Print this page
    
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/os/kmem.c
          +++ new/usr/src/uts/common/os/kmem.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  
    | 
      ↓ open down ↓ | 
    12 lines elided | 
    
      ↑ open up ↑ | 
  
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  /*
  22   22   * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
  23      - * Copyright (c) 2015 Joyent, Inc.  All rights reserved.
  24   23   * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
  25   24   * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
  26   25   */
  27   26  
  28   27  /*
  29   28   * Kernel memory allocator, as described in the following two papers and a
  30   29   * statement about the consolidator:
  31   30   *
  32   31   * Jeff Bonwick,
  33   32   * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
  34   33   * Proceedings of the Summer 1994 Usenix Conference.
  35   34   * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
  36   35   *
  37   36   * Jeff Bonwick and Jonathan Adams,
  38   37   * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
  39   38   * Arbitrary Resources.
  40   39   * Proceedings of the 2001 Usenix Conference.
  41   40   * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
  42   41   *
  43   42   * kmem Slab Consolidator Big Theory Statement:
  44   43   *
  45   44   * 1. Motivation
  46   45   *
  47   46   * As stated in Bonwick94, slabs provide the following advantages over other
  48   47   * allocation structures in terms of memory fragmentation:
  49   48   *
  50   49   *  - Internal fragmentation (per-buffer wasted space) is minimal.
  51   50   *  - Severe external fragmentation (unused buffers on the free list) is
  52   51   *    unlikely.
  53   52   *
  54   53   * Segregating objects by size eliminates one source of external fragmentation,
  55   54   * and according to Bonwick:
  56   55   *
  57   56   *   The other reason that slabs reduce external fragmentation is that all
  58   57   *   objects in a slab are of the same type, so they have the same lifetime
  59   58   *   distribution. The resulting segregation of short-lived and long-lived
  60   59   *   objects at slab granularity reduces the likelihood of an entire page being
  61   60   *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
  62   61   *
  63   62   * While unlikely, severe external fragmentation remains possible. Clients that
  64   63   * allocate both short- and long-lived objects from the same cache cannot
  65   64   * anticipate the distribution of long-lived objects within the allocator's slab
  66   65   * implementation. Even a small percentage of long-lived objects distributed
  67   66   * randomly across many slabs can lead to a worst case scenario where the client
  68   67   * frees the majority of its objects and the system gets back almost none of the
  69   68   * slabs. Despite the client doing what it reasonably can to help the system
  70   69   * reclaim memory, the allocator cannot shake free enough slabs because of
  71   70   * lonely allocations stubbornly hanging on. Although the allocator is in a
  72   71   * position to diagnose the fragmentation, there is nothing that the allocator
  73   72   * by itself can do about it. It only takes a single allocated object to prevent
  74   73   * an entire slab from being reclaimed, and any object handed out by
  75   74   * kmem_cache_alloc() is by definition in the client's control. Conversely,
  76   75   * although the client is in a position to move a long-lived object, it has no
  77   76   * way of knowing if the object is causing fragmentation, and if so, where to
  78   77   * move it. A solution necessarily requires further cooperation between the
  79   78   * allocator and the client.
  80   79   *
  81   80   * 2. Move Callback
  82   81   *
  83   82   * The kmem slab consolidator therefore adds a move callback to the
  84   83   * allocator/client interface, improving worst-case external fragmentation in
  85   84   * kmem caches that supply a function to move objects from one memory location
  86   85   * to another. In a situation of low memory kmem attempts to consolidate all of
  87   86   * a cache's slabs at once; otherwise it works slowly to bring external
  88   87   * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
  89   88   * thereby helping to avoid a low memory situation in the future.
  90   89   *
  91   90   * The callback has the following signature:
  92   91   *
  93   92   *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
  94   93   *
  95   94   * It supplies the kmem client with two addresses: the allocated object that
  96   95   * kmem wants to move and a buffer selected by kmem for the client to use as the
  97   96   * copy destination. The callback is kmem's way of saying "Please get off of
  98   97   * this buffer and use this one instead." kmem knows where it wants to move the
  99   98   * object in order to best reduce fragmentation. All the client needs to know
 100   99   * about the second argument (void *new) is that it is an allocated, constructed
 101  100   * object ready to take the contents of the old object. When the move function
 102  101   * is called, the system is likely to be low on memory, and the new object
 103  102   * spares the client from having to worry about allocating memory for the
 104  103   * requested move. The third argument supplies the size of the object, in case a
 105  104   * single move function handles multiple caches whose objects differ only in
 106  105   * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
 107  106   * user argument passed to the constructor, destructor, and reclaim functions is
 108  107   * also passed to the move callback.
 109  108   *
 110  109   * 2.1 Setting the Move Callback
 111  110   *
 112  111   * The client sets the move callback after creating the cache and before
 113  112   * allocating from it:
 114  113   *
 115  114   *      object_cache = kmem_cache_create(...);
 116  115   *      kmem_cache_set_move(object_cache, object_move);
 117  116   *
 118  117   * 2.2 Move Callback Return Values
 119  118   *
 120  119   * Only the client knows about its own data and when is a good time to move it.
 121  120   * The client is cooperating with kmem to return unused memory to the system,
 122  121   * and kmem respectfully accepts this help at the client's convenience. When
 123  122   * asked to move an object, the client can respond with any of the following:
 124  123   *
 125  124   *   typedef enum kmem_cbrc {
 126  125   *           KMEM_CBRC_YES,
 127  126   *           KMEM_CBRC_NO,
 128  127   *           KMEM_CBRC_LATER,
 129  128   *           KMEM_CBRC_DONT_NEED,
 130  129   *           KMEM_CBRC_DONT_KNOW
 131  130   *   } kmem_cbrc_t;
 132  131   *
 133  132   * The client must not explicitly kmem_cache_free() either of the objects passed
 134  133   * to the callback, since kmem wants to free them directly to the slab layer
 135  134   * (bypassing the per-CPU magazine layer). The response tells kmem which of the
 136  135   * objects to free:
 137  136   *
 138  137   *       YES: (Did it) The client moved the object, so kmem frees the old one.
 139  138   *        NO: (Never) The client refused, so kmem frees the new object (the
 140  139   *            unused copy destination). kmem also marks the slab of the old
 141  140   *            object so as not to bother the client with further callbacks for
 142  141   *            that object as long as the slab remains on the partial slab list.
 143  142   *            (The system won't be getting the slab back as long as the
 144  143   *            immovable object holds it hostage, so there's no point in moving
 145  144   *            any of its objects.)
 146  145   *     LATER: The client is using the object and cannot move it now, so kmem
 147  146   *            frees the new object (the unused copy destination). kmem still
 148  147   *            attempts to move other objects off the slab, since it expects to
 149  148   *            succeed in clearing the slab in a later callback. The client
 150  149   *            should use LATER instead of NO if the object is likely to become
 151  150   *            movable very soon.
 152  151   * DONT_NEED: The client no longer needs the object, so kmem frees the old along
  
    | 
      ↓ open down ↓ | 
    119 lines elided | 
    
      ↑ open up ↑ | 
  
 153  152   *            with the new object (the unused copy destination). This response
 154  153   *            is the client's opportunity to be a model citizen and give back as
 155  154   *            much as it can.
 156  155   * DONT_KNOW: The client does not know about the object because
 157  156   *            a) the client has just allocated the object and not yet put it
 158  157   *               wherever it expects to find known objects
 159  158   *            b) the client has removed the object from wherever it expects to
 160  159   *               find known objects and is about to free it, or
 161  160   *            c) the client has freed the object.
 162  161   *            In all these cases (a, b, and c) kmem frees the new object (the
 163      - *            unused copy destination).  In the first case, the object is in
 164      - *            use and the correct action is that for LATER; in the latter two
 165      - *            cases, we know that the object is either freed or about to be
 166      - *            freed, in which case it is either already in a magazine or about
 167      - *            to be in one.  In these cases, we know that the object will either
 168      - *            be reallocated and reused, or it will end up in a full magazine
 169      - *            that will be reaped (thereby liberating the slab).  Because it
 170      - *            is prohibitively expensive to differentiate these cases, and
 171      - *            because the defrag code is executed when we're low on memory
 172      - *            (thereby biasing the system to reclaim full magazines) we treat
 173      - *            all DONT_KNOW cases as LATER and rely on cache reaping to
 174      - *            generally clean up full magazines.  While we take the same action
 175      - *            for these cases, we maintain their semantic distinction:  if
 176      - *            defragmentation is not occurring, it is useful to know if this
 177      - *            is due to objects in use (LATER) or objects in an unknown state
 178      - *            of transition (DONT_KNOW).
      162 + *            unused copy destination) and searches for the old object in the
      163 + *            magazine layer. If found, the object is removed from the magazine
      164 + *            layer and freed to the slab layer so it will no longer hold the
      165 + *            slab hostage.
 179  166   *
 180  167   * 2.3 Object States
 181  168   *
 182  169   * Neither kmem nor the client can be assumed to know the object's whereabouts
 183  170   * at the time of the callback. An object belonging to a kmem cache may be in
 184  171   * any of the following states:
 185  172   *
 186  173   * 1. Uninitialized on the slab
 187  174   * 2. Allocated from the slab but not constructed (still uninitialized)
 188  175   * 3. Allocated from the slab, constructed, but not yet ready for business
 189  176   *    (not in a valid state for the move callback)
 190  177   * 4. In use (valid and known to the client)
 191  178   * 5. About to be freed (no longer in a valid state for the move callback)
 192  179   * 6. Freed to a magazine (still constructed)
 193  180   * 7. Allocated from a magazine, not yet ready for business (not in a valid
 194  181   *    state for the move callback), and about to return to state #4
 195  182   * 8. Deconstructed on a magazine that is about to be freed
 196  183   * 9. Freed to the slab
 197  184   *
 198  185   * Since the move callback may be called at any time while the object is in any
 199  186   * of the above states (except state #1), the client needs a safe way to
 200  187   * determine whether or not it knows about the object. Specifically, the client
 201  188   * needs to know whether or not the object is in state #4, the only state in
 202  189   * which a move is valid. If the object is in any other state, the client should
 203  190   * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
 204  191   * the object's fields.
 205  192   *
 206  193   * Note that although an object may be in state #4 when kmem initiates the move
 207  194   * request, the object may no longer be in that state by the time kmem actually
 208  195   * calls the move function. Not only does the client free objects
 209  196   * asynchronously, kmem itself puts move requests on a queue where thay are
 210  197   * pending until kmem processes them from another context. Also, objects freed
 211  198   * to a magazine appear allocated from the point of view of the slab layer, so
 212  199   * kmem may even initiate requests for objects in a state other than state #4.
 213  200   *
 214  201   * 2.3.1 Magazine Layer
 215  202   *
 216  203   * An important insight revealed by the states listed above is that the magazine
 217  204   * layer is populated only by kmem_cache_free(). Magazines of constructed
 218  205   * objects are never populated directly from the slab layer (which contains raw,
 219  206   * unconstructed objects). Whenever an allocation request cannot be satisfied
 220  207   * from the magazine layer, the magazines are bypassed and the request is
 221  208   * satisfied from the slab layer (creating a new slab if necessary). kmem calls
 222  209   * the object constructor only when allocating from the slab layer, and only in
 223  210   * response to kmem_cache_alloc() or to prepare the destination buffer passed in
 224  211   * the move callback. kmem does not preconstruct objects in anticipation of
 225  212   * kmem_cache_alloc().
 226  213   *
 227  214   * 2.3.2 Object Constructor and Destructor
 228  215   *
 229  216   * If the client supplies a destructor, it must be valid to call the destructor
 230  217   * on a newly created object (immediately after the constructor).
 231  218   *
 232  219   * 2.4 Recognizing Known Objects
 233  220   *
 234  221   * There is a simple test to determine safely whether or not the client knows
 235  222   * about a given object in the move callback. It relies on the fact that kmem
 236  223   * guarantees that the object of the move callback has only been touched by the
 237  224   * client itself or else by kmem. kmem does this by ensuring that none of the
 238  225   * cache's slabs are freed to the virtual memory (VM) subsystem while a move
 239  226   * callback is pending. When the last object on a slab is freed, if there is a
 240  227   * pending move, kmem puts the slab on a per-cache dead list and defers freeing
 241  228   * slabs on that list until all pending callbacks are completed. That way,
 242  229   * clients can be certain that the object of a move callback is in one of the
 243  230   * states listed above, making it possible to distinguish known objects (in
 244  231   * state #4) using the two low order bits of any pointer member (with the
 245  232   * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
 246  233   * platforms).
 247  234   *
 248  235   * The test works as long as the client always transitions objects from state #4
 249  236   * (known, in use) to state #5 (about to be freed, invalid) by setting the low
 250  237   * order bit of the client-designated pointer member. Since kmem only writes
 251  238   * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
 252  239   * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
 253  240   * guaranteed to set at least one of the two low order bits. Therefore, given an
 254  241   * object with a back pointer to a 'container_t *o_container', the client can
 255  242   * test
 256  243   *
 257  244   *      container_t *container = object->o_container;
 258  245   *      if ((uintptr_t)container & 0x3) {
 259  246   *              return (KMEM_CBRC_DONT_KNOW);
 260  247   *      }
 261  248   *
 262  249   * Typically, an object will have a pointer to some structure with a list or
 263  250   * hash where objects from the cache are kept while in use. Assuming that the
 264  251   * client has some way of knowing that the container structure is valid and will
 265  252   * not go away during the move, and assuming that the structure includes a lock
 266  253   * to protect whatever collection is used, then the client would continue as
 267  254   * follows:
 268  255   *
 269  256   *      // Ensure that the container structure does not go away.
 270  257   *      if (container_hold(container) == 0) {
 271  258   *              return (KMEM_CBRC_DONT_KNOW);
 272  259   *      }
 273  260   *      mutex_enter(&container->c_objects_lock);
 274  261   *      if (container != object->o_container) {
 275  262   *              mutex_exit(&container->c_objects_lock);
 276  263   *              container_rele(container);
 277  264   *              return (KMEM_CBRC_DONT_KNOW);
 278  265   *      }
 279  266   *
 280  267   * At this point the client knows that the object cannot be freed as long as
 281  268   * c_objects_lock is held. Note that after acquiring the lock, the client must
 282  269   * recheck the o_container pointer in case the object was removed just before
 283  270   * acquiring the lock.
 284  271   *
 285  272   * When the client is about to free an object, it must first remove that object
 286  273   * from the list, hash, or other structure where it is kept. At that time, to
 287  274   * mark the object so it can be distinguished from the remaining, known objects,
 288  275   * the client sets the designated low order bit:
 289  276   *
 290  277   *      mutex_enter(&container->c_objects_lock);
  
    | 
      ↓ open down ↓ | 
    102 lines elided | 
    
      ↑ open up ↑ | 
  
 291  278   *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
 292  279   *      list_remove(&container->c_objects, object);
 293  280   *      mutex_exit(&container->c_objects_lock);
 294  281   *
 295  282   * In the common case, the object is freed to the magazine layer, where it may
 296  283   * be reused on a subsequent allocation without the overhead of calling the
 297  284   * constructor. While in the magazine it appears allocated from the point of
 298  285   * view of the slab layer, making it a candidate for the move callback. Most
 299  286   * objects unrecognized by the client in the move callback fall into this
 300  287   * category and are cheaply distinguished from known objects by the test
 301      - * described earlier. Because searching magazines is prohibitively expensive
 302      - * for kmem, clients that do not mark freed objects (and therefore return
 303      - * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation
 304      - * efficacy reduced.
      288 + * described earlier. Since recognition is cheap for the client, and searching
      289 + * magazines is expensive for kmem, kmem defers searching until the client first
      290 + * returns KMEM_CBRC_DONT_KNOW. As long as the needed effort is reasonable, kmem
      291 + * elsewhere does what it can to avoid bothering the client unnecessarily.
 305  292   *
 306  293   * Invalidating the designated pointer member before freeing the object marks
 307  294   * the object to be avoided in the callback, and conversely, assigning a valid
 308  295   * value to the designated pointer member after allocating the object makes the
 309  296   * object fair game for the callback:
 310  297   *
 311  298   *      ... allocate object ...
 312  299   *      ... set any initial state not set by the constructor ...
 313  300   *
 314  301   *      mutex_enter(&container->c_objects_lock);
 315  302   *      list_insert_tail(&container->c_objects, object);
 316  303   *      membar_producer();
 317  304   *      object->o_container = container;
 318  305   *      mutex_exit(&container->c_objects_lock);
 319  306   *
 320  307   * Note that everything else must be valid before setting o_container makes the
 321  308   * object fair game for the move callback. The membar_producer() call ensures
 322  309   * that all the object's state is written to memory before setting the pointer
 323  310   * that transitions the object from state #3 or #7 (allocated, constructed, not
 324  311   * yet in use) to state #4 (in use, valid). That's important because the move
 325  312   * function has to check the validity of the pointer before it can safely
 326  313   * acquire the lock protecting the collection where it expects to find known
 327  314   * objects.
 328  315   *
 329  316   * This method of distinguishing known objects observes the usual symmetry:
 330  317   * invalidating the designated pointer is the first thing the client does before
 331  318   * freeing the object, and setting the designated pointer is the last thing the
 332  319   * client does after allocating the object. Of course, the client is not
 333  320   * required to use this method. Fundamentally, how the client recognizes known
 334  321   * objects is completely up to the client, but this method is recommended as an
 335  322   * efficient and safe way to take advantage of the guarantees made by kmem. If
 336  323   * the entire object is arbitrary data without any markable bits from a suitable
 337  324   * pointer member, then the client must find some other method, such as
 338  325   * searching a hash table of known objects.
 339  326   *
 340  327   * 2.5 Preventing Objects From Moving
 341  328   *
 342  329   * Besides a way to distinguish known objects, the other thing that the client
 343  330   * needs is a strategy to ensure that an object will not move while the client
 344  331   * is actively using it. The details of satisfying this requirement tend to be
 345  332   * highly cache-specific. It might seem that the same rules that let a client
 346  333   * remove an object safely should also decide when an object can be moved
 347  334   * safely. However, any object state that makes a removal attempt invalid is
 348  335   * likely to be long-lasting for objects that the client does not expect to
 349  336   * remove. kmem knows nothing about the object state and is equally likely (from
 350  337   * the client's point of view) to request a move for any object in the cache,
 351  338   * whether prepared for removal or not. Even a low percentage of objects stuck
 352  339   * in place by unremovability will defeat the consolidator if the stuck objects
 353  340   * are the same long-lived allocations likely to hold slabs hostage.
 354  341   * Fundamentally, the consolidator is not aimed at common cases. Severe external
 355  342   * fragmentation is a worst case scenario manifested as sparsely allocated
 356  343   * slabs, by definition a low percentage of the cache's objects. When deciding
 357  344   * what makes an object movable, keep in mind the goal of the consolidator: to
 358  345   * bring worst-case external fragmentation within the limits guaranteed for
 359  346   * internal fragmentation. Removability is a poor criterion if it is likely to
 360  347   * exclude more than an insignificant percentage of objects for long periods of
 361  348   * time.
 362  349   *
 363  350   * A tricky general solution exists, and it has the advantage of letting you
 364  351   * move any object at almost any moment, practically eliminating the likelihood
 365  352   * that an object can hold a slab hostage. However, if there is a cache-specific
 366  353   * way to ensure that an object is not actively in use in the vast majority of
 367  354   * cases, a simpler solution that leverages this cache-specific knowledge is
 368  355   * preferred.
 369  356   *
 370  357   * 2.5.1 Cache-Specific Solution
 371  358   *
 372  359   * As an example of a cache-specific solution, the ZFS znode cache takes
 373  360   * advantage of the fact that the vast majority of znodes are only being
 374  361   * referenced from the DNLC. (A typical case might be a few hundred in active
 375  362   * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
 376  363   * client has established that it recognizes the znode and can access its fields
 377  364   * safely (using the method described earlier), it then tests whether the znode
 378  365   * is referenced by anything other than the DNLC. If so, it assumes that the
 379  366   * znode may be in active use and is unsafe to move, so it drops its locks and
 380  367   * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
 381  368   * else znodes are used, no change is needed to protect against the possibility
 382  369   * of the znode moving. The disadvantage is that it remains possible for an
 383  370   * application to hold a znode slab hostage with an open file descriptor.
 384  371   * However, this case ought to be rare and the consolidator has a way to deal
 385  372   * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
 386  373   * object, kmem eventually stops believing it and treats the slab as if the
 387  374   * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
 388  375   * then focus on getting it off of the partial slab list by allocating rather
 389  376   * than freeing all of its objects. (Either way of getting a slab off the
 390  377   * free list reduces fragmentation.)
 391  378   *
 392  379   * 2.5.2 General Solution
 393  380   *
 394  381   * The general solution, on the other hand, requires an explicit hold everywhere
 395  382   * the object is used to prevent it from moving. To keep the client locking
 396  383   * strategy as uncomplicated as possible, kmem guarantees the simplifying
 397  384   * assumption that move callbacks are sequential, even across multiple caches.
 398  385   * Internally, a global queue processed by a single thread supports all caches
 399  386   * implementing the callback function. No matter how many caches supply a move
 400  387   * function, the consolidator never moves more than one object at a time, so the
 401  388   * client does not have to worry about tricky lock ordering involving several
 402  389   * related objects from different kmem caches.
 403  390   *
 404  391   * The general solution implements the explicit hold as a read-write lock, which
 405  392   * allows multiple readers to access an object from the cache simultaneously
 406  393   * while a single writer is excluded from moving it. A single rwlock for the
 407  394   * entire cache would lock out all threads from using any of the cache's objects
 408  395   * even though only a single object is being moved, so to reduce contention,
 409  396   * the client can fan out the single rwlock into an array of rwlocks hashed by
 410  397   * the object address, making it probable that moving one object will not
 411  398   * prevent other threads from using a different object. The rwlock cannot be a
 412  399   * member of the object itself, because the possibility of the object moving
 413  400   * makes it unsafe to access any of the object's fields until the lock is
 414  401   * acquired.
 415  402   *
 416  403   * Assuming a small, fixed number of locks, it's possible that multiple objects
 417  404   * will hash to the same lock. A thread that needs to use multiple objects in
 418  405   * the same function may acquire the same lock multiple times. Since rwlocks are
 419  406   * reentrant for readers, and since there is never more than a single writer at
 420  407   * a time (assuming that the client acquires the lock as a writer only when
 421  408   * moving an object inside the callback), there would seem to be no problem.
 422  409   * However, a client locking multiple objects in the same function must handle
 423  410   * one case of potential deadlock: Assume that thread A needs to prevent both
 424  411   * object 1 and object 2 from moving, and thread B, the callback, meanwhile
 425  412   * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
 426  413   * same lock, that thread A will acquire the lock for object 1 as a reader
 427  414   * before thread B sets the lock's write-wanted bit, preventing thread A from
 428  415   * reacquiring the lock for object 2 as a reader. Unable to make forward
 429  416   * progress, thread A will never release the lock for object 1, resulting in
 430  417   * deadlock.
 431  418   *
 432  419   * There are two ways of avoiding the deadlock just described. The first is to
 433  420   * use rw_tryenter() rather than rw_enter() in the callback function when
 434  421   * attempting to acquire the lock as a writer. If tryenter discovers that the
 435  422   * same object (or another object hashed to the same lock) is already in use, it
 436  423   * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
 437  424   * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
 438  425   * since it allows a thread to acquire the lock as a reader in spite of a
 439  426   * waiting writer. This second approach insists on moving the object now, no
 440  427   * matter how many readers the move function must wait for in order to do so,
 441  428   * and could delay the completion of the callback indefinitely (blocking
 442  429   * callbacks to other clients). In practice, a less insistent callback using
 443  430   * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
 444  431   * little reason to use anything else.
 445  432   *
 446  433   * Avoiding deadlock is not the only problem that an implementation using an
 447  434   * explicit hold needs to solve. Locking the object in the first place (to
 448  435   * prevent it from moving) remains a problem, since the object could move
 449  436   * between the time you obtain a pointer to the object and the time you acquire
 450  437   * the rwlock hashed to that pointer value. Therefore the client needs to
 451  438   * recheck the value of the pointer after acquiring the lock, drop the lock if
 452  439   * the value has changed, and try again. This requires a level of indirection:
 453  440   * something that points to the object rather than the object itself, that the
 454  441   * client can access safely while attempting to acquire the lock. (The object
 455  442   * itself cannot be referenced safely because it can move at any time.)
 456  443   * The following lock-acquisition function takes whatever is safe to reference
 457  444   * (arg), follows its pointer to the object (using function f), and tries as
 458  445   * often as necessary to acquire the hashed lock and verify that the object
 459  446   * still has not moved:
 460  447   *
 461  448   *      object_t *
 462  449   *      object_hold(object_f f, void *arg)
 463  450   *      {
 464  451   *              object_t *op;
 465  452   *
 466  453   *              op = f(arg);
 467  454   *              if (op == NULL) {
 468  455   *                      return (NULL);
 469  456   *              }
 470  457   *
 471  458   *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
 472  459   *              while (op != f(arg)) {
 473  460   *                      rw_exit(OBJECT_RWLOCK(op));
 474  461   *                      op = f(arg);
 475  462   *                      if (op == NULL) {
 476  463   *                              break;
 477  464   *                      }
 478  465   *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
 479  466   *              }
 480  467   *
 481  468   *              return (op);
 482  469   *      }
 483  470   *
 484  471   * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
 485  472   * lock reacquisition loop, while necessary, almost never executes. The function
 486  473   * pointer f (used to obtain the object pointer from arg) has the following type
 487  474   * definition:
 488  475   *
 489  476   *      typedef object_t *(*object_f)(void *arg);
 490  477   *
 491  478   * An object_f implementation is likely to be as simple as accessing a structure
 492  479   * member:
 493  480   *
 494  481   *      object_t *
 495  482   *      s_object(void *arg)
 496  483   *      {
 497  484   *              something_t *sp = arg;
 498  485   *              return (sp->s_object);
 499  486   *      }
 500  487   *
 501  488   * The flexibility of a function pointer allows the path to the object to be
 502  489   * arbitrarily complex and also supports the notion that depending on where you
 503  490   * are using the object, you may need to get it from someplace different.
 504  491   *
 505  492   * The function that releases the explicit hold is simpler because it does not
 506  493   * have to worry about the object moving:
 507  494   *
 508  495   *      void
 509  496   *      object_rele(object_t *op)
 510  497   *      {
 511  498   *              rw_exit(OBJECT_RWLOCK(op));
 512  499   *      }
 513  500   *
 514  501   * The caller is spared these details so that obtaining and releasing an
 515  502   * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
 516  503   * of object_hold() only needs to know that the returned object pointer is valid
 517  504   * if not NULL and that the object will not move until released.
 518  505   *
 519  506   * Although object_hold() prevents an object from moving, it does not prevent it
 520  507   * from being freed. The caller must take measures before calling object_hold()
 521  508   * (afterwards is too late) to ensure that the held object cannot be freed. The
 522  509   * caller must do so without accessing the unsafe object reference, so any lock
 523  510   * or reference count used to ensure the continued existence of the object must
 524  511   * live outside the object itself.
 525  512   *
 526  513   * Obtaining a new object is a special case where an explicit hold is impossible
 527  514   * for the caller. Any function that returns a newly allocated object (either as
 528  515   * a return value, or as an in-out paramter) must return it already held; after
 529  516   * the caller gets it is too late, since the object cannot be safely accessed
 530  517   * without the level of indirection described earlier. The following
 531  518   * object_alloc() example uses the same code shown earlier to transition a new
 532  519   * object into the state of being recognized (by the client) as a known object.
 533  520   * The function must acquire the hold (rw_enter) before that state transition
 534  521   * makes the object movable:
 535  522   *
 536  523   *      static object_t *
 537  524   *      object_alloc(container_t *container)
 538  525   *      {
 539  526   *              object_t *object = kmem_cache_alloc(object_cache, 0);
 540  527   *              ... set any initial state not set by the constructor ...
 541  528   *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
 542  529   *              mutex_enter(&container->c_objects_lock);
 543  530   *              list_insert_tail(&container->c_objects, object);
 544  531   *              membar_producer();
 545  532   *              object->o_container = container;
 546  533   *              mutex_exit(&container->c_objects_lock);
 547  534   *              return (object);
 548  535   *      }
 549  536   *
 550  537   * Functions that implicitly acquire an object hold (any function that calls
 551  538   * object_alloc() to supply an object for the caller) need to be carefully noted
 552  539   * so that the matching object_rele() is not neglected. Otherwise, leaked holds
 553  540   * prevent all objects hashed to the affected rwlocks from ever being moved.
 554  541   *
 555  542   * The pointer to a held object can be hashed to the holding rwlock even after
 556  543   * the object has been freed. Although it is possible to release the hold
 557  544   * after freeing the object, you may decide to release the hold implicitly in
 558  545   * whatever function frees the object, so as to release the hold as soon as
 559  546   * possible, and for the sake of symmetry with the function that implicitly
 560  547   * acquires the hold when it allocates the object. Here, object_free() releases
 561  548   * the hold acquired by object_alloc(). Its implicit object_rele() forms a
 562  549   * matching pair with object_hold():
 563  550   *
 564  551   *      void
 565  552   *      object_free(object_t *object)
 566  553   *      {
 567  554   *              container_t *container;
 568  555   *
 569  556   *              ASSERT(object_held(object));
 570  557   *              container = object->o_container;
 571  558   *              mutex_enter(&container->c_objects_lock);
 572  559   *              object->o_container =
 573  560   *                  (void *)((uintptr_t)object->o_container | 0x1);
 574  561   *              list_remove(&container->c_objects, object);
 575  562   *              mutex_exit(&container->c_objects_lock);
 576  563   *              object_rele(object);
 577  564   *              kmem_cache_free(object_cache, object);
 578  565   *      }
 579  566   *
 580  567   * Note that object_free() cannot safely accept an object pointer as an argument
 581  568   * unless the object is already held. Any function that calls object_free()
 582  569   * needs to be carefully noted since it similarly forms a matching pair with
 583  570   * object_hold().
 584  571   *
 585  572   * To complete the picture, the following callback function implements the
 586  573   * general solution by moving objects only if they are currently unheld:
 587  574   *
 588  575   *      static kmem_cbrc_t
 589  576   *      object_move(void *buf, void *newbuf, size_t size, void *arg)
 590  577   *      {
 591  578   *              object_t *op = buf, *np = newbuf;
 592  579   *              container_t *container;
 593  580   *
 594  581   *              container = op->o_container;
 595  582   *              if ((uintptr_t)container & 0x3) {
 596  583   *                      return (KMEM_CBRC_DONT_KNOW);
 597  584   *              }
 598  585   *
 599  586   *              // Ensure that the container structure does not go away.
 600  587   *              if (container_hold(container) == 0) {
 601  588   *                      return (KMEM_CBRC_DONT_KNOW);
 602  589   *              }
 603  590   *
 604  591   *              mutex_enter(&container->c_objects_lock);
 605  592   *              if (container != op->o_container) {
 606  593   *                      mutex_exit(&container->c_objects_lock);
 607  594   *                      container_rele(container);
 608  595   *                      return (KMEM_CBRC_DONT_KNOW);
 609  596   *              }
 610  597   *
 611  598   *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
 612  599   *                      mutex_exit(&container->c_objects_lock);
 613  600   *                      container_rele(container);
 614  601   *                      return (KMEM_CBRC_LATER);
 615  602   *              }
 616  603   *
 617  604   *              object_move_impl(op, np); // critical section
 618  605   *              rw_exit(OBJECT_RWLOCK(op));
 619  606   *
 620  607   *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
 621  608   *              list_link_replace(&op->o_link_node, &np->o_link_node);
 622  609   *              mutex_exit(&container->c_objects_lock);
 623  610   *              container_rele(container);
 624  611   *              return (KMEM_CBRC_YES);
 625  612   *      }
 626  613   *
 627  614   * Note that object_move() must invalidate the designated o_container pointer of
 628  615   * the old object in the same way that object_free() does, since kmem will free
 629  616   * the object in response to the KMEM_CBRC_YES return value.
 630  617   *
 631  618   * The lock order in object_move() differs from object_alloc(), which locks
 632  619   * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
 633  620   * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
 634  621   * not a problem. Holding the lock on the object list in the example above
 635  622   * through the entire callback not only prevents the object from going away, it
 636  623   * also allows you to lock the list elsewhere and know that none of its elements
 637  624   * will move during iteration.
 638  625   *
 639  626   * Adding an explicit hold everywhere an object from the cache is used is tricky
 640  627   * and involves much more change to client code than a cache-specific solution
 641  628   * that leverages existing state to decide whether or not an object is
 642  629   * movable. However, this approach has the advantage that no object remains
 643  630   * immovable for any significant length of time, making it extremely unlikely
 644  631   * that long-lived allocations can continue holding slabs hostage; and it works
 645  632   * for any cache.
 646  633   *
 647  634   * 3. Consolidator Implementation
 648  635   *
 649  636   * Once the client supplies a move function that a) recognizes known objects and
 650  637   * b) avoids moving objects that are actively in use, the remaining work is up
 651  638   * to the consolidator to decide which objects to move and when to issue
 652  639   * callbacks.
 653  640   *
 654  641   * The consolidator relies on the fact that a cache's slabs are ordered by
 655  642   * usage. Each slab has a fixed number of objects. Depending on the slab's
 656  643   * "color" (the offset of the first object from the beginning of the slab;
 657  644   * offsets are staggered to mitigate false sharing of cache lines) it is either
 658  645   * the maximum number of objects per slab determined at cache creation time or
 659  646   * else the number closest to the maximum that fits within the space remaining
 660  647   * after the initial offset. A completely allocated slab may contribute some
 661  648   * internal fragmentation (per-slab overhead) but no external fragmentation, so
 662  649   * it is of no interest to the consolidator. At the other extreme, slabs whose
 663  650   * objects have all been freed to the slab are released to the virtual memory
 664  651   * (VM) subsystem (objects freed to magazines are still allocated as far as the
 665  652   * slab is concerned). External fragmentation exists when there are slabs
 666  653   * somewhere between these extremes. A partial slab has at least one but not all
 667  654   * of its objects allocated. The more partial slabs, and the fewer allocated
 668  655   * objects on each of them, the higher the fragmentation. Hence the
 669  656   * consolidator's overall strategy is to reduce the number of partial slabs by
 670  657   * moving allocated objects from the least allocated slabs to the most allocated
 671  658   * slabs.
 672  659   *
 673  660   * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
 674  661   * slabs are kept separately in an unordered list. Since the majority of slabs
 675  662   * tend to be completely allocated (a typical unfragmented cache may have
 676  663   * thousands of complete slabs and only a single partial slab), separating
 677  664   * complete slabs improves the efficiency of partial slab ordering, since the
 678  665   * complete slabs do not affect the depth or balance of the AVL tree. This
 679  666   * ordered sequence of partial slabs acts as a "free list" supplying objects for
 680  667   * allocation requests.
 681  668   *
 682  669   * Objects are always allocated from the first partial slab in the free list,
 683  670   * where the allocation is most likely to eliminate a partial slab (by
 684  671   * completely allocating it). Conversely, when a single object from a completely
 685  672   * allocated slab is freed to the slab, that slab is added to the front of the
 686  673   * free list. Since most free list activity involves highly allocated slabs
 687  674   * coming and going at the front of the list, slabs tend naturally toward the
 688  675   * ideal order: highly allocated at the front, sparsely allocated at the back.
 689  676   * Slabs with few allocated objects are likely to become completely free if they
 690  677   * keep a safe distance away from the front of the free list. Slab misorders
 691  678   * interfere with the natural tendency of slabs to become completely free or
 692  679   * completely allocated. For example, a slab with a single allocated object
 693  680   * needs only a single free to escape the cache; its natural desire is
 694  681   * frustrated when it finds itself at the front of the list where a second
 695  682   * allocation happens just before the free could have released it. Another slab
 696  683   * with all but one object allocated might have supplied the buffer instead, so
 697  684   * that both (as opposed to neither) of the slabs would have been taken off the
 698  685   * free list.
 699  686   *
 700  687   * Although slabs tend naturally toward the ideal order, misorders allowed by a
 701  688   * simple list implementation defeat the consolidator's strategy of merging
 702  689   * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
 703  690   * needs another way to fix misorders to optimize its callback strategy. One
 704  691   * approach is to periodically scan a limited number of slabs, advancing a
 705  692   * marker to hold the current scan position, and to move extreme misorders to
 706  693   * the front or back of the free list and to the front or back of the current
 707  694   * scan range. By making consecutive scan ranges overlap by one slab, the least
 708  695   * allocated slab in the current range can be carried along from the end of one
 709  696   * scan to the start of the next.
 710  697   *
 711  698   * Maintaining partial slabs in an AVL tree relieves kmem of this additional
 712  699   * task, however. Since most of the cache's activity is in the magazine layer,
 713  700   * and allocations from the slab layer represent only a startup cost, the
 714  701   * overhead of maintaining a balanced tree is not a significant concern compared
 715  702   * to the opportunity of reducing complexity by eliminating the partial slab
 716  703   * scanner just described. The overhead of an AVL tree is minimized by
 717  704   * maintaining only partial slabs in the tree and keeping completely allocated
 718  705   * slabs separately in a list. To avoid increasing the size of the slab
 719  706   * structure the AVL linkage pointers are reused for the slab's list linkage,
 720  707   * since the slab will always be either partial or complete, never stored both
 721  708   * ways at the same time. To further minimize the overhead of the AVL tree the
 722  709   * compare function that orders partial slabs by usage divides the range of
 723  710   * allocated object counts into bins such that counts within the same bin are
 724  711   * considered equal. Binning partial slabs makes it less likely that allocating
 725  712   * or freeing a single object will change the slab's order, requiring a tree
 726  713   * reinsertion (an avl_remove() followed by an avl_add(), both potentially
 727  714   * requiring some rebalancing of the tree). Allocation counts closest to
 728  715   * completely free and completely allocated are left unbinned (finely sorted) to
 729  716   * better support the consolidator's strategy of merging slabs at either
 730  717   * extreme.
 731  718   *
 732  719   * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
 733  720   *
 734  721   * The consolidator piggybacks on the kmem maintenance thread and is called on
 735  722   * the same interval as kmem_cache_update(), once per cache every fifteen
 736  723   * seconds. kmem maintains a running count of unallocated objects in the slab
 737  724   * layer (cache_bufslab). The consolidator checks whether that number exceeds
 738  725   * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
 739  726   * there is a significant number of slabs in the cache (arbitrarily a minimum
 740  727   * 101 total slabs). Unused objects that have fallen out of the magazine layer's
 741  728   * working set are included in the assessment, and magazines in the depot are
 742  729   * reaped if those objects would lift cache_bufslab above the fragmentation
 743  730   * threshold. Once the consolidator decides that a cache is fragmented, it looks
 744  731   * for a candidate slab to reclaim, starting at the end of the partial slab free
 745  732   * list and scanning backwards. At first the consolidator is choosy: only a slab
 746  733   * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
 747  734   * single allocated object, regardless of percentage). If there is difficulty
 748  735   * finding a candidate slab, kmem raises the allocation threshold incrementally,
 749  736   * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
 750  737   * external fragmentation (unused objects on the free list) below 12.5% (1/8),
 751  738   * even in the worst case of every slab in the cache being almost 7/8 allocated.
 752  739   * The threshold can also be lowered incrementally when candidate slabs are easy
 753  740   * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
 754  741   * is no longer fragmented.
 755  742   *
 756  743   * 3.2 Generating Callbacks
 757  744   *
 758  745   * Once an eligible slab is chosen, a callback is generated for every allocated
 759  746   * object on the slab, in the hope that the client will move everything off the
 760  747   * slab and make it reclaimable. Objects selected as move destinations are
 761  748   * chosen from slabs at the front of the free list. Assuming slabs in the ideal
 762  749   * order (most allocated at the front, least allocated at the back) and a
 763  750   * cooperative client, the consolidator will succeed in removing slabs from both
 764  751   * ends of the free list, completely allocating on the one hand and completely
 765  752   * freeing on the other. Objects selected as move destinations are allocated in
 766  753   * the kmem maintenance thread where move requests are enqueued. A separate
 767  754   * callback thread removes pending callbacks from the queue and calls the
 768  755   * client. The separate thread ensures that client code (the move function) does
 769  756   * not interfere with internal kmem maintenance tasks. A map of pending
 770  757   * callbacks keyed by object address (the object to be moved) is checked to
 771  758   * ensure that duplicate callbacks are not generated for the same object.
 772  759   * Allocating the move destination (the object to move to) prevents subsequent
 773  760   * callbacks from selecting the same destination as an earlier pending callback.
 774  761   *
 775  762   * Move requests can also be generated by kmem_cache_reap() when the system is
 776  763   * desperate for memory and by kmem_cache_move_notify(), called by the client to
 777  764   * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
 778  765   * The map of pending callbacks is protected by the same lock that protects the
 779  766   * slab layer.
 780  767   *
 781  768   * When the system is desperate for memory, kmem does not bother to determine
 782  769   * whether or not the cache exceeds the fragmentation threshold, but tries to
 783  770   * consolidate as many slabs as possible. Normally, the consolidator chews
 784  771   * slowly, one sparsely allocated slab at a time during each maintenance
 785  772   * interval that the cache is fragmented. When desperate, the consolidator
 786  773   * starts at the last partial slab and enqueues callbacks for every allocated
 787  774   * object on every partial slab, working backwards until it reaches the first
 788  775   * partial slab. The first partial slab, meanwhile, advances in pace with the
 789  776   * consolidator as allocations to supply move destinations for the enqueued
 790  777   * callbacks use up the highly allocated slabs at the front of the free list.
 791  778   * Ideally, the overgrown free list collapses like an accordion, starting at
 792  779   * both ends and ending at the center with a single partial slab.
 793  780   *
 794  781   * 3.3 Client Responses
 795  782   *
 796  783   * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
 797  784   * marks the slab that supplied the stuck object non-reclaimable and moves it to
 798  785   * front of the free list. The slab remains marked as long as it remains on the
 799  786   * free list, and it appears more allocated to the partial slab compare function
 800  787   * than any unmarked slab, no matter how many of its objects are allocated.
 801  788   * Since even one immovable object ties up the entire slab, the goal is to
 802  789   * completely allocate any slab that cannot be completely freed. kmem does not
 803  790   * bother generating callbacks to move objects from a marked slab unless the
 804  791   * system is desperate.
 805  792   *
 806  793   * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
 807  794   * slab. If the client responds LATER too many times, kmem disbelieves and
 808  795   * treats the response as a NO. The count is cleared when the slab is taken off
 809  796   * the partial slab list or when the client moves one of the slab's objects.
 810  797   *
 811  798   * 4. Observability
 812  799   *
 813  800   * A kmem cache's external fragmentation is best observed with 'mdb -k' using
 814  801   * the ::kmem_slabs dcmd. For a complete description of the command, enter
 815  802   * '::help kmem_slabs' at the mdb prompt.
 816  803   */
 817  804  
 818  805  #include <sys/kmem_impl.h>
 819  806  #include <sys/vmem_impl.h>
 820  807  #include <sys/param.h>
 821  808  #include <sys/sysmacros.h>
 822  809  #include <sys/vm.h>
 823  810  #include <sys/proc.h>
 824  811  #include <sys/tuneable.h>
 825  812  #include <sys/systm.h>
 826  813  #include <sys/cmn_err.h>
 827  814  #include <sys/debug.h>
 828  815  #include <sys/sdt.h>
 829  816  #include <sys/mutex.h>
 830  817  #include <sys/bitmap.h>
 831  818  #include <sys/atomic.h>
 832  819  #include <sys/kobj.h>
 833  820  #include <sys/disp.h>
 834  821  #include <vm/seg_kmem.h>
 835  822  #include <sys/log.h>
 836  823  #include <sys/callb.h>
 837  824  #include <sys/taskq.h>
 838  825  #include <sys/modctl.h>
 839  826  #include <sys/reboot.h>
 840  827  #include <sys/id32.h>
 841  828  #include <sys/zone.h>
 842  829  #include <sys/netstack.h>
 843  830  #ifdef  DEBUG
 844  831  #include <sys/random.h>
 845  832  #endif
 846  833  
 847  834  extern void streams_msg_init(void);
 848  835  extern int segkp_fromheap;
 849  836  extern void segkp_cache_free(void);
 850  837  extern int callout_init_done;
 851  838  
 852  839  struct kmem_cache_kstat {
 853  840          kstat_named_t   kmc_buf_size;
 854  841          kstat_named_t   kmc_align;
 855  842          kstat_named_t   kmc_chunk_size;
 856  843          kstat_named_t   kmc_slab_size;
 857  844          kstat_named_t   kmc_alloc;
 858  845          kstat_named_t   kmc_alloc_fail;
 859  846          kstat_named_t   kmc_free;
 860  847          kstat_named_t   kmc_depot_alloc;
 861  848          kstat_named_t   kmc_depot_free;
 862  849          kstat_named_t   kmc_depot_contention;
 863  850          kstat_named_t   kmc_slab_alloc;
 864  851          kstat_named_t   kmc_slab_free;
 865  852          kstat_named_t   kmc_buf_constructed;
 866  853          kstat_named_t   kmc_buf_avail;
 867  854          kstat_named_t   kmc_buf_inuse;
 868  855          kstat_named_t   kmc_buf_total;
 869  856          kstat_named_t   kmc_buf_max;
 870  857          kstat_named_t   kmc_slab_create;
 871  858          kstat_named_t   kmc_slab_destroy;
 872  859          kstat_named_t   kmc_vmem_source;
 873  860          kstat_named_t   kmc_hash_size;
 874  861          kstat_named_t   kmc_hash_lookup_depth;
 875  862          kstat_named_t   kmc_hash_rescale;
 876  863          kstat_named_t   kmc_full_magazines;
 877  864          kstat_named_t   kmc_empty_magazines;
 878  865          kstat_named_t   kmc_magazine_size;
 879  866          kstat_named_t   kmc_reap; /* number of kmem_cache_reap() calls */
 880  867          kstat_named_t   kmc_defrag; /* attempts to defrag all partial slabs */
 881  868          kstat_named_t   kmc_scan; /* attempts to defrag one partial slab */
 882  869          kstat_named_t   kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
 883  870          kstat_named_t   kmc_move_yes;
 884  871          kstat_named_t   kmc_move_no;
 885  872          kstat_named_t   kmc_move_later;
 886  873          kstat_named_t   kmc_move_dont_need;
 887  874          kstat_named_t   kmc_move_dont_know; /* obj unrecognized by client ... */
 888  875          kstat_named_t   kmc_move_hunt_found; /* ... but found in mag layer */
 889  876          kstat_named_t   kmc_move_slabs_freed; /* slabs freed by consolidator */
 890  877          kstat_named_t   kmc_move_reclaimable; /* buffers, if consolidator ran */
 891  878  } kmem_cache_kstat = {
 892  879          { "buf_size",           KSTAT_DATA_UINT64 },
 893  880          { "align",              KSTAT_DATA_UINT64 },
 894  881          { "chunk_size",         KSTAT_DATA_UINT64 },
 895  882          { "slab_size",          KSTAT_DATA_UINT64 },
 896  883          { "alloc",              KSTAT_DATA_UINT64 },
 897  884          { "alloc_fail",         KSTAT_DATA_UINT64 },
 898  885          { "free",               KSTAT_DATA_UINT64 },
 899  886          { "depot_alloc",        KSTAT_DATA_UINT64 },
 900  887          { "depot_free",         KSTAT_DATA_UINT64 },
 901  888          { "depot_contention",   KSTAT_DATA_UINT64 },
 902  889          { "slab_alloc",         KSTAT_DATA_UINT64 },
 903  890          { "slab_free",          KSTAT_DATA_UINT64 },
 904  891          { "buf_constructed",    KSTAT_DATA_UINT64 },
 905  892          { "buf_avail",          KSTAT_DATA_UINT64 },
 906  893          { "buf_inuse",          KSTAT_DATA_UINT64 },
 907  894          { "buf_total",          KSTAT_DATA_UINT64 },
 908  895          { "buf_max",            KSTAT_DATA_UINT64 },
 909  896          { "slab_create",        KSTAT_DATA_UINT64 },
 910  897          { "slab_destroy",       KSTAT_DATA_UINT64 },
 911  898          { "vmem_source",        KSTAT_DATA_UINT64 },
 912  899          { "hash_size",          KSTAT_DATA_UINT64 },
 913  900          { "hash_lookup_depth",  KSTAT_DATA_UINT64 },
 914  901          { "hash_rescale",       KSTAT_DATA_UINT64 },
 915  902          { "full_magazines",     KSTAT_DATA_UINT64 },
 916  903          { "empty_magazines",    KSTAT_DATA_UINT64 },
 917  904          { "magazine_size",      KSTAT_DATA_UINT64 },
 918  905          { "reap",               KSTAT_DATA_UINT64 },
 919  906          { "defrag",             KSTAT_DATA_UINT64 },
 920  907          { "scan",               KSTAT_DATA_UINT64 },
 921  908          { "move_callbacks",     KSTAT_DATA_UINT64 },
 922  909          { "move_yes",           KSTAT_DATA_UINT64 },
 923  910          { "move_no",            KSTAT_DATA_UINT64 },
 924  911          { "move_later",         KSTAT_DATA_UINT64 },
 925  912          { "move_dont_need",     KSTAT_DATA_UINT64 },
 926  913          { "move_dont_know",     KSTAT_DATA_UINT64 },
 927  914          { "move_hunt_found",    KSTAT_DATA_UINT64 },
 928  915          { "move_slabs_freed",   KSTAT_DATA_UINT64 },
 929  916          { "move_reclaimable",   KSTAT_DATA_UINT64 },
 930  917  };
 931  918  
 932  919  static kmutex_t kmem_cache_kstat_lock;
 933  920  
 934  921  /*
 935  922   * The default set of caches to back kmem_alloc().
 936  923   * These sizes should be reevaluated periodically.
 937  924   *
 938  925   * We want allocations that are multiples of the coherency granularity
 939  926   * (64 bytes) to be satisfied from a cache which is a multiple of 64
 940  927   * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
 941  928   * the next kmem_cache_size greater than or equal to it must be a
 942  929   * multiple of 64.
 943  930   *
 944  931   * We split the table into two sections:  size <= 4k and size > 4k.  This
 945  932   * saves a lot of space and cache footprint in our cache tables.
 946  933   */
 947  934  static const int kmem_alloc_sizes[] = {
 948  935          1 * 8,
 949  936          2 * 8,
 950  937          3 * 8,
 951  938          4 * 8,          5 * 8,          6 * 8,          7 * 8,
 952  939          4 * 16,         5 * 16,         6 * 16,         7 * 16,
 953  940          4 * 32,         5 * 32,         6 * 32,         7 * 32,
 954  941          4 * 64,         5 * 64,         6 * 64,         7 * 64,
 955  942          4 * 128,        5 * 128,        6 * 128,        7 * 128,
 956  943          P2ALIGN(8192 / 7, 64),
 957  944          P2ALIGN(8192 / 6, 64),
 958  945          P2ALIGN(8192 / 5, 64),
 959  946          P2ALIGN(8192 / 4, 64),
 960  947          P2ALIGN(8192 / 3, 64),
 961  948          P2ALIGN(8192 / 2, 64),
 962  949  };
 963  950  
 964  951  static const int kmem_big_alloc_sizes[] = {
 965  952          2 * 4096,       3 * 4096,
 966  953          2 * 8192,       3 * 8192,
 967  954          4 * 8192,       5 * 8192,       6 * 8192,       7 * 8192,
 968  955          8 * 8192,       9 * 8192,       10 * 8192,      11 * 8192,
 969  956          12 * 8192,      13 * 8192,      14 * 8192,      15 * 8192,
 970  957          16 * 8192
 971  958  };
 972  959  
 973  960  #define KMEM_MAXBUF             4096
 974  961  #define KMEM_BIG_MAXBUF_32BIT   32768
 975  962  #define KMEM_BIG_MAXBUF         131072
 976  963  
 977  964  #define KMEM_BIG_MULTIPLE       4096    /* big_alloc_sizes must be a multiple */
 978  965  #define KMEM_BIG_SHIFT          12      /* lg(KMEM_BIG_MULTIPLE) */
 979  966  
 980  967  static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
 981  968  static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
 982  969  
 983  970  #define KMEM_ALLOC_TABLE_MAX    (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
 984  971  static size_t kmem_big_alloc_table_max = 0;     /* # of filled elements */
 985  972  
 986  973  static kmem_magtype_t kmem_magtype[] = {
 987  974          { 1,    8,      3200,   65536   },
 988  975          { 3,    16,     256,    32768   },
 989  976          { 7,    32,     64,     16384   },
 990  977          { 15,   64,     0,      8192    },
 991  978          { 31,   64,     0,      4096    },
 992  979          { 47,   64,     0,      2048    },
 993  980          { 63,   64,     0,      1024    },
 994  981          { 95,   64,     0,      512     },
 995  982          { 143,  64,     0,      0       },
 996  983  };
 997  984  
 998  985  static uint32_t kmem_reaping;
 999  986  static uint32_t kmem_reaping_idspace;
1000  987  
1001  988  /*
1002  989   * kmem tunables
1003  990   */
  
    | 
      ↓ open down ↓ | 
    689 lines elided | 
    
      ↑ open up ↑ | 
  
1004  991  clock_t kmem_reap_interval;     /* cache reaping rate [15 * HZ ticks] */
1005  992  int kmem_depot_contention = 3;  /* max failed tryenters per real interval */
1006  993  pgcnt_t kmem_reapahead = 0;     /* start reaping N pages before pageout */
1007  994  int kmem_panic = 1;             /* whether to panic on error */
1008  995  int kmem_logging = 1;           /* kmem_log_enter() override */
1009  996  uint32_t kmem_mtbf = 0;         /* mean time between failures [default: off] */
1010  997  size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
1011  998  size_t kmem_content_log_size;   /* content log size [2% of memory] */
1012  999  size_t kmem_failure_log_size;   /* failure log [4 pages per CPU] */
1013 1000  size_t kmem_slab_log_size;      /* slab create log [4 pages per CPU] */
1014      -size_t kmem_zerosized_log_size; /* zero-sized log [4 pages per CPU] */
1015 1001  size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
1016 1002  size_t kmem_lite_minsize = 0;   /* minimum buffer size for KMF_LITE */
1017 1003  size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
1018 1004  int kmem_lite_pcs = 4;          /* number of PCs to store in KMF_LITE mode */
1019 1005  size_t kmem_maxverify;          /* maximum bytes to inspect in debug routines */
1020 1006  size_t kmem_minfirewall;        /* hardware-enforced redzone threshold */
1021 1007  
1022      -#ifdef DEBUG
1023      -int kmem_warn_zerosized = 1;    /* whether to warn on zero-sized KM_SLEEP */
1024      -#else
1025      -int kmem_warn_zerosized = 0;    /* whether to warn on zero-sized KM_SLEEP */
1026      -#endif
1027      -
1028      -int kmem_panic_zerosized = 0;   /* whether to panic on zero-sized KM_SLEEP */
1029      -
1030 1008  #ifdef _LP64
1031 1009  size_t  kmem_max_cached = KMEM_BIG_MAXBUF;      /* maximum kmem_alloc cache */
1032 1010  #else
1033 1011  size_t  kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1034 1012  #endif
1035 1013  
1036 1014  #ifdef DEBUG
1037 1015  int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
1038 1016  #else
1039 1017  int kmem_flags = 0;
1040 1018  #endif
1041 1019  int kmem_ready;
1042 1020  
1043 1021  static kmem_cache_t     *kmem_slab_cache;
1044 1022  static kmem_cache_t     *kmem_bufctl_cache;
1045 1023  static kmem_cache_t     *kmem_bufctl_audit_cache;
1046 1024  
1047 1025  static kmutex_t         kmem_cache_lock;        /* inter-cache linkage only */
1048 1026  static list_t           kmem_caches;
1049 1027  
1050 1028  static taskq_t          *kmem_taskq;
1051 1029  static kmutex_t         kmem_flags_lock;
1052 1030  static vmem_t           *kmem_metadata_arena;
  
    | 
      ↓ open down ↓ | 
    13 lines elided | 
    
      ↑ open up ↑ | 
  
1053 1031  static vmem_t           *kmem_msb_arena;        /* arena for metadata caches */
1054 1032  static vmem_t           *kmem_cache_arena;
1055 1033  static vmem_t           *kmem_hash_arena;
1056 1034  static vmem_t           *kmem_log_arena;
1057 1035  static vmem_t           *kmem_oversize_arena;
1058 1036  static vmem_t           *kmem_va_arena;
1059 1037  static vmem_t           *kmem_default_arena;
1060 1038  static vmem_t           *kmem_firewall_va_arena;
1061 1039  static vmem_t           *kmem_firewall_arena;
1062 1040  
1063      -static int              kmem_zerosized;         /* # of zero-sized allocs */
     1041 +/*
     1042 + * Define KMEM_STATS to turn on statistic gathering. By default, it is only
     1043 + * turned on when DEBUG is also defined.
     1044 + */
     1045 +#ifdef  DEBUG
     1046 +#define KMEM_STATS
     1047 +#endif  /* DEBUG */
1064 1048  
     1049 +#ifdef  KMEM_STATS
     1050 +#define KMEM_STAT_ADD(stat)                     ((stat)++)
     1051 +#define KMEM_STAT_COND_ADD(cond, stat)          ((void) (!(cond) || (stat)++))
     1052 +#else
     1053 +#define KMEM_STAT_ADD(stat)                     /* nothing */
     1054 +#define KMEM_STAT_COND_ADD(cond, stat)          /* nothing */
     1055 +#endif  /* KMEM_STATS */
     1056 +
1065 1057  /*
1066 1058   * kmem slab consolidator thresholds (tunables)
1067 1059   */
1068 1060  size_t kmem_frag_minslabs = 101;        /* minimum total slabs */
1069 1061  size_t kmem_frag_numer = 1;             /* free buffers (numerator) */
1070 1062  size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1071 1063  /*
1072 1064   * Maximum number of slabs from which to move buffers during a single
1073 1065   * maintenance interval while the system is not low on memory.
1074 1066   */
1075 1067  size_t kmem_reclaim_max_slabs = 1;
1076 1068  /*
1077 1069   * Number of slabs to scan backwards from the end of the partial slab list
1078 1070   * when searching for buffers to relocate.
1079 1071   */
1080 1072  size_t kmem_reclaim_scan_range = 12;
1081 1073  
     1074 +#ifdef  KMEM_STATS
     1075 +static struct {
     1076 +        uint64_t kms_callbacks;
     1077 +        uint64_t kms_yes;
     1078 +        uint64_t kms_no;
     1079 +        uint64_t kms_later;
     1080 +        uint64_t kms_dont_need;
     1081 +        uint64_t kms_dont_know;
     1082 +        uint64_t kms_hunt_found_mag;
     1083 +        uint64_t kms_hunt_found_slab;
     1084 +        uint64_t kms_hunt_alloc_fail;
     1085 +        uint64_t kms_hunt_lucky;
     1086 +        uint64_t kms_notify;
     1087 +        uint64_t kms_notify_callbacks;
     1088 +        uint64_t kms_disbelief;
     1089 +        uint64_t kms_already_pending;
     1090 +        uint64_t kms_callback_alloc_fail;
     1091 +        uint64_t kms_callback_taskq_fail;
     1092 +        uint64_t kms_endscan_slab_dead;
     1093 +        uint64_t kms_endscan_slab_destroyed;
     1094 +        uint64_t kms_endscan_nomem;
     1095 +        uint64_t kms_endscan_refcnt_changed;
     1096 +        uint64_t kms_endscan_nomove_changed;
     1097 +        uint64_t kms_endscan_freelist;
     1098 +        uint64_t kms_avl_update;
     1099 +        uint64_t kms_avl_noupdate;
     1100 +        uint64_t kms_no_longer_reclaimable;
     1101 +        uint64_t kms_notify_no_longer_reclaimable;
     1102 +        uint64_t kms_notify_slab_dead;
     1103 +        uint64_t kms_notify_slab_destroyed;
     1104 +        uint64_t kms_alloc_fail;
     1105 +        uint64_t kms_constructor_fail;
     1106 +        uint64_t kms_dead_slabs_freed;
     1107 +        uint64_t kms_defrags;
     1108 +        uint64_t kms_scans;
     1109 +        uint64_t kms_scan_depot_ws_reaps;
     1110 +        uint64_t kms_debug_reaps;
     1111 +        uint64_t kms_debug_scans;
     1112 +} kmem_move_stats;
     1113 +#endif  /* KMEM_STATS */
     1114 +
1082 1115  /* consolidator knobs */
1083 1116  static boolean_t kmem_move_noreap;
1084 1117  static boolean_t kmem_move_blocked;
1085 1118  static boolean_t kmem_move_fulltilt;
1086 1119  static boolean_t kmem_move_any_partial;
1087 1120  
1088 1121  #ifdef  DEBUG
1089 1122  /*
1090 1123   * kmem consolidator debug tunables:
1091 1124   * Ensure code coverage by occasionally running the consolidator even when the
1092 1125   * caches are not fragmented (they may never be). These intervals are mean time
1093 1126   * in cache maintenance intervals (kmem_cache_update).
1094 1127   */
1095 1128  uint32_t kmem_mtb_move = 60;    /* defrag 1 slab (~15min) */
1096 1129  uint32_t kmem_mtb_reap = 1800;  /* defrag all slabs (~7.5hrs) */
1097 1130  #endif  /* DEBUG */
1098 1131  
1099 1132  static kmem_cache_t     *kmem_defrag_cache;
1100 1133  static kmem_cache_t     *kmem_move_cache;
1101 1134  static taskq_t          *kmem_move_taskq;
  
    | 
      ↓ open down ↓ | 
    10 lines elided | 
    
      ↑ open up ↑ | 
  
1102 1135  
1103 1136  static void kmem_cache_scan(kmem_cache_t *);
1104 1137  static void kmem_cache_defrag(kmem_cache_t *);
1105 1138  static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1106 1139  
1107 1140  
1108 1141  kmem_log_header_t       *kmem_transaction_log;
1109 1142  kmem_log_header_t       *kmem_content_log;
1110 1143  kmem_log_header_t       *kmem_failure_log;
1111 1144  kmem_log_header_t       *kmem_slab_log;
1112      -kmem_log_header_t       *kmem_zerosized_log;
1113 1145  
1114 1146  static int              kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1115 1147  
1116 1148  #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller)                       \
1117 1149          if ((count) > 0) {                                              \
1118 1150                  pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history;    \
1119 1151                  pc_t *_e;                                               \
1120 1152                  /* memmove() the old entries down one notch */          \
1121 1153                  for (_e = &_s[(count) - 1]; _e > _s; _e--)              \
1122 1154                          *_e = *(_e - 1);                                \
1123 1155                  *_s = (uintptr_t)(caller);                              \
1124 1156          }
1125 1157  
1126 1158  #define KMERR_MODIFIED  0       /* buffer modified while on freelist */
1127 1159  #define KMERR_REDZONE   1       /* redzone violation (write past end of buf) */
1128 1160  #define KMERR_DUPFREE   2       /* freed a buffer twice */
1129 1161  #define KMERR_BADADDR   3       /* freed a bad (unallocated) address */
1130 1162  #define KMERR_BADBUFTAG 4       /* buftag corrupted */
1131 1163  #define KMERR_BADBUFCTL 5       /* bufctl corrupted */
1132 1164  #define KMERR_BADCACHE  6       /* freed a buffer to the wrong cache */
1133 1165  #define KMERR_BADSIZE   7       /* alloc size != free size */
1134 1166  #define KMERR_BADBASE   8       /* buffer base address wrong */
1135 1167  
1136 1168  struct {
1137 1169          hrtime_t        kmp_timestamp;  /* timestamp of panic */
1138 1170          int             kmp_error;      /* type of kmem error */
1139 1171          void            *kmp_buffer;    /* buffer that induced panic */
1140 1172          void            *kmp_realbuf;   /* real start address for buffer */
1141 1173          kmem_cache_t    *kmp_cache;     /* buffer's cache according to client */
1142 1174          kmem_cache_t    *kmp_realcache; /* actual cache containing buffer */
1143 1175          kmem_slab_t     *kmp_slab;      /* slab accoring to kmem_findslab() */
1144 1176          kmem_bufctl_t   *kmp_bufctl;    /* bufctl */
1145 1177  } kmem_panic_info;
1146 1178  
1147 1179  
1148 1180  static void
1149 1181  copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1150 1182  {
1151 1183          uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1152 1184          uint64_t *buf = buf_arg;
1153 1185  
1154 1186          while (buf < bufend)
1155 1187                  *buf++ = pattern;
1156 1188  }
1157 1189  
1158 1190  static void *
1159 1191  verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1160 1192  {
1161 1193          uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1162 1194          uint64_t *buf;
1163 1195  
1164 1196          for (buf = buf_arg; buf < bufend; buf++)
1165 1197                  if (*buf != pattern)
1166 1198                          return (buf);
1167 1199          return (NULL);
1168 1200  }
1169 1201  
1170 1202  static void *
1171 1203  verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1172 1204  {
1173 1205          uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1174 1206          uint64_t *buf;
1175 1207  
1176 1208          for (buf = buf_arg; buf < bufend; buf++) {
1177 1209                  if (*buf != old) {
1178 1210                          copy_pattern(old, buf_arg,
1179 1211                              (char *)buf - (char *)buf_arg);
1180 1212                          return (buf);
1181 1213                  }
1182 1214                  *buf = new;
1183 1215          }
1184 1216  
1185 1217          return (NULL);
1186 1218  }
1187 1219  
1188 1220  static void
1189 1221  kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1190 1222  {
1191 1223          kmem_cache_t *cp;
1192 1224  
1193 1225          mutex_enter(&kmem_cache_lock);
1194 1226          for (cp = list_head(&kmem_caches); cp != NULL;
1195 1227              cp = list_next(&kmem_caches, cp))
1196 1228                  if (tq != NULL)
1197 1229                          (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1198 1230                              tqflag);
1199 1231                  else
1200 1232                          func(cp);
1201 1233          mutex_exit(&kmem_cache_lock);
1202 1234  }
1203 1235  
1204 1236  static void
1205 1237  kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1206 1238  {
1207 1239          kmem_cache_t *cp;
1208 1240  
1209 1241          mutex_enter(&kmem_cache_lock);
1210 1242          for (cp = list_head(&kmem_caches); cp != NULL;
1211 1243              cp = list_next(&kmem_caches, cp)) {
1212 1244                  if (!(cp->cache_cflags & KMC_IDENTIFIER))
1213 1245                          continue;
1214 1246                  if (tq != NULL)
1215 1247                          (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1216 1248                              tqflag);
1217 1249                  else
1218 1250                          func(cp);
1219 1251          }
1220 1252          mutex_exit(&kmem_cache_lock);
1221 1253  }
1222 1254  
1223 1255  /*
1224 1256   * Debugging support.  Given a buffer address, find its slab.
1225 1257   */
1226 1258  static kmem_slab_t *
1227 1259  kmem_findslab(kmem_cache_t *cp, void *buf)
1228 1260  {
1229 1261          kmem_slab_t *sp;
1230 1262  
1231 1263          mutex_enter(&cp->cache_lock);
1232 1264          for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1233 1265              sp = list_next(&cp->cache_complete_slabs, sp)) {
1234 1266                  if (KMEM_SLAB_MEMBER(sp, buf)) {
1235 1267                          mutex_exit(&cp->cache_lock);
1236 1268                          return (sp);
1237 1269                  }
1238 1270          }
1239 1271          for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1240 1272              sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1241 1273                  if (KMEM_SLAB_MEMBER(sp, buf)) {
1242 1274                          mutex_exit(&cp->cache_lock);
1243 1275                          return (sp);
1244 1276                  }
1245 1277          }
1246 1278          mutex_exit(&cp->cache_lock);
1247 1279  
1248 1280          return (NULL);
1249 1281  }
1250 1282  
1251 1283  static void
1252 1284  kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1253 1285  {
1254 1286          kmem_buftag_t *btp = NULL;
1255 1287          kmem_bufctl_t *bcp = NULL;
1256 1288          kmem_cache_t *cp = cparg;
1257 1289          kmem_slab_t *sp;
1258 1290          uint64_t *off;
1259 1291          void *buf = bufarg;
1260 1292  
1261 1293          kmem_logging = 0;       /* stop logging when a bad thing happens */
1262 1294  
1263 1295          kmem_panic_info.kmp_timestamp = gethrtime();
1264 1296  
1265 1297          sp = kmem_findslab(cp, buf);
1266 1298          if (sp == NULL) {
1267 1299                  for (cp = list_tail(&kmem_caches); cp != NULL;
1268 1300                      cp = list_prev(&kmem_caches, cp)) {
1269 1301                          if ((sp = kmem_findslab(cp, buf)) != NULL)
1270 1302                                  break;
1271 1303                  }
1272 1304          }
1273 1305  
1274 1306          if (sp == NULL) {
1275 1307                  cp = NULL;
1276 1308                  error = KMERR_BADADDR;
1277 1309          } else {
1278 1310                  if (cp != cparg)
1279 1311                          error = KMERR_BADCACHE;
1280 1312                  else
1281 1313                          buf = (char *)bufarg - ((uintptr_t)bufarg -
1282 1314                              (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1283 1315                  if (buf != bufarg)
1284 1316                          error = KMERR_BADBASE;
1285 1317                  if (cp->cache_flags & KMF_BUFTAG)
1286 1318                          btp = KMEM_BUFTAG(cp, buf);
1287 1319                  if (cp->cache_flags & KMF_HASH) {
1288 1320                          mutex_enter(&cp->cache_lock);
1289 1321                          for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1290 1322                                  if (bcp->bc_addr == buf)
1291 1323                                          break;
1292 1324                          mutex_exit(&cp->cache_lock);
1293 1325                          if (bcp == NULL && btp != NULL)
1294 1326                                  bcp = btp->bt_bufctl;
1295 1327                          if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1296 1328                              NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1297 1329                              bcp->bc_addr != buf) {
1298 1330                                  error = KMERR_BADBUFCTL;
1299 1331                                  bcp = NULL;
1300 1332                          }
1301 1333                  }
1302 1334          }
1303 1335  
1304 1336          kmem_panic_info.kmp_error = error;
1305 1337          kmem_panic_info.kmp_buffer = bufarg;
1306 1338          kmem_panic_info.kmp_realbuf = buf;
1307 1339          kmem_panic_info.kmp_cache = cparg;
1308 1340          kmem_panic_info.kmp_realcache = cp;
1309 1341          kmem_panic_info.kmp_slab = sp;
1310 1342          kmem_panic_info.kmp_bufctl = bcp;
1311 1343  
1312 1344          printf("kernel memory allocator: ");
1313 1345  
1314 1346          switch (error) {
1315 1347  
1316 1348          case KMERR_MODIFIED:
1317 1349                  printf("buffer modified after being freed\n");
1318 1350                  off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1319 1351                  if (off == NULL)        /* shouldn't happen */
1320 1352                          off = buf;
1321 1353                  printf("modification occurred at offset 0x%lx "
1322 1354                      "(0x%llx replaced by 0x%llx)\n",
1323 1355                      (uintptr_t)off - (uintptr_t)buf,
1324 1356                      (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1325 1357                  break;
1326 1358  
1327 1359          case KMERR_REDZONE:
1328 1360                  printf("redzone violation: write past end of buffer\n");
1329 1361                  break;
1330 1362  
1331 1363          case KMERR_BADADDR:
1332 1364                  printf("invalid free: buffer not in cache\n");
1333 1365                  break;
1334 1366  
1335 1367          case KMERR_DUPFREE:
1336 1368                  printf("duplicate free: buffer freed twice\n");
1337 1369                  break;
1338 1370  
1339 1371          case KMERR_BADBUFTAG:
1340 1372                  printf("boundary tag corrupted\n");
1341 1373                  printf("bcp ^ bxstat = %lx, should be %lx\n",
1342 1374                      (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1343 1375                      KMEM_BUFTAG_FREE);
1344 1376                  break;
1345 1377  
1346 1378          case KMERR_BADBUFCTL:
1347 1379                  printf("bufctl corrupted\n");
1348 1380                  break;
1349 1381  
1350 1382          case KMERR_BADCACHE:
1351 1383                  printf("buffer freed to wrong cache\n");
1352 1384                  printf("buffer was allocated from %s,\n", cp->cache_name);
1353 1385                  printf("caller attempting free to %s.\n", cparg->cache_name);
1354 1386                  break;
1355 1387  
1356 1388          case KMERR_BADSIZE:
1357 1389                  printf("bad free: free size (%u) != alloc size (%u)\n",
1358 1390                      KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1359 1391                      KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1360 1392                  break;
1361 1393  
1362 1394          case KMERR_BADBASE:
1363 1395                  printf("bad free: free address (%p) != alloc address (%p)\n",
1364 1396                      bufarg, buf);
1365 1397                  break;
1366 1398          }
1367 1399  
1368 1400          printf("buffer=%p  bufctl=%p  cache: %s\n",
1369 1401              bufarg, (void *)bcp, cparg->cache_name);
1370 1402  
1371 1403          if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1372 1404              error != KMERR_BADBUFCTL) {
1373 1405                  int d;
1374 1406                  timestruc_t ts;
1375 1407                  kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1376 1408  
1377 1409                  hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1378 1410                  printf("previous transaction on buffer %p:\n", buf);
1379 1411                  printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
1380 1412                      (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1381 1413                      (void *)sp, cp->cache_name);
1382 1414                  for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1383 1415                          ulong_t off;
1384 1416                          char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1385 1417                          printf("%s+%lx\n", sym ? sym : "?", off);
1386 1418                  }
1387 1419          }
1388 1420          if (kmem_panic > 0)
1389 1421                  panic("kernel heap corruption detected");
1390 1422          if (kmem_panic == 0)
1391 1423                  debug_enter(NULL);
1392 1424          kmem_logging = 1;       /* resume logging */
1393 1425  }
1394 1426  
1395 1427  static kmem_log_header_t *
1396 1428  kmem_log_init(size_t logsize)
1397 1429  {
1398 1430          kmem_log_header_t *lhp;
1399 1431          int nchunks = 4 * max_ncpus;
1400 1432          size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1401 1433          int i;
1402 1434  
1403 1435          /*
1404 1436           * Make sure that lhp->lh_cpu[] is nicely aligned
1405 1437           * to prevent false sharing of cache lines.
1406 1438           */
1407 1439          lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1408 1440          lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1409 1441              NULL, NULL, VM_SLEEP);
1410 1442          bzero(lhp, lhsize);
1411 1443  
1412 1444          mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1413 1445          lhp->lh_nchunks = nchunks;
1414 1446          lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1415 1447          lhp->lh_base = vmem_alloc(kmem_log_arena,
1416 1448              lhp->lh_chunksize * nchunks, VM_SLEEP);
1417 1449          lhp->lh_free = vmem_alloc(kmem_log_arena,
1418 1450              nchunks * sizeof (int), VM_SLEEP);
1419 1451          bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1420 1452  
1421 1453          for (i = 0; i < max_ncpus; i++) {
1422 1454                  kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1423 1455                  mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1424 1456                  clhp->clh_chunk = i;
1425 1457          }
1426 1458  
1427 1459          for (i = max_ncpus; i < nchunks; i++)
1428 1460                  lhp->lh_free[i] = i;
1429 1461  
1430 1462          lhp->lh_head = max_ncpus;
1431 1463          lhp->lh_tail = 0;
1432 1464  
1433 1465          return (lhp);
1434 1466  }
1435 1467  
1436 1468  static void *
1437 1469  kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1438 1470  {
1439 1471          void *logspace;
1440 1472          kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid];
1441 1473  
1442 1474          if (lhp == NULL || kmem_logging == 0 || panicstr)
1443 1475                  return (NULL);
1444 1476  
1445 1477          mutex_enter(&clhp->clh_lock);
1446 1478          clhp->clh_hits++;
1447 1479          if (size > clhp->clh_avail) {
1448 1480                  mutex_enter(&lhp->lh_lock);
1449 1481                  lhp->lh_hits++;
1450 1482                  lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1451 1483                  lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1452 1484                  clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1453 1485                  lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1454 1486                  clhp->clh_current = lhp->lh_base +
1455 1487                      clhp->clh_chunk * lhp->lh_chunksize;
1456 1488                  clhp->clh_avail = lhp->lh_chunksize;
1457 1489                  if (size > lhp->lh_chunksize)
1458 1490                          size = lhp->lh_chunksize;
1459 1491                  mutex_exit(&lhp->lh_lock);
1460 1492          }
1461 1493          logspace = clhp->clh_current;
1462 1494          clhp->clh_current += size;
1463 1495          clhp->clh_avail -= size;
1464 1496          bcopy(data, logspace, size);
1465 1497          mutex_exit(&clhp->clh_lock);
1466 1498          return (logspace);
1467 1499  }
1468 1500  
1469 1501  #define KMEM_AUDIT(lp, cp, bcp)                                         \
1470 1502  {                                                                       \
1471 1503          kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);       \
1472 1504          _bcp->bc_timestamp = gethrtime();                               \
1473 1505          _bcp->bc_thread = curthread;                                    \
1474 1506          _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);  \
1475 1507          _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));  \
1476 1508  }
1477 1509  
1478 1510  static void
1479 1511  kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1480 1512      kmem_slab_t *sp, void *addr)
1481 1513  {
1482 1514          kmem_bufctl_audit_t bca;
1483 1515  
1484 1516          bzero(&bca, sizeof (kmem_bufctl_audit_t));
1485 1517          bca.bc_addr = addr;
1486 1518          bca.bc_slab = sp;
1487 1519          bca.bc_cache = cp;
1488 1520          KMEM_AUDIT(lp, cp, &bca);
1489 1521  }
1490 1522  
1491 1523  /*
1492 1524   * Create a new slab for cache cp.
1493 1525   */
1494 1526  static kmem_slab_t *
1495 1527  kmem_slab_create(kmem_cache_t *cp, int kmflag)
1496 1528  {
1497 1529          size_t slabsize = cp->cache_slabsize;
1498 1530          size_t chunksize = cp->cache_chunksize;
1499 1531          int cache_flags = cp->cache_flags;
1500 1532          size_t color, chunks;
1501 1533          char *buf, *slab;
1502 1534          kmem_slab_t *sp;
1503 1535          kmem_bufctl_t *bcp;
1504 1536          vmem_t *vmp = cp->cache_arena;
1505 1537  
1506 1538          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1507 1539  
1508 1540          color = cp->cache_color + cp->cache_align;
1509 1541          if (color > cp->cache_maxcolor)
1510 1542                  color = cp->cache_mincolor;
1511 1543          cp->cache_color = color;
1512 1544  
1513 1545          slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1514 1546  
1515 1547          if (slab == NULL)
1516 1548                  goto vmem_alloc_failure;
1517 1549  
1518 1550          ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1519 1551  
1520 1552          /*
1521 1553           * Reverify what was already checked in kmem_cache_set_move(), since the
1522 1554           * consolidator depends (for correctness) on slabs being initialized
1523 1555           * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1524 1556           * clients to distinguish uninitialized memory from known objects).
1525 1557           */
1526 1558          ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1527 1559          if (!(cp->cache_cflags & KMC_NOTOUCH))
1528 1560                  copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1529 1561  
1530 1562          if (cache_flags & KMF_HASH) {
1531 1563                  if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1532 1564                          goto slab_alloc_failure;
1533 1565                  chunks = (slabsize - color) / chunksize;
1534 1566          } else {
1535 1567                  sp = KMEM_SLAB(cp, slab);
1536 1568                  chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1537 1569          }
1538 1570  
1539 1571          sp->slab_cache  = cp;
1540 1572          sp->slab_head   = NULL;
1541 1573          sp->slab_refcnt = 0;
1542 1574          sp->slab_base   = buf = slab + color;
1543 1575          sp->slab_chunks = chunks;
1544 1576          sp->slab_stuck_offset = (uint32_t)-1;
1545 1577          sp->slab_later_count = 0;
1546 1578          sp->slab_flags = 0;
1547 1579  
1548 1580          ASSERT(chunks > 0);
1549 1581          while (chunks-- != 0) {
1550 1582                  if (cache_flags & KMF_HASH) {
1551 1583                          bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1552 1584                          if (bcp == NULL)
1553 1585                                  goto bufctl_alloc_failure;
1554 1586                          if (cache_flags & KMF_AUDIT) {
1555 1587                                  kmem_bufctl_audit_t *bcap =
1556 1588                                      (kmem_bufctl_audit_t *)bcp;
1557 1589                                  bzero(bcap, sizeof (kmem_bufctl_audit_t));
1558 1590                                  bcap->bc_cache = cp;
1559 1591                          }
1560 1592                          bcp->bc_addr = buf;
1561 1593                          bcp->bc_slab = sp;
1562 1594                  } else {
1563 1595                          bcp = KMEM_BUFCTL(cp, buf);
1564 1596                  }
1565 1597                  if (cache_flags & KMF_BUFTAG) {
1566 1598                          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1567 1599                          btp->bt_redzone = KMEM_REDZONE_PATTERN;
1568 1600                          btp->bt_bufctl = bcp;
1569 1601                          btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1570 1602                          if (cache_flags & KMF_DEADBEEF) {
1571 1603                                  copy_pattern(KMEM_FREE_PATTERN, buf,
1572 1604                                      cp->cache_verify);
1573 1605                          }
1574 1606                  }
1575 1607                  bcp->bc_next = sp->slab_head;
1576 1608                  sp->slab_head = bcp;
1577 1609                  buf += chunksize;
1578 1610          }
1579 1611  
1580 1612          kmem_log_event(kmem_slab_log, cp, sp, slab);
1581 1613  
1582 1614          return (sp);
1583 1615  
1584 1616  bufctl_alloc_failure:
1585 1617  
1586 1618          while ((bcp = sp->slab_head) != NULL) {
1587 1619                  sp->slab_head = bcp->bc_next;
1588 1620                  kmem_cache_free(cp->cache_bufctl_cache, bcp);
1589 1621          }
1590 1622          kmem_cache_free(kmem_slab_cache, sp);
1591 1623  
1592 1624  slab_alloc_failure:
1593 1625  
1594 1626          vmem_free(vmp, slab, slabsize);
1595 1627  
1596 1628  vmem_alloc_failure:
1597 1629  
1598 1630          kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1599 1631          atomic_inc_64(&cp->cache_alloc_fail);
1600 1632  
1601 1633          return (NULL);
1602 1634  }
1603 1635  
1604 1636  /*
1605 1637   * Destroy a slab.
1606 1638   */
1607 1639  static void
1608 1640  kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1609 1641  {
1610 1642          vmem_t *vmp = cp->cache_arena;
1611 1643          void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1612 1644  
1613 1645          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1614 1646          ASSERT(sp->slab_refcnt == 0);
1615 1647  
1616 1648          if (cp->cache_flags & KMF_HASH) {
1617 1649                  kmem_bufctl_t *bcp;
1618 1650                  while ((bcp = sp->slab_head) != NULL) {
1619 1651                          sp->slab_head = bcp->bc_next;
1620 1652                          kmem_cache_free(cp->cache_bufctl_cache, bcp);
1621 1653                  }
1622 1654                  kmem_cache_free(kmem_slab_cache, sp);
1623 1655          }
1624 1656          vmem_free(vmp, slab, cp->cache_slabsize);
1625 1657  }
1626 1658  
1627 1659  static void *
1628 1660  kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
1629 1661  {
1630 1662          kmem_bufctl_t *bcp, **hash_bucket;
1631 1663          void *buf;
1632 1664          boolean_t new_slab = (sp->slab_refcnt == 0);
1633 1665  
1634 1666          ASSERT(MUTEX_HELD(&cp->cache_lock));
1635 1667          /*
1636 1668           * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1637 1669           * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1638 1670           * slab is newly created.
1639 1671           */
1640 1672          ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1641 1673              (sp == avl_first(&cp->cache_partial_slabs))));
1642 1674          ASSERT(sp->slab_cache == cp);
1643 1675  
1644 1676          cp->cache_slab_alloc++;
1645 1677          cp->cache_bufslab--;
1646 1678          sp->slab_refcnt++;
1647 1679  
1648 1680          bcp = sp->slab_head;
1649 1681          sp->slab_head = bcp->bc_next;
1650 1682  
1651 1683          if (cp->cache_flags & KMF_HASH) {
1652 1684                  /*
1653 1685                   * Add buffer to allocated-address hash table.
1654 1686                   */
1655 1687                  buf = bcp->bc_addr;
1656 1688                  hash_bucket = KMEM_HASH(cp, buf);
1657 1689                  bcp->bc_next = *hash_bucket;
1658 1690                  *hash_bucket = bcp;
1659 1691                  if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1660 1692                          KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1661 1693                  }
1662 1694          } else {
1663 1695                  buf = KMEM_BUF(cp, bcp);
1664 1696          }
1665 1697  
1666 1698          ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1667 1699  
1668 1700          if (sp->slab_head == NULL) {
1669 1701                  ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1670 1702                  if (new_slab) {
1671 1703                          ASSERT(sp->slab_chunks == 1);
1672 1704                  } else {
1673 1705                          ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1674 1706                          avl_remove(&cp->cache_partial_slabs, sp);
1675 1707                          sp->slab_later_count = 0; /* clear history */
1676 1708                          sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1677 1709                          sp->slab_stuck_offset = (uint32_t)-1;
1678 1710                  }
1679 1711                  list_insert_head(&cp->cache_complete_slabs, sp);
1680 1712                  cp->cache_complete_slab_count++;
1681 1713                  return (buf);
1682 1714          }
1683 1715  
1684 1716          ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1685 1717          /*
1686 1718           * Peek to see if the magazine layer is enabled before
1687 1719           * we prefill.  We're not holding the cpu cache lock,
1688 1720           * so the peek could be wrong, but there's no harm in it.
1689 1721           */
1690 1722          if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1691 1723              (KMEM_CPU_CACHE(cp)->cc_magsize != 0))  {
1692 1724                  kmem_slab_prefill(cp, sp);
1693 1725                  return (buf);
1694 1726          }
1695 1727  
1696 1728          if (new_slab) {
1697 1729                  avl_add(&cp->cache_partial_slabs, sp);
1698 1730                  return (buf);
1699 1731          }
1700 1732  
1701 1733          /*
1702 1734           * The slab is now more allocated than it was, so the
1703 1735           * order remains unchanged.
1704 1736           */
1705 1737          ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1706 1738          return (buf);
1707 1739  }
1708 1740  
1709 1741  /*
1710 1742   * Allocate a raw (unconstructed) buffer from cp's slab layer.
1711 1743   */
1712 1744  static void *
1713 1745  kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1714 1746  {
1715 1747          kmem_slab_t *sp;
1716 1748          void *buf;
1717 1749          boolean_t test_destructor;
1718 1750  
1719 1751          mutex_enter(&cp->cache_lock);
1720 1752          test_destructor = (cp->cache_slab_alloc == 0);
1721 1753          sp = avl_first(&cp->cache_partial_slabs);
1722 1754          if (sp == NULL) {
1723 1755                  ASSERT(cp->cache_bufslab == 0);
1724 1756  
1725 1757                  /*
1726 1758                   * The freelist is empty.  Create a new slab.
1727 1759                   */
1728 1760                  mutex_exit(&cp->cache_lock);
1729 1761                  if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1730 1762                          return (NULL);
1731 1763                  }
1732 1764                  mutex_enter(&cp->cache_lock);
1733 1765                  cp->cache_slab_create++;
1734 1766                  if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1735 1767                          cp->cache_bufmax = cp->cache_buftotal;
1736 1768                  cp->cache_bufslab += sp->slab_chunks;
1737 1769          }
1738 1770  
1739 1771          buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1740 1772          ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1741 1773              (cp->cache_complete_slab_count +
1742 1774              avl_numnodes(&cp->cache_partial_slabs) +
1743 1775              (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1744 1776          mutex_exit(&cp->cache_lock);
1745 1777  
1746 1778          if (test_destructor && cp->cache_destructor != NULL) {
1747 1779                  /*
1748 1780                   * On the first kmem_slab_alloc(), assert that it is valid to
1749 1781                   * call the destructor on a newly constructed object without any
1750 1782                   * client involvement.
1751 1783                   */
1752 1784                  if ((cp->cache_constructor == NULL) ||
1753 1785                      cp->cache_constructor(buf, cp->cache_private,
1754 1786                      kmflag) == 0) {
1755 1787                          cp->cache_destructor(buf, cp->cache_private);
1756 1788                  }
1757 1789                  copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
1758 1790                      cp->cache_bufsize);
1759 1791                  if (cp->cache_flags & KMF_DEADBEEF) {
1760 1792                          copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1761 1793                  }
1762 1794          }
1763 1795  
1764 1796          return (buf);
1765 1797  }
1766 1798  
1767 1799  static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1768 1800  
1769 1801  /*
1770 1802   * Free a raw (unconstructed) buffer to cp's slab layer.
1771 1803   */
1772 1804  static void
1773 1805  kmem_slab_free(kmem_cache_t *cp, void *buf)
1774 1806  {
1775 1807          kmem_slab_t *sp;
1776 1808          kmem_bufctl_t *bcp, **prev_bcpp;
1777 1809  
1778 1810          ASSERT(buf != NULL);
1779 1811  
1780 1812          mutex_enter(&cp->cache_lock);
1781 1813          cp->cache_slab_free++;
1782 1814  
1783 1815          if (cp->cache_flags & KMF_HASH) {
1784 1816                  /*
1785 1817                   * Look up buffer in allocated-address hash table.
1786 1818                   */
1787 1819                  prev_bcpp = KMEM_HASH(cp, buf);
1788 1820                  while ((bcp = *prev_bcpp) != NULL) {
1789 1821                          if (bcp->bc_addr == buf) {
1790 1822                                  *prev_bcpp = bcp->bc_next;
1791 1823                                  sp = bcp->bc_slab;
1792 1824                                  break;
1793 1825                          }
1794 1826                          cp->cache_lookup_depth++;
1795 1827                          prev_bcpp = &bcp->bc_next;
1796 1828                  }
1797 1829          } else {
1798 1830                  bcp = KMEM_BUFCTL(cp, buf);
1799 1831                  sp = KMEM_SLAB(cp, buf);
1800 1832          }
1801 1833  
1802 1834          if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1803 1835                  mutex_exit(&cp->cache_lock);
1804 1836                  kmem_error(KMERR_BADADDR, cp, buf);
1805 1837                  return;
1806 1838          }
1807 1839  
1808 1840          if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1809 1841                  /*
1810 1842                   * If this is the buffer that prevented the consolidator from
1811 1843                   * clearing the slab, we can reset the slab flags now that the
1812 1844                   * buffer is freed. (It makes sense to do this in
1813 1845                   * kmem_cache_free(), where the client gives up ownership of the
1814 1846                   * buffer, but on the hot path the test is too expensive.)
1815 1847                   */
1816 1848                  kmem_slab_move_yes(cp, sp, buf);
1817 1849          }
1818 1850  
1819 1851          if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1820 1852                  if (cp->cache_flags & KMF_CONTENTS)
1821 1853                          ((kmem_bufctl_audit_t *)bcp)->bc_contents =
1822 1854                              kmem_log_enter(kmem_content_log, buf,
1823 1855                              cp->cache_contents);
1824 1856                  KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1825 1857          }
1826 1858  
1827 1859          bcp->bc_next = sp->slab_head;
1828 1860          sp->slab_head = bcp;
1829 1861  
1830 1862          cp->cache_bufslab++;
1831 1863          ASSERT(sp->slab_refcnt >= 1);
1832 1864  
1833 1865          if (--sp->slab_refcnt == 0) {
1834 1866                  /*
1835 1867                   * There are no outstanding allocations from this slab,
1836 1868                   * so we can reclaim the memory.
1837 1869                   */
1838 1870                  if (sp->slab_chunks == 1) {
1839 1871                          list_remove(&cp->cache_complete_slabs, sp);
1840 1872                          cp->cache_complete_slab_count--;
1841 1873                  } else {
1842 1874                          avl_remove(&cp->cache_partial_slabs, sp);
1843 1875                  }
1844 1876  
1845 1877                  cp->cache_buftotal -= sp->slab_chunks;
1846 1878                  cp->cache_bufslab -= sp->slab_chunks;
1847 1879                  /*
1848 1880                   * Defer releasing the slab to the virtual memory subsystem
1849 1881                   * while there is a pending move callback, since we guarantee
1850 1882                   * that buffers passed to the move callback have only been
1851 1883                   * touched by kmem or by the client itself. Since the memory
1852 1884                   * patterns baddcafe (uninitialized) and deadbeef (freed) both
1853 1885                   * set at least one of the two lowest order bits, the client can
1854 1886                   * test those bits in the move callback to determine whether or
1855 1887                   * not it knows about the buffer (assuming that the client also
1856 1888                   * sets one of those low order bits whenever it frees a buffer).
1857 1889                   */
1858 1890                  if (cp->cache_defrag == NULL ||
1859 1891                      (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1860 1892                      !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1861 1893                          cp->cache_slab_destroy++;
1862 1894                          mutex_exit(&cp->cache_lock);
1863 1895                          kmem_slab_destroy(cp, sp);
1864 1896                  } else {
1865 1897                          list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1866 1898                          /*
1867 1899                           * Slabs are inserted at both ends of the deadlist to
1868 1900                           * distinguish between slabs freed while move callbacks
1869 1901                           * are pending (list head) and a slab freed while the
1870 1902                           * lock is dropped in kmem_move_buffers() (list tail) so
1871 1903                           * that in both cases slab_destroy() is called from the
1872 1904                           * right context.
1873 1905                           */
1874 1906                          if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1875 1907                                  list_insert_tail(deadlist, sp);
1876 1908                          } else {
1877 1909                                  list_insert_head(deadlist, sp);
1878 1910                          }
1879 1911                          cp->cache_defrag->kmd_deadcount++;
1880 1912                          mutex_exit(&cp->cache_lock);
1881 1913                  }
1882 1914                  return;
  
    | 
      ↓ open down ↓ | 
    760 lines elided | 
    
      ↑ open up ↑ | 
  
1883 1915          }
1884 1916  
1885 1917          if (bcp->bc_next == NULL) {
1886 1918                  /* Transition the slab from completely allocated to partial. */
1887 1919                  ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1888 1920                  ASSERT(sp->slab_chunks > 1);
1889 1921                  list_remove(&cp->cache_complete_slabs, sp);
1890 1922                  cp->cache_complete_slab_count--;
1891 1923                  avl_add(&cp->cache_partial_slabs, sp);
1892 1924          } else {
     1925 +#ifdef  DEBUG
     1926 +                if (avl_update_gt(&cp->cache_partial_slabs, sp)) {
     1927 +                        KMEM_STAT_ADD(kmem_move_stats.kms_avl_update);
     1928 +                } else {
     1929 +                        KMEM_STAT_ADD(kmem_move_stats.kms_avl_noupdate);
     1930 +                }
     1931 +#else
1893 1932                  (void) avl_update_gt(&cp->cache_partial_slabs, sp);
     1933 +#endif
1894 1934          }
1895 1935  
1896 1936          ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1897 1937              (cp->cache_complete_slab_count +
1898 1938              avl_numnodes(&cp->cache_partial_slabs) +
1899 1939              (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1900 1940          mutex_exit(&cp->cache_lock);
1901 1941  }
1902 1942  
1903 1943  /*
1904 1944   * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1905 1945   */
1906 1946  static int
1907 1947  kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1908 1948      caddr_t caller)
1909 1949  {
1910 1950          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1911 1951          kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1912 1952          uint32_t mtbf;
1913 1953  
1914 1954          if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1915 1955                  kmem_error(KMERR_BADBUFTAG, cp, buf);
1916 1956                  return (-1);
1917 1957          }
1918 1958  
1919 1959          btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1920 1960  
1921 1961          if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1922 1962                  kmem_error(KMERR_BADBUFCTL, cp, buf);
1923 1963                  return (-1);
1924 1964          }
1925 1965  
1926 1966          if (cp->cache_flags & KMF_DEADBEEF) {
1927 1967                  if (!construct && (cp->cache_flags & KMF_LITE)) {
1928 1968                          if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1929 1969                                  kmem_error(KMERR_MODIFIED, cp, buf);
1930 1970                                  return (-1);
1931 1971                          }
1932 1972                          if (cp->cache_constructor != NULL)
1933 1973                                  *(uint64_t *)buf = btp->bt_redzone;
1934 1974                          else
1935 1975                                  *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1936 1976                  } else {
1937 1977                          construct = 1;
1938 1978                          if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1939 1979                              KMEM_UNINITIALIZED_PATTERN, buf,
1940 1980                              cp->cache_verify)) {
1941 1981                                  kmem_error(KMERR_MODIFIED, cp, buf);
1942 1982                                  return (-1);
1943 1983                          }
1944 1984                  }
1945 1985          }
1946 1986          btp->bt_redzone = KMEM_REDZONE_PATTERN;
1947 1987  
1948 1988          if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1949 1989              gethrtime() % mtbf == 0 &&
1950 1990              (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1951 1991                  kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1952 1992                  if (!construct && cp->cache_destructor != NULL)
1953 1993                          cp->cache_destructor(buf, cp->cache_private);
1954 1994          } else {
1955 1995                  mtbf = 0;
1956 1996          }
1957 1997  
1958 1998          if (mtbf || (construct && cp->cache_constructor != NULL &&
1959 1999              cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
1960 2000                  atomic_inc_64(&cp->cache_alloc_fail);
1961 2001                  btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1962 2002                  if (cp->cache_flags & KMF_DEADBEEF)
1963 2003                          copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1964 2004                  kmem_slab_free(cp, buf);
1965 2005                  return (1);
1966 2006          }
1967 2007  
1968 2008          if (cp->cache_flags & KMF_AUDIT) {
1969 2009                  KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1970 2010          }
1971 2011  
1972 2012          if ((cp->cache_flags & KMF_LITE) &&
1973 2013              !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
1974 2014                  KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
1975 2015          }
1976 2016  
1977 2017          return (0);
1978 2018  }
1979 2019  
1980 2020  static int
1981 2021  kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
1982 2022  {
1983 2023          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1984 2024          kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1985 2025          kmem_slab_t *sp;
1986 2026  
1987 2027          if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
1988 2028                  if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1989 2029                          kmem_error(KMERR_DUPFREE, cp, buf);
1990 2030                          return (-1);
1991 2031                  }
1992 2032                  sp = kmem_findslab(cp, buf);
1993 2033                  if (sp == NULL || sp->slab_cache != cp)
1994 2034                          kmem_error(KMERR_BADADDR, cp, buf);
1995 2035                  else
1996 2036                          kmem_error(KMERR_REDZONE, cp, buf);
1997 2037                  return (-1);
1998 2038          }
1999 2039  
2000 2040          btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
2001 2041  
2002 2042          if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
2003 2043                  kmem_error(KMERR_BADBUFCTL, cp, buf);
2004 2044                  return (-1);
2005 2045          }
2006 2046  
2007 2047          if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
2008 2048                  kmem_error(KMERR_REDZONE, cp, buf);
2009 2049                  return (-1);
2010 2050          }
2011 2051  
2012 2052          if (cp->cache_flags & KMF_AUDIT) {
2013 2053                  if (cp->cache_flags & KMF_CONTENTS)
2014 2054                          bcp->bc_contents = kmem_log_enter(kmem_content_log,
2015 2055                              buf, cp->cache_contents);
2016 2056                  KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2017 2057          }
2018 2058  
2019 2059          if ((cp->cache_flags & KMF_LITE) &&
2020 2060              !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2021 2061                  KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2022 2062          }
2023 2063  
2024 2064          if (cp->cache_flags & KMF_DEADBEEF) {
2025 2065                  if (cp->cache_flags & KMF_LITE)
2026 2066                          btp->bt_redzone = *(uint64_t *)buf;
2027 2067                  else if (cp->cache_destructor != NULL)
2028 2068                          cp->cache_destructor(buf, cp->cache_private);
2029 2069  
2030 2070                  copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2031 2071          }
2032 2072  
2033 2073          return (0);
2034 2074  }
2035 2075  
2036 2076  /*
2037 2077   * Free each object in magazine mp to cp's slab layer, and free mp itself.
2038 2078   */
2039 2079  static void
2040 2080  kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2041 2081  {
2042 2082          int round;
2043 2083  
2044 2084          ASSERT(!list_link_active(&cp->cache_link) ||
2045 2085              taskq_member(kmem_taskq, curthread));
2046 2086  
2047 2087          for (round = 0; round < nrounds; round++) {
2048 2088                  void *buf = mp->mag_round[round];
2049 2089  
2050 2090                  if (cp->cache_flags & KMF_DEADBEEF) {
2051 2091                          if (verify_pattern(KMEM_FREE_PATTERN, buf,
2052 2092                              cp->cache_verify) != NULL) {
2053 2093                                  kmem_error(KMERR_MODIFIED, cp, buf);
2054 2094                                  continue;
2055 2095                          }
2056 2096                          if ((cp->cache_flags & KMF_LITE) &&
2057 2097                              cp->cache_destructor != NULL) {
2058 2098                                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2059 2099                                  *(uint64_t *)buf = btp->bt_redzone;
2060 2100                                  cp->cache_destructor(buf, cp->cache_private);
2061 2101                                  *(uint64_t *)buf = KMEM_FREE_PATTERN;
2062 2102                          }
2063 2103                  } else if (cp->cache_destructor != NULL) {
2064 2104                          cp->cache_destructor(buf, cp->cache_private);
2065 2105                  }
2066 2106  
2067 2107                  kmem_slab_free(cp, buf);
2068 2108          }
2069 2109          ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2070 2110          kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2071 2111  }
2072 2112  
2073 2113  /*
2074 2114   * Allocate a magazine from the depot.
2075 2115   */
2076 2116  static kmem_magazine_t *
2077 2117  kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2078 2118  {
2079 2119          kmem_magazine_t *mp;
2080 2120  
2081 2121          /*
2082 2122           * If we can't get the depot lock without contention,
2083 2123           * update our contention count.  We use the depot
2084 2124           * contention rate to determine whether we need to
2085 2125           * increase the magazine size for better scalability.
2086 2126           */
2087 2127          if (!mutex_tryenter(&cp->cache_depot_lock)) {
2088 2128                  mutex_enter(&cp->cache_depot_lock);
2089 2129                  cp->cache_depot_contention++;
2090 2130          }
2091 2131  
2092 2132          if ((mp = mlp->ml_list) != NULL) {
2093 2133                  ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2094 2134                  mlp->ml_list = mp->mag_next;
2095 2135                  if (--mlp->ml_total < mlp->ml_min)
2096 2136                          mlp->ml_min = mlp->ml_total;
2097 2137                  mlp->ml_alloc++;
2098 2138          }
2099 2139  
2100 2140          mutex_exit(&cp->cache_depot_lock);
2101 2141  
2102 2142          return (mp);
2103 2143  }
2104 2144  
2105 2145  /*
2106 2146   * Free a magazine to the depot.
2107 2147   */
2108 2148  static void
2109 2149  kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2110 2150  {
2111 2151          mutex_enter(&cp->cache_depot_lock);
2112 2152          ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2113 2153          mp->mag_next = mlp->ml_list;
2114 2154          mlp->ml_list = mp;
2115 2155          mlp->ml_total++;
2116 2156          mutex_exit(&cp->cache_depot_lock);
2117 2157  }
2118 2158  
2119 2159  /*
2120 2160   * Update the working set statistics for cp's depot.
2121 2161   */
2122 2162  static void
2123 2163  kmem_depot_ws_update(kmem_cache_t *cp)
2124 2164  {
2125 2165          mutex_enter(&cp->cache_depot_lock);
2126 2166          cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2127 2167          cp->cache_full.ml_min = cp->cache_full.ml_total;
2128 2168          cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2129 2169          cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2130 2170          mutex_exit(&cp->cache_depot_lock);
2131 2171  }
2132 2172  
2133 2173  /*
2134 2174   * Set the working set statistics for cp's depot to zero.  (Everything is
2135 2175   * eligible for reaping.)
2136 2176   */
2137 2177  static void
2138 2178  kmem_depot_ws_zero(kmem_cache_t *cp)
2139 2179  {
2140 2180          mutex_enter(&cp->cache_depot_lock);
2141 2181          cp->cache_full.ml_reaplimit = cp->cache_full.ml_total;
2142 2182          cp->cache_full.ml_min = cp->cache_full.ml_total;
2143 2183          cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total;
2144 2184          cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2145 2185          mutex_exit(&cp->cache_depot_lock);
2146 2186  }
2147 2187  
2148 2188  /*
2149 2189   * The number of bytes to reap before we call kpreempt(). The default (1MB)
2150 2190   * causes us to preempt reaping up to hundreds of times per second. Using a
2151 2191   * larger value (1GB) causes this to have virtually no effect.
2152 2192   */
2153 2193  size_t kmem_reap_preempt_bytes = 1024 * 1024;
2154 2194  
2155 2195  /*
2156 2196   * Reap all magazines that have fallen out of the depot's working set.
2157 2197   */
2158 2198  static void
2159 2199  kmem_depot_ws_reap(kmem_cache_t *cp)
2160 2200  {
2161 2201          size_t bytes = 0;
2162 2202          long reap;
2163 2203          kmem_magazine_t *mp;
2164 2204  
2165 2205          ASSERT(!list_link_active(&cp->cache_link) ||
2166 2206              taskq_member(kmem_taskq, curthread));
2167 2207  
2168 2208          reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2169 2209          while (reap-- &&
2170 2210              (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) {
2171 2211                  kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2172 2212                  bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2173 2213                  if (bytes > kmem_reap_preempt_bytes) {
2174 2214                          kpreempt(KPREEMPT_SYNC);
2175 2215                          bytes = 0;
2176 2216                  }
2177 2217          }
2178 2218  
2179 2219          reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2180 2220          while (reap-- &&
2181 2221              (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) {
2182 2222                  kmem_magazine_destroy(cp, mp, 0);
2183 2223                  bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2184 2224                  if (bytes > kmem_reap_preempt_bytes) {
2185 2225                          kpreempt(KPREEMPT_SYNC);
2186 2226                          bytes = 0;
2187 2227                  }
2188 2228          }
2189 2229  }
2190 2230  
2191 2231  static void
2192 2232  kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2193 2233  {
2194 2234          ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2195 2235              (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2196 2236          ASSERT(ccp->cc_magsize > 0);
2197 2237  
2198 2238          ccp->cc_ploaded = ccp->cc_loaded;
2199 2239          ccp->cc_prounds = ccp->cc_rounds;
2200 2240          ccp->cc_loaded = mp;
2201 2241          ccp->cc_rounds = rounds;
2202 2242  }
2203 2243  
2204 2244  /*
2205 2245   * Intercept kmem alloc/free calls during crash dump in order to avoid
2206 2246   * changing kmem state while memory is being saved to the dump device.
2207 2247   * Otherwise, ::kmem_verify will report "corrupt buffers".  Note that
2208 2248   * there are no locks because only one CPU calls kmem during a crash
2209 2249   * dump. To enable this feature, first create the associated vmem
2210 2250   * arena with VMC_DUMPSAFE.
2211 2251   */
2212 2252  static void *kmem_dump_start;   /* start of pre-reserved heap */
2213 2253  static void *kmem_dump_end;     /* end of heap area */
2214 2254  static void *kmem_dump_curr;    /* current free heap pointer */
2215 2255  static size_t kmem_dump_size;   /* size of heap area */
2216 2256  
2217 2257  /* append to each buf created in the pre-reserved heap */
2218 2258  typedef struct kmem_dumpctl {
2219 2259          void    *kdc_next;      /* cache dump free list linkage */
2220 2260  } kmem_dumpctl_t;
2221 2261  
2222 2262  #define KMEM_DUMPCTL(cp, buf)   \
2223 2263          ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
2224 2264              sizeof (void *)))
2225 2265  
2226 2266  /* Keep some simple stats. */
2227 2267  #define KMEM_DUMP_LOGS  (100)
2228 2268  
2229 2269  typedef struct kmem_dump_log {
2230 2270          kmem_cache_t    *kdl_cache;
2231 2271          uint_t          kdl_allocs;             /* # of dump allocations */
2232 2272          uint_t          kdl_frees;              /* # of dump frees */
2233 2273          uint_t          kdl_alloc_fails;        /* # of allocation failures */
2234 2274          uint_t          kdl_free_nondump;       /* # of non-dump frees */
2235 2275          uint_t          kdl_unsafe;             /* cache was used, but unsafe */
2236 2276  } kmem_dump_log_t;
2237 2277  
2238 2278  static kmem_dump_log_t *kmem_dump_log;
2239 2279  static int kmem_dump_log_idx;
2240 2280  
2241 2281  #define KDI_LOG(cp, stat) {                                             \
2242 2282          kmem_dump_log_t *kdl;                                           \
2243 2283          if ((kdl = (kmem_dump_log_t *)((cp)->cache_dumplog)) != NULL) { \
2244 2284                  kdl->stat++;                                            \
2245 2285          } else if (kmem_dump_log_idx < KMEM_DUMP_LOGS) {                \
2246 2286                  kdl = &kmem_dump_log[kmem_dump_log_idx++];              \
2247 2287                  kdl->stat++;                                            \
2248 2288                  kdl->kdl_cache = (cp);                                  \
2249 2289                  (cp)->cache_dumplog = kdl;                              \
2250 2290          }                                                               \
2251 2291  }
2252 2292  
2253 2293  /* set non zero for full report */
2254 2294  uint_t kmem_dump_verbose = 0;
2255 2295  
2256 2296  /* stats for overize heap */
2257 2297  uint_t kmem_dump_oversize_allocs = 0;
2258 2298  uint_t kmem_dump_oversize_max = 0;
2259 2299  
2260 2300  static void
2261 2301  kmem_dumppr(char **pp, char *e, const char *format, ...)
2262 2302  {
2263 2303          char *p = *pp;
2264 2304  
2265 2305          if (p < e) {
2266 2306                  int n;
2267 2307                  va_list ap;
2268 2308  
2269 2309                  va_start(ap, format);
2270 2310                  n = vsnprintf(p, e - p, format, ap);
2271 2311                  va_end(ap);
2272 2312                  *pp = p + n;
2273 2313          }
2274 2314  }
2275 2315  
2276 2316  /*
2277 2317   * Called when dumpadm(1M) configures dump parameters.
2278 2318   */
2279 2319  void
2280 2320  kmem_dump_init(size_t size)
2281 2321  {
2282 2322          if (kmem_dump_start != NULL)
2283 2323                  kmem_free(kmem_dump_start, kmem_dump_size);
2284 2324  
2285 2325          if (kmem_dump_log == NULL)
2286 2326                  kmem_dump_log = (kmem_dump_log_t *)kmem_zalloc(KMEM_DUMP_LOGS *
2287 2327                      sizeof (kmem_dump_log_t), KM_SLEEP);
2288 2328  
2289 2329          kmem_dump_start = kmem_alloc(size, KM_SLEEP);
2290 2330  
2291 2331          if (kmem_dump_start != NULL) {
2292 2332                  kmem_dump_size = size;
2293 2333                  kmem_dump_curr = kmem_dump_start;
2294 2334                  kmem_dump_end = (void *)((char *)kmem_dump_start + size);
2295 2335                  copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
2296 2336          } else {
2297 2337                  kmem_dump_size = 0;
2298 2338                  kmem_dump_curr = NULL;
2299 2339                  kmem_dump_end = NULL;
2300 2340          }
2301 2341  }
2302 2342  
2303 2343  /*
2304 2344   * Set flag for each kmem_cache_t if is safe to use alternate dump
2305 2345   * memory. Called just before panic crash dump starts. Set the flag
2306 2346   * for the calling CPU.
2307 2347   */
2308 2348  void
2309 2349  kmem_dump_begin(void)
2310 2350  {
2311 2351          ASSERT(panicstr != NULL);
2312 2352          if (kmem_dump_start != NULL) {
2313 2353                  kmem_cache_t *cp;
2314 2354  
2315 2355                  for (cp = list_head(&kmem_caches); cp != NULL;
2316 2356                      cp = list_next(&kmem_caches, cp)) {
2317 2357                          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2318 2358  
2319 2359                          if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
2320 2360                                  cp->cache_flags |= KMF_DUMPDIVERT;
2321 2361                                  ccp->cc_flags |= KMF_DUMPDIVERT;
2322 2362                                  ccp->cc_dump_rounds = ccp->cc_rounds;
2323 2363                                  ccp->cc_dump_prounds = ccp->cc_prounds;
2324 2364                                  ccp->cc_rounds = ccp->cc_prounds = -1;
2325 2365                          } else {
2326 2366                                  cp->cache_flags |= KMF_DUMPUNSAFE;
2327 2367                                  ccp->cc_flags |= KMF_DUMPUNSAFE;
2328 2368                          }
2329 2369                  }
2330 2370          }
2331 2371  }
2332 2372  
2333 2373  /*
2334 2374   * finished dump intercept
2335 2375   * print any warnings on the console
2336 2376   * return verbose information to dumpsys() in the given buffer
2337 2377   */
2338 2378  size_t
2339 2379  kmem_dump_finish(char *buf, size_t size)
2340 2380  {
2341 2381          int kdi_idx;
2342 2382          int kdi_end = kmem_dump_log_idx;
2343 2383          int percent = 0;
2344 2384          int header = 0;
2345 2385          int warn = 0;
2346 2386          size_t used;
2347 2387          kmem_cache_t *cp;
2348 2388          kmem_dump_log_t *kdl;
2349 2389          char *e = buf + size;
2350 2390          char *p = buf;
2351 2391  
2352 2392          if (kmem_dump_size == 0 || kmem_dump_verbose == 0)
2353 2393                  return (0);
2354 2394  
2355 2395          used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
2356 2396          percent = (used * 100) / kmem_dump_size;
2357 2397  
2358 2398          kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
2359 2399          kmem_dumppr(&p, e, "used bytes,%ld\n", used);
2360 2400          kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
2361 2401          kmem_dumppr(&p, e, "Oversize allocs,%d\n",
2362 2402              kmem_dump_oversize_allocs);
2363 2403          kmem_dumppr(&p, e, "Oversize max size,%ld\n",
2364 2404              kmem_dump_oversize_max);
2365 2405  
2366 2406          for (kdi_idx = 0; kdi_idx < kdi_end; kdi_idx++) {
2367 2407                  kdl = &kmem_dump_log[kdi_idx];
2368 2408                  cp = kdl->kdl_cache;
2369 2409                  if (cp == NULL)
2370 2410                          break;
2371 2411                  if (kdl->kdl_alloc_fails)
2372 2412                          ++warn;
2373 2413                  if (header == 0) {
2374 2414                          kmem_dumppr(&p, e,
2375 2415                              "Cache Name,Allocs,Frees,Alloc Fails,"
2376 2416                              "Nondump Frees,Unsafe Allocs/Frees\n");
2377 2417                          header = 1;
2378 2418                  }
2379 2419                  kmem_dumppr(&p, e, "%s,%d,%d,%d,%d,%d\n",
2380 2420                      cp->cache_name, kdl->kdl_allocs, kdl->kdl_frees,
2381 2421                      kdl->kdl_alloc_fails, kdl->kdl_free_nondump,
2382 2422                      kdl->kdl_unsafe);
2383 2423          }
2384 2424  
2385 2425          /* return buffer size used */
2386 2426          if (p < e)
2387 2427                  bzero(p, e - p);
2388 2428          return (p - buf);
2389 2429  }
2390 2430  
2391 2431  /*
2392 2432   * Allocate a constructed object from alternate dump memory.
2393 2433   */
2394 2434  void *
2395 2435  kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
2396 2436  {
2397 2437          void *buf;
2398 2438          void *curr;
2399 2439          char *bufend;
2400 2440  
2401 2441          /* return a constructed object */
2402 2442          if ((buf = cp->cache_dumpfreelist) != NULL) {
2403 2443                  cp->cache_dumpfreelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
2404 2444                  KDI_LOG(cp, kdl_allocs);
2405 2445                  return (buf);
2406 2446          }
2407 2447  
2408 2448          /* create a new constructed object */
2409 2449          curr = kmem_dump_curr;
2410 2450          buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
2411 2451          bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
2412 2452  
2413 2453          /* hat layer objects cannot cross a page boundary */
2414 2454          if (cp->cache_align < PAGESIZE) {
2415 2455                  char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
2416 2456                  if (bufend > page) {
2417 2457                          bufend += page - (char *)buf;
2418 2458                          buf = (void *)page;
2419 2459                  }
2420 2460          }
2421 2461  
2422 2462          /* fall back to normal alloc if reserved area is used up */
2423 2463          if (bufend > (char *)kmem_dump_end) {
2424 2464                  kmem_dump_curr = kmem_dump_end;
2425 2465                  KDI_LOG(cp, kdl_alloc_fails);
2426 2466                  return (NULL);
2427 2467          }
2428 2468  
2429 2469          /*
2430 2470           * Must advance curr pointer before calling a constructor that
2431 2471           * may also allocate memory.
2432 2472           */
2433 2473          kmem_dump_curr = bufend;
2434 2474  
2435 2475          /* run constructor */
2436 2476          if (cp->cache_constructor != NULL &&
2437 2477              cp->cache_constructor(buf, cp->cache_private, kmflag)
2438 2478              != 0) {
2439 2479  #ifdef DEBUG
2440 2480                  printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
2441 2481                      cp->cache_name, (void *)cp);
2442 2482  #endif
2443 2483                  /* reset curr pointer iff no allocs were done */
2444 2484                  if (kmem_dump_curr == bufend)
2445 2485                          kmem_dump_curr = curr;
2446 2486  
2447 2487                  /* fall back to normal alloc if the constructor fails */
2448 2488                  KDI_LOG(cp, kdl_alloc_fails);
2449 2489                  return (NULL);
2450 2490          }
2451 2491  
2452 2492          KDI_LOG(cp, kdl_allocs);
2453 2493          return (buf);
2454 2494  }
2455 2495  
2456 2496  /*
2457 2497   * Free a constructed object in alternate dump memory.
2458 2498   */
2459 2499  int
2460 2500  kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
2461 2501  {
2462 2502          /* save constructed buffers for next time */
2463 2503          if ((char *)buf >= (char *)kmem_dump_start &&
2464 2504              (char *)buf < (char *)kmem_dump_end) {
2465 2505                  KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dumpfreelist;
2466 2506                  cp->cache_dumpfreelist = buf;
2467 2507                  KDI_LOG(cp, kdl_frees);
2468 2508                  return (0);
2469 2509          }
2470 2510  
2471 2511          /* count all non-dump buf frees */
2472 2512          KDI_LOG(cp, kdl_free_nondump);
2473 2513  
2474 2514          /* just drop buffers that were allocated before dump started */
2475 2515          if (kmem_dump_curr < kmem_dump_end)
2476 2516                  return (0);
2477 2517  
2478 2518          /* fall back to normal free if reserved area is used up */
2479 2519          return (1);
2480 2520  }
2481 2521  
2482 2522  /*
2483 2523   * Allocate a constructed object from cache cp.
2484 2524   */
2485 2525  void *
2486 2526  kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2487 2527  {
2488 2528          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2489 2529          kmem_magazine_t *fmp;
2490 2530          void *buf;
2491 2531  
2492 2532          mutex_enter(&ccp->cc_lock);
2493 2533          for (;;) {
2494 2534                  /*
2495 2535                   * If there's an object available in the current CPU's
2496 2536                   * loaded magazine, just take it and return.
2497 2537                   */
2498 2538                  if (ccp->cc_rounds > 0) {
2499 2539                          buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2500 2540                          ccp->cc_alloc++;
2501 2541                          mutex_exit(&ccp->cc_lock);
2502 2542                          if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
2503 2543                                  if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2504 2544                                          ASSERT(!(ccp->cc_flags &
2505 2545                                              KMF_DUMPDIVERT));
2506 2546                                          KDI_LOG(cp, kdl_unsafe);
2507 2547                                  }
2508 2548                                  if ((ccp->cc_flags & KMF_BUFTAG) &&
2509 2549                                      kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2510 2550                                      caller()) != 0) {
2511 2551                                          if (kmflag & KM_NOSLEEP)
2512 2552                                                  return (NULL);
2513 2553                                          mutex_enter(&ccp->cc_lock);
2514 2554                                          continue;
2515 2555                                  }
2516 2556                          }
2517 2557                          return (buf);
2518 2558                  }
2519 2559  
2520 2560                  /*
2521 2561                   * The loaded magazine is empty.  If the previously loaded
2522 2562                   * magazine was full, exchange them and try again.
2523 2563                   */
2524 2564                  if (ccp->cc_prounds > 0) {
2525 2565                          kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2526 2566                          continue;
2527 2567                  }
2528 2568  
2529 2569                  /*
2530 2570                   * Return an alternate buffer at dump time to preserve
2531 2571                   * the heap.
2532 2572                   */
2533 2573                  if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2534 2574                          if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2535 2575                                  ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2536 2576                                  /* log it so that we can warn about it */
2537 2577                                  KDI_LOG(cp, kdl_unsafe);
2538 2578                          } else {
2539 2579                                  if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
2540 2580                                      NULL) {
2541 2581                                          mutex_exit(&ccp->cc_lock);
2542 2582                                          return (buf);
2543 2583                                  }
2544 2584                                  break;          /* fall back to slab layer */
2545 2585                          }
2546 2586                  }
2547 2587  
2548 2588                  /*
2549 2589                   * If the magazine layer is disabled, break out now.
2550 2590                   */
2551 2591                  if (ccp->cc_magsize == 0)
2552 2592                          break;
2553 2593  
2554 2594                  /*
2555 2595                   * Try to get a full magazine from the depot.
2556 2596                   */
2557 2597                  fmp = kmem_depot_alloc(cp, &cp->cache_full);
2558 2598                  if (fmp != NULL) {
2559 2599                          if (ccp->cc_ploaded != NULL)
2560 2600                                  kmem_depot_free(cp, &cp->cache_empty,
2561 2601                                      ccp->cc_ploaded);
2562 2602                          kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2563 2603                          continue;
2564 2604                  }
2565 2605  
2566 2606                  /*
2567 2607                   * There are no full magazines in the depot,
2568 2608                   * so fall through to the slab layer.
2569 2609                   */
2570 2610                  break;
2571 2611          }
2572 2612          mutex_exit(&ccp->cc_lock);
2573 2613  
2574 2614          /*
2575 2615           * We couldn't allocate a constructed object from the magazine layer,
2576 2616           * so get a raw buffer from the slab layer and apply its constructor.
2577 2617           */
2578 2618          buf = kmem_slab_alloc(cp, kmflag);
2579 2619  
2580 2620          if (buf == NULL)
2581 2621                  return (NULL);
2582 2622  
2583 2623          if (cp->cache_flags & KMF_BUFTAG) {
2584 2624                  /*
2585 2625                   * Make kmem_cache_alloc_debug() apply the constructor for us.
2586 2626                   */
2587 2627                  int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2588 2628                  if (rc != 0) {
2589 2629                          if (kmflag & KM_NOSLEEP)
2590 2630                                  return (NULL);
2591 2631                          /*
2592 2632                           * kmem_cache_alloc_debug() detected corruption
2593 2633                           * but didn't panic (kmem_panic <= 0). We should not be
2594 2634                           * here because the constructor failed (indicated by a
2595 2635                           * return code of 1). Try again.
2596 2636                           */
2597 2637                          ASSERT(rc == -1);
2598 2638                          return (kmem_cache_alloc(cp, kmflag));
2599 2639                  }
2600 2640                  return (buf);
2601 2641          }
2602 2642  
2603 2643          if (cp->cache_constructor != NULL &&
2604 2644              cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2605 2645                  atomic_inc_64(&cp->cache_alloc_fail);
2606 2646                  kmem_slab_free(cp, buf);
2607 2647                  return (NULL);
2608 2648          }
2609 2649  
2610 2650          return (buf);
2611 2651  }
2612 2652  
2613 2653  /*
2614 2654   * The freed argument tells whether or not kmem_cache_free_debug() has already
2615 2655   * been called so that we can avoid the duplicate free error. For example, a
2616 2656   * buffer on a magazine has already been freed by the client but is still
2617 2657   * constructed.
2618 2658   */
2619 2659  static void
2620 2660  kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2621 2661  {
2622 2662          if (!freed && (cp->cache_flags & KMF_BUFTAG))
2623 2663                  if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2624 2664                          return;
2625 2665  
2626 2666          /*
2627 2667           * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2628 2668           * kmem_cache_free_debug() will have already applied the destructor.
2629 2669           */
2630 2670          if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2631 2671              cp->cache_destructor != NULL) {
2632 2672                  if (cp->cache_flags & KMF_DEADBEEF) {   /* KMF_LITE implied */
2633 2673                          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2634 2674                          *(uint64_t *)buf = btp->bt_redzone;
2635 2675                          cp->cache_destructor(buf, cp->cache_private);
2636 2676                          *(uint64_t *)buf = KMEM_FREE_PATTERN;
2637 2677                  } else {
2638 2678                          cp->cache_destructor(buf, cp->cache_private);
2639 2679                  }
2640 2680          }
2641 2681  
2642 2682          kmem_slab_free(cp, buf);
2643 2683  }
2644 2684  
2645 2685  /*
2646 2686   * Used when there's no room to free a buffer to the per-CPU cache.
2647 2687   * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2648 2688   * caller should try freeing to the per-CPU cache again.
2649 2689   * Note that we don't directly install the magazine in the cpu cache,
2650 2690   * since its state may have changed wildly while the lock was dropped.
2651 2691   */
2652 2692  static int
2653 2693  kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2654 2694  {
2655 2695          kmem_magazine_t *emp;
2656 2696          kmem_magtype_t *mtp;
2657 2697  
2658 2698          ASSERT(MUTEX_HELD(&ccp->cc_lock));
2659 2699          ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2660 2700              ((uint_t)ccp->cc_rounds == -1)) &&
2661 2701              ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2662 2702              ((uint_t)ccp->cc_prounds == -1)));
2663 2703  
2664 2704          emp = kmem_depot_alloc(cp, &cp->cache_empty);
2665 2705          if (emp != NULL) {
2666 2706                  if (ccp->cc_ploaded != NULL)
2667 2707                          kmem_depot_free(cp, &cp->cache_full,
2668 2708                              ccp->cc_ploaded);
2669 2709                  kmem_cpu_reload(ccp, emp, 0);
2670 2710                  return (1);
2671 2711          }
2672 2712          /*
2673 2713           * There are no empty magazines in the depot,
2674 2714           * so try to allocate a new one.  We must drop all locks
2675 2715           * across kmem_cache_alloc() because lower layers may
2676 2716           * attempt to allocate from this cache.
2677 2717           */
2678 2718          mtp = cp->cache_magtype;
2679 2719          mutex_exit(&ccp->cc_lock);
2680 2720          emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2681 2721          mutex_enter(&ccp->cc_lock);
2682 2722  
2683 2723          if (emp != NULL) {
2684 2724                  /*
2685 2725                   * We successfully allocated an empty magazine.
2686 2726                   * However, we had to drop ccp->cc_lock to do it,
2687 2727                   * so the cache's magazine size may have changed.
2688 2728                   * If so, free the magazine and try again.
2689 2729                   */
2690 2730                  if (ccp->cc_magsize != mtp->mt_magsize) {
2691 2731                          mutex_exit(&ccp->cc_lock);
2692 2732                          kmem_cache_free(mtp->mt_cache, emp);
2693 2733                          mutex_enter(&ccp->cc_lock);
2694 2734                          return (1);
2695 2735                  }
2696 2736  
2697 2737                  /*
2698 2738                   * We got a magazine of the right size.  Add it to
2699 2739                   * the depot and try the whole dance again.
2700 2740                   */
2701 2741                  kmem_depot_free(cp, &cp->cache_empty, emp);
2702 2742                  return (1);
2703 2743          }
2704 2744  
2705 2745          /*
2706 2746           * We couldn't allocate an empty magazine,
2707 2747           * so fall through to the slab layer.
2708 2748           */
2709 2749          return (0);
2710 2750  }
2711 2751  
2712 2752  /*
2713 2753   * Free a constructed object to cache cp.
2714 2754   */
2715 2755  void
2716 2756  kmem_cache_free(kmem_cache_t *cp, void *buf)
2717 2757  {
2718 2758          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2719 2759  
2720 2760          /*
2721 2761           * The client must not free either of the buffers passed to the move
2722 2762           * callback function.
2723 2763           */
2724 2764          ASSERT(cp->cache_defrag == NULL ||
2725 2765              cp->cache_defrag->kmd_thread != curthread ||
2726 2766              (buf != cp->cache_defrag->kmd_from_buf &&
2727 2767              buf != cp->cache_defrag->kmd_to_buf));
2728 2768  
2729 2769          if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2730 2770                  if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2731 2771                          ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2732 2772                          /* log it so that we can warn about it */
2733 2773                          KDI_LOG(cp, kdl_unsafe);
2734 2774                  } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2735 2775                          return;
2736 2776                  }
2737 2777                  if (ccp->cc_flags & KMF_BUFTAG) {
2738 2778                          if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2739 2779                                  return;
2740 2780                  }
2741 2781          }
2742 2782  
2743 2783          mutex_enter(&ccp->cc_lock);
2744 2784          /*
2745 2785           * Any changes to this logic should be reflected in kmem_slab_prefill()
2746 2786           */
2747 2787          for (;;) {
2748 2788                  /*
2749 2789                   * If there's a slot available in the current CPU's
2750 2790                   * loaded magazine, just put the object there and return.
2751 2791                   */
2752 2792                  if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2753 2793                          ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2754 2794                          ccp->cc_free++;
2755 2795                          mutex_exit(&ccp->cc_lock);
2756 2796                          return;
2757 2797                  }
2758 2798  
2759 2799                  /*
2760 2800                   * The loaded magazine is full.  If the previously loaded
2761 2801                   * magazine was empty, exchange them and try again.
2762 2802                   */
2763 2803                  if (ccp->cc_prounds == 0) {
2764 2804                          kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2765 2805                          continue;
2766 2806                  }
2767 2807  
2768 2808                  /*
2769 2809                   * If the magazine layer is disabled, break out now.
2770 2810                   */
2771 2811                  if (ccp->cc_magsize == 0)
2772 2812                          break;
2773 2813  
2774 2814                  if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2775 2815                          /*
2776 2816                           * We couldn't free our constructed object to the
2777 2817                           * magazine layer, so apply its destructor and free it
2778 2818                           * to the slab layer.
2779 2819                           */
2780 2820                          break;
2781 2821                  }
2782 2822          }
2783 2823          mutex_exit(&ccp->cc_lock);
2784 2824          kmem_slab_free_constructed(cp, buf, B_TRUE);
2785 2825  }
2786 2826  
2787 2827  static void
2788 2828  kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2789 2829  {
2790 2830          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2791 2831          int cache_flags = cp->cache_flags;
2792 2832  
2793 2833          kmem_bufctl_t *next, *head;
2794 2834          size_t nbufs;
2795 2835  
2796 2836          /*
2797 2837           * Completely allocate the newly created slab and put the pre-allocated
2798 2838           * buffers in magazines. Any of the buffers that cannot be put in
2799 2839           * magazines must be returned to the slab.
2800 2840           */
2801 2841          ASSERT(MUTEX_HELD(&cp->cache_lock));
2802 2842          ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2803 2843          ASSERT(cp->cache_constructor == NULL);
2804 2844          ASSERT(sp->slab_cache == cp);
2805 2845          ASSERT(sp->slab_refcnt == 1);
2806 2846          ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2807 2847          ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2808 2848  
2809 2849          head = sp->slab_head;
2810 2850          nbufs = (sp->slab_chunks - sp->slab_refcnt);
2811 2851          sp->slab_head = NULL;
2812 2852          sp->slab_refcnt += nbufs;
2813 2853          cp->cache_bufslab -= nbufs;
2814 2854          cp->cache_slab_alloc += nbufs;
2815 2855          list_insert_head(&cp->cache_complete_slabs, sp);
2816 2856          cp->cache_complete_slab_count++;
2817 2857          mutex_exit(&cp->cache_lock);
2818 2858          mutex_enter(&ccp->cc_lock);
2819 2859  
2820 2860          while (head != NULL) {
2821 2861                  void *buf = KMEM_BUF(cp, head);
2822 2862                  /*
2823 2863                   * If there's a slot available in the current CPU's
2824 2864                   * loaded magazine, just put the object there and
2825 2865                   * continue.
2826 2866                   */
2827 2867                  if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2828 2868                          ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2829 2869                              buf;
2830 2870                          ccp->cc_free++;
2831 2871                          nbufs--;
2832 2872                          head = head->bc_next;
2833 2873                          continue;
2834 2874                  }
2835 2875  
2836 2876                  /*
2837 2877                   * The loaded magazine is full.  If the previously
2838 2878                   * loaded magazine was empty, exchange them and try
2839 2879                   * again.
2840 2880                   */
2841 2881                  if (ccp->cc_prounds == 0) {
2842 2882                          kmem_cpu_reload(ccp, ccp->cc_ploaded,
2843 2883                              ccp->cc_prounds);
2844 2884                          continue;
2845 2885                  }
2846 2886  
2847 2887                  /*
2848 2888                   * If the magazine layer is disabled, break out now.
2849 2889                   */
2850 2890  
2851 2891                  if (ccp->cc_magsize == 0) {
2852 2892                          break;
2853 2893                  }
2854 2894  
2855 2895                  if (!kmem_cpucache_magazine_alloc(ccp, cp))
2856 2896                          break;
2857 2897          }
2858 2898          mutex_exit(&ccp->cc_lock);
2859 2899          if (nbufs != 0) {
2860 2900                  ASSERT(head != NULL);
2861 2901  
2862 2902                  /*
2863 2903                   * If there was a failure, return remaining objects to
2864 2904                   * the slab
2865 2905                   */
2866 2906                  while (head != NULL) {
2867 2907                          ASSERT(nbufs != 0);
2868 2908                          next = head->bc_next;
2869 2909                          head->bc_next = NULL;
2870 2910                          kmem_slab_free(cp, KMEM_BUF(cp, head));
2871 2911                          head = next;
2872 2912                          nbufs--;
2873 2913                  }
2874 2914          }
2875 2915          ASSERT(head == NULL);
2876 2916          ASSERT(nbufs == 0);
2877 2917          mutex_enter(&cp->cache_lock);
2878 2918  }
2879 2919  
2880 2920  void *
2881 2921  kmem_zalloc(size_t size, int kmflag)
2882 2922  {
2883 2923          size_t index;
2884 2924          void *buf;
2885 2925  
2886 2926          if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2887 2927                  kmem_cache_t *cp = kmem_alloc_table[index];
2888 2928                  buf = kmem_cache_alloc(cp, kmflag);
2889 2929                  if (buf != NULL) {
2890 2930                          if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2891 2931                                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2892 2932                                  ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2893 2933                                  ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2894 2934  
2895 2935                                  if (cp->cache_flags & KMF_LITE) {
2896 2936                                          KMEM_BUFTAG_LITE_ENTER(btp,
2897 2937                                              kmem_lite_count, caller());
2898 2938                                  }
2899 2939                          }
2900 2940                          bzero(buf, size);
2901 2941                  }
2902 2942          } else {
2903 2943                  buf = kmem_alloc(size, kmflag);
2904 2944                  if (buf != NULL)
2905 2945                          bzero(buf, size);
2906 2946          }
2907 2947          return (buf);
2908 2948  }
2909 2949  
2910 2950  void *
2911 2951  kmem_alloc(size_t size, int kmflag)
2912 2952  {
2913 2953          size_t index;
2914 2954          kmem_cache_t *cp;
2915 2955          void *buf;
2916 2956  
  
    | 
      ↓ open down ↓ | 
    1013 lines elided | 
    
      ↑ open up ↑ | 
  
2917 2957          if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2918 2958                  cp = kmem_alloc_table[index];
2919 2959                  /* fall through to kmem_cache_alloc() */
2920 2960  
2921 2961          } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2922 2962              kmem_big_alloc_table_max) {
2923 2963                  cp = kmem_big_alloc_table[index];
2924 2964                  /* fall through to kmem_cache_alloc() */
2925 2965  
2926 2966          } else {
2927      -                if (size == 0) {
2928      -                        if (kmflag != KM_SLEEP && !(kmflag & KM_PANIC))
2929      -                                return (NULL);
2930      -
2931      -                        /*
2932      -                         * If this is a sleeping allocation or one that has
2933      -                         * been specified to panic on allocation failure, we
2934      -                         * consider it to be deprecated behavior to allocate
2935      -                         * 0 bytes.  If we have been configured to panic under
2936      -                         * this condition, we panic; if to warn, we warn -- and
2937      -                         * regardless, we log to the kmem_zerosized_log that
2938      -                         * that this condition has occurred (which gives us
2939      -                         * enough information to be able to debug it).
2940      -                         */
2941      -                        if (kmem_panic && kmem_panic_zerosized)
2942      -                                panic("attempted to kmem_alloc() size of 0");
2943      -
2944      -                        if (kmem_warn_zerosized) {
2945      -                                cmn_err(CE_WARN, "kmem_alloc(): sleeping "
2946      -                                    "allocation with size of 0; "
2947      -                                    "see kmem_zerosized_log for details");
2948      -                        }
2949      -
2950      -                        kmem_log_event(kmem_zerosized_log, NULL, NULL, NULL);
2951      -
     2967 +                if (size == 0)
2952 2968                          return (NULL);
2953      -                }
2954 2969  
2955 2970                  buf = vmem_alloc(kmem_oversize_arena, size,
2956 2971                      kmflag & KM_VMFLAGS);
2957 2972                  if (buf == NULL)
2958 2973                          kmem_log_event(kmem_failure_log, NULL, NULL,
2959 2974                              (void *)size);
2960 2975                  else if (KMEM_DUMP(kmem_slab_cache)) {
2961 2976                          /* stats for dump intercept */
2962 2977                          kmem_dump_oversize_allocs++;
2963 2978                          if (size > kmem_dump_oversize_max)
2964 2979                                  kmem_dump_oversize_max = size;
2965 2980                  }
2966 2981                  return (buf);
2967 2982          }
2968 2983  
2969 2984          buf = kmem_cache_alloc(cp, kmflag);
2970 2985          if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2971 2986                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2972 2987                  ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2973 2988                  ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2974 2989  
2975 2990                  if (cp->cache_flags & KMF_LITE) {
2976 2991                          KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2977 2992                  }
2978 2993          }
2979 2994          return (buf);
2980 2995  }
2981 2996  
2982 2997  void
2983 2998  kmem_free(void *buf, size_t size)
2984 2999  {
2985 3000          size_t index;
2986 3001          kmem_cache_t *cp;
2987 3002  
2988 3003          if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
2989 3004                  cp = kmem_alloc_table[index];
2990 3005                  /* fall through to kmem_cache_free() */
2991 3006  
2992 3007          } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2993 3008              kmem_big_alloc_table_max) {
2994 3009                  cp = kmem_big_alloc_table[index];
2995 3010                  /* fall through to kmem_cache_free() */
2996 3011  
2997 3012          } else {
2998 3013                  EQUIV(buf == NULL, size == 0);
2999 3014                  if (buf == NULL && size == 0)
3000 3015                          return;
3001 3016                  vmem_free(kmem_oversize_arena, buf, size);
3002 3017                  return;
3003 3018          }
3004 3019  
3005 3020          if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
3006 3021                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
3007 3022                  uint32_t *ip = (uint32_t *)btp;
3008 3023                  if (ip[1] != KMEM_SIZE_ENCODE(size)) {
3009 3024                          if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
3010 3025                                  kmem_error(KMERR_DUPFREE, cp, buf);
3011 3026                                  return;
3012 3027                          }
3013 3028                          if (KMEM_SIZE_VALID(ip[1])) {
3014 3029                                  ip[0] = KMEM_SIZE_ENCODE(size);
3015 3030                                  kmem_error(KMERR_BADSIZE, cp, buf);
3016 3031                          } else {
3017 3032                                  kmem_error(KMERR_REDZONE, cp, buf);
3018 3033                          }
3019 3034                          return;
3020 3035                  }
3021 3036                  if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
3022 3037                          kmem_error(KMERR_REDZONE, cp, buf);
3023 3038                          return;
3024 3039                  }
3025 3040                  btp->bt_redzone = KMEM_REDZONE_PATTERN;
3026 3041                  if (cp->cache_flags & KMF_LITE) {
3027 3042                          KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
3028 3043                              caller());
3029 3044                  }
3030 3045          }
3031 3046          kmem_cache_free(cp, buf);
3032 3047  }
3033 3048  
3034 3049  void *
3035 3050  kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
3036 3051  {
3037 3052          size_t realsize = size + vmp->vm_quantum;
3038 3053          void *addr;
3039 3054  
3040 3055          /*
3041 3056           * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
3042 3057           * vm_quantum will cause integer wraparound.  Check for this, and
3043 3058           * blow off the firewall page in this case.  Note that such a
3044 3059           * giant allocation (the entire kernel address space) can never
3045 3060           * be satisfied, so it will either fail immediately (VM_NOSLEEP)
3046 3061           * or sleep forever (VM_SLEEP).  Thus, there is no need for a
3047 3062           * corresponding check in kmem_firewall_va_free().
3048 3063           */
3049 3064          if (realsize < size)
3050 3065                  realsize = size;
3051 3066  
3052 3067          /*
3053 3068           * While boot still owns resource management, make sure that this
3054 3069           * redzone virtual address allocation is properly accounted for in
3055 3070           * OBPs "virtual-memory" "available" lists because we're
3056 3071           * effectively claiming them for a red zone.  If we don't do this,
3057 3072           * the available lists become too fragmented and too large for the
3058 3073           * current boot/kernel memory list interface.
3059 3074           */
3060 3075          addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
3061 3076  
3062 3077          if (addr != NULL && kvseg.s_base == NULL && realsize != size)
3063 3078                  (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
3064 3079  
3065 3080          return (addr);
3066 3081  }
3067 3082  
3068 3083  void
3069 3084  kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
3070 3085  {
3071 3086          ASSERT((kvseg.s_base == NULL ?
3072 3087              va_to_pfn((char *)addr + size) :
3073 3088              hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
3074 3089  
3075 3090          vmem_free(vmp, addr, size + vmp->vm_quantum);
3076 3091  }
3077 3092  
3078 3093  /*
3079 3094   * Try to allocate at least `size' bytes of memory without sleeping or
3080 3095   * panicking. Return actual allocated size in `asize'. If allocation failed,
3081 3096   * try final allocation with sleep or panic allowed.
3082 3097   */
3083 3098  void *
3084 3099  kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
3085 3100  {
3086 3101          void *p;
3087 3102  
3088 3103          *asize = P2ROUNDUP(size, KMEM_ALIGN);
3089 3104          do {
3090 3105                  p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
3091 3106                  if (p != NULL)
3092 3107                          return (p);
3093 3108                  *asize += KMEM_ALIGN;
3094 3109          } while (*asize <= PAGESIZE);
3095 3110  
3096 3111          *asize = P2ROUNDUP(size, KMEM_ALIGN);
3097 3112          return (kmem_alloc(*asize, kmflag));
3098 3113  }
3099 3114  
3100 3115  /*
3101 3116   * Reclaim all unused memory from a cache.
3102 3117   */
3103 3118  static void
3104 3119  kmem_cache_reap(kmem_cache_t *cp)
3105 3120  {
3106 3121          ASSERT(taskq_member(kmem_taskq, curthread));
3107 3122          cp->cache_reap++;
3108 3123  
3109 3124          /*
3110 3125           * Ask the cache's owner to free some memory if possible.
3111 3126           * The idea is to handle things like the inode cache, which
3112 3127           * typically sits on a bunch of memory that it doesn't truly
3113 3128           * *need*.  Reclaim policy is entirely up to the owner; this
3114 3129           * callback is just an advisory plea for help.
3115 3130           */
3116 3131          if (cp->cache_reclaim != NULL) {
3117 3132                  long delta;
3118 3133  
3119 3134                  /*
3120 3135                   * Reclaimed memory should be reapable (not included in the
3121 3136                   * depot's working set).
3122 3137                   */
3123 3138                  delta = cp->cache_full.ml_total;
3124 3139                  cp->cache_reclaim(cp->cache_private);
3125 3140                  delta = cp->cache_full.ml_total - delta;
3126 3141                  if (delta > 0) {
3127 3142                          mutex_enter(&cp->cache_depot_lock);
3128 3143                          cp->cache_full.ml_reaplimit += delta;
3129 3144                          cp->cache_full.ml_min += delta;
3130 3145                          mutex_exit(&cp->cache_depot_lock);
3131 3146                  }
3132 3147          }
3133 3148  
3134 3149          kmem_depot_ws_reap(cp);
3135 3150  
3136 3151          if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3137 3152                  kmem_cache_defrag(cp);
3138 3153          }
3139 3154  }
3140 3155  
3141 3156  static void
3142 3157  kmem_reap_timeout(void *flag_arg)
3143 3158  {
3144 3159          uint32_t *flag = (uint32_t *)flag_arg;
3145 3160  
3146 3161          ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3147 3162          *flag = 0;
3148 3163  }
3149 3164  
3150 3165  static void
3151 3166  kmem_reap_done(void *flag)
3152 3167  {
3153 3168          if (!callout_init_done) {
3154 3169                  /* can't schedule a timeout at this point */
3155 3170                  kmem_reap_timeout(flag);
3156 3171          } else {
3157 3172                  (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
3158 3173          }
3159 3174  }
3160 3175  
3161 3176  static void
3162 3177  kmem_reap_start(void *flag)
3163 3178  {
3164 3179          ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3165 3180  
3166 3181          if (flag == &kmem_reaping) {
3167 3182                  kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3168 3183                  /*
3169 3184                   * if we have segkp under heap, reap segkp cache.
3170 3185                   */
3171 3186                  if (segkp_fromheap)
3172 3187                          segkp_cache_free();
3173 3188          }
3174 3189          else
3175 3190                  kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3176 3191  
3177 3192          /*
3178 3193           * We use taskq_dispatch() to schedule a timeout to clear
3179 3194           * the flag so that kmem_reap() becomes self-throttling:
3180 3195           * we won't reap again until the current reap completes *and*
3181 3196           * at least kmem_reap_interval ticks have elapsed.
3182 3197           */
3183 3198          if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
3184 3199                  kmem_reap_done(flag);
3185 3200  }
3186 3201  
3187 3202  static void
3188 3203  kmem_reap_common(void *flag_arg)
3189 3204  {
3190 3205          uint32_t *flag = (uint32_t *)flag_arg;
3191 3206  
3192 3207          if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
3193 3208              atomic_cas_32(flag, 0, 1) != 0)
3194 3209                  return;
3195 3210  
3196 3211          /*
3197 3212           * It may not be kosher to do memory allocation when a reap is called
3198 3213           * (for example, if vmem_populate() is in the call chain).  So we
3199 3214           * start the reap going with a TQ_NOALLOC dispatch.  If the dispatch
3200 3215           * fails, we reset the flag, and the next reap will try again.
3201 3216           */
3202 3217          if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
3203 3218                  *flag = 0;
3204 3219  }
3205 3220  
3206 3221  /*
3207 3222   * Reclaim all unused memory from all caches.  Called from the VM system
3208 3223   * when memory gets tight.
3209 3224   */
3210 3225  void
3211 3226  kmem_reap(void)
3212 3227  {
3213 3228          kmem_reap_common(&kmem_reaping);
3214 3229  }
3215 3230  
3216 3231  /*
3217 3232   * Reclaim all unused memory from identifier arenas, called when a vmem
3218 3233   * arena not back by memory is exhausted.  Since reaping memory-backed caches
3219 3234   * cannot help with identifier exhaustion, we avoid both a large amount of
3220 3235   * work and unwanted side-effects from reclaim callbacks.
3221 3236   */
3222 3237  void
3223 3238  kmem_reap_idspace(void)
3224 3239  {
3225 3240          kmem_reap_common(&kmem_reaping_idspace);
3226 3241  }
3227 3242  
3228 3243  /*
3229 3244   * Purge all magazines from a cache and set its magazine limit to zero.
3230 3245   * All calls are serialized by the kmem_taskq lock, except for the final
3231 3246   * call from kmem_cache_destroy().
3232 3247   */
3233 3248  static void
3234 3249  kmem_cache_magazine_purge(kmem_cache_t *cp)
3235 3250  {
3236 3251          kmem_cpu_cache_t *ccp;
3237 3252          kmem_magazine_t *mp, *pmp;
3238 3253          int rounds, prounds, cpu_seqid;
3239 3254  
3240 3255          ASSERT(!list_link_active(&cp->cache_link) ||
3241 3256              taskq_member(kmem_taskq, curthread));
3242 3257          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
3243 3258  
3244 3259          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3245 3260                  ccp = &cp->cache_cpu[cpu_seqid];
3246 3261  
3247 3262                  mutex_enter(&ccp->cc_lock);
3248 3263                  mp = ccp->cc_loaded;
3249 3264                  pmp = ccp->cc_ploaded;
3250 3265                  rounds = ccp->cc_rounds;
3251 3266                  prounds = ccp->cc_prounds;
3252 3267                  ccp->cc_loaded = NULL;
3253 3268                  ccp->cc_ploaded = NULL;
3254 3269                  ccp->cc_rounds = -1;
3255 3270                  ccp->cc_prounds = -1;
3256 3271                  ccp->cc_magsize = 0;
3257 3272                  mutex_exit(&ccp->cc_lock);
3258 3273  
3259 3274                  if (mp)
3260 3275                          kmem_magazine_destroy(cp, mp, rounds);
3261 3276                  if (pmp)
3262 3277                          kmem_magazine_destroy(cp, pmp, prounds);
3263 3278          }
3264 3279  
3265 3280          kmem_depot_ws_zero(cp);
3266 3281          kmem_depot_ws_reap(cp);
3267 3282  }
3268 3283  
3269 3284  /*
3270 3285   * Enable per-cpu magazines on a cache.
3271 3286   */
3272 3287  static void
3273 3288  kmem_cache_magazine_enable(kmem_cache_t *cp)
3274 3289  {
3275 3290          int cpu_seqid;
3276 3291  
3277 3292          if (cp->cache_flags & KMF_NOMAGAZINE)
3278 3293                  return;
3279 3294  
3280 3295          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3281 3296                  kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3282 3297                  mutex_enter(&ccp->cc_lock);
3283 3298                  ccp->cc_magsize = cp->cache_magtype->mt_magsize;
3284 3299                  mutex_exit(&ccp->cc_lock);
3285 3300          }
3286 3301  
3287 3302  }
3288 3303  
3289 3304  /*
3290 3305   * Reap (almost) everything right now.
3291 3306   */
3292 3307  void
3293 3308  kmem_cache_reap_now(kmem_cache_t *cp)
3294 3309  {
3295 3310          ASSERT(list_link_active(&cp->cache_link));
3296 3311  
3297 3312          kmem_depot_ws_zero(cp);
3298 3313  
3299 3314          (void) taskq_dispatch(kmem_taskq,
3300 3315              (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3301 3316          taskq_wait(kmem_taskq);
3302 3317  }
3303 3318  
3304 3319  /*
3305 3320   * Recompute a cache's magazine size.  The trade-off is that larger magazines
3306 3321   * provide a higher transfer rate with the depot, while smaller magazines
3307 3322   * reduce memory consumption.  Magazine resizing is an expensive operation;
3308 3323   * it should not be done frequently.
3309 3324   *
3310 3325   * Changes to the magazine size are serialized by the kmem_taskq lock.
3311 3326   *
3312 3327   * Note: at present this only grows the magazine size.  It might be useful
3313 3328   * to allow shrinkage too.
3314 3329   */
3315 3330  static void
3316 3331  kmem_cache_magazine_resize(kmem_cache_t *cp)
3317 3332  {
3318 3333          kmem_magtype_t *mtp = cp->cache_magtype;
3319 3334  
3320 3335          ASSERT(taskq_member(kmem_taskq, curthread));
3321 3336  
3322 3337          if (cp->cache_chunksize < mtp->mt_maxbuf) {
3323 3338                  kmem_cache_magazine_purge(cp);
3324 3339                  mutex_enter(&cp->cache_depot_lock);
3325 3340                  cp->cache_magtype = ++mtp;
3326 3341                  cp->cache_depot_contention_prev =
3327 3342                      cp->cache_depot_contention + INT_MAX;
3328 3343                  mutex_exit(&cp->cache_depot_lock);
3329 3344                  kmem_cache_magazine_enable(cp);
3330 3345          }
3331 3346  }
3332 3347  
3333 3348  /*
3334 3349   * Rescale a cache's hash table, so that the table size is roughly the
3335 3350   * cache size.  We want the average lookup time to be extremely small.
3336 3351   */
3337 3352  static void
3338 3353  kmem_hash_rescale(kmem_cache_t *cp)
3339 3354  {
3340 3355          kmem_bufctl_t **old_table, **new_table, *bcp;
3341 3356          size_t old_size, new_size, h;
3342 3357  
3343 3358          ASSERT(taskq_member(kmem_taskq, curthread));
3344 3359  
3345 3360          new_size = MAX(KMEM_HASH_INITIAL,
3346 3361              1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
3347 3362          old_size = cp->cache_hash_mask + 1;
3348 3363  
3349 3364          if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
3350 3365                  return;
3351 3366  
3352 3367          new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
3353 3368              VM_NOSLEEP);
3354 3369          if (new_table == NULL)
3355 3370                  return;
3356 3371          bzero(new_table, new_size * sizeof (void *));
3357 3372  
3358 3373          mutex_enter(&cp->cache_lock);
3359 3374  
3360 3375          old_size = cp->cache_hash_mask + 1;
3361 3376          old_table = cp->cache_hash_table;
3362 3377  
3363 3378          cp->cache_hash_mask = new_size - 1;
3364 3379          cp->cache_hash_table = new_table;
3365 3380          cp->cache_rescale++;
3366 3381  
3367 3382          for (h = 0; h < old_size; h++) {
3368 3383                  bcp = old_table[h];
3369 3384                  while (bcp != NULL) {
3370 3385                          void *addr = bcp->bc_addr;
3371 3386                          kmem_bufctl_t *next_bcp = bcp->bc_next;
3372 3387                          kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
3373 3388                          bcp->bc_next = *hash_bucket;
3374 3389                          *hash_bucket = bcp;
3375 3390                          bcp = next_bcp;
3376 3391                  }
3377 3392          }
3378 3393  
3379 3394          mutex_exit(&cp->cache_lock);
3380 3395  
3381 3396          vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
3382 3397  }
3383 3398  
3384 3399  /*
3385 3400   * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3386 3401   * update, magazine resizing, and slab consolidation.
3387 3402   */
3388 3403  static void
3389 3404  kmem_cache_update(kmem_cache_t *cp)
3390 3405  {
3391 3406          int need_hash_rescale = 0;
3392 3407          int need_magazine_resize = 0;
3393 3408  
3394 3409          ASSERT(MUTEX_HELD(&kmem_cache_lock));
3395 3410  
3396 3411          /*
3397 3412           * If the cache has become much larger or smaller than its hash table,
3398 3413           * fire off a request to rescale the hash table.
3399 3414           */
3400 3415          mutex_enter(&cp->cache_lock);
3401 3416  
3402 3417          if ((cp->cache_flags & KMF_HASH) &&
3403 3418              (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
3404 3419              (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
3405 3420              cp->cache_hash_mask > KMEM_HASH_INITIAL)))
3406 3421                  need_hash_rescale = 1;
3407 3422  
3408 3423          mutex_exit(&cp->cache_lock);
3409 3424  
3410 3425          /*
3411 3426           * Update the depot working set statistics.
3412 3427           */
3413 3428          kmem_depot_ws_update(cp);
3414 3429  
3415 3430          /*
3416 3431           * If there's a lot of contention in the depot,
3417 3432           * increase the magazine size.
3418 3433           */
3419 3434          mutex_enter(&cp->cache_depot_lock);
3420 3435  
3421 3436          if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
3422 3437              (int)(cp->cache_depot_contention -
3423 3438              cp->cache_depot_contention_prev) > kmem_depot_contention)
3424 3439                  need_magazine_resize = 1;
3425 3440  
3426 3441          cp->cache_depot_contention_prev = cp->cache_depot_contention;
3427 3442  
3428 3443          mutex_exit(&cp->cache_depot_lock);
3429 3444  
3430 3445          if (need_hash_rescale)
3431 3446                  (void) taskq_dispatch(kmem_taskq,
3432 3447                      (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
3433 3448  
3434 3449          if (need_magazine_resize)
3435 3450                  (void) taskq_dispatch(kmem_taskq,
3436 3451                      (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3437 3452  
3438 3453          if (cp->cache_defrag != NULL)
3439 3454                  (void) taskq_dispatch(kmem_taskq,
3440 3455                      (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
3441 3456  }
3442 3457  
3443 3458  static void kmem_update(void *);
3444 3459  
3445 3460  static void
3446 3461  kmem_update_timeout(void *dummy)
3447 3462  {
3448 3463          (void) timeout(kmem_update, dummy, kmem_reap_interval);
3449 3464  }
3450 3465  
3451 3466  static void
3452 3467  kmem_update(void *dummy)
3453 3468  {
3454 3469          kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
3455 3470  
3456 3471          /*
3457 3472           * We use taskq_dispatch() to reschedule the timeout so that
3458 3473           * kmem_update() becomes self-throttling: it won't schedule
3459 3474           * new tasks until all previous tasks have completed.
3460 3475           */
3461 3476          if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
3462 3477                  kmem_update_timeout(NULL);
3463 3478  }
3464 3479  
3465 3480  static int
3466 3481  kmem_cache_kstat_update(kstat_t *ksp, int rw)
3467 3482  {
3468 3483          struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
3469 3484          kmem_cache_t *cp = ksp->ks_private;
3470 3485          uint64_t cpu_buf_avail;
3471 3486          uint64_t buf_avail = 0;
3472 3487          int cpu_seqid;
3473 3488          long reap;
3474 3489  
3475 3490          ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
3476 3491  
3477 3492          if (rw == KSTAT_WRITE)
3478 3493                  return (EACCES);
3479 3494  
3480 3495          mutex_enter(&cp->cache_lock);
3481 3496  
3482 3497          kmcp->kmc_alloc_fail.value.ui64         = cp->cache_alloc_fail;
3483 3498          kmcp->kmc_alloc.value.ui64              = cp->cache_slab_alloc;
3484 3499          kmcp->kmc_free.value.ui64               = cp->cache_slab_free;
3485 3500          kmcp->kmc_slab_alloc.value.ui64         = cp->cache_slab_alloc;
3486 3501          kmcp->kmc_slab_free.value.ui64          = cp->cache_slab_free;
3487 3502  
3488 3503          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3489 3504                  kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3490 3505  
3491 3506                  mutex_enter(&ccp->cc_lock);
3492 3507  
3493 3508                  cpu_buf_avail = 0;
3494 3509                  if (ccp->cc_rounds > 0)
3495 3510                          cpu_buf_avail += ccp->cc_rounds;
3496 3511                  if (ccp->cc_prounds > 0)
3497 3512                          cpu_buf_avail += ccp->cc_prounds;
3498 3513  
3499 3514                  kmcp->kmc_alloc.value.ui64      += ccp->cc_alloc;
3500 3515                  kmcp->kmc_free.value.ui64       += ccp->cc_free;
3501 3516                  buf_avail                       += cpu_buf_avail;
3502 3517  
3503 3518                  mutex_exit(&ccp->cc_lock);
3504 3519          }
3505 3520  
3506 3521          mutex_enter(&cp->cache_depot_lock);
3507 3522  
3508 3523          kmcp->kmc_depot_alloc.value.ui64        = cp->cache_full.ml_alloc;
3509 3524          kmcp->kmc_depot_free.value.ui64         = cp->cache_empty.ml_alloc;
3510 3525          kmcp->kmc_depot_contention.value.ui64   = cp->cache_depot_contention;
3511 3526          kmcp->kmc_full_magazines.value.ui64     = cp->cache_full.ml_total;
3512 3527          kmcp->kmc_empty_magazines.value.ui64    = cp->cache_empty.ml_total;
3513 3528          kmcp->kmc_magazine_size.value.ui64      =
3514 3529              (cp->cache_flags & KMF_NOMAGAZINE) ?
3515 3530              0 : cp->cache_magtype->mt_magsize;
3516 3531  
3517 3532          kmcp->kmc_alloc.value.ui64              += cp->cache_full.ml_alloc;
3518 3533          kmcp->kmc_free.value.ui64               += cp->cache_empty.ml_alloc;
3519 3534          buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
3520 3535  
3521 3536          reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3522 3537          reap = MIN(reap, cp->cache_full.ml_total);
3523 3538  
3524 3539          mutex_exit(&cp->cache_depot_lock);
3525 3540  
3526 3541          kmcp->kmc_buf_size.value.ui64   = cp->cache_bufsize;
3527 3542          kmcp->kmc_align.value.ui64      = cp->cache_align;
3528 3543          kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize;
3529 3544          kmcp->kmc_slab_size.value.ui64  = cp->cache_slabsize;
3530 3545          kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
3531 3546          buf_avail += cp->cache_bufslab;
3532 3547          kmcp->kmc_buf_avail.value.ui64  = buf_avail;
3533 3548          kmcp->kmc_buf_inuse.value.ui64  = cp->cache_buftotal - buf_avail;
3534 3549          kmcp->kmc_buf_total.value.ui64  = cp->cache_buftotal;
3535 3550          kmcp->kmc_buf_max.value.ui64    = cp->cache_bufmax;
3536 3551          kmcp->kmc_slab_create.value.ui64        = cp->cache_slab_create;
3537 3552          kmcp->kmc_slab_destroy.value.ui64       = cp->cache_slab_destroy;
3538 3553          kmcp->kmc_hash_size.value.ui64  = (cp->cache_flags & KMF_HASH) ?
3539 3554              cp->cache_hash_mask + 1 : 0;
3540 3555          kmcp->kmc_hash_lookup_depth.value.ui64  = cp->cache_lookup_depth;
3541 3556          kmcp->kmc_hash_rescale.value.ui64       = cp->cache_rescale;
3542 3557          kmcp->kmc_vmem_source.value.ui64        = cp->cache_arena->vm_id;
3543 3558          kmcp->kmc_reap.value.ui64       = cp->cache_reap;
3544 3559  
3545 3560          if (cp->cache_defrag == NULL) {
3546 3561                  kmcp->kmc_move_callbacks.value.ui64     = 0;
3547 3562                  kmcp->kmc_move_yes.value.ui64           = 0;
3548 3563                  kmcp->kmc_move_no.value.ui64            = 0;
3549 3564                  kmcp->kmc_move_later.value.ui64         = 0;
3550 3565                  kmcp->kmc_move_dont_need.value.ui64     = 0;
3551 3566                  kmcp->kmc_move_dont_know.value.ui64     = 0;
3552 3567                  kmcp->kmc_move_hunt_found.value.ui64    = 0;
3553 3568                  kmcp->kmc_move_slabs_freed.value.ui64   = 0;
3554 3569                  kmcp->kmc_defrag.value.ui64             = 0;
3555 3570                  kmcp->kmc_scan.value.ui64               = 0;
3556 3571                  kmcp->kmc_move_reclaimable.value.ui64   = 0;
  
    | 
      ↓ open down ↓ | 
    593 lines elided | 
    
      ↑ open up ↑ | 
  
3557 3572          } else {
3558 3573                  int64_t reclaimable;
3559 3574  
3560 3575                  kmem_defrag_t *kd = cp->cache_defrag;
3561 3576                  kmcp->kmc_move_callbacks.value.ui64     = kd->kmd_callbacks;
3562 3577                  kmcp->kmc_move_yes.value.ui64           = kd->kmd_yes;
3563 3578                  kmcp->kmc_move_no.value.ui64            = kd->kmd_no;
3564 3579                  kmcp->kmc_move_later.value.ui64         = kd->kmd_later;
3565 3580                  kmcp->kmc_move_dont_need.value.ui64     = kd->kmd_dont_need;
3566 3581                  kmcp->kmc_move_dont_know.value.ui64     = kd->kmd_dont_know;
3567      -                kmcp->kmc_move_hunt_found.value.ui64    = 0;
     3582 +                kmcp->kmc_move_hunt_found.value.ui64    = kd->kmd_hunt_found;
3568 3583                  kmcp->kmc_move_slabs_freed.value.ui64   = kd->kmd_slabs_freed;
3569 3584                  kmcp->kmc_defrag.value.ui64             = kd->kmd_defrags;
3570 3585                  kmcp->kmc_scan.value.ui64               = kd->kmd_scans;
3571 3586  
3572 3587                  reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3573 3588                  reclaimable = MAX(reclaimable, 0);
3574 3589                  reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3575 3590                  kmcp->kmc_move_reclaimable.value.ui64   = reclaimable;
3576 3591          }
3577 3592  
3578 3593          mutex_exit(&cp->cache_lock);
3579 3594          return (0);
3580 3595  }
3581 3596  
3582 3597  /*
3583 3598   * Return a named statistic about a particular cache.
3584 3599   * This shouldn't be called very often, so it's currently designed for
3585 3600   * simplicity (leverages existing kstat support) rather than efficiency.
3586 3601   */
3587 3602  uint64_t
3588 3603  kmem_cache_stat(kmem_cache_t *cp, char *name)
3589 3604  {
3590 3605          int i;
3591 3606          kstat_t *ksp = cp->cache_kstat;
3592 3607          kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3593 3608          uint64_t value = 0;
3594 3609  
3595 3610          if (ksp != NULL) {
3596 3611                  mutex_enter(&kmem_cache_kstat_lock);
3597 3612                  (void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3598 3613                  for (i = 0; i < ksp->ks_ndata; i++) {
3599 3614                          if (strcmp(knp[i].name, name) == 0) {
3600 3615                                  value = knp[i].value.ui64;
3601 3616                                  break;
3602 3617                          }
3603 3618                  }
3604 3619                  mutex_exit(&kmem_cache_kstat_lock);
3605 3620          }
3606 3621          return (value);
3607 3622  }
3608 3623  
3609 3624  /*
3610 3625   * Return an estimate of currently available kernel heap memory.
3611 3626   * On 32-bit systems, physical memory may exceed virtual memory,
3612 3627   * we just truncate the result at 1GB.
3613 3628   */
3614 3629  size_t
3615 3630  kmem_avail(void)
3616 3631  {
3617 3632          spgcnt_t rmem = availrmem - tune.t_minarmem;
3618 3633          spgcnt_t fmem = freemem - minfree;
3619 3634  
3620 3635          return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3621 3636              1 << (30 - PAGESHIFT))));
3622 3637  }
3623 3638  
3624 3639  /*
3625 3640   * Return the maximum amount of memory that is (in theory) allocatable
3626 3641   * from the heap. This may be used as an estimate only since there
3627 3642   * is no guarentee this space will still be available when an allocation
3628 3643   * request is made, nor that the space may be allocated in one big request
3629 3644   * due to kernel heap fragmentation.
3630 3645   */
3631 3646  size_t
3632 3647  kmem_maxavail(void)
3633 3648  {
3634 3649          spgcnt_t pmem = availrmem - tune.t_minarmem;
3635 3650          spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3636 3651  
3637 3652          return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3638 3653  }
3639 3654  
3640 3655  /*
3641 3656   * Indicate whether memory-intensive kmem debugging is enabled.
3642 3657   */
3643 3658  int
3644 3659  kmem_debugging(void)
3645 3660  {
3646 3661          return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3647 3662  }
3648 3663  
3649 3664  /* binning function, sorts finely at the two extremes */
3650 3665  #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)                          \
3651 3666          ((((sp)->slab_refcnt <= (binshift)) ||                          \
3652 3667              (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))    \
3653 3668              ? -(sp)->slab_refcnt                                        \
3654 3669              : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3655 3670  
3656 3671  /*
3657 3672   * Minimizing the number of partial slabs on the freelist minimizes
3658 3673   * fragmentation (the ratio of unused buffers held by the slab layer). There are
3659 3674   * two ways to get a slab off of the freelist: 1) free all the buffers on the
3660 3675   * slab, and 2) allocate all the buffers on the slab. It follows that we want
3661 3676   * the most-used slabs at the front of the list where they have the best chance
3662 3677   * of being completely allocated, and the least-used slabs at a safe distance
3663 3678   * from the front to improve the odds that the few remaining buffers will all be
3664 3679   * freed before another allocation can tie up the slab. For that reason a slab
3665 3680   * with a higher slab_refcnt sorts less than than a slab with a lower
3666 3681   * slab_refcnt.
3667 3682   *
3668 3683   * However, if a slab has at least one buffer that is deemed unfreeable, we
3669 3684   * would rather have that slab at the front of the list regardless of
3670 3685   * slab_refcnt, since even one unfreeable buffer makes the entire slab
3671 3686   * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3672 3687   * callback, the slab is marked unfreeable for as long as it remains on the
3673 3688   * freelist.
3674 3689   */
3675 3690  static int
3676 3691  kmem_partial_slab_cmp(const void *p0, const void *p1)
3677 3692  {
3678 3693          const kmem_cache_t *cp;
3679 3694          const kmem_slab_t *s0 = p0;
3680 3695          const kmem_slab_t *s1 = p1;
3681 3696          int w0, w1;
3682 3697          size_t binshift;
3683 3698  
3684 3699          ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3685 3700          ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3686 3701          ASSERT(s0->slab_cache == s1->slab_cache);
3687 3702          cp = s1->slab_cache;
3688 3703          ASSERT(MUTEX_HELD(&cp->cache_lock));
3689 3704          binshift = cp->cache_partial_binshift;
3690 3705  
3691 3706          /* weight of first slab */
3692 3707          w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3693 3708          if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3694 3709                  w0 -= cp->cache_maxchunks;
3695 3710          }
3696 3711  
3697 3712          /* weight of second slab */
3698 3713          w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3699 3714          if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3700 3715                  w1 -= cp->cache_maxchunks;
3701 3716          }
3702 3717  
3703 3718          if (w0 < w1)
3704 3719                  return (-1);
3705 3720          if (w0 > w1)
3706 3721                  return (1);
3707 3722  
3708 3723          /* compare pointer values */
3709 3724          if ((uintptr_t)s0 < (uintptr_t)s1)
3710 3725                  return (-1);
3711 3726          if ((uintptr_t)s0 > (uintptr_t)s1)
3712 3727                  return (1);
3713 3728  
3714 3729          return (0);
3715 3730  }
3716 3731  
3717 3732  /*
3718 3733   * It must be valid to call the destructor (if any) on a newly created object.
3719 3734   * That is, the constructor (if any) must leave the object in a valid state for
3720 3735   * the destructor.
3721 3736   */
3722 3737  kmem_cache_t *
3723 3738  kmem_cache_create(
3724 3739          char *name,             /* descriptive name for this cache */
3725 3740          size_t bufsize,         /* size of the objects it manages */
3726 3741          size_t align,           /* required object alignment */
3727 3742          int (*constructor)(void *, void *, int), /* object constructor */
3728 3743          void (*destructor)(void *, void *),     /* object destructor */
3729 3744          void (*reclaim)(void *), /* memory reclaim callback */
3730 3745          void *private,          /* pass-thru arg for constr/destr/reclaim */
3731 3746          vmem_t *vmp,            /* vmem source for slab allocation */
3732 3747          int cflags)             /* cache creation flags */
3733 3748  {
3734 3749          int cpu_seqid;
3735 3750          size_t chunksize;
3736 3751          kmem_cache_t *cp;
3737 3752          kmem_magtype_t *mtp;
3738 3753          size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3739 3754  
3740 3755  #ifdef  DEBUG
3741 3756          /*
3742 3757           * Cache names should conform to the rules for valid C identifiers
3743 3758           */
3744 3759          if (!strident_valid(name)) {
3745 3760                  cmn_err(CE_CONT,
3746 3761                      "kmem_cache_create: '%s' is an invalid cache name\n"
3747 3762                      "cache names must conform to the rules for "
3748 3763                      "C identifiers\n", name);
3749 3764          }
3750 3765  #endif  /* DEBUG */
3751 3766  
3752 3767          if (vmp == NULL)
3753 3768                  vmp = kmem_default_arena;
3754 3769  
3755 3770          /*
3756 3771           * If this kmem cache has an identifier vmem arena as its source, mark
3757 3772           * it such to allow kmem_reap_idspace().
3758 3773           */
3759 3774          ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
3760 3775          if (vmp->vm_cflags & VMC_IDENTIFIER)
3761 3776                  cflags |= KMC_IDENTIFIER;
3762 3777  
3763 3778          /*
3764 3779           * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
3765 3780           * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3766 3781           * false sharing of per-CPU data.
3767 3782           */
3768 3783          cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3769 3784              P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3770 3785          bzero(cp, csize);
3771 3786          list_link_init(&cp->cache_link);
3772 3787  
3773 3788          if (align == 0)
3774 3789                  align = KMEM_ALIGN;
3775 3790  
3776 3791          /*
3777 3792           * If we're not at least KMEM_ALIGN aligned, we can't use free
3778 3793           * memory to hold bufctl information (because we can't safely
3779 3794           * perform word loads and stores on it).
3780 3795           */
3781 3796          if (align < KMEM_ALIGN)
3782 3797                  cflags |= KMC_NOTOUCH;
3783 3798  
3784 3799          if (!ISP2(align) || align > vmp->vm_quantum)
3785 3800                  panic("kmem_cache_create: bad alignment %lu", align);
3786 3801  
3787 3802          mutex_enter(&kmem_flags_lock);
3788 3803          if (kmem_flags & KMF_RANDOMIZE)
3789 3804                  kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3790 3805                      KMF_RANDOMIZE;
3791 3806          cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3792 3807          mutex_exit(&kmem_flags_lock);
3793 3808  
3794 3809          /*
3795 3810           * Make sure all the various flags are reasonable.
3796 3811           */
3797 3812          ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3798 3813  
3799 3814          if (cp->cache_flags & KMF_LITE) {
3800 3815                  if (bufsize >= kmem_lite_minsize &&
3801 3816                      align <= kmem_lite_maxalign &&
3802 3817                      P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3803 3818                          cp->cache_flags |= KMF_BUFTAG;
3804 3819                          cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3805 3820                  } else {
3806 3821                          cp->cache_flags &= ~KMF_DEBUG;
3807 3822                  }
3808 3823          }
3809 3824  
3810 3825          if (cp->cache_flags & KMF_DEADBEEF)
3811 3826                  cp->cache_flags |= KMF_REDZONE;
3812 3827  
3813 3828          if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3814 3829                  cp->cache_flags |= KMF_NOMAGAZINE;
3815 3830  
3816 3831          if (cflags & KMC_NODEBUG)
3817 3832                  cp->cache_flags &= ~KMF_DEBUG;
3818 3833  
3819 3834          if (cflags & KMC_NOTOUCH)
3820 3835                  cp->cache_flags &= ~KMF_TOUCH;
3821 3836  
3822 3837          if (cflags & KMC_PREFILL)
3823 3838                  cp->cache_flags |= KMF_PREFILL;
3824 3839  
3825 3840          if (cflags & KMC_NOHASH)
3826 3841                  cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3827 3842  
3828 3843          if (cflags & KMC_NOMAGAZINE)
3829 3844                  cp->cache_flags |= KMF_NOMAGAZINE;
3830 3845  
3831 3846          if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3832 3847                  cp->cache_flags |= KMF_REDZONE;
3833 3848  
3834 3849          if (!(cp->cache_flags & KMF_AUDIT))
3835 3850                  cp->cache_flags &= ~KMF_CONTENTS;
3836 3851  
3837 3852          if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3838 3853              !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3839 3854                  cp->cache_flags |= KMF_FIREWALL;
3840 3855  
3841 3856          if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3842 3857                  cp->cache_flags &= ~KMF_FIREWALL;
3843 3858  
3844 3859          if (cp->cache_flags & KMF_FIREWALL) {
3845 3860                  cp->cache_flags &= ~KMF_BUFTAG;
3846 3861                  cp->cache_flags |= KMF_NOMAGAZINE;
3847 3862                  ASSERT(vmp == kmem_default_arena);
3848 3863                  vmp = kmem_firewall_arena;
3849 3864          }
3850 3865  
3851 3866          /*
3852 3867           * Set cache properties.
3853 3868           */
3854 3869          (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3855 3870          strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3856 3871          cp->cache_bufsize = bufsize;
3857 3872          cp->cache_align = align;
3858 3873          cp->cache_constructor = constructor;
3859 3874          cp->cache_destructor = destructor;
3860 3875          cp->cache_reclaim = reclaim;
3861 3876          cp->cache_private = private;
3862 3877          cp->cache_arena = vmp;
3863 3878          cp->cache_cflags = cflags;
3864 3879  
3865 3880          /*
3866 3881           * Determine the chunk size.
3867 3882           */
3868 3883          chunksize = bufsize;
3869 3884  
3870 3885          if (align >= KMEM_ALIGN) {
3871 3886                  chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3872 3887                  cp->cache_bufctl = chunksize - KMEM_ALIGN;
3873 3888          }
3874 3889  
3875 3890          if (cp->cache_flags & KMF_BUFTAG) {
3876 3891                  cp->cache_bufctl = chunksize;
3877 3892                  cp->cache_buftag = chunksize;
3878 3893                  if (cp->cache_flags & KMF_LITE)
3879 3894                          chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3880 3895                  else
3881 3896                          chunksize += sizeof (kmem_buftag_t);
3882 3897          }
3883 3898  
3884 3899          if (cp->cache_flags & KMF_DEADBEEF) {
3885 3900                  cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3886 3901                  if (cp->cache_flags & KMF_LITE)
3887 3902                          cp->cache_verify = sizeof (uint64_t);
3888 3903          }
3889 3904  
3890 3905          cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3891 3906  
3892 3907          cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3893 3908  
3894 3909          /*
3895 3910           * Now that we know the chunk size, determine the optimal slab size.
3896 3911           */
3897 3912          if (vmp == kmem_firewall_arena) {
3898 3913                  cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3899 3914                  cp->cache_mincolor = cp->cache_slabsize - chunksize;
3900 3915                  cp->cache_maxcolor = cp->cache_mincolor;
3901 3916                  cp->cache_flags |= KMF_HASH;
3902 3917                  ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3903 3918          } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3904 3919              !(cp->cache_flags & KMF_AUDIT) &&
3905 3920              chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3906 3921                  cp->cache_slabsize = vmp->vm_quantum;
3907 3922                  cp->cache_mincolor = 0;
3908 3923                  cp->cache_maxcolor =
3909 3924                      (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3910 3925                  ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3911 3926                  ASSERT(!(cp->cache_flags & KMF_AUDIT));
3912 3927          } else {
3913 3928                  size_t chunks, bestfit, waste, slabsize;
3914 3929                  size_t minwaste = LONG_MAX;
3915 3930  
3916 3931                  for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3917 3932                          slabsize = P2ROUNDUP(chunksize * chunks,
3918 3933                              vmp->vm_quantum);
3919 3934                          chunks = slabsize / chunksize;
3920 3935                          waste = (slabsize % chunksize) / chunks;
3921 3936                          if (waste < minwaste) {
3922 3937                                  minwaste = waste;
3923 3938                                  bestfit = slabsize;
3924 3939                          }
3925 3940                  }
3926 3941                  if (cflags & KMC_QCACHE)
3927 3942                          bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3928 3943                  cp->cache_slabsize = bestfit;
3929 3944                  cp->cache_mincolor = 0;
3930 3945                  cp->cache_maxcolor = bestfit % chunksize;
3931 3946                  cp->cache_flags |= KMF_HASH;
3932 3947          }
3933 3948  
3934 3949          cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3935 3950          cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3936 3951  
3937 3952          /*
3938 3953           * Disallowing prefill when either the DEBUG or HASH flag is set or when
3939 3954           * there is a constructor avoids some tricky issues with debug setup
3940 3955           * that may be revisited later. We cannot allow prefill in a
3941 3956           * metadata cache because of potential recursion.
3942 3957           */
3943 3958          if (vmp == kmem_msb_arena ||
3944 3959              cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3945 3960              cp->cache_constructor != NULL)
3946 3961                  cp->cache_flags &= ~KMF_PREFILL;
3947 3962  
3948 3963          if (cp->cache_flags & KMF_HASH) {
3949 3964                  ASSERT(!(cflags & KMC_NOHASH));
3950 3965                  cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3951 3966                      kmem_bufctl_audit_cache : kmem_bufctl_cache;
3952 3967          }
3953 3968  
3954 3969          if (cp->cache_maxcolor >= vmp->vm_quantum)
3955 3970                  cp->cache_maxcolor = vmp->vm_quantum - 1;
3956 3971  
3957 3972          cp->cache_color = cp->cache_mincolor;
3958 3973  
3959 3974          /*
3960 3975           * Initialize the rest of the slab layer.
3961 3976           */
3962 3977          mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3963 3978  
3964 3979          avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3965 3980              sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3966 3981          /* LINTED: E_TRUE_LOGICAL_EXPR */
3967 3982          ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3968 3983          /* reuse partial slab AVL linkage for complete slab list linkage */
3969 3984          list_create(&cp->cache_complete_slabs,
3970 3985              sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3971 3986  
3972 3987          if (cp->cache_flags & KMF_HASH) {
3973 3988                  cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3974 3989                      KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3975 3990                  bzero(cp->cache_hash_table,
3976 3991                      KMEM_HASH_INITIAL * sizeof (void *));
3977 3992                  cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3978 3993                  cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3979 3994          }
3980 3995  
3981 3996          /*
3982 3997           * Initialize the depot.
3983 3998           */
3984 3999          mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
3985 4000  
3986 4001          for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
3987 4002                  continue;
3988 4003  
3989 4004          cp->cache_magtype = mtp;
3990 4005  
3991 4006          /*
3992 4007           * Initialize the CPU layer.
3993 4008           */
3994 4009          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3995 4010                  kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3996 4011                  mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
3997 4012                  ccp->cc_flags = cp->cache_flags;
3998 4013                  ccp->cc_rounds = -1;
3999 4014                  ccp->cc_prounds = -1;
4000 4015          }
4001 4016  
4002 4017          /*
4003 4018           * Create the cache's kstats.
4004 4019           */
4005 4020          if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
4006 4021              "kmem_cache", KSTAT_TYPE_NAMED,
4007 4022              sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
4008 4023              KSTAT_FLAG_VIRTUAL)) != NULL) {
4009 4024                  cp->cache_kstat->ks_data = &kmem_cache_kstat;
4010 4025                  cp->cache_kstat->ks_update = kmem_cache_kstat_update;
4011 4026                  cp->cache_kstat->ks_private = cp;
4012 4027                  cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
4013 4028                  kstat_install(cp->cache_kstat);
4014 4029          }
4015 4030  
4016 4031          /*
4017 4032           * Add the cache to the global list.  This makes it visible
4018 4033           * to kmem_update(), so the cache must be ready for business.
4019 4034           */
4020 4035          mutex_enter(&kmem_cache_lock);
4021 4036          list_insert_tail(&kmem_caches, cp);
4022 4037          mutex_exit(&kmem_cache_lock);
4023 4038  
4024 4039          if (kmem_ready)
4025 4040                  kmem_cache_magazine_enable(cp);
4026 4041  
4027 4042          return (cp);
4028 4043  }
4029 4044  
4030 4045  static int
4031 4046  kmem_move_cmp(const void *buf, const void *p)
4032 4047  {
4033 4048          const kmem_move_t *kmm = p;
4034 4049          uintptr_t v1 = (uintptr_t)buf;
4035 4050          uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
4036 4051          return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
4037 4052  }
4038 4053  
4039 4054  static void
4040 4055  kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
4041 4056  {
4042 4057          kmd->kmd_reclaim_numer = 1;
4043 4058  }
4044 4059  
4045 4060  /*
4046 4061   * Initially, when choosing candidate slabs for buffers to move, we want to be
4047 4062   * very selective and take only slabs that are less than
4048 4063   * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
4049 4064   * slabs, then we raise the allocation ceiling incrementally. The reclaim
4050 4065   * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
4051 4066   * longer fragmented.
4052 4067   */
4053 4068  static void
4054 4069  kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
4055 4070  {
4056 4071          if (direction > 0) {
4057 4072                  /* make it easier to find a candidate slab */
4058 4073                  if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
4059 4074                          kmd->kmd_reclaim_numer++;
4060 4075                  }
4061 4076          } else {
4062 4077                  /* be more selective */
4063 4078                  if (kmd->kmd_reclaim_numer > 1) {
4064 4079                          kmd->kmd_reclaim_numer--;
4065 4080                  }
4066 4081          }
4067 4082  }
4068 4083  
4069 4084  void
4070 4085  kmem_cache_set_move(kmem_cache_t *cp,
4071 4086      kmem_cbrc_t (*move)(void *, void *, size_t, void *))
4072 4087  {
4073 4088          kmem_defrag_t *defrag;
4074 4089  
4075 4090          ASSERT(move != NULL);
4076 4091          /*
4077 4092           * The consolidator does not support NOTOUCH caches because kmem cannot
4078 4093           * initialize their slabs with the 0xbaddcafe memory pattern, which sets
4079 4094           * a low order bit usable by clients to distinguish uninitialized memory
4080 4095           * from known objects (see kmem_slab_create).
4081 4096           */
4082 4097          ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
4083 4098          ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
4084 4099  
4085 4100          /*
4086 4101           * We should not be holding anyone's cache lock when calling
4087 4102           * kmem_cache_alloc(), so allocate in all cases before acquiring the
4088 4103           * lock.
4089 4104           */
4090 4105          defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
4091 4106  
4092 4107          mutex_enter(&cp->cache_lock);
4093 4108  
4094 4109          if (KMEM_IS_MOVABLE(cp)) {
4095 4110                  if (cp->cache_move == NULL) {
4096 4111                          ASSERT(cp->cache_slab_alloc == 0);
4097 4112  
4098 4113                          cp->cache_defrag = defrag;
4099 4114                          defrag = NULL; /* nothing to free */
4100 4115                          bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4101 4116                          avl_create(&cp->cache_defrag->kmd_moves_pending,
4102 4117                              kmem_move_cmp, sizeof (kmem_move_t),
4103 4118                              offsetof(kmem_move_t, kmm_entry));
4104 4119                          /* LINTED: E_TRUE_LOGICAL_EXPR */
4105 4120                          ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4106 4121                          /* reuse the slab's AVL linkage for deadlist linkage */
4107 4122                          list_create(&cp->cache_defrag->kmd_deadlist,
4108 4123                              sizeof (kmem_slab_t),
4109 4124                              offsetof(kmem_slab_t, slab_link));
4110 4125                          kmem_reset_reclaim_threshold(cp->cache_defrag);
4111 4126                  }
4112 4127                  cp->cache_move = move;
4113 4128          }
4114 4129  
4115 4130          mutex_exit(&cp->cache_lock);
4116 4131  
4117 4132          if (defrag != NULL) {
4118 4133                  kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4119 4134          }
4120 4135  }
4121 4136  
4122 4137  void
4123 4138  kmem_cache_destroy(kmem_cache_t *cp)
4124 4139  {
4125 4140          int cpu_seqid;
4126 4141  
4127 4142          /*
4128 4143           * Remove the cache from the global cache list so that no one else
4129 4144           * can schedule tasks on its behalf, wait for any pending tasks to
4130 4145           * complete, purge the cache, and then destroy it.
4131 4146           */
4132 4147          mutex_enter(&kmem_cache_lock);
4133 4148          list_remove(&kmem_caches, cp);
4134 4149          mutex_exit(&kmem_cache_lock);
4135 4150  
4136 4151          if (kmem_taskq != NULL)
4137 4152                  taskq_wait(kmem_taskq);
4138 4153  
4139 4154          if (kmem_move_taskq != NULL && cp->cache_defrag != NULL)
4140 4155                  taskq_wait(kmem_move_taskq);
4141 4156  
4142 4157          kmem_cache_magazine_purge(cp);
4143 4158  
4144 4159          mutex_enter(&cp->cache_lock);
4145 4160          if (cp->cache_buftotal != 0)
4146 4161                  cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
4147 4162                      cp->cache_name, (void *)cp);
4148 4163          if (cp->cache_defrag != NULL) {
4149 4164                  avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4150 4165                  list_destroy(&cp->cache_defrag->kmd_deadlist);
4151 4166                  kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4152 4167                  cp->cache_defrag = NULL;
4153 4168          }
4154 4169          /*
4155 4170           * The cache is now dead.  There should be no further activity.  We
4156 4171           * enforce this by setting land mines in the constructor, destructor,
4157 4172           * reclaim, and move routines that induce a kernel text fault if
4158 4173           * invoked.
4159 4174           */
4160 4175          cp->cache_constructor = (int (*)(void *, void *, int))1;
4161 4176          cp->cache_destructor = (void (*)(void *, void *))2;
4162 4177          cp->cache_reclaim = (void (*)(void *))3;
4163 4178          cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
4164 4179          mutex_exit(&cp->cache_lock);
4165 4180  
4166 4181          kstat_delete(cp->cache_kstat);
4167 4182  
4168 4183          if (cp->cache_hash_table != NULL)
4169 4184                  vmem_free(kmem_hash_arena, cp->cache_hash_table,
4170 4185                      (cp->cache_hash_mask + 1) * sizeof (void *));
4171 4186  
4172 4187          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
4173 4188                  mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
4174 4189  
4175 4190          mutex_destroy(&cp->cache_depot_lock);
4176 4191          mutex_destroy(&cp->cache_lock);
4177 4192  
4178 4193          vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
4179 4194  }
4180 4195  
4181 4196  /*ARGSUSED*/
4182 4197  static int
4183 4198  kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
4184 4199  {
4185 4200          ASSERT(MUTEX_HELD(&cpu_lock));
4186 4201          if (what == CPU_UNCONFIG) {
4187 4202                  kmem_cache_applyall(kmem_cache_magazine_purge,
4188 4203                      kmem_taskq, TQ_SLEEP);
4189 4204                  kmem_cache_applyall(kmem_cache_magazine_enable,
4190 4205                      kmem_taskq, TQ_SLEEP);
4191 4206          }
4192 4207          return (0);
4193 4208  }
4194 4209  
4195 4210  static void
4196 4211  kmem_alloc_caches_create(const int *array, size_t count,
4197 4212      kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4198 4213  {
4199 4214          char name[KMEM_CACHE_NAMELEN + 1];
4200 4215          size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4201 4216          size_t size = table_unit;
4202 4217          int i;
4203 4218  
4204 4219          for (i = 0; i < count; i++) {
4205 4220                  size_t cache_size = array[i];
4206 4221                  size_t align = KMEM_ALIGN;
4207 4222                  kmem_cache_t *cp;
4208 4223  
4209 4224                  /* if the table has an entry for maxbuf, we're done */
4210 4225                  if (size > maxbuf)
4211 4226                          break;
4212 4227  
4213 4228                  /* cache size must be a multiple of the table unit */
4214 4229                  ASSERT(P2PHASE(cache_size, table_unit) == 0);
4215 4230  
4216 4231                  /*
4217 4232                   * If they allocate a multiple of the coherency granularity,
4218 4233                   * they get a coherency-granularity-aligned address.
4219 4234                   */
4220 4235                  if (IS_P2ALIGNED(cache_size, 64))
4221 4236                          align = 64;
4222 4237                  if (IS_P2ALIGNED(cache_size, PAGESIZE))
4223 4238                          align = PAGESIZE;
4224 4239                  (void) snprintf(name, sizeof (name),
4225 4240                      "kmem_alloc_%lu", cache_size);
4226 4241                  cp = kmem_cache_create(name, cache_size, align,
4227 4242                      NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4228 4243  
4229 4244                  while (size <= cache_size) {
4230 4245                          alloc_table[(size - 1) >> shift] = cp;
4231 4246                          size += table_unit;
4232 4247                  }
4233 4248          }
4234 4249  
4235 4250          ASSERT(size > maxbuf);          /* i.e. maxbuf <= max(cache_size) */
4236 4251  }
4237 4252  
4238 4253  static void
4239 4254  kmem_cache_init(int pass, int use_large_pages)
4240 4255  {
4241 4256          int i;
4242 4257          size_t maxbuf;
4243 4258          kmem_magtype_t *mtp;
4244 4259  
4245 4260          for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4246 4261                  char name[KMEM_CACHE_NAMELEN + 1];
4247 4262  
4248 4263                  mtp = &kmem_magtype[i];
4249 4264                  (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
4250 4265                  mtp->mt_cache = kmem_cache_create(name,
4251 4266                      (mtp->mt_magsize + 1) * sizeof (void *),
4252 4267                      mtp->mt_align, NULL, NULL, NULL, NULL,
4253 4268                      kmem_msb_arena, KMC_NOHASH);
4254 4269          }
4255 4270  
4256 4271          kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
4257 4272              sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
4258 4273              kmem_msb_arena, KMC_NOHASH);
4259 4274  
4260 4275          kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
4261 4276              sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
4262 4277              kmem_msb_arena, KMC_NOHASH);
4263 4278  
4264 4279          kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
4265 4280              sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
4266 4281              kmem_msb_arena, KMC_NOHASH);
4267 4282  
4268 4283          if (pass == 2) {
4269 4284                  kmem_va_arena = vmem_create("kmem_va",
4270 4285                      NULL, 0, PAGESIZE,
4271 4286                      vmem_alloc, vmem_free, heap_arena,
4272 4287                      8 * PAGESIZE, VM_SLEEP);
4273 4288  
4274 4289                  if (use_large_pages) {
4275 4290                          kmem_default_arena = vmem_xcreate("kmem_default",
4276 4291                              NULL, 0, PAGESIZE,
4277 4292                              segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
4278 4293                              0, VMC_DUMPSAFE | VM_SLEEP);
4279 4294                  } else {
4280 4295                          kmem_default_arena = vmem_create("kmem_default",
4281 4296                              NULL, 0, PAGESIZE,
4282 4297                              segkmem_alloc, segkmem_free, kmem_va_arena,
4283 4298                              0, VMC_DUMPSAFE | VM_SLEEP);
4284 4299                  }
4285 4300  
4286 4301                  /* Figure out what our maximum cache size is */
4287 4302                  maxbuf = kmem_max_cached;
4288 4303                  if (maxbuf <= KMEM_MAXBUF) {
4289 4304                          maxbuf = 0;
4290 4305                          kmem_max_cached = KMEM_MAXBUF;
4291 4306                  } else {
4292 4307                          size_t size = 0;
4293 4308                          size_t max =
4294 4309                              sizeof (kmem_big_alloc_sizes) / sizeof (int);
4295 4310                          /*
4296 4311                           * Round maxbuf up to an existing cache size.  If maxbuf
4297 4312                           * is larger than the largest cache, we truncate it to
4298 4313                           * the largest cache's size.
4299 4314                           */
4300 4315                          for (i = 0; i < max; i++) {
4301 4316                                  size = kmem_big_alloc_sizes[i];
4302 4317                                  if (maxbuf <= size)
4303 4318                                          break;
4304 4319                          }
4305 4320                          kmem_max_cached = maxbuf = size;
4306 4321                  }
4307 4322  
4308 4323                  /*
4309 4324                   * The big alloc table may not be completely overwritten, so
4310 4325                   * we clear out any stale cache pointers from the first pass.
4311 4326                   */
4312 4327                  bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
4313 4328          } else {
4314 4329                  /*
4315 4330                   * During the first pass, the kmem_alloc_* caches
4316 4331                   * are treated as metadata.
4317 4332                   */
4318 4333                  kmem_default_arena = kmem_msb_arena;
4319 4334                  maxbuf = KMEM_BIG_MAXBUF_32BIT;
4320 4335          }
4321 4336  
4322 4337          /*
4323 4338           * Set up the default caches to back kmem_alloc()
4324 4339           */
4325 4340          kmem_alloc_caches_create(
4326 4341              kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4327 4342              kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4328 4343  
4329 4344          kmem_alloc_caches_create(
4330 4345              kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4331 4346              kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4332 4347  
4333 4348          kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
4334 4349  }
4335 4350  
4336 4351  void
4337 4352  kmem_init(void)
4338 4353  {
4339 4354          kmem_cache_t *cp;
4340 4355          int old_kmem_flags = kmem_flags;
4341 4356          int use_large_pages = 0;
4342 4357          size_t maxverify, minfirewall;
4343 4358  
4344 4359          kstat_init();
4345 4360  
4346 4361          /*
4347 4362           * Don't do firewalled allocations if the heap is less than 1TB
4348 4363           * (i.e. on a 32-bit kernel)
4349 4364           * The resulting VM_NEXTFIT allocations would create too much
4350 4365           * fragmentation in a small heap.
4351 4366           */
4352 4367  #if defined(_LP64)
4353 4368          maxverify = minfirewall = PAGESIZE / 2;
4354 4369  #else
4355 4370          maxverify = minfirewall = ULONG_MAX;
4356 4371  #endif
4357 4372  
4358 4373          /* LINTED */
4359 4374          ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
4360 4375  
4361 4376          list_create(&kmem_caches, sizeof (kmem_cache_t),
4362 4377              offsetof(kmem_cache_t, cache_link));
4363 4378  
4364 4379          kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
4365 4380              vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
4366 4381              VM_SLEEP | VMC_NO_QCACHE);
4367 4382  
4368 4383          kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
4369 4384              PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
4370 4385              VMC_DUMPSAFE | VM_SLEEP);
4371 4386  
4372 4387          kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
4373 4388              segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4374 4389  
4375 4390          kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
4376 4391              segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4377 4392  
4378 4393          kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
4379 4394              segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4380 4395  
4381 4396          kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
4382 4397              NULL, 0, PAGESIZE,
4383 4398              kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
4384 4399              0, VM_SLEEP);
4385 4400  
4386 4401          kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
4387 4402              segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
4388 4403              VMC_DUMPSAFE | VM_SLEEP);
4389 4404  
4390 4405          /* temporary oversize arena for mod_read_system_file */
4391 4406          kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
4392 4407              segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4393 4408  
4394 4409          kmem_reap_interval = 15 * hz;
4395 4410  
4396 4411          /*
4397 4412           * Read /etc/system.  This is a chicken-and-egg problem because
4398 4413           * kmem_flags may be set in /etc/system, but mod_read_system_file()
4399 4414           * needs to use the allocator.  The simplest solution is to create
4400 4415           * all the standard kmem caches, read /etc/system, destroy all the
4401 4416           * caches we just created, and then create them all again in light
4402 4417           * of the (possibly) new kmem_flags and other kmem tunables.
4403 4418           */
4404 4419          kmem_cache_init(1, 0);
4405 4420  
4406 4421          mod_read_system_file(boothowto & RB_ASKNAME);
4407 4422  
4408 4423          while ((cp = list_tail(&kmem_caches)) != NULL)
4409 4424                  kmem_cache_destroy(cp);
4410 4425  
4411 4426          vmem_destroy(kmem_oversize_arena);
4412 4427  
4413 4428          if (old_kmem_flags & KMF_STICKY)
4414 4429                  kmem_flags = old_kmem_flags;
4415 4430  
4416 4431          if (!(kmem_flags & KMF_AUDIT))
4417 4432                  vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
4418 4433  
4419 4434          if (kmem_maxverify == 0)
4420 4435                  kmem_maxverify = maxverify;
4421 4436  
4422 4437          if (kmem_minfirewall == 0)
4423 4438                  kmem_minfirewall = minfirewall;
4424 4439  
4425 4440          /*
4426 4441           * give segkmem a chance to figure out if we are using large pages
4427 4442           * for the kernel heap
4428 4443           */
4429 4444          use_large_pages = segkmem_lpsetup();
4430 4445  
4431 4446          /*
4432 4447           * To protect against corruption, we keep the actual number of callers
4433 4448           * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
4434 4449           * to 16, since the overhead for small buffers quickly gets out of
4435 4450           * hand.
4436 4451           *
4437 4452           * The real limit would depend on the needs of the largest KMC_NOHASH
4438 4453           * cache.
4439 4454           */
4440 4455          kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
4441 4456          kmem_lite_pcs = kmem_lite_count;
4442 4457  
4443 4458          /*
4444 4459           * Normally, we firewall oversized allocations when possible, but
4445 4460           * if we are using large pages for kernel memory, and we don't have
4446 4461           * any non-LITE debugging flags set, we want to allocate oversized
4447 4462           * buffers from large pages, and so skip the firewalling.
4448 4463           */
4449 4464          if (use_large_pages &&
4450 4465              ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
4451 4466                  kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
4452 4467                      PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
4453 4468                      0, VMC_DUMPSAFE | VM_SLEEP);
4454 4469          } else {
4455 4470                  kmem_oversize_arena = vmem_create("kmem_oversize",
4456 4471                      NULL, 0, PAGESIZE,
4457 4472                      segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
4458 4473                      kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
4459 4474                      VM_SLEEP);
4460 4475          }
4461 4476  
4462 4477          kmem_cache_init(2, use_large_pages);
4463 4478  
4464 4479          if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
4465 4480                  if (kmem_transaction_log_size == 0)
4466 4481                          kmem_transaction_log_size = kmem_maxavail() / 50;
  
    | 
      ↓ open down ↓ | 
    889 lines elided | 
    
      ↑ open up ↑ | 
  
4467 4482                  kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
4468 4483          }
4469 4484  
4470 4485          if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
4471 4486                  if (kmem_content_log_size == 0)
4472 4487                          kmem_content_log_size = kmem_maxavail() / 50;
4473 4488                  kmem_content_log = kmem_log_init(kmem_content_log_size);
4474 4489          }
4475 4490  
4476 4491          kmem_failure_log = kmem_log_init(kmem_failure_log_size);
     4492 +
4477 4493          kmem_slab_log = kmem_log_init(kmem_slab_log_size);
4478      -        kmem_zerosized_log = kmem_log_init(kmem_zerosized_log_size);
4479 4494  
4480 4495          /*
4481 4496           * Initialize STREAMS message caches so allocb() is available.
4482 4497           * This allows us to initialize the logging framework (cmn_err(9F),
4483 4498           * strlog(9F), etc) so we can start recording messages.
4484 4499           */
4485 4500          streams_msg_init();
4486 4501  
4487 4502          /*
4488 4503           * Initialize the ZSD framework in Zones so modules loaded henceforth
4489 4504           * can register their callbacks.
4490 4505           */
4491 4506          zone_zsd_init();
4492 4507  
4493 4508          log_init();
4494 4509          taskq_init();
4495 4510  
4496 4511          /*
4497 4512           * Warn about invalid or dangerous values of kmem_flags.
4498 4513           * Always warn about unsupported values.
4499 4514           */
4500 4515          if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
4501 4516              KMF_CONTENTS | KMF_LITE)) != 0) ||
4502 4517              ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
4503 4518                  cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
4504 4519                      "See the Solaris Tunable Parameters Reference Manual.",
4505 4520                      kmem_flags);
4506 4521  
4507 4522  #ifdef DEBUG
4508 4523          if ((kmem_flags & KMF_DEBUG) == 0)
4509 4524                  cmn_err(CE_NOTE, "kmem debugging disabled.");
4510 4525  #else
4511 4526          /*
4512 4527           * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
4513 4528           * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
4514 4529           * if KMF_AUDIT is set). We should warn the user about the performance
4515 4530           * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
4516 4531           * isn't set (since that disables AUDIT).
4517 4532           */
4518 4533          if (!(kmem_flags & KMF_LITE) &&
4519 4534              (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
4520 4535                  cmn_err(CE_WARN, "High-overhead kmem debugging features "
4521 4536                      "enabled (kmem_flags = 0x%x).  Performance degradation "
4522 4537                      "and large memory overhead possible. See the Solaris "
4523 4538                      "Tunable Parameters Reference Manual.", kmem_flags);
4524 4539  #endif /* not DEBUG */
4525 4540  
4526 4541          kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
4527 4542  
4528 4543          kmem_ready = 1;
4529 4544  
4530 4545          /*
4531 4546           * Initialize the platform-specific aligned/DMA memory allocator.
4532 4547           */
4533 4548          ka_init();
4534 4549  
4535 4550          /*
4536 4551           * Initialize 32-bit ID cache.
4537 4552           */
4538 4553          id32_init();
4539 4554  
4540 4555          /*
4541 4556           * Initialize the networking stack so modules loaded can
4542 4557           * register their callbacks.
4543 4558           */
4544 4559          netstack_init();
4545 4560  }
4546 4561  
4547 4562  static void
4548 4563  kmem_move_init(void)
4549 4564  {
4550 4565          kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4551 4566              sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4552 4567              kmem_msb_arena, KMC_NOHASH);
4553 4568          kmem_move_cache = kmem_cache_create("kmem_move_cache",
4554 4569              sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4555 4570              kmem_msb_arena, KMC_NOHASH);
4556 4571  
4557 4572          /*
4558 4573           * kmem guarantees that move callbacks are sequential and that even
4559 4574           * across multiple caches no two moves ever execute simultaneously.
4560 4575           * Move callbacks are processed on a separate taskq so that client code
4561 4576           * does not interfere with internal maintenance tasks.
4562 4577           */
4563 4578          kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4564 4579              minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4565 4580  }
4566 4581  
4567 4582  void
4568 4583  kmem_thread_init(void)
4569 4584  {
4570 4585          kmem_move_init();
4571 4586          kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
4572 4587              300, INT_MAX, TASKQ_PREPOPULATE);
4573 4588  }
4574 4589  
4575 4590  void
4576 4591  kmem_mp_init(void)
4577 4592  {
4578 4593          mutex_enter(&cpu_lock);
4579 4594          register_cpu_setup_func(kmem_cpu_setup, NULL);
4580 4595          mutex_exit(&cpu_lock);
4581 4596  
4582 4597          kmem_update_timeout(NULL);
4583 4598  
4584 4599          taskq_mp_init();
4585 4600  }
4586 4601  
4587 4602  /*
4588 4603   * Return the slab of the allocated buffer, or NULL if the buffer is not
4589 4604   * allocated. This function may be called with a known slab address to determine
4590 4605   * whether or not the buffer is allocated, or with a NULL slab address to obtain
4591 4606   * an allocated buffer's slab.
4592 4607   */
4593 4608  static kmem_slab_t *
4594 4609  kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4595 4610  {
4596 4611          kmem_bufctl_t *bcp, *bufbcp;
4597 4612  
4598 4613          ASSERT(MUTEX_HELD(&cp->cache_lock));
4599 4614          ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4600 4615  
4601 4616          if (cp->cache_flags & KMF_HASH) {
4602 4617                  for (bcp = *KMEM_HASH(cp, buf);
4603 4618                      (bcp != NULL) && (bcp->bc_addr != buf);
4604 4619                      bcp = bcp->bc_next) {
4605 4620                          continue;
4606 4621                  }
4607 4622                  ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4608 4623                  return (bcp == NULL ? NULL : bcp->bc_slab);
4609 4624          }
4610 4625  
4611 4626          if (sp == NULL) {
4612 4627                  sp = KMEM_SLAB(cp, buf);
4613 4628          }
4614 4629          bufbcp = KMEM_BUFCTL(cp, buf);
4615 4630          for (bcp = sp->slab_head;
4616 4631              (bcp != NULL) && (bcp != bufbcp);
4617 4632              bcp = bcp->bc_next) {
4618 4633                  continue;
4619 4634          }
4620 4635          return (bcp == NULL ? sp : NULL);
4621 4636  }
4622 4637  
4623 4638  static boolean_t
4624 4639  kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4625 4640  {
4626 4641          long refcnt = sp->slab_refcnt;
4627 4642  
4628 4643          ASSERT(cp->cache_defrag != NULL);
4629 4644  
4630 4645          /*
4631 4646           * For code coverage we want to be able to move an object within the
4632 4647           * same slab (the only partial slab) even if allocating the destination
4633 4648           * buffer resulted in a completely allocated slab.
4634 4649           */
4635 4650          if (flags & KMM_DEBUG) {
4636 4651                  return ((flags & KMM_DESPERATE) ||
4637 4652                      ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4638 4653          }
4639 4654  
4640 4655          /* If we're desperate, we don't care if the client said NO. */
4641 4656          if (flags & KMM_DESPERATE) {
4642 4657                  return (refcnt < sp->slab_chunks); /* any partial */
4643 4658          }
4644 4659  
4645 4660          if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4646 4661                  return (B_FALSE);
4647 4662          }
4648 4663  
4649 4664          if ((refcnt == 1) || kmem_move_any_partial) {
4650 4665                  return (refcnt < sp->slab_chunks);
4651 4666          }
4652 4667  
4653 4668          /*
4654 4669           * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4655 4670           * slabs with a progressively higher percentage of used buffers can be
  
    | 
      ↓ open down ↓ | 
    167 lines elided | 
    
      ↑ open up ↑ | 
  
4656 4671           * reclaimed until the cache as a whole is no longer fragmented.
4657 4672           *
4658 4673           *      sp->slab_refcnt   kmd_reclaim_numer
4659 4674           *      --------------- < ------------------
4660 4675           *      sp->slab_chunks   KMEM_VOID_FRACTION
4661 4676           */
4662 4677          return ((refcnt * KMEM_VOID_FRACTION) <
4663 4678              (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4664 4679  }
4665 4680  
     4681 +static void *
     4682 +kmem_hunt_mag(kmem_cache_t *cp, kmem_magazine_t *m, int n, void *buf,
     4683 +    void *tbuf)
     4684 +{
     4685 +        int i;          /* magazine round index */
     4686 +
     4687 +        for (i = 0; i < n; i++) {
     4688 +                if (buf == m->mag_round[i]) {
     4689 +                        if (cp->cache_flags & KMF_BUFTAG) {
     4690 +                                (void) kmem_cache_free_debug(cp, tbuf,
     4691 +                                    caller());
     4692 +                        }
     4693 +                        m->mag_round[i] = tbuf;
     4694 +                        return (buf);
     4695 +                }
     4696 +        }
     4697 +
     4698 +        return (NULL);
     4699 +}
     4700 +
4666 4701  /*
     4702 + * Hunt the magazine layer for the given buffer. If found, the buffer is
     4703 + * removed from the magazine layer and returned, otherwise NULL is returned.
     4704 + * The state of the returned buffer is freed and constructed.
     4705 + */
     4706 +static void *
     4707 +kmem_hunt_mags(kmem_cache_t *cp, void *buf)
     4708 +{
     4709 +        kmem_cpu_cache_t *ccp;
     4710 +        kmem_magazine_t *m;
     4711 +        int cpu_seqid;
     4712 +        int n;          /* magazine rounds */
     4713 +        void *tbuf;     /* temporary swap buffer */
     4714 +
     4715 +        ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
     4716 +
     4717 +        /*
     4718 +         * Allocated a buffer to swap with the one we hope to pull out of a
     4719 +         * magazine when found.
     4720 +         */
     4721 +        tbuf = kmem_cache_alloc(cp, KM_NOSLEEP);
     4722 +        if (tbuf == NULL) {
     4723 +                KMEM_STAT_ADD(kmem_move_stats.kms_hunt_alloc_fail);
     4724 +                return (NULL);
     4725 +        }
     4726 +        if (tbuf == buf) {
     4727 +                KMEM_STAT_ADD(kmem_move_stats.kms_hunt_lucky);
     4728 +                if (cp->cache_flags & KMF_BUFTAG) {
     4729 +                        (void) kmem_cache_free_debug(cp, buf, caller());
     4730 +                }
     4731 +                return (buf);
     4732 +        }
     4733 +
     4734 +        /* Hunt the depot. */
     4735 +        mutex_enter(&cp->cache_depot_lock);
     4736 +        n = cp->cache_magtype->mt_magsize;
     4737 +        for (m = cp->cache_full.ml_list; m != NULL; m = m->mag_next) {
     4738 +                if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
     4739 +                        mutex_exit(&cp->cache_depot_lock);
     4740 +                        return (buf);
     4741 +                }
     4742 +        }
     4743 +        mutex_exit(&cp->cache_depot_lock);
     4744 +
     4745 +        /* Hunt the per-CPU magazines. */
     4746 +        for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
     4747 +                ccp = &cp->cache_cpu[cpu_seqid];
     4748 +
     4749 +                mutex_enter(&ccp->cc_lock);
     4750 +                m = ccp->cc_loaded;
     4751 +                n = ccp->cc_rounds;
     4752 +                if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
     4753 +                        mutex_exit(&ccp->cc_lock);
     4754 +                        return (buf);
     4755 +                }
     4756 +                m = ccp->cc_ploaded;
     4757 +                n = ccp->cc_prounds;
     4758 +                if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
     4759 +                        mutex_exit(&ccp->cc_lock);
     4760 +                        return (buf);
     4761 +                }
     4762 +                mutex_exit(&ccp->cc_lock);
     4763 +        }
     4764 +
     4765 +        kmem_cache_free(cp, tbuf);
     4766 +        return (NULL);
     4767 +}
     4768 +
     4769 +/*
4667 4770   * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4668 4771   * or when the buffer is freed.
4669 4772   */
4670 4773  static void
4671 4774  kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4672 4775  {
4673 4776          ASSERT(MUTEX_HELD(&cp->cache_lock));
4674 4777          ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4675 4778  
4676 4779          if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4677 4780                  return;
4678 4781          }
4679 4782  
4680 4783          if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4681 4784                  if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4682 4785                          avl_remove(&cp->cache_partial_slabs, sp);
4683 4786                          sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4684 4787                          sp->slab_stuck_offset = (uint32_t)-1;
4685 4788                          avl_add(&cp->cache_partial_slabs, sp);
4686 4789                  }
4687 4790          } else {
4688 4791                  sp->slab_later_count = 0;
4689 4792                  sp->slab_stuck_offset = (uint32_t)-1;
4690 4793          }
4691 4794  }
4692 4795  
4693 4796  static void
4694 4797  kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4695 4798  {
4696 4799          ASSERT(taskq_member(kmem_move_taskq, curthread));
4697 4800          ASSERT(MUTEX_HELD(&cp->cache_lock));
4698 4801          ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4699 4802  
4700 4803          if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4701 4804                  return;
4702 4805          }
4703 4806  
4704 4807          avl_remove(&cp->cache_partial_slabs, sp);
4705 4808          sp->slab_later_count = 0;
4706 4809          sp->slab_flags |= KMEM_SLAB_NOMOVE;
4707 4810          sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4708 4811          avl_add(&cp->cache_partial_slabs, sp);
4709 4812  }
4710 4813  
4711 4814  static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4712 4815  
4713 4816  /*
4714 4817   * The move callback takes two buffer addresses, the buffer to be moved, and a
4715 4818   * newly allocated and constructed buffer selected by kmem as the destination.
4716 4819   * It also takes the size of the buffer and an optional user argument specified
4717 4820   * at cache creation time. kmem guarantees that the buffer to be moved has not
4718 4821   * been unmapped by the virtual memory subsystem. Beyond that, it cannot
  
    | 
      ↓ open down ↓ | 
    42 lines elided | 
    
      ↑ open up ↑ | 
  
4719 4822   * guarantee the present whereabouts of the buffer to be moved, so it is up to
4720 4823   * the client to safely determine whether or not it is still using the buffer.
4721 4824   * The client must not free either of the buffers passed to the move callback,
4722 4825   * since kmem wants to free them directly to the slab layer. The client response
4723 4826   * tells kmem which of the two buffers to free:
4724 4827   *
4725 4828   * YES          kmem frees the old buffer (the move was successful)
4726 4829   * NO           kmem frees the new buffer, marks the slab of the old buffer
4727 4830   *              non-reclaimable to avoid bothering the client again
4728 4831   * LATER        kmem frees the new buffer, increments slab_later_count
4729      - * DONT_KNOW    kmem frees the new buffer
     4832 + * DONT_KNOW    kmem frees the new buffer, searches mags for the old buffer
4730 4833   * DONT_NEED    kmem frees both the old buffer and the new buffer
4731 4834   *
4732 4835   * The pending callback argument now being processed contains both of the
4733 4836   * buffers (old and new) passed to the move callback function, the slab of the
4734 4837   * old buffer, and flags related to the move request, such as whether or not the
4735 4838   * system was desperate for memory.
4736 4839   *
4737 4840   * Slabs are not freed while there is a pending callback, but instead are kept
4738 4841   * on a deadlist, which is drained after the last callback completes. This means
4739 4842   * that slabs are safe to access until kmem_move_end(), no matter how many of
4740 4843   * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4741 4844   * zero for as long as the slab remains on the deadlist and until the slab is
4742 4845   * freed.
4743 4846   */
4744 4847  static void
4745 4848  kmem_move_buffer(kmem_move_t *callback)
4746 4849  {
4747 4850          kmem_cbrc_t response;
4748 4851          kmem_slab_t *sp = callback->kmm_from_slab;
4749 4852          kmem_cache_t *cp = sp->slab_cache;
4750 4853          boolean_t free_on_slab;
4751 4854  
4752 4855          ASSERT(taskq_member(kmem_move_taskq, curthread));
  
    | 
      ↓ open down ↓ | 
    13 lines elided | 
    
      ↑ open up ↑ | 
  
4753 4856          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4754 4857          ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4755 4858  
4756 4859          /*
4757 4860           * The number of allocated buffers on the slab may have changed since we
4758 4861           * last checked the slab's reclaimability (when the pending move was
4759 4862           * enqueued), or the client may have responded NO when asked to move
4760 4863           * another buffer on the same slab.
4761 4864           */
4762 4865          if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
     4866 +                KMEM_STAT_ADD(kmem_move_stats.kms_no_longer_reclaimable);
     4867 +                KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY),
     4868 +                    kmem_move_stats.kms_notify_no_longer_reclaimable);
4763 4869                  kmem_slab_free(cp, callback->kmm_to_buf);
4764 4870                  kmem_move_end(cp, callback);
4765 4871                  return;
4766 4872          }
4767 4873  
4768 4874          /*
4769      -         * Checking the slab layer is easy, so we might as well do that here
4770      -         * in case we can avoid bothering the client.
     4875 +         * Hunting magazines is expensive, so we'll wait to do that until the
     4876 +         * client responds KMEM_CBRC_DONT_KNOW. However, checking the slab layer
     4877 +         * is cheap, so we might as well do that here in case we can avoid
     4878 +         * bothering the client.
4771 4879           */
4772 4880          mutex_enter(&cp->cache_lock);
4773 4881          free_on_slab = (kmem_slab_allocated(cp, sp,
4774 4882              callback->kmm_from_buf) == NULL);
4775 4883          mutex_exit(&cp->cache_lock);
4776 4884  
4777 4885          if (free_on_slab) {
     4886 +                KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_slab);
4778 4887                  kmem_slab_free(cp, callback->kmm_to_buf);
4779 4888                  kmem_move_end(cp, callback);
4780 4889                  return;
4781 4890          }
4782 4891  
4783 4892          if (cp->cache_flags & KMF_BUFTAG) {
4784 4893                  /*
4785 4894                   * Make kmem_cache_alloc_debug() apply the constructor for us.
4786 4895                   */
4787 4896                  if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4788 4897                      KM_NOSLEEP, 1, caller()) != 0) {
     4898 +                        KMEM_STAT_ADD(kmem_move_stats.kms_alloc_fail);
4789 4899                          kmem_move_end(cp, callback);
4790 4900                          return;
4791 4901                  }
4792 4902          } else if (cp->cache_constructor != NULL &&
4793 4903              cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4794 4904              KM_NOSLEEP) != 0) {
4795 4905                  atomic_inc_64(&cp->cache_alloc_fail);
     4906 +                KMEM_STAT_ADD(kmem_move_stats.kms_constructor_fail);
4796 4907                  kmem_slab_free(cp, callback->kmm_to_buf);
4797 4908                  kmem_move_end(cp, callback);
4798 4909                  return;
4799 4910          }
4800 4911  
     4912 +        KMEM_STAT_ADD(kmem_move_stats.kms_callbacks);
     4913 +        KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY),
     4914 +            kmem_move_stats.kms_notify_callbacks);
4801 4915          cp->cache_defrag->kmd_callbacks++;
4802 4916          cp->cache_defrag->kmd_thread = curthread;
4803 4917          cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4804 4918          cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4805 4919          DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4806 4920              callback);
4807 4921  
4808 4922          response = cp->cache_move(callback->kmm_from_buf,
4809 4923              callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4810 4924  
4811 4925          DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4812 4926              callback, kmem_cbrc_t, response);
4813 4927          cp->cache_defrag->kmd_thread = NULL;
4814 4928          cp->cache_defrag->kmd_from_buf = NULL;
4815 4929          cp->cache_defrag->kmd_to_buf = NULL;
4816 4930  
4817 4931          if (response == KMEM_CBRC_YES) {
     4932 +                KMEM_STAT_ADD(kmem_move_stats.kms_yes);
4818 4933                  cp->cache_defrag->kmd_yes++;
4819 4934                  kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4820 4935                  /* slab safe to access until kmem_move_end() */
4821 4936                  if (sp->slab_refcnt == 0)
4822 4937                          cp->cache_defrag->kmd_slabs_freed++;
4823 4938                  mutex_enter(&cp->cache_lock);
4824 4939                  kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4825 4940                  mutex_exit(&cp->cache_lock);
4826 4941                  kmem_move_end(cp, callback);
4827 4942                  return;
4828 4943          }
4829 4944  
4830 4945          switch (response) {
4831 4946          case KMEM_CBRC_NO:
     4947 +                KMEM_STAT_ADD(kmem_move_stats.kms_no);
4832 4948                  cp->cache_defrag->kmd_no++;
4833 4949                  mutex_enter(&cp->cache_lock);
4834 4950                  kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4835 4951                  mutex_exit(&cp->cache_lock);
4836 4952                  break;
4837 4953          case KMEM_CBRC_LATER:
     4954 +                KMEM_STAT_ADD(kmem_move_stats.kms_later);
4838 4955                  cp->cache_defrag->kmd_later++;
4839 4956                  mutex_enter(&cp->cache_lock);
4840 4957                  if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4841 4958                          mutex_exit(&cp->cache_lock);
4842 4959                          break;
4843 4960                  }
4844 4961  
4845 4962                  if (++sp->slab_later_count >= KMEM_DISBELIEF) {
     4963 +                        KMEM_STAT_ADD(kmem_move_stats.kms_disbelief);
4846 4964                          kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4847 4965                  } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4848 4966                          sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4849 4967                              callback->kmm_from_buf);
4850 4968                  }
4851 4969                  mutex_exit(&cp->cache_lock);
4852 4970                  break;
4853 4971          case KMEM_CBRC_DONT_NEED:
     4972 +                KMEM_STAT_ADD(kmem_move_stats.kms_dont_need);
4854 4973                  cp->cache_defrag->kmd_dont_need++;
4855 4974                  kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4856 4975                  if (sp->slab_refcnt == 0)
4857 4976                          cp->cache_defrag->kmd_slabs_freed++;
4858 4977                  mutex_enter(&cp->cache_lock);
4859 4978                  kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4860 4979                  mutex_exit(&cp->cache_lock);
4861 4980                  break;
4862 4981          case KMEM_CBRC_DONT_KNOW:
4863      -                /*
4864      -                 * If we don't know if we can move this buffer or not, we'll
4865      -                 * just assume that we can't:  if the buffer is in fact free,
4866      -                 * then it is sitting in one of the per-CPU magazines or in
4867      -                 * a full magazine in the depot layer.  Either way, because
4868      -                 * defrag is induced in the same logic that reaps a cache,
4869      -                 * it's likely that full magazines will be returned to the
4870      -                 * system soon (thereby accomplishing what we're trying to
4871      -                 * accomplish here: return those magazines to their slabs).
4872      -                 * Given this, any work that we might do now to locate a buffer
4873      -                 * in a magazine is wasted (and expensive!) work; we bump
4874      -                 * a counter in this case and otherwise assume that we can't
4875      -                 * move it.
4876      -                 */
     4982 +                KMEM_STAT_ADD(kmem_move_stats.kms_dont_know);
4877 4983                  cp->cache_defrag->kmd_dont_know++;
     4984 +                if (kmem_hunt_mags(cp, callback->kmm_from_buf) != NULL) {
     4985 +                        KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_mag);
     4986 +                        cp->cache_defrag->kmd_hunt_found++;
     4987 +                        kmem_slab_free_constructed(cp, callback->kmm_from_buf,
     4988 +                            B_TRUE);
     4989 +                        if (sp->slab_refcnt == 0)
     4990 +                                cp->cache_defrag->kmd_slabs_freed++;
     4991 +                        mutex_enter(&cp->cache_lock);
     4992 +                        kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
     4993 +                        mutex_exit(&cp->cache_lock);
     4994 +                }
4878 4995                  break;
4879 4996          default:
4880 4997                  panic("'%s' (%p) unexpected move callback response %d\n",
4881 4998                      cp->cache_name, (void *)cp, response);
4882 4999          }
4883 5000  
4884 5001          kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4885 5002          kmem_move_end(cp, callback);
4886 5003  }
4887 5004  
4888 5005  /* Return B_FALSE if there is insufficient memory for the move request. */
4889 5006  static boolean_t
4890 5007  kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4891 5008  {
  
    | 
      ↓ open down ↓ | 
    4 lines elided | 
    
      ↑ open up ↑ | 
  
4892 5009          void *to_buf;
4893 5010          avl_index_t index;
4894 5011          kmem_move_t *callback, *pending;
4895 5012          ulong_t n;
4896 5013  
4897 5014          ASSERT(taskq_member(kmem_taskq, curthread));
4898 5015          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4899 5016          ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4900 5017  
4901 5018          callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4902      -
4903      -        if (callback == NULL)
     5019 +        if (callback == NULL) {
     5020 +                KMEM_STAT_ADD(kmem_move_stats.kms_callback_alloc_fail);
4904 5021                  return (B_FALSE);
     5022 +        }
4905 5023  
4906 5024          callback->kmm_from_slab = sp;
4907 5025          callback->kmm_from_buf = buf;
4908 5026          callback->kmm_flags = flags;
4909 5027  
4910 5028          mutex_enter(&cp->cache_lock);
4911 5029  
4912 5030          n = avl_numnodes(&cp->cache_partial_slabs);
4913 5031          if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
4914 5032                  mutex_exit(&cp->cache_lock);
4915 5033                  kmem_cache_free(kmem_move_cache, callback);
4916 5034                  return (B_TRUE); /* there is no need for the move request */
4917 5035          }
4918 5036  
  
    | 
      ↓ open down ↓ | 
    4 lines elided | 
    
      ↑ open up ↑ | 
  
4919 5037          pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
4920 5038          if (pending != NULL) {
4921 5039                  /*
4922 5040                   * If the move is already pending and we're desperate now,
4923 5041                   * update the move flags.
4924 5042                   */
4925 5043                  if (flags & KMM_DESPERATE) {
4926 5044                          pending->kmm_flags |= KMM_DESPERATE;
4927 5045                  }
4928 5046                  mutex_exit(&cp->cache_lock);
     5047 +                KMEM_STAT_ADD(kmem_move_stats.kms_already_pending);
4929 5048                  kmem_cache_free(kmem_move_cache, callback);
4930 5049                  return (B_TRUE);
4931 5050          }
4932 5051  
4933 5052          to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
4934 5053              B_FALSE);
4935 5054          callback->kmm_to_buf = to_buf;
4936 5055          avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
4937 5056  
4938 5057          mutex_exit(&cp->cache_lock);
4939 5058  
4940 5059          if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
4941 5060              callback, TQ_NOSLEEP)) {
     5061 +                KMEM_STAT_ADD(kmem_move_stats.kms_callback_taskq_fail);
4942 5062                  mutex_enter(&cp->cache_lock);
4943 5063                  avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4944 5064                  mutex_exit(&cp->cache_lock);
4945 5065                  kmem_slab_free(cp, to_buf);
4946 5066                  kmem_cache_free(kmem_move_cache, callback);
4947 5067                  return (B_FALSE);
4948 5068          }
4949 5069  
4950 5070          return (B_TRUE);
4951 5071  }
4952 5072  
4953 5073  static void
4954 5074  kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
4955 5075  {
4956 5076          avl_index_t index;
4957 5077  
4958 5078          ASSERT(cp->cache_defrag != NULL);
4959 5079          ASSERT(taskq_member(kmem_move_taskq, curthread));
4960 5080          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4961 5081  
4962 5082          mutex_enter(&cp->cache_lock);
4963 5083          VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
4964 5084              callback->kmm_from_buf, &index) != NULL);
4965 5085          avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4966 5086          if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
4967 5087                  list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4968 5088                  kmem_slab_t *sp;
4969 5089  
4970 5090                  /*
4971 5091                   * The last pending move completed. Release all slabs from the
4972 5092                   * front of the dead list except for any slab at the tail that
4973 5093                   * needs to be released from the context of kmem_move_buffers().
4974 5094                   * kmem deferred unmapping the buffers on these slabs in order
4975 5095                   * to guarantee that buffers passed to the move callback have
4976 5096                   * been touched only by kmem or by the client itself.
  
    | 
      ↓ open down ↓ | 
    25 lines elided | 
    
      ↑ open up ↑ | 
  
4977 5097                   */
4978 5098                  while ((sp = list_remove_head(deadlist)) != NULL) {
4979 5099                          if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
4980 5100                                  list_insert_tail(deadlist, sp);
4981 5101                                  break;
4982 5102                          }
4983 5103                          cp->cache_defrag->kmd_deadcount--;
4984 5104                          cp->cache_slab_destroy++;
4985 5105                          mutex_exit(&cp->cache_lock);
4986 5106                          kmem_slab_destroy(cp, sp);
     5107 +                        KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed);
4987 5108                          mutex_enter(&cp->cache_lock);
4988 5109                  }
4989 5110          }
4990 5111          mutex_exit(&cp->cache_lock);
4991 5112          kmem_cache_free(kmem_move_cache, callback);
4992 5113  }
4993 5114  
4994 5115  /*
4995 5116   * Move buffers from least used slabs first by scanning backwards from the end
4996 5117   * of the partial slab list. Scan at most max_scan candidate slabs and move
4997 5118   * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
4998 5119   * If desperate to reclaim memory, move buffers from any partial slab, otherwise
4999 5120   * skip slabs with a ratio of allocated buffers at or above the current
5000 5121   * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
5001 5122   * scan is aborted) so that the caller can adjust the reclaimability threshold
5002 5123   * depending on how many reclaimable slabs it finds.
5003 5124   *
5004 5125   * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
5005 5126   * move request, since it is not valid for kmem_move_begin() to call
5006 5127   * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
5007 5128   */
5008 5129  static int
5009 5130  kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
5010 5131      int flags)
5011 5132  {
5012 5133          kmem_slab_t *sp;
5013 5134          void *buf;
5014 5135          int i, j; /* slab index, buffer index */
5015 5136          int s; /* reclaimable slabs */
5016 5137          int b; /* allocated (movable) buffers on reclaimable slab */
5017 5138          boolean_t success;
5018 5139          int refcnt;
5019 5140          int nomove;
5020 5141  
5021 5142          ASSERT(taskq_member(kmem_taskq, curthread));
5022 5143          ASSERT(MUTEX_HELD(&cp->cache_lock));
5023 5144          ASSERT(kmem_move_cache != NULL);
5024 5145          ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
5025 5146          ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
5026 5147              avl_numnodes(&cp->cache_partial_slabs) > 1);
5027 5148  
5028 5149          if (kmem_move_blocked) {
5029 5150                  return (0);
5030 5151          }
5031 5152  
5032 5153          if (kmem_move_fulltilt) {
5033 5154                  flags |= KMM_DESPERATE;
5034 5155          }
5035 5156  
5036 5157          if (max_scan == 0 || (flags & KMM_DESPERATE)) {
5037 5158                  /*
5038 5159                   * Scan as many slabs as needed to find the desired number of
5039 5160                   * candidate slabs.
5040 5161                   */
5041 5162                  max_scan = (size_t)-1;
5042 5163          }
5043 5164  
5044 5165          if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
5045 5166                  /* Find as many candidate slabs as possible. */
5046 5167                  max_slabs = (size_t)-1;
5047 5168          }
5048 5169  
5049 5170          sp = avl_last(&cp->cache_partial_slabs);
5050 5171          ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
5051 5172          for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
5052 5173              ((sp != avl_first(&cp->cache_partial_slabs)) ||
5053 5174              (flags & KMM_DEBUG));
5054 5175              sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
5055 5176  
5056 5177                  if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
5057 5178                          continue;
5058 5179                  }
5059 5180                  s++;
5060 5181  
5061 5182                  /* Look for allocated buffers to move. */
5062 5183                  for (j = 0, b = 0, buf = sp->slab_base;
5063 5184                      (j < sp->slab_chunks) && (b < sp->slab_refcnt);
5064 5185                      buf = (((char *)buf) + cp->cache_chunksize), j++) {
5065 5186  
5066 5187                          if (kmem_slab_allocated(cp, sp, buf) == NULL) {
5067 5188                                  continue;
5068 5189                          }
5069 5190  
5070 5191                          b++;
5071 5192  
5072 5193                          /*
5073 5194                           * Prevent the slab from being destroyed while we drop
5074 5195                           * cache_lock and while the pending move is not yet
5075 5196                           * registered. Flag the pending move while
5076 5197                           * kmd_moves_pending may still be empty, since we can't
5077 5198                           * yet rely on a non-zero pending move count to prevent
5078 5199                           * the slab from being destroyed.
5079 5200                           */
5080 5201                          ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5081 5202                          sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5082 5203                          /*
5083 5204                           * Recheck refcnt and nomove after reacquiring the lock,
5084 5205                           * since these control the order of partial slabs, and
5085 5206                           * we want to know if we can pick up the scan where we
5086 5207                           * left off.
5087 5208                           */
5088 5209                          refcnt = sp->slab_refcnt;
5089 5210                          nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
5090 5211                          mutex_exit(&cp->cache_lock);
5091 5212  
5092 5213                          success = kmem_move_begin(cp, sp, buf, flags);
5093 5214  
5094 5215                          /*
5095 5216                           * Now, before the lock is reacquired, kmem could
5096 5217                           * process all pending move requests and purge the
5097 5218                           * deadlist, so that upon reacquiring the lock, sp has
5098 5219                           * been remapped. Or, the client may free all the
5099 5220                           * objects on the slab while the pending moves are still
5100 5221                           * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5101 5222                           * flag causes the slab to be put at the end of the
5102 5223                           * deadlist and prevents it from being destroyed, since
5103 5224                           * we plan to destroy it here after reacquiring the
5104 5225                           * lock.
5105 5226                           */
5106 5227                          mutex_enter(&cp->cache_lock);
5107 5228                          ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5108 5229                          sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5109 5230  
5110 5231                          if (sp->slab_refcnt == 0) {
5111 5232                                  list_t *deadlist =
5112 5233                                      &cp->cache_defrag->kmd_deadlist;
5113 5234                                  list_remove(deadlist, sp);
5114 5235  
5115 5236                                  if (!avl_is_empty(
5116 5237                                      &cp->cache_defrag->kmd_moves_pending)) {
5117 5238                                          /*
5118 5239                                           * A pending move makes it unsafe to
5119 5240                                           * destroy the slab, because even though
5120 5241                                           * the move is no longer needed, the
  
    | 
      ↓ open down ↓ | 
    124 lines elided | 
    
      ↑ open up ↑ | 
  
5121 5242                                           * context where that is determined
5122 5243                                           * requires the slab to exist.
5123 5244                                           * Fortunately, a pending move also
5124 5245                                           * means we don't need to destroy the
5125 5246                                           * slab here, since it will get
5126 5247                                           * destroyed along with any other slabs
5127 5248                                           * on the deadlist after the last
5128 5249                                           * pending move completes.
5129 5250                                           */
5130 5251                                          list_insert_head(deadlist, sp);
     5252 +                                        KMEM_STAT_ADD(kmem_move_stats.
     5253 +                                            kms_endscan_slab_dead);
5131 5254                                          return (-1);
5132 5255                                  }
5133 5256  
5134 5257                                  /*
5135 5258                                   * Destroy the slab now if it was completely
5136 5259                                   * freed while we dropped cache_lock and there
5137 5260                                   * are no pending moves. Since slab_refcnt
5138 5261                                   * cannot change once it reaches zero, no new
5139 5262                                   * pending moves from that slab are possible.
5140 5263                                   */
5141 5264                                  cp->cache_defrag->kmd_deadcount--;
5142 5265                                  cp->cache_slab_destroy++;
5143 5266                                  mutex_exit(&cp->cache_lock);
5144 5267                                  kmem_slab_destroy(cp, sp);
     5268 +                                KMEM_STAT_ADD(kmem_move_stats.
     5269 +                                    kms_dead_slabs_freed);
     5270 +                                KMEM_STAT_ADD(kmem_move_stats.
     5271 +                                    kms_endscan_slab_destroyed);
5145 5272                                  mutex_enter(&cp->cache_lock);
5146 5273                                  /*
5147 5274                                   * Since we can't pick up the scan where we left
5148 5275                                   * off, abort the scan and say nothing about the
5149 5276                                   * number of reclaimable slabs.
5150 5277                                   */
5151 5278                                  return (-1);
5152 5279                          }
5153 5280  
5154 5281                          if (!success) {
5155 5282                                  /*
5156 5283                                   * Abort the scan if there is not enough memory
5157 5284                                   * for the request and say nothing about the
5158 5285                                   * number of reclaimable slabs.
5159 5286                                   */
     5287 +                                KMEM_STAT_COND_ADD(s < max_slabs,
     5288 +                                    kmem_move_stats.kms_endscan_nomem);
5160 5289                                  return (-1);
5161 5290                          }
5162 5291  
5163 5292                          /*
5164 5293                           * The slab's position changed while the lock was
5165 5294                           * dropped, so we don't know where we are in the
5166 5295                           * sequence any more.
5167 5296                           */
5168 5297                          if (sp->slab_refcnt != refcnt) {
5169 5298                                  /*
5170 5299                                   * If this is a KMM_DEBUG move, the slab_refcnt
5171 5300                                   * may have changed because we allocated a
5172 5301                                   * destination buffer on the same slab. In that
5173 5302                                   * case, we're not interested in counting it.
5174 5303                                   */
     5304 +                                KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) &&
     5305 +                                    (s < max_slabs),
     5306 +                                    kmem_move_stats.kms_endscan_refcnt_changed);
5175 5307                                  return (-1);
5176 5308                          }
5177      -                        if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove)
     5309 +                        if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) {
     5310 +                                KMEM_STAT_COND_ADD(s < max_slabs,
     5311 +                                    kmem_move_stats.kms_endscan_nomove_changed);
5178 5312                                  return (-1);
     5313 +                        }
5179 5314  
5180 5315                          /*
5181 5316                           * Generating a move request allocates a destination
5182 5317                           * buffer from the slab layer, bumping the first partial
5183 5318                           * slab if it is completely allocated. If the current
5184 5319                           * slab becomes the first partial slab as a result, we
5185 5320                           * can't continue to scan backwards.
5186 5321                           *
5187 5322                           * If this is a KMM_DEBUG move and we allocated the
5188 5323                           * destination buffer from the last partial slab, then
5189 5324                           * the buffer we're moving is on the same slab and our
5190 5325                           * slab_refcnt has changed, causing us to return before
5191 5326                           * reaching here if there are no partial slabs left.
5192 5327                           */
5193 5328                          ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5194 5329                          if (sp == avl_first(&cp->cache_partial_slabs)) {
  
    | 
      ↓ open down ↓ | 
    6 lines elided | 
    
      ↑ open up ↑ | 
  
5195 5330                                  /*
5196 5331                                   * We're not interested in a second KMM_DEBUG
5197 5332                                   * move.
5198 5333                                   */
5199 5334                                  goto end_scan;
5200 5335                          }
5201 5336                  }
5202 5337          }
5203 5338  end_scan:
5204 5339  
     5340 +        KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) &&
     5341 +            (s < max_slabs) &&
     5342 +            (sp == avl_first(&cp->cache_partial_slabs)),
     5343 +            kmem_move_stats.kms_endscan_freelist);
     5344 +
5205 5345          return (s);
5206 5346  }
5207 5347  
5208 5348  typedef struct kmem_move_notify_args {
5209 5349          kmem_cache_t *kmna_cache;
5210 5350          void *kmna_buf;
5211 5351  } kmem_move_notify_args_t;
5212 5352  
5213 5353  static void
5214 5354  kmem_cache_move_notify_task(void *arg)
5215 5355  {
5216 5356          kmem_move_notify_args_t *args = arg;
5217 5357          kmem_cache_t *cp = args->kmna_cache;
5218 5358          void *buf = args->kmna_buf;
5219 5359          kmem_slab_t *sp;
5220 5360  
5221 5361          ASSERT(taskq_member(kmem_taskq, curthread));
5222 5362          ASSERT(list_link_active(&cp->cache_link));
5223 5363  
5224 5364          kmem_free(args, sizeof (kmem_move_notify_args_t));
5225 5365          mutex_enter(&cp->cache_lock);
5226 5366          sp = kmem_slab_allocated(cp, NULL, buf);
5227 5367  
5228 5368          /* Ignore the notification if the buffer is no longer allocated. */
5229 5369          if (sp == NULL) {
5230 5370                  mutex_exit(&cp->cache_lock);
5231 5371                  return;
5232 5372          }
5233 5373  
5234 5374          /* Ignore the notification if there's no reason to move the buffer. */
5235 5375          if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5236 5376                  /*
5237 5377                   * So far the notification is not ignored. Ignore the
5238 5378                   * notification if the slab is not marked by an earlier refusal
5239 5379                   * to move a buffer.
5240 5380                   */
5241 5381                  if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5242 5382                      (sp->slab_later_count == 0)) {
5243 5383                          mutex_exit(&cp->cache_lock);
5244 5384                          return;
5245 5385                  }
5246 5386  
5247 5387                  kmem_slab_move_yes(cp, sp, buf);
5248 5388                  ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5249 5389                  sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5250 5390                  mutex_exit(&cp->cache_lock);
5251 5391                  /* see kmem_move_buffers() about dropping the lock */
5252 5392                  (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5253 5393                  mutex_enter(&cp->cache_lock);
  
    | 
      ↓ open down ↓ | 
    39 lines elided | 
    
      ↑ open up ↑ | 
  
5254 5394                  ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5255 5395                  sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5256 5396                  if (sp->slab_refcnt == 0) {
5257 5397                          list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5258 5398                          list_remove(deadlist, sp);
5259 5399  
5260 5400                          if (!avl_is_empty(
5261 5401                              &cp->cache_defrag->kmd_moves_pending)) {
5262 5402                                  list_insert_head(deadlist, sp);
5263 5403                                  mutex_exit(&cp->cache_lock);
     5404 +                                KMEM_STAT_ADD(kmem_move_stats.
     5405 +                                    kms_notify_slab_dead);
5264 5406                                  return;
5265 5407                          }
5266 5408  
5267 5409                          cp->cache_defrag->kmd_deadcount--;
5268 5410                          cp->cache_slab_destroy++;
5269 5411                          mutex_exit(&cp->cache_lock);
5270 5412                          kmem_slab_destroy(cp, sp);
     5413 +                        KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed);
     5414 +                        KMEM_STAT_ADD(kmem_move_stats.
     5415 +                            kms_notify_slab_destroyed);
5271 5416                          return;
5272 5417                  }
5273 5418          } else {
5274 5419                  kmem_slab_move_yes(cp, sp, buf);
5275 5420          }
5276 5421          mutex_exit(&cp->cache_lock);
5277 5422  }
5278 5423  
5279 5424  void
5280 5425  kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5281 5426  {
5282 5427          kmem_move_notify_args_t *args;
5283 5428  
     5429 +        KMEM_STAT_ADD(kmem_move_stats.kms_notify);
5284 5430          args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5285 5431          if (args != NULL) {
5286 5432                  args->kmna_cache = cp;
5287 5433                  args->kmna_buf = buf;
5288 5434                  if (!taskq_dispatch(kmem_taskq,
5289 5435                      (task_func_t *)kmem_cache_move_notify_task, args,
5290 5436                      TQ_NOSLEEP))
5291 5437                          kmem_free(args, sizeof (kmem_move_notify_args_t));
5292 5438          }
5293 5439  }
5294 5440  
5295 5441  static void
  
    | 
      ↓ open down ↓ | 
    2 lines elided | 
    
      ↑ open up ↑ | 
  
5296 5442  kmem_cache_defrag(kmem_cache_t *cp)
5297 5443  {
5298 5444          size_t n;
5299 5445  
5300 5446          ASSERT(cp->cache_defrag != NULL);
5301 5447  
5302 5448          mutex_enter(&cp->cache_lock);
5303 5449          n = avl_numnodes(&cp->cache_partial_slabs);
5304 5450          if (n > 1) {
5305 5451                  /* kmem_move_buffers() drops and reacquires cache_lock */
     5452 +                KMEM_STAT_ADD(kmem_move_stats.kms_defrags);
5306 5453                  cp->cache_defrag->kmd_defrags++;
5307 5454                  (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5308 5455          }
5309 5456          mutex_exit(&cp->cache_lock);
5310 5457  }
5311 5458  
5312 5459  /* Is this cache above the fragmentation threshold? */
5313 5460  static boolean_t
5314 5461  kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5315 5462  {
5316 5463          /*
5317 5464           *      nfree           kmem_frag_numer
5318 5465           * ------------------ > ---------------
5319 5466           * cp->cache_buftotal   kmem_frag_denom
5320 5467           */
5321 5468          return ((nfree * kmem_frag_denom) >
5322 5469              (cp->cache_buftotal * kmem_frag_numer));
5323 5470  }
5324 5471  
5325 5472  static boolean_t
5326 5473  kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5327 5474  {
5328 5475          boolean_t fragmented;
5329 5476          uint64_t nfree;
5330 5477  
5331 5478          ASSERT(MUTEX_HELD(&cp->cache_lock));
5332 5479          *doreap = B_FALSE;
5333 5480  
5334 5481          if (kmem_move_fulltilt) {
5335 5482                  if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5336 5483                          return (B_TRUE);
5337 5484                  }
5338 5485          } else {
5339 5486                  if ((cp->cache_complete_slab_count + avl_numnodes(
5340 5487                      &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5341 5488                          return (B_FALSE);
5342 5489                  }
5343 5490          }
5344 5491  
5345 5492          nfree = cp->cache_bufslab;
5346 5493          fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5347 5494              kmem_cache_frag_threshold(cp, nfree));
5348 5495  
5349 5496          /*
5350 5497           * Free buffers in the magazine layer appear allocated from the point of
5351 5498           * view of the slab layer. We want to know if the slab layer would
5352 5499           * appear fragmented if we included free buffers from magazines that
5353 5500           * have fallen out of the working set.
5354 5501           */
5355 5502          if (!fragmented) {
5356 5503                  long reap;
5357 5504  
5358 5505                  mutex_enter(&cp->cache_depot_lock);
5359 5506                  reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5360 5507                  reap = MIN(reap, cp->cache_full.ml_total);
5361 5508                  mutex_exit(&cp->cache_depot_lock);
5362 5509  
5363 5510                  nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5364 5511                  if (kmem_cache_frag_threshold(cp, nfree)) {
5365 5512                          *doreap = B_TRUE;
5366 5513                  }
5367 5514          }
5368 5515  
5369 5516          return (fragmented);
5370 5517  }
5371 5518  
5372 5519  /* Called periodically from kmem_taskq */
5373 5520  static void
5374 5521  kmem_cache_scan(kmem_cache_t *cp)
5375 5522  {
5376 5523          boolean_t reap = B_FALSE;
5377 5524          kmem_defrag_t *kmd;
5378 5525  
5379 5526          ASSERT(taskq_member(kmem_taskq, curthread));
5380 5527  
5381 5528          mutex_enter(&cp->cache_lock);
5382 5529  
5383 5530          kmd = cp->cache_defrag;
5384 5531          if (kmd->kmd_consolidate > 0) {
5385 5532                  kmd->kmd_consolidate--;
5386 5533                  mutex_exit(&cp->cache_lock);
5387 5534                  kmem_cache_reap(cp);
5388 5535                  return;
5389 5536          }
5390 5537  
5391 5538          if (kmem_cache_is_fragmented(cp, &reap)) {
5392 5539                  size_t slabs_found;
5393 5540  
  
    | 
      ↓ open down ↓ | 
    78 lines elided | 
    
      ↑ open up ↑ | 
  
5394 5541                  /*
5395 5542                   * Consolidate reclaimable slabs from the end of the partial
5396 5543                   * slab list (scan at most kmem_reclaim_scan_range slabs to find
5397 5544                   * reclaimable slabs). Keep track of how many candidate slabs we
5398 5545                   * looked for and how many we actually found so we can adjust
5399 5546                   * the definition of a candidate slab if we're having trouble
5400 5547                   * finding them.
5401 5548                   *
5402 5549                   * kmem_move_buffers() drops and reacquires cache_lock.
5403 5550                   */
     5551 +                KMEM_STAT_ADD(kmem_move_stats.kms_scans);
5404 5552                  kmd->kmd_scans++;
5405 5553                  slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5406 5554                      kmem_reclaim_max_slabs, 0);
5407 5555                  if (slabs_found >= 0) {
5408 5556                          kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5409 5557                          kmd->kmd_slabs_found += slabs_found;
5410 5558                  }
5411 5559  
5412 5560                  if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5413 5561                          kmd->kmd_tries = 0;
5414 5562  
5415 5563                          /*
5416 5564                           * If we had difficulty finding candidate slabs in
5417 5565                           * previous scans, adjust the threshold so that
5418 5566                           * candidates are easier to find.
5419 5567                           */
5420 5568                          if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5421 5569                                  kmem_adjust_reclaim_threshold(kmd, -1);
5422 5570                          } else if ((kmd->kmd_slabs_found * 2) <
5423 5571                              kmd->kmd_slabs_sought) {
5424 5572                                  kmem_adjust_reclaim_threshold(kmd, 1);
5425 5573                          }
5426 5574                          kmd->kmd_slabs_sought = 0;
5427 5575                          kmd->kmd_slabs_found = 0;
5428 5576                  }
5429 5577          } else {
5430 5578                  kmem_reset_reclaim_threshold(cp->cache_defrag);
5431 5579  #ifdef  DEBUG
5432 5580                  if (!avl_is_empty(&cp->cache_partial_slabs)) {
5433 5581                          /*
  
    | 
      ↓ open down ↓ | 
    20 lines elided | 
    
      ↑ open up ↑ | 
  
5434 5582                           * In a debug kernel we want the consolidator to
5435 5583                           * run occasionally even when there is plenty of
5436 5584                           * memory.
5437 5585                           */
5438 5586                          uint16_t debug_rand;
5439 5587  
5440 5588                          (void) random_get_bytes((uint8_t *)&debug_rand, 2);
5441 5589                          if (!kmem_move_noreap &&
5442 5590                              ((debug_rand % kmem_mtb_reap) == 0)) {
5443 5591                                  mutex_exit(&cp->cache_lock);
     5592 +                                KMEM_STAT_ADD(kmem_move_stats.kms_debug_reaps);
5444 5593                                  kmem_cache_reap(cp);
5445 5594                                  return;
5446 5595                          } else if ((debug_rand % kmem_mtb_move) == 0) {
     5596 +                                KMEM_STAT_ADD(kmem_move_stats.kms_scans);
     5597 +                                KMEM_STAT_ADD(kmem_move_stats.kms_debug_scans);
5447 5598                                  kmd->kmd_scans++;
5448 5599                                  (void) kmem_move_buffers(cp,
5449 5600                                      kmem_reclaim_scan_range, 1, KMM_DEBUG);
5450 5601                          }
5451 5602                  }
5452 5603  #endif  /* DEBUG */
5453 5604          }
5454 5605  
5455 5606          mutex_exit(&cp->cache_lock);
5456 5607  
5457      -        if (reap)
     5608 +        if (reap) {
     5609 +                KMEM_STAT_ADD(kmem_move_stats.kms_scan_depot_ws_reaps);
5458 5610                  kmem_depot_ws_reap(cp);
     5611 +        }
5459 5612  }
    
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX