1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright 2016 Joyent, Inc.
  24  */
  25 
  26 #include <sys/asm_linkage.h>
  27 #include <sys/asm_misc.h>
  28 #include <sys/regset.h>
  29 #include <sys/privregs.h>
  30 #include <sys/psw.h>
  31 
  32 #if defined(__lint)
  33 
  34 #include <sys/types.h>
  35 #include <sys/thread.h>
  36 #include <sys/systm.h>
  37 
  38 #else   /* __lint */
  39 
  40 #include <sys/machbrand.h>
  41 #include <sys/segments.h>
  42 #include <sys/pcb.h>
  43 #include <sys/trap.h>
  44 #include <sys/ftrace.h>
  45 #include <sys/traptrace.h>
  46 #include <sys/clock.h>
  47 #include <sys/model.h>
  48 #include <sys/panic.h>
  49 
  50 #if defined(__xpv)
  51 #include <sys/hypervisor.h>
  52 #endif
  53 
  54 #include "assym.h"
  55 
  56 #endif  /* __lint */
  57 
  58 /*
  59  * We implement five flavours of system call entry points
  60  *
  61  * -    syscall/sysretq         (amd64 generic)
  62  * -    syscall/sysretl         (i386 plus SYSC bit)
  63  * -    sysenter/sysexit        (i386 plus SEP bit)
  64  * -    int/iret                (i386 generic)
  65  * -    lcall/iret              (i386 generic)
  66  *
  67  * The current libc included in Solaris uses int/iret as the base unoptimized
  68  * kernel entry method. Older libc implementations and legacy binaries may use
  69  * the lcall call gate, so it must continue to be supported.
  70  *
  71  * System calls that use an lcall call gate are processed in trap() via a
  72  * segment-not-present trap, i.e. lcalls are extremely slow(!).
  73  *
  74  * The basic pattern used in the 32-bit SYSC handler at this point in time is
  75  * to have the bare minimum of assembler, and get to the C handlers as
  76  * quickly as possible.
  77  *
  78  * The 64-bit handler is much closer to the sparcv9 handler; that's
  79  * because of passing arguments in registers.  The 32-bit world still
  80  * passes arguments on the stack -- that makes that handler substantially
  81  * more complex.
  82  *
  83  * The two handlers share a few code fragments which are broken
  84  * out into preprocessor macros below.
  85  *
  86  * XX64 come back and speed all this up later.  The 32-bit stuff looks
  87  * especially easy to speed up the argument copying part ..
  88  *
  89  *
  90  * Notes about segment register usage (c.f. the 32-bit kernel)
  91  *
  92  * In the 32-bit kernel, segment registers are dutifully saved and
  93  * restored on all mode transitions because the kernel uses them directly.
  94  * When the processor is running in 64-bit mode, segment registers are
  95  * largely ignored.
  96  *
  97  * %cs and %ss
  98  *      controlled by the hardware mechanisms that make mode transitions
  99  *
 100  * The remaining segment registers have to either be pointing at a valid
 101  * descriptor i.e. with the 'present' bit set, or they can NULL descriptors
 102  *
 103  * %ds and %es
 104  *      always ignored
 105  *
 106  * %fs and %gs
 107  *      fsbase and gsbase are used to control the place they really point at.
 108  *      The kernel only depends on %gs, and controls its own gsbase via swapgs
 109  *
 110  * Note that loading segment registers is still costly because the GDT
 111  * lookup still happens (this is because the hardware can't know that we're
 112  * not setting up these segment registers for a 32-bit program).  Thus we
 113  * avoid doing this in the syscall path, and defer them to lwp context switch
 114  * handlers, so the register values remain virtualized to the lwp.
 115  */
 116 
 117 #if defined(SYSCALLTRACE)
 118 #define ORL_SYSCALLTRACE(r32)           \
 119         orl     syscalltrace(%rip), r32
 120 #else
 121 #define ORL_SYSCALLTRACE(r32)
 122 #endif
 123 
 124 /*
 125  * In the 32-bit kernel, we do absolutely nothing before getting into the
 126  * brand callback checks.  In 64-bit land, we do swapgs and then come here.
 127  * We assume that the %rsp- and %r15-stashing fields in the CPU structure
 128  * are still unused.
 129  *
 130  * Check if a brand_mach_ops callback is defined for the specified callback_id
 131  * type.  If so invoke it with the kernel's %gs value loaded and the following
 132  * data on the stack:
 133  *
 134  * stack:  --------------------------------------
 135  *      32 | callback pointer                   |
 136  *    | 24 | user (or interrupt) stack pointer  |
 137  *    | 16 | lwp pointer                        |
 138  *    v  8 | userland return address            |
 139  *       0 | callback wrapper return addr       |
 140  *         --------------------------------------
 141  *
 142  * Since we're pushing the userland return address onto the kernel stack
 143  * we need to get that address without accessing the user's stack (since we
 144  * can't trust that data).  There are different ways to get the userland
 145  * return address depending on how the syscall trap was made:
 146  *
 147  * a) For sys_syscall and sys_syscall32 the return address is in %rcx.
 148  * b) For sys_sysenter the return address is in %rdx.
 149  * c) For sys_int80 and sys_syscall_int (int91), upon entry into the macro,
 150  *    the stack pointer points at the state saved when we took the interrupt:
 151  *       ------------------------
 152  *    |  | user's %ss           |
 153  *    |  | user's %esp          |
 154  *    |  | EFLAGS register      |
 155  *    v  | user's %cs           |
 156  *       | user's %eip          |
 157  *       ------------------------
 158  *
 159  * The 2nd parameter to the BRAND_CALLBACK macro is either the
 160  * BRAND_URET_FROM_REG or BRAND_URET_FROM_INTR_STACK macro.  These macros are
 161  * used to generate the proper code to get the userland return address for
 162  * each syscall entry point.
 163  *
 164  * The interface to the brand callbacks on the 64-bit kernel assumes %r15
 165  * is available as a scratch register within the callback.  If the callback
 166  * returns within the kernel then this macro will restore %r15.  If the
 167  * callback is going to return directly to userland then it should restore
 168  * %r15 before returning to userland.
 169  */
 170 #define BRAND_URET_FROM_REG(rip_reg)                                    \
 171         pushq   rip_reg                 /* push the return address      */
 172 
 173 /*
 174  * The interrupt stack pointer we saved on entry to the BRAND_CALLBACK macro
 175  * is currently pointing at the user return address (%eip).
 176  */
 177 #define BRAND_URET_FROM_INTR_STACK()                                    \
 178         movq    %gs:CPU_RTMP_RSP, %r15  /* grab the intr. stack pointer */ ;\
 179         pushq   (%r15)                  /* push the return address      */
 180 
 181 #define BRAND_CALLBACK(callback_id, push_userland_ret)                      \
 182         movq    %rsp, %gs:CPU_RTMP_RSP  /* save the stack pointer       */ ;\
 183         movq    %r15, %gs:CPU_RTMP_R15  /* save %r15                    */ ;\
 184         movq    %gs:CPU_THREAD, %r15    /* load the thread pointer      */ ;\
 185         movq    T_STACK(%r15), %rsp     /* switch to the kernel stack   */ ;\
 186         subq    $16, %rsp               /* save space for 2 pointers    */ ;\
 187         pushq   %r14                    /* save %r14                    */ ;\
 188         movq    %gs:CPU_RTMP_RSP, %r14                                     ;\
 189         movq    %r14, 8(%rsp)           /* stash the user stack pointer */ ;\
 190         popq    %r14                    /* restore %r14                 */ ;\
 191         movq    T_LWP(%r15), %r15       /* load the lwp pointer         */ ;\
 192         pushq   %r15                    /* push the lwp pointer         */ ;\
 193         movq    LWP_PROCP(%r15), %r15   /* load the proc pointer        */ ;\
 194         movq    P_BRAND(%r15), %r15     /* load the brand pointer       */ ;\
 195         movq    B_MACHOPS(%r15), %r15   /* load the machops pointer     */ ;\
 196         movq    _CONST(_MUL(callback_id, CPTRSIZE))(%r15), %r15            ;\
 197         cmpq    $0, %r15                                                   ;\
 198         je      1f                                                         ;\
 199         movq    %r15, 16(%rsp)          /* save the callback pointer    */ ;\
 200         push_userland_ret               /* push the return address      */ ;\
 201         call    *24(%rsp)               /* call callback                */ ;\
 202 1:      movq    %gs:CPU_RTMP_R15, %r15  /* restore %r15                 */ ;\
 203         movq    %gs:CPU_RTMP_RSP, %rsp  /* restore the stack pointer    */
 204 
 205 #define MSTATE_TRANSITION(from, to)             \
 206         movl    $from, %edi;                    \
 207         movl    $to, %esi;                      \
 208         call    syscall_mstate
 209 
 210 /*
 211  * Check to see if a simple (direct) return is possible i.e.
 212  *
 213  *      if (t->t_post_sys_ast | syscalltrace |
 214  *          lwp->lwp_pcb.pcb_rupdate == 1)
 215  *              do full version ;
 216  *
 217  * Preconditions:
 218  * -    t is curthread
 219  * Postconditions:
 220  * -    condition code NE is set if post-sys is too complex
 221  * -    rtmp is zeroed if it isn't (we rely on this!)
 222  * -    ltmp is smashed
 223  */
 224 #define CHECK_POSTSYS_NE(t, ltmp, rtmp)                 \
 225         movq    T_LWP(t), ltmp;                         \
 226         movzbl  PCB_RUPDATE(ltmp), rtmp;                \
 227         ORL_SYSCALLTRACE(rtmp);                         \
 228         orl     T_POST_SYS_AST(t), rtmp;                \
 229         cmpl    $0, rtmp
 230         
 231 /*
 232  * Fix up the lwp, thread, and eflags for a successful return
 233  *
 234  * Preconditions:
 235  * -    zwreg contains zero
 236  */
 237 #define SIMPLE_SYSCALL_POSTSYS(t, lwp, zwreg)           \
 238         movb    $LWP_USER, LWP_STATE(lwp);              \
 239         movw    zwreg, T_SYSNUM(t);                     \
 240         andb    $_CONST(0xffff - PS_C), REGOFF_RFL(%rsp)
 241 
 242 /*
 243  * ASSERT(lwptoregs(lwp) == rp);
 244  *
 245  * This may seem obvious, but very odd things happen if this
 246  * assertion is false
 247  *
 248  * Preconditions:
 249  *      (%rsp is ready for normal call sequence)
 250  * Postconditions (if assertion is true):
 251  *      %r11 is smashed
 252  *
 253  * ASSERT(rp->r_cs == descnum)
 254  *
 255  * The code selector is written into the regs structure when the
 256  * lwp stack is created.  We use this ASSERT to validate that
 257  * the regs structure really matches how we came in.
 258  *
 259  * Preconditions:
 260  *      (%rsp is ready for normal call sequence)
 261  * Postconditions (if assertion is true):
 262  *      -none-
 263  *
 264  * ASSERT(lwp->lwp_pcb.pcb_rupdate == 0);
 265  *
 266  * If this is false, it meant that we returned to userland without
 267  * updating the segment registers as we were supposed to.
 268  *
 269  * Note that we must ensure no interrupts or other traps intervene
 270  * between entering privileged mode and performing the assertion,
 271  * otherwise we may perform a context switch on the thread, which
 272  * will end up setting pcb_rupdate to 1 again.
 273  */
 274 #if defined(DEBUG)
 275 
 276 #if !defined(__lint)
 277 
 278 __lwptoregs_msg:
 279         .string "syscall_asm_amd64.s:%d lwptoregs(%p) [%p] != rp [%p]"
 280 
 281 __codesel_msg:
 282         .string "syscall_asm_amd64.s:%d rp->r_cs [%ld] != %ld"
 283 
 284 __no_rupdate_msg:
 285         .string "syscall_asm_amd64.s:%d lwp %p, pcb_rupdate != 0"
 286 
 287 #endif  /* !__lint */
 288 
 289 #define ASSERT_LWPTOREGS(lwp, rp)                       \
 290         movq    LWP_REGS(lwp), %r11;                    \
 291         cmpq    rp, %r11;                               \
 292         je      7f;                                     \
 293         leaq    __lwptoregs_msg(%rip), %rdi;            \
 294         movl    $__LINE__, %esi;                        \
 295         movq    lwp, %rdx;                              \
 296         movq    %r11, %rcx;                             \
 297         movq    rp, %r8;                                \
 298         xorl    %eax, %eax;                             \
 299         call    panic;                                  \
 300 7:
 301 
 302 #define ASSERT_NO_RUPDATE_PENDING(lwp)                  \
 303         testb   $0x1, PCB_RUPDATE(lwp);                 \
 304         je      8f;                                     \
 305         movq    lwp, %rdx;                              \
 306         leaq    __no_rupdate_msg(%rip), %rdi;           \
 307         movl    $__LINE__, %esi;                        \
 308         xorl    %eax, %eax;                             \
 309         call    panic;                                  \
 310 8:
 311 
 312 #else
 313 #define ASSERT_LWPTOREGS(lwp, rp)
 314 #define ASSERT_NO_RUPDATE_PENDING(lwp)
 315 #endif
 316 
 317 /*
 318  * Do the traptrace thing and restore any registers we used
 319  * in situ.  Assumes that %rsp is pointing at the base of
 320  * the struct regs, obviously ..
 321  */     
 322 #ifdef TRAPTRACE        
 323 #define SYSCALL_TRAPTRACE(ttype)                                \
 324         TRACE_PTR(%rdi, %rbx, %ebx, %rcx, ttype);               \
 325         TRACE_REGS(%rdi, %rsp, %rbx, %rcx);                     \
 326         TRACE_STAMP(%rdi);      /* rdtsc clobbers %eax, %edx */ \
 327         movq    REGOFF_RAX(%rsp), %rax;                         \
 328         movq    REGOFF_RBX(%rsp), %rbx;                         \
 329         movq    REGOFF_RCX(%rsp), %rcx;                         \
 330         movq    REGOFF_RDX(%rsp), %rdx;                         \
 331         movl    %eax, TTR_SYSNUM(%rdi);                         \
 332         movq    REGOFF_RDI(%rsp), %rdi
 333 
 334 #define SYSCALL_TRAPTRACE32(ttype)                              \
 335         SYSCALL_TRAPTRACE(ttype);                               \
 336         /* paranoia: clean the top 32-bits of the registers */  \
 337         orl     %eax, %eax;                                     \
 338         orl     %ebx, %ebx;                                     \
 339         orl     %ecx, %ecx;                                     \
 340         orl     %edx, %edx;                                     \
 341         orl     %edi, %edi      
 342 #else   /* TRAPTRACE */
 343 #define SYSCALL_TRAPTRACE(ttype)
 344 #define SYSCALL_TRAPTRACE32(ttype)      
 345 #endif  /* TRAPTRACE */
 346 
 347 /*
 348  * The 64-bit libc syscall wrapper does this:
 349  *
 350  * fn(<args>)
 351  * {
 352  *      movq    %rcx, %r10      -- because syscall smashes %rcx
 353  *      movl    $CODE, %eax
 354  *      syscall
 355  *      <error processing>
 356  * }
 357  *
 358  * Thus when we come into the kernel:
 359  *
 360  *      %rdi, %rsi, %rdx, %r10, %r8, %r9 contain first six args
 361  *      %rax is the syscall number
 362  *      %r12-%r15 contain caller state
 363  *
 364  * The syscall instruction arranges that:
 365  *      
 366  *      %rcx contains the return %rip
 367  *      %r11d contains bottom 32-bits of %rflags
 368  *      %rflags is masked (as determined by the SFMASK msr)
 369  *      %cs is set to UCS_SEL (as determined by the STAR msr)
 370  *      %ss is set to UDS_SEL (as determined by the STAR msr)
 371  *      %rip is set to sys_syscall (as determined by the LSTAR msr)
 372  *
 373  * Or in other words, we have no registers available at all.
 374  * Only swapgs can save us!
 375  *
 376  * Under the hypervisor, the swapgs has happened already.  However, the
 377  * state of the world is very different from that we're familiar with.
 378  *
 379  * In particular, we have a stack structure like that for interrupt
 380  * gates, except that the %cs and %ss registers are modified for reasons
 381  * that are not entirely clear.  Critically, the %rcx/%r11 values do
 382  * *not* reflect the usage of those registers under a 'real' syscall[1];
 383  * the stack, therefore, looks like this:
 384  *
 385  *      0x0(rsp)        potentially junk %rcx
 386  *      0x8(rsp)        potentially junk %r11
 387  *      0x10(rsp)       user %rip
 388  *      0x18(rsp)       modified %cs
 389  *      0x20(rsp)       user %rflags
 390  *      0x28(rsp)       user %rsp
 391  *      0x30(rsp)       modified %ss
 392  *
 393  *
 394  * and before continuing on, we must load the %rip into %rcx and the
 395  * %rflags into %r11.
 396  *
 397  * [1] They used to, and we relied on it, but this was broken in 3.1.1.
 398  * Sigh.
 399  */
 400 #if defined(__xpv)
 401 #define XPV_SYSCALL_PROD                                                \
 402         movq    0x10(%rsp), %rcx;                                       \
 403         movq    0x20(%rsp), %r11;                                       \
 404         movq    0x28(%rsp), %rsp
 405 #else
 406 #define XPV_SYSCALL_PROD /* nothing */
 407 #endif
 408 
 409 #if defined(__lint)
 410 
 411 /*ARGSUSED*/
 412 void
 413 sys_syscall()
 414 {}
 415 
 416 void
 417 _allsyscalls()
 418 {}
 419 
 420 size_t _allsyscalls_size;
 421 
 422 #else   /* __lint */
 423 
 424         ENTRY_NP2(brand_sys_syscall,_allsyscalls)
 425         SWAPGS                          /* kernel gsbase */
 426         XPV_SYSCALL_PROD
 427         BRAND_CALLBACK(BRAND_CB_SYSCALL, BRAND_URET_FROM_REG(%rcx))
 428         jmp     noprod_sys_syscall
 429 
 430         ALTENTRY(sys_syscall)
 431         SWAPGS                          /* kernel gsbase */
 432         XPV_SYSCALL_PROD
 433 
 434 noprod_sys_syscall:
 435         movq    %r15, %gs:CPU_RTMP_R15
 436         movq    %rsp, %gs:CPU_RTMP_RSP
 437 
 438         movq    %gs:CPU_THREAD, %r15
 439         movq    T_STACK(%r15), %rsp     /* switch from user to kernel stack */
 440 
 441         ASSERT_UPCALL_MASK_IS_SET
 442 
 443         movl    $UCS_SEL, REGOFF_CS(%rsp)
 444         movq    %rcx, REGOFF_RIP(%rsp)          /* syscall: %rip -> %rcx */
 445         movq    %r11, REGOFF_RFL(%rsp)          /* syscall: %rfl -> %r11d */
 446         movl    $UDS_SEL, REGOFF_SS(%rsp)
 447 
 448         movl    %eax, %eax                      /* wrapper: sysc# -> %eax */
 449         movq    %rdi, REGOFF_RDI(%rsp)
 450         movq    %rsi, REGOFF_RSI(%rsp)
 451         movq    %rdx, REGOFF_RDX(%rsp)
 452         movq    %r10, REGOFF_RCX(%rsp)          /* wrapper: %rcx -> %r10 */
 453         movq    %r10, %rcx                      /* arg[3] for direct calls */
 454 
 455         movq    %r8, REGOFF_R8(%rsp)
 456         movq    %r9, REGOFF_R9(%rsp)
 457         movq    %rax, REGOFF_RAX(%rsp)
 458         movq    %rbx, REGOFF_RBX(%rsp)
 459 
 460         movq    %rbp, REGOFF_RBP(%rsp)
 461         movq    %r10, REGOFF_R10(%rsp)
 462         movq    %gs:CPU_RTMP_RSP, %r11
 463         movq    %r11, REGOFF_RSP(%rsp)
 464         movq    %r12, REGOFF_R12(%rsp)
 465 
 466         movq    %r13, REGOFF_R13(%rsp)
 467         movq    %r14, REGOFF_R14(%rsp)
 468         movq    %gs:CPU_RTMP_R15, %r10
 469         movq    %r10, REGOFF_R15(%rsp)
 470         movq    $0, REGOFF_SAVFP(%rsp)
 471         movq    $0, REGOFF_SAVPC(%rsp)
 472 
 473         /*
 474          * Copy these registers here in case we end up stopped with
 475          * someone (like, say, /proc) messing with our register state.
 476          * We don't -restore- them unless we have to in update_sregs.
 477          *
 478          * Since userland -can't- change fsbase or gsbase directly,
 479          * and capturing them involves two serializing instructions,
 480          * we don't bother to capture them here.
 481          */
 482         xorl    %ebx, %ebx
 483         movw    %ds, %bx
 484         movq    %rbx, REGOFF_DS(%rsp)
 485         movw    %es, %bx
 486         movq    %rbx, REGOFF_ES(%rsp)
 487         movw    %fs, %bx
 488         movq    %rbx, REGOFF_FS(%rsp)
 489         movw    %gs, %bx
 490         movq    %rbx, REGOFF_GS(%rsp)
 491 
 492         /*
 493          * Machine state saved in the regs structure on the stack
 494          * First six args in %rdi, %rsi, %rdx, %rcx, %r8, %r9
 495          * %eax is the syscall number
 496          * %rsp is the thread's stack, %r15 is curthread
 497          * REG_RSP(%rsp) is the user's stack
 498          */
 499 
 500         SYSCALL_TRAPTRACE($TT_SYSC64)
 501 
 502         movq    %rsp, %rbp
 503         
 504         movq    T_LWP(%r15), %r14
 505         ASSERT_NO_RUPDATE_PENDING(%r14)
 506 
 507         ENABLE_INTR_FLAGS
 508 
 509         MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
 510         movl    REGOFF_RAX(%rsp), %eax  /* (%rax damaged by mstate call) */
 511 
 512         ASSERT_LWPTOREGS(%r14, %rsp)
 513 
 514         movb    $LWP_SYS, LWP_STATE(%r14)
 515         incq    LWP_RU_SYSC(%r14)
 516         movb    $NORMALRETURN, LWP_EOSYS(%r14)
 517 
 518         incq    %gs:CPU_STATS_SYS_SYSCALL
 519 
 520         /*
 521          * If our LWP has an alternate system call handler, run that instead of
 522          * the regular system call path.
 523          */
 524         movq    LWP_BRAND_SYSCALL(%r14), %rdi
 525         testq   %rdi, %rdi
 526         jz      _syscall_no_brand
 527 
 528         pushq   %rax
 529         subq    $8, %rsp        /* align stack for call to C */
 530         call    *%rdi
 531         addq    $8, %rsp
 532 
 533         /*
 534          * If the alternate handler returns 0, we skip straight to the return to
 535          * usermode.  Otherwise, we resume regular system call processing.
 536          */
 537         testl   %eax, %eax
 538         popq    %rax
 539         jz      _syscall_after_brand
 540 
 541 _syscall_no_brand:
 542         movw    %ax, T_SYSNUM(%r15)
 543         movzbl  T_PRE_SYS(%r15), %ebx
 544         ORL_SYSCALLTRACE(%ebx)
 545         testl   %ebx, %ebx
 546         jne     _syscall_pre
 547 
 548 _syscall_invoke:
 549         movq    REGOFF_RDI(%rbp), %rdi
 550         movq    REGOFF_RSI(%rbp), %rsi
 551         movq    REGOFF_RDX(%rbp), %rdx
 552         movq    REGOFF_RCX(%rbp), %rcx
 553         movq    REGOFF_R8(%rbp), %r8
 554         movq    REGOFF_R9(%rbp), %r9
 555 
 556         cmpl    $NSYSCALL, %eax
 557         jae     _syscall_ill    
 558         shll    $SYSENT_SIZE_SHIFT, %eax
 559         leaq    sysent(%rax), %rbx
 560 
 561         call    *SY_CALLC(%rbx)
 562 
 563         movq    %rax, %r12
 564         movq    %rdx, %r13
 565 
 566         /*
 567          * If the handler returns two ints, then we need to split the
 568          * 64-bit return value into two 32-bit values.
 569          */
 570         testw   $SE_32RVAL2, SY_FLAGS(%rbx)
 571         je      5f
 572         movq    %r12, %r13
 573         shrq    $32, %r13       /* upper 32-bits into %edx */
 574         movl    %r12d, %r12d    /* lower 32-bits into %eax */
 575 5:
 576 
 577 _syscall_after_brand:
 578         /*
 579          * Optimistically assume that there's no post-syscall
 580          * work to do.  (This is to avoid having to call syscall_mstate()
 581          * with interrupts disabled)
 582          */
 583         MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
 584 
 585         /*
 586          * We must protect ourselves from being descheduled here;
 587          * If we were, and we ended up on another cpu, or another
 588          * lwp got in ahead of us, it could change the segment
 589          * registers without us noticing before we return to userland.
 590          */
 591         CLI(%r14)
 592         CHECK_POSTSYS_NE(%r15, %r14, %ebx)
 593         jne     _syscall_post
 594 
 595         /*
 596          * We need to protect ourselves against non-canonical return values
 597          * because Intel doesn't check for them on sysret (AMD does).  Canonical
 598          * addresses on current amd64 processors only use 48-bits for VAs; an
 599          * address is canonical if all upper bits (47-63) are identical. If we
 600          * find a non-canonical %rip, we opt to go through the full
 601          * _syscall_post path which takes us into an iretq which is not
 602          * susceptible to the same problems sysret is.
 603          * 
 604          * We're checking for a canonical address by first doing an arithmetic
 605          * shift. This will fill in the remaining bits with the value of bit 63.
 606          * If the address were canonical, the register would now have either all
 607          * zeroes or all ones in it. Therefore we add one (inducing overflow)
 608          * and compare against 1. A canonical address will either be zero or one
 609          * at this point, hence the use of ja.
 610          *
 611          * At this point, r12 and r13 have the return value so we can't use
 612          * those registers.
 613          */
 614         movq    REGOFF_RIP(%rsp), %rcx
 615         sarq    $47, %rcx
 616         incq    %rcx
 617         cmpq    $1, %rcx
 618         ja      _syscall_post
 619 
 620 
 621         SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
 622 
 623         movq    %r12, REGOFF_RAX(%rsp)
 624         movq    %r13, REGOFF_RDX(%rsp)
 625 
 626         /*
 627          * To get back to userland, we need the return %rip in %rcx and
 628          * the return %rfl in %r11d.  The sysretq instruction also arranges
 629          * to fix up %cs and %ss; everything else is our responsibility.
 630          */
 631         movq    REGOFF_RDI(%rsp), %rdi
 632         movq    REGOFF_RSI(%rsp), %rsi
 633         movq    REGOFF_RDX(%rsp), %rdx
 634         /* %rcx used to restore %rip value */
 635 
 636         movq    REGOFF_R8(%rsp), %r8
 637         movq    REGOFF_R9(%rsp), %r9
 638         movq    REGOFF_RAX(%rsp), %rax
 639         movq    REGOFF_RBX(%rsp), %rbx
 640 
 641         movq    REGOFF_RBP(%rsp), %rbp  
 642         movq    REGOFF_R10(%rsp), %r10
 643         /* %r11 used to restore %rfl value */
 644         movq    REGOFF_R12(%rsp), %r12
 645 
 646         movq    REGOFF_R13(%rsp), %r13
 647         movq    REGOFF_R14(%rsp), %r14
 648         movq    REGOFF_R15(%rsp), %r15
 649 
 650         movq    REGOFF_RIP(%rsp), %rcx  
 651         movl    REGOFF_RFL(%rsp), %r11d
 652 
 653 #if defined(__xpv)
 654         addq    $REGOFF_RIP, %rsp
 655 #else
 656         movq    REGOFF_RSP(%rsp), %rsp
 657 #endif
 658 
 659         /*
 660          * There can be no instructions between the ALTENTRY below and
 661          * SYSRET or we could end up breaking brand support. See label usage
 662          * in sn1_brand_syscall_callback for an example.
 663          */
 664         ASSERT_UPCALL_MASK_IS_SET
 665 #if defined(__xpv)
 666         SYSRETQ
 667         ALTENTRY(nopop_sys_syscall_swapgs_sysretq)
 668 
 669         /*
 670          * We can only get here after executing a brand syscall
 671          * interposition callback handler and simply need to
 672          * "sysretq" back to userland. On the hypervisor this
 673          * involves the iret hypercall which requires us to construct
 674          * just enough of the stack needed for the hypercall.
 675          * (rip, cs, rflags, rsp, ss).
 676          */
 677         movq    %rsp, %gs:CPU_RTMP_RSP          /* save user's rsp */
 678         movq    %gs:CPU_THREAD, %r11
 679         movq    T_STACK(%r11), %rsp
 680 
 681         movq    %rcx, REGOFF_RIP(%rsp)
 682         movl    $UCS_SEL, REGOFF_CS(%rsp)
 683         movq    %gs:CPU_RTMP_RSP, %r11
 684         movq    %r11, REGOFF_RSP(%rsp)
 685         pushfq
 686         popq    %r11                            /* hypercall enables ints */
 687         movq    %r11, REGOFF_RFL(%rsp)
 688         movl    $UDS_SEL, REGOFF_SS(%rsp)
 689         addq    $REGOFF_RIP, %rsp
 690         /*
 691          * XXPV: see comment in SYSRETQ definition for future optimization
 692          *       we could take.
 693          */
 694         ASSERT_UPCALL_MASK_IS_SET
 695         SYSRETQ
 696 #else
 697         ALTENTRY(nopop_sys_syscall_swapgs_sysretq)
 698         SWAPGS                          /* user gsbase */
 699         SYSRETQ
 700 #endif
 701         /*NOTREACHED*/
 702         SET_SIZE(nopop_sys_syscall_swapgs_sysretq)
 703 
 704 _syscall_pre:
 705         call    pre_syscall
 706         movl    %eax, %r12d
 707         testl   %eax, %eax
 708         jne     _syscall_post_call
 709         /*
 710          * Didn't abort, so reload the syscall args and invoke the handler.
 711          */
 712         movzwl  T_SYSNUM(%r15), %eax    
 713         jmp     _syscall_invoke
 714 
 715 _syscall_ill:
 716         call    nosys
 717         movq    %rax, %r12
 718         movq    %rdx, %r13
 719         jmp     _syscall_post_call
 720 
 721 _syscall_post:
 722         STI
 723         /*
 724          * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
 725          * so that we can account for the extra work it takes us to finish.
 726          */
 727         MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
 728 _syscall_post_call:
 729         movq    %r12, %rdi
 730         movq    %r13, %rsi
 731         call    post_syscall
 732         MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
 733         jmp     _sys_rtt
 734         SET_SIZE(sys_syscall)
 735         SET_SIZE(brand_sys_syscall)
 736 
 737 #endif  /* __lint */
 738 
 739 #if defined(__lint)
 740 
 741 /*ARGSUSED*/
 742 void
 743 sys_syscall32()
 744 {}
 745 
 746 #else   /* __lint */
 747 
 748         ENTRY_NP(brand_sys_syscall32)
 749         SWAPGS                          /* kernel gsbase */
 750         XPV_TRAP_POP
 751         BRAND_CALLBACK(BRAND_CB_SYSCALL32, BRAND_URET_FROM_REG(%rcx))
 752         jmp     nopop_sys_syscall32
 753 
 754         ALTENTRY(sys_syscall32)
 755         SWAPGS                          /* kernel gsbase */
 756         XPV_TRAP_POP
 757 
 758 nopop_sys_syscall32:
 759         movl    %esp, %r10d
 760         movq    %gs:CPU_THREAD, %r15
 761         movq    T_STACK(%r15), %rsp
 762         movl    %eax, %eax
 763 
 764         movl    $U32CS_SEL, REGOFF_CS(%rsp)
 765         movl    %ecx, REGOFF_RIP(%rsp)          /* syscall: %rip -> %rcx */
 766         movq    %r11, REGOFF_RFL(%rsp)          /* syscall: %rfl -> %r11d */
 767         movq    %r10, REGOFF_RSP(%rsp)
 768         movl    $UDS_SEL, REGOFF_SS(%rsp)
 769 
 770 _syscall32_save:
 771         movl    %edi, REGOFF_RDI(%rsp)
 772         movl    %esi, REGOFF_RSI(%rsp)
 773         movl    %ebp, REGOFF_RBP(%rsp)
 774         movl    %ebx, REGOFF_RBX(%rsp)
 775         movl    %edx, REGOFF_RDX(%rsp)
 776         movl    %ecx, REGOFF_RCX(%rsp)
 777         movl    %eax, REGOFF_RAX(%rsp)          /* wrapper: sysc# -> %eax */
 778         movq    $0, REGOFF_SAVFP(%rsp)
 779         movq    $0, REGOFF_SAVPC(%rsp)
 780 
 781         /*
 782          * Copy these registers here in case we end up stopped with
 783          * someone (like, say, /proc) messing with our register state.
 784          * We don't -restore- them unless we have to in update_sregs.
 785          *
 786          * Since userland -can't- change fsbase or gsbase directly,
 787          * we don't bother to capture them here.
 788          */
 789         xorl    %ebx, %ebx
 790         movw    %ds, %bx
 791         movq    %rbx, REGOFF_DS(%rsp)
 792         movw    %es, %bx
 793         movq    %rbx, REGOFF_ES(%rsp)
 794         movw    %fs, %bx
 795         movq    %rbx, REGOFF_FS(%rsp)
 796         movw    %gs, %bx
 797         movq    %rbx, REGOFF_GS(%rsp)
 798 
 799         /*
 800          * Application state saved in the regs structure on the stack
 801          * %eax is the syscall number
 802          * %rsp is the thread's stack, %r15 is curthread
 803          * REG_RSP(%rsp) is the user's stack
 804          */
 805 
 806         SYSCALL_TRAPTRACE32($TT_SYSC)
 807 
 808         movq    %rsp, %rbp
 809 
 810         movq    T_LWP(%r15), %r14
 811         ASSERT_NO_RUPDATE_PENDING(%r14)
 812 
 813         ENABLE_INTR_FLAGS
 814 
 815         MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
 816         movl    REGOFF_RAX(%rsp), %eax  /* (%rax damaged by mstate call) */
 817 
 818         ASSERT_LWPTOREGS(%r14, %rsp)
 819 
 820         incq     %gs:CPU_STATS_SYS_SYSCALL
 821 
 822         /*
 823          * If our lwp has an alternate system call handler, run that instead
 824          * of the regular system call path.
 825          */
 826         movq    LWP_BRAND_SYSCALL(%r14), %rax
 827         testq   %rax, %rax
 828         jz      _syscall32_no_brand
 829 
 830         movb    $LWP_SYS, LWP_STATE(%r14)
 831         call    *%rax
 832 
 833         /*
 834          * If the alternate handler returns 0, we skip straight to the return
 835          * to usermode.  Otherwise, we resume regular system call processing.
 836          */
 837         testl   %eax, %eax
 838         jz      _syscall32_after_brand
 839 
 840 _syscall32_no_brand:
 841         /*
 842          * Make some space for MAXSYSARGS (currently 8) 32-bit args placed
 843          * into 64-bit (long) arg slots, maintaining 16 byte alignment.  Or
 844          * more succinctly:
 845          *
 846          *      SA(MAXSYSARGS * sizeof (long)) == 64
 847          *
 848          * Note, this space is used both to copy in the arguments from user
 849          * land, but also to as part of the old UNIX style syscall_ap() method.
 850          * syscall_entry expects that we do not change the values of this space
 851          * that we give it. However, this means that when we end up in the more
 852          * recent model of passing the arguments based on the calling
 853          * conventions, we'll need to save an additional 16 bytes of stack.
 854          */
 855 #define SYS_DROP        64                      /* drop for args */
 856         subq    $SYS_DROP, %rsp
 857         movb    $LWP_SYS, LWP_STATE(%r14)
 858         movq    %r15, %rdi
 859         movq    %rsp, %rsi
 860         call    syscall_entry
 861 
 862         /*
 863          * Fetch the arguments copied onto the kernel stack and put
 864          * them in the right registers to invoke a C-style syscall handler.
 865          * %rax contains the handler address.
 866          *
 867          * Ideas for making all this go faster of course include simply
 868          * forcibly fetching 6 arguments from the user stack under lofault
 869          * protection, reverting to copyin_args only when watchpoints
 870          * are in effect.
 871          *
 872          * (If we do this, make sure that exec and libthread leave
 873          * enough space at the top of the stack to ensure that we'll
 874          * never do a fetch from an invalid page.)
 875          *
 876          * Lots of ideas here, but they won't really help with bringup B-)
 877          * Correctness can't wait, performance can wait a little longer ..
 878          */
 879 
 880         movq    %rax, %rbx
 881         movl    0x0(%rsp), %edi         /* arg0 */
 882         movl    0x8(%rsp), %esi         /* arg1 */
 883         movl    0x10(%rsp), %edx        /* arg2 */
 884         movl    0x38(%rsp), %eax        /* arg7 load */
 885         movl    0x18(%rsp), %ecx        /* arg3 */
 886         pushq   %rax                    /* arg7 saved to stack */
 887         movl    0x28(%rsp), %r8d        /* arg4 */
 888         movl    0x38(%rsp), %eax        /* arg6 load */
 889         movl    0x30(%rsp), %r9d        /* arg5 */
 890         pushq   %rax                    /* arg6 saved to stack */
 891 
 892         call    *SY_CALLC(%rbx)
 893 
 894         movq    %rbp, %rsp      /* pop the args */
 895 
 896         /*
 897          * amd64 syscall handlers -always- return a 64-bit value in %rax.
 898          * On the 32-bit kernel, they always return that value in %eax:%edx
 899          * as required by the 32-bit ABI.
 900          *
 901          * Simulate the same behaviour by unconditionally splitting the
 902          * return value in the same way.
 903          */
 904         movq    %rax, %r13
 905         shrq    $32, %r13       /* upper 32-bits into %edx */
 906         movl    %eax, %r12d     /* lower 32-bits into %eax */
 907 
 908 _syscall32_after_brand:
 909 
 910         /*
 911          * Optimistically assume that there's no post-syscall
 912          * work to do.  (This is to avoid having to call syscall_mstate()
 913          * with interrupts disabled)
 914          */
 915         MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
 916 
 917         /*
 918          * We must protect ourselves from being descheduled here;
 919          * If we were, and we ended up on another cpu, or another
 920          * lwp got in ahead of us, it could change the segment
 921          * registers without us noticing before we return to userland.
 922          */
 923         CLI(%r14)
 924         CHECK_POSTSYS_NE(%r15, %r14, %ebx)
 925         jne     _full_syscall_postsys32
 926         SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
 927 
 928         /*
 929          * To get back to userland, we need to put the return %rip in %rcx and
 930          * the return %rfl in %r11d.  The sysret instruction also arranges
 931          * to fix up %cs and %ss; everything else is our responsibility.
 932          */
 933 
 934         movl    %r12d, %eax                     /* %eax: rval1 */
 935         movl    REGOFF_RBX(%rsp), %ebx
 936         /* %ecx used for return pointer */
 937         movl    %r13d, %edx                     /* %edx: rval2 */
 938         movl    REGOFF_RBP(%rsp), %ebp
 939         movl    REGOFF_RSI(%rsp), %esi
 940         movl    REGOFF_RDI(%rsp), %edi
 941 
 942         movl    REGOFF_RFL(%rsp), %r11d         /* %r11 -> eflags */
 943         movl    REGOFF_RIP(%rsp), %ecx          /* %ecx -> %eip */
 944         movl    REGOFF_RSP(%rsp), %esp
 945 
 946         ASSERT_UPCALL_MASK_IS_SET
 947         ALTENTRY(nopop_sys_syscall32_swapgs_sysretl)
 948         SWAPGS                          /* user gsbase */
 949         SYSRETL
 950         SET_SIZE(nopop_sys_syscall32_swapgs_sysretl)
 951         /*NOTREACHED*/
 952 
 953 _full_syscall_postsys32:
 954         STI
 955         /*
 956          * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
 957          * so that we can account for the extra work it takes us to finish.
 958          */
 959         MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
 960         movq    %r15, %rdi
 961         movq    %r12, %rsi                      /* rval1 - %eax */
 962         movq    %r13, %rdx                      /* rval2 - %edx */
 963         call    syscall_exit
 964         MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
 965         jmp     _sys_rtt
 966         SET_SIZE(sys_syscall32)
 967         SET_SIZE(brand_sys_syscall32)
 968 
 969 #endif  /* __lint */
 970 
 971 /*
 972  * System call handler via the sysenter instruction
 973  * Used only for 32-bit system calls on the 64-bit kernel.
 974  *
 975  * The caller in userland has arranged that:
 976  *
 977  * -    %eax contains the syscall number
 978  * -    %ecx contains the user %esp
 979  * -    %edx contains the return %eip
 980  * -    the user stack contains the args to the syscall
 981  *
 982  * Hardware and (privileged) initialization code have arranged that by
 983  * the time the sysenter instructions completes:
 984  *
 985  * - %rip is pointing to sys_sysenter (below).
 986  * - %cs and %ss are set to kernel text and stack (data) selectors.
 987  * - %rsp is pointing at the lwp's stack
 988  * - interrupts have been disabled.
 989  *
 990  * Note that we are unable to return both "rvals" to userland with
 991  * this call, as %edx is used by the sysexit instruction.
 992  *
 993  * One final complication in this routine is its interaction with
 994  * single-stepping in a debugger.  For most of the system call mechanisms,
 995  * the CPU automatically clears the single-step flag before we enter the
 996  * kernel.  The sysenter mechanism does not clear the flag, so a user
 997  * single-stepping through a libc routine may suddenly find him/herself
 998  * single-stepping through the kernel.  To detect this, kmdb compares the
 999  * trap %pc to the [brand_]sys_enter addresses on each single-step trap.
1000  * If it finds that we have single-stepped to a sysenter entry point, it
1001  * explicitly clears the flag and executes the sys_sysenter routine.
1002  *
1003  * One final complication in this final complication is the fact that we
1004  * have two different entry points for sysenter: brand_sys_sysenter and
1005  * sys_sysenter.  If we enter at brand_sys_sysenter and start single-stepping
1006  * through the kernel with kmdb, we will eventually hit the instruction at
1007  * sys_sysenter.  kmdb cannot distinguish between that valid single-step
1008  * and the undesirable one mentioned above.  To avoid this situation, we
1009  * simply add a jump over the instruction at sys_sysenter to make it
1010  * impossible to single-step to it.
1011  */
1012 #if defined(__lint)
1013 
1014 void
1015 sys_sysenter()
1016 {}
1017 
1018 #else   /* __lint */
1019 
1020         ENTRY_NP(brand_sys_sysenter)
1021         SWAPGS                          /* kernel gsbase */
1022         ALTENTRY(_brand_sys_sysenter_post_swapgs)
1023         BRAND_CALLBACK(BRAND_CB_SYSENTER, BRAND_URET_FROM_REG(%rdx))
1024         /*
1025          * Jump over sys_sysenter to allow single-stepping as described
1026          * above.
1027          */
1028         jmp     _sys_sysenter_post_swapgs
1029 
1030         ALTENTRY(sys_sysenter)
1031         SWAPGS                          /* kernel gsbase */
1032 
1033         ALTENTRY(_sys_sysenter_post_swapgs)
1034         movq    %gs:CPU_THREAD, %r15
1035 
1036         movl    $U32CS_SEL, REGOFF_CS(%rsp)
1037         movl    %ecx, REGOFF_RSP(%rsp)          /* wrapper: %esp -> %ecx */
1038         movl    %edx, REGOFF_RIP(%rsp)          /* wrapper: %eip -> %edx */
1039         pushfq
1040         popq    %r10
1041         movl    $UDS_SEL, REGOFF_SS(%rsp)
1042 
1043         /*
1044          * Set the interrupt flag before storing the flags to the
1045          * flags image on the stack so we can return to user with
1046          * interrupts enabled if we return via sys_rtt_syscall32
1047          */
1048         orq     $PS_IE, %r10
1049         movq    %r10, REGOFF_RFL(%rsp)
1050 
1051         movl    %edi, REGOFF_RDI(%rsp)
1052         movl    %esi, REGOFF_RSI(%rsp)
1053         movl    %ebp, REGOFF_RBP(%rsp)
1054         movl    %ebx, REGOFF_RBX(%rsp)
1055         movl    %edx, REGOFF_RDX(%rsp)
1056         movl    %ecx, REGOFF_RCX(%rsp)
1057         movl    %eax, REGOFF_RAX(%rsp)          /* wrapper: sysc# -> %eax */
1058         movq    $0, REGOFF_SAVFP(%rsp)
1059         movq    $0, REGOFF_SAVPC(%rsp)
1060 
1061         /*
1062          * Copy these registers here in case we end up stopped with
1063          * someone (like, say, /proc) messing with our register state.
1064          * We don't -restore- them unless we have to in update_sregs.
1065          *
1066          * Since userland -can't- change fsbase or gsbase directly,
1067          * we don't bother to capture them here.
1068          */
1069         xorl    %ebx, %ebx
1070         movw    %ds, %bx
1071         movq    %rbx, REGOFF_DS(%rsp)
1072         movw    %es, %bx
1073         movq    %rbx, REGOFF_ES(%rsp)
1074         movw    %fs, %bx
1075         movq    %rbx, REGOFF_FS(%rsp)
1076         movw    %gs, %bx
1077         movq    %rbx, REGOFF_GS(%rsp)
1078 
1079         /*
1080          * Application state saved in the regs structure on the stack
1081          * %eax is the syscall number
1082          * %rsp is the thread's stack, %r15 is curthread
1083          * REG_RSP(%rsp) is the user's stack
1084          */
1085 
1086         SYSCALL_TRAPTRACE($TT_SYSENTER)
1087 
1088         movq    %rsp, %rbp
1089 
1090         movq    T_LWP(%r15), %r14
1091         ASSERT_NO_RUPDATE_PENDING(%r14)
1092 
1093         ENABLE_INTR_FLAGS
1094 
1095         /*
1096          * Catch 64-bit process trying to issue sysenter instruction
1097          * on Nocona based systems.
1098          */
1099         movq    LWP_PROCP(%r14), %rax
1100         cmpq    $DATAMODEL_ILP32, P_MODEL(%rax)
1101         je      7f
1102 
1103         /*
1104          * For a non-32-bit process, simulate a #ud, since that's what
1105          * native hardware does.  The traptrace entry (above) will
1106          * let you know what really happened.
1107          */
1108         movq    $T_ILLINST, REGOFF_TRAPNO(%rsp)
1109         movq    REGOFF_CS(%rsp), %rdi
1110         movq    %rdi, REGOFF_ERR(%rsp)
1111         movq    %rsp, %rdi
1112         movq    REGOFF_RIP(%rsp), %rsi
1113         movl    %gs:CPU_ID, %edx
1114         call    trap
1115         jmp     _sys_rtt
1116 7:
1117 
1118         MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
1119         movl    REGOFF_RAX(%rsp), %eax  /* (%rax damaged by mstate calls) */
1120 
1121         ASSERT_LWPTOREGS(%r14, %rsp)
1122 
1123         incq    %gs:CPU_STATS_SYS_SYSCALL
1124 
1125         /*
1126          * Make some space for MAXSYSARGS (currently 8) 32-bit args
1127          * placed into 64-bit (long) arg slots, plus one 64-bit
1128          * (long) arg count, maintaining 16 byte alignment.
1129          */
1130         subq    $SYS_DROP, %rsp
1131         movb    $LWP_SYS, LWP_STATE(%r14)
1132         movq    %r15, %rdi
1133         movq    %rsp, %rsi
1134         call    syscall_entry
1135 
1136         /*
1137          * Fetch the arguments copied onto the kernel stack and put
1138          * them in the right registers to invoke a C-style syscall handler.
1139          * %rax contains the handler address. For the last two arguments, we
1140          * push them onto the stack -- we can't clobber the old arguments.
1141          */
1142         movq    %rax, %rbx
1143         movl    0x0(%rsp), %edi         /* arg0 */
1144         movl    0x8(%rsp), %esi         /* arg1 */
1145         movl    0x10(%rsp), %edx        /* arg2 */
1146         movl    0x38(%rsp), %eax        /* arg7 load */
1147         movl    0x18(%rsp), %ecx        /* arg3 */
1148         pushq   %rax                    /* arg7 saved to stack */
1149         movl    0x28(%rsp), %r8d        /* arg4 */
1150         movl    0x38(%rsp), %eax        /* arg6 load */
1151         movl    0x30(%rsp), %r9d        /* arg5 */
1152         pushq   %rax                    /* arg6 saved to stack */
1153 
1154         call    *SY_CALLC(%rbx)
1155 
1156         movq    %rbp, %rsp      /* pop the args */
1157 
1158         /*
1159          * amd64 syscall handlers -always- return a 64-bit value in %rax.
1160          * On the 32-bit kernel, the always return that value in %eax:%edx
1161          * as required by the 32-bit ABI.
1162          *
1163          * Simulate the same behaviour by unconditionally splitting the
1164          * return value in the same way.
1165          */
1166         movq    %rax, %r13
1167         shrq    $32, %r13       /* upper 32-bits into %edx */
1168         movl    %eax, %r12d     /* lower 32-bits into %eax */
1169 
1170         /*
1171          * Optimistically assume that there's no post-syscall
1172          * work to do.  (This is to avoid having to call syscall_mstate()
1173          * with interrupts disabled)
1174          */
1175         MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
1176 
1177         /*
1178          * We must protect ourselves from being descheduled here;
1179          * If we were, and we ended up on another cpu, or another
1180          * lwp got int ahead of us, it could change the segment
1181          * registers without us noticing before we return to userland.
1182          */
1183         cli
1184         CHECK_POSTSYS_NE(%r15, %r14, %ebx)
1185         jne     _full_syscall_postsys32
1186         SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
1187 
1188         /*
1189          * To get back to userland, load up the 32-bit registers and
1190          * sysexit back where we came from.
1191          */
1192 
1193         /*
1194          * Interrupts will be turned on by the 'sti' executed just before
1195          * sysexit.  The following ensures that restoring the user's rflags
1196          * doesn't enable interrupts too soon.
1197          */
1198         andq    $_BITNOT(PS_IE), REGOFF_RFL(%rsp)
1199 
1200         /*
1201          * (There's no point in loading up %edx because the sysexit
1202          * mechanism smashes it.)
1203          */
1204         movl    %r12d, %eax
1205         movl    REGOFF_RBX(%rsp), %ebx
1206         movl    REGOFF_RBP(%rsp), %ebp
1207         movl    REGOFF_RSI(%rsp), %esi
1208         movl    REGOFF_RDI(%rsp), %edi
1209 
1210         movl    REGOFF_RIP(%rsp), %edx  /* sysexit: %edx -> %eip */
1211         pushq   REGOFF_RFL(%rsp)
1212         popfq
1213         movl    REGOFF_RSP(%rsp), %ecx  /* sysexit: %ecx -> %esp */
1214         ALTENTRY(sys_sysenter_swapgs_sysexit)
1215         swapgs
1216         sti
1217         sysexit
1218         SET_SIZE(sys_sysenter_swapgs_sysexit)
1219         SET_SIZE(sys_sysenter)
1220         SET_SIZE(_sys_sysenter_post_swapgs)
1221         SET_SIZE(brand_sys_sysenter)
1222 
1223 #endif  /* __lint */
1224  
1225 #if defined(__lint)
1226 /*
1227  * System call via an int80.  This entry point is only used by the Linux
1228  * application environment.  Unlike the other entry points, there is no
1229  * default action to take if no callback is registered for this process.
1230  */
1231 void
1232 sys_int80()
1233 {}
1234 
1235 #else   /* __lint */
1236 
1237         ENTRY_NP(brand_sys_int80)
1238         SWAPGS                          /* kernel gsbase */
1239         XPV_TRAP_POP
1240 
1241         /*
1242          * We first attempt to call the "b_int80" handler from the "struct
1243          * brand_mach_ops" for this brand.  If no handler function is installed
1244          * for this brand, the BRAND_CALLBACK() macro returns here and we
1245          * check the lwp for a "lwp_brand_syscall" handler.
1246          */
1247         BRAND_CALLBACK(BRAND_CB_INT80, BRAND_URET_FROM_INTR_STACK())
1248 
1249         /*
1250          * Check to see if this lwp provides "lwp_brand_syscall".  If so, we
1251          * will route this int80 through the regular system call handling path.
1252          */
1253         movq    %r15, %gs:CPU_RTMP_R15
1254         movq    %gs:CPU_THREAD, %r15
1255         movq    T_LWP(%r15), %r15
1256         movq    LWP_BRAND_SYSCALL(%r15), %r15
1257         testq   %r15, %r15
1258         movq    %gs:CPU_RTMP_R15, %r15
1259         jnz     nopop_syscall_int
1260 
1261         /*
1262          * The brand provided neither a "b_int80", nor a "lwp_brand_syscall"
1263          * function, and has thus opted out of handling this trap.
1264          */
1265         SWAPGS                          /* user gsbase */
1266         jmp     nopop_int80
1267 
1268         ENTRY_NP(sys_int80)
1269         /*
1270          * We hit an int80, but this process isn't of a brand with an int80
1271          * handler.  Bad process!  Make it look as if the INT failed.
1272          * Modify %rip to point before the INT, push the expected error
1273          * code and fake a GP fault. Note on 64-bit hypervisor we need
1274          * to undo the XPV_TRAP_POP and push rcx and r11 back on the stack
1275          * because gptrap will pop them again with its own XPV_TRAP_POP.
1276          */
1277         XPV_TRAP_POP
1278 nopop_int80:
1279         subq    $2, (%rsp)      /* int insn 2-bytes */
1280         pushq   $_CONST(_MUL(T_INT80, GATE_DESC_SIZE) + 2)
1281 #if defined(__xpv)
1282         push    %r11
1283         push    %rcx
1284 #endif
1285         jmp     gptrap                  / GP fault
1286         SET_SIZE(sys_int80)
1287         SET_SIZE(brand_sys_int80)
1288 #endif  /* __lint */
1289 
1290 
1291 /*
1292  * This is the destination of the "int $T_SYSCALLINT" interrupt gate, used by
1293  * the generic i386 libc to do system calls. We do a small amount of setup
1294  * before jumping into the existing sys_syscall32 path.
1295  */
1296 #if defined(__lint)
1297 
1298 /*ARGSUSED*/
1299 void
1300 sys_syscall_int()
1301 {}
1302 
1303 #else   /* __lint */
1304 
1305         ENTRY_NP(brand_sys_syscall_int)
1306         SWAPGS                          /* kernel gsbase */
1307         XPV_TRAP_POP
1308         call    smap_enable
1309         BRAND_CALLBACK(BRAND_CB_INT91, BRAND_URET_FROM_INTR_STACK())
1310         jmp     nopop_syscall_int
1311 
1312         ALTENTRY(sys_syscall_int)
1313         SWAPGS                          /* kernel gsbase */
1314         XPV_TRAP_POP
1315         call    smap_enable
1316 
1317 nopop_syscall_int:
1318         movq    %gs:CPU_THREAD, %r15
1319         movq    T_STACK(%r15), %rsp
1320         movl    %eax, %eax
1321         /*
1322          * Set t_post_sys on this thread to force ourselves out via the slow
1323          * path. It might be possible at some later date to optimize this out
1324          * and use a faster return mechanism.
1325          */
1326         movb    $1, T_POST_SYS(%r15)
1327         CLEAN_CS
1328         jmp     _syscall32_save
1329         /*
1330          * There should be no instructions between this label and SWAPGS/IRET
1331          * or we could end up breaking branded zone support. See the usage of
1332          * this label in lx_brand_int80_callback and sn1_brand_int91_callback
1333          * for examples.
1334          */
1335         ALTENTRY(sys_sysint_swapgs_iret)
1336         SWAPGS                          /* user gsbase */
1337         IRET
1338         /*NOTREACHED*/
1339         SET_SIZE(sys_sysint_swapgs_iret)
1340         SET_SIZE(sys_syscall_int)
1341         SET_SIZE(brand_sys_syscall_int)
1342 
1343 #endif  /* __lint */
1344         
1345 /*
1346  * Legacy 32-bit applications and old libc implementations do lcalls;
1347  * we should never get here because the LDT entry containing the syscall
1348  * segment descriptor has the "segment present" bit cleared, which means
1349  * we end up processing those system calls in trap() via a not-present trap.
1350  *
1351  * We do it this way because a call gate unhelpfully does -nothing- to the
1352  * interrupt flag bit, so an interrupt can run us just after the lcall
1353  * completes, but just before the swapgs takes effect.   Thus the INTR_PUSH and
1354  * INTR_POP paths would have to be slightly more complex to dance around
1355  * this problem, and end up depending explicitly on the first
1356  * instruction of this handler being either swapgs or cli.
1357  */
1358 
1359 #if defined(__lint)
1360 
1361 /*ARGSUSED*/
1362 void
1363 sys_lcall32()
1364 {}
1365 
1366 #else   /* __lint */
1367 
1368         ENTRY_NP(sys_lcall32)
1369         SWAPGS                          /* kernel gsbase */
1370         pushq   $0
1371         pushq   %rbp
1372         movq    %rsp, %rbp
1373         leaq    __lcall_panic_str(%rip), %rdi
1374         xorl    %eax, %eax
1375         call    panic
1376         SET_SIZE(sys_lcall32)
1377 
1378 __lcall_panic_str:      
1379         .string "sys_lcall32: shouldn't be here!"
1380 
1381 /*
1382  * Declare a uintptr_t which covers the entire pc range of syscall
1383  * handlers for the stack walkers that need this.
1384  */
1385         .align  CPTRSIZE
1386         .globl  _allsyscalls_size
1387         .type   _allsyscalls_size, @object
1388 _allsyscalls_size:
1389         .NWORD  . - _allsyscalls
1390         SET_SIZE(_allsyscalls_size)
1391 
1392 #endif  /* __lint */
1393 
1394 /*
1395  * These are the thread context handlers for lwps using sysenter/sysexit.
1396  */
1397 
1398 #if defined(__lint)
1399 
1400 /*ARGSUSED*/
1401 void
1402 sep_save(void *ksp)
1403 {}
1404 
1405 /*ARGSUSED*/
1406 void
1407 sep_restore(void *ksp)
1408 {}
1409 
1410 #else   /* __lint */
1411 
1412         /*
1413          * setting this value to zero as we switch away causes the
1414          * stack-pointer-on-sysenter to be NULL, ensuring that we
1415          * don't silently corrupt another (preempted) thread stack
1416          * when running an lwp that (somehow) didn't get sep_restore'd
1417          */
1418         ENTRY_NP(sep_save)
1419         xorl    %edx, %edx
1420         xorl    %eax, %eax
1421         movl    $MSR_INTC_SEP_ESP, %ecx
1422         wrmsr
1423         ret
1424         SET_SIZE(sep_save)
1425 
1426         /*
1427          * Update the kernel stack pointer as we resume onto this cpu.
1428          */
1429         ENTRY_NP(sep_restore)
1430         movq    %rdi, %rdx
1431         shrq    $32, %rdx
1432         movl    %edi, %eax
1433         movl    $MSR_INTC_SEP_ESP, %ecx
1434         wrmsr
1435         ret
1436         SET_SIZE(sep_restore)
1437 
1438 #endif  /* __lint */