1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 /*      Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T     */
  26 /*        All Rights Reserved   */
  27 /*
  28  * Copyright 2015 Joyent, Inc.
  29  * Copyright 2012 Nexenta Systems, Inc.  All rights reserved.
  30  */
  31 
  32 #include <sys/param.h>
  33 #include <sys/types.h>
  34 #include <sys/vmparam.h>
  35 #include <sys/systm.h>
  36 #include <sys/signal.h>
  37 #include <sys/stack.h>
  38 #include <sys/regset.h>
  39 #include <sys/privregs.h>
  40 #include <sys/frame.h>
  41 #include <sys/proc.h>
  42 #include <sys/psw.h>
  43 #include <sys/siginfo.h>
  44 #include <sys/cpuvar.h>
  45 #include <sys/asm_linkage.h>
  46 #include <sys/kmem.h>
  47 #include <sys/errno.h>
  48 #include <sys/bootconf.h>
  49 #include <sys/archsystm.h>
  50 #include <sys/debug.h>
  51 #include <sys/elf.h>
  52 #include <sys/spl.h>
  53 #include <sys/time.h>
  54 #include <sys/atomic.h>
  55 #include <sys/sysmacros.h>
  56 #include <sys/cmn_err.h>
  57 #include <sys/modctl.h>
  58 #include <sys/kobj.h>
  59 #include <sys/panic.h>
  60 #include <sys/reboot.h>
  61 #include <sys/time.h>
  62 #include <sys/fp.h>
  63 #include <sys/x86_archext.h>
  64 #include <sys/auxv.h>
  65 #include <sys/auxv_386.h>
  66 #include <sys/dtrace.h>
  67 #include <sys/brand.h>
  68 #include <sys/machbrand.h>
  69 #include <sys/cmn_err.h>
  70 
  71 extern const struct fnsave_state x87_initial;
  72 extern const struct fxsave_state sse_initial;
  73 
  74 /*
  75  * Map an fnsave-formatted save area into an fxsave-formatted save area.
  76  *
  77  * Most fields are the same width, content and semantics.  However
  78  * the tag word is compressed.
  79  */
  80 static void
  81 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx)
  82 {
  83         uint_t i, tagbits;
  84 
  85         fx->fx_fcw = fn->f_fcw;
  86         fx->fx_fsw = fn->f_fsw;
  87 
  88         /*
  89          * copy element by element (because of holes)
  90          */
  91         for (i = 0; i < 8; i++)
  92                 bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0],
  93                     sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
  94 
  95         /*
  96          * synthesize compressed tag bits
  97          */
  98         fx->fx_fctw = 0;
  99         for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2)
 100                 if ((tagbits & 3) != 3)
 101                         fx->fx_fctw |= (1 << i);
 102 
 103         fx->fx_fop = fn->f_fop;
 104 
 105 #if defined(__amd64)
 106         fx->fx_rip = (uint64_t)fn->f_eip;
 107         fx->fx_rdp = (uint64_t)fn->f_dp;
 108 #else
 109         fx->fx_eip = fn->f_eip;
 110         fx->fx_cs = fn->f_cs;
 111         fx->__fx_ign0 = 0;
 112         fx->fx_dp = fn->f_dp;
 113         fx->fx_ds = fn->f_ds;
 114         fx->__fx_ign1 = 0;
 115 #endif
 116 }
 117 
 118 /*
 119  * Map from an fxsave-format save area to an fnsave-format save area.
 120  */
 121 static void
 122 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn)
 123 {
 124         uint_t i, top, tagbits;
 125 
 126         fn->f_fcw = fx->fx_fcw;
 127         fn->__f_ign0 = 0;
 128         fn->f_fsw = fx->fx_fsw;
 129         fn->__f_ign1 = 0;
 130 
 131         top = (fx->fx_fsw & FPS_TOP) >> 11;
 132 
 133         /*
 134          * copy element by element (because of holes)
 135          */
 136         for (i = 0; i < 8; i++)
 137                 bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0],
 138                     sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
 139 
 140         /*
 141          * synthesize uncompressed tag bits
 142          */
 143         fn->f_ftw = 0;
 144         for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) {
 145                 uint_t ibit, expo;
 146                 const uint16_t *fpp;
 147                 static const uint16_t zero[5] = { 0, 0, 0, 0, 0 };
 148 
 149                 if ((tagbits & 1) == 0) {
 150                         fn->f_ftw |= 3 << (i << 1);      /* empty */
 151                         continue;
 152                 }
 153 
 154                 /*
 155                  * (tags refer to *physical* registers)
 156                  */
 157                 fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0];
 158                 ibit = fpp[3] >> 15;
 159                 expo = fpp[4] & 0x7fff;
 160 
 161                 if (ibit && expo != 0 && expo != 0x7fff)
 162                         continue;                       /* valid fp number */
 163 
 164                 if (bcmp(fpp, &zero, sizeof (zero)))
 165                         fn->f_ftw |= 2 << (i << 1);      /* NaN */
 166                 else
 167                         fn->f_ftw |= 1 << (i << 1);      /* fp zero */
 168         }
 169 
 170         fn->f_fop = fx->fx_fop;
 171 
 172         fn->__f_ign2 = 0;
 173 #if defined(__amd64)
 174         fn->f_eip = (uint32_t)fx->fx_rip;
 175         fn->f_cs = U32CS_SEL;
 176         fn->f_dp = (uint32_t)fx->fx_rdp;
 177         fn->f_ds = UDS_SEL;
 178 #else
 179         fn->f_eip = fx->fx_eip;
 180         fn->f_cs = fx->fx_cs;
 181         fn->f_dp = fx->fx_dp;
 182         fn->f_ds = fx->fx_ds;
 183 #endif
 184         fn->__f_ign3 = 0;
 185 }
 186 
 187 /*
 188  * Map from an fpregset_t into an fxsave-format save area
 189  */
 190 static void
 191 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx)
 192 {
 193 #if defined(__amd64)
 194         bcopy(fp, fx, sizeof (*fx));
 195 #else
 196         const struct _fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
 197 
 198         fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
 199         fx->fx_mxcsr = fc->mxcsr;
 200         bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
 201 #endif
 202         /*
 203          * avoid useless #gp exceptions - mask reserved bits
 204          */
 205         fx->fx_mxcsr &= sse_mxcsr_mask;
 206 }
 207 
 208 /*
 209  * Map from an fxsave-format save area into a fpregset_t
 210  */
 211 static void
 212 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp)
 213 {
 214 #if defined(__amd64)
 215         bcopy(fx, fp, sizeof (*fx));
 216 #else
 217         struct _fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
 218 
 219         fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
 220         fc->mxcsr = fx->fx_mxcsr;
 221         bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
 222 #endif
 223 }
 224 
 225 #if defined(_SYSCALL32_IMPL)
 226 static void
 227 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx)
 228 {
 229         const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
 230 
 231         fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
 232         /*
 233          * avoid useless #gp exceptions - mask reserved bits
 234          */
 235         fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr;
 236         bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
 237 }
 238 
 239 static void
 240 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp)
 241 {
 242         struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
 243 
 244         fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
 245         fc->mxcsr = fx->fx_mxcsr;
 246         bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
 247 }
 248 
 249 static void
 250 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst)
 251 {
 252         fxsave_to_fpregset32((struct fxsave_state *)src, dst);
 253         dst->fp_reg_set.fpchip_state.status =
 254             src->fp_reg_set.fpchip_state.status;
 255         dst->fp_reg_set.fpchip_state.xstatus =
 256             src->fp_reg_set.fpchip_state.xstatus;
 257 }
 258 
 259 static void
 260 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst)
 261 {
 262         fpregset32_to_fxsave(src, (struct fxsave_state *)dst);
 263         dst->fp_reg_set.fpchip_state.status =
 264             src->fp_reg_set.fpchip_state.status;
 265         dst->fp_reg_set.fpchip_state.xstatus =
 266             src->fp_reg_set.fpchip_state.xstatus;
 267 }
 268 #endif
 269 
 270 /*
 271  * Set floating-point registers from a native fpregset_t.
 272  */
 273 void
 274 setfpregs(klwp_t *lwp, fpregset_t *fp)
 275 {
 276         struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
 277 
 278         if (fpu->fpu_flags & FPU_EN) {
 279                 if (!(fpu->fpu_flags & FPU_VALID)) {
 280                         /*
 281                          * FPU context is still active, release the
 282                          * ownership.
 283                          */
 284                         fp_free(fpu, 0);
 285                 }
 286         }
 287         /*
 288          * Else: if we are trying to change the FPU state of a thread which
 289          * hasn't yet initialized floating point, store the state in
 290          * the pcb and indicate that the state is valid.  When the
 291          * thread enables floating point, it will use this state instead
 292          * of the default state.
 293          */
 294 
 295         switch (fp_save_mech) {
 296 #if defined(__i386)
 297         case FP_FNSAVE:
 298                 bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn,
 299                     sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
 300                 break;
 301 #endif
 302         case FP_FXSAVE:
 303                 fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx);
 304                 fpu->fpu_regs.kfpu_xstatus =
 305                     fp->fp_reg_set.fpchip_state.xstatus;
 306                 break;
 307 
 308         case FP_XSAVE:
 309                 fpregset_to_fxsave(fp,
 310                     &fpu->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave);
 311                 fpu->fpu_regs.kfpu_xstatus =
 312                     fp->fp_reg_set.fpchip_state.xstatus;
 313                 fpu->fpu_regs.kfpu_u.kfpu_xs.xs_xstate_bv |=
 314                     (XFEATURE_LEGACY_FP | XFEATURE_SSE);
 315                 break;
 316         default:
 317                 panic("Invalid fp_save_mech");
 318                 /*NOTREACHED*/
 319         }
 320 
 321         fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status;
 322         fpu->fpu_flags |= FPU_VALID;
 323 }
 324 
 325 /*
 326  * Get floating-point registers into a native fpregset_t.
 327  */
 328 void
 329 getfpregs(klwp_t *lwp, fpregset_t *fp)
 330 {
 331         struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
 332 
 333         kpreempt_disable();
 334         if (fpu->fpu_flags & FPU_EN) {
 335                 /*
 336                  * If we have FPU hw and the thread's pcb doesn't have
 337                  * a valid FPU state then get the state from the hw.
 338                  */
 339                 if (fpu_exists && ttolwp(curthread) == lwp &&
 340                     !(fpu->fpu_flags & FPU_VALID))
 341                         fp_save(fpu); /* get the current FPU state */
 342         }
 343 
 344         /*
 345          * There are 3 possible cases we have to be aware of here:
 346          *
 347          * 1. FPU is enabled.  FPU state is stored in the current LWP.
 348          *
 349          * 2. FPU is not enabled, and there have been no intervening /proc
 350          *    modifications.  Return initial FPU state.
 351          *
 352          * 3. FPU is not enabled, but a /proc consumer has modified FPU state.
 353          *    FPU state is stored in the current LWP.
 354          */
 355         if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) {
 356                 /*
 357                  * Cases 1 and 3.
 358                  */
 359                 switch (fp_save_mech) {
 360 #if defined(__i386)
 361                 case FP_FNSAVE:
 362                         bcopy(&fpu->fpu_regs.kfpu_u.kfpu_fn, fp,
 363                             sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
 364                         break;
 365 #endif
 366                 case FP_FXSAVE:
 367                         fxsave_to_fpregset(&fpu->fpu_regs.kfpu_u.kfpu_fx, fp);
 368                         fp->fp_reg_set.fpchip_state.xstatus =
 369                             fpu->fpu_regs.kfpu_xstatus;
 370                         break;
 371                 case FP_XSAVE:
 372                         fxsave_to_fpregset(
 373                             &fpu->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave, fp);
 374                         fp->fp_reg_set.fpchip_state.xstatus =
 375                             fpu->fpu_regs.kfpu_xstatus;
 376                         break;
 377                 default:
 378                         panic("Invalid fp_save_mech");
 379                         /*NOTREACHED*/
 380                 }
 381                 fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
 382         } else {
 383                 /*
 384                  * Case 2.
 385                  */
 386                 switch (fp_save_mech) {
 387 #if defined(__i386)
 388                 case FP_FNSAVE:
 389                         bcopy(&x87_initial, fp, sizeof (x87_initial));
 390                         break;
 391 #endif
 392                 case FP_FXSAVE:
 393                 case FP_XSAVE:
 394                         /*
 395                          * For now, we don't have any AVX specific field in ABI.
 396                          * If we add any in the future, we need to initial them
 397                          * as well.
 398                          */
 399                         fxsave_to_fpregset(&sse_initial, fp);
 400                         fp->fp_reg_set.fpchip_state.xstatus =
 401                             fpu->fpu_regs.kfpu_xstatus;
 402                         break;
 403                 default:
 404                         panic("Invalid fp_save_mech");
 405                         /*NOTREACHED*/
 406                 }
 407                 fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
 408         }
 409         kpreempt_enable();
 410 }
 411 
 412 #if defined(_SYSCALL32_IMPL)
 413 
 414 /*
 415  * Set floating-point registers from an fpregset32_t.
 416  */
 417 void
 418 setfpregs32(klwp_t *lwp, fpregset32_t *fp)
 419 {
 420         fpregset_t fpregs;
 421 
 422         fpregset_32ton(fp, &fpregs);
 423         setfpregs(lwp, &fpregs);
 424 }
 425 
 426 /*
 427  * Get floating-point registers into an fpregset32_t.
 428  */
 429 void
 430 getfpregs32(klwp_t *lwp, fpregset32_t *fp)
 431 {
 432         fpregset_t fpregs;
 433 
 434         getfpregs(lwp, &fpregs);
 435         fpregset_nto32(&fpregs, fp);
 436 }
 437 
 438 #endif  /* _SYSCALL32_IMPL */
 439 
 440 /*
 441  * Return the general registers
 442  */
 443 void
 444 getgregs(klwp_t *lwp, gregset_t grp)
 445 {
 446         struct regs *rp = lwptoregs(lwp);
 447 #if defined(__amd64)
 448         struct pcb *pcb = &lwp->lwp_pcb;
 449         int thisthread = lwptot(lwp) == curthread;
 450 
 451         grp[REG_RDI] = rp->r_rdi;
 452         grp[REG_RSI] = rp->r_rsi;
 453         grp[REG_RDX] = rp->r_rdx;
 454         grp[REG_RCX] = rp->r_rcx;
 455         grp[REG_R8] = rp->r_r8;
 456         grp[REG_R9] = rp->r_r9;
 457         grp[REG_RAX] = rp->r_rax;
 458         grp[REG_RBX] = rp->r_rbx;
 459         grp[REG_RBP] = rp->r_rbp;
 460         grp[REG_R10] = rp->r_r10;
 461         grp[REG_R11] = rp->r_r11;
 462         grp[REG_R12] = rp->r_r12;
 463         grp[REG_R13] = rp->r_r13;
 464         grp[REG_R14] = rp->r_r14;
 465         grp[REG_R15] = rp->r_r15;
 466         grp[REG_FSBASE] = pcb->pcb_fsbase;
 467         grp[REG_GSBASE] = pcb->pcb_gsbase;
 468         if (thisthread)
 469                 kpreempt_disable();
 470         if (pcb->pcb_rupdate == 1) {
 471                 grp[REG_DS] = pcb->pcb_ds;
 472                 grp[REG_ES] = pcb->pcb_es;
 473                 grp[REG_FS] = pcb->pcb_fs;
 474                 grp[REG_GS] = pcb->pcb_gs;
 475         } else {
 476                 grp[REG_DS] = rp->r_ds;
 477                 grp[REG_ES] = rp->r_es;
 478                 grp[REG_FS] = rp->r_fs;
 479                 grp[REG_GS] = rp->r_gs;
 480         }
 481         if (thisthread)
 482                 kpreempt_enable();
 483         grp[REG_TRAPNO] = rp->r_trapno;
 484         grp[REG_ERR] = rp->r_err;
 485         grp[REG_RIP] = rp->r_rip;
 486         grp[REG_CS] = rp->r_cs;
 487         grp[REG_SS] = rp->r_ss;
 488         grp[REG_RFL] = rp->r_rfl;
 489         grp[REG_RSP] = rp->r_rsp;
 490 #else
 491         bcopy(&rp->r_gs, grp, sizeof (gregset_t));
 492 #endif
 493 }
 494 
 495 #if defined(_SYSCALL32_IMPL)
 496 
 497 void
 498 getgregs32(klwp_t *lwp, gregset32_t grp)
 499 {
 500         struct regs *rp = lwptoregs(lwp);
 501         struct pcb *pcb = &lwp->lwp_pcb;
 502         int thisthread = lwptot(lwp) == curthread;
 503 
 504         if (thisthread)
 505                 kpreempt_disable();
 506         if (pcb->pcb_rupdate == 1) {
 507                 grp[GS] = (uint16_t)pcb->pcb_gs;
 508                 grp[FS] = (uint16_t)pcb->pcb_fs;
 509                 grp[DS] = (uint16_t)pcb->pcb_ds;
 510                 grp[ES] = (uint16_t)pcb->pcb_es;
 511         } else {
 512                 grp[GS] = (uint16_t)rp->r_gs;
 513                 grp[FS] = (uint16_t)rp->r_fs;
 514                 grp[DS] = (uint16_t)rp->r_ds;
 515                 grp[ES] = (uint16_t)rp->r_es;
 516         }
 517         if (thisthread)
 518                 kpreempt_enable();
 519         grp[EDI] = (greg32_t)rp->r_rdi;
 520         grp[ESI] = (greg32_t)rp->r_rsi;
 521         grp[EBP] = (greg32_t)rp->r_rbp;
 522         grp[ESP] = 0;
 523         grp[EBX] = (greg32_t)rp->r_rbx;
 524         grp[EDX] = (greg32_t)rp->r_rdx;
 525         grp[ECX] = (greg32_t)rp->r_rcx;
 526         grp[EAX] = (greg32_t)rp->r_rax;
 527         grp[TRAPNO] = (greg32_t)rp->r_trapno;
 528         grp[ERR] = (greg32_t)rp->r_err;
 529         grp[EIP] = (greg32_t)rp->r_rip;
 530         grp[CS] = (uint16_t)rp->r_cs;
 531         grp[EFL] = (greg32_t)rp->r_rfl;
 532         grp[UESP] = (greg32_t)rp->r_rsp;
 533         grp[SS] = (uint16_t)rp->r_ss;
 534 }
 535 
 536 void
 537 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst)
 538 {
 539         mcontext_t *dmc = &dst->uc_mcontext;
 540         const mcontext32_t *smc = &src->uc_mcontext;
 541 
 542         bzero(dst, sizeof (*dst));
 543         dst->uc_flags = src->uc_flags;
 544         dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link;
 545 
 546         bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask));
 547 
 548         dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp;
 549         dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size;
 550         dst->uc_stack.ss_flags = src->uc_stack.ss_flags;
 551 
 552         dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS];
 553         dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS];
 554         dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES];
 555         dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS];
 556         dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI];
 557         dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI];
 558         dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP];
 559         dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX];
 560         dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX];
 561         dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX];
 562         dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX];
 563         dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO];
 564         dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR];
 565         dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP];
 566         dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS];
 567         dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL];
 568         dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP];
 569         dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS];
 570 
 571         /*
 572          * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set
 573          * otherwise there is no guarantee that anything in fpregs is valid.
 574          */
 575         if (src->uc_flags & UC_FPU)
 576                 fpregset_32ton(&src->uc_mcontext.fpregs,
 577                     &dst->uc_mcontext.fpregs);
 578 
 579         /*
 580          * Copy the brand-private data:
 581          */
 582         dst->uc_brand_data[0] = (void *)(uintptr_t)src->uc_brand_data[0];
 583         dst->uc_brand_data[1] = (void *)(uintptr_t)src->uc_brand_data[1];
 584         dst->uc_brand_data[2] = (void *)(uintptr_t)src->uc_brand_data[2];
 585 }
 586 
 587 #endif  /* _SYSCALL32_IMPL */
 588 
 589 /*
 590  * Return the user-level PC.
 591  * If in a system call, return the address of the syscall trap.
 592  */
 593 greg_t
 594 getuserpc()
 595 {
 596         greg_t upc = lwptoregs(ttolwp(curthread))->r_pc;
 597         uint32_t insn;
 598 
 599         if (curthread->t_sysnum == 0)
 600                 return (upc);
 601 
 602         /*
 603          * We might've gotten here from sysenter (0xf 0x34),
 604          * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0).
 605          *
 606          * Go peek at the binary to figure it out..
 607          */
 608         if (fuword32((void *)(upc - 2), &insn) != -1 &&
 609             (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f)
 610                 return (upc - 2);
 611         return (upc - 7);
 612 }
 613 
 614 /*
 615  * Protect segment registers from non-user privilege levels and GDT selectors
 616  * other than USER_CS, USER_DS and lwp FS and GS values.  If the segment
 617  * selector is non-null and not USER_CS/USER_DS, we make sure that the
 618  * TI bit is set to point into the LDT and that the RPL is set to 3.
 619  *
 620  * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we
 621  * also explicitly zero the top 16 bits since they may be coming from the
 622  * user's address space via setcontext(2) or /proc.
 623  *
 624  * Note about null selector. When running on the hypervisor if we allow a
 625  * process to set its %cs to null selector with RPL of 0 the hypervisor will
 626  * crash the domain. If running on bare metal we would get a #gp fault and
 627  * be able to kill the process and continue on. Therefore we make sure to
 628  * force RPL to SEL_UPL even for null selector when setting %cs.
 629  */
 630 
 631 #if defined(IS_CS) || defined(IS_NOT_CS)
 632 #error  "IS_CS and IS_NOT_CS already defined"
 633 #endif
 634 
 635 #define IS_CS           1
 636 #define IS_NOT_CS       0
 637 
 638 /*ARGSUSED*/
 639 greg_t
 640 fix_segreg(greg_t sr, int iscs, model_t datamodel)
 641 {
 642         kthread_t *t = curthread;
 643 
 644         switch (sr &= 0xffff) {
 645 
 646         case 0:
 647                 if (iscs == IS_CS)
 648                         return (0 | SEL_UPL);
 649                 else
 650                         return (0);
 651 
 652 #if defined(__amd64)
 653         /*
 654          * If lwp attempts to switch data model then force their
 655          * code selector to be null selector.
 656          */
 657         case U32CS_SEL:
 658                 if (datamodel == DATAMODEL_NATIVE)
 659                         return (0 | SEL_UPL);
 660                 else
 661                         return (sr);
 662 
 663         case UCS_SEL:
 664                 if (datamodel == DATAMODEL_ILP32)
 665                         return (0 | SEL_UPL);
 666 #elif defined(__i386)
 667         case UCS_SEL:
 668 #endif
 669         /*FALLTHROUGH*/
 670         case UDS_SEL:
 671         case LWPFS_SEL:
 672         case LWPGS_SEL:
 673         case SEL_UPL:
 674                 return (sr);
 675         default:
 676                 break;
 677         }
 678 
 679         /*
 680          * Allow this process's brand to do any necessary segment register
 681          * manipulation.
 682          */
 683         if (PROC_IS_BRANDED(t->t_procp) && BRMOP(t->t_procp)->b_fixsegreg) {
 684                 greg_t bsr = BRMOP(t->t_procp)->b_fixsegreg(sr, datamodel);
 685 
 686                 if (bsr == 0 && iscs == IS_CS)
 687                         return (0 | SEL_UPL);
 688                 else
 689                         return (bsr);
 690         }
 691 
 692         /*
 693          * Force it into the LDT in ring 3 for 32-bit processes, which by
 694          * default do not have an LDT, so that any attempt to use an invalid
 695          * selector will reference the (non-existant) LDT, and cause a #gp
 696          * fault for the process.
 697          *
 698          * 64-bit processes get the null gdt selector since they
 699          * are not allowed to have a private LDT.
 700          */
 701 #if defined(__amd64)
 702         if (datamodel == DATAMODEL_ILP32) {
 703                 return (sr | SEL_TI_LDT | SEL_UPL);
 704         } else {
 705                 if (iscs == IS_CS)
 706                         return (0 | SEL_UPL);
 707                 else
 708                         return (0);
 709         }
 710 
 711 #elif defined(__i386)
 712         return (sr | SEL_TI_LDT | SEL_UPL);
 713 #endif
 714 }
 715 
 716 /*
 717  * Set general registers.
 718  */
 719 void
 720 setgregs(klwp_t *lwp, gregset_t grp)
 721 {
 722         struct regs *rp = lwptoregs(lwp);
 723         model_t datamodel = lwp_getdatamodel(lwp);
 724 
 725 #if defined(__amd64)
 726         struct pcb *pcb = &lwp->lwp_pcb;
 727         int thisthread = lwptot(lwp) == curthread;
 728 
 729         if (datamodel == DATAMODEL_NATIVE) {
 730 
 731                 if (thisthread)
 732                         (void) save_syscall_args();     /* copy the args */
 733 
 734                 rp->r_rdi = grp[REG_RDI];
 735                 rp->r_rsi = grp[REG_RSI];
 736                 rp->r_rdx = grp[REG_RDX];
 737                 rp->r_rcx = grp[REG_RCX];
 738                 rp->r_r8 = grp[REG_R8];
 739                 rp->r_r9 = grp[REG_R9];
 740                 rp->r_rax = grp[REG_RAX];
 741                 rp->r_rbx = grp[REG_RBX];
 742                 rp->r_rbp = grp[REG_RBP];
 743                 rp->r_r10 = grp[REG_R10];
 744                 rp->r_r11 = grp[REG_R11];
 745                 rp->r_r12 = grp[REG_R12];
 746                 rp->r_r13 = grp[REG_R13];
 747                 rp->r_r14 = grp[REG_R14];
 748                 rp->r_r15 = grp[REG_R15];
 749                 rp->r_trapno = grp[REG_TRAPNO];
 750                 rp->r_err = grp[REG_ERR];
 751                 rp->r_rip = grp[REG_RIP];
 752                 /*
 753                  * Setting %cs or %ss to anything else is quietly but
 754                  * quite definitely forbidden!
 755                  */
 756                 rp->r_cs = UCS_SEL;
 757                 rp->r_ss = UDS_SEL;
 758                 rp->r_rsp = grp[REG_RSP];
 759 
 760                 if (thisthread)
 761                         kpreempt_disable();
 762 
 763                 pcb->pcb_ds = UDS_SEL;
 764                 pcb->pcb_es = UDS_SEL;
 765 
 766                 /*
 767                  * 64-bit processes -are- allowed to set their fsbase/gsbase
 768                  * values directly, but only if they're using the segment
 769                  * selectors that allow that semantic.
 770                  *
 771                  * (32-bit processes must use lwp_set_private().)
 772                  */
 773                 pcb->pcb_fsbase = grp[REG_FSBASE];
 774                 pcb->pcb_gsbase = grp[REG_GSBASE];
 775                 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
 776                 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
 777 
 778                 /*
 779                  * Ensure that we go out via update_sregs
 780                  */
 781                 pcb->pcb_rupdate = 1;
 782                 lwptot(lwp)->t_post_sys = 1;
 783                 if (thisthread)
 784                         kpreempt_enable();
 785 #if defined(_SYSCALL32_IMPL)
 786         } else {
 787                 rp->r_rdi = (uint32_t)grp[REG_RDI];
 788                 rp->r_rsi = (uint32_t)grp[REG_RSI];
 789                 rp->r_rdx = (uint32_t)grp[REG_RDX];
 790                 rp->r_rcx = (uint32_t)grp[REG_RCX];
 791                 rp->r_rax = (uint32_t)grp[REG_RAX];
 792                 rp->r_rbx = (uint32_t)grp[REG_RBX];
 793                 rp->r_rbp = (uint32_t)grp[REG_RBP];
 794                 rp->r_trapno = (uint32_t)grp[REG_TRAPNO];
 795                 rp->r_err = (uint32_t)grp[REG_ERR];
 796                 rp->r_rip = (uint32_t)grp[REG_RIP];
 797 
 798                 rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel);
 799                 rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
 800 
 801                 rp->r_rsp = (uint32_t)grp[REG_RSP];
 802 
 803                 if (thisthread)
 804                         kpreempt_disable();
 805 
 806                 pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
 807                 pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel);
 808 
 809                 /*
 810                  * (See fsbase/gsbase commentary above)
 811                  */
 812                 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
 813                 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
 814 
 815                 /*
 816                  * Ensure that we go out via update_sregs
 817                  */
 818                 pcb->pcb_rupdate = 1;
 819                 lwptot(lwp)->t_post_sys = 1;
 820                 if (thisthread)
 821                         kpreempt_enable();
 822 #endif
 823         }
 824 
 825         /*
 826          * Only certain bits of the flags register can be modified.
 827          */
 828         rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) |
 829             (grp[REG_RFL] & PSL_USERMASK);
 830 
 831 #elif defined(__i386)
 832 
 833         /*
 834          * Only certain bits of the flags register can be modified.
 835          */
 836         grp[EFL] = (rp->r_efl & ~PSL_USERMASK) | (grp[EFL] & PSL_USERMASK);
 837 
 838         /*
 839          * Copy saved registers from user stack.
 840          */
 841         bcopy(grp, &rp->r_gs, sizeof (gregset_t));
 842 
 843         rp->r_cs = fix_segreg(rp->r_cs, IS_CS, datamodel);
 844         rp->r_ss = fix_segreg(rp->r_ss, IS_NOT_CS, datamodel);
 845         rp->r_ds = fix_segreg(rp->r_ds, IS_NOT_CS, datamodel);
 846         rp->r_es = fix_segreg(rp->r_es, IS_NOT_CS, datamodel);
 847         rp->r_fs = fix_segreg(rp->r_fs, IS_NOT_CS, datamodel);
 848         rp->r_gs = fix_segreg(rp->r_gs, IS_NOT_CS, datamodel);
 849 
 850 #endif  /* __i386 */
 851 }
 852 
 853 /*
 854  * Determine whether eip is likely to have an interrupt frame
 855  * on the stack.  We do this by comparing the address to the
 856  * range of addresses spanned by several well-known routines.
 857  */
 858 extern void _interrupt();
 859 extern void _allsyscalls();
 860 extern void _cmntrap();
 861 extern void fakesoftint();
 862 
 863 extern size_t _interrupt_size;
 864 extern size_t _allsyscalls_size;
 865 extern size_t _cmntrap_size;
 866 extern size_t _fakesoftint_size;
 867 
 868 /*
 869  * Get a pc-only stacktrace.  Used for kmem_alloc() buffer ownership tracking.
 870  * Returns MIN(current stack depth, pcstack_limit).
 871  */
 872 int
 873 getpcstack(pc_t *pcstack, int pcstack_limit)
 874 {
 875         struct frame *fp = (struct frame *)getfp();
 876         struct frame *nextfp, *minfp, *stacktop;
 877         int depth = 0;
 878         int on_intr;
 879         uintptr_t pc;
 880 
 881         if ((on_intr = CPU_ON_INTR(CPU)) != 0)
 882                 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
 883         else
 884                 stacktop = (struct frame *)curthread->t_stk;
 885         minfp = fp;
 886 
 887         pc = ((struct regs *)fp)->r_pc;
 888 
 889         while (depth < pcstack_limit) {
 890                 nextfp = (struct frame *)fp->fr_savfp;
 891                 pc = fp->fr_savpc;
 892                 if (nextfp <= minfp || nextfp >= stacktop) {
 893                         if (on_intr) {
 894                                 /*
 895                                  * Hop from interrupt stack to thread stack.
 896                                  */
 897                                 stacktop = (struct frame *)curthread->t_stk;
 898                                 minfp = (struct frame *)curthread->t_stkbase;
 899                                 on_intr = 0;
 900                                 continue;
 901                         }
 902                         break;
 903                 }
 904                 pcstack[depth++] = (pc_t)pc;
 905                 fp = nextfp;
 906                 minfp = fp;
 907         }
 908         return (depth);
 909 }
 910 
 911 /*
 912  * The following ELF header fields are defined as processor-specific
 913  * in the V8 ABI:
 914  *
 915  *      e_ident[EI_DATA]        encoding of the processor-specific
 916  *                              data in the object file
 917  *      e_machine               processor identification
 918  *      e_flags                 processor-specific flags associated
 919  *                              with the file
 920  */
 921 
 922 /*
 923  * The value of at_flags reflects a platform's cpu module support.
 924  * at_flags is used to check for allowing a binary to execute and
 925  * is passed as the value of the AT_FLAGS auxiliary vector.
 926  */
 927 int at_flags = 0;
 928 
 929 /*
 930  * Check the processor-specific fields of an ELF header.
 931  *
 932  * returns 1 if the fields are valid, 0 otherwise
 933  */
 934 /*ARGSUSED2*/
 935 int
 936 elfheadcheck(
 937         unsigned char e_data,
 938         Elf32_Half e_machine,
 939         Elf32_Word e_flags)
 940 {
 941         if (e_data != ELFDATA2LSB)
 942                 return (0);
 943 #if defined(__amd64)
 944         if (e_machine == EM_AMD64)
 945                 return (1);
 946 #endif
 947         return (e_machine == EM_386);
 948 }
 949 
 950 uint_t auxv_hwcap_include = 0;  /* patch to enable unrecognized features */
 951 uint_t auxv_hwcap_include_2 = 0;        /* second word */
 952 uint_t auxv_hwcap_exclude = 0;  /* patch for broken cpus, debugging */
 953 uint_t auxv_hwcap_exclude_2 = 0;        /* second word */
 954 #if defined(_SYSCALL32_IMPL)
 955 uint_t auxv_hwcap32_include = 0;        /* ditto for 32-bit apps */
 956 uint_t auxv_hwcap32_include_2 = 0;      /* ditto for 32-bit apps */
 957 uint_t auxv_hwcap32_exclude = 0;        /* ditto for 32-bit apps */
 958 uint_t auxv_hwcap32_exclude_2 = 0;      /* ditto for 32-bit apps */
 959 #endif
 960 
 961 /*
 962  * Gather information about the processor and place it into auxv_hwcap
 963  * so that it can be exported to the linker via the aux vector.
 964  *
 965  * We use this seemingly complicated mechanism so that we can ensure
 966  * that /etc/system can be used to override what the system can or
 967  * cannot discover for itself.
 968  */
 969 void
 970 bind_hwcap(void)
 971 {
 972         uint_t cpu_hwcap_flags[2];
 973         cpuid_pass4(NULL, cpu_hwcap_flags);
 974 
 975         auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags[0]) &
 976             ~auxv_hwcap_exclude;
 977         auxv_hwcap_2 = (auxv_hwcap_include_2 | cpu_hwcap_flags[1]) &
 978             ~auxv_hwcap_exclude_2;
 979 
 980 #if defined(__amd64)
 981         /*
 982          * On AMD processors, sysenter just doesn't work at all
 983          * when the kernel is in long mode.  On IA-32e processors
 984          * it does, but there's no real point in all the alternate
 985          * mechanism when syscall works on both.
 986          *
 987          * Besides, the kernel's sysenter handler is expecting a
 988          * 32-bit lwp ...
 989          */
 990         auxv_hwcap &= ~AV_386_SEP;
 991 #else
 992         /*
 993          * 32-bit processes can -always- use the lahf/sahf instructions
 994          */
 995         auxv_hwcap |= AV_386_AHF;
 996 #endif
 997 
 998         if (auxv_hwcap_include || auxv_hwcap_exclude || auxv_hwcap_include_2 ||
 999             auxv_hwcap_exclude_2) {
1000                 /*
1001                  * The below assignment is regrettably required to get lint
1002                  * to accept the validity of our format string.  The format
1003                  * string is in fact valid, but whatever intelligence in lint
1004                  * understands the cmn_err()-specific %b appears to have an
1005                  * off-by-one error:  it (mistakenly) complains about bit
1006                  * number 32 (even though this is explicitly permitted).
1007                  * Normally, one would will away such warnings with a "LINTED"
1008                  * directive, but for reasons unclear and unknown, lint
1009                  * refuses to be assuaged in this case.  Fortunately, lint
1010                  * doesn't pretend to have solved the Halting Problem --
1011                  * and as soon as the format string is programmatic, it
1012                  * knows enough to shut up.
1013                  */
1014                 char *fmt = "?user ABI extensions: %b\n";
1015                 cmn_err(CE_CONT, fmt, auxv_hwcap, FMT_AV_386);
1016                 fmt = "?user ABI extensions (word 2): %b\n";
1017                 cmn_err(CE_CONT, fmt, auxv_hwcap_2, FMT_AV_386_2);
1018         }
1019 
1020 #if defined(_SYSCALL32_IMPL)
1021         auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags[0]) &
1022             ~auxv_hwcap32_exclude;
1023         auxv_hwcap32_2 = (auxv_hwcap32_include_2 | cpu_hwcap_flags[1]) &
1024             ~auxv_hwcap32_exclude_2;
1025 
1026 #if defined(__amd64)
1027         /*
1028          * If this is an amd64 architecture machine from Intel, then
1029          * syscall -doesn't- work in compatibility mode, only sysenter does.
1030          *
1031          * Sigh.
1032          */
1033         if (!cpuid_syscall32_insn(NULL))
1034                 auxv_hwcap32 &= ~AV_386_AMD_SYSC;
1035 
1036         /*
1037          * 32-bit processes can -always- use the lahf/sahf instructions
1038          */
1039         auxv_hwcap32 |= AV_386_AHF;
1040 #endif
1041 
1042         if (auxv_hwcap32_include || auxv_hwcap32_exclude ||
1043             auxv_hwcap32_include_2 || auxv_hwcap32_exclude_2) {
1044                 /*
1045                  * See the block comment in the cmn_err() of auxv_hwcap, above.
1046                  */
1047                 char *fmt = "?32-bit user ABI extensions: %b\n";
1048                 cmn_err(CE_CONT, fmt, auxv_hwcap32, FMT_AV_386);
1049                 fmt = "?32-bit user ABI extensions (word 2): %b\n";
1050                 cmn_err(CE_CONT, fmt, auxv_hwcap32_2, FMT_AV_386_2);
1051         }
1052 #endif
1053 }
1054 
1055 /*
1056  *      sync_icache() - this is called
1057  *      in proc/fs/prusrio.c. x86 has an unified cache and therefore
1058  *      this is a nop.
1059  */
1060 /* ARGSUSED */
1061 void
1062 sync_icache(caddr_t addr, uint_t len)
1063 {
1064         /* Do nothing for now */
1065 }
1066 
1067 /*ARGSUSED*/
1068 void
1069 sync_data_memory(caddr_t va, size_t len)
1070 {
1071         /* Not implemented for this platform */
1072 }
1073 
1074 int
1075 __ipltospl(int ipl)
1076 {
1077         return (ipltospl(ipl));
1078 }
1079 
1080 /*
1081  * The panic code invokes panic_saveregs() to record the contents of a
1082  * regs structure into the specified panic_data structure for debuggers.
1083  */
1084 void
1085 panic_saveregs(panic_data_t *pdp, struct regs *rp)
1086 {
1087         panic_nv_t *pnv = PANICNVGET(pdp);
1088 
1089         struct cregs    creg;
1090 
1091         getcregs(&creg);
1092 
1093 #if defined(__amd64)
1094         PANICNVADD(pnv, "rdi", rp->r_rdi);
1095         PANICNVADD(pnv, "rsi", rp->r_rsi);
1096         PANICNVADD(pnv, "rdx", rp->r_rdx);
1097         PANICNVADD(pnv, "rcx", rp->r_rcx);
1098         PANICNVADD(pnv, "r8", rp->r_r8);
1099         PANICNVADD(pnv, "r9", rp->r_r9);
1100         PANICNVADD(pnv, "rax", rp->r_rax);
1101         PANICNVADD(pnv, "rbx", rp->r_rbx);
1102         PANICNVADD(pnv, "rbp", rp->r_rbp);
1103         PANICNVADD(pnv, "r10", rp->r_r10);
1104         PANICNVADD(pnv, "r11", rp->r_r11);
1105         PANICNVADD(pnv, "r12", rp->r_r12);
1106         PANICNVADD(pnv, "r13", rp->r_r13);
1107         PANICNVADD(pnv, "r14", rp->r_r14);
1108         PANICNVADD(pnv, "r15", rp->r_r15);
1109         PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE));
1110         PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE));
1111         PANICNVADD(pnv, "ds", rp->r_ds);
1112         PANICNVADD(pnv, "es", rp->r_es);
1113         PANICNVADD(pnv, "fs", rp->r_fs);
1114         PANICNVADD(pnv, "gs", rp->r_gs);
1115         PANICNVADD(pnv, "trapno", rp->r_trapno);
1116         PANICNVADD(pnv, "err", rp->r_err);
1117         PANICNVADD(pnv, "rip", rp->r_rip);
1118         PANICNVADD(pnv, "cs", rp->r_cs);
1119         PANICNVADD(pnv, "rflags", rp->r_rfl);
1120         PANICNVADD(pnv, "rsp", rp->r_rsp);
1121         PANICNVADD(pnv, "ss", rp->r_ss);
1122         PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3]));
1123         PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0]));
1124         PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3]));
1125         PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0]));
1126 #elif defined(__i386)
1127         PANICNVADD(pnv, "gs", (uint32_t)rp->r_gs);
1128         PANICNVADD(pnv, "fs", (uint32_t)rp->r_fs);
1129         PANICNVADD(pnv, "es", (uint32_t)rp->r_es);
1130         PANICNVADD(pnv, "ds", (uint32_t)rp->r_ds);
1131         PANICNVADD(pnv, "edi", (uint32_t)rp->r_edi);
1132         PANICNVADD(pnv, "esi", (uint32_t)rp->r_esi);
1133         PANICNVADD(pnv, "ebp", (uint32_t)rp->r_ebp);
1134         PANICNVADD(pnv, "esp", (uint32_t)rp->r_esp);
1135         PANICNVADD(pnv, "ebx", (uint32_t)rp->r_ebx);
1136         PANICNVADD(pnv, "edx", (uint32_t)rp->r_edx);
1137         PANICNVADD(pnv, "ecx", (uint32_t)rp->r_ecx);
1138         PANICNVADD(pnv, "eax", (uint32_t)rp->r_eax);
1139         PANICNVADD(pnv, "trapno", (uint32_t)rp->r_trapno);
1140         PANICNVADD(pnv, "err", (uint32_t)rp->r_err);
1141         PANICNVADD(pnv, "eip", (uint32_t)rp->r_eip);
1142         PANICNVADD(pnv, "cs", (uint32_t)rp->r_cs);
1143         PANICNVADD(pnv, "eflags", (uint32_t)rp->r_efl);
1144         PANICNVADD(pnv, "uesp", (uint32_t)rp->r_uesp);
1145         PANICNVADD(pnv, "ss", (uint32_t)rp->r_ss);
1146         PANICNVADD(pnv, "gdt", creg.cr_gdt);
1147         PANICNVADD(pnv, "idt", creg.cr_idt);
1148 #endif  /* __i386 */
1149 
1150         PANICNVADD(pnv, "ldt", creg.cr_ldt);
1151         PANICNVADD(pnv, "task", creg.cr_task);
1152         PANICNVADD(pnv, "cr0", creg.cr_cr0);
1153         PANICNVADD(pnv, "cr2", creg.cr_cr2);
1154         PANICNVADD(pnv, "cr3", creg.cr_cr3);
1155         if (creg.cr_cr4)
1156                 PANICNVADD(pnv, "cr4", creg.cr_cr4);
1157 
1158         PANICNVSET(pdp, pnv);
1159 }
1160 
1161 #define TR_ARG_MAX 6    /* Max args to print, same as SPARC */
1162 
1163 #if !defined(__amd64)
1164 
1165 /*
1166  * Given a return address (%eip), determine the likely number of arguments
1167  * that were pushed on the stack prior to its execution.  We do this by
1168  * expecting that a typical call sequence consists of pushing arguments on
1169  * the stack, executing a call instruction, and then performing an add
1170  * on %esp to restore it to the value prior to pushing the arguments for
1171  * the call.  We attempt to detect such an add, and divide the addend
1172  * by the size of a word to determine the number of pushed arguments.
1173  *
1174  * If we do not find such an add, we punt and return TR_ARG_MAX. It is not
1175  * possible to reliably determine if a function took no arguments (i.e. was
1176  * void) because assembler routines do not reliably perform an add on %esp
1177  * immediately upon returning (eg. _sys_call()), so returning TR_ARG_MAX is
1178  * safer than returning 0.
1179  */
1180 static ulong_t
1181 argcount(uintptr_t eip)
1182 {
1183         const uint8_t *ins = (const uint8_t *)eip;
1184         ulong_t n;
1185 
1186         enum {
1187                 M_MODRM_ESP = 0xc4,     /* Mod/RM byte indicates %esp */
1188                 M_ADD_IMM32 = 0x81,     /* ADD imm32 to r/m32 */
1189                 M_ADD_IMM8  = 0x83      /* ADD imm8 to r/m32 */
1190         };
1191 
1192         if (eip < KERNELBASE || ins[1] != M_MODRM_ESP)
1193                 return (TR_ARG_MAX);
1194 
1195         switch (ins[0]) {
1196         case M_ADD_IMM32:
1197                 n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24);
1198                 break;
1199 
1200         case M_ADD_IMM8:
1201                 n = ins[2];
1202                 break;
1203 
1204         default:
1205                 return (TR_ARG_MAX);
1206         }
1207 
1208         n /= sizeof (long);
1209         return (MIN(n, TR_ARG_MAX));
1210 }
1211 
1212 #endif  /* !__amd64 */
1213 
1214 /*
1215  * Print a stack backtrace using the specified frame pointer.  We delay two
1216  * seconds before continuing, unless this is the panic traceback.
1217  * If we are in the process of panicking, we also attempt to write the
1218  * stack backtrace to a staticly assigned buffer, to allow the panic
1219  * code to find it and write it in to uncompressed pages within the
1220  * system crash dump.
1221  * Note that the frame for the starting stack pointer value is omitted because
1222  * the corresponding %eip is not known.
1223  */
1224 
1225 extern char *dump_stack_scratch;
1226 
1227 #if defined(__amd64)
1228 
1229 void
1230 traceback(caddr_t fpreg)
1231 {
1232         struct frame    *fp = (struct frame *)fpreg;
1233         struct frame    *nextfp;
1234         uintptr_t       pc, nextpc;
1235         ulong_t         off;
1236         char            args[TR_ARG_MAX * 2 + 16], *sym;
1237         uint_t    offset = 0;
1238         uint_t    next_offset = 0;
1239         char        stack_buffer[1024];
1240 
1241         if (!panicstr)
1242                 printf("traceback: %%fp = %p\n", (void *)fp);
1243 
1244         if (panicstr && !dump_stack_scratch) {
1245                 printf("Warning - stack not written to the dump buffer\n");
1246         }
1247 
1248         fp = (struct frame *)plat_traceback(fpreg);
1249         if ((uintptr_t)fp < KERNELBASE)
1250                 goto out;
1251 
1252         pc = fp->fr_savpc;
1253         fp = (struct frame *)fp->fr_savfp;
1254 
1255         while ((uintptr_t)fp >= KERNELBASE) {
1256                 /*
1257                  * XX64 Until port is complete tolerate 8-byte aligned
1258                  * frame pointers but flag with a warning so they can
1259                  * be fixed.
1260                  */
1261                 if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) {
1262                         if (((uintptr_t)fp & (8 - 1)) == 0) {
1263                                 printf("  >> warning! 8-byte"
1264                                     " aligned %%fp = %p\n", (void *)fp);
1265                         } else {
1266                                 printf(
1267                                     "  >> mis-aligned %%fp = %p\n", (void *)fp);
1268                                 break;
1269                         }
1270                 }
1271 
1272                 args[0] = '\0';
1273                 nextpc = (uintptr_t)fp->fr_savpc;
1274                 nextfp = (struct frame *)fp->fr_savfp;
1275                 if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1276                         printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1277                             mod_containing_pc((caddr_t)pc), sym, off, args);
1278                         (void) snprintf(stack_buffer, sizeof (stack_buffer),
1279                             "%s:%s+%lx (%s) | ",
1280                             mod_containing_pc((caddr_t)pc), sym, off, args);
1281                 } else {
1282                         printf("%016lx %lx (%s)\n",
1283                             (uintptr_t)fp, pc, args);
1284                         (void) snprintf(stack_buffer, sizeof (stack_buffer),
1285                             "%lx (%s) | ", pc, args);
1286                 }
1287 
1288                 if (panicstr && dump_stack_scratch) {
1289                         next_offset = offset + strlen(stack_buffer);
1290                         if (next_offset < STACK_BUF_SIZE) {
1291                                 bcopy(stack_buffer, dump_stack_scratch + offset,
1292                                     strlen(stack_buffer));
1293                                 offset = next_offset;
1294                         } else {
1295                                 /*
1296                                  * In attempting to save the panic stack
1297                                  * to the dumpbuf we have overflowed that area.
1298                                  * Print a warning and continue to printf the
1299                                  * stack to the msgbuf
1300                                  */
1301                                 printf("Warning: stack in the dump buffer"
1302                                     " may be incomplete\n");
1303                                 offset = next_offset;
1304                         }
1305                 }
1306 
1307                 pc = nextpc;
1308                 fp = nextfp;
1309         }
1310 out:
1311         if (!panicstr) {
1312                 printf("end of traceback\n");
1313                 DELAY(2 * MICROSEC);
1314         } else if (dump_stack_scratch) {
1315                 dump_stack_scratch[offset] = '\0';
1316         }
1317 }
1318 
1319 #elif defined(__i386)
1320 
1321 void
1322 traceback(caddr_t fpreg)
1323 {
1324         struct frame *fp = (struct frame *)fpreg;
1325         struct frame *nextfp, *minfp, *stacktop;
1326         uintptr_t pc, nextpc;
1327         uint_t    offset = 0;
1328         uint_t    next_offset = 0;
1329         char        stack_buffer[1024];
1330 
1331         cpu_t *cpu;
1332 
1333         /*
1334          * args[] holds TR_ARG_MAX hex long args, plus ", " or '\0'.
1335          */
1336         char args[TR_ARG_MAX * 2 + 8], *p;
1337 
1338         int on_intr;
1339         ulong_t off;
1340         char *sym;
1341 
1342         if (!panicstr)
1343                 printf("traceback: %%fp = %p\n", (void *)fp);
1344 
1345         if (panicstr && !dump_stack_scratch) {
1346                 printf("Warning - stack not written to the dumpbuf\n");
1347         }
1348 
1349         /*
1350          * If we are panicking, all high-level interrupt information in
1351          * CPU was overwritten.  panic_cpu has the correct values.
1352          */
1353         kpreempt_disable();                     /* prevent migration */
1354 
1355         cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU;
1356 
1357         if ((on_intr = CPU_ON_INTR(cpu)) != 0)
1358                 stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME));
1359         else
1360                 stacktop = (struct frame *)curthread->t_stk;
1361 
1362         kpreempt_enable();
1363 
1364         fp = (struct frame *)plat_traceback(fpreg);
1365         if ((uintptr_t)fp < KERNELBASE)
1366                 goto out;
1367 
1368         minfp = fp;     /* Baseline minimum frame pointer */
1369         pc = fp->fr_savpc;
1370         fp = (struct frame *)fp->fr_savfp;
1371 
1372         while ((uintptr_t)fp >= KERNELBASE) {
1373                 ulong_t argc;
1374                 long *argv;
1375 
1376                 if (fp <= minfp || fp >= stacktop) {
1377                         if (on_intr) {
1378                                 /*
1379                                  * Hop from interrupt stack to thread stack.
1380                                  */
1381                                 stacktop = (struct frame *)curthread->t_stk;
1382                                 minfp = (struct frame *)curthread->t_stkbase;
1383                                 on_intr = 0;
1384                                 continue;
1385                         }
1386                         break; /* we're outside of the expected range */
1387                 }
1388 
1389                 if ((uintptr_t)fp & (STACK_ALIGN - 1)) {
1390                         printf("  >> mis-aligned %%fp = %p\n", (void *)fp);
1391                         break;
1392                 }
1393 
1394                 nextpc = fp->fr_savpc;
1395                 nextfp = (struct frame *)fp->fr_savfp;
1396                 argc = argcount(nextpc);
1397                 argv = (long *)((char *)fp + sizeof (struct frame));
1398 
1399                 args[0] = '\0';
1400                 p = args;
1401                 while (argc-- > 0 && argv < (long *)stacktop) {
1402                         p += snprintf(p, args + sizeof (args) - p,
1403                             "%s%lx", (p == args) ? "" : ", ", *argv++);
1404                 }
1405 
1406                 if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1407                         printf("%08lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1408                             mod_containing_pc((caddr_t)pc), sym, off, args);
1409                         (void) snprintf(stack_buffer, sizeof (stack_buffer),
1410                             "%s:%s+%lx (%s) | ",
1411                             mod_containing_pc((caddr_t)pc), sym, off, args);
1412 
1413                 } else {
1414                         printf("%08lx %lx (%s)\n",
1415                             (uintptr_t)fp, pc, args);
1416                         (void) snprintf(stack_buffer, sizeof (stack_buffer),
1417                             "%lx (%s) | ", pc, args);
1418 
1419                 }
1420 
1421                 if (panicstr && dump_stack_scratch) {
1422                         next_offset = offset + strlen(stack_buffer);
1423                         if (next_offset < STACK_BUF_SIZE) {
1424                                 bcopy(stack_buffer, dump_stack_scratch + offset,
1425                                     strlen(stack_buffer));
1426                                 offset = next_offset;
1427                         } else {
1428                                 /*
1429                                  * In attempting to save the panic stack
1430                                  * to the dumpbuf we have overflowed that area.
1431                                  * Print a warning and continue to printf the
1432                                  * stack to the msgbuf
1433                                  */
1434                                 printf("Warning: stack in the dumpbuf"
1435                                     " may be incomplete\n");
1436                                 offset = next_offset;
1437                         }
1438                 }
1439 
1440                 minfp = fp;
1441                 pc = nextpc;
1442                 fp = nextfp;
1443         }
1444 out:
1445         if (!panicstr) {
1446                 printf("end of traceback\n");
1447                 DELAY(2 * MICROSEC);
1448         } else if (dump_stack_scratch) {
1449                 dump_stack_scratch[offset] = '\0';
1450         }
1451 
1452 }
1453 
1454 #endif  /* __i386 */
1455 
1456 /*
1457  * Generate a stack backtrace from a saved register set.
1458  */
1459 void
1460 traceregs(struct regs *rp)
1461 {
1462         traceback((caddr_t)rp->r_fp);
1463 }
1464 
1465 void
1466 exec_set_sp(size_t stksize)
1467 {
1468         klwp_t *lwp = ttolwp(curthread);
1469 
1470         lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
1471 }
1472 
1473 hrtime_t
1474 gethrtime_waitfree(void)
1475 {
1476         return (dtrace_gethrtime());
1477 }
1478 
1479 hrtime_t
1480 gethrtime(void)
1481 {
1482         return (gethrtimef());
1483 }
1484 
1485 hrtime_t
1486 gethrtime_unscaled(void)
1487 {
1488         return (gethrtimeunscaledf());
1489 }
1490 
1491 void
1492 scalehrtime(hrtime_t *hrt)
1493 {
1494         scalehrtimef(hrt);
1495 }
1496 
1497 uint64_t
1498 unscalehrtime(hrtime_t nsecs)
1499 {
1500         return (unscalehrtimef(nsecs));
1501 }
1502 
1503 void
1504 gethrestime(timespec_t *tp)
1505 {
1506         gethrestimef(tp);
1507 }
1508 
1509 #if defined(__amd64)
1510 /*
1511  * Part of the implementation of hres_tick(); this routine is
1512  * easier in C than assembler .. called with the hres_lock held.
1513  *
1514  * XX64 Many of these timekeeping variables need to be extern'ed in a header
1515  */
1516 
1517 #include <sys/time.h>
1518 #include <sys/machlock.h>
1519 
1520 extern int one_sec;
1521 extern int max_hres_adj;
1522 
1523 void
1524 __adj_hrestime(void)
1525 {
1526         long long adj;
1527 
1528         if (hrestime_adj == 0)
1529                 adj = 0;
1530         else if (hrestime_adj > 0) {
1531                 if (hrestime_adj < max_hres_adj)
1532                         adj = hrestime_adj;
1533                 else
1534                         adj = max_hres_adj;
1535         } else {
1536                 if (hrestime_adj < -max_hres_adj)
1537                         adj = -max_hres_adj;
1538                 else
1539                         adj = hrestime_adj;
1540         }
1541 
1542         timedelta -= adj;
1543         hrestime_adj = timedelta;
1544         hrestime.tv_nsec += adj;
1545 
1546         while (hrestime.tv_nsec >= NANOSEC) {
1547                 one_sec++;
1548                 hrestime.tv_sec++;
1549                 hrestime.tv_nsec -= NANOSEC;
1550         }
1551 }
1552 #endif
1553 
1554 /*
1555  * Wrapper functions to maintain backwards compability
1556  */
1557 int
1558 xcopyin(const void *uaddr, void *kaddr, size_t count)
1559 {
1560         return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED));
1561 }
1562 
1563 int
1564 xcopyout(const void *kaddr, void *uaddr, size_t count)
1565 {
1566         return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED));
1567 }