 2813  
2814 2814                  if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2815 2815                          /*
2816 2816                           * We couldn't free our constructed object to the
2817 2817                           * magazine layer, so apply its destructor and free it
2818 2818                           * to the slab layer.
2819 2819                           */
2820 2820                          break;
2821 2821                  }
2822 2822          }
2823 2823          mutex_exit(&ccp->cc_lock);
2824 2824          kmem_slab_free_constructed(cp, buf, B_TRUE);
2825 2825  }
2826 2826  
2827 2827  static void
2828 2828  kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2829 2829  {
2830 2830          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2831 2831          int cache_flags = cp->cache_flags;
2832 2832  
2833 2833          kmem_bufctl_t *next, *head;
2834 2834          size_t nbufs;
2835 2835  
2836 2836          /*
2837 2837           * Completely allocate the newly created slab and put the pre-allocated
2838 2838           * buffers in magazines. Any of the buffers that cannot be put in
2839 2839           * magazines must be returned to the slab.
2840 2840           */
2841 2841          ASSERT(MUTEX_HELD(&cp->cache_lock));
2842 2842          ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2843 2843          ASSERT(cp->cache_constructor == NULL);
2844 2844          ASSERT(sp->slab_cache == cp);
2845 2845          ASSERT(sp->slab_refcnt == 1);
2846 2846          ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2847 2847          ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2848 2848  
2849 2849          head = sp->slab_head;
2850 2850          nbufs = (sp->slab_chunks - sp->slab_refcnt);
2851 2851          sp->slab_head = NULL;
2852 2852          sp->slab_refcnt += nbufs;
2853 2853          cp->cache_bufslab -= nbufs;
2854 2854          cp->cache_slab_alloc += nbufs;
2855 2855          list_insert_head(&cp->cache_complete_slabs, sp);
2856 2856          cp->cache_complete_slab_count++;
2857 2857          mutex_exit(&cp->cache_lock);
2858 2858          mutex_enter(&ccp->cc_lock);
2859 2859  
2860 2860          while (head != NULL) {
2861 2861                  void *buf = KMEM_BUF(cp, head);
2862 2862                  /*
2863 2863                   * If there's a slot available in the current CPU's
2864 2864                   * loaded magazine, just put the object there and
2865 2865                   * continue.
2866 2866                   */
2867 2867                  if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2868 2868                          ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2869 2869                              buf;
2870 2870                          ccp->cc_free++;
2871 2871                          nbufs--;
2872 2872                          head = head->bc_next;
2873 2873                          continue;
2874 2874                  }
2875 2875  
2876 2876                  /*
2877 2877                   * The loaded magazine is full.  If the previously
2878 2878                   * loaded magazine was empty, exchange them and try
2879 2879                   * again.
2880 2880                   */
2881 2881                  if (ccp->cc_prounds == 0) {
2882 2882                          kmem_cpu_reload(ccp, ccp->cc_ploaded,
2883 2883                              ccp->cc_prounds);
2884 2884                          continue;
2885 2885                  }
2886 2886  
2887 2887                  /*
2888 2888                   * If the magazine layer is disabled, break out now.
2889 2889                   */
2890 2890  
2891 2891                  if (ccp->cc_magsize == 0) {
2892 2892                          break;
2893 2893                  }
2894 2894  
2895 2895                  if (!kmem_cpucache_magazine_alloc(ccp, cp))
2896 2896                          break;
2897 2897          }
2898 2898          mutex_exit(&ccp->cc_lock);
2899 2899          if (nbufs != 0) {
2900 2900                  ASSERT(head != NULL);
2901 2901  
2902 2902                  /*
2903 2903                   * If there was a failure, return remaining objects to
2904 2904                   * the slab
2905 2905                   */
2906 2906                  while (head != NULL) {
2907 2907                          ASSERT(nbufs != 0);
2908 2908                          next = head->bc_next;
2909 2909                          head->bc_next = NULL;
2910 2910                          kmem_slab_free(cp, KMEM_BUF(cp, head));
2911 2911                          head = next;
2912 2912                          nbufs--;
2913 2913                  }
2914 2914          }
2915 2915          ASSERT(head == NULL);
2916 2916          ASSERT(nbufs == 0);
2917 2917          mutex_enter(&cp->cache_lock);
2918 2918  }
2919 2919  
2920 2920  void *
2921 2921  kmem_zalloc(size_t size, int kmflag)
2922 2922  {
2923 2923          size_t index;
2924 2924          void *buf;
2925 2925  
2926 2926          if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2927 2927                  kmem_cache_t *cp = kmem_alloc_table[index];
2928 2928                  buf = kmem_cache_alloc(cp, kmflag);
2929 2929                  if (buf != NULL) {
2930 2930                          if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2931 2931                                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2932 2932                                  ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2933 2933                                  ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2934 2934  
2935 2935                                  if (cp->cache_flags & KMF_LITE) {
2936 2936                                          KMEM_BUFTAG_LITE_ENTER(btp,
2937 2937                                              kmem_lite_count, caller());
2938 2938                                  }
2939 2939                          }
2940 2940                          bzero(buf, size);
2941 2941                  }
2942 2942          } else {
2943 2943                  buf = kmem_alloc(size, kmflag);
2944 2944                  if (buf != NULL)
2945 2945                          bzero(buf, size);
2946 2946          }
2947 2947          return (buf);
2948 2948  }
2949 2949  
2950 2950  void *
2951 2951  kmem_alloc(size_t size, int kmflag)
2952 2952  {
2953 2953          size_t index;
2954 2954          kmem_cache_t *cp;
2955 2955          void *buf;
2956 2956  
2957 2957          if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2958 2958                  cp = kmem_alloc_table[index];
2959 2959                  /* fall through to kmem_cache_alloc() */
2960 2960  
2961 2961          } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2962 2962              kmem_big_alloc_table_max) {
2963 2963                  cp = kmem_big_alloc_table[index];
2964 2964                  /* fall through to kmem_cache_alloc() */
2965 2965  
2966 2966          } else {
2967 2967                  if (size == 0)
2968 2968                          return (NULL);
2969 2969  
2970 2970                  buf = vmem_alloc(kmem_oversize_arena, size,
2971 2971                      kmflag & KM_VMFLAGS);
2972 2972                  if (buf == NULL)
2973 2973                          kmem_log_event(kmem_failure_log, NULL, NULL,
2974 2974                              (void *)size);
2975 2975                  else if (KMEM_DUMP(kmem_slab_cache)) {
2976 2976                          /* stats for dump intercept */
2977 2977                          kmem_dump_oversize_allocs++;
2978 2978                          if (size > kmem_dump_oversize_max)
2979 2979                                  kmem_dump_oversize_max = size;
2980 2980                  }
2981 2981                  return (buf);
2982 2982          }
2983 2983  
2984 2984          buf = kmem_cache_alloc(cp, kmflag);
2985 2985          if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2986 2986                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2987 2987                  ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2988 2988                  ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2989 2989  
2990 2990                  if (cp->cache_flags & KMF_LITE) {
2991 2991                          KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2992 2992                  }
2993 2993          }
2994 2994          return (buf);
2995 2995  }
2996 2996  
2997 2997  void
2998 2998  kmem_free(void *buf, size_t size)
2999 2999  {
3000 3000          size_t index;
3001 3001          kmem_cache_t *cp;
3002 3002  
3003 3003          if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
3004 3004                  cp = kmem_alloc_table[index];
3005 3005                  /* fall through to kmem_cache_free() */
3006 3006  
3007 3007          } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
3008 3008              kmem_big_alloc_table_max) {
3009 3009                  cp = kmem_big_alloc_table[index];
3010 3010                  /* fall through to kmem_cache_free() */
3011 3011  
3012 3012          } else {
3013 3013                  EQUIV(buf == NULL, size == 0);
3014 3014                  if (buf == NULL && size == 0)
3015 3015                          return;
3016 3016                  vmem_free(kmem_oversize_arena, buf, size);
3017 3017                  return;
3018 3018          }
3019 3019  
3020 3020          if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
3021 3021                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
3022 3022                  uint32_t *ip = (uint32_t *)btp;
3023 3023                  if (ip[1] != KMEM_SIZE_ENCODE(size)) {
3024 3024                          if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
3025 3025                                  kmem_error(KMERR_DUPFREE, cp, buf);
3026 3026                                  return;
3027 3027                          }
3028 3028                          if (KMEM_SIZE_VALID(ip[1])) {
3029 3029                                  ip[0] = KMEM_SIZE_ENCODE(size);
3030 3030                                  kmem_error(KMERR_BADSIZE, cp, buf);
3031 3031                          } else {
3032 3032                                  kmem_error(KMERR_REDZONE, cp, buf);
3033 3033                          }
3034 3034                          return;
3035 3035                  }
3036 3036                  if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
3037 3037                          kmem_error(KMERR_REDZONE, cp, buf);
3038 3038                          return;
3039 3039                  }
3040 3040                  btp->bt_redzone = KMEM_REDZONE_PATTERN;
3041 3041                  if (cp->cache_flags & KMF_LITE) {
3042 3042                          KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
3043 3043                              caller());
3044 3044                  }
3045 3045          }
3046 3046          kmem_cache_free(cp, buf);
3047 3047  }
3048 3048  
3049 3049  void *
3050 3050  kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
3051 3051  {
3052 3052          size_t realsize = size + vmp->vm_quantum;
3053 3053          void *addr;
3054 3054  
3055 3055          /*
3056 3056           * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
3057 3057           * vm_quantum will cause integer wraparound.  Check for this, and
3058 3058           * blow off the firewall page in this case.  Note that such a
3059 3059           * giant allocation (the entire kernel address space) can never
3060 3060           * be satisfied, so it will either fail immediately (VM_NOSLEEP)
3061 3061           * or sleep forever (VM_SLEEP).  Thus, there is no need for a
3062 3062           * corresponding check in kmem_firewall_va_free().
3063 3063           */
3064 3064          if (realsize < size)
3065 3065                  realsize = size;
3066 3066  
3067 3067          /*
3068 3068           * While boot still owns resource management, make sure that this
3069 3069           * redzone virtual address allocation is properly accounted for in
3070 3070           * OBPs "virtual-memory" "available" lists because we're
3071 3071           * effectively claiming them for a red zone.  If we don't do this,
3072 3072           * the available lists become too fragmented and too large for the
3073 3073           * current boot/kernel memory list interface.
3074 3074           */
3075 3075          addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
3076 3076  
3077 3077          if (addr != NULL && kvseg.s_base == NULL && realsize != size)
3078 3078                  (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
3079 3079  
3080 3080          return (addr);
3081 3081  }
3082 3082  
3083 3083  void
3084 3084  kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
3085 3085  {
3086 3086          ASSERT((kvseg.s_base == NULL ?
3087 3087              va_to_pfn((char *)addr + size) :
3088 3088              hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
3089 3089  
3090 3090          vmem_free(vmp, addr, size + vmp->vm_quantum);
3091 3091  }
3092 3092  
3093 3093  /*
3094 3094   * Try to allocate at least `size' bytes of memory without sleeping or
3095 3095   * panicking. Return actual allocated size in `asize'. If allocation failed,
3096 3096   * try final allocation with sleep or panic allowed.
3097 3097   */
3098 3098  void *
3099 3099  kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
3100 3100  {
3101 3101          void *p;
3102 3102  
3103 3103          *asize = P2ROUNDUP(size, KMEM_ALIGN);
3104 3104          do {
3105 3105                  p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
3106 3106                  if (p != NULL)
3107 3107                          return (p);
3108 3108                  *asize += KMEM_ALIGN;
3109 3109          } while (*asize <= PAGESIZE);
3110 3110  
3111 3111          *asize = P2ROUNDUP(size, KMEM_ALIGN);
3112 3112          return (kmem_alloc(*asize, kmflag));
3113 3113  }
3114 3114  
3115 3115  /*
3116 3116   * Reclaim all unused memory from a cache.
3117 3117   */
3118 3118  static void
3119 3119  kmem_cache_reap(kmem_cache_t *cp)
3120 3120  {
3121 3121          ASSERT(taskq_member(kmem_taskq, curthread));
3122 3122          cp->cache_reap++;
3123 3123  
3124 3124          /*
3125 3125           * Ask the cache's owner to free some memory if possible.
3126 3126           * The idea is to handle things like the inode cache, which
3127 3127           * typically sits on a bunch of memory that it doesn't truly
3128 3128           * *need*.  Reclaim policy is entirely up to the owner; this
3129 3129           * callback is just an advisory plea for help.
3130 3130           */
3131 3131          if (cp->cache_reclaim != NULL) {
3132 3132                  long delta;
3133 3133  
3134 3134                  /*
3135 3135                   * Reclaimed memory should be reapable (not included in the
3136 3136                   * depot's working set).
3137 3137                   */
3138 3138                  delta = cp->cache_full.ml_total;
3139 3139                  cp->cache_reclaim(cp->cache_private);
3140 3140                  delta = cp->cache_full.ml_total - delta;
3141 3141                  if (delta > 0) {
3142 3142                          mutex_enter(&cp->cache_depot_lock);
3143 3143                          cp->cache_full.ml_reaplimit += delta;
3144 3144                          cp->cache_full.ml_min += delta;
3145 3145                          mutex_exit(&cp->cache_depot_lock);
3146 3146                  }
3147 3147          }
3148 3148  
3149 3149          kmem_depot_ws_reap(cp);
3150 3150  
3151 3151          if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3152 3152                  kmem_cache_defrag(cp);
3153 3153          }
3154 3154  }
3155 3155  
3156 3156  static void
3157 3157  kmem_reap_timeout(void *flag_arg)
3158 3158  {
3159 3159          uint32_t *flag = (uint32_t *)flag_arg;
3160 3160  
3161 3161          ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3162 3162          *flag = 0;
3163 3163  }
3164 3164  
3165 3165  static void
3166 3166  kmem_reap_done(void *flag)
3167 3167  {
3168 3168          if (!callout_init_done) {
3169 3169                  /* can't schedule a timeout at this point */
3170 3170                  kmem_reap_timeout(flag);
3171 3171          } else {
3172 3172                  (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
3173 3173          }
3174 3174  }
3175 3175  
3176 3176  static void
3177 3177  kmem_reap_start(void *flag)
3178 3178  {
3179 3179          ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3180 3180  
3181 3181          if (flag == &kmem_reaping) {
3182 3182                  kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3183 3183                  /*
3184 3184                   * if we have segkp under heap, reap segkp cache.
3185 3185                   */
3186 3186                  if (segkp_fromheap)
3187 3187                          segkp_cache_free();
3188 3188          }
3189 3189          else
3190 3190                  kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3191 3191  
3192 3192          /*
3193 3193           * We use taskq_dispatch() to schedule a timeout to clear
3194 3194           * the flag so that kmem_reap() becomes self-throttling:
3195 3195           * we won't reap again until the current reap completes *and*
3196 3196           * at least kmem_reap_interval ticks have elapsed.
3197 3197           */
3198 3198          if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
3199 3199                  kmem_reap_done(flag);
3200 3200  }
3201 3201  
3202 3202  static void
3203 3203  kmem_reap_common(void *flag_arg)
3204 3204  {
3205 3205          uint32_t *flag = (uint32_t *)flag_arg;
3206 3206  
3207 3207          if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
3208 3208              atomic_cas_32(flag, 0, 1) != 0)
3209 3209                  return;
3210 3210  
3211 3211          /*
3212 3212           * It may not be kosher to do memory allocation when a reap is called
3213 3213           * (for example, if vmem_populate() is in the call chain).  So we
3214 3214           * start the reap going with a TQ_NOALLOC dispatch.  If the dispatch
3215 3215           * fails, we reset the flag, and the next reap will try again.
3216 3216           */
3217 3217          if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
3218 3218                  *flag = 0;
3219 3219  }
3220 3220  
3221 3221  /*
3222 3222   * Reclaim all unused memory from all caches.  Called from the VM system
3223 3223   * when memory gets tight.
3224 3224   */
3225 3225  void
3226 3226  kmem_reap(void)
3227 3227  {
3228 3228          kmem_reap_common(&kmem_reaping);
3229 3229  }
3230 3230  
3231 3231  /*
3232 3232   * Reclaim all unused memory from identifier arenas, called when a vmem
3233 3233   * arena not back by memory is exhausted.  Since reaping memory-backed caches
3234 3234   * cannot help with identifier exhaustion, we avoid both a large amount of
3235 3235   * work and unwanted side-effects from reclaim callbacks.
3236 3236   */
3237 3237  void
3238 3238  kmem_reap_idspace(void)
3239 3239  {
3240 3240          kmem_reap_common(&kmem_reaping_idspace);
3241 3241  }
3242 3242  
3243 3243  /*
3244 3244   * Purge all magazines from a cache and set its magazine limit to zero.
3245 3245   * All calls are serialized by the kmem_taskq lock, except for the final
3246 3246   * call from kmem_cache_destroy().
3247 3247   */
3248 3248  static void
3249 3249  kmem_cache_magazine_purge(kmem_cache_t *cp)
3250 3250  {
3251 3251          kmem_cpu_cache_t *ccp;
3252 3252          kmem_magazine_t *mp, *pmp;
3253 3253          int rounds, prounds, cpu_seqid;
3254 3254  
3255 3255          ASSERT(!list_link_active(&cp->cache_link) ||
3256 3256              taskq_member(kmem_taskq, curthread));
3257 3257          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
3258 3258  
3259 3259          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3260 3260                  ccp = &cp->cache_cpu[cpu_seqid];
3261 3261  
3262 3262                  mutex_enter(&ccp->cc_lock);
3263 3263                  mp = ccp->cc_loaded;
3264 3264                  pmp = ccp->cc_ploaded;
3265 3265                  rounds = ccp->cc_rounds;
3266 3266                  prounds = ccp->cc_prounds;
3267 3267                  ccp->cc_loaded = NULL;
3268 3268                  ccp->cc_ploaded = NULL;
3269 3269                  ccp->cc_rounds = -1;
3270 3270                  ccp->cc_prounds = -1;
3271 3271                  ccp->cc_magsize = 0;
3272 3272                  mutex_exit(&ccp->cc_lock);
3273 3273  
3274 3274                  if (mp)
3275 3275                          kmem_magazine_destroy(cp, mp, rounds);
3276 3276                  if (pmp)
3277 3277                          kmem_magazine_destroy(cp, pmp, prounds);
3278 3278          }
3279 3279  
3280 3280          kmem_depot_ws_zero(cp);
3281 3281          kmem_depot_ws_reap(cp);
3282 3282  }
3283 3283  
3284 3284  /*
3285 3285   * Enable per-cpu magazines on a cache.
3286 3286   */
3287 3287  static void
3288 3288  kmem_cache_magazine_enable(kmem_cache_t *cp)
3289 3289  {
3290 3290          int cpu_seqid;
3291 3291  
3292 3292          if (cp->cache_flags & KMF_NOMAGAZINE)
3293 3293                  return;
3294 3294  
3295 3295          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3296 3296                  kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3297 3297                  mutex_enter(&ccp->cc_lock);
3298 3298                  ccp->cc_magsize = cp->cache_magtype->mt_magsize;
3299 3299                  mutex_exit(&ccp->cc_lock);
3300 3300          }
3301 3301  
3302 3302  }
3303 3303  
3304 3304  /*
3305 3305   * Reap (almost) everything right now.
3306 3306   */
3307 3307  void
3308 3308  kmem_cache_reap_now(kmem_cache_t *cp)
3309 3309  {
3310 3310          ASSERT(list_link_active(&cp->cache_link));
3311 3311  
3312 3312          kmem_depot_ws_zero(cp);
3313 3313  
3314 3314          (void) taskq_dispatch(kmem_taskq,
3315 3315              (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3316 3316          taskq_wait(kmem_taskq);
3317 3317  }
3318 3318  
3319 3319  /*
3320 3320   * Recompute a cache's magazine size.  The trade-off is that larger magazines
3321 3321   * provide a higher transfer rate with the depot, while smaller magazines
3322 3322   * reduce memory consumption.  Magazine resizing is an expensive operation;
3323 3323   * it should not be done frequently.
3324 3324   *
3325 3325   * Changes to the magazine size are serialized by the kmem_taskq lock.
3326 3326   *
3327 3327   * Note: at present this only grows the magazine size.  It might be useful
3328 3328   * to allow shrinkage too.
3329 3329   */
3330 3330  static void
3331 3331  kmem_cache_magazine_resize(kmem_cache_t *cp)
3332 3332  {
3333 3333          kmem_magtype_t *mtp = cp->cache_magtype;
3334 3334  
3335 3335          ASSERT(taskq_member(kmem_taskq, curthread));
3336 3336  
3337 3337          if (cp->cache_chunksize < mtp->mt_maxbuf) {
3338 3338                  kmem_cache_magazine_purge(cp);
3339 3339                  mutex_enter(&cp->cache_depot_lock);
3340 3340                  cp->cache_magtype = ++mtp;
3341 3341                  cp->cache_depot_contention_prev =
3342 3342                      cp->cache_depot_contention + INT_MAX;
3343 3343                  mutex_exit(&cp->cache_depot_lock);
3344 3344                  kmem_cache_magazine_enable(cp);
3345 3345          }
3346 3346  }
3347 3347  
3348 3348  /*
3349 3349   * Rescale a cache's hash table, so that the table size is roughly the
3350 3350   * cache size.  We want the average lookup time to be extremely small.
3351 3351   */
3352 3352  static void
3353 3353  kmem_hash_rescale(kmem_cache_t *cp)
3354 3354  {
3355 3355          kmem_bufctl_t **old_table, **new_table, *bcp;
3356 3356          size_t old_size, new_size, h;
3357 3357  
3358 3358          ASSERT(taskq_member(kmem_taskq, curthread));
3359 3359  
3360 3360          new_size = MAX(KMEM_HASH_INITIAL,
3361 3361              1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
3362 3362          old_size = cp->cache_hash_mask + 1;
3363 3363  
3364 3364          if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
3365 3365                  return;
3366 3366  
3367 3367          new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
3368 3368              VM_NOSLEEP);
3369 3369          if (new_table == NULL)
3370 3370                  return;
3371 3371          bzero(new_table, new_size * sizeof (void *));
3372 3372  
3373 3373          mutex_enter(&cp->cache_lock);
3374 3374  
3375 3375          old_size = cp->cache_hash_mask + 1;
3376 3376          old_table = cp->cache_hash_table;
3377 3377  
3378 3378          cp->cache_hash_mask = new_size - 1;
3379 3379          cp->cache_hash_table = new_table;
3380 3380          cp->cache_rescale++;
3381 3381  
3382 3382          for (h = 0; h < old_size; h++) {
3383 3383                  bcp = old_table[h];
3384 3384                  while (bcp != NULL) {
3385 3385                          void *addr = bcp->bc_addr;
3386 3386                          kmem_bufctl_t *next_bcp = bcp->bc_next;
3387 3387                          kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
3388 3388                          bcp->bc_next = *hash_bucket;
3389 3389                          *hash_bucket = bcp;
3390 3390                          bcp = next_bcp;
3391 3391                  }
3392 3392          }
3393 3393  
3394 3394          mutex_exit(&cp->cache_lock);
3395 3395  
3396 3396          vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
3397 3397  }
3398 3398  
3399 3399  /*
3400 3400   * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3401 3401   * update, magazine resizing, and slab consolidation.
3402 3402   */
3403 3403  static void
3404 3404  kmem_cache_update(kmem_cache_t *cp)
3405 3405  {
3406 3406          int need_hash_rescale = 0;
3407 3407          int need_magazine_resize = 0;
3408 3408  
3409 3409          ASSERT(MUTEX_HELD(&kmem_cache_lock));
3410 3410  
3411 3411          /*
3412 3412           * If the cache has become much larger or smaller than its hash table,
3413 3413           * fire off a request to rescale the hash table.
3414 3414           */
3415 3415          mutex_enter(&cp->cache_lock);
3416 3416  
3417 3417          if ((cp->cache_flags & KMF_HASH) &&
3418 3418              (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
3419 3419              (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
3420 3420              cp->cache_hash_mask > KMEM_HASH_INITIAL)))
3421 3421                  need_hash_rescale = 1;
3422 3422  
3423 3423          mutex_exit(&cp->cache_lock);
3424 3424  
3425 3425          /*
3426 3426           * Update the depot working set statistics.
3427 3427           */
3428 3428          kmem_depot_ws_update(cp);
3429 3429  
3430 3430          /*
3431 3431           * If there's a lot of contention in the depot,
3432 3432           * increase the magazine size.
3433 3433           */
3434 3434          mutex_enter(&cp->cache_depot_lock);
3435 3435  
3436 3436          if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
3437 3437              (int)(cp->cache_depot_contention -
3438 3438              cp->cache_depot_contention_prev) > kmem_depot_contention)
3439 3439                  need_magazine_resize = 1;
3440 3440  
3441 3441          cp->cache_depot_contention_prev = cp->cache_depot_contention;
3442 3442  
3443 3443          mutex_exit(&cp->cache_depot_lock);
3444 3444  
3445 3445          if (need_hash_rescale)
3446 3446                  (void) taskq_dispatch(kmem_taskq,
3447 3447                      (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
3448 3448  
3449 3449          if (need_magazine_resize)
3450 3450                  (void) taskq_dispatch(kmem_taskq,
3451 3451                      (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3452 3452  
3453 3453          if (cp->cache_defrag != NULL)
3454 3454                  (void) taskq_dispatch(kmem_taskq,
3455 3455                      (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
3456 3456  }
3457 3457  
3458 3458  static void kmem_update(void *);
3459 3459  
3460 3460  static void
3461 3461  kmem_update_timeout(void *dummy)
3462 3462  {
3463 3463          (void) timeout(kmem_update, dummy, kmem_reap_interval);
3464 3464  }
3465 3465  
3466 3466  static void
3467 3467  kmem_update(void *dummy)
3468 3468  {
3469 3469          kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
3470 3470  
3471 3471          /*
3472 3472           * We use taskq_dispatch() to reschedule the timeout so that
3473 3473           * kmem_update() becomes self-throttling: it won't schedule
3474 3474           * new tasks until all previous tasks have completed.
3475 3475           */
3476 3476          if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
3477 3477                  kmem_update_timeout(NULL);
3478 3478  }
3479 3479  
3480 3480  static int
3481 3481  kmem_cache_kstat_update(kstat_t *ksp, int rw)
3482 3482  {
3483 3483          struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
3484 3484          kmem_cache_t *cp = ksp->ks_private;
3485 3485          uint64_t cpu_buf_avail;
3486 3486          uint64_t buf_avail = 0;
3487 3487          int cpu_seqid;
3488 3488          long reap;
3489 3489  
3490 3490          ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
3491 3491  
3492 3492          if (rw == KSTAT_WRITE)
3493 3493                  return (EACCES);
3494 3494  
3495 3495          mutex_enter(&cp->cache_lock);
3496 3496  
3497 3497          kmcp->kmc_alloc_fail.value.ui64         = cp->cache_alloc_fail;
3498 3498          kmcp->kmc_alloc.value.ui64              = cp->cache_slab_alloc;
3499 3499          kmcp->kmc_free.value.ui64               = cp->cache_slab_free;
3500 3500          kmcp->kmc_slab_alloc.value.ui64         = cp->cache_slab_alloc;
3501 3501          kmcp->kmc_slab_free.value.ui64          = cp->cache_slab_free;
3502 3502  
3503 3503          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3504 3504                  kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3505 3505  
3506 3506                  mutex_enter(&ccp->cc_lock);
3507 3507  
3508 3508                  cpu_buf_avail = 0;
3509 3509                  if (ccp->cc_rounds > 0)
3510 3510                          cpu_buf_avail += ccp->cc_rounds;
3511 3511                  if (ccp->cc_prounds > 0)
3512 3512                          cpu_buf_avail += ccp->cc_prounds;
3513 3513  
3514 3514                  kmcp->kmc_alloc.value.ui64      += ccp->cc_alloc;
3515 3515                  kmcp->kmc_free.value.ui64       += ccp->cc_free;
3516 3516                  buf_avail                       += cpu_buf_avail;
3517 3517  
3518 3518                  mutex_exit(&ccp->cc_lock);
3519 3519          }
3520 3520  
3521 3521          mutex_enter(&cp->cache_depot_lock);
3522 3522  
3523 3523          kmcp->kmc_depot_alloc.value.ui64        = cp->cache_full.ml_alloc;
3524 3524          kmcp->kmc_depot_free.value.ui64         = cp->cache_empty.ml_alloc;
3525 3525          kmcp->kmc_depot_contention.value.ui64   = cp->cache_depot_contention;
3526 3526          kmcp->kmc_full_magazines.value.ui64     = cp->cache_full.ml_total;
3527 3527          kmcp->kmc_empty_magazines.value.ui64    = cp->cache_empty.ml_total;
3528 3528          kmcp->kmc_magazine_size.value.ui64      =
3529 3529              (cp->cache_flags & KMF_NOMAGAZINE) ?
3530 3530              0 : cp->cache_magtype->mt_magsize;
3531 3531  
3532 3532          kmcp->kmc_alloc.value.ui64              += cp->cache_full.ml_alloc;
3533 3533          kmcp->kmc_free.value.ui64               += cp->cache_empty.ml_alloc;
3534 3534          buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
3535 3535  
3536 3536          reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3537 3537          reap = MIN(reap, cp->cache_full.ml_total);
3538 3538  
3539 3539          mutex_exit(&cp->cache_depot_lock);
3540 3540  
3541 3541          kmcp->kmc_buf_size.value.ui64   = cp->cache_bufsize;
3542 3542          kmcp->kmc_align.value.ui64      = cp->cache_align;
3543 3543          kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize;
3544 3544          kmcp->kmc_slab_size.value.ui64  = cp->cache_slabsize;
3545 3545          kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
3546 3546          buf_avail += cp->cache_bufslab;
3547 3547          kmcp->kmc_buf_avail.value.ui64  = buf_avail;
3548 3548          kmcp->kmc_buf_inuse.value.ui64  = cp->cache_buftotal - buf_avail;
3549 3549          kmcp->kmc_buf_total.value.ui64  = cp->cache_buftotal;
3550 3550          kmcp->kmc_buf_max.value.ui64    = cp->cache_bufmax;
3551 3551          kmcp->kmc_slab_create.value.ui64        = cp->cache_slab_create;
3552 3552          kmcp->kmc_slab_destroy.value.ui64       = cp->cache_slab_destroy;
3553 3553          kmcp->kmc_hash_size.value.ui64  = (cp->cache_flags & KMF_HASH) ?
3554 3554              cp->cache_hash_mask + 1 : 0;
3555 3555          kmcp->kmc_hash_lookup_depth.value.ui64  = cp->cache_lookup_depth;
3556 3556          kmcp->kmc_hash_rescale.value.ui64       = cp->cache_rescale;
3557 3557          kmcp->kmc_vmem_source.value.ui64        = cp->cache_arena->vm_id;
3558 3558          kmcp->kmc_reap.value.ui64       = cp->cache_reap;
3559 3559  
3560 3560          if (cp->cache_defrag == NULL) {
3561 3561                  kmcp->kmc_move_callbacks.value.ui64     = 0;
3562 3562                  kmcp->kmc_move_yes.value.ui64           = 0;
3563 3563                  kmcp->kmc_move_no.value.ui64            = 0;
3564 3564                  kmcp->kmc_move_later.value.ui64         = 0;
3565 3565                  kmcp->kmc_move_dont_need.value.ui64     = 0;
3566 3566                  kmcp->kmc_move_dont_know.value.ui64     = 0;
3567 3567                  kmcp->kmc_move_hunt_found.value.ui64    = 0;
3568 3568                  kmcp->kmc_move_slabs_freed.value.ui64   = 0;
3569 3569                  kmcp->kmc_defrag.value.ui64             = 0;
3570 3570                  kmcp->kmc_scan.value.ui64               = 0;
3571 3571                  kmcp->kmc_move_reclaimable.value.ui64   = 0;
3572 3572          } else {
3573 3573                  int64_t reclaimable;
3574 3574  
3575 3575                  kmem_defrag_t *kd = cp->cache_defrag;
3576 3576                  kmcp->kmc_move_callbacks.value.ui64     = kd->kmd_callbacks;
3577 3577                  kmcp->kmc_move_yes.value.ui64           = kd->kmd_yes;
3578 3578                  kmcp->kmc_move_no.value.ui64            = kd->kmd_no;
3579 3579                  kmcp->kmc_move_later.value.ui64         = kd->kmd_later;
3580 3580                  kmcp->kmc_move_dont_need.value.ui64     = kd->kmd_dont_need;
3581 3581                  kmcp->kmc_move_dont_know.value.ui64     = kd->kmd_dont_know;
3582 3582                  kmcp->kmc_move_hunt_found.value.ui64    = kd->kmd_hunt_found;
3583 3583                  kmcp->kmc_move_slabs_freed.value.ui64   = kd->kmd_slabs_freed;
3584 3584                  kmcp->kmc_defrag.value.ui64             = kd->kmd_defrags;
3585 3585                  kmcp->kmc_scan.value.ui64               = kd->kmd_scans;
3586 3586  
3587 3587                  reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3588 3588                  reclaimable = MAX(reclaimable, 0);
3589 3589                  reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3590 3590                  kmcp->kmc_move_reclaimable.value.ui64   = reclaimable;
3591 3591          }
3592 3592  
3593 3593          mutex_exit(&cp->cache_lock);
3594 3594          return (0);
3595 3595  }
3596 3596  
3597 3597  /*
3598 3598   * Return a named statistic about a particular cache.
3599 3599   * This shouldn't be called very often, so it's currently designed for
3600 3600   * simplicity (leverages existing kstat support) rather than efficiency.
3601 3601   */
3602 3602  uint64_t
3603 3603  kmem_cache_stat(kmem_cache_t *cp, char *name)
3604 3604  {
3605 3605          int i;
3606 3606          kstat_t *ksp = cp->cache_kstat;
3607 3607          kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3608 3608          uint64_t value = 0;
3609 3609  
3610 3610          if (ksp != NULL) {
3611 3611                  mutex_enter(&kmem_cache_kstat_lock);
3612 3612                  (void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3613 3613                  for (i = 0; i < ksp->ks_ndata; i++) {
3614 3614                          if (strcmp(knp[i].name, name) == 0) {
3615 3615                                  value = knp[i].value.ui64;
3616 3616                                  break;
3617 3617                          }
3618 3618                  }
3619 3619                  mutex_exit(&kmem_cache_kstat_lock);
3620 3620          }
3621 3621          return (value);
3622 3622  }
3623 3623  
3624 3624  /*
3625 3625   * Return an estimate of currently available kernel heap memory.
3626 3626   * On 32-bit systems, physical memory may exceed virtual memory,
3627 3627   * we just truncate the result at 1GB.
3628 3628   */
3629 3629  size_t
3630 3630  kmem_avail(void)
3631 3631  {
3632 3632          spgcnt_t rmem = availrmem - tune.t_minarmem;
3633 3633          spgcnt_t fmem = freemem - minfree;
3634 3634  
3635 3635          return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3636 3636              1 << (30 - PAGESHIFT))));
3637 3637  }
3638 3638  
3639 3639  /*
3640 3640   * Return the maximum amount of memory that is (in theory) allocatable
3641 3641   * from the heap. This may be used as an estimate only since there
3642 3642   * is no guarentee this space will still be available when an allocation
3643 3643   * request is made, nor that the space may be allocated in one big request
3644 3644   * due to kernel heap fragmentation.
3645 3645   */
3646 3646  size_t
3647 3647  kmem_maxavail(void)
3648 3648  {
3649 3649          spgcnt_t pmem = availrmem - tune.t_minarmem;
3650 3650          spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3651 3651  
3652 3652          return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3653 3653  }
3654 3654  
3655 3655  /*
3656 3656   * Indicate whether memory-intensive kmem debugging is enabled.
3657 3657   */
3658 3658  int
3659 3659  kmem_debugging(void)
3660 3660  {
3661 3661          return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3662 3662  }
3663 3663  
3664 3664  /* binning function, sorts finely at the two extremes */
3665 3665  #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)                          \
3666 3666          ((((sp)->slab_refcnt <= (binshift)) ||                          \
3667 3667              (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))    \
3668 3668              ? -(sp)->slab_refcnt                                        \
3669 3669              : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3670 3670  
3671 3671  /*
3672 3672   * Minimizing the number of partial slabs on the freelist minimizes
3673 3673   * fragmentation (the ratio of unused buffers held by the slab layer). There are
3674 3674   * two ways to get a slab off of the freelist: 1) free all the buffers on the
3675 3675   * slab, and 2) allocate all the buffers on the slab. It follows that we want
3676 3676   * the most-used slabs at the front of the list where they have the best chance
3677 3677   * of being completely allocated, and the least-used slabs at a safe distance
3678 3678   * from the front to improve the odds that the few remaining buffers will all be
3679 3679   * freed before another allocation can tie up the slab. For that reason a slab
3680 3680   * with a higher slab_refcnt sorts less than than a slab with a lower
3681 3681   * slab_refcnt.
3682 3682   *
3683 3683   * However, if a slab has at least one buffer that is deemed unfreeable, we
3684 3684   * would rather have that slab at the front of the list regardless of
3685 3685   * slab_refcnt, since even one unfreeable buffer makes the entire slab
3686 3686   * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3687 3687   * callback, the slab is marked unfreeable for as long as it remains on the
3688 3688   * freelist.
3689 3689   */
3690 3690  static int
3691 3691  kmem_partial_slab_cmp(const void *p0, const void *p1)
3692 3692  {
3693 3693          const kmem_cache_t *cp;
3694 3694          const kmem_slab_t *s0 = p0;
3695 3695          const kmem_slab_t *s1 = p1;
3696 3696          int w0, w1;
3697 3697          size_t binshift;
3698 3698  
3699 3699          ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3700 3700          ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3701 3701          ASSERT(s0->slab_cache == s1->slab_cache);
3702 3702          cp = s1->slab_cache;
3703 3703          ASSERT(MUTEX_HELD(&cp->cache_lock));
3704 3704          binshift = cp->cache_partial_binshift;
3705 3705  
3706 3706          /* weight of first slab */
3707 3707          w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3708 3708          if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3709 3709                  w0 -= cp->cache_maxchunks;
3710 3710          }
3711 3711  
3712 3712          /* weight of second slab */
3713 3713          w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3714 3714          if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3715 3715                  w1 -= cp->cache_maxchunks;
3716 3716          }
3717 3717  
3718 3718          if (w0 < w1)
3719 3719                  return (-1);
3720 3720          if (w0 > w1)
3721 3721                  return (1);
3722 3722  
3723 3723          /* compare pointer values */
3724 3724          if ((uintptr_t)s0 < (uintptr_t)s1)
3725 3725                  return (-1);
3726 3726          if ((uintptr_t)s0 > (uintptr_t)s1)
3727 3727                  return (1);
3728 3728  
3729 3729          return (0);
3730 3730  }
3731 3731  
3732 3732  /*
3733 3733   * It must be valid to call the destructor (if any) on a newly created object.
3734 3734   * That is, the constructor (if any) must leave the object in a valid state for
3735 3735   * the destructor.
3736 3736   */
3737 3737  kmem_cache_t *
3738 3738  kmem_cache_create(
3739 3739          char *name,             /* descriptive name for this cache */
3740 3740          size_t bufsize,         /* size of the objects it manages */
3741 3741          size_t align,           /* required object alignment */
3742 3742          int (*constructor)(void *, void *, int), /* object constructor */
3743 3743          void (*destructor)(void *, void *),     /* object destructor */
3744 3744          void (*reclaim)(void *), /* memory reclaim callback */
3745 3745          void *private,          /* pass-thru arg for constr/destr/reclaim */
3746 3746          vmem_t *vmp,            /* vmem source for slab allocation */
3747 3747          int cflags)             /* cache creation flags */
3748 3748  {
3749 3749          int cpu_seqid;
3750 3750          size_t chunksize;
3751 3751          kmem_cache_t *cp;
3752 3752          kmem_magtype_t *mtp;
3753 3753          size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3754 3754  
3755 3755  #ifdef  DEBUG
3756 3756          /*
3757 3757           * Cache names should conform to the rules for valid C identifiers
3758 3758           */
3759 3759          if (!strident_valid(name)) {
3760 3760                  cmn_err(CE_CONT,
3761 3761                      "kmem_cache_create: '%s' is an invalid cache name\n"
3762 3762                      "cache names must conform to the rules for "
3763 3763                      "C identifiers\n", name);
3764 3764          }
3765 3765  #endif  /* DEBUG */
3766 3766  
3767 3767          if (vmp == NULL)
3768 3768                  vmp = kmem_default_arena;
3769 3769  
3770 3770          /*
3771 3771           * If this kmem cache has an identifier vmem arena as its source, mark
3772 3772           * it such to allow kmem_reap_idspace().
3773 3773           */
3774 3774          ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
3775 3775          if (vmp->vm_cflags & VMC_IDENTIFIER)
3776 3776                  cflags |= KMC_IDENTIFIER;
3777 3777  
3778 3778          /*
3779 3779           * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
3780 3780           * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3781 3781           * false sharing of per-CPU data.
3782 3782           */
3783 3783          cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3784 3784              P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3785 3785          bzero(cp, csize);
3786 3786          list_link_init(&cp->cache_link);
3787 3787  
3788 3788          if (align == 0)
3789 3789                  align = KMEM_ALIGN;
3790 3790  
3791 3791          /*
3792 3792           * If we're not at least KMEM_ALIGN aligned, we can't use free
3793 3793           * memory to hold bufctl information (because we can't safely
3794 3794           * perform word loads and stores on it).
3795 3795           */
3796 3796          if (align < KMEM_ALIGN)
3797 3797                  cflags |= KMC_NOTOUCH;
3798 3798  
3799 3799          if (!ISP2(align) || align > vmp->vm_quantum)
3800 3800                  panic("kmem_cache_create: bad alignment %lu", align);
3801 3801  
3802 3802          mutex_enter(&kmem_flags_lock);
3803 3803          if (kmem_flags & KMF_RANDOMIZE)
3804 3804                  kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3805 3805                      KMF_RANDOMIZE;
3806 3806          cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3807 3807          mutex_exit(&kmem_flags_lock);
3808 3808  
3809 3809          /*
3810 3810           * Make sure all the various flags are reasonable.
3811 3811           */
3812 3812          ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3813 3813  
3814 3814          if (cp->cache_flags & KMF_LITE) {
3815 3815                  if (bufsize >= kmem_lite_minsize &&
3816 3816                      align <= kmem_lite_maxalign &&
3817 3817                      P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3818 3818                          cp->cache_flags |= KMF_BUFTAG;
3819 3819                          cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3820 3820                  } else {
3821 3821                          cp->cache_flags &= ~KMF_DEBUG;
3822 3822                  }
3823 3823          }
3824 3824  
3825 3825          if (cp->cache_flags & KMF_DEADBEEF)
3826 3826                  cp->cache_flags |= KMF_REDZONE;
3827 3827  
3828 3828          if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3829 3829                  cp->cache_flags |= KMF_NOMAGAZINE;
3830 3830  
3831 3831          if (cflags & KMC_NODEBUG)
3832 3832                  cp->cache_flags &= ~KMF_DEBUG;
3833 3833  
3834 3834          if (cflags & KMC_NOTOUCH)
3835 3835                  cp->cache_flags &= ~KMF_TOUCH;
3836 3836  
3837 3837          if (cflags & KMC_PREFILL)
3838 3838                  cp->cache_flags |= KMF_PREFILL;
3839 3839  
3840 3840          if (cflags & KMC_NOHASH)
3841 3841                  cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3842 3842  
3843 3843          if (cflags & KMC_NOMAGAZINE)
3844 3844                  cp->cache_flags |= KMF_NOMAGAZINE;
3845 3845  
3846 3846          if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3847 3847                  cp->cache_flags |= KMF_REDZONE;
3848 3848  
3849 3849          if (!(cp->cache_flags & KMF_AUDIT))
3850 3850                  cp->cache_flags &= ~KMF_CONTENTS;
3851 3851  
3852 3852          if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3853 3853              !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3854 3854                  cp->cache_flags |= KMF_FIREWALL;
3855 3855  
3856 3856          if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3857 3857                  cp->cache_flags &= ~KMF_FIREWALL;
3858 3858  
3859 3859          if (cp->cache_flags & KMF_FIREWALL) {
3860 3860                  cp->cache_flags &= ~KMF_BUFTAG;
3861 3861                  cp->cache_flags |= KMF_NOMAGAZINE;
3862 3862                  ASSERT(vmp == kmem_default_arena);
3863 3863                  vmp = kmem_firewall_arena;
3864 3864          }
3865 3865  
3866 3866          /*
3867 3867           * Set cache properties.
3868 3868           */
3869 3869          (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3870 3870          strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3871 3871          cp->cache_bufsize = bufsize;
3872 3872          cp->cache_align = align;
3873 3873          cp->cache_constructor = constructor;
3874 3874          cp->cache_destructor = destructor;
3875 3875          cp->cache_reclaim = reclaim;
3876 3876          cp->cache_private = private;
3877 3877          cp->cache_arena = vmp;
3878 3878          cp->cache_cflags = cflags;
3879 3879  
3880 3880          /*
3881 3881           * Determine the chunk size.
3882 3882           */
3883 3883          chunksize = bufsize;
3884 3884  
3885 3885          if (align >= KMEM_ALIGN) {
3886 3886                  chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3887 3887                  cp->cache_bufctl = chunksize - KMEM_ALIGN;
3888 3888          }
3889 3889  
3890 3890          if (cp->cache_flags & KMF_BUFTAG) {
3891 3891                  cp->cache_bufctl = chunksize;
3892 3892                  cp->cache_buftag = chunksize;
3893 3893                  if (cp->cache_flags & KMF_LITE)
3894 3894                          chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3895 3895                  else
3896 3896                          chunksize += sizeof (kmem_buftag_t);
3897 3897          }
3898 3898  
3899 3899          if (cp->cache_flags & KMF_DEADBEEF) {
3900 3900                  cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3901 3901                  if (cp->cache_flags & KMF_LITE)
3902 3902                          cp->cache_verify = sizeof (uint64_t);
3903 3903          }
3904 3904  
3905 3905          cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3906 3906  
3907 3907          cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3908 3908  
3909 3909          /*
3910 3910           * Now that we know the chunk size, determine the optimal slab size.
3911 3911           */
3912 3912          if (vmp == kmem_firewall_arena) {
3913 3913                  cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3914 3914                  cp->cache_mincolor = cp->cache_slabsize - chunksize;
3915 3915                  cp->cache_maxcolor = cp->cache_mincolor;
3916 3916                  cp->cache_flags |= KMF_HASH;
3917 3917                  ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3918 3918          } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3919 3919              !(cp->cache_flags & KMF_AUDIT) &&
3920 3920              chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3921 3921                  cp->cache_slabsize = vmp->vm_quantum;
3922 3922                  cp->cache_mincolor = 0;
3923 3923                  cp->cache_maxcolor =
3924 3924                      (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3925 3925                  ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3926 3926                  ASSERT(!(cp->cache_flags & KMF_AUDIT));
3927 3927          } else {
3928 3928                  size_t chunks, bestfit, waste, slabsize;
3929 3929                  size_t minwaste = LONG_MAX;
3930 3930  
3931 3931                  for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3932 3932                          slabsize = P2ROUNDUP(chunksize * chunks,
3933 3933                              vmp->vm_quantum);
3934 3934                          chunks = slabsize / chunksize;
3935 3935                          waste = (slabsize % chunksize) / chunks;
3936 3936                          if (waste < minwaste) {
3937 3937                                  minwaste = waste;
3938 3938                                  bestfit = slabsize;
3939 3939                          }
3940 3940                  }
3941 3941                  if (cflags & KMC_QCACHE)
3942 3942                          bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3943 3943                  cp->cache_slabsize = bestfit;
3944 3944                  cp->cache_mincolor = 0;
3945 3945                  cp->cache_maxcolor = bestfit % chunksize;
3946 3946                  cp->cache_flags |= KMF_HASH;
3947 3947          }
3948 3948  
3949 3949          cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3950 3950          cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3951 3951  
3952 3952          /*
3953 3953           * Disallowing prefill when either the DEBUG or HASH flag is set or when
3954 3954           * there is a constructor avoids some tricky issues with debug setup
3955 3955           * that may be revisited later. We cannot allow prefill in a
3956 3956           * metadata cache because of potential recursion.
3957 3957           */
3958 3958          if (vmp == kmem_msb_arena ||
3959 3959              cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3960 3960              cp->cache_constructor != NULL)
3961 3961                  cp->cache_flags &= ~KMF_PREFILL;
3962 3962  
3963 3963          if (cp->cache_flags & KMF_HASH) {
3964 3964                  ASSERT(!(cflags & KMC_NOHASH));
3965 3965                  cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3966 3966                      kmem_bufctl_audit_cache : kmem_bufctl_cache;
3967 3967          }
3968 3968  
3969 3969          if (cp->cache_maxcolor >= vmp->vm_quantum)
3970 3970                  cp->cache_maxcolor = vmp->vm_quantum - 1;
3971 3971  
3972 3972          cp->cache_color = cp->cache_mincolor;
3973 3973  
3974 3974          /*
3975 3975           * Initialize the rest of the slab layer.
3976 3976           */
3977 3977          mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3978 3978  
3979 3979          avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3980 3980              sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3981 3981          /* LINTED: E_TRUE_LOGICAL_EXPR */
3982 3982          ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3983 3983          /* reuse partial slab AVL linkage for complete slab list linkage */
3984 3984          list_create(&cp->cache_complete_slabs,
3985 3985              sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3986 3986  
3987 3987          if (cp->cache_flags & KMF_HASH) {
3988 3988                  cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3989 3989                      KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3990 3990                  bzero(cp->cache_hash_table,
3991 3991                      KMEM_HASH_INITIAL * sizeof (void *));
3992 3992                  cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3993 3993                  cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3994 3994          }
3995 3995  
3996 3996          /*
3997 3997           * Initialize the depot.
3998 3998           */
3999 3999          mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
4000 4000  
4001 4001          for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
4002 4002                  continue;
4003 4003  
4004 4004          cp->cache_magtype = mtp;
4005 4005  
4006 4006          /*
4007 4007           * Initialize the CPU layer.
4008 4008           */
4009 4009          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
4010 4010                  kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
4011 4011                  mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
4012 4012                  ccp->cc_flags = cp->cache_flags;
4013 4013                  ccp->cc_rounds = -1;
4014 4014                  ccp->cc_prounds = -1;
4015 4015          }
4016 4016  
4017 4017          /*
4018 4018           * Create the cache's kstats.
4019 4019           */
4020 4020          if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
4021 4021              "kmem_cache", KSTAT_TYPE_NAMED,
4022 4022              sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
4023 4023              KSTAT_FLAG_VIRTUAL)) != NULL) {
4024 4024                  cp->cache_kstat->ks_data = &kmem_cache_kstat;
4025 4025                  cp->cache_kstat->ks_update = kmem_cache_kstat_update;
4026 4026                  cp->cache_kstat->ks_private = cp;
4027 4027                  cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
4028 4028                  kstat_install(cp->cache_kstat);
4029 4029          }
4030 4030  
4031 4031          /*
4032 4032           * Add the cache to the global list.  This makes it visible
4033 4033           * to kmem_update(), so the cache must be ready for business.
4034 4034           */
4035 4035          mutex_enter(&kmem_cache_lock);
4036 4036          list_insert_tail(&kmem_caches, cp);
4037 4037          mutex_exit(&kmem_cache_lock);
4038 4038  
4039 4039          if (kmem_ready)
4040 4040                  kmem_cache_magazine_enable(cp);
4041 4041  
4042 4042          return (cp);
4043 4043  }
4044 4044  
4045 4045  static int
4046 4046  kmem_move_cmp(const void *buf, const void *p)
4047 4047  {
4048 4048          const kmem_move_t *kmm = p;
4049 4049          uintptr_t v1 = (uintptr_t)buf;
4050 4050          uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
4051 4051          return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
4052 4052  }
4053 4053  
4054 4054  static void
4055 4055  kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
4056 4056  {
4057 4057          kmd->kmd_reclaim_numer = 1;
4058 4058  }
4059 4059  
4060 4060  /*
4061 4061   * Initially, when choosing candidate slabs for buffers to move, we want to be
4062 4062   * very selective and take only slabs that are less than
4063 4063   * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
4064 4064   * slabs, then we raise the allocation ceiling incrementally. The reclaim
4065 4065   * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
4066 4066   * longer fragmented.
4067 4067   */
4068 4068  static void
4069 4069  kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
4070 4070  {
4071 4071          if (direction > 0) {
4072 4072                  /* make it easier to find a candidate slab */
4073 4073                  if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
4074 4074                          kmd->kmd_reclaim_numer++;
4075 4075                  }
4076 4076          } else {
4077 4077                  /* be more selective */
4078 4078                  if (kmd->kmd_reclaim_numer > 1) {
4079 4079                          kmd->kmd_reclaim_numer--;
4080 4080                  }
4081 4081          }
4082 4082  }
4083 4083  
4084 4084  void
4085 4085  kmem_cache_set_move(kmem_cache_t *cp,
4086 4086      kmem_cbrc_t (*move)(void *, void *, size_t, void *))
4087 4087  {
4088 4088          kmem_defrag_t *defrag;
4089 4089  
4090 4090          ASSERT(move != NULL);
4091 4091          /*
4092 4092           * The consolidator does not support NOTOUCH caches because kmem cannot
4093 4093           * initialize their slabs with the 0xbaddcafe memory pattern, which sets
4094 4094           * a low order bit usable by clients to distinguish uninitialized memory
4095 4095           * from known objects (see kmem_slab_create).
4096 4096           */
4097 4097          ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
4098 4098          ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
4099 4099  
4100 4100          /*
4101 4101           * We should not be holding anyone's cache lock when calling
4102 4102           * kmem_cache_alloc(), so allocate in all cases before acquiring the
4103 4103           * lock.
4104 4104           */
4105 4105          defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
4106 4106  
4107 4107          mutex_enter(&cp->cache_lock);
4108 4108  
4109 4109          if (KMEM_IS_MOVABLE(cp)) {
4110 4110                  if (cp->cache_move == NULL) {
4111 4111                          ASSERT(cp->cache_slab_alloc == 0);
4112 4112  
4113 4113                          cp->cache_defrag = defrag;
4114 4114                          defrag = NULL; /* nothing to free */
4115 4115                          bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4116 4116                          avl_create(&cp->cache_defrag->kmd_moves_pending,
4117 4117                              kmem_move_cmp, sizeof (kmem_move_t),
4118 4118                              offsetof(kmem_move_t, kmm_entry));
4119 4119                          /* LINTED: E_TRUE_LOGICAL_EXPR */
4120 4120                          ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4121 4121                          /* reuse the slab's AVL linkage for deadlist linkage */
4122 4122                          list_create(&cp->cache_defrag->kmd_deadlist,
4123 4123                              sizeof (kmem_slab_t),
4124 4124                              offsetof(kmem_slab_t, slab_link));
4125 4125                          kmem_reset_reclaim_threshold(cp->cache_defrag);
4126 4126                  }
4127 4127                  cp->cache_move = move;
4128 4128          }
4129 4129  
4130 4130          mutex_exit(&cp->cache_lock);
4131 4131  
4132 4132          if (defrag != NULL) {
4133 4133                  kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4134 4134          }
4135 4135  }
4136 4136  
4137 4137  void
4138 4138  kmem_cache_destroy(kmem_cache_t *cp)
4139 4139  {
4140 4140          int cpu_seqid;
4141 4141  
4142 4142          /*
  
    | 
      ↓ open down ↓ | 
    4142 lines elided | 
    
      ↑ open up ↑ | 
  
4143 4143           * Remove the cache from the global cache list so that no one else
4144 4144           * can schedule tasks on its behalf, wait for any pending tasks to
4145 4145           * complete, purge the cache, and then destroy it.
4146 4146           */
4147 4147          mutex_enter(&kmem_cache_lock);
4148 4148          list_remove(&kmem_caches, cp);
4149 4149          mutex_exit(&kmem_cache_lock);
4150 4150  
4151 4151          if (kmem_taskq != NULL)
4152 4152                  taskq_wait(kmem_taskq);
4153      -        if (kmem_move_taskq != NULL)
     4153 +
     4154 +        if (kmem_move_taskq != NULL && cp->cache_defrag != NULL)
4154 4155                  taskq_wait(kmem_move_taskq);
4155 4156  
4156 4157          kmem_cache_magazine_purge(cp);
4157 4158  
4158 4159          mutex_enter(&cp->cache_lock);
4159 4160          if (cp->cache_buftotal != 0)
4160 4161                  cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
4161 4162                      cp->cache_name, (void *)cp);
4162 4163          if (cp->cache_defrag != NULL) {
4163 4164                  avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4164 4165                  list_destroy(&cp->cache_defrag->kmd_deadlist);
4165 4166                  kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4166 4167                  cp->cache_defrag = NULL;
4167 4168          }
4168 4169          /*
4169 4170           * The cache is now dead.  There should be no further activity.  We
4170 4171           * enforce this by setting land mines in the constructor, destructor,
4171 4172           * reclaim, and move routines that induce a kernel text fault if
4172 4173           * invoked.
4173 4174           */
4174 4175          cp->cache_constructor = (int (*)(void *, void *, int))1;
4175 4176          cp->cache_destructor = (void (*)(void *, void *))2;
4176 4177          cp->cache_reclaim = (void (*)(void *))3;
4177 4178          cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
4178 4179          mutex_exit(&cp->cache_lock);
4179 4180  
4180 4181          kstat_delete(cp->cache_kstat);
4181 4182  
4182 4183          if (cp->cache_hash_table != NULL)
4183 4184                  vmem_free(kmem_hash_arena, cp->cache_hash_table,
4184 4185                      (cp->cache_hash_mask + 1) * sizeof (void *));
4185 4186  
4186 4187          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
4187 4188                  mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
4188 4189  
4189 4190          mutex_destroy(&cp->cache_depot_lock);
4190 4191          mutex_destroy(&cp->cache_lock);
4191 4192  
4192 4193          vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
4193 4194  }
4194 4195  
4195 4196  /*ARGSUSED*/
4196 4197  static int
4197 4198  kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
4198 4199  {
4199 4200          ASSERT(MUTEX_HELD(&cpu_lock));
4200 4201          if (what == CPU_UNCONFIG) {
4201 4202                  kmem_cache_applyall(kmem_cache_magazine_purge,
4202 4203                      kmem_taskq, TQ_SLEEP);
4203 4204                  kmem_cache_applyall(kmem_cache_magazine_enable,
4204 4205                      kmem_taskq, TQ_SLEEP);
4205 4206          }
4206 4207          return (0);
4207 4208  }
4208 4209  
4209 4210  static void
4210 4211  kmem_alloc_caches_create(const int *array, size_t count,
4211 4212      kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4212 4213  {
4213 4214          char name[KMEM_CACHE_NAMELEN + 1];
4214 4215          size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4215 4216          size_t size = table_unit;
4216 4217          int i;
4217 4218  
4218 4219          for (i = 0; i < count; i++) {
4219 4220                  size_t cache_size = array[i];
4220 4221                  size_t align = KMEM_ALIGN;
4221 4222                  kmem_cache_t *cp;
4222 4223  
4223 4224                  /* if the table has an entry for maxbuf, we're done */
4224 4225                  if (size > maxbuf)
4225 4226                          break;
4226 4227  
4227 4228                  /* cache size must be a multiple of the table unit */
4228 4229                  ASSERT(P2PHASE(cache_size, table_unit) == 0);
4229 4230  
4230 4231                  /*
4231 4232                   * If they allocate a multiple of the coherency granularity,
4232 4233                   * they get a coherency-granularity-aligned address.
4233 4234                   */
4234 4235                  if (IS_P2ALIGNED(cache_size, 64))
4235 4236                          align = 64;
4236 4237                  if (IS_P2ALIGNED(cache_size, PAGESIZE))
4237 4238                          align = PAGESIZE;
4238 4239                  (void) snprintf(name, sizeof (name),
4239 4240                      "kmem_alloc_%lu", cache_size);
4240 4241                  cp = kmem_cache_create(name, cache_size, align,
4241 4242                      NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4242 4243  
4243 4244                  while (size <= cache_size) {
4244 4245                          alloc_table[(size - 1) >> shift] = cp;
4245 4246                          size += table_unit;
4246 4247                  }
4247 4248          }
4248 4249  
4249 4250          ASSERT(size > maxbuf);          /* i.e. maxbuf <= max(cache_size) */
4250 4251  }
4251 4252  
4252 4253  static void
4253 4254  kmem_cache_init(int pass, int use_large_pages)
4254 4255  {
4255 4256          int i;
4256 4257          size_t maxbuf;
4257 4258          kmem_magtype_t *mtp;
4258 4259  
4259 4260          for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4260 4261                  char name[KMEM_CACHE_NAMELEN + 1];
4261 4262  
4262 4263                  mtp = &kmem_magtype[i];
4263 4264                  (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
4264 4265                  mtp->mt_cache = kmem_cache_create(name,
4265 4266                      (mtp->mt_magsize + 1) * sizeof (void *),
4266 4267                      mtp->mt_align, NULL, NULL, NULL, NULL,
4267 4268                      kmem_msb_arena, KMC_NOHASH);
4268 4269          }
4269 4270  
4270 4271          kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
4271 4272              sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
4272 4273              kmem_msb_arena, KMC_NOHASH);
4273 4274  
4274 4275          kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
4275 4276              sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
4276 4277              kmem_msb_arena, KMC_NOHASH);
4277 4278  
4278 4279          kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
4279 4280              sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
4280 4281              kmem_msb_arena, KMC_NOHASH);
4281 4282  
4282 4283          if (pass == 2) {
4283 4284                  kmem_va_arena = vmem_create("kmem_va",
4284 4285                      NULL, 0, PAGESIZE,
4285 4286                      vmem_alloc, vmem_free, heap_arena,
4286 4287                      8 * PAGESIZE, VM_SLEEP);
4287 4288  
4288 4289                  if (use_large_pages) {
4289 4290                          kmem_default_arena = vmem_xcreate("kmem_default",
4290 4291                              NULL, 0, PAGESIZE,
4291 4292                              segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
4292 4293                              0, VMC_DUMPSAFE | VM_SLEEP);
4293 4294                  } else {
4294 4295                          kmem_default_arena = vmem_create("kmem_default",
4295 4296                              NULL, 0, PAGESIZE,
4296 4297                              segkmem_alloc, segkmem_free, kmem_va_arena,
4297 4298                              0, VMC_DUMPSAFE | VM_SLEEP);
4298 4299                  }
4299 4300  
4300 4301                  /* Figure out what our maximum cache size is */
4301 4302                  maxbuf = kmem_max_cached;
4302 4303                  if (maxbuf <= KMEM_MAXBUF) {
4303 4304                          maxbuf = 0;
4304 4305                          kmem_max_cached = KMEM_MAXBUF;
4305 4306                  } else {
4306 4307                          size_t size = 0;
4307 4308                          size_t max =
4308 4309                              sizeof (kmem_big_alloc_sizes) / sizeof (int);
4309 4310                          /*
4310 4311                           * Round maxbuf up to an existing cache size.  If maxbuf
4311 4312                           * is larger than the largest cache, we truncate it to
4312 4313                           * the largest cache's size.
4313 4314                           */
4314 4315                          for (i = 0; i < max; i++) {
4315 4316                                  size = kmem_big_alloc_sizes[i];
4316 4317                                  if (maxbuf <= size)
4317 4318                                          break;
4318 4319                          }
4319 4320                          kmem_max_cached = maxbuf = size;
4320 4321                  }
4321 4322  
4322 4323                  /*
4323 4324                   * The big alloc table may not be completely overwritten, so
4324 4325                   * we clear out any stale cache pointers from the first pass.
4325 4326                   */
4326 4327                  bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
4327 4328          } else {
4328 4329                  /*
4329 4330                   * During the first pass, the kmem_alloc_* caches
4330 4331                   * are treated as metadata.
4331 4332                   */
4332 4333                  kmem_default_arena = kmem_msb_arena;
4333 4334                  maxbuf = KMEM_BIG_MAXBUF_32BIT;
4334 4335          }
4335 4336  
4336 4337          /*
4337 4338           * Set up the default caches to back kmem_alloc()
4338 4339           */
4339 4340          kmem_alloc_caches_create(
4340 4341              kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4341 4342              kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4342 4343  
4343 4344          kmem_alloc_caches_create(
4344 4345              kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4345 4346              kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4346 4347  
4347 4348          kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
4348 4349  }
4349 4350  
4350 4351  void
4351 4352  kmem_init(void)
4352 4353  {
4353 4354          kmem_cache_t *cp;
4354 4355          int old_kmem_flags = kmem_flags;
4355 4356          int use_large_pages = 0;
4356 4357          size_t maxverify, minfirewall;
4357 4358  
4358 4359          kstat_init();
4359 4360  
4360 4361          /*
4361 4362           * Don't do firewalled allocations if the heap is less than 1TB
4362 4363           * (i.e. on a 32-bit kernel)
4363 4364           * The resulting VM_NEXTFIT allocations would create too much
4364 4365           * fragmentation in a small heap.
4365 4366           */
4366 4367  #if defined(_LP64)
4367 4368          maxverify = minfirewall = PAGESIZE / 2;
4368 4369  #else
4369 4370          maxverify = minfirewall = ULONG_MAX;
4370 4371  #endif
4371 4372  
4372 4373          /* LINTED */
4373 4374          ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
4374 4375  
4375 4376          list_create(&kmem_caches, sizeof (kmem_cache_t),
4376 4377              offsetof(kmem_cache_t, cache_link));
4377 4378  
4378 4379          kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
4379 4380              vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
4380 4381              VM_SLEEP | VMC_NO_QCACHE);
4381 4382  
4382 4383          kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
4383 4384              PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
4384 4385              VMC_DUMPSAFE | VM_SLEEP);
4385 4386  
4386 4387          kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
4387 4388              segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4388 4389  
4389 4390          kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
4390 4391              segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4391 4392  
4392 4393          kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
4393 4394              segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4394 4395  
4395 4396          kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
4396 4397              NULL, 0, PAGESIZE,
4397 4398              kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
4398 4399              0, VM_SLEEP);
4399 4400  
4400 4401          kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
4401 4402              segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
4402 4403              VMC_DUMPSAFE | VM_SLEEP);
4403 4404  
4404 4405          /* temporary oversize arena for mod_read_system_file */
4405 4406          kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
4406 4407              segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4407 4408  
4408 4409          kmem_reap_interval = 15 * hz;
4409 4410  
4410 4411          /*
4411 4412           * Read /etc/system.  This is a chicken-and-egg problem because
4412 4413           * kmem_flags may be set in /etc/system, but mod_read_system_file()
4413 4414           * needs to use the allocator.  The simplest solution is to create
4414 4415           * all the standard kmem caches, read /etc/system, destroy all the
4415 4416           * caches we just created, and then create them all again in light
4416 4417           * of the (possibly) new kmem_flags and other kmem tunables.
4417 4418           */
4418 4419          kmem_cache_init(1, 0);
4419 4420  
4420 4421          mod_read_system_file(boothowto & RB_ASKNAME);
4421 4422  
4422 4423          while ((cp = list_tail(&kmem_caches)) != NULL)
4423 4424                  kmem_cache_destroy(cp);
4424 4425  
4425 4426          vmem_destroy(kmem_oversize_arena);
4426 4427  
4427 4428          if (old_kmem_flags & KMF_STICKY)
4428 4429                  kmem_flags = old_kmem_flags;
4429 4430  
4430 4431          if (!(kmem_flags & KMF_AUDIT))
4431 4432                  vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
4432 4433  
4433 4434          if (kmem_maxverify == 0)
4434 4435                  kmem_maxverify = maxverify;
4435 4436  
4436 4437          if (kmem_minfirewall == 0)
4437 4438                  kmem_minfirewall = minfirewall;
4438 4439  
4439 4440          /*
4440 4441           * give segkmem a chance to figure out if we are using large pages
4441 4442           * for the kernel heap
4442 4443           */
4443 4444          use_large_pages = segkmem_lpsetup();
4444 4445  
4445 4446          /*
4446 4447           * To protect against corruption, we keep the actual number of callers
4447 4448           * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
4448 4449           * to 16, since the overhead for small buffers quickly gets out of
4449 4450           * hand.
4450 4451           *
4451 4452           * The real limit would depend on the needs of the largest KMC_NOHASH
4452 4453           * cache.
4453 4454           */
4454 4455          kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
4455 4456          kmem_lite_pcs = kmem_lite_count;
4456 4457  
4457 4458          /*
4458 4459           * Normally, we firewall oversized allocations when possible, but
4459 4460           * if we are using large pages for kernel memory, and we don't have
4460 4461           * any non-LITE debugging flags set, we want to allocate oversized
4461 4462           * buffers from large pages, and so skip the firewalling.
4462 4463           */
4463 4464          if (use_large_pages &&
4464 4465              ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
4465 4466                  kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
4466 4467                      PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
4467 4468                      0, VMC_DUMPSAFE | VM_SLEEP);
4468 4469          } else {
4469 4470                  kmem_oversize_arena = vmem_create("kmem_oversize",
4470 4471                      NULL, 0, PAGESIZE,
4471 4472                      segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
4472 4473                      kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
4473 4474                      VM_SLEEP);
4474 4475          }
4475 4476  
4476 4477          kmem_cache_init(2, use_large_pages);
4477 4478  
4478 4479          if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
4479 4480                  if (kmem_transaction_log_size == 0)
4480 4481                          kmem_transaction_log_size = kmem_maxavail() / 50;
4481 4482                  kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
4482 4483          }
4483 4484  
4484 4485          if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
4485 4486                  if (kmem_content_log_size == 0)
4486 4487                          kmem_content_log_size = kmem_maxavail() / 50;
4487 4488                  kmem_content_log = kmem_log_init(kmem_content_log_size);
4488 4489          }
4489 4490  
4490 4491          kmem_failure_log = kmem_log_init(kmem_failure_log_size);
4491 4492  
4492 4493          kmem_slab_log = kmem_log_init(kmem_slab_log_size);
4493 4494  
4494 4495          /*
4495 4496           * Initialize STREAMS message caches so allocb() is available.
4496 4497           * This allows us to initialize the logging framework (cmn_err(9F),
4497 4498           * strlog(9F), etc) so we can start recording messages.
4498 4499           */
4499 4500          streams_msg_init();
4500 4501  
4501 4502          /*
4502 4503           * Initialize the ZSD framework in Zones so modules loaded henceforth
4503 4504           * can register their callbacks.
4504 4505           */
4505 4506          zone_zsd_init();
4506 4507  
4507 4508          log_init();
4508 4509          taskq_init();
4509 4510  
4510 4511          /*
4511 4512           * Warn about invalid or dangerous values of kmem_flags.
4512 4513           * Always warn about unsupported values.
4513 4514           */
4514 4515          if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
4515 4516              KMF_CONTENTS | KMF_LITE)) != 0) ||
4516 4517              ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
4517 4518                  cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
4518 4519                      "See the Solaris Tunable Parameters Reference Manual.",
4519 4520                      kmem_flags);
4520 4521  
4521 4522  #ifdef DEBUG
4522 4523          if ((kmem_flags & KMF_DEBUG) == 0)
4523 4524                  cmn_err(CE_NOTE, "kmem debugging disabled.");
4524 4525  #else
4525 4526          /*
4526 4527           * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
4527 4528           * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
4528 4529           * if KMF_AUDIT is set). We should warn the user about the performance
4529 4530           * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
4530 4531           * isn't set (since that disables AUDIT).
4531 4532           */
4532 4533          if (!(kmem_flags & KMF_LITE) &&
4533 4534              (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
4534 4535                  cmn_err(CE_WARN, "High-overhead kmem debugging features "
4535 4536                      "enabled (kmem_flags = 0x%x).  Performance degradation "
4536 4537                      "and large memory overhead possible. See the Solaris "
4537 4538                      "Tunable Parameters Reference Manual.", kmem_flags);
4538 4539  #endif /* not DEBUG */
4539 4540  
4540 4541          kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
4541 4542  
4542 4543          kmem_ready = 1;
4543 4544  
4544 4545          /*
4545 4546           * Initialize the platform-specific aligned/DMA memory allocator.
4546 4547           */
4547 4548          ka_init();
4548 4549  
4549 4550          /*
4550 4551           * Initialize 32-bit ID cache.
4551 4552           */
4552 4553          id32_init();
4553 4554  
4554 4555          /*
4555 4556           * Initialize the networking stack so modules loaded can
4556 4557           * register their callbacks.
4557 4558           */
4558 4559          netstack_init();
4559 4560  }
4560 4561  
4561 4562  static void
4562 4563  kmem_move_init(void)
4563 4564  {
4564 4565          kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4565 4566              sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4566 4567              kmem_msb_arena, KMC_NOHASH);
4567 4568          kmem_move_cache = kmem_cache_create("kmem_move_cache",
4568 4569              sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4569 4570              kmem_msb_arena, KMC_NOHASH);
4570 4571  
4571 4572          /*
4572 4573           * kmem guarantees that move callbacks are sequential and that even
4573 4574           * across multiple caches no two moves ever execute simultaneously.
4574 4575           * Move callbacks are processed on a separate taskq so that client code
4575 4576           * does not interfere with internal maintenance tasks.
4576 4577           */
4577 4578          kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4578 4579              minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4579 4580  }
4580 4581  
4581 4582  void
4582 4583  kmem_thread_init(void)
4583 4584  {
4584 4585          kmem_move_init();
4585 4586          kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
4586 4587              300, INT_MAX, TASKQ_PREPOPULATE);
4587 4588  }
4588 4589  
4589 4590  void
4590 4591  kmem_mp_init(void)
4591 4592  {
4592 4593          mutex_enter(&cpu_lock);
4593 4594          register_cpu_setup_func(kmem_cpu_setup, NULL);
4594 4595          mutex_exit(&cpu_lock);
4595 4596  
4596 4597          kmem_update_timeout(NULL);
4597 4598  
4598 4599          taskq_mp_init();
4599 4600  }
4600 4601  
4601 4602  /*
4602 4603   * Return the slab of the allocated buffer, or NULL if the buffer is not
4603 4604   * allocated. This function may be called with a known slab address to determine
4604 4605   * whether or not the buffer is allocated, or with a NULL slab address to obtain
4605 4606   * an allocated buffer's slab.
4606 4607   */
4607 4608  static kmem_slab_t *
4608 4609  kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4609 4610  {
4610 4611          kmem_bufctl_t *bcp, *bufbcp;
4611 4612  
4612 4613          ASSERT(MUTEX_HELD(&cp->cache_lock));
4613 4614          ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4614 4615  
4615 4616          if (cp->cache_flags & KMF_HASH) {
4616 4617                  for (bcp = *KMEM_HASH(cp, buf);
4617 4618                      (bcp != NULL) && (bcp->bc_addr != buf);
4618 4619                      bcp = bcp->bc_next) {
4619 4620                          continue;
4620 4621                  }
4621 4622                  ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4622 4623                  return (bcp == NULL ? NULL : bcp->bc_slab);
4623 4624          }
4624 4625  
4625 4626          if (sp == NULL) {
4626 4627                  sp = KMEM_SLAB(cp, buf);
4627 4628          }
4628 4629          bufbcp = KMEM_BUFCTL(cp, buf);
4629 4630          for (bcp = sp->slab_head;
4630 4631              (bcp != NULL) && (bcp != bufbcp);
4631 4632              bcp = bcp->bc_next) {
4632 4633                  continue;
4633 4634          }
4634 4635          return (bcp == NULL ? sp : NULL);
4635 4636  }
4636 4637  
4637 4638  static boolean_t
4638 4639  kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4639 4640  {
4640 4641          long refcnt = sp->slab_refcnt;
4641 4642  
4642 4643          ASSERT(cp->cache_defrag != NULL);
4643 4644  
4644 4645          /*
4645 4646           * For code coverage we want to be able to move an object within the
4646 4647           * same slab (the only partial slab) even if allocating the destination
4647 4648           * buffer resulted in a completely allocated slab.
4648 4649           */
4649 4650          if (flags & KMM_DEBUG) {
4650 4651                  return ((flags & KMM_DESPERATE) ||
4651 4652                      ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4652 4653          }
4653 4654  
4654 4655          /* If we're desperate, we don't care if the client said NO. */
4655 4656          if (flags & KMM_DESPERATE) {
4656 4657                  return (refcnt < sp->slab_chunks); /* any partial */
4657 4658          }
4658 4659  
4659 4660          if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4660 4661                  return (B_FALSE);
4661 4662          }
4662 4663  
4663 4664          if ((refcnt == 1) || kmem_move_any_partial) {
4664 4665                  return (refcnt < sp->slab_chunks);
4665 4666          }
4666 4667  
4667 4668          /*
4668 4669           * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4669 4670           * slabs with a progressively higher percentage of used buffers can be
4670 4671           * reclaimed until the cache as a whole is no longer fragmented.
4671 4672           *
4672 4673           *      sp->slab_refcnt   kmd_reclaim_numer
4673 4674           *      --------------- < ------------------
4674 4675           *      sp->slab_chunks   KMEM_VOID_FRACTION
4675 4676           */
4676 4677          return ((refcnt * KMEM_VOID_FRACTION) <
4677 4678              (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4678 4679  }
4679 4680  
4680 4681  static void *
4681 4682  kmem_hunt_mag(kmem_cache_t *cp, kmem_magazine_t *m, int n, void *buf,
4682 4683      void *tbuf)
4683 4684  {
4684 4685          int i;          /* magazine round index */
4685 4686  
4686 4687          for (i = 0; i < n; i++) {
4687 4688                  if (buf == m->mag_round[i]) {
4688 4689                          if (cp->cache_flags & KMF_BUFTAG) {
4689 4690                                  (void) kmem_cache_free_debug(cp, tbuf,
4690 4691                                      caller());
4691 4692                          }
4692 4693                          m->mag_round[i] = tbuf;
4693 4694                          return (buf);
4694 4695                  }
4695 4696          }
4696 4697  
4697 4698          return (NULL);
4698 4699  }
4699 4700  
4700 4701  /*
4701 4702   * Hunt the magazine layer for the given buffer. If found, the buffer is
4702 4703   * removed from the magazine layer and returned, otherwise NULL is returned.
4703 4704   * The state of the returned buffer is freed and constructed.
4704 4705   */
4705 4706  static void *
4706 4707  kmem_hunt_mags(kmem_cache_t *cp, void *buf)
4707 4708  {
4708 4709          kmem_cpu_cache_t *ccp;
4709 4710          kmem_magazine_t *m;
4710 4711          int cpu_seqid;
4711 4712          int n;          /* magazine rounds */
4712 4713          void *tbuf;     /* temporary swap buffer */
4713 4714  
4714 4715          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4715 4716  
4716 4717          /*
4717 4718           * Allocated a buffer to swap with the one we hope to pull out of a
4718 4719           * magazine when found.
4719 4720           */
4720 4721          tbuf = kmem_cache_alloc(cp, KM_NOSLEEP);
4721 4722          if (tbuf == NULL) {
4722 4723                  KMEM_STAT_ADD(kmem_move_stats.kms_hunt_alloc_fail);
4723 4724                  return (NULL);
4724 4725          }
4725 4726          if (tbuf == buf) {
4726 4727                  KMEM_STAT_ADD(kmem_move_stats.kms_hunt_lucky);
4727 4728                  if (cp->cache_flags & KMF_BUFTAG) {
4728 4729                          (void) kmem_cache_free_debug(cp, buf, caller());
4729 4730                  }
4730 4731                  return (buf);
4731 4732          }
4732 4733  
4733 4734          /* Hunt the depot. */
4734 4735          mutex_enter(&cp->cache_depot_lock);
4735 4736          n = cp->cache_magtype->mt_magsize;
4736 4737          for (m = cp->cache_full.ml_list; m != NULL; m = m->mag_next) {
4737 4738                  if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4738 4739                          mutex_exit(&cp->cache_depot_lock);
4739 4740                          return (buf);
4740 4741                  }
4741 4742          }
4742 4743          mutex_exit(&cp->cache_depot_lock);
4743 4744  
4744 4745          /* Hunt the per-CPU magazines. */
4745 4746          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
4746 4747                  ccp = &cp->cache_cpu[cpu_seqid];
4747 4748  
4748 4749                  mutex_enter(&ccp->cc_lock);
4749 4750                  m = ccp->cc_loaded;
4750 4751                  n = ccp->cc_rounds;
4751 4752                  if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4752 4753                          mutex_exit(&ccp->cc_lock);
4753 4754                          return (buf);
4754 4755                  }
4755 4756                  m = ccp->cc_ploaded;
4756 4757                  n = ccp->cc_prounds;
4757 4758                  if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4758 4759                          mutex_exit(&ccp->cc_lock);
4759 4760                          return (buf);
4760 4761                  }
4761 4762                  mutex_exit(&ccp->cc_lock);
4762 4763          }
4763 4764  
4764 4765          kmem_cache_free(cp, tbuf);
4765 4766          return (NULL);
4766 4767  }
4767 4768  
4768 4769  /*
4769 4770   * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4770 4771   * or when the buffer is freed.
4771 4772   */
4772 4773  static void
4773 4774  kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4774 4775  {
4775 4776          ASSERT(MUTEX_HELD(&cp->cache_lock));
4776 4777          ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4777 4778  
4778 4779          if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4779 4780                  return;
4780 4781          }
4781 4782  
4782 4783          if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4783 4784                  if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4784 4785                          avl_remove(&cp->cache_partial_slabs, sp);
4785 4786                          sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4786 4787                          sp->slab_stuck_offset = (uint32_t)-1;
4787 4788                          avl_add(&cp->cache_partial_slabs, sp);
4788 4789                  }
4789 4790          } else {
4790 4791                  sp->slab_later_count = 0;
4791 4792                  sp->slab_stuck_offset = (uint32_t)-1;
4792 4793          }
4793 4794  }
4794 4795  
4795 4796  static void
4796 4797  kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4797 4798  {
4798 4799          ASSERT(taskq_member(kmem_move_taskq, curthread));
4799 4800          ASSERT(MUTEX_HELD(&cp->cache_lock));
4800 4801          ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4801 4802  
4802 4803          if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4803 4804                  return;
4804 4805          }
4805 4806  
4806 4807          avl_remove(&cp->cache_partial_slabs, sp);
4807 4808          sp->slab_later_count = 0;
4808 4809          sp->slab_flags |= KMEM_SLAB_NOMOVE;
4809 4810          sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4810 4811          avl_add(&cp->cache_partial_slabs, sp);
4811 4812  }
4812 4813  
4813 4814  static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4814 4815  
4815 4816  /*
4816 4817   * The move callback takes two buffer addresses, the buffer to be moved, and a
4817 4818   * newly allocated and constructed buffer selected by kmem as the destination.
4818 4819   * It also takes the size of the buffer and an optional user argument specified
4819 4820   * at cache creation time. kmem guarantees that the buffer to be moved has not
4820 4821   * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4821 4822   * guarantee the present whereabouts of the buffer to be moved, so it is up to
4822 4823   * the client to safely determine whether or not it is still using the buffer.
4823 4824   * The client must not free either of the buffers passed to the move callback,
4824 4825   * since kmem wants to free them directly to the slab layer. The client response
4825 4826   * tells kmem which of the two buffers to free:
4826 4827   *
4827 4828   * YES          kmem frees the old buffer (the move was successful)
4828 4829   * NO           kmem frees the new buffer, marks the slab of the old buffer
4829 4830   *              non-reclaimable to avoid bothering the client again
4830 4831   * LATER        kmem frees the new buffer, increments slab_later_count
4831 4832   * DONT_KNOW    kmem frees the new buffer, searches mags for the old buffer
4832 4833   * DONT_NEED    kmem frees both the old buffer and the new buffer
4833 4834   *
4834 4835   * The pending callback argument now being processed contains both of the
4835 4836   * buffers (old and new) passed to the move callback function, the slab of the
4836 4837   * old buffer, and flags related to the move request, such as whether or not the
4837 4838   * system was desperate for memory.
4838 4839   *
4839 4840   * Slabs are not freed while there is a pending callback, but instead are kept
4840 4841   * on a deadlist, which is drained after the last callback completes. This means
4841 4842   * that slabs are safe to access until kmem_move_end(), no matter how many of
4842 4843   * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4843 4844   * zero for as long as the slab remains on the deadlist and until the slab is
4844 4845   * freed.
4845 4846   */
4846 4847  static void
4847 4848  kmem_move_buffer(kmem_move_t *callback)
4848 4849  {
4849 4850          kmem_cbrc_t response;
4850 4851          kmem_slab_t *sp = callback->kmm_from_slab;
4851 4852          kmem_cache_t *cp = sp->slab_cache;
4852 4853          boolean_t free_on_slab;
4853 4854  
4854 4855          ASSERT(taskq_member(kmem_move_taskq, curthread));
4855 4856          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4856 4857          ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4857 4858  
4858 4859          /*
4859 4860           * The number of allocated buffers on the slab may have changed since we
4860 4861           * last checked the slab's reclaimability (when the pending move was
4861 4862           * enqueued), or the client may have responded NO when asked to move
4862 4863           * another buffer on the same slab.
4863 4864           */
4864 4865          if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4865 4866                  KMEM_STAT_ADD(kmem_move_stats.kms_no_longer_reclaimable);
4866 4867                  KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY),
4867 4868                      kmem_move_stats.kms_notify_no_longer_reclaimable);
4868 4869                  kmem_slab_free(cp, callback->kmm_to_buf);
4869 4870                  kmem_move_end(cp, callback);
4870 4871                  return;
4871 4872          }
4872 4873  
4873 4874          /*
4874 4875           * Hunting magazines is expensive, so we'll wait to do that until the
4875 4876           * client responds KMEM_CBRC_DONT_KNOW. However, checking the slab layer
4876 4877           * is cheap, so we might as well do that here in case we can avoid
4877 4878           * bothering the client.
4878 4879           */
4879 4880          mutex_enter(&cp->cache_lock);
4880 4881          free_on_slab = (kmem_slab_allocated(cp, sp,
4881 4882              callback->kmm_from_buf) == NULL);
4882 4883          mutex_exit(&cp->cache_lock);
4883 4884  
4884 4885          if (free_on_slab) {
4885 4886                  KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_slab);
4886 4887                  kmem_slab_free(cp, callback->kmm_to_buf);
4887 4888                  kmem_move_end(cp, callback);
4888 4889                  return;
4889 4890          }
4890 4891  
4891 4892          if (cp->cache_flags & KMF_BUFTAG) {
4892 4893                  /*
4893 4894                   * Make kmem_cache_alloc_debug() apply the constructor for us.
4894 4895                   */
4895 4896                  if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4896 4897                      KM_NOSLEEP, 1, caller()) != 0) {
4897 4898                          KMEM_STAT_ADD(kmem_move_stats.kms_alloc_fail);
4898 4899                          kmem_move_end(cp, callback);
4899 4900                          return;
4900 4901                  }
4901 4902          } else if (cp->cache_constructor != NULL &&
4902 4903              cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4903 4904              KM_NOSLEEP) != 0) {
4904 4905                  atomic_inc_64(&cp->cache_alloc_fail);
4905 4906                  KMEM_STAT_ADD(kmem_move_stats.kms_constructor_fail);
4906 4907                  kmem_slab_free(cp, callback->kmm_to_buf);
4907 4908                  kmem_move_end(cp, callback);
4908 4909                  return;
4909 4910          }
4910 4911  
4911 4912          KMEM_STAT_ADD(kmem_move_stats.kms_callbacks);
4912 4913          KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY),
4913 4914              kmem_move_stats.kms_notify_callbacks);
4914 4915          cp->cache_defrag->kmd_callbacks++;
4915 4916          cp->cache_defrag->kmd_thread = curthread;
4916 4917          cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4917 4918          cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4918 4919          DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4919 4920              callback);
4920 4921  
4921 4922          response = cp->cache_move(callback->kmm_from_buf,
4922 4923              callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4923 4924  
4924 4925          DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4925 4926              callback, kmem_cbrc_t, response);
4926 4927          cp->cache_defrag->kmd_thread = NULL;
4927 4928          cp->cache_defrag->kmd_from_buf = NULL;
4928 4929          cp->cache_defrag->kmd_to_buf = NULL;
4929 4930  
4930 4931          if (response == KMEM_CBRC_YES) {
4931 4932                  KMEM_STAT_ADD(kmem_move_stats.kms_yes);
4932 4933                  cp->cache_defrag->kmd_yes++;
4933 4934                  kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4934 4935                  /* slab safe to access until kmem_move_end() */
4935 4936                  if (sp->slab_refcnt == 0)
4936 4937                          cp->cache_defrag->kmd_slabs_freed++;
4937 4938                  mutex_enter(&cp->cache_lock);
4938 4939                  kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4939 4940                  mutex_exit(&cp->cache_lock);
4940 4941                  kmem_move_end(cp, callback);
4941 4942                  return;
4942 4943          }
4943 4944  
4944 4945          switch (response) {
4945 4946          case KMEM_CBRC_NO:
4946 4947                  KMEM_STAT_ADD(kmem_move_stats.kms_no);
4947 4948                  cp->cache_defrag->kmd_no++;
4948 4949                  mutex_enter(&cp->cache_lock);
4949 4950                  kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4950 4951                  mutex_exit(&cp->cache_lock);
4951 4952                  break;
4952 4953          case KMEM_CBRC_LATER:
4953 4954                  KMEM_STAT_ADD(kmem_move_stats.kms_later);
4954 4955                  cp->cache_defrag->kmd_later++;
4955 4956                  mutex_enter(&cp->cache_lock);
4956 4957                  if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4957 4958                          mutex_exit(&cp->cache_lock);
4958 4959                          break;
4959 4960                  }
4960 4961  
4961 4962                  if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4962 4963                          KMEM_STAT_ADD(kmem_move_stats.kms_disbelief);
4963 4964                          kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4964 4965                  } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4965 4966                          sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4966 4967                              callback->kmm_from_buf);
4967 4968                  }
4968 4969                  mutex_exit(&cp->cache_lock);
4969 4970                  break;
4970 4971          case KMEM_CBRC_DONT_NEED:
4971 4972                  KMEM_STAT_ADD(kmem_move_stats.kms_dont_need);
4972 4973                  cp->cache_defrag->kmd_dont_need++;
4973 4974                  kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4974 4975                  if (sp->slab_refcnt == 0)
4975 4976                          cp->cache_defrag->kmd_slabs_freed++;
4976 4977                  mutex_enter(&cp->cache_lock);
4977 4978                  kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4978 4979                  mutex_exit(&cp->cache_lock);
4979 4980                  break;
4980 4981          case KMEM_CBRC_DONT_KNOW:
4981 4982                  KMEM_STAT_ADD(kmem_move_stats.kms_dont_know);
4982 4983                  cp->cache_defrag->kmd_dont_know++;
4983 4984                  if (kmem_hunt_mags(cp, callback->kmm_from_buf) != NULL) {
4984 4985                          KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_mag);
4985 4986                          cp->cache_defrag->kmd_hunt_found++;
4986 4987                          kmem_slab_free_constructed(cp, callback->kmm_from_buf,
4987 4988                              B_TRUE);
4988 4989                          if (sp->slab_refcnt == 0)
4989 4990                                  cp->cache_defrag->kmd_slabs_freed++;
4990 4991                          mutex_enter(&cp->cache_lock);
4991 4992                          kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4992 4993                          mutex_exit(&cp->cache_lock);
4993 4994                  }
4994 4995                  break;
4995 4996          default:
4996 4997                  panic("'%s' (%p) unexpected move callback response %d\n",
4997 4998                      cp->cache_name, (void *)cp, response);
4998 4999          }
4999 5000  
5000 5001          kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
5001 5002          kmem_move_end(cp, callback);
5002 5003  }
5003 5004  
5004 5005  /* Return B_FALSE if there is insufficient memory for the move request. */
5005 5006  static boolean_t
5006 5007  kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
5007 5008  {
5008 5009          void *to_buf;
5009 5010          avl_index_t index;
5010 5011          kmem_move_t *callback, *pending;
5011 5012          ulong_t n;
5012 5013  
5013 5014          ASSERT(taskq_member(kmem_taskq, curthread));
5014 5015          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
5015 5016          ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5016 5017  
5017 5018          callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
5018 5019          if (callback == NULL) {
5019 5020                  KMEM_STAT_ADD(kmem_move_stats.kms_callback_alloc_fail);
5020 5021                  return (B_FALSE);
5021 5022          }
5022 5023  
5023 5024          callback->kmm_from_slab = sp;
5024 5025          callback->kmm_from_buf = buf;
5025 5026          callback->kmm_flags = flags;
5026 5027  
5027 5028          mutex_enter(&cp->cache_lock);
5028 5029  
5029 5030          n = avl_numnodes(&cp->cache_partial_slabs);
5030 5031          if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
5031 5032                  mutex_exit(&cp->cache_lock);
5032 5033                  kmem_cache_free(kmem_move_cache, callback);
5033 5034                  return (B_TRUE); /* there is no need for the move request */
5034 5035          }
5035 5036  
5036 5037          pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
5037 5038          if (pending != NULL) {
5038 5039                  /*
5039 5040                   * If the move is already pending and we're desperate now,
5040 5041                   * update the move flags.
5041 5042                   */
5042 5043                  if (flags & KMM_DESPERATE) {
5043 5044                          pending->kmm_flags |= KMM_DESPERATE;
5044 5045                  }
5045 5046                  mutex_exit(&cp->cache_lock);
5046 5047                  KMEM_STAT_ADD(kmem_move_stats.kms_already_pending);
5047 5048                  kmem_cache_free(kmem_move_cache, callback);
5048 5049                  return (B_TRUE);
5049 5050          }
5050 5051  
5051 5052          to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
5052 5053              B_FALSE);
5053 5054          callback->kmm_to_buf = to_buf;
5054 5055          avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
5055 5056  
5056 5057          mutex_exit(&cp->cache_lock);
5057 5058  
5058 5059          if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
5059 5060              callback, TQ_NOSLEEP)) {
5060 5061                  KMEM_STAT_ADD(kmem_move_stats.kms_callback_taskq_fail);
5061 5062                  mutex_enter(&cp->cache_lock);
5062 5063                  avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
5063 5064                  mutex_exit(&cp->cache_lock);
5064 5065                  kmem_slab_free(cp, to_buf);
5065 5066                  kmem_cache_free(kmem_move_cache, callback);
5066 5067                  return (B_FALSE);
5067 5068          }
5068 5069  
5069 5070          return (B_TRUE);
5070 5071  }
5071 5072  
5072 5073  static void
5073 5074  kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
5074 5075  {
5075 5076          avl_index_t index;
5076 5077  
5077 5078          ASSERT(cp->cache_defrag != NULL);
5078 5079          ASSERT(taskq_member(kmem_move_taskq, curthread));
5079 5080          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
5080 5081  
5081 5082          mutex_enter(&cp->cache_lock);
5082 5083          VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
5083 5084              callback->kmm_from_buf, &index) != NULL);
5084 5085          avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
5085 5086          if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
5086 5087                  list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5087 5088                  kmem_slab_t *sp;
5088 5089  
5089 5090                  /*
5090 5091                   * The last pending move completed. Release all slabs from the
5091 5092                   * front of the dead list except for any slab at the tail that
5092 5093                   * needs to be released from the context of kmem_move_buffers().
5093 5094                   * kmem deferred unmapping the buffers on these slabs in order
5094 5095                   * to guarantee that buffers passed to the move callback have
5095 5096                   * been touched only by kmem or by the client itself.
5096 5097                   */
5097 5098                  while ((sp = list_remove_head(deadlist)) != NULL) {
5098 5099                          if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
5099 5100                                  list_insert_tail(deadlist, sp);
5100 5101                                  break;
5101 5102                          }
5102 5103                          cp->cache_defrag->kmd_deadcount--;
5103 5104                          cp->cache_slab_destroy++;
5104 5105                          mutex_exit(&cp->cache_lock);
5105 5106                          kmem_slab_destroy(cp, sp);
5106 5107                          KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed);
5107 5108                          mutex_enter(&cp->cache_lock);
5108 5109                  }
5109 5110          }
5110 5111          mutex_exit(&cp->cache_lock);
5111 5112          kmem_cache_free(kmem_move_cache, callback);
5112 5113  }
5113 5114  
5114 5115  /*
5115 5116   * Move buffers from least used slabs first by scanning backwards from the end
5116 5117   * of the partial slab list. Scan at most max_scan candidate slabs and move
5117 5118   * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
5118 5119   * If desperate to reclaim memory, move buffers from any partial slab, otherwise
5119 5120   * skip slabs with a ratio of allocated buffers at or above the current
5120 5121   * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
5121 5122   * scan is aborted) so that the caller can adjust the reclaimability threshold
5122 5123   * depending on how many reclaimable slabs it finds.
5123 5124   *
5124 5125   * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
5125 5126   * move request, since it is not valid for kmem_move_begin() to call
5126 5127   * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
5127 5128   */
5128 5129  static int
5129 5130  kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
5130 5131      int flags)
5131 5132  {
5132 5133          kmem_slab_t *sp;
5133 5134          void *buf;
5134 5135          int i, j; /* slab index, buffer index */
5135 5136          int s; /* reclaimable slabs */
5136 5137          int b; /* allocated (movable) buffers on reclaimable slab */
5137 5138          boolean_t success;
5138 5139          int refcnt;
5139 5140          int nomove;
5140 5141  
5141 5142          ASSERT(taskq_member(kmem_taskq, curthread));
5142 5143          ASSERT(MUTEX_HELD(&cp->cache_lock));
5143 5144          ASSERT(kmem_move_cache != NULL);
5144 5145          ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
5145 5146          ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
5146 5147              avl_numnodes(&cp->cache_partial_slabs) > 1);
5147 5148  
5148 5149          if (kmem_move_blocked) {
5149 5150                  return (0);
5150 5151          }
5151 5152  
5152 5153          if (kmem_move_fulltilt) {
5153 5154                  flags |= KMM_DESPERATE;
5154 5155          }
5155 5156  
5156 5157          if (max_scan == 0 || (flags & KMM_DESPERATE)) {
5157 5158                  /*
5158 5159                   * Scan as many slabs as needed to find the desired number of
5159 5160                   * candidate slabs.
5160 5161                   */
5161 5162                  max_scan = (size_t)-1;
5162 5163          }
5163 5164  
5164 5165          if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
5165 5166                  /* Find as many candidate slabs as possible. */
5166 5167                  max_slabs = (size_t)-1;
5167 5168          }
5168 5169  
5169 5170          sp = avl_last(&cp->cache_partial_slabs);
5170 5171          ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
5171 5172          for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
5172 5173              ((sp != avl_first(&cp->cache_partial_slabs)) ||
5173 5174              (flags & KMM_DEBUG));
5174 5175              sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
5175 5176  
5176 5177                  if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
5177 5178                          continue;
5178 5179                  }
5179 5180                  s++;
5180 5181  
5181 5182                  /* Look for allocated buffers to move. */
5182 5183                  for (j = 0, b = 0, buf = sp->slab_base;
5183 5184                      (j < sp->slab_chunks) && (b < sp->slab_refcnt);
5184 5185                      buf = (((char *)buf) + cp->cache_chunksize), j++) {
5185 5186  
5186 5187                          if (kmem_slab_allocated(cp, sp, buf) == NULL) {
5187 5188                                  continue;
5188 5189                          }
5189 5190  
5190 5191                          b++;
5191 5192  
5192 5193                          /*
5193 5194                           * Prevent the slab from being destroyed while we drop
5194 5195                           * cache_lock and while the pending move is not yet
5195 5196                           * registered. Flag the pending move while
5196 5197                           * kmd_moves_pending may still be empty, since we can't
5197 5198                           * yet rely on a non-zero pending move count to prevent
5198 5199                           * the slab from being destroyed.
5199 5200                           */
5200 5201                          ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5201 5202                          sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5202 5203                          /*
5203 5204                           * Recheck refcnt and nomove after reacquiring the lock,
5204 5205                           * since these control the order of partial slabs, and
5205 5206                           * we want to know if we can pick up the scan where we
5206 5207                           * left off.
5207 5208                           */
5208 5209                          refcnt = sp->slab_refcnt;
5209 5210                          nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
5210 5211                          mutex_exit(&cp->cache_lock);
5211 5212  
5212 5213                          success = kmem_move_begin(cp, sp, buf, flags);
5213 5214  
5214 5215                          /*
5215 5216                           * Now, before the lock is reacquired, kmem could
5216 5217                           * process all pending move requests and purge the
5217 5218                           * deadlist, so that upon reacquiring the lock, sp has
5218 5219                           * been remapped. Or, the client may free all the
5219 5220                           * objects on the slab while the pending moves are still
5220 5221                           * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5221 5222                           * flag causes the slab to be put at the end of the
5222 5223                           * deadlist and prevents it from being destroyed, since
5223 5224                           * we plan to destroy it here after reacquiring the
5224 5225                           * lock.
5225 5226                           */
5226 5227                          mutex_enter(&cp->cache_lock);
5227 5228                          ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5228 5229                          sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5229 5230  
5230 5231                          if (sp->slab_refcnt == 0) {
5231 5232                                  list_t *deadlist =
5232 5233                                      &cp->cache_defrag->kmd_deadlist;
5233 5234                                  list_remove(deadlist, sp);
5234 5235  
5235 5236                                  if (!avl_is_empty(
5236 5237                                      &cp->cache_defrag->kmd_moves_pending)) {
5237 5238                                          /*
5238 5239                                           * A pending move makes it unsafe to
5239 5240                                           * destroy the slab, because even though
5240 5241                                           * the move is no longer needed, the
5241 5242                                           * context where that is determined
5242 5243                                           * requires the slab to exist.
5243 5244                                           * Fortunately, a pending move also
5244 5245                                           * means we don't need to destroy the
5245 5246                                           * slab here, since it will get
5246 5247                                           * destroyed along with any other slabs
5247 5248                                           * on the deadlist after the last
5248 5249                                           * pending move completes.
5249 5250                                           */
5250 5251                                          list_insert_head(deadlist, sp);
5251 5252                                          KMEM_STAT_ADD(kmem_move_stats.
5252 5253                                              kms_endscan_slab_dead);
5253 5254                                          return (-1);
5254 5255                                  }
5255 5256  
5256 5257                                  /*
5257 5258                                   * Destroy the slab now if it was completely
5258 5259                                   * freed while we dropped cache_lock and there
5259 5260                                   * are no pending moves. Since slab_refcnt
5260 5261                                   * cannot change once it reaches zero, no new
5261 5262                                   * pending moves from that slab are possible.
5262 5263                                   */
5263 5264                                  cp->cache_defrag->kmd_deadcount--;
5264 5265                                  cp->cache_slab_destroy++;
5265 5266                                  mutex_exit(&cp->cache_lock);
5266 5267                                  kmem_slab_destroy(cp, sp);
5267 5268                                  KMEM_STAT_ADD(kmem_move_stats.
5268 5269                                      kms_dead_slabs_freed);
5269 5270                                  KMEM_STAT_ADD(kmem_move_stats.
5270 5271                                      kms_endscan_slab_destroyed);
5271 5272                                  mutex_enter(&cp->cache_lock);
5272 5273                                  /*
5273 5274                                   * Since we can't pick up the scan where we left
5274 5275                                   * off, abort the scan and say nothing about the
5275 5276                                   * number of reclaimable slabs.
5276 5277                                   */
5277 5278                                  return (-1);
5278 5279                          }
5279 5280  
5280 5281                          if (!success) {
5281 5282                                  /*
5282 5283                                   * Abort the scan if there is not enough memory
5283 5284                                   * for the request and say nothing about the
5284 5285                                   * number of reclaimable slabs.
5285 5286                                   */
5286 5287                                  KMEM_STAT_COND_ADD(s < max_slabs,
5287 5288                                      kmem_move_stats.kms_endscan_nomem);
5288 5289                                  return (-1);
5289 5290                          }
5290 5291  
5291 5292                          /*
5292 5293                           * The slab's position changed while the lock was
5293 5294                           * dropped, so we don't know where we are in the
5294 5295                           * sequence any more.
5295 5296                           */
5296 5297                          if (sp->slab_refcnt != refcnt) {
5297 5298                                  /*
5298 5299                                   * If this is a KMM_DEBUG move, the slab_refcnt
5299 5300                                   * may have changed because we allocated a
5300 5301                                   * destination buffer on the same slab. In that
5301 5302                                   * case, we're not interested in counting it.
5302 5303                                   */
5303 5304                                  KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) &&
5304 5305                                      (s < max_slabs),
5305 5306                                      kmem_move_stats.kms_endscan_refcnt_changed);
5306 5307                                  return (-1);
5307 5308                          }
5308 5309                          if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) {
5309 5310                                  KMEM_STAT_COND_ADD(s < max_slabs,
5310 5311                                      kmem_move_stats.kms_endscan_nomove_changed);
5311 5312                                  return (-1);
5312 5313                          }
5313 5314  
5314 5315                          /*
5315 5316                           * Generating a move request allocates a destination
5316 5317                           * buffer from the slab layer, bumping the first partial
5317 5318                           * slab if it is completely allocated. If the current
5318 5319                           * slab becomes the first partial slab as a result, we
5319 5320                           * can't continue to scan backwards.
5320 5321                           *
5321 5322                           * If this is a KMM_DEBUG move and we allocated the
5322 5323                           * destination buffer from the last partial slab, then
5323 5324                           * the buffer we're moving is on the same slab and our
5324 5325                           * slab_refcnt has changed, causing us to return before
5325 5326                           * reaching here if there are no partial slabs left.
5326 5327                           */
5327 5328                          ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5328 5329                          if (sp == avl_first(&cp->cache_partial_slabs)) {
5329 5330                                  /*
5330 5331                                   * We're not interested in a second KMM_DEBUG
5331 5332                                   * move.
5332 5333                                   */
5333 5334                                  goto end_scan;
5334 5335                          }
5335 5336                  }
5336 5337          }
5337 5338  end_scan:
5338 5339  
5339 5340          KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) &&
5340 5341              (s < max_slabs) &&
5341 5342              (sp == avl_first(&cp->cache_partial_slabs)),
5342 5343              kmem_move_stats.kms_endscan_freelist);
5343 5344  
5344 5345          return (s);
5345 5346  }
5346 5347  
5347 5348  typedef struct kmem_move_notify_args {
5348 5349          kmem_cache_t *kmna_cache;
5349 5350          void *kmna_buf;
5350 5351  } kmem_move_notify_args_t;
5351 5352  
5352 5353  static void
5353 5354  kmem_cache_move_notify_task(void *arg)
5354 5355  {
5355 5356          kmem_move_notify_args_t *args = arg;
5356 5357          kmem_cache_t *cp = args->kmna_cache;
5357 5358          void *buf = args->kmna_buf;
5358 5359          kmem_slab_t *sp;
5359 5360  
5360 5361          ASSERT(taskq_member(kmem_taskq, curthread));
5361 5362          ASSERT(list_link_active(&cp->cache_link));
5362 5363  
5363 5364          kmem_free(args, sizeof (kmem_move_notify_args_t));
5364 5365          mutex_enter(&cp->cache_lock);
5365 5366          sp = kmem_slab_allocated(cp, NULL, buf);
5366 5367  
5367 5368          /* Ignore the notification if the buffer is no longer allocated. */
5368 5369          if (sp == NULL) {
5369 5370                  mutex_exit(&cp->cache_lock);
5370 5371                  return;
5371 5372          }
5372 5373  
5373 5374          /* Ignore the notification if there's no reason to move the buffer. */
5374 5375          if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5375 5376                  /*
5376 5377                   * So far the notification is not ignored. Ignore the
5377 5378                   * notification if the slab is not marked by an earlier refusal
5378 5379                   * to move a buffer.
5379 5380                   */
5380 5381                  if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5381 5382                      (sp->slab_later_count == 0)) {
5382 5383                          mutex_exit(&cp->cache_lock);
5383 5384                          return;
5384 5385                  }
5385 5386  
5386 5387                  kmem_slab_move_yes(cp, sp, buf);
5387 5388                  ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5388 5389                  sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5389 5390                  mutex_exit(&cp->cache_lock);
5390 5391                  /* see kmem_move_buffers() about dropping the lock */
5391 5392                  (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5392 5393                  mutex_enter(&cp->cache_lock);
5393 5394                  ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5394 5395                  sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5395 5396                  if (sp->slab_refcnt == 0) {
5396 5397                          list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5397 5398                          list_remove(deadlist, sp);
5398 5399  
5399 5400                          if (!avl_is_empty(
5400 5401                              &cp->cache_defrag->kmd_moves_pending)) {
5401 5402                                  list_insert_head(deadlist, sp);
5402 5403                                  mutex_exit(&cp->cache_lock);
5403 5404                                  KMEM_STAT_ADD(kmem_move_stats.
5404 5405                                      kms_notify_slab_dead);
5405 5406                                  return;
5406 5407                          }
5407 5408  
5408 5409                          cp->cache_defrag->kmd_deadcount--;
5409 5410                          cp->cache_slab_destroy++;
5410 5411                          mutex_exit(&cp->cache_lock);
5411 5412                          kmem_slab_destroy(cp, sp);
5412 5413                          KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed);
5413 5414                          KMEM_STAT_ADD(kmem_move_stats.
5414 5415                              kms_notify_slab_destroyed);
5415 5416                          return;
5416 5417                  }
5417 5418          } else {
5418 5419                  kmem_slab_move_yes(cp, sp, buf);
5419 5420          }
5420 5421          mutex_exit(&cp->cache_lock);
5421 5422  }
5422 5423  
5423 5424  void
5424 5425  kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5425 5426  {
5426 5427          kmem_move_notify_args_t *args;
5427 5428  
5428 5429          KMEM_STAT_ADD(kmem_move_stats.kms_notify);
5429 5430          args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5430 5431          if (args != NULL) {
5431 5432                  args->kmna_cache = cp;
5432 5433                  args->kmna_buf = buf;
5433 5434                  if (!taskq_dispatch(kmem_taskq,
5434 5435                      (task_func_t *)kmem_cache_move_notify_task, args,
5435 5436                      TQ_NOSLEEP))
5436 5437                          kmem_free(args, sizeof (kmem_move_notify_args_t));
5437 5438          }
5438 5439  }
5439 5440  
5440 5441  static void
5441 5442  kmem_cache_defrag(kmem_cache_t *cp)
5442 5443  {
5443 5444          size_t n;
5444 5445  
5445 5446          ASSERT(cp->cache_defrag != NULL);
5446 5447  
5447 5448          mutex_enter(&cp->cache_lock);
5448 5449          n = avl_numnodes(&cp->cache_partial_slabs);
5449 5450          if (n > 1) {
5450 5451                  /* kmem_move_buffers() drops and reacquires cache_lock */
5451 5452                  KMEM_STAT_ADD(kmem_move_stats.kms_defrags);
5452 5453                  cp->cache_defrag->kmd_defrags++;
5453 5454                  (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5454 5455          }
5455 5456          mutex_exit(&cp->cache_lock);
5456 5457  }
5457 5458  
5458 5459  /* Is this cache above the fragmentation threshold? */
5459 5460  static boolean_t
5460 5461  kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5461 5462  {
5462 5463          /*
5463 5464           *      nfree           kmem_frag_numer
5464 5465           * ------------------ > ---------------
5465 5466           * cp->cache_buftotal   kmem_frag_denom
5466 5467           */
5467 5468          return ((nfree * kmem_frag_denom) >
5468 5469              (cp->cache_buftotal * kmem_frag_numer));
5469 5470  }
5470 5471  
5471 5472  static boolean_t
5472 5473  kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5473 5474  {
5474 5475          boolean_t fragmented;
5475 5476          uint64_t nfree;
5476 5477  
5477 5478          ASSERT(MUTEX_HELD(&cp->cache_lock));
5478 5479          *doreap = B_FALSE;
5479 5480  
5480 5481          if (kmem_move_fulltilt) {
5481 5482                  if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5482 5483                          return (B_TRUE);
5483 5484                  }
5484 5485          } else {
5485 5486                  if ((cp->cache_complete_slab_count + avl_numnodes(
5486 5487                      &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5487 5488                          return (B_FALSE);
5488 5489                  }
5489 5490          }
5490 5491  
5491 5492          nfree = cp->cache_bufslab;
5492 5493          fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5493 5494              kmem_cache_frag_threshold(cp, nfree));
5494 5495  
5495 5496          /*
5496 5497           * Free buffers in the magazine layer appear allocated from the point of
5497 5498           * view of the slab layer. We want to know if the slab layer would
5498 5499           * appear fragmented if we included free buffers from magazines that
5499 5500           * have fallen out of the working set.
5500 5501           */
5501 5502          if (!fragmented) {
5502 5503                  long reap;
5503 5504  
5504 5505                  mutex_enter(&cp->cache_depot_lock);
5505 5506                  reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5506 5507                  reap = MIN(reap, cp->cache_full.ml_total);
5507 5508                  mutex_exit(&cp->cache_depot_lock);
5508 5509  
5509 5510                  nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5510 5511                  if (kmem_cache_frag_threshold(cp, nfree)) {
5511 5512                          *doreap = B_TRUE;
5512 5513                  }
5513 5514          }
5514 5515  
5515 5516          return (fragmented);
5516 5517  }
5517 5518  
5518 5519  /* Called periodically from kmem_taskq */
5519 5520  static void
5520 5521  kmem_cache_scan(kmem_cache_t *cp)
5521 5522  {
5522 5523          boolean_t reap = B_FALSE;
5523 5524          kmem_defrag_t *kmd;
5524 5525  
5525 5526          ASSERT(taskq_member(kmem_taskq, curthread));
5526 5527  
5527 5528          mutex_enter(&cp->cache_lock);
5528 5529  
5529 5530          kmd = cp->cache_defrag;
5530 5531          if (kmd->kmd_consolidate > 0) {
5531 5532                  kmd->kmd_consolidate--;
5532 5533                  mutex_exit(&cp->cache_lock);
5533 5534                  kmem_cache_reap(cp);
5534 5535                  return;
5535 5536          }
5536 5537  
5537 5538          if (kmem_cache_is_fragmented(cp, &reap)) {
5538 5539                  size_t slabs_found;
5539 5540  
5540 5541                  /*
5541 5542                   * Consolidate reclaimable slabs from the end of the partial
5542 5543                   * slab list (scan at most kmem_reclaim_scan_range slabs to find
5543 5544                   * reclaimable slabs). Keep track of how many candidate slabs we
5544 5545                   * looked for and how many we actually found so we can adjust
5545 5546                   * the definition of a candidate slab if we're having trouble
5546 5547                   * finding them.
5547 5548                   *
5548 5549                   * kmem_move_buffers() drops and reacquires cache_lock.
5549 5550                   */
5550 5551                  KMEM_STAT_ADD(kmem_move_stats.kms_scans);
5551 5552                  kmd->kmd_scans++;
5552 5553                  slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5553 5554                      kmem_reclaim_max_slabs, 0);
5554 5555                  if (slabs_found >= 0) {
5555 5556                          kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5556 5557                          kmd->kmd_slabs_found += slabs_found;
5557 5558                  }
5558 5559  
5559 5560                  if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5560 5561                          kmd->kmd_tries = 0;
5561 5562  
5562 5563                          /*
5563 5564                           * If we had difficulty finding candidate slabs in
5564 5565                           * previous scans, adjust the threshold so that
5565 5566                           * candidates are easier to find.
5566 5567                           */
5567 5568                          if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5568 5569                                  kmem_adjust_reclaim_threshold(kmd, -1);
5569 5570                          } else if ((kmd->kmd_slabs_found * 2) <
5570 5571                              kmd->kmd_slabs_sought) {
5571 5572                                  kmem_adjust_reclaim_threshold(kmd, 1);
5572 5573                          }
5573 5574                          kmd->kmd_slabs_sought = 0;
5574 5575                          kmd->kmd_slabs_found = 0;
5575 5576                  }
5576 5577          } else {
5577 5578                  kmem_reset_reclaim_threshold(cp->cache_defrag);
5578 5579  #ifdef  DEBUG
5579 5580                  if (!avl_is_empty(&cp->cache_partial_slabs)) {
5580 5581                          /*
5581 5582                           * In a debug kernel we want the consolidator to
5582 5583                           * run occasionally even when there is plenty of
5583 5584                           * memory.
5584 5585                           */
5585 5586                          uint16_t debug_rand;
5586 5587  
5587 5588                          (void) random_get_bytes((uint8_t *)&debug_rand, 2);
5588 5589                          if (!kmem_move_noreap &&
5589 5590                              ((debug_rand % kmem_mtb_reap) == 0)) {
5590 5591                                  mutex_exit(&cp->cache_lock);
5591 5592                                  KMEM_STAT_ADD(kmem_move_stats.kms_debug_reaps);
5592 5593                                  kmem_cache_reap(cp);
5593 5594                                  return;
5594 5595                          } else if ((debug_rand % kmem_mtb_move) == 0) {
5595 5596                                  KMEM_STAT_ADD(kmem_move_stats.kms_scans);
5596 5597                                  KMEM_STAT_ADD(kmem_move_stats.kms_debug_scans);
5597 5598                                  kmd->kmd_scans++;
5598 5599                                  (void) kmem_move_buffers(cp,
5599 5600                                      kmem_reclaim_scan_range, 1, KMM_DEBUG);
5600 5601                          }
5601 5602                  }
5602 5603  #endif  /* DEBUG */
5603 5604          }
5604 5605  
5605 5606          mutex_exit(&cp->cache_lock);
5606 5607  
5607 5608          if (reap) {
5608 5609                  KMEM_STAT_ADD(kmem_move_stats.kms_scan_depot_ws_reaps);
5609 5610                  kmem_depot_ws_reap(cp);
5610 5611          }
5611 5612  }
  
    | 
      ↓ open down ↓ | 
    1448 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX