Print this page
    
OS-4904 mdb can't print types from an object file with ctf
Reviewed by: Patrick Mooney <patrick.mooney@joyent.com>
OS-4341 libproc should also check the GNU build id in addition to the debug link
Reviewed by: Patrick Mooney <patrick.f.mooney@gmail.com>
Reviewed by: Joshua M. Clulow <jmc@joyent.com>
OS-4050 libproc reads .gnu_debuglink padding incorrectly
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
OS-3780 libproc could know about .gnu_debuglink for remote symbol tables
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/lib/libproc/common/Psymtab.c
          +++ new/usr/src/lib/libproc/common/Psymtab.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  
    | 
      ↓ open down ↓ | 
    13 lines elided | 
    
      ↑ open up ↑ | 
  
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
  24      - * Copyright (c) 2013, Joyent, Inc. All rights reserved.
       24 + * Copyright 2016 Joyent, Inc.
  25   25   * Copyright (c) 2013 by Delphix. All rights reserved.
  26   26   */
  27   27  
  28   28  #include <assert.h>
  29   29  #include <stdio.h>
  30   30  #include <stdlib.h>
  31   31  #include <stddef.h>
  32   32  #include <unistd.h>
  33   33  #include <ctype.h>
  34   34  #include <fcntl.h>
  35   35  #include <string.h>
  
    | 
      ↓ open down ↓ | 
    1 lines elided | 
    
      ↑ open up ↑ | 
  
  36   36  #include <strings.h>
  37   37  #include <memory.h>
  38   38  #include <errno.h>
  39   39  #include <dirent.h>
  40   40  #include <signal.h>
  41   41  #include <limits.h>
  42   42  #include <libgen.h>
  43   43  #include <sys/types.h>
  44   44  #include <sys/stat.h>
  45   45  #include <sys/sysmacros.h>
       46 +#include <sys/crc32.h>
  46   47  
  47   48  #include "libproc.h"
  48   49  #include "Pcontrol.h"
  49   50  #include "Putil.h"
  50   51  #include "Psymtab_machelf.h"
  51   52  
  52   53  static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *);
  53   54  static map_info_t *exec_map(struct ps_prochandle *);
  54   55  static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *);
  55   56  static map_info_t *object_name_to_map(struct ps_prochandle *,
  56   57          Lmid_t, const char *);
  57   58  static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *);
  58   59  static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *,
  59   60      uintptr_t);
  60   61  #ifdef _LP64
  61   62  static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *,
  62   63      uintptr_t);
  63   64  #endif
       65 +static uint32_t psym_crc32[] = { CRC32_TABLE };
  64   66  
  65   67  #define DATA_TYPES      \
  66   68          ((1 << STT_OBJECT) | (1 << STT_FUNC) | \
  67   69          (1 << STT_COMMON) | (1 << STT_TLS))
  68   70  #define IS_DATA_TYPE(tp)        (((1 << (tp)) & DATA_TYPES) != 0)
  69   71  
  70   72  #define MA_RWX  (MA_READ | MA_WRITE | MA_EXEC)
  71   73  
       74 +/*
       75 + * Minimum and maximum length of a build-id that we'll accept. Generally it's a
       76 + * 20 byte SHA1 and it's expected that the first byte (which is two ascii
       77 + * characters) indicates a directory and the remaining bytes become the file
       78 + * name. Therefore, our minimum length is at least 2 bytes (one for the
       79 + * directory and one for the name) and the max is a bit over the minimum -- 64,
       80 + * just in case folks do something odd. The string length is three times the max
       81 + * length. This accounts for the fact that each byte is two characters, a null
       82 + * terminator, and the directory '/' character.
       83 + */
       84 +#define MINBUILDID      2
       85 +#define MAXBUILDID      64
       86 +#define BUILDID_STRLEN  (3*MAXBUILDID)
       87 +#define BUILDID_NAME    ".note.gnu.build-id"
       88 +#define DBGLINK_NAME    ".gnu_debuglink"
       89 +
  72   90  typedef enum {
  73   91          PRO_NATURAL,
  74   92          PRO_BYADDR,
  75   93          PRO_BYNAME
  76   94  } pr_order_t;
  77   95  
  78   96  static int
  79   97  addr_cmp(const void *aa, const void *bb)
  80   98  {
  81   99          uintptr_t a = *((uintptr_t *)aa);
  82  100          uintptr_t b = *((uintptr_t *)bb);
  83  101  
  84  102          if (a > b)
  85  103                  return (1);
  86  104          if (a < b)
  87  105                  return (-1);
  88  106          return (0);
  89  107  }
  90  108  
  91  109  /*
  92  110   * This function creates a list of addresses for a load object's sections.
  93  111   * The list is in ascending address order and alternates start address
  94  112   * then end address for each section we're interested in. The function
  95  113   * returns a pointer to the list, which must be freed by the caller.
  96  114   */
  97  115  static uintptr_t *
  98  116  get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n)
  99  117  {
 100  118          uintptr_t a, addr, *addrs, last = 0;
 101  119          uint_t i, naddrs = 0, unordered = 0;
 102  120  
 103  121          if (P->status.pr_dmodel == PR_MODEL_ILP32) {
 104  122                  Elf32_Ehdr ehdr;
 105  123                  Elf32_Phdr phdr;
 106  124                  uint_t phnum;
 107  125  
 108  126                  if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0)
 109  127                          return (NULL);
 110  128  
 111  129                  addrs = malloc(sizeof (uintptr_t) * phnum * 2);
 112  130                  a = ehdr_start + ehdr.e_phoff;
 113  131                  for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
 114  132                          if (Pread(P, &phdr, sizeof (phdr), a) !=
 115  133                              sizeof (phdr)) {
 116  134                                  free(addrs);
 117  135                                  return (NULL);
 118  136                          }
 119  137                          if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
 120  138                                  continue;
 121  139  
 122  140                          addr = phdr.p_vaddr;
 123  141                          if (ehdr.e_type == ET_DYN)
 124  142                                  addr += ehdr_start;
 125  143                          if (last > addr)
 126  144                                  unordered = 1;
 127  145                          addrs[naddrs++] = addr;
 128  146                          addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
 129  147                  }
 130  148  #ifdef _LP64
 131  149          } else {
 132  150                  Elf64_Ehdr ehdr;
 133  151                  Elf64_Phdr phdr;
 134  152                  uint_t phnum;
 135  153  
 136  154                  if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0)
 137  155                          return (NULL);
 138  156  
 139  157                  addrs = malloc(sizeof (uintptr_t) * phnum * 2);
 140  158                  a = ehdr_start + ehdr.e_phoff;
 141  159                  for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
 142  160                          if (Pread(P, &phdr, sizeof (phdr), a) !=
 143  161                              sizeof (phdr)) {
 144  162                                  free(addrs);
 145  163                                  return (NULL);
 146  164                          }
 147  165                          if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
 148  166                                  continue;
 149  167  
 150  168                          addr = phdr.p_vaddr;
 151  169                          if (ehdr.e_type == ET_DYN)
 152  170                                  addr += ehdr_start;
 153  171                          if (last > addr)
 154  172                                  unordered = 1;
 155  173                          addrs[naddrs++] = addr;
 156  174                          addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
 157  175                  }
 158  176  #endif
 159  177          }
 160  178  
 161  179          if (unordered)
 162  180                  qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp);
 163  181  
 164  182          *n = naddrs;
 165  183          return (addrs);
 166  184  }
 167  185  
 168  186  /*
 169  187   * Allocation function for a new file_info_t
 170  188   */
 171  189  file_info_t *
 172  190  file_info_new(struct ps_prochandle *P, map_info_t *mptr)
 173  191  {
 174  192          file_info_t *fptr;
 175  193          map_info_t *mp;
 176  194          uintptr_t mstart, mend, sstart, send;
  
    | 
      ↓ open down ↓ | 
    95 lines elided | 
    
      ↑ open up ↑ | 
  
 177  195          uint_t i;
 178  196  
 179  197          if ((fptr = calloc(1, sizeof (file_info_t))) == NULL)
 180  198                  return (NULL);
 181  199  
 182  200          list_link(fptr, &P->file_head);
 183  201          (void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname);
 184  202          mptr->map_file = fptr;
 185  203          fptr->file_ref = 1;
 186  204          fptr->file_fd = -1;
      205 +        fptr->file_dbgfile = -1;
 187  206          P->num_files++;
 188  207  
 189  208          /*
 190  209           * To figure out which map_info_t instances correspond to the mappings
 191  210           * for this load object we try to obtain the start and end address
 192  211           * for each section of our in-memory ELF image. If successful, we
 193  212           * walk down the list of addresses and the list of map_info_t
 194  213           * instances in lock step to correctly find the mappings that
 195  214           * correspond to this load object.
 196  215           */
 197  216          if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr,
 198  217              &fptr->file_nsaddrs)) == NULL)
 199  218                  return (fptr);
 200  219  
 201  220          mp = P->mappings;
 202  221          i = 0;
 203  222          while (mp < P->mappings + P->map_count && i < fptr->file_nsaddrs) {
 204  223  
 205  224                  /* Calculate the start and end of the mapping and section */
 206  225                  mstart = mp->map_pmap.pr_vaddr;
 207  226                  mend = mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size;
 208  227                  sstart = fptr->file_saddrs[i];
 209  228                  send = fptr->file_saddrs[i + 1];
 210  229  
 211  230                  if (mend <= sstart) {
 212  231                          /* This mapping is below the current section */
 213  232                          mp++;
 214  233                  } else if (mstart >= send) {
 215  234                          /* This mapping is above the current section */
 216  235                          i += 2;
 217  236                  } else {
 218  237                          /* This mapping overlaps the current section */
 219  238                          if (mp->map_file == NULL) {
 220  239                                  dprintf("file_info_new: associating "
 221  240                                      "segment at %p\n",
 222  241                                      (void *)mp->map_pmap.pr_vaddr);
 223  242                                  mp->map_file = fptr;
 224  243                                  fptr->file_ref++;
 225  244                          } else {
 226  245                                  dprintf("file_info_new: segment at %p "
 227  246                                      "already associated with %s\n",
 228  247                                      (void *)mp->map_pmap.pr_vaddr,
 229  248                                      (mp == mptr ? "this file" :
 230  249                                      mp->map_file->file_pname));
 231  250                          }
 232  251                          mp++;
 233  252                  }
 234  253          }
 235  254  
 236  255          return (fptr);
 237  256  }
 238  257  
 239  258  /*
 240  259   * Deallocation function for a file_info_t
 241  260   */
 242  261  static void
 243  262  file_info_free(struct ps_prochandle *P, file_info_t *fptr)
 244  263  {
 245  264          if (--fptr->file_ref == 0) {
 246  265                  list_unlink(fptr);
 247  266                  if (fptr->file_symtab.sym_elf) {
 248  267                          (void) elf_end(fptr->file_symtab.sym_elf);
 249  268                          free(fptr->file_symtab.sym_elfmem);
 250  269                  }
 251  270                  if (fptr->file_symtab.sym_byname)
 252  271                          free(fptr->file_symtab.sym_byname);
 253  272                  if (fptr->file_symtab.sym_byaddr)
 254  273                          free(fptr->file_symtab.sym_byaddr);
 255  274  
 256  275                  if (fptr->file_dynsym.sym_elf) {
 257  276                          (void) elf_end(fptr->file_dynsym.sym_elf);
 258  277                          free(fptr->file_dynsym.sym_elfmem);
 259  278                  }
 260  279                  if (fptr->file_dynsym.sym_byname)
 261  280                          free(fptr->file_dynsym.sym_byname);
 262  281                  if (fptr->file_dynsym.sym_byaddr)
 263  282                          free(fptr->file_dynsym.sym_byaddr);
 264  283  
 265  284                  if (fptr->file_lo)
 266  285                          free(fptr->file_lo);
  
    | 
      ↓ open down ↓ | 
    70 lines elided | 
    
      ↑ open up ↑ | 
  
 267  286                  if (fptr->file_lname)
 268  287                          free(fptr->file_lname);
 269  288                  if (fptr->file_rname)
 270  289                          free(fptr->file_rname);
 271  290                  if (fptr->file_elf)
 272  291                          (void) elf_end(fptr->file_elf);
 273  292                  if (fptr->file_elfmem != NULL)
 274  293                          free(fptr->file_elfmem);
 275  294                  if (fptr->file_fd >= 0)
 276  295                          (void) close(fptr->file_fd);
      296 +                if (fptr->file_dbgelf)
      297 +                        (void) elf_end(fptr->file_dbgelf);
      298 +                if (fptr->file_dbgfile >= 0)
      299 +                        (void) close(fptr->file_dbgfile);
 277  300                  if (fptr->file_ctfp) {
 278  301                          ctf_close(fptr->file_ctfp);
 279  302                          free(fptr->file_ctf_buf);
 280  303                  }
 281  304                  if (fptr->file_saddrs)
 282  305                          free(fptr->file_saddrs);
 283  306                  free(fptr);
 284  307                  P->num_files--;
 285  308          }
 286  309  }
 287  310  
 288  311  /*
 289  312   * Deallocation function for a map_info_t
 290  313   */
 291  314  static void
 292  315  map_info_free(struct ps_prochandle *P, map_info_t *mptr)
 293  316  {
 294  317          file_info_t *fptr;
 295  318  
 296  319          if ((fptr = mptr->map_file) != NULL) {
 297  320                  if (fptr->file_map == mptr)
 298  321                          fptr->file_map = NULL;
 299  322                  file_info_free(P, fptr);
 300  323          }
 301  324          if (P->execname && mptr == P->map_exec) {
 302  325                  free(P->execname);
 303  326                  P->execname = NULL;
 304  327          }
 305  328          if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) {
 306  329                  free(P->auxv);
 307  330                  P->auxv = NULL;
 308  331                  P->nauxv = 0;
 309  332          }
 310  333          if (mptr == P->map_exec)
 311  334                  P->map_exec = NULL;
 312  335          if (mptr == P->map_ldso)
 313  336                  P->map_ldso = NULL;
 314  337  }
 315  338  
 316  339  /*
 317  340   * Call-back function for librtld_db to iterate through all of its shared
 318  341   * libraries.  We use this to get the load object names for the mappings.
 319  342   */
 320  343  static int
 321  344  map_iter(const rd_loadobj_t *lop, void *cd)
 322  345  {
 323  346          char buf[PATH_MAX];
 324  347          struct ps_prochandle *P = cd;
 325  348          map_info_t *mptr;
 326  349          file_info_t *fptr;
 327  350  
 328  351          dprintf("encountered rd object at %p\n", (void *)lop->rl_base);
 329  352  
 330  353          if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) {
 331  354                  dprintf("map_iter: base address doesn't match any mapping\n");
 332  355                  return (1); /* Base address does not match any mapping */
 333  356          }
 334  357  
 335  358          if ((fptr = mptr->map_file) == NULL &&
 336  359              (fptr = file_info_new(P, mptr)) == NULL) {
 337  360                  dprintf("map_iter: failed to allocate a new file_info_t\n");
 338  361                  return (1); /* Failed to allocate a new file_info_t */
 339  362          }
 340  363  
 341  364          if ((fptr->file_lo == NULL) &&
 342  365              (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
 343  366                  dprintf("map_iter: failed to allocate rd_loadobj_t\n");
 344  367                  file_info_free(P, fptr);
 345  368                  return (1); /* Failed to allocate rd_loadobj_t */
 346  369          }
 347  370  
 348  371          fptr->file_map = mptr;
 349  372          *fptr->file_lo = *lop;
 350  373  
 351  374          fptr->file_lo->rl_plt_base = fptr->file_plt_base;
 352  375          fptr->file_lo->rl_plt_size = fptr->file_plt_size;
 353  376  
 354  377          if (fptr->file_lname) {
 355  378                  free(fptr->file_lname);
 356  379                  fptr->file_lname = NULL;
 357  380                  fptr->file_lbase = NULL;
 358  381          }
 359  382          if (fptr->file_rname) {
 360  383                  free(fptr->file_rname);
 361  384                  fptr->file_rname = NULL;
 362  385                  fptr->file_rbase = NULL;
 363  386          }
 364  387  
 365  388          if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) {
 366  389                  if ((fptr->file_lname = strdup(buf)) != NULL)
 367  390                          fptr->file_lbase = basename(fptr->file_lname);
 368  391          } else {
 369  392                  dprintf("map_iter: failed to read string at %p\n",
 370  393                      (void *)lop->rl_nameaddr);
 371  394          }
 372  395  
 373  396          if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
 374  397              ((fptr->file_rname = strdup(buf)) != NULL))
 375  398                  fptr->file_rbase = basename(fptr->file_rname);
 376  399  
 377  400          dprintf("loaded rd object %s lmid %lx\n",
 378  401              fptr->file_lname ? buf : "<NULL>", lop->rl_lmident);
 379  402          return (1);
 380  403  }
 381  404  
 382  405  static void
 383  406  map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname)
 384  407  {
 385  408          file_info_t *fptr;
 386  409          char buf[PATH_MAX];
 387  410  
 388  411          if ((fptr = mptr->map_file) == NULL &&
 389  412              (fptr = file_info_new(P, mptr)) == NULL)
 390  413                  return; /* Failed to allocate a new file_info_t */
 391  414  
 392  415          fptr->file_map = mptr;
 393  416  
 394  417          if ((fptr->file_lo == NULL) &&
 395  418              (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
 396  419                  file_info_free(P, fptr);
 397  420                  return; /* Failed to allocate rd_loadobj_t */
 398  421          }
 399  422  
 400  423          (void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t));
 401  424          fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr;
 402  425          fptr->file_lo->rl_bend =
 403  426              mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
 404  427  
 405  428          fptr->file_lo->rl_plt_base = fptr->file_plt_base;
 406  429          fptr->file_lo->rl_plt_size = fptr->file_plt_size;
 407  430  
 408  431          if ((fptr->file_lname == NULL) &&
 409  432              (fptr->file_lname = strdup(lname)) != NULL)
 410  433                  fptr->file_lbase = basename(fptr->file_lname);
 411  434  
 412  435          if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
 413  436              ((fptr->file_rname = strdup(buf)) != NULL))
 414  437                  fptr->file_rbase = basename(fptr->file_rname);
 415  438  }
 416  439  
 417  440  static void
 418  441  load_static_maps(struct ps_prochandle *P)
 419  442  {
 420  443          map_info_t *mptr;
 421  444  
 422  445          /*
 423  446           * Construct the map for the a.out.
 424  447           */
 425  448          if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL)
 426  449                  map_set(P, mptr, "a.out");
 427  450  
 428  451          /*
 429  452           * If the dynamic linker exists for this process,
 430  453           * construct the map for it.
 431  454           */
 432  455          if (Pgetauxval(P, AT_BASE) != -1L &&
 433  456              (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL)
 434  457                  map_set(P, mptr, "ld.so.1");
 435  458  }
 436  459  
 437  460  int
 438  461  Preadmaps(struct ps_prochandle *P, prmap_t **Pmapp, ssize_t *nmapp)
 439  462  {
 440  463          return (P->ops.pop_read_maps(P, Pmapp, nmapp, P->data));
 441  464  }
 442  465  
 443  466  /*
 444  467   * Go through all the address space mappings, validating or updating
 445  468   * the information already gathered, or gathering new information.
 446  469   *
 447  470   * This function is only called when we suspect that the mappings have changed
 448  471   * because this is the first time we're calling it or because of rtld activity.
 449  472   */
 450  473  void
 451  474  Pupdate_maps(struct ps_prochandle *P)
 452  475  {
 453  476          prmap_t *Pmap = NULL;
 454  477          prmap_t *pmap;
 455  478          ssize_t nmap;
 456  479          int i;
 457  480          uint_t oldmapcount;
 458  481          map_info_t *newmap, *newp;
 459  482          map_info_t *mptr;
 460  483  
 461  484          if (P->info_valid || P->state == PS_UNDEAD)
 462  485                  return;
 463  486  
 464  487          Preadauxvec(P);
 465  488  
 466  489          if (Preadmaps(P, &Pmap, &nmap) != 0)
 467  490                  return;
 468  491  
 469  492          if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL)
 470  493                  return;
 471  494  
 472  495          /*
 473  496           * We try to merge any file information we may have for existing
 474  497           * mappings, to avoid having to rebuild the file info.
 475  498           */
 476  499          mptr = P->mappings;
 477  500          pmap = Pmap;
 478  501          newp = newmap;
 479  502          oldmapcount = P->map_count;
 480  503          for (i = 0; i < nmap; i++, pmap++, newp++) {
 481  504  
 482  505                  if (oldmapcount == 0) {
 483  506                          /*
 484  507                           * We've exhausted all the old mappings.  Every new
 485  508                           * mapping should be added.
 486  509                           */
 487  510                          newp->map_pmap = *pmap;
 488  511  
 489  512                  } else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr &&
 490  513                      pmap->pr_size == mptr->map_pmap.pr_size &&
 491  514                      pmap->pr_offset == mptr->map_pmap.pr_offset &&
 492  515                      (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) ==
 493  516                      (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) &&
 494  517                      pmap->pr_pagesize == mptr->map_pmap.pr_pagesize &&
 495  518                      pmap->pr_shmid == mptr->map_pmap.pr_shmid &&
 496  519                      strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) {
 497  520  
 498  521                          /*
 499  522                           * This mapping matches exactly.  Copy over the old
 500  523                           * mapping, taking care to get the latest flags.
 501  524                           * Make sure the associated file_info_t is updated
 502  525                           * appropriately.
 503  526                           */
 504  527                          *newp = *mptr;
 505  528                          if (P->map_exec == mptr)
 506  529                                  P->map_exec = newp;
 507  530                          if (P->map_ldso == mptr)
 508  531                                  P->map_ldso = newp;
 509  532                          newp->map_pmap.pr_mflags = pmap->pr_mflags;
 510  533                          if (mptr->map_file != NULL &&
 511  534                              mptr->map_file->file_map == mptr)
 512  535                                  mptr->map_file->file_map = newp;
 513  536                          oldmapcount--;
 514  537                          mptr++;
 515  538  
 516  539                  } else if (pmap->pr_vaddr + pmap->pr_size >
 517  540                      mptr->map_pmap.pr_vaddr) {
 518  541  
 519  542                          /*
 520  543                           * The old mapping doesn't exist any more, remove it
 521  544                           * from the list.
 522  545                           */
 523  546                          map_info_free(P, mptr);
 524  547                          oldmapcount--;
 525  548                          i--;
 526  549                          newp--;
 527  550                          pmap--;
 528  551                          mptr++;
 529  552  
 530  553                  } else {
 531  554  
 532  555                          /*
 533  556                           * This is a new mapping, add it directly.
 534  557                           */
 535  558                          newp->map_pmap = *pmap;
 536  559                  }
 537  560          }
 538  561  
 539  562          /*
 540  563           * Free any old maps
 541  564           */
 542  565          while (oldmapcount) {
 543  566                  map_info_free(P, mptr);
 544  567                  oldmapcount--;
 545  568                  mptr++;
 546  569          }
 547  570  
 548  571          free(Pmap);
 549  572          if (P->mappings != NULL)
 550  573                  free(P->mappings);
 551  574          P->mappings = newmap;
 552  575          P->map_count = P->map_alloc = nmap;
 553  576          P->info_valid = 1;
 554  577  
 555  578          /*
 556  579           * Consult librtld_db to get the load object
 557  580           * names for all of the shared libraries.
 558  581           */
 559  582          if (P->rap != NULL)
 560  583                  (void) rd_loadobj_iter(P->rap, map_iter, P);
 561  584  }
 562  585  
 563  586  /*
 564  587   * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then
 565  588   * forcibly cache all of the symbol tables associated with all object files.
 566  589   */
 567  590  void
 568  591  Pupdate_syms(struct ps_prochandle *P)
 569  592  {
 570  593          file_info_t *fptr;
 571  594          int i;
 572  595  
 573  596          Pupdate_maps(P);
 574  597  
 575  598          for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
 576  599              i++, fptr = list_next(fptr)) {
 577  600                  Pbuild_file_symtab(P, fptr);
 578  601                  (void) Pbuild_file_ctf(P, fptr);
 579  602          }
 580  603  }
 581  604  
 582  605  /*
 583  606   * Return the librtld_db agent handle for the victim process.
 584  607   * The handle will become invalid at the next successful exec() and the
 585  608   * client (caller of proc_rd_agent()) must not use it beyond that point.
 586  609   * If the process is already dead, we've already tried our best to
 587  610   * create the agent during core file initialization.
 588  611   */
 589  612  rd_agent_t *
 590  613  Prd_agent(struct ps_prochandle *P)
 591  614  {
 592  615          if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) {
 593  616                  Pupdate_maps(P);
 594  617                  if (P->num_files == 0)
 595  618                          load_static_maps(P);
 596  619                  rd_log(_libproc_debug);
 597  620                  if ((P->rap = rd_new(P)) != NULL)
 598  621                          (void) rd_loadobj_iter(P->rap, map_iter, P);
 599  622          }
 600  623          return (P->rap);
 601  624  }
 602  625  
 603  626  /*
 604  627   * Return the prmap_t structure containing 'addr', but only if it
 605  628   * is in the dynamic linker's link map and is the text section.
 606  629   */
 607  630  const prmap_t *
 608  631  Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr)
 609  632  {
 610  633          map_info_t *mptr;
 611  634  
 612  635          if (!P->info_valid)
 613  636                  Pupdate_maps(P);
 614  637  
 615  638          if ((mptr = Paddr2mptr(P, addr)) != NULL) {
 616  639                  file_info_t *fptr = build_map_symtab(P, mptr);
 617  640                  const prmap_t *pmp = &mptr->map_pmap;
 618  641  
 619  642                  /*
 620  643                   * Assume that if rl_data_base is NULL, it means that no
 621  644                   * data section was found for this load object, and that
 622  645                   * a section must be text. Otherwise, a section will be
 623  646                   * text unless it ends above the start of the data
 624  647                   * section.
 625  648                   */
 626  649                  if (fptr != NULL && fptr->file_lo != NULL &&
 627  650                      (fptr->file_lo->rl_data_base == NULL ||
 628  651                      pmp->pr_vaddr + pmp->pr_size <=
 629  652                      fptr->file_lo->rl_data_base))
 630  653                          return (pmp);
 631  654          }
 632  655  
 633  656          return (NULL);
 634  657  }
 635  658  
 636  659  /*
 637  660   * Return the prmap_t structure containing 'addr' (no restrictions on
 638  661   * the type of mapping).
 639  662   */
 640  663  const prmap_t *
 641  664  Paddr_to_map(struct ps_prochandle *P, uintptr_t addr)
 642  665  {
 643  666          map_info_t *mptr;
 644  667  
 645  668          if (!P->info_valid)
 646  669                  Pupdate_maps(P);
 647  670  
 648  671          if ((mptr = Paddr2mptr(P, addr)) != NULL)
 649  672                  return (&mptr->map_pmap);
 650  673  
 651  674          return (NULL);
 652  675  }
 653  676  
 654  677  /*
 655  678   * Convert a full or partial load object name to the prmap_t for its
 656  679   * corresponding primary text mapping.
 657  680   */
 658  681  const prmap_t *
 659  682  Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
 660  683  {
 661  684          map_info_t *mptr;
 662  685  
 663  686          if (name == PR_OBJ_EVERY)
 664  687                  return (NULL); /* A reasonable mistake */
 665  688  
 666  689          if ((mptr = object_name_to_map(P, lmid, name)) != NULL)
 667  690                  return (&mptr->map_pmap);
 668  691  
 669  692          return (NULL);
 670  693  }
 671  694  
 672  695  const prmap_t *
 673  696  Pname_to_map(struct ps_prochandle *P, const char *name)
 674  697  {
 675  698          return (Plmid_to_map(P, PR_LMID_EVERY, name));
 676  699  }
 677  700  
 678  701  const rd_loadobj_t *
 679  702  Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr)
 680  703  {
 681  704          map_info_t *mptr;
 682  705  
 683  706          if (!P->info_valid)
 684  707                  Pupdate_maps(P);
 685  708  
 686  709          if ((mptr = Paddr2mptr(P, addr)) == NULL)
 687  710                  return (NULL);
 688  711  
 689  712          /*
 690  713           * By building the symbol table, we implicitly bring the PLT
 691  714           * information up to date in the load object.
 692  715           */
 693  716          (void) build_map_symtab(P, mptr);
 694  717  
 695  718          return (mptr->map_file->file_lo);
 696  719  }
 697  720  
 698  721  const rd_loadobj_t *
 699  722  Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name)
 700  723  {
 701  724          map_info_t *mptr;
 702  725  
 703  726          if (name == PR_OBJ_EVERY)
 704  727                  return (NULL);
 705  728  
 706  729          if ((mptr = object_name_to_map(P, lmid, name)) == NULL)
 707  730                  return (NULL);
 708  731  
 709  732          /*
 710  733           * By building the symbol table, we implicitly bring the PLT
 711  734           * information up to date in the load object.
 712  735           */
 713  736          (void) build_map_symtab(P, mptr);
 714  737  
 715  738          return (mptr->map_file->file_lo);
 716  739  }
 717  740  
 718  741  const rd_loadobj_t *
 719  742  Pname_to_loadobj(struct ps_prochandle *P, const char *name)
 720  743  {
 721  744          return (Plmid_to_loadobj(P, PR_LMID_EVERY, name));
 722  745  }
 723  746  
 724  747  ctf_file_t *
 725  748  Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr)
 726  749  {
 727  750          ctf_sect_t ctdata, symtab, strtab;
 728  751          sym_tbl_t *symp;
 729  752          int err;
 730  753  
 731  754          if (fptr->file_ctfp != NULL)
 732  755                  return (fptr->file_ctfp);
 733  756  
 734  757          Pbuild_file_symtab(P, fptr);
 735  758  
 736  759          if (fptr->file_ctf_size == 0)
 737  760                  return (NULL);
 738  761  
 739  762          symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab;
 740  763          if (symp->sym_data_pri == NULL)
 741  764                  return (NULL);
 742  765  
 743  766          /*
 744  767           * The buffer may alread be allocated if this is a core file that
 745  768           * contained CTF data for this file.
 746  769           */
 747  770          if (fptr->file_ctf_buf == NULL) {
 748  771                  fptr->file_ctf_buf = malloc(fptr->file_ctf_size);
 749  772                  if (fptr->file_ctf_buf == NULL) {
 750  773                          dprintf("failed to allocate ctf buffer\n");
 751  774                          return (NULL);
 752  775                  }
 753  776  
 754  777                  if (pread(fptr->file_fd, fptr->file_ctf_buf,
 755  778                      fptr->file_ctf_size, fptr->file_ctf_off) !=
 756  779                      fptr->file_ctf_size) {
 757  780                          free(fptr->file_ctf_buf);
 758  781                          fptr->file_ctf_buf = NULL;
 759  782                          dprintf("failed to read ctf data\n");
 760  783                          return (NULL);
 761  784                  }
 762  785          }
 763  786  
 764  787          ctdata.cts_name = ".SUNW_ctf";
 765  788          ctdata.cts_type = SHT_PROGBITS;
 766  789          ctdata.cts_flags = 0;
 767  790          ctdata.cts_data = fptr->file_ctf_buf;
 768  791          ctdata.cts_size = fptr->file_ctf_size;
 769  792          ctdata.cts_entsize = 1;
 770  793          ctdata.cts_offset = 0;
 771  794  
 772  795          symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab";
 773  796          symtab.cts_type = symp->sym_hdr_pri.sh_type;
 774  797          symtab.cts_flags = symp->sym_hdr_pri.sh_flags;
 775  798          symtab.cts_data = symp->sym_data_pri->d_buf;
 776  799          symtab.cts_size = symp->sym_hdr_pri.sh_size;
 777  800          symtab.cts_entsize = symp->sym_hdr_pri.sh_entsize;
 778  801          symtab.cts_offset = symp->sym_hdr_pri.sh_offset;
 779  802  
 780  803          strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab";
 781  804          strtab.cts_type = symp->sym_strhdr.sh_type;
 782  805          strtab.cts_flags = symp->sym_strhdr.sh_flags;
 783  806          strtab.cts_data = symp->sym_strs;
 784  807          strtab.cts_size = symp->sym_strhdr.sh_size;
 785  808          strtab.cts_entsize = symp->sym_strhdr.sh_entsize;
 786  809          strtab.cts_offset = symp->sym_strhdr.sh_offset;
 787  810  
 788  811          fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err);
 789  812          if (fptr->file_ctfp == NULL) {
 790  813                  dprintf("ctf_bufopen() failed, error code %d\n", err);
 791  814                  free(fptr->file_ctf_buf);
 792  815                  fptr->file_ctf_buf = NULL;
 793  816                  return (NULL);
 794  817          }
 795  818  
 796  819          dprintf("loaded %lu bytes of CTF data for %s\n",
 797  820              (ulong_t)fptr->file_ctf_size, fptr->file_pname);
 798  821  
 799  822          return (fptr->file_ctfp);
 800  823  }
 801  824  
 802  825  ctf_file_t *
 803  826  Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr)
 804  827  {
 805  828          map_info_t *mptr;
 806  829          file_info_t *fptr;
 807  830  
 808  831          if (!P->info_valid)
 809  832                  Pupdate_maps(P);
 810  833  
 811  834          if ((mptr = Paddr2mptr(P, addr)) == NULL ||
  
    | 
      ↓ open down ↓ | 
    525 lines elided | 
    
      ↑ open up ↑ | 
  
 812  835              (fptr = mptr->map_file) == NULL)
 813  836                  return (NULL);
 814  837  
 815  838          return (Pbuild_file_ctf(P, fptr));
 816  839  }
 817  840  
 818  841  ctf_file_t *
 819  842  Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name)
 820  843  {
 821  844          map_info_t *mptr;
 822      -        file_info_t *fptr;
      845 +        file_info_t *fptr = NULL;
 823  846  
 824  847          if (name == PR_OBJ_EVERY)
 825  848                  return (NULL);
 826  849  
 827      -        if ((mptr = object_name_to_map(P, lmid, name)) == NULL ||
 828      -            (fptr = mptr->map_file) == NULL)
 829      -                return (NULL);
      850 +        /*
      851 +         * While most idle files are all ELF objects, not all of them have
      852 +         * mapping information available. There's nothing which would make
      853 +         * sense to fake up for ET_REL. Instead, if we're being asked for their
      854 +         * executable object and we know that the information is valid and they
      855 +         * only have a single file, we jump straight to that file pointer.
      856 +         */
      857 +        if (P->state == PS_IDLE && name == PR_OBJ_EXEC && P->info_valid == 1 &&
      858 +            P->num_files == 1 && P->mappings == NULL) {
      859 +                fptr = list_next(&P->file_head);
      860 +        }
 830  861  
      862 +        if (fptr == NULL) {
      863 +                if ((mptr = object_name_to_map(P, lmid, name)) == NULL ||
      864 +                    (fptr = mptr->map_file) == NULL)
      865 +                        return (NULL);
      866 +        }
      867 +
 831  868          return (Pbuild_file_ctf(P, fptr));
 832  869  }
 833  870  
 834  871  ctf_file_t *
 835  872  Pname_to_ctf(struct ps_prochandle *P, const char *name)
 836  873  {
 837  874          return (Plmid_to_ctf(P, PR_LMID_EVERY, name));
 838  875  }
 839  876  
 840  877  void
 841  878  Preadauxvec(struct ps_prochandle *P)
 842  879  {
 843  880          if (P->auxv != NULL) {
 844  881                  free(P->auxv);
 845  882                  P->auxv = NULL;
 846  883                  P->nauxv = 0;
 847  884          }
 848  885  
 849  886          P->ops.pop_read_aux(P, &P->auxv, &P->nauxv, P->data);
 850  887  }
 851  888  
 852  889  /*
 853  890   * Return a requested element from the process's aux vector.
 854  891   * Return -1 on failure (this is adequate for our purposes).
 855  892   */
 856  893  long
 857  894  Pgetauxval(struct ps_prochandle *P, int type)
 858  895  {
 859  896          auxv_t *auxv;
 860  897  
 861  898          if (P->auxv == NULL)
 862  899                  Preadauxvec(P);
 863  900  
 864  901          if (P->auxv == NULL)
 865  902                  return (-1);
 866  903  
 867  904          for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) {
 868  905                  if (auxv->a_type == type)
 869  906                          return (auxv->a_un.a_val);
 870  907          }
 871  908  
 872  909          return (-1);
 873  910  }
 874  911  
 875  912  /*
 876  913   * Return a pointer to our internal copy of the process's aux vector.
 877  914   * The caller should not hold on to this pointer across any libproc calls.
 878  915   */
 879  916  const auxv_t *
 880  917  Pgetauxvec(struct ps_prochandle *P)
 881  918  {
 882  919          static const auxv_t empty = { AT_NULL, 0L };
 883  920  
 884  921          if (P->auxv == NULL)
 885  922                  Preadauxvec(P);
 886  923  
 887  924          if (P->auxv == NULL)
 888  925                  return (&empty);
 889  926  
 890  927          return (P->auxv);
 891  928  }
 892  929  
 893  930  /*
 894  931   * Return 1 if the given mapping corresponds to the given file_info_t's
 895  932   * load object; return 0 otherwise.
 896  933   */
 897  934  static int
 898  935  is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr)
 899  936  {
 900  937          prmap_t *pmap = &mptr->map_pmap;
 901  938          rd_loadobj_t *lop = fptr->file_lo;
 902  939          uint_t i;
 903  940          uintptr_t mstart, mend, sstart, send;
 904  941  
 905  942          /*
 906  943           * We can get for free the start address of the text and data
 907  944           * sections of the load object. Start by seeing if the mapping
 908  945           * encloses either of these.
 909  946           */
 910  947          if ((pmap->pr_vaddr <= lop->rl_base &&
 911  948              lop->rl_base < pmap->pr_vaddr + pmap->pr_size) ||
 912  949              (pmap->pr_vaddr <= lop->rl_data_base &&
 913  950              lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size))
 914  951                  return (1);
 915  952  
 916  953          /*
 917  954           * It's still possible that this mapping correponds to the load
 918  955           * object. Consider the example of a mapping whose start and end
 919  956           * addresses correspond to those of the load object's text section.
 920  957           * If the mapping splits, e.g. as a result of a segment demotion,
 921  958           * then although both mappings are still backed by the same section,
 922  959           * only one will be seen to enclose that section's start address.
 923  960           * Thus, to be rigorous, we ask not whether this mapping encloses
 924  961           * the start of a section, but whether there exists a section that
 925  962           * overlaps this mapping.
 926  963           *
 927  964           * If we don't already have the section addresses, and we successfully
 928  965           * get them, then we cache them in case we come here again.
 929  966           */
 930  967          if (fptr->file_saddrs == NULL &&
 931  968              (fptr->file_saddrs = get_saddrs(P,
 932  969              fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL)
 933  970                  return (0);
 934  971  
 935  972          mstart = mptr->map_pmap.pr_vaddr;
 936  973          mend = mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
 937  974          for (i = 0; i < fptr->file_nsaddrs; i += 2) {
 938  975                  /* Does this section overlap the mapping? */
 939  976                  sstart = fptr->file_saddrs[i];
 940  977                  send = fptr->file_saddrs[i + 1];
 941  978                  if (!(mend <= sstart || mstart >= send))
 942  979                          return (1);
 943  980          }
 944  981  
 945  982          return (0);
 946  983  }
 947  984  
 948  985  /*
 949  986   * Find or build the symbol table for the given mapping.
 950  987   */
 951  988  static file_info_t *
 952  989  build_map_symtab(struct ps_prochandle *P, map_info_t *mptr)
 953  990  {
 954  991          prmap_t *pmap = &mptr->map_pmap;
 955  992          file_info_t *fptr;
 956  993          uint_t i;
 957  994  
 958  995          if ((fptr = mptr->map_file) != NULL) {
 959  996                  Pbuild_file_symtab(P, fptr);
 960  997                  return (fptr);
 961  998          }
 962  999  
 963 1000          if (pmap->pr_mapname[0] == '\0')
 964 1001                  return (NULL);
 965 1002  
 966 1003          /*
 967 1004           * Attempt to find a matching file.
 968 1005           * (A file can be mapped at several different addresses.)
 969 1006           */
 970 1007          for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
 971 1008              i++, fptr = list_next(fptr)) {
 972 1009                  if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 &&
 973 1010                      fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) {
 974 1011                          mptr->map_file = fptr;
 975 1012                          fptr->file_ref++;
 976 1013                          Pbuild_file_symtab(P, fptr);
 977 1014                          return (fptr);
 978 1015                  }
 979 1016          }
 980 1017  
 981 1018          /*
 982 1019           * If we need to create a new file_info structure, iterate
 983 1020           * through the load objects in order to attempt to connect
 984 1021           * this new file with its primary text mapping.  We again
 985 1022           * need to handle ld.so as a special case because we need
 986 1023           * to be able to bootstrap librtld_db.
 987 1024           */
 988 1025          if ((fptr = file_info_new(P, mptr)) == NULL)
 989 1026                  return (NULL);
 990 1027  
 991 1028          if (P->map_ldso != mptr) {
 992 1029                  if (P->rap != NULL)
 993 1030                          (void) rd_loadobj_iter(P->rap, map_iter, P);
 994 1031                  else
 995 1032                          (void) Prd_agent(P);
 996 1033          } else {
 997 1034                  fptr->file_map = mptr;
 998 1035          }
 999 1036  
1000 1037          /*
1001 1038           * If librtld_db wasn't able to help us connect the file to a primary
1002 1039           * text mapping, set file_map to the current mapping because we require
1003 1040           * fptr->file_map to be set in Pbuild_file_symtab.  librtld_db may be
1004 1041           * unaware of what's going on in the rare case that a legitimate ELF
1005 1042           * file has been mmap(2)ed into the process address space *without*
1006 1043           * the use of dlopen(3x).
1007 1044           */
1008 1045          if (fptr->file_map == NULL)
1009 1046                  fptr->file_map = mptr;
1010 1047  
1011 1048          Pbuild_file_symtab(P, fptr);
1012 1049  
1013 1050          return (fptr);
1014 1051  }
1015 1052  
1016 1053  static int
1017 1054  read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum,
1018 1055      uintptr_t addr)
1019 1056  {
1020 1057          if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr))
1021 1058                  return (-1);
1022 1059  
1023 1060          if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1024 1061              ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1025 1062              ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1026 1063              ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1027 1064              ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
1028 1065  #ifdef _BIG_ENDIAN
1029 1066              ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1030 1067  #else
1031 1068              ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1032 1069  #endif
1033 1070              ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1034 1071                  return (-1);
1035 1072  
1036 1073          if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1037 1074                  Elf32_Shdr shdr0;
1038 1075  
1039 1076                  if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1040 1077                      Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1041 1078                      sizeof (shdr0))
1042 1079                          return (-1);
1043 1080  
1044 1081                  if (shdr0.sh_info != 0)
1045 1082                          *phnum = shdr0.sh_info;
1046 1083          }
1047 1084  
1048 1085          return (0);
1049 1086  }
1050 1087  
1051 1088  static int
1052 1089  read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr,
1053 1090      uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr)
1054 1091  {
1055 1092          uint_t i;
1056 1093  
1057 1094          for (i = 0; i < phnum; i++) {
1058 1095                  uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1059 1096                  if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1060 1097                          return (-1);
1061 1098  
1062 1099                  if (phdr->p_type == PT_DYNAMIC)
1063 1100                          return (0);
1064 1101          }
1065 1102  
1066 1103          return (-1);
1067 1104  }
1068 1105  
1069 1106  #ifdef _LP64
1070 1107  static int
1071 1108  read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum,
1072 1109      uintptr_t addr)
1073 1110  {
1074 1111          if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr))
1075 1112                  return (-1);
1076 1113  
1077 1114          if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1078 1115              ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1079 1116              ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1080 1117              ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1081 1118              ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
1082 1119  #ifdef _BIG_ENDIAN
1083 1120              ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1084 1121  #else
1085 1122              ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1086 1123  #endif
1087 1124              ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1088 1125                  return (-1);
1089 1126  
1090 1127          if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1091 1128                  Elf64_Shdr shdr0;
1092 1129  
1093 1130                  if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1094 1131                      Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1095 1132                      sizeof (shdr0))
1096 1133                          return (-1);
1097 1134  
1098 1135                  if (shdr0.sh_info != 0)
1099 1136                          *phnum = shdr0.sh_info;
1100 1137          }
1101 1138  
1102 1139          return (0);
1103 1140  }
1104 1141  
1105 1142  static int
1106 1143  read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr,
1107 1144      uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr)
1108 1145  {
1109 1146          uint_t i;
1110 1147  
1111 1148          for (i = 0; i < phnum; i++) {
1112 1149                  uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1113 1150                  if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1114 1151                          return (-1);
1115 1152  
1116 1153                  if (phdr->p_type == PT_DYNAMIC)
1117 1154                          return (0);
1118 1155          }
1119 1156  
1120 1157          return (-1);
1121 1158  }
1122 1159  #endif  /* _LP64 */
1123 1160  
1124 1161  /*
1125 1162   * The text segment for each load object contains the elf header and
1126 1163   * program headers. We can use this information to determine if the
1127 1164   * file that corresponds to the load object is the same file that
1128 1165   * was loaded into the process's address space. There can be a discrepency
1129 1166   * if a file is recompiled after the process is started or if the target
1130 1167   * represents a core file from a differently configured system -- two
1131 1168   * common examples. The DT_CHECKSUM entry in the dynamic section
1132 1169   * provides an easy method of comparison. It is important to note that
1133 1170   * the dynamic section usually lives in the data segment, but the meta
1134 1171   * data we use to find the dynamic section lives in the text segment so
1135 1172   * if either of those segments is absent we can't proceed.
1136 1173   *
1137 1174   * We're looking through the elf file for several items: the symbol tables
1138 1175   * (both dynsym and symtab), the procedure linkage table (PLT) base,
1139 1176   * size, and relocation base, and the CTF information. Most of this can
1140 1177   * be recovered from the loaded image of the file itself, the exceptions
1141 1178   * being the symtab and CTF data.
1142 1179   *
1143 1180   * First we try to open the file that we think corresponds to the load
1144 1181   * object, if the DT_CHECKSUM values match, we're all set, and can simply
1145 1182   * recover all the information we need from the file. If the values of
1146 1183   * DT_CHECKSUM don't match, or if we can't access the file for whatever
1147 1184   * reasaon, we fake up a elf file to use in its stead. If we can't read
1148 1185   * the elf data in the process's address space, we fall back to using
1149 1186   * the file even though it may give inaccurate information.
1150 1187   *
1151 1188   * The elf file that we fake up has to consist of sections for the
1152 1189   * dynsym, the PLT and the dynamic section. Note that in the case of a
1153 1190   * core file, we'll get the CTF data in the file_info_t later on from
1154 1191   * a section embedded the core file (if it's present).
1155 1192   *
1156 1193   * file_differs() conservatively looks for mismatched files, identifying
1157 1194   * a match when there is any ambiguity (since that's the legacy behavior).
1158 1195   */
1159 1196  static int
1160 1197  file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr)
1161 1198  {
1162 1199          Elf_Scn *scn;
1163 1200          GElf_Shdr shdr;
1164 1201          GElf_Dyn dyn;
1165 1202          Elf_Data *data;
1166 1203          uint_t i, ndyn;
1167 1204          GElf_Xword cksum;
1168 1205          uintptr_t addr;
1169 1206  
1170 1207          if (fptr->file_map == NULL)
1171 1208                  return (0);
1172 1209  
1173 1210          if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1174 1211              (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1175 1212                  return (0);
1176 1213  
1177 1214          /*
1178 1215           * First, we find the checksum value in the elf file.
1179 1216           */
1180 1217          scn = NULL;
1181 1218          while ((scn = elf_nextscn(elf, scn)) != NULL) {
1182 1219                  if (gelf_getshdr(scn, &shdr) != NULL &&
1183 1220                      shdr.sh_type == SHT_DYNAMIC)
1184 1221                          goto found_shdr;
1185 1222          }
1186 1223          return (0);
1187 1224  
1188 1225  found_shdr:
1189 1226          if ((data = elf_getdata(scn, NULL)) == NULL)
1190 1227                  return (0);
1191 1228  
1192 1229          if (P->status.pr_dmodel == PR_MODEL_ILP32)
1193 1230                  ndyn = shdr.sh_size / sizeof (Elf32_Dyn);
1194 1231  #ifdef _LP64
1195 1232          else if (P->status.pr_dmodel == PR_MODEL_LP64)
1196 1233                  ndyn = shdr.sh_size / sizeof (Elf64_Dyn);
1197 1234  #endif
1198 1235          else
1199 1236                  return (0);
1200 1237  
1201 1238          for (i = 0; i < ndyn; i++) {
1202 1239                  if (gelf_getdyn(data, i, &dyn) != NULL &&
1203 1240                      dyn.d_tag == DT_CHECKSUM)
1204 1241                          goto found_cksum;
1205 1242          }
1206 1243  
1207 1244          /*
1208 1245           * The in-memory ELF has no DT_CHECKSUM section, but we will report it
1209 1246           * as matching the file anyhow.
1210 1247           */
1211 1248          return (0);
1212 1249  
1213 1250  found_cksum:
1214 1251          cksum = dyn.d_un.d_val;
1215 1252          dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum);
1216 1253  
1217 1254          /*
1218 1255           * Get the base of the text mapping that corresponds to this file.
1219 1256           */
1220 1257          addr = fptr->file_map->map_pmap.pr_vaddr;
1221 1258  
1222 1259          if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1223 1260                  Elf32_Ehdr ehdr;
1224 1261                  Elf32_Phdr phdr;
1225 1262                  Elf32_Dyn dync, *dynp;
1226 1263                  uint_t phnum, i;
1227 1264  
1228 1265                  if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 ||
1229 1266                      read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1230 1267                          return (0);
1231 1268  
1232 1269                  if (ehdr.e_type == ET_DYN)
1233 1270                          phdr.p_vaddr += addr;
1234 1271                  if ((dynp = malloc(phdr.p_filesz)) == NULL)
1235 1272                          return (0);
1236 1273                  dync.d_tag = DT_NULL;
1237 1274                  if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1238 1275                      phdr.p_filesz) {
1239 1276                          free(dynp);
1240 1277                          return (0);
1241 1278                  }
1242 1279  
1243 1280                  for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) {
1244 1281                          if (dynp[i].d_tag == DT_CHECKSUM)
1245 1282                                  dync = dynp[i];
1246 1283                  }
1247 1284  
1248 1285                  free(dynp);
1249 1286  
1250 1287                  if (dync.d_tag != DT_CHECKSUM)
1251 1288                          return (0);
1252 1289  
1253 1290                  dprintf("image cksum value is %llx\n",
1254 1291                      (u_longlong_t)dync.d_un.d_val);
1255 1292                  return (dync.d_un.d_val != cksum);
1256 1293  #ifdef _LP64
1257 1294          } else if (P->status.pr_dmodel == PR_MODEL_LP64) {
1258 1295                  Elf64_Ehdr ehdr;
1259 1296                  Elf64_Phdr phdr;
1260 1297                  Elf64_Dyn dync, *dynp;
1261 1298                  uint_t phnum, i;
1262 1299  
1263 1300                  if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1264 1301                      read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1265 1302                          return (0);
1266 1303  
1267 1304                  if (ehdr.e_type == ET_DYN)
1268 1305                          phdr.p_vaddr += addr;
1269 1306                  if ((dynp = malloc(phdr.p_filesz)) == NULL)
1270 1307                          return (0);
1271 1308                  dync.d_tag = DT_NULL;
1272 1309                  if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1273 1310                      phdr.p_filesz) {
1274 1311                          free(dynp);
1275 1312                          return (0);
1276 1313                  }
1277 1314  
1278 1315                  for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) {
1279 1316                          if (dynp[i].d_tag == DT_CHECKSUM)
1280 1317                                  dync = dynp[i];
1281 1318                  }
1282 1319  
1283 1320                  free(dynp);
1284 1321  
1285 1322                  if (dync.d_tag != DT_CHECKSUM)
1286 1323                          return (0);
1287 1324  
1288 1325                  dprintf("image cksum value is %llx\n",
1289 1326                      (u_longlong_t)dync.d_un.d_val);
1290 1327                  return (dync.d_un.d_val != cksum);
1291 1328  #endif  /* _LP64 */
1292 1329          }
1293 1330  
1294 1331          return (0);
1295 1332  }
1296 1333  
1297 1334  /*
1298 1335   * Read data from the specified process and construct an in memory
1299 1336   * image of an ELF file that represents it well enough to let
1300 1337   * us probe it for information.
1301 1338   */
1302 1339  static Elf *
1303 1340  fake_elf(struct ps_prochandle *P, file_info_t *fptr)
1304 1341  {
1305 1342          Elf *elf;
1306 1343          uintptr_t addr;
1307 1344          uint_t phnum;
1308 1345  
1309 1346          if (fptr->file_map == NULL)
1310 1347                  return (NULL);
1311 1348  
1312 1349          if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1313 1350              (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1314 1351                  return (NULL);
1315 1352  
1316 1353          addr = fptr->file_map->map_pmap.pr_vaddr;
1317 1354  
1318 1355          if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1319 1356                  Elf32_Ehdr ehdr;
1320 1357                  Elf32_Phdr phdr;
1321 1358  
1322 1359                  if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) ||
1323 1360                      read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1324 1361                          return (NULL);
1325 1362  
1326 1363                  elf = fake_elf32(P, fptr, addr, &ehdr, phnum, &phdr);
1327 1364  #ifdef _LP64
1328 1365          } else {
1329 1366                  Elf64_Ehdr ehdr;
1330 1367                  Elf64_Phdr phdr;
1331 1368  
1332 1369                  if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1333 1370                      read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1334 1371                          return (NULL);
1335 1372  
1336 1373                  elf = fake_elf64(P, fptr, addr, &ehdr, phnum, &phdr);
1337 1374  #endif
1338 1375          }
1339 1376  
1340 1377          return (elf);
1341 1378  }
1342 1379  
1343 1380  /*
1344 1381   * We wouldn't need these if qsort(3C) took an argument for the callback...
1345 1382   */
1346 1383  static mutex_t sort_mtx = DEFAULTMUTEX;
1347 1384  static char *sort_strs;
1348 1385  static GElf_Sym *sort_syms;
1349 1386  
1350 1387  int
1351 1388  byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname)
1352 1389  {
1353 1390          if (a->st_value < b->st_value)
1354 1391                  return (-1);
1355 1392          if (a->st_value > b->st_value)
1356 1393                  return (1);
1357 1394  
1358 1395          /*
1359 1396           * Prefer the function to the non-function.
1360 1397           */
1361 1398          if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) {
1362 1399                  if (GELF_ST_TYPE(a->st_info) == STT_FUNC)
1363 1400                          return (-1);
1364 1401                  if (GELF_ST_TYPE(b->st_info) == STT_FUNC)
1365 1402                          return (1);
1366 1403          }
1367 1404  
1368 1405          /*
1369 1406           * Prefer the weak or strong global symbol to the local symbol.
1370 1407           */
1371 1408          if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) {
1372 1409                  if (GELF_ST_BIND(b->st_info) == STB_LOCAL)
1373 1410                          return (-1);
1374 1411                  if (GELF_ST_BIND(a->st_info) == STB_LOCAL)
1375 1412                          return (1);
1376 1413          }
1377 1414  
1378 1415          /*
1379 1416           * Prefer the symbol that doesn't begin with a '$' since compilers and
1380 1417           * other symbol generators often use it as a prefix.
1381 1418           */
1382 1419          if (*bname == '$')
1383 1420                  return (-1);
1384 1421          if (*aname == '$')
1385 1422                  return (1);
1386 1423  
1387 1424          /*
1388 1425           * Prefer the name with fewer leading underscores in the name.
1389 1426           */
1390 1427          while (*aname == '_' && *bname == '_') {
1391 1428                  aname++;
1392 1429                  bname++;
1393 1430          }
1394 1431  
1395 1432          if (*bname == '_')
1396 1433                  return (-1);
1397 1434          if (*aname == '_')
1398 1435                  return (1);
1399 1436  
1400 1437          /*
1401 1438           * Prefer the symbol with the smaller size.
1402 1439           */
1403 1440          if (a->st_size < b->st_size)
1404 1441                  return (-1);
1405 1442          if (a->st_size > b->st_size)
1406 1443                  return (1);
1407 1444  
1408 1445          /*
1409 1446           * All other factors being equal, fall back to lexicographic order.
1410 1447           */
1411 1448          return (strcmp(aname, bname));
1412 1449  }
1413 1450  
1414 1451  static int
1415 1452  byaddr_cmp(const void *aa, const void *bb)
1416 1453  {
1417 1454          GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1418 1455          GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1419 1456          char *aname = sort_strs + a->st_name;
1420 1457          char *bname = sort_strs + b->st_name;
1421 1458  
1422 1459          return (byaddr_cmp_common(a, aname, b, bname));
1423 1460  }
1424 1461  
1425 1462  static int
1426 1463  byname_cmp(const void *aa, const void *bb)
1427 1464  {
1428 1465          GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1429 1466          GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1430 1467          char *aname = sort_strs + a->st_name;
1431 1468          char *bname = sort_strs + b->st_name;
1432 1469  
1433 1470          return (strcmp(aname, bname));
1434 1471  }
1435 1472  
1436 1473  /*
1437 1474   * Given a symbol index, look up the corresponding symbol from the
1438 1475   * given symbol table.
1439 1476   *
1440 1477   * This function allows the caller to treat the symbol table as a single
1441 1478   * logical entity even though there may be 2 actual ELF symbol tables
1442 1479   * involved. See the comments in Pcontrol.h for details.
1443 1480   */
1444 1481  static GElf_Sym *
1445 1482  symtab_getsym(sym_tbl_t *symtab, int ndx, GElf_Sym *dst)
1446 1483  {
1447 1484          /* If index is in range of primary symtab, look it up there */
1448 1485          if (ndx >= symtab->sym_symn_aux) {
1449 1486                  return (gelf_getsym(symtab->sym_data_pri,
1450 1487                      ndx - symtab->sym_symn_aux, dst));
1451 1488          }
1452 1489  
1453 1490          /* Not in primary: Look it up in the auxiliary symtab */
1454 1491          return (gelf_getsym(symtab->sym_data_aux, ndx, dst));
1455 1492  }
1456 1493  
1457 1494  void
1458 1495  optimize_symtab(sym_tbl_t *symtab)
1459 1496  {
1460 1497          GElf_Sym *symp, *syms;
1461 1498          uint_t i, *indexa, *indexb;
1462 1499          size_t symn, strsz, count;
1463 1500  
1464 1501          if (symtab == NULL || symtab->sym_data_pri == NULL ||
1465 1502              symtab->sym_byaddr != NULL)
1466 1503                  return;
1467 1504  
1468 1505          symn = symtab->sym_symn;
1469 1506          strsz = symtab->sym_strsz;
1470 1507  
1471 1508          symp = syms = malloc(sizeof (GElf_Sym) * symn);
1472 1509          if (symp == NULL) {
1473 1510                  dprintf("optimize_symtab: failed to malloc symbol array");
1474 1511                  return;
1475 1512          }
1476 1513  
1477 1514          /*
1478 1515           * First record all the symbols into a table and count up the ones
1479 1516           * that we're interested in. We mark symbols as invalid by setting
1480 1517           * the st_name to an illegal value.
1481 1518           */
1482 1519          for (i = 0, count = 0; i < symn; i++, symp++) {
1483 1520                  if (symtab_getsym(symtab, i, symp) != NULL &&
1484 1521                      symp->st_name < strsz &&
1485 1522                      IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info)))
1486 1523                          count++;
1487 1524                  else
1488 1525                          symp->st_name = strsz;
1489 1526          }
1490 1527  
1491 1528          /*
1492 1529           * Allocate sufficient space for both tables and populate them
1493 1530           * with the same symbols we just counted.
1494 1531           */
1495 1532          symtab->sym_count = count;
1496 1533          indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count);
1497 1534          indexb = symtab->sym_byname = calloc(sizeof (uint_t), count);
1498 1535          if (indexa == NULL || indexb == NULL) {
1499 1536                  dprintf(
1500 1537                      "optimize_symtab: failed to malloc symbol index arrays");
1501 1538                  symtab->sym_count = 0;
1502 1539                  if (indexa != NULL) {   /* First alloc succeeded. Free it */
1503 1540                          free(indexa);
1504 1541                          symtab->sym_byaddr = NULL;
1505 1542                  }
1506 1543                  free(syms);
1507 1544                  return;
1508 1545          }
1509 1546          for (i = 0, symp = syms; i < symn; i++, symp++) {
1510 1547                  if (symp->st_name < strsz)
1511 1548                          *indexa++ = *indexb++ = i;
1512 1549          }
1513 1550  
1514 1551          /*
1515 1552           * Sort the two tables according to the appropriate criteria,
1516 1553           * unless the user has overridden this behaviour.
1517 1554           *
1518 1555           * An example where we might not sort the tables is the relatively
1519 1556           * unusual case of a process with very large symbol tables in which
1520 1557           * we perform few lookups. In such a case the total time would be
1521 1558           * dominated by the sort. It is difficult to determine a priori
1522 1559           * how many lookups an arbitrary client will perform, and
1523 1560           * hence whether the symbol tables should be sorted. We therefore
1524 1561           * sort the tables by default, but provide the user with a
1525 1562           * "chicken switch" in the form of the LIBPROC_NO_QSORT
1526 1563           * environment variable.
1527 1564           */
1528 1565          if (!_libproc_no_qsort) {
1529 1566                  (void) mutex_lock(&sort_mtx);
1530 1567                  sort_strs = symtab->sym_strs;
1531 1568                  sort_syms = syms;
1532 1569  
1533 1570                  qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp);
1534 1571                  qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp);
1535 1572  
1536 1573                  sort_strs = NULL;
  
    | 
      ↓ open down ↓ | 
    696 lines elided | 
    
      ↑ open up ↑ | 
  
1537 1574                  sort_syms = NULL;
1538 1575                  (void) mutex_unlock(&sort_mtx);
1539 1576          }
1540 1577  
1541 1578          free(syms);
1542 1579  }
1543 1580  
1544 1581  
1545 1582  static Elf *
1546 1583  build_fake_elf(struct ps_prochandle *P, file_info_t *fptr, GElf_Ehdr *ehdr,
1547      -        size_t *nshdrs, Elf_Data **shdata)
     1584 +    size_t *nshdrs, Elf_Data **shdata)
1548 1585  {
1549 1586          size_t shstrndx;
1550 1587          Elf_Scn *scn;
1551 1588          Elf *elf;
1552 1589  
1553 1590          if ((elf = fake_elf(P, fptr)) == NULL ||
1554 1591              elf_kind(elf) != ELF_K_ELF ||
1555 1592              gelf_getehdr(elf, ehdr) == NULL ||
1556 1593              elf_getshdrnum(elf, nshdrs) == -1 ||
1557 1594              elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1558 1595              (scn = elf_getscn(elf, shstrndx)) == NULL ||
1559 1596              (*shdata = elf_getdata(scn, NULL)) == NULL) {
  
    | 
      ↓ open down ↓ | 
    2 lines elided | 
    
      ↑ open up ↑ | 
  
1560 1597                  if (elf != NULL)
1561 1598                          (void) elf_end(elf);
1562 1599                  dprintf("failed to fake up ELF file\n");
1563 1600                  return (NULL);
1564 1601          }
1565 1602  
1566 1603          return (elf);
1567 1604  }
1568 1605  
1569 1606  /*
     1607 + * Try and find the file described by path in the file system and validate that
     1608 + * it matches our CRC before we try and process it for symbol information. If we
     1609 + * instead have an ELF data section, then that means we're checking a build-id
     1610 + * section instead. In that case we just need to find and bcmp the corresponding
     1611 + * section.
     1612 + *
     1613 + * Before we validate if it's a valid CRC or data section, we check to ensure
     1614 + * that it's a normal file and not anything else.
     1615 + */
     1616 +static boolean_t
     1617 +build_alt_debug(file_info_t *fptr, const char *path, uint32_t crc,
     1618 +    Elf_Data *data)
     1619 +{
     1620 +        int fd;
     1621 +        struct stat st;
     1622 +        Elf *elf;
     1623 +        Elf_Scn *scn;
     1624 +        GElf_Shdr symshdr, strshdr;
     1625 +        Elf_Data *symdata, *strdata;
     1626 +        boolean_t valid;
     1627 +        uint32_t c = -1U;
     1628 +
     1629 +        if ((fd = open(path, O_RDONLY)) < 0)
     1630 +                return (B_FALSE);
     1631 +
     1632 +        if (fstat(fd, &st) != 0) {
     1633 +                (void) close(fd);
     1634 +                return (B_FALSE);
     1635 +        }
     1636 +
     1637 +        if (S_ISREG(st.st_mode) == 0) {
     1638 +                (void) close(fd);
     1639 +                return (B_FALSE);
     1640 +        }
     1641 +
     1642 +        /*
     1643 +         * Only check the CRC if we've come here through a GNU debug link
     1644 +         * section as opposed to the build id. This is indicated by having the
     1645 +         * value of data be NULL.
     1646 +         */
     1647 +        if (data == NULL) {
     1648 +                for (;;) {
     1649 +                        char buf[4096];
     1650 +                        ssize_t ret = read(fd, buf, sizeof (buf));
     1651 +                        if (ret == -1) {
     1652 +                                if (ret == EINTR)
     1653 +                                        continue;
     1654 +                                (void) close(fd);
     1655 +                                return (B_FALSE);
     1656 +                        }
     1657 +                        if (ret == 0) {
     1658 +                                c = ~c;
     1659 +                                if (c != crc) {
     1660 +                                        dprintf("crc mismatch, found: 0x%x "
     1661 +                                            "expected 0x%x\n", c, crc);
     1662 +                                        (void) close(fd);
     1663 +                                        return (B_FALSE);
     1664 +                                }
     1665 +                                break;
     1666 +                        }
     1667 +                        CRC32(c, buf, ret, c, psym_crc32);
     1668 +                }
     1669 +        }
     1670 +
     1671 +        elf = elf_begin(fd, ELF_C_READ, NULL);
     1672 +        if (elf == NULL) {
     1673 +                (void) close(fd);
     1674 +                return (B_FALSE);
     1675 +        }
     1676 +
     1677 +        if (elf_kind(elf) != ELF_K_ELF) {
     1678 +                goto fail;
     1679 +        }
     1680 +
     1681 +        /*
     1682 +         * If we have a data section, that indicates we have a build-id which
     1683 +         * means we need to find the corresponding build-id section and compare
     1684 +         * it.
     1685 +         */
     1686 +        scn = NULL;
     1687 +        valid = B_FALSE;
     1688 +        for (scn = elf_nextscn(elf, scn); data != NULL && scn != NULL;
     1689 +            scn = elf_nextscn(elf, scn)) {
     1690 +                GElf_Shdr hdr;
     1691 +                Elf_Data *ntdata;
     1692 +
     1693 +                if (gelf_getshdr(scn, &hdr) == NULL)
     1694 +                        goto fail;
     1695 +
     1696 +                if (hdr.sh_type != SHT_NOTE)
     1697 +                        continue;
     1698 +
     1699 +                if ((ntdata = elf_getdata(scn, NULL)) == NULL)
     1700 +                        goto fail;
     1701 +
     1702 +                /*
     1703 +                 * First verify the data section sizes are equal, then the
     1704 +                 * section name. If that's all true, then we can just do a bcmp.
     1705 +                 */
     1706 +                if (data->d_size != ntdata->d_size)
     1707 +                        continue;
     1708 +
     1709 +                dprintf("found corresponding section in alternate file\n");
     1710 +                if (bcmp(ntdata->d_buf, data->d_buf, data->d_size) != 0)
     1711 +                        goto fail;
     1712 +
     1713 +                valid = B_TRUE;
     1714 +                break;
     1715 +        }
     1716 +        if (data != NULL && valid == B_FALSE) {
     1717 +                dprintf("failed to find a matching %s section in %s\n",
     1718 +                    BUILDID_NAME, path);
     1719 +                goto fail;
     1720 +        }
     1721 +
     1722 +
     1723 +        /*
     1724 +         * Do two passes, first see if we have a symbol header, then see if we
     1725 +         * can find the corresponding linked string table.
     1726 +         */
     1727 +        scn = NULL;
     1728 +        for (scn = elf_nextscn(elf, scn); scn != NULL;
     1729 +            scn = elf_nextscn(elf, scn)) {
     1730 +
     1731 +                if (gelf_getshdr(scn, &symshdr) == NULL)
     1732 +                        goto fail;
     1733 +
     1734 +                if (symshdr.sh_type != SHT_SYMTAB)
     1735 +                        continue;
     1736 +
     1737 +                if ((symdata = elf_getdata(scn, NULL)) == NULL)
     1738 +                        goto fail;
     1739 +
     1740 +                break;
     1741 +        }
     1742 +        if (scn == NULL)
     1743 +                goto fail;
     1744 +
     1745 +        if ((scn = elf_getscn(elf, symshdr.sh_link)) == NULL)
     1746 +                goto fail;
     1747 +
     1748 +        if (gelf_getshdr(scn, &strshdr) == NULL)
     1749 +                goto fail;
     1750 +
     1751 +        if ((strdata = elf_getdata(scn, NULL)) == NULL)
     1752 +                goto fail;
     1753 +
     1754 +        fptr->file_symtab.sym_data_pri = symdata;
     1755 +        fptr->file_symtab.sym_symn += symshdr.sh_size / symshdr.sh_entsize;
     1756 +        fptr->file_symtab.sym_strs = strdata->d_buf;
     1757 +        fptr->file_symtab.sym_strsz = strdata->d_size;
     1758 +        fptr->file_symtab.sym_hdr_pri = symshdr;
     1759 +        fptr->file_symtab.sym_strhdr = strshdr;
     1760 +
     1761 +        dprintf("successfully loaded additional debug symbols for %s from %s\n",
     1762 +            fptr->file_rname, path);
     1763 +
     1764 +        fptr->file_dbgfile = fd;
     1765 +        fptr->file_dbgelf = elf;
     1766 +        return (B_TRUE);
     1767 +fail:
     1768 +        (void) elf_end(elf);
     1769 +        (void) close(fd);
     1770 +        return (B_FALSE);
     1771 +}
     1772 +
     1773 +/*
     1774 + * We're here because the object in question has no symbol information, that's a
     1775 + * bit unfortunate. However, we've found that there's a .gnu_debuglink sitting
     1776 + * around. By convention that means that given the current location of the
     1777 + * object on disk, and the debug name that we found in the binary we need to
     1778 + * search the following locations for a matching file.
     1779 + *
     1780 + * <dirname>/.debug/<debug-name>
     1781 + * /usr/lib/debug/<dirname>/<debug-name>
     1782 + *
     1783 + * In the future, we should consider supporting looking in the prefix's
     1784 + * lib/debug directory for a matching object or supporting an arbitrary user
     1785 + * defined set of places to look.
     1786 + */
     1787 +static void
     1788 +find_alt_debuglink(file_info_t *fptr, const char *name, uint32_t crc)
     1789 +{
     1790 +        boolean_t r;
     1791 +        char *dup = NULL, *path = NULL, *dname;
     1792 +
     1793 +        dprintf("find_alt_debug: looking for %s, crc 0x%x\n", name, crc);
     1794 +        if (fptr->file_rname == NULL) {
     1795 +                dprintf("find_alt_debug: encountered null file_rname\n");
     1796 +                return;
     1797 +        }
     1798 +
     1799 +        dup = strdup(fptr->file_rname);
     1800 +        if (dup == NULL)
     1801 +                return;
     1802 +
     1803 +        dname = dirname(dup);
     1804 +        if (asprintf(&path, "%s/.debug/%s", dname, name) != -1) {
     1805 +                dprintf("attempting to load alternate debug information "
     1806 +                    "from %s\n", path);
     1807 +                r = build_alt_debug(fptr, path, crc, NULL);
     1808 +                free(path);
     1809 +                if (r == B_TRUE)
     1810 +                        goto out;
     1811 +        }
     1812 +
     1813 +        if (asprintf(&path, "/usr/lib/debug/%s/%s", dname, name) != -1) {
     1814 +                dprintf("attempting to load alternate debug information "
     1815 +                    "from %s\n", path);
     1816 +                r = build_alt_debug(fptr, path, crc, NULL);
     1817 +                free(path);
     1818 +                if (r == B_TRUE)
     1819 +                        goto out;
     1820 +        }
     1821 +out:
     1822 +        free(dup);
     1823 +}
     1824 +
     1825 +/*
1570 1826   * Build the symbol table for the given mapped file.
1571 1827   */
1572 1828  void
1573 1829  Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr)
1574 1830  {
1575 1831          char objectfile[PATH_MAX];
1576 1832          uint_t i;
1577 1833  
1578 1834          GElf_Ehdr ehdr;
1579 1835          GElf_Sym s;
1580 1836  
1581 1837          Elf_Data *shdata;
1582 1838          Elf_Scn *scn;
1583 1839          Elf *elf;
1584 1840          size_t nshdrs, shstrndx;
1585 1841  
1586 1842          struct {
1587 1843                  GElf_Shdr c_shdr;
1588 1844                  Elf_Data *c_data;
1589 1845                  const char *c_name;
1590      -        } *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL;
     1846 +        } *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL,
     1847 +        *dbglink = NULL, *buildid = NULL;
1591 1848  
1592 1849          if (fptr->file_init)
1593 1850                  return; /* We've already processed this file */
1594 1851  
1595 1852          /*
1596 1853           * Mark the file_info struct as having the symbol table initialized
1597 1854           * even if we fail below.  We tried once; we don't try again.
1598 1855           */
1599 1856          fptr->file_init = 1;
1600 1857  
1601 1858          if (elf_version(EV_CURRENT) == EV_NONE) {
1602 1859                  dprintf("libproc ELF version is more recent than libelf\n");
1603 1860                  return;
1604 1861          }
1605 1862  
1606 1863          if (P->state == PS_DEAD || P->state == PS_IDLE) {
1607 1864                  char *name;
1608 1865                  /*
1609 1866                   * If we're a not live, we can't open files from the /proc
1610 1867                   * object directory; we have only the mapping and file names
1611 1868                   * to guide us.  We prefer the file_lname, but need to handle
1612 1869                   * the case of it being NULL in order to bootstrap: we first
1613 1870                   * come here during rd_new() when the only information we have
1614 1871                   * is interpreter name associated with the AT_BASE mapping.
1615 1872                   *
1616 1873                   * Also, if the zone associated with the core file seems
1617 1874                   * to exists on this machine we'll try to open the object
1618 1875                   * file within the zone.
1619 1876                   */
1620 1877                  if (fptr->file_rname != NULL)
1621 1878                          name = fptr->file_rname;
1622 1879                  else if (fptr->file_lname != NULL)
1623 1880                          name = fptr->file_lname;
1624 1881                  else
1625 1882                          name = fptr->file_pname;
1626 1883                  (void) strlcpy(objectfile, name, sizeof (objectfile));
1627 1884          } else {
1628 1885                  (void) snprintf(objectfile, sizeof (objectfile),
1629 1886                      "%s/%d/object/%s",
1630 1887                      procfs_path, (int)P->pid, fptr->file_pname);
1631 1888          }
1632 1889  
1633 1890          /*
1634 1891           * Open the object file, create the elf file, and then get the elf
1635 1892           * header and .shstrtab data buffer so we can process sections by
1636 1893           * name. If anything goes wrong try to fake up an elf file from
1637 1894           * the in-core elf image.
1638 1895           */
1639 1896  
1640 1897          if (_libproc_incore_elf || (P->flags & INCORE)) {
1641 1898                  dprintf("Pbuild_file_symtab: using in-core data for: %s\n",
1642 1899                      fptr->file_pname);
1643 1900  
1644 1901                  if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1645 1902                      NULL)
1646 1903                          return;
1647 1904  
1648 1905          } else if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) {
1649 1906                  dprintf("Pbuild_file_symtab: failed to open %s: %s\n",
1650 1907                      objectfile, strerror(errno));
1651 1908  
1652 1909                  if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1653 1910                      NULL)
1654 1911                          return;
1655 1912  
1656 1913          } else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL ||
1657 1914              elf_kind(elf) != ELF_K_ELF ||
1658 1915              gelf_getehdr(elf, &ehdr) == NULL ||
1659 1916              elf_getshdrnum(elf, &nshdrs) == -1 ||
1660 1917              elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1661 1918              (scn = elf_getscn(elf, shstrndx)) == NULL ||
1662 1919              (shdata = elf_getdata(scn, NULL)) == NULL) {
1663 1920                  int err = elf_errno();
1664 1921  
1665 1922                  dprintf("failed to process ELF file %s: %s\n",
1666 1923                      objectfile, (err == 0) ? "<null>" : elf_errmsg(err));
1667 1924                  (void) elf_end(elf);
1668 1925  
1669 1926                  if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1670 1927                      NULL)
1671 1928                          return;
1672 1929  
1673 1930          } else if (file_differs(P, elf, fptr)) {
1674 1931                  Elf *newelf;
1675 1932  
1676 1933                  /*
1677 1934                   * Before we get too excited about this elf file, we'll check
1678 1935                   * its checksum value against the value we have in memory. If
1679 1936                   * they don't agree, we try to fake up a new elf file and
1680 1937                   * proceed with that instead.
1681 1938                   */
1682 1939                  dprintf("ELF file %s (%lx) doesn't match in-core image\n",
1683 1940                      fptr->file_pname,
1684 1941                      (ulong_t)fptr->file_map->map_pmap.pr_vaddr);
1685 1942  
1686 1943                  if ((newelf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata))
1687 1944                      != NULL) {
1688 1945                          (void) elf_end(elf);
1689 1946                          elf = newelf;
1690 1947                          dprintf("switched to faked up ELF file\n");
1691 1948  
1692 1949                          /*
1693 1950                           * Check to see if the file that we just discovered
1694 1951                           * to be an imposter matches the execname that was
1695 1952                           * determined by Pfindexec().  If it does, we (clearly)
1696 1953                           * don't have the right binary, and we zero out
1697 1954                           * execname before anyone gets hurt.
1698 1955                           */
1699 1956                          if (fptr->file_rname != NULL && P->execname != NULL &&
1700 1957                              strcmp(fptr->file_rname, P->execname) == 0) {
1701 1958                                  dprintf("file/in-core image mismatch was "
1702 1959                                      "on P->execname; discarding\n");
1703 1960                                  free(P->execname);
1704 1961                                  P->execname = NULL;
1705 1962                          }
1706 1963                  }
1707 1964          }
1708 1965  
1709 1966          if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) {
1710 1967                  dprintf("failed to malloc section cache for %s\n", objectfile);
1711 1968                  goto bad;
1712 1969          }
1713 1970  
1714 1971          dprintf("processing ELF file %s\n", objectfile);
1715 1972          fptr->file_class = ehdr.e_ident[EI_CLASS];
1716 1973          fptr->file_etype = ehdr.e_type;
1717 1974          fptr->file_elf = elf;
1718 1975          fptr->file_shstrs = shdata->d_buf;
1719 1976          fptr->file_shstrsz = shdata->d_size;
1720 1977  
1721 1978          /*
1722 1979           * Iterate through each section, caching its section header, data
1723 1980           * pointer, and name.  We use this for handling sh_link values below.
1724 1981           */
1725 1982          for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) {
1726 1983                  if (gelf_getshdr(scn, &cp->c_shdr) == NULL) {
1727 1984                          dprintf("Pbuild_file_symtab: Failed to get section "
1728 1985                              "header\n");
1729 1986                          goto bad; /* Failed to get section header */
1730 1987                  }
1731 1988  
1732 1989                  if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) {
1733 1990                          dprintf("Pbuild_file_symtab: Failed to get section "
1734 1991                              "data\n");
1735 1992                          goto bad; /* Failed to get section data */
1736 1993                  }
1737 1994  
1738 1995                  if (cp->c_shdr.sh_name >= shdata->d_size) {
1739 1996                          dprintf("Pbuild_file_symtab: corrupt section name");
1740 1997                          goto bad; /* Corrupt section name */
1741 1998                  }
1742 1999  
1743 2000                  cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name;
1744 2001          }
1745 2002  
1746 2003          /*
1747 2004           * Now iterate through the section cache in order to locate info
1748 2005           * for the .symtab, .dynsym, .SUNW_ldynsym, .dynamic, .plt,
1749 2006           * and .SUNW_ctf sections:
1750 2007           */
1751 2008          for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) {
1752 2009                  GElf_Shdr *shp = &cp->c_shdr;
1753 2010  
1754 2011                  if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) {
1755 2012                          sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ?
1756 2013                              &fptr->file_symtab : &fptr->file_dynsym;
1757 2014                          /*
1758 2015                           * It's possible that the we already got the symbol
1759 2016                           * table from the core file itself. Either the file
1760 2017                           * differs in which case our faked up elf file will
1761 2018                           * only contain the dynsym (not the symtab) or the
1762 2019                           * file matches in which case we'll just be replacing
1763 2020                           * the symbol table we pulled out of the core file
1764 2021                           * with an equivalent one. In either case, this
1765 2022                           * check isn't essential, but it's a good idea.
1766 2023                           */
1767 2024                          if (symp->sym_data_pri == NULL) {
1768 2025                                  dprintf("Symbol table found for %s\n",
1769 2026                                      objectfile);
1770 2027                                  symp->sym_data_pri = cp->c_data;
1771 2028                                  symp->sym_symn +=
1772 2029                                      shp->sh_size / shp->sh_entsize;
1773 2030                                  symp->sym_strs =
1774 2031                                      cache[shp->sh_link].c_data->d_buf;
1775 2032                                  symp->sym_strsz =
1776 2033                                      cache[shp->sh_link].c_data->d_size;
1777 2034                                  symp->sym_hdr_pri = cp->c_shdr;
1778 2035                                  symp->sym_strhdr = cache[shp->sh_link].c_shdr;
1779 2036                          } else {
1780 2037                                  dprintf("Symbol table already there for %s\n",
1781 2038                                      objectfile);
1782 2039                          }
1783 2040                  } else if (shp->sh_type == SHT_SUNW_LDYNSYM) {
1784 2041                          /* .SUNW_ldynsym section is auxiliary to .dynsym */
1785 2042                          if (fptr->file_dynsym.sym_data_aux == NULL) {
1786 2043                                  dprintf(".SUNW_ldynsym symbol table"
1787 2044                                      " found for %s\n", objectfile);
1788 2045                                  fptr->file_dynsym.sym_data_aux = cp->c_data;
1789 2046                                  fptr->file_dynsym.sym_symn_aux =
1790 2047                                      shp->sh_size / shp->sh_entsize;
1791 2048                                  fptr->file_dynsym.sym_symn +=
1792 2049                                      fptr->file_dynsym.sym_symn_aux;
1793 2050                                  fptr->file_dynsym.sym_hdr_aux = cp->c_shdr;
1794 2051                          } else {
1795 2052                                  dprintf(".SUNW_ldynsym symbol table already"
1796 2053                                      " there for %s\n", objectfile);
1797 2054                          }
1798 2055                  } else if (shp->sh_type == SHT_DYNAMIC) {
1799 2056                          dyn = cp;
1800 2057                  } else if (strcmp(cp->c_name, ".plt") == 0) {
1801 2058                          plt = cp;
1802 2059                  } else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) {
1803 2060                          /*
1804 2061                           * Skip over bogus CTF sections so they don't come back
1805 2062                           * to haunt us later.
  
    | 
      ↓ open down ↓ | 
    205 lines elided | 
    
      ↑ open up ↑ | 
  
1806 2063                           */
1807 2064                          if (shp->sh_link == 0 ||
1808 2065                              shp->sh_link >= nshdrs ||
1809 2066                              (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM &&
1810 2067                              cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) {
1811 2068                                  dprintf("Bad sh_link %d for "
1812 2069                                      "CTF\n", shp->sh_link);
1813 2070                                  continue;
1814 2071                          }
1815 2072                          ctf = cp;
     2073 +                } else if (strcmp(cp->c_name, BUILDID_NAME) == 0) {
     2074 +                        dprintf("Found a %s section for %s\n", BUILDID_NAME,
     2075 +                            fptr->file_rname);
     2076 +                        /* The ElfXX_Nhdr is 32/64-bit neutral */
     2077 +                        if (cp->c_shdr.sh_type == SHT_NOTE &&
     2078 +                            cp->c_data->d_buf != NULL &&
     2079 +                            cp->c_data->d_size >= sizeof (Elf32_Nhdr)) {
     2080 +                                Elf32_Nhdr *hdr = cp->c_data->d_buf;
     2081 +                                if (hdr->n_type != 3)
     2082 +                                        continue;
     2083 +                                if (hdr->n_namesz != 4)
     2084 +                                        continue;
     2085 +                                if (hdr->n_descsz < MINBUILDID)
     2086 +                                        continue;
     2087 +                                /* Set a reasonable upper bound */
     2088 +                                if (hdr->n_descsz > MAXBUILDID) {
     2089 +                                        dprintf("Skipped %s as too large "
     2090 +                                            "(%ld)\n", BUILDID_NAME,
     2091 +                                            (unsigned long)hdr->n_descsz);
     2092 +                                        continue;
     2093 +                                }
     2094 +
     2095 +                                if (cp->c_data->d_size < sizeof (hdr) +
     2096 +                                    hdr->n_namesz + hdr->n_descsz)
     2097 +                                        continue;
     2098 +                                buildid = cp;
     2099 +                        }
     2100 +                } else if (strcmp(cp->c_name, DBGLINK_NAME) == 0) {
     2101 +                        dprintf("found %s section for %s\n", DBGLINK_NAME,
     2102 +                            fptr->file_rname);
     2103 +                        /*
     2104 +                         * Let's make sure of a few things before we do this.
     2105 +                         */
     2106 +                        if (cp->c_shdr.sh_type == SHT_PROGBITS &&
     2107 +                            cp->c_data->d_buf != NULL &&
     2108 +                            cp->c_data->d_size) {
     2109 +                                dbglink = cp;
     2110 +                        }
1816 2111                  }
1817 2112          }
1818 2113  
1819 2114          /*
     2115 +         * If we haven't found any symbol table information and we have found
     2116 +         * either a .note.gnu.build-id or a .gnu_debuglink, it's time to try and
     2117 +         * figure out where we might find this. Originally, GNU used the
     2118 +         * .gnu_debuglink solely, but then they added a .note.gnu.build-id. The
     2119 +         * build-id is some size, usually 16 or 20 bytes, often a SHA1 sum of
     2120 +         * the old, but not present file. All that you have to do to compare
     2121 +         * things is see if the sections are less, in theory saving you from
     2122 +         * doing lots of expensive I/O.
     2123 +         *
     2124 +         * For the .note.gnu.build-id, we're going to check a few things before
     2125 +         * using it, first that the name is 4 bytes, and is GNU and that the
     2126 +         * type is 3, which they say is the build-id identifier.
     2127 +         *
     2128 +         * To verify that the elf data for the .gnu_debuglink seems somewhat
     2129 +         * sane, eg. the elf data should be a string, so we want to verify we
     2130 +         * have a null-terminator.
     2131 +         */
     2132 +        if (fptr->file_symtab.sym_data_pri == NULL && buildid != NULL) {
     2133 +                int i, bo;
     2134 +                uint8_t *dp;
     2135 +                char buf[BUILDID_STRLEN], *path;
     2136 +                Elf32_Nhdr *hdr = buildid->c_data->d_buf;
     2137 +
     2138 +                /*
     2139 +                 * This was checked for validity when assigning the buildid
     2140 +                 * variable.
     2141 +                 */
     2142 +                bzero(buf, sizeof (buf));
     2143 +                dp = (uint8_t *)((uintptr_t)hdr + sizeof (*hdr) +
     2144 +                    hdr->n_namesz);
     2145 +                for (i = 0, bo = 0; i < hdr->n_descsz; i++, bo += 2, dp++) {
     2146 +                        assert(sizeof (buf) - bo > 0);
     2147 +
     2148 +                        /*
     2149 +                         * Recall that the build-id is structured as a series of
     2150 +                         * bytes. However, the first two characters are supposed
     2151 +                         * to represent a directory. Hence, once we reach offset
     2152 +                         * two, we insert a '/' character.
     2153 +                         */
     2154 +                        if (bo == 2) {
     2155 +                                buf[bo] = '/';
     2156 +                                bo++;
     2157 +                        }
     2158 +                        (void) snprintf(buf + bo, sizeof (buf) - bo, "%2x",
     2159 +                            *dp);
     2160 +                }
     2161 +
     2162 +                if (asprintf(&path, "/usr/lib/debug/.build-id/%s.debug",
     2163 +                    buf) != -1) {
     2164 +                        boolean_t r;
     2165 +                        dprintf("attempting to find build id alternate debug "
     2166 +                            "file at %s\n", path);
     2167 +                        r = build_alt_debug(fptr, path, 0, buildid->c_data);
     2168 +                        dprintf("attempt %s\n", r == B_TRUE ?
     2169 +                            "succeeded" : "failed");
     2170 +                        free(path);
     2171 +                } else {
     2172 +                        dprintf("failed to construct build id path: %s\n",
     2173 +                            strerror(errno));
     2174 +                }
     2175 +        }
     2176 +
     2177 +        if (fptr->file_symtab.sym_data_pri == NULL && dbglink != NULL) {
     2178 +                char *c = dbglink->c_data->d_buf;
     2179 +                size_t i;
     2180 +                boolean_t found = B_FALSE;
     2181 +                Elf_Data *ed = dbglink->c_data;
     2182 +                uint32_t crc;
     2183 +
     2184 +                for (i = 0; i < ed->d_size; i++) {
     2185 +                        if (c[i] == '\0') {
     2186 +                                uintptr_t off;
     2187 +                                dprintf("got .gnu_debuglink terminator at "
     2188 +                                    "offset %lu\n", (unsigned long)i);
     2189 +                                /*
     2190 +                                 * After the null terminator, there should be
     2191 +                                 * padding, followed by a 4 byte CRC of the
     2192 +                                 * file. If we don't see this, we're going to
     2193 +                                 * assume this is bogus.
     2194 +                                 */
     2195 +                                if ((i % sizeof (uint32_t)) == 0) {
     2196 +                                        i += 4;
     2197 +                                } else {
     2198 +                                        i += sizeof (uint32_t) -
     2199 +                                            (i % sizeof (uint32_t));
     2200 +                                }
     2201 +                                if (i + sizeof (uint32_t) ==
     2202 +                                    dbglink->c_data->d_size) {
     2203 +                                        found = B_TRUE;
     2204 +                                        off = (uintptr_t)ed->d_buf + i;
     2205 +                                        crc = *(uint32_t *)off;
     2206 +                                } else {
     2207 +                                        dprintf(".gnu_debuglink size mismatch, "
     2208 +                                            "expected: %lu, found: %lu\n",
     2209 +                                            (unsigned long)i,
     2210 +                                            (unsigned long)ed->d_size);
     2211 +                                }
     2212 +                                break;
     2213 +                        }
     2214 +                }
     2215 +
     2216 +                if (found == B_TRUE)
     2217 +                        find_alt_debuglink(fptr, dbglink->c_data->d_buf, crc);
     2218 +        }
     2219 +
     2220 +        /*
1820 2221           * At this point, we've found all the symbol tables we're ever going
1821 2222           * to find: the ones in the loop above and possibly the symtab that
1822 2223           * was included in the core file. Before we perform any lookups, we
1823 2224           * create sorted versions to optimize for lookups.
1824 2225           */
1825 2226          optimize_symtab(&fptr->file_symtab);
1826 2227          optimize_symtab(&fptr->file_dynsym);
1827 2228  
1828 2229          /*
1829 2230           * Fill in the base address of the text mapping for shared libraries.
1830 2231           * This allows us to translate symbols before librtld_db is ready.
1831 2232           */
1832 2233          if (fptr->file_etype == ET_DYN) {
1833 2234                  fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr -
1834 2235                      fptr->file_map->map_pmap.pr_offset;
1835 2236                  dprintf("setting file_dyn_base for %s to %lx\n",
1836 2237                      objectfile, (long)fptr->file_dyn_base);
1837 2238          }
1838 2239  
1839 2240          /*
1840 2241           * Record the CTF section information in the file info structure.
1841 2242           */
1842 2243          if (ctf != NULL) {
1843 2244                  fptr->file_ctf_off = ctf->c_shdr.sh_offset;
1844 2245                  fptr->file_ctf_size = ctf->c_shdr.sh_size;
1845 2246                  if (ctf->c_shdr.sh_link != 0 &&
1846 2247                      cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM)
1847 2248                          fptr->file_ctf_dyn = 1;
1848 2249          }
1849 2250  
1850 2251          if (fptr->file_lo == NULL)
1851 2252                  goto done; /* Nothing else to do if no load object info */
1852 2253  
1853 2254          /*
1854 2255           * If the object is a shared library and we have a different rl_base
1855 2256           * value, reset file_dyn_base according to librtld_db's information.
1856 2257           */
1857 2258          if (fptr->file_etype == ET_DYN &&
1858 2259              fptr->file_lo->rl_base != fptr->file_dyn_base) {
1859 2260                  dprintf("resetting file_dyn_base for %s to %lx\n",
1860 2261                      objectfile, (long)fptr->file_lo->rl_base);
1861 2262                  fptr->file_dyn_base = fptr->file_lo->rl_base;
1862 2263          }
1863 2264  
1864 2265          /*
1865 2266           * Fill in the PLT information for this file if a PLT symbol is found.
1866 2267           */
1867 2268          if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s,
1868 2269              NULL) != NULL) {
1869 2270                  fptr->file_plt_base = s.st_value + fptr->file_dyn_base;
1870 2271                  fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0;
1871 2272  
1872 2273                  /*
1873 2274                   * Bring the load object up to date; it is the only way the
1874 2275                   * user has to access the PLT data. The PLT information in the
1875 2276                   * rd_loadobj_t is not set in the call to map_iter() (the
1876 2277                   * callback for rd_loadobj_iter) where we set file_lo.
1877 2278                   */
1878 2279                  fptr->file_lo->rl_plt_base = fptr->file_plt_base;
1879 2280                  fptr->file_lo->rl_plt_size = fptr->file_plt_size;
1880 2281  
1881 2282                  dprintf("PLT found at %p, size = %lu\n",
1882 2283                      (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size);
1883 2284          }
1884 2285  
1885 2286          /*
1886 2287           * Fill in the PLT information.
1887 2288           */
1888 2289          if (dyn != NULL) {
1889 2290                  uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base;
1890 2291                  size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize;
1891 2292                  GElf_Dyn d;
1892 2293  
1893 2294                  for (i = 0; i < ndyn; i++) {
1894 2295                          if (gelf_getdyn(dyn->c_data, i, &d) == NULL)
1895 2296                                  continue;
1896 2297  
1897 2298                          switch (d.d_tag) {
1898 2299                          case DT_JMPREL:
1899 2300                                  dprintf("DT_JMPREL is %p\n",
1900 2301                                      (void *)(uintptr_t)d.d_un.d_ptr);
1901 2302                                  fptr->file_jmp_rel =
1902 2303                                      d.d_un.d_ptr + fptr->file_dyn_base;
1903 2304                                  break;
1904 2305                          case DT_STRTAB:
1905 2306                                  dprintf("DT_STRTAB is %p\n",
1906 2307                                      (void *)(uintptr_t)d.d_un.d_ptr);
1907 2308                                  break;
1908 2309                          case DT_PLTGOT:
1909 2310                                  dprintf("DT_PLTGOT is %p\n",
1910 2311                                      (void *)(uintptr_t)d.d_un.d_ptr);
1911 2312                                  break;
1912 2313                          case DT_SUNW_SYMTAB:
1913 2314                                  dprintf("DT_SUNW_SYMTAB is %p\n",
1914 2315                                      (void *)(uintptr_t)d.d_un.d_ptr);
1915 2316                                  break;
1916 2317                          case DT_SYMTAB:
1917 2318                                  dprintf("DT_SYMTAB is %p\n",
1918 2319                                      (void *)(uintptr_t)d.d_un.d_ptr);
1919 2320                                  break;
1920 2321                          case DT_HASH:
1921 2322                                  dprintf("DT_HASH is %p\n",
1922 2323                                      (void *)(uintptr_t)d.d_un.d_ptr);
1923 2324                                  break;
1924 2325                          }
1925 2326                  }
1926 2327  
1927 2328                  dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n",
1928 2329                      (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel);
1929 2330          }
1930 2331  
1931 2332  done:
1932 2333          free(cache);
1933 2334          return;
1934 2335  
1935 2336  bad:
  
    | 
      ↓ open down ↓ | 
    106 lines elided | 
    
      ↑ open up ↑ | 
  
1936 2337          if (cache != NULL)
1937 2338                  free(cache);
1938 2339  
1939 2340          (void) elf_end(elf);
1940 2341          fptr->file_elf = NULL;
1941 2342          if (fptr->file_elfmem != NULL) {
1942 2343                  free(fptr->file_elfmem);
1943 2344                  fptr->file_elfmem = NULL;
1944 2345          }
1945 2346          (void) close(fptr->file_fd);
     2347 +        if (fptr->file_dbgelf != NULL)
     2348 +                (void) elf_end(fptr->file_dbgelf);
     2349 +        fptr->file_dbgelf = NULL;
     2350 +        if (fptr->file_dbgfile >= 0)
     2351 +                (void) close(fptr->file_dbgfile);
1946 2352          fptr->file_fd = -1;
     2353 +        fptr->file_dbgfile = -1;
1947 2354  }
1948 2355  
1949 2356  /*
1950 2357   * Given a process virtual address, return the map_info_t containing it.
1951 2358   * If none found, return NULL.
1952 2359   */
1953 2360  map_info_t *
1954 2361  Paddr2mptr(struct ps_prochandle *P, uintptr_t addr)
1955 2362  {
1956 2363          int lo = 0;
1957 2364          int hi = P->map_count - 1;
1958 2365          int mid;
1959 2366          map_info_t *mp;
1960 2367  
1961 2368          while (lo <= hi) {
1962 2369  
1963 2370                  mid = (lo + hi) / 2;
1964 2371                  mp = &P->mappings[mid];
1965 2372  
1966 2373                  /* check that addr is in [vaddr, vaddr + size) */
1967 2374                  if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size)
1968 2375                          return (mp);
1969 2376  
1970 2377                  if (addr < mp->map_pmap.pr_vaddr)
1971 2378                          hi = mid - 1;
1972 2379                  else
1973 2380                          lo = mid + 1;
1974 2381          }
1975 2382  
1976 2383          return (NULL);
1977 2384  }
1978 2385  
1979 2386  /*
1980 2387   * Return the map_info_t for the executable file.
1981 2388   * If not found, return NULL.
1982 2389   */
1983 2390  static map_info_t *
1984 2391  exec_map(struct ps_prochandle *P)
1985 2392  {
1986 2393          uint_t i;
1987 2394          map_info_t *mptr;
1988 2395          map_info_t *mold = NULL;
1989 2396          file_info_t *fptr;
1990 2397          uintptr_t base;
1991 2398  
1992 2399          for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
1993 2400                  if (mptr->map_pmap.pr_mapname[0] == '\0')
1994 2401                          continue;
1995 2402                  if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) {
1996 2403                          if ((fptr = mptr->map_file) != NULL &&
1997 2404                              fptr->file_lo != NULL) {
1998 2405                                  base = fptr->file_lo->rl_base;
1999 2406                                  if (base >= mptr->map_pmap.pr_vaddr &&
2000 2407                                      base < mptr->map_pmap.pr_vaddr +
2001 2408                                      mptr->map_pmap.pr_size)     /* text space */
2002 2409                                          return (mptr);
2003 2410                                  mold = mptr;    /* must be the data */
2004 2411                                  continue;
2005 2412                          }
2006 2413                          /* This is a poor way to test for text space */
2007 2414                          if (!(mptr->map_pmap.pr_mflags & MA_EXEC) ||
2008 2415                              (mptr->map_pmap.pr_mflags & MA_WRITE)) {
2009 2416                                  mold = mptr;
2010 2417                                  continue;
2011 2418                          }
2012 2419                          return (mptr);
2013 2420                  }
2014 2421          }
2015 2422  
2016 2423          return (mold);
2017 2424  }
2018 2425  
2019 2426  /*
2020 2427   * Given a shared object name, return the map_info_t for it.  If no matching
2021 2428   * object is found, return NULL.  Normally, the link maps contain the full
2022 2429   * object pathname, e.g. /usr/lib/libc.so.1.  We allow the object name to
2023 2430   * take one of the following forms:
2024 2431   *
2025 2432   * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1"
2026 2433   * 2. An exact basename match: "libc.so.1"
2027 2434   * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc"
2028 2435   * 4. The literal string "a.out" is an alias for the executable mapping
2029 2436   *
2030 2437   * The third case is a convenience for callers and may not be necessary.
2031 2438   *
2032 2439   * As the exact same object name may be loaded on different link maps (see
2033 2440   * dlmopen(3DL)), we also allow the caller to resolve the object name by
2034 2441   * specifying a particular link map id.  If lmid is PR_LMID_EVERY, the
2035 2442   * first matching name will be returned, regardless of the link map id.
2036 2443   */
2037 2444  static map_info_t *
2038 2445  object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname)
2039 2446  {
2040 2447          map_info_t *mp;
2041 2448          file_info_t *fp;
2042 2449          size_t objlen;
2043 2450          uint_t i;
2044 2451  
2045 2452          /*
2046 2453           * If we have no rtld_db, then always treat a request as one for all
2047 2454           * link maps.
2048 2455           */
2049 2456          if (P->rap == NULL)
2050 2457                  lmid = PR_LMID_EVERY;
2051 2458  
2052 2459          /*
2053 2460           * First pass: look for exact matches of the entire pathname or
2054 2461           * basename (cases 1 and 2 above):
2055 2462           */
2056 2463          for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2057 2464  
2058 2465                  if (mp->map_pmap.pr_mapname[0] == '\0' ||
2059 2466                      (fp = mp->map_file) == NULL ||
2060 2467                      ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2061 2468                          continue;
2062 2469  
2063 2470                  if (lmid != PR_LMID_EVERY &&
2064 2471                      (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2065 2472                          continue;
2066 2473  
2067 2474                  /*
2068 2475                   * If we match, return the primary text mapping; otherwise
2069 2476                   * just return the mapping we matched.
2070 2477                   */
2071 2478                  if ((fp->file_lbase && strcmp(fp->file_lbase, objname) == 0) ||
2072 2479                      (fp->file_rbase && strcmp(fp->file_rbase, objname) == 0) ||
2073 2480                      (fp->file_lname && strcmp(fp->file_lname, objname) == 0) ||
2074 2481                      (fp->file_rname && strcmp(fp->file_rname, objname) == 0))
2075 2482                          return (fp->file_map ? fp->file_map : mp);
2076 2483          }
2077 2484  
2078 2485          objlen = strlen(objname);
2079 2486  
2080 2487          /*
2081 2488           * Second pass: look for partial matches (case 3 above):
2082 2489           */
2083 2490          for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2084 2491  
2085 2492                  if (mp->map_pmap.pr_mapname[0] == '\0' ||
2086 2493                      (fp = mp->map_file) == NULL ||
2087 2494                      ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2088 2495                          continue;
2089 2496  
2090 2497                  if (lmid != PR_LMID_EVERY &&
2091 2498                      (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2092 2499                          continue;
2093 2500  
2094 2501                  /*
2095 2502                   * If we match, return the primary text mapping; otherwise
2096 2503                   * just return the mapping we matched.
2097 2504                   */
2098 2505                  if ((fp->file_lbase != NULL) &&
2099 2506                      (strncmp(fp->file_lbase, objname, objlen) == 0) &&
2100 2507                      (fp->file_lbase[objlen] == '.'))
2101 2508                          return (fp->file_map ? fp->file_map : mp);
2102 2509                  if ((fp->file_rbase != NULL) &&
2103 2510                      (strncmp(fp->file_rbase, objname, objlen) == 0) &&
2104 2511                      (fp->file_rbase[objlen] == '.'))
2105 2512                          return (fp->file_map ? fp->file_map : mp);
2106 2513          }
2107 2514  
2108 2515          /*
2109 2516           * One last check: we allow "a.out" to always alias the executable,
2110 2517           * assuming this name was not in use for something else.
2111 2518           */
2112 2519          if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) &&
2113 2520              (strcmp(objname, "a.out") == 0))
2114 2521                  return (P->map_exec);
2115 2522  
2116 2523          return (NULL);
2117 2524  }
2118 2525  
2119 2526  static map_info_t *
2120 2527  object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
2121 2528  {
2122 2529          map_info_t *mptr;
2123 2530  
2124 2531          if (!P->info_valid)
2125 2532                  Pupdate_maps(P);
2126 2533  
2127 2534          if (P->map_exec == NULL && ((mptr = Paddr2mptr(P,
2128 2535              Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL))
2129 2536                  P->map_exec = mptr;
2130 2537  
2131 2538          if (P->map_ldso == NULL && (mptr = Paddr2mptr(P,
2132 2539              Pgetauxval(P, AT_BASE))) != NULL)
2133 2540                  P->map_ldso = mptr;
2134 2541  
2135 2542          if (name == PR_OBJ_EXEC)
2136 2543                  mptr = P->map_exec;
2137 2544          else if (name == PR_OBJ_LDSO)
2138 2545                  mptr = P->map_ldso;
2139 2546          else if (Prd_agent(P) != NULL || P->state == PS_IDLE)
2140 2547                  mptr = object_to_map(P, lmid, name);
2141 2548          else
2142 2549                  mptr = NULL;
2143 2550  
2144 2551          return (mptr);
2145 2552  }
2146 2553  
2147 2554  /*
2148 2555   * When two symbols are found by address, decide which one is to be preferred.
2149 2556   */
2150 2557  static GElf_Sym *
2151 2558  sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2)
2152 2559  {
2153 2560          /*
2154 2561           * Prefer the non-NULL symbol.
2155 2562           */
2156 2563          if (sym1 == NULL)
2157 2564                  return (sym2);
2158 2565          if (sym2 == NULL)
2159 2566                  return (sym1);
2160 2567  
2161 2568          /*
2162 2569           * Defer to the sort ordering...
2163 2570           */
2164 2571          return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2);
2165 2572  }
2166 2573  
2167 2574  /*
2168 2575   * Use a binary search to do the work of sym_by_addr().
2169 2576   */
2170 2577  static GElf_Sym *
2171 2578  sym_by_addr_binary(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp,
2172 2579      uint_t *idp)
2173 2580  {
2174 2581          GElf_Sym sym, osym;
2175 2582          uint_t i, oid, *byaddr = symtab->sym_byaddr;
2176 2583          int min, max, mid, omid, found = 0;
2177 2584  
2178 2585          if (symtab->sym_data_pri == NULL || symtab->sym_count == 0)
2179 2586                  return (NULL);
2180 2587  
2181 2588          min = 0;
2182 2589          max = symtab->sym_count - 1;
2183 2590          osym.st_value = 0;
2184 2591  
2185 2592          /*
2186 2593           * We can't return when we've found a match, we have to continue
2187 2594           * searching for the closest matching symbol.
2188 2595           */
2189 2596          while (min <= max) {
2190 2597                  mid = (max + min) / 2;
2191 2598  
2192 2599                  i = byaddr[mid];
2193 2600                  (void) symtab_getsym(symtab, i, &sym);
2194 2601  
2195 2602                  if (addr >= sym.st_value &&
2196 2603                      addr < sym.st_value + sym.st_size &&
2197 2604                      (!found || sym.st_value > osym.st_value)) {
2198 2605                          osym = sym;
2199 2606                          omid = mid;
2200 2607                          oid = i;
2201 2608                          found = 1;
2202 2609                  }
2203 2610  
2204 2611                  if (addr < sym.st_value)
2205 2612                          max = mid - 1;
2206 2613                  else
2207 2614                          min = mid + 1;
2208 2615          }
2209 2616  
2210 2617          if (!found)
2211 2618                  return (NULL);
2212 2619  
2213 2620          /*
2214 2621           * There may be many symbols with identical values so we walk
2215 2622           * backward in the byaddr table to find the best match.
2216 2623           */
2217 2624          do {
2218 2625                  sym = osym;
2219 2626                  i = oid;
2220 2627  
2221 2628                  if (omid == 0)
2222 2629                          break;
2223 2630  
2224 2631                  oid = byaddr[--omid];
2225 2632                  (void) symtab_getsym(symtab, oid, &osym);
2226 2633          } while (addr >= osym.st_value &&
2227 2634              addr < sym.st_value + osym.st_size &&
2228 2635              osym.st_value == sym.st_value);
2229 2636  
2230 2637          *symp = sym;
2231 2638          if (idp != NULL)
2232 2639                  *idp = i;
2233 2640          return (symp);
2234 2641  }
2235 2642  
2236 2643  /*
2237 2644   * Use a linear search to do the work of sym_by_addr().
2238 2645   */
2239 2646  static GElf_Sym *
2240 2647  sym_by_addr_linear(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symbolp,
2241 2648      uint_t *idp)
2242 2649  {
2243 2650          size_t symn = symtab->sym_symn;
2244 2651          char *strs = symtab->sym_strs;
2245 2652          GElf_Sym sym, *symp = NULL;
2246 2653          GElf_Sym osym, *osymp = NULL;
2247 2654          int i, id;
2248 2655  
2249 2656          if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2250 2657                  return (NULL);
2251 2658  
2252 2659          for (i = 0; i < symn; i++) {
2253 2660                  if ((symp = symtab_getsym(symtab, i, &sym)) != NULL) {
2254 2661                          if (addr >= sym.st_value &&
2255 2662                              addr < sym.st_value + sym.st_size) {
2256 2663                                  if (osymp)
2257 2664                                          symp = sym_prefer(
2258 2665                                              symp, strs + symp->st_name,
2259 2666                                              osymp, strs + osymp->st_name);
2260 2667                                  if (symp != osymp) {
2261 2668                                          osym = sym;
2262 2669                                          osymp = &osym;
2263 2670                                          id = i;
2264 2671                                  }
2265 2672                          }
2266 2673                  }
2267 2674          }
2268 2675          if (osymp) {
2269 2676                  *symbolp = osym;
2270 2677                  if (idp)
2271 2678                          *idp = id;
2272 2679                  return (symbolp);
2273 2680          }
2274 2681          return (NULL);
2275 2682  }
2276 2683  
2277 2684  /*
2278 2685   * Look up a symbol by address in the specified symbol table.
2279 2686   * Adjustment to 'addr' must already have been made for the
2280 2687   * offset of the symbol if this is a dynamic library symbol table.
2281 2688   *
2282 2689   * Use a linear or a binary search depending on whether or not we
2283 2690   * chose to sort the table in optimize_symtab().
2284 2691   */
2285 2692  static GElf_Sym *
2286 2693  sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp)
2287 2694  {
2288 2695          if (_libproc_no_qsort) {
2289 2696                  return (sym_by_addr_linear(symtab, addr, symp, idp));
2290 2697          } else {
2291 2698                  return (sym_by_addr_binary(symtab, addr, symp, idp));
2292 2699          }
2293 2700  }
2294 2701  
2295 2702  /*
2296 2703   * Use a binary search to do the work of sym_by_name().
2297 2704   */
2298 2705  static GElf_Sym *
2299 2706  sym_by_name_binary(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2300 2707      uint_t *idp)
2301 2708  {
2302 2709          char *strs = symtab->sym_strs;
2303 2710          uint_t i, *byname = symtab->sym_byname;
2304 2711          int min, mid, max, cmp;
2305 2712  
2306 2713          if (symtab->sym_data_pri == NULL || strs == NULL ||
2307 2714              symtab->sym_count == 0)
2308 2715                  return (NULL);
2309 2716  
2310 2717          min = 0;
2311 2718          max = symtab->sym_count - 1;
2312 2719  
2313 2720          while (min <= max) {
2314 2721                  mid = (max + min) / 2;
2315 2722  
2316 2723                  i = byname[mid];
2317 2724                  (void) symtab_getsym(symtab, i, symp);
2318 2725  
2319 2726                  if ((cmp = strcmp(name, strs + symp->st_name)) == 0) {
2320 2727                          if (idp != NULL)
2321 2728                                  *idp = i;
2322 2729                          return (symp);
2323 2730                  }
2324 2731  
2325 2732                  if (cmp < 0)
2326 2733                          max = mid - 1;
2327 2734                  else
2328 2735                          min = mid + 1;
2329 2736          }
2330 2737  
2331 2738          return (NULL);
2332 2739  }
2333 2740  
2334 2741  /*
2335 2742   * Use a linear search to do the work of sym_by_name().
2336 2743   */
2337 2744  static GElf_Sym *
2338 2745  sym_by_name_linear(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2339 2746      uint_t *idp)
2340 2747  {
2341 2748          size_t symn = symtab->sym_symn;
2342 2749          char *strs = symtab->sym_strs;
2343 2750          int i;
2344 2751  
2345 2752          if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2346 2753                  return (NULL);
2347 2754  
2348 2755          for (i = 0; i < symn; i++) {
2349 2756                  if (symtab_getsym(symtab, i, symp) &&
2350 2757                      strcmp(name, strs + symp->st_name) == 0) {
2351 2758                          if (idp)
2352 2759                                  *idp = i;
2353 2760                          return (symp);
2354 2761                  }
2355 2762          }
2356 2763  
2357 2764          return (NULL);
2358 2765  }
2359 2766  
2360 2767  /*
2361 2768   * Look up a symbol by name in the specified symbol table.
2362 2769   *
2363 2770   * Use a linear or a binary search depending on whether or not we
2364 2771   * chose to sort the table in optimize_symtab().
2365 2772   */
2366 2773  static GElf_Sym *
2367 2774  sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp)
2368 2775  {
2369 2776          if (_libproc_no_qsort) {
2370 2777                  return (sym_by_name_linear(symtab, name, symp, idp));
2371 2778          } else {
2372 2779                  return (sym_by_name_binary(symtab, name, symp, idp));
2373 2780          }
2374 2781  }
2375 2782  
2376 2783  /*
2377 2784   * Search the process symbol tables looking for a symbol whose
2378 2785   * value to value+size contain the address specified by addr.
2379 2786   * Return values are:
2380 2787   *      sym_name_buffer containing the symbol name
2381 2788   *      GElf_Sym symbol table entry
2382 2789   *      prsyminfo_t ancillary symbol information
2383 2790   * Returns 0 on success, -1 on failure.
2384 2791   */
2385 2792  static int
2386 2793  i_Pxlookup_by_addr(
2387 2794          struct ps_prochandle *P,
2388 2795          int lmresolve,                  /* use resolve linker object names */
2389 2796          uintptr_t addr,                 /* process address being sought */
2390 2797          char *sym_name_buffer,          /* buffer for the symbol name */
2391 2798          size_t bufsize,                 /* size of sym_name_buffer */
2392 2799          GElf_Sym *symbolp,              /* returned symbol table entry */
2393 2800          prsyminfo_t *sip)               /* returned symbol info */
2394 2801  {
2395 2802          GElf_Sym        *symp;
2396 2803          char            *name;
2397 2804          GElf_Sym        sym1, *sym1p = NULL;
2398 2805          GElf_Sym        sym2, *sym2p = NULL;
2399 2806          char            *name1 = NULL;
2400 2807          char            *name2 = NULL;
2401 2808          uint_t          i1;
2402 2809          uint_t          i2;
2403 2810          map_info_t      *mptr;
2404 2811          file_info_t     *fptr;
2405 2812  
2406 2813          (void) Prd_agent(P);
2407 2814  
2408 2815          if ((mptr = Paddr2mptr(P, addr)) == NULL ||     /* no such address */
2409 2816              (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2410 2817              fptr->file_elf == NULL)                     /* not an ELF file */
2411 2818                  return (-1);
2412 2819  
2413 2820          /*
2414 2821           * Adjust the address by the load object base address in
2415 2822           * case the address turns out to be in a shared library.
2416 2823           */
2417 2824          addr -= fptr->file_dyn_base;
2418 2825  
2419 2826          /*
2420 2827           * Search both symbol tables, symtab first, then dynsym.
2421 2828           */
2422 2829          if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL)
2423 2830                  name1 = fptr->file_symtab.sym_strs + sym1.st_name;
2424 2831          if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL)
2425 2832                  name2 = fptr->file_dynsym.sym_strs + sym2.st_name;
2426 2833  
2427 2834          if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL)
2428 2835                  return (-1);
2429 2836  
2430 2837          name = (symp == sym1p) ? name1 : name2;
2431 2838          if (bufsize > 0) {
2432 2839                  (void) strncpy(sym_name_buffer, name, bufsize);
2433 2840                  sym_name_buffer[bufsize - 1] = '\0';
2434 2841          }
2435 2842  
2436 2843          *symbolp = *symp;
2437 2844          if (sip != NULL) {
2438 2845                  sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer;
2439 2846                  if (lmresolve && (fptr->file_rname != NULL))
2440 2847                          sip->prs_object = fptr->file_rbase;
2441 2848                  else
2442 2849                          sip->prs_object = fptr->file_lbase;
2443 2850                  sip->prs_id = (symp == sym1p) ? i1 : i2;
2444 2851                  sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM;
2445 2852                  sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE :
2446 2853                      fptr->file_lo->rl_lmident;
2447 2854          }
2448 2855  
2449 2856          if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS)
2450 2857                  symbolp->st_value += fptr->file_dyn_base;
2451 2858  
2452 2859          return (0);
2453 2860  }
2454 2861  
2455 2862  int
2456 2863  Pxlookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2457 2864      size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2458 2865  {
2459 2866          return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, bufsize, symp, sip));
2460 2867  }
2461 2868  
2462 2869  int
2463 2870  Pxlookup_by_addr_resolved(struct ps_prochandle *P, uintptr_t addr, char *buf,
2464 2871      size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2465 2872  {
2466 2873          return (i_Pxlookup_by_addr(P, B_TRUE, addr, buf, bufsize, symp, sip));
2467 2874  }
2468 2875  
2469 2876  int
2470 2877  Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2471 2878      size_t size, GElf_Sym *symp)
2472 2879  {
2473 2880          return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, size, symp, NULL));
2474 2881  }
2475 2882  
2476 2883  /*
2477 2884   * Search the process symbol tables looking for a symbol whose name matches the
2478 2885   * specified name and whose object and link map optionally match the specified
2479 2886   * parameters.  On success, the function returns 0 and fills in the GElf_Sym
2480 2887   * symbol table entry.  On failure, -1 is returned.
2481 2888   */
2482 2889  int
2483 2890  Pxlookup_by_name(
2484 2891          struct ps_prochandle *P,
2485 2892          Lmid_t lmid,                    /* link map to match, or -1 for any */
2486 2893          const char *oname,              /* load object name */
2487 2894          const char *sname,              /* symbol name */
2488 2895          GElf_Sym *symp,                 /* returned symbol table entry */
2489 2896          prsyminfo_t *sip)               /* returned symbol info */
2490 2897  {
2491 2898          map_info_t *mptr;
2492 2899          file_info_t *fptr;
2493 2900          int cnt;
2494 2901  
2495 2902          GElf_Sym sym;
2496 2903          prsyminfo_t si;
2497 2904          int rv = -1;
2498 2905          uint_t id;
2499 2906  
2500 2907          if (oname == PR_OBJ_EVERY) {
2501 2908                  /* create all the file_info_t's for all the mappings */
2502 2909                  (void) Prd_agent(P);
2503 2910                  cnt = P->num_files;
2504 2911                  fptr = list_next(&P->file_head);
2505 2912          } else {
2506 2913                  cnt = 1;
2507 2914                  if ((mptr = object_name_to_map(P, lmid, oname)) == NULL ||
2508 2915                      (fptr = build_map_symtab(P, mptr)) == NULL)
2509 2916                          return (-1);
2510 2917          }
2511 2918  
2512 2919          /*
2513 2920           * Iterate through the loaded object files and look for the symbol
2514 2921           * name in the .symtab and .dynsym of each.  If we encounter a match
2515 2922           * with SHN_UNDEF, keep looking in hopes of finding a better match.
2516 2923           * This means that a name such as "puts" will match the puts function
2517 2924           * in libc instead of matching the puts PLT entry in the a.out file.
2518 2925           */
2519 2926          for (; cnt > 0; cnt--, fptr = list_next(fptr)) {
2520 2927                  Pbuild_file_symtab(P, fptr);
2521 2928  
2522 2929                  if (fptr->file_elf == NULL)
2523 2930                          continue;
2524 2931  
2525 2932                  if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL &&
2526 2933                      lmid != fptr->file_lo->rl_lmident)
2527 2934                          continue;
2528 2935  
2529 2936                  if (fptr->file_symtab.sym_data_pri != NULL &&
2530 2937                      sym_by_name(&fptr->file_symtab, sname, symp, &id)) {
2531 2938                          if (sip != NULL) {
2532 2939                                  sip->prs_id = id;
2533 2940                                  sip->prs_table = PR_SYMTAB;
2534 2941                                  sip->prs_object = oname;
2535 2942                                  sip->prs_name = sname;
2536 2943                                  sip->prs_lmid = fptr->file_lo == NULL ?
2537 2944                                      LM_ID_BASE : fptr->file_lo->rl_lmident;
2538 2945                          }
2539 2946                  } else if (fptr->file_dynsym.sym_data_pri != NULL &&
2540 2947                      sym_by_name(&fptr->file_dynsym, sname, symp, &id)) {
2541 2948                          if (sip != NULL) {
2542 2949                                  sip->prs_id = id;
2543 2950                                  sip->prs_table = PR_DYNSYM;
2544 2951                                  sip->prs_object = oname;
2545 2952                                  sip->prs_name = sname;
2546 2953                                  sip->prs_lmid = fptr->file_lo == NULL ?
2547 2954                                      LM_ID_BASE : fptr->file_lo->rl_lmident;
2548 2955                          }
2549 2956                  } else {
2550 2957                          continue;
2551 2958                  }
2552 2959  
2553 2960                  if (GELF_ST_TYPE(symp->st_info) != STT_TLS)
2554 2961                          symp->st_value += fptr->file_dyn_base;
2555 2962  
2556 2963                  if (symp->st_shndx != SHN_UNDEF)
2557 2964                          return (0);
2558 2965  
2559 2966                  if (rv != 0) {
2560 2967                          if (sip != NULL)
2561 2968                                  si = *sip;
2562 2969                          sym = *symp;
2563 2970                          rv = 0;
2564 2971                  }
2565 2972          }
2566 2973  
2567 2974          if (rv == 0) {
2568 2975                  if (sip != NULL)
2569 2976                          *sip = si;
2570 2977                  *symp = sym;
2571 2978          }
  
    | 
      ↓ open down ↓ | 
    615 lines elided | 
    
      ↑ open up ↑ | 
  
2572 2979  
2573 2980          return (rv);
2574 2981  }
2575 2982  
2576 2983  /*
2577 2984   * Search the process symbol tables looking for a symbol whose name matches the
2578 2985   * specified name, but without any restriction on the link map id.
2579 2986   */
2580 2987  int
2581 2988  Plookup_by_name(struct ps_prochandle *P, const char *object,
2582      -        const char *symbol, GElf_Sym *symp)
     2989 +    const char *symbol, GElf_Sym *symp)
2583 2990  {
2584 2991          return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL));
2585 2992  }
2586 2993  
2587 2994  /*
2588 2995   * Iterate over the process's address space mappings.
2589 2996   */
2590 2997  static int
2591 2998  i_Pmapping_iter(struct ps_prochandle *P, boolean_t lmresolve,
2592 2999      proc_map_f *func, void *cd)
2593 3000  {
2594 3001          map_info_t *mptr;
2595 3002          file_info_t *fptr;
2596 3003          char *object_name;
2597 3004          int rc = 0;
2598 3005          int i;
2599 3006  
2600 3007          /* create all the file_info_t's for all the mappings */
2601 3008          (void) Prd_agent(P);
2602 3009  
2603 3010          for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2604 3011                  if ((fptr = mptr->map_file) == NULL)
2605 3012                          object_name = NULL;
2606 3013                  else if (lmresolve && (fptr->file_rname != NULL))
2607 3014                          object_name = fptr->file_rname;
2608 3015                  else
2609 3016                          object_name = fptr->file_lname;
2610 3017                  if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0)
2611 3018                          return (rc);
2612 3019          }
2613 3020          return (0);
2614 3021  }
2615 3022  
2616 3023  int
2617 3024  Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
2618 3025  {
2619 3026          return (i_Pmapping_iter(P, B_FALSE, func, cd));
2620 3027  }
2621 3028  
2622 3029  int
2623 3030  Pmapping_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
2624 3031  {
2625 3032          return (i_Pmapping_iter(P, B_TRUE, func, cd));
2626 3033  }
2627 3034  
2628 3035  /*
2629 3036   * Iterate over the process's mapped objects.
2630 3037   */
2631 3038  static int
2632 3039  i_Pobject_iter(struct ps_prochandle *P, boolean_t lmresolve,
2633 3040      proc_map_f *func, void *cd)
2634 3041  {
2635 3042          map_info_t *mptr;
2636 3043          file_info_t *fptr;
2637 3044          uint_t cnt;
2638 3045          int rc = 0;
2639 3046  
2640 3047          (void) Prd_agent(P); /* create file_info_t's for all the mappings */
2641 3048          Pupdate_maps(P);
2642 3049  
2643 3050          for (cnt = P->num_files, fptr = list_next(&P->file_head);
2644 3051              cnt; cnt--, fptr = list_next(fptr)) {
2645 3052                  const char *lname;
2646 3053  
2647 3054                  if (lmresolve && (fptr->file_rname != NULL))
2648 3055                          lname = fptr->file_rname;
2649 3056                  else if (fptr->file_lname != NULL)
2650 3057                          lname = fptr->file_lname;
2651 3058                  else
2652 3059                          lname = "";
2653 3060  
2654 3061                  if ((mptr = fptr->file_map) == NULL)
2655 3062                          continue;
2656 3063  
2657 3064                  if ((rc = func(cd, &mptr->map_pmap, lname)) != 0)
2658 3065                          return (rc);
2659 3066  
2660 3067                  if (!P->info_valid)
2661 3068                          Pupdate_maps(P);
2662 3069          }
2663 3070          return (0);
2664 3071  }
2665 3072  
2666 3073  int
2667 3074  Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
2668 3075  {
2669 3076          return (i_Pobject_iter(P, B_FALSE, func, cd));
  
    | 
      ↓ open down ↓ | 
    77 lines elided | 
    
      ↑ open up ↑ | 
  
2670 3077  }
2671 3078  
2672 3079  int
2673 3080  Pobject_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
2674 3081  {
2675 3082          return (i_Pobject_iter(P, B_TRUE, func, cd));
2676 3083  }
2677 3084  
2678 3085  static char *
2679 3086  i_Pobjname(struct ps_prochandle *P, boolean_t lmresolve, uintptr_t addr,
2680      -        char *buffer, size_t bufsize)
     3087 +    char *buffer, size_t bufsize)
2681 3088  {
2682 3089          map_info_t *mptr;
2683 3090          file_info_t *fptr;
2684 3091  
2685 3092          /* create all the file_info_t's for all the mappings */
2686 3093          (void) Prd_agent(P);
2687 3094  
2688 3095          if ((mptr = Paddr2mptr(P, addr)) == NULL)
2689 3096                  return (NULL);
2690 3097  
2691 3098          if (!lmresolve) {
2692 3099                  if (((fptr = mptr->map_file) == NULL) ||
2693 3100                      (fptr->file_lname == NULL))
2694 3101                          return (NULL);
2695 3102                  (void) strlcpy(buffer, fptr->file_lname, bufsize);
2696 3103                  return (buffer);
2697 3104          }
2698 3105  
2699 3106          /* Check for a cached copy of the resolved path */
2700 3107          if (Pfindmap(P, mptr, buffer, bufsize) != NULL)
2701 3108                  return (buffer);
2702 3109  
  
    | 
      ↓ open down ↓ | 
    12 lines elided | 
    
      ↑ open up ↑ | 
  
2703 3110          return (NULL);
2704 3111  }
2705 3112  
2706 3113  /*
2707 3114   * Given a virtual address, return the name of the underlying
2708 3115   * mapped object (file) as provided by the dynamic linker.
2709 3116   * Return NULL if we can't find any name information for the object.
2710 3117   */
2711 3118  char *
2712 3119  Pobjname(struct ps_prochandle *P, uintptr_t addr,
2713      -        char *buffer, size_t bufsize)
     3120 +    char *buffer, size_t bufsize)
2714 3121  {
2715 3122          return (i_Pobjname(P, B_FALSE, addr, buffer, bufsize));
2716 3123  }
2717 3124  
2718 3125  /*
2719 3126   * Given a virtual address, try to return a filesystem path to the
2720 3127   * underlying mapped object (file).  If we're in the global zone,
2721 3128   * this path could resolve to an object in another zone.  If we're
2722 3129   * unable return a valid filesystem path, we'll fall back to providing
2723 3130   * the mapped object (file) name provided by the dynamic linker in
2724 3131   * the target process (ie, the object reported by Pobjname()).
2725 3132   */
2726 3133  char *
2727 3134  Pobjname_resolved(struct ps_prochandle *P, uintptr_t addr,
2728      -        char *buffer, size_t bufsize)
     3135 +    char *buffer, size_t bufsize)
2729 3136  {
2730 3137          return (i_Pobjname(P, B_TRUE, addr, buffer, bufsize));
2731 3138  }
2732 3139  
2733 3140  /*
2734 3141   * Given a virtual address, return the link map id of the underlying mapped
2735 3142   * object (file), as provided by the dynamic linker.  Return -1 on failure.
2736 3143   */
2737 3144  int
2738 3145  Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp)
2739 3146  {
2740 3147          map_info_t *mptr;
2741 3148          file_info_t *fptr;
2742 3149  
2743 3150          /* create all the file_info_t's for all the mappings */
2744 3151          (void) Prd_agent(P);
2745 3152  
2746 3153          if ((mptr = Paddr2mptr(P, addr)) != NULL &&
2747 3154              (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) {
2748 3155                  *lmidp = fptr->file_lo->rl_lmident;
2749 3156                  return (0);
2750 3157          }
2751 3158  
2752 3159          return (-1);
2753 3160  }
2754 3161  
2755 3162  /*
2756 3163   * Given an object name and optional lmid, iterate over the object's symbols.
2757 3164   * If which == PR_SYMTAB, search the normal symbol table.
2758 3165   * If which == PR_DYNSYM, search the dynamic symbol table.
2759 3166   */
2760 3167  static int
2761 3168  Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
2762 3169      int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd)
2763 3170  {
2764 3171  #if STT_NUM != (STT_TLS + 1)
2765 3172  #error "STT_NUM has grown. update Psymbol_iter_com()"
2766 3173  #endif
2767 3174  
2768 3175          GElf_Sym sym;
2769 3176          GElf_Shdr shdr;
2770 3177          map_info_t *mptr;
2771 3178          file_info_t *fptr;
2772 3179          sym_tbl_t *symtab;
2773 3180          size_t symn;
2774 3181          const char *strs;
2775 3182          size_t strsz;
2776 3183          prsyminfo_t si;
2777 3184          int rv;
2778 3185          uint_t *map, i, count, ndx;
2779 3186  
2780 3187          if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL)
2781 3188                  return (-1);
2782 3189  
2783 3190          if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2784 3191              fptr->file_elf == NULL)                     /* not an ELF file */
2785 3192                  return (-1);
2786 3193  
2787 3194          /*
2788 3195           * Search the specified symbol table.
2789 3196           */
2790 3197          switch (which) {
2791 3198          case PR_SYMTAB:
2792 3199                  symtab = &fptr->file_symtab;
2793 3200                  si.prs_table = PR_SYMTAB;
2794 3201                  break;
2795 3202          case PR_DYNSYM:
2796 3203                  symtab = &fptr->file_dynsym;
2797 3204                  si.prs_table = PR_DYNSYM;
2798 3205                  break;
2799 3206          default:
2800 3207                  return (-1);
2801 3208          }
2802 3209  
2803 3210          si.prs_object = object_name;
2804 3211          si.prs_lmid = fptr->file_lo == NULL ?
2805 3212              LM_ID_BASE : fptr->file_lo->rl_lmident;
2806 3213  
2807 3214          symn = symtab->sym_symn;
2808 3215          strs = symtab->sym_strs;
2809 3216          strsz = symtab->sym_strsz;
2810 3217  
2811 3218          switch (order) {
2812 3219          case PRO_NATURAL:
2813 3220                  map = NULL;
2814 3221                  count = symn;
2815 3222                  break;
2816 3223          case PRO_BYNAME:
2817 3224                  map = symtab->sym_byname;
2818 3225                  count = symtab->sym_count;
2819 3226                  break;
2820 3227          case PRO_BYADDR:
2821 3228                  map = symtab->sym_byaddr;
2822 3229                  count = symtab->sym_count;
2823 3230                  break;
2824 3231          default:
2825 3232                  return (-1);
2826 3233          }
2827 3234  
2828 3235          if (symtab->sym_data_pri == NULL || strs == NULL || count == 0)
2829 3236                  return (-1);
2830 3237  
2831 3238          rv = 0;
2832 3239  
2833 3240          for (i = 0; i < count; i++) {
2834 3241                  ndx = map == NULL ? i : map[i];
2835 3242                  if (symtab_getsym(symtab, ndx, &sym) != NULL) {
2836 3243                          uint_t s_bind, s_type, type;
2837 3244  
2838 3245                          if (sym.st_name >= strsz)       /* invalid st_name */
2839 3246                                  continue;
2840 3247  
2841 3248                          s_bind = GELF_ST_BIND(sym.st_info);
2842 3249                          s_type = GELF_ST_TYPE(sym.st_info);
2843 3250  
2844 3251                          /*
2845 3252                           * In case you haven't already guessed, this relies on
2846 3253                           * the bitmask used in <libproc.h> for encoding symbol
2847 3254                           * type and binding matching the order of STB and STT
2848 3255                           * constants in <sys/elf.h>.  Changes to ELF must
2849 3256                           * maintain binary compatibility, so I think this is
2850 3257                           * reasonably fair game.
2851 3258                           */
2852 3259                          if (s_bind < STB_NUM && s_type < STT_NUM) {
2853 3260                                  type = (1 << (s_type + 8)) | (1 << s_bind);
2854 3261                                  if ((type & ~mask) != 0)
2855 3262                                          continue;
2856 3263                          } else
2857 3264                                  continue; /* Invalid type or binding */
2858 3265  
2859 3266                          if (GELF_ST_TYPE(sym.st_info) != STT_TLS)
2860 3267                                  sym.st_value += fptr->file_dyn_base;
2861 3268  
2862 3269                          si.prs_name = strs + sym.st_name;
2863 3270  
2864 3271                          /*
2865 3272                           * If symbol's type is STT_SECTION, then try to lookup
2866 3273                           * the name of the corresponding section.
2867 3274                           */
2868 3275                          if (GELF_ST_TYPE(sym.st_info) == STT_SECTION &&
2869 3276                              fptr->file_shstrs != NULL &&
2870 3277                              gelf_getshdr(elf_getscn(fptr->file_elf,
2871 3278                              sym.st_shndx), &shdr) != NULL &&
2872 3279                              shdr.sh_name != 0 &&
2873 3280                              shdr.sh_name < fptr->file_shstrsz)
2874 3281                                  si.prs_name = fptr->file_shstrs + shdr.sh_name;
2875 3282  
2876 3283                          si.prs_id = ndx;
2877 3284                          if ((rv = func(cd, &sym, si.prs_name, &si)) != 0)
2878 3285                                  break;
2879 3286                  }
2880 3287          }
2881 3288  
2882 3289          return (rv);
2883 3290  }
2884 3291  
2885 3292  int
2886 3293  Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
2887 3294      int which, int mask, proc_xsym_f *func, void *cd)
2888 3295  {
2889 3296          return (Psymbol_iter_com(P, lmid, object_name, which, mask,
2890 3297              PRO_NATURAL, func, cd));
2891 3298  }
2892 3299  
2893 3300  int
2894 3301  Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid,
2895 3302      const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2896 3303  {
2897 3304          return (Psymbol_iter_com(P, lmid, object_name, which, mask,
2898 3305              PRO_NATURAL, (proc_xsym_f *)func, cd));
2899 3306  }
2900 3307  
2901 3308  int
2902 3309  Psymbol_iter(struct ps_prochandle *P,
2903 3310      const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2904 3311  {
2905 3312          return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2906 3313              PRO_NATURAL, (proc_xsym_f *)func, cd));
2907 3314  }
2908 3315  
2909 3316  int
2910 3317  Psymbol_iter_by_addr(struct ps_prochandle *P,
2911 3318      const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2912 3319  {
2913 3320          return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2914 3321              PRO_BYADDR, (proc_xsym_f *)func, cd));
2915 3322  }
2916 3323  
2917 3324  int
2918 3325  Psymbol_iter_by_name(struct ps_prochandle *P,
2919 3326      const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2920 3327  {
2921 3328          return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2922 3329              PRO_BYNAME, (proc_xsym_f *)func, cd));
2923 3330  }
2924 3331  
2925 3332  /*
2926 3333   * Get the platform string.
2927 3334   */
2928 3335  char *
2929 3336  Pplatform(struct ps_prochandle *P, char *s, size_t n)
2930 3337  {
2931 3338          return (P->ops.pop_platform(P, s, n, P->data));
2932 3339  }
2933 3340  
2934 3341  /*
2935 3342   * Get the uname(2) information.
2936 3343   */
2937 3344  int
2938 3345  Puname(struct ps_prochandle *P, struct utsname *u)
2939 3346  {
2940 3347          return (P->ops.pop_uname(P, u, P->data));
2941 3348  }
2942 3349  
2943 3350  /*
2944 3351   * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize
2945 3352   * the symbol table heads in the new ps_prochandle.
2946 3353   */
2947 3354  void
2948 3355  Pinitsym(struct ps_prochandle *P)
2949 3356  {
2950 3357          P->num_files = 0;
2951 3358          list_link(&P->file_head, NULL);
2952 3359  }
2953 3360  
2954 3361  /*
2955 3362   * Called from Prelease() to destroy the symbol tables.
2956 3363   * Must be called by the client after an exec() in the victim process.
2957 3364   */
2958 3365  void
2959 3366  Preset_maps(struct ps_prochandle *P)
2960 3367  {
2961 3368          int i;
2962 3369  
2963 3370          if (P->rap != NULL) {
2964 3371                  rd_delete(P->rap);
2965 3372                  P->rap = NULL;
2966 3373          }
2967 3374  
2968 3375          if (P->execname != NULL) {
2969 3376                  free(P->execname);
2970 3377                  P->execname = NULL;
2971 3378          }
2972 3379  
2973 3380          if (P->auxv != NULL) {
2974 3381                  free(P->auxv);
2975 3382                  P->auxv = NULL;
2976 3383                  P->nauxv = 0;
2977 3384          }
2978 3385  
2979 3386          for (i = 0; i < P->map_count; i++)
2980 3387                  map_info_free(P, &P->mappings[i]);
2981 3388  
2982 3389          if (P->mappings != NULL) {
2983 3390                  free(P->mappings);
2984 3391                  P->mappings = NULL;
2985 3392          }
2986 3393          P->map_count = P->map_alloc = 0;
2987 3394  
2988 3395          P->info_valid = 0;
2989 3396  }
2990 3397  
2991 3398  typedef struct getenv_data {
2992 3399          char *buf;
2993 3400          size_t bufsize;
2994 3401          const char *search;
2995 3402          size_t searchlen;
2996 3403  } getenv_data_t;
2997 3404  
2998 3405  /*ARGSUSED*/
2999 3406  static int
3000 3407  getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr,
3001 3408      const char *nameval)
3002 3409  {
3003 3410          getenv_data_t *d = data;
3004 3411          size_t len;
3005 3412  
3006 3413          if (nameval == NULL)
3007 3414                  return (0);
3008 3415  
3009 3416          if (d->searchlen < strlen(nameval) &&
3010 3417              strncmp(nameval, d->search, d->searchlen) == 0 &&
3011 3418              nameval[d->searchlen] == '=') {
3012 3419                  len = MIN(strlen(nameval), d->bufsize - 1);
3013 3420                  (void) strncpy(d->buf, nameval, len);
3014 3421                  d->buf[len] = '\0';
3015 3422                  return (1);
3016 3423          }
3017 3424  
3018 3425          return (0);
3019 3426  }
3020 3427  
3021 3428  char *
3022 3429  Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen)
3023 3430  {
3024 3431          getenv_data_t d;
3025 3432  
3026 3433          d.buf = buf;
3027 3434          d.bufsize = buflen;
3028 3435          d.search = name;
3029 3436          d.searchlen = strlen(name);
3030 3437  
3031 3438          if (Penv_iter(P, getenv_func, &d) == 1) {
3032 3439                  char *equals = strchr(d.buf, '=');
3033 3440  
3034 3441                  if (equals != NULL) {
3035 3442                          (void) memmove(d.buf, equals + 1,
3036 3443                              d.buf + buflen - equals - 1);
3037 3444                          d.buf[d.buf + buflen - equals] = '\0';
3038 3445  
3039 3446                          return (buf);
3040 3447                  }
3041 3448          }
3042 3449  
3043 3450          return (NULL);
3044 3451  }
3045 3452  
3046 3453  /* number of argument or environment pointers to read all at once */
3047 3454  #define NARG    100
3048 3455  
3049 3456  int
3050 3457  Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data)
3051 3458  {
3052 3459          const psinfo_t *psp;
3053 3460          uintptr_t envpoff;
3054 3461          GElf_Sym sym;
3055 3462          int ret;
3056 3463          char *buf, *nameval;
3057 3464          size_t buflen;
3058 3465  
3059 3466          int nenv = NARG;
3060 3467          long envp[NARG];
3061 3468  
3062 3469          /*
3063 3470           * Attempt to find the "_environ" variable in the process.
3064 3471           * Failing that, use the original value provided by Ppsinfo().
3065 3472           */
3066 3473          if ((psp = Ppsinfo(P)) == NULL)
3067 3474                  return (-1);
3068 3475  
3069 3476          envpoff = psp->pr_envp; /* Default if no _environ found */
3070 3477  
3071 3478          if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) {
3072 3479                  if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3073 3480                          if (Pread(P, &envpoff, sizeof (envpoff),
3074 3481                              sym.st_value) != sizeof (envpoff))
3075 3482                                  envpoff = psp->pr_envp;
3076 3483                  } else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3077 3484                          uint32_t envpoff32;
3078 3485  
3079 3486                          if (Pread(P, &envpoff32, sizeof (envpoff32),
3080 3487                              sym.st_value) != sizeof (envpoff32))
3081 3488                                  envpoff = psp->pr_envp;
3082 3489                          else
3083 3490                                  envpoff = envpoff32;
3084 3491                  }
3085 3492          }
3086 3493  
3087 3494          buflen = 128;
3088 3495          buf = malloc(buflen);
3089 3496  
3090 3497          ret = 0;
3091 3498          for (;;) {
3092 3499                  uintptr_t envoff;
3093 3500  
3094 3501                  if (nenv == NARG) {
3095 3502                          (void) memset(envp, 0, sizeof (envp));
3096 3503                          if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3097 3504                                  if (Pread(P, envp,
3098 3505                                      sizeof (envp), envpoff) <= 0) {
3099 3506                                          ret = -1;
3100 3507                                          break;
3101 3508                                  }
3102 3509                          } else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3103 3510                                  uint32_t e32[NARG];
3104 3511                                  int i;
3105 3512  
3106 3513                                  (void) memset(e32, 0, sizeof (e32));
3107 3514                                  if (Pread(P, e32, sizeof (e32), envpoff) <= 0) {
3108 3515                                          ret = -1;
3109 3516                                          break;
3110 3517                                  }
3111 3518                                  for (i = 0; i < NARG; i++)
3112 3519                                          envp[i] = e32[i];
3113 3520                          }
3114 3521                          nenv = 0;
3115 3522                  }
3116 3523  
3117 3524                  if ((envoff = envp[nenv++]) == NULL)
3118 3525                          break;
3119 3526  
3120 3527                  /*
3121 3528                   * Attempt to read the string from the process.
3122 3529                   */
3123 3530  again:
3124 3531                  ret = Pread_string(P, buf, buflen, envoff);
3125 3532  
3126 3533                  if (ret <= 0) {
3127 3534                          nameval = NULL;
3128 3535                  } else if (ret == buflen - 1) {
3129 3536                          free(buf);
3130 3537                          /*
3131 3538                           * Bail if we have a corrupted environment
3132 3539                           */
3133 3540                          if (buflen >= ARG_MAX)
3134 3541                                  return (-1);
3135 3542                          buflen *= 2;
3136 3543                          buf = malloc(buflen);
3137 3544                          goto again;
3138 3545                  } else {
3139 3546                          nameval = buf;
3140 3547                  }
3141 3548  
3142 3549                  if ((ret = func(data, P, envoff, nameval)) != 0)
3143 3550                          break;
3144 3551  
3145 3552                  envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4;
3146 3553          }
3147 3554  
3148 3555          free(buf);
3149 3556  
3150 3557          return (ret);
3151 3558  }
  
    | 
      ↓ open down ↓ | 
    413 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX