1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
  24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
  25  */
  26 
  27 /*
  28  * Kernel memory allocator, as described in the following two papers and a
  29  * statement about the consolidator:
  30  *
  31  * Jeff Bonwick,
  32  * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
  33  * Proceedings of the Summer 1994 Usenix Conference.
  34  * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
  35  *
  36  * Jeff Bonwick and Jonathan Adams,
  37  * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
  38  * Arbitrary Resources.
  39  * Proceedings of the 2001 Usenix Conference.
  40  * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
  41  *
  42  * kmem Slab Consolidator Big Theory Statement:
  43  *
  44  * 1. Motivation
  45  *
  46  * As stated in Bonwick94, slabs provide the following advantages over other
  47  * allocation structures in terms of memory fragmentation:
  48  *
  49  *  - Internal fragmentation (per-buffer wasted space) is minimal.
  50  *  - Severe external fragmentation (unused buffers on the free list) is
  51  *    unlikely.
  52  *
  53  * Segregating objects by size eliminates one source of external fragmentation,
  54  * and according to Bonwick:
  55  *
  56  *   The other reason that slabs reduce external fragmentation is that all
  57  *   objects in a slab are of the same type, so they have the same lifetime
  58  *   distribution. The resulting segregation of short-lived and long-lived
  59  *   objects at slab granularity reduces the likelihood of an entire page being
  60  *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
  61  *
  62  * While unlikely, severe external fragmentation remains possible. Clients that
  63  * allocate both short- and long-lived objects from the same cache cannot
  64  * anticipate the distribution of long-lived objects within the allocator's slab
  65  * implementation. Even a small percentage of long-lived objects distributed
  66  * randomly across many slabs can lead to a worst case scenario where the client
  67  * frees the majority of its objects and the system gets back almost none of the
  68  * slabs. Despite the client doing what it reasonably can to help the system
  69  * reclaim memory, the allocator cannot shake free enough slabs because of
  70  * lonely allocations stubbornly hanging on. Although the allocator is in a
  71  * position to diagnose the fragmentation, there is nothing that the allocator
  72  * by itself can do about it. It only takes a single allocated object to prevent
  73  * an entire slab from being reclaimed, and any object handed out by
  74  * kmem_cache_alloc() is by definition in the client's control. Conversely,
  75  * although the client is in a position to move a long-lived object, it has no
  76  * way of knowing if the object is causing fragmentation, and if so, where to
  77  * move it. A solution necessarily requires further cooperation between the
  78  * allocator and the client.
  79  *
  80  * 2. Move Callback
  81  *
  82  * The kmem slab consolidator therefore adds a move callback to the
  83  * allocator/client interface, improving worst-case external fragmentation in
  84  * kmem caches that supply a function to move objects from one memory location
  85  * to another. In a situation of low memory kmem attempts to consolidate all of
  86  * a cache's slabs at once; otherwise it works slowly to bring external
  87  * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
  88  * thereby helping to avoid a low memory situation in the future.
  89  *
  90  * The callback has the following signature:
  91  *
  92  *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
  93  *
  94  * It supplies the kmem client with two addresses: the allocated object that
  95  * kmem wants to move and a buffer selected by kmem for the client to use as the
  96  * copy destination. The callback is kmem's way of saying "Please get off of
  97  * this buffer and use this one instead." kmem knows where it wants to move the
  98  * object in order to best reduce fragmentation. All the client needs to know
  99  * about the second argument (void *new) is that it is an allocated, constructed
 100  * object ready to take the contents of the old object. When the move function
 101  * is called, the system is likely to be low on memory, and the new object
 102  * spares the client from having to worry about allocating memory for the
 103  * requested move. The third argument supplies the size of the object, in case a
 104  * single move function handles multiple caches whose objects differ only in
 105  * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
 106  * user argument passed to the constructor, destructor, and reclaim functions is
 107  * also passed to the move callback.
 108  *
 109  * 2.1 Setting the Move Callback
 110  *
 111  * The client sets the move callback after creating the cache and before
 112  * allocating from it:
 113  *
 114  *      object_cache = kmem_cache_create(...);
 115  *      kmem_cache_set_move(object_cache, object_move);
 116  *
 117  * 2.2 Move Callback Return Values
 118  *
 119  * Only the client knows about its own data and when is a good time to move it.
 120  * The client is cooperating with kmem to return unused memory to the system,
 121  * and kmem respectfully accepts this help at the client's convenience. When
 122  * asked to move an object, the client can respond with any of the following:
 123  *
 124  *   typedef enum kmem_cbrc {
 125  *           KMEM_CBRC_YES,
 126  *           KMEM_CBRC_NO,
 127  *           KMEM_CBRC_LATER,
 128  *           KMEM_CBRC_DONT_NEED,
 129  *           KMEM_CBRC_DONT_KNOW
 130  *   } kmem_cbrc_t;
 131  *
 132  * The client must not explicitly kmem_cache_free() either of the objects passed
 133  * to the callback, since kmem wants to free them directly to the slab layer
 134  * (bypassing the per-CPU magazine layer). The response tells kmem which of the
 135  * objects to free:
 136  *
 137  *       YES: (Did it) The client moved the object, so kmem frees the old one.
 138  *        NO: (Never) The client refused, so kmem frees the new object (the
 139  *            unused copy destination). kmem also marks the slab of the old
 140  *            object so as not to bother the client with further callbacks for
 141  *            that object as long as the slab remains on the partial slab list.
 142  *            (The system won't be getting the slab back as long as the
 143  *            immovable object holds it hostage, so there's no point in moving
 144  *            any of its objects.)
 145  *     LATER: The client is using the object and cannot move it now, so kmem
 146  *            frees the new object (the unused copy destination). kmem still
 147  *            attempts to move other objects off the slab, since it expects to
 148  *            succeed in clearing the slab in a later callback. The client
 149  *            should use LATER instead of NO if the object is likely to become
 150  *            movable very soon.
 151  * DONT_NEED: The client no longer needs the object, so kmem frees the old along
 152  *            with the new object (the unused copy destination). This response
 153  *            is the client's opportunity to be a model citizen and give back as
 154  *            much as it can.
 155  * DONT_KNOW: The client does not know about the object because
 156  *            a) the client has just allocated the object and not yet put it
 157  *               wherever it expects to find known objects
 158  *            b) the client has removed the object from wherever it expects to
 159  *               find known objects and is about to free it, or
 160  *            c) the client has freed the object.
 161  *            In all these cases (a, b, and c) kmem frees the new object (the
 162  *            unused copy destination) and searches for the old object in the
 163  *            magazine layer. If found, the object is removed from the magazine
 164  *            layer and freed to the slab layer so it will no longer hold the
 165  *            slab hostage.
 166  *
 167  * 2.3 Object States
 168  *
 169  * Neither kmem nor the client can be assumed to know the object's whereabouts
 170  * at the time of the callback. An object belonging to a kmem cache may be in
 171  * any of the following states:
 172  *
 173  * 1. Uninitialized on the slab
 174  * 2. Allocated from the slab but not constructed (still uninitialized)
 175  * 3. Allocated from the slab, constructed, but not yet ready for business
 176  *    (not in a valid state for the move callback)
 177  * 4. In use (valid and known to the client)
 178  * 5. About to be freed (no longer in a valid state for the move callback)
 179  * 6. Freed to a magazine (still constructed)
 180  * 7. Allocated from a magazine, not yet ready for business (not in a valid
 181  *    state for the move callback), and about to return to state #4
 182  * 8. Deconstructed on a magazine that is about to be freed
 183  * 9. Freed to the slab
 184  *
 185  * Since the move callback may be called at any time while the object is in any
 186  * of the above states (except state #1), the client needs a safe way to
 187  * determine whether or not it knows about the object. Specifically, the client
 188  * needs to know whether or not the object is in state #4, the only state in
 189  * which a move is valid. If the object is in any other state, the client should
 190  * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
 191  * the object's fields.
 192  *
 193  * Note that although an object may be in state #4 when kmem initiates the move
 194  * request, the object may no longer be in that state by the time kmem actually
 195  * calls the move function. Not only does the client free objects
 196  * asynchronously, kmem itself puts move requests on a queue where thay are
 197  * pending until kmem processes them from another context. Also, objects freed
 198  * to a magazine appear allocated from the point of view of the slab layer, so
 199  * kmem may even initiate requests for objects in a state other than state #4.
 200  *
 201  * 2.3.1 Magazine Layer
 202  *
 203  * An important insight revealed by the states listed above is that the magazine
 204  * layer is populated only by kmem_cache_free(). Magazines of constructed
 205  * objects are never populated directly from the slab layer (which contains raw,
 206  * unconstructed objects). Whenever an allocation request cannot be satisfied
 207  * from the magazine layer, the magazines are bypassed and the request is
 208  * satisfied from the slab layer (creating a new slab if necessary). kmem calls
 209  * the object constructor only when allocating from the slab layer, and only in
 210  * response to kmem_cache_alloc() or to prepare the destination buffer passed in
 211  * the move callback. kmem does not preconstruct objects in anticipation of
 212  * kmem_cache_alloc().
 213  *
 214  * 2.3.2 Object Constructor and Destructor
 215  *
 216  * If the client supplies a destructor, it must be valid to call the destructor
 217  * on a newly created object (immediately after the constructor).
 218  *
 219  * 2.4 Recognizing Known Objects
 220  *
 221  * There is a simple test to determine safely whether or not the client knows
 222  * about a given object in the move callback. It relies on the fact that kmem
 223  * guarantees that the object of the move callback has only been touched by the
 224  * client itself or else by kmem. kmem does this by ensuring that none of the
 225  * cache's slabs are freed to the virtual memory (VM) subsystem while a move
 226  * callback is pending. When the last object on a slab is freed, if there is a
 227  * pending move, kmem puts the slab on a per-cache dead list and defers freeing
 228  * slabs on that list until all pending callbacks are completed. That way,
 229  * clients can be certain that the object of a move callback is in one of the
 230  * states listed above, making it possible to distinguish known objects (in
 231  * state #4) using the two low order bits of any pointer member (with the
 232  * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
 233  * platforms).
 234  *
 235  * The test works as long as the client always transitions objects from state #4
 236  * (known, in use) to state #5 (about to be freed, invalid) by setting the low
 237  * order bit of the client-designated pointer member. Since kmem only writes
 238  * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
 239  * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
 240  * guaranteed to set at least one of the two low order bits. Therefore, given an
 241  * object with a back pointer to a 'container_t *o_container', the client can
 242  * test
 243  *
 244  *      container_t *container = object->o_container;
 245  *      if ((uintptr_t)container & 0x3) {
 246  *              return (KMEM_CBRC_DONT_KNOW);
 247  *      }
 248  *
 249  * Typically, an object will have a pointer to some structure with a list or
 250  * hash where objects from the cache are kept while in use. Assuming that the
 251  * client has some way of knowing that the container structure is valid and will
 252  * not go away during the move, and assuming that the structure includes a lock
 253  * to protect whatever collection is used, then the client would continue as
 254  * follows:
 255  *
 256  *      // Ensure that the container structure does not go away.
 257  *      if (container_hold(container) == 0) {
 258  *              return (KMEM_CBRC_DONT_KNOW);
 259  *      }
 260  *      mutex_enter(&container->c_objects_lock);
 261  *      if (container != object->o_container) {
 262  *              mutex_exit(&container->c_objects_lock);
 263  *              container_rele(container);
 264  *              return (KMEM_CBRC_DONT_KNOW);
 265  *      }
 266  *
 267  * At this point the client knows that the object cannot be freed as long as
 268  * c_objects_lock is held. Note that after acquiring the lock, the client must
 269  * recheck the o_container pointer in case the object was removed just before
 270  * acquiring the lock.
 271  *
 272  * When the client is about to free an object, it must first remove that object
 273  * from the list, hash, or other structure where it is kept. At that time, to
 274  * mark the object so it can be distinguished from the remaining, known objects,
 275  * the client sets the designated low order bit:
 276  *
 277  *      mutex_enter(&container->c_objects_lock);
 278  *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
 279  *      list_remove(&container->c_objects, object);
 280  *      mutex_exit(&container->c_objects_lock);
 281  *
 282  * In the common case, the object is freed to the magazine layer, where it may
 283  * be reused on a subsequent allocation without the overhead of calling the
 284  * constructor. While in the magazine it appears allocated from the point of
 285  * view of the slab layer, making it a candidate for the move callback. Most
 286  * objects unrecognized by the client in the move callback fall into this
 287  * category and are cheaply distinguished from known objects by the test
 288  * described earlier. Since recognition is cheap for the client, and searching
 289  * magazines is expensive for kmem, kmem defers searching until the client first
 290  * returns KMEM_CBRC_DONT_KNOW. As long as the needed effort is reasonable, kmem
 291  * elsewhere does what it can to avoid bothering the client unnecessarily.
 292  *
 293  * Invalidating the designated pointer member before freeing the object marks
 294  * the object to be avoided in the callback, and conversely, assigning a valid
 295  * value to the designated pointer member after allocating the object makes the
 296  * object fair game for the callback:
 297  *
 298  *      ... allocate object ...
 299  *      ... set any initial state not set by the constructor ...
 300  *
 301  *      mutex_enter(&container->c_objects_lock);
 302  *      list_insert_tail(&container->c_objects, object);
 303  *      membar_producer();
 304  *      object->o_container = container;
 305  *      mutex_exit(&container->c_objects_lock);
 306  *
 307  * Note that everything else must be valid before setting o_container makes the
 308  * object fair game for the move callback. The membar_producer() call ensures
 309  * that all the object's state is written to memory before setting the pointer
 310  * that transitions the object from state #3 or #7 (allocated, constructed, not
 311  * yet in use) to state #4 (in use, valid). That's important because the move
 312  * function has to check the validity of the pointer before it can safely
 313  * acquire the lock protecting the collection where it expects to find known
 314  * objects.
 315  *
 316  * This method of distinguishing known objects observes the usual symmetry:
 317  * invalidating the designated pointer is the first thing the client does before
 318  * freeing the object, and setting the designated pointer is the last thing the
 319  * client does after allocating the object. Of course, the client is not
 320  * required to use this method. Fundamentally, how the client recognizes known
 321  * objects is completely up to the client, but this method is recommended as an
 322  * efficient and safe way to take advantage of the guarantees made by kmem. If
 323  * the entire object is arbitrary data without any markable bits from a suitable
 324  * pointer member, then the client must find some other method, such as
 325  * searching a hash table of known objects.
 326  *
 327  * 2.5 Preventing Objects From Moving
 328  *
 329  * Besides a way to distinguish known objects, the other thing that the client
 330  * needs is a strategy to ensure that an object will not move while the client
 331  * is actively using it. The details of satisfying this requirement tend to be
 332  * highly cache-specific. It might seem that the same rules that let a client
 333  * remove an object safely should also decide when an object can be moved
 334  * safely. However, any object state that makes a removal attempt invalid is
 335  * likely to be long-lasting for objects that the client does not expect to
 336  * remove. kmem knows nothing about the object state and is equally likely (from
 337  * the client's point of view) to request a move for any object in the cache,
 338  * whether prepared for removal or not. Even a low percentage of objects stuck
 339  * in place by unremovability will defeat the consolidator if the stuck objects
 340  * are the same long-lived allocations likely to hold slabs hostage.
 341  * Fundamentally, the consolidator is not aimed at common cases. Severe external
 342  * fragmentation is a worst case scenario manifested as sparsely allocated
 343  * slabs, by definition a low percentage of the cache's objects. When deciding
 344  * what makes an object movable, keep in mind the goal of the consolidator: to
 345  * bring worst-case external fragmentation within the limits guaranteed for
 346  * internal fragmentation. Removability is a poor criterion if it is likely to
 347  * exclude more than an insignificant percentage of objects for long periods of
 348  * time.
 349  *
 350  * A tricky general solution exists, and it has the advantage of letting you
 351  * move any object at almost any moment, practically eliminating the likelihood
 352  * that an object can hold a slab hostage. However, if there is a cache-specific
 353  * way to ensure that an object is not actively in use in the vast majority of
 354  * cases, a simpler solution that leverages this cache-specific knowledge is
 355  * preferred.
 356  *
 357  * 2.5.1 Cache-Specific Solution
 358  *
 359  * As an example of a cache-specific solution, the ZFS znode cache takes
 360  * advantage of the fact that the vast majority of znodes are only being
 361  * referenced from the DNLC. (A typical case might be a few hundred in active
 362  * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
 363  * client has established that it recognizes the znode and can access its fields
 364  * safely (using the method described earlier), it then tests whether the znode
 365  * is referenced by anything other than the DNLC. If so, it assumes that the
 366  * znode may be in active use and is unsafe to move, so it drops its locks and
 367  * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
 368  * else znodes are used, no change is needed to protect against the possibility
 369  * of the znode moving. The disadvantage is that it remains possible for an
 370  * application to hold a znode slab hostage with an open file descriptor.
 371  * However, this case ought to be rare and the consolidator has a way to deal
 372  * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
 373  * object, kmem eventually stops believing it and treats the slab as if the
 374  * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
 375  * then focus on getting it off of the partial slab list by allocating rather
 376  * than freeing all of its objects. (Either way of getting a slab off the
 377  * free list reduces fragmentation.)
 378  *
 379  * 2.5.2 General Solution
 380  *
 381  * The general solution, on the other hand, requires an explicit hold everywhere
 382  * the object is used to prevent it from moving. To keep the client locking
 383  * strategy as uncomplicated as possible, kmem guarantees the simplifying
 384  * assumption that move callbacks are sequential, even across multiple caches.
 385  * Internally, a global queue processed by a single thread supports all caches
 386  * implementing the callback function. No matter how many caches supply a move
 387  * function, the consolidator never moves more than one object at a time, so the
 388  * client does not have to worry about tricky lock ordering involving several
 389  * related objects from different kmem caches.
 390  *
 391  * The general solution implements the explicit hold as a read-write lock, which
 392  * allows multiple readers to access an object from the cache simultaneously
 393  * while a single writer is excluded from moving it. A single rwlock for the
 394  * entire cache would lock out all threads from using any of the cache's objects
 395  * even though only a single object is being moved, so to reduce contention,
 396  * the client can fan out the single rwlock into an array of rwlocks hashed by
 397  * the object address, making it probable that moving one object will not
 398  * prevent other threads from using a different object. The rwlock cannot be a
 399  * member of the object itself, because the possibility of the object moving
 400  * makes it unsafe to access any of the object's fields until the lock is
 401  * acquired.
 402  *
 403  * Assuming a small, fixed number of locks, it's possible that multiple objects
 404  * will hash to the same lock. A thread that needs to use multiple objects in
 405  * the same function may acquire the same lock multiple times. Since rwlocks are
 406  * reentrant for readers, and since there is never more than a single writer at
 407  * a time (assuming that the client acquires the lock as a writer only when
 408  * moving an object inside the callback), there would seem to be no problem.
 409  * However, a client locking multiple objects in the same function must handle
 410  * one case of potential deadlock: Assume that thread A needs to prevent both
 411  * object 1 and object 2 from moving, and thread B, the callback, meanwhile
 412  * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
 413  * same lock, that thread A will acquire the lock for object 1 as a reader
 414  * before thread B sets the lock's write-wanted bit, preventing thread A from
 415  * reacquiring the lock for object 2 as a reader. Unable to make forward
 416  * progress, thread A will never release the lock for object 1, resulting in
 417  * deadlock.
 418  *
 419  * There are two ways of avoiding the deadlock just described. The first is to
 420  * use rw_tryenter() rather than rw_enter() in the callback function when
 421  * attempting to acquire the lock as a writer. If tryenter discovers that the
 422  * same object (or another object hashed to the same lock) is already in use, it
 423  * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
 424  * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
 425  * since it allows a thread to acquire the lock as a reader in spite of a
 426  * waiting writer. This second approach insists on moving the object now, no
 427  * matter how many readers the move function must wait for in order to do so,
 428  * and could delay the completion of the callback indefinitely (blocking
 429  * callbacks to other clients). In practice, a less insistent callback using
 430  * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
 431  * little reason to use anything else.
 432  *
 433  * Avoiding deadlock is not the only problem that an implementation using an
 434  * explicit hold needs to solve. Locking the object in the first place (to
 435  * prevent it from moving) remains a problem, since the object could move
 436  * between the time you obtain a pointer to the object and the time you acquire
 437  * the rwlock hashed to that pointer value. Therefore the client needs to
 438  * recheck the value of the pointer after acquiring the lock, drop the lock if
 439  * the value has changed, and try again. This requires a level of indirection:
 440  * something that points to the object rather than the object itself, that the
 441  * client can access safely while attempting to acquire the lock. (The object
 442  * itself cannot be referenced safely because it can move at any time.)
 443  * The following lock-acquisition function takes whatever is safe to reference
 444  * (arg), follows its pointer to the object (using function f), and tries as
 445  * often as necessary to acquire the hashed lock and verify that the object
 446  * still has not moved:
 447  *
 448  *      object_t *
 449  *      object_hold(object_f f, void *arg)
 450  *      {
 451  *              object_t *op;
 452  *
 453  *              op = f(arg);
 454  *              if (op == NULL) {
 455  *                      return (NULL);
 456  *              }
 457  *
 458  *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
 459  *              while (op != f(arg)) {
 460  *                      rw_exit(OBJECT_RWLOCK(op));
 461  *                      op = f(arg);
 462  *                      if (op == NULL) {
 463  *                              break;
 464  *                      }
 465  *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
 466  *              }
 467  *
 468  *              return (op);
 469  *      }
 470  *
 471  * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
 472  * lock reacquisition loop, while necessary, almost never executes. The function
 473  * pointer f (used to obtain the object pointer from arg) has the following type
 474  * definition:
 475  *
 476  *      typedef object_t *(*object_f)(void *arg);
 477  *
 478  * An object_f implementation is likely to be as simple as accessing a structure
 479  * member:
 480  *
 481  *      object_t *
 482  *      s_object(void *arg)
 483  *      {
 484  *              something_t *sp = arg;
 485  *              return (sp->s_object);
 486  *      }
 487  *
 488  * The flexibility of a function pointer allows the path to the object to be
 489  * arbitrarily complex and also supports the notion that depending on where you
 490  * are using the object, you may need to get it from someplace different.
 491  *
 492  * The function that releases the explicit hold is simpler because it does not
 493  * have to worry about the object moving:
 494  *
 495  *      void
 496  *      object_rele(object_t *op)
 497  *      {
 498  *              rw_exit(OBJECT_RWLOCK(op));
 499  *      }
 500  *
 501  * The caller is spared these details so that obtaining and releasing an
 502  * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
 503  * of object_hold() only needs to know that the returned object pointer is valid
 504  * if not NULL and that the object will not move until released.
 505  *
 506  * Although object_hold() prevents an object from moving, it does not prevent it
 507  * from being freed. The caller must take measures before calling object_hold()
 508  * (afterwards is too late) to ensure that the held object cannot be freed. The
 509  * caller must do so without accessing the unsafe object reference, so any lock
 510  * or reference count used to ensure the continued existence of the object must
 511  * live outside the object itself.
 512  *
 513  * Obtaining a new object is a special case where an explicit hold is impossible
 514  * for the caller. Any function that returns a newly allocated object (either as
 515  * a return value, or as an in-out paramter) must return it already held; after
 516  * the caller gets it is too late, since the object cannot be safely accessed
 517  * without the level of indirection described earlier. The following
 518  * object_alloc() example uses the same code shown earlier to transition a new
 519  * object into the state of being recognized (by the client) as a known object.
 520  * The function must acquire the hold (rw_enter) before that state transition
 521  * makes the object movable:
 522  *
 523  *      static object_t *
 524  *      object_alloc(container_t *container)
 525  *      {
 526  *              object_t *object = kmem_cache_alloc(object_cache, 0);
 527  *              ... set any initial state not set by the constructor ...
 528  *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
 529  *              mutex_enter(&container->c_objects_lock);
 530  *              list_insert_tail(&container->c_objects, object);
 531  *              membar_producer();
 532  *              object->o_container = container;
 533  *              mutex_exit(&container->c_objects_lock);
 534  *              return (object);
 535  *      }
 536  *
 537  * Functions that implicitly acquire an object hold (any function that calls
 538  * object_alloc() to supply an object for the caller) need to be carefully noted
 539  * so that the matching object_rele() is not neglected. Otherwise, leaked holds
 540  * prevent all objects hashed to the affected rwlocks from ever being moved.
 541  *
 542  * The pointer to a held object can be hashed to the holding rwlock even after
 543  * the object has been freed. Although it is possible to release the hold
 544  * after freeing the object, you may decide to release the hold implicitly in
 545  * whatever function frees the object, so as to release the hold as soon as
 546  * possible, and for the sake of symmetry with the function that implicitly
 547  * acquires the hold when it allocates the object. Here, object_free() releases
 548  * the hold acquired by object_alloc(). Its implicit object_rele() forms a
 549  * matching pair with object_hold():
 550  *
 551  *      void
 552  *      object_free(object_t *object)
 553  *      {
 554  *              container_t *container;
 555  *
 556  *              ASSERT(object_held(object));
 557  *              container = object->o_container;
 558  *              mutex_enter(&container->c_objects_lock);
 559  *              object->o_container =
 560  *                  (void *)((uintptr_t)object->o_container | 0x1);
 561  *              list_remove(&container->c_objects, object);
 562  *              mutex_exit(&container->c_objects_lock);
 563  *              object_rele(object);
 564  *              kmem_cache_free(object_cache, object);
 565  *      }
 566  *
 567  * Note that object_free() cannot safely accept an object pointer as an argument
 568  * unless the object is already held. Any function that calls object_free()
 569  * needs to be carefully noted since it similarly forms a matching pair with
 570  * object_hold().
 571  *
 572  * To complete the picture, the following callback function implements the
 573  * general solution by moving objects only if they are currently unheld:
 574  *
 575  *      static kmem_cbrc_t
 576  *      object_move(void *buf, void *newbuf, size_t size, void *arg)
 577  *      {
 578  *              object_t *op = buf, *np = newbuf;
 579  *              container_t *container;
 580  *
 581  *              container = op->o_container;
 582  *              if ((uintptr_t)container & 0x3) {
 583  *                      return (KMEM_CBRC_DONT_KNOW);
 584  *              }
 585  *
 586  *              // Ensure that the container structure does not go away.
 587  *              if (container_hold(container) == 0) {
 588  *                      return (KMEM_CBRC_DONT_KNOW);
 589  *              }
 590  *
 591  *              mutex_enter(&container->c_objects_lock);
 592  *              if (container != op->o_container) {
 593  *                      mutex_exit(&container->c_objects_lock);
 594  *                      container_rele(container);
 595  *                      return (KMEM_CBRC_DONT_KNOW);
 596  *              }
 597  *
 598  *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
 599  *                      mutex_exit(&container->c_objects_lock);
 600  *                      container_rele(container);
 601  *                      return (KMEM_CBRC_LATER);
 602  *              }
 603  *
 604  *              object_move_impl(op, np); // critical section
 605  *              rw_exit(OBJECT_RWLOCK(op));
 606  *
 607  *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
 608  *              list_link_replace(&op->o_link_node, &np->o_link_node);
 609  *              mutex_exit(&container->c_objects_lock);
 610  *              container_rele(container);
 611  *              return (KMEM_CBRC_YES);
 612  *      }
 613  *
 614  * Note that object_move() must invalidate the designated o_container pointer of
 615  * the old object in the same way that object_free() does, since kmem will free
 616  * the object in response to the KMEM_CBRC_YES return value.
 617  *
 618  * The lock order in object_move() differs from object_alloc(), which locks
 619  * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
 620  * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
 621  * not a problem. Holding the lock on the object list in the example above
 622  * through the entire callback not only prevents the object from going away, it
 623  * also allows you to lock the list elsewhere and know that none of its elements
 624  * will move during iteration.
 625  *
 626  * Adding an explicit hold everywhere an object from the cache is used is tricky
 627  * and involves much more change to client code than a cache-specific solution
 628  * that leverages existing state to decide whether or not an object is
 629  * movable. However, this approach has the advantage that no object remains
 630  * immovable for any significant length of time, making it extremely unlikely
 631  * that long-lived allocations can continue holding slabs hostage; and it works
 632  * for any cache.
 633  *
 634  * 3. Consolidator Implementation
 635  *
 636  * Once the client supplies a move function that a) recognizes known objects and
 637  * b) avoids moving objects that are actively in use, the remaining work is up
 638  * to the consolidator to decide which objects to move and when to issue
 639  * callbacks.
 640  *
 641  * The consolidator relies on the fact that a cache's slabs are ordered by
 642  * usage. Each slab has a fixed number of objects. Depending on the slab's
 643  * "color" (the offset of the first object from the beginning of the slab;
 644  * offsets are staggered to mitigate false sharing of cache lines) it is either
 645  * the maximum number of objects per slab determined at cache creation time or
 646  * else the number closest to the maximum that fits within the space remaining
 647  * after the initial offset. A completely allocated slab may contribute some
 648  * internal fragmentation (per-slab overhead) but no external fragmentation, so
 649  * it is of no interest to the consolidator. At the other extreme, slabs whose
 650  * objects have all been freed to the slab are released to the virtual memory
 651  * (VM) subsystem (objects freed to magazines are still allocated as far as the
 652  * slab is concerned). External fragmentation exists when there are slabs
 653  * somewhere between these extremes. A partial slab has at least one but not all
 654  * of its objects allocated. The more partial slabs, and the fewer allocated
 655  * objects on each of them, the higher the fragmentation. Hence the
 656  * consolidator's overall strategy is to reduce the number of partial slabs by
 657  * moving allocated objects from the least allocated slabs to the most allocated
 658  * slabs.
 659  *
 660  * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
 661  * slabs are kept separately in an unordered list. Since the majority of slabs
 662  * tend to be completely allocated (a typical unfragmented cache may have
 663  * thousands of complete slabs and only a single partial slab), separating
 664  * complete slabs improves the efficiency of partial slab ordering, since the
 665  * complete slabs do not affect the depth or balance of the AVL tree. This
 666  * ordered sequence of partial slabs acts as a "free list" supplying objects for
 667  * allocation requests.
 668  *
 669  * Objects are always allocated from the first partial slab in the free list,
 670  * where the allocation is most likely to eliminate a partial slab (by
 671  * completely allocating it). Conversely, when a single object from a completely
 672  * allocated slab is freed to the slab, that slab is added to the front of the
 673  * free list. Since most free list activity involves highly allocated slabs
 674  * coming and going at the front of the list, slabs tend naturally toward the
 675  * ideal order: highly allocated at the front, sparsely allocated at the back.
 676  * Slabs with few allocated objects are likely to become completely free if they
 677  * keep a safe distance away from the front of the free list. Slab misorders
 678  * interfere with the natural tendency of slabs to become completely free or
 679  * completely allocated. For example, a slab with a single allocated object
 680  * needs only a single free to escape the cache; its natural desire is
 681  * frustrated when it finds itself at the front of the list where a second
 682  * allocation happens just before the free could have released it. Another slab
 683  * with all but one object allocated might have supplied the buffer instead, so
 684  * that both (as opposed to neither) of the slabs would have been taken off the
 685  * free list.
 686  *
 687  * Although slabs tend naturally toward the ideal order, misorders allowed by a
 688  * simple list implementation defeat the consolidator's strategy of merging
 689  * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
 690  * needs another way to fix misorders to optimize its callback strategy. One
 691  * approach is to periodically scan a limited number of slabs, advancing a
 692  * marker to hold the current scan position, and to move extreme misorders to
 693  * the front or back of the free list and to the front or back of the current
 694  * scan range. By making consecutive scan ranges overlap by one slab, the least
 695  * allocated slab in the current range can be carried along from the end of one
 696  * scan to the start of the next.
 697  *
 698  * Maintaining partial slabs in an AVL tree relieves kmem of this additional
 699  * task, however. Since most of the cache's activity is in the magazine layer,
 700  * and allocations from the slab layer represent only a startup cost, the
 701  * overhead of maintaining a balanced tree is not a significant concern compared
 702  * to the opportunity of reducing complexity by eliminating the partial slab
 703  * scanner just described. The overhead of an AVL tree is minimized by
 704  * maintaining only partial slabs in the tree and keeping completely allocated
 705  * slabs separately in a list. To avoid increasing the size of the slab
 706  * structure the AVL linkage pointers are reused for the slab's list linkage,
 707  * since the slab will always be either partial or complete, never stored both
 708  * ways at the same time. To further minimize the overhead of the AVL tree the
 709  * compare function that orders partial slabs by usage divides the range of
 710  * allocated object counts into bins such that counts within the same bin are
 711  * considered equal. Binning partial slabs makes it less likely that allocating
 712  * or freeing a single object will change the slab's order, requiring a tree
 713  * reinsertion (an avl_remove() followed by an avl_add(), both potentially
 714  * requiring some rebalancing of the tree). Allocation counts closest to
 715  * completely free and completely allocated are left unbinned (finely sorted) to
 716  * better support the consolidator's strategy of merging slabs at either
 717  * extreme.
 718  *
 719  * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
 720  *
 721  * The consolidator piggybacks on the kmem maintenance thread and is called on
 722  * the same interval as kmem_cache_update(), once per cache every fifteen
 723  * seconds. kmem maintains a running count of unallocated objects in the slab
 724  * layer (cache_bufslab). The consolidator checks whether that number exceeds
 725  * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
 726  * there is a significant number of slabs in the cache (arbitrarily a minimum
 727  * 101 total slabs). Unused objects that have fallen out of the magazine layer's
 728  * working set are included in the assessment, and magazines in the depot are
 729  * reaped if those objects would lift cache_bufslab above the fragmentation
 730  * threshold. Once the consolidator decides that a cache is fragmented, it looks
 731  * for a candidate slab to reclaim, starting at the end of the partial slab free
 732  * list and scanning backwards. At first the consolidator is choosy: only a slab
 733  * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
 734  * single allocated object, regardless of percentage). If there is difficulty
 735  * finding a candidate slab, kmem raises the allocation threshold incrementally,
 736  * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
 737  * external fragmentation (unused objects on the free list) below 12.5% (1/8),
 738  * even in the worst case of every slab in the cache being almost 7/8 allocated.
 739  * The threshold can also be lowered incrementally when candidate slabs are easy
 740  * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
 741  * is no longer fragmented.
 742  *
 743  * 3.2 Generating Callbacks
 744  *
 745  * Once an eligible slab is chosen, a callback is generated for every allocated
 746  * object on the slab, in the hope that the client will move everything off the
 747  * slab and make it reclaimable. Objects selected as move destinations are
 748  * chosen from slabs at the front of the free list. Assuming slabs in the ideal
 749  * order (most allocated at the front, least allocated at the back) and a
 750  * cooperative client, the consolidator will succeed in removing slabs from both
 751  * ends of the free list, completely allocating on the one hand and completely
 752  * freeing on the other. Objects selected as move destinations are allocated in
 753  * the kmem maintenance thread where move requests are enqueued. A separate
 754  * callback thread removes pending callbacks from the queue and calls the
 755  * client. The separate thread ensures that client code (the move function) does
 756  * not interfere with internal kmem maintenance tasks. A map of pending
 757  * callbacks keyed by object address (the object to be moved) is checked to
 758  * ensure that duplicate callbacks are not generated for the same object.
 759  * Allocating the move destination (the object to move to) prevents subsequent
 760  * callbacks from selecting the same destination as an earlier pending callback.
 761  *
 762  * Move requests can also be generated by kmem_cache_reap() when the system is
 763  * desperate for memory and by kmem_cache_move_notify(), called by the client to
 764  * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
 765  * The map of pending callbacks is protected by the same lock that protects the
 766  * slab layer.
 767  *
 768  * When the system is desperate for memory, kmem does not bother to determine
 769  * whether or not the cache exceeds the fragmentation threshold, but tries to
 770  * consolidate as many slabs as possible. Normally, the consolidator chews
 771  * slowly, one sparsely allocated slab at a time during each maintenance
 772  * interval that the cache is fragmented. When desperate, the consolidator
 773  * starts at the last partial slab and enqueues callbacks for every allocated
 774  * object on every partial slab, working backwards until it reaches the first
 775  * partial slab. The first partial slab, meanwhile, advances in pace with the
 776  * consolidator as allocations to supply move destinations for the enqueued
 777  * callbacks use up the highly allocated slabs at the front of the free list.
 778  * Ideally, the overgrown free list collapses like an accordion, starting at
 779  * both ends and ending at the center with a single partial slab.
 780  *
 781  * 3.3 Client Responses
 782  *
 783  * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
 784  * marks the slab that supplied the stuck object non-reclaimable and moves it to
 785  * front of the free list. The slab remains marked as long as it remains on the
 786  * free list, and it appears more allocated to the partial slab compare function
 787  * than any unmarked slab, no matter how many of its objects are allocated.
 788  * Since even one immovable object ties up the entire slab, the goal is to
 789  * completely allocate any slab that cannot be completely freed. kmem does not
 790  * bother generating callbacks to move objects from a marked slab unless the
 791  * system is desperate.
 792  *
 793  * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
 794  * slab. If the client responds LATER too many times, kmem disbelieves and
 795  * treats the response as a NO. The count is cleared when the slab is taken off
 796  * the partial slab list or when the client moves one of the slab's objects.
 797  *
 798  * 4. Observability
 799  *
 800  * A kmem cache's external fragmentation is best observed with 'mdb -k' using
 801  * the ::kmem_slabs dcmd. For a complete description of the command, enter
 802  * '::help kmem_slabs' at the mdb prompt.
 803  */
 804 
 805 #include <sys/kmem_impl.h>
 806 #include <sys/vmem_impl.h>
 807 #include <sys/param.h>
 808 #include <sys/sysmacros.h>
 809 #include <sys/vm.h>
 810 #include <sys/proc.h>
 811 #include <sys/tuneable.h>
 812 #include <sys/systm.h>
 813 #include <sys/cmn_err.h>
 814 #include <sys/debug.h>
 815 #include <sys/sdt.h>
 816 #include <sys/mutex.h>
 817 #include <sys/bitmap.h>
 818 #include <sys/atomic.h>
 819 #include <sys/kobj.h>
 820 #include <sys/disp.h>
 821 #include <vm/seg_kmem.h>
 822 #include <sys/log.h>
 823 #include <sys/callb.h>
 824 #include <sys/taskq.h>
 825 #include <sys/modctl.h>
 826 #include <sys/reboot.h>
 827 #include <sys/id32.h>
 828 #include <sys/zone.h>
 829 #include <sys/netstack.h>
 830 #ifdef  DEBUG
 831 #include <sys/random.h>
 832 #endif
 833 
 834 extern void streams_msg_init(void);
 835 extern int segkp_fromheap;
 836 extern void segkp_cache_free(void);
 837 extern int callout_init_done;
 838 
 839 struct kmem_cache_kstat {
 840         kstat_named_t   kmc_buf_size;
 841         kstat_named_t   kmc_align;
 842         kstat_named_t   kmc_chunk_size;
 843         kstat_named_t   kmc_slab_size;
 844         kstat_named_t   kmc_alloc;
 845         kstat_named_t   kmc_alloc_fail;
 846         kstat_named_t   kmc_free;
 847         kstat_named_t   kmc_depot_alloc;
 848         kstat_named_t   kmc_depot_free;
 849         kstat_named_t   kmc_depot_contention;
 850         kstat_named_t   kmc_slab_alloc;
 851         kstat_named_t   kmc_slab_free;
 852         kstat_named_t   kmc_buf_constructed;
 853         kstat_named_t   kmc_buf_avail;
 854         kstat_named_t   kmc_buf_inuse;
 855         kstat_named_t   kmc_buf_total;
 856         kstat_named_t   kmc_buf_max;
 857         kstat_named_t   kmc_slab_create;
 858         kstat_named_t   kmc_slab_destroy;
 859         kstat_named_t   kmc_vmem_source;
 860         kstat_named_t   kmc_hash_size;
 861         kstat_named_t   kmc_hash_lookup_depth;
 862         kstat_named_t   kmc_hash_rescale;
 863         kstat_named_t   kmc_full_magazines;
 864         kstat_named_t   kmc_empty_magazines;
 865         kstat_named_t   kmc_magazine_size;
 866         kstat_named_t   kmc_reap; /* number of kmem_cache_reap() calls */
 867         kstat_named_t   kmc_defrag; /* attempts to defrag all partial slabs */
 868         kstat_named_t   kmc_scan; /* attempts to defrag one partial slab */
 869         kstat_named_t   kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
 870         kstat_named_t   kmc_move_yes;
 871         kstat_named_t   kmc_move_no;
 872         kstat_named_t   kmc_move_later;
 873         kstat_named_t   kmc_move_dont_need;
 874         kstat_named_t   kmc_move_dont_know; /* obj unrecognized by client ... */
 875         kstat_named_t   kmc_move_hunt_found; /* ... but found in mag layer */
 876         kstat_named_t   kmc_move_slabs_freed; /* slabs freed by consolidator */
 877         kstat_named_t   kmc_move_reclaimable; /* buffers, if consolidator ran */
 878 } kmem_cache_kstat = {
 879         { "buf_size",           KSTAT_DATA_UINT64 },
 880         { "align",              KSTAT_DATA_UINT64 },
 881         { "chunk_size",         KSTAT_DATA_UINT64 },
 882         { "slab_size",          KSTAT_DATA_UINT64 },
 883         { "alloc",              KSTAT_DATA_UINT64 },
 884         { "alloc_fail",         KSTAT_DATA_UINT64 },
 885         { "free",               KSTAT_DATA_UINT64 },
 886         { "depot_alloc",        KSTAT_DATA_UINT64 },
 887         { "depot_free",         KSTAT_DATA_UINT64 },
 888         { "depot_contention",   KSTAT_DATA_UINT64 },
 889         { "slab_alloc",         KSTAT_DATA_UINT64 },
 890         { "slab_free",          KSTAT_DATA_UINT64 },
 891         { "buf_constructed",    KSTAT_DATA_UINT64 },
 892         { "buf_avail",          KSTAT_DATA_UINT64 },
 893         { "buf_inuse",          KSTAT_DATA_UINT64 },
 894         { "buf_total",          KSTAT_DATA_UINT64 },
 895         { "buf_max",            KSTAT_DATA_UINT64 },
 896         { "slab_create",        KSTAT_DATA_UINT64 },
 897         { "slab_destroy",       KSTAT_DATA_UINT64 },
 898         { "vmem_source",        KSTAT_DATA_UINT64 },
 899         { "hash_size",          KSTAT_DATA_UINT64 },
 900         { "hash_lookup_depth",  KSTAT_DATA_UINT64 },
 901         { "hash_rescale",       KSTAT_DATA_UINT64 },
 902         { "full_magazines",     KSTAT_DATA_UINT64 },
 903         { "empty_magazines",    KSTAT_DATA_UINT64 },
 904         { "magazine_size",      KSTAT_DATA_UINT64 },
 905         { "reap",               KSTAT_DATA_UINT64 },
 906         { "defrag",             KSTAT_DATA_UINT64 },
 907         { "scan",               KSTAT_DATA_UINT64 },
 908         { "move_callbacks",     KSTAT_DATA_UINT64 },
 909         { "move_yes",           KSTAT_DATA_UINT64 },
 910         { "move_no",            KSTAT_DATA_UINT64 },
 911         { "move_later",         KSTAT_DATA_UINT64 },
 912         { "move_dont_need",     KSTAT_DATA_UINT64 },
 913         { "move_dont_know",     KSTAT_DATA_UINT64 },
 914         { "move_hunt_found",    KSTAT_DATA_UINT64 },
 915         { "move_slabs_freed",   KSTAT_DATA_UINT64 },
 916         { "move_reclaimable",   KSTAT_DATA_UINT64 },
 917 };
 918 
 919 static kmutex_t kmem_cache_kstat_lock;
 920 
 921 /*
 922  * The default set of caches to back kmem_alloc().
 923  * These sizes should be reevaluated periodically.
 924  *
 925  * We want allocations that are multiples of the coherency granularity
 926  * (64 bytes) to be satisfied from a cache which is a multiple of 64
 927  * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
 928  * the next kmem_cache_size greater than or equal to it must be a
 929  * multiple of 64.
 930  *
 931  * We split the table into two sections:  size <= 4k and size > 4k.  This
 932  * saves a lot of space and cache footprint in our cache tables.
 933  */
 934 static const int kmem_alloc_sizes[] = {
 935         1 * 8,
 936         2 * 8,
 937         3 * 8,
 938         4 * 8,          5 * 8,          6 * 8,          7 * 8,
 939         4 * 16,         5 * 16,         6 * 16,         7 * 16,
 940         4 * 32,         5 * 32,         6 * 32,         7 * 32,
 941         4 * 64,         5 * 64,         6 * 64,         7 * 64,
 942         4 * 128,        5 * 128,        6 * 128,        7 * 128,
 943         P2ALIGN(8192 / 7, 64),
 944         P2ALIGN(8192 / 6, 64),
 945         P2ALIGN(8192 / 5, 64),
 946         P2ALIGN(8192 / 4, 64),
 947         P2ALIGN(8192 / 3, 64),
 948         P2ALIGN(8192 / 2, 64),
 949 };
 950 
 951 static const int kmem_big_alloc_sizes[] = {
 952         2 * 4096,       3 * 4096,
 953         2 * 8192,       3 * 8192,
 954         4 * 8192,       5 * 8192,       6 * 8192,       7 * 8192,
 955         8 * 8192,       9 * 8192,       10 * 8192,      11 * 8192,
 956         12 * 8192,      13 * 8192,      14 * 8192,      15 * 8192,
 957         16 * 8192
 958 };
 959 
 960 #define KMEM_MAXBUF             4096
 961 #define KMEM_BIG_MAXBUF_32BIT   32768
 962 #define KMEM_BIG_MAXBUF         131072
 963 
 964 #define KMEM_BIG_MULTIPLE       4096    /* big_alloc_sizes must be a multiple */
 965 #define KMEM_BIG_SHIFT          12      /* lg(KMEM_BIG_MULTIPLE) */
 966 
 967 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
 968 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
 969 
 970 #define KMEM_ALLOC_TABLE_MAX    (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
 971 static size_t kmem_big_alloc_table_max = 0;     /* # of filled elements */
 972 
 973 static kmem_magtype_t kmem_magtype[] = {
 974         { 1,    8,      3200,   65536   },
 975         { 3,    16,     256,    32768   },
 976         { 7,    32,     64,     16384   },
 977         { 15,   64,     0,      8192    },
 978         { 31,   64,     0,      4096    },
 979         { 47,   64,     0,      2048    },
 980         { 63,   64,     0,      1024    },
 981         { 95,   64,     0,      512     },
 982         { 143,  64,     0,      0       },
 983 };
 984 
 985 static uint32_t kmem_reaping;
 986 static uint32_t kmem_reaping_idspace;
 987 
 988 /*
 989  * kmem tunables
 990  */
 991 clock_t kmem_reap_interval;     /* cache reaping rate [15 * HZ ticks] */
 992 int kmem_depot_contention = 3;  /* max failed tryenters per real interval */
 993 pgcnt_t kmem_reapahead = 0;     /* start reaping N pages before pageout */
 994 int kmem_panic = 1;             /* whether to panic on error */
 995 int kmem_logging = 1;           /* kmem_log_enter() override */
 996 uint32_t kmem_mtbf = 0;         /* mean time between failures [default: off] */
 997 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
 998 size_t kmem_content_log_size;   /* content log size [2% of memory] */
 999 size_t kmem_failure_log_size;   /* failure log [4 pages per CPU] */
1000 size_t kmem_slab_log_size;      /* slab create log [4 pages per CPU] */
1001 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
1002 size_t kmem_lite_minsize = 0;   /* minimum buffer size for KMF_LITE */
1003 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
1004 int kmem_lite_pcs = 4;          /* number of PCs to store in KMF_LITE mode */
1005 size_t kmem_maxverify;          /* maximum bytes to inspect in debug routines */
1006 size_t kmem_minfirewall;        /* hardware-enforced redzone threshold */
1007 
1008 #ifdef _LP64
1009 size_t  kmem_max_cached = KMEM_BIG_MAXBUF;      /* maximum kmem_alloc cache */
1010 #else
1011 size_t  kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1012 #endif
1013 
1014 #ifdef DEBUG
1015 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
1016 #else
1017 int kmem_flags = 0;
1018 #endif
1019 int kmem_ready;
1020 
1021 static kmem_cache_t     *kmem_slab_cache;
1022 static kmem_cache_t     *kmem_bufctl_cache;
1023 static kmem_cache_t     *kmem_bufctl_audit_cache;
1024 
1025 static kmutex_t         kmem_cache_lock;        /* inter-cache linkage only */
1026 static list_t           kmem_caches;
1027 
1028 static taskq_t          *kmem_taskq;
1029 static kmutex_t         kmem_flags_lock;
1030 static vmem_t           *kmem_metadata_arena;
1031 static vmem_t           *kmem_msb_arena;        /* arena for metadata caches */
1032 static vmem_t           *kmem_cache_arena;
1033 static vmem_t           *kmem_hash_arena;
1034 static vmem_t           *kmem_log_arena;
1035 static vmem_t           *kmem_oversize_arena;
1036 static vmem_t           *kmem_va_arena;
1037 static vmem_t           *kmem_default_arena;
1038 static vmem_t           *kmem_firewall_va_arena;
1039 static vmem_t           *kmem_firewall_arena;
1040 
1041 /*
1042  * Define KMEM_STATS to turn on statistic gathering. By default, it is only
1043  * turned on when DEBUG is also defined.
1044  */
1045 #ifdef  DEBUG
1046 #define KMEM_STATS
1047 #endif  /* DEBUG */
1048 
1049 #ifdef  KMEM_STATS
1050 #define KMEM_STAT_ADD(stat)                     ((stat)++)
1051 #define KMEM_STAT_COND_ADD(cond, stat)          ((void) (!(cond) || (stat)++))
1052 #else
1053 #define KMEM_STAT_ADD(stat)                     /* nothing */
1054 #define KMEM_STAT_COND_ADD(cond, stat)          /* nothing */
1055 #endif  /* KMEM_STATS */
1056 
1057 /*
1058  * kmem slab consolidator thresholds (tunables)
1059  */
1060 size_t kmem_frag_minslabs = 101;        /* minimum total slabs */
1061 size_t kmem_frag_numer = 1;             /* free buffers (numerator) */
1062 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1063 /*
1064  * Maximum number of slabs from which to move buffers during a single
1065  * maintenance interval while the system is not low on memory.
1066  */
1067 size_t kmem_reclaim_max_slabs = 1;
1068 /*
1069  * Number of slabs to scan backwards from the end of the partial slab list
1070  * when searching for buffers to relocate.
1071  */
1072 size_t kmem_reclaim_scan_range = 12;
1073 
1074 #ifdef  KMEM_STATS
1075 static struct {
1076         uint64_t kms_callbacks;
1077         uint64_t kms_yes;
1078         uint64_t kms_no;
1079         uint64_t kms_later;
1080         uint64_t kms_dont_need;
1081         uint64_t kms_dont_know;
1082         uint64_t kms_hunt_found_mag;
1083         uint64_t kms_hunt_found_slab;
1084         uint64_t kms_hunt_alloc_fail;
1085         uint64_t kms_hunt_lucky;
1086         uint64_t kms_notify;
1087         uint64_t kms_notify_callbacks;
1088         uint64_t kms_disbelief;
1089         uint64_t kms_already_pending;
1090         uint64_t kms_callback_alloc_fail;
1091         uint64_t kms_callback_taskq_fail;
1092         uint64_t kms_endscan_slab_dead;
1093         uint64_t kms_endscan_slab_destroyed;
1094         uint64_t kms_endscan_nomem;
1095         uint64_t kms_endscan_refcnt_changed;
1096         uint64_t kms_endscan_nomove_changed;
1097         uint64_t kms_endscan_freelist;
1098         uint64_t kms_avl_update;
1099         uint64_t kms_avl_noupdate;
1100         uint64_t kms_no_longer_reclaimable;
1101         uint64_t kms_notify_no_longer_reclaimable;
1102         uint64_t kms_notify_slab_dead;
1103         uint64_t kms_notify_slab_destroyed;
1104         uint64_t kms_alloc_fail;
1105         uint64_t kms_constructor_fail;
1106         uint64_t kms_dead_slabs_freed;
1107         uint64_t kms_defrags;
1108         uint64_t kms_scans;
1109         uint64_t kms_scan_depot_ws_reaps;
1110         uint64_t kms_debug_reaps;
1111         uint64_t kms_debug_scans;
1112 } kmem_move_stats;
1113 #endif  /* KMEM_STATS */
1114 
1115 /* consolidator knobs */
1116 static boolean_t kmem_move_noreap;
1117 static boolean_t kmem_move_blocked;
1118 static boolean_t kmem_move_fulltilt;
1119 static boolean_t kmem_move_any_partial;
1120 
1121 #ifdef  DEBUG
1122 /*
1123  * kmem consolidator debug tunables:
1124  * Ensure code coverage by occasionally running the consolidator even when the
1125  * caches are not fragmented (they may never be). These intervals are mean time
1126  * in cache maintenance intervals (kmem_cache_update).
1127  */
1128 uint32_t kmem_mtb_move = 60;    /* defrag 1 slab (~15min) */
1129 uint32_t kmem_mtb_reap = 1800;  /* defrag all slabs (~7.5hrs) */
1130 #endif  /* DEBUG */
1131 
1132 static kmem_cache_t     *kmem_defrag_cache;
1133 static kmem_cache_t     *kmem_move_cache;
1134 static taskq_t          *kmem_move_taskq;
1135 
1136 static void kmem_cache_scan(kmem_cache_t *);
1137 static void kmem_cache_defrag(kmem_cache_t *);
1138 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1139 
1140 
1141 kmem_log_header_t       *kmem_transaction_log;
1142 kmem_log_header_t       *kmem_content_log;
1143 kmem_log_header_t       *kmem_failure_log;
1144 kmem_log_header_t       *kmem_slab_log;
1145 
1146 static int              kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1147 
1148 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller)                       \
1149         if ((count) > 0) {                                           \
1150                 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \
1151                 pc_t *_e;                                               \
1152                 /* memmove() the old entries down one notch */          \
1153                 for (_e = &_s[(count) - 1]; _e > _s; _e--)               \
1154                         *_e = *(_e - 1);                                \
1155                 *_s = (uintptr_t)(caller);                              \
1156         }
1157 
1158 #define KMERR_MODIFIED  0       /* buffer modified while on freelist */
1159 #define KMERR_REDZONE   1       /* redzone violation (write past end of buf) */
1160 #define KMERR_DUPFREE   2       /* freed a buffer twice */
1161 #define KMERR_BADADDR   3       /* freed a bad (unallocated) address */
1162 #define KMERR_BADBUFTAG 4       /* buftag corrupted */
1163 #define KMERR_BADBUFCTL 5       /* bufctl corrupted */
1164 #define KMERR_BADCACHE  6       /* freed a buffer to the wrong cache */
1165 #define KMERR_BADSIZE   7       /* alloc size != free size */
1166 #define KMERR_BADBASE   8       /* buffer base address wrong */
1167 
1168 struct {
1169         hrtime_t        kmp_timestamp;  /* timestamp of panic */
1170         int             kmp_error;      /* type of kmem error */
1171         void            *kmp_buffer;    /* buffer that induced panic */
1172         void            *kmp_realbuf;   /* real start address for buffer */
1173         kmem_cache_t    *kmp_cache;     /* buffer's cache according to client */
1174         kmem_cache_t    *kmp_realcache; /* actual cache containing buffer */
1175         kmem_slab_t     *kmp_slab;      /* slab accoring to kmem_findslab() */
1176         kmem_bufctl_t   *kmp_bufctl;    /* bufctl */
1177 } kmem_panic_info;
1178 
1179 
1180 static void
1181 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1182 {
1183         uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1184         uint64_t *buf = buf_arg;
1185 
1186         while (buf < bufend)
1187                 *buf++ = pattern;
1188 }
1189 
1190 static void *
1191 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1192 {
1193         uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1194         uint64_t *buf;
1195 
1196         for (buf = buf_arg; buf < bufend; buf++)
1197                 if (*buf != pattern)
1198                         return (buf);
1199         return (NULL);
1200 }
1201 
1202 static void *
1203 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1204 {
1205         uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1206         uint64_t *buf;
1207 
1208         for (buf = buf_arg; buf < bufend; buf++) {
1209                 if (*buf != old) {
1210                         copy_pattern(old, buf_arg,
1211                             (char *)buf - (char *)buf_arg);
1212                         return (buf);
1213                 }
1214                 *buf = new;
1215         }
1216 
1217         return (NULL);
1218 }
1219 
1220 static void
1221 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1222 {
1223         kmem_cache_t *cp;
1224 
1225         mutex_enter(&kmem_cache_lock);
1226         for (cp = list_head(&kmem_caches); cp != NULL;
1227             cp = list_next(&kmem_caches, cp))
1228                 if (tq != NULL)
1229                         (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1230                             tqflag);
1231                 else
1232                         func(cp);
1233         mutex_exit(&kmem_cache_lock);
1234 }
1235 
1236 static void
1237 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1238 {
1239         kmem_cache_t *cp;
1240 
1241         mutex_enter(&kmem_cache_lock);
1242         for (cp = list_head(&kmem_caches); cp != NULL;
1243             cp = list_next(&kmem_caches, cp)) {
1244                 if (!(cp->cache_cflags & KMC_IDENTIFIER))
1245                         continue;
1246                 if (tq != NULL)
1247                         (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1248                             tqflag);
1249                 else
1250                         func(cp);
1251         }
1252         mutex_exit(&kmem_cache_lock);
1253 }
1254 
1255 /*
1256  * Debugging support.  Given a buffer address, find its slab.
1257  */
1258 static kmem_slab_t *
1259 kmem_findslab(kmem_cache_t *cp, void *buf)
1260 {
1261         kmem_slab_t *sp;
1262 
1263         mutex_enter(&cp->cache_lock);
1264         for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1265             sp = list_next(&cp->cache_complete_slabs, sp)) {
1266                 if (KMEM_SLAB_MEMBER(sp, buf)) {
1267                         mutex_exit(&cp->cache_lock);
1268                         return (sp);
1269                 }
1270         }
1271         for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1272             sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1273                 if (KMEM_SLAB_MEMBER(sp, buf)) {
1274                         mutex_exit(&cp->cache_lock);
1275                         return (sp);
1276                 }
1277         }
1278         mutex_exit(&cp->cache_lock);
1279 
1280         return (NULL);
1281 }
1282 
1283 static void
1284 kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1285 {
1286         kmem_buftag_t *btp = NULL;
1287         kmem_bufctl_t *bcp = NULL;
1288         kmem_cache_t *cp = cparg;
1289         kmem_slab_t *sp;
1290         uint64_t *off;
1291         void *buf = bufarg;
1292 
1293         kmem_logging = 0;       /* stop logging when a bad thing happens */
1294 
1295         kmem_panic_info.kmp_timestamp = gethrtime();
1296 
1297         sp = kmem_findslab(cp, buf);
1298         if (sp == NULL) {
1299                 for (cp = list_tail(&kmem_caches); cp != NULL;
1300                     cp = list_prev(&kmem_caches, cp)) {
1301                         if ((sp = kmem_findslab(cp, buf)) != NULL)
1302                                 break;
1303                 }
1304         }
1305 
1306         if (sp == NULL) {
1307                 cp = NULL;
1308                 error = KMERR_BADADDR;
1309         } else {
1310                 if (cp != cparg)
1311                         error = KMERR_BADCACHE;
1312                 else
1313                         buf = (char *)bufarg - ((uintptr_t)bufarg -
1314                             (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1315                 if (buf != bufarg)
1316                         error = KMERR_BADBASE;
1317                 if (cp->cache_flags & KMF_BUFTAG)
1318                         btp = KMEM_BUFTAG(cp, buf);
1319                 if (cp->cache_flags & KMF_HASH) {
1320                         mutex_enter(&cp->cache_lock);
1321                         for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1322                                 if (bcp->bc_addr == buf)
1323                                         break;
1324                         mutex_exit(&cp->cache_lock);
1325                         if (bcp == NULL && btp != NULL)
1326                                 bcp = btp->bt_bufctl;
1327                         if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1328                             NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1329                             bcp->bc_addr != buf) {
1330                                 error = KMERR_BADBUFCTL;
1331                                 bcp = NULL;
1332                         }
1333                 }
1334         }
1335 
1336         kmem_panic_info.kmp_error = error;
1337         kmem_panic_info.kmp_buffer = bufarg;
1338         kmem_panic_info.kmp_realbuf = buf;
1339         kmem_panic_info.kmp_cache = cparg;
1340         kmem_panic_info.kmp_realcache = cp;
1341         kmem_panic_info.kmp_slab = sp;
1342         kmem_panic_info.kmp_bufctl = bcp;
1343 
1344         printf("kernel memory allocator: ");
1345 
1346         switch (error) {
1347 
1348         case KMERR_MODIFIED:
1349                 printf("buffer modified after being freed\n");
1350                 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1351                 if (off == NULL)        /* shouldn't happen */
1352                         off = buf;
1353                 printf("modification occurred at offset 0x%lx "
1354                     "(0x%llx replaced by 0x%llx)\n",
1355                     (uintptr_t)off - (uintptr_t)buf,
1356                     (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1357                 break;
1358 
1359         case KMERR_REDZONE:
1360                 printf("redzone violation: write past end of buffer\n");
1361                 break;
1362 
1363         case KMERR_BADADDR:
1364                 printf("invalid free: buffer not in cache\n");
1365                 break;
1366 
1367         case KMERR_DUPFREE:
1368                 printf("duplicate free: buffer freed twice\n");
1369                 break;
1370 
1371         case KMERR_BADBUFTAG:
1372                 printf("boundary tag corrupted\n");
1373                 printf("bcp ^ bxstat = %lx, should be %lx\n",
1374                     (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1375                     KMEM_BUFTAG_FREE);
1376                 break;
1377 
1378         case KMERR_BADBUFCTL:
1379                 printf("bufctl corrupted\n");
1380                 break;
1381 
1382         case KMERR_BADCACHE:
1383                 printf("buffer freed to wrong cache\n");
1384                 printf("buffer was allocated from %s,\n", cp->cache_name);
1385                 printf("caller attempting free to %s.\n", cparg->cache_name);
1386                 break;
1387 
1388         case KMERR_BADSIZE:
1389                 printf("bad free: free size (%u) != alloc size (%u)\n",
1390                     KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1391                     KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1392                 break;
1393 
1394         case KMERR_BADBASE:
1395                 printf("bad free: free address (%p) != alloc address (%p)\n",
1396                     bufarg, buf);
1397                 break;
1398         }
1399 
1400         printf("buffer=%p  bufctl=%p  cache: %s\n",
1401             bufarg, (void *)bcp, cparg->cache_name);
1402 
1403         if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1404             error != KMERR_BADBUFCTL) {
1405                 int d;
1406                 timestruc_t ts;
1407                 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1408 
1409                 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1410                 printf("previous transaction on buffer %p:\n", buf);
1411                 printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
1412                     (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1413                     (void *)sp, cp->cache_name);
1414                 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1415                         ulong_t off;
1416                         char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1417                         printf("%s+%lx\n", sym ? sym : "?", off);
1418                 }
1419         }
1420         if (kmem_panic > 0)
1421                 panic("kernel heap corruption detected");
1422         if (kmem_panic == 0)
1423                 debug_enter(NULL);
1424         kmem_logging = 1;       /* resume logging */
1425 }
1426 
1427 static kmem_log_header_t *
1428 kmem_log_init(size_t logsize)
1429 {
1430         kmem_log_header_t *lhp;
1431         int nchunks = 4 * max_ncpus;
1432         size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1433         int i;
1434 
1435         /*
1436          * Make sure that lhp->lh_cpu[] is nicely aligned
1437          * to prevent false sharing of cache lines.
1438          */
1439         lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1440         lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1441             NULL, NULL, VM_SLEEP);
1442         bzero(lhp, lhsize);
1443 
1444         mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1445         lhp->lh_nchunks = nchunks;
1446         lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1447         lhp->lh_base = vmem_alloc(kmem_log_arena,
1448             lhp->lh_chunksize * nchunks, VM_SLEEP);
1449         lhp->lh_free = vmem_alloc(kmem_log_arena,
1450             nchunks * sizeof (int), VM_SLEEP);
1451         bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1452 
1453         for (i = 0; i < max_ncpus; i++) {
1454                 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1455                 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1456                 clhp->clh_chunk = i;
1457         }
1458 
1459         for (i = max_ncpus; i < nchunks; i++)
1460                 lhp->lh_free[i] = i;
1461 
1462         lhp->lh_head = max_ncpus;
1463         lhp->lh_tail = 0;
1464 
1465         return (lhp);
1466 }
1467 
1468 static void *
1469 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1470 {
1471         void *logspace;
1472         kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid];
1473 
1474         if (lhp == NULL || kmem_logging == 0 || panicstr)
1475                 return (NULL);
1476 
1477         mutex_enter(&clhp->clh_lock);
1478         clhp->clh_hits++;
1479         if (size > clhp->clh_avail) {
1480                 mutex_enter(&lhp->lh_lock);
1481                 lhp->lh_hits++;
1482                 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1483                 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1484                 clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1485                 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1486                 clhp->clh_current = lhp->lh_base +
1487                     clhp->clh_chunk * lhp->lh_chunksize;
1488                 clhp->clh_avail = lhp->lh_chunksize;
1489                 if (size > lhp->lh_chunksize)
1490                         size = lhp->lh_chunksize;
1491                 mutex_exit(&lhp->lh_lock);
1492         }
1493         logspace = clhp->clh_current;
1494         clhp->clh_current += size;
1495         clhp->clh_avail -= size;
1496         bcopy(data, logspace, size);
1497         mutex_exit(&clhp->clh_lock);
1498         return (logspace);
1499 }
1500 
1501 #define KMEM_AUDIT(lp, cp, bcp)                                         \
1502 {                                                                       \
1503         kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);       \
1504         _bcp->bc_timestamp = gethrtime();                            \
1505         _bcp->bc_thread = curthread;                                 \
1506         _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);    \
1507         _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));       \
1508 }
1509 
1510 static void
1511 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1512     kmem_slab_t *sp, void *addr)
1513 {
1514         kmem_bufctl_audit_t bca;
1515 
1516         bzero(&bca, sizeof (kmem_bufctl_audit_t));
1517         bca.bc_addr = addr;
1518         bca.bc_slab = sp;
1519         bca.bc_cache = cp;
1520         KMEM_AUDIT(lp, cp, &bca);
1521 }
1522 
1523 /*
1524  * Create a new slab for cache cp.
1525  */
1526 static kmem_slab_t *
1527 kmem_slab_create(kmem_cache_t *cp, int kmflag)
1528 {
1529         size_t slabsize = cp->cache_slabsize;
1530         size_t chunksize = cp->cache_chunksize;
1531         int cache_flags = cp->cache_flags;
1532         size_t color, chunks;
1533         char *buf, *slab;
1534         kmem_slab_t *sp;
1535         kmem_bufctl_t *bcp;
1536         vmem_t *vmp = cp->cache_arena;
1537 
1538         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1539 
1540         color = cp->cache_color + cp->cache_align;
1541         if (color > cp->cache_maxcolor)
1542                 color = cp->cache_mincolor;
1543         cp->cache_color = color;
1544 
1545         slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1546 
1547         if (slab == NULL)
1548                 goto vmem_alloc_failure;
1549 
1550         ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1551 
1552         /*
1553          * Reverify what was already checked in kmem_cache_set_move(), since the
1554          * consolidator depends (for correctness) on slabs being initialized
1555          * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1556          * clients to distinguish uninitialized memory from known objects).
1557          */
1558         ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1559         if (!(cp->cache_cflags & KMC_NOTOUCH))
1560                 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1561 
1562         if (cache_flags & KMF_HASH) {
1563                 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1564                         goto slab_alloc_failure;
1565                 chunks = (slabsize - color) / chunksize;
1566         } else {
1567                 sp = KMEM_SLAB(cp, slab);
1568                 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1569         }
1570 
1571         sp->slab_cache       = cp;
1572         sp->slab_head        = NULL;
1573         sp->slab_refcnt      = 0;
1574         sp->slab_base        = buf = slab + color;
1575         sp->slab_chunks      = chunks;
1576         sp->slab_stuck_offset = (uint32_t)-1;
1577         sp->slab_later_count = 0;
1578         sp->slab_flags = 0;
1579 
1580         ASSERT(chunks > 0);
1581         while (chunks-- != 0) {
1582                 if (cache_flags & KMF_HASH) {
1583                         bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1584                         if (bcp == NULL)
1585                                 goto bufctl_alloc_failure;
1586                         if (cache_flags & KMF_AUDIT) {
1587                                 kmem_bufctl_audit_t *bcap =
1588                                     (kmem_bufctl_audit_t *)bcp;
1589                                 bzero(bcap, sizeof (kmem_bufctl_audit_t));
1590                                 bcap->bc_cache = cp;
1591                         }
1592                         bcp->bc_addr = buf;
1593                         bcp->bc_slab = sp;
1594                 } else {
1595                         bcp = KMEM_BUFCTL(cp, buf);
1596                 }
1597                 if (cache_flags & KMF_BUFTAG) {
1598                         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1599                         btp->bt_redzone = KMEM_REDZONE_PATTERN;
1600                         btp->bt_bufctl = bcp;
1601                         btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1602                         if (cache_flags & KMF_DEADBEEF) {
1603                                 copy_pattern(KMEM_FREE_PATTERN, buf,
1604                                     cp->cache_verify);
1605                         }
1606                 }
1607                 bcp->bc_next = sp->slab_head;
1608                 sp->slab_head = bcp;
1609                 buf += chunksize;
1610         }
1611 
1612         kmem_log_event(kmem_slab_log, cp, sp, slab);
1613 
1614         return (sp);
1615 
1616 bufctl_alloc_failure:
1617 
1618         while ((bcp = sp->slab_head) != NULL) {
1619                 sp->slab_head = bcp->bc_next;
1620                 kmem_cache_free(cp->cache_bufctl_cache, bcp);
1621         }
1622         kmem_cache_free(kmem_slab_cache, sp);
1623 
1624 slab_alloc_failure:
1625 
1626         vmem_free(vmp, slab, slabsize);
1627 
1628 vmem_alloc_failure:
1629 
1630         kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1631         atomic_inc_64(&cp->cache_alloc_fail);
1632 
1633         return (NULL);
1634 }
1635 
1636 /*
1637  * Destroy a slab.
1638  */
1639 static void
1640 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1641 {
1642         vmem_t *vmp = cp->cache_arena;
1643         void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1644 
1645         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1646         ASSERT(sp->slab_refcnt == 0);
1647 
1648         if (cp->cache_flags & KMF_HASH) {
1649                 kmem_bufctl_t *bcp;
1650                 while ((bcp = sp->slab_head) != NULL) {
1651                         sp->slab_head = bcp->bc_next;
1652                         kmem_cache_free(cp->cache_bufctl_cache, bcp);
1653                 }
1654                 kmem_cache_free(kmem_slab_cache, sp);
1655         }
1656         vmem_free(vmp, slab, cp->cache_slabsize);
1657 }
1658 
1659 static void *
1660 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
1661 {
1662         kmem_bufctl_t *bcp, **hash_bucket;
1663         void *buf;
1664         boolean_t new_slab = (sp->slab_refcnt == 0);
1665 
1666         ASSERT(MUTEX_HELD(&cp->cache_lock));
1667         /*
1668          * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1669          * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1670          * slab is newly created.
1671          */
1672         ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1673             (sp == avl_first(&cp->cache_partial_slabs))));
1674         ASSERT(sp->slab_cache == cp);
1675 
1676         cp->cache_slab_alloc++;
1677         cp->cache_bufslab--;
1678         sp->slab_refcnt++;
1679 
1680         bcp = sp->slab_head;
1681         sp->slab_head = bcp->bc_next;
1682 
1683         if (cp->cache_flags & KMF_HASH) {
1684                 /*
1685                  * Add buffer to allocated-address hash table.
1686                  */
1687                 buf = bcp->bc_addr;
1688                 hash_bucket = KMEM_HASH(cp, buf);
1689                 bcp->bc_next = *hash_bucket;
1690                 *hash_bucket = bcp;
1691                 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1692                         KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1693                 }
1694         } else {
1695                 buf = KMEM_BUF(cp, bcp);
1696         }
1697 
1698         ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1699 
1700         if (sp->slab_head == NULL) {
1701                 ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1702                 if (new_slab) {
1703                         ASSERT(sp->slab_chunks == 1);
1704                 } else {
1705                         ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1706                         avl_remove(&cp->cache_partial_slabs, sp);
1707                         sp->slab_later_count = 0; /* clear history */
1708                         sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1709                         sp->slab_stuck_offset = (uint32_t)-1;
1710                 }
1711                 list_insert_head(&cp->cache_complete_slabs, sp);
1712                 cp->cache_complete_slab_count++;
1713                 return (buf);
1714         }
1715 
1716         ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1717         /*
1718          * Peek to see if the magazine layer is enabled before
1719          * we prefill.  We're not holding the cpu cache lock,
1720          * so the peek could be wrong, but there's no harm in it.
1721          */
1722         if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1723             (KMEM_CPU_CACHE(cp)->cc_magsize != 0))  {
1724                 kmem_slab_prefill(cp, sp);
1725                 return (buf);
1726         }
1727 
1728         if (new_slab) {
1729                 avl_add(&cp->cache_partial_slabs, sp);
1730                 return (buf);
1731         }
1732 
1733         /*
1734          * The slab is now more allocated than it was, so the
1735          * order remains unchanged.
1736          */
1737         ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1738         return (buf);
1739 }
1740 
1741 /*
1742  * Allocate a raw (unconstructed) buffer from cp's slab layer.
1743  */
1744 static void *
1745 kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1746 {
1747         kmem_slab_t *sp;
1748         void *buf;
1749         boolean_t test_destructor;
1750 
1751         mutex_enter(&cp->cache_lock);
1752         test_destructor = (cp->cache_slab_alloc == 0);
1753         sp = avl_first(&cp->cache_partial_slabs);
1754         if (sp == NULL) {
1755                 ASSERT(cp->cache_bufslab == 0);
1756 
1757                 /*
1758                  * The freelist is empty.  Create a new slab.
1759                  */
1760                 mutex_exit(&cp->cache_lock);
1761                 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1762                         return (NULL);
1763                 }
1764                 mutex_enter(&cp->cache_lock);
1765                 cp->cache_slab_create++;
1766                 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1767                         cp->cache_bufmax = cp->cache_buftotal;
1768                 cp->cache_bufslab += sp->slab_chunks;
1769         }
1770 
1771         buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1772         ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1773             (cp->cache_complete_slab_count +
1774             avl_numnodes(&cp->cache_partial_slabs) +
1775             (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1776         mutex_exit(&cp->cache_lock);
1777 
1778         if (test_destructor && cp->cache_destructor != NULL) {
1779                 /*
1780                  * On the first kmem_slab_alloc(), assert that it is valid to
1781                  * call the destructor on a newly constructed object without any
1782                  * client involvement.
1783                  */
1784                 if ((cp->cache_constructor == NULL) ||
1785                     cp->cache_constructor(buf, cp->cache_private,
1786                     kmflag) == 0) {
1787                         cp->cache_destructor(buf, cp->cache_private);
1788                 }
1789                 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
1790                     cp->cache_bufsize);
1791                 if (cp->cache_flags & KMF_DEADBEEF) {
1792                         copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1793                 }
1794         }
1795 
1796         return (buf);
1797 }
1798 
1799 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1800 
1801 /*
1802  * Free a raw (unconstructed) buffer to cp's slab layer.
1803  */
1804 static void
1805 kmem_slab_free(kmem_cache_t *cp, void *buf)
1806 {
1807         kmem_slab_t *sp;
1808         kmem_bufctl_t *bcp, **prev_bcpp;
1809 
1810         ASSERT(buf != NULL);
1811 
1812         mutex_enter(&cp->cache_lock);
1813         cp->cache_slab_free++;
1814 
1815         if (cp->cache_flags & KMF_HASH) {
1816                 /*
1817                  * Look up buffer in allocated-address hash table.
1818                  */
1819                 prev_bcpp = KMEM_HASH(cp, buf);
1820                 while ((bcp = *prev_bcpp) != NULL) {
1821                         if (bcp->bc_addr == buf) {
1822                                 *prev_bcpp = bcp->bc_next;
1823                                 sp = bcp->bc_slab;
1824                                 break;
1825                         }
1826                         cp->cache_lookup_depth++;
1827                         prev_bcpp = &bcp->bc_next;
1828                 }
1829         } else {
1830                 bcp = KMEM_BUFCTL(cp, buf);
1831                 sp = KMEM_SLAB(cp, buf);
1832         }
1833 
1834         if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1835                 mutex_exit(&cp->cache_lock);
1836                 kmem_error(KMERR_BADADDR, cp, buf);
1837                 return;
1838         }
1839 
1840         if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1841                 /*
1842                  * If this is the buffer that prevented the consolidator from
1843                  * clearing the slab, we can reset the slab flags now that the
1844                  * buffer is freed. (It makes sense to do this in
1845                  * kmem_cache_free(), where the client gives up ownership of the
1846                  * buffer, but on the hot path the test is too expensive.)
1847                  */
1848                 kmem_slab_move_yes(cp, sp, buf);
1849         }
1850 
1851         if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1852                 if (cp->cache_flags & KMF_CONTENTS)
1853                         ((kmem_bufctl_audit_t *)bcp)->bc_contents =
1854                             kmem_log_enter(kmem_content_log, buf,
1855                             cp->cache_contents);
1856                 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1857         }
1858 
1859         bcp->bc_next = sp->slab_head;
1860         sp->slab_head = bcp;
1861 
1862         cp->cache_bufslab++;
1863         ASSERT(sp->slab_refcnt >= 1);
1864 
1865         if (--sp->slab_refcnt == 0) {
1866                 /*
1867                  * There are no outstanding allocations from this slab,
1868                  * so we can reclaim the memory.
1869                  */
1870                 if (sp->slab_chunks == 1) {
1871                         list_remove(&cp->cache_complete_slabs, sp);
1872                         cp->cache_complete_slab_count--;
1873                 } else {
1874                         avl_remove(&cp->cache_partial_slabs, sp);
1875                 }
1876 
1877                 cp->cache_buftotal -= sp->slab_chunks;
1878                 cp->cache_bufslab -= sp->slab_chunks;
1879                 /*
1880                  * Defer releasing the slab to the virtual memory subsystem
1881                  * while there is a pending move callback, since we guarantee
1882                  * that buffers passed to the move callback have only been
1883                  * touched by kmem or by the client itself. Since the memory
1884                  * patterns baddcafe (uninitialized) and deadbeef (freed) both
1885                  * set at least one of the two lowest order bits, the client can
1886                  * test those bits in the move callback to determine whether or
1887                  * not it knows about the buffer (assuming that the client also
1888                  * sets one of those low order bits whenever it frees a buffer).
1889                  */
1890                 if (cp->cache_defrag == NULL ||
1891                     (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1892                     !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1893                         cp->cache_slab_destroy++;
1894                         mutex_exit(&cp->cache_lock);
1895                         kmem_slab_destroy(cp, sp);
1896                 } else {
1897                         list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1898                         /*
1899                          * Slabs are inserted at both ends of the deadlist to
1900                          * distinguish between slabs freed while move callbacks
1901                          * are pending (list head) and a slab freed while the
1902                          * lock is dropped in kmem_move_buffers() (list tail) so
1903                          * that in both cases slab_destroy() is called from the
1904                          * right context.
1905                          */
1906                         if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1907                                 list_insert_tail(deadlist, sp);
1908                         } else {
1909                                 list_insert_head(deadlist, sp);
1910                         }
1911                         cp->cache_defrag->kmd_deadcount++;
1912                         mutex_exit(&cp->cache_lock);
1913                 }
1914                 return;
1915         }
1916 
1917         if (bcp->bc_next == NULL) {
1918                 /* Transition the slab from completely allocated to partial. */
1919                 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1920                 ASSERT(sp->slab_chunks > 1);
1921                 list_remove(&cp->cache_complete_slabs, sp);
1922                 cp->cache_complete_slab_count--;
1923                 avl_add(&cp->cache_partial_slabs, sp);
1924         } else {
1925 #ifdef  DEBUG
1926                 if (avl_update_gt(&cp->cache_partial_slabs, sp)) {
1927                         KMEM_STAT_ADD(kmem_move_stats.kms_avl_update);
1928                 } else {
1929                         KMEM_STAT_ADD(kmem_move_stats.kms_avl_noupdate);
1930                 }
1931 #else
1932                 (void) avl_update_gt(&cp->cache_partial_slabs, sp);
1933 #endif
1934         }
1935 
1936         ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1937             (cp->cache_complete_slab_count +
1938             avl_numnodes(&cp->cache_partial_slabs) +
1939             (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1940         mutex_exit(&cp->cache_lock);
1941 }
1942 
1943 /*
1944  * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1945  */
1946 static int
1947 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1948     caddr_t caller)
1949 {
1950         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1951         kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1952         uint32_t mtbf;
1953 
1954         if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1955                 kmem_error(KMERR_BADBUFTAG, cp, buf);
1956                 return (-1);
1957         }
1958 
1959         btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1960 
1961         if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1962                 kmem_error(KMERR_BADBUFCTL, cp, buf);
1963                 return (-1);
1964         }
1965 
1966         if (cp->cache_flags & KMF_DEADBEEF) {
1967                 if (!construct && (cp->cache_flags & KMF_LITE)) {
1968                         if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1969                                 kmem_error(KMERR_MODIFIED, cp, buf);
1970                                 return (-1);
1971                         }
1972                         if (cp->cache_constructor != NULL)
1973                                 *(uint64_t *)buf = btp->bt_redzone;
1974                         else
1975                                 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1976                 } else {
1977                         construct = 1;
1978                         if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1979                             KMEM_UNINITIALIZED_PATTERN, buf,
1980                             cp->cache_verify)) {
1981                                 kmem_error(KMERR_MODIFIED, cp, buf);
1982                                 return (-1);
1983                         }
1984                 }
1985         }
1986         btp->bt_redzone = KMEM_REDZONE_PATTERN;
1987 
1988         if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1989             gethrtime() % mtbf == 0 &&
1990             (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1991                 kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1992                 if (!construct && cp->cache_destructor != NULL)
1993                         cp->cache_destructor(buf, cp->cache_private);
1994         } else {
1995                 mtbf = 0;
1996         }
1997 
1998         if (mtbf || (construct && cp->cache_constructor != NULL &&
1999             cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
2000                 atomic_inc_64(&cp->cache_alloc_fail);
2001                 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
2002                 if (cp->cache_flags & KMF_DEADBEEF)
2003                         copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2004                 kmem_slab_free(cp, buf);
2005                 return (1);
2006         }
2007 
2008         if (cp->cache_flags & KMF_AUDIT) {
2009                 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2010         }
2011 
2012         if ((cp->cache_flags & KMF_LITE) &&
2013             !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2014                 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2015         }
2016 
2017         return (0);
2018 }
2019 
2020 static int
2021 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
2022 {
2023         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2024         kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
2025         kmem_slab_t *sp;
2026 
2027         if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
2028                 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
2029                         kmem_error(KMERR_DUPFREE, cp, buf);
2030                         return (-1);
2031                 }
2032                 sp = kmem_findslab(cp, buf);
2033                 if (sp == NULL || sp->slab_cache != cp)
2034                         kmem_error(KMERR_BADADDR, cp, buf);
2035                 else
2036                         kmem_error(KMERR_REDZONE, cp, buf);
2037                 return (-1);
2038         }
2039 
2040         btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
2041 
2042         if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
2043                 kmem_error(KMERR_BADBUFCTL, cp, buf);
2044                 return (-1);
2045         }
2046 
2047         if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
2048                 kmem_error(KMERR_REDZONE, cp, buf);
2049                 return (-1);
2050         }
2051 
2052         if (cp->cache_flags & KMF_AUDIT) {
2053                 if (cp->cache_flags & KMF_CONTENTS)
2054                         bcp->bc_contents = kmem_log_enter(kmem_content_log,
2055                             buf, cp->cache_contents);
2056                 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2057         }
2058 
2059         if ((cp->cache_flags & KMF_LITE) &&
2060             !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2061                 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2062         }
2063 
2064         if (cp->cache_flags & KMF_DEADBEEF) {
2065                 if (cp->cache_flags & KMF_LITE)
2066                         btp->bt_redzone = *(uint64_t *)buf;
2067                 else if (cp->cache_destructor != NULL)
2068                         cp->cache_destructor(buf, cp->cache_private);
2069 
2070                 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2071         }
2072 
2073         return (0);
2074 }
2075 
2076 /*
2077  * Free each object in magazine mp to cp's slab layer, and free mp itself.
2078  */
2079 static void
2080 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2081 {
2082         int round;
2083 
2084         ASSERT(!list_link_active(&cp->cache_link) ||
2085             taskq_member(kmem_taskq, curthread));
2086 
2087         for (round = 0; round < nrounds; round++) {
2088                 void *buf = mp->mag_round[round];
2089 
2090                 if (cp->cache_flags & KMF_DEADBEEF) {
2091                         if (verify_pattern(KMEM_FREE_PATTERN, buf,
2092                             cp->cache_verify) != NULL) {
2093                                 kmem_error(KMERR_MODIFIED, cp, buf);
2094                                 continue;
2095                         }
2096                         if ((cp->cache_flags & KMF_LITE) &&
2097                             cp->cache_destructor != NULL) {
2098                                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2099                                 *(uint64_t *)buf = btp->bt_redzone;
2100                                 cp->cache_destructor(buf, cp->cache_private);
2101                                 *(uint64_t *)buf = KMEM_FREE_PATTERN;
2102                         }
2103                 } else if (cp->cache_destructor != NULL) {
2104                         cp->cache_destructor(buf, cp->cache_private);
2105                 }
2106 
2107                 kmem_slab_free(cp, buf);
2108         }
2109         ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2110         kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2111 }
2112 
2113 /*
2114  * Allocate a magazine from the depot.
2115  */
2116 static kmem_magazine_t *
2117 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2118 {
2119         kmem_magazine_t *mp;
2120 
2121         /*
2122          * If we can't get the depot lock without contention,
2123          * update our contention count.  We use the depot
2124          * contention rate to determine whether we need to
2125          * increase the magazine size for better scalability.
2126          */
2127         if (!mutex_tryenter(&cp->cache_depot_lock)) {
2128                 mutex_enter(&cp->cache_depot_lock);
2129                 cp->cache_depot_contention++;
2130         }
2131 
2132         if ((mp = mlp->ml_list) != NULL) {
2133                 ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2134                 mlp->ml_list = mp->mag_next;
2135                 if (--mlp->ml_total < mlp->ml_min)
2136                         mlp->ml_min = mlp->ml_total;
2137                 mlp->ml_alloc++;
2138         }
2139 
2140         mutex_exit(&cp->cache_depot_lock);
2141 
2142         return (mp);
2143 }
2144 
2145 /*
2146  * Free a magazine to the depot.
2147  */
2148 static void
2149 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2150 {
2151         mutex_enter(&cp->cache_depot_lock);
2152         ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2153         mp->mag_next = mlp->ml_list;
2154         mlp->ml_list = mp;
2155         mlp->ml_total++;
2156         mutex_exit(&cp->cache_depot_lock);
2157 }
2158 
2159 /*
2160  * Update the working set statistics for cp's depot.
2161  */
2162 static void
2163 kmem_depot_ws_update(kmem_cache_t *cp)
2164 {
2165         mutex_enter(&cp->cache_depot_lock);
2166         cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2167         cp->cache_full.ml_min = cp->cache_full.ml_total;
2168         cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2169         cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2170         mutex_exit(&cp->cache_depot_lock);
2171 }
2172 
2173 /*
2174  * Set the working set statistics for cp's depot to zero.  (Everything is
2175  * eligible for reaping.)
2176  */
2177 static void
2178 kmem_depot_ws_zero(kmem_cache_t *cp)
2179 {
2180         mutex_enter(&cp->cache_depot_lock);
2181         cp->cache_full.ml_reaplimit = cp->cache_full.ml_total;
2182         cp->cache_full.ml_min = cp->cache_full.ml_total;
2183         cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total;
2184         cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2185         mutex_exit(&cp->cache_depot_lock);
2186 }
2187 
2188 /*
2189  * The number of bytes to reap before we call kpreempt(). The default (1MB)
2190  * causes us to preempt reaping up to hundreds of times per second. Using a
2191  * larger value (1GB) causes this to have virtually no effect.
2192  */
2193 size_t kmem_reap_preempt_bytes = 1024 * 1024;
2194 
2195 /*
2196  * Reap all magazines that have fallen out of the depot's working set.
2197  */
2198 static void
2199 kmem_depot_ws_reap(kmem_cache_t *cp)
2200 {
2201         size_t bytes = 0;
2202         long reap;
2203         kmem_magazine_t *mp;
2204 
2205         ASSERT(!list_link_active(&cp->cache_link) ||
2206             taskq_member(kmem_taskq, curthread));
2207 
2208         reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2209         while (reap-- &&
2210             (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) {
2211                 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2212                 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2213                 if (bytes > kmem_reap_preempt_bytes) {
2214                         kpreempt(KPREEMPT_SYNC);
2215                         bytes = 0;
2216                 }
2217         }
2218 
2219         reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2220         while (reap-- &&
2221             (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) {
2222                 kmem_magazine_destroy(cp, mp, 0);
2223                 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2224                 if (bytes > kmem_reap_preempt_bytes) {
2225                         kpreempt(KPREEMPT_SYNC);
2226                         bytes = 0;
2227                 }
2228         }
2229 }
2230 
2231 static void
2232 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2233 {
2234         ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2235             (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2236         ASSERT(ccp->cc_magsize > 0);
2237 
2238         ccp->cc_ploaded = ccp->cc_loaded;
2239         ccp->cc_prounds = ccp->cc_rounds;
2240         ccp->cc_loaded = mp;
2241         ccp->cc_rounds = rounds;
2242 }
2243 
2244 /*
2245  * Intercept kmem alloc/free calls during crash dump in order to avoid
2246  * changing kmem state while memory is being saved to the dump device.
2247  * Otherwise, ::kmem_verify will report "corrupt buffers".  Note that
2248  * there are no locks because only one CPU calls kmem during a crash
2249  * dump. To enable this feature, first create the associated vmem
2250  * arena with VMC_DUMPSAFE.
2251  */
2252 static void *kmem_dump_start;   /* start of pre-reserved heap */
2253 static void *kmem_dump_end;     /* end of heap area */
2254 static void *kmem_dump_curr;    /* current free heap pointer */
2255 static size_t kmem_dump_size;   /* size of heap area */
2256 
2257 /* append to each buf created in the pre-reserved heap */
2258 typedef struct kmem_dumpctl {
2259         void    *kdc_next;      /* cache dump free list linkage */
2260 } kmem_dumpctl_t;
2261 
2262 #define KMEM_DUMPCTL(cp, buf)   \
2263         ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
2264             sizeof (void *)))
2265 
2266 /* Keep some simple stats. */
2267 #define KMEM_DUMP_LOGS  (100)
2268 
2269 typedef struct kmem_dump_log {
2270         kmem_cache_t    *kdl_cache;
2271         uint_t          kdl_allocs;             /* # of dump allocations */
2272         uint_t          kdl_frees;              /* # of dump frees */
2273         uint_t          kdl_alloc_fails;        /* # of allocation failures */
2274         uint_t          kdl_free_nondump;       /* # of non-dump frees */
2275         uint_t          kdl_unsafe;             /* cache was used, but unsafe */
2276 } kmem_dump_log_t;
2277 
2278 static kmem_dump_log_t *kmem_dump_log;
2279 static int kmem_dump_log_idx;
2280 
2281 #define KDI_LOG(cp, stat) {                                             \
2282         kmem_dump_log_t *kdl;                                           \
2283         if ((kdl = (kmem_dump_log_t *)((cp)->cache_dumplog)) != NULL) {      \
2284                 kdl->stat++;                                         \
2285         } else if (kmem_dump_log_idx < KMEM_DUMP_LOGS) {             \
2286                 kdl = &kmem_dump_log[kmem_dump_log_idx++];          \
2287                 kdl->stat++;                                         \
2288                 kdl->kdl_cache = (cp);                                       \
2289                 (cp)->cache_dumplog = kdl;                           \
2290         }                                                               \
2291 }
2292 
2293 /* set non zero for full report */
2294 uint_t kmem_dump_verbose = 0;
2295 
2296 /* stats for overize heap */
2297 uint_t kmem_dump_oversize_allocs = 0;
2298 uint_t kmem_dump_oversize_max = 0;
2299 
2300 static void
2301 kmem_dumppr(char **pp, char *e, const char *format, ...)
2302 {
2303         char *p = *pp;
2304 
2305         if (p < e) {
2306                 int n;
2307                 va_list ap;
2308 
2309                 va_start(ap, format);
2310                 n = vsnprintf(p, e - p, format, ap);
2311                 va_end(ap);
2312                 *pp = p + n;
2313         }
2314 }
2315 
2316 /*
2317  * Called when dumpadm(1M) configures dump parameters.
2318  */
2319 void
2320 kmem_dump_init(size_t size)
2321 {
2322         if (kmem_dump_start != NULL)
2323                 kmem_free(kmem_dump_start, kmem_dump_size);
2324 
2325         if (kmem_dump_log == NULL)
2326                 kmem_dump_log = (kmem_dump_log_t *)kmem_zalloc(KMEM_DUMP_LOGS *
2327                     sizeof (kmem_dump_log_t), KM_SLEEP);
2328 
2329         kmem_dump_start = kmem_alloc(size, KM_SLEEP);
2330 
2331         if (kmem_dump_start != NULL) {
2332                 kmem_dump_size = size;
2333                 kmem_dump_curr = kmem_dump_start;
2334                 kmem_dump_end = (void *)((char *)kmem_dump_start + size);
2335                 copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
2336         } else {
2337                 kmem_dump_size = 0;
2338                 kmem_dump_curr = NULL;
2339                 kmem_dump_end = NULL;
2340         }
2341 }
2342 
2343 /*
2344  * Set flag for each kmem_cache_t if is safe to use alternate dump
2345  * memory. Called just before panic crash dump starts. Set the flag
2346  * for the calling CPU.
2347  */
2348 void
2349 kmem_dump_begin(void)
2350 {
2351         ASSERT(panicstr != NULL);
2352         if (kmem_dump_start != NULL) {
2353                 kmem_cache_t *cp;
2354 
2355                 for (cp = list_head(&kmem_caches); cp != NULL;
2356                     cp = list_next(&kmem_caches, cp)) {
2357                         kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2358 
2359                         if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
2360                                 cp->cache_flags |= KMF_DUMPDIVERT;
2361                                 ccp->cc_flags |= KMF_DUMPDIVERT;
2362                                 ccp->cc_dump_rounds = ccp->cc_rounds;
2363                                 ccp->cc_dump_prounds = ccp->cc_prounds;
2364                                 ccp->cc_rounds = ccp->cc_prounds = -1;
2365                         } else {
2366                                 cp->cache_flags |= KMF_DUMPUNSAFE;
2367                                 ccp->cc_flags |= KMF_DUMPUNSAFE;
2368                         }
2369                 }
2370         }
2371 }
2372 
2373 /*
2374  * finished dump intercept
2375  * print any warnings on the console
2376  * return verbose information to dumpsys() in the given buffer
2377  */
2378 size_t
2379 kmem_dump_finish(char *buf, size_t size)
2380 {
2381         int kdi_idx;
2382         int kdi_end = kmem_dump_log_idx;
2383         int percent = 0;
2384         int header = 0;
2385         int warn = 0;
2386         size_t used;
2387         kmem_cache_t *cp;
2388         kmem_dump_log_t *kdl;
2389         char *e = buf + size;
2390         char *p = buf;
2391 
2392         if (kmem_dump_size == 0 || kmem_dump_verbose == 0)
2393                 return (0);
2394 
2395         used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
2396         percent = (used * 100) / kmem_dump_size;
2397 
2398         kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
2399         kmem_dumppr(&p, e, "used bytes,%ld\n", used);
2400         kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
2401         kmem_dumppr(&p, e, "Oversize allocs,%d\n",
2402             kmem_dump_oversize_allocs);
2403         kmem_dumppr(&p, e, "Oversize max size,%ld\n",
2404             kmem_dump_oversize_max);
2405 
2406         for (kdi_idx = 0; kdi_idx < kdi_end; kdi_idx++) {
2407                 kdl = &kmem_dump_log[kdi_idx];
2408                 cp = kdl->kdl_cache;
2409                 if (cp == NULL)
2410                         break;
2411                 if (kdl->kdl_alloc_fails)
2412                         ++warn;
2413                 if (header == 0) {
2414                         kmem_dumppr(&p, e,
2415                             "Cache Name,Allocs,Frees,Alloc Fails,"
2416                             "Nondump Frees,Unsafe Allocs/Frees\n");
2417                         header = 1;
2418                 }
2419                 kmem_dumppr(&p, e, "%s,%d,%d,%d,%d,%d\n",
2420                     cp->cache_name, kdl->kdl_allocs, kdl->kdl_frees,
2421                     kdl->kdl_alloc_fails, kdl->kdl_free_nondump,
2422                     kdl->kdl_unsafe);
2423         }
2424 
2425         /* return buffer size used */
2426         if (p < e)
2427                 bzero(p, e - p);
2428         return (p - buf);
2429 }
2430 
2431 /*
2432  * Allocate a constructed object from alternate dump memory.
2433  */
2434 void *
2435 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
2436 {
2437         void *buf;
2438         void *curr;
2439         char *bufend;
2440 
2441         /* return a constructed object */
2442         if ((buf = cp->cache_dumpfreelist) != NULL) {
2443                 cp->cache_dumpfreelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
2444                 KDI_LOG(cp, kdl_allocs);
2445                 return (buf);
2446         }
2447 
2448         /* create a new constructed object */
2449         curr = kmem_dump_curr;
2450         buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
2451         bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
2452 
2453         /* hat layer objects cannot cross a page boundary */
2454         if (cp->cache_align < PAGESIZE) {
2455                 char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
2456                 if (bufend > page) {
2457                         bufend += page - (char *)buf;
2458                         buf = (void *)page;
2459                 }
2460         }
2461 
2462         /* fall back to normal alloc if reserved area is used up */
2463         if (bufend > (char *)kmem_dump_end) {
2464                 kmem_dump_curr = kmem_dump_end;
2465                 KDI_LOG(cp, kdl_alloc_fails);
2466                 return (NULL);
2467         }
2468 
2469         /*
2470          * Must advance curr pointer before calling a constructor that
2471          * may also allocate memory.
2472          */
2473         kmem_dump_curr = bufend;
2474 
2475         /* run constructor */
2476         if (cp->cache_constructor != NULL &&
2477             cp->cache_constructor(buf, cp->cache_private, kmflag)
2478             != 0) {
2479 #ifdef DEBUG
2480                 printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
2481                     cp->cache_name, (void *)cp);
2482 #endif
2483                 /* reset curr pointer iff no allocs were done */
2484                 if (kmem_dump_curr == bufend)
2485                         kmem_dump_curr = curr;
2486 
2487                 /* fall back to normal alloc if the constructor fails */
2488                 KDI_LOG(cp, kdl_alloc_fails);
2489                 return (NULL);
2490         }
2491 
2492         KDI_LOG(cp, kdl_allocs);
2493         return (buf);
2494 }
2495 
2496 /*
2497  * Free a constructed object in alternate dump memory.
2498  */
2499 int
2500 kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
2501 {
2502         /* save constructed buffers for next time */
2503         if ((char *)buf >= (char *)kmem_dump_start &&
2504             (char *)buf < (char *)kmem_dump_end) {
2505                 KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dumpfreelist;
2506                 cp->cache_dumpfreelist = buf;
2507                 KDI_LOG(cp, kdl_frees);
2508                 return (0);
2509         }
2510 
2511         /* count all non-dump buf frees */
2512         KDI_LOG(cp, kdl_free_nondump);
2513 
2514         /* just drop buffers that were allocated before dump started */
2515         if (kmem_dump_curr < kmem_dump_end)
2516                 return (0);
2517 
2518         /* fall back to normal free if reserved area is used up */
2519         return (1);
2520 }
2521 
2522 /*
2523  * Allocate a constructed object from cache cp.
2524  */
2525 void *
2526 kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2527 {
2528         kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2529         kmem_magazine_t *fmp;
2530         void *buf;
2531 
2532         mutex_enter(&ccp->cc_lock);
2533         for (;;) {
2534                 /*
2535                  * If there's an object available in the current CPU's
2536                  * loaded magazine, just take it and return.
2537                  */
2538                 if (ccp->cc_rounds > 0) {
2539                         buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2540                         ccp->cc_alloc++;
2541                         mutex_exit(&ccp->cc_lock);
2542                         if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
2543                                 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2544                                         ASSERT(!(ccp->cc_flags &
2545                                             KMF_DUMPDIVERT));
2546                                         KDI_LOG(cp, kdl_unsafe);
2547                                 }
2548                                 if ((ccp->cc_flags & KMF_BUFTAG) &&
2549                                     kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2550                                     caller()) != 0) {
2551                                         if (kmflag & KM_NOSLEEP)
2552                                                 return (NULL);
2553                                         mutex_enter(&ccp->cc_lock);
2554                                         continue;
2555                                 }
2556                         }
2557                         return (buf);
2558                 }
2559 
2560                 /*
2561                  * The loaded magazine is empty.  If the previously loaded
2562                  * magazine was full, exchange them and try again.
2563                  */
2564                 if (ccp->cc_prounds > 0) {
2565                         kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2566                         continue;
2567                 }
2568 
2569                 /*
2570                  * Return an alternate buffer at dump time to preserve
2571                  * the heap.
2572                  */
2573                 if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2574                         if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2575                                 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2576                                 /* log it so that we can warn about it */
2577                                 KDI_LOG(cp, kdl_unsafe);
2578                         } else {
2579                                 if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
2580                                     NULL) {
2581                                         mutex_exit(&ccp->cc_lock);
2582                                         return (buf);
2583                                 }
2584                                 break;          /* fall back to slab layer */
2585                         }
2586                 }
2587 
2588                 /*
2589                  * If the magazine layer is disabled, break out now.
2590                  */
2591                 if (ccp->cc_magsize == 0)
2592                         break;
2593 
2594                 /*
2595                  * Try to get a full magazine from the depot.
2596                  */
2597                 fmp = kmem_depot_alloc(cp, &cp->cache_full);
2598                 if (fmp != NULL) {
2599                         if (ccp->cc_ploaded != NULL)
2600                                 kmem_depot_free(cp, &cp->cache_empty,
2601                                     ccp->cc_ploaded);
2602                         kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2603                         continue;
2604                 }
2605 
2606                 /*
2607                  * There are no full magazines in the depot,
2608                  * so fall through to the slab layer.
2609                  */
2610                 break;
2611         }
2612         mutex_exit(&ccp->cc_lock);
2613 
2614         /*
2615          * We couldn't allocate a constructed object from the magazine layer,
2616          * so get a raw buffer from the slab layer and apply its constructor.
2617          */
2618         buf = kmem_slab_alloc(cp, kmflag);
2619 
2620         if (buf == NULL)
2621                 return (NULL);
2622 
2623         if (cp->cache_flags & KMF_BUFTAG) {
2624                 /*
2625                  * Make kmem_cache_alloc_debug() apply the constructor for us.
2626                  */
2627                 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2628                 if (rc != 0) {
2629                         if (kmflag & KM_NOSLEEP)
2630                                 return (NULL);
2631                         /*
2632                          * kmem_cache_alloc_debug() detected corruption
2633                          * but didn't panic (kmem_panic <= 0). We should not be
2634                          * here because the constructor failed (indicated by a
2635                          * return code of 1). Try again.
2636                          */
2637                         ASSERT(rc == -1);
2638                         return (kmem_cache_alloc(cp, kmflag));
2639                 }
2640                 return (buf);
2641         }
2642 
2643         if (cp->cache_constructor != NULL &&
2644             cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2645                 atomic_inc_64(&cp->cache_alloc_fail);
2646                 kmem_slab_free(cp, buf);
2647                 return (NULL);
2648         }
2649 
2650         return (buf);
2651 }
2652 
2653 /*
2654  * The freed argument tells whether or not kmem_cache_free_debug() has already
2655  * been called so that we can avoid the duplicate free error. For example, a
2656  * buffer on a magazine has already been freed by the client but is still
2657  * constructed.
2658  */
2659 static void
2660 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2661 {
2662         if (!freed && (cp->cache_flags & KMF_BUFTAG))
2663                 if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2664                         return;
2665 
2666         /*
2667          * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2668          * kmem_cache_free_debug() will have already applied the destructor.
2669          */
2670         if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2671             cp->cache_destructor != NULL) {
2672                 if (cp->cache_flags & KMF_DEADBEEF) {    /* KMF_LITE implied */
2673                         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2674                         *(uint64_t *)buf = btp->bt_redzone;
2675                         cp->cache_destructor(buf, cp->cache_private);
2676                         *(uint64_t *)buf = KMEM_FREE_PATTERN;
2677                 } else {
2678                         cp->cache_destructor(buf, cp->cache_private);
2679                 }
2680         }
2681 
2682         kmem_slab_free(cp, buf);
2683 }
2684 
2685 /*
2686  * Used when there's no room to free a buffer to the per-CPU cache.
2687  * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2688  * caller should try freeing to the per-CPU cache again.
2689  * Note that we don't directly install the magazine in the cpu cache,
2690  * since its state may have changed wildly while the lock was dropped.
2691  */
2692 static int
2693 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2694 {
2695         kmem_magazine_t *emp;
2696         kmem_magtype_t *mtp;
2697 
2698         ASSERT(MUTEX_HELD(&ccp->cc_lock));
2699         ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2700             ((uint_t)ccp->cc_rounds == -1)) &&
2701             ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2702             ((uint_t)ccp->cc_prounds == -1)));
2703 
2704         emp = kmem_depot_alloc(cp, &cp->cache_empty);
2705         if (emp != NULL) {
2706                 if (ccp->cc_ploaded != NULL)
2707                         kmem_depot_free(cp, &cp->cache_full,
2708                             ccp->cc_ploaded);
2709                 kmem_cpu_reload(ccp, emp, 0);
2710                 return (1);
2711         }
2712         /*
2713          * There are no empty magazines in the depot,
2714          * so try to allocate a new one.  We must drop all locks
2715          * across kmem_cache_alloc() because lower layers may
2716          * attempt to allocate from this cache.
2717          */
2718         mtp = cp->cache_magtype;
2719         mutex_exit(&ccp->cc_lock);
2720         emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2721         mutex_enter(&ccp->cc_lock);
2722 
2723         if (emp != NULL) {
2724                 /*
2725                  * We successfully allocated an empty magazine.
2726                  * However, we had to drop ccp->cc_lock to do it,
2727                  * so the cache's magazine size may have changed.
2728                  * If so, free the magazine and try again.
2729                  */
2730                 if (ccp->cc_magsize != mtp->mt_magsize) {
2731                         mutex_exit(&ccp->cc_lock);
2732                         kmem_cache_free(mtp->mt_cache, emp);
2733                         mutex_enter(&ccp->cc_lock);
2734                         return (1);
2735                 }
2736 
2737                 /*
2738                  * We got a magazine of the right size.  Add it to
2739                  * the depot and try the whole dance again.
2740                  */
2741                 kmem_depot_free(cp, &cp->cache_empty, emp);
2742                 return (1);
2743         }
2744 
2745         /*
2746          * We couldn't allocate an empty magazine,
2747          * so fall through to the slab layer.
2748          */
2749         return (0);
2750 }
2751 
2752 /*
2753  * Free a constructed object to cache cp.
2754  */
2755 void
2756 kmem_cache_free(kmem_cache_t *cp, void *buf)
2757 {
2758         kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2759 
2760         /*
2761          * The client must not free either of the buffers passed to the move
2762          * callback function.
2763          */
2764         ASSERT(cp->cache_defrag == NULL ||
2765             cp->cache_defrag->kmd_thread != curthread ||
2766             (buf != cp->cache_defrag->kmd_from_buf &&
2767             buf != cp->cache_defrag->kmd_to_buf));
2768 
2769         if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2770                 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2771                         ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2772                         /* log it so that we can warn about it */
2773                         KDI_LOG(cp, kdl_unsafe);
2774                 } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2775                         return;
2776                 }
2777                 if (ccp->cc_flags & KMF_BUFTAG) {
2778                         if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2779                                 return;
2780                 }
2781         }
2782 
2783         mutex_enter(&ccp->cc_lock);
2784         /*
2785          * Any changes to this logic should be reflected in kmem_slab_prefill()
2786          */
2787         for (;;) {
2788                 /*
2789                  * If there's a slot available in the current CPU's
2790                  * loaded magazine, just put the object there and return.
2791                  */
2792                 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2793                         ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2794                         ccp->cc_free++;
2795                         mutex_exit(&ccp->cc_lock);
2796                         return;
2797                 }
2798 
2799                 /*
2800                  * The loaded magazine is full.  If the previously loaded
2801                  * magazine was empty, exchange them and try again.
2802                  */
2803                 if (ccp->cc_prounds == 0) {
2804                         kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2805                         continue;
2806                 }
2807 
2808                 /*
2809                  * If the magazine layer is disabled, break out now.
2810                  */
2811                 if (ccp->cc_magsize == 0)
2812                         break;
2813 
2814                 if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2815                         /*
2816                          * We couldn't free our constructed object to the
2817                          * magazine layer, so apply its destructor and free it
2818                          * to the slab layer.
2819                          */
2820                         break;
2821                 }
2822         }
2823         mutex_exit(&ccp->cc_lock);
2824         kmem_slab_free_constructed(cp, buf, B_TRUE);
2825 }
2826 
2827 static void
2828 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2829 {
2830         kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2831         int cache_flags = cp->cache_flags;
2832 
2833         kmem_bufctl_t *next, *head;
2834         size_t nbufs;
2835 
2836         /*
2837          * Completely allocate the newly created slab and put the pre-allocated
2838          * buffers in magazines. Any of the buffers that cannot be put in
2839          * magazines must be returned to the slab.
2840          */
2841         ASSERT(MUTEX_HELD(&cp->cache_lock));
2842         ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2843         ASSERT(cp->cache_constructor == NULL);
2844         ASSERT(sp->slab_cache == cp);
2845         ASSERT(sp->slab_refcnt == 1);
2846         ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2847         ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2848 
2849         head = sp->slab_head;
2850         nbufs = (sp->slab_chunks - sp->slab_refcnt);
2851         sp->slab_head = NULL;
2852         sp->slab_refcnt += nbufs;
2853         cp->cache_bufslab -= nbufs;
2854         cp->cache_slab_alloc += nbufs;
2855         list_insert_head(&cp->cache_complete_slabs, sp);
2856         cp->cache_complete_slab_count++;
2857         mutex_exit(&cp->cache_lock);
2858         mutex_enter(&ccp->cc_lock);
2859 
2860         while (head != NULL) {
2861                 void *buf = KMEM_BUF(cp, head);
2862                 /*
2863                  * If there's a slot available in the current CPU's
2864                  * loaded magazine, just put the object there and
2865                  * continue.
2866                  */
2867                 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2868                         ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2869                             buf;
2870                         ccp->cc_free++;
2871                         nbufs--;
2872                         head = head->bc_next;
2873                         continue;
2874                 }
2875 
2876                 /*
2877                  * The loaded magazine is full.  If the previously
2878                  * loaded magazine was empty, exchange them and try
2879                  * again.
2880                  */
2881                 if (ccp->cc_prounds == 0) {
2882                         kmem_cpu_reload(ccp, ccp->cc_ploaded,
2883                             ccp->cc_prounds);
2884                         continue;
2885                 }
2886 
2887                 /*
2888                  * If the magazine layer is disabled, break out now.
2889                  */
2890 
2891                 if (ccp->cc_magsize == 0) {
2892                         break;
2893                 }
2894 
2895                 if (!kmem_cpucache_magazine_alloc(ccp, cp))
2896                         break;
2897         }
2898         mutex_exit(&ccp->cc_lock);
2899         if (nbufs != 0) {
2900                 ASSERT(head != NULL);
2901 
2902                 /*
2903                  * If there was a failure, return remaining objects to
2904                  * the slab
2905                  */
2906                 while (head != NULL) {
2907                         ASSERT(nbufs != 0);
2908                         next = head->bc_next;
2909                         head->bc_next = NULL;
2910                         kmem_slab_free(cp, KMEM_BUF(cp, head));
2911                         head = next;
2912                         nbufs--;
2913                 }
2914         }
2915         ASSERT(head == NULL);
2916         ASSERT(nbufs == 0);
2917         mutex_enter(&cp->cache_lock);
2918 }
2919 
2920 void *
2921 kmem_zalloc(size_t size, int kmflag)
2922 {
2923         size_t index;
2924         void *buf;
2925 
2926         if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2927                 kmem_cache_t *cp = kmem_alloc_table[index];
2928                 buf = kmem_cache_alloc(cp, kmflag);
2929                 if (buf != NULL) {
2930                         if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2931                                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2932                                 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2933                                 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2934 
2935                                 if (cp->cache_flags & KMF_LITE) {
2936                                         KMEM_BUFTAG_LITE_ENTER(btp,
2937                                             kmem_lite_count, caller());
2938                                 }
2939                         }
2940                         bzero(buf, size);
2941                 }
2942         } else {
2943                 buf = kmem_alloc(size, kmflag);
2944                 if (buf != NULL)
2945                         bzero(buf, size);
2946         }
2947         return (buf);
2948 }
2949 
2950 void *
2951 kmem_alloc(size_t size, int kmflag)
2952 {
2953         size_t index;
2954         kmem_cache_t *cp;
2955         void *buf;
2956 
2957         if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2958                 cp = kmem_alloc_table[index];
2959                 /* fall through to kmem_cache_alloc() */
2960 
2961         } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2962             kmem_big_alloc_table_max) {
2963                 cp = kmem_big_alloc_table[index];
2964                 /* fall through to kmem_cache_alloc() */
2965 
2966         } else {
2967                 if (size == 0)
2968                         return (NULL);
2969 
2970                 buf = vmem_alloc(kmem_oversize_arena, size,
2971                     kmflag & KM_VMFLAGS);
2972                 if (buf == NULL)
2973                         kmem_log_event(kmem_failure_log, NULL, NULL,
2974                             (void *)size);
2975                 else if (KMEM_DUMP(kmem_slab_cache)) {
2976                         /* stats for dump intercept */
2977                         kmem_dump_oversize_allocs++;
2978                         if (size > kmem_dump_oversize_max)
2979                                 kmem_dump_oversize_max = size;
2980                 }
2981                 return (buf);
2982         }
2983 
2984         buf = kmem_cache_alloc(cp, kmflag);
2985         if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2986                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2987                 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2988                 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2989 
2990                 if (cp->cache_flags & KMF_LITE) {
2991                         KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2992                 }
2993         }
2994         return (buf);
2995 }
2996 
2997 void
2998 kmem_free(void *buf, size_t size)
2999 {
3000         size_t index;
3001         kmem_cache_t *cp;
3002 
3003         if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
3004                 cp = kmem_alloc_table[index];
3005                 /* fall through to kmem_cache_free() */
3006 
3007         } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
3008             kmem_big_alloc_table_max) {
3009                 cp = kmem_big_alloc_table[index];
3010                 /* fall through to kmem_cache_free() */
3011 
3012         } else {
3013                 EQUIV(buf == NULL, size == 0);
3014                 if (buf == NULL && size == 0)
3015                         return;
3016                 vmem_free(kmem_oversize_arena, buf, size);
3017                 return;
3018         }
3019 
3020         if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
3021                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
3022                 uint32_t *ip = (uint32_t *)btp;
3023                 if (ip[1] != KMEM_SIZE_ENCODE(size)) {
3024                         if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
3025                                 kmem_error(KMERR_DUPFREE, cp, buf);
3026                                 return;
3027                         }
3028                         if (KMEM_SIZE_VALID(ip[1])) {
3029                                 ip[0] = KMEM_SIZE_ENCODE(size);
3030                                 kmem_error(KMERR_BADSIZE, cp, buf);
3031                         } else {
3032                                 kmem_error(KMERR_REDZONE, cp, buf);
3033                         }
3034                         return;
3035                 }
3036                 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
3037                         kmem_error(KMERR_REDZONE, cp, buf);
3038                         return;
3039                 }
3040                 btp->bt_redzone = KMEM_REDZONE_PATTERN;
3041                 if (cp->cache_flags & KMF_LITE) {
3042                         KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
3043                             caller());
3044                 }
3045         }
3046         kmem_cache_free(cp, buf);
3047 }
3048 
3049 void *
3050 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
3051 {
3052         size_t realsize = size + vmp->vm_quantum;
3053         void *addr;
3054 
3055         /*
3056          * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
3057          * vm_quantum will cause integer wraparound.  Check for this, and
3058          * blow off the firewall page in this case.  Note that such a
3059          * giant allocation (the entire kernel address space) can never
3060          * be satisfied, so it will either fail immediately (VM_NOSLEEP)
3061          * or sleep forever (VM_SLEEP).  Thus, there is no need for a
3062          * corresponding check in kmem_firewall_va_free().
3063          */
3064         if (realsize < size)
3065                 realsize = size;
3066 
3067         /*
3068          * While boot still owns resource management, make sure that this
3069          * redzone virtual address allocation is properly accounted for in
3070          * OBPs "virtual-memory" "available" lists because we're
3071          * effectively claiming them for a red zone.  If we don't do this,
3072          * the available lists become too fragmented and too large for the
3073          * current boot/kernel memory list interface.
3074          */
3075         addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
3076 
3077         if (addr != NULL && kvseg.s_base == NULL && realsize != size)
3078                 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
3079 
3080         return (addr);
3081 }
3082 
3083 void
3084 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
3085 {
3086         ASSERT((kvseg.s_base == NULL ?
3087             va_to_pfn((char *)addr + size) :
3088             hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
3089 
3090         vmem_free(vmp, addr, size + vmp->vm_quantum);
3091 }
3092 
3093 /*
3094  * Try to allocate at least `size' bytes of memory without sleeping or
3095  * panicking. Return actual allocated size in `asize'. If allocation failed,
3096  * try final allocation with sleep or panic allowed.
3097  */
3098 void *
3099 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
3100 {
3101         void *p;
3102 
3103         *asize = P2ROUNDUP(size, KMEM_ALIGN);
3104         do {
3105                 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
3106                 if (p != NULL)
3107                         return (p);
3108                 *asize += KMEM_ALIGN;
3109         } while (*asize <= PAGESIZE);
3110 
3111         *asize = P2ROUNDUP(size, KMEM_ALIGN);
3112         return (kmem_alloc(*asize, kmflag));
3113 }
3114 
3115 /*
3116  * Reclaim all unused memory from a cache.
3117  */
3118 static void
3119 kmem_cache_reap(kmem_cache_t *cp)
3120 {
3121         ASSERT(taskq_member(kmem_taskq, curthread));
3122         cp->cache_reap++;
3123 
3124         /*
3125          * Ask the cache's owner to free some memory if possible.
3126          * The idea is to handle things like the inode cache, which
3127          * typically sits on a bunch of memory that it doesn't truly
3128          * *need*.  Reclaim policy is entirely up to the owner; this
3129          * callback is just an advisory plea for help.
3130          */
3131         if (cp->cache_reclaim != NULL) {
3132                 long delta;
3133 
3134                 /*
3135                  * Reclaimed memory should be reapable (not included in the
3136                  * depot's working set).
3137                  */
3138                 delta = cp->cache_full.ml_total;
3139                 cp->cache_reclaim(cp->cache_private);
3140                 delta = cp->cache_full.ml_total - delta;
3141                 if (delta > 0) {
3142                         mutex_enter(&cp->cache_depot_lock);
3143                         cp->cache_full.ml_reaplimit += delta;
3144                         cp->cache_full.ml_min += delta;
3145                         mutex_exit(&cp->cache_depot_lock);
3146                 }
3147         }
3148 
3149         kmem_depot_ws_reap(cp);
3150 
3151         if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3152                 kmem_cache_defrag(cp);
3153         }
3154 }
3155 
3156 static void
3157 kmem_reap_timeout(void *flag_arg)
3158 {
3159         uint32_t *flag = (uint32_t *)flag_arg;
3160 
3161         ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3162         *flag = 0;
3163 }
3164 
3165 static void
3166 kmem_reap_done(void *flag)
3167 {
3168         if (!callout_init_done) {
3169                 /* can't schedule a timeout at this point */
3170                 kmem_reap_timeout(flag);
3171         } else {
3172                 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
3173         }
3174 }
3175 
3176 static void
3177 kmem_reap_start(void *flag)
3178 {
3179         ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3180 
3181         if (flag == &kmem_reaping) {
3182                 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3183                 /*
3184                  * if we have segkp under heap, reap segkp cache.
3185                  */
3186                 if (segkp_fromheap)
3187                         segkp_cache_free();
3188         }
3189         else
3190                 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3191 
3192         /*
3193          * We use taskq_dispatch() to schedule a timeout to clear
3194          * the flag so that kmem_reap() becomes self-throttling:
3195          * we won't reap again until the current reap completes *and*
3196          * at least kmem_reap_interval ticks have elapsed.
3197          */
3198         if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
3199                 kmem_reap_done(flag);
3200 }
3201 
3202 static void
3203 kmem_reap_common(void *flag_arg)
3204 {
3205         uint32_t *flag = (uint32_t *)flag_arg;
3206 
3207         if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
3208             atomic_cas_32(flag, 0, 1) != 0)
3209                 return;
3210 
3211         /*
3212          * It may not be kosher to do memory allocation when a reap is called
3213          * (for example, if vmem_populate() is in the call chain).  So we
3214          * start the reap going with a TQ_NOALLOC dispatch.  If the dispatch
3215          * fails, we reset the flag, and the next reap will try again.
3216          */
3217         if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
3218                 *flag = 0;
3219 }
3220 
3221 /*
3222  * Reclaim all unused memory from all caches.  Called from the VM system
3223  * when memory gets tight.
3224  */
3225 void
3226 kmem_reap(void)
3227 {
3228         kmem_reap_common(&kmem_reaping);
3229 }
3230 
3231 /*
3232  * Reclaim all unused memory from identifier arenas, called when a vmem
3233  * arena not back by memory is exhausted.  Since reaping memory-backed caches
3234  * cannot help with identifier exhaustion, we avoid both a large amount of
3235  * work and unwanted side-effects from reclaim callbacks.
3236  */
3237 void
3238 kmem_reap_idspace(void)
3239 {
3240         kmem_reap_common(&kmem_reaping_idspace);
3241 }
3242 
3243 /*
3244  * Purge all magazines from a cache and set its magazine limit to zero.
3245  * All calls are serialized by the kmem_taskq lock, except for the final
3246  * call from kmem_cache_destroy().
3247  */
3248 static void
3249 kmem_cache_magazine_purge(kmem_cache_t *cp)
3250 {
3251         kmem_cpu_cache_t *ccp;
3252         kmem_magazine_t *mp, *pmp;
3253         int rounds, prounds, cpu_seqid;
3254 
3255         ASSERT(!list_link_active(&cp->cache_link) ||
3256             taskq_member(kmem_taskq, curthread));
3257         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
3258 
3259         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3260                 ccp = &cp->cache_cpu[cpu_seqid];
3261 
3262                 mutex_enter(&ccp->cc_lock);
3263                 mp = ccp->cc_loaded;
3264                 pmp = ccp->cc_ploaded;
3265                 rounds = ccp->cc_rounds;
3266                 prounds = ccp->cc_prounds;
3267                 ccp->cc_loaded = NULL;
3268                 ccp->cc_ploaded = NULL;
3269                 ccp->cc_rounds = -1;
3270                 ccp->cc_prounds = -1;
3271                 ccp->cc_magsize = 0;
3272                 mutex_exit(&ccp->cc_lock);
3273 
3274                 if (mp)
3275                         kmem_magazine_destroy(cp, mp, rounds);
3276                 if (pmp)
3277                         kmem_magazine_destroy(cp, pmp, prounds);
3278         }
3279 
3280         kmem_depot_ws_zero(cp);
3281         kmem_depot_ws_reap(cp);
3282 }
3283 
3284 /*
3285  * Enable per-cpu magazines on a cache.
3286  */
3287 static void
3288 kmem_cache_magazine_enable(kmem_cache_t *cp)
3289 {
3290         int cpu_seqid;
3291 
3292         if (cp->cache_flags & KMF_NOMAGAZINE)
3293                 return;
3294 
3295         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3296                 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3297                 mutex_enter(&ccp->cc_lock);
3298                 ccp->cc_magsize = cp->cache_magtype->mt_magsize;
3299                 mutex_exit(&ccp->cc_lock);
3300         }
3301 
3302 }
3303 
3304 /*
3305  * Reap (almost) everything right now.
3306  */
3307 void
3308 kmem_cache_reap_now(kmem_cache_t *cp)
3309 {
3310         ASSERT(list_link_active(&cp->cache_link));
3311 
3312         kmem_depot_ws_zero(cp);
3313 
3314         (void) taskq_dispatch(kmem_taskq,
3315             (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3316         taskq_wait(kmem_taskq);
3317 }
3318 
3319 /*
3320  * Recompute a cache's magazine size.  The trade-off is that larger magazines
3321  * provide a higher transfer rate with the depot, while smaller magazines
3322  * reduce memory consumption.  Magazine resizing is an expensive operation;
3323  * it should not be done frequently.
3324  *
3325  * Changes to the magazine size are serialized by the kmem_taskq lock.
3326  *
3327  * Note: at present this only grows the magazine size.  It might be useful
3328  * to allow shrinkage too.
3329  */
3330 static void
3331 kmem_cache_magazine_resize(kmem_cache_t *cp)
3332 {
3333         kmem_magtype_t *mtp = cp->cache_magtype;
3334 
3335         ASSERT(taskq_member(kmem_taskq, curthread));
3336 
3337         if (cp->cache_chunksize < mtp->mt_maxbuf) {
3338                 kmem_cache_magazine_purge(cp);
3339                 mutex_enter(&cp->cache_depot_lock);
3340                 cp->cache_magtype = ++mtp;
3341                 cp->cache_depot_contention_prev =
3342                     cp->cache_depot_contention + INT_MAX;
3343                 mutex_exit(&cp->cache_depot_lock);
3344                 kmem_cache_magazine_enable(cp);
3345         }
3346 }
3347 
3348 /*
3349  * Rescale a cache's hash table, so that the table size is roughly the
3350  * cache size.  We want the average lookup time to be extremely small.
3351  */
3352 static void
3353 kmem_hash_rescale(kmem_cache_t *cp)
3354 {
3355         kmem_bufctl_t **old_table, **new_table, *bcp;
3356         size_t old_size, new_size, h;
3357 
3358         ASSERT(taskq_member(kmem_taskq, curthread));
3359 
3360         new_size = MAX(KMEM_HASH_INITIAL,
3361             1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
3362         old_size = cp->cache_hash_mask + 1;
3363 
3364         if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
3365                 return;
3366 
3367         new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
3368             VM_NOSLEEP);
3369         if (new_table == NULL)
3370                 return;
3371         bzero(new_table, new_size * sizeof (void *));
3372 
3373         mutex_enter(&cp->cache_lock);
3374 
3375         old_size = cp->cache_hash_mask + 1;
3376         old_table = cp->cache_hash_table;
3377 
3378         cp->cache_hash_mask = new_size - 1;
3379         cp->cache_hash_table = new_table;
3380         cp->cache_rescale++;
3381 
3382         for (h = 0; h < old_size; h++) {
3383                 bcp = old_table[h];
3384                 while (bcp != NULL) {
3385                         void *addr = bcp->bc_addr;
3386                         kmem_bufctl_t *next_bcp = bcp->bc_next;
3387                         kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
3388                         bcp->bc_next = *hash_bucket;
3389                         *hash_bucket = bcp;
3390                         bcp = next_bcp;
3391                 }
3392         }
3393 
3394         mutex_exit(&cp->cache_lock);
3395 
3396         vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
3397 }
3398 
3399 /*
3400  * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3401  * update, magazine resizing, and slab consolidation.
3402  */
3403 static void
3404 kmem_cache_update(kmem_cache_t *cp)
3405 {
3406         int need_hash_rescale = 0;
3407         int need_magazine_resize = 0;
3408 
3409         ASSERT(MUTEX_HELD(&kmem_cache_lock));
3410 
3411         /*
3412          * If the cache has become much larger or smaller than its hash table,
3413          * fire off a request to rescale the hash table.
3414          */
3415         mutex_enter(&cp->cache_lock);
3416 
3417         if ((cp->cache_flags & KMF_HASH) &&
3418             (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
3419             (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
3420             cp->cache_hash_mask > KMEM_HASH_INITIAL)))
3421                 need_hash_rescale = 1;
3422 
3423         mutex_exit(&cp->cache_lock);
3424 
3425         /*
3426          * Update the depot working set statistics.
3427          */
3428         kmem_depot_ws_update(cp);
3429 
3430         /*
3431          * If there's a lot of contention in the depot,
3432          * increase the magazine size.
3433          */
3434         mutex_enter(&cp->cache_depot_lock);
3435 
3436         if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
3437             (int)(cp->cache_depot_contention -
3438             cp->cache_depot_contention_prev) > kmem_depot_contention)
3439                 need_magazine_resize = 1;
3440 
3441         cp->cache_depot_contention_prev = cp->cache_depot_contention;
3442 
3443         mutex_exit(&cp->cache_depot_lock);
3444 
3445         if (need_hash_rescale)
3446                 (void) taskq_dispatch(kmem_taskq,
3447                     (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
3448 
3449         if (need_magazine_resize)
3450                 (void) taskq_dispatch(kmem_taskq,
3451                     (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3452 
3453         if (cp->cache_defrag != NULL)
3454                 (void) taskq_dispatch(kmem_taskq,
3455                     (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
3456 }
3457 
3458 static void kmem_update(void *);
3459 
3460 static void
3461 kmem_update_timeout(void *dummy)
3462 {
3463         (void) timeout(kmem_update, dummy, kmem_reap_interval);
3464 }
3465 
3466 static void
3467 kmem_update(void *dummy)
3468 {
3469         kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
3470 
3471         /*
3472          * We use taskq_dispatch() to reschedule the timeout so that
3473          * kmem_update() becomes self-throttling: it won't schedule
3474          * new tasks until all previous tasks have completed.
3475          */
3476         if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
3477                 kmem_update_timeout(NULL);
3478 }
3479 
3480 static int
3481 kmem_cache_kstat_update(kstat_t *ksp, int rw)
3482 {
3483         struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
3484         kmem_cache_t *cp = ksp->ks_private;
3485         uint64_t cpu_buf_avail;
3486         uint64_t buf_avail = 0;
3487         int cpu_seqid;
3488         long reap;
3489 
3490         ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
3491 
3492         if (rw == KSTAT_WRITE)
3493                 return (EACCES);
3494 
3495         mutex_enter(&cp->cache_lock);
3496 
3497         kmcp->kmc_alloc_fail.value.ui64              = cp->cache_alloc_fail;
3498         kmcp->kmc_alloc.value.ui64           = cp->cache_slab_alloc;
3499         kmcp->kmc_free.value.ui64            = cp->cache_slab_free;
3500         kmcp->kmc_slab_alloc.value.ui64              = cp->cache_slab_alloc;
3501         kmcp->kmc_slab_free.value.ui64               = cp->cache_slab_free;
3502 
3503         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3504                 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3505 
3506                 mutex_enter(&ccp->cc_lock);
3507 
3508                 cpu_buf_avail = 0;
3509                 if (ccp->cc_rounds > 0)
3510                         cpu_buf_avail += ccp->cc_rounds;
3511                 if (ccp->cc_prounds > 0)
3512                         cpu_buf_avail += ccp->cc_prounds;
3513 
3514                 kmcp->kmc_alloc.value.ui64   += ccp->cc_alloc;
3515                 kmcp->kmc_free.value.ui64    += ccp->cc_free;
3516                 buf_avail                       += cpu_buf_avail;
3517 
3518                 mutex_exit(&ccp->cc_lock);
3519         }
3520 
3521         mutex_enter(&cp->cache_depot_lock);
3522 
3523         kmcp->kmc_depot_alloc.value.ui64     = cp->cache_full.ml_alloc;
3524         kmcp->kmc_depot_free.value.ui64              = cp->cache_empty.ml_alloc;
3525         kmcp->kmc_depot_contention.value.ui64        = cp->cache_depot_contention;
3526         kmcp->kmc_full_magazines.value.ui64  = cp->cache_full.ml_total;
3527         kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total;
3528         kmcp->kmc_magazine_size.value.ui64   =
3529             (cp->cache_flags & KMF_NOMAGAZINE) ?
3530             0 : cp->cache_magtype->mt_magsize;
3531 
3532         kmcp->kmc_alloc.value.ui64           += cp->cache_full.ml_alloc;
3533         kmcp->kmc_free.value.ui64            += cp->cache_empty.ml_alloc;
3534         buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
3535 
3536         reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3537         reap = MIN(reap, cp->cache_full.ml_total);
3538 
3539         mutex_exit(&cp->cache_depot_lock);
3540 
3541         kmcp->kmc_buf_size.value.ui64        = cp->cache_bufsize;
3542         kmcp->kmc_align.value.ui64   = cp->cache_align;
3543         kmcp->kmc_chunk_size.value.ui64      = cp->cache_chunksize;
3544         kmcp->kmc_slab_size.value.ui64       = cp->cache_slabsize;
3545         kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
3546         buf_avail += cp->cache_bufslab;
3547         kmcp->kmc_buf_avail.value.ui64       = buf_avail;
3548         kmcp->kmc_buf_inuse.value.ui64       = cp->cache_buftotal - buf_avail;
3549         kmcp->kmc_buf_total.value.ui64       = cp->cache_buftotal;
3550         kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax;
3551         kmcp->kmc_slab_create.value.ui64     = cp->cache_slab_create;
3552         kmcp->kmc_slab_destroy.value.ui64    = cp->cache_slab_destroy;
3553         kmcp->kmc_hash_size.value.ui64       = (cp->cache_flags & KMF_HASH) ?
3554             cp->cache_hash_mask + 1 : 0;
3555         kmcp->kmc_hash_lookup_depth.value.ui64       = cp->cache_lookup_depth;
3556         kmcp->kmc_hash_rescale.value.ui64    = cp->cache_rescale;
3557         kmcp->kmc_vmem_source.value.ui64     = cp->cache_arena->vm_id;
3558         kmcp->kmc_reap.value.ui64    = cp->cache_reap;
3559 
3560         if (cp->cache_defrag == NULL) {
3561                 kmcp->kmc_move_callbacks.value.ui64  = 0;
3562                 kmcp->kmc_move_yes.value.ui64                = 0;
3563                 kmcp->kmc_move_no.value.ui64         = 0;
3564                 kmcp->kmc_move_later.value.ui64              = 0;
3565                 kmcp->kmc_move_dont_need.value.ui64  = 0;
3566                 kmcp->kmc_move_dont_know.value.ui64  = 0;
3567                 kmcp->kmc_move_hunt_found.value.ui64 = 0;
3568                 kmcp->kmc_move_slabs_freed.value.ui64        = 0;
3569                 kmcp->kmc_defrag.value.ui64          = 0;
3570                 kmcp->kmc_scan.value.ui64            = 0;
3571                 kmcp->kmc_move_reclaimable.value.ui64        = 0;
3572         } else {
3573                 int64_t reclaimable;
3574 
3575                 kmem_defrag_t *kd = cp->cache_defrag;
3576                 kmcp->kmc_move_callbacks.value.ui64  = kd->kmd_callbacks;
3577                 kmcp->kmc_move_yes.value.ui64                = kd->kmd_yes;
3578                 kmcp->kmc_move_no.value.ui64         = kd->kmd_no;
3579                 kmcp->kmc_move_later.value.ui64              = kd->kmd_later;
3580                 kmcp->kmc_move_dont_need.value.ui64  = kd->kmd_dont_need;
3581                 kmcp->kmc_move_dont_know.value.ui64  = kd->kmd_dont_know;
3582                 kmcp->kmc_move_hunt_found.value.ui64 = kd->kmd_hunt_found;
3583                 kmcp->kmc_move_slabs_freed.value.ui64        = kd->kmd_slabs_freed;
3584                 kmcp->kmc_defrag.value.ui64          = kd->kmd_defrags;
3585                 kmcp->kmc_scan.value.ui64            = kd->kmd_scans;
3586 
3587                 reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3588                 reclaimable = MAX(reclaimable, 0);
3589                 reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3590                 kmcp->kmc_move_reclaimable.value.ui64        = reclaimable;
3591         }
3592 
3593         mutex_exit(&cp->cache_lock);
3594         return (0);
3595 }
3596 
3597 /*
3598  * Return a named statistic about a particular cache.
3599  * This shouldn't be called very often, so it's currently designed for
3600  * simplicity (leverages existing kstat support) rather than efficiency.
3601  */
3602 uint64_t
3603 kmem_cache_stat(kmem_cache_t *cp, char *name)
3604 {
3605         int i;
3606         kstat_t *ksp = cp->cache_kstat;
3607         kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3608         uint64_t value = 0;
3609 
3610         if (ksp != NULL) {
3611                 mutex_enter(&kmem_cache_kstat_lock);
3612                 (void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3613                 for (i = 0; i < ksp->ks_ndata; i++) {
3614                         if (strcmp(knp[i].name, name) == 0) {
3615                                 value = knp[i].value.ui64;
3616                                 break;
3617                         }
3618                 }
3619                 mutex_exit(&kmem_cache_kstat_lock);
3620         }
3621         return (value);
3622 }
3623 
3624 /*
3625  * Return an estimate of currently available kernel heap memory.
3626  * On 32-bit systems, physical memory may exceed virtual memory,
3627  * we just truncate the result at 1GB.
3628  */
3629 size_t
3630 kmem_avail(void)
3631 {
3632         spgcnt_t rmem = availrmem - tune.t_minarmem;
3633         spgcnt_t fmem = freemem - minfree;
3634 
3635         return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3636             1 << (30 - PAGESHIFT))));
3637 }
3638 
3639 /*
3640  * Return the maximum amount of memory that is (in theory) allocatable
3641  * from the heap. This may be used as an estimate only since there
3642  * is no guarentee this space will still be available when an allocation
3643  * request is made, nor that the space may be allocated in one big request
3644  * due to kernel heap fragmentation.
3645  */
3646 size_t
3647 kmem_maxavail(void)
3648 {
3649         spgcnt_t pmem = availrmem - tune.t_minarmem;
3650         spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3651 
3652         return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3653 }
3654 
3655 /*
3656  * Indicate whether memory-intensive kmem debugging is enabled.
3657  */
3658 int
3659 kmem_debugging(void)
3660 {
3661         return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3662 }
3663 
3664 /* binning function, sorts finely at the two extremes */
3665 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)                          \
3666         ((((sp)->slab_refcnt <= (binshift)) ||                            \
3667             (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))   \
3668             ? -(sp)->slab_refcnt                                     \
3669             : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3670 
3671 /*
3672  * Minimizing the number of partial slabs on the freelist minimizes
3673  * fragmentation (the ratio of unused buffers held by the slab layer). There are
3674  * two ways to get a slab off of the freelist: 1) free all the buffers on the
3675  * slab, and 2) allocate all the buffers on the slab. It follows that we want
3676  * the most-used slabs at the front of the list where they have the best chance
3677  * of being completely allocated, and the least-used slabs at a safe distance
3678  * from the front to improve the odds that the few remaining buffers will all be
3679  * freed before another allocation can tie up the slab. For that reason a slab
3680  * with a higher slab_refcnt sorts less than than a slab with a lower
3681  * slab_refcnt.
3682  *
3683  * However, if a slab has at least one buffer that is deemed unfreeable, we
3684  * would rather have that slab at the front of the list regardless of
3685  * slab_refcnt, since even one unfreeable buffer makes the entire slab
3686  * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3687  * callback, the slab is marked unfreeable for as long as it remains on the
3688  * freelist.
3689  */
3690 static int
3691 kmem_partial_slab_cmp(const void *p0, const void *p1)
3692 {
3693         const kmem_cache_t *cp;
3694         const kmem_slab_t *s0 = p0;
3695         const kmem_slab_t *s1 = p1;
3696         int w0, w1;
3697         size_t binshift;
3698 
3699         ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3700         ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3701         ASSERT(s0->slab_cache == s1->slab_cache);
3702         cp = s1->slab_cache;
3703         ASSERT(MUTEX_HELD(&cp->cache_lock));
3704         binshift = cp->cache_partial_binshift;
3705 
3706         /* weight of first slab */
3707         w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3708         if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3709                 w0 -= cp->cache_maxchunks;
3710         }
3711 
3712         /* weight of second slab */
3713         w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3714         if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3715                 w1 -= cp->cache_maxchunks;
3716         }
3717 
3718         if (w0 < w1)
3719                 return (-1);
3720         if (w0 > w1)
3721                 return (1);
3722 
3723         /* compare pointer values */
3724         if ((uintptr_t)s0 < (uintptr_t)s1)
3725                 return (-1);
3726         if ((uintptr_t)s0 > (uintptr_t)s1)
3727                 return (1);
3728 
3729         return (0);
3730 }
3731 
3732 /*
3733  * It must be valid to call the destructor (if any) on a newly created object.
3734  * That is, the constructor (if any) must leave the object in a valid state for
3735  * the destructor.
3736  */
3737 kmem_cache_t *
3738 kmem_cache_create(
3739         char *name,             /* descriptive name for this cache */
3740         size_t bufsize,         /* size of the objects it manages */
3741         size_t align,           /* required object alignment */
3742         int (*constructor)(void *, void *, int), /* object constructor */
3743         void (*destructor)(void *, void *),     /* object destructor */
3744         void (*reclaim)(void *), /* memory reclaim callback */
3745         void *private,          /* pass-thru arg for constr/destr/reclaim */
3746         vmem_t *vmp,            /* vmem source for slab allocation */
3747         int cflags)             /* cache creation flags */
3748 {
3749         int cpu_seqid;
3750         size_t chunksize;
3751         kmem_cache_t *cp;
3752         kmem_magtype_t *mtp;
3753         size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3754 
3755 #ifdef  DEBUG
3756         /*
3757          * Cache names should conform to the rules for valid C identifiers
3758          */
3759         if (!strident_valid(name)) {
3760                 cmn_err(CE_CONT,
3761                     "kmem_cache_create: '%s' is an invalid cache name\n"
3762                     "cache names must conform to the rules for "
3763                     "C identifiers\n", name);
3764         }
3765 #endif  /* DEBUG */
3766 
3767         if (vmp == NULL)
3768                 vmp = kmem_default_arena;
3769 
3770         /*
3771          * If this kmem cache has an identifier vmem arena as its source, mark
3772          * it such to allow kmem_reap_idspace().
3773          */
3774         ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
3775         if (vmp->vm_cflags & VMC_IDENTIFIER)
3776                 cflags |= KMC_IDENTIFIER;
3777 
3778         /*
3779          * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
3780          * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3781          * false sharing of per-CPU data.
3782          */
3783         cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3784             P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3785         bzero(cp, csize);
3786         list_link_init(&cp->cache_link);
3787 
3788         if (align == 0)
3789                 align = KMEM_ALIGN;
3790 
3791         /*
3792          * If we're not at least KMEM_ALIGN aligned, we can't use free
3793          * memory to hold bufctl information (because we can't safely
3794          * perform word loads and stores on it).
3795          */
3796         if (align < KMEM_ALIGN)
3797                 cflags |= KMC_NOTOUCH;
3798 
3799         if (!ISP2(align) || align > vmp->vm_quantum)
3800                 panic("kmem_cache_create: bad alignment %lu", align);
3801 
3802         mutex_enter(&kmem_flags_lock);
3803         if (kmem_flags & KMF_RANDOMIZE)
3804                 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3805                     KMF_RANDOMIZE;
3806         cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3807         mutex_exit(&kmem_flags_lock);
3808 
3809         /*
3810          * Make sure all the various flags are reasonable.
3811          */
3812         ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3813 
3814         if (cp->cache_flags & KMF_LITE) {
3815                 if (bufsize >= kmem_lite_minsize &&
3816                     align <= kmem_lite_maxalign &&
3817                     P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3818                         cp->cache_flags |= KMF_BUFTAG;
3819                         cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3820                 } else {
3821                         cp->cache_flags &= ~KMF_DEBUG;
3822                 }
3823         }
3824 
3825         if (cp->cache_flags & KMF_DEADBEEF)
3826                 cp->cache_flags |= KMF_REDZONE;
3827 
3828         if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3829                 cp->cache_flags |= KMF_NOMAGAZINE;
3830 
3831         if (cflags & KMC_NODEBUG)
3832                 cp->cache_flags &= ~KMF_DEBUG;
3833 
3834         if (cflags & KMC_NOTOUCH)
3835                 cp->cache_flags &= ~KMF_TOUCH;
3836 
3837         if (cflags & KMC_PREFILL)
3838                 cp->cache_flags |= KMF_PREFILL;
3839 
3840         if (cflags & KMC_NOHASH)
3841                 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3842 
3843         if (cflags & KMC_NOMAGAZINE)
3844                 cp->cache_flags |= KMF_NOMAGAZINE;
3845 
3846         if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3847                 cp->cache_flags |= KMF_REDZONE;
3848 
3849         if (!(cp->cache_flags & KMF_AUDIT))
3850                 cp->cache_flags &= ~KMF_CONTENTS;
3851 
3852         if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3853             !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3854                 cp->cache_flags |= KMF_FIREWALL;
3855 
3856         if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3857                 cp->cache_flags &= ~KMF_FIREWALL;
3858 
3859         if (cp->cache_flags & KMF_FIREWALL) {
3860                 cp->cache_flags &= ~KMF_BUFTAG;
3861                 cp->cache_flags |= KMF_NOMAGAZINE;
3862                 ASSERT(vmp == kmem_default_arena);
3863                 vmp = kmem_firewall_arena;
3864         }
3865 
3866         /*
3867          * Set cache properties.
3868          */
3869         (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3870         strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3871         cp->cache_bufsize = bufsize;
3872         cp->cache_align = align;
3873         cp->cache_constructor = constructor;
3874         cp->cache_destructor = destructor;
3875         cp->cache_reclaim = reclaim;
3876         cp->cache_private = private;
3877         cp->cache_arena = vmp;
3878         cp->cache_cflags = cflags;
3879 
3880         /*
3881          * Determine the chunk size.
3882          */
3883         chunksize = bufsize;
3884 
3885         if (align >= KMEM_ALIGN) {
3886                 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3887                 cp->cache_bufctl = chunksize - KMEM_ALIGN;
3888         }
3889 
3890         if (cp->cache_flags & KMF_BUFTAG) {
3891                 cp->cache_bufctl = chunksize;
3892                 cp->cache_buftag = chunksize;
3893                 if (cp->cache_flags & KMF_LITE)
3894                         chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3895                 else
3896                         chunksize += sizeof (kmem_buftag_t);
3897         }
3898 
3899         if (cp->cache_flags & KMF_DEADBEEF) {
3900                 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3901                 if (cp->cache_flags & KMF_LITE)
3902                         cp->cache_verify = sizeof (uint64_t);
3903         }
3904 
3905         cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3906 
3907         cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3908 
3909         /*
3910          * Now that we know the chunk size, determine the optimal slab size.
3911          */
3912         if (vmp == kmem_firewall_arena) {
3913                 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3914                 cp->cache_mincolor = cp->cache_slabsize - chunksize;
3915                 cp->cache_maxcolor = cp->cache_mincolor;
3916                 cp->cache_flags |= KMF_HASH;
3917                 ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3918         } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3919             !(cp->cache_flags & KMF_AUDIT) &&
3920             chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3921                 cp->cache_slabsize = vmp->vm_quantum;
3922                 cp->cache_mincolor = 0;
3923                 cp->cache_maxcolor =
3924                     (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3925                 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3926                 ASSERT(!(cp->cache_flags & KMF_AUDIT));
3927         } else {
3928                 size_t chunks, bestfit, waste, slabsize;
3929                 size_t minwaste = LONG_MAX;
3930 
3931                 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3932                         slabsize = P2ROUNDUP(chunksize * chunks,
3933                             vmp->vm_quantum);
3934                         chunks = slabsize / chunksize;
3935                         waste = (slabsize % chunksize) / chunks;
3936                         if (waste < minwaste) {
3937                                 minwaste = waste;
3938                                 bestfit = slabsize;
3939                         }
3940                 }
3941                 if (cflags & KMC_QCACHE)
3942                         bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3943                 cp->cache_slabsize = bestfit;
3944                 cp->cache_mincolor = 0;
3945                 cp->cache_maxcolor = bestfit % chunksize;
3946                 cp->cache_flags |= KMF_HASH;
3947         }
3948 
3949         cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3950         cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3951 
3952         /*
3953          * Disallowing prefill when either the DEBUG or HASH flag is set or when
3954          * there is a constructor avoids some tricky issues with debug setup
3955          * that may be revisited later. We cannot allow prefill in a
3956          * metadata cache because of potential recursion.
3957          */
3958         if (vmp == kmem_msb_arena ||
3959             cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3960             cp->cache_constructor != NULL)
3961                 cp->cache_flags &= ~KMF_PREFILL;
3962 
3963         if (cp->cache_flags & KMF_HASH) {
3964                 ASSERT(!(cflags & KMC_NOHASH));
3965                 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3966                     kmem_bufctl_audit_cache : kmem_bufctl_cache;
3967         }
3968 
3969         if (cp->cache_maxcolor >= vmp->vm_quantum)
3970                 cp->cache_maxcolor = vmp->vm_quantum - 1;
3971 
3972         cp->cache_color = cp->cache_mincolor;
3973 
3974         /*
3975          * Initialize the rest of the slab layer.
3976          */
3977         mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3978 
3979         avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3980             sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3981         /* LINTED: E_TRUE_LOGICAL_EXPR */
3982         ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3983         /* reuse partial slab AVL linkage for complete slab list linkage */
3984         list_create(&cp->cache_complete_slabs,
3985             sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3986 
3987         if (cp->cache_flags & KMF_HASH) {
3988                 cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3989                     KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3990                 bzero(cp->cache_hash_table,
3991                     KMEM_HASH_INITIAL * sizeof (void *));
3992                 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3993                 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3994         }
3995 
3996         /*
3997          * Initialize the depot.
3998          */
3999         mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
4000 
4001         for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
4002                 continue;
4003 
4004         cp->cache_magtype = mtp;
4005 
4006         /*
4007          * Initialize the CPU layer.
4008          */
4009         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
4010                 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
4011                 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
4012                 ccp->cc_flags = cp->cache_flags;
4013                 ccp->cc_rounds = -1;
4014                 ccp->cc_prounds = -1;
4015         }
4016 
4017         /*
4018          * Create the cache's kstats.
4019          */
4020         if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
4021             "kmem_cache", KSTAT_TYPE_NAMED,
4022             sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
4023             KSTAT_FLAG_VIRTUAL)) != NULL) {
4024                 cp->cache_kstat->ks_data = &kmem_cache_kstat;
4025                 cp->cache_kstat->ks_update = kmem_cache_kstat_update;
4026                 cp->cache_kstat->ks_private = cp;
4027                 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
4028                 kstat_install(cp->cache_kstat);
4029         }
4030 
4031         /*
4032          * Add the cache to the global list.  This makes it visible
4033          * to kmem_update(), so the cache must be ready for business.
4034          */
4035         mutex_enter(&kmem_cache_lock);
4036         list_insert_tail(&kmem_caches, cp);
4037         mutex_exit(&kmem_cache_lock);
4038 
4039         if (kmem_ready)
4040                 kmem_cache_magazine_enable(cp);
4041 
4042         return (cp);
4043 }
4044 
4045 static int
4046 kmem_move_cmp(const void *buf, const void *p)
4047 {
4048         const kmem_move_t *kmm = p;
4049         uintptr_t v1 = (uintptr_t)buf;
4050         uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
4051         return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
4052 }
4053 
4054 static void
4055 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
4056 {
4057         kmd->kmd_reclaim_numer = 1;
4058 }
4059 
4060 /*
4061  * Initially, when choosing candidate slabs for buffers to move, we want to be
4062  * very selective and take only slabs that are less than
4063  * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
4064  * slabs, then we raise the allocation ceiling incrementally. The reclaim
4065  * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
4066  * longer fragmented.
4067  */
4068 static void
4069 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
4070 {
4071         if (direction > 0) {
4072                 /* make it easier to find a candidate slab */
4073                 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
4074                         kmd->kmd_reclaim_numer++;
4075                 }
4076         } else {
4077                 /* be more selective */
4078                 if (kmd->kmd_reclaim_numer > 1) {
4079                         kmd->kmd_reclaim_numer--;
4080                 }
4081         }
4082 }
4083 
4084 void
4085 kmem_cache_set_move(kmem_cache_t *cp,
4086     kmem_cbrc_t (*move)(void *, void *, size_t, void *))
4087 {
4088         kmem_defrag_t *defrag;
4089 
4090         ASSERT(move != NULL);
4091         /*
4092          * The consolidator does not support NOTOUCH caches because kmem cannot
4093          * initialize their slabs with the 0xbaddcafe memory pattern, which sets
4094          * a low order bit usable by clients to distinguish uninitialized memory
4095          * from known objects (see kmem_slab_create).
4096          */
4097         ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
4098         ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
4099 
4100         /*
4101          * We should not be holding anyone's cache lock when calling
4102          * kmem_cache_alloc(), so allocate in all cases before acquiring the
4103          * lock.
4104          */
4105         defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
4106 
4107         mutex_enter(&cp->cache_lock);
4108 
4109         if (KMEM_IS_MOVABLE(cp)) {
4110                 if (cp->cache_move == NULL) {
4111                         ASSERT(cp->cache_slab_alloc == 0);
4112 
4113                         cp->cache_defrag = defrag;
4114                         defrag = NULL; /* nothing to free */
4115                         bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4116                         avl_create(&cp->cache_defrag->kmd_moves_pending,
4117                             kmem_move_cmp, sizeof (kmem_move_t),
4118                             offsetof(kmem_move_t, kmm_entry));
4119                         /* LINTED: E_TRUE_LOGICAL_EXPR */
4120                         ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4121                         /* reuse the slab's AVL linkage for deadlist linkage */
4122                         list_create(&cp->cache_defrag->kmd_deadlist,
4123                             sizeof (kmem_slab_t),
4124                             offsetof(kmem_slab_t, slab_link));
4125                         kmem_reset_reclaim_threshold(cp->cache_defrag);
4126                 }
4127                 cp->cache_move = move;
4128         }
4129 
4130         mutex_exit(&cp->cache_lock);
4131 
4132         if (defrag != NULL) {
4133                 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4134         }
4135 }
4136 
4137 void
4138 kmem_cache_destroy(kmem_cache_t *cp)
4139 {
4140         int cpu_seqid;
4141 
4142         /*
4143          * Remove the cache from the global cache list so that no one else
4144          * can schedule tasks on its behalf, wait for any pending tasks to
4145          * complete, purge the cache, and then destroy it.
4146          */
4147         mutex_enter(&kmem_cache_lock);
4148         list_remove(&kmem_caches, cp);
4149         mutex_exit(&kmem_cache_lock);
4150 
4151         if (kmem_taskq != NULL)
4152                 taskq_wait(kmem_taskq);
4153 
4154         if (kmem_move_taskq != NULL && cp->cache_defrag != NULL)
4155                 taskq_wait(kmem_move_taskq);
4156 
4157         kmem_cache_magazine_purge(cp);
4158 
4159         mutex_enter(&cp->cache_lock);
4160         if (cp->cache_buftotal != 0)
4161                 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
4162                     cp->cache_name, (void *)cp);
4163         if (cp->cache_defrag != NULL) {
4164                 avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4165                 list_destroy(&cp->cache_defrag->kmd_deadlist);
4166                 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4167                 cp->cache_defrag = NULL;
4168         }
4169         /*
4170          * The cache is now dead.  There should be no further activity.  We
4171          * enforce this by setting land mines in the constructor, destructor,
4172          * reclaim, and move routines that induce a kernel text fault if
4173          * invoked.
4174          */
4175         cp->cache_constructor = (int (*)(void *, void *, int))1;
4176         cp->cache_destructor = (void (*)(void *, void *))2;
4177         cp->cache_reclaim = (void (*)(void *))3;
4178         cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
4179         mutex_exit(&cp->cache_lock);
4180 
4181         kstat_delete(cp->cache_kstat);
4182 
4183         if (cp->cache_hash_table != NULL)
4184                 vmem_free(kmem_hash_arena, cp->cache_hash_table,
4185                     (cp->cache_hash_mask + 1) * sizeof (void *));
4186 
4187         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
4188                 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
4189 
4190         mutex_destroy(&cp->cache_depot_lock);
4191         mutex_destroy(&cp->cache_lock);
4192 
4193         vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
4194 }
4195 
4196 /*ARGSUSED*/
4197 static int
4198 kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
4199 {
4200         ASSERT(MUTEX_HELD(&cpu_lock));
4201         if (what == CPU_UNCONFIG) {
4202                 kmem_cache_applyall(kmem_cache_magazine_purge,
4203                     kmem_taskq, TQ_SLEEP);
4204                 kmem_cache_applyall(kmem_cache_magazine_enable,
4205                     kmem_taskq, TQ_SLEEP);
4206         }
4207         return (0);
4208 }
4209 
4210 static void
4211 kmem_alloc_caches_create(const int *array, size_t count,
4212     kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4213 {
4214         char name[KMEM_CACHE_NAMELEN + 1];
4215         size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4216         size_t size = table_unit;
4217         int i;
4218 
4219         for (i = 0; i < count; i++) {
4220                 size_t cache_size = array[i];
4221                 size_t align = KMEM_ALIGN;
4222                 kmem_cache_t *cp;
4223 
4224                 /* if the table has an entry for maxbuf, we're done */
4225                 if (size > maxbuf)
4226                         break;
4227 
4228                 /* cache size must be a multiple of the table unit */
4229                 ASSERT(P2PHASE(cache_size, table_unit) == 0);
4230 
4231                 /*
4232                  * If they allocate a multiple of the coherency granularity,
4233                  * they get a coherency-granularity-aligned address.
4234                  */
4235                 if (IS_P2ALIGNED(cache_size, 64))
4236                         align = 64;
4237                 if (IS_P2ALIGNED(cache_size, PAGESIZE))
4238                         align = PAGESIZE;
4239                 (void) snprintf(name, sizeof (name),
4240                     "kmem_alloc_%lu", cache_size);
4241                 cp = kmem_cache_create(name, cache_size, align,
4242                     NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4243 
4244                 while (size <= cache_size) {
4245                         alloc_table[(size - 1) >> shift] = cp;
4246                         size += table_unit;
4247                 }
4248         }
4249 
4250         ASSERT(size > maxbuf);               /* i.e. maxbuf <= max(cache_size) */
4251 }
4252 
4253 static void
4254 kmem_cache_init(int pass, int use_large_pages)
4255 {
4256         int i;
4257         size_t maxbuf;
4258         kmem_magtype_t *mtp;
4259 
4260         for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4261                 char name[KMEM_CACHE_NAMELEN + 1];
4262 
4263                 mtp = &kmem_magtype[i];
4264                 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
4265                 mtp->mt_cache = kmem_cache_create(name,
4266                     (mtp->mt_magsize + 1) * sizeof (void *),
4267                     mtp->mt_align, NULL, NULL, NULL, NULL,
4268                     kmem_msb_arena, KMC_NOHASH);
4269         }
4270 
4271         kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
4272             sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
4273             kmem_msb_arena, KMC_NOHASH);
4274 
4275         kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
4276             sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
4277             kmem_msb_arena, KMC_NOHASH);
4278 
4279         kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
4280             sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
4281             kmem_msb_arena, KMC_NOHASH);
4282 
4283         if (pass == 2) {
4284                 kmem_va_arena = vmem_create("kmem_va",
4285                     NULL, 0, PAGESIZE,
4286                     vmem_alloc, vmem_free, heap_arena,
4287                     8 * PAGESIZE, VM_SLEEP);
4288 
4289                 if (use_large_pages) {
4290                         kmem_default_arena = vmem_xcreate("kmem_default",
4291                             NULL, 0, PAGESIZE,
4292                             segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
4293                             0, VMC_DUMPSAFE | VM_SLEEP);
4294                 } else {
4295                         kmem_default_arena = vmem_create("kmem_default",
4296                             NULL, 0, PAGESIZE,
4297                             segkmem_alloc, segkmem_free, kmem_va_arena,
4298                             0, VMC_DUMPSAFE | VM_SLEEP);
4299                 }
4300 
4301                 /* Figure out what our maximum cache size is */
4302                 maxbuf = kmem_max_cached;
4303                 if (maxbuf <= KMEM_MAXBUF) {
4304                         maxbuf = 0;
4305                         kmem_max_cached = KMEM_MAXBUF;
4306                 } else {
4307                         size_t size = 0;
4308                         size_t max =
4309                             sizeof (kmem_big_alloc_sizes) / sizeof (int);
4310                         /*
4311                          * Round maxbuf up to an existing cache size.  If maxbuf
4312                          * is larger than the largest cache, we truncate it to
4313                          * the largest cache's size.
4314                          */
4315                         for (i = 0; i < max; i++) {
4316                                 size = kmem_big_alloc_sizes[i];
4317                                 if (maxbuf <= size)
4318                                         break;
4319                         }
4320                         kmem_max_cached = maxbuf = size;
4321                 }
4322 
4323                 /*
4324                  * The big alloc table may not be completely overwritten, so
4325                  * we clear out any stale cache pointers from the first pass.
4326                  */
4327                 bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
4328         } else {
4329                 /*
4330                  * During the first pass, the kmem_alloc_* caches
4331                  * are treated as metadata.
4332                  */
4333                 kmem_default_arena = kmem_msb_arena;
4334                 maxbuf = KMEM_BIG_MAXBUF_32BIT;
4335         }
4336 
4337         /*
4338          * Set up the default caches to back kmem_alloc()
4339          */
4340         kmem_alloc_caches_create(
4341             kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4342             kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4343 
4344         kmem_alloc_caches_create(
4345             kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4346             kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4347 
4348         kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
4349 }
4350 
4351 void
4352 kmem_init(void)
4353 {
4354         kmem_cache_t *cp;
4355         int old_kmem_flags = kmem_flags;
4356         int use_large_pages = 0;
4357         size_t maxverify, minfirewall;
4358 
4359         kstat_init();
4360 
4361         /*
4362          * Don't do firewalled allocations if the heap is less than 1TB
4363          * (i.e. on a 32-bit kernel)
4364          * The resulting VM_NEXTFIT allocations would create too much
4365          * fragmentation in a small heap.
4366          */
4367 #if defined(_LP64)
4368         maxverify = minfirewall = PAGESIZE / 2;
4369 #else
4370         maxverify = minfirewall = ULONG_MAX;
4371 #endif
4372 
4373         /* LINTED */
4374         ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
4375 
4376         list_create(&kmem_caches, sizeof (kmem_cache_t),
4377             offsetof(kmem_cache_t, cache_link));
4378 
4379         kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
4380             vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
4381             VM_SLEEP | VMC_NO_QCACHE);
4382 
4383         kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
4384             PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
4385             VMC_DUMPSAFE | VM_SLEEP);
4386 
4387         kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
4388             segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4389 
4390         kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
4391             segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4392 
4393         kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
4394             segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4395 
4396         kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
4397             NULL, 0, PAGESIZE,
4398             kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
4399             0, VM_SLEEP);
4400 
4401         kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
4402             segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
4403             VMC_DUMPSAFE | VM_SLEEP);
4404 
4405         /* temporary oversize arena for mod_read_system_file */
4406         kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
4407             segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4408 
4409         kmem_reap_interval = 15 * hz;
4410 
4411         /*
4412          * Read /etc/system.  This is a chicken-and-egg problem because
4413          * kmem_flags may be set in /etc/system, but mod_read_system_file()
4414          * needs to use the allocator.  The simplest solution is to create
4415          * all the standard kmem caches, read /etc/system, destroy all the
4416          * caches we just created, and then create them all again in light
4417          * of the (possibly) new kmem_flags and other kmem tunables.
4418          */
4419         kmem_cache_init(1, 0);
4420 
4421         mod_read_system_file(boothowto & RB_ASKNAME);
4422 
4423         while ((cp = list_tail(&kmem_caches)) != NULL)
4424                 kmem_cache_destroy(cp);
4425 
4426         vmem_destroy(kmem_oversize_arena);
4427 
4428         if (old_kmem_flags & KMF_STICKY)
4429                 kmem_flags = old_kmem_flags;
4430 
4431         if (!(kmem_flags & KMF_AUDIT))
4432                 vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
4433 
4434         if (kmem_maxverify == 0)
4435                 kmem_maxverify = maxverify;
4436 
4437         if (kmem_minfirewall == 0)
4438                 kmem_minfirewall = minfirewall;
4439 
4440         /*
4441          * give segkmem a chance to figure out if we are using large pages
4442          * for the kernel heap
4443          */
4444         use_large_pages = segkmem_lpsetup();
4445 
4446         /*
4447          * To protect against corruption, we keep the actual number of callers
4448          * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
4449          * to 16, since the overhead for small buffers quickly gets out of
4450          * hand.
4451          *
4452          * The real limit would depend on the needs of the largest KMC_NOHASH
4453          * cache.
4454          */
4455         kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
4456         kmem_lite_pcs = kmem_lite_count;
4457 
4458         /*
4459          * Normally, we firewall oversized allocations when possible, but
4460          * if we are using large pages for kernel memory, and we don't have
4461          * any non-LITE debugging flags set, we want to allocate oversized
4462          * buffers from large pages, and so skip the firewalling.
4463          */
4464         if (use_large_pages &&
4465             ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
4466                 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
4467                     PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
4468                     0, VMC_DUMPSAFE | VM_SLEEP);
4469         } else {
4470                 kmem_oversize_arena = vmem_create("kmem_oversize",
4471                     NULL, 0, PAGESIZE,
4472                     segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
4473                     kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
4474                     VM_SLEEP);
4475         }
4476 
4477         kmem_cache_init(2, use_large_pages);
4478 
4479         if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
4480                 if (kmem_transaction_log_size == 0)
4481                         kmem_transaction_log_size = kmem_maxavail() / 50;
4482                 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
4483         }
4484 
4485         if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
4486                 if (kmem_content_log_size == 0)
4487                         kmem_content_log_size = kmem_maxavail() / 50;
4488                 kmem_content_log = kmem_log_init(kmem_content_log_size);
4489         }
4490 
4491         kmem_failure_log = kmem_log_init(kmem_failure_log_size);
4492 
4493         kmem_slab_log = kmem_log_init(kmem_slab_log_size);
4494 
4495         /*
4496          * Initialize STREAMS message caches so allocb() is available.
4497          * This allows us to initialize the logging framework (cmn_err(9F),
4498          * strlog(9F), etc) so we can start recording messages.
4499          */
4500         streams_msg_init();
4501 
4502         /*
4503          * Initialize the ZSD framework in Zones so modules loaded henceforth
4504          * can register their callbacks.
4505          */
4506         zone_zsd_init();
4507 
4508         log_init();
4509         taskq_init();
4510 
4511         /*
4512          * Warn about invalid or dangerous values of kmem_flags.
4513          * Always warn about unsupported values.
4514          */
4515         if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
4516             KMF_CONTENTS | KMF_LITE)) != 0) ||
4517             ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
4518                 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
4519                     "See the Solaris Tunable Parameters Reference Manual.",
4520                     kmem_flags);
4521 
4522 #ifdef DEBUG
4523         if ((kmem_flags & KMF_DEBUG) == 0)
4524                 cmn_err(CE_NOTE, "kmem debugging disabled.");
4525 #else
4526         /*
4527          * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
4528          * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
4529          * if KMF_AUDIT is set). We should warn the user about the performance
4530          * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
4531          * isn't set (since that disables AUDIT).
4532          */
4533         if (!(kmem_flags & KMF_LITE) &&
4534             (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
4535                 cmn_err(CE_WARN, "High-overhead kmem debugging features "
4536                     "enabled (kmem_flags = 0x%x).  Performance degradation "
4537                     "and large memory overhead possible. See the Solaris "
4538                     "Tunable Parameters Reference Manual.", kmem_flags);
4539 #endif /* not DEBUG */
4540 
4541         kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
4542 
4543         kmem_ready = 1;
4544 
4545         /*
4546          * Initialize the platform-specific aligned/DMA memory allocator.
4547          */
4548         ka_init();
4549 
4550         /*
4551          * Initialize 32-bit ID cache.
4552          */
4553         id32_init();
4554 
4555         /*
4556          * Initialize the networking stack so modules loaded can
4557          * register their callbacks.
4558          */
4559         netstack_init();
4560 }
4561 
4562 static void
4563 kmem_move_init(void)
4564 {
4565         kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4566             sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4567             kmem_msb_arena, KMC_NOHASH);
4568         kmem_move_cache = kmem_cache_create("kmem_move_cache",
4569             sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4570             kmem_msb_arena, KMC_NOHASH);
4571 
4572         /*
4573          * kmem guarantees that move callbacks are sequential and that even
4574          * across multiple caches no two moves ever execute simultaneously.
4575          * Move callbacks are processed on a separate taskq so that client code
4576          * does not interfere with internal maintenance tasks.
4577          */
4578         kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4579             minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4580 }
4581 
4582 void
4583 kmem_thread_init(void)
4584 {
4585         kmem_move_init();
4586         kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
4587             300, INT_MAX, TASKQ_PREPOPULATE);
4588 }
4589 
4590 void
4591 kmem_mp_init(void)
4592 {
4593         mutex_enter(&cpu_lock);
4594         register_cpu_setup_func(kmem_cpu_setup, NULL);
4595         mutex_exit(&cpu_lock);
4596 
4597         kmem_update_timeout(NULL);
4598 
4599         taskq_mp_init();
4600 }
4601 
4602 /*
4603  * Return the slab of the allocated buffer, or NULL if the buffer is not
4604  * allocated. This function may be called with a known slab address to determine
4605  * whether or not the buffer is allocated, or with a NULL slab address to obtain
4606  * an allocated buffer's slab.
4607  */
4608 static kmem_slab_t *
4609 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4610 {
4611         kmem_bufctl_t *bcp, *bufbcp;
4612 
4613         ASSERT(MUTEX_HELD(&cp->cache_lock));
4614         ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4615 
4616         if (cp->cache_flags & KMF_HASH) {
4617                 for (bcp = *KMEM_HASH(cp, buf);
4618                     (bcp != NULL) && (bcp->bc_addr != buf);
4619                     bcp = bcp->bc_next) {
4620                         continue;
4621                 }
4622                 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4623                 return (bcp == NULL ? NULL : bcp->bc_slab);
4624         }
4625 
4626         if (sp == NULL) {
4627                 sp = KMEM_SLAB(cp, buf);
4628         }
4629         bufbcp = KMEM_BUFCTL(cp, buf);
4630         for (bcp = sp->slab_head;
4631             (bcp != NULL) && (bcp != bufbcp);
4632             bcp = bcp->bc_next) {
4633                 continue;
4634         }
4635         return (bcp == NULL ? sp : NULL);
4636 }
4637 
4638 static boolean_t
4639 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4640 {
4641         long refcnt = sp->slab_refcnt;
4642 
4643         ASSERT(cp->cache_defrag != NULL);
4644 
4645         /*
4646          * For code coverage we want to be able to move an object within the
4647          * same slab (the only partial slab) even if allocating the destination
4648          * buffer resulted in a completely allocated slab.
4649          */
4650         if (flags & KMM_DEBUG) {
4651                 return ((flags & KMM_DESPERATE) ||
4652                     ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4653         }
4654 
4655         /* If we're desperate, we don't care if the client said NO. */
4656         if (flags & KMM_DESPERATE) {
4657                 return (refcnt < sp->slab_chunks); /* any partial */
4658         }
4659 
4660         if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4661                 return (B_FALSE);
4662         }
4663 
4664         if ((refcnt == 1) || kmem_move_any_partial) {
4665                 return (refcnt < sp->slab_chunks);
4666         }
4667 
4668         /*
4669          * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4670          * slabs with a progressively higher percentage of used buffers can be
4671          * reclaimed until the cache as a whole is no longer fragmented.
4672          *
4673          *      sp->slab_refcnt   kmd_reclaim_numer
4674          *      --------------- < ------------------
4675          *      sp->slab_chunks   KMEM_VOID_FRACTION
4676          */
4677         return ((refcnt * KMEM_VOID_FRACTION) <
4678             (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4679 }
4680 
4681 static void *
4682 kmem_hunt_mag(kmem_cache_t *cp, kmem_magazine_t *m, int n, void *buf,
4683     void *tbuf)
4684 {
4685         int i;          /* magazine round index */
4686 
4687         for (i = 0; i < n; i++) {
4688                 if (buf == m->mag_round[i]) {
4689                         if (cp->cache_flags & KMF_BUFTAG) {
4690                                 (void) kmem_cache_free_debug(cp, tbuf,
4691                                     caller());
4692                         }
4693                         m->mag_round[i] = tbuf;
4694                         return (buf);
4695                 }
4696         }
4697 
4698         return (NULL);
4699 }
4700 
4701 /*
4702  * Hunt the magazine layer for the given buffer. If found, the buffer is
4703  * removed from the magazine layer and returned, otherwise NULL is returned.
4704  * The state of the returned buffer is freed and constructed.
4705  */
4706 static void *
4707 kmem_hunt_mags(kmem_cache_t *cp, void *buf)
4708 {
4709         kmem_cpu_cache_t *ccp;
4710         kmem_magazine_t *m;
4711         int cpu_seqid;
4712         int n;          /* magazine rounds */
4713         void *tbuf;     /* temporary swap buffer */
4714 
4715         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4716 
4717         /*
4718          * Allocated a buffer to swap with the one we hope to pull out of a
4719          * magazine when found.
4720          */
4721         tbuf = kmem_cache_alloc(cp, KM_NOSLEEP);
4722         if (tbuf == NULL) {
4723                 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_alloc_fail);
4724                 return (NULL);
4725         }
4726         if (tbuf == buf) {
4727                 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_lucky);
4728                 if (cp->cache_flags & KMF_BUFTAG) {
4729                         (void) kmem_cache_free_debug(cp, buf, caller());
4730                 }
4731                 return (buf);
4732         }
4733 
4734         /* Hunt the depot. */
4735         mutex_enter(&cp->cache_depot_lock);
4736         n = cp->cache_magtype->mt_magsize;
4737         for (m = cp->cache_full.ml_list; m != NULL; m = m->mag_next) {
4738                 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4739                         mutex_exit(&cp->cache_depot_lock);
4740                         return (buf);
4741                 }
4742         }
4743         mutex_exit(&cp->cache_depot_lock);
4744 
4745         /* Hunt the per-CPU magazines. */
4746         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
4747                 ccp = &cp->cache_cpu[cpu_seqid];
4748 
4749                 mutex_enter(&ccp->cc_lock);
4750                 m = ccp->cc_loaded;
4751                 n = ccp->cc_rounds;
4752                 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4753                         mutex_exit(&ccp->cc_lock);
4754                         return (buf);
4755                 }
4756                 m = ccp->cc_ploaded;
4757                 n = ccp->cc_prounds;
4758                 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4759                         mutex_exit(&ccp->cc_lock);
4760                         return (buf);
4761                 }
4762                 mutex_exit(&ccp->cc_lock);
4763         }
4764 
4765         kmem_cache_free(cp, tbuf);
4766         return (NULL);
4767 }
4768 
4769 /*
4770  * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4771  * or when the buffer is freed.
4772  */
4773 static void
4774 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4775 {
4776         ASSERT(MUTEX_HELD(&cp->cache_lock));
4777         ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4778 
4779         if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4780                 return;
4781         }
4782 
4783         if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4784                 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4785                         avl_remove(&cp->cache_partial_slabs, sp);
4786                         sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4787                         sp->slab_stuck_offset = (uint32_t)-1;
4788                         avl_add(&cp->cache_partial_slabs, sp);
4789                 }
4790         } else {
4791                 sp->slab_later_count = 0;
4792                 sp->slab_stuck_offset = (uint32_t)-1;
4793         }
4794 }
4795 
4796 static void
4797 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4798 {
4799         ASSERT(taskq_member(kmem_move_taskq, curthread));
4800         ASSERT(MUTEX_HELD(&cp->cache_lock));
4801         ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4802 
4803         if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4804                 return;
4805         }
4806 
4807         avl_remove(&cp->cache_partial_slabs, sp);
4808         sp->slab_later_count = 0;
4809         sp->slab_flags |= KMEM_SLAB_NOMOVE;
4810         sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4811         avl_add(&cp->cache_partial_slabs, sp);
4812 }
4813 
4814 static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4815 
4816 /*
4817  * The move callback takes two buffer addresses, the buffer to be moved, and a
4818  * newly allocated and constructed buffer selected by kmem as the destination.
4819  * It also takes the size of the buffer and an optional user argument specified
4820  * at cache creation time. kmem guarantees that the buffer to be moved has not
4821  * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4822  * guarantee the present whereabouts of the buffer to be moved, so it is up to
4823  * the client to safely determine whether or not it is still using the buffer.
4824  * The client must not free either of the buffers passed to the move callback,
4825  * since kmem wants to free them directly to the slab layer. The client response
4826  * tells kmem which of the two buffers to free:
4827  *
4828  * YES          kmem frees the old buffer (the move was successful)
4829  * NO           kmem frees the new buffer, marks the slab of the old buffer
4830  *              non-reclaimable to avoid bothering the client again
4831  * LATER        kmem frees the new buffer, increments slab_later_count
4832  * DONT_KNOW    kmem frees the new buffer, searches mags for the old buffer
4833  * DONT_NEED    kmem frees both the old buffer and the new buffer
4834  *
4835  * The pending callback argument now being processed contains both of the
4836  * buffers (old and new) passed to the move callback function, the slab of the
4837  * old buffer, and flags related to the move request, such as whether or not the
4838  * system was desperate for memory.
4839  *
4840  * Slabs are not freed while there is a pending callback, but instead are kept
4841  * on a deadlist, which is drained after the last callback completes. This means
4842  * that slabs are safe to access until kmem_move_end(), no matter how many of
4843  * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4844  * zero for as long as the slab remains on the deadlist and until the slab is
4845  * freed.
4846  */
4847 static void
4848 kmem_move_buffer(kmem_move_t *callback)
4849 {
4850         kmem_cbrc_t response;
4851         kmem_slab_t *sp = callback->kmm_from_slab;
4852         kmem_cache_t *cp = sp->slab_cache;
4853         boolean_t free_on_slab;
4854 
4855         ASSERT(taskq_member(kmem_move_taskq, curthread));
4856         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4857         ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4858 
4859         /*
4860          * The number of allocated buffers on the slab may have changed since we
4861          * last checked the slab's reclaimability (when the pending move was
4862          * enqueued), or the client may have responded NO when asked to move
4863          * another buffer on the same slab.
4864          */
4865         if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4866                 KMEM_STAT_ADD(kmem_move_stats.kms_no_longer_reclaimable);
4867                 KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY),
4868                     kmem_move_stats.kms_notify_no_longer_reclaimable);
4869                 kmem_slab_free(cp, callback->kmm_to_buf);
4870                 kmem_move_end(cp, callback);
4871                 return;
4872         }
4873 
4874         /*
4875          * Hunting magazines is expensive, so we'll wait to do that until the
4876          * client responds KMEM_CBRC_DONT_KNOW. However, checking the slab layer
4877          * is cheap, so we might as well do that here in case we can avoid
4878          * bothering the client.
4879          */
4880         mutex_enter(&cp->cache_lock);
4881         free_on_slab = (kmem_slab_allocated(cp, sp,
4882             callback->kmm_from_buf) == NULL);
4883         mutex_exit(&cp->cache_lock);
4884 
4885         if (free_on_slab) {
4886                 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_slab);
4887                 kmem_slab_free(cp, callback->kmm_to_buf);
4888                 kmem_move_end(cp, callback);
4889                 return;
4890         }
4891 
4892         if (cp->cache_flags & KMF_BUFTAG) {
4893                 /*
4894                  * Make kmem_cache_alloc_debug() apply the constructor for us.
4895                  */
4896                 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4897                     KM_NOSLEEP, 1, caller()) != 0) {
4898                         KMEM_STAT_ADD(kmem_move_stats.kms_alloc_fail);
4899                         kmem_move_end(cp, callback);
4900                         return;
4901                 }
4902         } else if (cp->cache_constructor != NULL &&
4903             cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4904             KM_NOSLEEP) != 0) {
4905                 atomic_inc_64(&cp->cache_alloc_fail);
4906                 KMEM_STAT_ADD(kmem_move_stats.kms_constructor_fail);
4907                 kmem_slab_free(cp, callback->kmm_to_buf);
4908                 kmem_move_end(cp, callback);
4909                 return;
4910         }
4911 
4912         KMEM_STAT_ADD(kmem_move_stats.kms_callbacks);
4913         KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY),
4914             kmem_move_stats.kms_notify_callbacks);
4915         cp->cache_defrag->kmd_callbacks++;
4916         cp->cache_defrag->kmd_thread = curthread;
4917         cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4918         cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4919         DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4920             callback);
4921 
4922         response = cp->cache_move(callback->kmm_from_buf,
4923             callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4924 
4925         DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4926             callback, kmem_cbrc_t, response);
4927         cp->cache_defrag->kmd_thread = NULL;
4928         cp->cache_defrag->kmd_from_buf = NULL;
4929         cp->cache_defrag->kmd_to_buf = NULL;
4930 
4931         if (response == KMEM_CBRC_YES) {
4932                 KMEM_STAT_ADD(kmem_move_stats.kms_yes);
4933                 cp->cache_defrag->kmd_yes++;
4934                 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4935                 /* slab safe to access until kmem_move_end() */
4936                 if (sp->slab_refcnt == 0)
4937                         cp->cache_defrag->kmd_slabs_freed++;
4938                 mutex_enter(&cp->cache_lock);
4939                 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4940                 mutex_exit(&cp->cache_lock);
4941                 kmem_move_end(cp, callback);
4942                 return;
4943         }
4944 
4945         switch (response) {
4946         case KMEM_CBRC_NO:
4947                 KMEM_STAT_ADD(kmem_move_stats.kms_no);
4948                 cp->cache_defrag->kmd_no++;
4949                 mutex_enter(&cp->cache_lock);
4950                 kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4951                 mutex_exit(&cp->cache_lock);
4952                 break;
4953         case KMEM_CBRC_LATER:
4954                 KMEM_STAT_ADD(kmem_move_stats.kms_later);
4955                 cp->cache_defrag->kmd_later++;
4956                 mutex_enter(&cp->cache_lock);
4957                 if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4958                         mutex_exit(&cp->cache_lock);
4959                         break;
4960                 }
4961 
4962                 if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4963                         KMEM_STAT_ADD(kmem_move_stats.kms_disbelief);
4964                         kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4965                 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4966                         sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4967                             callback->kmm_from_buf);
4968                 }
4969                 mutex_exit(&cp->cache_lock);
4970                 break;
4971         case KMEM_CBRC_DONT_NEED:
4972                 KMEM_STAT_ADD(kmem_move_stats.kms_dont_need);
4973                 cp->cache_defrag->kmd_dont_need++;
4974                 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4975                 if (sp->slab_refcnt == 0)
4976                         cp->cache_defrag->kmd_slabs_freed++;
4977                 mutex_enter(&cp->cache_lock);
4978                 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4979                 mutex_exit(&cp->cache_lock);
4980                 break;
4981         case KMEM_CBRC_DONT_KNOW:
4982                 KMEM_STAT_ADD(kmem_move_stats.kms_dont_know);
4983                 cp->cache_defrag->kmd_dont_know++;
4984                 if (kmem_hunt_mags(cp, callback->kmm_from_buf) != NULL) {
4985                         KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_mag);
4986                         cp->cache_defrag->kmd_hunt_found++;
4987                         kmem_slab_free_constructed(cp, callback->kmm_from_buf,
4988                             B_TRUE);
4989                         if (sp->slab_refcnt == 0)
4990                                 cp->cache_defrag->kmd_slabs_freed++;
4991                         mutex_enter(&cp->cache_lock);
4992                         kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4993                         mutex_exit(&cp->cache_lock);
4994                 }
4995                 break;
4996         default:
4997                 panic("'%s' (%p) unexpected move callback response %d\n",
4998                     cp->cache_name, (void *)cp, response);
4999         }
5000 
5001         kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
5002         kmem_move_end(cp, callback);
5003 }
5004 
5005 /* Return B_FALSE if there is insufficient memory for the move request. */
5006 static boolean_t
5007 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
5008 {
5009         void *to_buf;
5010         avl_index_t index;
5011         kmem_move_t *callback, *pending;
5012         ulong_t n;
5013 
5014         ASSERT(taskq_member(kmem_taskq, curthread));
5015         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
5016         ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5017 
5018         callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
5019         if (callback == NULL) {
5020                 KMEM_STAT_ADD(kmem_move_stats.kms_callback_alloc_fail);
5021                 return (B_FALSE);
5022         }
5023 
5024         callback->kmm_from_slab = sp;
5025         callback->kmm_from_buf = buf;
5026         callback->kmm_flags = flags;
5027 
5028         mutex_enter(&cp->cache_lock);
5029 
5030         n = avl_numnodes(&cp->cache_partial_slabs);
5031         if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
5032                 mutex_exit(&cp->cache_lock);
5033                 kmem_cache_free(kmem_move_cache, callback);
5034                 return (B_TRUE); /* there is no need for the move request */
5035         }
5036 
5037         pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
5038         if (pending != NULL) {
5039                 /*
5040                  * If the move is already pending and we're desperate now,
5041                  * update the move flags.
5042                  */
5043                 if (flags & KMM_DESPERATE) {
5044                         pending->kmm_flags |= KMM_DESPERATE;
5045                 }
5046                 mutex_exit(&cp->cache_lock);
5047                 KMEM_STAT_ADD(kmem_move_stats.kms_already_pending);
5048                 kmem_cache_free(kmem_move_cache, callback);
5049                 return (B_TRUE);
5050         }
5051 
5052         to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
5053             B_FALSE);
5054         callback->kmm_to_buf = to_buf;
5055         avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
5056 
5057         mutex_exit(&cp->cache_lock);
5058 
5059         if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
5060             callback, TQ_NOSLEEP)) {
5061                 KMEM_STAT_ADD(kmem_move_stats.kms_callback_taskq_fail);
5062                 mutex_enter(&cp->cache_lock);
5063                 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
5064                 mutex_exit(&cp->cache_lock);
5065                 kmem_slab_free(cp, to_buf);
5066                 kmem_cache_free(kmem_move_cache, callback);
5067                 return (B_FALSE);
5068         }
5069 
5070         return (B_TRUE);
5071 }
5072 
5073 static void
5074 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
5075 {
5076         avl_index_t index;
5077 
5078         ASSERT(cp->cache_defrag != NULL);
5079         ASSERT(taskq_member(kmem_move_taskq, curthread));
5080         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
5081 
5082         mutex_enter(&cp->cache_lock);
5083         VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
5084             callback->kmm_from_buf, &index) != NULL);
5085         avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
5086         if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
5087                 list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5088                 kmem_slab_t *sp;
5089 
5090                 /*
5091                  * The last pending move completed. Release all slabs from the
5092                  * front of the dead list except for any slab at the tail that
5093                  * needs to be released from the context of kmem_move_buffers().
5094                  * kmem deferred unmapping the buffers on these slabs in order
5095                  * to guarantee that buffers passed to the move callback have
5096                  * been touched only by kmem or by the client itself.
5097                  */
5098                 while ((sp = list_remove_head(deadlist)) != NULL) {
5099                         if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
5100                                 list_insert_tail(deadlist, sp);
5101                                 break;
5102                         }
5103                         cp->cache_defrag->kmd_deadcount--;
5104                         cp->cache_slab_destroy++;
5105                         mutex_exit(&cp->cache_lock);
5106                         kmem_slab_destroy(cp, sp);
5107                         KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed);
5108                         mutex_enter(&cp->cache_lock);
5109                 }
5110         }
5111         mutex_exit(&cp->cache_lock);
5112         kmem_cache_free(kmem_move_cache, callback);
5113 }
5114 
5115 /*
5116  * Move buffers from least used slabs first by scanning backwards from the end
5117  * of the partial slab list. Scan at most max_scan candidate slabs and move
5118  * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
5119  * If desperate to reclaim memory, move buffers from any partial slab, otherwise
5120  * skip slabs with a ratio of allocated buffers at or above the current
5121  * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
5122  * scan is aborted) so that the caller can adjust the reclaimability threshold
5123  * depending on how many reclaimable slabs it finds.
5124  *
5125  * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
5126  * move request, since it is not valid for kmem_move_begin() to call
5127  * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
5128  */
5129 static int
5130 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
5131     int flags)
5132 {
5133         kmem_slab_t *sp;
5134         void *buf;
5135         int i, j; /* slab index, buffer index */
5136         int s; /* reclaimable slabs */
5137         int b; /* allocated (movable) buffers on reclaimable slab */
5138         boolean_t success;
5139         int refcnt;
5140         int nomove;
5141 
5142         ASSERT(taskq_member(kmem_taskq, curthread));
5143         ASSERT(MUTEX_HELD(&cp->cache_lock));
5144         ASSERT(kmem_move_cache != NULL);
5145         ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
5146         ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
5147             avl_numnodes(&cp->cache_partial_slabs) > 1);
5148 
5149         if (kmem_move_blocked) {
5150                 return (0);
5151         }
5152 
5153         if (kmem_move_fulltilt) {
5154                 flags |= KMM_DESPERATE;
5155         }
5156 
5157         if (max_scan == 0 || (flags & KMM_DESPERATE)) {
5158                 /*
5159                  * Scan as many slabs as needed to find the desired number of
5160                  * candidate slabs.
5161                  */
5162                 max_scan = (size_t)-1;
5163         }
5164 
5165         if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
5166                 /* Find as many candidate slabs as possible. */
5167                 max_slabs = (size_t)-1;
5168         }
5169 
5170         sp = avl_last(&cp->cache_partial_slabs);
5171         ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
5172         for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
5173             ((sp != avl_first(&cp->cache_partial_slabs)) ||
5174             (flags & KMM_DEBUG));
5175             sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
5176 
5177                 if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
5178                         continue;
5179                 }
5180                 s++;
5181 
5182                 /* Look for allocated buffers to move. */
5183                 for (j = 0, b = 0, buf = sp->slab_base;
5184                     (j < sp->slab_chunks) && (b < sp->slab_refcnt);
5185                     buf = (((char *)buf) + cp->cache_chunksize), j++) {
5186 
5187                         if (kmem_slab_allocated(cp, sp, buf) == NULL) {
5188                                 continue;
5189                         }
5190 
5191                         b++;
5192 
5193                         /*
5194                          * Prevent the slab from being destroyed while we drop
5195                          * cache_lock and while the pending move is not yet
5196                          * registered. Flag the pending move while
5197                          * kmd_moves_pending may still be empty, since we can't
5198                          * yet rely on a non-zero pending move count to prevent
5199                          * the slab from being destroyed.
5200                          */
5201                         ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5202                         sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5203                         /*
5204                          * Recheck refcnt and nomove after reacquiring the lock,
5205                          * since these control the order of partial slabs, and
5206                          * we want to know if we can pick up the scan where we
5207                          * left off.
5208                          */
5209                         refcnt = sp->slab_refcnt;
5210                         nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
5211                         mutex_exit(&cp->cache_lock);
5212 
5213                         success = kmem_move_begin(cp, sp, buf, flags);
5214 
5215                         /*
5216                          * Now, before the lock is reacquired, kmem could
5217                          * process all pending move requests and purge the
5218                          * deadlist, so that upon reacquiring the lock, sp has
5219                          * been remapped. Or, the client may free all the
5220                          * objects on the slab while the pending moves are still
5221                          * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5222                          * flag causes the slab to be put at the end of the
5223                          * deadlist and prevents it from being destroyed, since
5224                          * we plan to destroy it here after reacquiring the
5225                          * lock.
5226                          */
5227                         mutex_enter(&cp->cache_lock);
5228                         ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5229                         sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5230 
5231                         if (sp->slab_refcnt == 0) {
5232                                 list_t *deadlist =
5233                                     &cp->cache_defrag->kmd_deadlist;
5234                                 list_remove(deadlist, sp);
5235 
5236                                 if (!avl_is_empty(
5237                                     &cp->cache_defrag->kmd_moves_pending)) {
5238                                         /*
5239                                          * A pending move makes it unsafe to
5240                                          * destroy the slab, because even though
5241                                          * the move is no longer needed, the
5242                                          * context where that is determined
5243                                          * requires the slab to exist.
5244                                          * Fortunately, a pending move also
5245                                          * means we don't need to destroy the
5246                                          * slab here, since it will get
5247                                          * destroyed along with any other slabs
5248                                          * on the deadlist after the last
5249                                          * pending move completes.
5250                                          */
5251                                         list_insert_head(deadlist, sp);
5252                                         KMEM_STAT_ADD(kmem_move_stats.
5253                                             kms_endscan_slab_dead);
5254                                         return (-1);
5255                                 }
5256 
5257                                 /*
5258                                  * Destroy the slab now if it was completely
5259                                  * freed while we dropped cache_lock and there
5260                                  * are no pending moves. Since slab_refcnt
5261                                  * cannot change once it reaches zero, no new
5262                                  * pending moves from that slab are possible.
5263                                  */
5264                                 cp->cache_defrag->kmd_deadcount--;
5265                                 cp->cache_slab_destroy++;
5266                                 mutex_exit(&cp->cache_lock);
5267                                 kmem_slab_destroy(cp, sp);
5268                                 KMEM_STAT_ADD(kmem_move_stats.
5269                                     kms_dead_slabs_freed);
5270                                 KMEM_STAT_ADD(kmem_move_stats.
5271                                     kms_endscan_slab_destroyed);
5272                                 mutex_enter(&cp->cache_lock);
5273                                 /*
5274                                  * Since we can't pick up the scan where we left
5275                                  * off, abort the scan and say nothing about the
5276                                  * number of reclaimable slabs.
5277                                  */
5278                                 return (-1);
5279                         }
5280 
5281                         if (!success) {
5282                                 /*
5283                                  * Abort the scan if there is not enough memory
5284                                  * for the request and say nothing about the
5285                                  * number of reclaimable slabs.
5286                                  */
5287                                 KMEM_STAT_COND_ADD(s < max_slabs,
5288                                     kmem_move_stats.kms_endscan_nomem);
5289                                 return (-1);
5290                         }
5291 
5292                         /*
5293                          * The slab's position changed while the lock was
5294                          * dropped, so we don't know where we are in the
5295                          * sequence any more.
5296                          */
5297                         if (sp->slab_refcnt != refcnt) {
5298                                 /*
5299                                  * If this is a KMM_DEBUG move, the slab_refcnt
5300                                  * may have changed because we allocated a
5301                                  * destination buffer on the same slab. In that
5302                                  * case, we're not interested in counting it.
5303                                  */
5304                                 KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) &&
5305                                     (s < max_slabs),
5306                                     kmem_move_stats.kms_endscan_refcnt_changed);
5307                                 return (-1);
5308                         }
5309                         if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) {
5310                                 KMEM_STAT_COND_ADD(s < max_slabs,
5311                                     kmem_move_stats.kms_endscan_nomove_changed);
5312                                 return (-1);
5313                         }
5314 
5315                         /*
5316                          * Generating a move request allocates a destination
5317                          * buffer from the slab layer, bumping the first partial
5318                          * slab if it is completely allocated. If the current
5319                          * slab becomes the first partial slab as a result, we
5320                          * can't continue to scan backwards.
5321                          *
5322                          * If this is a KMM_DEBUG move and we allocated the
5323                          * destination buffer from the last partial slab, then
5324                          * the buffer we're moving is on the same slab and our
5325                          * slab_refcnt has changed, causing us to return before
5326                          * reaching here if there are no partial slabs left.
5327                          */
5328                         ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5329                         if (sp == avl_first(&cp->cache_partial_slabs)) {
5330                                 /*
5331                                  * We're not interested in a second KMM_DEBUG
5332                                  * move.
5333                                  */
5334                                 goto end_scan;
5335                         }
5336                 }
5337         }
5338 end_scan:
5339 
5340         KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) &&
5341             (s < max_slabs) &&
5342             (sp == avl_first(&cp->cache_partial_slabs)),
5343             kmem_move_stats.kms_endscan_freelist);
5344 
5345         return (s);
5346 }
5347 
5348 typedef struct kmem_move_notify_args {
5349         kmem_cache_t *kmna_cache;
5350         void *kmna_buf;
5351 } kmem_move_notify_args_t;
5352 
5353 static void
5354 kmem_cache_move_notify_task(void *arg)
5355 {
5356         kmem_move_notify_args_t *args = arg;
5357         kmem_cache_t *cp = args->kmna_cache;
5358         void *buf = args->kmna_buf;
5359         kmem_slab_t *sp;
5360 
5361         ASSERT(taskq_member(kmem_taskq, curthread));
5362         ASSERT(list_link_active(&cp->cache_link));
5363 
5364         kmem_free(args, sizeof (kmem_move_notify_args_t));
5365         mutex_enter(&cp->cache_lock);
5366         sp = kmem_slab_allocated(cp, NULL, buf);
5367 
5368         /* Ignore the notification if the buffer is no longer allocated. */
5369         if (sp == NULL) {
5370                 mutex_exit(&cp->cache_lock);
5371                 return;
5372         }
5373 
5374         /* Ignore the notification if there's no reason to move the buffer. */
5375         if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5376                 /*
5377                  * So far the notification is not ignored. Ignore the
5378                  * notification if the slab is not marked by an earlier refusal
5379                  * to move a buffer.
5380                  */
5381                 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5382                     (sp->slab_later_count == 0)) {
5383                         mutex_exit(&cp->cache_lock);
5384                         return;
5385                 }
5386 
5387                 kmem_slab_move_yes(cp, sp, buf);
5388                 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5389                 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5390                 mutex_exit(&cp->cache_lock);
5391                 /* see kmem_move_buffers() about dropping the lock */
5392                 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5393                 mutex_enter(&cp->cache_lock);
5394                 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5395                 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5396                 if (sp->slab_refcnt == 0) {
5397                         list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5398                         list_remove(deadlist, sp);
5399 
5400                         if (!avl_is_empty(
5401                             &cp->cache_defrag->kmd_moves_pending)) {
5402                                 list_insert_head(deadlist, sp);
5403                                 mutex_exit(&cp->cache_lock);
5404                                 KMEM_STAT_ADD(kmem_move_stats.
5405                                     kms_notify_slab_dead);
5406                                 return;
5407                         }
5408 
5409                         cp->cache_defrag->kmd_deadcount--;
5410                         cp->cache_slab_destroy++;
5411                         mutex_exit(&cp->cache_lock);
5412                         kmem_slab_destroy(cp, sp);
5413                         KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed);
5414                         KMEM_STAT_ADD(kmem_move_stats.
5415                             kms_notify_slab_destroyed);
5416                         return;
5417                 }
5418         } else {
5419                 kmem_slab_move_yes(cp, sp, buf);
5420         }
5421         mutex_exit(&cp->cache_lock);
5422 }
5423 
5424 void
5425 kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5426 {
5427         kmem_move_notify_args_t *args;
5428 
5429         KMEM_STAT_ADD(kmem_move_stats.kms_notify);
5430         args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5431         if (args != NULL) {
5432                 args->kmna_cache = cp;
5433                 args->kmna_buf = buf;
5434                 if (!taskq_dispatch(kmem_taskq,
5435                     (task_func_t *)kmem_cache_move_notify_task, args,
5436                     TQ_NOSLEEP))
5437                         kmem_free(args, sizeof (kmem_move_notify_args_t));
5438         }
5439 }
5440 
5441 static void
5442 kmem_cache_defrag(kmem_cache_t *cp)
5443 {
5444         size_t n;
5445 
5446         ASSERT(cp->cache_defrag != NULL);
5447 
5448         mutex_enter(&cp->cache_lock);
5449         n = avl_numnodes(&cp->cache_partial_slabs);
5450         if (n > 1) {
5451                 /* kmem_move_buffers() drops and reacquires cache_lock */
5452                 KMEM_STAT_ADD(kmem_move_stats.kms_defrags);
5453                 cp->cache_defrag->kmd_defrags++;
5454                 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5455         }
5456         mutex_exit(&cp->cache_lock);
5457 }
5458 
5459 /* Is this cache above the fragmentation threshold? */
5460 static boolean_t
5461 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5462 {
5463         /*
5464          *      nfree           kmem_frag_numer
5465          * ------------------ > ---------------
5466          * cp->cache_buftotal        kmem_frag_denom
5467          */
5468         return ((nfree * kmem_frag_denom) >
5469             (cp->cache_buftotal * kmem_frag_numer));
5470 }
5471 
5472 static boolean_t
5473 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5474 {
5475         boolean_t fragmented;
5476         uint64_t nfree;
5477 
5478         ASSERT(MUTEX_HELD(&cp->cache_lock));
5479         *doreap = B_FALSE;
5480 
5481         if (kmem_move_fulltilt) {
5482                 if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5483                         return (B_TRUE);
5484                 }
5485         } else {
5486                 if ((cp->cache_complete_slab_count + avl_numnodes(
5487                     &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5488                         return (B_FALSE);
5489                 }
5490         }
5491 
5492         nfree = cp->cache_bufslab;
5493         fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5494             kmem_cache_frag_threshold(cp, nfree));
5495 
5496         /*
5497          * Free buffers in the magazine layer appear allocated from the point of
5498          * view of the slab layer. We want to know if the slab layer would
5499          * appear fragmented if we included free buffers from magazines that
5500          * have fallen out of the working set.
5501          */
5502         if (!fragmented) {
5503                 long reap;
5504 
5505                 mutex_enter(&cp->cache_depot_lock);
5506                 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5507                 reap = MIN(reap, cp->cache_full.ml_total);
5508                 mutex_exit(&cp->cache_depot_lock);
5509 
5510                 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5511                 if (kmem_cache_frag_threshold(cp, nfree)) {
5512                         *doreap = B_TRUE;
5513                 }
5514         }
5515 
5516         return (fragmented);
5517 }
5518 
5519 /* Called periodically from kmem_taskq */
5520 static void
5521 kmem_cache_scan(kmem_cache_t *cp)
5522 {
5523         boolean_t reap = B_FALSE;
5524         kmem_defrag_t *kmd;
5525 
5526         ASSERT(taskq_member(kmem_taskq, curthread));
5527 
5528         mutex_enter(&cp->cache_lock);
5529 
5530         kmd = cp->cache_defrag;
5531         if (kmd->kmd_consolidate > 0) {
5532                 kmd->kmd_consolidate--;
5533                 mutex_exit(&cp->cache_lock);
5534                 kmem_cache_reap(cp);
5535                 return;
5536         }
5537 
5538         if (kmem_cache_is_fragmented(cp, &reap)) {
5539                 size_t slabs_found;
5540 
5541                 /*
5542                  * Consolidate reclaimable slabs from the end of the partial
5543                  * slab list (scan at most kmem_reclaim_scan_range slabs to find
5544                  * reclaimable slabs). Keep track of how many candidate slabs we
5545                  * looked for and how many we actually found so we can adjust
5546                  * the definition of a candidate slab if we're having trouble
5547                  * finding them.
5548                  *
5549                  * kmem_move_buffers() drops and reacquires cache_lock.
5550                  */
5551                 KMEM_STAT_ADD(kmem_move_stats.kms_scans);
5552                 kmd->kmd_scans++;
5553                 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5554                     kmem_reclaim_max_slabs, 0);
5555                 if (slabs_found >= 0) {
5556                         kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5557                         kmd->kmd_slabs_found += slabs_found;
5558                 }
5559 
5560                 if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5561                         kmd->kmd_tries = 0;
5562 
5563                         /*
5564                          * If we had difficulty finding candidate slabs in
5565                          * previous scans, adjust the threshold so that
5566                          * candidates are easier to find.
5567                          */
5568                         if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5569                                 kmem_adjust_reclaim_threshold(kmd, -1);
5570                         } else if ((kmd->kmd_slabs_found * 2) <
5571                             kmd->kmd_slabs_sought) {
5572                                 kmem_adjust_reclaim_threshold(kmd, 1);
5573                         }
5574                         kmd->kmd_slabs_sought = 0;
5575                         kmd->kmd_slabs_found = 0;
5576                 }
5577         } else {
5578                 kmem_reset_reclaim_threshold(cp->cache_defrag);
5579 #ifdef  DEBUG
5580                 if (!avl_is_empty(&cp->cache_partial_slabs)) {
5581                         /*
5582                          * In a debug kernel we want the consolidator to
5583                          * run occasionally even when there is plenty of
5584                          * memory.
5585                          */
5586                         uint16_t debug_rand;
5587 
5588                         (void) random_get_bytes((uint8_t *)&debug_rand, 2);
5589                         if (!kmem_move_noreap &&
5590                             ((debug_rand % kmem_mtb_reap) == 0)) {
5591                                 mutex_exit(&cp->cache_lock);
5592                                 KMEM_STAT_ADD(kmem_move_stats.kms_debug_reaps);
5593                                 kmem_cache_reap(cp);
5594                                 return;
5595                         } else if ((debug_rand % kmem_mtb_move) == 0) {
5596                                 KMEM_STAT_ADD(kmem_move_stats.kms_scans);
5597                                 KMEM_STAT_ADD(kmem_move_stats.kms_debug_scans);
5598                                 kmd->kmd_scans++;
5599                                 (void) kmem_move_buffers(cp,
5600                                     kmem_reclaim_scan_range, 1, KMM_DEBUG);
5601                         }
5602                 }
5603 #endif  /* DEBUG */
5604         }
5605 
5606         mutex_exit(&cp->cache_lock);
5607 
5608         if (reap) {
5609                 KMEM_STAT_ADD(kmem_move_stats.kms_scan_depot_ws_reaps);
5610                 kmem_depot_ws_reap(cp);
5611         }
5612 }