Print this page
OS-5148 ftruncate at offset should emit proper events
Reviewed by: Bryan Cantrill <bryan@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
OS-5291 lxbrand inotify02 LTP regression
Reviewed by: Patrick Mooney <patrick.mooney@joyent.com>
OS-3294 add support for inotify
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Robert Mustacchi <rm@joyent.com>
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/fs/ufs/ufs_vnops.c
+++ new/usr/src/uts/common/fs/ufs/ufs_vnops.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
|
↓ open down ↓ |
13 lines elided |
↑ open up ↑ |
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 1984, 2010, Oracle and/or its affiliates. All rights reserved.
24 - * Copyright 2015, Joyent, Inc.
24 + * Copyright 2016, Joyent, Inc.
25 25 */
26 26
27 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
28 28 /* All Rights Reserved */
29 29
30 30 /*
31 31 * Portions of this source code were derived from Berkeley 4.3 BSD
32 32 * under license from the Regents of the University of California.
33 33 */
34 34
35 35 #include <sys/types.h>
36 36 #include <sys/t_lock.h>
37 37 #include <sys/ksynch.h>
38 38 #include <sys/param.h>
39 39 #include <sys/time.h>
40 40 #include <sys/systm.h>
41 41 #include <sys/sysmacros.h>
42 42 #include <sys/resource.h>
43 43 #include <sys/signal.h>
44 44 #include <sys/cred.h>
45 45 #include <sys/user.h>
46 46 #include <sys/buf.h>
47 47 #include <sys/vfs.h>
48 48 #include <sys/vfs_opreg.h>
49 49 #include <sys/vnode.h>
50 50 #include <sys/proc.h>
51 51 #include <sys/disp.h>
52 52 #include <sys/file.h>
53 53 #include <sys/fcntl.h>
54 54 #include <sys/flock.h>
55 55 #include <sys/atomic.h>
56 56 #include <sys/kmem.h>
57 57 #include <sys/uio.h>
58 58 #include <sys/dnlc.h>
59 59 #include <sys/conf.h>
60 60 #include <sys/mman.h>
61 61 #include <sys/pathname.h>
62 62 #include <sys/debug.h>
63 63 #include <sys/vmsystm.h>
64 64 #include <sys/cmn_err.h>
65 65 #include <sys/filio.h>
66 66 #include <sys/policy.h>
67 67
68 68 #include <sys/fs/ufs_fs.h>
69 69 #include <sys/fs/ufs_lockfs.h>
70 70 #include <sys/fs/ufs_filio.h>
71 71 #include <sys/fs/ufs_inode.h>
72 72 #include <sys/fs/ufs_fsdir.h>
73 73 #include <sys/fs/ufs_quota.h>
74 74 #include <sys/fs/ufs_log.h>
75 75 #include <sys/fs/ufs_snap.h>
76 76 #include <sys/fs/ufs_trans.h>
77 77 #include <sys/fs/ufs_panic.h>
78 78 #include <sys/fs/ufs_bio.h>
79 79 #include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */
80 80 #include <sys/errno.h>
81 81 #include <sys/fssnap_if.h>
82 82 #include <sys/unistd.h>
83 83 #include <sys/sunddi.h>
84 84
85 85 #include <sys/filio.h> /* _FIOIO */
86 86
87 87 #include <vm/hat.h>
88 88 #include <vm/page.h>
89 89 #include <vm/pvn.h>
90 90 #include <vm/as.h>
91 91 #include <vm/seg.h>
92 92 #include <vm/seg_map.h>
93 93 #include <vm/seg_vn.h>
94 94 #include <vm/seg_kmem.h>
95 95 #include <vm/rm.h>
96 96 #include <sys/swap.h>
97 97
98 98 #include <fs/fs_subr.h>
99 99
100 100 #include <sys/fs/decomp.h>
101 101
102 102 static struct instats ins;
103 103
104 104 static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t);
105 105 static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *,
106 106 caddr_t, struct page **, size_t, enum seg_rw, int);
107 107 static int ufs_open(struct vnode **, int, struct cred *, caller_context_t *);
108 108 static int ufs_close(struct vnode *, int, int, offset_t, struct cred *,
109 109 caller_context_t *);
110 110 static int ufs_read(struct vnode *, struct uio *, int, struct cred *,
111 111 struct caller_context *);
112 112 static int ufs_write(struct vnode *, struct uio *, int, struct cred *,
113 113 struct caller_context *);
114 114 static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *,
115 115 int *, caller_context_t *);
116 116 static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *,
117 117 caller_context_t *);
118 118 static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *,
119 119 caller_context_t *);
120 120 static int ufs_access(struct vnode *, int, int, struct cred *,
121 121 caller_context_t *);
122 122 static int ufs_lookup(struct vnode *, char *, struct vnode **,
123 123 struct pathname *, int, struct vnode *, struct cred *,
124 124 caller_context_t *, int *, pathname_t *);
125 125 static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl,
126 126 int, struct vnode **, struct cred *, int,
127 127 caller_context_t *, vsecattr_t *);
128 128 static int ufs_remove(struct vnode *, char *, struct cred *,
129 129 caller_context_t *, int);
130 130 static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *,
131 131 caller_context_t *, int);
132 132 static int ufs_rename(struct vnode *, char *, struct vnode *, char *,
133 133 struct cred *, caller_context_t *, int);
134 134 static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **,
135 135 struct cred *, caller_context_t *, int, vsecattr_t *);
136 136 static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *,
137 137 caller_context_t *, int);
138 138 static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *,
139 139 caller_context_t *, int);
140 140 static int ufs_symlink(struct vnode *, char *, struct vattr *, char *,
141 141 struct cred *, caller_context_t *, int);
142 142 static int ufs_readlink(struct vnode *, struct uio *, struct cred *,
143 143 caller_context_t *);
144 144 static int ufs_fsync(struct vnode *, int, struct cred *, caller_context_t *);
145 145 static void ufs_inactive(struct vnode *, struct cred *, caller_context_t *);
146 146 static int ufs_fid(struct vnode *, struct fid *, caller_context_t *);
147 147 static int ufs_rwlock(struct vnode *, int, caller_context_t *);
148 148 static void ufs_rwunlock(struct vnode *, int, caller_context_t *);
149 149 static int ufs_seek(struct vnode *, offset_t, offset_t *, caller_context_t *);
150 150 static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t,
151 151 struct flk_callback *, struct cred *,
152 152 caller_context_t *);
153 153 static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t,
154 154 cred_t *, caller_context_t *);
155 155 static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *,
156 156 struct page **, size_t, struct seg *, caddr_t,
157 157 enum seg_rw, struct cred *, caller_context_t *);
158 158 static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *,
159 159 caller_context_t *);
160 160 static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *);
161 161 static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t,
162 162 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
163 163 static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
164 164 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
165 165 static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
166 166 uint_t, uint_t, uint_t, struct cred *, caller_context_t *);
167 167 static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **,
168 168 caller_context_t *);
169 169 static int ufs_dump(vnode_t *, caddr_t, offset_t, offset_t,
170 170 caller_context_t *);
171 171 static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *,
172 172 caller_context_t *);
173 173 static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int,
174 174 struct cred *, caller_context_t *);
175 175 static int ufs_dumpctl(vnode_t *, int, offset_t *, caller_context_t *);
176 176 static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *,
177 177 daddr32_t *, int, int);
178 178 static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
179 179 caller_context_t *);
180 180 static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
181 181 caller_context_t *);
182 182 static int ufs_priv_access(void *, int, struct cred *);
183 183 static int ufs_eventlookup(struct vnode *, char *, struct cred *,
184 184 struct vnode **);
185 185 extern int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *);
186 186
187 187 /*
188 188 * For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions.
189 189 *
190 190 * XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet.
191 191 */
192 192 struct vnodeops *ufs_vnodeops;
193 193
194 194 /* NOTE: "not blkd" below means that the operation isn't blocked by lockfs */
195 195 const fs_operation_def_t ufs_vnodeops_template[] = {
196 196 VOPNAME_OPEN, { .vop_open = ufs_open }, /* not blkd */
197 197 VOPNAME_CLOSE, { .vop_close = ufs_close }, /* not blkd */
198 198 VOPNAME_READ, { .vop_read = ufs_read },
199 199 VOPNAME_WRITE, { .vop_write = ufs_write },
200 200 VOPNAME_IOCTL, { .vop_ioctl = ufs_ioctl },
201 201 VOPNAME_GETATTR, { .vop_getattr = ufs_getattr },
202 202 VOPNAME_SETATTR, { .vop_setattr = ufs_setattr },
203 203 VOPNAME_ACCESS, { .vop_access = ufs_access },
204 204 VOPNAME_LOOKUP, { .vop_lookup = ufs_lookup },
205 205 VOPNAME_CREATE, { .vop_create = ufs_create },
206 206 VOPNAME_REMOVE, { .vop_remove = ufs_remove },
207 207 VOPNAME_LINK, { .vop_link = ufs_link },
208 208 VOPNAME_RENAME, { .vop_rename = ufs_rename },
209 209 VOPNAME_MKDIR, { .vop_mkdir = ufs_mkdir },
210 210 VOPNAME_RMDIR, { .vop_rmdir = ufs_rmdir },
211 211 VOPNAME_READDIR, { .vop_readdir = ufs_readdir },
212 212 VOPNAME_SYMLINK, { .vop_symlink = ufs_symlink },
213 213 VOPNAME_READLINK, { .vop_readlink = ufs_readlink },
214 214 VOPNAME_FSYNC, { .vop_fsync = ufs_fsync },
215 215 VOPNAME_INACTIVE, { .vop_inactive = ufs_inactive }, /* not blkd */
216 216 VOPNAME_FID, { .vop_fid = ufs_fid },
217 217 VOPNAME_RWLOCK, { .vop_rwlock = ufs_rwlock }, /* not blkd */
218 218 VOPNAME_RWUNLOCK, { .vop_rwunlock = ufs_rwunlock }, /* not blkd */
219 219 VOPNAME_SEEK, { .vop_seek = ufs_seek },
220 220 VOPNAME_FRLOCK, { .vop_frlock = ufs_frlock },
221 221 VOPNAME_SPACE, { .vop_space = ufs_space },
222 222 VOPNAME_GETPAGE, { .vop_getpage = ufs_getpage },
223 223 VOPNAME_PUTPAGE, { .vop_putpage = ufs_putpage },
224 224 VOPNAME_MAP, { .vop_map = ufs_map },
225 225 VOPNAME_ADDMAP, { .vop_addmap = ufs_addmap }, /* not blkd */
226 226 VOPNAME_DELMAP, { .vop_delmap = ufs_delmap }, /* not blkd */
227 227 VOPNAME_POLL, { .vop_poll = ufs_poll }, /* not blkd */
228 228 VOPNAME_DUMP, { .vop_dump = ufs_dump },
229 229 VOPNAME_PATHCONF, { .vop_pathconf = ufs_l_pathconf },
230 230 VOPNAME_PAGEIO, { .vop_pageio = ufs_pageio },
231 231 VOPNAME_DUMPCTL, { .vop_dumpctl = ufs_dumpctl },
232 232 VOPNAME_GETSECATTR, { .vop_getsecattr = ufs_getsecattr },
233 233 VOPNAME_SETSECATTR, { .vop_setsecattr = ufs_setsecattr },
234 234 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
235 235 NULL, NULL
236 236 };
237 237
238 238 #define MAX_BACKFILE_COUNT 9999
239 239
240 240 /*
241 241 * Created by ufs_dumpctl() to store a file's disk block info into memory.
242 242 * Used by ufs_dump() to dump data to disk directly.
243 243 */
244 244 struct dump {
245 245 struct inode *ip; /* the file we contain */
246 246 daddr_t fsbs; /* number of blocks stored */
247 247 struct timeval32 time; /* time stamp for the struct */
248 248 daddr32_t dblk[1]; /* place holder for block info */
249 249 };
250 250
251 251 static struct dump *dump_info = NULL;
252 252
253 253 /*
254 254 * Previously there was no special action required for ordinary files.
255 255 * (Devices are handled through the device file system.)
256 256 * Now we support Large Files and Large File API requires open to
257 257 * fail if file is large.
258 258 * We could take care to prevent data corruption
259 259 * by doing an atomic check of size and truncate if file is opened with
260 260 * FTRUNC flag set but traditionally this is being done by the vfs/vnode
261 261 * layers. So taking care of truncation here is a change in the existing
262 262 * semantics of VOP_OPEN and therefore we chose not to implement any thing
263 263 * here. The check for the size of the file > 2GB is being done at the
264 264 * vfs layer in routine vn_open().
265 265 */
266 266
267 267 /* ARGSUSED */
268 268 static int
269 269 ufs_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *ct)
270 270 {
271 271 return (0);
272 272 }
273 273
274 274 /*ARGSUSED*/
275 275 static int
276 276 ufs_close(struct vnode *vp, int flag, int count, offset_t offset,
277 277 struct cred *cr, caller_context_t *ct)
278 278 {
279 279 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
280 280 cleanshares(vp, ttoproc(curthread)->p_pid);
281 281
282 282 /*
283 283 * Push partially filled cluster at last close.
284 284 * ``last close'' is approximated because the dnlc
285 285 * may have a hold on the vnode.
286 286 * Checking for VBAD here will also act as a forced umount check.
287 287 */
288 288 if (vp->v_count <= 2 && vp->v_type != VBAD) {
289 289 struct inode *ip = VTOI(vp);
290 290 if (ip->i_delaylen) {
291 291 ins.in_poc.value.ul++;
292 292 (void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen,
293 293 B_ASYNC | B_FREE, cr);
294 294 ip->i_delaylen = 0;
295 295 }
296 296 }
297 297
298 298 return (0);
299 299 }
300 300
301 301 /*ARGSUSED*/
302 302 static int
303 303 ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr,
304 304 struct caller_context *ct)
305 305 {
306 306 struct inode *ip = VTOI(vp);
307 307 struct ufsvfs *ufsvfsp;
308 308 struct ulockfs *ulp = NULL;
309 309 int error = 0;
310 310 int intrans = 0;
311 311
312 312 ASSERT(RW_READ_HELD(&ip->i_rwlock));
313 313
314 314 /*
315 315 * Mandatory locking needs to be done before ufs_lockfs_begin()
316 316 * and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep.
317 317 */
318 318 if (MANDLOCK(vp, ip->i_mode)) {
319 319 /*
320 320 * ufs_getattr ends up being called by chklock
321 321 */
322 322 error = chklock(vp, FREAD, uiop->uio_loffset,
323 323 uiop->uio_resid, uiop->uio_fmode, ct);
324 324 if (error)
325 325 goto out;
326 326 }
327 327
328 328 ufsvfsp = ip->i_ufsvfs;
329 329 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK);
330 330 if (error)
331 331 goto out;
332 332
333 333 /*
334 334 * In the case that a directory is opened for reading as a file
335 335 * (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set.
336 336 * The locking order had to be changed to avoid a deadlock with
337 337 * an update taking place on that directory at the same time.
338 338 */
339 339 if ((ip->i_mode & IFMT) == IFDIR) {
340 340
341 341 rw_enter(&ip->i_contents, RW_READER);
342 342 error = rdip(ip, uiop, ioflag, cr);
343 343 rw_exit(&ip->i_contents);
344 344
345 345 if (error) {
346 346 if (ulp)
347 347 ufs_lockfs_end(ulp);
348 348 goto out;
349 349 }
350 350
351 351 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) &&
352 352 TRANS_ISTRANS(ufsvfsp)) {
353 353 rw_exit(&ip->i_rwlock);
354 354 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE,
355 355 error);
356 356 ASSERT(!error);
357 357 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC,
358 358 TOP_READ_SIZE);
359 359 rw_enter(&ip->i_rwlock, RW_READER);
360 360 }
361 361 } else {
362 362 /*
363 363 * Only transact reads to files opened for sync-read and
364 364 * sync-write on a file system that is not write locked.
365 365 *
366 366 * The ``not write locked'' check prevents problems with
367 367 * enabling/disabling logging on a busy file system. E.g.,
368 368 * logging exists at the beginning of the read but does not
369 369 * at the end.
370 370 *
371 371 */
372 372 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) &&
373 373 TRANS_ISTRANS(ufsvfsp)) {
374 374 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE,
375 375 error);
376 376 ASSERT(!error);
377 377 intrans = 1;
378 378 }
379 379
380 380 rw_enter(&ip->i_contents, RW_READER);
381 381 error = rdip(ip, uiop, ioflag, cr);
382 382 rw_exit(&ip->i_contents);
383 383
384 384 if (intrans) {
385 385 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC,
386 386 TOP_READ_SIZE);
387 387 }
388 388 }
389 389
390 390 if (ulp) {
391 391 ufs_lockfs_end(ulp);
392 392 }
393 393 out:
394 394
395 395 return (error);
396 396 }
397 397
398 398 extern int ufs_HW; /* high water mark */
399 399 extern int ufs_LW; /* low water mark */
400 400 int ufs_WRITES = 1; /* XXX - enable/disable */
401 401 int ufs_throttles = 0; /* throttling count */
402 402 int ufs_allow_shared_writes = 1; /* directio shared writes */
403 403
404 404 static int
405 405 ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag)
406 406 {
407 407 int shared_write;
408 408
409 409 /*
410 410 * If the FDSYNC flag is set then ignore the global
411 411 * ufs_allow_shared_writes in this case.
412 412 */
413 413 shared_write = (ioflag & FDSYNC) | ufs_allow_shared_writes;
414 414
415 415 /*
416 416 * Filter to determine if this request is suitable as a
417 417 * concurrent rewrite. This write must not allocate blocks
418 418 * by extending the file or filling in holes. No use trying
419 419 * through FSYNC descriptors as the inode will be synchronously
420 420 * updated after the write. The uio structure has not yet been
421 421 * checked for sanity, so assume nothing.
422 422 */
423 423 return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) &&
424 424 (uiop->uio_loffset >= (offset_t)0) &&
425 425 (uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) &&
426 426 ((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) &&
427 427 !(ioflag & FSYNC) && !bmap_has_holes(ip) &&
428 428 shared_write);
429 429 }
430 430
431 431 /*ARGSUSED*/
432 432 static int
433 433 ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr,
434 434 caller_context_t *ct)
435 435 {
436 436 struct inode *ip = VTOI(vp);
437 437 struct ufsvfs *ufsvfsp;
438 438 struct ulockfs *ulp;
439 439 int retry = 1;
440 440 int error, resv, resid = 0;
441 441 int directio_status;
442 442 int exclusive;
443 443 int rewriteflg;
444 444 long start_resid = uiop->uio_resid;
445 445
446 446 ASSERT(RW_LOCK_HELD(&ip->i_rwlock));
447 447
448 448 retry_mandlock:
449 449 /*
450 450 * Mandatory locking needs to be done before ufs_lockfs_begin()
451 451 * and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep.
452 452 * Check for forced unmounts normally done in ufs_lockfs_begin().
453 453 */
454 454 if ((ufsvfsp = ip->i_ufsvfs) == NULL) {
455 455 error = EIO;
456 456 goto out;
457 457 }
458 458 if (MANDLOCK(vp, ip->i_mode)) {
459 459
460 460 ASSERT(RW_WRITE_HELD(&ip->i_rwlock));
461 461
462 462 /*
463 463 * ufs_getattr ends up being called by chklock
464 464 */
465 465 error = chklock(vp, FWRITE, uiop->uio_loffset,
466 466 uiop->uio_resid, uiop->uio_fmode, ct);
467 467 if (error)
468 468 goto out;
469 469 }
470 470
471 471 /* i_rwlock can change in chklock */
472 472 exclusive = rw_write_held(&ip->i_rwlock);
473 473 rewriteflg = ufs_check_rewrite(ip, uiop, ioflag);
474 474
475 475 /*
476 476 * Check for fast-path special case of directio re-writes.
477 477 */
478 478 if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) &&
479 479 !exclusive && rewriteflg) {
480 480
481 481 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK);
482 482 if (error)
483 483 goto out;
484 484
485 485 rw_enter(&ip->i_contents, RW_READER);
486 486 error = ufs_directio_write(ip, uiop, ioflag, 1, cr,
487 487 &directio_status);
488 488 if (directio_status == DIRECTIO_SUCCESS) {
489 489 uint_t i_flag_save;
490 490
491 491 if (start_resid != uiop->uio_resid)
492 492 error = 0;
493 493 /*
494 494 * Special treatment of access times for re-writes.
495 495 * If IMOD is not already set, then convert it
496 496 * to IMODACC for this operation. This defers
497 497 * entering a delta into the log until the inode
498 498 * is flushed. This mimics what is done for read
499 499 * operations and inode access time.
500 500 */
501 501 mutex_enter(&ip->i_tlock);
502 502 i_flag_save = ip->i_flag;
503 503 ip->i_flag |= IUPD | ICHG;
504 504 ip->i_seq++;
505 505 ITIMES_NOLOCK(ip);
506 506 if ((i_flag_save & IMOD) == 0) {
507 507 ip->i_flag &= ~IMOD;
508 508 ip->i_flag |= IMODACC;
509 509 }
510 510 mutex_exit(&ip->i_tlock);
511 511 rw_exit(&ip->i_contents);
512 512 if (ulp)
513 513 ufs_lockfs_end(ulp);
514 514 goto out;
515 515 }
516 516 rw_exit(&ip->i_contents);
517 517 if (ulp)
518 518 ufs_lockfs_end(ulp);
519 519 }
520 520
521 521 if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) {
522 522 rw_exit(&ip->i_rwlock);
523 523 rw_enter(&ip->i_rwlock, RW_WRITER);
524 524 /*
525 525 * Mandatory locking could have been enabled
526 526 * after dropping the i_rwlock.
527 527 */
528 528 if (MANDLOCK(vp, ip->i_mode))
529 529 goto retry_mandlock;
530 530 }
531 531
532 532 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK);
533 533 if (error)
534 534 goto out;
535 535
536 536 /*
537 537 * Amount of log space needed for this write
538 538 */
539 539 if (!rewriteflg || !(ioflag & FDSYNC))
540 540 TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid);
541 541
542 542 /*
543 543 * Throttle writes.
544 544 */
545 545 if (ufs_WRITES && (ip->i_writes > ufs_HW)) {
546 546 mutex_enter(&ip->i_tlock);
547 547 while (ip->i_writes > ufs_HW) {
548 548 ufs_throttles++;
549 549 cv_wait(&ip->i_wrcv, &ip->i_tlock);
550 550 }
551 551 mutex_exit(&ip->i_tlock);
552 552 }
553 553
554 554 /*
555 555 * Enter Transaction
556 556 *
557 557 * If the write is a rewrite there is no need to open a transaction
558 558 * if the FDSYNC flag is set and not the FSYNC. In this case just
559 559 * set the IMODACC flag to modify do the update at a later time
560 560 * thus avoiding the overhead of the logging transaction that is
561 561 * not required.
562 562 */
563 563 if (ioflag & (FSYNC|FDSYNC)) {
564 564 if (ulp) {
565 565 if (rewriteflg) {
566 566 uint_t i_flag_save;
567 567
568 568 rw_enter(&ip->i_contents, RW_READER);
569 569 mutex_enter(&ip->i_tlock);
570 570 i_flag_save = ip->i_flag;
571 571 ip->i_flag |= IUPD | ICHG;
572 572 ip->i_seq++;
573 573 ITIMES_NOLOCK(ip);
574 574 if ((i_flag_save & IMOD) == 0) {
575 575 ip->i_flag &= ~IMOD;
576 576 ip->i_flag |= IMODACC;
577 577 }
578 578 mutex_exit(&ip->i_tlock);
579 579 rw_exit(&ip->i_contents);
580 580 } else {
581 581 int terr = 0;
582 582 TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv,
583 583 terr);
584 584 ASSERT(!terr);
585 585 }
586 586 }
587 587 } else {
588 588 if (ulp)
589 589 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv);
590 590 }
591 591
592 592 /*
593 593 * Write the file
594 594 */
595 595 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
596 596 rw_enter(&ip->i_contents, RW_WRITER);
597 597 if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) {
598 598 /*
599 599 * In append mode start at end of file.
600 600 */
601 601 uiop->uio_loffset = ip->i_size;
602 602 }
603 603
604 604 /*
605 605 * Mild optimisation, don't call ufs_trans_write() unless we have to
606 606 * Also, suppress file system full messages if we will retry.
607 607 */
608 608 if (retry)
609 609 ip->i_flag |= IQUIET;
610 610 if (resid) {
611 611 TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid);
612 612 } else {
613 613 error = wrip(ip, uiop, ioflag, cr);
614 614 }
615 615 ip->i_flag &= ~IQUIET;
616 616
617 617 rw_exit(&ip->i_contents);
618 618 rw_exit(&ufsvfsp->vfs_dqrwlock);
619 619
620 620 /*
621 621 * Leave Transaction
622 622 */
623 623 if (ulp) {
624 624 if (ioflag & (FSYNC|FDSYNC)) {
625 625 if (!rewriteflg) {
626 626 int terr = 0;
627 627
628 628 TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC,
629 629 resv);
630 630 if (error == 0)
631 631 error = terr;
632 632 }
633 633 } else {
634 634 TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv);
635 635 }
636 636 ufs_lockfs_end(ulp);
637 637 }
638 638 out:
639 639 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
640 640 /*
641 641 * Any blocks tied up in pending deletes?
642 642 */
643 643 ufs_delete_drain_wait(ufsvfsp, 1);
644 644 retry = 0;
645 645 goto retry_mandlock;
646 646 }
647 647
648 648 if (error == ENOSPC && (start_resid != uiop->uio_resid))
649 649 error = 0;
650 650
651 651 return (error);
652 652 }
653 653
654 654 /*
655 655 * Don't cache write blocks to files with the sticky bit set.
656 656 * Used to keep swap files from blowing the page cache on a server.
657 657 */
658 658 int stickyhack = 1;
659 659
660 660 /*
661 661 * Free behind hacks. The pager is busted.
662 662 * XXX - need to pass the information down to writedone() in a flag like B_SEQ
663 663 * or B_FREE_IF_TIGHT_ON_MEMORY.
664 664 */
665 665 int freebehind = 1;
666 666 int smallfile = 0;
667 667 u_offset_t smallfile64 = 32 * 1024;
668 668
669 669 /*
670 670 * While we should, in most cases, cache the pages for write, we
671 671 * may also want to cache the pages for read as long as they are
672 672 * frequently re-usable.
673 673 *
674 674 * If cache_read_ahead = 1, the pages for read will go to the tail
675 675 * of the cache list when they are released, otherwise go to the head.
676 676 */
677 677 int cache_read_ahead = 0;
678 678
679 679 /*
680 680 * Freebehind exists so that as we read large files sequentially we
681 681 * don't consume most of memory with pages from a few files. It takes
682 682 * longer to re-read from disk multiple small files as it does reading
683 683 * one large one sequentially. As system memory grows customers need
684 684 * to retain bigger chunks of files in memory. The advent of the
685 685 * cachelist opens up of the possibility freeing pages to the head or
686 686 * tail of the list.
687 687 *
688 688 * Not freeing a page is a bet that the page will be read again before
689 689 * it's segmap slot is needed for something else. If we loose the bet,
690 690 * it means some other thread is burdened with the page free we did
691 691 * not do. If we win we save a free and reclaim.
692 692 *
693 693 * Freeing it at the tail vs the head of cachelist is a bet that the
694 694 * page will survive until the next read. It's also saying that this
695 695 * page is more likely to be re-used than a page freed some time ago
696 696 * and never reclaimed.
697 697 *
698 698 * Freebehind maintains a range of file offset [smallfile1; smallfile2]
699 699 *
700 700 * 0 < offset < smallfile1 : pages are not freed.
701 701 * smallfile1 < offset < smallfile2 : pages freed to tail of cachelist.
702 702 * smallfile2 < offset : pages freed to head of cachelist.
703 703 *
704 704 * The range is computed at most once per second and depends on
705 705 * freemem and ncpus_online. Both parameters are bounded to be
706 706 * >= smallfile && >= smallfile64.
707 707 *
708 708 * smallfile1 = (free memory / ncpu) / 1000
709 709 * smallfile2 = (free memory / ncpu) / 10
710 710 *
711 711 * A few examples values:
712 712 *
713 713 * Free Mem (in Bytes) [smallfile1; smallfile2] [smallfile1; smallfile2]
714 714 * ncpus_online = 4 ncpus_online = 64
715 715 * ------------------ ----------------------- -----------------------
716 716 * 1G [256K; 25M] [32K; 1.5M]
717 717 * 10G [2.5M; 250M] [156K; 15M]
718 718 * 100G [25M; 2.5G] [1.5M; 150M]
719 719 *
720 720 */
721 721
722 722 #define SMALLFILE1_D 1000
723 723 #define SMALLFILE2_D 10
724 724 static u_offset_t smallfile1 = 32 * 1024;
725 725 static u_offset_t smallfile2 = 32 * 1024;
726 726 static clock_t smallfile_update = 0; /* lbolt value of when to recompute */
727 727 uint_t smallfile1_d = SMALLFILE1_D;
728 728 uint_t smallfile2_d = SMALLFILE2_D;
729 729
730 730 /*
731 731 * wrip does the real work of write requests for ufs.
732 732 */
733 733 int
734 734 wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr)
735 735 {
736 736 rlim64_t limit = uio->uio_llimit;
737 737 u_offset_t off;
738 738 u_offset_t old_i_size;
739 739 struct fs *fs;
740 740 struct vnode *vp;
741 741 struct ufsvfs *ufsvfsp;
742 742 caddr_t base;
743 743 long start_resid = uio->uio_resid; /* save starting resid */
744 744 long premove_resid; /* resid before uiomove() */
745 745 uint_t flags;
746 746 int newpage;
747 747 int iupdat_flag, directio_status;
748 748 int n, on, mapon;
749 749 int error, pagecreate;
750 750 int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */
751 751 int32_t iblocks;
752 752 int new_iblocks;
753 753
754 754 /*
755 755 * ip->i_size is incremented before the uiomove
756 756 * is done on a write. If the move fails (bad user
757 757 * address) reset ip->i_size.
758 758 * The better way would be to increment ip->i_size
759 759 * only if the uiomove succeeds.
760 760 */
761 761 int i_size_changed = 0;
762 762 o_mode_t type;
763 763 int i_seq_needed = 0;
764 764
765 765 vp = ITOV(ip);
766 766
767 767 /*
768 768 * check for forced unmount - should not happen as
769 769 * the request passed the lockfs checks.
770 770 */
771 771 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
772 772 return (EIO);
773 773
774 774 fs = ip->i_fs;
775 775
776 776 ASSERT(RW_WRITE_HELD(&ip->i_contents));
777 777
778 778 /* check for valid filetype */
779 779 type = ip->i_mode & IFMT;
780 780 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) &&
781 781 (type != IFLNK) && (type != IFSHAD)) {
782 782 return (EIO);
783 783 }
784 784
785 785 /*
786 786 * the actual limit of UFS file size
787 787 * is UFS_MAXOFFSET_T
788 788 */
789 789 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
790 790 limit = MAXOFFSET_T;
791 791
792 792 if (uio->uio_loffset >= limit) {
793 793 proc_t *p = ttoproc(curthread);
794 794
795 795 mutex_enter(&p->p_lock);
796 796 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls,
797 797 p, RCA_UNSAFE_SIGINFO);
798 798 mutex_exit(&p->p_lock);
799 799 return (EFBIG);
800 800 }
801 801
802 802 /*
803 803 * if largefiles are disallowed, the limit is
804 804 * the pre-largefiles value of 2GB
805 805 */
806 806 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES)
807 807 limit = MIN(UFS_MAXOFFSET_T, limit);
808 808 else
809 809 limit = MIN(MAXOFF32_T, limit);
810 810
811 811 if (uio->uio_loffset < (offset_t)0) {
812 812 return (EINVAL);
813 813 }
814 814 if (uio->uio_resid == 0) {
815 815 return (0);
816 816 }
817 817
818 818 if (uio->uio_loffset >= limit)
819 819 return (EFBIG);
820 820
821 821 ip->i_flag |= INOACC; /* don't update ref time in getpage */
822 822
823 823 if (ioflag & (FSYNC|FDSYNC)) {
824 824 ip->i_flag |= ISYNC;
825 825 iupdat_flag = 1;
826 826 }
827 827 /*
828 828 * Try to go direct
829 829 */
830 830 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) {
831 831 uio->uio_llimit = limit;
832 832 error = ufs_directio_write(ip, uio, ioflag, 0, cr,
833 833 &directio_status);
834 834 /*
835 835 * If ufs_directio wrote to the file or set the flags,
836 836 * we need to update i_seq, but it may be deferred.
837 837 */
838 838 if (start_resid != uio->uio_resid ||
839 839 (ip->i_flag & (ICHG|IUPD))) {
840 840 i_seq_needed = 1;
841 841 ip->i_flag |= ISEQ;
842 842 }
843 843 if (directio_status == DIRECTIO_SUCCESS)
844 844 goto out;
845 845 }
846 846
847 847 /*
848 848 * Behavior with respect to dropping/reacquiring vfs_dqrwlock:
849 849 *
850 850 * o shadow inodes: vfs_dqrwlock is not held at all
851 851 * o quota updates: vfs_dqrwlock is read or write held
852 852 * o other updates: vfs_dqrwlock is read held
853 853 *
854 854 * The first case is the only one where we do not hold
855 855 * vfs_dqrwlock at all while entering wrip().
856 856 * We must make sure not to downgrade/drop vfs_dqrwlock if we
857 857 * have it as writer, i.e. if we are updating the quota inode.
858 858 * There is no potential deadlock scenario in this case as
859 859 * ufs_getpage() takes care of this and avoids reacquiring
860 860 * vfs_dqrwlock in that case.
861 861 *
862 862 * This check is done here since the above conditions do not change
863 863 * and we possibly loop below, so save a few cycles.
864 864 */
865 865 if ((type == IFSHAD) ||
866 866 (rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) {
867 867 do_dqrwlock = 0;
868 868 } else {
869 869 do_dqrwlock = 1;
870 870 }
871 871
872 872 /*
873 873 * Large Files: We cast MAXBMASK to offset_t
874 874 * inorder to mask out the higher bits. Since offset_t
875 875 * is a signed value, the high order bit set in MAXBMASK
876 876 * value makes it do the right thing by having all bits 1
877 877 * in the higher word. May be removed for _SOLARIS64_.
878 878 */
879 879
880 880 fs = ip->i_fs;
881 881 do {
882 882 u_offset_t uoff = uio->uio_loffset;
883 883 off = uoff & (offset_t)MAXBMASK;
884 884 mapon = (int)(uoff & (offset_t)MAXBOFFSET);
885 885 on = (int)blkoff(fs, uoff);
886 886 n = (int)MIN(fs->fs_bsize - on, uio->uio_resid);
887 887 new_iblocks = 1;
888 888
889 889 if (type == IFREG && uoff + n >= limit) {
890 890 if (uoff >= limit) {
891 891 error = EFBIG;
892 892 goto out;
893 893 }
894 894 /*
895 895 * since uoff + n >= limit,
896 896 * therefore n >= limit - uoff, and n is an int
897 897 * so it is safe to cast it to an int
898 898 */
899 899 n = (int)(limit - (rlim64_t)uoff);
900 900 }
901 901 if (uoff + n > ip->i_size) {
902 902 /*
903 903 * We are extending the length of the file.
904 904 * bmap is used so that we are sure that
905 905 * if we need to allocate new blocks, that it
906 906 * is done here before we up the file size.
907 907 */
908 908 error = bmap_write(ip, uoff, (int)(on + n),
909 909 mapon == 0, NULL, cr);
910 910 /*
911 911 * bmap_write never drops i_contents so if
912 912 * the flags are set it changed the file.
913 913 */
914 914 if (ip->i_flag & (ICHG|IUPD)) {
915 915 i_seq_needed = 1;
916 916 ip->i_flag |= ISEQ;
917 917 }
918 918 if (error)
919 919 break;
920 920 /*
921 921 * There is a window of vulnerability here.
922 922 * The sequence of operations: allocate file
923 923 * system blocks, uiomove the data into pages,
924 924 * and then update the size of the file in the
925 925 * inode, must happen atomically. However, due
926 926 * to current locking constraints, this can not
927 927 * be done.
928 928 */
929 929 ASSERT(ip->i_writer == NULL);
930 930 ip->i_writer = curthread;
931 931 i_size_changed = 1;
932 932 /*
933 933 * If we are writing from the beginning of
934 934 * the mapping, we can just create the
935 935 * pages without having to read them.
936 936 */
937 937 pagecreate = (mapon == 0);
938 938 } else if (n == MAXBSIZE) {
939 939 /*
940 940 * Going to do a whole mappings worth,
941 941 * so we can just create the pages w/o
942 942 * having to read them in. But before
943 943 * we do that, we need to make sure any
944 944 * needed blocks are allocated first.
945 945 */
946 946 iblocks = ip->i_blocks;
947 947 error = bmap_write(ip, uoff, (int)(on + n),
948 948 BI_ALLOC_ONLY, NULL, cr);
949 949 /*
950 950 * bmap_write never drops i_contents so if
951 951 * the flags are set it changed the file.
952 952 */
953 953 if (ip->i_flag & (ICHG|IUPD)) {
954 954 i_seq_needed = 1;
955 955 ip->i_flag |= ISEQ;
956 956 }
957 957 if (error)
958 958 break;
959 959 pagecreate = 1;
960 960 /*
961 961 * check if the new created page needed the
962 962 * allocation of new disk blocks.
963 963 */
964 964 if (iblocks == ip->i_blocks)
965 965 new_iblocks = 0; /* no new blocks allocated */
966 966 } else {
967 967 pagecreate = 0;
968 968 /*
969 969 * In sync mode flush the indirect blocks which
970 970 * may have been allocated and not written on
971 971 * disk. In above cases bmap_write will allocate
972 972 * in sync mode.
973 973 */
974 974 if (ioflag & (FSYNC|FDSYNC)) {
975 975 error = ufs_indirblk_sync(ip, uoff);
976 976 if (error)
977 977 break;
978 978 }
979 979 }
980 980
981 981 /*
982 982 * At this point we can enter ufs_getpage() in one
983 983 * of two ways:
984 984 * 1) segmap_getmapflt() calls ufs_getpage() when the
985 985 * forcefault parameter is true (pagecreate == 0)
986 986 * 2) uiomove() causes a page fault.
987 987 *
988 988 * We have to drop the contents lock to prevent the VM
989 989 * system from trying to reacquire it in ufs_getpage()
990 990 * should the uiomove cause a pagefault.
991 991 *
992 992 * We have to drop the reader vfs_dqrwlock here as well.
993 993 */
994 994 rw_exit(&ip->i_contents);
995 995 if (do_dqrwlock) {
996 996 ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock));
997 997 ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock)));
998 998 rw_exit(&ufsvfsp->vfs_dqrwlock);
999 999 }
1000 1000
1001 1001 newpage = 0;
1002 1002 premove_resid = uio->uio_resid;
1003 1003
1004 1004 /*
1005 1005 * Touch the page and fault it in if it is not in core
1006 1006 * before segmap_getmapflt or vpm_data_copy can lock it.
1007 1007 * This is to avoid the deadlock if the buffer is mapped
1008 1008 * to the same file through mmap which we want to write.
1009 1009 */
1010 1010 uio_prefaultpages((long)n, uio);
1011 1011
1012 1012 if (vpm_enable) {
1013 1013 /*
1014 1014 * Copy data. If new pages are created, part of
1015 1015 * the page that is not written will be initizliazed
1016 1016 * with zeros.
1017 1017 */
1018 1018 error = vpm_data_copy(vp, (off + mapon), (uint_t)n,
1019 1019 uio, !pagecreate, &newpage, 0, S_WRITE);
1020 1020 } else {
1021 1021
1022 1022 base = segmap_getmapflt(segkmap, vp, (off + mapon),
1023 1023 (uint_t)n, !pagecreate, S_WRITE);
1024 1024
1025 1025 /*
1026 1026 * segmap_pagecreate() returns 1 if it calls
1027 1027 * page_create_va() to allocate any pages.
1028 1028 */
1029 1029
1030 1030 if (pagecreate)
1031 1031 newpage = segmap_pagecreate(segkmap, base,
1032 1032 (size_t)n, 0);
1033 1033
1034 1034 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio);
1035 1035 }
1036 1036
1037 1037 /*
1038 1038 * If "newpage" is set, then a new page was created and it
1039 1039 * does not contain valid data, so it needs to be initialized
1040 1040 * at this point.
1041 1041 * Otherwise the page contains old data, which was overwritten
1042 1042 * partially or as a whole in uiomove.
1043 1043 * If there is only one iovec structure within uio, then
1044 1044 * on error uiomove will not be able to update uio->uio_loffset
1045 1045 * and we would zero the whole page here!
1046 1046 *
1047 1047 * If uiomove fails because of an error, the old valid data
1048 1048 * is kept instead of filling the rest of the page with zero's.
1049 1049 */
1050 1050 if (!vpm_enable && newpage &&
1051 1051 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) {
1052 1052 /*
1053 1053 * We created pages w/o initializing them completely,
1054 1054 * thus we need to zero the part that wasn't set up.
1055 1055 * This happens on most EOF write cases and if
1056 1056 * we had some sort of error during the uiomove.
1057 1057 */
1058 1058 int nzero, nmoved;
1059 1059
1060 1060 nmoved = (int)(uio->uio_loffset - (off + mapon));
1061 1061 ASSERT(nmoved >= 0 && nmoved <= n);
1062 1062 nzero = roundup(on + n, PAGESIZE) - nmoved;
1063 1063 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE);
1064 1064 (void) kzero(base + mapon + nmoved, (uint_t)nzero);
1065 1065 }
1066 1066
1067 1067 /*
1068 1068 * Unlock the pages allocated by page_create_va()
1069 1069 * in segmap_pagecreate()
1070 1070 */
1071 1071 if (!vpm_enable && newpage)
1072 1072 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE);
1073 1073
1074 1074 /*
1075 1075 * If the size of the file changed, then update the
1076 1076 * size field in the inode now. This can't be done
1077 1077 * before the call to segmap_pageunlock or there is
1078 1078 * a potential deadlock with callers to ufs_putpage().
1079 1079 * They will be holding i_contents and trying to lock
1080 1080 * a page, while this thread is holding a page locked
1081 1081 * and trying to acquire i_contents.
1082 1082 */
1083 1083 if (i_size_changed) {
1084 1084 rw_enter(&ip->i_contents, RW_WRITER);
1085 1085 old_i_size = ip->i_size;
1086 1086 UFS_SET_ISIZE(uoff + n, ip);
1087 1087 TRANS_INODE(ufsvfsp, ip);
1088 1088 /*
1089 1089 * file has grown larger than 2GB. Set flag
1090 1090 * in superblock to indicate this, if it
1091 1091 * is not already set.
1092 1092 */
1093 1093 if ((ip->i_size > MAXOFF32_T) &&
1094 1094 !(fs->fs_flags & FSLARGEFILES)) {
1095 1095 ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES);
1096 1096 mutex_enter(&ufsvfsp->vfs_lock);
1097 1097 fs->fs_flags |= FSLARGEFILES;
1098 1098 ufs_sbwrite(ufsvfsp);
1099 1099 mutex_exit(&ufsvfsp->vfs_lock);
1100 1100 }
1101 1101 mutex_enter(&ip->i_tlock);
1102 1102 ip->i_writer = NULL;
1103 1103 cv_broadcast(&ip->i_wrcv);
1104 1104 mutex_exit(&ip->i_tlock);
1105 1105 rw_exit(&ip->i_contents);
1106 1106 }
1107 1107
1108 1108 if (error) {
1109 1109 /*
1110 1110 * If we failed on a write, we may have already
1111 1111 * allocated file blocks as well as pages. It's
1112 1112 * hard to undo the block allocation, but we must
1113 1113 * be sure to invalidate any pages that may have
1114 1114 * been allocated.
1115 1115 *
1116 1116 * If the page was created without initialization
1117 1117 * then we must check if it should be possible
1118 1118 * to destroy the new page and to keep the old data
1119 1119 * on the disk.
1120 1120 *
1121 1121 * It is possible to destroy the page without
1122 1122 * having to write back its contents only when
1123 1123 * - the size of the file keeps unchanged
1124 1124 * - bmap_write() did not allocate new disk blocks
1125 1125 * it is possible to create big files using "seek" and
1126 1126 * write to the end of the file. A "write" to a
1127 1127 * position before the end of the file would not
1128 1128 * change the size of the file but it would allocate
1129 1129 * new disk blocks.
1130 1130 * - uiomove intended to overwrite the whole page.
1131 1131 * - a new page was created (newpage == 1).
1132 1132 */
1133 1133
1134 1134 if (i_size_changed == 0 && new_iblocks == 0 &&
1135 1135 newpage) {
1136 1136
1137 1137 /* unwind what uiomove eventually last did */
1138 1138 uio->uio_resid = premove_resid;
1139 1139
1140 1140 /*
1141 1141 * destroy the page, do not write ambiguous
1142 1142 * data to the disk.
1143 1143 */
1144 1144 flags = SM_DESTROY;
1145 1145 } else {
1146 1146 /*
1147 1147 * write the page back to the disk, if dirty,
1148 1148 * and remove the page from the cache.
1149 1149 */
1150 1150 flags = SM_INVAL;
1151 1151 }
1152 1152
1153 1153 if (vpm_enable) {
1154 1154 /*
1155 1155 * Flush pages.
1156 1156 */
1157 1157 (void) vpm_sync_pages(vp, off, n, flags);
1158 1158 } else {
1159 1159 (void) segmap_release(segkmap, base, flags);
1160 1160 }
1161 1161 } else {
1162 1162 flags = 0;
1163 1163 /*
1164 1164 * Force write back for synchronous write cases.
1165 1165 */
1166 1166 if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) {
1167 1167 /*
1168 1168 * If the sticky bit is set but the
1169 1169 * execute bit is not set, we do a
1170 1170 * synchronous write back and free
1171 1171 * the page when done. We set up swap
1172 1172 * files to be handled this way to
1173 1173 * prevent servers from keeping around
1174 1174 * the client's swap pages too long.
1175 1175 * XXX - there ought to be a better way.
1176 1176 */
1177 1177 if (IS_SWAPVP(vp)) {
1178 1178 flags = SM_WRITE | SM_FREE |
1179 1179 SM_DONTNEED;
1180 1180 iupdat_flag = 0;
1181 1181 } else {
1182 1182 flags = SM_WRITE;
1183 1183 }
1184 1184 } else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) {
1185 1185 /*
1186 1186 * Have written a whole block.
1187 1187 * Start an asynchronous write and
1188 1188 * mark the buffer to indicate that
1189 1189 * it won't be needed again soon.
1190 1190 */
1191 1191 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
1192 1192 }
1193 1193 if (vpm_enable) {
1194 1194 /*
1195 1195 * Flush pages.
1196 1196 */
1197 1197 error = vpm_sync_pages(vp, off, n, flags);
1198 1198 } else {
1199 1199 error = segmap_release(segkmap, base, flags);
1200 1200 }
1201 1201 /*
1202 1202 * If the operation failed and is synchronous,
1203 1203 * then we need to unwind what uiomove() last
1204 1204 * did so we can potentially return an error to
1205 1205 * the caller. If this write operation was
1206 1206 * done in two pieces and the first succeeded,
1207 1207 * then we won't return an error for the second
1208 1208 * piece that failed. However, we only want to
1209 1209 * return a resid value that reflects what was
1210 1210 * really done.
1211 1211 *
1212 1212 * Failures for non-synchronous operations can
1213 1213 * be ignored since the page subsystem will
1214 1214 * retry the operation until it succeeds or the
1215 1215 * file system is unmounted.
1216 1216 */
1217 1217 if (error) {
1218 1218 if ((ioflag & (FSYNC | FDSYNC)) ||
1219 1219 type == IFDIR) {
1220 1220 uio->uio_resid = premove_resid;
1221 1221 } else {
1222 1222 error = 0;
1223 1223 }
1224 1224 }
1225 1225 }
1226 1226
1227 1227 /*
1228 1228 * Re-acquire contents lock.
1229 1229 * If it was dropped, reacquire reader vfs_dqrwlock as well.
1230 1230 */
1231 1231 if (do_dqrwlock)
1232 1232 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
1233 1233 rw_enter(&ip->i_contents, RW_WRITER);
1234 1234
1235 1235 /*
1236 1236 * If the uiomove() failed or if a synchronous
1237 1237 * page push failed, fix up i_size.
1238 1238 */
1239 1239 if (error) {
1240 1240 if (i_size_changed) {
1241 1241 /*
1242 1242 * The uiomove failed, and we
1243 1243 * allocated blocks,so get rid
1244 1244 * of them.
1245 1245 */
1246 1246 (void) ufs_itrunc(ip, old_i_size, 0, cr);
1247 1247 }
1248 1248 } else {
1249 1249 /*
1250 1250 * XXX - Can this be out of the loop?
1251 1251 */
1252 1252 ip->i_flag |= IUPD | ICHG;
1253 1253 /*
1254 1254 * Only do one increase of i_seq for multiple
1255 1255 * pieces. Because we drop locks, record
1256 1256 * the fact that we changed the timestamp and
1257 1257 * are deferring the increase in case another thread
1258 1258 * pushes our timestamp update.
1259 1259 */
1260 1260 i_seq_needed = 1;
1261 1261 ip->i_flag |= ISEQ;
1262 1262 if (i_size_changed)
1263 1263 ip->i_flag |= IATTCHG;
1264 1264 if ((ip->i_mode & (IEXEC | (IEXEC >> 3) |
1265 1265 (IEXEC >> 6))) != 0 &&
1266 1266 (ip->i_mode & (ISUID | ISGID)) != 0 &&
1267 1267 secpolicy_vnode_setid_retain(cr,
1268 1268 (ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) {
1269 1269 /*
1270 1270 * Clear Set-UID & Set-GID bits on
1271 1271 * successful write if not privileged
1272 1272 * and at least one of the execute bits
1273 1273 * is set. If we always clear Set-GID,
1274 1274 * mandatory file and record locking is
1275 1275 * unuseable.
1276 1276 */
1277 1277 ip->i_mode &= ~(ISUID | ISGID);
1278 1278 }
1279 1279 }
1280 1280 /*
1281 1281 * In the case the FDSYNC flag is set and this is a
1282 1282 * "rewrite" we won't log a delta.
1283 1283 * The FSYNC flag overrides all cases.
1284 1284 */
1285 1285 if (!ufs_check_rewrite(ip, uio, ioflag) || !(ioflag & FDSYNC)) {
1286 1286 TRANS_INODE(ufsvfsp, ip);
1287 1287 }
1288 1288 } while (error == 0 && uio->uio_resid > 0 && n != 0);
1289 1289
1290 1290 out:
1291 1291 /*
1292 1292 * Make sure i_seq is increased at least once per write
1293 1293 */
1294 1294 if (i_seq_needed) {
1295 1295 ip->i_seq++;
1296 1296 ip->i_flag &= ~ISEQ; /* no longer deferred */
1297 1297 }
1298 1298
1299 1299 /*
1300 1300 * Inode is updated according to this table -
1301 1301 *
1302 1302 * FSYNC FDSYNC(posix.4)
1303 1303 * --------------------------
1304 1304 * always@ IATTCHG|IBDWRITE
1305 1305 *
1306 1306 * @ - If we are doing synchronous write the only time we should
1307 1307 * not be sync'ing the ip here is if we have the stickyhack
1308 1308 * activated, the file is marked with the sticky bit and
1309 1309 * no exec bit, the file length has not been changed and
1310 1310 * no new blocks have been allocated during this write.
1311 1311 */
1312 1312
1313 1313 if ((ip->i_flag & ISYNC) != 0) {
1314 1314 /*
1315 1315 * we have eliminated nosync
1316 1316 */
1317 1317 if ((ip->i_flag & (IATTCHG|IBDWRITE)) ||
1318 1318 ((ioflag & FSYNC) && iupdat_flag)) {
1319 1319 ufs_iupdat(ip, 1);
1320 1320 }
1321 1321 }
1322 1322
1323 1323 /*
1324 1324 * If we've already done a partial-write, terminate
1325 1325 * the write but return no error unless the error is ENOSPC
1326 1326 * because the caller can detect this and free resources and
1327 1327 * try again.
1328 1328 */
1329 1329 if ((start_resid != uio->uio_resid) && (error != ENOSPC))
1330 1330 error = 0;
1331 1331
1332 1332 ip->i_flag &= ~(INOACC | ISYNC);
1333 1333 ITIMES_NOLOCK(ip);
1334 1334 return (error);
1335 1335 }
1336 1336
1337 1337 /*
1338 1338 * rdip does the real work of read requests for ufs.
1339 1339 */
1340 1340 int
1341 1341 rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr)
1342 1342 {
1343 1343 u_offset_t off;
1344 1344 caddr_t base;
1345 1345 struct fs *fs;
1346 1346 struct ufsvfs *ufsvfsp;
1347 1347 struct vnode *vp;
1348 1348 long oresid = uio->uio_resid;
1349 1349 u_offset_t n, on, mapon;
1350 1350 int error = 0;
1351 1351 int doupdate = 1;
1352 1352 uint_t flags;
1353 1353 int dofree, directio_status;
1354 1354 krw_t rwtype;
1355 1355 o_mode_t type;
1356 1356 clock_t now;
1357 1357
1358 1358 vp = ITOV(ip);
1359 1359
1360 1360 ASSERT(RW_LOCK_HELD(&ip->i_contents));
1361 1361
1362 1362 ufsvfsp = ip->i_ufsvfs;
1363 1363
1364 1364 if (ufsvfsp == NULL)
1365 1365 return (EIO);
1366 1366
1367 1367 fs = ufsvfsp->vfs_fs;
1368 1368
1369 1369 /* check for valid filetype */
1370 1370 type = ip->i_mode & IFMT;
1371 1371 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) &&
1372 1372 (type != IFLNK) && (type != IFSHAD)) {
1373 1373 return (EIO);
1374 1374 }
1375 1375
1376 1376 if (uio->uio_loffset > UFS_MAXOFFSET_T) {
1377 1377 error = 0;
1378 1378 goto out;
1379 1379 }
1380 1380 if (uio->uio_loffset < (offset_t)0) {
1381 1381 return (EINVAL);
1382 1382 }
1383 1383 if (uio->uio_resid == 0) {
1384 1384 return (0);
1385 1385 }
1386 1386
1387 1387 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) &&
1388 1388 (!ufsvfsp->vfs_noatime)) {
1389 1389 mutex_enter(&ip->i_tlock);
1390 1390 ip->i_flag |= IACC;
1391 1391 mutex_exit(&ip->i_tlock);
1392 1392 }
1393 1393 /*
1394 1394 * Try to go direct
1395 1395 */
1396 1396 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) {
1397 1397 error = ufs_directio_read(ip, uio, cr, &directio_status);
1398 1398 if (directio_status == DIRECTIO_SUCCESS)
1399 1399 goto out;
1400 1400 }
1401 1401
1402 1402 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER);
1403 1403
1404 1404 do {
1405 1405 offset_t diff;
1406 1406 u_offset_t uoff = uio->uio_loffset;
1407 1407 off = uoff & (offset_t)MAXBMASK;
1408 1408 mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET);
1409 1409 on = (u_offset_t)blkoff(fs, uoff);
1410 1410 n = MIN((u_offset_t)fs->fs_bsize - on,
1411 1411 (u_offset_t)uio->uio_resid);
1412 1412
1413 1413 diff = ip->i_size - uoff;
1414 1414
1415 1415 if (diff <= (offset_t)0) {
1416 1416 error = 0;
1417 1417 goto out;
1418 1418 }
1419 1419 if (diff < (offset_t)n)
1420 1420 n = (int)diff;
1421 1421
1422 1422 /*
1423 1423 * We update smallfile2 and smallfile1 at most every second.
1424 1424 */
1425 1425 now = ddi_get_lbolt();
1426 1426 if (now >= smallfile_update) {
1427 1427 uint64_t percpufreeb;
1428 1428 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D;
1429 1429 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D;
1430 1430 percpufreeb = ptob((uint64_t)freemem) / ncpus_online;
1431 1431 smallfile1 = percpufreeb / smallfile1_d;
1432 1432 smallfile2 = percpufreeb / smallfile2_d;
1433 1433 smallfile1 = MAX(smallfile1, smallfile);
1434 1434 smallfile1 = MAX(smallfile1, smallfile64);
1435 1435 smallfile2 = MAX(smallfile1, smallfile2);
1436 1436 smallfile_update = now + hz;
1437 1437 }
1438 1438
1439 1439 dofree = freebehind &&
1440 1440 ip->i_nextr == (off & PAGEMASK) && off > smallfile1;
1441 1441
1442 1442 /*
1443 1443 * At this point we can enter ufs_getpage() in one of two
1444 1444 * ways:
1445 1445 * 1) segmap_getmapflt() calls ufs_getpage() when the
1446 1446 * forcefault parameter is true (value of 1 is passed)
1447 1447 * 2) uiomove() causes a page fault.
1448 1448 *
1449 1449 * We cannot hold onto an i_contents reader lock without
1450 1450 * risking deadlock in ufs_getpage() so drop a reader lock.
1451 1451 * The ufs_getpage() dolock logic already allows for a
1452 1452 * thread holding i_contents as writer to work properly
1453 1453 * so we keep a writer lock.
1454 1454 */
1455 1455 if (rwtype == RW_READER)
1456 1456 rw_exit(&ip->i_contents);
1457 1457
1458 1458 if (vpm_enable) {
1459 1459 /*
1460 1460 * Copy data.
1461 1461 */
1462 1462 error = vpm_data_copy(vp, (off + mapon), (uint_t)n,
1463 1463 uio, 1, NULL, 0, S_READ);
1464 1464 } else {
1465 1465 base = segmap_getmapflt(segkmap, vp, (off + mapon),
1466 1466 (uint_t)n, 1, S_READ);
1467 1467 error = uiomove(base + mapon, (long)n, UIO_READ, uio);
1468 1468 }
1469 1469
1470 1470 flags = 0;
1471 1471 if (!error) {
1472 1472 /*
1473 1473 * If reading sequential we won't need this
1474 1474 * buffer again soon. For offsets in range
1475 1475 * [smallfile1, smallfile2] release the pages
1476 1476 * at the tail of the cache list, larger
1477 1477 * offsets are released at the head.
1478 1478 */
1479 1479 if (dofree) {
1480 1480 flags = SM_FREE | SM_ASYNC;
1481 1481 if ((cache_read_ahead == 0) &&
1482 1482 (off > smallfile2))
1483 1483 flags |= SM_DONTNEED;
1484 1484 }
1485 1485 /*
1486 1486 * In POSIX SYNC (FSYNC and FDSYNC) read mode,
1487 1487 * we want to make sure that the page which has
1488 1488 * been read, is written on disk if it is dirty.
1489 1489 * And corresponding indirect blocks should also
1490 1490 * be flushed out.
1491 1491 */
1492 1492 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) {
1493 1493 flags &= ~SM_ASYNC;
1494 1494 flags |= SM_WRITE;
1495 1495 }
1496 1496 if (vpm_enable) {
1497 1497 error = vpm_sync_pages(vp, off, n, flags);
1498 1498 } else {
1499 1499 error = segmap_release(segkmap, base, flags);
1500 1500 }
1501 1501 } else {
1502 1502 if (vpm_enable) {
1503 1503 (void) vpm_sync_pages(vp, off, n, flags);
1504 1504 } else {
1505 1505 (void) segmap_release(segkmap, base, flags);
1506 1506 }
1507 1507 }
1508 1508
1509 1509 if (rwtype == RW_READER)
1510 1510 rw_enter(&ip->i_contents, rwtype);
1511 1511 } while (error == 0 && uio->uio_resid > 0 && n != 0);
1512 1512 out:
1513 1513 /*
1514 1514 * Inode is updated according to this table if FRSYNC is set.
1515 1515 *
1516 1516 * FSYNC FDSYNC(posix.4)
1517 1517 * --------------------------
1518 1518 * always IATTCHG|IBDWRITE
1519 1519 */
1520 1520 /*
1521 1521 * The inode is not updated if we're logging and the inode is a
1522 1522 * directory with FRSYNC, FSYNC and FDSYNC flags set.
1523 1523 */
1524 1524 if (ioflag & FRSYNC) {
1525 1525 if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) {
1526 1526 doupdate = 0;
1527 1527 }
1528 1528 if (doupdate) {
1529 1529 if ((ioflag & FSYNC) ||
1530 1530 ((ioflag & FDSYNC) &&
1531 1531 (ip->i_flag & (IATTCHG|IBDWRITE)))) {
1532 1532 ufs_iupdat(ip, 1);
1533 1533 }
1534 1534 }
1535 1535 }
1536 1536 /*
1537 1537 * If we've already done a partial read, terminate
1538 1538 * the read but return no error.
1539 1539 */
1540 1540 if (oresid != uio->uio_resid)
1541 1541 error = 0;
1542 1542 ITIMES(ip);
1543 1543
1544 1544 return (error);
1545 1545 }
1546 1546
1547 1547 /* ARGSUSED */
1548 1548 static int
1549 1549 ufs_ioctl(
1550 1550 struct vnode *vp,
1551 1551 int cmd,
1552 1552 intptr_t arg,
1553 1553 int flag,
1554 1554 struct cred *cr,
1555 1555 int *rvalp,
1556 1556 caller_context_t *ct)
1557 1557 {
1558 1558 struct lockfs lockfs, lockfs_out;
1559 1559 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
1560 1560 char *comment, *original_comment;
1561 1561 struct fs *fs;
1562 1562 struct ulockfs *ulp;
1563 1563 offset_t off;
1564 1564 extern int maxphys;
1565 1565 int error;
1566 1566 int issync;
1567 1567 int trans_size;
1568 1568
1569 1569
1570 1570 /*
1571 1571 * forcibly unmounted
1572 1572 */
1573 1573 if (ufsvfsp == NULL || vp->v_vfsp == NULL ||
1574 1574 vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
1575 1575 return (EIO);
1576 1576 fs = ufsvfsp->vfs_fs;
1577 1577
1578 1578 if (cmd == Q_QUOTACTL) {
1579 1579 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK);
1580 1580 if (error)
1581 1581 return (error);
1582 1582
1583 1583 if (ulp) {
1584 1584 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA,
1585 1585 TOP_SETQUOTA_SIZE(fs));
1586 1586 }
1587 1587
1588 1588 error = quotactl(vp, arg, flag, cr);
1589 1589
1590 1590 if (ulp) {
1591 1591 TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA,
1592 1592 TOP_SETQUOTA_SIZE(fs));
1593 1593 ufs_lockfs_end(ulp);
1594 1594 }
1595 1595 return (error);
1596 1596 }
1597 1597
1598 1598 switch (cmd) {
1599 1599 case _FIOLFS:
1600 1600 /*
1601 1601 * file system locking
1602 1602 */
1603 1603 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1604 1604 return (EPERM);
1605 1605
1606 1606 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1607 1607 if (copyin((caddr_t)arg, &lockfs,
1608 1608 sizeof (struct lockfs)))
1609 1609 return (EFAULT);
1610 1610 }
1611 1611 #ifdef _SYSCALL32_IMPL
1612 1612 else {
1613 1613 struct lockfs32 lockfs32;
1614 1614 /* Translate ILP32 lockfs to LP64 lockfs */
1615 1615 if (copyin((caddr_t)arg, &lockfs32,
1616 1616 sizeof (struct lockfs32)))
1617 1617 return (EFAULT);
1618 1618 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock;
1619 1619 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags;
1620 1620 lockfs.lf_key = (ulong_t)lockfs32.lf_key;
1621 1621 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen;
1622 1622 lockfs.lf_comment =
1623 1623 (caddr_t)(uintptr_t)lockfs32.lf_comment;
1624 1624 }
1625 1625 #endif /* _SYSCALL32_IMPL */
1626 1626
1627 1627 if (lockfs.lf_comlen) {
1628 1628 if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN)
1629 1629 return (ENAMETOOLONG);
1630 1630 comment =
1631 1631 kmem_alloc(lockfs.lf_comlen, KM_SLEEP);
1632 1632 if (copyin(lockfs.lf_comment, comment,
1633 1633 lockfs.lf_comlen)) {
1634 1634 kmem_free(comment, lockfs.lf_comlen);
1635 1635 return (EFAULT);
1636 1636 }
1637 1637 original_comment = lockfs.lf_comment;
1638 1638 lockfs.lf_comment = comment;
1639 1639 }
1640 1640 if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) {
1641 1641 lockfs.lf_comment = original_comment;
1642 1642
1643 1643 if ((flag & DATAMODEL_MASK) ==
1644 1644 DATAMODEL_NATIVE) {
1645 1645 (void) copyout(&lockfs, (caddr_t)arg,
1646 1646 sizeof (struct lockfs));
1647 1647 }
1648 1648 #ifdef _SYSCALL32_IMPL
1649 1649 else {
1650 1650 struct lockfs32 lockfs32;
1651 1651 /* Translate LP64 to ILP32 lockfs */
1652 1652 lockfs32.lf_lock =
1653 1653 (uint32_t)lockfs.lf_lock;
1654 1654 lockfs32.lf_flags =
1655 1655 (uint32_t)lockfs.lf_flags;
1656 1656 lockfs32.lf_key =
1657 1657 (uint32_t)lockfs.lf_key;
1658 1658 lockfs32.lf_comlen =
1659 1659 (uint32_t)lockfs.lf_comlen;
1660 1660 lockfs32.lf_comment =
1661 1661 (uint32_t)(uintptr_t)
1662 1662 lockfs.lf_comment;
1663 1663 (void) copyout(&lockfs32, (caddr_t)arg,
1664 1664 sizeof (struct lockfs32));
1665 1665 }
1666 1666 #endif /* _SYSCALL32_IMPL */
1667 1667
1668 1668 } else {
1669 1669 if (lockfs.lf_comlen)
1670 1670 kmem_free(comment, lockfs.lf_comlen);
1671 1671 }
1672 1672 return (error);
1673 1673
1674 1674 case _FIOLFSS:
1675 1675 /*
1676 1676 * get file system locking status
1677 1677 */
1678 1678
1679 1679 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1680 1680 if (copyin((caddr_t)arg, &lockfs,
1681 1681 sizeof (struct lockfs)))
1682 1682 return (EFAULT);
1683 1683 }
1684 1684 #ifdef _SYSCALL32_IMPL
1685 1685 else {
1686 1686 struct lockfs32 lockfs32;
1687 1687 /* Translate ILP32 lockfs to LP64 lockfs */
1688 1688 if (copyin((caddr_t)arg, &lockfs32,
1689 1689 sizeof (struct lockfs32)))
1690 1690 return (EFAULT);
1691 1691 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock;
1692 1692 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags;
1693 1693 lockfs.lf_key = (ulong_t)lockfs32.lf_key;
1694 1694 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen;
1695 1695 lockfs.lf_comment =
1696 1696 (caddr_t)(uintptr_t)lockfs32.lf_comment;
1697 1697 }
1698 1698 #endif /* _SYSCALL32_IMPL */
1699 1699
1700 1700 if (error = ufs_fiolfss(vp, &lockfs_out))
1701 1701 return (error);
1702 1702 lockfs.lf_lock = lockfs_out.lf_lock;
1703 1703 lockfs.lf_key = lockfs_out.lf_key;
1704 1704 lockfs.lf_flags = lockfs_out.lf_flags;
1705 1705 lockfs.lf_comlen = MIN(lockfs.lf_comlen,
1706 1706 lockfs_out.lf_comlen);
1707 1707
1708 1708 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1709 1709 if (copyout(&lockfs, (caddr_t)arg,
1710 1710 sizeof (struct lockfs)))
1711 1711 return (EFAULT);
1712 1712 }
1713 1713 #ifdef _SYSCALL32_IMPL
1714 1714 else {
1715 1715 /* Translate LP64 to ILP32 lockfs */
1716 1716 struct lockfs32 lockfs32;
1717 1717 lockfs32.lf_lock = (uint32_t)lockfs.lf_lock;
1718 1718 lockfs32.lf_flags = (uint32_t)lockfs.lf_flags;
1719 1719 lockfs32.lf_key = (uint32_t)lockfs.lf_key;
1720 1720 lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen;
1721 1721 lockfs32.lf_comment =
1722 1722 (uint32_t)(uintptr_t)lockfs.lf_comment;
1723 1723 if (copyout(&lockfs32, (caddr_t)arg,
1724 1724 sizeof (struct lockfs32)))
1725 1725 return (EFAULT);
1726 1726 }
1727 1727 #endif /* _SYSCALL32_IMPL */
1728 1728
1729 1729 if (lockfs.lf_comlen &&
1730 1730 lockfs.lf_comment && lockfs_out.lf_comment)
1731 1731 if (copyout(lockfs_out.lf_comment,
1732 1732 lockfs.lf_comment, lockfs.lf_comlen))
1733 1733 return (EFAULT);
1734 1734 return (0);
1735 1735
1736 1736 case _FIOSATIME:
1737 1737 /*
1738 1738 * set access time
1739 1739 */
1740 1740
1741 1741 /*
1742 1742 * if mounted w/o atime, return quietly.
1743 1743 * I briefly thought about returning ENOSYS, but
1744 1744 * figured that most apps would consider this fatal
1745 1745 * but the idea is to make this as seamless as poss.
1746 1746 */
1747 1747 if (ufsvfsp->vfs_noatime)
1748 1748 return (0);
1749 1749
1750 1750 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1751 1751 ULOCKFS_SETATTR_MASK);
1752 1752 if (error)
1753 1753 return (error);
1754 1754
1755 1755 if (ulp) {
1756 1756 trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp));
1757 1757 TRANS_BEGIN_CSYNC(ufsvfsp, issync,
1758 1758 TOP_SETATTR, trans_size);
1759 1759 }
1760 1760
1761 1761 error = ufs_fiosatime(vp, (struct timeval *)arg,
1762 1762 flag, cr);
1763 1763
1764 1764 if (ulp) {
1765 1765 TRANS_END_CSYNC(ufsvfsp, error, issync,
1766 1766 TOP_SETATTR, trans_size);
1767 1767 ufs_lockfs_end(ulp);
1768 1768 }
1769 1769 return (error);
1770 1770
1771 1771 case _FIOSDIO:
1772 1772 /*
1773 1773 * set delayed-io
1774 1774 */
1775 1775 return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr));
1776 1776
1777 1777 case _FIOGDIO:
1778 1778 /*
1779 1779 * get delayed-io
1780 1780 */
1781 1781 return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr));
1782 1782
1783 1783 case _FIOIO:
1784 1784 /*
1785 1785 * inode open
1786 1786 */
1787 1787 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1788 1788 ULOCKFS_VGET_MASK);
1789 1789 if (error)
1790 1790 return (error);
1791 1791
1792 1792 error = ufs_fioio(vp, (struct fioio *)arg, flag, cr);
1793 1793
1794 1794 if (ulp) {
1795 1795 ufs_lockfs_end(ulp);
1796 1796 }
1797 1797 return (error);
1798 1798
1799 1799 case _FIOFFS:
1800 1800 /*
1801 1801 * file system flush (push w/invalidate)
1802 1802 */
1803 1803 if ((caddr_t)arg != NULL)
1804 1804 return (EINVAL);
1805 1805 return (ufs_fioffs(vp, NULL, cr));
1806 1806
1807 1807 case _FIOISBUSY:
1808 1808 /*
1809 1809 * Contract-private interface for Legato
1810 1810 * Purge this vnode from the DNLC and decide
1811 1811 * if this vnode is busy (*arg == 1) or not
1812 1812 * (*arg == 0)
1813 1813 */
1814 1814 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1815 1815 return (EPERM);
1816 1816 error = ufs_fioisbusy(vp, (int *)arg, cr);
1817 1817 return (error);
1818 1818
1819 1819 case _FIODIRECTIO:
1820 1820 return (ufs_fiodirectio(vp, (int)arg, cr));
1821 1821
1822 1822 case _FIOTUNE:
1823 1823 /*
1824 1824 * Tune the file system (aka setting fs attributes)
1825 1825 */
1826 1826 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1827 1827 ULOCKFS_SETATTR_MASK);
1828 1828 if (error)
1829 1829 return (error);
1830 1830
1831 1831 error = ufs_fiotune(vp, (struct fiotune *)arg, cr);
1832 1832
1833 1833 if (ulp)
1834 1834 ufs_lockfs_end(ulp);
1835 1835 return (error);
1836 1836
1837 1837 case _FIOLOGENABLE:
1838 1838 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1839 1839 return (EPERM);
1840 1840 return (ufs_fiologenable(vp, (void *)arg, cr, flag));
1841 1841
1842 1842 case _FIOLOGDISABLE:
1843 1843 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1844 1844 return (EPERM);
1845 1845 return (ufs_fiologdisable(vp, (void *)arg, cr, flag));
1846 1846
1847 1847 case _FIOISLOG:
1848 1848 return (ufs_fioislog(vp, (void *)arg, cr, flag));
1849 1849
1850 1850 case _FIOSNAPSHOTCREATE_MULTI:
1851 1851 {
1852 1852 struct fiosnapcreate_multi fc, *fcp;
1853 1853 size_t fcm_size;
1854 1854
1855 1855 if (copyin((void *)arg, &fc, sizeof (fc)))
1856 1856 return (EFAULT);
1857 1857 if (fc.backfilecount > MAX_BACKFILE_COUNT)
1858 1858 return (EINVAL);
1859 1859 fcm_size = sizeof (struct fiosnapcreate_multi) +
1860 1860 (fc.backfilecount - 1) * sizeof (int);
1861 1861 fcp = (struct fiosnapcreate_multi *)
1862 1862 kmem_alloc(fcm_size, KM_SLEEP);
1863 1863 if (copyin((void *)arg, fcp, fcm_size)) {
1864 1864 kmem_free(fcp, fcm_size);
1865 1865 return (EFAULT);
1866 1866 }
1867 1867 error = ufs_snap_create(vp, fcp, cr);
1868 1868 /*
1869 1869 * Do copyout even if there is an error because
1870 1870 * the details of error is stored in fcp.
1871 1871 */
1872 1872 if (copyout(fcp, (void *)arg, fcm_size))
1873 1873 error = EFAULT;
1874 1874 kmem_free(fcp, fcm_size);
1875 1875 return (error);
1876 1876 }
1877 1877
1878 1878 case _FIOSNAPSHOTDELETE:
1879 1879 {
1880 1880 struct fiosnapdelete fc;
1881 1881
1882 1882 if (copyin((void *)arg, &fc, sizeof (fc)))
1883 1883 return (EFAULT);
1884 1884 error = ufs_snap_delete(vp, &fc, cr);
1885 1885 if (!error && copyout(&fc, (void *)arg, sizeof (fc)))
1886 1886 error = EFAULT;
1887 1887 return (error);
1888 1888 }
1889 1889
1890 1890 case _FIOGETSUPERBLOCK:
1891 1891 if (copyout(fs, (void *)arg, SBSIZE))
1892 1892 return (EFAULT);
1893 1893 return (0);
1894 1894
1895 1895 case _FIOGETMAXPHYS:
1896 1896 if (copyout(&maxphys, (void *)arg, sizeof (maxphys)))
1897 1897 return (EFAULT);
1898 1898 return (0);
1899 1899
1900 1900 /*
1901 1901 * The following 3 ioctls are for TSufs support
1902 1902 * although could potentially be used elsewhere
1903 1903 */
1904 1904 case _FIO_SET_LUFS_DEBUG:
1905 1905 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1906 1906 return (EPERM);
1907 1907 lufs_debug = (uint32_t)arg;
1908 1908 return (0);
1909 1909
1910 1910 case _FIO_SET_LUFS_ERROR:
1911 1911 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1912 1912 return (EPERM);
1913 1913 TRANS_SETERROR(ufsvfsp);
1914 1914 return (0);
1915 1915
1916 1916 case _FIO_GET_TOP_STATS:
1917 1917 {
1918 1918 fio_lufs_stats_t *ls;
1919 1919 ml_unit_t *ul = ufsvfsp->vfs_log;
1920 1920
1921 1921 ls = kmem_zalloc(sizeof (*ls), KM_SLEEP);
1922 1922 ls->ls_debug = ul->un_debug; /* return debug value */
1923 1923 /* Copy stucture if statistics are being kept */
1924 1924 if (ul->un_logmap->mtm_tops) {
1925 1925 ls->ls_topstats = *(ul->un_logmap->mtm_tops);
1926 1926 }
1927 1927 error = 0;
1928 1928 if (copyout(ls, (void *)arg, sizeof (*ls)))
1929 1929 error = EFAULT;
1930 1930 kmem_free(ls, sizeof (*ls));
1931 1931 return (error);
1932 1932 }
1933 1933
1934 1934 case _FIO_SEEK_DATA:
1935 1935 case _FIO_SEEK_HOLE:
1936 1936 if (ddi_copyin((void *)arg, &off, sizeof (off), flag))
1937 1937 return (EFAULT);
1938 1938 /* offset paramater is in/out */
1939 1939 error = ufs_fio_holey(vp, cmd, &off);
1940 1940 if (error)
1941 1941 return (error);
1942 1942 if (ddi_copyout(&off, (void *)arg, sizeof (off), flag))
1943 1943 return (EFAULT);
1944 1944 return (0);
1945 1945
1946 1946 case _FIO_COMPRESSED:
1947 1947 {
1948 1948 /*
1949 1949 * This is a project private ufs ioctl() to mark
1950 1950 * the inode as that belonging to a compressed
1951 1951 * file. This is used to mark individual
1952 1952 * compressed files in a miniroot archive.
1953 1953 * The files compressed in this manner are
1954 1954 * automatically decompressed by the dcfs filesystem
1955 1955 * (via an interception in ufs_lookup - see decompvp())
1956 1956 * which is layered on top of ufs on a system running
1957 1957 * from the archive. See uts/common/fs/dcfs for details.
1958 1958 * This ioctl only marks the file as compressed - the
1959 1959 * actual compression is done by fiocompress (a
1960 1960 * userland utility) which invokes this ioctl().
1961 1961 */
1962 1962 struct inode *ip = VTOI(vp);
1963 1963
1964 1964 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1965 1965 ULOCKFS_SETATTR_MASK);
1966 1966 if (error)
1967 1967 return (error);
1968 1968
1969 1969 if (ulp) {
1970 1970 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_IUPDAT,
1971 1971 TOP_IUPDAT_SIZE(ip));
1972 1972 }
1973 1973
1974 1974 error = ufs_mark_compressed(vp);
1975 1975
1976 1976 if (ulp) {
1977 1977 TRANS_END_ASYNC(ufsvfsp, TOP_IUPDAT,
1978 1978 TOP_IUPDAT_SIZE(ip));
1979 1979 ufs_lockfs_end(ulp);
1980 1980 }
1981 1981
1982 1982 return (error);
1983 1983
1984 1984 }
1985 1985
1986 1986 default:
1987 1987 return (ENOTTY);
1988 1988 }
1989 1989 }
1990 1990
1991 1991
1992 1992 /* ARGSUSED */
1993 1993 static int
1994 1994 ufs_getattr(struct vnode *vp, struct vattr *vap, int flags,
1995 1995 struct cred *cr, caller_context_t *ct)
1996 1996 {
1997 1997 struct inode *ip = VTOI(vp);
1998 1998 struct ufsvfs *ufsvfsp;
1999 1999 int err;
2000 2000
2001 2001 if (vap->va_mask == AT_SIZE) {
2002 2002 /*
2003 2003 * for performance, if only the size is requested don't bother
2004 2004 * with anything else.
2005 2005 */
2006 2006 UFS_GET_ISIZE(&vap->va_size, ip);
2007 2007 return (0);
2008 2008 }
2009 2009
2010 2010 /*
2011 2011 * inlined lockfs checks
2012 2012 */
2013 2013 ufsvfsp = ip->i_ufsvfs;
2014 2014 if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) {
2015 2015 err = EIO;
2016 2016 goto out;
2017 2017 }
2018 2018
2019 2019 rw_enter(&ip->i_contents, RW_READER);
2020 2020 /*
2021 2021 * Return all the attributes. This should be refined so
2022 2022 * that it only returns what's asked for.
2023 2023 */
2024 2024
2025 2025 /*
2026 2026 * Copy from inode table.
2027 2027 */
2028 2028 vap->va_type = vp->v_type;
2029 2029 vap->va_mode = ip->i_mode & MODEMASK;
2030 2030 /*
2031 2031 * If there is an ACL and there is a mask entry, then do the
2032 2032 * extra work that completes the equivalent of an acltomode(3)
2033 2033 * call. According to POSIX P1003.1e, the acl mask should be
2034 2034 * returned in the group permissions field.
2035 2035 *
2036 2036 * - start with the original permission and mode bits (from above)
2037 2037 * - clear the group owner bits
2038 2038 * - add in the mask bits.
2039 2039 */
2040 2040 if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) {
2041 2041 vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3);
2042 2042 vap->va_mode |=
2043 2043 (ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3;
2044 2044 }
2045 2045 vap->va_uid = ip->i_uid;
2046 2046 vap->va_gid = ip->i_gid;
2047 2047 vap->va_fsid = ip->i_dev;
2048 2048 vap->va_nodeid = (ino64_t)ip->i_number;
2049 2049 vap->va_nlink = ip->i_nlink;
2050 2050 vap->va_size = ip->i_size;
2051 2051 if (vp->v_type == VCHR || vp->v_type == VBLK)
2052 2052 vap->va_rdev = ip->i_rdev;
2053 2053 else
2054 2054 vap->va_rdev = 0; /* not a b/c spec. */
2055 2055 mutex_enter(&ip->i_tlock);
2056 2056 ITIMES_NOLOCK(ip); /* mark correct time in inode */
2057 2057 vap->va_seq = ip->i_seq;
2058 2058 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec;
2059 2059 vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000;
2060 2060 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec;
2061 2061 vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000;
2062 2062 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec;
2063 2063 vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000;
2064 2064 mutex_exit(&ip->i_tlock);
2065 2065
2066 2066 switch (ip->i_mode & IFMT) {
2067 2067
2068 2068 case IFBLK:
2069 2069 vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */
2070 2070 break;
2071 2071
2072 2072 case IFCHR:
2073 2073 vap->va_blksize = MAXBSIZE;
2074 2074 break;
2075 2075
2076 2076 default:
2077 2077 vap->va_blksize = ip->i_fs->fs_bsize;
2078 2078 break;
2079 2079 }
2080 2080 vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks;
2081 2081 rw_exit(&ip->i_contents);
2082 2082 err = 0;
2083 2083
2084 2084 out:
2085 2085 return (err);
2086 2086 }
2087 2087
2088 2088 /*
2089 2089 * Special wrapper to provide a callback for secpolicy_vnode_setattr().
2090 2090 * The i_contents lock is already held by the caller and we need to
2091 2091 * declare the inode as 'void *' argument.
2092 2092 */
2093 2093 static int
2094 2094 ufs_priv_access(void *vip, int mode, struct cred *cr)
2095 2095 {
2096 2096 struct inode *ip = vip;
2097 2097
2098 2098 return (ufs_iaccess(ip, mode, cr, 0));
2099 2099 }
2100 2100
2101 2101 /*ARGSUSED4*/
2102 2102 static int
2103 2103 ufs_setattr(
2104 2104 struct vnode *vp,
2105 2105 struct vattr *vap,
2106 2106 int flags,
2107 2107 struct cred *cr,
2108 2108 caller_context_t *ct)
2109 2109 {
2110 2110 struct inode *ip = VTOI(vp);
2111 2111 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
2112 2112 struct fs *fs;
2113 2113 struct ulockfs *ulp;
2114 2114 char *errmsg1;
2115 2115 char *errmsg2;
2116 2116 long blocks;
2117 2117 long int mask = vap->va_mask;
2118 2118 size_t len1, len2;
2119 2119 int issync;
2120 2120 int trans_size;
2121 2121 int dotrans;
2122 2122 int dorwlock;
2123 2123 int error;
2124 2124 int owner_change;
2125 2125 int dodqlock;
2126 2126 timestruc_t now;
2127 2127 vattr_t oldva;
2128 2128 int retry = 1;
2129 2129 int indeadlock;
2130 2130
2131 2131 /*
2132 2132 * Cannot set these attributes.
2133 2133 */
2134 2134 if ((mask & AT_NOSET) || (mask & AT_XVATTR))
2135 2135 return (EINVAL);
2136 2136
2137 2137 /*
2138 2138 * check for forced unmount
2139 2139 */
2140 2140 if (ufsvfsp == NULL)
2141 2141 return (EIO);
2142 2142
2143 2143 fs = ufsvfsp->vfs_fs;
2144 2144 if (fs->fs_ronly != 0)
2145 2145 return (EROFS);
2146 2146
2147 2147 again:
2148 2148 errmsg1 = NULL;
2149 2149 errmsg2 = NULL;
2150 2150 dotrans = 0;
2151 2151 dorwlock = 0;
2152 2152 dodqlock = 0;
2153 2153
2154 2154 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK);
2155 2155 if (error)
2156 2156 goto out;
2157 2157
2158 2158 /*
2159 2159 * Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file.
2160 2160 * This follows the protocol for read()/write().
2161 2161 */
2162 2162 if (vp->v_type != VDIR) {
2163 2163 /*
2164 2164 * ufs_tryirwlock uses rw_tryenter and checks for SLOCK to
2165 2165 * avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
2166 2166 * possible, retries the operation.
2167 2167 */
2168 2168 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_file);
2169 2169 if (indeadlock) {
2170 2170 if (ulp)
2171 2171 ufs_lockfs_end(ulp);
2172 2172 goto again;
2173 2173 }
2174 2174 dorwlock = 1;
2175 2175 }
2176 2176
2177 2177 /*
2178 2178 * Truncate file. Must have write permission and not be a directory.
2179 2179 */
2180 2180 if (mask & AT_SIZE) {
2181 2181 rw_enter(&ip->i_contents, RW_WRITER);
2182 2182 if (vp->v_type == VDIR) {
2183 2183 error = EISDIR;
2184 2184 goto update_inode;
2185 2185 }
|
↓ open down ↓ |
2151 lines elided |
↑ open up ↑ |
2186 2186 if (error = ufs_iaccess(ip, IWRITE, cr, 0))
2187 2187 goto update_inode;
2188 2188
2189 2189 rw_exit(&ip->i_contents);
2190 2190 error = TRANS_ITRUNC(ip, vap->va_size, 0, cr);
2191 2191 if (error) {
2192 2192 rw_enter(&ip->i_contents, RW_WRITER);
2193 2193 goto update_inode;
2194 2194 }
2195 2195
2196 - if (error == 0 && vap->va_size)
2197 - vnevent_truncate(vp, ct);
2196 + if (error == 0) {
2197 + if (vap->va_size) {
2198 + vnevent_truncate(vp, ct);
2199 + } else {
2200 + vnevent_resize(vp, ct);
2201 + }
2202 + }
2198 2203 }
2199 2204
2200 2205 if (ulp) {
2201 2206 trans_size = (int)TOP_SETATTR_SIZE(ip);
2202 2207 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size);
2203 2208 ++dotrans;
2204 2209 }
2205 2210
2206 2211 /*
2207 2212 * Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory.
2208 2213 * This follows the protocol established by
2209 2214 * ufs_link/create/remove/rename/mkdir/rmdir/symlink.
2210 2215 */
2211 2216 if (vp->v_type == VDIR) {
2212 2217 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_SETATTR,
2213 2218 retry_dir);
2214 2219 if (indeadlock)
2215 2220 goto again;
2216 2221 dorwlock = 1;
2217 2222 }
2218 2223
2219 2224 /*
2220 2225 * Grab quota lock if we are changing the file's owner.
2221 2226 */
2222 2227 if (mask & AT_UID) {
2223 2228 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2224 2229 dodqlock = 1;
2225 2230 }
2226 2231 rw_enter(&ip->i_contents, RW_WRITER);
2227 2232
2228 2233 oldva.va_mode = ip->i_mode;
2229 2234 oldva.va_uid = ip->i_uid;
2230 2235 oldva.va_gid = ip->i_gid;
2231 2236
2232 2237 vap->va_mask &= ~AT_SIZE;
2233 2238
2234 2239 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2235 2240 ufs_priv_access, ip);
2236 2241 if (error)
2237 2242 goto update_inode;
2238 2243
2239 2244 mask = vap->va_mask;
2240 2245
2241 2246 /*
2242 2247 * Change file access modes.
2243 2248 */
2244 2249 if (mask & AT_MODE) {
2245 2250 ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT);
2246 2251 TRANS_INODE(ufsvfsp, ip);
2247 2252 ip->i_flag |= ICHG;
2248 2253 if (stickyhack) {
2249 2254 mutex_enter(&vp->v_lock);
2250 2255 if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX)
2251 2256 vp->v_flag |= VSWAPLIKE;
2252 2257 else
2253 2258 vp->v_flag &= ~VSWAPLIKE;
2254 2259 mutex_exit(&vp->v_lock);
2255 2260 }
2256 2261 }
2257 2262 if (mask & (AT_UID|AT_GID)) {
2258 2263 if (mask & AT_UID) {
2259 2264 /*
2260 2265 * Don't change ownership of the quota inode.
2261 2266 */
2262 2267 if (ufsvfsp->vfs_qinod == ip) {
2263 2268 ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED);
2264 2269 error = EINVAL;
2265 2270 goto update_inode;
2266 2271 }
2267 2272
2268 2273 /*
2269 2274 * No real ownership change.
2270 2275 */
2271 2276 if (ip->i_uid == vap->va_uid) {
2272 2277 blocks = 0;
2273 2278 owner_change = 0;
2274 2279 }
2275 2280 /*
2276 2281 * Remove the blocks and the file, from the old user's
2277 2282 * quota.
2278 2283 */
2279 2284 else {
2280 2285 blocks = ip->i_blocks;
2281 2286 owner_change = 1;
2282 2287
2283 2288 (void) chkdq(ip, -blocks, /* force */ 1, cr,
2284 2289 (char **)NULL, (size_t *)NULL);
2285 2290 (void) chkiq(ufsvfsp, /* change */ -1, ip,
2286 2291 (uid_t)ip->i_uid, /* force */ 1, cr,
2287 2292 (char **)NULL, (size_t *)NULL);
2288 2293 dqrele(ip->i_dquot);
2289 2294 }
2290 2295
2291 2296 ip->i_uid = vap->va_uid;
2292 2297
2293 2298 /*
2294 2299 * There is a real ownership change.
2295 2300 */
2296 2301 if (owner_change) {
2297 2302 /*
2298 2303 * Add the blocks and the file to the new
2299 2304 * user's quota.
2300 2305 */
2301 2306 ip->i_dquot = getinoquota(ip);
2302 2307 (void) chkdq(ip, blocks, /* force */ 1, cr,
2303 2308 &errmsg1, &len1);
2304 2309 (void) chkiq(ufsvfsp, /* change */ 1,
2305 2310 (struct inode *)NULL, (uid_t)ip->i_uid,
2306 2311 /* force */ 1, cr, &errmsg2, &len2);
2307 2312 }
2308 2313 }
2309 2314 if (mask & AT_GID) {
2310 2315 ip->i_gid = vap->va_gid;
2311 2316 }
2312 2317 TRANS_INODE(ufsvfsp, ip);
2313 2318 ip->i_flag |= ICHG;
2314 2319 }
2315 2320 /*
2316 2321 * Change file access or modified times.
2317 2322 */
2318 2323 if (mask & (AT_ATIME|AT_MTIME)) {
2319 2324 /* Check that the time value is within ufs range */
2320 2325 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2321 2326 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2322 2327 error = EOVERFLOW;
2323 2328 goto update_inode;
2324 2329 }
2325 2330
2326 2331 /*
2327 2332 * if the "noaccess" mount option is set and only atime
2328 2333 * update is requested, do nothing. No error is returned.
2329 2334 */
2330 2335 if ((ufsvfsp->vfs_noatime) &&
2331 2336 ((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME))
2332 2337 goto skip_atime;
2333 2338
2334 2339 if (mask & AT_ATIME) {
2335 2340 ip->i_atime.tv_sec = vap->va_atime.tv_sec;
2336 2341 ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000;
2337 2342 ip->i_flag &= ~IACC;
2338 2343 }
2339 2344 if (mask & AT_MTIME) {
2340 2345 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec;
2341 2346 ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000;
2342 2347 gethrestime(&now);
2343 2348 if (now.tv_sec > TIME32_MAX) {
2344 2349 /*
2345 2350 * In 2038, ctime sticks forever..
2346 2351 */
2347 2352 ip->i_ctime.tv_sec = TIME32_MAX;
2348 2353 ip->i_ctime.tv_usec = 0;
2349 2354 } else {
2350 2355 ip->i_ctime.tv_sec = now.tv_sec;
2351 2356 ip->i_ctime.tv_usec = now.tv_nsec / 1000;
2352 2357 }
2353 2358 ip->i_flag &= ~(IUPD|ICHG);
2354 2359 ip->i_flag |= IMODTIME;
2355 2360 }
2356 2361 TRANS_INODE(ufsvfsp, ip);
2357 2362 ip->i_flag |= IMOD;
2358 2363 }
2359 2364
2360 2365 skip_atime:
2361 2366 /*
2362 2367 * The presence of a shadow inode may indicate an ACL, but does
2363 2368 * not imply an ACL. Future FSD types should be handled here too
2364 2369 * and check for the presence of the attribute-specific data
2365 2370 * before referencing it.
2366 2371 */
2367 2372 if (ip->i_shadow) {
2368 2373 /*
2369 2374 * XXX if ufs_iupdat is changed to sandbagged write fix
2370 2375 * ufs_acl_setattr to push ip to keep acls consistent
2371 2376 *
2372 2377 * Suppress out of inodes messages if we will retry.
2373 2378 */
2374 2379 if (retry)
2375 2380 ip->i_flag |= IQUIET;
2376 2381 error = ufs_acl_setattr(ip, vap, cr);
2377 2382 ip->i_flag &= ~IQUIET;
2378 2383 }
2379 2384
2380 2385 update_inode:
2381 2386 /*
2382 2387 * Setattr always increases the sequence number
2383 2388 */
2384 2389 ip->i_seq++;
2385 2390
2386 2391 /*
2387 2392 * if nfsd and not logging; push synchronously
2388 2393 */
2389 2394 if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) {
2390 2395 ufs_iupdat(ip, 1);
2391 2396 } else {
2392 2397 ITIMES_NOLOCK(ip);
2393 2398 }
2394 2399
2395 2400 rw_exit(&ip->i_contents);
2396 2401 if (dodqlock) {
2397 2402 rw_exit(&ufsvfsp->vfs_dqrwlock);
2398 2403 }
2399 2404 if (dorwlock)
2400 2405 rw_exit(&ip->i_rwlock);
2401 2406
2402 2407 if (ulp) {
2403 2408 if (dotrans) {
2404 2409 int terr = 0;
2405 2410 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR,
2406 2411 trans_size);
2407 2412 if (error == 0)
2408 2413 error = terr;
2409 2414 }
2410 2415 ufs_lockfs_end(ulp);
2411 2416 }
2412 2417 out:
2413 2418 /*
2414 2419 * If out of inodes or blocks, see if we can free something
2415 2420 * up from the delete queue.
2416 2421 */
2417 2422 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
2418 2423 ufs_delete_drain_wait(ufsvfsp, 1);
2419 2424 retry = 0;
2420 2425 if (errmsg1 != NULL)
2421 2426 kmem_free(errmsg1, len1);
2422 2427 if (errmsg2 != NULL)
2423 2428 kmem_free(errmsg2, len2);
2424 2429 goto again;
2425 2430 }
2426 2431 if (errmsg1 != NULL) {
2427 2432 uprintf(errmsg1);
2428 2433 kmem_free(errmsg1, len1);
2429 2434 }
2430 2435 if (errmsg2 != NULL) {
2431 2436 uprintf(errmsg2);
2432 2437 kmem_free(errmsg2, len2);
2433 2438 }
2434 2439 return (error);
2435 2440 }
2436 2441
2437 2442 /*ARGSUSED*/
2438 2443 static int
2439 2444 ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr,
2440 2445 caller_context_t *ct)
2441 2446 {
2442 2447 struct inode *ip = VTOI(vp);
2443 2448
2444 2449 if (ip->i_ufsvfs == NULL)
2445 2450 return (EIO);
2446 2451
2447 2452 /*
2448 2453 * The ufs_iaccess function wants to be called with
2449 2454 * mode bits expressed as "ufs specific" bits.
2450 2455 * I.e., VWRITE|VREAD|VEXEC do not make sense to
2451 2456 * ufs_iaccess() but IWRITE|IREAD|IEXEC do.
2452 2457 * But since they're the same we just pass the vnode mode
2453 2458 * bit but just verify that assumption at compile time.
2454 2459 */
2455 2460 #if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC
2456 2461 #error "ufs_access needs to map Vmodes to Imodes"
2457 2462 #endif
2458 2463 return (ufs_iaccess(ip, mode, cr, 1));
2459 2464 }
2460 2465
2461 2466 /* ARGSUSED */
2462 2467 static int
2463 2468 ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr,
2464 2469 caller_context_t *ct)
2465 2470 {
2466 2471 struct inode *ip = VTOI(vp);
2467 2472 struct ufsvfs *ufsvfsp;
2468 2473 struct ulockfs *ulp;
2469 2474 int error;
2470 2475 int fastsymlink;
2471 2476
2472 2477 if (vp->v_type != VLNK) {
2473 2478 error = EINVAL;
2474 2479 goto nolockout;
2475 2480 }
2476 2481
2477 2482 /*
2478 2483 * If the symbolic link is empty there is nothing to read.
2479 2484 * Fast-track these empty symbolic links
2480 2485 */
2481 2486 if (ip->i_size == 0) {
2482 2487 error = 0;
2483 2488 goto nolockout;
2484 2489 }
2485 2490
2486 2491 ufsvfsp = ip->i_ufsvfs;
2487 2492 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK);
2488 2493 if (error)
2489 2494 goto nolockout;
2490 2495 /*
2491 2496 * The ip->i_rwlock protects the data blocks used for FASTSYMLINK
2492 2497 */
2493 2498 again:
2494 2499 fastsymlink = 0;
2495 2500 if (ip->i_flag & IFASTSYMLNK) {
2496 2501 rw_enter(&ip->i_rwlock, RW_READER);
2497 2502 rw_enter(&ip->i_contents, RW_READER);
2498 2503 if (ip->i_flag & IFASTSYMLNK) {
2499 2504 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) &&
2500 2505 (ip->i_fs->fs_ronly == 0) &&
2501 2506 (!ufsvfsp->vfs_noatime)) {
2502 2507 mutex_enter(&ip->i_tlock);
2503 2508 ip->i_flag |= IACC;
2504 2509 mutex_exit(&ip->i_tlock);
2505 2510 }
2506 2511 error = uiomove((caddr_t)&ip->i_db[1],
2507 2512 MIN(ip->i_size, uiop->uio_resid),
2508 2513 UIO_READ, uiop);
2509 2514 ITIMES(ip);
2510 2515 ++fastsymlink;
2511 2516 }
2512 2517 rw_exit(&ip->i_contents);
2513 2518 rw_exit(&ip->i_rwlock);
2514 2519 }
2515 2520 if (!fastsymlink) {
2516 2521 ssize_t size; /* number of bytes read */
2517 2522 caddr_t basep; /* pointer to input data */
2518 2523 ino_t ino;
2519 2524 long igen;
2520 2525 struct uio tuio; /* temp uio struct */
2521 2526 struct uio *tuiop;
2522 2527 iovec_t tiov; /* temp iovec struct */
2523 2528 char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */
2524 2529 int tflag = 0; /* flag to indicate temp vars used */
2525 2530
2526 2531 ino = ip->i_number;
2527 2532 igen = ip->i_gen;
2528 2533 size = uiop->uio_resid;
2529 2534 basep = uiop->uio_iov->iov_base;
2530 2535 tuiop = uiop;
2531 2536
2532 2537 rw_enter(&ip->i_rwlock, RW_WRITER);
2533 2538 rw_enter(&ip->i_contents, RW_WRITER);
2534 2539 if (ip->i_flag & IFASTSYMLNK) {
2535 2540 rw_exit(&ip->i_contents);
2536 2541 rw_exit(&ip->i_rwlock);
2537 2542 goto again;
2538 2543 }
2539 2544
2540 2545 /* can this be a fast symlink and is it a user buffer? */
2541 2546 if (ip->i_size <= FSL_SIZE &&
2542 2547 (uiop->uio_segflg == UIO_USERSPACE ||
2543 2548 uiop->uio_segflg == UIO_USERISPACE)) {
2544 2549
2545 2550 bzero(&tuio, sizeof (struct uio));
2546 2551 /*
2547 2552 * setup a kernel buffer to read link into. this
2548 2553 * is to fix a race condition where the user buffer
2549 2554 * got corrupted before copying it into the inode.
2550 2555 */
2551 2556 size = ip->i_size;
2552 2557 tiov.iov_len = size;
2553 2558 tiov.iov_base = kbuf;
2554 2559 tuio.uio_iov = &tiov;
2555 2560 tuio.uio_iovcnt = 1;
2556 2561 tuio.uio_offset = uiop->uio_offset;
2557 2562 tuio.uio_segflg = UIO_SYSSPACE;
2558 2563 tuio.uio_fmode = uiop->uio_fmode;
2559 2564 tuio.uio_extflg = uiop->uio_extflg;
2560 2565 tuio.uio_limit = uiop->uio_limit;
2561 2566 tuio.uio_resid = size;
2562 2567
2563 2568 basep = tuio.uio_iov->iov_base;
2564 2569 tuiop = &tuio;
2565 2570 tflag = 1;
2566 2571 }
2567 2572
2568 2573 error = rdip(ip, tuiop, 0, cr);
2569 2574 if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) {
2570 2575 rw_exit(&ip->i_contents);
2571 2576 rw_exit(&ip->i_rwlock);
2572 2577 goto out;
2573 2578 }
2574 2579
2575 2580 if (tflag == 0)
2576 2581 size -= uiop->uio_resid;
2577 2582
2578 2583 if ((tflag == 0 && ip->i_size <= FSL_SIZE &&
2579 2584 ip->i_size == size) || (tflag == 1 &&
2580 2585 tuio.uio_resid == 0)) {
2581 2586 error = kcopy(basep, &ip->i_db[1], ip->i_size);
2582 2587 if (error == 0) {
2583 2588 ip->i_flag |= IFASTSYMLNK;
2584 2589 /*
2585 2590 * free page
2586 2591 */
2587 2592 (void) VOP_PUTPAGE(ITOV(ip),
2588 2593 (offset_t)0, PAGESIZE,
2589 2594 (B_DONTNEED | B_FREE | B_FORCE | B_ASYNC),
2590 2595 cr, ct);
2591 2596 } else {
2592 2597 int i;
2593 2598 /* error, clear garbage left behind */
2594 2599 for (i = 1; i < NDADDR; i++)
2595 2600 ip->i_db[i] = 0;
2596 2601 for (i = 0; i < NIADDR; i++)
2597 2602 ip->i_ib[i] = 0;
2598 2603 }
2599 2604 }
2600 2605 if (tflag == 1) {
2601 2606 /* now, copy it into the user buffer */
2602 2607 error = uiomove((caddr_t)kbuf,
2603 2608 MIN(size, uiop->uio_resid),
2604 2609 UIO_READ, uiop);
2605 2610 }
2606 2611 rw_exit(&ip->i_contents);
2607 2612 rw_exit(&ip->i_rwlock);
2608 2613 }
2609 2614 out:
2610 2615 if (ulp) {
2611 2616 ufs_lockfs_end(ulp);
2612 2617 }
2613 2618 nolockout:
2614 2619 return (error);
2615 2620 }
2616 2621
2617 2622 /* ARGSUSED */
2618 2623 static int
2619 2624 ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr,
2620 2625 caller_context_t *ct)
2621 2626 {
2622 2627 struct inode *ip = VTOI(vp);
2623 2628 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
2624 2629 struct ulockfs *ulp;
2625 2630 int error;
2626 2631
2627 2632 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK);
2628 2633 if (error)
2629 2634 return (error);
2630 2635
2631 2636 if (TRANS_ISTRANS(ufsvfsp)) {
2632 2637 /*
2633 2638 * First push out any data pages
2634 2639 */
2635 2640 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2636 2641 (vp->v_type != VCHR) && !(IS_SWAPVP(vp))) {
2637 2642 error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0,
2638 2643 0, CRED(), ct);
2639 2644 if (error)
2640 2645 goto out;
2641 2646 }
2642 2647
2643 2648 /*
2644 2649 * Delta any delayed inode times updates
2645 2650 * and push inode to log.
2646 2651 * All other inode deltas will have already been delta'd
2647 2652 * and will be pushed during the commit.
2648 2653 */
2649 2654 if (!(syncflag & FDSYNC) &&
2650 2655 ((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) {
2651 2656 if (ulp) {
2652 2657 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC,
2653 2658 TOP_SYNCIP_SIZE);
2654 2659 }
2655 2660 rw_enter(&ip->i_contents, RW_READER);
2656 2661 mutex_enter(&ip->i_tlock);
2657 2662 ip->i_flag &= ~IMODTIME;
2658 2663 mutex_exit(&ip->i_tlock);
2659 2664 ufs_iupdat(ip, I_SYNC);
2660 2665 rw_exit(&ip->i_contents);
2661 2666 if (ulp) {
2662 2667 TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC,
2663 2668 TOP_SYNCIP_SIZE);
2664 2669 }
2665 2670 }
2666 2671
2667 2672 /*
2668 2673 * Commit the Moby transaction
2669 2674 *
2670 2675 * Deltas have already been made so we just need to
2671 2676 * commit them with a synchronous transaction.
2672 2677 * TRANS_BEGIN_SYNC() will return an error
2673 2678 * if there are no deltas to commit, for an
2674 2679 * empty transaction.
2675 2680 */
2676 2681 if (ulp) {
2677 2682 TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE,
2678 2683 error);
2679 2684 if (error) {
2680 2685 error = 0; /* commit wasn't needed */
2681 2686 goto out;
2682 2687 }
2683 2688 TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC,
2684 2689 TOP_COMMIT_SIZE);
2685 2690 }
2686 2691 } else { /* not logging */
2687 2692 if (!(IS_SWAPVP(vp)))
2688 2693 if (syncflag & FNODSYNC) {
2689 2694 /* Just update the inode only */
2690 2695 TRANS_IUPDAT(ip, 1);
2691 2696 error = 0;
2692 2697 } else if (syncflag & FDSYNC)
2693 2698 /* Do data-synchronous writes */
2694 2699 error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC);
2695 2700 else
2696 2701 /* Do synchronous writes */
2697 2702 error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC);
2698 2703
2699 2704 rw_enter(&ip->i_contents, RW_WRITER);
2700 2705 if (!error)
2701 2706 error = ufs_sync_indir(ip);
2702 2707 rw_exit(&ip->i_contents);
2703 2708 }
2704 2709 out:
2705 2710 if (ulp) {
2706 2711 ufs_lockfs_end(ulp);
2707 2712 }
2708 2713 return (error);
2709 2714 }
2710 2715
2711 2716 /*ARGSUSED*/
2712 2717 static void
2713 2718 ufs_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct)
2714 2719 {
2715 2720 ufs_iinactive(VTOI(vp));
2716 2721 }
2717 2722
2718 2723 /*
2719 2724 * Unix file system operations having to do with directory manipulation.
2720 2725 */
2721 2726 int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */
2722 2727 /* ARGSUSED */
2723 2728 static int
2724 2729 ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp,
2725 2730 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr,
2726 2731 caller_context_t *ct, int *direntflags, pathname_t *realpnp)
2727 2732 {
2728 2733 struct inode *ip;
2729 2734 struct inode *sip;
2730 2735 struct inode *xip;
2731 2736 struct ufsvfs *ufsvfsp;
2732 2737 struct ulockfs *ulp;
2733 2738 struct vnode *vp;
2734 2739 int error;
2735 2740
2736 2741 /*
2737 2742 * Check flags for type of lookup (regular file or attribute file)
2738 2743 */
2739 2744
2740 2745 ip = VTOI(dvp);
2741 2746
2742 2747 if (flags & LOOKUP_XATTR) {
2743 2748
2744 2749 /*
2745 2750 * If not mounted with XATTR support then return EINVAL
2746 2751 */
2747 2752
2748 2753 if (!(ip->i_ufsvfs->vfs_vfs->vfs_flag & VFS_XATTR))
2749 2754 return (EINVAL);
2750 2755 /*
2751 2756 * We don't allow recursive attributes...
2752 2757 * Maybe someday we will.
2753 2758 */
2754 2759 if ((ip->i_cflags & IXATTR)) {
2755 2760 return (EINVAL);
2756 2761 }
2757 2762
2758 2763 if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) {
2759 2764 error = ufs_xattr_getattrdir(dvp, &sip, flags, cr);
2760 2765 if (error) {
2761 2766 *vpp = NULL;
2762 2767 goto out;
2763 2768 }
2764 2769
2765 2770 vp = ITOV(sip);
2766 2771 dnlc_update(dvp, XATTR_DIR_NAME, vp);
2767 2772 }
2768 2773
2769 2774 /*
2770 2775 * Check accessibility of directory.
2771 2776 */
2772 2777 if (vp == DNLC_NO_VNODE) {
2773 2778 VN_RELE(vp);
2774 2779 error = ENOENT;
2775 2780 goto out;
2776 2781 }
2777 2782 if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr, 1)) != 0) {
2778 2783 VN_RELE(vp);
2779 2784 goto out;
2780 2785 }
2781 2786
2782 2787 *vpp = vp;
2783 2788 return (0);
2784 2789 }
2785 2790
2786 2791 /*
2787 2792 * Check for a null component, which we should treat as
2788 2793 * looking at dvp from within it's parent, so we don't
2789 2794 * need a call to ufs_iaccess(), as it has already been
2790 2795 * done.
2791 2796 */
2792 2797 if (nm[0] == 0) {
2793 2798 VN_HOLD(dvp);
2794 2799 error = 0;
2795 2800 *vpp = dvp;
2796 2801 goto out;
2797 2802 }
2798 2803
2799 2804 /*
2800 2805 * Check for "." ie itself. this is a quick check and
2801 2806 * avoids adding "." into the dnlc (which have been seen
2802 2807 * to occupy >10% of the cache).
2803 2808 */
2804 2809 if ((nm[0] == '.') && (nm[1] == 0)) {
2805 2810 /*
2806 2811 * Don't return without checking accessibility
2807 2812 * of the directory. We only need the lock if
2808 2813 * we are going to return it.
2809 2814 */
2810 2815 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) == 0) {
2811 2816 VN_HOLD(dvp);
2812 2817 *vpp = dvp;
2813 2818 }
2814 2819 goto out;
2815 2820 }
2816 2821
2817 2822 /*
2818 2823 * Fast path: Check the directory name lookup cache.
2819 2824 */
2820 2825 if (vp = dnlc_lookup(dvp, nm)) {
2821 2826 /*
2822 2827 * Check accessibility of directory.
2823 2828 */
2824 2829 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) != 0) {
2825 2830 VN_RELE(vp);
2826 2831 goto out;
2827 2832 }
2828 2833 if (vp == DNLC_NO_VNODE) {
2829 2834 VN_RELE(vp);
2830 2835 error = ENOENT;
2831 2836 goto out;
2832 2837 }
2833 2838 xip = VTOI(vp);
2834 2839 ulp = NULL;
2835 2840 goto fastpath;
2836 2841 }
2837 2842
2838 2843 /*
2839 2844 * Keep the idle queue from getting too long by
2840 2845 * idling two inodes before attempting to allocate another.
2841 2846 * This operation must be performed before entering
2842 2847 * lockfs or a transaction.
2843 2848 */
2844 2849 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
2845 2850 if ((curthread->t_flag & T_DONTBLOCK) == 0) {
2846 2851 ins.in_lidles.value.ul += ufs_lookup_idle_count;
2847 2852 ufs_idle_some(ufs_lookup_idle_count);
2848 2853 }
2849 2854
2850 2855 retry_lookup:
2851 2856 /*
2852 2857 * Check accessibility of directory.
2853 2858 */
2854 2859 if (error = ufs_diraccess(ip, IEXEC, cr))
2855 2860 goto out;
2856 2861
2857 2862 ufsvfsp = ip->i_ufsvfs;
2858 2863 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK);
2859 2864 if (error)
2860 2865 goto out;
2861 2866
2862 2867 error = ufs_dirlook(ip, nm, &xip, cr, 1, 0);
2863 2868
2864 2869 fastpath:
2865 2870 if (error == 0) {
2866 2871 ip = xip;
2867 2872 *vpp = ITOV(ip);
2868 2873
2869 2874 /*
2870 2875 * If vnode is a device return special vnode instead.
2871 2876 */
2872 2877 if (IS_DEVVP(*vpp)) {
2873 2878 struct vnode *newvp;
2874 2879
2875 2880 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type,
2876 2881 cr);
2877 2882 VN_RELE(*vpp);
2878 2883 if (newvp == NULL)
2879 2884 error = ENOSYS;
2880 2885 else
2881 2886 *vpp = newvp;
2882 2887 } else if (ip->i_cflags & ICOMPRESS) {
2883 2888 struct vnode *newvp;
2884 2889
2885 2890 /*
2886 2891 * Compressed file, substitute dcfs vnode
2887 2892 */
2888 2893 newvp = decompvp(*vpp, cr, ct);
2889 2894 VN_RELE(*vpp);
2890 2895 if (newvp == NULL)
2891 2896 error = ENOSYS;
2892 2897 else
2893 2898 *vpp = newvp;
2894 2899 }
2895 2900 }
2896 2901 if (ulp) {
2897 2902 ufs_lockfs_end(ulp);
2898 2903 }
2899 2904
2900 2905 if (error == EAGAIN)
2901 2906 goto retry_lookup;
2902 2907
2903 2908 out:
2904 2909 return (error);
2905 2910 }
2906 2911
2907 2912 /*ARGSUSED*/
2908 2913 static int
2909 2914 ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl,
2910 2915 int mode, struct vnode **vpp, struct cred *cr, int flag,
2911 2916 caller_context_t *ct, vsecattr_t *vsecp)
2912 2917 {
2913 2918 struct inode *ip;
2914 2919 struct inode *xip;
2915 2920 struct inode *dip;
2916 2921 struct vnode *xvp;
2917 2922 struct ufsvfs *ufsvfsp;
2918 2923 struct ulockfs *ulp;
2919 2924 int error;
2920 2925 int issync;
2921 2926 int truncflag;
2922 2927 int trans_size;
2923 2928 int noentry;
2924 2929 int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */
2925 2930 int retry = 1;
2926 2931 int indeadlock;
2927 2932
2928 2933 again:
2929 2934 ip = VTOI(dvp);
2930 2935 ufsvfsp = ip->i_ufsvfs;
2931 2936 truncflag = 0;
2932 2937
2933 2938 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK);
2934 2939 if (error)
2935 2940 goto out;
2936 2941
2937 2942 if (ulp) {
2938 2943 trans_size = (int)TOP_CREATE_SIZE(ip);
2939 2944 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size);
2940 2945 }
2941 2946
2942 2947 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0)
2943 2948 vap->va_mode &= ~VSVTX;
2944 2949
2945 2950 if (*name == '\0') {
2946 2951 /*
2947 2952 * Null component name refers to the directory itself.
2948 2953 */
2949 2954 VN_HOLD(dvp);
2950 2955 /*
2951 2956 * Even though this is an error case, we need to grab the
2952 2957 * quota lock since the error handling code below is common.
2953 2958 */
2954 2959 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2955 2960 rw_enter(&ip->i_contents, RW_WRITER);
2956 2961 error = EEXIST;
2957 2962 } else {
2958 2963 xip = NULL;
2959 2964 noentry = 0;
2960 2965 /*
2961 2966 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
2962 2967 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
2963 2968 * possible, retries the operation.
2964 2969 */
2965 2970 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_CREATE,
2966 2971 retry_dir);
2967 2972 if (indeadlock)
2968 2973 goto again;
2969 2974
2970 2975 xvp = dnlc_lookup(dvp, name);
2971 2976 if (xvp == DNLC_NO_VNODE) {
2972 2977 noentry = 1;
2973 2978 VN_RELE(xvp);
2974 2979 xvp = NULL;
2975 2980 }
2976 2981 if (xvp) {
2977 2982 rw_exit(&ip->i_rwlock);
2978 2983 if (error = ufs_iaccess(ip, IEXEC, cr, 1)) {
2979 2984 VN_RELE(xvp);
2980 2985 } else {
2981 2986 error = EEXIST;
2982 2987 xip = VTOI(xvp);
2983 2988 }
2984 2989 } else {
2985 2990 /*
2986 2991 * Suppress file system full message if we will retry
2987 2992 */
2988 2993 error = ufs_direnter_cm(ip, name, DE_CREATE,
2989 2994 vap, &xip, cr, (noentry | (retry ? IQUIET : 0)));
2990 2995 if (error == EAGAIN) {
2991 2996 if (ulp) {
2992 2997 TRANS_END_CSYNC(ufsvfsp, error, issync,
2993 2998 TOP_CREATE, trans_size);
2994 2999 ufs_lockfs_end(ulp);
2995 3000 }
2996 3001 goto again;
2997 3002 }
2998 3003 rw_exit(&ip->i_rwlock);
2999 3004 }
3000 3005 ip = xip;
3001 3006 if (ip != NULL) {
3002 3007 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
3003 3008 rw_enter(&ip->i_contents, RW_WRITER);
3004 3009 }
3005 3010 }
3006 3011
3007 3012 /*
3008 3013 * If the file already exists and this is a non-exclusive create,
3009 3014 * check permissions and allow access for non-directories.
3010 3015 * Read-only create of an existing directory is also allowed.
3011 3016 * We fail an exclusive create of anything which already exists.
3012 3017 */
3013 3018 if (error == EEXIST) {
3014 3019 dip = VTOI(dvp);
3015 3020 if (excl == NONEXCL) {
3016 3021 if ((((ip->i_mode & IFMT) == IFDIR) ||
3017 3022 ((ip->i_mode & IFMT) == IFATTRDIR)) &&
3018 3023 (mode & IWRITE))
3019 3024 error = EISDIR;
3020 3025 else if (mode)
3021 3026 error = ufs_iaccess(ip, mode, cr, 0);
3022 3027 else
3023 3028 error = 0;
3024 3029 }
3025 3030 if (error) {
3026 3031 rw_exit(&ip->i_contents);
3027 3032 rw_exit(&ufsvfsp->vfs_dqrwlock);
3028 3033 VN_RELE(ITOV(ip));
3029 3034 goto unlock;
3030 3035 }
3031 3036 /*
3032 3037 * If the error EEXIST was set, then i_seq can not
3033 3038 * have been updated. The sequence number interface
3034 3039 * is defined such that a non-error VOP_CREATE must
3035 3040 * increase the dir va_seq it by at least one. If we
3036 3041 * have cleared the error, increase i_seq. Note that
3037 3042 * we are increasing the dir i_seq and in rare cases
3038 3043 * ip may actually be from the dvp, so we already have
3039 3044 * the locks and it will not be subject to truncation.
3040 3045 * In case we have to update i_seq of the parent
3041 3046 * directory dip, we have to defer it till we have
3042 3047 * released our locks on ip due to lock ordering requirements.
3043 3048 */
3044 3049 if (ip != dip)
3045 3050 defer_dip_seq_update = 1;
3046 3051 else
3047 3052 ip->i_seq++;
3048 3053
3049 3054 if (((ip->i_mode & IFMT) == IFREG) &&
3050 3055 (vap->va_mask & AT_SIZE) && vap->va_size == 0) {
3051 3056 /*
3052 3057 * Truncate regular files, if requested by caller.
3053 3058 * Grab i_rwlock to make sure no one else is
3054 3059 * currently writing to the file (we promised
3055 3060 * bmap we would do this).
3056 3061 * Must get the locks in the correct order.
3057 3062 */
3058 3063 if (ip->i_size == 0) {
3059 3064 ip->i_flag |= ICHG | IUPD;
3060 3065 ip->i_seq++;
3061 3066 TRANS_INODE(ufsvfsp, ip);
3062 3067 } else {
3063 3068 /*
3064 3069 * Large Files: Why this check here?
3065 3070 * Though we do it in vn_create() we really
3066 3071 * want to guarantee that we do not destroy
3067 3072 * Large file data by atomically checking
3068 3073 * the size while holding the contents
3069 3074 * lock.
3070 3075 */
3071 3076 if (flag && !(flag & FOFFMAX) &&
3072 3077 ((ip->i_mode & IFMT) == IFREG) &&
3073 3078 (ip->i_size > (offset_t)MAXOFF32_T)) {
3074 3079 rw_exit(&ip->i_contents);
3075 3080 rw_exit(&ufsvfsp->vfs_dqrwlock);
3076 3081 error = EOVERFLOW;
3077 3082 goto unlock;
3078 3083 }
3079 3084 if (TRANS_ISTRANS(ufsvfsp))
3080 3085 truncflag++;
3081 3086 else {
3082 3087 rw_exit(&ip->i_contents);
3083 3088 rw_exit(&ufsvfsp->vfs_dqrwlock);
3084 3089 ufs_tryirwlock_trans(&ip->i_rwlock,
3085 3090 RW_WRITER, TOP_CREATE,
3086 3091 retry_file);
3087 3092 if (indeadlock) {
3088 3093 VN_RELE(ITOV(ip));
3089 3094 goto again;
3090 3095 }
3091 3096 rw_enter(&ufsvfsp->vfs_dqrwlock,
3092 3097 RW_READER);
3093 3098 rw_enter(&ip->i_contents, RW_WRITER);
3094 3099 (void) ufs_itrunc(ip, (u_offset_t)0, 0,
3095 3100 cr);
3096 3101 rw_exit(&ip->i_rwlock);
3097 3102 }
3098 3103
3099 3104 }
3100 3105 if (error == 0) {
3101 3106 vnevent_create(ITOV(ip), ct);
3102 3107 }
3103 3108 }
3104 3109 }
3105 3110
3106 3111 if (error) {
3107 3112 if (ip != NULL) {
3108 3113 rw_exit(&ufsvfsp->vfs_dqrwlock);
3109 3114 rw_exit(&ip->i_contents);
3110 3115 }
3111 3116 goto unlock;
3112 3117 }
3113 3118
3114 3119 *vpp = ITOV(ip);
3115 3120 ITIMES(ip);
3116 3121 rw_exit(&ip->i_contents);
3117 3122 rw_exit(&ufsvfsp->vfs_dqrwlock);
3118 3123
3119 3124 /*
3120 3125 * If vnode is a device return special vnode instead.
3121 3126 */
3122 3127 if (!error && IS_DEVVP(*vpp)) {
3123 3128 struct vnode *newvp;
3124 3129
3125 3130 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
3126 3131 VN_RELE(*vpp);
3127 3132 if (newvp == NULL) {
3128 3133 error = ENOSYS;
3129 3134 goto unlock;
3130 3135 }
3131 3136 truncflag = 0;
3132 3137 *vpp = newvp;
3133 3138 }
3134 3139 unlock:
3135 3140
3136 3141 /*
3137 3142 * Do the deferred update of the parent directory's sequence
3138 3143 * number now.
3139 3144 */
3140 3145 if (defer_dip_seq_update == 1) {
3141 3146 rw_enter(&dip->i_contents, RW_READER);
3142 3147 mutex_enter(&dip->i_tlock);
3143 3148 dip->i_seq++;
3144 3149 mutex_exit(&dip->i_tlock);
3145 3150 rw_exit(&dip->i_contents);
3146 3151 }
3147 3152
3148 3153 if (ulp) {
3149 3154 int terr = 0;
3150 3155
3151 3156 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE,
3152 3157 trans_size);
3153 3158
3154 3159 /*
3155 3160 * If we haven't had a more interesting failure
3156 3161 * already, then anything that might've happened
3157 3162 * here should be reported.
3158 3163 */
3159 3164 if (error == 0)
3160 3165 error = terr;
3161 3166 }
3162 3167
3163 3168 if (!error && truncflag) {
3164 3169 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_trunc);
3165 3170 if (indeadlock) {
3166 3171 if (ulp)
3167 3172 ufs_lockfs_end(ulp);
3168 3173 VN_RELE(ITOV(ip));
3169 3174 goto again;
3170 3175 }
3171 3176 (void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr);
3172 3177 rw_exit(&ip->i_rwlock);
3173 3178 }
3174 3179
3175 3180 if (ulp)
3176 3181 ufs_lockfs_end(ulp);
3177 3182
3178 3183 /*
3179 3184 * If no inodes available, try to free one up out of the
3180 3185 * pending delete queue.
3181 3186 */
3182 3187 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
3183 3188 ufs_delete_drain_wait(ufsvfsp, 1);
3184 3189 retry = 0;
3185 3190 goto again;
3186 3191 }
3187 3192
3188 3193 out:
3189 3194 return (error);
3190 3195 }
3191 3196
3192 3197 extern int ufs_idle_max;
3193 3198 /*ARGSUSED*/
3194 3199 static int
3195 3200 ufs_remove(struct vnode *vp, char *nm, struct cred *cr,
3196 3201 caller_context_t *ct, int flags)
3197 3202 {
3198 3203 struct inode *ip = VTOI(vp);
3199 3204 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
3200 3205 struct ulockfs *ulp;
3201 3206 vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */
3202 3207 int indeadlock;
3203 3208 int error;
3204 3209 int issync;
3205 3210 int trans_size;
3206 3211
3207 3212 /*
3208 3213 * don't let the delete queue get too long
3209 3214 */
3210 3215 if (ufsvfsp == NULL) {
3211 3216 error = EIO;
3212 3217 goto out;
3213 3218 }
3214 3219 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max)
3215 3220 ufs_delete_drain(vp->v_vfsp, 1, 1);
3216 3221
3217 3222 error = ufs_eventlookup(vp, nm, cr, &rmvp);
3218 3223 if (rmvp != NULL) {
3219 3224 /* Only send the event if there were no errors */
3220 3225 if (error == 0)
3221 3226 vnevent_remove(rmvp, vp, nm, ct);
3222 3227 VN_RELE(rmvp);
3223 3228 }
3224 3229
3225 3230 retry_remove:
3226 3231 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK);
3227 3232 if (error)
3228 3233 goto out;
3229 3234
3230 3235 if (ulp)
3231 3236 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE,
3232 3237 trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp)));
3233 3238
3234 3239 /*
3235 3240 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3236 3241 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3237 3242 * possible, retries the operation.
3238 3243 */
3239 3244 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_REMOVE, retry);
3240 3245 if (indeadlock)
3241 3246 goto retry_remove;
3242 3247 error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0,
3243 3248 DR_REMOVE, cr);
3244 3249 rw_exit(&ip->i_rwlock);
3245 3250
3246 3251 if (ulp) {
3247 3252 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size);
3248 3253 ufs_lockfs_end(ulp);
3249 3254 }
3250 3255
3251 3256 out:
3252 3257 return (error);
3253 3258 }
3254 3259
3255 3260 /*
3256 3261 * Link a file or a directory. Only privileged processes are allowed to
3257 3262 * make links to directories.
3258 3263 */
3259 3264 /*ARGSUSED*/
3260 3265 static int
3261 3266 ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr,
3262 3267 caller_context_t *ct, int flags)
3263 3268 {
3264 3269 struct inode *sip;
3265 3270 struct inode *tdp = VTOI(tdvp);
3266 3271 struct ufsvfs *ufsvfsp = tdp->i_ufsvfs;
3267 3272 struct ulockfs *ulp;
3268 3273 struct vnode *realvp;
3269 3274 int error;
3270 3275 int issync;
3271 3276 int trans_size;
3272 3277 int isdev;
3273 3278 int indeadlock;
3274 3279
3275 3280 retry_link:
3276 3281 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK);
3277 3282 if (error)
3278 3283 goto out;
3279 3284
3280 3285 if (ulp)
3281 3286 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK,
3282 3287 trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp)));
3283 3288
3284 3289 if (VOP_REALVP(svp, &realvp, ct) == 0)
3285 3290 svp = realvp;
3286 3291
3287 3292 /*
3288 3293 * Make sure link for extended attributes is valid
3289 3294 * We only support hard linking of attr in ATTRDIR to ATTRDIR
3290 3295 *
3291 3296 * Make certain we don't attempt to look at a device node as
3292 3297 * a ufs inode.
3293 3298 */
3294 3299
3295 3300 isdev = IS_DEVVP(svp);
3296 3301 if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) &&
3297 3302 ((tdp->i_mode & IFMT) == IFATTRDIR)) ||
3298 3303 ((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) &&
3299 3304 ((tdp->i_mode & IFMT) == IFDIR))) {
3300 3305 error = EINVAL;
3301 3306 goto unlock;
3302 3307 }
3303 3308
3304 3309 sip = VTOI(svp);
3305 3310 if ((svp->v_type == VDIR &&
3306 3311 secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) ||
3307 3312 (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) {
3308 3313 error = EPERM;
3309 3314 goto unlock;
3310 3315 }
3311 3316
3312 3317 /*
3313 3318 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3314 3319 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3315 3320 * possible, retries the operation.
3316 3321 */
3317 3322 ufs_tryirwlock_trans(&tdp->i_rwlock, RW_WRITER, TOP_LINK, retry);
3318 3323 if (indeadlock)
3319 3324 goto retry_link;
3320 3325 error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0,
3321 3326 sip, cr);
3322 3327 rw_exit(&tdp->i_rwlock);
3323 3328
3324 3329 unlock:
3325 3330 if (ulp) {
3326 3331 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size);
3327 3332 ufs_lockfs_end(ulp);
3328 3333 }
3329 3334
3330 3335 if (!error) {
3331 3336 vnevent_link(svp, ct);
3332 3337 }
3333 3338 out:
3334 3339 return (error);
3335 3340 }
3336 3341
3337 3342 uint64_t ufs_rename_retry_cnt;
3338 3343 uint64_t ufs_rename_upgrade_retry_cnt;
3339 3344 uint64_t ufs_rename_dircheck_retry_cnt;
3340 3345 clock_t ufs_rename_backoff_delay = 1;
3341 3346
3342 3347 /*
3343 3348 * Rename a file or directory.
3344 3349 * We are given the vnode and entry string of the source and the
3345 3350 * vnode and entry string of the place we want to move the source
3346 3351 * to (the target). The essential operation is:
3347 3352 * unlink(target);
3348 3353 * link(source, target);
3349 3354 * unlink(source);
3350 3355 * but "atomically". Can't do full commit without saving state in
3351 3356 * the inode on disk, which isn't feasible at this time. Best we
3352 3357 * can do is always guarantee that the TARGET exists.
3353 3358 */
3354 3359
3355 3360 /*ARGSUSED*/
3356 3361 static int
3357 3362 ufs_rename(
3358 3363 struct vnode *sdvp, /* old (source) parent vnode */
3359 3364 char *snm, /* old (source) entry name */
3360 3365 struct vnode *tdvp, /* new (target) parent vnode */
3361 3366 char *tnm, /* new (target) entry name */
3362 3367 struct cred *cr,
3363 3368 caller_context_t *ct,
3364 3369 int flags)
3365 3370 {
3366 3371 struct inode *sip = NULL; /* source inode */
3367 3372 struct inode *ip = NULL; /* check inode */
3368 3373 struct inode *sdp; /* old (source) parent inode */
3369 3374 struct inode *tdp; /* new (target) parent inode */
3370 3375 struct vnode *svp = NULL; /* source vnode */
3371 3376 struct vnode *tvp = NULL; /* target vnode, if it exists */
3372 3377 struct vnode *realvp;
3373 3378 struct ufsvfs *ufsvfsp;
3374 3379 struct ulockfs *ulp = NULL;
3375 3380 struct ufs_slot slot;
3376 3381 timestruc_t now;
3377 3382 int error;
3378 3383 int issync;
3379 3384 int trans_size;
3380 3385 krwlock_t *first_lock;
3381 3386 krwlock_t *second_lock;
3382 3387 krwlock_t *reverse_lock;
3383 3388 int serr, terr;
3384 3389
3385 3390 sdp = VTOI(sdvp);
3386 3391 slot.fbp = NULL;
3387 3392 ufsvfsp = sdp->i_ufsvfs;
3388 3393
3389 3394 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3390 3395 tdvp = realvp;
3391 3396
3392 3397 /* Must do this before taking locks in case of DNLC miss */
3393 3398 terr = ufs_eventlookup(tdvp, tnm, cr, &tvp);
3394 3399 serr = ufs_eventlookup(sdvp, snm, cr, &svp);
3395 3400
3396 3401 if ((serr == 0) && ((terr == 0) || (terr == ENOENT))) {
3397 3402 if (tvp != NULL)
3398 3403 vnevent_pre_rename_dest(tvp, tdvp, tnm, ct);
3399 3404
3400 3405 /*
3401 3406 * Notify the target directory of the rename event
3402 3407 * if source and target directories are not the same.
3403 3408 */
3404 3409 if (sdvp != tdvp)
3405 3410 vnevent_pre_rename_dest_dir(tdvp, svp, tnm, ct);
3406 3411
3407 3412 if (svp != NULL)
3408 3413 vnevent_pre_rename_src(svp, sdvp, snm, ct);
3409 3414 }
3410 3415
3411 3416 if (svp != NULL)
3412 3417 VN_RELE(svp);
3413 3418
3414 3419 retry_rename:
3415 3420 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK);
3416 3421 if (error)
3417 3422 goto unlock;
3418 3423
3419 3424 if (ulp)
3420 3425 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME,
3421 3426 trans_size = (int)TOP_RENAME_SIZE(sdp));
3422 3427
3423 3428 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3424 3429 tdvp = realvp;
3425 3430
3426 3431 tdp = VTOI(tdvp);
3427 3432
3428 3433 /*
3429 3434 * We only allow renaming of attributes from ATTRDIR to ATTRDIR.
3430 3435 */
3431 3436 if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) {
3432 3437 error = EINVAL;
3433 3438 goto unlock;
3434 3439 }
3435 3440
3436 3441 /*
3437 3442 * Check accessibility of directory.
3438 3443 */
3439 3444 if (error = ufs_diraccess(sdp, IEXEC, cr))
3440 3445 goto unlock;
3441 3446
3442 3447 /*
3443 3448 * Look up inode of file we're supposed to rename.
3444 3449 */
3445 3450 gethrestime(&now);
3446 3451 if (error = ufs_dirlook(sdp, snm, &sip, cr, 0, 0)) {
3447 3452 if (error == EAGAIN) {
3448 3453 if (ulp) {
3449 3454 TRANS_END_CSYNC(ufsvfsp, error, issync,
3450 3455 TOP_RENAME, trans_size);
3451 3456 ufs_lockfs_end(ulp);
3452 3457 }
3453 3458 goto retry_rename;
3454 3459 }
3455 3460
3456 3461 goto unlock;
3457 3462 }
3458 3463
3459 3464 /*
3460 3465 * Lock both the source and target directories (they may be
3461 3466 * the same) to provide the atomicity semantics that was
3462 3467 * previously provided by the per file system vfs_rename_lock
3463 3468 *
3464 3469 * with vfs_rename_lock removed to allow simultaneous renames
3465 3470 * within a file system, ufs_dircheckpath can deadlock while
3466 3471 * traversing back to ensure that source is not a parent directory
3467 3472 * of target parent directory. This is because we get into
3468 3473 * ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER.
3469 3474 * If the tdp and sdp of the simultaneous renames happen to be
3470 3475 * in the path of each other, it can lead to a deadlock. This
3471 3476 * can be avoided by getting the locks as RW_READER here and then
3472 3477 * upgrading to RW_WRITER after completing the ufs_dircheckpath.
3473 3478 *
3474 3479 * We hold the target directory's i_rwlock after calling
3475 3480 * ufs_lockfs_begin but in many other operations (like ufs_readdir)
3476 3481 * VOP_RWLOCK is explicitly called by the filesystem independent code
3477 3482 * before calling the file system operation. In these cases the order
3478 3483 * is reversed (i.e i_rwlock is taken first and then ufs_lockfs_begin
3479 3484 * is called). This is fine as long as ufs_lockfs_begin acts as a VOP
3480 3485 * counter but with ufs_quiesce setting the SLOCK bit this becomes a
3481 3486 * synchronizing object which might lead to a deadlock. So we use
3482 3487 * rw_tryenter instead of rw_enter. If we fail to get this lock and
3483 3488 * find that SLOCK bit is set, we call ufs_lockfs_end and restart the
3484 3489 * operation.
3485 3490 */
3486 3491 retry:
3487 3492 first_lock = &tdp->i_rwlock;
3488 3493 second_lock = &sdp->i_rwlock;
3489 3494 retry_firstlock:
3490 3495 if (!rw_tryenter(first_lock, RW_READER)) {
3491 3496 /*
3492 3497 * We didn't get the lock. Check if the SLOCK is set in the
3493 3498 * ufsvfs. If yes, we might be in a deadlock. Safer to give up
3494 3499 * and wait for SLOCK to be cleared.
3495 3500 */
3496 3501
3497 3502 if (ulp && ULOCKFS_IS_SLOCK(ulp)) {
3498 3503 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME,
3499 3504 trans_size);
3500 3505 ufs_lockfs_end(ulp);
3501 3506 goto retry_rename;
3502 3507
3503 3508 } else {
3504 3509 /*
3505 3510 * SLOCK isn't set so this is a genuine synchronization
3506 3511 * case. Let's try again after giving them a breather.
3507 3512 */
3508 3513 delay(RETRY_LOCK_DELAY);
3509 3514 goto retry_firstlock;
3510 3515 }
3511 3516 }
3512 3517 /*
3513 3518 * Need to check if the tdp and sdp are same !!!
3514 3519 */
3515 3520 if ((tdp != sdp) && (!rw_tryenter(second_lock, RW_READER))) {
3516 3521 /*
3517 3522 * We didn't get the lock. Check if the SLOCK is set in the
3518 3523 * ufsvfs. If yes, we might be in a deadlock. Safer to give up
3519 3524 * and wait for SLOCK to be cleared.
3520 3525 */
3521 3526
3522 3527 rw_exit(first_lock);
3523 3528 if (ulp && ULOCKFS_IS_SLOCK(ulp)) {
3524 3529 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME,
3525 3530 trans_size);
3526 3531 ufs_lockfs_end(ulp);
3527 3532 goto retry_rename;
3528 3533
3529 3534 } else {
3530 3535 /*
3531 3536 * So we couldn't get the second level peer lock *and*
3532 3537 * the SLOCK bit isn't set. Too bad we can be
3533 3538 * contentding with someone wanting these locks otherway
3534 3539 * round. Reverse the locks in case there is a heavy
3535 3540 * contention for the second level lock.
3536 3541 */
3537 3542 reverse_lock = first_lock;
3538 3543 first_lock = second_lock;
3539 3544 second_lock = reverse_lock;
3540 3545 ufs_rename_retry_cnt++;
3541 3546 goto retry_firstlock;
3542 3547 }
3543 3548 }
3544 3549
3545 3550 if (sip == tdp) {
3546 3551 error = EINVAL;
3547 3552 goto errout;
3548 3553 }
3549 3554 /*
3550 3555 * Make sure we can delete the source entry. This requires
3551 3556 * write permission on the containing directory.
3552 3557 * Check for sticky directories.
3553 3558 */
3554 3559 rw_enter(&sdp->i_contents, RW_READER);
3555 3560 rw_enter(&sip->i_contents, RW_READER);
3556 3561 if ((error = ufs_iaccess(sdp, IWRITE, cr, 0)) != 0 ||
3557 3562 (error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) {
3558 3563 rw_exit(&sip->i_contents);
3559 3564 rw_exit(&sdp->i_contents);
3560 3565 goto errout;
3561 3566 }
3562 3567
3563 3568 /*
3564 3569 * If this is a rename of a directory and the parent is
3565 3570 * different (".." must be changed), then the source
3566 3571 * directory must not be in the directory hierarchy
3567 3572 * above the target, as this would orphan everything
3568 3573 * below the source directory. Also the user must have
3569 3574 * write permission in the source so as to be able to
3570 3575 * change "..".
3571 3576 */
3572 3577 if ((((sip->i_mode & IFMT) == IFDIR) ||
3573 3578 ((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) {
3574 3579 ino_t inum;
3575 3580
3576 3581 if (error = ufs_iaccess(sip, IWRITE, cr, 0)) {
3577 3582 rw_exit(&sip->i_contents);
3578 3583 rw_exit(&sdp->i_contents);
3579 3584 goto errout;
3580 3585 }
3581 3586 inum = sip->i_number;
3582 3587 rw_exit(&sip->i_contents);
3583 3588 rw_exit(&sdp->i_contents);
3584 3589 if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) {
3585 3590 /*
3586 3591 * If we got EAGAIN ufs_dircheckpath detected a
3587 3592 * potential deadlock and backed out. We need
3588 3593 * to retry the operation since sdp and tdp have
3589 3594 * to be released to avoid the deadlock.
3590 3595 */
3591 3596 if (error == EAGAIN) {
3592 3597 rw_exit(&tdp->i_rwlock);
3593 3598 if (tdp != sdp)
3594 3599 rw_exit(&sdp->i_rwlock);
3595 3600 delay(ufs_rename_backoff_delay);
3596 3601 ufs_rename_dircheck_retry_cnt++;
3597 3602 goto retry;
3598 3603 }
3599 3604 goto errout;
3600 3605 }
3601 3606 } else {
3602 3607 rw_exit(&sip->i_contents);
3603 3608 rw_exit(&sdp->i_contents);
3604 3609 }
3605 3610
3606 3611
3607 3612 /*
3608 3613 * Check for renaming '.' or '..' or alias of '.'
3609 3614 */
3610 3615 if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) {
3611 3616 error = EINVAL;
3612 3617 goto errout;
3613 3618 }
3614 3619
3615 3620 /*
3616 3621 * Simultaneous renames can deadlock in ufs_dircheckpath since it
3617 3622 * tries to traverse back the file tree with both tdp and sdp held
3618 3623 * as RW_WRITER. To avoid that we have to hold the tdp and sdp locks
3619 3624 * as RW_READERS till ufs_dircheckpath is done.
3620 3625 * Now that ufs_dircheckpath is done with, we can upgrade the locks
3621 3626 * to RW_WRITER.
3622 3627 */
3623 3628 if (!rw_tryupgrade(&tdp->i_rwlock)) {
3624 3629 /*
3625 3630 * The upgrade failed. We got to give away the lock
3626 3631 * as to avoid deadlocking with someone else who is
3627 3632 * waiting for writer lock. With the lock gone, we
3628 3633 * cannot be sure the checks done above will hold
3629 3634 * good when we eventually get them back as writer.
3630 3635 * So if we can't upgrade we drop the locks and retry
3631 3636 * everything again.
3632 3637 */
3633 3638 rw_exit(&tdp->i_rwlock);
3634 3639 if (tdp != sdp)
3635 3640 rw_exit(&sdp->i_rwlock);
3636 3641 delay(ufs_rename_backoff_delay);
3637 3642 ufs_rename_upgrade_retry_cnt++;
3638 3643 goto retry;
3639 3644 }
3640 3645 if (tdp != sdp) {
3641 3646 if (!rw_tryupgrade(&sdp->i_rwlock)) {
3642 3647 /*
3643 3648 * The upgrade failed. We got to give away the lock
3644 3649 * as to avoid deadlocking with someone else who is
3645 3650 * waiting for writer lock. With the lock gone, we
3646 3651 * cannot be sure the checks done above will hold
3647 3652 * good when we eventually get them back as writer.
3648 3653 * So if we can't upgrade we drop the locks and retry
3649 3654 * everything again.
3650 3655 */
3651 3656 rw_exit(&tdp->i_rwlock);
3652 3657 rw_exit(&sdp->i_rwlock);
3653 3658 delay(ufs_rename_backoff_delay);
3654 3659 ufs_rename_upgrade_retry_cnt++;
3655 3660 goto retry;
3656 3661 }
3657 3662 }
3658 3663
3659 3664 /*
3660 3665 * Now that all the locks are held check to make sure another thread
3661 3666 * didn't slip in and take out the sip.
3662 3667 */
3663 3668 slot.status = NONE;
3664 3669 if ((sip->i_ctime.tv_usec * 1000) > now.tv_nsec ||
3665 3670 sip->i_ctime.tv_sec > now.tv_sec) {
3666 3671 rw_enter(&sdp->i_ufsvfs->vfs_dqrwlock, RW_READER);
3667 3672 rw_enter(&sdp->i_contents, RW_WRITER);
3668 3673 error = ufs_dircheckforname(sdp, snm, strlen(snm), &slot,
3669 3674 &ip, cr, 0);
3670 3675 rw_exit(&sdp->i_contents);
3671 3676 rw_exit(&sdp->i_ufsvfs->vfs_dqrwlock);
3672 3677 if (error) {
3673 3678 goto errout;
3674 3679 }
3675 3680 if (ip == NULL) {
3676 3681 error = ENOENT;
3677 3682 goto errout;
3678 3683 } else {
3679 3684 /*
3680 3685 * If the inode was found need to drop the v_count
3681 3686 * so as not to keep the filesystem from being
3682 3687 * unmounted at a later time.
3683 3688 */
3684 3689 VN_RELE(ITOV(ip));
3685 3690 }
3686 3691
3687 3692 /*
3688 3693 * Release the slot.fbp that has the page mapped and
3689 3694 * locked SE_SHARED, and could be used in in
3690 3695 * ufs_direnter_lr() which needs to get the SE_EXCL lock
3691 3696 * on said page.
3692 3697 */
3693 3698 if (slot.fbp) {
3694 3699 fbrelse(slot.fbp, S_OTHER);
3695 3700 slot.fbp = NULL;
3696 3701 }
3697 3702 }
3698 3703
3699 3704 /*
3700 3705 * Link source to the target.
3701 3706 */
3702 3707 if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr)) {
3703 3708 /*
3704 3709 * ESAME isn't really an error; it indicates that the
3705 3710 * operation should not be done because the source and target
3706 3711 * are the same file, but that no error should be reported.
3707 3712 */
3708 3713 if (error == ESAME)
3709 3714 error = 0;
3710 3715 goto errout;
3711 3716 }
3712 3717
3713 3718 if (error == 0 && tvp != NULL)
3714 3719 vnevent_rename_dest(tvp, tdvp, tnm, ct);
3715 3720
3716 3721 /*
3717 3722 * Unlink the source.
3718 3723 * Remove the source entry. ufs_dirremove() checks that the entry
|
↓ open down ↓ |
1511 lines elided |
↑ open up ↑ |
3719 3724 * still reflects sip, and returns an error if it doesn't.
3720 3725 * If the entry has changed just forget about it. Release
3721 3726 * the source inode.
3722 3727 */
3723 3728 if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0,
3724 3729 DR_RENAME, cr)) == ENOENT)
3725 3730 error = 0;
3726 3731
3727 3732 if (error == 0) {
3728 3733 vnevent_rename_src(ITOV(sip), sdvp, snm, ct);
3729 - /*
3730 - * Notify the target directory of the rename event
3731 - * if source and target directories are not the same.
3732 - */
3733 - if (sdvp != tdvp)
3734 - vnevent_rename_dest_dir(tdvp, ct);
3734 + vnevent_rename_dest_dir(tdvp, ITOV(sip), tnm, ct);
3735 3735 }
3736 3736
3737 3737 errout:
3738 3738 if (slot.fbp)
3739 3739 fbrelse(slot.fbp, S_OTHER);
3740 3740
3741 3741 rw_exit(&tdp->i_rwlock);
3742 3742 if (sdp != tdp) {
3743 3743 rw_exit(&sdp->i_rwlock);
3744 3744 }
3745 3745
3746 3746 unlock:
3747 3747 if (tvp != NULL)
3748 3748 VN_RELE(tvp);
3749 3749 if (sip != NULL)
3750 3750 VN_RELE(ITOV(sip));
3751 3751
3752 3752 if (ulp) {
3753 3753 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size);
3754 3754 ufs_lockfs_end(ulp);
3755 3755 }
3756 3756
3757 3757 return (error);
3758 3758 }
3759 3759
3760 3760 /*ARGSUSED*/
3761 3761 static int
3762 3762 ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap,
3763 3763 struct vnode **vpp, struct cred *cr, caller_context_t *ct, int flags,
3764 3764 vsecattr_t *vsecp)
3765 3765 {
3766 3766 struct inode *ip;
3767 3767 struct inode *xip;
3768 3768 struct ufsvfs *ufsvfsp;
3769 3769 struct ulockfs *ulp;
3770 3770 int error;
3771 3771 int issync;
3772 3772 int trans_size;
3773 3773 int indeadlock;
3774 3774 int retry = 1;
3775 3775
3776 3776 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
3777 3777
3778 3778 /*
3779 3779 * Can't make directory in attr hidden dir
3780 3780 */
3781 3781 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR)
3782 3782 return (EINVAL);
3783 3783
3784 3784 again:
3785 3785 ip = VTOI(dvp);
3786 3786 ufsvfsp = ip->i_ufsvfs;
3787 3787 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK);
3788 3788 if (error)
3789 3789 goto out;
3790 3790 if (ulp)
3791 3791 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR,
3792 3792 trans_size = (int)TOP_MKDIR_SIZE(ip));
3793 3793
3794 3794 /*
3795 3795 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3796 3796 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3797 3797 * possible, retries the operation.
3798 3798 */
3799 3799 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_MKDIR, retry);
3800 3800 if (indeadlock)
3801 3801 goto again;
3802 3802
3803 3803 error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr,
3804 3804 (retry ? IQUIET : 0));
3805 3805 if (error == EAGAIN) {
3806 3806 if (ulp) {
3807 3807 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_MKDIR,
3808 3808 trans_size);
3809 3809 ufs_lockfs_end(ulp);
3810 3810 }
3811 3811 goto again;
3812 3812 }
3813 3813
3814 3814 rw_exit(&ip->i_rwlock);
3815 3815 if (error == 0) {
3816 3816 ip = xip;
3817 3817 *vpp = ITOV(ip);
3818 3818 } else if (error == EEXIST)
3819 3819 VN_RELE(ITOV(xip));
3820 3820
3821 3821 if (ulp) {
3822 3822 int terr = 0;
3823 3823 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size);
3824 3824 ufs_lockfs_end(ulp);
3825 3825 if (error == 0)
3826 3826 error = terr;
3827 3827 }
3828 3828 out:
3829 3829 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
3830 3830 ufs_delete_drain_wait(ufsvfsp, 1);
3831 3831 retry = 0;
3832 3832 goto again;
3833 3833 }
3834 3834
3835 3835 return (error);
3836 3836 }
3837 3837
3838 3838 /*ARGSUSED*/
3839 3839 static int
3840 3840 ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr,
3841 3841 caller_context_t *ct, int flags)
3842 3842 {
3843 3843 struct inode *ip = VTOI(vp);
3844 3844 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
3845 3845 struct ulockfs *ulp;
3846 3846 vnode_t *rmvp = NULL; /* Vnode of removed directory */
3847 3847 int error;
3848 3848 int issync;
3849 3849 int trans_size;
3850 3850 int indeadlock;
3851 3851
3852 3852 /*
3853 3853 * don't let the delete queue get too long
3854 3854 */
3855 3855 if (ufsvfsp == NULL) {
3856 3856 error = EIO;
3857 3857 goto out;
3858 3858 }
3859 3859 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max)
3860 3860 ufs_delete_drain(vp->v_vfsp, 1, 1);
3861 3861
3862 3862 error = ufs_eventlookup(vp, nm, cr, &rmvp);
3863 3863 if (rmvp != NULL) {
3864 3864 /* Only send the event if there were no errors */
3865 3865 if (error == 0)
3866 3866 vnevent_rmdir(rmvp, vp, nm, ct);
3867 3867 VN_RELE(rmvp);
3868 3868 }
3869 3869
3870 3870 retry_rmdir:
3871 3871 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK);
3872 3872 if (error)
3873 3873 goto out;
3874 3874
3875 3875 if (ulp)
3876 3876 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR,
3877 3877 trans_size = TOP_RMDIR_SIZE);
3878 3878
3879 3879 /*
3880 3880 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3881 3881 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3882 3882 * possible, retries the operation.
3883 3883 */
3884 3884 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_RMDIR, retry);
3885 3885 if (indeadlock)
3886 3886 goto retry_rmdir;
3887 3887 error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr);
3888 3888
3889 3889 rw_exit(&ip->i_rwlock);
3890 3890
3891 3891 if (ulp) {
3892 3892 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR,
3893 3893 trans_size);
3894 3894 ufs_lockfs_end(ulp);
3895 3895 }
3896 3896
3897 3897 out:
3898 3898 return (error);
3899 3899 }
3900 3900
3901 3901 /* ARGSUSED */
3902 3902 static int
3903 3903 ufs_readdir(
3904 3904 struct vnode *vp,
3905 3905 struct uio *uiop,
3906 3906 struct cred *cr,
3907 3907 int *eofp,
3908 3908 caller_context_t *ct,
3909 3909 int flags)
3910 3910 {
3911 3911 struct iovec *iovp;
3912 3912 struct inode *ip;
3913 3913 struct direct *idp;
3914 3914 struct dirent64 *odp;
3915 3915 struct fbuf *fbp;
3916 3916 struct ufsvfs *ufsvfsp;
3917 3917 struct ulockfs *ulp;
3918 3918 caddr_t outbuf;
3919 3919 size_t bufsize;
3920 3920 uint_t offset;
3921 3921 uint_t bytes_wanted, total_bytes_wanted;
3922 3922 int incount = 0;
3923 3923 int outcount = 0;
3924 3924 int error;
3925 3925
3926 3926 ip = VTOI(vp);
3927 3927 ASSERT(RW_READ_HELD(&ip->i_rwlock));
3928 3928
3929 3929 if (uiop->uio_loffset >= MAXOFF32_T) {
3930 3930 if (eofp)
3931 3931 *eofp = 1;
3932 3932 return (0);
3933 3933 }
3934 3934
3935 3935 /*
3936 3936 * Check if we have been called with a valid iov_len
3937 3937 * and bail out if not, otherwise we may potentially loop
3938 3938 * forever further down.
3939 3939 */
3940 3940 if (uiop->uio_iov->iov_len <= 0) {
3941 3941 error = EINVAL;
3942 3942 goto out;
3943 3943 }
3944 3944
3945 3945 /*
3946 3946 * Large Files: When we come here we are guaranteed that
3947 3947 * uio_offset can be used safely. The high word is zero.
3948 3948 */
3949 3949
3950 3950 ufsvfsp = ip->i_ufsvfs;
3951 3951 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK);
3952 3952 if (error)
3953 3953 goto out;
3954 3954
3955 3955 iovp = uiop->uio_iov;
3956 3956 total_bytes_wanted = iovp->iov_len;
3957 3957
3958 3958 /* Large Files: directory files should not be "large" */
3959 3959
3960 3960 ASSERT(ip->i_size <= MAXOFF32_T);
3961 3961
3962 3962 /* Force offset to be valid (to guard against bogus lseek() values) */
3963 3963 offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1);
3964 3964
3965 3965 /* Quit if at end of file or link count of zero (posix) */
3966 3966 if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) {
3967 3967 if (eofp)
3968 3968 *eofp = 1;
3969 3969 error = 0;
3970 3970 goto unlock;
3971 3971 }
3972 3972
3973 3973 /*
3974 3974 * Get space to change directory entries into fs independent format.
3975 3975 * Do fast alloc for the most commonly used-request size (filesystem
3976 3976 * block size).
3977 3977 */
3978 3978 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) {
3979 3979 bufsize = total_bytes_wanted;
3980 3980 outbuf = kmem_alloc(bufsize, KM_SLEEP);
3981 3981 odp = (struct dirent64 *)outbuf;
3982 3982 } else {
3983 3983 bufsize = total_bytes_wanted;
3984 3984 odp = (struct dirent64 *)iovp->iov_base;
3985 3985 }
3986 3986
3987 3987 nextblk:
3988 3988 bytes_wanted = total_bytes_wanted;
3989 3989
3990 3990 /* Truncate request to file size */
3991 3991 if (offset + bytes_wanted > (int)ip->i_size)
3992 3992 bytes_wanted = (int)(ip->i_size - offset);
3993 3993
3994 3994 /* Comply with MAXBSIZE boundary restrictions of fbread() */
3995 3995 if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE)
3996 3996 bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET);
3997 3997
3998 3998 /*
3999 3999 * Read in the next chunk.
4000 4000 * We are still holding the i_rwlock.
4001 4001 */
4002 4002 error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp);
4003 4003
4004 4004 if (error)
4005 4005 goto update_inode;
4006 4006 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) &&
4007 4007 (!ufsvfsp->vfs_noatime)) {
4008 4008 ip->i_flag |= IACC;
4009 4009 }
4010 4010 incount = 0;
4011 4011 idp = (struct direct *)fbp->fb_addr;
4012 4012 if (idp->d_ino == 0 && idp->d_reclen == 0 && idp->d_namlen == 0) {
4013 4013 cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, "
4014 4014 "fs = %s\n",
4015 4015 (u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt);
4016 4016 fbrelse(fbp, S_OTHER);
4017 4017 error = ENXIO;
4018 4018 goto update_inode;
4019 4019 }
4020 4020 /* Transform to file-system independent format */
4021 4021 while (incount < bytes_wanted) {
4022 4022 /*
4023 4023 * If the current directory entry is mangled, then skip
4024 4024 * to the next block. It would be nice to set the FSBAD
4025 4025 * flag in the super-block so that a fsck is forced on
4026 4026 * next reboot, but locking is a problem.
4027 4027 */
4028 4028 if (idp->d_reclen & 0x3) {
4029 4029 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1);
4030 4030 break;
4031 4031 }
4032 4032
4033 4033 /* Skip to requested offset and skip empty entries */
4034 4034 if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) {
4035 4035 ushort_t this_reclen =
4036 4036 DIRENT64_RECLEN(idp->d_namlen);
4037 4037 /* Buffer too small for any entries */
4038 4038 if (!outcount && this_reclen > bufsize) {
4039 4039 fbrelse(fbp, S_OTHER);
4040 4040 error = EINVAL;
4041 4041 goto update_inode;
4042 4042 }
4043 4043 /* If would overrun the buffer, quit */
4044 4044 if (outcount + this_reclen > bufsize) {
4045 4045 break;
4046 4046 }
4047 4047 /* Take this entry */
4048 4048 odp->d_ino = (ino64_t)idp->d_ino;
4049 4049 odp->d_reclen = (ushort_t)this_reclen;
4050 4050 odp->d_off = (offset_t)(offset + idp->d_reclen);
4051 4051
4052 4052 /* use strncpy(9f) to zero out uninitialized bytes */
4053 4053
4054 4054 ASSERT(strlen(idp->d_name) + 1 <=
4055 4055 DIRENT64_NAMELEN(this_reclen));
4056 4056 (void) strncpy(odp->d_name, idp->d_name,
4057 4057 DIRENT64_NAMELEN(this_reclen));
4058 4058 outcount += odp->d_reclen;
4059 4059 odp = (struct dirent64 *)
4060 4060 ((intptr_t)odp + odp->d_reclen);
4061 4061 ASSERT(outcount <= bufsize);
4062 4062 }
4063 4063 if (idp->d_reclen) {
4064 4064 incount += idp->d_reclen;
4065 4065 offset += idp->d_reclen;
4066 4066 idp = (struct direct *)((intptr_t)idp + idp->d_reclen);
4067 4067 } else {
4068 4068 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1);
4069 4069 break;
4070 4070 }
4071 4071 }
4072 4072 /* Release the chunk */
4073 4073 fbrelse(fbp, S_OTHER);
4074 4074
4075 4075 /* Read whole block, but got no entries, read another if not eof */
4076 4076
4077 4077 /*
4078 4078 * Large Files: casting i_size to int here is not a problem
4079 4079 * because directory sizes are always less than MAXOFF32_T.
4080 4080 * See assertion above.
4081 4081 */
4082 4082
4083 4083 if (offset < (int)ip->i_size && !outcount)
4084 4084 goto nextblk;
4085 4085
4086 4086 /* Copy out the entry data */
4087 4087 if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) {
4088 4088 iovp->iov_base += outcount;
4089 4089 iovp->iov_len -= outcount;
4090 4090 uiop->uio_resid -= outcount;
4091 4091 uiop->uio_offset = offset;
4092 4092 } else if ((error = uiomove(outbuf, (long)outcount, UIO_READ,
4093 4093 uiop)) == 0)
4094 4094 uiop->uio_offset = offset;
4095 4095 update_inode:
4096 4096 ITIMES(ip);
4097 4097 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1)
4098 4098 kmem_free(outbuf, bufsize);
4099 4099
4100 4100 if (eofp && error == 0)
4101 4101 *eofp = (uiop->uio_offset >= (int)ip->i_size);
4102 4102 unlock:
4103 4103 if (ulp) {
4104 4104 ufs_lockfs_end(ulp);
4105 4105 }
4106 4106 out:
4107 4107 return (error);
4108 4108 }
4109 4109
4110 4110 /*ARGSUSED*/
4111 4111 static int
4112 4112 ufs_symlink(
4113 4113 struct vnode *dvp, /* ptr to parent dir vnode */
4114 4114 char *linkname, /* name of symbolic link */
4115 4115 struct vattr *vap, /* attributes */
4116 4116 char *target, /* target path */
4117 4117 struct cred *cr, /* user credentials */
4118 4118 caller_context_t *ct,
4119 4119 int flags)
4120 4120 {
4121 4121 struct inode *ip, *dip = VTOI(dvp);
4122 4122 struct ufsvfs *ufsvfsp = dip->i_ufsvfs;
4123 4123 struct ulockfs *ulp;
4124 4124 int error;
4125 4125 int issync;
4126 4126 int trans_size;
4127 4127 int residual;
4128 4128 int ioflag;
4129 4129 int retry = 1;
4130 4130
4131 4131 /*
4132 4132 * No symlinks in attrdirs at this time
4133 4133 */
4134 4134 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR)
4135 4135 return (EINVAL);
4136 4136
4137 4137 again:
4138 4138 ip = (struct inode *)NULL;
4139 4139 vap->va_type = VLNK;
4140 4140 vap->va_rdev = 0;
4141 4141
4142 4142 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK);
4143 4143 if (error)
4144 4144 goto out;
4145 4145
4146 4146 if (ulp)
4147 4147 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK,
4148 4148 trans_size = (int)TOP_SYMLINK_SIZE(dip));
4149 4149
4150 4150 /*
4151 4151 * We must create the inode before the directory entry, to avoid
4152 4152 * racing with readlink(). ufs_dirmakeinode requires that we
4153 4153 * hold the quota lock as reader, and directory locks as writer.
4154 4154 */
4155 4155
4156 4156 rw_enter(&dip->i_rwlock, RW_WRITER);
4157 4157 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4158 4158 rw_enter(&dip->i_contents, RW_WRITER);
4159 4159
4160 4160 /*
4161 4161 * Suppress any out of inodes messages if we will retry on
4162 4162 * ENOSP
4163 4163 */
4164 4164 if (retry)
4165 4165 dip->i_flag |= IQUIET;
4166 4166
4167 4167 error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr);
4168 4168
4169 4169 dip->i_flag &= ~IQUIET;
4170 4170
4171 4171 rw_exit(&dip->i_contents);
4172 4172 rw_exit(&ufsvfsp->vfs_dqrwlock);
4173 4173 rw_exit(&dip->i_rwlock);
4174 4174
4175 4175 if (error)
4176 4176 goto unlock;
4177 4177
4178 4178 /*
4179 4179 * OK. The inode has been created. Write out the data of the
4180 4180 * symbolic link. Since symbolic links are metadata, and should
4181 4181 * remain consistent across a system crash, we need to force the
4182 4182 * data out synchronously.
4183 4183 *
4184 4184 * (This is a change from the semantics in earlier releases, which
4185 4185 * only created symbolic links synchronously if the semi-documented
4186 4186 * 'syncdir' option was set, or if we were being invoked by the NFS
4187 4187 * server, which requires symbolic links to be created synchronously.)
4188 4188 *
4189 4189 * We need to pass in a pointer for the residual length; otherwise
4190 4190 * ufs_rdwri() will always return EIO if it can't write the data,
4191 4191 * even if the error was really ENOSPC or EDQUOT.
4192 4192 */
4193 4193
4194 4194 ioflag = FWRITE | FDSYNC;
4195 4195 residual = 0;
4196 4196
4197 4197 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4198 4198 rw_enter(&ip->i_contents, RW_WRITER);
4199 4199
4200 4200 /*
4201 4201 * Suppress file system full messages if we will retry
4202 4202 */
4203 4203 if (retry)
4204 4204 ip->i_flag |= IQUIET;
4205 4205
4206 4206 error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target),
4207 4207 (offset_t)0, UIO_SYSSPACE, &residual, cr);
4208 4208
4209 4209 ip->i_flag &= ~IQUIET;
4210 4210
4211 4211 if (error) {
4212 4212 rw_exit(&ip->i_contents);
4213 4213 rw_exit(&ufsvfsp->vfs_dqrwlock);
4214 4214 goto remove;
4215 4215 }
4216 4216
4217 4217 /*
4218 4218 * If the link's data is small enough, we can cache it in the inode.
4219 4219 * This is a "fast symbolic link". We don't use the first direct
4220 4220 * block because that's actually used to point at the symbolic link's
4221 4221 * contents on disk; but we know that none of the other direct or
4222 4222 * indirect blocks can be used because symbolic links are restricted
4223 4223 * to be smaller than a file system block.
4224 4224 */
4225 4225
4226 4226 ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip)));
4227 4227
4228 4228 if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) {
4229 4229 if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) {
4230 4230 ip->i_flag |= IFASTSYMLNK;
4231 4231 } else {
4232 4232 int i;
4233 4233 /* error, clear garbage left behind */
4234 4234 for (i = 1; i < NDADDR; i++)
4235 4235 ip->i_db[i] = 0;
4236 4236 for (i = 0; i < NIADDR; i++)
4237 4237 ip->i_ib[i] = 0;
4238 4238 }
4239 4239 }
4240 4240
4241 4241 rw_exit(&ip->i_contents);
4242 4242 rw_exit(&ufsvfsp->vfs_dqrwlock);
4243 4243
4244 4244 /*
4245 4245 * OK. We've successfully created the symbolic link. All that
4246 4246 * remains is to insert it into the appropriate directory.
4247 4247 */
4248 4248
4249 4249 rw_enter(&dip->i_rwlock, RW_WRITER);
4250 4250 error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr);
4251 4251 rw_exit(&dip->i_rwlock);
4252 4252
4253 4253 /*
4254 4254 * Fall through into remove-on-error code. We're either done, or we
4255 4255 * need to remove the inode (if we couldn't insert it).
4256 4256 */
4257 4257
4258 4258 remove:
4259 4259 if (error && (ip != NULL)) {
4260 4260 rw_enter(&ip->i_contents, RW_WRITER);
4261 4261 ip->i_nlink--;
4262 4262 ip->i_flag |= ICHG;
4263 4263 ip->i_seq++;
4264 4264 ufs_setreclaim(ip);
4265 4265 rw_exit(&ip->i_contents);
4266 4266 }
4267 4267
4268 4268 unlock:
4269 4269 if (ip != NULL)
4270 4270 VN_RELE(ITOV(ip));
4271 4271
4272 4272 if (ulp) {
4273 4273 int terr = 0;
4274 4274
4275 4275 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK,
4276 4276 trans_size);
4277 4277 ufs_lockfs_end(ulp);
4278 4278 if (error == 0)
4279 4279 error = terr;
4280 4280 }
4281 4281
4282 4282 /*
4283 4283 * We may have failed due to lack of an inode or of a block to
4284 4284 * store the target in. Try flushing the delete queue to free
4285 4285 * logically-available things up and try again.
4286 4286 */
4287 4287 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
4288 4288 ufs_delete_drain_wait(ufsvfsp, 1);
4289 4289 retry = 0;
4290 4290 goto again;
4291 4291 }
4292 4292
4293 4293 out:
4294 4294 return (error);
4295 4295 }
4296 4296
4297 4297 /*
4298 4298 * Ufs specific routine used to do ufs io.
4299 4299 */
4300 4300 int
4301 4301 ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base,
4302 4302 ssize_t len, offset_t offset, enum uio_seg seg, int *aresid,
4303 4303 struct cred *cr)
4304 4304 {
4305 4305 struct uio auio;
4306 4306 struct iovec aiov;
4307 4307 int error;
4308 4308
4309 4309 ASSERT(RW_LOCK_HELD(&ip->i_contents));
4310 4310
4311 4311 bzero((caddr_t)&auio, sizeof (uio_t));
4312 4312 bzero((caddr_t)&aiov, sizeof (iovec_t));
4313 4313
4314 4314 aiov.iov_base = base;
4315 4315 aiov.iov_len = len;
4316 4316 auio.uio_iov = &aiov;
4317 4317 auio.uio_iovcnt = 1;
4318 4318 auio.uio_loffset = offset;
4319 4319 auio.uio_segflg = (short)seg;
4320 4320 auio.uio_resid = len;
4321 4321
4322 4322 if (rw == UIO_WRITE) {
4323 4323 auio.uio_fmode = FWRITE;
4324 4324 auio.uio_extflg = UIO_COPY_DEFAULT;
4325 4325 auio.uio_llimit = curproc->p_fsz_ctl;
4326 4326 error = wrip(ip, &auio, ioflag, cr);
4327 4327 } else {
4328 4328 auio.uio_fmode = FREAD;
4329 4329 auio.uio_extflg = UIO_COPY_CACHED;
4330 4330 auio.uio_llimit = MAXOFFSET_T;
4331 4331 error = rdip(ip, &auio, ioflag, cr);
4332 4332 }
4333 4333
4334 4334 if (aresid) {
4335 4335 *aresid = auio.uio_resid;
4336 4336 } else if (auio.uio_resid) {
4337 4337 error = EIO;
4338 4338 }
4339 4339 return (error);
4340 4340 }
4341 4341
4342 4342 /*ARGSUSED*/
4343 4343 static int
4344 4344 ufs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct)
4345 4345 {
4346 4346 struct ufid *ufid;
4347 4347 struct inode *ip = VTOI(vp);
4348 4348
4349 4349 if (ip->i_ufsvfs == NULL)
4350 4350 return (EIO);
4351 4351
4352 4352 if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) {
4353 4353 fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t);
4354 4354 return (ENOSPC);
4355 4355 }
4356 4356
4357 4357 ufid = (struct ufid *)fidp;
4358 4358 bzero((char *)ufid, sizeof (struct ufid));
4359 4359 ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t);
4360 4360 ufid->ufid_ino = ip->i_number;
4361 4361 ufid->ufid_gen = ip->i_gen;
4362 4362
4363 4363 return (0);
4364 4364 }
4365 4365
4366 4366 /* ARGSUSED2 */
4367 4367 static int
4368 4368 ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp)
4369 4369 {
4370 4370 struct inode *ip = VTOI(vp);
4371 4371 struct ufsvfs *ufsvfsp;
4372 4372 int forcedirectio;
4373 4373
4374 4374 /*
4375 4375 * Read case is easy.
4376 4376 */
4377 4377 if (!write_lock) {
4378 4378 rw_enter(&ip->i_rwlock, RW_READER);
4379 4379 return (V_WRITELOCK_FALSE);
4380 4380 }
4381 4381
4382 4382 /*
4383 4383 * Caller has requested a writer lock, but that inhibits any
4384 4384 * concurrency in the VOPs that follow. Acquire the lock shared
4385 4385 * and defer exclusive access until it is known to be needed in
4386 4386 * other VOP handlers. Some cases can be determined here.
4387 4387 */
4388 4388
4389 4389 /*
4390 4390 * If directio is not set, there is no chance of concurrency,
4391 4391 * so just acquire the lock exclusive. Beware of a forced
4392 4392 * unmount before looking at the mount option.
4393 4393 */
4394 4394 ufsvfsp = ip->i_ufsvfs;
4395 4395 forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0;
4396 4396 if (!(ip->i_flag & IDIRECTIO || forcedirectio) ||
4397 4397 !ufs_allow_shared_writes) {
4398 4398 rw_enter(&ip->i_rwlock, RW_WRITER);
4399 4399 return (V_WRITELOCK_TRUE);
4400 4400 }
4401 4401
4402 4402 /*
4403 4403 * Mandatory locking forces acquiring i_rwlock exclusive.
4404 4404 */
4405 4405 if (MANDLOCK(vp, ip->i_mode)) {
4406 4406 rw_enter(&ip->i_rwlock, RW_WRITER);
4407 4407 return (V_WRITELOCK_TRUE);
4408 4408 }
4409 4409
4410 4410 /*
4411 4411 * Acquire the lock shared in case a concurrent write follows.
4412 4412 * Mandatory locking could have become enabled before the lock
4413 4413 * was acquired. Re-check and upgrade if needed.
4414 4414 */
4415 4415 rw_enter(&ip->i_rwlock, RW_READER);
4416 4416 if (MANDLOCK(vp, ip->i_mode)) {
4417 4417 rw_exit(&ip->i_rwlock);
4418 4418 rw_enter(&ip->i_rwlock, RW_WRITER);
4419 4419 return (V_WRITELOCK_TRUE);
4420 4420 }
4421 4421 return (V_WRITELOCK_FALSE);
4422 4422 }
4423 4423
4424 4424 /*ARGSUSED*/
4425 4425 static void
4426 4426 ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp)
4427 4427 {
4428 4428 struct inode *ip = VTOI(vp);
4429 4429
4430 4430 rw_exit(&ip->i_rwlock);
4431 4431 }
4432 4432
4433 4433 /* ARGSUSED */
4434 4434 static int
4435 4435 ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp,
4436 4436 caller_context_t *ct)
4437 4437 {
4438 4438 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4439 4439 }
4440 4440
4441 4441 /* ARGSUSED */
4442 4442 static int
4443 4443 ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
4444 4444 offset_t offset, struct flk_callback *flk_cbp, struct cred *cr,
4445 4445 caller_context_t *ct)
4446 4446 {
4447 4447 struct inode *ip = VTOI(vp);
4448 4448
4449 4449 if (ip->i_ufsvfs == NULL)
4450 4450 return (EIO);
4451 4451
4452 4452 /*
4453 4453 * If file is being mapped, disallow frlock.
4454 4454 * XXX I am not holding tlock while checking i_mapcnt because the
4455 4455 * current locking strategy drops all locks before calling fs_frlock.
4456 4456 * So, mapcnt could change before we enter fs_frlock making is
4457 4457 * meaningless to have held tlock in the first place.
4458 4458 */
4459 4459 if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode))
4460 4460 return (EAGAIN);
4461 4461 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4462 4462 }
4463 4463
4464 4464 /* ARGSUSED */
4465 4465 static int
4466 4466 ufs_space(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
4467 4467 offset_t offset, cred_t *cr, caller_context_t *ct)
4468 4468 {
4469 4469 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
4470 4470 struct ulockfs *ulp;
|
↓ open down ↓ |
726 lines elided |
↑ open up ↑ |
4471 4471 int error;
4472 4472
4473 4473 if ((error = convoff(vp, bfp, 0, offset)) == 0) {
4474 4474 if (cmd == F_FREESP) {
4475 4475 error = ufs_lockfs_begin(ufsvfsp, &ulp,
4476 4476 ULOCKFS_SPACE_MASK);
4477 4477 if (error)
4478 4478 return (error);
4479 4479 error = ufs_freesp(vp, bfp, flag, cr);
4480 4480
4481 - if (error == 0 && bfp->l_start == 0)
4482 - vnevent_truncate(vp, ct);
4481 + if (error == 0) {
4482 + if (bfp->l_start == 0) {
4483 + vnevent_truncate(vp, ct);
4484 + } else {
4485 + vnevent_resize(vp, ct);
4486 + }
4487 + }
4483 4488 } else if (cmd == F_ALLOCSP) {
4484 4489 error = ufs_lockfs_begin(ufsvfsp, &ulp,
4485 4490 ULOCKFS_FALLOCATE_MASK);
4486 4491 if (error)
4487 4492 return (error);
4488 4493 error = ufs_allocsp(vp, bfp, cr);
4489 4494 } else
4490 4495 return (EINVAL); /* Command not handled here */
4491 4496
4492 4497 if (ulp)
4493 4498 ufs_lockfs_end(ulp);
4494 4499
4495 4500 }
4496 4501 return (error);
4497 4502 }
4498 4503
4499 4504 /*
4500 4505 * Used to determine if read ahead should be done. Also used to
4501 4506 * to determine when write back occurs.
4502 4507 */
4503 4508 #define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz)
4504 4509
4505 4510 /*
4506 4511 * A faster version of ufs_getpage.
4507 4512 *
4508 4513 * We optimize by inlining the pvn_getpages iterator, eliminating
4509 4514 * calls to bmap_read if file doesn't have UFS holes, and avoiding
4510 4515 * the overhead of page_exists().
4511 4516 *
4512 4517 * When files has UFS_HOLES and ufs_getpage is called with S_READ,
4513 4518 * we set *protp to PROT_READ to avoid calling bmap_read. This approach
4514 4519 * victimizes performance when a file with UFS holes is faulted
4515 4520 * first in the S_READ mode, and then in the S_WRITE mode. We will get
4516 4521 * two MMU faults in this case.
4517 4522 *
4518 4523 * XXX - the inode fields which control the sequential mode are not
4519 4524 * protected by any mutex. The read ahead will act wild if
4520 4525 * multiple processes will access the file concurrently and
4521 4526 * some of them in sequential mode. One particulary bad case
4522 4527 * is if another thread will change the value of i_nextrio between
4523 4528 * the time this thread tests the i_nextrio value and then reads it
4524 4529 * again to use it as the offset for the read ahead.
4525 4530 */
4526 4531 /*ARGSUSED*/
4527 4532 static int
4528 4533 ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp,
4529 4534 page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr,
4530 4535 enum seg_rw rw, struct cred *cr, caller_context_t *ct)
4531 4536 {
4532 4537 u_offset_t uoff = (u_offset_t)off; /* type conversion */
4533 4538 u_offset_t pgoff;
4534 4539 u_offset_t eoff;
4535 4540 struct inode *ip = VTOI(vp);
4536 4541 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
4537 4542 struct fs *fs;
4538 4543 struct ulockfs *ulp;
4539 4544 page_t **pl;
4540 4545 caddr_t pgaddr;
4541 4546 krw_t rwtype;
4542 4547 int err;
4543 4548 int has_holes;
4544 4549 int beyond_eof;
4545 4550 int seqmode;
4546 4551 int pgsize = PAGESIZE;
4547 4552 int dolock;
4548 4553 int do_qlock;
4549 4554 int trans_size;
4550 4555
4551 4556 ASSERT((uoff & PAGEOFFSET) == 0);
4552 4557
4553 4558 if (protp)
4554 4559 *protp = PROT_ALL;
4555 4560
4556 4561 /*
4557 4562 * Obey the lockfs protocol
4558 4563 */
4559 4564 err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg,
4560 4565 rw == S_READ || rw == S_EXEC, protp);
4561 4566 if (err)
4562 4567 goto out;
4563 4568
4564 4569 fs = ufsvfsp->vfs_fs;
4565 4570
4566 4571 if (ulp && (rw == S_CREATE || rw == S_WRITE) &&
4567 4572 !(vp->v_flag & VISSWAP)) {
4568 4573 /*
4569 4574 * Try to start a transaction, will return if blocking is
4570 4575 * expected to occur and the address space is not the
4571 4576 * kernel address space.
4572 4577 */
4573 4578 trans_size = TOP_GETPAGE_SIZE(ip);
4574 4579 if (seg->s_as != &kas) {
4575 4580 TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE,
4576 4581 trans_size, err)
4577 4582 if (err == EWOULDBLOCK) {
4578 4583 /*
4579 4584 * Use EDEADLK here because the VM code
4580 4585 * can normally never see this error.
4581 4586 */
4582 4587 err = EDEADLK;
4583 4588 ufs_lockfs_end(ulp);
4584 4589 goto out;
4585 4590 }
4586 4591 } else {
4587 4592 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size);
4588 4593 }
4589 4594 }
4590 4595
4591 4596 if (vp->v_flag & VNOMAP) {
4592 4597 err = ENOSYS;
4593 4598 goto unlock;
4594 4599 }
4595 4600
4596 4601 seqmode = ip->i_nextr == uoff && rw != S_CREATE;
4597 4602
4598 4603 rwtype = RW_READER; /* start as a reader */
4599 4604 dolock = (rw_owner(&ip->i_contents) != curthread);
4600 4605 /*
4601 4606 * If this thread owns the lock, i.e., this thread grabbed it
4602 4607 * as writer somewhere above, then we don't need to grab the
4603 4608 * lock as reader in this routine.
4604 4609 */
4605 4610 do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread);
4606 4611
4607 4612 retrylock:
4608 4613 if (dolock) {
4609 4614 /*
4610 4615 * Grab the quota lock if we need to call
4611 4616 * bmap_write() below (with i_contents as writer).
4612 4617 */
4613 4618 if (do_qlock && rwtype == RW_WRITER)
4614 4619 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4615 4620 rw_enter(&ip->i_contents, rwtype);
4616 4621 }
4617 4622
4618 4623 /*
4619 4624 * We may be getting called as a side effect of a bmap using
4620 4625 * fbread() when the blocks might be being allocated and the
4621 4626 * size has not yet been up'ed. In this case we want to be
4622 4627 * able to return zero pages if we get back UFS_HOLE from
4623 4628 * calling bmap for a non write case here. We also might have
4624 4629 * to read some frags from the disk into a page if we are
4625 4630 * extending the number of frags for a given lbn in bmap().
4626 4631 * Large Files: The read of i_size here is atomic because
4627 4632 * i_contents is held here. If dolock is zero, the lock
4628 4633 * is held in bmap routines.
4629 4634 */
4630 4635 beyond_eof = uoff + len >
4631 4636 P2ROUNDUP_TYPED(ip->i_size, PAGESIZE, u_offset_t);
4632 4637 if (beyond_eof && seg != segkmap) {
4633 4638 if (dolock) {
4634 4639 rw_exit(&ip->i_contents);
4635 4640 if (do_qlock && rwtype == RW_WRITER)
4636 4641 rw_exit(&ufsvfsp->vfs_dqrwlock);
4637 4642 }
4638 4643 err = EFAULT;
4639 4644 goto unlock;
4640 4645 }
4641 4646
4642 4647 /*
4643 4648 * Must hold i_contents lock throughout the call to pvn_getpages
4644 4649 * since locked pages are returned from each call to ufs_getapage.
4645 4650 * Must *not* return locked pages and then try for contents lock
4646 4651 * due to lock ordering requirements (inode > page)
4647 4652 */
4648 4653
4649 4654 has_holes = bmap_has_holes(ip);
4650 4655
4651 4656 if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) {
4652 4657 int blk_size;
4653 4658 u_offset_t offset;
4654 4659
4655 4660 /*
4656 4661 * We must acquire the RW_WRITER lock in order to
4657 4662 * call bmap_write().
4658 4663 */
4659 4664 if (dolock && rwtype == RW_READER) {
4660 4665 rwtype = RW_WRITER;
4661 4666
4662 4667 /*
4663 4668 * Grab the quota lock before
4664 4669 * upgrading i_contents, but if we can't grab it
4665 4670 * don't wait here due to lock order:
4666 4671 * vfs_dqrwlock > i_contents.
4667 4672 */
4668 4673 if (do_qlock &&
4669 4674 rw_tryenter(&ufsvfsp->vfs_dqrwlock, RW_READER)
4670 4675 == 0) {
4671 4676 rw_exit(&ip->i_contents);
4672 4677 goto retrylock;
4673 4678 }
4674 4679 if (!rw_tryupgrade(&ip->i_contents)) {
4675 4680 rw_exit(&ip->i_contents);
4676 4681 if (do_qlock)
4677 4682 rw_exit(&ufsvfsp->vfs_dqrwlock);
4678 4683 goto retrylock;
4679 4684 }
4680 4685 }
4681 4686
4682 4687 /*
4683 4688 * May be allocating disk blocks for holes here as
4684 4689 * a result of mmap faults. write(2) does the bmap_write
4685 4690 * in rdip/wrip, not here. We are not dealing with frags
4686 4691 * in this case.
4687 4692 */
4688 4693 /*
4689 4694 * Large Files: We cast fs_bmask field to offset_t
4690 4695 * just as we do for MAXBMASK because uoff is a 64-bit
4691 4696 * data type. fs_bmask will still be a 32-bit type
4692 4697 * as we cannot change any ondisk data structures.
4693 4698 */
4694 4699
4695 4700 offset = uoff & (offset_t)fs->fs_bmask;
4696 4701 while (offset < uoff + len) {
4697 4702 blk_size = (int)blksize(fs, ip, lblkno(fs, offset));
4698 4703 err = bmap_write(ip, offset, blk_size,
4699 4704 BI_NORMAL, NULL, cr);
4700 4705 if (ip->i_flag & (ICHG|IUPD))
4701 4706 ip->i_seq++;
4702 4707 if (err)
4703 4708 goto update_inode;
4704 4709 offset += blk_size; /* XXX - make this contig */
4705 4710 }
4706 4711 }
4707 4712
4708 4713 /*
4709 4714 * Can be a reader from now on.
4710 4715 */
4711 4716 if (dolock && rwtype == RW_WRITER) {
4712 4717 rw_downgrade(&ip->i_contents);
4713 4718 /*
4714 4719 * We can release vfs_dqrwlock early so do it, but make
4715 4720 * sure we don't try to release it again at the bottom.
4716 4721 */
4717 4722 if (do_qlock) {
4718 4723 rw_exit(&ufsvfsp->vfs_dqrwlock);
4719 4724 do_qlock = 0;
4720 4725 }
4721 4726 }
4722 4727
4723 4728 /*
4724 4729 * We remove PROT_WRITE in cases when the file has UFS holes
4725 4730 * because we don't want to call bmap_read() to check each
4726 4731 * page if it is backed with a disk block.
4727 4732 */
4728 4733 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE)
4729 4734 *protp &= ~PROT_WRITE;
4730 4735
4731 4736 err = 0;
4732 4737
4733 4738 /*
4734 4739 * The loop looks up pages in the range [off, off + len).
4735 4740 * For each page, we first check if we should initiate an asynchronous
4736 4741 * read ahead before we call page_lookup (we may sleep in page_lookup
4737 4742 * for a previously initiated disk read).
4738 4743 */
4739 4744 eoff = (uoff + len);
4740 4745 for (pgoff = uoff, pgaddr = addr, pl = plarr;
4741 4746 pgoff < eoff; /* empty */) {
4742 4747 page_t *pp;
4743 4748 u_offset_t nextrio;
4744 4749 se_t se;
4745 4750 int retval;
4746 4751
4747 4752 se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED);
4748 4753
4749 4754 /* Handle async getpage (faultahead) */
4750 4755 if (plarr == NULL) {
4751 4756 ip->i_nextrio = pgoff;
4752 4757 (void) ufs_getpage_ra(vp, pgoff, seg, pgaddr);
4753 4758 pgoff += pgsize;
4754 4759 pgaddr += pgsize;
4755 4760 continue;
4756 4761 }
4757 4762 /*
4758 4763 * Check if we should initiate read ahead of next cluster.
4759 4764 * We call page_exists only when we need to confirm that
4760 4765 * we have the current page before we initiate the read ahead.
4761 4766 */
4762 4767 nextrio = ip->i_nextrio;
4763 4768 if (seqmode &&
4764 4769 pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio &&
4765 4770 nextrio < ip->i_size && page_exists(vp, pgoff)) {
4766 4771 retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr);
4767 4772 /*
4768 4773 * We always read ahead the next cluster of data
4769 4774 * starting from i_nextrio. If the page (vp,nextrio)
4770 4775 * is actually in core at this point, the routine
4771 4776 * ufs_getpage_ra() will stop pre-fetching data
4772 4777 * until we read that page in a synchronized manner
4773 4778 * through ufs_getpage_miss(). So, we should increase
4774 4779 * i_nextrio if the page (vp, nextrio) exists.
4775 4780 */
4776 4781 if ((retval == 0) && page_exists(vp, nextrio)) {
4777 4782 ip->i_nextrio = nextrio + pgsize;
4778 4783 }
4779 4784 }
4780 4785
4781 4786 if ((pp = page_lookup(vp, pgoff, se)) != NULL) {
4782 4787 /*
4783 4788 * We found the page in the page cache.
4784 4789 */
4785 4790 *pl++ = pp;
4786 4791 pgoff += pgsize;
4787 4792 pgaddr += pgsize;
4788 4793 len -= pgsize;
4789 4794 plsz -= pgsize;
4790 4795 } else {
4791 4796 /*
4792 4797 * We have to create the page, or read it from disk.
4793 4798 */
4794 4799 if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr,
4795 4800 pl, plsz, rw, seqmode))
4796 4801 goto error;
4797 4802
4798 4803 while (*pl != NULL) {
4799 4804 pl++;
4800 4805 pgoff += pgsize;
4801 4806 pgaddr += pgsize;
4802 4807 len -= pgsize;
4803 4808 plsz -= pgsize;
4804 4809 }
4805 4810 }
4806 4811 }
4807 4812
4808 4813 /*
4809 4814 * Return pages up to plsz if they are in the page cache.
4810 4815 * We cannot return pages if there is a chance that they are
4811 4816 * backed with a UFS hole and rw is S_WRITE or S_CREATE.
4812 4817 */
4813 4818 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) {
4814 4819
4815 4820 ASSERT((protp == NULL) ||
4816 4821 !(has_holes && (*protp & PROT_WRITE)));
4817 4822
4818 4823 eoff = pgoff + plsz;
4819 4824 while (pgoff < eoff) {
4820 4825 page_t *pp;
4821 4826
4822 4827 if ((pp = page_lookup_nowait(vp, pgoff,
4823 4828 SE_SHARED)) == NULL)
4824 4829 break;
4825 4830
4826 4831 *pl++ = pp;
4827 4832 pgoff += pgsize;
4828 4833 plsz -= pgsize;
4829 4834 }
4830 4835 }
4831 4836
4832 4837 if (plarr)
4833 4838 *pl = NULL; /* Terminate page list */
4834 4839 ip->i_nextr = pgoff;
4835 4840
4836 4841 error:
4837 4842 if (err && plarr) {
4838 4843 /*
4839 4844 * Release any pages we have locked.
4840 4845 */
4841 4846 while (pl > &plarr[0])
4842 4847 page_unlock(*--pl);
4843 4848
4844 4849 plarr[0] = NULL;
4845 4850 }
4846 4851
4847 4852 update_inode:
4848 4853 /*
4849 4854 * If the inode is not already marked for IACC (in rdip() for read)
4850 4855 * and the inode is not marked for no access time update (in wrip()
4851 4856 * for write) then update the inode access time and mod time now.
4852 4857 */
4853 4858 if ((ip->i_flag & (IACC | INOACC)) == 0) {
4854 4859 if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) {
4855 4860 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) &&
4856 4861 (fs->fs_ronly == 0) &&
4857 4862 (!ufsvfsp->vfs_noatime)) {
4858 4863 mutex_enter(&ip->i_tlock);
4859 4864 ip->i_flag |= IACC;
4860 4865 ITIMES_NOLOCK(ip);
4861 4866 mutex_exit(&ip->i_tlock);
4862 4867 }
4863 4868 }
4864 4869 }
4865 4870
4866 4871 if (dolock) {
4867 4872 rw_exit(&ip->i_contents);
4868 4873 if (do_qlock && rwtype == RW_WRITER)
4869 4874 rw_exit(&ufsvfsp->vfs_dqrwlock);
4870 4875 }
4871 4876
4872 4877 unlock:
4873 4878 if (ulp) {
4874 4879 if ((rw == S_CREATE || rw == S_WRITE) &&
4875 4880 !(vp->v_flag & VISSWAP)) {
4876 4881 TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size);
4877 4882 }
4878 4883 ufs_lockfs_end(ulp);
4879 4884 }
4880 4885 out:
4881 4886 return (err);
4882 4887 }
4883 4888
4884 4889 /*
4885 4890 * ufs_getpage_miss is called when ufs_getpage missed the page in the page
4886 4891 * cache. The page is either read from the disk, or it's created.
4887 4892 * A page is created (without disk read) if rw == S_CREATE, or if
4888 4893 * the page is not backed with a real disk block (UFS hole).
4889 4894 */
4890 4895 /* ARGSUSED */
4891 4896 static int
4892 4897 ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg,
4893 4898 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq)
4894 4899 {
4895 4900 struct inode *ip = VTOI(vp);
4896 4901 page_t *pp;
4897 4902 daddr_t bn;
4898 4903 size_t io_len;
4899 4904 int crpage = 0;
4900 4905 int err;
4901 4906 int contig;
4902 4907 int bsize = ip->i_fs->fs_bsize;
4903 4908
4904 4909 /*
4905 4910 * Figure out whether the page can be created, or must be
4906 4911 * must be read from the disk.
4907 4912 */
4908 4913 if (rw == S_CREATE)
4909 4914 crpage = 1;
4910 4915 else {
4911 4916 contig = 0;
4912 4917 if (err = bmap_read(ip, off, &bn, &contig))
4913 4918 return (err);
4914 4919
4915 4920 crpage = (bn == UFS_HOLE);
4916 4921
4917 4922 /*
4918 4923 * If its also a fallocated block that hasn't been written to
4919 4924 * yet, we will treat it just like a UFS_HOLE and create
4920 4925 * a zero page for it
4921 4926 */
4922 4927 if (ISFALLOCBLK(ip, bn))
4923 4928 crpage = 1;
4924 4929 }
4925 4930
4926 4931 if (crpage) {
4927 4932 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg,
4928 4933 addr)) == NULL) {
4929 4934 return (ufs_fault(vp,
4930 4935 "ufs_getpage_miss: page_create == NULL"));
4931 4936 }
4932 4937
4933 4938 if (rw != S_CREATE)
4934 4939 pagezero(pp, 0, PAGESIZE);
4935 4940
4936 4941 io_len = PAGESIZE;
4937 4942 } else {
4938 4943 u_offset_t io_off;
4939 4944 uint_t xlen;
4940 4945 struct buf *bp;
4941 4946 ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
4942 4947
4943 4948 /*
4944 4949 * If access is not in sequential order, we read from disk
4945 4950 * in bsize units.
4946 4951 *
4947 4952 * We limit the size of the transfer to bsize if we are reading
4948 4953 * from the beginning of the file. Note in this situation we
4949 4954 * will hedge our bets and initiate an async read ahead of
4950 4955 * the second block.
4951 4956 */
4952 4957 if (!seq || off == 0)
4953 4958 contig = MIN(contig, bsize);
4954 4959
4955 4960 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4956 4961 &io_len, off, contig, 0);
4957 4962
4958 4963 /*
4959 4964 * Some other thread has entered the page.
4960 4965 * ufs_getpage will retry page_lookup.
4961 4966 */
4962 4967 if (pp == NULL) {
4963 4968 pl[0] = NULL;
4964 4969 return (0);
4965 4970 }
4966 4971
4967 4972 /*
4968 4973 * Zero part of the page which we are not
4969 4974 * going to read from the disk.
4970 4975 */
4971 4976 xlen = io_len & PAGEOFFSET;
4972 4977 if (xlen != 0)
4973 4978 pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
4974 4979
4975 4980 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ);
4976 4981 bp->b_edev = ip->i_dev;
4977 4982 bp->b_dev = cmpdev(ip->i_dev);
4978 4983 bp->b_blkno = bn;
4979 4984 bp->b_un.b_addr = (caddr_t)0;
4980 4985 bp->b_file = ip->i_vnode;
4981 4986 bp->b_offset = off;
4982 4987
4983 4988 if (ufsvfsp->vfs_log) {
4984 4989 lufs_read_strategy(ufsvfsp->vfs_log, bp);
4985 4990 } else if (ufsvfsp->vfs_snapshot) {
4986 4991 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
4987 4992 } else {
4988 4993 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
4989 4994 ub.ub_getpages.value.ul++;
4990 4995 (void) bdev_strategy(bp);
4991 4996 lwp_stat_update(LWP_STAT_INBLK, 1);
4992 4997 }
4993 4998
4994 4999 ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK);
4995 5000
4996 5001 /*
4997 5002 * If the file access is sequential, initiate read ahead
4998 5003 * of the next cluster.
4999 5004 */
5000 5005 if (seq && ip->i_nextrio < ip->i_size)
5001 5006 (void) ufs_getpage_ra(vp, off, seg, addr);
5002 5007 err = biowait(bp);
5003 5008 pageio_done(bp);
5004 5009
5005 5010 if (err) {
5006 5011 pvn_read_done(pp, B_ERROR);
5007 5012 return (err);
5008 5013 }
5009 5014 }
5010 5015
5011 5016 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
5012 5017 return (0);
5013 5018 }
5014 5019
5015 5020 /*
5016 5021 * Read ahead a cluster from the disk. Returns the length in bytes.
5017 5022 */
5018 5023 static int
5019 5024 ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr)
5020 5025 {
5021 5026 struct inode *ip = VTOI(vp);
5022 5027 page_t *pp;
5023 5028 u_offset_t io_off = ip->i_nextrio;
5024 5029 ufsvfs_t *ufsvfsp;
5025 5030 caddr_t addr2 = addr + (io_off - off);
5026 5031 struct buf *bp;
5027 5032 daddr_t bn;
5028 5033 size_t io_len;
5029 5034 int err;
5030 5035 int contig;
5031 5036 int xlen;
5032 5037 int bsize = ip->i_fs->fs_bsize;
5033 5038
5034 5039 /*
5035 5040 * If the directio advisory is in effect on this file,
5036 5041 * then do not do buffered read ahead. Read ahead makes
5037 5042 * it more difficult on threads using directio as they
5038 5043 * will be forced to flush the pages from this vnode.
5039 5044 */
5040 5045 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
5041 5046 return (0);
5042 5047 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio)
5043 5048 return (0);
5044 5049
5045 5050 /*
5046 5051 * Is this test needed?
5047 5052 */
5048 5053 if (addr2 >= seg->s_base + seg->s_size)
5049 5054 return (0);
5050 5055
5051 5056 contig = 0;
5052 5057 err = bmap_read(ip, io_off, &bn, &contig);
5053 5058 /*
5054 5059 * If its a UFS_HOLE or a fallocated block, do not perform
5055 5060 * any read ahead's since there probably is nothing to read ahead
5056 5061 */
5057 5062 if (err || bn == UFS_HOLE || ISFALLOCBLK(ip, bn))
5058 5063 return (0);
5059 5064
5060 5065 /*
5061 5066 * Limit the transfer size to bsize if this is the 2nd block.
5062 5067 */
5063 5068 if (io_off == (u_offset_t)bsize)
5064 5069 contig = MIN(contig, bsize);
5065 5070
5066 5071 if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off,
5067 5072 &io_len, io_off, contig, 1)) == NULL)
5068 5073 return (0);
5069 5074
5070 5075 /*
5071 5076 * Zero part of page which we are not going to read from disk
5072 5077 */
5073 5078 if ((xlen = (io_len & PAGEOFFSET)) > 0)
5074 5079 pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
5075 5080
5076 5081 ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK;
5077 5082
5078 5083 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC);
5079 5084 bp->b_edev = ip->i_dev;
5080 5085 bp->b_dev = cmpdev(ip->i_dev);
5081 5086 bp->b_blkno = bn;
5082 5087 bp->b_un.b_addr = (caddr_t)0;
5083 5088 bp->b_file = ip->i_vnode;
5084 5089 bp->b_offset = off;
5085 5090
5086 5091 if (ufsvfsp->vfs_log) {
5087 5092 lufs_read_strategy(ufsvfsp->vfs_log, bp);
5088 5093 } else if (ufsvfsp->vfs_snapshot) {
5089 5094 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5090 5095 } else {
5091 5096 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5092 5097 ub.ub_getras.value.ul++;
5093 5098 (void) bdev_strategy(bp);
5094 5099 lwp_stat_update(LWP_STAT_INBLK, 1);
5095 5100 }
5096 5101
5097 5102 return (io_len);
5098 5103 }
5099 5104
5100 5105 int ufs_delay = 1;
5101 5106 /*
5102 5107 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC}
5103 5108 *
5104 5109 * LMXXX - the inode really ought to contain a pointer to one of these
5105 5110 * async args. Stuff gunk in there and just hand the whole mess off.
5106 5111 * This would replace i_delaylen, i_delayoff.
5107 5112 */
5108 5113 /*ARGSUSED*/
5109 5114 static int
5110 5115 ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags,
5111 5116 struct cred *cr, caller_context_t *ct)
5112 5117 {
5113 5118 struct inode *ip = VTOI(vp);
5114 5119 int err = 0;
5115 5120
5116 5121 if (vp->v_count == 0) {
5117 5122 return (ufs_fault(vp, "ufs_putpage: bad v_count == 0"));
5118 5123 }
5119 5124
5120 5125 /*
5121 5126 * XXX - Why should this check be made here?
5122 5127 */
5123 5128 if (vp->v_flag & VNOMAP) {
5124 5129 err = ENOSYS;
5125 5130 goto errout;
5126 5131 }
5127 5132
5128 5133 if (ip->i_ufsvfs == NULL) {
5129 5134 err = EIO;
5130 5135 goto errout;
5131 5136 }
5132 5137
5133 5138 if (flags & B_ASYNC) {
5134 5139 if (ufs_delay && len &&
5135 5140 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) {
5136 5141 mutex_enter(&ip->i_tlock);
5137 5142 /*
5138 5143 * If nobody stalled, start a new cluster.
5139 5144 */
5140 5145 if (ip->i_delaylen == 0) {
5141 5146 ip->i_delayoff = off;
5142 5147 ip->i_delaylen = len;
5143 5148 mutex_exit(&ip->i_tlock);
5144 5149 goto errout;
5145 5150 }
5146 5151 /*
5147 5152 * If we have a full cluster or they are not contig,
5148 5153 * then push last cluster and start over.
5149 5154 */
5150 5155 if (ip->i_delaylen >= CLUSTSZ(ip) ||
5151 5156 ip->i_delayoff + ip->i_delaylen != off) {
5152 5157 u_offset_t doff;
5153 5158 size_t dlen;
5154 5159
5155 5160 doff = ip->i_delayoff;
5156 5161 dlen = ip->i_delaylen;
5157 5162 ip->i_delayoff = off;
5158 5163 ip->i_delaylen = len;
5159 5164 mutex_exit(&ip->i_tlock);
5160 5165 err = ufs_putpages(vp, doff, dlen,
5161 5166 flags, cr);
5162 5167 /* LMXXX - flags are new val, not old */
5163 5168 goto errout;
5164 5169 }
5165 5170 /*
5166 5171 * There is something there, it's not full, and
5167 5172 * it is contig.
5168 5173 */
5169 5174 ip->i_delaylen += len;
5170 5175 mutex_exit(&ip->i_tlock);
5171 5176 goto errout;
5172 5177 }
5173 5178 /*
5174 5179 * Must have weird flags or we are not clustering.
5175 5180 */
5176 5181 }
5177 5182
5178 5183 err = ufs_putpages(vp, off, len, flags, cr);
5179 5184
5180 5185 errout:
5181 5186 return (err);
5182 5187 }
5183 5188
5184 5189 /*
5185 5190 * If len == 0, do from off to EOF.
5186 5191 *
5187 5192 * The normal cases should be len == 0 & off == 0 (entire vp list),
5188 5193 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
5189 5194 * (from pageout).
5190 5195 */
5191 5196 /*ARGSUSED*/
5192 5197 static int
5193 5198 ufs_putpages(
5194 5199 struct vnode *vp,
5195 5200 offset_t off,
5196 5201 size_t len,
5197 5202 int flags,
5198 5203 struct cred *cr)
5199 5204 {
5200 5205 u_offset_t io_off;
5201 5206 u_offset_t eoff;
5202 5207 struct inode *ip = VTOI(vp);
5203 5208 page_t *pp;
5204 5209 size_t io_len;
5205 5210 int err = 0;
5206 5211 int dolock;
5207 5212
5208 5213 if (vp->v_count == 0)
5209 5214 return (ufs_fault(vp, "ufs_putpages: v_count == 0"));
5210 5215 /*
5211 5216 * Acquire the readers/write inode lock before locking
5212 5217 * any pages in this inode.
5213 5218 * The inode lock is held during i/o.
5214 5219 */
5215 5220 if (len == 0) {
5216 5221 mutex_enter(&ip->i_tlock);
5217 5222 ip->i_delayoff = ip->i_delaylen = 0;
5218 5223 mutex_exit(&ip->i_tlock);
5219 5224 }
5220 5225 dolock = (rw_owner(&ip->i_contents) != curthread);
5221 5226 if (dolock) {
5222 5227 /*
5223 5228 * Must synchronize this thread and any possible thread
5224 5229 * operating in the window of vulnerability in wrip().
5225 5230 * It is dangerous to allow both a thread doing a putpage
5226 5231 * and a thread writing, so serialize them. The exception
5227 5232 * is when the thread in wrip() does something which causes
5228 5233 * a putpage operation. Then, the thread must be allowed
5229 5234 * to continue. It may encounter a bmap_read problem in
5230 5235 * ufs_putapage, but that is handled in ufs_putapage.
5231 5236 * Allow async writers to proceed, we don't want to block
5232 5237 * the pageout daemon.
5233 5238 */
5234 5239 if (ip->i_writer == curthread)
5235 5240 rw_enter(&ip->i_contents, RW_READER);
5236 5241 else {
5237 5242 for (;;) {
5238 5243 rw_enter(&ip->i_contents, RW_READER);
5239 5244 mutex_enter(&ip->i_tlock);
5240 5245 /*
5241 5246 * If there is no thread in the critical
5242 5247 * section of wrip(), then proceed.
5243 5248 * Otherwise, wait until there isn't one.
5244 5249 */
5245 5250 if (ip->i_writer == NULL) {
5246 5251 mutex_exit(&ip->i_tlock);
5247 5252 break;
5248 5253 }
5249 5254 rw_exit(&ip->i_contents);
5250 5255 /*
5251 5256 * Bounce async writers when we have a writer
5252 5257 * working on this file so we don't deadlock
5253 5258 * the pageout daemon.
5254 5259 */
5255 5260 if (flags & B_ASYNC) {
5256 5261 mutex_exit(&ip->i_tlock);
5257 5262 return (0);
5258 5263 }
5259 5264 cv_wait(&ip->i_wrcv, &ip->i_tlock);
5260 5265 mutex_exit(&ip->i_tlock);
5261 5266 }
5262 5267 }
5263 5268 }
5264 5269
5265 5270 if (!vn_has_cached_data(vp)) {
5266 5271 if (dolock)
5267 5272 rw_exit(&ip->i_contents);
5268 5273 return (0);
5269 5274 }
5270 5275
5271 5276 if (len == 0) {
5272 5277 /*
5273 5278 * Search the entire vp list for pages >= off.
5274 5279 */
5275 5280 err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage,
5276 5281 flags, cr);
5277 5282 } else {
5278 5283 /*
5279 5284 * Loop over all offsets in the range looking for
5280 5285 * pages to deal with.
5281 5286 */
5282 5287 if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0)
5283 5288 eoff = MIN(off + len, eoff);
5284 5289 else
5285 5290 eoff = off + len;
5286 5291
5287 5292 for (io_off = off; io_off < eoff; io_off += io_len) {
5288 5293 /*
5289 5294 * If we are not invalidating, synchronously
5290 5295 * freeing or writing pages, use the routine
5291 5296 * page_lookup_nowait() to prevent reclaiming
5292 5297 * them from the free list.
5293 5298 */
5294 5299 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
5295 5300 pp = page_lookup(vp, io_off,
5296 5301 (flags & (B_INVAL | B_FREE)) ?
5297 5302 SE_EXCL : SE_SHARED);
5298 5303 } else {
5299 5304 pp = page_lookup_nowait(vp, io_off,
5300 5305 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
5301 5306 }
5302 5307
5303 5308 if (pp == NULL || pvn_getdirty(pp, flags) == 0)
5304 5309 io_len = PAGESIZE;
5305 5310 else {
5306 5311 u_offset_t *io_offp = &io_off;
5307 5312
5308 5313 err = ufs_putapage(vp, pp, io_offp, &io_len,
5309 5314 flags, cr);
5310 5315 if (err != 0)
5311 5316 break;
5312 5317 /*
5313 5318 * "io_off" and "io_len" are returned as
5314 5319 * the range of pages we actually wrote.
5315 5320 * This allows us to skip ahead more quickly
5316 5321 * since several pages may've been dealt
5317 5322 * with by this iteration of the loop.
5318 5323 */
5319 5324 }
5320 5325 }
5321 5326 }
5322 5327 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) {
5323 5328 /*
5324 5329 * We have just sync'ed back all the pages on
5325 5330 * the inode, turn off the IMODTIME flag.
5326 5331 */
5327 5332 mutex_enter(&ip->i_tlock);
5328 5333 ip->i_flag &= ~IMODTIME;
5329 5334 mutex_exit(&ip->i_tlock);
5330 5335 }
5331 5336 if (dolock)
5332 5337 rw_exit(&ip->i_contents);
5333 5338 return (err);
5334 5339 }
5335 5340
5336 5341 static void
5337 5342 ufs_iodone(buf_t *bp)
5338 5343 {
5339 5344 struct inode *ip;
5340 5345
5341 5346 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ));
5342 5347
5343 5348 bp->b_iodone = NULL;
5344 5349
5345 5350 ip = VTOI(bp->b_pages->p_vnode);
5346 5351
5347 5352 mutex_enter(&ip->i_tlock);
5348 5353 if (ip->i_writes >= ufs_LW) {
5349 5354 if ((ip->i_writes -= bp->b_bcount) <= ufs_LW)
5350 5355 if (ufs_WRITES)
5351 5356 cv_broadcast(&ip->i_wrcv); /* wake all up */
5352 5357 } else {
5353 5358 ip->i_writes -= bp->b_bcount;
5354 5359 }
5355 5360
5356 5361 mutex_exit(&ip->i_tlock);
5357 5362 iodone(bp);
5358 5363 }
5359 5364
5360 5365 /*
5361 5366 * Write out a single page, possibly klustering adjacent
5362 5367 * dirty pages. The inode lock must be held.
5363 5368 *
5364 5369 * LMXXX - bsize < pagesize not done.
5365 5370 */
5366 5371 /*ARGSUSED*/
5367 5372 int
5368 5373 ufs_putapage(
5369 5374 struct vnode *vp,
5370 5375 page_t *pp,
5371 5376 u_offset_t *offp,
5372 5377 size_t *lenp, /* return values */
5373 5378 int flags,
5374 5379 struct cred *cr)
5375 5380 {
5376 5381 u_offset_t io_off;
5377 5382 u_offset_t off;
5378 5383 struct inode *ip = VTOI(vp);
5379 5384 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
5380 5385 struct fs *fs;
5381 5386 struct buf *bp;
5382 5387 size_t io_len;
5383 5388 daddr_t bn;
5384 5389 int err;
5385 5390 int contig;
5386 5391 int dotrans;
5387 5392
5388 5393 ASSERT(RW_LOCK_HELD(&ip->i_contents));
5389 5394
5390 5395 if (ufsvfsp == NULL) {
5391 5396 err = EIO;
5392 5397 goto out_trace;
5393 5398 }
5394 5399
5395 5400 fs = ip->i_fs;
5396 5401 ASSERT(fs->fs_ronly == 0);
5397 5402
5398 5403 /*
5399 5404 * If the modified time on the inode has not already been
5400 5405 * set elsewhere (e.g. for write/setattr) we set the time now.
5401 5406 * This gives us approximate modified times for mmap'ed files
5402 5407 * which are modified via stores in the user address space.
5403 5408 */
5404 5409 if ((ip->i_flag & IMODTIME) == 0) {
5405 5410 mutex_enter(&ip->i_tlock);
5406 5411 ip->i_flag |= IUPD;
5407 5412 ip->i_seq++;
5408 5413 ITIMES_NOLOCK(ip);
5409 5414 mutex_exit(&ip->i_tlock);
5410 5415 }
5411 5416
5412 5417 /*
5413 5418 * Align the request to a block boundry (for old file systems),
5414 5419 * and go ask bmap() how contiguous things are for this file.
5415 5420 */
5416 5421 off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */
5417 5422 contig = 0;
5418 5423 err = bmap_read(ip, off, &bn, &contig);
5419 5424 if (err)
5420 5425 goto out;
5421 5426 if (bn == UFS_HOLE) { /* putpage never allocates */
5422 5427 /*
5423 5428 * logging device is in error mode; simply return EIO
5424 5429 */
5425 5430 if (TRANS_ISERROR(ufsvfsp)) {
5426 5431 err = EIO;
5427 5432 goto out;
5428 5433 }
5429 5434 /*
5430 5435 * Oops, the thread in the window in wrip() did some
5431 5436 * sort of operation which caused a putpage in the bad
5432 5437 * range. In this case, just return an error which will
5433 5438 * cause the software modified bit on the page to set
5434 5439 * and the page will get written out again later.
5435 5440 */
5436 5441 if (ip->i_writer == curthread) {
5437 5442 err = EIO;
5438 5443 goto out;
5439 5444 }
5440 5445 /*
5441 5446 * If the pager is trying to push a page in the bad range
5442 5447 * just tell him to try again later when things are better.
5443 5448 */
5444 5449 if (flags & B_ASYNC) {
5445 5450 err = EAGAIN;
5446 5451 goto out;
5447 5452 }
5448 5453 err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE");
5449 5454 goto out;
5450 5455 }
5451 5456
5452 5457 /*
5453 5458 * If it is an fallocate'd block, reverse the negativity since
5454 5459 * we are now writing to it
5455 5460 */
5456 5461 if (ISFALLOCBLK(ip, bn)) {
5457 5462 err = bmap_set_bn(vp, off, dbtofsb(fs, -bn));
5458 5463 if (err)
5459 5464 goto out;
5460 5465
5461 5466 bn = -bn;
5462 5467 }
5463 5468
5464 5469 /*
5465 5470 * Take the length (of contiguous bytes) passed back from bmap()
5466 5471 * and _try_ and get a set of pages covering that extent.
5467 5472 */
5468 5473 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags);
5469 5474
5470 5475 /*
5471 5476 * May have run out of memory and not clustered backwards.
5472 5477 * off p_offset
5473 5478 * [ pp - 1 ][ pp ]
5474 5479 * [ block ]
5475 5480 * We told bmap off, so we have to adjust the bn accordingly.
5476 5481 */
5477 5482 if (io_off > off) {
5478 5483 bn += btod(io_off - off);
5479 5484 contig -= (io_off - off);
5480 5485 }
5481 5486
5482 5487 /*
5483 5488 * bmap was carefull to tell us the right size so use that.
5484 5489 * There might be unallocated frags at the end.
5485 5490 * LMXXX - bzero the end of the page? We must be writing after EOF.
5486 5491 */
5487 5492 if (io_len > contig) {
5488 5493 ASSERT(io_len - contig < fs->fs_bsize);
5489 5494 io_len -= (io_len - contig);
5490 5495 }
5491 5496
5492 5497 /*
5493 5498 * Handle the case where we are writing the last page after EOF.
5494 5499 *
5495 5500 * XXX - just a patch for i-mt3.
5496 5501 */
5497 5502 if (io_len == 0) {
5498 5503 ASSERT(pp->p_offset >=
5499 5504 (u_offset_t)(roundup(ip->i_size, PAGESIZE)));
5500 5505 io_len = PAGESIZE;
5501 5506 }
5502 5507
5503 5508 bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags);
5504 5509
5505 5510 ULOCKFS_SET_MOD(ITOUL(ip));
5506 5511
5507 5512 bp->b_edev = ip->i_dev;
5508 5513 bp->b_dev = cmpdev(ip->i_dev);
5509 5514 bp->b_blkno = bn;
5510 5515 bp->b_un.b_addr = (caddr_t)0;
5511 5516 bp->b_file = ip->i_vnode;
5512 5517
5513 5518 /*
5514 5519 * File contents of shadow or quota inodes are metadata, and updates
5515 5520 * to these need to be put into a logging transaction. All direct
5516 5521 * callers in UFS do that, but fsflush can come here _before_ the
5517 5522 * normal codepath. An example would be updating ACL information, for
5518 5523 * which the normal codepath would be:
5519 5524 * ufs_si_store()
5520 5525 * ufs_rdwri()
5521 5526 * wrip()
5522 5527 * segmap_release()
5523 5528 * VOP_PUTPAGE()
5524 5529 * Here, fsflush can pick up the dirty page before segmap_release()
5525 5530 * forces it out. If that happens, there's no transaction.
5526 5531 * We therefore need to test whether a transaction exists, and if not
5527 5532 * create one - for fsflush.
5528 5533 */
5529 5534 dotrans =
5530 5535 (((ip->i_mode & IFMT) == IFSHAD || ufsvfsp->vfs_qinod == ip) &&
5531 5536 ((curthread->t_flag & T_DONTBLOCK) == 0) &&
5532 5537 (TRANS_ISTRANS(ufsvfsp)));
5533 5538
5534 5539 if (dotrans) {
5535 5540 curthread->t_flag |= T_DONTBLOCK;
5536 5541 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip));
5537 5542 }
5538 5543 if (TRANS_ISTRANS(ufsvfsp)) {
5539 5544 if ((ip->i_mode & IFMT) == IFSHAD) {
5540 5545 TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD);
5541 5546 } else if (ufsvfsp->vfs_qinod == ip) {
5542 5547 TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR,
5543 5548 0, 0);
5544 5549 }
5545 5550 }
5546 5551 if (dotrans) {
5547 5552 TRANS_END_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip));
5548 5553 curthread->t_flag &= ~T_DONTBLOCK;
5549 5554 }
5550 5555
5551 5556 /* write throttle */
5552 5557
5553 5558 ASSERT(bp->b_iodone == NULL);
5554 5559 bp->b_iodone = (int (*)())ufs_iodone;
5555 5560 mutex_enter(&ip->i_tlock);
5556 5561 ip->i_writes += bp->b_bcount;
5557 5562 mutex_exit(&ip->i_tlock);
5558 5563
5559 5564 if (bp->b_flags & B_ASYNC) {
5560 5565 if (ufsvfsp->vfs_log) {
5561 5566 lufs_write_strategy(ufsvfsp->vfs_log, bp);
5562 5567 } else if (ufsvfsp->vfs_snapshot) {
5563 5568 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5564 5569 } else {
5565 5570 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5566 5571 ub.ub_putasyncs.value.ul++;
5567 5572 (void) bdev_strategy(bp);
5568 5573 lwp_stat_update(LWP_STAT_OUBLK, 1);
5569 5574 }
5570 5575 } else {
5571 5576 if (ufsvfsp->vfs_log) {
5572 5577 lufs_write_strategy(ufsvfsp->vfs_log, bp);
5573 5578 } else if (ufsvfsp->vfs_snapshot) {
5574 5579 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5575 5580 } else {
5576 5581 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5577 5582 ub.ub_putsyncs.value.ul++;
5578 5583 (void) bdev_strategy(bp);
5579 5584 lwp_stat_update(LWP_STAT_OUBLK, 1);
5580 5585 }
5581 5586 err = biowait(bp);
5582 5587 pageio_done(bp);
5583 5588 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags);
5584 5589 }
5585 5590
5586 5591 pp = NULL;
5587 5592
5588 5593 out:
5589 5594 if (err != 0 && pp != NULL)
5590 5595 pvn_write_done(pp, B_ERROR | B_WRITE | flags);
5591 5596
5592 5597 if (offp)
5593 5598 *offp = io_off;
5594 5599 if (lenp)
5595 5600 *lenp = io_len;
5596 5601 out_trace:
5597 5602 return (err);
5598 5603 }
5599 5604
5600 5605 uint64_t ufs_map_alock_retry_cnt;
5601 5606 uint64_t ufs_map_lockfs_retry_cnt;
5602 5607
5603 5608 /* ARGSUSED */
5604 5609 static int
5605 5610 ufs_map(struct vnode *vp,
5606 5611 offset_t off,
5607 5612 struct as *as,
5608 5613 caddr_t *addrp,
5609 5614 size_t len,
5610 5615 uchar_t prot,
5611 5616 uchar_t maxprot,
5612 5617 uint_t flags,
5613 5618 struct cred *cr,
5614 5619 caller_context_t *ct)
5615 5620 {
5616 5621 struct segvn_crargs vn_a;
5617 5622 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
5618 5623 struct ulockfs *ulp;
5619 5624 int error, sig;
5620 5625 k_sigset_t smask;
5621 5626 caddr_t hint = *addrp;
5622 5627
5623 5628 if (vp->v_flag & VNOMAP) {
5624 5629 error = ENOSYS;
5625 5630 goto out;
5626 5631 }
5627 5632
5628 5633 if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) {
5629 5634 error = ENXIO;
5630 5635 goto out;
5631 5636 }
5632 5637
5633 5638 if (vp->v_type != VREG) {
5634 5639 error = ENODEV;
5635 5640 goto out;
5636 5641 }
5637 5642
5638 5643 retry_map:
5639 5644 *addrp = hint;
5640 5645 /*
5641 5646 * If file is being locked, disallow mapping.
5642 5647 */
5643 5648 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) {
5644 5649 error = EAGAIN;
5645 5650 goto out;
5646 5651 }
5647 5652
5648 5653 as_rangelock(as);
5649 5654 /*
5650 5655 * Note that if we are retrying (because ufs_lockfs_trybegin failed in
5651 5656 * the previous attempt), some other thread could have grabbed
5652 5657 * the same VA range if MAP_FIXED is set. In that case, choose_addr
5653 5658 * would unmap the valid VA range, that is ok.
5654 5659 */
5655 5660 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5656 5661 if (error != 0) {
5657 5662 as_rangeunlock(as);
5658 5663 goto out;
5659 5664 }
5660 5665
5661 5666 /*
5662 5667 * a_lock has to be acquired before entering the lockfs protocol
5663 5668 * because that is the order in which pagefault works. Also we cannot
5664 5669 * block on a_lock here because this waiting writer will prevent
5665 5670 * further readers like ufs_read from progressing and could cause
5666 5671 * deadlock between ufs_read/ufs_map/pagefault when a quiesce is
5667 5672 * pending.
5668 5673 */
5669 5674 while (!AS_LOCK_TRYENTER(as, RW_WRITER)) {
5670 5675 ufs_map_alock_retry_cnt++;
5671 5676 delay(RETRY_LOCK_DELAY);
5672 5677 }
5673 5678
5674 5679 /*
5675 5680 * We can't hold as->a_lock and wait for lockfs to succeed because
5676 5681 * the proc tools might hang on a_lock, so call ufs_lockfs_trybegin()
5677 5682 * instead.
5678 5683 */
5679 5684 if (error = ufs_lockfs_trybegin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK)) {
5680 5685 /*
5681 5686 * ufs_lockfs_trybegin() did not succeed. It is safer to give up
5682 5687 * as->a_lock and wait for ulp->ul_fs_lock status to change.
5683 5688 */
5684 5689 ufs_map_lockfs_retry_cnt++;
5685 5690 AS_LOCK_EXIT(as);
5686 5691 as_rangeunlock(as);
5687 5692 if (error == EIO)
5688 5693 goto out;
5689 5694
5690 5695 mutex_enter(&ulp->ul_lock);
5691 5696 while (ulp->ul_fs_lock & ULOCKFS_MAP_MASK) {
5692 5697 if (ULOCKFS_IS_SLOCK(ulp) || ufsvfsp->vfs_nointr) {
5693 5698 cv_wait(&ulp->ul_cv, &ulp->ul_lock);
5694 5699 } else {
5695 5700 sigintr(&smask, 1);
5696 5701 sig = cv_wait_sig(&ulp->ul_cv, &ulp->ul_lock);
5697 5702 sigunintr(&smask);
5698 5703 if (((ulp->ul_fs_lock & ULOCKFS_MAP_MASK) &&
5699 5704 !sig) || ufsvfsp->vfs_dontblock) {
5700 5705 mutex_exit(&ulp->ul_lock);
5701 5706 return (EINTR);
5702 5707 }
5703 5708 }
5704 5709 }
5705 5710 mutex_exit(&ulp->ul_lock);
5706 5711 goto retry_map;
5707 5712 }
5708 5713
5709 5714 vn_a.vp = vp;
5710 5715 vn_a.offset = (u_offset_t)off;
5711 5716 vn_a.type = flags & MAP_TYPE;
5712 5717 vn_a.prot = prot;
5713 5718 vn_a.maxprot = maxprot;
5714 5719 vn_a.cred = cr;
5715 5720 vn_a.amp = NULL;
5716 5721 vn_a.flags = flags & ~MAP_TYPE;
5717 5722 vn_a.szc = 0;
5718 5723 vn_a.lgrp_mem_policy_flags = 0;
5719 5724
5720 5725 error = as_map_locked(as, *addrp, len, segvn_create, &vn_a);
5721 5726 if (ulp)
5722 5727 ufs_lockfs_end(ulp);
5723 5728 as_rangeunlock(as);
5724 5729 out:
5725 5730 return (error);
5726 5731 }
5727 5732
5728 5733 /* ARGSUSED */
5729 5734 static int
5730 5735 ufs_addmap(struct vnode *vp,
5731 5736 offset_t off,
5732 5737 struct as *as,
5733 5738 caddr_t addr,
5734 5739 size_t len,
5735 5740 uchar_t prot,
5736 5741 uchar_t maxprot,
5737 5742 uint_t flags,
5738 5743 struct cred *cr,
5739 5744 caller_context_t *ct)
5740 5745 {
5741 5746 struct inode *ip = VTOI(vp);
5742 5747
5743 5748 if (vp->v_flag & VNOMAP) {
5744 5749 return (ENOSYS);
5745 5750 }
5746 5751
5747 5752 mutex_enter(&ip->i_tlock);
5748 5753 ip->i_mapcnt += btopr(len);
5749 5754 mutex_exit(&ip->i_tlock);
5750 5755 return (0);
5751 5756 }
5752 5757
5753 5758 /*ARGSUSED*/
5754 5759 static int
5755 5760 ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr,
5756 5761 size_t len, uint_t prot, uint_t maxprot, uint_t flags,
5757 5762 struct cred *cr, caller_context_t *ct)
5758 5763 {
5759 5764 struct inode *ip = VTOI(vp);
5760 5765
5761 5766 if (vp->v_flag & VNOMAP) {
5762 5767 return (ENOSYS);
5763 5768 }
5764 5769
5765 5770 mutex_enter(&ip->i_tlock);
5766 5771 ip->i_mapcnt -= btopr(len); /* Count released mappings */
5767 5772 ASSERT(ip->i_mapcnt >= 0);
5768 5773 mutex_exit(&ip->i_tlock);
5769 5774 return (0);
5770 5775 }
5771 5776 /*
5772 5777 * Return the answer requested to poll() for non-device files
5773 5778 */
5774 5779 struct pollhead ufs_pollhd;
5775 5780
5776 5781 /* ARGSUSED */
5777 5782 int
5778 5783 ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp,
5779 5784 caller_context_t *ct)
5780 5785 {
5781 5786 struct ufsvfs *ufsvfsp;
5782 5787
5783 5788 *revp = 0;
5784 5789 ufsvfsp = VTOI(vp)->i_ufsvfs;
5785 5790
5786 5791 if (!ufsvfsp) {
5787 5792 *revp = POLLHUP;
5788 5793 goto out;
5789 5794 }
5790 5795
5791 5796 if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) ||
5792 5797 ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) {
5793 5798 *revp |= POLLERR;
5794 5799
5795 5800 } else {
5796 5801 if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly &&
5797 5802 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs))
5798 5803 *revp |= POLLOUT;
5799 5804
5800 5805 if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly &&
5801 5806 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs))
5802 5807 *revp |= POLLWRBAND;
5803 5808
5804 5809 if (ev & POLLIN)
5805 5810 *revp |= POLLIN;
5806 5811
5807 5812 if (ev & POLLRDNORM)
5808 5813 *revp |= POLLRDNORM;
5809 5814
5810 5815 if (ev & POLLRDBAND)
5811 5816 *revp |= POLLRDBAND;
5812 5817 }
5813 5818
5814 5819 if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP)))
5815 5820 *revp |= POLLPRI;
5816 5821 out:
5817 5822 *phpp = !any && !*revp ? &ufs_pollhd : (struct pollhead *)NULL;
5818 5823
5819 5824 return (0);
5820 5825 }
5821 5826
5822 5827 /* ARGSUSED */
5823 5828 static int
5824 5829 ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr,
5825 5830 caller_context_t *ct)
5826 5831 {
5827 5832 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
5828 5833 struct ulockfs *ulp = NULL;
5829 5834 struct inode *sip = NULL;
5830 5835 int error;
5831 5836 struct inode *ip = VTOI(vp);
5832 5837 int issync;
5833 5838
5834 5839 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK);
5835 5840 if (error)
5836 5841 return (error);
5837 5842
5838 5843 switch (cmd) {
5839 5844 /*
5840 5845 * Have to handle _PC_NAME_MAX here, because the normal way
5841 5846 * [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()]
5842 5847 * results in a lock ordering reversal between
5843 5848 * ufs_lockfs_{begin,end}() and
5844 5849 * ufs_thread_{suspend,continue}().
5845 5850 *
5846 5851 * Keep in sync with ufs_statvfs().
5847 5852 */
5848 5853 case _PC_NAME_MAX:
5849 5854 *valp = MAXNAMLEN;
5850 5855 break;
5851 5856
5852 5857 case _PC_FILESIZEBITS:
5853 5858 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES)
5854 5859 *valp = UFS_FILESIZE_BITS;
5855 5860 else
5856 5861 *valp = 32;
5857 5862 break;
5858 5863
5859 5864 case _PC_XATTR_EXISTS:
5860 5865 if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
5861 5866
5862 5867 error =
5863 5868 ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, cr);
5864 5869 if (error == 0 && sip != NULL) {
5865 5870 /* Start transaction */
5866 5871 if (ulp) {
5867 5872 TRANS_BEGIN_CSYNC(ufsvfsp, issync,
5868 5873 TOP_RMDIR, TOP_RMDIR_SIZE);
5869 5874 }
5870 5875 /*
5871 5876 * Is directory empty
5872 5877 */
5873 5878 rw_enter(&sip->i_rwlock, RW_WRITER);
5874 5879 rw_enter(&sip->i_contents, RW_WRITER);
5875 5880 if (ufs_xattrdirempty(sip,
5876 5881 sip->i_number, CRED())) {
5877 5882 rw_enter(&ip->i_contents, RW_WRITER);
5878 5883 ufs_unhook_shadow(ip, sip);
5879 5884 rw_exit(&ip->i_contents);
5880 5885
5881 5886 *valp = 0;
5882 5887
5883 5888 } else
5884 5889 *valp = 1;
5885 5890 rw_exit(&sip->i_contents);
5886 5891 rw_exit(&sip->i_rwlock);
5887 5892 if (ulp) {
5888 5893 TRANS_END_CSYNC(ufsvfsp, error, issync,
5889 5894 TOP_RMDIR, TOP_RMDIR_SIZE);
5890 5895 }
5891 5896 VN_RELE(ITOV(sip));
5892 5897 } else if (error == ENOENT) {
5893 5898 *valp = 0;
5894 5899 error = 0;
5895 5900 }
5896 5901 } else {
5897 5902 error = fs_pathconf(vp, cmd, valp, cr, ct);
5898 5903 }
5899 5904 break;
5900 5905
5901 5906 case _PC_ACL_ENABLED:
5902 5907 *valp = _ACL_ACLENT_ENABLED;
5903 5908 break;
5904 5909
5905 5910 case _PC_MIN_HOLE_SIZE:
5906 5911 *valp = (ulong_t)ip->i_fs->fs_bsize;
5907 5912 break;
5908 5913
5909 5914 case _PC_SATTR_ENABLED:
5910 5915 case _PC_SATTR_EXISTS:
5911 5916 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5912 5917 (vp->v_type == VREG || vp->v_type == VDIR);
5913 5918 break;
5914 5919
5915 5920 case _PC_TIMESTAMP_RESOLUTION:
5916 5921 /*
5917 5922 * UFS keeps only microsecond timestamp resolution.
5918 5923 * This is historical and will probably never change.
5919 5924 */
5920 5925 *valp = 1000L;
5921 5926 break;
5922 5927
5923 5928 default:
5924 5929 error = fs_pathconf(vp, cmd, valp, cr, ct);
5925 5930 break;
5926 5931 }
5927 5932
5928 5933 if (ulp != NULL) {
5929 5934 ufs_lockfs_end(ulp);
5930 5935 }
5931 5936 return (error);
5932 5937 }
5933 5938
5934 5939 int ufs_pageio_writes, ufs_pageio_reads;
5935 5940
5936 5941 /*ARGSUSED*/
5937 5942 static int
5938 5943 ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5939 5944 int flags, struct cred *cr, caller_context_t *ct)
5940 5945 {
5941 5946 struct inode *ip = VTOI(vp);
5942 5947 struct ufsvfs *ufsvfsp;
5943 5948 page_t *npp = NULL, *opp = NULL, *cpp = pp;
5944 5949 struct buf *bp;
5945 5950 daddr_t bn;
5946 5951 size_t done_len = 0, cur_len = 0;
5947 5952 int err = 0;
5948 5953 int contig = 0;
5949 5954 int dolock;
5950 5955 int vmpss = 0;
5951 5956 struct ulockfs *ulp;
5952 5957
5953 5958 if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp &&
5954 5959 vp->v_mpssdata != NULL) {
5955 5960 vmpss = 1;
5956 5961 }
5957 5962
5958 5963 dolock = (rw_owner(&ip->i_contents) != curthread);
5959 5964 /*
5960 5965 * We need a better check. Ideally, we would use another
5961 5966 * vnodeops so that hlocked and forcibly unmounted file
5962 5967 * systems would return EIO where appropriate and w/o the
5963 5968 * need for these checks.
5964 5969 */
5965 5970 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
5966 5971 return (EIO);
5967 5972
5968 5973 /*
5969 5974 * For vmpss (pp can be NULL) case respect the quiesce protocol.
5970 5975 * ul_lock must be taken before locking pages so we can't use it here
5971 5976 * if pp is non NULL because segvn already locked pages
5972 5977 * SE_EXCL. Instead we rely on the fact that a forced umount or
5973 5978 * applying a filesystem lock via ufs_fiolfs() will block in the
5974 5979 * implicit call to ufs_flush() until we unlock the pages after the
5975 5980 * return to segvn. Other ufs_quiesce() callers keep ufs_quiesce_pend
5976 5981 * above 0 until they are done. We have to be careful not to increment
5977 5982 * ul_vnops_cnt here after forceful unmount hlocks the file system.
5978 5983 *
5979 5984 * If pp is NULL use ul_lock to make sure we don't increment
5980 5985 * ul_vnops_cnt after forceful unmount hlocks the file system.
5981 5986 */
5982 5987 if (vmpss || pp == NULL) {
5983 5988 ulp = &ufsvfsp->vfs_ulockfs;
5984 5989 if (pp == NULL)
5985 5990 mutex_enter(&ulp->ul_lock);
5986 5991 if (ulp->ul_fs_lock & ULOCKFS_GETREAD_MASK) {
5987 5992 if (pp == NULL) {
5988 5993 mutex_exit(&ulp->ul_lock);
5989 5994 }
5990 5995 return (vmpss ? EIO : EINVAL);
5991 5996 }
5992 5997 atomic_inc_ulong(&ulp->ul_vnops_cnt);
5993 5998 if (pp == NULL)
5994 5999 mutex_exit(&ulp->ul_lock);
5995 6000 if (ufs_quiesce_pend) {
5996 6001 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
5997 6002 cv_broadcast(&ulp->ul_cv);
5998 6003 return (vmpss ? EIO : EINVAL);
5999 6004 }
6000 6005 }
6001 6006
6002 6007 if (dolock) {
6003 6008 /*
6004 6009 * segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to
6005 6010 * handle a fault against a segment that maps vnode pages with
6006 6011 * large mappings. Segvn creates pages and holds them locked
6007 6012 * SE_EXCL during VOP_PAGEIO() call. In this case we have to
6008 6013 * use rw_tryenter() to avoid a potential deadlock since in
6009 6014 * lock order i_contents needs to be taken first.
6010 6015 * Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails.
6011 6016 */
6012 6017 if (!vmpss) {
6013 6018 rw_enter(&ip->i_contents, RW_READER);
6014 6019 } else if (!rw_tryenter(&ip->i_contents, RW_READER)) {
6015 6020 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6016 6021 cv_broadcast(&ulp->ul_cv);
6017 6022 return (EDEADLK);
6018 6023 }
6019 6024 }
6020 6025
6021 6026 /*
6022 6027 * Return an error to segvn because the pagefault request is beyond
6023 6028 * PAGESIZE rounded EOF.
6024 6029 */
6025 6030 if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) {
6026 6031 if (dolock)
6027 6032 rw_exit(&ip->i_contents);
6028 6033 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6029 6034 cv_broadcast(&ulp->ul_cv);
6030 6035 return (EFAULT);
6031 6036 }
6032 6037
6033 6038 if (pp == NULL) {
6034 6039 if (bmap_has_holes(ip)) {
6035 6040 err = ENOSYS;
6036 6041 } else {
6037 6042 err = EINVAL;
6038 6043 }
6039 6044 if (dolock)
6040 6045 rw_exit(&ip->i_contents);
6041 6046 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6042 6047 cv_broadcast(&ulp->ul_cv);
6043 6048 return (err);
6044 6049 }
6045 6050
6046 6051 /*
6047 6052 * Break the io request into chunks, one for each contiguous
6048 6053 * stretch of disk blocks in the target file.
6049 6054 */
6050 6055 while (done_len < io_len) {
6051 6056 ASSERT(cpp);
6052 6057 contig = 0;
6053 6058 if (err = bmap_read(ip, (u_offset_t)(io_off + done_len),
6054 6059 &bn, &contig))
6055 6060 break;
6056 6061
6057 6062 if (bn == UFS_HOLE) { /* No holey swapfiles */
6058 6063 if (vmpss) {
6059 6064 err = EFAULT;
6060 6065 break;
6061 6066 }
6062 6067 err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE");
6063 6068 break;
6064 6069 }
6065 6070
6066 6071 cur_len = MIN(io_len - done_len, contig);
6067 6072 /*
6068 6073 * Zero out a page beyond EOF, when the last block of
6069 6074 * a file is a UFS fragment so that ufs_pageio() can be used
6070 6075 * instead of ufs_getpage() to handle faults against
6071 6076 * segvn segments that use large pages.
6072 6077 */
6073 6078 page_list_break(&cpp, &npp, btopr(cur_len));
6074 6079 if ((flags & B_READ) && (cur_len & PAGEOFFSET)) {
6075 6080 size_t xlen = cur_len & PAGEOFFSET;
6076 6081 pagezero(cpp->p_prev, xlen, PAGESIZE - xlen);
6077 6082 }
6078 6083
6079 6084 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags);
6080 6085 ASSERT(bp != NULL);
6081 6086
6082 6087 bp->b_edev = ip->i_dev;
6083 6088 bp->b_dev = cmpdev(ip->i_dev);
6084 6089 bp->b_blkno = bn;
6085 6090 bp->b_un.b_addr = (caddr_t)0;
6086 6091 bp->b_file = ip->i_vnode;
6087 6092
6088 6093 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
6089 6094 ub.ub_pageios.value.ul++;
6090 6095 if (ufsvfsp->vfs_snapshot)
6091 6096 fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp);
6092 6097 else
6093 6098 (void) bdev_strategy(bp);
6094 6099
6095 6100 if (flags & B_READ)
6096 6101 ufs_pageio_reads++;
6097 6102 else
6098 6103 ufs_pageio_writes++;
6099 6104 if (flags & B_READ)
6100 6105 lwp_stat_update(LWP_STAT_INBLK, 1);
6101 6106 else
6102 6107 lwp_stat_update(LWP_STAT_OUBLK, 1);
6103 6108 /*
6104 6109 * If the request is not B_ASYNC, wait for i/o to complete
6105 6110 * and re-assemble the page list to return to the caller.
6106 6111 * If it is B_ASYNC we leave the page list in pieces and
6107 6112 * cleanup() will dispose of them.
6108 6113 */
6109 6114 if ((flags & B_ASYNC) == 0) {
6110 6115 err = biowait(bp);
6111 6116 pageio_done(bp);
6112 6117 if (err)
6113 6118 break;
6114 6119 page_list_concat(&opp, &cpp);
6115 6120 }
6116 6121 cpp = npp;
6117 6122 npp = NULL;
6118 6123 if (flags & B_READ)
6119 6124 cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t);
6120 6125 done_len += cur_len;
6121 6126 }
6122 6127 ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len));
6123 6128 if (err) {
6124 6129 if (flags & B_ASYNC) {
6125 6130 /* Cleanup unprocessed parts of list */
6126 6131 page_list_concat(&cpp, &npp);
6127 6132 if (flags & B_READ)
6128 6133 pvn_read_done(cpp, B_ERROR);
6129 6134 else
6130 6135 pvn_write_done(cpp, B_ERROR);
6131 6136 } else {
6132 6137 /* Re-assemble list and let caller clean up */
6133 6138 page_list_concat(&opp, &cpp);
6134 6139 page_list_concat(&opp, &npp);
6135 6140 }
6136 6141 }
6137 6142
6138 6143 if (vmpss && !(ip->i_flag & IACC) && !ULOCKFS_IS_NOIACC(ulp) &&
6139 6144 ufsvfsp->vfs_fs->fs_ronly == 0 && !ufsvfsp->vfs_noatime) {
6140 6145 mutex_enter(&ip->i_tlock);
6141 6146 ip->i_flag |= IACC;
6142 6147 ITIMES_NOLOCK(ip);
6143 6148 mutex_exit(&ip->i_tlock);
6144 6149 }
6145 6150
6146 6151 if (dolock)
6147 6152 rw_exit(&ip->i_contents);
6148 6153 if (vmpss && !atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6149 6154 cv_broadcast(&ulp->ul_cv);
6150 6155 return (err);
6151 6156 }
6152 6157
6153 6158 /*
6154 6159 * Called when the kernel is in a frozen state to dump data
6155 6160 * directly to the device. It uses a private dump data structure,
6156 6161 * set up by dump_ctl, to locate the correct disk block to which to dump.
6157 6162 */
6158 6163 /*ARGSUSED*/
6159 6164 static int
6160 6165 ufs_dump(vnode_t *vp, caddr_t addr, offset_t ldbn, offset_t dblks,
6161 6166 caller_context_t *ct)
6162 6167 {
6163 6168 u_offset_t file_size;
6164 6169 struct inode *ip = VTOI(vp);
6165 6170 struct fs *fs = ip->i_fs;
6166 6171 daddr_t dbn, lfsbn;
6167 6172 int disk_blks = fs->fs_bsize >> DEV_BSHIFT;
6168 6173 int error = 0;
6169 6174 int ndbs, nfsbs;
6170 6175
6171 6176 /*
6172 6177 * forced unmount case
6173 6178 */
6174 6179 if (ip->i_ufsvfs == NULL)
6175 6180 return (EIO);
6176 6181 /*
6177 6182 * Validate the inode that it has not been modified since
6178 6183 * the dump structure is allocated.
6179 6184 */
6180 6185 mutex_enter(&ip->i_tlock);
6181 6186 if ((dump_info == NULL) ||
6182 6187 (dump_info->ip != ip) ||
6183 6188 (dump_info->time.tv_sec != ip->i_mtime.tv_sec) ||
6184 6189 (dump_info->time.tv_usec != ip->i_mtime.tv_usec)) {
6185 6190 mutex_exit(&ip->i_tlock);
6186 6191 return (-1);
6187 6192 }
6188 6193 mutex_exit(&ip->i_tlock);
6189 6194
6190 6195 /*
6191 6196 * See that the file has room for this write
6192 6197 */
6193 6198 UFS_GET_ISIZE(&file_size, ip);
6194 6199
6195 6200 if (ldbtob(ldbn + dblks) > file_size)
6196 6201 return (ENOSPC);
6197 6202
6198 6203 /*
6199 6204 * Find the physical disk block numbers from the dump
6200 6205 * private data structure directly and write out the data
6201 6206 * in contiguous block lumps
6202 6207 */
6203 6208 while (dblks > 0 && !error) {
6204 6209 lfsbn = (daddr_t)lblkno(fs, ldbtob(ldbn));
6205 6210 dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks;
6206 6211 nfsbs = 1;
6207 6212 ndbs = disk_blks - ldbn % disk_blks;
6208 6213 while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn +
6209 6214 nfsbs]) == dbn + ndbs) {
6210 6215 nfsbs++;
6211 6216 ndbs += disk_blks;
6212 6217 }
6213 6218 if (ndbs > dblks)
6214 6219 ndbs = dblks;
6215 6220 error = bdev_dump(ip->i_dev, addr, dbn, ndbs);
6216 6221 addr += ldbtob((offset_t)ndbs);
6217 6222 dblks -= ndbs;
6218 6223 ldbn += ndbs;
6219 6224 }
6220 6225 return (error);
6221 6226
6222 6227 }
6223 6228
6224 6229 /*
6225 6230 * Prepare the file system before and after the dump operation.
6226 6231 *
6227 6232 * action = DUMP_ALLOC:
6228 6233 * Preparation before dump, allocate dump private data structure
6229 6234 * to hold all the direct and indirect block info for dump.
6230 6235 *
6231 6236 * action = DUMP_FREE:
6232 6237 * Clean up after dump, deallocate the dump private data structure.
6233 6238 *
6234 6239 * action = DUMP_SCAN:
6235 6240 * Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space;
6236 6241 * if found, the starting file-relative DEV_BSIZE lbn is written
6237 6242 * to *bklp; that lbn is intended for use with VOP_DUMP()
6238 6243 */
6239 6244 /*ARGSUSED*/
6240 6245 static int
6241 6246 ufs_dumpctl(vnode_t *vp, int action, offset_t *blkp, caller_context_t *ct)
6242 6247 {
6243 6248 struct inode *ip = VTOI(vp);
6244 6249 ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
6245 6250 struct fs *fs;
6246 6251 daddr32_t *dblk, *storeblk;
6247 6252 daddr32_t *nextblk, *endblk;
6248 6253 struct buf *bp;
6249 6254 int i, entry, entries;
6250 6255 int n, ncontig;
6251 6256
6252 6257 /*
6253 6258 * check for forced unmount
6254 6259 */
6255 6260 if (ufsvfsp == NULL)
6256 6261 return (EIO);
6257 6262
6258 6263 if (action == DUMP_ALLOC) {
6259 6264 /*
6260 6265 * alloc and record dump_info
6261 6266 */
6262 6267 if (dump_info != NULL)
6263 6268 return (EINVAL);
6264 6269
6265 6270 ASSERT(vp->v_type == VREG);
6266 6271 fs = ufsvfsp->vfs_fs;
6267 6272
6268 6273 rw_enter(&ip->i_contents, RW_READER);
6269 6274
6270 6275 if (bmap_has_holes(ip)) {
6271 6276 rw_exit(&ip->i_contents);
6272 6277 return (EFAULT);
6273 6278 }
6274 6279
6275 6280 /*
6276 6281 * calculate and allocate space needed according to i_size
6277 6282 */
6278 6283 entries = (int)lblkno(fs, blkroundup(fs, ip->i_size));
6279 6284 dump_info = kmem_alloc(sizeof (struct dump) +
6280 6285 (entries - 1) * sizeof (daddr32_t), KM_NOSLEEP);
6281 6286 if (dump_info == NULL) {
6282 6287 rw_exit(&ip->i_contents);
6283 6288 return (ENOMEM);
6284 6289 }
6285 6290
6286 6291 /* Start saving the info */
6287 6292 dump_info->fsbs = entries;
6288 6293 dump_info->ip = ip;
6289 6294 storeblk = &dump_info->dblk[0];
6290 6295
6291 6296 /* Direct Blocks */
6292 6297 for (entry = 0; entry < NDADDR && entry < entries; entry++)
6293 6298 *storeblk++ = ip->i_db[entry];
6294 6299
6295 6300 /* Indirect Blocks */
6296 6301 for (i = 0; i < NIADDR; i++) {
6297 6302 int error = 0;
6298 6303
6299 6304 bp = UFS_BREAD(ufsvfsp,
6300 6305 ip->i_dev, fsbtodb(fs, ip->i_ib[i]), fs->fs_bsize);
6301 6306 if (bp->b_flags & B_ERROR)
6302 6307 error = EIO;
6303 6308 else {
6304 6309 dblk = bp->b_un.b_daddr;
6305 6310 if ((storeblk = save_dblks(ip, ufsvfsp,
6306 6311 storeblk, dblk, i, entries)) == NULL)
6307 6312 error = EIO;
6308 6313 }
6309 6314
6310 6315 brelse(bp);
6311 6316
6312 6317 if (error != 0) {
6313 6318 kmem_free(dump_info, sizeof (struct dump) +
6314 6319 (entries - 1) * sizeof (daddr32_t));
6315 6320 rw_exit(&ip->i_contents);
6316 6321 dump_info = NULL;
6317 6322 return (error);
6318 6323 }
6319 6324 }
6320 6325 /* and time stamp the information */
6321 6326 mutex_enter(&ip->i_tlock);
6322 6327 dump_info->time = ip->i_mtime;
6323 6328 mutex_exit(&ip->i_tlock);
6324 6329
6325 6330 rw_exit(&ip->i_contents);
6326 6331 } else if (action == DUMP_FREE) {
6327 6332 /*
6328 6333 * free dump_info
6329 6334 */
6330 6335 if (dump_info == NULL)
6331 6336 return (EINVAL);
6332 6337 entries = dump_info->fsbs - 1;
6333 6338 kmem_free(dump_info, sizeof (struct dump) +
6334 6339 entries * sizeof (daddr32_t));
6335 6340 dump_info = NULL;
6336 6341 } else if (action == DUMP_SCAN) {
6337 6342 /*
6338 6343 * scan dump_info
6339 6344 */
6340 6345 if (dump_info == NULL)
6341 6346 return (EINVAL);
6342 6347
6343 6348 dblk = dump_info->dblk;
6344 6349 nextblk = dblk + 1;
6345 6350 endblk = dblk + dump_info->fsbs - 1;
6346 6351 fs = ufsvfsp->vfs_fs;
6347 6352 ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT);
6348 6353
6349 6354 /*
6350 6355 * scan dblk[] entries; contig fs space is found when:
6351 6356 * ((current blkno + frags per block) == next blkno)
6352 6357 */
6353 6358 n = 0;
6354 6359 while (n < ncontig && dblk < endblk) {
6355 6360 if ((*dblk + fs->fs_frag) == *nextblk)
6356 6361 n++;
6357 6362 else
6358 6363 n = 0;
6359 6364 dblk++;
6360 6365 nextblk++;
6361 6366 }
6362 6367
6363 6368 /*
6364 6369 * index is where size bytes of contig space begins;
6365 6370 * conversion from index to the file's DEV_BSIZE lbn
6366 6371 * is equivalent to: (index * fs_bsize) / DEV_BSIZE
6367 6372 */
6368 6373 if (n == ncontig) {
6369 6374 i = (dblk - dump_info->dblk) - ncontig;
6370 6375 *blkp = i << (fs->fs_bshift - DEV_BSHIFT);
6371 6376 } else
6372 6377 return (EFAULT);
6373 6378 }
6374 6379 return (0);
6375 6380 }
6376 6381
6377 6382 /*
6378 6383 * Recursive helper function for ufs_dumpctl(). It follows the indirect file
6379 6384 * system blocks until it reaches the the disk block addresses, which are
6380 6385 * then stored into the given buffer, storeblk.
6381 6386 */
6382 6387 static daddr32_t *
6383 6388 save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk,
6384 6389 daddr32_t *dblk, int level, int entries)
6385 6390 {
6386 6391 struct fs *fs = ufsvfsp->vfs_fs;
6387 6392 struct buf *bp;
6388 6393 int i;
6389 6394
6390 6395 if (level == 0) {
6391 6396 for (i = 0; i < NINDIR(fs); i++) {
6392 6397 if (storeblk - dump_info->dblk >= entries)
6393 6398 break;
6394 6399 *storeblk++ = dblk[i];
6395 6400 }
6396 6401 return (storeblk);
6397 6402 }
6398 6403 for (i = 0; i < NINDIR(fs); i++) {
6399 6404 if (storeblk - dump_info->dblk >= entries)
6400 6405 break;
6401 6406 bp = UFS_BREAD(ufsvfsp,
6402 6407 ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize);
6403 6408 if (bp->b_flags & B_ERROR) {
6404 6409 brelse(bp);
6405 6410 return (NULL);
6406 6411 }
6407 6412 storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr,
6408 6413 level - 1, entries);
6409 6414 brelse(bp);
6410 6415
6411 6416 if (storeblk == NULL)
6412 6417 return (NULL);
6413 6418 }
6414 6419 return (storeblk);
6415 6420 }
6416 6421
6417 6422 /* ARGSUSED */
6418 6423 static int
6419 6424 ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag,
6420 6425 struct cred *cr, caller_context_t *ct)
6421 6426 {
6422 6427 struct inode *ip = VTOI(vp);
6423 6428 struct ulockfs *ulp;
6424 6429 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
6425 6430 ulong_t vsa_mask = vsap->vsa_mask;
6426 6431 int err = EINVAL;
6427 6432
6428 6433 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT);
6429 6434
6430 6435 /*
6431 6436 * Only grab locks if needed - they're not needed to check vsa_mask
6432 6437 * or if the mask contains no acl flags.
6433 6438 */
6434 6439 if (vsa_mask != 0) {
6435 6440 if (err = ufs_lockfs_begin(ufsvfsp, &ulp,
6436 6441 ULOCKFS_GETATTR_MASK))
6437 6442 return (err);
6438 6443
6439 6444 rw_enter(&ip->i_contents, RW_READER);
6440 6445 err = ufs_acl_get(ip, vsap, flag, cr);
6441 6446 rw_exit(&ip->i_contents);
6442 6447
6443 6448 if (ulp)
6444 6449 ufs_lockfs_end(ulp);
6445 6450 }
6446 6451 return (err);
6447 6452 }
6448 6453
6449 6454 /* ARGSUSED */
6450 6455 static int
6451 6456 ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr,
6452 6457 caller_context_t *ct)
6453 6458 {
6454 6459 struct inode *ip = VTOI(vp);
6455 6460 struct ulockfs *ulp = NULL;
6456 6461 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
6457 6462 ulong_t vsa_mask = vsap->vsa_mask;
6458 6463 int err;
6459 6464 int haverwlock = 1;
6460 6465 int trans_size;
6461 6466 int donetrans = 0;
6462 6467 int retry = 1;
6463 6468
6464 6469 ASSERT(RW_LOCK_HELD(&ip->i_rwlock));
6465 6470
6466 6471 /* Abort now if the request is either empty or invalid. */
6467 6472 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT);
6468 6473 if ((vsa_mask == 0) ||
6469 6474 ((vsap->vsa_aclentp == NULL) &&
6470 6475 (vsap->vsa_dfaclentp == NULL))) {
6471 6476 err = EINVAL;
6472 6477 goto out;
6473 6478 }
6474 6479
6475 6480 /*
6476 6481 * Following convention, if this is a directory then we acquire the
6477 6482 * inode's i_rwlock after starting a UFS logging transaction;
6478 6483 * otherwise, we acquire it beforehand. Since we were called (and
6479 6484 * must therefore return) with the lock held, we will have to drop it,
6480 6485 * and later reacquire it, if operating on a directory.
6481 6486 */
6482 6487 if (vp->v_type == VDIR) {
6483 6488 rw_exit(&ip->i_rwlock);
6484 6489 haverwlock = 0;
6485 6490 } else {
6486 6491 /* Upgrade the lock if required. */
6487 6492 if (!rw_write_held(&ip->i_rwlock)) {
6488 6493 rw_exit(&ip->i_rwlock);
6489 6494 rw_enter(&ip->i_rwlock, RW_WRITER);
6490 6495 }
6491 6496 }
6492 6497
6493 6498 again:
6494 6499 ASSERT(!(vp->v_type == VDIR && haverwlock));
6495 6500 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) {
6496 6501 ulp = NULL;
6497 6502 retry = 0;
6498 6503 goto out;
6499 6504 }
6500 6505
6501 6506 /*
6502 6507 * Check that the file system supports this operation. Note that
6503 6508 * ufs_lockfs_begin() will have checked that the file system had
6504 6509 * not been forcibly unmounted.
6505 6510 */
6506 6511 if (ufsvfsp->vfs_fs->fs_ronly) {
6507 6512 err = EROFS;
6508 6513 goto out;
6509 6514 }
6510 6515 if (ufsvfsp->vfs_nosetsec) {
6511 6516 err = ENOSYS;
6512 6517 goto out;
6513 6518 }
6514 6519
6515 6520 if (ulp) {
6516 6521 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR,
6517 6522 trans_size = TOP_SETSECATTR_SIZE(VTOI(vp)));
6518 6523 donetrans = 1;
6519 6524 }
6520 6525
6521 6526 if (vp->v_type == VDIR) {
6522 6527 rw_enter(&ip->i_rwlock, RW_WRITER);
6523 6528 haverwlock = 1;
6524 6529 }
6525 6530
6526 6531 ASSERT(haverwlock);
6527 6532
6528 6533 /* Do the actual work. */
6529 6534 rw_enter(&ip->i_contents, RW_WRITER);
6530 6535 /*
6531 6536 * Suppress out of inodes messages if we will retry.
6532 6537 */
6533 6538 if (retry)
6534 6539 ip->i_flag |= IQUIET;
6535 6540 err = ufs_acl_set(ip, vsap, flag, cr);
6536 6541 ip->i_flag &= ~IQUIET;
6537 6542 rw_exit(&ip->i_contents);
6538 6543
6539 6544 out:
6540 6545 if (ulp) {
6541 6546 if (donetrans) {
6542 6547 /*
6543 6548 * top_end_async() can eventually call
6544 6549 * top_end_sync(), which can block. We must
6545 6550 * therefore observe the lock-ordering protocol
6546 6551 * here as well.
6547 6552 */
6548 6553 if (vp->v_type == VDIR) {
6549 6554 rw_exit(&ip->i_rwlock);
6550 6555 haverwlock = 0;
6551 6556 }
6552 6557 TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size);
6553 6558 }
6554 6559 ufs_lockfs_end(ulp);
6555 6560 }
6556 6561 /*
6557 6562 * If no inodes available, try scaring a logically-
6558 6563 * free one out of the delete queue to someplace
6559 6564 * that we can find it.
6560 6565 */
6561 6566 if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
6562 6567 ufs_delete_drain_wait(ufsvfsp, 1);
6563 6568 retry = 0;
6564 6569 if (vp->v_type == VDIR && haverwlock) {
6565 6570 rw_exit(&ip->i_rwlock);
6566 6571 haverwlock = 0;
6567 6572 }
6568 6573 goto again;
6569 6574 }
6570 6575 /*
6571 6576 * If we need to reacquire the lock then it is safe to do so
6572 6577 * as a reader. This is because ufs_rwunlock(), which will be
6573 6578 * called by our caller after we return, does not differentiate
6574 6579 * between shared and exclusive locks.
6575 6580 */
6576 6581 if (!haverwlock) {
6577 6582 ASSERT(vp->v_type == VDIR);
6578 6583 rw_enter(&ip->i_rwlock, RW_READER);
6579 6584 }
6580 6585
6581 6586 return (err);
6582 6587 }
6583 6588
6584 6589 /*
6585 6590 * Locate the vnode to be used for an event notification. As this will
6586 6591 * be called prior to the name space change perform basic verification
6587 6592 * that the change will be allowed.
6588 6593 */
6589 6594
6590 6595 static int
6591 6596 ufs_eventlookup(struct vnode *dvp, char *nm, struct cred *cr,
6592 6597 struct vnode **vpp)
6593 6598 {
6594 6599 int namlen;
6595 6600 int error;
6596 6601 struct vnode *vp;
6597 6602 struct inode *ip;
6598 6603 struct inode *xip;
6599 6604 struct ufsvfs *ufsvfsp;
6600 6605 struct ulockfs *ulp;
6601 6606
6602 6607 ip = VTOI(dvp);
6603 6608 *vpp = NULL;
6604 6609
6605 6610 if ((namlen = strlen(nm)) == 0)
6606 6611 return (EINVAL);
6607 6612
6608 6613 if (nm[0] == '.') {
6609 6614 if (namlen == 1)
6610 6615 return (EINVAL);
6611 6616 else if ((namlen == 2) && nm[1] == '.') {
6612 6617 return (EEXIST);
6613 6618 }
6614 6619 }
6615 6620
6616 6621 /*
6617 6622 * Check accessibility and write access of parent directory as we
6618 6623 * only want to post the event if we're able to make a change.
6619 6624 */
6620 6625 if (error = ufs_diraccess(ip, IEXEC|IWRITE, cr))
6621 6626 return (error);
6622 6627
6623 6628 if (vp = dnlc_lookup(dvp, nm)) {
6624 6629 if (vp == DNLC_NO_VNODE) {
6625 6630 VN_RELE(vp);
6626 6631 return (ENOENT);
6627 6632 }
6628 6633
6629 6634 *vpp = vp;
6630 6635 return (0);
6631 6636 }
6632 6637
6633 6638 /*
6634 6639 * Keep the idle queue from getting too long by idling two
6635 6640 * inodes before attempting to allocate another.
6636 6641 * This operation must be performed before entering lockfs
6637 6642 * or a transaction.
6638 6643 */
6639 6644 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
6640 6645 if ((curthread->t_flag & T_DONTBLOCK) == 0) {
6641 6646 ins.in_lidles.value.ul += ufs_lookup_idle_count;
6642 6647 ufs_idle_some(ufs_lookup_idle_count);
6643 6648 }
6644 6649
6645 6650 ufsvfsp = ip->i_ufsvfs;
6646 6651
6647 6652 retry_lookup:
6648 6653 if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK))
6649 6654 return (error);
6650 6655
6651 6656 if ((error = ufs_dirlook(ip, nm, &xip, cr, 1, 1)) == 0) {
6652 6657 vp = ITOV(xip);
6653 6658 *vpp = vp;
6654 6659 }
6655 6660
6656 6661 if (ulp) {
6657 6662 ufs_lockfs_end(ulp);
6658 6663 }
6659 6664
6660 6665 if (error == EAGAIN)
6661 6666 goto retry_lookup;
6662 6667
6663 6668 return (error);
6664 6669 }
|
↓ open down ↓ |
2172 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX