Print this page
OS-5483 iostat -x shows around 100% utilization for idle zone
Reviewed by: Joshua M. Clulow <jmc@joyent.com>
Reviewed by: Patrick Mooney <patrick.mooney@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
OS-5148 ftruncate at offset should emit proper events
Reviewed by: Bryan Cantrill <bryan@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
OS-338 Kstat counters to show "slow" VFS operations
OS-3294 add support for inotify
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Robert Mustacchi <rm@joyent.com>
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/fs/vnode.c
+++ new/usr/src/uts/common/fs/vnode.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
|
↓ open down ↓ |
13 lines elided |
↑ open up ↑ |
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24 - * Copyright (c) 2013, Joyent, Inc. All rights reserved.
24 + * Copyright (c) 2014, Joyent, Inc. All rights reserved.
25 25 */
26 26
27 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
28 28 /* All Rights Reserved */
29 29
30 30 /*
31 31 * University Copyright- Copyright (c) 1982, 1986, 1988
32 32 * The Regents of the University of California
33 33 * All Rights Reserved
34 34 *
35 35 * University Acknowledgment- Portions of this document are derived from
36 36 * software developed by the University of California, Berkeley, and its
37 37 * contributors.
38 38 */
39 39
40 40 #include <sys/types.h>
41 41 #include <sys/param.h>
42 42 #include <sys/t_lock.h>
43 43 #include <sys/errno.h>
44 44 #include <sys/cred.h>
45 45 #include <sys/user.h>
46 46 #include <sys/uio.h>
47 47 #include <sys/file.h>
48 48 #include <sys/pathname.h>
49 49 #include <sys/vfs.h>
50 50 #include <sys/vfs_opreg.h>
51 51 #include <sys/vnode.h>
52 52 #include <sys/rwstlock.h>
53 53 #include <sys/fem.h>
54 54 #include <sys/stat.h>
55 55 #include <sys/mode.h>
56 56 #include <sys/conf.h>
57 57 #include <sys/sysmacros.h>
58 58 #include <sys/cmn_err.h>
59 59 #include <sys/systm.h>
60 60 #include <sys/kmem.h>
61 61 #include <sys/debug.h>
62 62 #include <c2/audit.h>
63 63 #include <sys/acl.h>
64 64 #include <sys/nbmlock.h>
65 65 #include <sys/fcntl.h>
66 66 #include <fs/fs_subr.h>
67 67 #include <sys/taskq.h>
68 68 #include <fs/fs_reparse.h>
69 69
70 70 /* Determine if this vnode is a file that is read-only */
71 71 #define ISROFILE(vp) \
72 72 ((vp)->v_type != VCHR && (vp)->v_type != VBLK && \
73 73 (vp)->v_type != VFIFO && vn_is_readonly(vp))
74 74
75 75 /* Tunable via /etc/system; used only by admin/install */
76 76 int nfs_global_client_only;
77 77
78 78 /*
79 79 * Array of vopstats_t for per-FS-type vopstats. This array has the same
80 80 * number of entries as and parallel to the vfssw table. (Arguably, it could
81 81 * be part of the vfssw table.) Once it's initialized, it's accessed using
82 82 * the same fstype index that is used to index into the vfssw table.
83 83 */
84 84 vopstats_t **vopstats_fstype;
85 85
86 86 /* vopstats initialization template used for fast initialization via bcopy() */
87 87 static vopstats_t *vs_templatep;
88 88
89 89 /* Kmem cache handle for vsk_anchor_t allocations */
90 90 kmem_cache_t *vsk_anchor_cache;
91 91
92 92 /* file events cleanup routine */
93 93 extern void free_fopdata(vnode_t *);
94 94
95 95 /*
96 96 * Root of AVL tree for the kstats associated with vopstats. Lock protects
97 97 * updates to vsktat_tree.
98 98 */
99 99 avl_tree_t vskstat_tree;
100 100 kmutex_t vskstat_tree_lock;
101 101
102 102 /* Global variable which enables/disables the vopstats collection */
103 103 int vopstats_enabled = 1;
104 104
105 105 /*
106 106 * forward declarations for internal vnode specific data (vsd)
107 107 */
108 108 static void *vsd_realloc(void *, size_t, size_t);
109 109
110 110 /*
111 111 * forward declarations for reparse point functions
112 112 */
113 113 static int fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr);
114 114
115 115 /*
116 116 * VSD -- VNODE SPECIFIC DATA
117 117 * The v_data pointer is typically used by a file system to store a
118 118 * pointer to the file system's private node (e.g. ufs inode, nfs rnode).
119 119 * However, there are times when additional project private data needs
120 120 * to be stored separately from the data (node) pointed to by v_data.
121 121 * This additional data could be stored by the file system itself or
122 122 * by a completely different kernel entity. VSD provides a way for
123 123 * callers to obtain a key and store a pointer to private data associated
124 124 * with a vnode.
125 125 *
126 126 * Callers are responsible for protecting the vsd by holding v_vsd_lock
127 127 * for calls to vsd_set() and vsd_get().
128 128 */
129 129
130 130 /*
131 131 * vsd_lock protects:
132 132 * vsd_nkeys - creation and deletion of vsd keys
133 133 * vsd_list - insertion and deletion of vsd_node in the vsd_list
134 134 * vsd_destructor - adding and removing destructors to the list
135 135 */
136 136 static kmutex_t vsd_lock;
137 137 static uint_t vsd_nkeys; /* size of destructor array */
138 138 /* list of vsd_node's */
139 139 static list_t *vsd_list = NULL;
140 140 /* per-key destructor funcs */
141 141 static void (**vsd_destructor)(void *);
142 142
143 143 /*
144 144 * The following is the common set of actions needed to update the
145 145 * vopstats structure from a vnode op. Both VOPSTATS_UPDATE() and
146 146 * VOPSTATS_UPDATE_IO() do almost the same thing, except for the
147 147 * recording of the bytes transferred. Since the code is similar
148 148 * but small, it is nearly a duplicate. Consequently any changes
149 149 * to one may need to be reflected in the other.
150 150 * Rundown of the variables:
151 151 * vp - Pointer to the vnode
152 152 * counter - Partial name structure member to update in vopstats for counts
153 153 * bytecounter - Partial name structure member to update in vopstats for bytes
154 154 * bytesval - Value to update in vopstats for bytes
155 155 * fstype - Index into vsanchor_fstype[], same as index into vfssw[]
156 156 * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i])
157 157 */
158 158
159 159 #define VOPSTATS_UPDATE(vp, counter) { \
160 160 vfs_t *vfsp = (vp)->v_vfsp; \
161 161 if (vfsp && vfsp->vfs_implp && \
162 162 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \
163 163 vopstats_t *vsp = &vfsp->vfs_vopstats; \
164 164 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \
165 165 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \
166 166 size_t, uint64_t *); \
167 167 __dtrace_probe___fsinfo_##counter(vp, 0, stataddr); \
168 168 (*stataddr)++; \
169 169 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \
170 170 vsp->n##counter.value.ui64++; \
171 171 } \
172 172 } \
173 173 }
174 174
175 175 #define VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) { \
176 176 vfs_t *vfsp = (vp)->v_vfsp; \
177 177 if (vfsp && vfsp->vfs_implp && \
178 178 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \
179 179 vopstats_t *vsp = &vfsp->vfs_vopstats; \
180 180 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \
181 181 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \
182 182 size_t, uint64_t *); \
183 183 __dtrace_probe___fsinfo_##counter(vp, bytesval, stataddr); \
184 184 (*stataddr)++; \
185 185 vsp->bytecounter.value.ui64 += bytesval; \
186 186 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \
187 187 vsp->n##counter.value.ui64++; \
188 188 vsp->bytecounter.value.ui64 += bytesval; \
189 189 } \
190 190 } \
191 191 }
192 192
|
↓ open down ↓ |
158 lines elided |
↑ open up ↑ |
193 193 /*
194 194 * If the filesystem does not support XIDs map credential
195 195 * If the vfsp is NULL, perhaps we should also map?
196 196 */
197 197 #define VOPXID_MAP_CR(vp, cr) { \
198 198 vfs_t *vfsp = (vp)->v_vfsp; \
199 199 if (vfsp != NULL && (vfsp->vfs_flag & VFS_XID) == 0) \
200 200 cr = crgetmapped(cr); \
201 201 }
202 202
203 +#define VOP_LATENCY_10MS 10000000
204 +#define VOP_LATENCY_100MS 100000000
205 +#define VOP_LATENCY_1S 1000000000
206 +
203 207 /*
204 208 * Convert stat(2) formats to vnode types and vice versa. (Knows about
205 209 * numerical order of S_IFMT and vnode types.)
206 210 */
207 211 enum vtype iftovt_tab[] = {
208 212 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
209 213 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
210 214 };
211 215
212 216 ushort_t vttoif_tab[] = {
213 217 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO,
214 218 S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0
215 219 };
216 220
217 221 /*
218 222 * The system vnode cache.
219 223 */
220 224
221 225 kmem_cache_t *vn_cache;
222 226
223 227
224 228 /*
225 229 * Vnode operations vector.
226 230 */
227 231
228 232 static const fs_operation_trans_def_t vn_ops_table[] = {
229 233 VOPNAME_OPEN, offsetof(struct vnodeops, vop_open),
230 234 fs_nosys, fs_nosys,
231 235
232 236 VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close),
233 237 fs_nosys, fs_nosys,
234 238
235 239 VOPNAME_READ, offsetof(struct vnodeops, vop_read),
236 240 fs_nosys, fs_nosys,
237 241
238 242 VOPNAME_WRITE, offsetof(struct vnodeops, vop_write),
239 243 fs_nosys, fs_nosys,
240 244
241 245 VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl),
242 246 fs_nosys, fs_nosys,
243 247
244 248 VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl),
245 249 fs_setfl, fs_nosys,
246 250
247 251 VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr),
248 252 fs_nosys, fs_nosys,
249 253
250 254 VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr),
251 255 fs_nosys, fs_nosys,
252 256
253 257 VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access),
254 258 fs_nosys, fs_nosys,
255 259
256 260 VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup),
257 261 fs_nosys, fs_nosys,
258 262
259 263 VOPNAME_CREATE, offsetof(struct vnodeops, vop_create),
260 264 fs_nosys, fs_nosys,
261 265
262 266 VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove),
263 267 fs_nosys, fs_nosys,
264 268
265 269 VOPNAME_LINK, offsetof(struct vnodeops, vop_link),
266 270 fs_nosys, fs_nosys,
267 271
268 272 VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename),
269 273 fs_nosys, fs_nosys,
270 274
271 275 VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir),
272 276 fs_nosys, fs_nosys,
273 277
274 278 VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir),
275 279 fs_nosys, fs_nosys,
276 280
277 281 VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir),
278 282 fs_nosys, fs_nosys,
279 283
280 284 VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink),
281 285 fs_nosys, fs_nosys,
282 286
283 287 VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink),
284 288 fs_nosys, fs_nosys,
285 289
286 290 VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync),
287 291 fs_nosys, fs_nosys,
288 292
289 293 VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive),
290 294 fs_nosys, fs_nosys,
291 295
292 296 VOPNAME_FID, offsetof(struct vnodeops, vop_fid),
293 297 fs_nosys, fs_nosys,
294 298
295 299 VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock),
296 300 fs_rwlock, fs_rwlock,
297 301
298 302 VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock),
299 303 (fs_generic_func_p) fs_rwunlock,
300 304 (fs_generic_func_p) fs_rwunlock, /* no errors allowed */
301 305
302 306 VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek),
303 307 fs_nosys, fs_nosys,
304 308
305 309 VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp),
306 310 fs_cmp, fs_cmp, /* no errors allowed */
307 311
308 312 VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock),
309 313 fs_frlock, fs_nosys,
310 314
311 315 VOPNAME_SPACE, offsetof(struct vnodeops, vop_space),
312 316 fs_nosys, fs_nosys,
313 317
314 318 VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp),
315 319 fs_nosys, fs_nosys,
316 320
317 321 VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage),
318 322 fs_nosys, fs_nosys,
319 323
320 324 VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage),
321 325 fs_nosys, fs_nosys,
322 326
323 327 VOPNAME_MAP, offsetof(struct vnodeops, vop_map),
324 328 (fs_generic_func_p) fs_nosys_map,
325 329 (fs_generic_func_p) fs_nosys_map,
326 330
327 331 VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap),
328 332 (fs_generic_func_p) fs_nosys_addmap,
329 333 (fs_generic_func_p) fs_nosys_addmap,
330 334
331 335 VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap),
332 336 fs_nosys, fs_nosys,
333 337
334 338 VOPNAME_POLL, offsetof(struct vnodeops, vop_poll),
335 339 (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll,
336 340
337 341 VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump),
338 342 fs_nosys, fs_nosys,
339 343
340 344 VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf),
341 345 fs_pathconf, fs_nosys,
342 346
343 347 VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio),
344 348 fs_nosys, fs_nosys,
345 349
346 350 VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl),
347 351 fs_nosys, fs_nosys,
348 352
349 353 VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose),
350 354 (fs_generic_func_p) fs_dispose,
351 355 (fs_generic_func_p) fs_nodispose,
352 356
353 357 VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr),
354 358 fs_nosys, fs_nosys,
355 359
356 360 VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr),
357 361 fs_fab_acl, fs_nosys,
358 362
359 363 VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock),
360 364 fs_shrlock, fs_nosys,
361 365
362 366 VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent),
363 367 (fs_generic_func_p) fs_vnevent_nosupport,
364 368 (fs_generic_func_p) fs_vnevent_nosupport,
365 369
366 370 VOPNAME_REQZCBUF, offsetof(struct vnodeops, vop_reqzcbuf),
367 371 fs_nosys, fs_nosys,
368 372
369 373 VOPNAME_RETZCBUF, offsetof(struct vnodeops, vop_retzcbuf),
370 374 fs_nosys, fs_nosys,
371 375
372 376 NULL, 0, NULL, NULL
373 377 };
374 378
375 379 /* Extensible attribute (xva) routines. */
376 380
377 381 /*
378 382 * Zero out the structure, set the size of the requested/returned bitmaps,
379 383 * set AT_XVATTR in the embedded vattr_t's va_mask, and set up the pointer
380 384 * to the returned attributes array.
381 385 */
382 386 void
383 387 xva_init(xvattr_t *xvap)
384 388 {
385 389 bzero(xvap, sizeof (xvattr_t));
386 390 xvap->xva_mapsize = XVA_MAPSIZE;
387 391 xvap->xva_magic = XVA_MAGIC;
388 392 xvap->xva_vattr.va_mask = AT_XVATTR;
389 393 xvap->xva_rtnattrmapp = &(xvap->xva_rtnattrmap)[0];
390 394 }
391 395
392 396 /*
393 397 * If AT_XVATTR is set, returns a pointer to the embedded xoptattr_t
394 398 * structure. Otherwise, returns NULL.
395 399 */
396 400 xoptattr_t *
397 401 xva_getxoptattr(xvattr_t *xvap)
398 402 {
399 403 xoptattr_t *xoap = NULL;
400 404 if (xvap->xva_vattr.va_mask & AT_XVATTR)
401 405 xoap = &xvap->xva_xoptattrs;
402 406 return (xoap);
403 407 }
404 408
405 409 /*
406 410 * Used by the AVL routines to compare two vsk_anchor_t structures in the tree.
407 411 * We use the f_fsid reported by VFS_STATVFS() since we use that for the
408 412 * kstat name.
409 413 */
410 414 static int
411 415 vska_compar(const void *n1, const void *n2)
412 416 {
413 417 int ret;
414 418 ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid;
415 419 ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid;
416 420
417 421 if (p1 < p2) {
418 422 ret = -1;
419 423 } else if (p1 > p2) {
420 424 ret = 1;
421 425 } else {
422 426 ret = 0;
423 427 }
424 428
425 429 return (ret);
426 430 }
427 431
428 432 /*
429 433 * Used to create a single template which will be bcopy()ed to a newly
430 434 * allocated vsanchor_combo_t structure in new_vsanchor(), below.
431 435 */
432 436 static vopstats_t *
433 437 create_vopstats_template()
434 438 {
435 439 vopstats_t *vsp;
436 440
437 441 vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP);
438 442 bzero(vsp, sizeof (*vsp)); /* Start fresh */
439 443
440 444 /* VOP_OPEN */
441 445 kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64);
442 446 /* VOP_CLOSE */
443 447 kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64);
444 448 /* VOP_READ I/O */
445 449 kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64);
446 450 kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64);
447 451 /* VOP_WRITE I/O */
448 452 kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64);
449 453 kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64);
450 454 /* VOP_IOCTL */
451 455 kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64);
452 456 /* VOP_SETFL */
453 457 kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64);
454 458 /* VOP_GETATTR */
455 459 kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64);
456 460 /* VOP_SETATTR */
457 461 kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64);
458 462 /* VOP_ACCESS */
459 463 kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64);
460 464 /* VOP_LOOKUP */
461 465 kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64);
462 466 /* VOP_CREATE */
463 467 kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64);
464 468 /* VOP_REMOVE */
465 469 kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64);
466 470 /* VOP_LINK */
467 471 kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64);
468 472 /* VOP_RENAME */
469 473 kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64);
470 474 /* VOP_MKDIR */
471 475 kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64);
472 476 /* VOP_RMDIR */
473 477 kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64);
474 478 /* VOP_READDIR I/O */
475 479 kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64);
476 480 kstat_named_init(&vsp->readdir_bytes, "readdir_bytes",
477 481 KSTAT_DATA_UINT64);
478 482 /* VOP_SYMLINK */
479 483 kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64);
480 484 /* VOP_READLINK */
481 485 kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64);
482 486 /* VOP_FSYNC */
483 487 kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64);
484 488 /* VOP_INACTIVE */
485 489 kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64);
486 490 /* VOP_FID */
487 491 kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64);
488 492 /* VOP_RWLOCK */
489 493 kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64);
490 494 /* VOP_RWUNLOCK */
491 495 kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64);
492 496 /* VOP_SEEK */
493 497 kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64);
494 498 /* VOP_CMP */
495 499 kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64);
496 500 /* VOP_FRLOCK */
497 501 kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64);
498 502 /* VOP_SPACE */
499 503 kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64);
500 504 /* VOP_REALVP */
501 505 kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64);
502 506 /* VOP_GETPAGE */
503 507 kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64);
504 508 /* VOP_PUTPAGE */
505 509 kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64);
506 510 /* VOP_MAP */
507 511 kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64);
508 512 /* VOP_ADDMAP */
509 513 kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64);
510 514 /* VOP_DELMAP */
511 515 kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64);
512 516 /* VOP_POLL */
513 517 kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64);
514 518 /* VOP_DUMP */
515 519 kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64);
516 520 /* VOP_PATHCONF */
517 521 kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64);
518 522 /* VOP_PAGEIO */
519 523 kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64);
520 524 /* VOP_DUMPCTL */
521 525 kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64);
522 526 /* VOP_DISPOSE */
523 527 kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64);
524 528 /* VOP_SETSECATTR */
525 529 kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64);
526 530 /* VOP_GETSECATTR */
527 531 kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64);
528 532 /* VOP_SHRLOCK */
529 533 kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64);
530 534 /* VOP_VNEVENT */
531 535 kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64);
532 536 /* VOP_REQZCBUF */
533 537 kstat_named_init(&vsp->nreqzcbuf, "nreqzcbuf", KSTAT_DATA_UINT64);
534 538 /* VOP_RETZCBUF */
535 539 kstat_named_init(&vsp->nretzcbuf, "nretzcbuf", KSTAT_DATA_UINT64);
536 540
537 541 return (vsp);
538 542 }
539 543
540 544 /*
541 545 * Creates a kstat structure associated with a vopstats structure.
542 546 */
543 547 kstat_t *
544 548 new_vskstat(char *ksname, vopstats_t *vsp)
545 549 {
546 550 kstat_t *ksp;
547 551
548 552 if (!vopstats_enabled) {
549 553 return (NULL);
550 554 }
551 555
552 556 ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED,
553 557 sizeof (vopstats_t)/sizeof (kstat_named_t),
554 558 KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE);
555 559 if (ksp) {
556 560 ksp->ks_data = vsp;
557 561 kstat_install(ksp);
558 562 }
559 563
560 564 return (ksp);
561 565 }
562 566
563 567 /*
564 568 * Called from vfsinit() to initialize the support mechanisms for vopstats
565 569 */
566 570 void
567 571 vopstats_startup()
568 572 {
569 573 if (!vopstats_enabled)
570 574 return;
571 575
572 576 /*
573 577 * Creates the AVL tree which holds per-vfs vopstat anchors. This
574 578 * is necessary since we need to check if a kstat exists before we
575 579 * attempt to create it. Also, initialize its lock.
576 580 */
577 581 avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t),
578 582 offsetof(vsk_anchor_t, vsk_node));
579 583 mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL);
580 584
581 585 vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache",
582 586 sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL,
583 587 NULL, NULL, 0);
584 588
585 589 /*
586 590 * Set up the array of pointers for the vopstats-by-FS-type.
587 591 * The entries will be allocated/initialized as each file system
588 592 * goes through modload/mod_installfs.
589 593 */
590 594 vopstats_fstype = (vopstats_t **)kmem_zalloc(
591 595 (sizeof (vopstats_t *) * nfstype), KM_SLEEP);
592 596
593 597 /* Set up the global vopstats initialization template */
594 598 vs_templatep = create_vopstats_template();
595 599 }
596 600
597 601 /*
598 602 * We need to have the all of the counters zeroed.
599 603 * The initialization of the vopstats_t includes on the order of
600 604 * 50 calls to kstat_named_init(). Rather that do that on every call,
601 605 * we do it once in a template (vs_templatep) then bcopy it over.
602 606 */
603 607 void
604 608 initialize_vopstats(vopstats_t *vsp)
605 609 {
606 610 if (vsp == NULL)
607 611 return;
608 612
609 613 bcopy(vs_templatep, vsp, sizeof (vopstats_t));
610 614 }
611 615
612 616 /*
613 617 * If possible, determine which vopstats by fstype to use and
614 618 * return a pointer to the caller.
615 619 */
616 620 vopstats_t *
617 621 get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp)
618 622 {
619 623 int fstype = 0; /* Index into vfssw[] */
620 624 vopstats_t *vsp = NULL;
621 625
622 626 if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 ||
623 627 !vopstats_enabled)
624 628 return (NULL);
625 629 /*
626 630 * Set up the fstype. We go to so much trouble because all versions
627 631 * of NFS use the same fstype in their vfs even though they have
628 632 * distinct entries in the vfssw[] table.
629 633 * NOTE: A special vfs (e.g., EIO_vfs) may not have an entry.
630 634 */
631 635 if (vswp) {
632 636 fstype = vswp - vfssw; /* Gets us the index */
633 637 } else {
634 638 fstype = vfsp->vfs_fstype;
635 639 }
636 640
637 641 /*
638 642 * Point to the per-fstype vopstats. The only valid values are
639 643 * non-zero positive values less than the number of vfssw[] table
640 644 * entries.
641 645 */
642 646 if (fstype > 0 && fstype < nfstype) {
643 647 vsp = vopstats_fstype[fstype];
644 648 }
645 649
646 650 return (vsp);
647 651 }
648 652
649 653 /*
650 654 * Generate a kstat name, create the kstat structure, and allocate a
651 655 * vsk_anchor_t to hold it together. Return the pointer to the vsk_anchor_t
652 656 * to the caller. This must only be called from a mount.
653 657 */
654 658 vsk_anchor_t *
655 659 get_vskstat_anchor(vfs_t *vfsp)
656 660 {
657 661 char kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */
658 662 statvfs64_t statvfsbuf; /* Needed to find f_fsid */
659 663 vsk_anchor_t *vskp = NULL; /* vfs <--> kstat anchor */
660 664 kstat_t *ksp; /* Ptr to new kstat */
661 665 avl_index_t where; /* Location in the AVL tree */
662 666
663 667 if (vfsp == NULL || vfsp->vfs_implp == NULL ||
664 668 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled)
665 669 return (NULL);
666 670
667 671 /* Need to get the fsid to build a kstat name */
668 672 if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) {
669 673 /* Create a name for our kstats based on fsid */
670 674 (void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx",
671 675 VOPSTATS_STR, statvfsbuf.f_fsid);
672 676
673 677 /* Allocate and initialize the vsk_anchor_t */
674 678 vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP);
675 679 bzero(vskp, sizeof (*vskp));
676 680 vskp->vsk_fsid = statvfsbuf.f_fsid;
677 681
678 682 mutex_enter(&vskstat_tree_lock);
679 683 if (avl_find(&vskstat_tree, vskp, &where) == NULL) {
680 684 avl_insert(&vskstat_tree, vskp, where);
681 685 mutex_exit(&vskstat_tree_lock);
682 686
683 687 /*
684 688 * Now that we've got the anchor in the AVL
685 689 * tree, we can create the kstat.
686 690 */
687 691 ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats);
688 692 if (ksp) {
689 693 vskp->vsk_ksp = ksp;
690 694 }
691 695 } else {
692 696 /* Oops, found one! Release memory and lock. */
693 697 mutex_exit(&vskstat_tree_lock);
694 698 kmem_cache_free(vsk_anchor_cache, vskp);
695 699 vskp = NULL;
696 700 }
697 701 }
698 702 return (vskp);
699 703 }
700 704
701 705 /*
702 706 * We're in the process of tearing down the vfs and need to cleanup
703 707 * the data structures associated with the vopstats. Must only be called
704 708 * from dounmount().
705 709 */
706 710 void
707 711 teardown_vopstats(vfs_t *vfsp)
708 712 {
709 713 vsk_anchor_t *vskap;
710 714 avl_index_t where;
711 715
712 716 if (vfsp == NULL || vfsp->vfs_implp == NULL ||
713 717 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled)
714 718 return;
715 719
716 720 /* This is a safe check since VFS_STATS must be set (see above) */
717 721 if ((vskap = vfsp->vfs_vskap) == NULL)
718 722 return;
719 723
720 724 /* Whack the pointer right away */
721 725 vfsp->vfs_vskap = NULL;
722 726
723 727 /* Lock the tree, remove the node, and delete the kstat */
724 728 mutex_enter(&vskstat_tree_lock);
725 729 if (avl_find(&vskstat_tree, vskap, &where)) {
726 730 avl_remove(&vskstat_tree, vskap);
727 731 }
728 732
729 733 if (vskap->vsk_ksp) {
730 734 kstat_delete(vskap->vsk_ksp);
731 735 }
732 736 mutex_exit(&vskstat_tree_lock);
733 737
734 738 kmem_cache_free(vsk_anchor_cache, vskap);
735 739 }
736 740
737 741 /*
738 742 * Read or write a vnode. Called from kernel code.
739 743 */
740 744 int
741 745 vn_rdwr(
742 746 enum uio_rw rw,
743 747 struct vnode *vp,
744 748 caddr_t base,
745 749 ssize_t len,
746 750 offset_t offset,
747 751 enum uio_seg seg,
748 752 int ioflag,
749 753 rlim64_t ulimit, /* meaningful only if rw is UIO_WRITE */
750 754 cred_t *cr,
751 755 ssize_t *residp)
752 756 {
753 757 struct uio uio;
754 758 struct iovec iov;
755 759 int error;
756 760 int in_crit = 0;
757 761
758 762 if (rw == UIO_WRITE && ISROFILE(vp))
759 763 return (EROFS);
760 764
761 765 if (len < 0)
762 766 return (EIO);
763 767
764 768 VOPXID_MAP_CR(vp, cr);
765 769
766 770 iov.iov_base = base;
767 771 iov.iov_len = len;
768 772 uio.uio_iov = &iov;
769 773 uio.uio_iovcnt = 1;
770 774 uio.uio_loffset = offset;
771 775 uio.uio_segflg = (short)seg;
772 776 uio.uio_resid = len;
773 777 uio.uio_llimit = ulimit;
774 778
775 779 /*
776 780 * We have to enter the critical region before calling VOP_RWLOCK
777 781 * to avoid a deadlock with ufs.
778 782 */
779 783 if (nbl_need_check(vp)) {
780 784 int svmand;
781 785
782 786 nbl_start_crit(vp, RW_READER);
783 787 in_crit = 1;
784 788 error = nbl_svmand(vp, cr, &svmand);
785 789 if (error != 0)
786 790 goto done;
787 791 if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ,
788 792 uio.uio_offset, uio.uio_resid, svmand, NULL)) {
789 793 error = EACCES;
790 794 goto done;
791 795 }
792 796 }
793 797
794 798 (void) VOP_RWLOCK(vp,
795 799 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL);
796 800 if (rw == UIO_WRITE) {
797 801 uio.uio_fmode = FWRITE;
798 802 uio.uio_extflg = UIO_COPY_DEFAULT;
799 803 error = VOP_WRITE(vp, &uio, ioflag, cr, NULL);
800 804 } else {
801 805 uio.uio_fmode = FREAD;
802 806 uio.uio_extflg = UIO_COPY_CACHED;
803 807 error = VOP_READ(vp, &uio, ioflag, cr, NULL);
804 808 }
805 809 VOP_RWUNLOCK(vp,
806 810 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL);
807 811 if (residp)
808 812 *residp = uio.uio_resid;
809 813 else if (uio.uio_resid)
810 814 error = EIO;
811 815
812 816 done:
813 817 if (in_crit)
814 818 nbl_end_crit(vp);
815 819 return (error);
816 820 }
817 821
818 822 /*
819 823 * Release a vnode. Call VOP_INACTIVE on last reference or
820 824 * decrement reference count.
821 825 *
822 826 * To avoid race conditions, the v_count is left at 1 for
823 827 * the call to VOP_INACTIVE. This prevents another thread
824 828 * from reclaiming and releasing the vnode *before* the
825 829 * VOP_INACTIVE routine has a chance to destroy the vnode.
826 830 * We can't have more than 1 thread calling VOP_INACTIVE
827 831 * on a vnode.
828 832 */
829 833 void
830 834 vn_rele(vnode_t *vp)
831 835 {
832 836 VERIFY(vp->v_count > 0);
833 837 mutex_enter(&vp->v_lock);
834 838 if (vp->v_count == 1) {
835 839 mutex_exit(&vp->v_lock);
836 840 VOP_INACTIVE(vp, CRED(), NULL);
837 841 return;
838 842 }
839 843 vp->v_count--;
840 844 mutex_exit(&vp->v_lock);
841 845 }
842 846
843 847 /*
844 848 * Release a vnode referenced by the DNLC. Multiple DNLC references are treated
845 849 * as a single reference, so v_count is not decremented until the last DNLC hold
846 850 * is released. This makes it possible to distinguish vnodes that are referenced
847 851 * only by the DNLC.
848 852 */
849 853 void
850 854 vn_rele_dnlc(vnode_t *vp)
851 855 {
852 856 VERIFY((vp->v_count > 0) && (vp->v_count_dnlc > 0));
853 857 mutex_enter(&vp->v_lock);
854 858 if (--vp->v_count_dnlc == 0) {
855 859 if (vp->v_count == 1) {
856 860 mutex_exit(&vp->v_lock);
857 861 VOP_INACTIVE(vp, CRED(), NULL);
858 862 return;
859 863 }
860 864 vp->v_count--;
861 865 }
862 866 mutex_exit(&vp->v_lock);
863 867 }
864 868
865 869 /*
866 870 * Like vn_rele() except that it clears v_stream under v_lock.
867 871 * This is used by sockfs when it dismantels the association between
868 872 * the sockfs node and the vnode in the underlaying file system.
869 873 * v_lock has to be held to prevent a thread coming through the lookupname
870 874 * path from accessing a stream head that is going away.
871 875 */
872 876 void
873 877 vn_rele_stream(vnode_t *vp)
874 878 {
875 879 VERIFY(vp->v_count > 0);
876 880 mutex_enter(&vp->v_lock);
877 881 vp->v_stream = NULL;
878 882 if (vp->v_count == 1) {
879 883 mutex_exit(&vp->v_lock);
880 884 VOP_INACTIVE(vp, CRED(), NULL);
881 885 return;
882 886 }
883 887 vp->v_count--;
884 888 mutex_exit(&vp->v_lock);
885 889 }
886 890
887 891 static void
888 892 vn_rele_inactive(vnode_t *vp)
889 893 {
890 894 VOP_INACTIVE(vp, CRED(), NULL);
891 895 }
892 896
893 897 /*
894 898 * Like vn_rele() except if we are going to call VOP_INACTIVE() then do it
895 899 * asynchronously using a taskq. This can avoid deadlocks caused by re-entering
896 900 * the file system as a result of releasing the vnode. Note, file systems
897 901 * already have to handle the race where the vnode is incremented before the
898 902 * inactive routine is called and does its locking.
899 903 *
900 904 * Warning: Excessive use of this routine can lead to performance problems.
901 905 * This is because taskqs throttle back allocation if too many are created.
902 906 */
903 907 void
904 908 vn_rele_async(vnode_t *vp, taskq_t *taskq)
905 909 {
906 910 VERIFY(vp->v_count > 0);
907 911 mutex_enter(&vp->v_lock);
908 912 if (vp->v_count == 1) {
909 913 mutex_exit(&vp->v_lock);
910 914 VERIFY(taskq_dispatch(taskq, (task_func_t *)vn_rele_inactive,
911 915 vp, TQ_SLEEP) != NULL);
912 916 return;
913 917 }
914 918 vp->v_count--;
915 919 mutex_exit(&vp->v_lock);
916 920 }
917 921
918 922 int
919 923 vn_open(
920 924 char *pnamep,
921 925 enum uio_seg seg,
922 926 int filemode,
923 927 int createmode,
924 928 struct vnode **vpp,
925 929 enum create crwhy,
926 930 mode_t umask)
927 931 {
928 932 return (vn_openat(pnamep, seg, filemode, createmode, vpp, crwhy,
929 933 umask, NULL, -1));
930 934 }
931 935
932 936
933 937 /*
934 938 * Open/create a vnode.
935 939 * This may be callable by the kernel, the only known use
936 940 * of user context being that the current user credentials
937 941 * are used for permissions. crwhy is defined iff filemode & FCREAT.
938 942 */
939 943 int
940 944 vn_openat(
941 945 char *pnamep,
942 946 enum uio_seg seg,
943 947 int filemode,
944 948 int createmode,
945 949 struct vnode **vpp,
946 950 enum create crwhy,
947 951 mode_t umask,
948 952 struct vnode *startvp,
949 953 int fd)
950 954 {
951 955 struct vnode *vp;
952 956 int mode;
953 957 int accessflags;
954 958 int error;
955 959 int in_crit = 0;
956 960 int open_done = 0;
957 961 int shrlock_done = 0;
958 962 struct vattr vattr;
959 963 enum symfollow follow;
960 964 int estale_retry = 0;
961 965 struct shrlock shr;
962 966 struct shr_locowner shr_own;
963 967
964 968 mode = 0;
965 969 accessflags = 0;
966 970 if (filemode & FREAD)
967 971 mode |= VREAD;
968 972 if (filemode & (FWRITE|FTRUNC))
969 973 mode |= VWRITE;
970 974 if (filemode & (FSEARCH|FEXEC|FXATTRDIROPEN))
971 975 mode |= VEXEC;
972 976
973 977 /* symlink interpretation */
974 978 if (filemode & FNOFOLLOW)
975 979 follow = NO_FOLLOW;
976 980 else
977 981 follow = FOLLOW;
978 982
979 983 if (filemode & FAPPEND)
980 984 accessflags |= V_APPEND;
981 985
982 986 top:
983 987 if (filemode & FCREAT) {
984 988 enum vcexcl excl;
985 989
986 990 /*
987 991 * Wish to create a file.
988 992 */
989 993 vattr.va_type = VREG;
990 994 vattr.va_mode = createmode;
991 995 vattr.va_mask = AT_TYPE|AT_MODE;
992 996 if (filemode & FTRUNC) {
993 997 vattr.va_size = 0;
994 998 vattr.va_mask |= AT_SIZE;
995 999 }
996 1000 if (filemode & FEXCL)
997 1001 excl = EXCL;
998 1002 else
999 1003 excl = NONEXCL;
1000 1004
1001 1005 if (error =
1002 1006 vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy,
1003 1007 (filemode & ~(FTRUNC|FEXCL)), umask, startvp))
1004 1008 return (error);
1005 1009 } else {
1006 1010 /*
1007 1011 * Wish to open a file. Just look it up.
1008 1012 */
1009 1013 if (error = lookupnameat(pnamep, seg, follow,
1010 1014 NULLVPP, &vp, startvp)) {
1011 1015 if ((error == ESTALE) &&
1012 1016 fs_need_estale_retry(estale_retry++))
1013 1017 goto top;
1014 1018 return (error);
1015 1019 }
1016 1020
1017 1021 /*
1018 1022 * Get the attributes to check whether file is large.
1019 1023 * We do this only if the FOFFMAX flag is not set and
1020 1024 * only for regular files.
1021 1025 */
1022 1026
1023 1027 if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) {
1024 1028 vattr.va_mask = AT_SIZE;
1025 1029 if ((error = VOP_GETATTR(vp, &vattr, 0,
1026 1030 CRED(), NULL))) {
1027 1031 goto out;
1028 1032 }
1029 1033 if (vattr.va_size > (u_offset_t)MAXOFF32_T) {
1030 1034 /*
1031 1035 * Large File API - regular open fails
1032 1036 * if FOFFMAX flag is set in file mode
1033 1037 */
1034 1038 error = EOVERFLOW;
1035 1039 goto out;
1036 1040 }
1037 1041 }
1038 1042 /*
1039 1043 * Can't write directories, active texts, or
1040 1044 * read-only filesystems. Can't truncate files
1041 1045 * on which mandatory locking is in effect.
1042 1046 */
1043 1047 if (filemode & (FWRITE|FTRUNC)) {
1044 1048 /*
1045 1049 * Allow writable directory if VDIROPEN flag is set.
1046 1050 */
1047 1051 if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) {
1048 1052 error = EISDIR;
1049 1053 goto out;
1050 1054 }
1051 1055 if (ISROFILE(vp)) {
1052 1056 error = EROFS;
1053 1057 goto out;
1054 1058 }
1055 1059 /*
1056 1060 * Can't truncate files on which
1057 1061 * sysv mandatory locking is in effect.
1058 1062 */
1059 1063 if (filemode & FTRUNC) {
1060 1064 vnode_t *rvp;
1061 1065
1062 1066 if (VOP_REALVP(vp, &rvp, NULL) != 0)
1063 1067 rvp = vp;
1064 1068 if (rvp->v_filocks != NULL) {
1065 1069 vattr.va_mask = AT_MODE;
1066 1070 if ((error = VOP_GETATTR(vp,
1067 1071 &vattr, 0, CRED(), NULL)) == 0 &&
1068 1072 MANDLOCK(vp, vattr.va_mode))
1069 1073 error = EAGAIN;
1070 1074 }
1071 1075 }
1072 1076 if (error)
1073 1077 goto out;
1074 1078 }
1075 1079 /*
1076 1080 * Check permissions.
1077 1081 */
1078 1082 if (error = VOP_ACCESS(vp, mode, accessflags, CRED(), NULL))
1079 1083 goto out;
1080 1084 /*
1081 1085 * Require FSEARCH to return a directory.
1082 1086 * Require FEXEC to return a regular file.
1083 1087 */
1084 1088 if ((filemode & FSEARCH) && vp->v_type != VDIR) {
1085 1089 error = ENOTDIR;
1086 1090 goto out;
1087 1091 }
1088 1092 if ((filemode & FEXEC) && vp->v_type != VREG) {
1089 1093 error = ENOEXEC; /* XXX: error code? */
1090 1094 goto out;
1091 1095 }
1092 1096 }
1093 1097
1094 1098 /*
1095 1099 * Do remaining checks for FNOFOLLOW and FNOLINKS.
1096 1100 */
1097 1101 if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) {
1098 1102 error = ELOOP;
1099 1103 goto out;
1100 1104 }
1101 1105 if (filemode & FNOLINKS) {
1102 1106 vattr.va_mask = AT_NLINK;
1103 1107 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) {
1104 1108 goto out;
1105 1109 }
1106 1110 if (vattr.va_nlink != 1) {
1107 1111 error = EMLINK;
1108 1112 goto out;
1109 1113 }
1110 1114 }
1111 1115
1112 1116 /*
1113 1117 * Opening a socket corresponding to the AF_UNIX pathname
1114 1118 * in the filesystem name space is not supported.
1115 1119 * However, VSOCK nodes in namefs are supported in order
1116 1120 * to make fattach work for sockets.
1117 1121 *
1118 1122 * XXX This uses VOP_REALVP to distinguish between
1119 1123 * an unopened namefs node (where VOP_REALVP returns a
1120 1124 * different VSOCK vnode) and a VSOCK created by vn_create
1121 1125 * in some file system (where VOP_REALVP would never return
1122 1126 * a different vnode).
1123 1127 */
1124 1128 if (vp->v_type == VSOCK) {
1125 1129 struct vnode *nvp;
1126 1130
1127 1131 error = VOP_REALVP(vp, &nvp, NULL);
1128 1132 if (error != 0 || nvp == NULL || nvp == vp ||
1129 1133 nvp->v_type != VSOCK) {
1130 1134 error = EOPNOTSUPP;
1131 1135 goto out;
1132 1136 }
1133 1137 }
1134 1138
1135 1139 if ((vp->v_type == VREG) && nbl_need_check(vp)) {
1136 1140 /* get share reservation */
1137 1141 shr.s_access = 0;
1138 1142 if (filemode & FWRITE)
1139 1143 shr.s_access |= F_WRACC;
1140 1144 if (filemode & FREAD)
1141 1145 shr.s_access |= F_RDACC;
1142 1146 shr.s_deny = 0;
1143 1147 shr.s_sysid = 0;
1144 1148 shr.s_pid = ttoproc(curthread)->p_pid;
1145 1149 shr_own.sl_pid = shr.s_pid;
1146 1150 shr_own.sl_id = fd;
1147 1151 shr.s_own_len = sizeof (shr_own);
1148 1152 shr.s_owner = (caddr_t)&shr_own;
1149 1153 error = VOP_SHRLOCK(vp, F_SHARE_NBMAND, &shr, filemode, CRED(),
1150 1154 NULL);
1151 1155 if (error)
1152 1156 goto out;
1153 1157 shrlock_done = 1;
1154 1158
1155 1159 /* nbmand conflict check if truncating file */
1156 1160 if ((filemode & FTRUNC) && !(filemode & FCREAT)) {
1157 1161 nbl_start_crit(vp, RW_READER);
1158 1162 in_crit = 1;
1159 1163
1160 1164 vattr.va_mask = AT_SIZE;
1161 1165 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))
1162 1166 goto out;
1163 1167 if (nbl_conflict(vp, NBL_WRITE, 0, vattr.va_size, 0,
1164 1168 NULL)) {
1165 1169 error = EACCES;
1166 1170 goto out;
1167 1171 }
1168 1172 }
1169 1173 }
1170 1174
1171 1175 /*
1172 1176 * Do opening protocol.
1173 1177 */
1174 1178 error = VOP_OPEN(&vp, filemode, CRED(), NULL);
1175 1179 if (error)
1176 1180 goto out;
1177 1181 open_done = 1;
1178 1182
1179 1183 /*
1180 1184 * Truncate if required.
1181 1185 */
1182 1186 if ((filemode & FTRUNC) && !(filemode & FCREAT)) {
1183 1187 vattr.va_size = 0;
1184 1188 vattr.va_mask = AT_SIZE;
1185 1189 if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0)
1186 1190 goto out;
1187 1191 }
1188 1192 out:
1189 1193 ASSERT(vp->v_count > 0);
1190 1194
1191 1195 if (in_crit) {
1192 1196 nbl_end_crit(vp);
1193 1197 in_crit = 0;
1194 1198 }
1195 1199 if (error) {
1196 1200 if (open_done) {
1197 1201 (void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED(),
1198 1202 NULL);
1199 1203 open_done = 0;
1200 1204 shrlock_done = 0;
1201 1205 }
1202 1206 if (shrlock_done) {
1203 1207 (void) VOP_SHRLOCK(vp, F_UNSHARE, &shr, 0, CRED(),
1204 1208 NULL);
1205 1209 shrlock_done = 0;
1206 1210 }
1207 1211
1208 1212 /*
1209 1213 * The following clause was added to handle a problem
1210 1214 * with NFS consistency. It is possible that a lookup
1211 1215 * of the file to be opened succeeded, but the file
1212 1216 * itself doesn't actually exist on the server. This
1213 1217 * is chiefly due to the DNLC containing an entry for
1214 1218 * the file which has been removed on the server. In
1215 1219 * this case, we just start over. If there was some
1216 1220 * other cause for the ESTALE error, then the lookup
1217 1221 * of the file will fail and the error will be returned
1218 1222 * above instead of looping around from here.
1219 1223 */
1220 1224 VN_RELE(vp);
1221 1225 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1222 1226 goto top;
1223 1227 } else
1224 1228 *vpp = vp;
1225 1229 return (error);
1226 1230 }
1227 1231
1228 1232 /*
1229 1233 * The following two accessor functions are for the NFSv4 server. Since there
1230 1234 * is no VOP_OPEN_UP/DOWNGRADE we need a way for the NFS server to keep the
1231 1235 * vnode open counts correct when a client "upgrades" an open or does an
1232 1236 * open_downgrade. In NFS, an upgrade or downgrade can not only change the
1233 1237 * open mode (add or subtract read or write), but also change the share/deny
1234 1238 * modes. However, share reservations are not integrated with OPEN, yet, so
1235 1239 * we need to handle each separately. These functions are cleaner than having
1236 1240 * the NFS server manipulate the counts directly, however, nobody else should
1237 1241 * use these functions.
1238 1242 */
1239 1243 void
1240 1244 vn_open_upgrade(
1241 1245 vnode_t *vp,
1242 1246 int filemode)
1243 1247 {
1244 1248 ASSERT(vp->v_type == VREG);
1245 1249
1246 1250 if (filemode & FREAD)
1247 1251 atomic_inc_32(&vp->v_rdcnt);
1248 1252 if (filemode & FWRITE)
1249 1253 atomic_inc_32(&vp->v_wrcnt);
1250 1254
1251 1255 }
1252 1256
1253 1257 void
1254 1258 vn_open_downgrade(
1255 1259 vnode_t *vp,
1256 1260 int filemode)
1257 1261 {
1258 1262 ASSERT(vp->v_type == VREG);
1259 1263
1260 1264 if (filemode & FREAD) {
1261 1265 ASSERT(vp->v_rdcnt > 0);
1262 1266 atomic_dec_32(&vp->v_rdcnt);
1263 1267 }
1264 1268 if (filemode & FWRITE) {
1265 1269 ASSERT(vp->v_wrcnt > 0);
1266 1270 atomic_dec_32(&vp->v_wrcnt);
1267 1271 }
1268 1272
1269 1273 }
1270 1274
1271 1275 int
1272 1276 vn_create(
1273 1277 char *pnamep,
1274 1278 enum uio_seg seg,
1275 1279 struct vattr *vap,
1276 1280 enum vcexcl excl,
1277 1281 int mode,
1278 1282 struct vnode **vpp,
1279 1283 enum create why,
1280 1284 int flag,
1281 1285 mode_t umask)
1282 1286 {
1283 1287 return (vn_createat(pnamep, seg, vap, excl, mode, vpp, why, flag,
1284 1288 umask, NULL));
1285 1289 }
1286 1290
1287 1291 /*
1288 1292 * Create a vnode (makenode).
1289 1293 */
1290 1294 int
1291 1295 vn_createat(
1292 1296 char *pnamep,
1293 1297 enum uio_seg seg,
1294 1298 struct vattr *vap,
1295 1299 enum vcexcl excl,
1296 1300 int mode,
1297 1301 struct vnode **vpp,
1298 1302 enum create why,
1299 1303 int flag,
1300 1304 mode_t umask,
1301 1305 struct vnode *startvp)
1302 1306 {
1303 1307 struct vnode *dvp; /* ptr to parent dir vnode */
1304 1308 struct vnode *vp = NULL;
1305 1309 struct pathname pn;
1306 1310 int error;
1307 1311 int in_crit = 0;
1308 1312 struct vattr vattr;
1309 1313 enum symfollow follow;
1310 1314 int estale_retry = 0;
1311 1315 uint32_t auditing = AU_AUDITING();
1312 1316
1313 1317 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
1314 1318
1315 1319 /* symlink interpretation */
1316 1320 if ((flag & FNOFOLLOW) || excl == EXCL)
1317 1321 follow = NO_FOLLOW;
1318 1322 else
1319 1323 follow = FOLLOW;
1320 1324 flag &= ~(FNOFOLLOW|FNOLINKS);
1321 1325
1322 1326 top:
1323 1327 /*
1324 1328 * Lookup directory.
1325 1329 * If new object is a file, call lower level to create it.
1326 1330 * Note that it is up to the lower level to enforce exclusive
1327 1331 * creation, if the file is already there.
1328 1332 * This allows the lower level to do whatever
1329 1333 * locking or protocol that is needed to prevent races.
1330 1334 * If the new object is directory call lower level to make
1331 1335 * the new directory, with "." and "..".
1332 1336 */
1333 1337 if (error = pn_get(pnamep, seg, &pn))
1334 1338 return (error);
1335 1339 if (auditing)
1336 1340 audit_vncreate_start();
1337 1341 dvp = NULL;
1338 1342 *vpp = NULL;
1339 1343 /*
1340 1344 * lookup will find the parent directory for the vnode.
1341 1345 * When it is done the pn holds the name of the entry
1342 1346 * in the directory.
1343 1347 * If this is a non-exclusive create we also find the node itself.
1344 1348 */
1345 1349 error = lookuppnat(&pn, NULL, follow, &dvp,
1346 1350 (excl == EXCL) ? NULLVPP : vpp, startvp);
1347 1351 if (error) {
1348 1352 pn_free(&pn);
1349 1353 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1350 1354 goto top;
1351 1355 if (why == CRMKDIR && error == EINVAL)
1352 1356 error = EEXIST; /* SVID */
1353 1357 return (error);
1354 1358 }
1355 1359
1356 1360 if (why != CRMKNOD)
1357 1361 vap->va_mode &= ~VSVTX;
1358 1362
1359 1363 /*
1360 1364 * If default ACLs are defined for the directory don't apply the
1361 1365 * umask if umask is passed.
1362 1366 */
1363 1367
1364 1368 if (umask) {
1365 1369
1366 1370 vsecattr_t vsec;
1367 1371
1368 1372 vsec.vsa_aclcnt = 0;
1369 1373 vsec.vsa_aclentp = NULL;
1370 1374 vsec.vsa_dfaclcnt = 0;
1371 1375 vsec.vsa_dfaclentp = NULL;
1372 1376 vsec.vsa_mask = VSA_DFACLCNT;
1373 1377 error = VOP_GETSECATTR(dvp, &vsec, 0, CRED(), NULL);
1374 1378 /*
1375 1379 * If error is ENOSYS then treat it as no error
1376 1380 * Don't want to force all file systems to support
1377 1381 * aclent_t style of ACL's.
1378 1382 */
1379 1383 if (error == ENOSYS)
1380 1384 error = 0;
1381 1385 if (error) {
1382 1386 if (*vpp != NULL)
1383 1387 VN_RELE(*vpp);
1384 1388 goto out;
1385 1389 } else {
1386 1390 /*
1387 1391 * Apply the umask if no default ACLs.
1388 1392 */
1389 1393 if (vsec.vsa_dfaclcnt == 0)
1390 1394 vap->va_mode &= ~umask;
1391 1395
1392 1396 /*
1393 1397 * VOP_GETSECATTR() may have allocated memory for
1394 1398 * ACLs we didn't request, so double-check and
1395 1399 * free it if necessary.
1396 1400 */
1397 1401 if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL)
1398 1402 kmem_free((caddr_t)vsec.vsa_aclentp,
1399 1403 vsec.vsa_aclcnt * sizeof (aclent_t));
1400 1404 if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL)
1401 1405 kmem_free((caddr_t)vsec.vsa_dfaclentp,
1402 1406 vsec.vsa_dfaclcnt * sizeof (aclent_t));
1403 1407 }
1404 1408 }
1405 1409
1406 1410 /*
1407 1411 * In general we want to generate EROFS if the file system is
1408 1412 * readonly. However, POSIX (IEEE Std. 1003.1) section 5.3.1
1409 1413 * documents the open system call, and it says that O_CREAT has no
1410 1414 * effect if the file already exists. Bug 1119649 states
1411 1415 * that open(path, O_CREAT, ...) fails when attempting to open an
1412 1416 * existing file on a read only file system. Thus, the first part
1413 1417 * of the following if statement has 3 checks:
1414 1418 * if the file exists &&
1415 1419 * it is being open with write access &&
1416 1420 * the file system is read only
1417 1421 * then generate EROFS
1418 1422 */
1419 1423 if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) ||
1420 1424 (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
1421 1425 if (*vpp)
1422 1426 VN_RELE(*vpp);
1423 1427 error = EROFS;
1424 1428 } else if (excl == NONEXCL && *vpp != NULL) {
1425 1429 vnode_t *rvp;
1426 1430
1427 1431 /*
1428 1432 * File already exists. If a mandatory lock has been
1429 1433 * applied, return error.
1430 1434 */
1431 1435 vp = *vpp;
1432 1436 if (VOP_REALVP(vp, &rvp, NULL) != 0)
1433 1437 rvp = vp;
1434 1438 if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) {
1435 1439 nbl_start_crit(vp, RW_READER);
1436 1440 in_crit = 1;
1437 1441 }
1438 1442 if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) {
1439 1443 vattr.va_mask = AT_MODE|AT_SIZE;
1440 1444 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) {
1441 1445 goto out;
1442 1446 }
1443 1447 if (MANDLOCK(vp, vattr.va_mode)) {
1444 1448 error = EAGAIN;
1445 1449 goto out;
1446 1450 }
1447 1451 /*
1448 1452 * File cannot be truncated if non-blocking mandatory
1449 1453 * locks are currently on the file.
1450 1454 */
1451 1455 if ((vap->va_mask & AT_SIZE) && in_crit) {
1452 1456 u_offset_t offset;
1453 1457 ssize_t length;
1454 1458
1455 1459 offset = vap->va_size > vattr.va_size ?
1456 1460 vattr.va_size : vap->va_size;
1457 1461 length = vap->va_size > vattr.va_size ?
1458 1462 vap->va_size - vattr.va_size :
1459 1463 vattr.va_size - vap->va_size;
1460 1464 if (nbl_conflict(vp, NBL_WRITE, offset,
1461 1465 length, 0, NULL)) {
1462 1466 error = EACCES;
1463 1467 goto out;
1464 1468 }
1465 1469 }
1466 1470 }
1467 1471
1468 1472 /*
1469 1473 * If the file is the root of a VFS, we've crossed a
1470 1474 * mount point and the "containing" directory that we
1471 1475 * acquired above (dvp) is irrelevant because it's in
1472 1476 * a different file system. We apply VOP_CREATE to the
1473 1477 * target itself instead of to the containing directory
1474 1478 * and supply a null path name to indicate (conventionally)
1475 1479 * the node itself as the "component" of interest.
1476 1480 *
1477 1481 * The intercession of the file system is necessary to
1478 1482 * ensure that the appropriate permission checks are
1479 1483 * done.
1480 1484 */
1481 1485 if (vp->v_flag & VROOT) {
1482 1486 ASSERT(why != CRMKDIR);
1483 1487 error = VOP_CREATE(vp, "", vap, excl, mode, vpp,
1484 1488 CRED(), flag, NULL, NULL);
1485 1489 /*
1486 1490 * If the create succeeded, it will have created
1487 1491 * a new reference to the vnode. Give up the
1488 1492 * original reference. The assertion should not
1489 1493 * get triggered because NBMAND locks only apply to
1490 1494 * VREG files. And if in_crit is non-zero for some
1491 1495 * reason, detect that here, rather than when we
1492 1496 * deference a null vp.
1493 1497 */
1494 1498 ASSERT(in_crit == 0);
1495 1499 VN_RELE(vp);
1496 1500 vp = NULL;
1497 1501 goto out;
1498 1502 }
1499 1503
1500 1504 /*
1501 1505 * Large File API - non-large open (FOFFMAX flag not set)
1502 1506 * of regular file fails if the file size exceeds MAXOFF32_T.
1503 1507 */
1504 1508 if (why != CRMKDIR &&
1505 1509 !(flag & FOFFMAX) &&
1506 1510 (vp->v_type == VREG)) {
1507 1511 vattr.va_mask = AT_SIZE;
1508 1512 if ((error = VOP_GETATTR(vp, &vattr, 0,
1509 1513 CRED(), NULL))) {
1510 1514 goto out;
1511 1515 }
1512 1516 if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) {
1513 1517 error = EOVERFLOW;
1514 1518 goto out;
1515 1519 }
1516 1520 }
1517 1521 }
1518 1522
1519 1523 if (error == 0) {
1520 1524 /*
1521 1525 * Call mkdir() if specified, otherwise create().
1522 1526 */
1523 1527 int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */
1524 1528
1525 1529 if (why == CRMKDIR)
1526 1530 /*
1527 1531 * N.B., if vn_createat() ever requests
1528 1532 * case-insensitive behavior then it will need
1529 1533 * to be passed to VOP_MKDIR(). VOP_CREATE()
1530 1534 * will already get it via "flag"
1531 1535 */
1532 1536 error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED(),
1533 1537 NULL, 0, NULL);
1534 1538 else if (!must_be_dir)
1535 1539 error = VOP_CREATE(dvp, pn.pn_path, vap,
1536 1540 excl, mode, vpp, CRED(), flag, NULL, NULL);
1537 1541 else
1538 1542 error = ENOTDIR;
1539 1543 }
1540 1544
1541 1545 out:
1542 1546
1543 1547 if (auditing)
1544 1548 audit_vncreate_finish(*vpp, error);
1545 1549 if (in_crit) {
1546 1550 nbl_end_crit(vp);
1547 1551 in_crit = 0;
1548 1552 }
1549 1553 if (vp != NULL) {
1550 1554 VN_RELE(vp);
1551 1555 vp = NULL;
1552 1556 }
1553 1557 pn_free(&pn);
1554 1558 VN_RELE(dvp);
1555 1559 /*
1556 1560 * The following clause was added to handle a problem
1557 1561 * with NFS consistency. It is possible that a lookup
1558 1562 * of the file to be created succeeded, but the file
1559 1563 * itself doesn't actually exist on the server. This
1560 1564 * is chiefly due to the DNLC containing an entry for
1561 1565 * the file which has been removed on the server. In
1562 1566 * this case, we just start over. If there was some
1563 1567 * other cause for the ESTALE error, then the lookup
1564 1568 * of the file will fail and the error will be returned
1565 1569 * above instead of looping around from here.
1566 1570 */
1567 1571 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1568 1572 goto top;
1569 1573 return (error);
1570 1574 }
1571 1575
1572 1576 int
1573 1577 vn_link(char *from, char *to, enum uio_seg seg)
1574 1578 {
1575 1579 return (vn_linkat(NULL, from, NO_FOLLOW, NULL, to, seg));
1576 1580 }
1577 1581
1578 1582 int
1579 1583 vn_linkat(vnode_t *fstartvp, char *from, enum symfollow follow,
1580 1584 vnode_t *tstartvp, char *to, enum uio_seg seg)
1581 1585 {
1582 1586 struct vnode *fvp; /* from vnode ptr */
1583 1587 struct vnode *tdvp; /* to directory vnode ptr */
1584 1588 struct pathname pn;
1585 1589 int error;
1586 1590 struct vattr vattr;
1587 1591 dev_t fsid;
1588 1592 int estale_retry = 0;
1589 1593 uint32_t auditing = AU_AUDITING();
1590 1594
1591 1595 top:
1592 1596 fvp = tdvp = NULL;
1593 1597 if (error = pn_get(to, seg, &pn))
1594 1598 return (error);
1595 1599 if (auditing && fstartvp != NULL)
1596 1600 audit_setfsat_path(1);
1597 1601 if (error = lookupnameat(from, seg, follow, NULLVPP, &fvp, fstartvp))
1598 1602 goto out;
1599 1603 if (auditing && tstartvp != NULL)
1600 1604 audit_setfsat_path(3);
1601 1605 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP, tstartvp))
1602 1606 goto out;
1603 1607 /*
1604 1608 * Make sure both source vnode and target directory vnode are
1605 1609 * in the same vfs and that it is writeable.
1606 1610 */
1607 1611 vattr.va_mask = AT_FSID;
1608 1612 if (error = VOP_GETATTR(fvp, &vattr, 0, CRED(), NULL))
1609 1613 goto out;
1610 1614 fsid = vattr.va_fsid;
1611 1615 vattr.va_mask = AT_FSID;
1612 1616 if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED(), NULL))
1613 1617 goto out;
1614 1618 if (fsid != vattr.va_fsid) {
1615 1619 error = EXDEV;
1616 1620 goto out;
1617 1621 }
1618 1622 if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) {
1619 1623 error = EROFS;
1620 1624 goto out;
1621 1625 }
1622 1626 /*
1623 1627 * Do the link.
1624 1628 */
1625 1629 (void) pn_fixslash(&pn);
1626 1630 error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED(), NULL, 0);
1627 1631 out:
1628 1632 pn_free(&pn);
1629 1633 if (fvp)
1630 1634 VN_RELE(fvp);
1631 1635 if (tdvp)
1632 1636 VN_RELE(tdvp);
1633 1637 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1634 1638 goto top;
1635 1639 return (error);
1636 1640 }
1637 1641
1638 1642 int
1639 1643 vn_rename(char *from, char *to, enum uio_seg seg)
1640 1644 {
1641 1645 return (vn_renameat(NULL, from, NULL, to, seg));
1642 1646 }
1643 1647
1644 1648 int
1645 1649 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp,
1646 1650 char *tname, enum uio_seg seg)
1647 1651 {
1648 1652 int error;
1649 1653 struct vattr vattr;
1650 1654 struct pathname fpn; /* from pathname */
1651 1655 struct pathname tpn; /* to pathname */
1652 1656 dev_t fsid;
1653 1657 int in_crit_src, in_crit_targ;
1654 1658 vnode_t *fromvp, *fvp;
1655 1659 vnode_t *tovp, *targvp;
1656 1660 int estale_retry = 0;
1657 1661 uint32_t auditing = AU_AUDITING();
1658 1662
1659 1663 top:
1660 1664 fvp = fromvp = tovp = targvp = NULL;
1661 1665 in_crit_src = in_crit_targ = 0;
1662 1666 /*
1663 1667 * Get to and from pathnames.
1664 1668 */
1665 1669 if (error = pn_get(fname, seg, &fpn))
1666 1670 return (error);
1667 1671 if (error = pn_get(tname, seg, &tpn)) {
1668 1672 pn_free(&fpn);
1669 1673 return (error);
1670 1674 }
1671 1675
1672 1676 /*
1673 1677 * First we need to resolve the correct directories
1674 1678 * The passed in directories may only be a starting point,
1675 1679 * but we need the real directories the file(s) live in.
1676 1680 * For example the fname may be something like usr/lib/sparc
1677 1681 * and we were passed in the / directory, but we need to
1678 1682 * use the lib directory for the rename.
1679 1683 */
1680 1684
1681 1685 if (auditing && fdvp != NULL)
1682 1686 audit_setfsat_path(1);
1683 1687 /*
1684 1688 * Lookup to and from directories.
1685 1689 */
1686 1690 if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) {
1687 1691 goto out;
1688 1692 }
1689 1693
1690 1694 /*
1691 1695 * Make sure there is an entry.
1692 1696 */
1693 1697 if (fvp == NULL) {
1694 1698 error = ENOENT;
1695 1699 goto out;
1696 1700 }
1697 1701
1698 1702 if (auditing && tdvp != NULL)
1699 1703 audit_setfsat_path(3);
1700 1704 if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, &targvp, tdvp)) {
1701 1705 goto out;
1702 1706 }
1703 1707
1704 1708 /*
1705 1709 * Make sure both the from vnode directory and the to directory
1706 1710 * are in the same vfs and the to directory is writable.
1707 1711 * We check fsid's, not vfs pointers, so loopback fs works.
1708 1712 */
1709 1713 if (fromvp != tovp) {
1710 1714 vattr.va_mask = AT_FSID;
1711 1715 if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED(), NULL))
1712 1716 goto out;
1713 1717 fsid = vattr.va_fsid;
1714 1718 vattr.va_mask = AT_FSID;
1715 1719 if (error = VOP_GETATTR(tovp, &vattr, 0, CRED(), NULL))
1716 1720 goto out;
1717 1721 if (fsid != vattr.va_fsid) {
1718 1722 error = EXDEV;
1719 1723 goto out;
1720 1724 }
1721 1725 }
1722 1726
1723 1727 if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) {
1724 1728 error = EROFS;
1725 1729 goto out;
1726 1730 }
1727 1731
1728 1732 if (targvp && (fvp != targvp)) {
1729 1733 nbl_start_crit(targvp, RW_READER);
1730 1734 in_crit_targ = 1;
1731 1735 if (nbl_conflict(targvp, NBL_REMOVE, 0, 0, 0, NULL)) {
1732 1736 error = EACCES;
1733 1737 goto out;
1734 1738 }
1735 1739 }
1736 1740
1737 1741 if (nbl_need_check(fvp)) {
1738 1742 nbl_start_crit(fvp, RW_READER);
1739 1743 in_crit_src = 1;
1740 1744 if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0, NULL)) {
1741 1745 error = EACCES;
1742 1746 goto out;
1743 1747 }
1744 1748 }
1745 1749
1746 1750 /*
1747 1751 * Do the rename.
1748 1752 */
1749 1753 (void) pn_fixslash(&tpn);
1750 1754 error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED(),
1751 1755 NULL, 0);
1752 1756
1753 1757 out:
1754 1758 pn_free(&fpn);
1755 1759 pn_free(&tpn);
1756 1760 if (in_crit_src)
1757 1761 nbl_end_crit(fvp);
1758 1762 if (in_crit_targ)
1759 1763 nbl_end_crit(targvp);
1760 1764 if (fromvp)
1761 1765 VN_RELE(fromvp);
1762 1766 if (tovp)
1763 1767 VN_RELE(tovp);
1764 1768 if (targvp)
1765 1769 VN_RELE(targvp);
1766 1770 if (fvp)
1767 1771 VN_RELE(fvp);
1768 1772 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1769 1773 goto top;
1770 1774 return (error);
1771 1775 }
1772 1776
1773 1777 /*
1774 1778 * Remove a file or directory.
1775 1779 */
1776 1780 int
1777 1781 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag)
1778 1782 {
1779 1783 return (vn_removeat(NULL, fnamep, seg, dirflag));
1780 1784 }
1781 1785
1782 1786 int
1783 1787 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag)
1784 1788 {
1785 1789 struct vnode *vp; /* entry vnode */
1786 1790 struct vnode *dvp; /* ptr to parent dir vnode */
1787 1791 struct vnode *coveredvp;
1788 1792 struct pathname pn; /* name of entry */
1789 1793 enum vtype vtype;
1790 1794 int error;
1791 1795 struct vfs *vfsp;
1792 1796 struct vfs *dvfsp; /* ptr to parent dir vfs */
1793 1797 int in_crit = 0;
1794 1798 int estale_retry = 0;
1795 1799
1796 1800 top:
1797 1801 if (error = pn_get(fnamep, seg, &pn))
1798 1802 return (error);
1799 1803 dvp = vp = NULL;
1800 1804 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) {
1801 1805 pn_free(&pn);
1802 1806 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1803 1807 goto top;
1804 1808 return (error);
1805 1809 }
1806 1810
1807 1811 /*
1808 1812 * Make sure there is an entry.
1809 1813 */
1810 1814 if (vp == NULL) {
1811 1815 error = ENOENT;
1812 1816 goto out;
1813 1817 }
1814 1818
1815 1819 vfsp = vp->v_vfsp;
1816 1820 dvfsp = dvp->v_vfsp;
1817 1821
1818 1822 /*
1819 1823 * If the named file is the root of a mounted filesystem, fail,
1820 1824 * unless it's marked unlinkable. In that case, unmount the
1821 1825 * filesystem and proceed to unlink the covered vnode. (If the
1822 1826 * covered vnode is a directory, use rmdir instead of unlink,
1823 1827 * to avoid file system corruption.)
1824 1828 */
1825 1829 if (vp->v_flag & VROOT) {
1826 1830 if ((vfsp->vfs_flag & VFS_UNLINKABLE) == 0) {
1827 1831 error = EBUSY;
1828 1832 goto out;
1829 1833 }
1830 1834
1831 1835 /*
1832 1836 * Namefs specific code starts here.
1833 1837 */
1834 1838
1835 1839 if (dirflag == RMDIRECTORY) {
1836 1840 /*
1837 1841 * User called rmdir(2) on a file that has
1838 1842 * been namefs mounted on top of. Since
1839 1843 * namefs doesn't allow directories to
1840 1844 * be mounted on other files we know
1841 1845 * vp is not of type VDIR so fail to operation.
1842 1846 */
1843 1847 error = ENOTDIR;
1844 1848 goto out;
1845 1849 }
1846 1850
1847 1851 /*
1848 1852 * If VROOT is still set after grabbing vp->v_lock,
1849 1853 * noone has finished nm_unmount so far and coveredvp
1850 1854 * is valid.
1851 1855 * If we manage to grab vn_vfswlock(coveredvp) before releasing
1852 1856 * vp->v_lock, any race window is eliminated.
1853 1857 */
1854 1858
1855 1859 mutex_enter(&vp->v_lock);
1856 1860 if ((vp->v_flag & VROOT) == 0) {
1857 1861 /* Someone beat us to the unmount */
1858 1862 mutex_exit(&vp->v_lock);
1859 1863 error = EBUSY;
1860 1864 goto out;
1861 1865 }
1862 1866 vfsp = vp->v_vfsp;
1863 1867 coveredvp = vfsp->vfs_vnodecovered;
1864 1868 ASSERT(coveredvp);
1865 1869 /*
1866 1870 * Note: Implementation of vn_vfswlock shows that ordering of
1867 1871 * v_lock / vn_vfswlock is not an issue here.
1868 1872 */
1869 1873 error = vn_vfswlock(coveredvp);
1870 1874 mutex_exit(&vp->v_lock);
1871 1875
1872 1876 if (error)
1873 1877 goto out;
1874 1878
1875 1879 VN_HOLD(coveredvp);
1876 1880 VN_RELE(vp);
1877 1881 error = dounmount(vfsp, 0, CRED());
1878 1882
1879 1883 /*
1880 1884 * Unmounted the namefs file system; now get
1881 1885 * the object it was mounted over.
1882 1886 */
1883 1887 vp = coveredvp;
1884 1888 /*
1885 1889 * If namefs was mounted over a directory, then
1886 1890 * we want to use rmdir() instead of unlink().
1887 1891 */
1888 1892 if (vp->v_type == VDIR)
1889 1893 dirflag = RMDIRECTORY;
1890 1894
1891 1895 if (error)
1892 1896 goto out;
1893 1897 }
1894 1898
1895 1899 /*
1896 1900 * Make sure filesystem is writeable.
1897 1901 * We check the parent directory's vfs in case this is an lofs vnode.
1898 1902 */
1899 1903 if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) {
1900 1904 error = EROFS;
1901 1905 goto out;
1902 1906 }
1903 1907
1904 1908 vtype = vp->v_type;
1905 1909
1906 1910 /*
1907 1911 * If there is the possibility of an nbmand share reservation, make
1908 1912 * sure it's okay to remove the file. Keep a reference to the
1909 1913 * vnode, so that we can exit the nbl critical region after
1910 1914 * calling VOP_REMOVE.
1911 1915 * If there is no possibility of an nbmand share reservation,
1912 1916 * release the vnode reference now. Filesystems like NFS may
1913 1917 * behave differently if there is an extra reference, so get rid of
1914 1918 * this one. Fortunately, we can't have nbmand mounts on NFS
1915 1919 * filesystems.
1916 1920 */
1917 1921 if (nbl_need_check(vp)) {
1918 1922 nbl_start_crit(vp, RW_READER);
1919 1923 in_crit = 1;
1920 1924 if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0, NULL)) {
1921 1925 error = EACCES;
1922 1926 goto out;
1923 1927 }
1924 1928 } else {
1925 1929 VN_RELE(vp);
1926 1930 vp = NULL;
1927 1931 }
1928 1932
1929 1933 if (dirflag == RMDIRECTORY) {
1930 1934 /*
1931 1935 * Caller is using rmdir(2), which can only be applied to
1932 1936 * directories.
1933 1937 */
1934 1938 if (vtype != VDIR) {
1935 1939 error = ENOTDIR;
1936 1940 } else {
1937 1941 vnode_t *cwd;
1938 1942 proc_t *pp = curproc;
1939 1943
1940 1944 mutex_enter(&pp->p_lock);
1941 1945 cwd = PTOU(pp)->u_cdir;
1942 1946 VN_HOLD(cwd);
1943 1947 mutex_exit(&pp->p_lock);
1944 1948 error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED(),
1945 1949 NULL, 0);
1946 1950 VN_RELE(cwd);
1947 1951 }
1948 1952 } else {
1949 1953 /*
1950 1954 * Unlink(2) can be applied to anything.
1951 1955 */
1952 1956 error = VOP_REMOVE(dvp, pn.pn_path, CRED(), NULL, 0);
1953 1957 }
1954 1958
1955 1959 out:
1956 1960 pn_free(&pn);
1957 1961 if (in_crit) {
1958 1962 nbl_end_crit(vp);
1959 1963 in_crit = 0;
1960 1964 }
1961 1965 if (vp != NULL)
1962 1966 VN_RELE(vp);
1963 1967 if (dvp != NULL)
1964 1968 VN_RELE(dvp);
1965 1969 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1966 1970 goto top;
1967 1971 return (error);
1968 1972 }
1969 1973
1970 1974 /*
1971 1975 * Utility function to compare equality of vnodes.
1972 1976 * Compare the underlying real vnodes, if there are underlying vnodes.
1973 1977 * This is a more thorough comparison than the VN_CMP() macro provides.
1974 1978 */
1975 1979 int
1976 1980 vn_compare(vnode_t *vp1, vnode_t *vp2)
1977 1981 {
1978 1982 vnode_t *realvp;
1979 1983
1980 1984 if (vp1 != NULL && VOP_REALVP(vp1, &realvp, NULL) == 0)
1981 1985 vp1 = realvp;
1982 1986 if (vp2 != NULL && VOP_REALVP(vp2, &realvp, NULL) == 0)
1983 1987 vp2 = realvp;
1984 1988 return (VN_CMP(vp1, vp2));
1985 1989 }
1986 1990
1987 1991 /*
1988 1992 * The number of locks to hash into. This value must be a power
1989 1993 * of 2 minus 1 and should probably also be prime.
1990 1994 */
1991 1995 #define NUM_BUCKETS 1023
1992 1996
1993 1997 struct vn_vfslocks_bucket {
1994 1998 kmutex_t vb_lock;
1995 1999 vn_vfslocks_entry_t *vb_list;
1996 2000 char pad[64 - sizeof (kmutex_t) - sizeof (void *)];
1997 2001 };
1998 2002
1999 2003 /*
2000 2004 * Total number of buckets will be NUM_BUCKETS + 1 .
2001 2005 */
2002 2006
2003 2007 #pragma align 64(vn_vfslocks_buckets)
2004 2008 static struct vn_vfslocks_bucket vn_vfslocks_buckets[NUM_BUCKETS + 1];
2005 2009
2006 2010 #define VN_VFSLOCKS_SHIFT 9
2007 2011
2008 2012 #define VN_VFSLOCKS_HASH(vfsvpptr) \
2009 2013 ((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS)
2010 2014
2011 2015 /*
2012 2016 * vn_vfslocks_getlock() uses an HASH scheme to generate
2013 2017 * rwstlock using vfs/vnode pointer passed to it.
2014 2018 *
2015 2019 * vn_vfslocks_rele() releases a reference in the
2016 2020 * HASH table which allows the entry allocated by
2017 2021 * vn_vfslocks_getlock() to be freed at a later
2018 2022 * stage when the refcount drops to zero.
2019 2023 */
2020 2024
2021 2025 vn_vfslocks_entry_t *
2022 2026 vn_vfslocks_getlock(void *vfsvpptr)
2023 2027 {
2024 2028 struct vn_vfslocks_bucket *bp;
2025 2029 vn_vfslocks_entry_t *vep;
2026 2030 vn_vfslocks_entry_t *tvep;
2027 2031
2028 2032 ASSERT(vfsvpptr != NULL);
2029 2033 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)];
2030 2034
2031 2035 mutex_enter(&bp->vb_lock);
2032 2036 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
2033 2037 if (vep->ve_vpvfs == vfsvpptr) {
2034 2038 vep->ve_refcnt++;
2035 2039 mutex_exit(&bp->vb_lock);
2036 2040 return (vep);
2037 2041 }
2038 2042 }
2039 2043 mutex_exit(&bp->vb_lock);
2040 2044 vep = kmem_alloc(sizeof (*vep), KM_SLEEP);
2041 2045 rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL);
2042 2046 vep->ve_vpvfs = (char *)vfsvpptr;
2043 2047 vep->ve_refcnt = 1;
2044 2048 mutex_enter(&bp->vb_lock);
2045 2049 for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) {
2046 2050 if (tvep->ve_vpvfs == vfsvpptr) {
2047 2051 tvep->ve_refcnt++;
2048 2052 mutex_exit(&bp->vb_lock);
2049 2053
2050 2054 /*
2051 2055 * There is already an entry in the hash
2052 2056 * destroy what we just allocated.
2053 2057 */
2054 2058 rwst_destroy(&vep->ve_lock);
2055 2059 kmem_free(vep, sizeof (*vep));
2056 2060 return (tvep);
2057 2061 }
2058 2062 }
2059 2063 vep->ve_next = bp->vb_list;
2060 2064 bp->vb_list = vep;
2061 2065 mutex_exit(&bp->vb_lock);
2062 2066 return (vep);
2063 2067 }
2064 2068
2065 2069 void
2066 2070 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent)
2067 2071 {
2068 2072 struct vn_vfslocks_bucket *bp;
2069 2073 vn_vfslocks_entry_t *vep;
2070 2074 vn_vfslocks_entry_t *pvep;
2071 2075
2072 2076 ASSERT(vepent != NULL);
2073 2077 ASSERT(vepent->ve_vpvfs != NULL);
2074 2078
2075 2079 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)];
2076 2080
2077 2081 mutex_enter(&bp->vb_lock);
2078 2082 vepent->ve_refcnt--;
2079 2083
2080 2084 if ((int32_t)vepent->ve_refcnt < 0)
2081 2085 cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative");
2082 2086
2083 2087 if (vepent->ve_refcnt == 0) {
2084 2088 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
2085 2089 if (vep->ve_vpvfs == vepent->ve_vpvfs) {
2086 2090 if (bp->vb_list == vep)
2087 2091 bp->vb_list = vep->ve_next;
2088 2092 else {
2089 2093 /* LINTED */
2090 2094 pvep->ve_next = vep->ve_next;
2091 2095 }
2092 2096 mutex_exit(&bp->vb_lock);
2093 2097 rwst_destroy(&vep->ve_lock);
2094 2098 kmem_free(vep, sizeof (*vep));
2095 2099 return;
2096 2100 }
2097 2101 pvep = vep;
2098 2102 }
2099 2103 cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found");
2100 2104 }
2101 2105 mutex_exit(&bp->vb_lock);
2102 2106 }
2103 2107
2104 2108 /*
2105 2109 * vn_vfswlock_wait is used to implement a lock which is logically a writers
2106 2110 * lock protecting the v_vfsmountedhere field.
2107 2111 * vn_vfswlock_wait has been modified to be similar to vn_vfswlock,
2108 2112 * except that it blocks to acquire the lock VVFSLOCK.
2109 2113 *
2110 2114 * traverse() and routines re-implementing part of traverse (e.g. autofs)
2111 2115 * need to hold this lock. mount(), vn_rename(), vn_remove() and so on
2112 2116 * need the non-blocking version of the writers lock i.e. vn_vfswlock
2113 2117 */
2114 2118 int
2115 2119 vn_vfswlock_wait(vnode_t *vp)
2116 2120 {
2117 2121 int retval;
2118 2122 vn_vfslocks_entry_t *vpvfsentry;
2119 2123 ASSERT(vp != NULL);
2120 2124
2121 2125 vpvfsentry = vn_vfslocks_getlock(vp);
2122 2126 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER);
2123 2127
2124 2128 if (retval == EINTR) {
2125 2129 vn_vfslocks_rele(vpvfsentry);
2126 2130 return (EINTR);
2127 2131 }
2128 2132 return (retval);
2129 2133 }
2130 2134
2131 2135 int
2132 2136 vn_vfsrlock_wait(vnode_t *vp)
2133 2137 {
2134 2138 int retval;
2135 2139 vn_vfslocks_entry_t *vpvfsentry;
2136 2140 ASSERT(vp != NULL);
2137 2141
2138 2142 vpvfsentry = vn_vfslocks_getlock(vp);
2139 2143 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER);
2140 2144
2141 2145 if (retval == EINTR) {
2142 2146 vn_vfslocks_rele(vpvfsentry);
2143 2147 return (EINTR);
2144 2148 }
2145 2149
2146 2150 return (retval);
2147 2151 }
2148 2152
2149 2153
2150 2154 /*
2151 2155 * vn_vfswlock is used to implement a lock which is logically a writers lock
2152 2156 * protecting the v_vfsmountedhere field.
2153 2157 */
2154 2158 int
2155 2159 vn_vfswlock(vnode_t *vp)
2156 2160 {
2157 2161 vn_vfslocks_entry_t *vpvfsentry;
2158 2162
2159 2163 /*
2160 2164 * If vp is NULL then somebody is trying to lock the covered vnode
2161 2165 * of /. (vfs_vnodecovered is NULL for /). This situation will
2162 2166 * only happen when unmounting /. Since that operation will fail
2163 2167 * anyway, return EBUSY here instead of in VFS_UNMOUNT.
2164 2168 */
2165 2169 if (vp == NULL)
2166 2170 return (EBUSY);
2167 2171
2168 2172 vpvfsentry = vn_vfslocks_getlock(vp);
2169 2173
2170 2174 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
2171 2175 return (0);
2172 2176
2173 2177 vn_vfslocks_rele(vpvfsentry);
2174 2178 return (EBUSY);
2175 2179 }
2176 2180
2177 2181 int
2178 2182 vn_vfsrlock(vnode_t *vp)
2179 2183 {
2180 2184 vn_vfslocks_entry_t *vpvfsentry;
2181 2185
2182 2186 /*
2183 2187 * If vp is NULL then somebody is trying to lock the covered vnode
2184 2188 * of /. (vfs_vnodecovered is NULL for /). This situation will
2185 2189 * only happen when unmounting /. Since that operation will fail
2186 2190 * anyway, return EBUSY here instead of in VFS_UNMOUNT.
2187 2191 */
2188 2192 if (vp == NULL)
2189 2193 return (EBUSY);
2190 2194
2191 2195 vpvfsentry = vn_vfslocks_getlock(vp);
2192 2196
2193 2197 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
2194 2198 return (0);
2195 2199
2196 2200 vn_vfslocks_rele(vpvfsentry);
2197 2201 return (EBUSY);
2198 2202 }
2199 2203
2200 2204 void
2201 2205 vn_vfsunlock(vnode_t *vp)
2202 2206 {
2203 2207 vn_vfslocks_entry_t *vpvfsentry;
2204 2208
2205 2209 /*
2206 2210 * ve_refcnt needs to be decremented twice.
2207 2211 * 1. To release refernce after a call to vn_vfslocks_getlock()
2208 2212 * 2. To release the reference from the locking routines like
2209 2213 * vn_vfsrlock/vn_vfswlock etc,.
2210 2214 */
2211 2215 vpvfsentry = vn_vfslocks_getlock(vp);
2212 2216 vn_vfslocks_rele(vpvfsentry);
2213 2217
2214 2218 rwst_exit(&vpvfsentry->ve_lock);
2215 2219 vn_vfslocks_rele(vpvfsentry);
2216 2220 }
2217 2221
2218 2222 int
2219 2223 vn_vfswlock_held(vnode_t *vp)
2220 2224 {
2221 2225 int held;
2222 2226 vn_vfslocks_entry_t *vpvfsentry;
2223 2227
2224 2228 ASSERT(vp != NULL);
2225 2229
2226 2230 vpvfsentry = vn_vfslocks_getlock(vp);
2227 2231 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
2228 2232
2229 2233 vn_vfslocks_rele(vpvfsentry);
2230 2234 return (held);
2231 2235 }
2232 2236
2233 2237
2234 2238 int
2235 2239 vn_make_ops(
2236 2240 const char *name, /* Name of file system */
2237 2241 const fs_operation_def_t *templ, /* Operation specification */
2238 2242 vnodeops_t **actual) /* Return the vnodeops */
2239 2243 {
2240 2244 int unused_ops;
2241 2245 int error;
2242 2246
2243 2247 *actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP);
2244 2248
2245 2249 (*actual)->vnop_name = name;
2246 2250
2247 2251 error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ);
2248 2252 if (error) {
2249 2253 kmem_free(*actual, sizeof (vnodeops_t));
2250 2254 }
2251 2255
2252 2256 #if DEBUG
2253 2257 if (unused_ops != 0)
2254 2258 cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied "
2255 2259 "but not used", name, unused_ops);
2256 2260 #endif
2257 2261
2258 2262 return (error);
2259 2263 }
2260 2264
2261 2265 /*
2262 2266 * Free the vnodeops created as a result of vn_make_ops()
2263 2267 */
2264 2268 void
2265 2269 vn_freevnodeops(vnodeops_t *vnops)
2266 2270 {
2267 2271 kmem_free(vnops, sizeof (vnodeops_t));
2268 2272 }
2269 2273
2270 2274 /*
2271 2275 * Vnode cache.
2272 2276 */
2273 2277
2274 2278 /* ARGSUSED */
2275 2279 static int
2276 2280 vn_cache_constructor(void *buf, void *cdrarg, int kmflags)
2277 2281 {
2278 2282 struct vnode *vp;
2279 2283
2280 2284 vp = buf;
2281 2285
2282 2286 mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL);
2283 2287 mutex_init(&vp->v_vsd_lock, NULL, MUTEX_DEFAULT, NULL);
2284 2288 cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL);
2285 2289 rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL);
2286 2290 vp->v_femhead = NULL; /* Must be done before vn_reinit() */
2287 2291 vp->v_path = NULL;
2288 2292 vp->v_mpssdata = NULL;
2289 2293 vp->v_vsd = NULL;
2290 2294 vp->v_fopdata = NULL;
2291 2295
2292 2296 return (0);
2293 2297 }
2294 2298
2295 2299 /* ARGSUSED */
2296 2300 static void
2297 2301 vn_cache_destructor(void *buf, void *cdrarg)
2298 2302 {
2299 2303 struct vnode *vp;
2300 2304
2301 2305 vp = buf;
2302 2306
2303 2307 rw_destroy(&vp->v_nbllock);
2304 2308 cv_destroy(&vp->v_cv);
2305 2309 mutex_destroy(&vp->v_vsd_lock);
2306 2310 mutex_destroy(&vp->v_lock);
2307 2311 }
2308 2312
2309 2313 void
2310 2314 vn_create_cache(void)
2311 2315 {
2312 2316 /* LINTED */
2313 2317 ASSERT((1 << VNODE_ALIGN_LOG2) ==
2314 2318 P2ROUNDUP(sizeof (struct vnode), VNODE_ALIGN));
2315 2319 vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode),
2316 2320 VNODE_ALIGN, vn_cache_constructor, vn_cache_destructor, NULL, NULL,
2317 2321 NULL, 0);
2318 2322 }
2319 2323
2320 2324 void
2321 2325 vn_destroy_cache(void)
2322 2326 {
2323 2327 kmem_cache_destroy(vn_cache);
2324 2328 }
2325 2329
2326 2330 /*
2327 2331 * Used by file systems when fs-specific nodes (e.g., ufs inodes) are
2328 2332 * cached by the file system and vnodes remain associated.
2329 2333 */
2330 2334 void
2331 2335 vn_recycle(vnode_t *vp)
2332 2336 {
2333 2337 ASSERT(vp->v_pages == NULL);
2334 2338
2335 2339 /*
2336 2340 * XXX - This really belongs in vn_reinit(), but we have some issues
2337 2341 * with the counts. Best to have it here for clean initialization.
2338 2342 */
2339 2343 vp->v_rdcnt = 0;
2340 2344 vp->v_wrcnt = 0;
2341 2345 vp->v_mmap_read = 0;
2342 2346 vp->v_mmap_write = 0;
2343 2347
2344 2348 /*
2345 2349 * If FEM was in use, make sure everything gets cleaned up
2346 2350 * NOTE: vp->v_femhead is initialized to NULL in the vnode
2347 2351 * constructor.
2348 2352 */
2349 2353 if (vp->v_femhead) {
2350 2354 /* XXX - There should be a free_femhead() that does all this */
2351 2355 ASSERT(vp->v_femhead->femh_list == NULL);
2352 2356 mutex_destroy(&vp->v_femhead->femh_lock);
2353 2357 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
2354 2358 vp->v_femhead = NULL;
2355 2359 }
2356 2360 if (vp->v_path) {
2357 2361 kmem_free(vp->v_path, strlen(vp->v_path) + 1);
2358 2362 vp->v_path = NULL;
2359 2363 }
2360 2364
2361 2365 if (vp->v_fopdata != NULL) {
2362 2366 free_fopdata(vp);
2363 2367 }
2364 2368 vp->v_mpssdata = NULL;
2365 2369 vsd_free(vp);
2366 2370 }
2367 2371
2368 2372 /*
2369 2373 * Used to reset the vnode fields including those that are directly accessible
2370 2374 * as well as those which require an accessor function.
2371 2375 *
2372 2376 * Does not initialize:
2373 2377 * synchronization objects: v_lock, v_vsd_lock, v_nbllock, v_cv
2374 2378 * v_data (since FS-nodes and vnodes point to each other and should
2375 2379 * be updated simultaneously)
2376 2380 * v_op (in case someone needs to make a VOP call on this object)
2377 2381 */
2378 2382 void
2379 2383 vn_reinit(vnode_t *vp)
2380 2384 {
2381 2385 vp->v_count = 1;
2382 2386 vp->v_count_dnlc = 0;
2383 2387 vp->v_vfsp = NULL;
2384 2388 vp->v_stream = NULL;
2385 2389 vp->v_vfsmountedhere = NULL;
2386 2390 vp->v_flag = 0;
2387 2391 vp->v_type = VNON;
2388 2392 vp->v_rdev = NODEV;
2389 2393
2390 2394 vp->v_filocks = NULL;
2391 2395 vp->v_shrlocks = NULL;
2392 2396 vp->v_pages = NULL;
2393 2397
2394 2398 vp->v_locality = NULL;
2395 2399 vp->v_xattrdir = NULL;
2396 2400
2397 2401 /* Handles v_femhead, v_path, and the r/w/map counts */
2398 2402 vn_recycle(vp);
2399 2403 }
2400 2404
2401 2405 vnode_t *
2402 2406 vn_alloc(int kmflag)
2403 2407 {
2404 2408 vnode_t *vp;
2405 2409
2406 2410 vp = kmem_cache_alloc(vn_cache, kmflag);
2407 2411
2408 2412 if (vp != NULL) {
2409 2413 vp->v_femhead = NULL; /* Must be done before vn_reinit() */
2410 2414 vp->v_fopdata = NULL;
2411 2415 vn_reinit(vp);
2412 2416 }
2413 2417
2414 2418 return (vp);
2415 2419 }
2416 2420
2417 2421 void
2418 2422 vn_free(vnode_t *vp)
2419 2423 {
2420 2424 ASSERT(vp->v_shrlocks == NULL);
2421 2425 ASSERT(vp->v_filocks == NULL);
2422 2426
2423 2427 /*
2424 2428 * Some file systems call vn_free() with v_count of zero,
2425 2429 * some with v_count of 1. In any case, the value should
2426 2430 * never be anything else.
2427 2431 */
2428 2432 ASSERT((vp->v_count == 0) || (vp->v_count == 1));
2429 2433 ASSERT(vp->v_count_dnlc == 0);
2430 2434 if (vp->v_path != NULL) {
2431 2435 kmem_free(vp->v_path, strlen(vp->v_path) + 1);
2432 2436 vp->v_path = NULL;
2433 2437 }
2434 2438
2435 2439 /* If FEM was in use, make sure everything gets cleaned up */
2436 2440 if (vp->v_femhead) {
2437 2441 /* XXX - There should be a free_femhead() that does all this */
2438 2442 ASSERT(vp->v_femhead->femh_list == NULL);
2439 2443 mutex_destroy(&vp->v_femhead->femh_lock);
2440 2444 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
2441 2445 vp->v_femhead = NULL;
2442 2446 }
2443 2447
2444 2448 if (vp->v_fopdata != NULL) {
2445 2449 free_fopdata(vp);
2446 2450 }
2447 2451 vp->v_mpssdata = NULL;
2448 2452 vsd_free(vp);
2449 2453 kmem_cache_free(vn_cache, vp);
2450 2454 }
2451 2455
2452 2456 /*
2453 2457 * vnode status changes, should define better states than 1, 0.
2454 2458 */
2455 2459 void
2456 2460 vn_reclaim(vnode_t *vp)
2457 2461 {
2458 2462 vfs_t *vfsp = vp->v_vfsp;
2459 2463
2460 2464 if (vfsp == NULL ||
2461 2465 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2462 2466 return;
2463 2467 }
2464 2468 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED);
2465 2469 }
2466 2470
2467 2471 void
2468 2472 vn_idle(vnode_t *vp)
2469 2473 {
2470 2474 vfs_t *vfsp = vp->v_vfsp;
2471 2475
2472 2476 if (vfsp == NULL ||
2473 2477 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2474 2478 return;
2475 2479 }
2476 2480 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED);
2477 2481 }
2478 2482 void
2479 2483 vn_exists(vnode_t *vp)
2480 2484 {
2481 2485 vfs_t *vfsp = vp->v_vfsp;
2482 2486
2483 2487 if (vfsp == NULL ||
2484 2488 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2485 2489 return;
2486 2490 }
2487 2491 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS);
2488 2492 }
2489 2493
2490 2494 void
2491 2495 vn_invalid(vnode_t *vp)
2492 2496 {
2493 2497 vfs_t *vfsp = vp->v_vfsp;
2494 2498
2495 2499 if (vfsp == NULL ||
2496 2500 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2497 2501 return;
2498 2502 }
2499 2503 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED);
2500 2504 }
2501 2505
2502 2506 /* Vnode event notification */
2503 2507
2504 2508 int
2505 2509 vnevent_support(vnode_t *vp, caller_context_t *ct)
2506 2510 {
2507 2511 if (vp == NULL)
2508 2512 return (EINVAL);
|
↓ open down ↓ |
2296 lines elided |
↑ open up ↑ |
2509 2513
2510 2514 return (VOP_VNEVENT(vp, VE_SUPPORT, NULL, NULL, ct));
2511 2515 }
2512 2516
2513 2517 void
2514 2518 vnevent_rename_src(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2515 2519 {
2516 2520 if (vp == NULL || vp->v_femhead == NULL) {
2517 2521 return;
2518 2522 }
2523 + (void) VOP_VNEVENT(dvp, VE_RENAME_SRC_DIR, vp, name, ct);
2519 2524 (void) VOP_VNEVENT(vp, VE_RENAME_SRC, dvp, name, ct);
2520 2525 }
2521 2526
2522 2527 void
2523 2528 vnevent_rename_dest(vnode_t *vp, vnode_t *dvp, char *name,
2524 2529 caller_context_t *ct)
2525 2530 {
2526 2531 if (vp == NULL || vp->v_femhead == NULL) {
2527 2532 return;
2528 2533 }
2529 2534 (void) VOP_VNEVENT(vp, VE_RENAME_DEST, dvp, name, ct);
2530 2535 }
2531 2536
2532 2537 void
2533 -vnevent_rename_dest_dir(vnode_t *vp, caller_context_t *ct)
2538 +vnevent_rename_dest_dir(vnode_t *vp, vnode_t *nvp, char *name,
2539 + caller_context_t *ct)
2534 2540 {
2535 2541 if (vp == NULL || vp->v_femhead == NULL) {
2536 2542 return;
2537 2543 }
2538 - (void) VOP_VNEVENT(vp, VE_RENAME_DEST_DIR, NULL, NULL, ct);
2544 + (void) VOP_VNEVENT(vp, VE_RENAME_DEST_DIR, nvp, name, ct);
2539 2545 }
2540 2546
2541 2547 void
2542 2548 vnevent_remove(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2543 2549 {
2544 2550 if (vp == NULL || vp->v_femhead == NULL) {
2545 2551 return;
2546 2552 }
2547 2553 (void) VOP_VNEVENT(vp, VE_REMOVE, dvp, name, ct);
2548 2554 }
2549 2555
2550 2556 void
2551 2557 vnevent_rmdir(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2552 2558 {
2553 2559 if (vp == NULL || vp->v_femhead == NULL) {
2554 2560 return;
2555 2561 }
2556 2562 (void) VOP_VNEVENT(vp, VE_RMDIR, dvp, name, ct);
2557 2563 }
2558 2564
2559 2565 void
2560 2566 vnevent_pre_rename_src(vnode_t *vp, vnode_t *dvp, char *name,
2561 2567 caller_context_t *ct)
2562 2568 {
2563 2569 if (vp == NULL || vp->v_femhead == NULL) {
2564 2570 return;
2565 2571 }
2566 2572 (void) VOP_VNEVENT(vp, VE_PRE_RENAME_SRC, dvp, name, ct);
2567 2573 }
2568 2574
2569 2575 void
2570 2576 vnevent_pre_rename_dest(vnode_t *vp, vnode_t *dvp, char *name,
2571 2577 caller_context_t *ct)
2572 2578 {
2573 2579 if (vp == NULL || vp->v_femhead == NULL) {
2574 2580 return;
2575 2581 }
2576 2582 (void) VOP_VNEVENT(vp, VE_PRE_RENAME_DEST, dvp, name, ct);
2577 2583 }
2578 2584
2579 2585 void
2580 2586 vnevent_pre_rename_dest_dir(vnode_t *vp, vnode_t *nvp, char *name,
2581 2587 caller_context_t *ct)
2582 2588 {
2583 2589 if (vp == NULL || vp->v_femhead == NULL) {
2584 2590 return;
2585 2591 }
2586 2592 (void) VOP_VNEVENT(vp, VE_PRE_RENAME_DEST_DIR, nvp, name, ct);
2587 2593 }
2588 2594
2589 2595 void
2590 2596 vnevent_create(vnode_t *vp, caller_context_t *ct)
2591 2597 {
2592 2598 if (vp == NULL || vp->v_femhead == NULL) {
2593 2599 return;
2594 2600 }
2595 2601 (void) VOP_VNEVENT(vp, VE_CREATE, NULL, NULL, ct);
2596 2602 }
2597 2603
2598 2604 void
2599 2605 vnevent_link(vnode_t *vp, caller_context_t *ct)
2600 2606 {
2601 2607 if (vp == NULL || vp->v_femhead == NULL) {
2602 2608 return;
2603 2609 }
2604 2610 (void) VOP_VNEVENT(vp, VE_LINK, NULL, NULL, ct);
2605 2611 }
2606 2612
2607 2613 void
2608 2614 vnevent_mountedover(vnode_t *vp, caller_context_t *ct)
2609 2615 {
2610 2616 if (vp == NULL || vp->v_femhead == NULL) {
2611 2617 return;
2612 2618 }
2613 2619 (void) VOP_VNEVENT(vp, VE_MOUNTEDOVER, NULL, NULL, ct);
2614 2620 }
|
↓ open down ↓ |
66 lines elided |
↑ open up ↑ |
2615 2621
2616 2622 void
2617 2623 vnevent_truncate(vnode_t *vp, caller_context_t *ct)
2618 2624 {
2619 2625 if (vp == NULL || vp->v_femhead == NULL) {
2620 2626 return;
2621 2627 }
2622 2628 (void) VOP_VNEVENT(vp, VE_TRUNCATE, NULL, NULL, ct);
2623 2629 }
2624 2630
2631 +void
2632 +vnevent_resize(vnode_t *vp, caller_context_t *ct)
2633 +{
2634 + if (vp == NULL || vp->v_femhead == NULL) {
2635 + return;
2636 + }
2637 + (void) VOP_VNEVENT(vp, VE_RESIZE, NULL, NULL, ct);
2638 +}
2639 +
2625 2640 /*
2626 2641 * Vnode accessors.
2627 2642 */
2628 2643
2629 2644 int
2630 2645 vn_is_readonly(vnode_t *vp)
2631 2646 {
2632 2647 return (vp->v_vfsp->vfs_flag & VFS_RDONLY);
2633 2648 }
2634 2649
2635 2650 int
2636 2651 vn_has_flocks(vnode_t *vp)
2637 2652 {
2638 2653 return (vp->v_filocks != NULL);
2639 2654 }
2640 2655
2641 2656 int
2642 2657 vn_has_mandatory_locks(vnode_t *vp, int mode)
2643 2658 {
2644 2659 return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode)));
2645 2660 }
2646 2661
2647 2662 int
2648 2663 vn_has_cached_data(vnode_t *vp)
2649 2664 {
2650 2665 return (vp->v_pages != NULL);
2651 2666 }
2652 2667
2653 2668 /*
2654 2669 * Return 0 if the vnode in question shouldn't be permitted into a zone via
2655 2670 * zone_enter(2).
2656 2671 */
2657 2672 int
2658 2673 vn_can_change_zones(vnode_t *vp)
2659 2674 {
2660 2675 struct vfssw *vswp;
2661 2676 int allow = 1;
2662 2677 vnode_t *rvp;
2663 2678
2664 2679 if (nfs_global_client_only != 0)
2665 2680 return (1);
2666 2681
2667 2682 /*
2668 2683 * We always want to look at the underlying vnode if there is one.
2669 2684 */
2670 2685 if (VOP_REALVP(vp, &rvp, NULL) != 0)
2671 2686 rvp = vp;
2672 2687 /*
2673 2688 * Some pseudo filesystems (including doorfs) don't actually register
2674 2689 * their vfsops_t, so the following may return NULL; we happily let
2675 2690 * such vnodes switch zones.
2676 2691 */
2677 2692 vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp));
2678 2693 if (vswp != NULL) {
2679 2694 if (vswp->vsw_flag & VSW_NOTZONESAFE)
2680 2695 allow = 0;
2681 2696 vfs_unrefvfssw(vswp);
2682 2697 }
2683 2698 return (allow);
2684 2699 }
2685 2700
2686 2701 /*
2687 2702 * Return nonzero if the vnode is a mount point, zero if not.
2688 2703 */
2689 2704 int
2690 2705 vn_ismntpt(vnode_t *vp)
2691 2706 {
2692 2707 return (vp->v_vfsmountedhere != NULL);
2693 2708 }
2694 2709
2695 2710 /* Retrieve the vfs (if any) mounted on this vnode */
2696 2711 vfs_t *
2697 2712 vn_mountedvfs(vnode_t *vp)
2698 2713 {
2699 2714 return (vp->v_vfsmountedhere);
2700 2715 }
2701 2716
2702 2717 /*
2703 2718 * Return nonzero if the vnode is referenced by the dnlc, zero if not.
2704 2719 */
2705 2720 int
2706 2721 vn_in_dnlc(vnode_t *vp)
2707 2722 {
2708 2723 return (vp->v_count_dnlc > 0);
2709 2724 }
2710 2725
2711 2726 /*
2712 2727 * vn_has_other_opens() checks whether a particular file is opened by more than
2713 2728 * just the caller and whether the open is for read and/or write.
2714 2729 * This routine is for calling after the caller has already called VOP_OPEN()
2715 2730 * and the caller wishes to know if they are the only one with it open for
2716 2731 * the mode(s) specified.
2717 2732 *
2718 2733 * Vnode counts are only kept on regular files (v_type=VREG).
2719 2734 */
2720 2735 int
2721 2736 vn_has_other_opens(
2722 2737 vnode_t *vp,
2723 2738 v_mode_t mode)
2724 2739 {
2725 2740
2726 2741 ASSERT(vp != NULL);
2727 2742
2728 2743 switch (mode) {
2729 2744 case V_WRITE:
2730 2745 if (vp->v_wrcnt > 1)
2731 2746 return (V_TRUE);
2732 2747 break;
2733 2748 case V_RDORWR:
2734 2749 if ((vp->v_rdcnt > 1) || (vp->v_wrcnt > 1))
2735 2750 return (V_TRUE);
2736 2751 break;
2737 2752 case V_RDANDWR:
2738 2753 if ((vp->v_rdcnt > 1) && (vp->v_wrcnt > 1))
2739 2754 return (V_TRUE);
2740 2755 break;
2741 2756 case V_READ:
2742 2757 if (vp->v_rdcnt > 1)
2743 2758 return (V_TRUE);
2744 2759 break;
2745 2760 }
2746 2761
2747 2762 return (V_FALSE);
2748 2763 }
2749 2764
2750 2765 /*
2751 2766 * vn_is_opened() checks whether a particular file is opened and
2752 2767 * whether the open is for read and/or write.
2753 2768 *
2754 2769 * Vnode counts are only kept on regular files (v_type=VREG).
2755 2770 */
2756 2771 int
2757 2772 vn_is_opened(
2758 2773 vnode_t *vp,
2759 2774 v_mode_t mode)
2760 2775 {
2761 2776
2762 2777 ASSERT(vp != NULL);
2763 2778
2764 2779 switch (mode) {
2765 2780 case V_WRITE:
2766 2781 if (vp->v_wrcnt)
2767 2782 return (V_TRUE);
2768 2783 break;
2769 2784 case V_RDANDWR:
2770 2785 if (vp->v_rdcnt && vp->v_wrcnt)
2771 2786 return (V_TRUE);
2772 2787 break;
2773 2788 case V_RDORWR:
2774 2789 if (vp->v_rdcnt || vp->v_wrcnt)
2775 2790 return (V_TRUE);
2776 2791 break;
2777 2792 case V_READ:
2778 2793 if (vp->v_rdcnt)
2779 2794 return (V_TRUE);
2780 2795 break;
2781 2796 }
2782 2797
2783 2798 return (V_FALSE);
2784 2799 }
2785 2800
2786 2801 /*
2787 2802 * vn_is_mapped() checks whether a particular file is mapped and whether
2788 2803 * the file is mapped read and/or write.
2789 2804 */
2790 2805 int
2791 2806 vn_is_mapped(
2792 2807 vnode_t *vp,
2793 2808 v_mode_t mode)
2794 2809 {
2795 2810
2796 2811 ASSERT(vp != NULL);
2797 2812
2798 2813 #if !defined(_LP64)
2799 2814 switch (mode) {
2800 2815 /*
2801 2816 * The atomic_add_64_nv functions force atomicity in the
2802 2817 * case of 32 bit architectures. Otherwise the 64 bit values
2803 2818 * require two fetches. The value of the fields may be
2804 2819 * (potentially) changed between the first fetch and the
2805 2820 * second
2806 2821 */
2807 2822 case V_WRITE:
2808 2823 if (atomic_add_64_nv((&(vp->v_mmap_write)), 0))
2809 2824 return (V_TRUE);
2810 2825 break;
2811 2826 case V_RDANDWR:
2812 2827 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) &&
2813 2828 (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
2814 2829 return (V_TRUE);
2815 2830 break;
2816 2831 case V_RDORWR:
2817 2832 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) ||
2818 2833 (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
2819 2834 return (V_TRUE);
2820 2835 break;
2821 2836 case V_READ:
2822 2837 if (atomic_add_64_nv((&(vp->v_mmap_read)), 0))
2823 2838 return (V_TRUE);
2824 2839 break;
2825 2840 }
2826 2841 #else
2827 2842 switch (mode) {
2828 2843 case V_WRITE:
2829 2844 if (vp->v_mmap_write)
2830 2845 return (V_TRUE);
2831 2846 break;
2832 2847 case V_RDANDWR:
2833 2848 if (vp->v_mmap_read && vp->v_mmap_write)
2834 2849 return (V_TRUE);
2835 2850 break;
2836 2851 case V_RDORWR:
2837 2852 if (vp->v_mmap_read || vp->v_mmap_write)
2838 2853 return (V_TRUE);
2839 2854 break;
2840 2855 case V_READ:
2841 2856 if (vp->v_mmap_read)
2842 2857 return (V_TRUE);
2843 2858 break;
2844 2859 }
2845 2860 #endif
2846 2861
2847 2862 return (V_FALSE);
2848 2863 }
2849 2864
2850 2865 /*
2851 2866 * Set the operations vector for a vnode.
2852 2867 *
2853 2868 * FEM ensures that the v_femhead pointer is filled in before the
2854 2869 * v_op pointer is changed. This means that if the v_femhead pointer
2855 2870 * is NULL, and the v_op field hasn't changed since before which checked
2856 2871 * the v_femhead pointer; then our update is ok - we are not racing with
2857 2872 * FEM.
2858 2873 */
2859 2874 void
2860 2875 vn_setops(vnode_t *vp, vnodeops_t *vnodeops)
2861 2876 {
2862 2877 vnodeops_t *op;
2863 2878
2864 2879 ASSERT(vp != NULL);
2865 2880 ASSERT(vnodeops != NULL);
2866 2881
2867 2882 op = vp->v_op;
2868 2883 membar_consumer();
2869 2884 /*
2870 2885 * If vp->v_femhead == NULL, then we'll call atomic_cas_ptr() to do
2871 2886 * the compare-and-swap on vp->v_op. If either fails, then FEM is
2872 2887 * in effect on the vnode and we need to have FEM deal with it.
2873 2888 */
2874 2889 if (vp->v_femhead != NULL || atomic_cas_ptr(&vp->v_op, op, vnodeops) !=
2875 2890 op) {
2876 2891 fem_setvnops(vp, vnodeops);
2877 2892 }
2878 2893 }
2879 2894
2880 2895 /*
2881 2896 * Retrieve the operations vector for a vnode
2882 2897 * As with vn_setops(above); make sure we aren't racing with FEM.
2883 2898 * FEM sets the v_op to a special, internal, vnodeops that wouldn't
2884 2899 * make sense to the callers of this routine.
2885 2900 */
2886 2901 vnodeops_t *
2887 2902 vn_getops(vnode_t *vp)
2888 2903 {
2889 2904 vnodeops_t *op;
2890 2905
2891 2906 ASSERT(vp != NULL);
2892 2907
2893 2908 op = vp->v_op;
2894 2909 membar_consumer();
2895 2910 if (vp->v_femhead == NULL && op == vp->v_op) {
2896 2911 return (op);
2897 2912 } else {
2898 2913 return (fem_getvnops(vp));
2899 2914 }
2900 2915 }
2901 2916
2902 2917 /*
2903 2918 * Returns non-zero (1) if the vnodeops matches that of the vnode.
2904 2919 * Returns zero (0) if not.
2905 2920 */
2906 2921 int
2907 2922 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops)
2908 2923 {
2909 2924 return (vn_getops(vp) == vnodeops);
2910 2925 }
2911 2926
2912 2927 /*
2913 2928 * Returns non-zero (1) if the specified operation matches the
2914 2929 * corresponding operation for that the vnode.
2915 2930 * Returns zero (0) if not.
2916 2931 */
2917 2932
2918 2933 #define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0))
2919 2934
2920 2935 int
2921 2936 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp)
2922 2937 {
2923 2938 const fs_operation_trans_def_t *otdp;
2924 2939 fs_generic_func_p *loc = NULL;
2925 2940 vnodeops_t *vop = vn_getops(vp);
2926 2941
2927 2942 ASSERT(vopname != NULL);
2928 2943
2929 2944 for (otdp = vn_ops_table; otdp->name != NULL; otdp++) {
2930 2945 if (MATCHNAME(otdp->name, vopname)) {
2931 2946 loc = (fs_generic_func_p *)
2932 2947 ((char *)(vop) + otdp->offset);
2933 2948 break;
2934 2949 }
2935 2950 }
2936 2951
2937 2952 return ((loc != NULL) && (*loc == funcp));
2938 2953 }
2939 2954
2940 2955 /*
2941 2956 * fs_new_caller_id() needs to return a unique ID on a given local system.
2942 2957 * The IDs do not need to survive across reboots. These are primarily
2943 2958 * used so that (FEM) monitors can detect particular callers (such as
2944 2959 * the NFS server) to a given vnode/vfs operation.
2945 2960 */
2946 2961 u_longlong_t
2947 2962 fs_new_caller_id()
2948 2963 {
2949 2964 static uint64_t next_caller_id = 0LL; /* First call returns 1 */
2950 2965
2951 2966 return ((u_longlong_t)atomic_inc_64_nv(&next_caller_id));
2952 2967 }
2953 2968
2954 2969 /*
2955 2970 * Given a starting vnode and a path, updates the path in the target vnode in
2956 2971 * a safe manner. If the vnode already has path information embedded, then the
2957 2972 * cached path is left untouched.
2958 2973 */
2959 2974
2960 2975 size_t max_vnode_path = 4 * MAXPATHLEN;
2961 2976
2962 2977 void
2963 2978 vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp,
2964 2979 const char *path, size_t plen)
2965 2980 {
2966 2981 char *rpath;
2967 2982 vnode_t *base;
2968 2983 size_t rpathlen, rpathalloc;
2969 2984 int doslash = 1;
2970 2985
2971 2986 if (*path == '/') {
2972 2987 base = rootvp;
2973 2988 path++;
2974 2989 plen--;
2975 2990 } else {
2976 2991 base = startvp;
2977 2992 }
2978 2993
2979 2994 /*
2980 2995 * We cannot grab base->v_lock while we hold vp->v_lock because of
2981 2996 * the potential for deadlock.
2982 2997 */
2983 2998 mutex_enter(&base->v_lock);
2984 2999 if (base->v_path == NULL) {
2985 3000 mutex_exit(&base->v_lock);
2986 3001 return;
2987 3002 }
2988 3003
2989 3004 rpathlen = strlen(base->v_path);
2990 3005 rpathalloc = rpathlen + plen + 1;
2991 3006 /* Avoid adding a slash if there's already one there */
2992 3007 if (base->v_path[rpathlen-1] == '/')
2993 3008 doslash = 0;
2994 3009 else
2995 3010 rpathalloc++;
2996 3011
2997 3012 /*
2998 3013 * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held,
2999 3014 * so we must do this dance. If, by chance, something changes the path,
3000 3015 * just give up since there is no real harm.
3001 3016 */
3002 3017 mutex_exit(&base->v_lock);
3003 3018
3004 3019 /* Paths should stay within reason */
3005 3020 if (rpathalloc > max_vnode_path)
3006 3021 return;
3007 3022
3008 3023 rpath = kmem_alloc(rpathalloc, KM_SLEEP);
3009 3024
3010 3025 mutex_enter(&base->v_lock);
3011 3026 if (base->v_path == NULL || strlen(base->v_path) != rpathlen) {
3012 3027 mutex_exit(&base->v_lock);
3013 3028 kmem_free(rpath, rpathalloc);
3014 3029 return;
3015 3030 }
3016 3031 bcopy(base->v_path, rpath, rpathlen);
3017 3032 mutex_exit(&base->v_lock);
3018 3033
3019 3034 if (doslash)
3020 3035 rpath[rpathlen++] = '/';
3021 3036 bcopy(path, rpath + rpathlen, plen);
3022 3037 rpath[rpathlen + plen] = '\0';
3023 3038
3024 3039 mutex_enter(&vp->v_lock);
3025 3040 if (vp->v_path != NULL) {
3026 3041 mutex_exit(&vp->v_lock);
3027 3042 kmem_free(rpath, rpathalloc);
3028 3043 } else {
3029 3044 vp->v_path = rpath;
3030 3045 mutex_exit(&vp->v_lock);
3031 3046 }
3032 3047 }
3033 3048
3034 3049 /*
3035 3050 * Sets the path to the vnode to be the given string, regardless of current
3036 3051 * context. The string must be a complete path from rootdir. This is only used
3037 3052 * by fsop_root() for setting the path based on the mountpoint.
3038 3053 */
3039 3054 void
3040 3055 vn_setpath_str(struct vnode *vp, const char *str, size_t len)
3041 3056 {
3042 3057 char *buf = kmem_alloc(len + 1, KM_SLEEP);
3043 3058
3044 3059 mutex_enter(&vp->v_lock);
3045 3060 if (vp->v_path != NULL) {
3046 3061 mutex_exit(&vp->v_lock);
3047 3062 kmem_free(buf, len + 1);
3048 3063 return;
3049 3064 }
3050 3065
3051 3066 vp->v_path = buf;
3052 3067 bcopy(str, vp->v_path, len);
3053 3068 vp->v_path[len] = '\0';
3054 3069
3055 3070 mutex_exit(&vp->v_lock);
3056 3071 }
3057 3072
3058 3073 /*
3059 3074 * Called from within filesystem's vop_rename() to handle renames once the
3060 3075 * target vnode is available.
3061 3076 */
3062 3077 void
3063 3078 vn_renamepath(vnode_t *dvp, vnode_t *vp, const char *nm, size_t len)
3064 3079 {
3065 3080 char *tmp;
3066 3081
3067 3082 mutex_enter(&vp->v_lock);
3068 3083 tmp = vp->v_path;
3069 3084 vp->v_path = NULL;
3070 3085 mutex_exit(&vp->v_lock);
3071 3086 vn_setpath(rootdir, dvp, vp, nm, len);
3072 3087 if (tmp != NULL)
3073 3088 kmem_free(tmp, strlen(tmp) + 1);
3074 3089 }
3075 3090
3076 3091 /*
3077 3092 * Similar to vn_setpath_str(), this function sets the path of the destination
3078 3093 * vnode to the be the same as the source vnode.
3079 3094 */
3080 3095 void
3081 3096 vn_copypath(struct vnode *src, struct vnode *dst)
3082 3097 {
3083 3098 char *buf;
3084 3099 int alloc;
3085 3100
3086 3101 mutex_enter(&src->v_lock);
3087 3102 if (src->v_path == NULL) {
3088 3103 mutex_exit(&src->v_lock);
3089 3104 return;
3090 3105 }
3091 3106 alloc = strlen(src->v_path) + 1;
3092 3107
3093 3108 /* avoid kmem_alloc() with lock held */
3094 3109 mutex_exit(&src->v_lock);
3095 3110 buf = kmem_alloc(alloc, KM_SLEEP);
3096 3111 mutex_enter(&src->v_lock);
3097 3112 if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) {
3098 3113 mutex_exit(&src->v_lock);
3099 3114 kmem_free(buf, alloc);
3100 3115 return;
3101 3116 }
3102 3117 bcopy(src->v_path, buf, alloc);
3103 3118 mutex_exit(&src->v_lock);
3104 3119
3105 3120 mutex_enter(&dst->v_lock);
3106 3121 if (dst->v_path != NULL) {
3107 3122 mutex_exit(&dst->v_lock);
3108 3123 kmem_free(buf, alloc);
3109 3124 return;
3110 3125 }
3111 3126 dst->v_path = buf;
3112 3127 mutex_exit(&dst->v_lock);
3113 3128 }
3114 3129
3115 3130 /*
3116 3131 * XXX Private interface for segvn routines that handle vnode
3117 3132 * large page segments.
3118 3133 *
3119 3134 * return 1 if vp's file system VOP_PAGEIO() implementation
3120 3135 * can be safely used instead of VOP_GETPAGE() for handling
3121 3136 * pagefaults against regular non swap files. VOP_PAGEIO()
3122 3137 * interface is considered safe here if its implementation
3123 3138 * is very close to VOP_GETPAGE() implementation.
3124 3139 * e.g. It zero's out the part of the page beyond EOF. Doesn't
3125 3140 * panic if there're file holes but instead returns an error.
3126 3141 * Doesn't assume file won't be changed by user writes, etc.
3127 3142 *
3128 3143 * return 0 otherwise.
3129 3144 *
3130 3145 * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs.
3131 3146 */
3132 3147 int
3133 3148 vn_vmpss_usepageio(vnode_t *vp)
3134 3149 {
3135 3150 vfs_t *vfsp = vp->v_vfsp;
3136 3151 char *fsname = vfssw[vfsp->vfs_fstype].vsw_name;
3137 3152 char *pageio_ok_fss[] = {"ufs", "nfs", NULL};
3138 3153 char **fsok = pageio_ok_fss;
3139 3154
3140 3155 if (fsname == NULL) {
3141 3156 return (0);
3142 3157 }
3143 3158
3144 3159 for (; *fsok; fsok++) {
3145 3160 if (strcmp(*fsok, fsname) == 0) {
3146 3161 return (1);
3147 3162 }
3148 3163 }
3149 3164 return (0);
3150 3165 }
3151 3166
3152 3167 /* VOP_XXX() macros call the corresponding fop_xxx() function */
3153 3168
3154 3169 int
3155 3170 fop_open(
3156 3171 vnode_t **vpp,
3157 3172 int mode,
3158 3173 cred_t *cr,
3159 3174 caller_context_t *ct)
3160 3175 {
3161 3176 int ret;
3162 3177 vnode_t *vp = *vpp;
3163 3178
3164 3179 VN_HOLD(vp);
3165 3180 /*
3166 3181 * Adding to the vnode counts before calling open
3167 3182 * avoids the need for a mutex. It circumvents a race
3168 3183 * condition where a query made on the vnode counts results in a
3169 3184 * false negative. The inquirer goes away believing the file is
3170 3185 * not open when there is an open on the file already under way.
3171 3186 *
3172 3187 * The counts are meant to prevent NFS from granting a delegation
3173 3188 * when it would be dangerous to do so.
3174 3189 *
3175 3190 * The vnode counts are only kept on regular files
3176 3191 */
3177 3192 if ((*vpp)->v_type == VREG) {
3178 3193 if (mode & FREAD)
3179 3194 atomic_inc_32(&(*vpp)->v_rdcnt);
3180 3195 if (mode & FWRITE)
3181 3196 atomic_inc_32(&(*vpp)->v_wrcnt);
3182 3197 }
3183 3198
3184 3199 VOPXID_MAP_CR(vp, cr);
3185 3200
3186 3201 ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr, ct);
3187 3202
3188 3203 if (ret) {
3189 3204 /*
3190 3205 * Use the saved vp just in case the vnode ptr got trashed
3191 3206 * by the error.
3192 3207 */
3193 3208 VOPSTATS_UPDATE(vp, open);
3194 3209 if ((vp->v_type == VREG) && (mode & FREAD))
3195 3210 atomic_dec_32(&vp->v_rdcnt);
3196 3211 if ((vp->v_type == VREG) && (mode & FWRITE))
3197 3212 atomic_dec_32(&vp->v_wrcnt);
3198 3213 } else {
3199 3214 /*
3200 3215 * Some filesystems will return a different vnode,
3201 3216 * but the same path was still used to open it.
3202 3217 * So if we do change the vnode and need to
3203 3218 * copy over the path, do so here, rather than special
3204 3219 * casing each filesystem. Adjust the vnode counts to
3205 3220 * reflect the vnode switch.
3206 3221 */
3207 3222 VOPSTATS_UPDATE(*vpp, open);
3208 3223 if (*vpp != vp && *vpp != NULL) {
3209 3224 vn_copypath(vp, *vpp);
3210 3225 if (((*vpp)->v_type == VREG) && (mode & FREAD))
3211 3226 atomic_inc_32(&(*vpp)->v_rdcnt);
3212 3227 if ((vp->v_type == VREG) && (mode & FREAD))
3213 3228 atomic_dec_32(&vp->v_rdcnt);
3214 3229 if (((*vpp)->v_type == VREG) && (mode & FWRITE))
3215 3230 atomic_inc_32(&(*vpp)->v_wrcnt);
3216 3231 if ((vp->v_type == VREG) && (mode & FWRITE))
3217 3232 atomic_dec_32(&vp->v_wrcnt);
3218 3233 }
3219 3234 }
3220 3235 VN_RELE(vp);
3221 3236 return (ret);
3222 3237 }
3223 3238
3224 3239 int
3225 3240 fop_close(
3226 3241 vnode_t *vp,
3227 3242 int flag,
3228 3243 int count,
3229 3244 offset_t offset,
3230 3245 cred_t *cr,
3231 3246 caller_context_t *ct)
3232 3247 {
3233 3248 int err;
3234 3249
3235 3250 VOPXID_MAP_CR(vp, cr);
3236 3251
3237 3252 err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr, ct);
3238 3253 VOPSTATS_UPDATE(vp, close);
3239 3254 /*
3240 3255 * Check passed in count to handle possible dups. Vnode counts are only
3241 3256 * kept on regular files
3242 3257 */
3243 3258 if ((vp->v_type == VREG) && (count == 1)) {
3244 3259 if (flag & FREAD) {
3245 3260 ASSERT(vp->v_rdcnt > 0);
3246 3261 atomic_dec_32(&vp->v_rdcnt);
3247 3262 }
3248 3263 if (flag & FWRITE) {
3249 3264 ASSERT(vp->v_wrcnt > 0);
3250 3265 atomic_dec_32(&vp->v_wrcnt);
3251 3266 }
3252 3267 }
3253 3268 return (err);
|
↓ open down ↓ |
619 lines elided |
↑ open up ↑ |
3254 3269 }
3255 3270
3256 3271 int
3257 3272 fop_read(
3258 3273 vnode_t *vp,
3259 3274 uio_t *uiop,
3260 3275 int ioflag,
3261 3276 cred_t *cr,
3262 3277 caller_context_t *ct)
3263 3278 {
3264 - int err;
3265 3279 ssize_t resid_start = uiop->uio_resid;
3280 + zone_t *zonep = curzone;
3281 + zone_vfs_kstat_t *zvp = zonep->zone_vfs_stats;
3266 3282
3283 + hrtime_t start = 0, lat;
3284 + ssize_t len;
3285 + int err;
3286 +
3287 + if ((vp->v_type == VREG || vp->v_type == VDIR || vp->v_type == VBLK) &&
3288 + vp->v_vfsp != NULL && (vp->v_vfsp->vfs_flag & VFS_STATS)) {
3289 + start = gethrtime();
3290 +
3291 + mutex_enter(&zonep->zone_vfs_lock);
3292 + kstat_runq_enter(&zonep->zone_vfs_rwstats);
3293 + mutex_exit(&zonep->zone_vfs_lock);
3294 + }
3295 +
3267 3296 VOPXID_MAP_CR(vp, cr);
3268 3297
3269 3298 err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct);
3270 - VOPSTATS_UPDATE_IO(vp, read,
3271 - read_bytes, (resid_start - uiop->uio_resid));
3299 + len = resid_start - uiop->uio_resid;
3300 +
3301 + VOPSTATS_UPDATE_IO(vp, read, read_bytes, len);
3302 +
3303 + if (start != 0) {
3304 + mutex_enter(&zonep->zone_vfs_lock);
3305 + zonep->zone_vfs_rwstats.reads++;
3306 + zonep->zone_vfs_rwstats.nread += len;
3307 + kstat_runq_exit(&zonep->zone_vfs_rwstats);
3308 + mutex_exit(&zonep->zone_vfs_lock);
3309 +
3310 + lat = gethrtime() - start;
3311 +
3312 + if (lat >= VOP_LATENCY_10MS) {
3313 + if (lat < VOP_LATENCY_100MS)
3314 + atomic_inc_64(&zvp->zv_10ms_ops.value.ui64);
3315 + else if (lat < VOP_LATENCY_1S) {
3316 + atomic_inc_64(&zvp->zv_10ms_ops.value.ui64);
3317 + atomic_inc_64(&zvp->zv_100ms_ops.value.ui64);
3318 + } else {
3319 + atomic_inc_64(&zvp->zv_10ms_ops.value.ui64);
3320 + atomic_inc_64(&zvp->zv_100ms_ops.value.ui64);
3321 + atomic_inc_64(&zvp->zv_1s_ops.value.ui64);
3322 + }
3323 + }
3324 + }
3325 +
3272 3326 return (err);
3273 3327 }
3274 3328
3275 3329 int
3276 3330 fop_write(
3277 3331 vnode_t *vp,
3278 3332 uio_t *uiop,
3279 3333 int ioflag,
3280 3334 cred_t *cr,
3281 3335 caller_context_t *ct)
3282 3336 {
3283 - int err;
3284 3337 ssize_t resid_start = uiop->uio_resid;
3338 + zone_t *zonep = curzone;
3339 + zone_vfs_kstat_t *zvp = zonep->zone_vfs_stats;
3285 3340
3341 + hrtime_t start = 0, lat;
3342 + ssize_t len;
3343 + int err;
3344 +
3345 + /*
3346 + * For the purposes of VFS kstat consumers, the "waitq" calculation is
3347 + * repurposed as the active queue for VFS write operations. There's no
3348 + * actual wait queue for VFS operations.
3349 + */
3350 + if ((vp->v_type == VREG || vp->v_type == VDIR || vp->v_type == VBLK) &&
3351 + vp->v_vfsp != NULL && (vp->v_vfsp->vfs_flag & VFS_STATS)) {
3352 + start = gethrtime();
3353 +
3354 + mutex_enter(&zonep->zone_vfs_lock);
3355 + kstat_waitq_enter(&zonep->zone_vfs_rwstats);
3356 + mutex_exit(&zonep->zone_vfs_lock);
3357 + }
3358 +
3286 3359 VOPXID_MAP_CR(vp, cr);
3287 3360
3288 3361 err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct);
3289 - VOPSTATS_UPDATE_IO(vp, write,
3290 - write_bytes, (resid_start - uiop->uio_resid));
3362 + len = resid_start - uiop->uio_resid;
3363 +
3364 + VOPSTATS_UPDATE_IO(vp, write, write_bytes, len);
3365 +
3366 + if (start != 0) {
3367 + mutex_enter(&zonep->zone_vfs_lock);
3368 + zonep->zone_vfs_rwstats.writes++;
3369 + zonep->zone_vfs_rwstats.nwritten += len;
3370 + kstat_waitq_exit(&zonep->zone_vfs_rwstats);
3371 + mutex_exit(&zonep->zone_vfs_lock);
3372 +
3373 + lat = gethrtime() - start;
3374 +
3375 + if (lat >= VOP_LATENCY_10MS) {
3376 + if (lat < VOP_LATENCY_100MS)
3377 + atomic_inc_64(&zvp->zv_10ms_ops.value.ui64);
3378 + else if (lat < VOP_LATENCY_1S) {
3379 + atomic_inc_64(&zvp->zv_10ms_ops.value.ui64);
3380 + atomic_inc_64(&zvp->zv_100ms_ops.value.ui64);
3381 + } else {
3382 + atomic_inc_64(&zvp->zv_10ms_ops.value.ui64);
3383 + atomic_inc_64(&zvp->zv_100ms_ops.value.ui64);
3384 + atomic_inc_64(&zvp->zv_1s_ops.value.ui64);
3385 + }
3386 + }
3387 + }
3388 +
3291 3389 return (err);
3292 3390 }
3293 3391
3294 3392 int
3295 3393 fop_ioctl(
3296 3394 vnode_t *vp,
3297 3395 int cmd,
3298 3396 intptr_t arg,
3299 3397 int flag,
3300 3398 cred_t *cr,
3301 3399 int *rvalp,
3302 3400 caller_context_t *ct)
3303 3401 {
3304 3402 int err;
3305 3403
3306 3404 VOPXID_MAP_CR(vp, cr);
3307 3405
3308 3406 err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp, ct);
3309 3407 VOPSTATS_UPDATE(vp, ioctl);
3310 3408 return (err);
3311 3409 }
3312 3410
3313 3411 int
3314 3412 fop_setfl(
3315 3413 vnode_t *vp,
3316 3414 int oflags,
3317 3415 int nflags,
3318 3416 cred_t *cr,
3319 3417 caller_context_t *ct)
3320 3418 {
3321 3419 int err;
3322 3420
3323 3421 VOPXID_MAP_CR(vp, cr);
3324 3422
3325 3423 err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr, ct);
3326 3424 VOPSTATS_UPDATE(vp, setfl);
3327 3425 return (err);
3328 3426 }
3329 3427
3330 3428 int
3331 3429 fop_getattr(
3332 3430 vnode_t *vp,
3333 3431 vattr_t *vap,
3334 3432 int flags,
3335 3433 cred_t *cr,
3336 3434 caller_context_t *ct)
3337 3435 {
3338 3436 int err;
3339 3437
3340 3438 VOPXID_MAP_CR(vp, cr);
3341 3439
3342 3440 /*
3343 3441 * If this file system doesn't understand the xvattr extensions
3344 3442 * then turn off the xvattr bit.
3345 3443 */
3346 3444 if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) {
3347 3445 vap->va_mask &= ~AT_XVATTR;
3348 3446 }
3349 3447
3350 3448 /*
3351 3449 * We're only allowed to skip the ACL check iff we used a 32 bit
3352 3450 * ACE mask with VOP_ACCESS() to determine permissions.
3353 3451 */
3354 3452 if ((flags & ATTR_NOACLCHECK) &&
3355 3453 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3356 3454 return (EINVAL);
3357 3455 }
3358 3456 err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr, ct);
3359 3457 VOPSTATS_UPDATE(vp, getattr);
3360 3458 return (err);
3361 3459 }
3362 3460
3363 3461 int
3364 3462 fop_setattr(
3365 3463 vnode_t *vp,
3366 3464 vattr_t *vap,
3367 3465 int flags,
3368 3466 cred_t *cr,
3369 3467 caller_context_t *ct)
3370 3468 {
3371 3469 int err;
3372 3470
3373 3471 VOPXID_MAP_CR(vp, cr);
3374 3472
3375 3473 /*
3376 3474 * If this file system doesn't understand the xvattr extensions
3377 3475 * then turn off the xvattr bit.
3378 3476 */
3379 3477 if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) {
3380 3478 vap->va_mask &= ~AT_XVATTR;
3381 3479 }
3382 3480
3383 3481 /*
3384 3482 * We're only allowed to skip the ACL check iff we used a 32 bit
3385 3483 * ACE mask with VOP_ACCESS() to determine permissions.
3386 3484 */
3387 3485 if ((flags & ATTR_NOACLCHECK) &&
3388 3486 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3389 3487 return (EINVAL);
3390 3488 }
3391 3489 err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct);
3392 3490 VOPSTATS_UPDATE(vp, setattr);
3393 3491 return (err);
3394 3492 }
3395 3493
3396 3494 int
3397 3495 fop_access(
3398 3496 vnode_t *vp,
3399 3497 int mode,
3400 3498 int flags,
3401 3499 cred_t *cr,
3402 3500 caller_context_t *ct)
3403 3501 {
3404 3502 int err;
3405 3503
3406 3504 if ((flags & V_ACE_MASK) &&
3407 3505 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3408 3506 return (EINVAL);
3409 3507 }
3410 3508
3411 3509 VOPXID_MAP_CR(vp, cr);
3412 3510
3413 3511 err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr, ct);
3414 3512 VOPSTATS_UPDATE(vp, access);
3415 3513 return (err);
3416 3514 }
3417 3515
3418 3516 int
3419 3517 fop_lookup(
3420 3518 vnode_t *dvp,
3421 3519 char *nm,
3422 3520 vnode_t **vpp,
3423 3521 pathname_t *pnp,
3424 3522 int flags,
3425 3523 vnode_t *rdir,
3426 3524 cred_t *cr,
3427 3525 caller_context_t *ct,
3428 3526 int *deflags, /* Returned per-dirent flags */
3429 3527 pathname_t *ppnp) /* Returned case-preserved name in directory */
3430 3528 {
3431 3529 int ret;
3432 3530
3433 3531 /*
3434 3532 * If this file system doesn't support case-insensitive access
3435 3533 * and said access is requested, fail quickly. It is required
3436 3534 * that if the vfs supports case-insensitive lookup, it also
3437 3535 * supports extended dirent flags.
3438 3536 */
3439 3537 if (flags & FIGNORECASE &&
3440 3538 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3441 3539 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3442 3540 return (EINVAL);
3443 3541
3444 3542 VOPXID_MAP_CR(dvp, cr);
3445 3543
3446 3544 if ((flags & LOOKUP_XATTR) && (flags & LOOKUP_HAVE_SYSATTR_DIR) == 0) {
3447 3545 ret = xattr_dir_lookup(dvp, vpp, flags, cr);
3448 3546 } else {
3449 3547 ret = (*(dvp)->v_op->vop_lookup)
3450 3548 (dvp, nm, vpp, pnp, flags, rdir, cr, ct, deflags, ppnp);
3451 3549 }
3452 3550 if (ret == 0 && *vpp) {
3453 3551 VOPSTATS_UPDATE(*vpp, lookup);
3454 3552 if ((*vpp)->v_path == NULL) {
3455 3553 vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm));
3456 3554 }
3457 3555 }
3458 3556
3459 3557 return (ret);
3460 3558 }
3461 3559
3462 3560 int
3463 3561 fop_create(
3464 3562 vnode_t *dvp,
3465 3563 char *name,
3466 3564 vattr_t *vap,
3467 3565 vcexcl_t excl,
3468 3566 int mode,
3469 3567 vnode_t **vpp,
3470 3568 cred_t *cr,
3471 3569 int flags,
3472 3570 caller_context_t *ct,
3473 3571 vsecattr_t *vsecp) /* ACL to set during create */
3474 3572 {
3475 3573 int ret;
3476 3574
3477 3575 if (vsecp != NULL &&
3478 3576 vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) {
3479 3577 return (EINVAL);
3480 3578 }
3481 3579 /*
3482 3580 * If this file system doesn't support case-insensitive access
3483 3581 * and said access is requested, fail quickly.
3484 3582 */
3485 3583 if (flags & FIGNORECASE &&
3486 3584 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3487 3585 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3488 3586 return (EINVAL);
3489 3587
3490 3588 VOPXID_MAP_CR(dvp, cr);
3491 3589
3492 3590 ret = (*(dvp)->v_op->vop_create)
3493 3591 (dvp, name, vap, excl, mode, vpp, cr, flags, ct, vsecp);
3494 3592 if (ret == 0 && *vpp) {
3495 3593 VOPSTATS_UPDATE(*vpp, create);
3496 3594 if ((*vpp)->v_path == NULL) {
3497 3595 vn_setpath(rootdir, dvp, *vpp, name, strlen(name));
3498 3596 }
3499 3597 }
3500 3598
3501 3599 return (ret);
3502 3600 }
3503 3601
3504 3602 int
3505 3603 fop_remove(
3506 3604 vnode_t *dvp,
3507 3605 char *nm,
3508 3606 cred_t *cr,
3509 3607 caller_context_t *ct,
3510 3608 int flags)
3511 3609 {
3512 3610 int err;
3513 3611
3514 3612 /*
3515 3613 * If this file system doesn't support case-insensitive access
3516 3614 * and said access is requested, fail quickly.
3517 3615 */
3518 3616 if (flags & FIGNORECASE &&
3519 3617 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3520 3618 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3521 3619 return (EINVAL);
3522 3620
3523 3621 VOPXID_MAP_CR(dvp, cr);
3524 3622
3525 3623 err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr, ct, flags);
3526 3624 VOPSTATS_UPDATE(dvp, remove);
3527 3625 return (err);
3528 3626 }
3529 3627
3530 3628 int
3531 3629 fop_link(
3532 3630 vnode_t *tdvp,
3533 3631 vnode_t *svp,
3534 3632 char *tnm,
3535 3633 cred_t *cr,
3536 3634 caller_context_t *ct,
3537 3635 int flags)
3538 3636 {
3539 3637 int err;
3540 3638
3541 3639 /*
3542 3640 * If the target file system doesn't support case-insensitive access
3543 3641 * and said access is requested, fail quickly.
3544 3642 */
3545 3643 if (flags & FIGNORECASE &&
3546 3644 (vfs_has_feature(tdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3547 3645 vfs_has_feature(tdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3548 3646 return (EINVAL);
3549 3647
3550 3648 VOPXID_MAP_CR(tdvp, cr);
3551 3649
3552 3650 err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr, ct, flags);
3553 3651 VOPSTATS_UPDATE(tdvp, link);
3554 3652 return (err);
3555 3653 }
3556 3654
3557 3655 int
3558 3656 fop_rename(
3559 3657 vnode_t *sdvp,
3560 3658 char *snm,
3561 3659 vnode_t *tdvp,
3562 3660 char *tnm,
3563 3661 cred_t *cr,
3564 3662 caller_context_t *ct,
3565 3663 int flags)
3566 3664 {
3567 3665 int err;
3568 3666
3569 3667 /*
3570 3668 * If the file system involved does not support
3571 3669 * case-insensitive access and said access is requested, fail
3572 3670 * quickly.
3573 3671 */
3574 3672 if (flags & FIGNORECASE &&
3575 3673 ((vfs_has_feature(sdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3576 3674 vfs_has_feature(sdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)))
3577 3675 return (EINVAL);
3578 3676
3579 3677 VOPXID_MAP_CR(tdvp, cr);
3580 3678
3581 3679 err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr, ct, flags);
3582 3680 VOPSTATS_UPDATE(sdvp, rename);
3583 3681 return (err);
3584 3682 }
3585 3683
3586 3684 int
3587 3685 fop_mkdir(
3588 3686 vnode_t *dvp,
3589 3687 char *dirname,
3590 3688 vattr_t *vap,
3591 3689 vnode_t **vpp,
3592 3690 cred_t *cr,
3593 3691 caller_context_t *ct,
3594 3692 int flags,
3595 3693 vsecattr_t *vsecp) /* ACL to set during create */
3596 3694 {
3597 3695 int ret;
3598 3696
3599 3697 if (vsecp != NULL &&
3600 3698 vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) {
3601 3699 return (EINVAL);
3602 3700 }
3603 3701 /*
3604 3702 * If this file system doesn't support case-insensitive access
3605 3703 * and said access is requested, fail quickly.
3606 3704 */
3607 3705 if (flags & FIGNORECASE &&
3608 3706 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3609 3707 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3610 3708 return (EINVAL);
3611 3709
3612 3710 VOPXID_MAP_CR(dvp, cr);
3613 3711
3614 3712 ret = (*(dvp)->v_op->vop_mkdir)
3615 3713 (dvp, dirname, vap, vpp, cr, ct, flags, vsecp);
3616 3714 if (ret == 0 && *vpp) {
3617 3715 VOPSTATS_UPDATE(*vpp, mkdir);
3618 3716 if ((*vpp)->v_path == NULL) {
3619 3717 vn_setpath(rootdir, dvp, *vpp, dirname,
3620 3718 strlen(dirname));
3621 3719 }
3622 3720 }
3623 3721
3624 3722 return (ret);
3625 3723 }
3626 3724
3627 3725 int
3628 3726 fop_rmdir(
3629 3727 vnode_t *dvp,
3630 3728 char *nm,
3631 3729 vnode_t *cdir,
3632 3730 cred_t *cr,
3633 3731 caller_context_t *ct,
3634 3732 int flags)
3635 3733 {
3636 3734 int err;
3637 3735
3638 3736 /*
3639 3737 * If this file system doesn't support case-insensitive access
3640 3738 * and said access is requested, fail quickly.
3641 3739 */
3642 3740 if (flags & FIGNORECASE &&
3643 3741 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3644 3742 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3645 3743 return (EINVAL);
3646 3744
3647 3745 VOPXID_MAP_CR(dvp, cr);
3648 3746
3649 3747 err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr, ct, flags);
3650 3748 VOPSTATS_UPDATE(dvp, rmdir);
3651 3749 return (err);
3652 3750 }
3653 3751
3654 3752 int
3655 3753 fop_readdir(
3656 3754 vnode_t *vp,
3657 3755 uio_t *uiop,
3658 3756 cred_t *cr,
3659 3757 int *eofp,
3660 3758 caller_context_t *ct,
3661 3759 int flags)
3662 3760 {
3663 3761 int err;
3664 3762 ssize_t resid_start = uiop->uio_resid;
3665 3763
3666 3764 /*
3667 3765 * If this file system doesn't support retrieving directory
3668 3766 * entry flags and said access is requested, fail quickly.
3669 3767 */
3670 3768 if (flags & V_RDDIR_ENTFLAGS &&
3671 3769 vfs_has_feature(vp->v_vfsp, VFSFT_DIRENTFLAGS) == 0)
3672 3770 return (EINVAL);
3673 3771
3674 3772 VOPXID_MAP_CR(vp, cr);
3675 3773
3676 3774 err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp, ct, flags);
3677 3775 VOPSTATS_UPDATE_IO(vp, readdir,
3678 3776 readdir_bytes, (resid_start - uiop->uio_resid));
3679 3777 return (err);
3680 3778 }
3681 3779
3682 3780 int
3683 3781 fop_symlink(
3684 3782 vnode_t *dvp,
3685 3783 char *linkname,
3686 3784 vattr_t *vap,
3687 3785 char *target,
3688 3786 cred_t *cr,
3689 3787 caller_context_t *ct,
3690 3788 int flags)
3691 3789 {
3692 3790 int err;
3693 3791 xvattr_t xvattr;
3694 3792
3695 3793 /*
3696 3794 * If this file system doesn't support case-insensitive access
3697 3795 * and said access is requested, fail quickly.
3698 3796 */
3699 3797 if (flags & FIGNORECASE &&
3700 3798 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3701 3799 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3702 3800 return (EINVAL);
3703 3801
3704 3802 VOPXID_MAP_CR(dvp, cr);
3705 3803
3706 3804 /* check for reparse point */
3707 3805 if ((vfs_has_feature(dvp->v_vfsp, VFSFT_REPARSE)) &&
3708 3806 (strncmp(target, FS_REPARSE_TAG_STR,
3709 3807 strlen(FS_REPARSE_TAG_STR)) == 0)) {
3710 3808 if (!fs_reparse_mark(target, vap, &xvattr))
3711 3809 vap = (vattr_t *)&xvattr;
3712 3810 }
3713 3811
3714 3812 err = (*(dvp)->v_op->vop_symlink)
3715 3813 (dvp, linkname, vap, target, cr, ct, flags);
3716 3814 VOPSTATS_UPDATE(dvp, symlink);
3717 3815 return (err);
3718 3816 }
3719 3817
3720 3818 int
3721 3819 fop_readlink(
3722 3820 vnode_t *vp,
3723 3821 uio_t *uiop,
3724 3822 cred_t *cr,
3725 3823 caller_context_t *ct)
3726 3824 {
3727 3825 int err;
3728 3826
3729 3827 VOPXID_MAP_CR(vp, cr);
3730 3828
3731 3829 err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr, ct);
3732 3830 VOPSTATS_UPDATE(vp, readlink);
3733 3831 return (err);
3734 3832 }
3735 3833
3736 3834 int
3737 3835 fop_fsync(
3738 3836 vnode_t *vp,
3739 3837 int syncflag,
3740 3838 cred_t *cr,
3741 3839 caller_context_t *ct)
3742 3840 {
3743 3841 int err;
3744 3842
3745 3843 VOPXID_MAP_CR(vp, cr);
3746 3844
3747 3845 err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr, ct);
3748 3846 VOPSTATS_UPDATE(vp, fsync);
3749 3847 return (err);
3750 3848 }
3751 3849
3752 3850 void
3753 3851 fop_inactive(
3754 3852 vnode_t *vp,
3755 3853 cred_t *cr,
3756 3854 caller_context_t *ct)
3757 3855 {
3758 3856 /* Need to update stats before vop call since we may lose the vnode */
3759 3857 VOPSTATS_UPDATE(vp, inactive);
3760 3858
3761 3859 VOPXID_MAP_CR(vp, cr);
3762 3860
3763 3861 (*(vp)->v_op->vop_inactive)(vp, cr, ct);
3764 3862 }
3765 3863
3766 3864 int
3767 3865 fop_fid(
3768 3866 vnode_t *vp,
3769 3867 fid_t *fidp,
3770 3868 caller_context_t *ct)
3771 3869 {
3772 3870 int err;
3773 3871
3774 3872 err = (*(vp)->v_op->vop_fid)(vp, fidp, ct);
3775 3873 VOPSTATS_UPDATE(vp, fid);
3776 3874 return (err);
3777 3875 }
3778 3876
3779 3877 int
3780 3878 fop_rwlock(
3781 3879 vnode_t *vp,
3782 3880 int write_lock,
3783 3881 caller_context_t *ct)
3784 3882 {
3785 3883 int ret;
3786 3884
3787 3885 ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct));
3788 3886 VOPSTATS_UPDATE(vp, rwlock);
3789 3887 return (ret);
3790 3888 }
3791 3889
3792 3890 void
3793 3891 fop_rwunlock(
3794 3892 vnode_t *vp,
3795 3893 int write_lock,
3796 3894 caller_context_t *ct)
3797 3895 {
3798 3896 (*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct);
3799 3897 VOPSTATS_UPDATE(vp, rwunlock);
3800 3898 }
3801 3899
3802 3900 int
3803 3901 fop_seek(
3804 3902 vnode_t *vp,
3805 3903 offset_t ooff,
3806 3904 offset_t *noffp,
3807 3905 caller_context_t *ct)
3808 3906 {
3809 3907 int err;
3810 3908
3811 3909 err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp, ct);
3812 3910 VOPSTATS_UPDATE(vp, seek);
3813 3911 return (err);
3814 3912 }
3815 3913
3816 3914 int
3817 3915 fop_cmp(
3818 3916 vnode_t *vp1,
3819 3917 vnode_t *vp2,
3820 3918 caller_context_t *ct)
3821 3919 {
3822 3920 int err;
3823 3921
3824 3922 err = (*(vp1)->v_op->vop_cmp)(vp1, vp2, ct);
3825 3923 VOPSTATS_UPDATE(vp1, cmp);
3826 3924 return (err);
3827 3925 }
3828 3926
3829 3927 int
3830 3928 fop_frlock(
3831 3929 vnode_t *vp,
3832 3930 int cmd,
3833 3931 flock64_t *bfp,
3834 3932 int flag,
3835 3933 offset_t offset,
3836 3934 struct flk_callback *flk_cbp,
3837 3935 cred_t *cr,
3838 3936 caller_context_t *ct)
3839 3937 {
3840 3938 int err;
3841 3939
3842 3940 VOPXID_MAP_CR(vp, cr);
3843 3941
3844 3942 err = (*(vp)->v_op->vop_frlock)
3845 3943 (vp, cmd, bfp, flag, offset, flk_cbp, cr, ct);
3846 3944 VOPSTATS_UPDATE(vp, frlock);
3847 3945 return (err);
3848 3946 }
3849 3947
3850 3948 int
3851 3949 fop_space(
3852 3950 vnode_t *vp,
3853 3951 int cmd,
3854 3952 flock64_t *bfp,
3855 3953 int flag,
3856 3954 offset_t offset,
3857 3955 cred_t *cr,
3858 3956 caller_context_t *ct)
3859 3957 {
3860 3958 int err;
3861 3959
3862 3960 VOPXID_MAP_CR(vp, cr);
3863 3961
3864 3962 err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct);
3865 3963 VOPSTATS_UPDATE(vp, space);
3866 3964 return (err);
3867 3965 }
3868 3966
3869 3967 int
3870 3968 fop_realvp(
3871 3969 vnode_t *vp,
3872 3970 vnode_t **vpp,
3873 3971 caller_context_t *ct)
3874 3972 {
3875 3973 int err;
3876 3974
3877 3975 err = (*(vp)->v_op->vop_realvp)(vp, vpp, ct);
3878 3976 VOPSTATS_UPDATE(vp, realvp);
3879 3977 return (err);
3880 3978 }
3881 3979
3882 3980 int
3883 3981 fop_getpage(
3884 3982 vnode_t *vp,
3885 3983 offset_t off,
3886 3984 size_t len,
3887 3985 uint_t *protp,
3888 3986 page_t **plarr,
3889 3987 size_t plsz,
3890 3988 struct seg *seg,
3891 3989 caddr_t addr,
3892 3990 enum seg_rw rw,
3893 3991 cred_t *cr,
3894 3992 caller_context_t *ct)
3895 3993 {
3896 3994 int err;
3897 3995
3898 3996 VOPXID_MAP_CR(vp, cr);
3899 3997
3900 3998 err = (*(vp)->v_op->vop_getpage)
3901 3999 (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr, ct);
3902 4000 VOPSTATS_UPDATE(vp, getpage);
3903 4001 return (err);
3904 4002 }
3905 4003
3906 4004 int
3907 4005 fop_putpage(
3908 4006 vnode_t *vp,
3909 4007 offset_t off,
3910 4008 size_t len,
3911 4009 int flags,
3912 4010 cred_t *cr,
3913 4011 caller_context_t *ct)
3914 4012 {
3915 4013 int err;
3916 4014
3917 4015 VOPXID_MAP_CR(vp, cr);
3918 4016
3919 4017 err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr, ct);
3920 4018 VOPSTATS_UPDATE(vp, putpage);
3921 4019 return (err);
3922 4020 }
3923 4021
3924 4022 int
3925 4023 fop_map(
3926 4024 vnode_t *vp,
3927 4025 offset_t off,
3928 4026 struct as *as,
3929 4027 caddr_t *addrp,
3930 4028 size_t len,
3931 4029 uchar_t prot,
3932 4030 uchar_t maxprot,
3933 4031 uint_t flags,
3934 4032 cred_t *cr,
3935 4033 caller_context_t *ct)
3936 4034 {
3937 4035 int err;
3938 4036
3939 4037 VOPXID_MAP_CR(vp, cr);
3940 4038
3941 4039 err = (*(vp)->v_op->vop_map)
3942 4040 (vp, off, as, addrp, len, prot, maxprot, flags, cr, ct);
3943 4041 VOPSTATS_UPDATE(vp, map);
3944 4042 return (err);
3945 4043 }
3946 4044
3947 4045 int
3948 4046 fop_addmap(
3949 4047 vnode_t *vp,
3950 4048 offset_t off,
3951 4049 struct as *as,
3952 4050 caddr_t addr,
3953 4051 size_t len,
3954 4052 uchar_t prot,
3955 4053 uchar_t maxprot,
3956 4054 uint_t flags,
3957 4055 cred_t *cr,
3958 4056 caller_context_t *ct)
3959 4057 {
3960 4058 int error;
3961 4059 u_longlong_t delta;
3962 4060
3963 4061 VOPXID_MAP_CR(vp, cr);
3964 4062
3965 4063 error = (*(vp)->v_op->vop_addmap)
3966 4064 (vp, off, as, addr, len, prot, maxprot, flags, cr, ct);
3967 4065
3968 4066 if ((!error) && (vp->v_type == VREG)) {
3969 4067 delta = (u_longlong_t)btopr(len);
3970 4068 /*
3971 4069 * If file is declared MAP_PRIVATE, it can't be written back
3972 4070 * even if open for write. Handle as read.
3973 4071 */
3974 4072 if (flags & MAP_PRIVATE) {
3975 4073 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3976 4074 (int64_t)delta);
3977 4075 } else {
3978 4076 /*
3979 4077 * atomic_add_64 forces the fetch of a 64 bit value to
3980 4078 * be atomic on 32 bit machines
3981 4079 */
3982 4080 if (maxprot & PROT_WRITE)
3983 4081 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
3984 4082 (int64_t)delta);
3985 4083 if (maxprot & PROT_READ)
3986 4084 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3987 4085 (int64_t)delta);
3988 4086 if (maxprot & PROT_EXEC)
3989 4087 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3990 4088 (int64_t)delta);
3991 4089 }
3992 4090 }
3993 4091 VOPSTATS_UPDATE(vp, addmap);
3994 4092 return (error);
3995 4093 }
3996 4094
3997 4095 int
3998 4096 fop_delmap(
3999 4097 vnode_t *vp,
4000 4098 offset_t off,
4001 4099 struct as *as,
4002 4100 caddr_t addr,
4003 4101 size_t len,
4004 4102 uint_t prot,
4005 4103 uint_t maxprot,
4006 4104 uint_t flags,
4007 4105 cred_t *cr,
4008 4106 caller_context_t *ct)
4009 4107 {
4010 4108 int error;
4011 4109 u_longlong_t delta;
4012 4110
4013 4111 VOPXID_MAP_CR(vp, cr);
4014 4112
4015 4113 error = (*(vp)->v_op->vop_delmap)
4016 4114 (vp, off, as, addr, len, prot, maxprot, flags, cr, ct);
4017 4115
4018 4116 /*
4019 4117 * NFS calls into delmap twice, the first time
4020 4118 * it simply establishes a callback mechanism and returns EAGAIN
4021 4119 * while the real work is being done upon the second invocation.
4022 4120 * We have to detect this here and only decrement the counts upon
4023 4121 * the second delmap request.
4024 4122 */
4025 4123 if ((error != EAGAIN) && (vp->v_type == VREG)) {
4026 4124
4027 4125 delta = (u_longlong_t)btopr(len);
4028 4126
4029 4127 if (flags & MAP_PRIVATE) {
4030 4128 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4031 4129 (int64_t)(-delta));
4032 4130 } else {
4033 4131 /*
4034 4132 * atomic_add_64 forces the fetch of a 64 bit value
4035 4133 * to be atomic on 32 bit machines
4036 4134 */
4037 4135 if (maxprot & PROT_WRITE)
4038 4136 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
4039 4137 (int64_t)(-delta));
4040 4138 if (maxprot & PROT_READ)
4041 4139 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4042 4140 (int64_t)(-delta));
4043 4141 if (maxprot & PROT_EXEC)
4044 4142 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4045 4143 (int64_t)(-delta));
4046 4144 }
4047 4145 }
4048 4146 VOPSTATS_UPDATE(vp, delmap);
4049 4147 return (error);
4050 4148 }
4051 4149
4052 4150
4053 4151 int
4054 4152 fop_poll(
4055 4153 vnode_t *vp,
4056 4154 short events,
4057 4155 int anyyet,
4058 4156 short *reventsp,
4059 4157 struct pollhead **phpp,
4060 4158 caller_context_t *ct)
4061 4159 {
4062 4160 int err;
4063 4161
4064 4162 err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp, ct);
4065 4163 VOPSTATS_UPDATE(vp, poll);
4066 4164 return (err);
4067 4165 }
4068 4166
4069 4167 int
4070 4168 fop_dump(
4071 4169 vnode_t *vp,
4072 4170 caddr_t addr,
4073 4171 offset_t lbdn,
4074 4172 offset_t dblks,
4075 4173 caller_context_t *ct)
4076 4174 {
4077 4175 int err;
4078 4176
4079 4177 /* ensure lbdn and dblks can be passed safely to bdev_dump */
4080 4178 if ((lbdn != (daddr_t)lbdn) || (dblks != (int)dblks))
4081 4179 return (EIO);
4082 4180
4083 4181 err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks, ct);
4084 4182 VOPSTATS_UPDATE(vp, dump);
4085 4183 return (err);
4086 4184 }
4087 4185
4088 4186 int
4089 4187 fop_pathconf(
4090 4188 vnode_t *vp,
4091 4189 int cmd,
4092 4190 ulong_t *valp,
4093 4191 cred_t *cr,
4094 4192 caller_context_t *ct)
4095 4193 {
4096 4194 int err;
4097 4195
4098 4196 VOPXID_MAP_CR(vp, cr);
4099 4197
4100 4198 err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr, ct);
4101 4199 VOPSTATS_UPDATE(vp, pathconf);
4102 4200 return (err);
4103 4201 }
4104 4202
4105 4203 int
4106 4204 fop_pageio(
4107 4205 vnode_t *vp,
4108 4206 struct page *pp,
4109 4207 u_offset_t io_off,
4110 4208 size_t io_len,
4111 4209 int flags,
4112 4210 cred_t *cr,
4113 4211 caller_context_t *ct)
4114 4212 {
4115 4213 int err;
4116 4214
4117 4215 VOPXID_MAP_CR(vp, cr);
4118 4216
4119 4217 err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr, ct);
4120 4218 VOPSTATS_UPDATE(vp, pageio);
4121 4219 return (err);
4122 4220 }
4123 4221
4124 4222 int
4125 4223 fop_dumpctl(
4126 4224 vnode_t *vp,
4127 4225 int action,
4128 4226 offset_t *blkp,
4129 4227 caller_context_t *ct)
4130 4228 {
4131 4229 int err;
4132 4230 err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp, ct);
4133 4231 VOPSTATS_UPDATE(vp, dumpctl);
4134 4232 return (err);
4135 4233 }
4136 4234
4137 4235 void
4138 4236 fop_dispose(
4139 4237 vnode_t *vp,
4140 4238 page_t *pp,
4141 4239 int flag,
4142 4240 int dn,
4143 4241 cred_t *cr,
4144 4242 caller_context_t *ct)
4145 4243 {
4146 4244 /* Must do stats first since it's possible to lose the vnode */
4147 4245 VOPSTATS_UPDATE(vp, dispose);
4148 4246
4149 4247 VOPXID_MAP_CR(vp, cr);
4150 4248
4151 4249 (*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr, ct);
4152 4250 }
4153 4251
4154 4252 int
4155 4253 fop_setsecattr(
4156 4254 vnode_t *vp,
4157 4255 vsecattr_t *vsap,
4158 4256 int flag,
4159 4257 cred_t *cr,
4160 4258 caller_context_t *ct)
4161 4259 {
4162 4260 int err;
4163 4261
4164 4262 VOPXID_MAP_CR(vp, cr);
4165 4263
4166 4264 /*
4167 4265 * We're only allowed to skip the ACL check iff we used a 32 bit
4168 4266 * ACE mask with VOP_ACCESS() to determine permissions.
4169 4267 */
4170 4268 if ((flag & ATTR_NOACLCHECK) &&
4171 4269 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
4172 4270 return (EINVAL);
4173 4271 }
4174 4272 err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr, ct);
4175 4273 VOPSTATS_UPDATE(vp, setsecattr);
4176 4274 return (err);
4177 4275 }
4178 4276
4179 4277 int
4180 4278 fop_getsecattr(
4181 4279 vnode_t *vp,
4182 4280 vsecattr_t *vsap,
4183 4281 int flag,
4184 4282 cred_t *cr,
4185 4283 caller_context_t *ct)
4186 4284 {
4187 4285 int err;
4188 4286
4189 4287 /*
4190 4288 * We're only allowed to skip the ACL check iff we used a 32 bit
4191 4289 * ACE mask with VOP_ACCESS() to determine permissions.
4192 4290 */
4193 4291 if ((flag & ATTR_NOACLCHECK) &&
4194 4292 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
4195 4293 return (EINVAL);
4196 4294 }
4197 4295
4198 4296 VOPXID_MAP_CR(vp, cr);
4199 4297
4200 4298 err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr, ct);
4201 4299 VOPSTATS_UPDATE(vp, getsecattr);
4202 4300 return (err);
4203 4301 }
4204 4302
4205 4303 int
4206 4304 fop_shrlock(
4207 4305 vnode_t *vp,
4208 4306 int cmd,
4209 4307 struct shrlock *shr,
4210 4308 int flag,
4211 4309 cred_t *cr,
4212 4310 caller_context_t *ct)
4213 4311 {
4214 4312 int err;
4215 4313
4216 4314 VOPXID_MAP_CR(vp, cr);
4217 4315
4218 4316 err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr, ct);
4219 4317 VOPSTATS_UPDATE(vp, shrlock);
4220 4318 return (err);
4221 4319 }
4222 4320
4223 4321 int
4224 4322 fop_vnevent(vnode_t *vp, vnevent_t vnevent, vnode_t *dvp, char *fnm,
4225 4323 caller_context_t *ct)
4226 4324 {
4227 4325 int err;
4228 4326
4229 4327 err = (*(vp)->v_op->vop_vnevent)(vp, vnevent, dvp, fnm, ct);
4230 4328 VOPSTATS_UPDATE(vp, vnevent);
4231 4329 return (err);
4232 4330 }
4233 4331
4234 4332 int
4235 4333 fop_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *uiop, cred_t *cr,
4236 4334 caller_context_t *ct)
4237 4335 {
4238 4336 int err;
4239 4337
4240 4338 if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0)
4241 4339 return (ENOTSUP);
4242 4340 err = (*(vp)->v_op->vop_reqzcbuf)(vp, ioflag, uiop, cr, ct);
4243 4341 VOPSTATS_UPDATE(vp, reqzcbuf);
4244 4342 return (err);
4245 4343 }
4246 4344
4247 4345 int
4248 4346 fop_retzcbuf(vnode_t *vp, xuio_t *uiop, cred_t *cr, caller_context_t *ct)
4249 4347 {
4250 4348 int err;
4251 4349
4252 4350 if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0)
4253 4351 return (ENOTSUP);
4254 4352 err = (*(vp)->v_op->vop_retzcbuf)(vp, uiop, cr, ct);
4255 4353 VOPSTATS_UPDATE(vp, retzcbuf);
4256 4354 return (err);
4257 4355 }
4258 4356
4259 4357 /*
4260 4358 * Default destructor
4261 4359 * Needed because NULL destructor means that the key is unused
4262 4360 */
4263 4361 /* ARGSUSED */
4264 4362 void
4265 4363 vsd_defaultdestructor(void *value)
4266 4364 {}
4267 4365
4268 4366 /*
4269 4367 * Create a key (index into per vnode array)
4270 4368 * Locks out vsd_create, vsd_destroy, and vsd_free
4271 4369 * May allocate memory with lock held
4272 4370 */
4273 4371 void
4274 4372 vsd_create(uint_t *keyp, void (*destructor)(void *))
4275 4373 {
4276 4374 int i;
4277 4375 uint_t nkeys;
4278 4376
4279 4377 /*
4280 4378 * if key is allocated, do nothing
4281 4379 */
4282 4380 mutex_enter(&vsd_lock);
4283 4381 if (*keyp) {
4284 4382 mutex_exit(&vsd_lock);
4285 4383 return;
4286 4384 }
4287 4385 /*
4288 4386 * find an unused key
4289 4387 */
4290 4388 if (destructor == NULL)
4291 4389 destructor = vsd_defaultdestructor;
4292 4390
4293 4391 for (i = 0; i < vsd_nkeys; ++i)
4294 4392 if (vsd_destructor[i] == NULL)
4295 4393 break;
4296 4394
4297 4395 /*
4298 4396 * if no unused keys, increase the size of the destructor array
4299 4397 */
4300 4398 if (i == vsd_nkeys) {
4301 4399 if ((nkeys = (vsd_nkeys << 1)) == 0)
4302 4400 nkeys = 1;
4303 4401 vsd_destructor =
4304 4402 (void (**)(void *))vsd_realloc((void *)vsd_destructor,
4305 4403 (size_t)(vsd_nkeys * sizeof (void (*)(void *))),
4306 4404 (size_t)(nkeys * sizeof (void (*)(void *))));
4307 4405 vsd_nkeys = nkeys;
4308 4406 }
4309 4407
4310 4408 /*
4311 4409 * allocate the next available unused key
4312 4410 */
4313 4411 vsd_destructor[i] = destructor;
4314 4412 *keyp = i + 1;
4315 4413
4316 4414 /* create vsd_list, if it doesn't exist */
4317 4415 if (vsd_list == NULL) {
4318 4416 vsd_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
4319 4417 list_create(vsd_list, sizeof (struct vsd_node),
4320 4418 offsetof(struct vsd_node, vs_nodes));
4321 4419 }
4322 4420
4323 4421 mutex_exit(&vsd_lock);
4324 4422 }
4325 4423
4326 4424 /*
4327 4425 * Destroy a key
4328 4426 *
4329 4427 * Assumes that the caller is preventing vsd_set and vsd_get
4330 4428 * Locks out vsd_create, vsd_destroy, and vsd_free
4331 4429 * May free memory with lock held
4332 4430 */
4333 4431 void
4334 4432 vsd_destroy(uint_t *keyp)
4335 4433 {
4336 4434 uint_t key;
4337 4435 struct vsd_node *vsd;
4338 4436
4339 4437 /*
4340 4438 * protect the key namespace and our destructor lists
4341 4439 */
4342 4440 mutex_enter(&vsd_lock);
4343 4441 key = *keyp;
4344 4442 *keyp = 0;
4345 4443
4346 4444 ASSERT(key <= vsd_nkeys);
4347 4445
4348 4446 /*
4349 4447 * if the key is valid
4350 4448 */
4351 4449 if (key != 0) {
4352 4450 uint_t k = key - 1;
4353 4451 /*
4354 4452 * for every vnode with VSD, call key's destructor
4355 4453 */
4356 4454 for (vsd = list_head(vsd_list); vsd != NULL;
4357 4455 vsd = list_next(vsd_list, vsd)) {
4358 4456 /*
4359 4457 * no VSD for key in this vnode
4360 4458 */
4361 4459 if (key > vsd->vs_nkeys)
4362 4460 continue;
4363 4461 /*
4364 4462 * call destructor for key
4365 4463 */
4366 4464 if (vsd->vs_value[k] && vsd_destructor[k])
4367 4465 (*vsd_destructor[k])(vsd->vs_value[k]);
4368 4466 /*
4369 4467 * reset value for key
4370 4468 */
4371 4469 vsd->vs_value[k] = NULL;
4372 4470 }
4373 4471 /*
4374 4472 * actually free the key (NULL destructor == unused)
4375 4473 */
4376 4474 vsd_destructor[k] = NULL;
4377 4475 }
4378 4476
4379 4477 mutex_exit(&vsd_lock);
4380 4478 }
4381 4479
4382 4480 /*
4383 4481 * Quickly return the per vnode value that was stored with the specified key
4384 4482 * Assumes the caller is protecting key from vsd_create and vsd_destroy
4385 4483 * Assumes the caller is holding v_vsd_lock to protect the vsd.
4386 4484 */
4387 4485 void *
4388 4486 vsd_get(vnode_t *vp, uint_t key)
4389 4487 {
4390 4488 struct vsd_node *vsd;
4391 4489
4392 4490 ASSERT(vp != NULL);
4393 4491 ASSERT(mutex_owned(&vp->v_vsd_lock));
4394 4492
4395 4493 vsd = vp->v_vsd;
4396 4494
4397 4495 if (key && vsd != NULL && key <= vsd->vs_nkeys)
4398 4496 return (vsd->vs_value[key - 1]);
4399 4497 return (NULL);
4400 4498 }
4401 4499
4402 4500 /*
4403 4501 * Set a per vnode value indexed with the specified key
4404 4502 * Assumes the caller is holding v_vsd_lock to protect the vsd.
4405 4503 */
4406 4504 int
4407 4505 vsd_set(vnode_t *vp, uint_t key, void *value)
4408 4506 {
4409 4507 struct vsd_node *vsd;
4410 4508
4411 4509 ASSERT(vp != NULL);
4412 4510 ASSERT(mutex_owned(&vp->v_vsd_lock));
4413 4511
4414 4512 if (key == 0)
4415 4513 return (EINVAL);
4416 4514
4417 4515 vsd = vp->v_vsd;
4418 4516 if (vsd == NULL)
4419 4517 vsd = vp->v_vsd = kmem_zalloc(sizeof (*vsd), KM_SLEEP);
4420 4518
4421 4519 /*
4422 4520 * If the vsd was just allocated, vs_nkeys will be 0, so the following
4423 4521 * code won't happen and we will continue down and allocate space for
4424 4522 * the vs_value array.
4425 4523 * If the caller is replacing one value with another, then it is up
4426 4524 * to the caller to free/rele/destroy the previous value (if needed).
4427 4525 */
4428 4526 if (key <= vsd->vs_nkeys) {
4429 4527 vsd->vs_value[key - 1] = value;
4430 4528 return (0);
4431 4529 }
4432 4530
4433 4531 ASSERT(key <= vsd_nkeys);
4434 4532
4435 4533 if (vsd->vs_nkeys == 0) {
4436 4534 mutex_enter(&vsd_lock); /* lock out vsd_destroy() */
4437 4535 /*
4438 4536 * Link onto list of all VSD nodes.
4439 4537 */
4440 4538 list_insert_head(vsd_list, vsd);
4441 4539 mutex_exit(&vsd_lock);
4442 4540 }
4443 4541
4444 4542 /*
4445 4543 * Allocate vnode local storage and set the value for key
4446 4544 */
4447 4545 vsd->vs_value = vsd_realloc(vsd->vs_value,
4448 4546 vsd->vs_nkeys * sizeof (void *),
4449 4547 key * sizeof (void *));
4450 4548 vsd->vs_nkeys = key;
4451 4549 vsd->vs_value[key - 1] = value;
4452 4550
4453 4551 return (0);
4454 4552 }
4455 4553
4456 4554 /*
4457 4555 * Called from vn_free() to run the destructor function for each vsd
4458 4556 * Locks out vsd_create and vsd_destroy
4459 4557 * Assumes that the destructor *DOES NOT* use vsd
4460 4558 */
4461 4559 void
4462 4560 vsd_free(vnode_t *vp)
4463 4561 {
4464 4562 int i;
4465 4563 struct vsd_node *vsd = vp->v_vsd;
4466 4564
4467 4565 if (vsd == NULL)
4468 4566 return;
4469 4567
4470 4568 if (vsd->vs_nkeys == 0) {
4471 4569 kmem_free(vsd, sizeof (*vsd));
4472 4570 vp->v_vsd = NULL;
4473 4571 return;
4474 4572 }
4475 4573
4476 4574 /*
4477 4575 * lock out vsd_create and vsd_destroy, call
4478 4576 * the destructor, and mark the value as destroyed.
4479 4577 */
4480 4578 mutex_enter(&vsd_lock);
4481 4579
4482 4580 for (i = 0; i < vsd->vs_nkeys; i++) {
4483 4581 if (vsd->vs_value[i] && vsd_destructor[i])
4484 4582 (*vsd_destructor[i])(vsd->vs_value[i]);
4485 4583 vsd->vs_value[i] = NULL;
4486 4584 }
4487 4585
4488 4586 /*
4489 4587 * remove from linked list of VSD nodes
4490 4588 */
4491 4589 list_remove(vsd_list, vsd);
4492 4590
4493 4591 mutex_exit(&vsd_lock);
4494 4592
4495 4593 /*
4496 4594 * free up the VSD
4497 4595 */
4498 4596 kmem_free(vsd->vs_value, vsd->vs_nkeys * sizeof (void *));
4499 4597 kmem_free(vsd, sizeof (struct vsd_node));
4500 4598 vp->v_vsd = NULL;
4501 4599 }
4502 4600
4503 4601 /*
4504 4602 * realloc
4505 4603 */
4506 4604 static void *
4507 4605 vsd_realloc(void *old, size_t osize, size_t nsize)
4508 4606 {
4509 4607 void *new;
4510 4608
4511 4609 new = kmem_zalloc(nsize, KM_SLEEP);
4512 4610 if (old) {
4513 4611 bcopy(old, new, osize);
4514 4612 kmem_free(old, osize);
4515 4613 }
4516 4614 return (new);
4517 4615 }
4518 4616
4519 4617 /*
4520 4618 * Setup the extensible system attribute for creating a reparse point.
4521 4619 * The symlink data 'target' is validated for proper format of a reparse
4522 4620 * string and a check also made to make sure the symlink data does not
4523 4621 * point to an existing file.
4524 4622 *
4525 4623 * return 0 if ok else -1.
4526 4624 */
4527 4625 static int
4528 4626 fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr)
4529 4627 {
4530 4628 xoptattr_t *xoap;
4531 4629
4532 4630 if ((!target) || (!vap) || (!xvattr))
4533 4631 return (-1);
4534 4632
4535 4633 /* validate reparse string */
4536 4634 if (reparse_validate((const char *)target))
4537 4635 return (-1);
4538 4636
4539 4637 xva_init(xvattr);
4540 4638 xvattr->xva_vattr = *vap;
4541 4639 xvattr->xva_vattr.va_mask |= AT_XVATTR;
4542 4640 xoap = xva_getxoptattr(xvattr);
4543 4641 ASSERT(xoap);
4544 4642 XVA_SET_REQ(xvattr, XAT_REPARSE);
4545 4643 xoap->xoa_reparse = 1;
4546 4644
4547 4645 return (0);
4548 4646 }
4549 4647
4550 4648 /*
4551 4649 * Function to check whether a symlink is a reparse point.
4552 4650 * Return B_TRUE if it is a reparse point, else return B_FALSE
4553 4651 */
4554 4652 boolean_t
4555 4653 vn_is_reparse(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4556 4654 {
4557 4655 xvattr_t xvattr;
4558 4656 xoptattr_t *xoap;
4559 4657
4560 4658 if ((vp->v_type != VLNK) ||
4561 4659 !(vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR)))
4562 4660 return (B_FALSE);
4563 4661
4564 4662 xva_init(&xvattr);
4565 4663 xoap = xva_getxoptattr(&xvattr);
4566 4664 ASSERT(xoap);
4567 4665 XVA_SET_REQ(&xvattr, XAT_REPARSE);
4568 4666
4569 4667 if (VOP_GETATTR(vp, &xvattr.xva_vattr, 0, cr, ct))
4570 4668 return (B_FALSE);
4571 4669
4572 4670 if ((!(xvattr.xva_vattr.va_mask & AT_XVATTR)) ||
4573 4671 (!(XVA_ISSET_RTN(&xvattr, XAT_REPARSE))))
4574 4672 return (B_FALSE);
4575 4673
4576 4674 return (xoap->xoa_reparse ? B_TRUE : B_FALSE);
4577 4675 }
|
↓ open down ↓ |
1277 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX