1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2015 Joyent, Inc.  All rights reserved.
  24  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
  25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
  26  */
  27 
  28 /*
  29  * Kernel memory allocator, as described in the following two papers and a
  30  * statement about the consolidator:
  31  *
  32  * Jeff Bonwick,
  33  * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
  34  * Proceedings of the Summer 1994 Usenix Conference.
  35  * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
  36  *
  37  * Jeff Bonwick and Jonathan Adams,
  38  * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
  39  * Arbitrary Resources.
  40  * Proceedings of the 2001 Usenix Conference.
  41  * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
  42  *
  43  * kmem Slab Consolidator Big Theory Statement:
  44  *
  45  * 1. Motivation
  46  *
  47  * As stated in Bonwick94, slabs provide the following advantages over other
  48  * allocation structures in terms of memory fragmentation:
  49  *
  50  *  - Internal fragmentation (per-buffer wasted space) is minimal.
  51  *  - Severe external fragmentation (unused buffers on the free list) is
  52  *    unlikely.
  53  *
  54  * Segregating objects by size eliminates one source of external fragmentation,
  55  * and according to Bonwick:
  56  *
  57  *   The other reason that slabs reduce external fragmentation is that all
  58  *   objects in a slab are of the same type, so they have the same lifetime
  59  *   distribution. The resulting segregation of short-lived and long-lived
  60  *   objects at slab granularity reduces the likelihood of an entire page being
  61  *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
  62  *
  63  * While unlikely, severe external fragmentation remains possible. Clients that
  64  * allocate both short- and long-lived objects from the same cache cannot
  65  * anticipate the distribution of long-lived objects within the allocator's slab
  66  * implementation. Even a small percentage of long-lived objects distributed
  67  * randomly across many slabs can lead to a worst case scenario where the client
  68  * frees the majority of its objects and the system gets back almost none of the
  69  * slabs. Despite the client doing what it reasonably can to help the system
  70  * reclaim memory, the allocator cannot shake free enough slabs because of
  71  * lonely allocations stubbornly hanging on. Although the allocator is in a
  72  * position to diagnose the fragmentation, there is nothing that the allocator
  73  * by itself can do about it. It only takes a single allocated object to prevent
  74  * an entire slab from being reclaimed, and any object handed out by
  75  * kmem_cache_alloc() is by definition in the client's control. Conversely,
  76  * although the client is in a position to move a long-lived object, it has no
  77  * way of knowing if the object is causing fragmentation, and if so, where to
  78  * move it. A solution necessarily requires further cooperation between the
  79  * allocator and the client.
  80  *
  81  * 2. Move Callback
  82  *
  83  * The kmem slab consolidator therefore adds a move callback to the
  84  * allocator/client interface, improving worst-case external fragmentation in
  85  * kmem caches that supply a function to move objects from one memory location
  86  * to another. In a situation of low memory kmem attempts to consolidate all of
  87  * a cache's slabs at once; otherwise it works slowly to bring external
  88  * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
  89  * thereby helping to avoid a low memory situation in the future.
  90  *
  91  * The callback has the following signature:
  92  *
  93  *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
  94  *
  95  * It supplies the kmem client with two addresses: the allocated object that
  96  * kmem wants to move and a buffer selected by kmem for the client to use as the
  97  * copy destination. The callback is kmem's way of saying "Please get off of
  98  * this buffer and use this one instead." kmem knows where it wants to move the
  99  * object in order to best reduce fragmentation. All the client needs to know
 100  * about the second argument (void *new) is that it is an allocated, constructed
 101  * object ready to take the contents of the old object. When the move function
 102  * is called, the system is likely to be low on memory, and the new object
 103  * spares the client from having to worry about allocating memory for the
 104  * requested move. The third argument supplies the size of the object, in case a
 105  * single move function handles multiple caches whose objects differ only in
 106  * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
 107  * user argument passed to the constructor, destructor, and reclaim functions is
 108  * also passed to the move callback.
 109  *
 110  * 2.1 Setting the Move Callback
 111  *
 112  * The client sets the move callback after creating the cache and before
 113  * allocating from it:
 114  *
 115  *      object_cache = kmem_cache_create(...);
 116  *      kmem_cache_set_move(object_cache, object_move);
 117  *
 118  * 2.2 Move Callback Return Values
 119  *
 120  * Only the client knows about its own data and when is a good time to move it.
 121  * The client is cooperating with kmem to return unused memory to the system,
 122  * and kmem respectfully accepts this help at the client's convenience. When
 123  * asked to move an object, the client can respond with any of the following:
 124  *
 125  *   typedef enum kmem_cbrc {
 126  *           KMEM_CBRC_YES,
 127  *           KMEM_CBRC_NO,
 128  *           KMEM_CBRC_LATER,
 129  *           KMEM_CBRC_DONT_NEED,
 130  *           KMEM_CBRC_DONT_KNOW
 131  *   } kmem_cbrc_t;
 132  *
 133  * The client must not explicitly kmem_cache_free() either of the objects passed
 134  * to the callback, since kmem wants to free them directly to the slab layer
 135  * (bypassing the per-CPU magazine layer). The response tells kmem which of the
 136  * objects to free:
 137  *
 138  *       YES: (Did it) The client moved the object, so kmem frees the old one.
 139  *        NO: (Never) The client refused, so kmem frees the new object (the
 140  *            unused copy destination). kmem also marks the slab of the old
 141  *            object so as not to bother the client with further callbacks for
 142  *            that object as long as the slab remains on the partial slab list.
 143  *            (The system won't be getting the slab back as long as the
 144  *            immovable object holds it hostage, so there's no point in moving
 145  *            any of its objects.)
 146  *     LATER: The client is using the object and cannot move it now, so kmem
 147  *            frees the new object (the unused copy destination). kmem still
 148  *            attempts to move other objects off the slab, since it expects to
 149  *            succeed in clearing the slab in a later callback. The client
 150  *            should use LATER instead of NO if the object is likely to become
 151  *            movable very soon.
 152  * DONT_NEED: The client no longer needs the object, so kmem frees the old along
 153  *            with the new object (the unused copy destination). This response
 154  *            is the client's opportunity to be a model citizen and give back as
 155  *            much as it can.
 156  * DONT_KNOW: The client does not know about the object because
 157  *            a) the client has just allocated the object and not yet put it
 158  *               wherever it expects to find known objects
 159  *            b) the client has removed the object from wherever it expects to
 160  *               find known objects and is about to free it, or
 161  *            c) the client has freed the object.
 162  *            In all these cases (a, b, and c) kmem frees the new object (the
 163  *            unused copy destination).  In the first case, the object is in
 164  *            use and the correct action is that for LATER; in the latter two
 165  *            cases, we know that the object is either freed or about to be
 166  *            freed, in which case it is either already in a magazine or about
 167  *            to be in one.  In these cases, we know that the object will either
 168  *            be reallocated and reused, or it will end up in a full magazine
 169  *            that will be reaped (thereby liberating the slab).  Because it
 170  *            is prohibitively expensive to differentiate these cases, and
 171  *            because the defrag code is executed when we're low on memory
 172  *            (thereby biasing the system to reclaim full magazines) we treat
 173  *            all DONT_KNOW cases as LATER and rely on cache reaping to
 174  *            generally clean up full magazines.  While we take the same action
 175  *            for these cases, we maintain their semantic distinction:  if
 176  *            defragmentation is not occurring, it is useful to know if this
 177  *            is due to objects in use (LATER) or objects in an unknown state
 178  *            of transition (DONT_KNOW).
 179  *
 180  * 2.3 Object States
 181  *
 182  * Neither kmem nor the client can be assumed to know the object's whereabouts
 183  * at the time of the callback. An object belonging to a kmem cache may be in
 184  * any of the following states:
 185  *
 186  * 1. Uninitialized on the slab
 187  * 2. Allocated from the slab but not constructed (still uninitialized)
 188  * 3. Allocated from the slab, constructed, but not yet ready for business
 189  *    (not in a valid state for the move callback)
 190  * 4. In use (valid and known to the client)
 191  * 5. About to be freed (no longer in a valid state for the move callback)
 192  * 6. Freed to a magazine (still constructed)
 193  * 7. Allocated from a magazine, not yet ready for business (not in a valid
 194  *    state for the move callback), and about to return to state #4
 195  * 8. Deconstructed on a magazine that is about to be freed
 196  * 9. Freed to the slab
 197  *
 198  * Since the move callback may be called at any time while the object is in any
 199  * of the above states (except state #1), the client needs a safe way to
 200  * determine whether or not it knows about the object. Specifically, the client
 201  * needs to know whether or not the object is in state #4, the only state in
 202  * which a move is valid. If the object is in any other state, the client should
 203  * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
 204  * the object's fields.
 205  *
 206  * Note that although an object may be in state #4 when kmem initiates the move
 207  * request, the object may no longer be in that state by the time kmem actually
 208  * calls the move function. Not only does the client free objects
 209  * asynchronously, kmem itself puts move requests on a queue where thay are
 210  * pending until kmem processes them from another context. Also, objects freed
 211  * to a magazine appear allocated from the point of view of the slab layer, so
 212  * kmem may even initiate requests for objects in a state other than state #4.
 213  *
 214  * 2.3.1 Magazine Layer
 215  *
 216  * An important insight revealed by the states listed above is that the magazine
 217  * layer is populated only by kmem_cache_free(). Magazines of constructed
 218  * objects are never populated directly from the slab layer (which contains raw,
 219  * unconstructed objects). Whenever an allocation request cannot be satisfied
 220  * from the magazine layer, the magazines are bypassed and the request is
 221  * satisfied from the slab layer (creating a new slab if necessary). kmem calls
 222  * the object constructor only when allocating from the slab layer, and only in
 223  * response to kmem_cache_alloc() or to prepare the destination buffer passed in
 224  * the move callback. kmem does not preconstruct objects in anticipation of
 225  * kmem_cache_alloc().
 226  *
 227  * 2.3.2 Object Constructor and Destructor
 228  *
 229  * If the client supplies a destructor, it must be valid to call the destructor
 230  * on a newly created object (immediately after the constructor).
 231  *
 232  * 2.4 Recognizing Known Objects
 233  *
 234  * There is a simple test to determine safely whether or not the client knows
 235  * about a given object in the move callback. It relies on the fact that kmem
 236  * guarantees that the object of the move callback has only been touched by the
 237  * client itself or else by kmem. kmem does this by ensuring that none of the
 238  * cache's slabs are freed to the virtual memory (VM) subsystem while a move
 239  * callback is pending. When the last object on a slab is freed, if there is a
 240  * pending move, kmem puts the slab on a per-cache dead list and defers freeing
 241  * slabs on that list until all pending callbacks are completed. That way,
 242  * clients can be certain that the object of a move callback is in one of the
 243  * states listed above, making it possible to distinguish known objects (in
 244  * state #4) using the two low order bits of any pointer member (with the
 245  * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
 246  * platforms).
 247  *
 248  * The test works as long as the client always transitions objects from state #4
 249  * (known, in use) to state #5 (about to be freed, invalid) by setting the low
 250  * order bit of the client-designated pointer member. Since kmem only writes
 251  * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
 252  * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
 253  * guaranteed to set at least one of the two low order bits. Therefore, given an
 254  * object with a back pointer to a 'container_t *o_container', the client can
 255  * test
 256  *
 257  *      container_t *container = object->o_container;
 258  *      if ((uintptr_t)container & 0x3) {
 259  *              return (KMEM_CBRC_DONT_KNOW);
 260  *      }
 261  *
 262  * Typically, an object will have a pointer to some structure with a list or
 263  * hash where objects from the cache are kept while in use. Assuming that the
 264  * client has some way of knowing that the container structure is valid and will
 265  * not go away during the move, and assuming that the structure includes a lock
 266  * to protect whatever collection is used, then the client would continue as
 267  * follows:
 268  *
 269  *      // Ensure that the container structure does not go away.
 270  *      if (container_hold(container) == 0) {
 271  *              return (KMEM_CBRC_DONT_KNOW);
 272  *      }
 273  *      mutex_enter(&container->c_objects_lock);
 274  *      if (container != object->o_container) {
 275  *              mutex_exit(&container->c_objects_lock);
 276  *              container_rele(container);
 277  *              return (KMEM_CBRC_DONT_KNOW);
 278  *      }
 279  *
 280  * At this point the client knows that the object cannot be freed as long as
 281  * c_objects_lock is held. Note that after acquiring the lock, the client must
 282  * recheck the o_container pointer in case the object was removed just before
 283  * acquiring the lock.
 284  *
 285  * When the client is about to free an object, it must first remove that object
 286  * from the list, hash, or other structure where it is kept. At that time, to
 287  * mark the object so it can be distinguished from the remaining, known objects,
 288  * the client sets the designated low order bit:
 289  *
 290  *      mutex_enter(&container->c_objects_lock);
 291  *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
 292  *      list_remove(&container->c_objects, object);
 293  *      mutex_exit(&container->c_objects_lock);
 294  *
 295  * In the common case, the object is freed to the magazine layer, where it may
 296  * be reused on a subsequent allocation without the overhead of calling the
 297  * constructor. While in the magazine it appears allocated from the point of
 298  * view of the slab layer, making it a candidate for the move callback. Most
 299  * objects unrecognized by the client in the move callback fall into this
 300  * category and are cheaply distinguished from known objects by the test
 301  * described earlier. Because searching magazines is prohibitively expensive
 302  * for kmem, clients that do not mark freed objects (and therefore return
 303  * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation
 304  * efficacy reduced.
 305  *
 306  * Invalidating the designated pointer member before freeing the object marks
 307  * the object to be avoided in the callback, and conversely, assigning a valid
 308  * value to the designated pointer member after allocating the object makes the
 309  * object fair game for the callback:
 310  *
 311  *      ... allocate object ...
 312  *      ... set any initial state not set by the constructor ...
 313  *
 314  *      mutex_enter(&container->c_objects_lock);
 315  *      list_insert_tail(&container->c_objects, object);
 316  *      membar_producer();
 317  *      object->o_container = container;
 318  *      mutex_exit(&container->c_objects_lock);
 319  *
 320  * Note that everything else must be valid before setting o_container makes the
 321  * object fair game for the move callback. The membar_producer() call ensures
 322  * that all the object's state is written to memory before setting the pointer
 323  * that transitions the object from state #3 or #7 (allocated, constructed, not
 324  * yet in use) to state #4 (in use, valid). That's important because the move
 325  * function has to check the validity of the pointer before it can safely
 326  * acquire the lock protecting the collection where it expects to find known
 327  * objects.
 328  *
 329  * This method of distinguishing known objects observes the usual symmetry:
 330  * invalidating the designated pointer is the first thing the client does before
 331  * freeing the object, and setting the designated pointer is the last thing the
 332  * client does after allocating the object. Of course, the client is not
 333  * required to use this method. Fundamentally, how the client recognizes known
 334  * objects is completely up to the client, but this method is recommended as an
 335  * efficient and safe way to take advantage of the guarantees made by kmem. If
 336  * the entire object is arbitrary data without any markable bits from a suitable
 337  * pointer member, then the client must find some other method, such as
 338  * searching a hash table of known objects.
 339  *
 340  * 2.5 Preventing Objects From Moving
 341  *
 342  * Besides a way to distinguish known objects, the other thing that the client
 343  * needs is a strategy to ensure that an object will not move while the client
 344  * is actively using it. The details of satisfying this requirement tend to be
 345  * highly cache-specific. It might seem that the same rules that let a client
 346  * remove an object safely should also decide when an object can be moved
 347  * safely. However, any object state that makes a removal attempt invalid is
 348  * likely to be long-lasting for objects that the client does not expect to
 349  * remove. kmem knows nothing about the object state and is equally likely (from
 350  * the client's point of view) to request a move for any object in the cache,
 351  * whether prepared for removal or not. Even a low percentage of objects stuck
 352  * in place by unremovability will defeat the consolidator if the stuck objects
 353  * are the same long-lived allocations likely to hold slabs hostage.
 354  * Fundamentally, the consolidator is not aimed at common cases. Severe external
 355  * fragmentation is a worst case scenario manifested as sparsely allocated
 356  * slabs, by definition a low percentage of the cache's objects. When deciding
 357  * what makes an object movable, keep in mind the goal of the consolidator: to
 358  * bring worst-case external fragmentation within the limits guaranteed for
 359  * internal fragmentation. Removability is a poor criterion if it is likely to
 360  * exclude more than an insignificant percentage of objects for long periods of
 361  * time.
 362  *
 363  * A tricky general solution exists, and it has the advantage of letting you
 364  * move any object at almost any moment, practically eliminating the likelihood
 365  * that an object can hold a slab hostage. However, if there is a cache-specific
 366  * way to ensure that an object is not actively in use in the vast majority of
 367  * cases, a simpler solution that leverages this cache-specific knowledge is
 368  * preferred.
 369  *
 370  * 2.5.1 Cache-Specific Solution
 371  *
 372  * As an example of a cache-specific solution, the ZFS znode cache takes
 373  * advantage of the fact that the vast majority of znodes are only being
 374  * referenced from the DNLC. (A typical case might be a few hundred in active
 375  * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
 376  * client has established that it recognizes the znode and can access its fields
 377  * safely (using the method described earlier), it then tests whether the znode
 378  * is referenced by anything other than the DNLC. If so, it assumes that the
 379  * znode may be in active use and is unsafe to move, so it drops its locks and
 380  * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
 381  * else znodes are used, no change is needed to protect against the possibility
 382  * of the znode moving. The disadvantage is that it remains possible for an
 383  * application to hold a znode slab hostage with an open file descriptor.
 384  * However, this case ought to be rare and the consolidator has a way to deal
 385  * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
 386  * object, kmem eventually stops believing it and treats the slab as if the
 387  * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
 388  * then focus on getting it off of the partial slab list by allocating rather
 389  * than freeing all of its objects. (Either way of getting a slab off the
 390  * free list reduces fragmentation.)
 391  *
 392  * 2.5.2 General Solution
 393  *
 394  * The general solution, on the other hand, requires an explicit hold everywhere
 395  * the object is used to prevent it from moving. To keep the client locking
 396  * strategy as uncomplicated as possible, kmem guarantees the simplifying
 397  * assumption that move callbacks are sequential, even across multiple caches.
 398  * Internally, a global queue processed by a single thread supports all caches
 399  * implementing the callback function. No matter how many caches supply a move
 400  * function, the consolidator never moves more than one object at a time, so the
 401  * client does not have to worry about tricky lock ordering involving several
 402  * related objects from different kmem caches.
 403  *
 404  * The general solution implements the explicit hold as a read-write lock, which
 405  * allows multiple readers to access an object from the cache simultaneously
 406  * while a single writer is excluded from moving it. A single rwlock for the
 407  * entire cache would lock out all threads from using any of the cache's objects
 408  * even though only a single object is being moved, so to reduce contention,
 409  * the client can fan out the single rwlock into an array of rwlocks hashed by
 410  * the object address, making it probable that moving one object will not
 411  * prevent other threads from using a different object. The rwlock cannot be a
 412  * member of the object itself, because the possibility of the object moving
 413  * makes it unsafe to access any of the object's fields until the lock is
 414  * acquired.
 415  *
 416  * Assuming a small, fixed number of locks, it's possible that multiple objects
 417  * will hash to the same lock. A thread that needs to use multiple objects in
 418  * the same function may acquire the same lock multiple times. Since rwlocks are
 419  * reentrant for readers, and since there is never more than a single writer at
 420  * a time (assuming that the client acquires the lock as a writer only when
 421  * moving an object inside the callback), there would seem to be no problem.
 422  * However, a client locking multiple objects in the same function must handle
 423  * one case of potential deadlock: Assume that thread A needs to prevent both
 424  * object 1 and object 2 from moving, and thread B, the callback, meanwhile
 425  * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
 426  * same lock, that thread A will acquire the lock for object 1 as a reader
 427  * before thread B sets the lock's write-wanted bit, preventing thread A from
 428  * reacquiring the lock for object 2 as a reader. Unable to make forward
 429  * progress, thread A will never release the lock for object 1, resulting in
 430  * deadlock.
 431  *
 432  * There are two ways of avoiding the deadlock just described. The first is to
 433  * use rw_tryenter() rather than rw_enter() in the callback function when
 434  * attempting to acquire the lock as a writer. If tryenter discovers that the
 435  * same object (or another object hashed to the same lock) is already in use, it
 436  * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
 437  * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
 438  * since it allows a thread to acquire the lock as a reader in spite of a
 439  * waiting writer. This second approach insists on moving the object now, no
 440  * matter how many readers the move function must wait for in order to do so,
 441  * and could delay the completion of the callback indefinitely (blocking
 442  * callbacks to other clients). In practice, a less insistent callback using
 443  * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
 444  * little reason to use anything else.
 445  *
 446  * Avoiding deadlock is not the only problem that an implementation using an
 447  * explicit hold needs to solve. Locking the object in the first place (to
 448  * prevent it from moving) remains a problem, since the object could move
 449  * between the time you obtain a pointer to the object and the time you acquire
 450  * the rwlock hashed to that pointer value. Therefore the client needs to
 451  * recheck the value of the pointer after acquiring the lock, drop the lock if
 452  * the value has changed, and try again. This requires a level of indirection:
 453  * something that points to the object rather than the object itself, that the
 454  * client can access safely while attempting to acquire the lock. (The object
 455  * itself cannot be referenced safely because it can move at any time.)
 456  * The following lock-acquisition function takes whatever is safe to reference
 457  * (arg), follows its pointer to the object (using function f), and tries as
 458  * often as necessary to acquire the hashed lock and verify that the object
 459  * still has not moved:
 460  *
 461  *      object_t *
 462  *      object_hold(object_f f, void *arg)
 463  *      {
 464  *              object_t *op;
 465  *
 466  *              op = f(arg);
 467  *              if (op == NULL) {
 468  *                      return (NULL);
 469  *              }
 470  *
 471  *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
 472  *              while (op != f(arg)) {
 473  *                      rw_exit(OBJECT_RWLOCK(op));
 474  *                      op = f(arg);
 475  *                      if (op == NULL) {
 476  *                              break;
 477  *                      }
 478  *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
 479  *              }
 480  *
 481  *              return (op);
 482  *      }
 483  *
 484  * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
 485  * lock reacquisition loop, while necessary, almost never executes. The function
 486  * pointer f (used to obtain the object pointer from arg) has the following type
 487  * definition:
 488  *
 489  *      typedef object_t *(*object_f)(void *arg);
 490  *
 491  * An object_f implementation is likely to be as simple as accessing a structure
 492  * member:
 493  *
 494  *      object_t *
 495  *      s_object(void *arg)
 496  *      {
 497  *              something_t *sp = arg;
 498  *              return (sp->s_object);
 499  *      }
 500  *
 501  * The flexibility of a function pointer allows the path to the object to be
 502  * arbitrarily complex and also supports the notion that depending on where you
 503  * are using the object, you may need to get it from someplace different.
 504  *
 505  * The function that releases the explicit hold is simpler because it does not
 506  * have to worry about the object moving:
 507  *
 508  *      void
 509  *      object_rele(object_t *op)
 510  *      {
 511  *              rw_exit(OBJECT_RWLOCK(op));
 512  *      }
 513  *
 514  * The caller is spared these details so that obtaining and releasing an
 515  * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
 516  * of object_hold() only needs to know that the returned object pointer is valid
 517  * if not NULL and that the object will not move until released.
 518  *
 519  * Although object_hold() prevents an object from moving, it does not prevent it
 520  * from being freed. The caller must take measures before calling object_hold()
 521  * (afterwards is too late) to ensure that the held object cannot be freed. The
 522  * caller must do so without accessing the unsafe object reference, so any lock
 523  * or reference count used to ensure the continued existence of the object must
 524  * live outside the object itself.
 525  *
 526  * Obtaining a new object is a special case where an explicit hold is impossible
 527  * for the caller. Any function that returns a newly allocated object (either as
 528  * a return value, or as an in-out paramter) must return it already held; after
 529  * the caller gets it is too late, since the object cannot be safely accessed
 530  * without the level of indirection described earlier. The following
 531  * object_alloc() example uses the same code shown earlier to transition a new
 532  * object into the state of being recognized (by the client) as a known object.
 533  * The function must acquire the hold (rw_enter) before that state transition
 534  * makes the object movable:
 535  *
 536  *      static object_t *
 537  *      object_alloc(container_t *container)
 538  *      {
 539  *              object_t *object = kmem_cache_alloc(object_cache, 0);
 540  *              ... set any initial state not set by the constructor ...
 541  *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
 542  *              mutex_enter(&container->c_objects_lock);
 543  *              list_insert_tail(&container->c_objects, object);
 544  *              membar_producer();
 545  *              object->o_container = container;
 546  *              mutex_exit(&container->c_objects_lock);
 547  *              return (object);
 548  *      }
 549  *
 550  * Functions that implicitly acquire an object hold (any function that calls
 551  * object_alloc() to supply an object for the caller) need to be carefully noted
 552  * so that the matching object_rele() is not neglected. Otherwise, leaked holds
 553  * prevent all objects hashed to the affected rwlocks from ever being moved.
 554  *
 555  * The pointer to a held object can be hashed to the holding rwlock even after
 556  * the object has been freed. Although it is possible to release the hold
 557  * after freeing the object, you may decide to release the hold implicitly in
 558  * whatever function frees the object, so as to release the hold as soon as
 559  * possible, and for the sake of symmetry with the function that implicitly
 560  * acquires the hold when it allocates the object. Here, object_free() releases
 561  * the hold acquired by object_alloc(). Its implicit object_rele() forms a
 562  * matching pair with object_hold():
 563  *
 564  *      void
 565  *      object_free(object_t *object)
 566  *      {
 567  *              container_t *container;
 568  *
 569  *              ASSERT(object_held(object));
 570  *              container = object->o_container;
 571  *              mutex_enter(&container->c_objects_lock);
 572  *              object->o_container =
 573  *                  (void *)((uintptr_t)object->o_container | 0x1);
 574  *              list_remove(&container->c_objects, object);
 575  *              mutex_exit(&container->c_objects_lock);
 576  *              object_rele(object);
 577  *              kmem_cache_free(object_cache, object);
 578  *      }
 579  *
 580  * Note that object_free() cannot safely accept an object pointer as an argument
 581  * unless the object is already held. Any function that calls object_free()
 582  * needs to be carefully noted since it similarly forms a matching pair with
 583  * object_hold().
 584  *
 585  * To complete the picture, the following callback function implements the
 586  * general solution by moving objects only if they are currently unheld:
 587  *
 588  *      static kmem_cbrc_t
 589  *      object_move(void *buf, void *newbuf, size_t size, void *arg)
 590  *      {
 591  *              object_t *op = buf, *np = newbuf;
 592  *              container_t *container;
 593  *
 594  *              container = op->o_container;
 595  *              if ((uintptr_t)container & 0x3) {
 596  *                      return (KMEM_CBRC_DONT_KNOW);
 597  *              }
 598  *
 599  *              // Ensure that the container structure does not go away.
 600  *              if (container_hold(container) == 0) {
 601  *                      return (KMEM_CBRC_DONT_KNOW);
 602  *              }
 603  *
 604  *              mutex_enter(&container->c_objects_lock);
 605  *              if (container != op->o_container) {
 606  *                      mutex_exit(&container->c_objects_lock);
 607  *                      container_rele(container);
 608  *                      return (KMEM_CBRC_DONT_KNOW);
 609  *              }
 610  *
 611  *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
 612  *                      mutex_exit(&container->c_objects_lock);
 613  *                      container_rele(container);
 614  *                      return (KMEM_CBRC_LATER);
 615  *              }
 616  *
 617  *              object_move_impl(op, np); // critical section
 618  *              rw_exit(OBJECT_RWLOCK(op));
 619  *
 620  *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
 621  *              list_link_replace(&op->o_link_node, &np->o_link_node);
 622  *              mutex_exit(&container->c_objects_lock);
 623  *              container_rele(container);
 624  *              return (KMEM_CBRC_YES);
 625  *      }
 626  *
 627  * Note that object_move() must invalidate the designated o_container pointer of
 628  * the old object in the same way that object_free() does, since kmem will free
 629  * the object in response to the KMEM_CBRC_YES return value.
 630  *
 631  * The lock order in object_move() differs from object_alloc(), which locks
 632  * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
 633  * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
 634  * not a problem. Holding the lock on the object list in the example above
 635  * through the entire callback not only prevents the object from going away, it
 636  * also allows you to lock the list elsewhere and know that none of its elements
 637  * will move during iteration.
 638  *
 639  * Adding an explicit hold everywhere an object from the cache is used is tricky
 640  * and involves much more change to client code than a cache-specific solution
 641  * that leverages existing state to decide whether or not an object is
 642  * movable. However, this approach has the advantage that no object remains
 643  * immovable for any significant length of time, making it extremely unlikely
 644  * that long-lived allocations can continue holding slabs hostage; and it works
 645  * for any cache.
 646  *
 647  * 3. Consolidator Implementation
 648  *
 649  * Once the client supplies a move function that a) recognizes known objects and
 650  * b) avoids moving objects that are actively in use, the remaining work is up
 651  * to the consolidator to decide which objects to move and when to issue
 652  * callbacks.
 653  *
 654  * The consolidator relies on the fact that a cache's slabs are ordered by
 655  * usage. Each slab has a fixed number of objects. Depending on the slab's
 656  * "color" (the offset of the first object from the beginning of the slab;
 657  * offsets are staggered to mitigate false sharing of cache lines) it is either
 658  * the maximum number of objects per slab determined at cache creation time or
 659  * else the number closest to the maximum that fits within the space remaining
 660  * after the initial offset. A completely allocated slab may contribute some
 661  * internal fragmentation (per-slab overhead) but no external fragmentation, so
 662  * it is of no interest to the consolidator. At the other extreme, slabs whose
 663  * objects have all been freed to the slab are released to the virtual memory
 664  * (VM) subsystem (objects freed to magazines are still allocated as far as the
 665  * slab is concerned). External fragmentation exists when there are slabs
 666  * somewhere between these extremes. A partial slab has at least one but not all
 667  * of its objects allocated. The more partial slabs, and the fewer allocated
 668  * objects on each of them, the higher the fragmentation. Hence the
 669  * consolidator's overall strategy is to reduce the number of partial slabs by
 670  * moving allocated objects from the least allocated slabs to the most allocated
 671  * slabs.
 672  *
 673  * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
 674  * slabs are kept separately in an unordered list. Since the majority of slabs
 675  * tend to be completely allocated (a typical unfragmented cache may have
 676  * thousands of complete slabs and only a single partial slab), separating
 677  * complete slabs improves the efficiency of partial slab ordering, since the
 678  * complete slabs do not affect the depth or balance of the AVL tree. This
 679  * ordered sequence of partial slabs acts as a "free list" supplying objects for
 680  * allocation requests.
 681  *
 682  * Objects are always allocated from the first partial slab in the free list,
 683  * where the allocation is most likely to eliminate a partial slab (by
 684  * completely allocating it). Conversely, when a single object from a completely
 685  * allocated slab is freed to the slab, that slab is added to the front of the
 686  * free list. Since most free list activity involves highly allocated slabs
 687  * coming and going at the front of the list, slabs tend naturally toward the
 688  * ideal order: highly allocated at the front, sparsely allocated at the back.
 689  * Slabs with few allocated objects are likely to become completely free if they
 690  * keep a safe distance away from the front of the free list. Slab misorders
 691  * interfere with the natural tendency of slabs to become completely free or
 692  * completely allocated. For example, a slab with a single allocated object
 693  * needs only a single free to escape the cache; its natural desire is
 694  * frustrated when it finds itself at the front of the list where a second
 695  * allocation happens just before the free could have released it. Another slab
 696  * with all but one object allocated might have supplied the buffer instead, so
 697  * that both (as opposed to neither) of the slabs would have been taken off the
 698  * free list.
 699  *
 700  * Although slabs tend naturally toward the ideal order, misorders allowed by a
 701  * simple list implementation defeat the consolidator's strategy of merging
 702  * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
 703  * needs another way to fix misorders to optimize its callback strategy. One
 704  * approach is to periodically scan a limited number of slabs, advancing a
 705  * marker to hold the current scan position, and to move extreme misorders to
 706  * the front or back of the free list and to the front or back of the current
 707  * scan range. By making consecutive scan ranges overlap by one slab, the least
 708  * allocated slab in the current range can be carried along from the end of one
 709  * scan to the start of the next.
 710  *
 711  * Maintaining partial slabs in an AVL tree relieves kmem of this additional
 712  * task, however. Since most of the cache's activity is in the magazine layer,
 713  * and allocations from the slab layer represent only a startup cost, the
 714  * overhead of maintaining a balanced tree is not a significant concern compared
 715  * to the opportunity of reducing complexity by eliminating the partial slab
 716  * scanner just described. The overhead of an AVL tree is minimized by
 717  * maintaining only partial slabs in the tree and keeping completely allocated
 718  * slabs separately in a list. To avoid increasing the size of the slab
 719  * structure the AVL linkage pointers are reused for the slab's list linkage,
 720  * since the slab will always be either partial or complete, never stored both
 721  * ways at the same time. To further minimize the overhead of the AVL tree the
 722  * compare function that orders partial slabs by usage divides the range of
 723  * allocated object counts into bins such that counts within the same bin are
 724  * considered equal. Binning partial slabs makes it less likely that allocating
 725  * or freeing a single object will change the slab's order, requiring a tree
 726  * reinsertion (an avl_remove() followed by an avl_add(), both potentially
 727  * requiring some rebalancing of the tree). Allocation counts closest to
 728  * completely free and completely allocated are left unbinned (finely sorted) to
 729  * better support the consolidator's strategy of merging slabs at either
 730  * extreme.
 731  *
 732  * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
 733  *
 734  * The consolidator piggybacks on the kmem maintenance thread and is called on
 735  * the same interval as kmem_cache_update(), once per cache every fifteen
 736  * seconds. kmem maintains a running count of unallocated objects in the slab
 737  * layer (cache_bufslab). The consolidator checks whether that number exceeds
 738  * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
 739  * there is a significant number of slabs in the cache (arbitrarily a minimum
 740  * 101 total slabs). Unused objects that have fallen out of the magazine layer's
 741  * working set are included in the assessment, and magazines in the depot are
 742  * reaped if those objects would lift cache_bufslab above the fragmentation
 743  * threshold. Once the consolidator decides that a cache is fragmented, it looks
 744  * for a candidate slab to reclaim, starting at the end of the partial slab free
 745  * list and scanning backwards. At first the consolidator is choosy: only a slab
 746  * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
 747  * single allocated object, regardless of percentage). If there is difficulty
 748  * finding a candidate slab, kmem raises the allocation threshold incrementally,
 749  * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
 750  * external fragmentation (unused objects on the free list) below 12.5% (1/8),
 751  * even in the worst case of every slab in the cache being almost 7/8 allocated.
 752  * The threshold can also be lowered incrementally when candidate slabs are easy
 753  * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
 754  * is no longer fragmented.
 755  *
 756  * 3.2 Generating Callbacks
 757  *
 758  * Once an eligible slab is chosen, a callback is generated for every allocated
 759  * object on the slab, in the hope that the client will move everything off the
 760  * slab and make it reclaimable. Objects selected as move destinations are
 761  * chosen from slabs at the front of the free list. Assuming slabs in the ideal
 762  * order (most allocated at the front, least allocated at the back) and a
 763  * cooperative client, the consolidator will succeed in removing slabs from both
 764  * ends of the free list, completely allocating on the one hand and completely
 765  * freeing on the other. Objects selected as move destinations are allocated in
 766  * the kmem maintenance thread where move requests are enqueued. A separate
 767  * callback thread removes pending callbacks from the queue and calls the
 768  * client. The separate thread ensures that client code (the move function) does
 769  * not interfere with internal kmem maintenance tasks. A map of pending
 770  * callbacks keyed by object address (the object to be moved) is checked to
 771  * ensure that duplicate callbacks are not generated for the same object.
 772  * Allocating the move destination (the object to move to) prevents subsequent
 773  * callbacks from selecting the same destination as an earlier pending callback.
 774  *
 775  * Move requests can also be generated by kmem_cache_reap() when the system is
 776  * desperate for memory and by kmem_cache_move_notify(), called by the client to
 777  * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
 778  * The map of pending callbacks is protected by the same lock that protects the
 779  * slab layer.
 780  *
 781  * When the system is desperate for memory, kmem does not bother to determine
 782  * whether or not the cache exceeds the fragmentation threshold, but tries to
 783  * consolidate as many slabs as possible. Normally, the consolidator chews
 784  * slowly, one sparsely allocated slab at a time during each maintenance
 785  * interval that the cache is fragmented. When desperate, the consolidator
 786  * starts at the last partial slab and enqueues callbacks for every allocated
 787  * object on every partial slab, working backwards until it reaches the first
 788  * partial slab. The first partial slab, meanwhile, advances in pace with the
 789  * consolidator as allocations to supply move destinations for the enqueued
 790  * callbacks use up the highly allocated slabs at the front of the free list.
 791  * Ideally, the overgrown free list collapses like an accordion, starting at
 792  * both ends and ending at the center with a single partial slab.
 793  *
 794  * 3.3 Client Responses
 795  *
 796  * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
 797  * marks the slab that supplied the stuck object non-reclaimable and moves it to
 798  * front of the free list. The slab remains marked as long as it remains on the
 799  * free list, and it appears more allocated to the partial slab compare function
 800  * than any unmarked slab, no matter how many of its objects are allocated.
 801  * Since even one immovable object ties up the entire slab, the goal is to
 802  * completely allocate any slab that cannot be completely freed. kmem does not
 803  * bother generating callbacks to move objects from a marked slab unless the
 804  * system is desperate.
 805  *
 806  * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
 807  * slab. If the client responds LATER too many times, kmem disbelieves and
 808  * treats the response as a NO. The count is cleared when the slab is taken off
 809  * the partial slab list or when the client moves one of the slab's objects.
 810  *
 811  * 4. Observability
 812  *
 813  * A kmem cache's external fragmentation is best observed with 'mdb -k' using
 814  * the ::kmem_slabs dcmd. For a complete description of the command, enter
 815  * '::help kmem_slabs' at the mdb prompt.
 816  */
 817 
 818 #include <sys/kmem_impl.h>
 819 #include <sys/vmem_impl.h>
 820 #include <sys/param.h>
 821 #include <sys/sysmacros.h>
 822 #include <sys/vm.h>
 823 #include <sys/proc.h>
 824 #include <sys/tuneable.h>
 825 #include <sys/systm.h>
 826 #include <sys/cmn_err.h>
 827 #include <sys/debug.h>
 828 #include <sys/sdt.h>
 829 #include <sys/mutex.h>
 830 #include <sys/bitmap.h>
 831 #include <sys/atomic.h>
 832 #include <sys/kobj.h>
 833 #include <sys/disp.h>
 834 #include <vm/seg_kmem.h>
 835 #include <sys/log.h>
 836 #include <sys/callb.h>
 837 #include <sys/taskq.h>
 838 #include <sys/modctl.h>
 839 #include <sys/reboot.h>
 840 #include <sys/id32.h>
 841 #include <sys/zone.h>
 842 #include <sys/netstack.h>
 843 #ifdef  DEBUG
 844 #include <sys/random.h>
 845 #endif
 846 
 847 extern void streams_msg_init(void);
 848 extern int segkp_fromheap;
 849 extern void segkp_cache_free(void);
 850 extern int callout_init_done;
 851 
 852 struct kmem_cache_kstat {
 853         kstat_named_t   kmc_buf_size;
 854         kstat_named_t   kmc_align;
 855         kstat_named_t   kmc_chunk_size;
 856         kstat_named_t   kmc_slab_size;
 857         kstat_named_t   kmc_alloc;
 858         kstat_named_t   kmc_alloc_fail;
 859         kstat_named_t   kmc_free;
 860         kstat_named_t   kmc_depot_alloc;
 861         kstat_named_t   kmc_depot_free;
 862         kstat_named_t   kmc_depot_contention;
 863         kstat_named_t   kmc_slab_alloc;
 864         kstat_named_t   kmc_slab_free;
 865         kstat_named_t   kmc_buf_constructed;
 866         kstat_named_t   kmc_buf_avail;
 867         kstat_named_t   kmc_buf_inuse;
 868         kstat_named_t   kmc_buf_total;
 869         kstat_named_t   kmc_buf_max;
 870         kstat_named_t   kmc_slab_create;
 871         kstat_named_t   kmc_slab_destroy;
 872         kstat_named_t   kmc_vmem_source;
 873         kstat_named_t   kmc_hash_size;
 874         kstat_named_t   kmc_hash_lookup_depth;
 875         kstat_named_t   kmc_hash_rescale;
 876         kstat_named_t   kmc_full_magazines;
 877         kstat_named_t   kmc_empty_magazines;
 878         kstat_named_t   kmc_magazine_size;
 879         kstat_named_t   kmc_reap; /* number of kmem_cache_reap() calls */
 880         kstat_named_t   kmc_defrag; /* attempts to defrag all partial slabs */
 881         kstat_named_t   kmc_scan; /* attempts to defrag one partial slab */
 882         kstat_named_t   kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
 883         kstat_named_t   kmc_move_yes;
 884         kstat_named_t   kmc_move_no;
 885         kstat_named_t   kmc_move_later;
 886         kstat_named_t   kmc_move_dont_need;
 887         kstat_named_t   kmc_move_dont_know; /* obj unrecognized by client ... */
 888         kstat_named_t   kmc_move_hunt_found; /* ... but found in mag layer */
 889         kstat_named_t   kmc_move_slabs_freed; /* slabs freed by consolidator */
 890         kstat_named_t   kmc_move_reclaimable; /* buffers, if consolidator ran */
 891 } kmem_cache_kstat = {
 892         { "buf_size",           KSTAT_DATA_UINT64 },
 893         { "align",              KSTAT_DATA_UINT64 },
 894         { "chunk_size",         KSTAT_DATA_UINT64 },
 895         { "slab_size",          KSTAT_DATA_UINT64 },
 896         { "alloc",              KSTAT_DATA_UINT64 },
 897         { "alloc_fail",         KSTAT_DATA_UINT64 },
 898         { "free",               KSTAT_DATA_UINT64 },
 899         { "depot_alloc",        KSTAT_DATA_UINT64 },
 900         { "depot_free",         KSTAT_DATA_UINT64 },
 901         { "depot_contention",   KSTAT_DATA_UINT64 },
 902         { "slab_alloc",         KSTAT_DATA_UINT64 },
 903         { "slab_free",          KSTAT_DATA_UINT64 },
 904         { "buf_constructed",    KSTAT_DATA_UINT64 },
 905         { "buf_avail",          KSTAT_DATA_UINT64 },
 906         { "buf_inuse",          KSTAT_DATA_UINT64 },
 907         { "buf_total",          KSTAT_DATA_UINT64 },
 908         { "buf_max",            KSTAT_DATA_UINT64 },
 909         { "slab_create",        KSTAT_DATA_UINT64 },
 910         { "slab_destroy",       KSTAT_DATA_UINT64 },
 911         { "vmem_source",        KSTAT_DATA_UINT64 },
 912         { "hash_size",          KSTAT_DATA_UINT64 },
 913         { "hash_lookup_depth",  KSTAT_DATA_UINT64 },
 914         { "hash_rescale",       KSTAT_DATA_UINT64 },
 915         { "full_magazines",     KSTAT_DATA_UINT64 },
 916         { "empty_magazines",    KSTAT_DATA_UINT64 },
 917         { "magazine_size",      KSTAT_DATA_UINT64 },
 918         { "reap",               KSTAT_DATA_UINT64 },
 919         { "defrag",             KSTAT_DATA_UINT64 },
 920         { "scan",               KSTAT_DATA_UINT64 },
 921         { "move_callbacks",     KSTAT_DATA_UINT64 },
 922         { "move_yes",           KSTAT_DATA_UINT64 },
 923         { "move_no",            KSTAT_DATA_UINT64 },
 924         { "move_later",         KSTAT_DATA_UINT64 },
 925         { "move_dont_need",     KSTAT_DATA_UINT64 },
 926         { "move_dont_know",     KSTAT_DATA_UINT64 },
 927         { "move_hunt_found",    KSTAT_DATA_UINT64 },
 928         { "move_slabs_freed",   KSTAT_DATA_UINT64 },
 929         { "move_reclaimable",   KSTAT_DATA_UINT64 },
 930 };
 931 
 932 static kmutex_t kmem_cache_kstat_lock;
 933 
 934 /*
 935  * The default set of caches to back kmem_alloc().
 936  * These sizes should be reevaluated periodically.
 937  *
 938  * We want allocations that are multiples of the coherency granularity
 939  * (64 bytes) to be satisfied from a cache which is a multiple of 64
 940  * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
 941  * the next kmem_cache_size greater than or equal to it must be a
 942  * multiple of 64.
 943  *
 944  * We split the table into two sections:  size <= 4k and size > 4k.  This
 945  * saves a lot of space and cache footprint in our cache tables.
 946  */
 947 static const int kmem_alloc_sizes[] = {
 948         1 * 8,
 949         2 * 8,
 950         3 * 8,
 951         4 * 8,          5 * 8,          6 * 8,          7 * 8,
 952         4 * 16,         5 * 16,         6 * 16,         7 * 16,
 953         4 * 32,         5 * 32,         6 * 32,         7 * 32,
 954         4 * 64,         5 * 64,         6 * 64,         7 * 64,
 955         4 * 128,        5 * 128,        6 * 128,        7 * 128,
 956         P2ALIGN(8192 / 7, 64),
 957         P2ALIGN(8192 / 6, 64),
 958         P2ALIGN(8192 / 5, 64),
 959         P2ALIGN(8192 / 4, 64),
 960         P2ALIGN(8192 / 3, 64),
 961         P2ALIGN(8192 / 2, 64),
 962 };
 963 
 964 static const int kmem_big_alloc_sizes[] = {
 965         2 * 4096,       3 * 4096,
 966         2 * 8192,       3 * 8192,
 967         4 * 8192,       5 * 8192,       6 * 8192,       7 * 8192,
 968         8 * 8192,       9 * 8192,       10 * 8192,      11 * 8192,
 969         12 * 8192,      13 * 8192,      14 * 8192,      15 * 8192,
 970         16 * 8192
 971 };
 972 
 973 #define KMEM_MAXBUF             4096
 974 #define KMEM_BIG_MAXBUF_32BIT   32768
 975 #define KMEM_BIG_MAXBUF         131072
 976 
 977 #define KMEM_BIG_MULTIPLE       4096    /* big_alloc_sizes must be a multiple */
 978 #define KMEM_BIG_SHIFT          12      /* lg(KMEM_BIG_MULTIPLE) */
 979 
 980 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
 981 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
 982 
 983 #define KMEM_ALLOC_TABLE_MAX    (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
 984 static size_t kmem_big_alloc_table_max = 0;     /* # of filled elements */
 985 
 986 static kmem_magtype_t kmem_magtype[] = {
 987         { 1,    8,      3200,   65536   },
 988         { 3,    16,     256,    32768   },
 989         { 7,    32,     64,     16384   },
 990         { 15,   64,     0,      8192    },
 991         { 31,   64,     0,      4096    },
 992         { 47,   64,     0,      2048    },
 993         { 63,   64,     0,      1024    },
 994         { 95,   64,     0,      512     },
 995         { 143,  64,     0,      0       },
 996 };
 997 
 998 static uint32_t kmem_reaping;
 999 static uint32_t kmem_reaping_idspace;
1000 
1001 /*
1002  * kmem tunables
1003  */
1004 clock_t kmem_reap_interval;     /* cache reaping rate [15 * HZ ticks] */
1005 int kmem_depot_contention = 3;  /* max failed tryenters per real interval */
1006 pgcnt_t kmem_reapahead = 0;     /* start reaping N pages before pageout */
1007 int kmem_panic = 1;             /* whether to panic on error */
1008 int kmem_logging = 1;           /* kmem_log_enter() override */
1009 uint32_t kmem_mtbf = 0;         /* mean time between failures [default: off] */
1010 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
1011 size_t kmem_content_log_size;   /* content log size [2% of memory] */
1012 size_t kmem_failure_log_size;   /* failure log [4 pages per CPU] */
1013 size_t kmem_slab_log_size;      /* slab create log [4 pages per CPU] */
1014 size_t kmem_zerosized_log_size; /* zero-sized log [4 pages per CPU] */
1015 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
1016 size_t kmem_lite_minsize = 0;   /* minimum buffer size for KMF_LITE */
1017 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
1018 int kmem_lite_pcs = 4;          /* number of PCs to store in KMF_LITE mode */
1019 size_t kmem_maxverify;          /* maximum bytes to inspect in debug routines */
1020 size_t kmem_minfirewall;        /* hardware-enforced redzone threshold */
1021 
1022 #ifdef DEBUG
1023 int kmem_warn_zerosized = 1;    /* whether to warn on zero-sized KM_SLEEP */
1024 #else
1025 int kmem_warn_zerosized = 0;    /* whether to warn on zero-sized KM_SLEEP */
1026 #endif
1027 
1028 int kmem_panic_zerosized = 0;   /* whether to panic on zero-sized KM_SLEEP */
1029 
1030 #ifdef _LP64
1031 size_t  kmem_max_cached = KMEM_BIG_MAXBUF;      /* maximum kmem_alloc cache */
1032 #else
1033 size_t  kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1034 #endif
1035 
1036 #ifdef DEBUG
1037 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
1038 #else
1039 int kmem_flags = 0;
1040 #endif
1041 int kmem_ready;
1042 
1043 static kmem_cache_t     *kmem_slab_cache;
1044 static kmem_cache_t     *kmem_bufctl_cache;
1045 static kmem_cache_t     *kmem_bufctl_audit_cache;
1046 
1047 static kmutex_t         kmem_cache_lock;        /* inter-cache linkage only */
1048 static list_t           kmem_caches;
1049 
1050 static taskq_t          *kmem_taskq;
1051 static kmutex_t         kmem_flags_lock;
1052 static vmem_t           *kmem_metadata_arena;
1053 static vmem_t           *kmem_msb_arena;        /* arena for metadata caches */
1054 static vmem_t           *kmem_cache_arena;
1055 static vmem_t           *kmem_hash_arena;
1056 static vmem_t           *kmem_log_arena;
1057 static vmem_t           *kmem_oversize_arena;
1058 static vmem_t           *kmem_va_arena;
1059 static vmem_t           *kmem_default_arena;
1060 static vmem_t           *kmem_firewall_va_arena;
1061 static vmem_t           *kmem_firewall_arena;
1062 
1063 static int              kmem_zerosized;         /* # of zero-sized allocs */
1064 
1065 /*
1066  * kmem slab consolidator thresholds (tunables)
1067  */
1068 size_t kmem_frag_minslabs = 101;        /* minimum total slabs */
1069 size_t kmem_frag_numer = 1;             /* free buffers (numerator) */
1070 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1071 /*
1072  * Maximum number of slabs from which to move buffers during a single
1073  * maintenance interval while the system is not low on memory.
1074  */
1075 size_t kmem_reclaim_max_slabs = 1;
1076 /*
1077  * Number of slabs to scan backwards from the end of the partial slab list
1078  * when searching for buffers to relocate.
1079  */
1080 size_t kmem_reclaim_scan_range = 12;
1081 
1082 /* consolidator knobs */
1083 static boolean_t kmem_move_noreap;
1084 static boolean_t kmem_move_blocked;
1085 static boolean_t kmem_move_fulltilt;
1086 static boolean_t kmem_move_any_partial;
1087 
1088 #ifdef  DEBUG
1089 /*
1090  * kmem consolidator debug tunables:
1091  * Ensure code coverage by occasionally running the consolidator even when the
1092  * caches are not fragmented (they may never be). These intervals are mean time
1093  * in cache maintenance intervals (kmem_cache_update).
1094  */
1095 uint32_t kmem_mtb_move = 60;    /* defrag 1 slab (~15min) */
1096 uint32_t kmem_mtb_reap = 1800;  /* defrag all slabs (~7.5hrs) */
1097 #endif  /* DEBUG */
1098 
1099 static kmem_cache_t     *kmem_defrag_cache;
1100 static kmem_cache_t     *kmem_move_cache;
1101 static taskq_t          *kmem_move_taskq;
1102 
1103 static void kmem_cache_scan(kmem_cache_t *);
1104 static void kmem_cache_defrag(kmem_cache_t *);
1105 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1106 
1107 
1108 kmem_log_header_t       *kmem_transaction_log;
1109 kmem_log_header_t       *kmem_content_log;
1110 kmem_log_header_t       *kmem_failure_log;
1111 kmem_log_header_t       *kmem_slab_log;
1112 kmem_log_header_t       *kmem_zerosized_log;
1113 
1114 static int              kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1115 
1116 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller)                       \
1117         if ((count) > 0) {                                           \
1118                 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \
1119                 pc_t *_e;                                               \
1120                 /* memmove() the old entries down one notch */          \
1121                 for (_e = &_s[(count) - 1]; _e > _s; _e--)               \
1122                         *_e = *(_e - 1);                                \
1123                 *_s = (uintptr_t)(caller);                              \
1124         }
1125 
1126 #define KMERR_MODIFIED  0       /* buffer modified while on freelist */
1127 #define KMERR_REDZONE   1       /* redzone violation (write past end of buf) */
1128 #define KMERR_DUPFREE   2       /* freed a buffer twice */
1129 #define KMERR_BADADDR   3       /* freed a bad (unallocated) address */
1130 #define KMERR_BADBUFTAG 4       /* buftag corrupted */
1131 #define KMERR_BADBUFCTL 5       /* bufctl corrupted */
1132 #define KMERR_BADCACHE  6       /* freed a buffer to the wrong cache */
1133 #define KMERR_BADSIZE   7       /* alloc size != free size */
1134 #define KMERR_BADBASE   8       /* buffer base address wrong */
1135 
1136 struct {
1137         hrtime_t        kmp_timestamp;  /* timestamp of panic */
1138         int             kmp_error;      /* type of kmem error */
1139         void            *kmp_buffer;    /* buffer that induced panic */
1140         void            *kmp_realbuf;   /* real start address for buffer */
1141         kmem_cache_t    *kmp_cache;     /* buffer's cache according to client */
1142         kmem_cache_t    *kmp_realcache; /* actual cache containing buffer */
1143         kmem_slab_t     *kmp_slab;      /* slab accoring to kmem_findslab() */
1144         kmem_bufctl_t   *kmp_bufctl;    /* bufctl */
1145 } kmem_panic_info;
1146 
1147 
1148 static void
1149 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1150 {
1151         uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1152         uint64_t *buf = buf_arg;
1153 
1154         while (buf < bufend)
1155                 *buf++ = pattern;
1156 }
1157 
1158 static void *
1159 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1160 {
1161         uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1162         uint64_t *buf;
1163 
1164         for (buf = buf_arg; buf < bufend; buf++)
1165                 if (*buf != pattern)
1166                         return (buf);
1167         return (NULL);
1168 }
1169 
1170 static void *
1171 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1172 {
1173         uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1174         uint64_t *buf;
1175 
1176         for (buf = buf_arg; buf < bufend; buf++) {
1177                 if (*buf != old) {
1178                         copy_pattern(old, buf_arg,
1179                             (char *)buf - (char *)buf_arg);
1180                         return (buf);
1181                 }
1182                 *buf = new;
1183         }
1184 
1185         return (NULL);
1186 }
1187 
1188 static void
1189 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1190 {
1191         kmem_cache_t *cp;
1192 
1193         mutex_enter(&kmem_cache_lock);
1194         for (cp = list_head(&kmem_caches); cp != NULL;
1195             cp = list_next(&kmem_caches, cp))
1196                 if (tq != NULL)
1197                         (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1198                             tqflag);
1199                 else
1200                         func(cp);
1201         mutex_exit(&kmem_cache_lock);
1202 }
1203 
1204 static void
1205 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1206 {
1207         kmem_cache_t *cp;
1208 
1209         mutex_enter(&kmem_cache_lock);
1210         for (cp = list_head(&kmem_caches); cp != NULL;
1211             cp = list_next(&kmem_caches, cp)) {
1212                 if (!(cp->cache_cflags & KMC_IDENTIFIER))
1213                         continue;
1214                 if (tq != NULL)
1215                         (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1216                             tqflag);
1217                 else
1218                         func(cp);
1219         }
1220         mutex_exit(&kmem_cache_lock);
1221 }
1222 
1223 /*
1224  * Debugging support.  Given a buffer address, find its slab.
1225  */
1226 static kmem_slab_t *
1227 kmem_findslab(kmem_cache_t *cp, void *buf)
1228 {
1229         kmem_slab_t *sp;
1230 
1231         mutex_enter(&cp->cache_lock);
1232         for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1233             sp = list_next(&cp->cache_complete_slabs, sp)) {
1234                 if (KMEM_SLAB_MEMBER(sp, buf)) {
1235                         mutex_exit(&cp->cache_lock);
1236                         return (sp);
1237                 }
1238         }
1239         for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1240             sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1241                 if (KMEM_SLAB_MEMBER(sp, buf)) {
1242                         mutex_exit(&cp->cache_lock);
1243                         return (sp);
1244                 }
1245         }
1246         mutex_exit(&cp->cache_lock);
1247 
1248         return (NULL);
1249 }
1250 
1251 static void
1252 kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1253 {
1254         kmem_buftag_t *btp = NULL;
1255         kmem_bufctl_t *bcp = NULL;
1256         kmem_cache_t *cp = cparg;
1257         kmem_slab_t *sp;
1258         uint64_t *off;
1259         void *buf = bufarg;
1260 
1261         kmem_logging = 0;       /* stop logging when a bad thing happens */
1262 
1263         kmem_panic_info.kmp_timestamp = gethrtime();
1264 
1265         sp = kmem_findslab(cp, buf);
1266         if (sp == NULL) {
1267                 for (cp = list_tail(&kmem_caches); cp != NULL;
1268                     cp = list_prev(&kmem_caches, cp)) {
1269                         if ((sp = kmem_findslab(cp, buf)) != NULL)
1270                                 break;
1271                 }
1272         }
1273 
1274         if (sp == NULL) {
1275                 cp = NULL;
1276                 error = KMERR_BADADDR;
1277         } else {
1278                 if (cp != cparg)
1279                         error = KMERR_BADCACHE;
1280                 else
1281                         buf = (char *)bufarg - ((uintptr_t)bufarg -
1282                             (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1283                 if (buf != bufarg)
1284                         error = KMERR_BADBASE;
1285                 if (cp->cache_flags & KMF_BUFTAG)
1286                         btp = KMEM_BUFTAG(cp, buf);
1287                 if (cp->cache_flags & KMF_HASH) {
1288                         mutex_enter(&cp->cache_lock);
1289                         for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1290                                 if (bcp->bc_addr == buf)
1291                                         break;
1292                         mutex_exit(&cp->cache_lock);
1293                         if (bcp == NULL && btp != NULL)
1294                                 bcp = btp->bt_bufctl;
1295                         if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1296                             NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1297                             bcp->bc_addr != buf) {
1298                                 error = KMERR_BADBUFCTL;
1299                                 bcp = NULL;
1300                         }
1301                 }
1302         }
1303 
1304         kmem_panic_info.kmp_error = error;
1305         kmem_panic_info.kmp_buffer = bufarg;
1306         kmem_panic_info.kmp_realbuf = buf;
1307         kmem_panic_info.kmp_cache = cparg;
1308         kmem_panic_info.kmp_realcache = cp;
1309         kmem_panic_info.kmp_slab = sp;
1310         kmem_panic_info.kmp_bufctl = bcp;
1311 
1312         printf("kernel memory allocator: ");
1313 
1314         switch (error) {
1315 
1316         case KMERR_MODIFIED:
1317                 printf("buffer modified after being freed\n");
1318                 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1319                 if (off == NULL)        /* shouldn't happen */
1320                         off = buf;
1321                 printf("modification occurred at offset 0x%lx "
1322                     "(0x%llx replaced by 0x%llx)\n",
1323                     (uintptr_t)off - (uintptr_t)buf,
1324                     (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1325                 break;
1326 
1327         case KMERR_REDZONE:
1328                 printf("redzone violation: write past end of buffer\n");
1329                 break;
1330 
1331         case KMERR_BADADDR:
1332                 printf("invalid free: buffer not in cache\n");
1333                 break;
1334 
1335         case KMERR_DUPFREE:
1336                 printf("duplicate free: buffer freed twice\n");
1337                 break;
1338 
1339         case KMERR_BADBUFTAG:
1340                 printf("boundary tag corrupted\n");
1341                 printf("bcp ^ bxstat = %lx, should be %lx\n",
1342                     (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1343                     KMEM_BUFTAG_FREE);
1344                 break;
1345 
1346         case KMERR_BADBUFCTL:
1347                 printf("bufctl corrupted\n");
1348                 break;
1349 
1350         case KMERR_BADCACHE:
1351                 printf("buffer freed to wrong cache\n");
1352                 printf("buffer was allocated from %s,\n", cp->cache_name);
1353                 printf("caller attempting free to %s.\n", cparg->cache_name);
1354                 break;
1355 
1356         case KMERR_BADSIZE:
1357                 printf("bad free: free size (%u) != alloc size (%u)\n",
1358                     KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1359                     KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1360                 break;
1361 
1362         case KMERR_BADBASE:
1363                 printf("bad free: free address (%p) != alloc address (%p)\n",
1364                     bufarg, buf);
1365                 break;
1366         }
1367 
1368         printf("buffer=%p  bufctl=%p  cache: %s\n",
1369             bufarg, (void *)bcp, cparg->cache_name);
1370 
1371         if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1372             error != KMERR_BADBUFCTL) {
1373                 int d;
1374                 timestruc_t ts;
1375                 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1376 
1377                 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1378                 printf("previous transaction on buffer %p:\n", buf);
1379                 printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
1380                     (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1381                     (void *)sp, cp->cache_name);
1382                 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1383                         ulong_t off;
1384                         char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1385                         printf("%s+%lx\n", sym ? sym : "?", off);
1386                 }
1387         }
1388         if (kmem_panic > 0)
1389                 panic("kernel heap corruption detected");
1390         if (kmem_panic == 0)
1391                 debug_enter(NULL);
1392         kmem_logging = 1;       /* resume logging */
1393 }
1394 
1395 static kmem_log_header_t *
1396 kmem_log_init(size_t logsize)
1397 {
1398         kmem_log_header_t *lhp;
1399         int nchunks = 4 * max_ncpus;
1400         size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1401         int i;
1402 
1403         /*
1404          * Make sure that lhp->lh_cpu[] is nicely aligned
1405          * to prevent false sharing of cache lines.
1406          */
1407         lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1408         lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1409             NULL, NULL, VM_SLEEP);
1410         bzero(lhp, lhsize);
1411 
1412         mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1413         lhp->lh_nchunks = nchunks;
1414         lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1415         lhp->lh_base = vmem_alloc(kmem_log_arena,
1416             lhp->lh_chunksize * nchunks, VM_SLEEP);
1417         lhp->lh_free = vmem_alloc(kmem_log_arena,
1418             nchunks * sizeof (int), VM_SLEEP);
1419         bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1420 
1421         for (i = 0; i < max_ncpus; i++) {
1422                 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1423                 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1424                 clhp->clh_chunk = i;
1425         }
1426 
1427         for (i = max_ncpus; i < nchunks; i++)
1428                 lhp->lh_free[i] = i;
1429 
1430         lhp->lh_head = max_ncpus;
1431         lhp->lh_tail = 0;
1432 
1433         return (lhp);
1434 }
1435 
1436 static void *
1437 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1438 {
1439         void *logspace;
1440         kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid];
1441 
1442         if (lhp == NULL || kmem_logging == 0 || panicstr)
1443                 return (NULL);
1444 
1445         mutex_enter(&clhp->clh_lock);
1446         clhp->clh_hits++;
1447         if (size > clhp->clh_avail) {
1448                 mutex_enter(&lhp->lh_lock);
1449                 lhp->lh_hits++;
1450                 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1451                 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1452                 clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1453                 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1454                 clhp->clh_current = lhp->lh_base +
1455                     clhp->clh_chunk * lhp->lh_chunksize;
1456                 clhp->clh_avail = lhp->lh_chunksize;
1457                 if (size > lhp->lh_chunksize)
1458                         size = lhp->lh_chunksize;
1459                 mutex_exit(&lhp->lh_lock);
1460         }
1461         logspace = clhp->clh_current;
1462         clhp->clh_current += size;
1463         clhp->clh_avail -= size;
1464         bcopy(data, logspace, size);
1465         mutex_exit(&clhp->clh_lock);
1466         return (logspace);
1467 }
1468 
1469 #define KMEM_AUDIT(lp, cp, bcp)                                         \
1470 {                                                                       \
1471         kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);       \
1472         _bcp->bc_timestamp = gethrtime();                            \
1473         _bcp->bc_thread = curthread;                                 \
1474         _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);    \
1475         _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));       \
1476 }
1477 
1478 static void
1479 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1480     kmem_slab_t *sp, void *addr)
1481 {
1482         kmem_bufctl_audit_t bca;
1483 
1484         bzero(&bca, sizeof (kmem_bufctl_audit_t));
1485         bca.bc_addr = addr;
1486         bca.bc_slab = sp;
1487         bca.bc_cache = cp;
1488         KMEM_AUDIT(lp, cp, &bca);
1489 }
1490 
1491 /*
1492  * Create a new slab for cache cp.
1493  */
1494 static kmem_slab_t *
1495 kmem_slab_create(kmem_cache_t *cp, int kmflag)
1496 {
1497         size_t slabsize = cp->cache_slabsize;
1498         size_t chunksize = cp->cache_chunksize;
1499         int cache_flags = cp->cache_flags;
1500         size_t color, chunks;
1501         char *buf, *slab;
1502         kmem_slab_t *sp;
1503         kmem_bufctl_t *bcp;
1504         vmem_t *vmp = cp->cache_arena;
1505 
1506         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1507 
1508         color = cp->cache_color + cp->cache_align;
1509         if (color > cp->cache_maxcolor)
1510                 color = cp->cache_mincolor;
1511         cp->cache_color = color;
1512 
1513         slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1514 
1515         if (slab == NULL)
1516                 goto vmem_alloc_failure;
1517 
1518         ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1519 
1520         /*
1521          * Reverify what was already checked in kmem_cache_set_move(), since the
1522          * consolidator depends (for correctness) on slabs being initialized
1523          * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1524          * clients to distinguish uninitialized memory from known objects).
1525          */
1526         ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1527         if (!(cp->cache_cflags & KMC_NOTOUCH))
1528                 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1529 
1530         if (cache_flags & KMF_HASH) {
1531                 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1532                         goto slab_alloc_failure;
1533                 chunks = (slabsize - color) / chunksize;
1534         } else {
1535                 sp = KMEM_SLAB(cp, slab);
1536                 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1537         }
1538 
1539         sp->slab_cache       = cp;
1540         sp->slab_head        = NULL;
1541         sp->slab_refcnt      = 0;
1542         sp->slab_base        = buf = slab + color;
1543         sp->slab_chunks      = chunks;
1544         sp->slab_stuck_offset = (uint32_t)-1;
1545         sp->slab_later_count = 0;
1546         sp->slab_flags = 0;
1547 
1548         ASSERT(chunks > 0);
1549         while (chunks-- != 0) {
1550                 if (cache_flags & KMF_HASH) {
1551                         bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1552                         if (bcp == NULL)
1553                                 goto bufctl_alloc_failure;
1554                         if (cache_flags & KMF_AUDIT) {
1555                                 kmem_bufctl_audit_t *bcap =
1556                                     (kmem_bufctl_audit_t *)bcp;
1557                                 bzero(bcap, sizeof (kmem_bufctl_audit_t));
1558                                 bcap->bc_cache = cp;
1559                         }
1560                         bcp->bc_addr = buf;
1561                         bcp->bc_slab = sp;
1562                 } else {
1563                         bcp = KMEM_BUFCTL(cp, buf);
1564                 }
1565                 if (cache_flags & KMF_BUFTAG) {
1566                         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1567                         btp->bt_redzone = KMEM_REDZONE_PATTERN;
1568                         btp->bt_bufctl = bcp;
1569                         btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1570                         if (cache_flags & KMF_DEADBEEF) {
1571                                 copy_pattern(KMEM_FREE_PATTERN, buf,
1572                                     cp->cache_verify);
1573                         }
1574                 }
1575                 bcp->bc_next = sp->slab_head;
1576                 sp->slab_head = bcp;
1577                 buf += chunksize;
1578         }
1579 
1580         kmem_log_event(kmem_slab_log, cp, sp, slab);
1581 
1582         return (sp);
1583 
1584 bufctl_alloc_failure:
1585 
1586         while ((bcp = sp->slab_head) != NULL) {
1587                 sp->slab_head = bcp->bc_next;
1588                 kmem_cache_free(cp->cache_bufctl_cache, bcp);
1589         }
1590         kmem_cache_free(kmem_slab_cache, sp);
1591 
1592 slab_alloc_failure:
1593 
1594         vmem_free(vmp, slab, slabsize);
1595 
1596 vmem_alloc_failure:
1597 
1598         kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1599         atomic_inc_64(&cp->cache_alloc_fail);
1600 
1601         return (NULL);
1602 }
1603 
1604 /*
1605  * Destroy a slab.
1606  */
1607 static void
1608 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1609 {
1610         vmem_t *vmp = cp->cache_arena;
1611         void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1612 
1613         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1614         ASSERT(sp->slab_refcnt == 0);
1615 
1616         if (cp->cache_flags & KMF_HASH) {
1617                 kmem_bufctl_t *bcp;
1618                 while ((bcp = sp->slab_head) != NULL) {
1619                         sp->slab_head = bcp->bc_next;
1620                         kmem_cache_free(cp->cache_bufctl_cache, bcp);
1621                 }
1622                 kmem_cache_free(kmem_slab_cache, sp);
1623         }
1624         vmem_free(vmp, slab, cp->cache_slabsize);
1625 }
1626 
1627 static void *
1628 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
1629 {
1630         kmem_bufctl_t *bcp, **hash_bucket;
1631         void *buf;
1632         boolean_t new_slab = (sp->slab_refcnt == 0);
1633 
1634         ASSERT(MUTEX_HELD(&cp->cache_lock));
1635         /*
1636          * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1637          * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1638          * slab is newly created.
1639          */
1640         ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1641             (sp == avl_first(&cp->cache_partial_slabs))));
1642         ASSERT(sp->slab_cache == cp);
1643 
1644         cp->cache_slab_alloc++;
1645         cp->cache_bufslab--;
1646         sp->slab_refcnt++;
1647 
1648         bcp = sp->slab_head;
1649         sp->slab_head = bcp->bc_next;
1650 
1651         if (cp->cache_flags & KMF_HASH) {
1652                 /*
1653                  * Add buffer to allocated-address hash table.
1654                  */
1655                 buf = bcp->bc_addr;
1656                 hash_bucket = KMEM_HASH(cp, buf);
1657                 bcp->bc_next = *hash_bucket;
1658                 *hash_bucket = bcp;
1659                 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1660                         KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1661                 }
1662         } else {
1663                 buf = KMEM_BUF(cp, bcp);
1664         }
1665 
1666         ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1667 
1668         if (sp->slab_head == NULL) {
1669                 ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1670                 if (new_slab) {
1671                         ASSERT(sp->slab_chunks == 1);
1672                 } else {
1673                         ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1674                         avl_remove(&cp->cache_partial_slabs, sp);
1675                         sp->slab_later_count = 0; /* clear history */
1676                         sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1677                         sp->slab_stuck_offset = (uint32_t)-1;
1678                 }
1679                 list_insert_head(&cp->cache_complete_slabs, sp);
1680                 cp->cache_complete_slab_count++;
1681                 return (buf);
1682         }
1683 
1684         ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1685         /*
1686          * Peek to see if the magazine layer is enabled before
1687          * we prefill.  We're not holding the cpu cache lock,
1688          * so the peek could be wrong, but there's no harm in it.
1689          */
1690         if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1691             (KMEM_CPU_CACHE(cp)->cc_magsize != 0))  {
1692                 kmem_slab_prefill(cp, sp);
1693                 return (buf);
1694         }
1695 
1696         if (new_slab) {
1697                 avl_add(&cp->cache_partial_slabs, sp);
1698                 return (buf);
1699         }
1700 
1701         /*
1702          * The slab is now more allocated than it was, so the
1703          * order remains unchanged.
1704          */
1705         ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1706         return (buf);
1707 }
1708 
1709 /*
1710  * Allocate a raw (unconstructed) buffer from cp's slab layer.
1711  */
1712 static void *
1713 kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1714 {
1715         kmem_slab_t *sp;
1716         void *buf;
1717         boolean_t test_destructor;
1718 
1719         mutex_enter(&cp->cache_lock);
1720         test_destructor = (cp->cache_slab_alloc == 0);
1721         sp = avl_first(&cp->cache_partial_slabs);
1722         if (sp == NULL) {
1723                 ASSERT(cp->cache_bufslab == 0);
1724 
1725                 /*
1726                  * The freelist is empty.  Create a new slab.
1727                  */
1728                 mutex_exit(&cp->cache_lock);
1729                 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1730                         return (NULL);
1731                 }
1732                 mutex_enter(&cp->cache_lock);
1733                 cp->cache_slab_create++;
1734                 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1735                         cp->cache_bufmax = cp->cache_buftotal;
1736                 cp->cache_bufslab += sp->slab_chunks;
1737         }
1738 
1739         buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1740         ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1741             (cp->cache_complete_slab_count +
1742             avl_numnodes(&cp->cache_partial_slabs) +
1743             (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1744         mutex_exit(&cp->cache_lock);
1745 
1746         if (test_destructor && cp->cache_destructor != NULL) {
1747                 /*
1748                  * On the first kmem_slab_alloc(), assert that it is valid to
1749                  * call the destructor on a newly constructed object without any
1750                  * client involvement.
1751                  */
1752                 if ((cp->cache_constructor == NULL) ||
1753                     cp->cache_constructor(buf, cp->cache_private,
1754                     kmflag) == 0) {
1755                         cp->cache_destructor(buf, cp->cache_private);
1756                 }
1757                 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
1758                     cp->cache_bufsize);
1759                 if (cp->cache_flags & KMF_DEADBEEF) {
1760                         copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1761                 }
1762         }
1763 
1764         return (buf);
1765 }
1766 
1767 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1768 
1769 /*
1770  * Free a raw (unconstructed) buffer to cp's slab layer.
1771  */
1772 static void
1773 kmem_slab_free(kmem_cache_t *cp, void *buf)
1774 {
1775         kmem_slab_t *sp;
1776         kmem_bufctl_t *bcp, **prev_bcpp;
1777 
1778         ASSERT(buf != NULL);
1779 
1780         mutex_enter(&cp->cache_lock);
1781         cp->cache_slab_free++;
1782 
1783         if (cp->cache_flags & KMF_HASH) {
1784                 /*
1785                  * Look up buffer in allocated-address hash table.
1786                  */
1787                 prev_bcpp = KMEM_HASH(cp, buf);
1788                 while ((bcp = *prev_bcpp) != NULL) {
1789                         if (bcp->bc_addr == buf) {
1790                                 *prev_bcpp = bcp->bc_next;
1791                                 sp = bcp->bc_slab;
1792                                 break;
1793                         }
1794                         cp->cache_lookup_depth++;
1795                         prev_bcpp = &bcp->bc_next;
1796                 }
1797         } else {
1798                 bcp = KMEM_BUFCTL(cp, buf);
1799                 sp = KMEM_SLAB(cp, buf);
1800         }
1801 
1802         if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1803                 mutex_exit(&cp->cache_lock);
1804                 kmem_error(KMERR_BADADDR, cp, buf);
1805                 return;
1806         }
1807 
1808         if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1809                 /*
1810                  * If this is the buffer that prevented the consolidator from
1811                  * clearing the slab, we can reset the slab flags now that the
1812                  * buffer is freed. (It makes sense to do this in
1813                  * kmem_cache_free(), where the client gives up ownership of the
1814                  * buffer, but on the hot path the test is too expensive.)
1815                  */
1816                 kmem_slab_move_yes(cp, sp, buf);
1817         }
1818 
1819         if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1820                 if (cp->cache_flags & KMF_CONTENTS)
1821                         ((kmem_bufctl_audit_t *)bcp)->bc_contents =
1822                             kmem_log_enter(kmem_content_log, buf,
1823                             cp->cache_contents);
1824                 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1825         }
1826 
1827         bcp->bc_next = sp->slab_head;
1828         sp->slab_head = bcp;
1829 
1830         cp->cache_bufslab++;
1831         ASSERT(sp->slab_refcnt >= 1);
1832 
1833         if (--sp->slab_refcnt == 0) {
1834                 /*
1835                  * There are no outstanding allocations from this slab,
1836                  * so we can reclaim the memory.
1837                  */
1838                 if (sp->slab_chunks == 1) {
1839                         list_remove(&cp->cache_complete_slabs, sp);
1840                         cp->cache_complete_slab_count--;
1841                 } else {
1842                         avl_remove(&cp->cache_partial_slabs, sp);
1843                 }
1844 
1845                 cp->cache_buftotal -= sp->slab_chunks;
1846                 cp->cache_bufslab -= sp->slab_chunks;
1847                 /*
1848                  * Defer releasing the slab to the virtual memory subsystem
1849                  * while there is a pending move callback, since we guarantee
1850                  * that buffers passed to the move callback have only been
1851                  * touched by kmem or by the client itself. Since the memory
1852                  * patterns baddcafe (uninitialized) and deadbeef (freed) both
1853                  * set at least one of the two lowest order bits, the client can
1854                  * test those bits in the move callback to determine whether or
1855                  * not it knows about the buffer (assuming that the client also
1856                  * sets one of those low order bits whenever it frees a buffer).
1857                  */
1858                 if (cp->cache_defrag == NULL ||
1859                     (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1860                     !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1861                         cp->cache_slab_destroy++;
1862                         mutex_exit(&cp->cache_lock);
1863                         kmem_slab_destroy(cp, sp);
1864                 } else {
1865                         list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1866                         /*
1867                          * Slabs are inserted at both ends of the deadlist to
1868                          * distinguish between slabs freed while move callbacks
1869                          * are pending (list head) and a slab freed while the
1870                          * lock is dropped in kmem_move_buffers() (list tail) so
1871                          * that in both cases slab_destroy() is called from the
1872                          * right context.
1873                          */
1874                         if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1875                                 list_insert_tail(deadlist, sp);
1876                         } else {
1877                                 list_insert_head(deadlist, sp);
1878                         }
1879                         cp->cache_defrag->kmd_deadcount++;
1880                         mutex_exit(&cp->cache_lock);
1881                 }
1882                 return;
1883         }
1884 
1885         if (bcp->bc_next == NULL) {
1886                 /* Transition the slab from completely allocated to partial. */
1887                 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1888                 ASSERT(sp->slab_chunks > 1);
1889                 list_remove(&cp->cache_complete_slabs, sp);
1890                 cp->cache_complete_slab_count--;
1891                 avl_add(&cp->cache_partial_slabs, sp);
1892         } else {
1893                 (void) avl_update_gt(&cp->cache_partial_slabs, sp);
1894         }
1895 
1896         ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1897             (cp->cache_complete_slab_count +
1898             avl_numnodes(&cp->cache_partial_slabs) +
1899             (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1900         mutex_exit(&cp->cache_lock);
1901 }
1902 
1903 /*
1904  * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1905  */
1906 static int
1907 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1908     caddr_t caller)
1909 {
1910         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1911         kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1912         uint32_t mtbf;
1913 
1914         if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1915                 kmem_error(KMERR_BADBUFTAG, cp, buf);
1916                 return (-1);
1917         }
1918 
1919         btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1920 
1921         if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1922                 kmem_error(KMERR_BADBUFCTL, cp, buf);
1923                 return (-1);
1924         }
1925 
1926         if (cp->cache_flags & KMF_DEADBEEF) {
1927                 if (!construct && (cp->cache_flags & KMF_LITE)) {
1928                         if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1929                                 kmem_error(KMERR_MODIFIED, cp, buf);
1930                                 return (-1);
1931                         }
1932                         if (cp->cache_constructor != NULL)
1933                                 *(uint64_t *)buf = btp->bt_redzone;
1934                         else
1935                                 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1936                 } else {
1937                         construct = 1;
1938                         if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1939                             KMEM_UNINITIALIZED_PATTERN, buf,
1940                             cp->cache_verify)) {
1941                                 kmem_error(KMERR_MODIFIED, cp, buf);
1942                                 return (-1);
1943                         }
1944                 }
1945         }
1946         btp->bt_redzone = KMEM_REDZONE_PATTERN;
1947 
1948         if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1949             gethrtime() % mtbf == 0 &&
1950             (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1951                 kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1952                 if (!construct && cp->cache_destructor != NULL)
1953                         cp->cache_destructor(buf, cp->cache_private);
1954         } else {
1955                 mtbf = 0;
1956         }
1957 
1958         if (mtbf || (construct && cp->cache_constructor != NULL &&
1959             cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
1960                 atomic_inc_64(&cp->cache_alloc_fail);
1961                 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1962                 if (cp->cache_flags & KMF_DEADBEEF)
1963                         copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1964                 kmem_slab_free(cp, buf);
1965                 return (1);
1966         }
1967 
1968         if (cp->cache_flags & KMF_AUDIT) {
1969                 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1970         }
1971 
1972         if ((cp->cache_flags & KMF_LITE) &&
1973             !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
1974                 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
1975         }
1976 
1977         return (0);
1978 }
1979 
1980 static int
1981 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
1982 {
1983         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1984         kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1985         kmem_slab_t *sp;
1986 
1987         if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
1988                 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1989                         kmem_error(KMERR_DUPFREE, cp, buf);
1990                         return (-1);
1991                 }
1992                 sp = kmem_findslab(cp, buf);
1993                 if (sp == NULL || sp->slab_cache != cp)
1994                         kmem_error(KMERR_BADADDR, cp, buf);
1995                 else
1996                         kmem_error(KMERR_REDZONE, cp, buf);
1997                 return (-1);
1998         }
1999 
2000         btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
2001 
2002         if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
2003                 kmem_error(KMERR_BADBUFCTL, cp, buf);
2004                 return (-1);
2005         }
2006 
2007         if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
2008                 kmem_error(KMERR_REDZONE, cp, buf);
2009                 return (-1);
2010         }
2011 
2012         if (cp->cache_flags & KMF_AUDIT) {
2013                 if (cp->cache_flags & KMF_CONTENTS)
2014                         bcp->bc_contents = kmem_log_enter(kmem_content_log,
2015                             buf, cp->cache_contents);
2016                 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2017         }
2018 
2019         if ((cp->cache_flags & KMF_LITE) &&
2020             !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2021                 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2022         }
2023 
2024         if (cp->cache_flags & KMF_DEADBEEF) {
2025                 if (cp->cache_flags & KMF_LITE)
2026                         btp->bt_redzone = *(uint64_t *)buf;
2027                 else if (cp->cache_destructor != NULL)
2028                         cp->cache_destructor(buf, cp->cache_private);
2029 
2030                 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2031         }
2032 
2033         return (0);
2034 }
2035 
2036 /*
2037  * Free each object in magazine mp to cp's slab layer, and free mp itself.
2038  */
2039 static void
2040 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2041 {
2042         int round;
2043 
2044         ASSERT(!list_link_active(&cp->cache_link) ||
2045             taskq_member(kmem_taskq, curthread));
2046 
2047         for (round = 0; round < nrounds; round++) {
2048                 void *buf = mp->mag_round[round];
2049 
2050                 if (cp->cache_flags & KMF_DEADBEEF) {
2051                         if (verify_pattern(KMEM_FREE_PATTERN, buf,
2052                             cp->cache_verify) != NULL) {
2053                                 kmem_error(KMERR_MODIFIED, cp, buf);
2054                                 continue;
2055                         }
2056                         if ((cp->cache_flags & KMF_LITE) &&
2057                             cp->cache_destructor != NULL) {
2058                                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2059                                 *(uint64_t *)buf = btp->bt_redzone;
2060                                 cp->cache_destructor(buf, cp->cache_private);
2061                                 *(uint64_t *)buf = KMEM_FREE_PATTERN;
2062                         }
2063                 } else if (cp->cache_destructor != NULL) {
2064                         cp->cache_destructor(buf, cp->cache_private);
2065                 }
2066 
2067                 kmem_slab_free(cp, buf);
2068         }
2069         ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2070         kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2071 }
2072 
2073 /*
2074  * Allocate a magazine from the depot.
2075  */
2076 static kmem_magazine_t *
2077 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2078 {
2079         kmem_magazine_t *mp;
2080 
2081         /*
2082          * If we can't get the depot lock without contention,
2083          * update our contention count.  We use the depot
2084          * contention rate to determine whether we need to
2085          * increase the magazine size for better scalability.
2086          */
2087         if (!mutex_tryenter(&cp->cache_depot_lock)) {
2088                 mutex_enter(&cp->cache_depot_lock);
2089                 cp->cache_depot_contention++;
2090         }
2091 
2092         if ((mp = mlp->ml_list) != NULL) {
2093                 ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2094                 mlp->ml_list = mp->mag_next;
2095                 if (--mlp->ml_total < mlp->ml_min)
2096                         mlp->ml_min = mlp->ml_total;
2097                 mlp->ml_alloc++;
2098         }
2099 
2100         mutex_exit(&cp->cache_depot_lock);
2101 
2102         return (mp);
2103 }
2104 
2105 /*
2106  * Free a magazine to the depot.
2107  */
2108 static void
2109 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2110 {
2111         mutex_enter(&cp->cache_depot_lock);
2112         ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2113         mp->mag_next = mlp->ml_list;
2114         mlp->ml_list = mp;
2115         mlp->ml_total++;
2116         mutex_exit(&cp->cache_depot_lock);
2117 }
2118 
2119 /*
2120  * Update the working set statistics for cp's depot.
2121  */
2122 static void
2123 kmem_depot_ws_update(kmem_cache_t *cp)
2124 {
2125         mutex_enter(&cp->cache_depot_lock);
2126         cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2127         cp->cache_full.ml_min = cp->cache_full.ml_total;
2128         cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2129         cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2130         mutex_exit(&cp->cache_depot_lock);
2131 }
2132 
2133 /*
2134  * Set the working set statistics for cp's depot to zero.  (Everything is
2135  * eligible for reaping.)
2136  */
2137 static void
2138 kmem_depot_ws_zero(kmem_cache_t *cp)
2139 {
2140         mutex_enter(&cp->cache_depot_lock);
2141         cp->cache_full.ml_reaplimit = cp->cache_full.ml_total;
2142         cp->cache_full.ml_min = cp->cache_full.ml_total;
2143         cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total;
2144         cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2145         mutex_exit(&cp->cache_depot_lock);
2146 }
2147 
2148 /*
2149  * The number of bytes to reap before we call kpreempt(). The default (1MB)
2150  * causes us to preempt reaping up to hundreds of times per second. Using a
2151  * larger value (1GB) causes this to have virtually no effect.
2152  */
2153 size_t kmem_reap_preempt_bytes = 1024 * 1024;
2154 
2155 /*
2156  * Reap all magazines that have fallen out of the depot's working set.
2157  */
2158 static void
2159 kmem_depot_ws_reap(kmem_cache_t *cp)
2160 {
2161         size_t bytes = 0;
2162         long reap;
2163         kmem_magazine_t *mp;
2164 
2165         ASSERT(!list_link_active(&cp->cache_link) ||
2166             taskq_member(kmem_taskq, curthread));
2167 
2168         reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2169         while (reap-- &&
2170             (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) {
2171                 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2172                 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2173                 if (bytes > kmem_reap_preempt_bytes) {
2174                         kpreempt(KPREEMPT_SYNC);
2175                         bytes = 0;
2176                 }
2177         }
2178 
2179         reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2180         while (reap-- &&
2181             (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) {
2182                 kmem_magazine_destroy(cp, mp, 0);
2183                 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2184                 if (bytes > kmem_reap_preempt_bytes) {
2185                         kpreempt(KPREEMPT_SYNC);
2186                         bytes = 0;
2187                 }
2188         }
2189 }
2190 
2191 static void
2192 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2193 {
2194         ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2195             (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2196         ASSERT(ccp->cc_magsize > 0);
2197 
2198         ccp->cc_ploaded = ccp->cc_loaded;
2199         ccp->cc_prounds = ccp->cc_rounds;
2200         ccp->cc_loaded = mp;
2201         ccp->cc_rounds = rounds;
2202 }
2203 
2204 /*
2205  * Intercept kmem alloc/free calls during crash dump in order to avoid
2206  * changing kmem state while memory is being saved to the dump device.
2207  * Otherwise, ::kmem_verify will report "corrupt buffers".  Note that
2208  * there are no locks because only one CPU calls kmem during a crash
2209  * dump. To enable this feature, first create the associated vmem
2210  * arena with VMC_DUMPSAFE.
2211  */
2212 static void *kmem_dump_start;   /* start of pre-reserved heap */
2213 static void *kmem_dump_end;     /* end of heap area */
2214 static void *kmem_dump_curr;    /* current free heap pointer */
2215 static size_t kmem_dump_size;   /* size of heap area */
2216 
2217 /* append to each buf created in the pre-reserved heap */
2218 typedef struct kmem_dumpctl {
2219         void    *kdc_next;      /* cache dump free list linkage */
2220 } kmem_dumpctl_t;
2221 
2222 #define KMEM_DUMPCTL(cp, buf)   \
2223         ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
2224             sizeof (void *)))
2225 
2226 /* Keep some simple stats. */
2227 #define KMEM_DUMP_LOGS  (100)
2228 
2229 typedef struct kmem_dump_log {
2230         kmem_cache_t    *kdl_cache;
2231         uint_t          kdl_allocs;             /* # of dump allocations */
2232         uint_t          kdl_frees;              /* # of dump frees */
2233         uint_t          kdl_alloc_fails;        /* # of allocation failures */
2234         uint_t          kdl_free_nondump;       /* # of non-dump frees */
2235         uint_t          kdl_unsafe;             /* cache was used, but unsafe */
2236 } kmem_dump_log_t;
2237 
2238 static kmem_dump_log_t *kmem_dump_log;
2239 static int kmem_dump_log_idx;
2240 
2241 #define KDI_LOG(cp, stat) {                                             \
2242         kmem_dump_log_t *kdl;                                           \
2243         if ((kdl = (kmem_dump_log_t *)((cp)->cache_dumplog)) != NULL) {      \
2244                 kdl->stat++;                                         \
2245         } else if (kmem_dump_log_idx < KMEM_DUMP_LOGS) {             \
2246                 kdl = &kmem_dump_log[kmem_dump_log_idx++];          \
2247                 kdl->stat++;                                         \
2248                 kdl->kdl_cache = (cp);                                       \
2249                 (cp)->cache_dumplog = kdl;                           \
2250         }                                                               \
2251 }
2252 
2253 /* set non zero for full report */
2254 uint_t kmem_dump_verbose = 0;
2255 
2256 /* stats for overize heap */
2257 uint_t kmem_dump_oversize_allocs = 0;
2258 uint_t kmem_dump_oversize_max = 0;
2259 
2260 static void
2261 kmem_dumppr(char **pp, char *e, const char *format, ...)
2262 {
2263         char *p = *pp;
2264 
2265         if (p < e) {
2266                 int n;
2267                 va_list ap;
2268 
2269                 va_start(ap, format);
2270                 n = vsnprintf(p, e - p, format, ap);
2271                 va_end(ap);
2272                 *pp = p + n;
2273         }
2274 }
2275 
2276 /*
2277  * Called when dumpadm(1M) configures dump parameters.
2278  */
2279 void
2280 kmem_dump_init(size_t size)
2281 {
2282         if (kmem_dump_start != NULL)
2283                 kmem_free(kmem_dump_start, kmem_dump_size);
2284 
2285         if (kmem_dump_log == NULL)
2286                 kmem_dump_log = (kmem_dump_log_t *)kmem_zalloc(KMEM_DUMP_LOGS *
2287                     sizeof (kmem_dump_log_t), KM_SLEEP);
2288 
2289         kmem_dump_start = kmem_alloc(size, KM_SLEEP);
2290 
2291         if (kmem_dump_start != NULL) {
2292                 kmem_dump_size = size;
2293                 kmem_dump_curr = kmem_dump_start;
2294                 kmem_dump_end = (void *)((char *)kmem_dump_start + size);
2295                 copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
2296         } else {
2297                 kmem_dump_size = 0;
2298                 kmem_dump_curr = NULL;
2299                 kmem_dump_end = NULL;
2300         }
2301 }
2302 
2303 /*
2304  * Set flag for each kmem_cache_t if is safe to use alternate dump
2305  * memory. Called just before panic crash dump starts. Set the flag
2306  * for the calling CPU.
2307  */
2308 void
2309 kmem_dump_begin(void)
2310 {
2311         ASSERT(panicstr != NULL);
2312         if (kmem_dump_start != NULL) {
2313                 kmem_cache_t *cp;
2314 
2315                 for (cp = list_head(&kmem_caches); cp != NULL;
2316                     cp = list_next(&kmem_caches, cp)) {
2317                         kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2318 
2319                         if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
2320                                 cp->cache_flags |= KMF_DUMPDIVERT;
2321                                 ccp->cc_flags |= KMF_DUMPDIVERT;
2322                                 ccp->cc_dump_rounds = ccp->cc_rounds;
2323                                 ccp->cc_dump_prounds = ccp->cc_prounds;
2324                                 ccp->cc_rounds = ccp->cc_prounds = -1;
2325                         } else {
2326                                 cp->cache_flags |= KMF_DUMPUNSAFE;
2327                                 ccp->cc_flags |= KMF_DUMPUNSAFE;
2328                         }
2329                 }
2330         }
2331 }
2332 
2333 /*
2334  * finished dump intercept
2335  * print any warnings on the console
2336  * return verbose information to dumpsys() in the given buffer
2337  */
2338 size_t
2339 kmem_dump_finish(char *buf, size_t size)
2340 {
2341         int kdi_idx;
2342         int kdi_end = kmem_dump_log_idx;
2343         int percent = 0;
2344         int header = 0;
2345         int warn = 0;
2346         size_t used;
2347         kmem_cache_t *cp;
2348         kmem_dump_log_t *kdl;
2349         char *e = buf + size;
2350         char *p = buf;
2351 
2352         if (kmem_dump_size == 0 || kmem_dump_verbose == 0)
2353                 return (0);
2354 
2355         used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
2356         percent = (used * 100) / kmem_dump_size;
2357 
2358         kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
2359         kmem_dumppr(&p, e, "used bytes,%ld\n", used);
2360         kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
2361         kmem_dumppr(&p, e, "Oversize allocs,%d\n",
2362             kmem_dump_oversize_allocs);
2363         kmem_dumppr(&p, e, "Oversize max size,%ld\n",
2364             kmem_dump_oversize_max);
2365 
2366         for (kdi_idx = 0; kdi_idx < kdi_end; kdi_idx++) {
2367                 kdl = &kmem_dump_log[kdi_idx];
2368                 cp = kdl->kdl_cache;
2369                 if (cp == NULL)
2370                         break;
2371                 if (kdl->kdl_alloc_fails)
2372                         ++warn;
2373                 if (header == 0) {
2374                         kmem_dumppr(&p, e,
2375                             "Cache Name,Allocs,Frees,Alloc Fails,"
2376                             "Nondump Frees,Unsafe Allocs/Frees\n");
2377                         header = 1;
2378                 }
2379                 kmem_dumppr(&p, e, "%s,%d,%d,%d,%d,%d\n",
2380                     cp->cache_name, kdl->kdl_allocs, kdl->kdl_frees,
2381                     kdl->kdl_alloc_fails, kdl->kdl_free_nondump,
2382                     kdl->kdl_unsafe);
2383         }
2384 
2385         /* return buffer size used */
2386         if (p < e)
2387                 bzero(p, e - p);
2388         return (p - buf);
2389 }
2390 
2391 /*
2392  * Allocate a constructed object from alternate dump memory.
2393  */
2394 void *
2395 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
2396 {
2397         void *buf;
2398         void *curr;
2399         char *bufend;
2400 
2401         /* return a constructed object */
2402         if ((buf = cp->cache_dumpfreelist) != NULL) {
2403                 cp->cache_dumpfreelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
2404                 KDI_LOG(cp, kdl_allocs);
2405                 return (buf);
2406         }
2407 
2408         /* create a new constructed object */
2409         curr = kmem_dump_curr;
2410         buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
2411         bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
2412 
2413         /* hat layer objects cannot cross a page boundary */
2414         if (cp->cache_align < PAGESIZE) {
2415                 char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
2416                 if (bufend > page) {
2417                         bufend += page - (char *)buf;
2418                         buf = (void *)page;
2419                 }
2420         }
2421 
2422         /* fall back to normal alloc if reserved area is used up */
2423         if (bufend > (char *)kmem_dump_end) {
2424                 kmem_dump_curr = kmem_dump_end;
2425                 KDI_LOG(cp, kdl_alloc_fails);
2426                 return (NULL);
2427         }
2428 
2429         /*
2430          * Must advance curr pointer before calling a constructor that
2431          * may also allocate memory.
2432          */
2433         kmem_dump_curr = bufend;
2434 
2435         /* run constructor */
2436         if (cp->cache_constructor != NULL &&
2437             cp->cache_constructor(buf, cp->cache_private, kmflag)
2438             != 0) {
2439 #ifdef DEBUG
2440                 printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
2441                     cp->cache_name, (void *)cp);
2442 #endif
2443                 /* reset curr pointer iff no allocs were done */
2444                 if (kmem_dump_curr == bufend)
2445                         kmem_dump_curr = curr;
2446 
2447                 /* fall back to normal alloc if the constructor fails */
2448                 KDI_LOG(cp, kdl_alloc_fails);
2449                 return (NULL);
2450         }
2451 
2452         KDI_LOG(cp, kdl_allocs);
2453         return (buf);
2454 }
2455 
2456 /*
2457  * Free a constructed object in alternate dump memory.
2458  */
2459 int
2460 kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
2461 {
2462         /* save constructed buffers for next time */
2463         if ((char *)buf >= (char *)kmem_dump_start &&
2464             (char *)buf < (char *)kmem_dump_end) {
2465                 KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dumpfreelist;
2466                 cp->cache_dumpfreelist = buf;
2467                 KDI_LOG(cp, kdl_frees);
2468                 return (0);
2469         }
2470 
2471         /* count all non-dump buf frees */
2472         KDI_LOG(cp, kdl_free_nondump);
2473 
2474         /* just drop buffers that were allocated before dump started */
2475         if (kmem_dump_curr < kmem_dump_end)
2476                 return (0);
2477 
2478         /* fall back to normal free if reserved area is used up */
2479         return (1);
2480 }
2481 
2482 /*
2483  * Allocate a constructed object from cache cp.
2484  */
2485 void *
2486 kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2487 {
2488         kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2489         kmem_magazine_t *fmp;
2490         void *buf;
2491 
2492         mutex_enter(&ccp->cc_lock);
2493         for (;;) {
2494                 /*
2495                  * If there's an object available in the current CPU's
2496                  * loaded magazine, just take it and return.
2497                  */
2498                 if (ccp->cc_rounds > 0) {
2499                         buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2500                         ccp->cc_alloc++;
2501                         mutex_exit(&ccp->cc_lock);
2502                         if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
2503                                 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2504                                         ASSERT(!(ccp->cc_flags &
2505                                             KMF_DUMPDIVERT));
2506                                         KDI_LOG(cp, kdl_unsafe);
2507                                 }
2508                                 if ((ccp->cc_flags & KMF_BUFTAG) &&
2509                                     kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2510                                     caller()) != 0) {
2511                                         if (kmflag & KM_NOSLEEP)
2512                                                 return (NULL);
2513                                         mutex_enter(&ccp->cc_lock);
2514                                         continue;
2515                                 }
2516                         }
2517                         return (buf);
2518                 }
2519 
2520                 /*
2521                  * The loaded magazine is empty.  If the previously loaded
2522                  * magazine was full, exchange them and try again.
2523                  */
2524                 if (ccp->cc_prounds > 0) {
2525                         kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2526                         continue;
2527                 }
2528 
2529                 /*
2530                  * Return an alternate buffer at dump time to preserve
2531                  * the heap.
2532                  */
2533                 if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2534                         if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2535                                 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2536                                 /* log it so that we can warn about it */
2537                                 KDI_LOG(cp, kdl_unsafe);
2538                         } else {
2539                                 if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
2540                                     NULL) {
2541                                         mutex_exit(&ccp->cc_lock);
2542                                         return (buf);
2543                                 }
2544                                 break;          /* fall back to slab layer */
2545                         }
2546                 }
2547 
2548                 /*
2549                  * If the magazine layer is disabled, break out now.
2550                  */
2551                 if (ccp->cc_magsize == 0)
2552                         break;
2553 
2554                 /*
2555                  * Try to get a full magazine from the depot.
2556                  */
2557                 fmp = kmem_depot_alloc(cp, &cp->cache_full);
2558                 if (fmp != NULL) {
2559                         if (ccp->cc_ploaded != NULL)
2560                                 kmem_depot_free(cp, &cp->cache_empty,
2561                                     ccp->cc_ploaded);
2562                         kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2563                         continue;
2564                 }
2565 
2566                 /*
2567                  * There are no full magazines in the depot,
2568                  * so fall through to the slab layer.
2569                  */
2570                 break;
2571         }
2572         mutex_exit(&ccp->cc_lock);
2573 
2574         /*
2575          * We couldn't allocate a constructed object from the magazine layer,
2576          * so get a raw buffer from the slab layer and apply its constructor.
2577          */
2578         buf = kmem_slab_alloc(cp, kmflag);
2579 
2580         if (buf == NULL)
2581                 return (NULL);
2582 
2583         if (cp->cache_flags & KMF_BUFTAG) {
2584                 /*
2585                  * Make kmem_cache_alloc_debug() apply the constructor for us.
2586                  */
2587                 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2588                 if (rc != 0) {
2589                         if (kmflag & KM_NOSLEEP)
2590                                 return (NULL);
2591                         /*
2592                          * kmem_cache_alloc_debug() detected corruption
2593                          * but didn't panic (kmem_panic <= 0). We should not be
2594                          * here because the constructor failed (indicated by a
2595                          * return code of 1). Try again.
2596                          */
2597                         ASSERT(rc == -1);
2598                         return (kmem_cache_alloc(cp, kmflag));
2599                 }
2600                 return (buf);
2601         }
2602 
2603         if (cp->cache_constructor != NULL &&
2604             cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2605                 atomic_inc_64(&cp->cache_alloc_fail);
2606                 kmem_slab_free(cp, buf);
2607                 return (NULL);
2608         }
2609 
2610         return (buf);
2611 }
2612 
2613 /*
2614  * The freed argument tells whether or not kmem_cache_free_debug() has already
2615  * been called so that we can avoid the duplicate free error. For example, a
2616  * buffer on a magazine has already been freed by the client but is still
2617  * constructed.
2618  */
2619 static void
2620 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2621 {
2622         if (!freed && (cp->cache_flags & KMF_BUFTAG))
2623                 if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2624                         return;
2625 
2626         /*
2627          * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2628          * kmem_cache_free_debug() will have already applied the destructor.
2629          */
2630         if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2631             cp->cache_destructor != NULL) {
2632                 if (cp->cache_flags & KMF_DEADBEEF) {    /* KMF_LITE implied */
2633                         kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2634                         *(uint64_t *)buf = btp->bt_redzone;
2635                         cp->cache_destructor(buf, cp->cache_private);
2636                         *(uint64_t *)buf = KMEM_FREE_PATTERN;
2637                 } else {
2638                         cp->cache_destructor(buf, cp->cache_private);
2639                 }
2640         }
2641 
2642         kmem_slab_free(cp, buf);
2643 }
2644 
2645 /*
2646  * Used when there's no room to free a buffer to the per-CPU cache.
2647  * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2648  * caller should try freeing to the per-CPU cache again.
2649  * Note that we don't directly install the magazine in the cpu cache,
2650  * since its state may have changed wildly while the lock was dropped.
2651  */
2652 static int
2653 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2654 {
2655         kmem_magazine_t *emp;
2656         kmem_magtype_t *mtp;
2657 
2658         ASSERT(MUTEX_HELD(&ccp->cc_lock));
2659         ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2660             ((uint_t)ccp->cc_rounds == -1)) &&
2661             ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2662             ((uint_t)ccp->cc_prounds == -1)));
2663 
2664         emp = kmem_depot_alloc(cp, &cp->cache_empty);
2665         if (emp != NULL) {
2666                 if (ccp->cc_ploaded != NULL)
2667                         kmem_depot_free(cp, &cp->cache_full,
2668                             ccp->cc_ploaded);
2669                 kmem_cpu_reload(ccp, emp, 0);
2670                 return (1);
2671         }
2672         /*
2673          * There are no empty magazines in the depot,
2674          * so try to allocate a new one.  We must drop all locks
2675          * across kmem_cache_alloc() because lower layers may
2676          * attempt to allocate from this cache.
2677          */
2678         mtp = cp->cache_magtype;
2679         mutex_exit(&ccp->cc_lock);
2680         emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2681         mutex_enter(&ccp->cc_lock);
2682 
2683         if (emp != NULL) {
2684                 /*
2685                  * We successfully allocated an empty magazine.
2686                  * However, we had to drop ccp->cc_lock to do it,
2687                  * so the cache's magazine size may have changed.
2688                  * If so, free the magazine and try again.
2689                  */
2690                 if (ccp->cc_magsize != mtp->mt_magsize) {
2691                         mutex_exit(&ccp->cc_lock);
2692                         kmem_cache_free(mtp->mt_cache, emp);
2693                         mutex_enter(&ccp->cc_lock);
2694                         return (1);
2695                 }
2696 
2697                 /*
2698                  * We got a magazine of the right size.  Add it to
2699                  * the depot and try the whole dance again.
2700                  */
2701                 kmem_depot_free(cp, &cp->cache_empty, emp);
2702                 return (1);
2703         }
2704 
2705         /*
2706          * We couldn't allocate an empty magazine,
2707          * so fall through to the slab layer.
2708          */
2709         return (0);
2710 }
2711 
2712 /*
2713  * Free a constructed object to cache cp.
2714  */
2715 void
2716 kmem_cache_free(kmem_cache_t *cp, void *buf)
2717 {
2718         kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2719 
2720         /*
2721          * The client must not free either of the buffers passed to the move
2722          * callback function.
2723          */
2724         ASSERT(cp->cache_defrag == NULL ||
2725             cp->cache_defrag->kmd_thread != curthread ||
2726             (buf != cp->cache_defrag->kmd_from_buf &&
2727             buf != cp->cache_defrag->kmd_to_buf));
2728 
2729         if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2730                 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2731                         ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2732                         /* log it so that we can warn about it */
2733                         KDI_LOG(cp, kdl_unsafe);
2734                 } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2735                         return;
2736                 }
2737                 if (ccp->cc_flags & KMF_BUFTAG) {
2738                         if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2739                                 return;
2740                 }
2741         }
2742 
2743         mutex_enter(&ccp->cc_lock);
2744         /*
2745          * Any changes to this logic should be reflected in kmem_slab_prefill()
2746          */
2747         for (;;) {
2748                 /*
2749                  * If there's a slot available in the current CPU's
2750                  * loaded magazine, just put the object there and return.
2751                  */
2752                 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2753                         ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2754                         ccp->cc_free++;
2755                         mutex_exit(&ccp->cc_lock);
2756                         return;
2757                 }
2758 
2759                 /*
2760                  * The loaded magazine is full.  If the previously loaded
2761                  * magazine was empty, exchange them and try again.
2762                  */
2763                 if (ccp->cc_prounds == 0) {
2764                         kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2765                         continue;
2766                 }
2767 
2768                 /*
2769                  * If the magazine layer is disabled, break out now.
2770                  */
2771                 if (ccp->cc_magsize == 0)
2772                         break;
2773 
2774                 if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2775                         /*
2776                          * We couldn't free our constructed object to the
2777                          * magazine layer, so apply its destructor and free it
2778                          * to the slab layer.
2779                          */
2780                         break;
2781                 }
2782         }
2783         mutex_exit(&ccp->cc_lock);
2784         kmem_slab_free_constructed(cp, buf, B_TRUE);
2785 }
2786 
2787 static void
2788 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2789 {
2790         kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2791         int cache_flags = cp->cache_flags;
2792 
2793         kmem_bufctl_t *next, *head;
2794         size_t nbufs;
2795 
2796         /*
2797          * Completely allocate the newly created slab and put the pre-allocated
2798          * buffers in magazines. Any of the buffers that cannot be put in
2799          * magazines must be returned to the slab.
2800          */
2801         ASSERT(MUTEX_HELD(&cp->cache_lock));
2802         ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2803         ASSERT(cp->cache_constructor == NULL);
2804         ASSERT(sp->slab_cache == cp);
2805         ASSERT(sp->slab_refcnt == 1);
2806         ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2807         ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2808 
2809         head = sp->slab_head;
2810         nbufs = (sp->slab_chunks - sp->slab_refcnt);
2811         sp->slab_head = NULL;
2812         sp->slab_refcnt += nbufs;
2813         cp->cache_bufslab -= nbufs;
2814         cp->cache_slab_alloc += nbufs;
2815         list_insert_head(&cp->cache_complete_slabs, sp);
2816         cp->cache_complete_slab_count++;
2817         mutex_exit(&cp->cache_lock);
2818         mutex_enter(&ccp->cc_lock);
2819 
2820         while (head != NULL) {
2821                 void *buf = KMEM_BUF(cp, head);
2822                 /*
2823                  * If there's a slot available in the current CPU's
2824                  * loaded magazine, just put the object there and
2825                  * continue.
2826                  */
2827                 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2828                         ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2829                             buf;
2830                         ccp->cc_free++;
2831                         nbufs--;
2832                         head = head->bc_next;
2833                         continue;
2834                 }
2835 
2836                 /*
2837                  * The loaded magazine is full.  If the previously
2838                  * loaded magazine was empty, exchange them and try
2839                  * again.
2840                  */
2841                 if (ccp->cc_prounds == 0) {
2842                         kmem_cpu_reload(ccp, ccp->cc_ploaded,
2843                             ccp->cc_prounds);
2844                         continue;
2845                 }
2846 
2847                 /*
2848                  * If the magazine layer is disabled, break out now.
2849                  */
2850 
2851                 if (ccp->cc_magsize == 0) {
2852                         break;
2853                 }
2854 
2855                 if (!kmem_cpucache_magazine_alloc(ccp, cp))
2856                         break;
2857         }
2858         mutex_exit(&ccp->cc_lock);
2859         if (nbufs != 0) {
2860                 ASSERT(head != NULL);
2861 
2862                 /*
2863                  * If there was a failure, return remaining objects to
2864                  * the slab
2865                  */
2866                 while (head != NULL) {
2867                         ASSERT(nbufs != 0);
2868                         next = head->bc_next;
2869                         head->bc_next = NULL;
2870                         kmem_slab_free(cp, KMEM_BUF(cp, head));
2871                         head = next;
2872                         nbufs--;
2873                 }
2874         }
2875         ASSERT(head == NULL);
2876         ASSERT(nbufs == 0);
2877         mutex_enter(&cp->cache_lock);
2878 }
2879 
2880 void *
2881 kmem_zalloc(size_t size, int kmflag)
2882 {
2883         size_t index;
2884         void *buf;
2885 
2886         if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2887                 kmem_cache_t *cp = kmem_alloc_table[index];
2888                 buf = kmem_cache_alloc(cp, kmflag);
2889                 if (buf != NULL) {
2890                         if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2891                                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2892                                 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2893                                 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2894 
2895                                 if (cp->cache_flags & KMF_LITE) {
2896                                         KMEM_BUFTAG_LITE_ENTER(btp,
2897                                             kmem_lite_count, caller());
2898                                 }
2899                         }
2900                         bzero(buf, size);
2901                 }
2902         } else {
2903                 buf = kmem_alloc(size, kmflag);
2904                 if (buf != NULL)
2905                         bzero(buf, size);
2906         }
2907         return (buf);
2908 }
2909 
2910 void *
2911 kmem_alloc(size_t size, int kmflag)
2912 {
2913         size_t index;
2914         kmem_cache_t *cp;
2915         void *buf;
2916 
2917         if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2918                 cp = kmem_alloc_table[index];
2919                 /* fall through to kmem_cache_alloc() */
2920 
2921         } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2922             kmem_big_alloc_table_max) {
2923                 cp = kmem_big_alloc_table[index];
2924                 /* fall through to kmem_cache_alloc() */
2925 
2926         } else {
2927                 if (size == 0) {
2928                         if (kmflag != KM_SLEEP && !(kmflag & KM_PANIC))
2929                                 return (NULL);
2930 
2931                         /*
2932                          * If this is a sleeping allocation or one that has
2933                          * been specified to panic on allocation failure, we
2934                          * consider it to be deprecated behavior to allocate
2935                          * 0 bytes.  If we have been configured to panic under
2936                          * this condition, we panic; if to warn, we warn -- and
2937                          * regardless, we log to the kmem_zerosized_log that
2938                          * that this condition has occurred (which gives us
2939                          * enough information to be able to debug it).
2940                          */
2941                         if (kmem_panic && kmem_panic_zerosized)
2942                                 panic("attempted to kmem_alloc() size of 0");
2943 
2944                         if (kmem_warn_zerosized) {
2945                                 cmn_err(CE_WARN, "kmem_alloc(): sleeping "
2946                                     "allocation with size of 0; "
2947                                     "see kmem_zerosized_log for details");
2948                         }
2949 
2950                         kmem_log_event(kmem_zerosized_log, NULL, NULL, NULL);
2951 
2952                         return (NULL);
2953                 }
2954 
2955                 buf = vmem_alloc(kmem_oversize_arena, size,
2956                     kmflag & KM_VMFLAGS);
2957                 if (buf == NULL)
2958                         kmem_log_event(kmem_failure_log, NULL, NULL,
2959                             (void *)size);
2960                 else if (KMEM_DUMP(kmem_slab_cache)) {
2961                         /* stats for dump intercept */
2962                         kmem_dump_oversize_allocs++;
2963                         if (size > kmem_dump_oversize_max)
2964                                 kmem_dump_oversize_max = size;
2965                 }
2966                 return (buf);
2967         }
2968 
2969         buf = kmem_cache_alloc(cp, kmflag);
2970         if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2971                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2972                 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2973                 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2974 
2975                 if (cp->cache_flags & KMF_LITE) {
2976                         KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2977                 }
2978         }
2979         return (buf);
2980 }
2981 
2982 void
2983 kmem_free(void *buf, size_t size)
2984 {
2985         size_t index;
2986         kmem_cache_t *cp;
2987 
2988         if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
2989                 cp = kmem_alloc_table[index];
2990                 /* fall through to kmem_cache_free() */
2991 
2992         } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2993             kmem_big_alloc_table_max) {
2994                 cp = kmem_big_alloc_table[index];
2995                 /* fall through to kmem_cache_free() */
2996 
2997         } else {
2998                 EQUIV(buf == NULL, size == 0);
2999                 if (buf == NULL && size == 0)
3000                         return;
3001                 vmem_free(kmem_oversize_arena, buf, size);
3002                 return;
3003         }
3004 
3005         if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
3006                 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
3007                 uint32_t *ip = (uint32_t *)btp;
3008                 if (ip[1] != KMEM_SIZE_ENCODE(size)) {
3009                         if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
3010                                 kmem_error(KMERR_DUPFREE, cp, buf);
3011                                 return;
3012                         }
3013                         if (KMEM_SIZE_VALID(ip[1])) {
3014                                 ip[0] = KMEM_SIZE_ENCODE(size);
3015                                 kmem_error(KMERR_BADSIZE, cp, buf);
3016                         } else {
3017                                 kmem_error(KMERR_REDZONE, cp, buf);
3018                         }
3019                         return;
3020                 }
3021                 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
3022                         kmem_error(KMERR_REDZONE, cp, buf);
3023                         return;
3024                 }
3025                 btp->bt_redzone = KMEM_REDZONE_PATTERN;
3026                 if (cp->cache_flags & KMF_LITE) {
3027                         KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
3028                             caller());
3029                 }
3030         }
3031         kmem_cache_free(cp, buf);
3032 }
3033 
3034 void *
3035 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
3036 {
3037         size_t realsize = size + vmp->vm_quantum;
3038         void *addr;
3039 
3040         /*
3041          * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
3042          * vm_quantum will cause integer wraparound.  Check for this, and
3043          * blow off the firewall page in this case.  Note that such a
3044          * giant allocation (the entire kernel address space) can never
3045          * be satisfied, so it will either fail immediately (VM_NOSLEEP)
3046          * or sleep forever (VM_SLEEP).  Thus, there is no need for a
3047          * corresponding check in kmem_firewall_va_free().
3048          */
3049         if (realsize < size)
3050                 realsize = size;
3051 
3052         /*
3053          * While boot still owns resource management, make sure that this
3054          * redzone virtual address allocation is properly accounted for in
3055          * OBPs "virtual-memory" "available" lists because we're
3056          * effectively claiming them for a red zone.  If we don't do this,
3057          * the available lists become too fragmented and too large for the
3058          * current boot/kernel memory list interface.
3059          */
3060         addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
3061 
3062         if (addr != NULL && kvseg.s_base == NULL && realsize != size)
3063                 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
3064 
3065         return (addr);
3066 }
3067 
3068 void
3069 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
3070 {
3071         ASSERT((kvseg.s_base == NULL ?
3072             va_to_pfn((char *)addr + size) :
3073             hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
3074 
3075         vmem_free(vmp, addr, size + vmp->vm_quantum);
3076 }
3077 
3078 /*
3079  * Try to allocate at least `size' bytes of memory without sleeping or
3080  * panicking. Return actual allocated size in `asize'. If allocation failed,
3081  * try final allocation with sleep or panic allowed.
3082  */
3083 void *
3084 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
3085 {
3086         void *p;
3087 
3088         *asize = P2ROUNDUP(size, KMEM_ALIGN);
3089         do {
3090                 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
3091                 if (p != NULL)
3092                         return (p);
3093                 *asize += KMEM_ALIGN;
3094         } while (*asize <= PAGESIZE);
3095 
3096         *asize = P2ROUNDUP(size, KMEM_ALIGN);
3097         return (kmem_alloc(*asize, kmflag));
3098 }
3099 
3100 /*
3101  * Reclaim all unused memory from a cache.
3102  */
3103 static void
3104 kmem_cache_reap(kmem_cache_t *cp)
3105 {
3106         ASSERT(taskq_member(kmem_taskq, curthread));
3107         cp->cache_reap++;
3108 
3109         /*
3110          * Ask the cache's owner to free some memory if possible.
3111          * The idea is to handle things like the inode cache, which
3112          * typically sits on a bunch of memory that it doesn't truly
3113          * *need*.  Reclaim policy is entirely up to the owner; this
3114          * callback is just an advisory plea for help.
3115          */
3116         if (cp->cache_reclaim != NULL) {
3117                 long delta;
3118 
3119                 /*
3120                  * Reclaimed memory should be reapable (not included in the
3121                  * depot's working set).
3122                  */
3123                 delta = cp->cache_full.ml_total;
3124                 cp->cache_reclaim(cp->cache_private);
3125                 delta = cp->cache_full.ml_total - delta;
3126                 if (delta > 0) {
3127                         mutex_enter(&cp->cache_depot_lock);
3128                         cp->cache_full.ml_reaplimit += delta;
3129                         cp->cache_full.ml_min += delta;
3130                         mutex_exit(&cp->cache_depot_lock);
3131                 }
3132         }
3133 
3134         kmem_depot_ws_reap(cp);
3135 
3136         if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3137                 kmem_cache_defrag(cp);
3138         }
3139 }
3140 
3141 static void
3142 kmem_reap_timeout(void *flag_arg)
3143 {
3144         uint32_t *flag = (uint32_t *)flag_arg;
3145 
3146         ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3147         *flag = 0;
3148 }
3149 
3150 static void
3151 kmem_reap_done(void *flag)
3152 {
3153         if (!callout_init_done) {
3154                 /* can't schedule a timeout at this point */
3155                 kmem_reap_timeout(flag);
3156         } else {
3157                 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
3158         }
3159 }
3160 
3161 static void
3162 kmem_reap_start(void *flag)
3163 {
3164         ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3165 
3166         if (flag == &kmem_reaping) {
3167                 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3168                 /*
3169                  * if we have segkp under heap, reap segkp cache.
3170                  */
3171                 if (segkp_fromheap)
3172                         segkp_cache_free();
3173         }
3174         else
3175                 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3176 
3177         /*
3178          * We use taskq_dispatch() to schedule a timeout to clear
3179          * the flag so that kmem_reap() becomes self-throttling:
3180          * we won't reap again until the current reap completes *and*
3181          * at least kmem_reap_interval ticks have elapsed.
3182          */
3183         if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
3184                 kmem_reap_done(flag);
3185 }
3186 
3187 static void
3188 kmem_reap_common(void *flag_arg)
3189 {
3190         uint32_t *flag = (uint32_t *)flag_arg;
3191 
3192         if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
3193             atomic_cas_32(flag, 0, 1) != 0)
3194                 return;
3195 
3196         /*
3197          * It may not be kosher to do memory allocation when a reap is called
3198          * (for example, if vmem_populate() is in the call chain).  So we
3199          * start the reap going with a TQ_NOALLOC dispatch.  If the dispatch
3200          * fails, we reset the flag, and the next reap will try again.
3201          */
3202         if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
3203                 *flag = 0;
3204 }
3205 
3206 /*
3207  * Reclaim all unused memory from all caches.  Called from the VM system
3208  * when memory gets tight.
3209  */
3210 void
3211 kmem_reap(void)
3212 {
3213         kmem_reap_common(&kmem_reaping);
3214 }
3215 
3216 /*
3217  * Reclaim all unused memory from identifier arenas, called when a vmem
3218  * arena not back by memory is exhausted.  Since reaping memory-backed caches
3219  * cannot help with identifier exhaustion, we avoid both a large amount of
3220  * work and unwanted side-effects from reclaim callbacks.
3221  */
3222 void
3223 kmem_reap_idspace(void)
3224 {
3225         kmem_reap_common(&kmem_reaping_idspace);
3226 }
3227 
3228 /*
3229  * Purge all magazines from a cache and set its magazine limit to zero.
3230  * All calls are serialized by the kmem_taskq lock, except for the final
3231  * call from kmem_cache_destroy().
3232  */
3233 static void
3234 kmem_cache_magazine_purge(kmem_cache_t *cp)
3235 {
3236         kmem_cpu_cache_t *ccp;
3237         kmem_magazine_t *mp, *pmp;
3238         int rounds, prounds, cpu_seqid;
3239 
3240         ASSERT(!list_link_active(&cp->cache_link) ||
3241             taskq_member(kmem_taskq, curthread));
3242         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
3243 
3244         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3245                 ccp = &cp->cache_cpu[cpu_seqid];
3246 
3247                 mutex_enter(&ccp->cc_lock);
3248                 mp = ccp->cc_loaded;
3249                 pmp = ccp->cc_ploaded;
3250                 rounds = ccp->cc_rounds;
3251                 prounds = ccp->cc_prounds;
3252                 ccp->cc_loaded = NULL;
3253                 ccp->cc_ploaded = NULL;
3254                 ccp->cc_rounds = -1;
3255                 ccp->cc_prounds = -1;
3256                 ccp->cc_magsize = 0;
3257                 mutex_exit(&ccp->cc_lock);
3258 
3259                 if (mp)
3260                         kmem_magazine_destroy(cp, mp, rounds);
3261                 if (pmp)
3262                         kmem_magazine_destroy(cp, pmp, prounds);
3263         }
3264 
3265         kmem_depot_ws_zero(cp);
3266         kmem_depot_ws_reap(cp);
3267 }
3268 
3269 /*
3270  * Enable per-cpu magazines on a cache.
3271  */
3272 static void
3273 kmem_cache_magazine_enable(kmem_cache_t *cp)
3274 {
3275         int cpu_seqid;
3276 
3277         if (cp->cache_flags & KMF_NOMAGAZINE)
3278                 return;
3279 
3280         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3281                 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3282                 mutex_enter(&ccp->cc_lock);
3283                 ccp->cc_magsize = cp->cache_magtype->mt_magsize;
3284                 mutex_exit(&ccp->cc_lock);
3285         }
3286 
3287 }
3288 
3289 /*
3290  * Reap (almost) everything right now.
3291  */
3292 void
3293 kmem_cache_reap_now(kmem_cache_t *cp)
3294 {
3295         ASSERT(list_link_active(&cp->cache_link));
3296 
3297         kmem_depot_ws_zero(cp);
3298 
3299         (void) taskq_dispatch(kmem_taskq,
3300             (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3301         taskq_wait(kmem_taskq);
3302 }
3303 
3304 /*
3305  * Recompute a cache's magazine size.  The trade-off is that larger magazines
3306  * provide a higher transfer rate with the depot, while smaller magazines
3307  * reduce memory consumption.  Magazine resizing is an expensive operation;
3308  * it should not be done frequently.
3309  *
3310  * Changes to the magazine size are serialized by the kmem_taskq lock.
3311  *
3312  * Note: at present this only grows the magazine size.  It might be useful
3313  * to allow shrinkage too.
3314  */
3315 static void
3316 kmem_cache_magazine_resize(kmem_cache_t *cp)
3317 {
3318         kmem_magtype_t *mtp = cp->cache_magtype;
3319 
3320         ASSERT(taskq_member(kmem_taskq, curthread));
3321 
3322         if (cp->cache_chunksize < mtp->mt_maxbuf) {
3323                 kmem_cache_magazine_purge(cp);
3324                 mutex_enter(&cp->cache_depot_lock);
3325                 cp->cache_magtype = ++mtp;
3326                 cp->cache_depot_contention_prev =
3327                     cp->cache_depot_contention + INT_MAX;
3328                 mutex_exit(&cp->cache_depot_lock);
3329                 kmem_cache_magazine_enable(cp);
3330         }
3331 }
3332 
3333 /*
3334  * Rescale a cache's hash table, so that the table size is roughly the
3335  * cache size.  We want the average lookup time to be extremely small.
3336  */
3337 static void
3338 kmem_hash_rescale(kmem_cache_t *cp)
3339 {
3340         kmem_bufctl_t **old_table, **new_table, *bcp;
3341         size_t old_size, new_size, h;
3342 
3343         ASSERT(taskq_member(kmem_taskq, curthread));
3344 
3345         new_size = MAX(KMEM_HASH_INITIAL,
3346             1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
3347         old_size = cp->cache_hash_mask + 1;
3348 
3349         if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
3350                 return;
3351 
3352         new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
3353             VM_NOSLEEP);
3354         if (new_table == NULL)
3355                 return;
3356         bzero(new_table, new_size * sizeof (void *));
3357 
3358         mutex_enter(&cp->cache_lock);
3359 
3360         old_size = cp->cache_hash_mask + 1;
3361         old_table = cp->cache_hash_table;
3362 
3363         cp->cache_hash_mask = new_size - 1;
3364         cp->cache_hash_table = new_table;
3365         cp->cache_rescale++;
3366 
3367         for (h = 0; h < old_size; h++) {
3368                 bcp = old_table[h];
3369                 while (bcp != NULL) {
3370                         void *addr = bcp->bc_addr;
3371                         kmem_bufctl_t *next_bcp = bcp->bc_next;
3372                         kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
3373                         bcp->bc_next = *hash_bucket;
3374                         *hash_bucket = bcp;
3375                         bcp = next_bcp;
3376                 }
3377         }
3378 
3379         mutex_exit(&cp->cache_lock);
3380 
3381         vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
3382 }
3383 
3384 /*
3385  * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3386  * update, magazine resizing, and slab consolidation.
3387  */
3388 static void
3389 kmem_cache_update(kmem_cache_t *cp)
3390 {
3391         int need_hash_rescale = 0;
3392         int need_magazine_resize = 0;
3393 
3394         ASSERT(MUTEX_HELD(&kmem_cache_lock));
3395 
3396         /*
3397          * If the cache has become much larger or smaller than its hash table,
3398          * fire off a request to rescale the hash table.
3399          */
3400         mutex_enter(&cp->cache_lock);
3401 
3402         if ((cp->cache_flags & KMF_HASH) &&
3403             (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
3404             (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
3405             cp->cache_hash_mask > KMEM_HASH_INITIAL)))
3406                 need_hash_rescale = 1;
3407 
3408         mutex_exit(&cp->cache_lock);
3409 
3410         /*
3411          * Update the depot working set statistics.
3412          */
3413         kmem_depot_ws_update(cp);
3414 
3415         /*
3416          * If there's a lot of contention in the depot,
3417          * increase the magazine size.
3418          */
3419         mutex_enter(&cp->cache_depot_lock);
3420 
3421         if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
3422             (int)(cp->cache_depot_contention -
3423             cp->cache_depot_contention_prev) > kmem_depot_contention)
3424                 need_magazine_resize = 1;
3425 
3426         cp->cache_depot_contention_prev = cp->cache_depot_contention;
3427 
3428         mutex_exit(&cp->cache_depot_lock);
3429 
3430         if (need_hash_rescale)
3431                 (void) taskq_dispatch(kmem_taskq,
3432                     (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
3433 
3434         if (need_magazine_resize)
3435                 (void) taskq_dispatch(kmem_taskq,
3436                     (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3437 
3438         if (cp->cache_defrag != NULL)
3439                 (void) taskq_dispatch(kmem_taskq,
3440                     (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
3441 }
3442 
3443 static void kmem_update(void *);
3444 
3445 static void
3446 kmem_update_timeout(void *dummy)
3447 {
3448         (void) timeout(kmem_update, dummy, kmem_reap_interval);
3449 }
3450 
3451 static void
3452 kmem_update(void *dummy)
3453 {
3454         kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
3455 
3456         /*
3457          * We use taskq_dispatch() to reschedule the timeout so that
3458          * kmem_update() becomes self-throttling: it won't schedule
3459          * new tasks until all previous tasks have completed.
3460          */
3461         if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
3462                 kmem_update_timeout(NULL);
3463 }
3464 
3465 static int
3466 kmem_cache_kstat_update(kstat_t *ksp, int rw)
3467 {
3468         struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
3469         kmem_cache_t *cp = ksp->ks_private;
3470         uint64_t cpu_buf_avail;
3471         uint64_t buf_avail = 0;
3472         int cpu_seqid;
3473         long reap;
3474 
3475         ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
3476 
3477         if (rw == KSTAT_WRITE)
3478                 return (EACCES);
3479 
3480         mutex_enter(&cp->cache_lock);
3481 
3482         kmcp->kmc_alloc_fail.value.ui64              = cp->cache_alloc_fail;
3483         kmcp->kmc_alloc.value.ui64           = cp->cache_slab_alloc;
3484         kmcp->kmc_free.value.ui64            = cp->cache_slab_free;
3485         kmcp->kmc_slab_alloc.value.ui64              = cp->cache_slab_alloc;
3486         kmcp->kmc_slab_free.value.ui64               = cp->cache_slab_free;
3487 
3488         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3489                 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3490 
3491                 mutex_enter(&ccp->cc_lock);
3492 
3493                 cpu_buf_avail = 0;
3494                 if (ccp->cc_rounds > 0)
3495                         cpu_buf_avail += ccp->cc_rounds;
3496                 if (ccp->cc_prounds > 0)
3497                         cpu_buf_avail += ccp->cc_prounds;
3498 
3499                 kmcp->kmc_alloc.value.ui64   += ccp->cc_alloc;
3500                 kmcp->kmc_free.value.ui64    += ccp->cc_free;
3501                 buf_avail                       += cpu_buf_avail;
3502 
3503                 mutex_exit(&ccp->cc_lock);
3504         }
3505 
3506         mutex_enter(&cp->cache_depot_lock);
3507 
3508         kmcp->kmc_depot_alloc.value.ui64     = cp->cache_full.ml_alloc;
3509         kmcp->kmc_depot_free.value.ui64              = cp->cache_empty.ml_alloc;
3510         kmcp->kmc_depot_contention.value.ui64        = cp->cache_depot_contention;
3511         kmcp->kmc_full_magazines.value.ui64  = cp->cache_full.ml_total;
3512         kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total;
3513         kmcp->kmc_magazine_size.value.ui64   =
3514             (cp->cache_flags & KMF_NOMAGAZINE) ?
3515             0 : cp->cache_magtype->mt_magsize;
3516 
3517         kmcp->kmc_alloc.value.ui64           += cp->cache_full.ml_alloc;
3518         kmcp->kmc_free.value.ui64            += cp->cache_empty.ml_alloc;
3519         buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
3520 
3521         reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3522         reap = MIN(reap, cp->cache_full.ml_total);
3523 
3524         mutex_exit(&cp->cache_depot_lock);
3525 
3526         kmcp->kmc_buf_size.value.ui64        = cp->cache_bufsize;
3527         kmcp->kmc_align.value.ui64   = cp->cache_align;
3528         kmcp->kmc_chunk_size.value.ui64      = cp->cache_chunksize;
3529         kmcp->kmc_slab_size.value.ui64       = cp->cache_slabsize;
3530         kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
3531         buf_avail += cp->cache_bufslab;
3532         kmcp->kmc_buf_avail.value.ui64       = buf_avail;
3533         kmcp->kmc_buf_inuse.value.ui64       = cp->cache_buftotal - buf_avail;
3534         kmcp->kmc_buf_total.value.ui64       = cp->cache_buftotal;
3535         kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax;
3536         kmcp->kmc_slab_create.value.ui64     = cp->cache_slab_create;
3537         kmcp->kmc_slab_destroy.value.ui64    = cp->cache_slab_destroy;
3538         kmcp->kmc_hash_size.value.ui64       = (cp->cache_flags & KMF_HASH) ?
3539             cp->cache_hash_mask + 1 : 0;
3540         kmcp->kmc_hash_lookup_depth.value.ui64       = cp->cache_lookup_depth;
3541         kmcp->kmc_hash_rescale.value.ui64    = cp->cache_rescale;
3542         kmcp->kmc_vmem_source.value.ui64     = cp->cache_arena->vm_id;
3543         kmcp->kmc_reap.value.ui64    = cp->cache_reap;
3544 
3545         if (cp->cache_defrag == NULL) {
3546                 kmcp->kmc_move_callbacks.value.ui64  = 0;
3547                 kmcp->kmc_move_yes.value.ui64                = 0;
3548                 kmcp->kmc_move_no.value.ui64         = 0;
3549                 kmcp->kmc_move_later.value.ui64              = 0;
3550                 kmcp->kmc_move_dont_need.value.ui64  = 0;
3551                 kmcp->kmc_move_dont_know.value.ui64  = 0;
3552                 kmcp->kmc_move_hunt_found.value.ui64 = 0;
3553                 kmcp->kmc_move_slabs_freed.value.ui64        = 0;
3554                 kmcp->kmc_defrag.value.ui64          = 0;
3555                 kmcp->kmc_scan.value.ui64            = 0;
3556                 kmcp->kmc_move_reclaimable.value.ui64        = 0;
3557         } else {
3558                 int64_t reclaimable;
3559 
3560                 kmem_defrag_t *kd = cp->cache_defrag;
3561                 kmcp->kmc_move_callbacks.value.ui64  = kd->kmd_callbacks;
3562                 kmcp->kmc_move_yes.value.ui64                = kd->kmd_yes;
3563                 kmcp->kmc_move_no.value.ui64         = kd->kmd_no;
3564                 kmcp->kmc_move_later.value.ui64              = kd->kmd_later;
3565                 kmcp->kmc_move_dont_need.value.ui64  = kd->kmd_dont_need;
3566                 kmcp->kmc_move_dont_know.value.ui64  = kd->kmd_dont_know;
3567                 kmcp->kmc_move_hunt_found.value.ui64 = 0;
3568                 kmcp->kmc_move_slabs_freed.value.ui64        = kd->kmd_slabs_freed;
3569                 kmcp->kmc_defrag.value.ui64          = kd->kmd_defrags;
3570                 kmcp->kmc_scan.value.ui64            = kd->kmd_scans;
3571 
3572                 reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3573                 reclaimable = MAX(reclaimable, 0);
3574                 reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3575                 kmcp->kmc_move_reclaimable.value.ui64        = reclaimable;
3576         }
3577 
3578         mutex_exit(&cp->cache_lock);
3579         return (0);
3580 }
3581 
3582 /*
3583  * Return a named statistic about a particular cache.
3584  * This shouldn't be called very often, so it's currently designed for
3585  * simplicity (leverages existing kstat support) rather than efficiency.
3586  */
3587 uint64_t
3588 kmem_cache_stat(kmem_cache_t *cp, char *name)
3589 {
3590         int i;
3591         kstat_t *ksp = cp->cache_kstat;
3592         kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3593         uint64_t value = 0;
3594 
3595         if (ksp != NULL) {
3596                 mutex_enter(&kmem_cache_kstat_lock);
3597                 (void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3598                 for (i = 0; i < ksp->ks_ndata; i++) {
3599                         if (strcmp(knp[i].name, name) == 0) {
3600                                 value = knp[i].value.ui64;
3601                                 break;
3602                         }
3603                 }
3604                 mutex_exit(&kmem_cache_kstat_lock);
3605         }
3606         return (value);
3607 }
3608 
3609 /*
3610  * Return an estimate of currently available kernel heap memory.
3611  * On 32-bit systems, physical memory may exceed virtual memory,
3612  * we just truncate the result at 1GB.
3613  */
3614 size_t
3615 kmem_avail(void)
3616 {
3617         spgcnt_t rmem = availrmem - tune.t_minarmem;
3618         spgcnt_t fmem = freemem - minfree;
3619 
3620         return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3621             1 << (30 - PAGESHIFT))));
3622 }
3623 
3624 /*
3625  * Return the maximum amount of memory that is (in theory) allocatable
3626  * from the heap. This may be used as an estimate only since there
3627  * is no guarentee this space will still be available when an allocation
3628  * request is made, nor that the space may be allocated in one big request
3629  * due to kernel heap fragmentation.
3630  */
3631 size_t
3632 kmem_maxavail(void)
3633 {
3634         spgcnt_t pmem = availrmem - tune.t_minarmem;
3635         spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3636 
3637         return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3638 }
3639 
3640 /*
3641  * Indicate whether memory-intensive kmem debugging is enabled.
3642  */
3643 int
3644 kmem_debugging(void)
3645 {
3646         return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3647 }
3648 
3649 /* binning function, sorts finely at the two extremes */
3650 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)                          \
3651         ((((sp)->slab_refcnt <= (binshift)) ||                            \
3652             (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))   \
3653             ? -(sp)->slab_refcnt                                     \
3654             : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3655 
3656 /*
3657  * Minimizing the number of partial slabs on the freelist minimizes
3658  * fragmentation (the ratio of unused buffers held by the slab layer). There are
3659  * two ways to get a slab off of the freelist: 1) free all the buffers on the
3660  * slab, and 2) allocate all the buffers on the slab. It follows that we want
3661  * the most-used slabs at the front of the list where they have the best chance
3662  * of being completely allocated, and the least-used slabs at a safe distance
3663  * from the front to improve the odds that the few remaining buffers will all be
3664  * freed before another allocation can tie up the slab. For that reason a slab
3665  * with a higher slab_refcnt sorts less than than a slab with a lower
3666  * slab_refcnt.
3667  *
3668  * However, if a slab has at least one buffer that is deemed unfreeable, we
3669  * would rather have that slab at the front of the list regardless of
3670  * slab_refcnt, since even one unfreeable buffer makes the entire slab
3671  * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3672  * callback, the slab is marked unfreeable for as long as it remains on the
3673  * freelist.
3674  */
3675 static int
3676 kmem_partial_slab_cmp(const void *p0, const void *p1)
3677 {
3678         const kmem_cache_t *cp;
3679         const kmem_slab_t *s0 = p0;
3680         const kmem_slab_t *s1 = p1;
3681         int w0, w1;
3682         size_t binshift;
3683 
3684         ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3685         ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3686         ASSERT(s0->slab_cache == s1->slab_cache);
3687         cp = s1->slab_cache;
3688         ASSERT(MUTEX_HELD(&cp->cache_lock));
3689         binshift = cp->cache_partial_binshift;
3690 
3691         /* weight of first slab */
3692         w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3693         if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3694                 w0 -= cp->cache_maxchunks;
3695         }
3696 
3697         /* weight of second slab */
3698         w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3699         if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3700                 w1 -= cp->cache_maxchunks;
3701         }
3702 
3703         if (w0 < w1)
3704                 return (-1);
3705         if (w0 > w1)
3706                 return (1);
3707 
3708         /* compare pointer values */
3709         if ((uintptr_t)s0 < (uintptr_t)s1)
3710                 return (-1);
3711         if ((uintptr_t)s0 > (uintptr_t)s1)
3712                 return (1);
3713 
3714         return (0);
3715 }
3716 
3717 /*
3718  * It must be valid to call the destructor (if any) on a newly created object.
3719  * That is, the constructor (if any) must leave the object in a valid state for
3720  * the destructor.
3721  */
3722 kmem_cache_t *
3723 kmem_cache_create(
3724         char *name,             /* descriptive name for this cache */
3725         size_t bufsize,         /* size of the objects it manages */
3726         size_t align,           /* required object alignment */
3727         int (*constructor)(void *, void *, int), /* object constructor */
3728         void (*destructor)(void *, void *),     /* object destructor */
3729         void (*reclaim)(void *), /* memory reclaim callback */
3730         void *private,          /* pass-thru arg for constr/destr/reclaim */
3731         vmem_t *vmp,            /* vmem source for slab allocation */
3732         int cflags)             /* cache creation flags */
3733 {
3734         int cpu_seqid;
3735         size_t chunksize;
3736         kmem_cache_t *cp;
3737         kmem_magtype_t *mtp;
3738         size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3739 
3740 #ifdef  DEBUG
3741         /*
3742          * Cache names should conform to the rules for valid C identifiers
3743          */
3744         if (!strident_valid(name)) {
3745                 cmn_err(CE_CONT,
3746                     "kmem_cache_create: '%s' is an invalid cache name\n"
3747                     "cache names must conform to the rules for "
3748                     "C identifiers\n", name);
3749         }
3750 #endif  /* DEBUG */
3751 
3752         if (vmp == NULL)
3753                 vmp = kmem_default_arena;
3754 
3755         /*
3756          * If this kmem cache has an identifier vmem arena as its source, mark
3757          * it such to allow kmem_reap_idspace().
3758          */
3759         ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
3760         if (vmp->vm_cflags & VMC_IDENTIFIER)
3761                 cflags |= KMC_IDENTIFIER;
3762 
3763         /*
3764          * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
3765          * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3766          * false sharing of per-CPU data.
3767          */
3768         cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3769             P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3770         bzero(cp, csize);
3771         list_link_init(&cp->cache_link);
3772 
3773         if (align == 0)
3774                 align = KMEM_ALIGN;
3775 
3776         /*
3777          * If we're not at least KMEM_ALIGN aligned, we can't use free
3778          * memory to hold bufctl information (because we can't safely
3779          * perform word loads and stores on it).
3780          */
3781         if (align < KMEM_ALIGN)
3782                 cflags |= KMC_NOTOUCH;
3783 
3784         if (!ISP2(align) || align > vmp->vm_quantum)
3785                 panic("kmem_cache_create: bad alignment %lu", align);
3786 
3787         mutex_enter(&kmem_flags_lock);
3788         if (kmem_flags & KMF_RANDOMIZE)
3789                 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3790                     KMF_RANDOMIZE;
3791         cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3792         mutex_exit(&kmem_flags_lock);
3793 
3794         /*
3795          * Make sure all the various flags are reasonable.
3796          */
3797         ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3798 
3799         if (cp->cache_flags & KMF_LITE) {
3800                 if (bufsize >= kmem_lite_minsize &&
3801                     align <= kmem_lite_maxalign &&
3802                     P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3803                         cp->cache_flags |= KMF_BUFTAG;
3804                         cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3805                 } else {
3806                         cp->cache_flags &= ~KMF_DEBUG;
3807                 }
3808         }
3809 
3810         if (cp->cache_flags & KMF_DEADBEEF)
3811                 cp->cache_flags |= KMF_REDZONE;
3812 
3813         if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3814                 cp->cache_flags |= KMF_NOMAGAZINE;
3815 
3816         if (cflags & KMC_NODEBUG)
3817                 cp->cache_flags &= ~KMF_DEBUG;
3818 
3819         if (cflags & KMC_NOTOUCH)
3820                 cp->cache_flags &= ~KMF_TOUCH;
3821 
3822         if (cflags & KMC_PREFILL)
3823                 cp->cache_flags |= KMF_PREFILL;
3824 
3825         if (cflags & KMC_NOHASH)
3826                 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3827 
3828         if (cflags & KMC_NOMAGAZINE)
3829                 cp->cache_flags |= KMF_NOMAGAZINE;
3830 
3831         if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3832                 cp->cache_flags |= KMF_REDZONE;
3833 
3834         if (!(cp->cache_flags & KMF_AUDIT))
3835                 cp->cache_flags &= ~KMF_CONTENTS;
3836 
3837         if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3838             !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3839                 cp->cache_flags |= KMF_FIREWALL;
3840 
3841         if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3842                 cp->cache_flags &= ~KMF_FIREWALL;
3843 
3844         if (cp->cache_flags & KMF_FIREWALL) {
3845                 cp->cache_flags &= ~KMF_BUFTAG;
3846                 cp->cache_flags |= KMF_NOMAGAZINE;
3847                 ASSERT(vmp == kmem_default_arena);
3848                 vmp = kmem_firewall_arena;
3849         }
3850 
3851         /*
3852          * Set cache properties.
3853          */
3854         (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3855         strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3856         cp->cache_bufsize = bufsize;
3857         cp->cache_align = align;
3858         cp->cache_constructor = constructor;
3859         cp->cache_destructor = destructor;
3860         cp->cache_reclaim = reclaim;
3861         cp->cache_private = private;
3862         cp->cache_arena = vmp;
3863         cp->cache_cflags = cflags;
3864 
3865         /*
3866          * Determine the chunk size.
3867          */
3868         chunksize = bufsize;
3869 
3870         if (align >= KMEM_ALIGN) {
3871                 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3872                 cp->cache_bufctl = chunksize - KMEM_ALIGN;
3873         }
3874 
3875         if (cp->cache_flags & KMF_BUFTAG) {
3876                 cp->cache_bufctl = chunksize;
3877                 cp->cache_buftag = chunksize;
3878                 if (cp->cache_flags & KMF_LITE)
3879                         chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3880                 else
3881                         chunksize += sizeof (kmem_buftag_t);
3882         }
3883 
3884         if (cp->cache_flags & KMF_DEADBEEF) {
3885                 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3886                 if (cp->cache_flags & KMF_LITE)
3887                         cp->cache_verify = sizeof (uint64_t);
3888         }
3889 
3890         cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3891 
3892         cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3893 
3894         /*
3895          * Now that we know the chunk size, determine the optimal slab size.
3896          */
3897         if (vmp == kmem_firewall_arena) {
3898                 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3899                 cp->cache_mincolor = cp->cache_slabsize - chunksize;
3900                 cp->cache_maxcolor = cp->cache_mincolor;
3901                 cp->cache_flags |= KMF_HASH;
3902                 ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3903         } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3904             !(cp->cache_flags & KMF_AUDIT) &&
3905             chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3906                 cp->cache_slabsize = vmp->vm_quantum;
3907                 cp->cache_mincolor = 0;
3908                 cp->cache_maxcolor =
3909                     (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3910                 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3911                 ASSERT(!(cp->cache_flags & KMF_AUDIT));
3912         } else {
3913                 size_t chunks, bestfit, waste, slabsize;
3914                 size_t minwaste = LONG_MAX;
3915 
3916                 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3917                         slabsize = P2ROUNDUP(chunksize * chunks,
3918                             vmp->vm_quantum);
3919                         chunks = slabsize / chunksize;
3920                         waste = (slabsize % chunksize) / chunks;
3921                         if (waste < minwaste) {
3922                                 minwaste = waste;
3923                                 bestfit = slabsize;
3924                         }
3925                 }
3926                 if (cflags & KMC_QCACHE)
3927                         bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3928                 cp->cache_slabsize = bestfit;
3929                 cp->cache_mincolor = 0;
3930                 cp->cache_maxcolor = bestfit % chunksize;
3931                 cp->cache_flags |= KMF_HASH;
3932         }
3933 
3934         cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3935         cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3936 
3937         /*
3938          * Disallowing prefill when either the DEBUG or HASH flag is set or when
3939          * there is a constructor avoids some tricky issues with debug setup
3940          * that may be revisited later. We cannot allow prefill in a
3941          * metadata cache because of potential recursion.
3942          */
3943         if (vmp == kmem_msb_arena ||
3944             cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3945             cp->cache_constructor != NULL)
3946                 cp->cache_flags &= ~KMF_PREFILL;
3947 
3948         if (cp->cache_flags & KMF_HASH) {
3949                 ASSERT(!(cflags & KMC_NOHASH));
3950                 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3951                     kmem_bufctl_audit_cache : kmem_bufctl_cache;
3952         }
3953 
3954         if (cp->cache_maxcolor >= vmp->vm_quantum)
3955                 cp->cache_maxcolor = vmp->vm_quantum - 1;
3956 
3957         cp->cache_color = cp->cache_mincolor;
3958 
3959         /*
3960          * Initialize the rest of the slab layer.
3961          */
3962         mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3963 
3964         avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3965             sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3966         /* LINTED: E_TRUE_LOGICAL_EXPR */
3967         ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3968         /* reuse partial slab AVL linkage for complete slab list linkage */
3969         list_create(&cp->cache_complete_slabs,
3970             sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3971 
3972         if (cp->cache_flags & KMF_HASH) {
3973                 cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3974                     KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3975                 bzero(cp->cache_hash_table,
3976                     KMEM_HASH_INITIAL * sizeof (void *));
3977                 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3978                 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3979         }
3980 
3981         /*
3982          * Initialize the depot.
3983          */
3984         mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
3985 
3986         for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
3987                 continue;
3988 
3989         cp->cache_magtype = mtp;
3990 
3991         /*
3992          * Initialize the CPU layer.
3993          */
3994         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3995                 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3996                 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
3997                 ccp->cc_flags = cp->cache_flags;
3998                 ccp->cc_rounds = -1;
3999                 ccp->cc_prounds = -1;
4000         }
4001 
4002         /*
4003          * Create the cache's kstats.
4004          */
4005         if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
4006             "kmem_cache", KSTAT_TYPE_NAMED,
4007             sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
4008             KSTAT_FLAG_VIRTUAL)) != NULL) {
4009                 cp->cache_kstat->ks_data = &kmem_cache_kstat;
4010                 cp->cache_kstat->ks_update = kmem_cache_kstat_update;
4011                 cp->cache_kstat->ks_private = cp;
4012                 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
4013                 kstat_install(cp->cache_kstat);
4014         }
4015 
4016         /*
4017          * Add the cache to the global list.  This makes it visible
4018          * to kmem_update(), so the cache must be ready for business.
4019          */
4020         mutex_enter(&kmem_cache_lock);
4021         list_insert_tail(&kmem_caches, cp);
4022         mutex_exit(&kmem_cache_lock);
4023 
4024         if (kmem_ready)
4025                 kmem_cache_magazine_enable(cp);
4026 
4027         return (cp);
4028 }
4029 
4030 static int
4031 kmem_move_cmp(const void *buf, const void *p)
4032 {
4033         const kmem_move_t *kmm = p;
4034         uintptr_t v1 = (uintptr_t)buf;
4035         uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
4036         return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
4037 }
4038 
4039 static void
4040 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
4041 {
4042         kmd->kmd_reclaim_numer = 1;
4043 }
4044 
4045 /*
4046  * Initially, when choosing candidate slabs for buffers to move, we want to be
4047  * very selective and take only slabs that are less than
4048  * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
4049  * slabs, then we raise the allocation ceiling incrementally. The reclaim
4050  * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
4051  * longer fragmented.
4052  */
4053 static void
4054 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
4055 {
4056         if (direction > 0) {
4057                 /* make it easier to find a candidate slab */
4058                 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
4059                         kmd->kmd_reclaim_numer++;
4060                 }
4061         } else {
4062                 /* be more selective */
4063                 if (kmd->kmd_reclaim_numer > 1) {
4064                         kmd->kmd_reclaim_numer--;
4065                 }
4066         }
4067 }
4068 
4069 void
4070 kmem_cache_set_move(kmem_cache_t *cp,
4071     kmem_cbrc_t (*move)(void *, void *, size_t, void *))
4072 {
4073         kmem_defrag_t *defrag;
4074 
4075         ASSERT(move != NULL);
4076         /*
4077          * The consolidator does not support NOTOUCH caches because kmem cannot
4078          * initialize their slabs with the 0xbaddcafe memory pattern, which sets
4079          * a low order bit usable by clients to distinguish uninitialized memory
4080          * from known objects (see kmem_slab_create).
4081          */
4082         ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
4083         ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
4084 
4085         /*
4086          * We should not be holding anyone's cache lock when calling
4087          * kmem_cache_alloc(), so allocate in all cases before acquiring the
4088          * lock.
4089          */
4090         defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
4091 
4092         mutex_enter(&cp->cache_lock);
4093 
4094         if (KMEM_IS_MOVABLE(cp)) {
4095                 if (cp->cache_move == NULL) {
4096                         ASSERT(cp->cache_slab_alloc == 0);
4097 
4098                         cp->cache_defrag = defrag;
4099                         defrag = NULL; /* nothing to free */
4100                         bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4101                         avl_create(&cp->cache_defrag->kmd_moves_pending,
4102                             kmem_move_cmp, sizeof (kmem_move_t),
4103                             offsetof(kmem_move_t, kmm_entry));
4104                         /* LINTED: E_TRUE_LOGICAL_EXPR */
4105                         ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4106                         /* reuse the slab's AVL linkage for deadlist linkage */
4107                         list_create(&cp->cache_defrag->kmd_deadlist,
4108                             sizeof (kmem_slab_t),
4109                             offsetof(kmem_slab_t, slab_link));
4110                         kmem_reset_reclaim_threshold(cp->cache_defrag);
4111                 }
4112                 cp->cache_move = move;
4113         }
4114 
4115         mutex_exit(&cp->cache_lock);
4116 
4117         if (defrag != NULL) {
4118                 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4119         }
4120 }
4121 
4122 void
4123 kmem_cache_destroy(kmem_cache_t *cp)
4124 {
4125         int cpu_seqid;
4126 
4127         /*
4128          * Remove the cache from the global cache list so that no one else
4129          * can schedule tasks on its behalf, wait for any pending tasks to
4130          * complete, purge the cache, and then destroy it.
4131          */
4132         mutex_enter(&kmem_cache_lock);
4133         list_remove(&kmem_caches, cp);
4134         mutex_exit(&kmem_cache_lock);
4135 
4136         if (kmem_taskq != NULL)
4137                 taskq_wait(kmem_taskq);
4138 
4139         if (kmem_move_taskq != NULL && cp->cache_defrag != NULL)
4140                 taskq_wait(kmem_move_taskq);
4141 
4142         kmem_cache_magazine_purge(cp);
4143 
4144         mutex_enter(&cp->cache_lock);
4145         if (cp->cache_buftotal != 0)
4146                 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
4147                     cp->cache_name, (void *)cp);
4148         if (cp->cache_defrag != NULL) {
4149                 avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4150                 list_destroy(&cp->cache_defrag->kmd_deadlist);
4151                 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4152                 cp->cache_defrag = NULL;
4153         }
4154         /*
4155          * The cache is now dead.  There should be no further activity.  We
4156          * enforce this by setting land mines in the constructor, destructor,
4157          * reclaim, and move routines that induce a kernel text fault if
4158          * invoked.
4159          */
4160         cp->cache_constructor = (int (*)(void *, void *, int))1;
4161         cp->cache_destructor = (void (*)(void *, void *))2;
4162         cp->cache_reclaim = (void (*)(void *))3;
4163         cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
4164         mutex_exit(&cp->cache_lock);
4165 
4166         kstat_delete(cp->cache_kstat);
4167 
4168         if (cp->cache_hash_table != NULL)
4169                 vmem_free(kmem_hash_arena, cp->cache_hash_table,
4170                     (cp->cache_hash_mask + 1) * sizeof (void *));
4171 
4172         for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
4173                 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
4174 
4175         mutex_destroy(&cp->cache_depot_lock);
4176         mutex_destroy(&cp->cache_lock);
4177 
4178         vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
4179 }
4180 
4181 /*ARGSUSED*/
4182 static int
4183 kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
4184 {
4185         ASSERT(MUTEX_HELD(&cpu_lock));
4186         if (what == CPU_UNCONFIG) {
4187                 kmem_cache_applyall(kmem_cache_magazine_purge,
4188                     kmem_taskq, TQ_SLEEP);
4189                 kmem_cache_applyall(kmem_cache_magazine_enable,
4190                     kmem_taskq, TQ_SLEEP);
4191         }
4192         return (0);
4193 }
4194 
4195 static void
4196 kmem_alloc_caches_create(const int *array, size_t count,
4197     kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4198 {
4199         char name[KMEM_CACHE_NAMELEN + 1];
4200         size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4201         size_t size = table_unit;
4202         int i;
4203 
4204         for (i = 0; i < count; i++) {
4205                 size_t cache_size = array[i];
4206                 size_t align = KMEM_ALIGN;
4207                 kmem_cache_t *cp;
4208 
4209                 /* if the table has an entry for maxbuf, we're done */
4210                 if (size > maxbuf)
4211                         break;
4212 
4213                 /* cache size must be a multiple of the table unit */
4214                 ASSERT(P2PHASE(cache_size, table_unit) == 0);
4215 
4216                 /*
4217                  * If they allocate a multiple of the coherency granularity,
4218                  * they get a coherency-granularity-aligned address.
4219                  */
4220                 if (IS_P2ALIGNED(cache_size, 64))
4221                         align = 64;
4222                 if (IS_P2ALIGNED(cache_size, PAGESIZE))
4223                         align = PAGESIZE;
4224                 (void) snprintf(name, sizeof (name),
4225                     "kmem_alloc_%lu", cache_size);
4226                 cp = kmem_cache_create(name, cache_size, align,
4227                     NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4228 
4229                 while (size <= cache_size) {
4230                         alloc_table[(size - 1) >> shift] = cp;
4231                         size += table_unit;
4232                 }
4233         }
4234 
4235         ASSERT(size > maxbuf);               /* i.e. maxbuf <= max(cache_size) */
4236 }
4237 
4238 static void
4239 kmem_cache_init(int pass, int use_large_pages)
4240 {
4241         int i;
4242         size_t maxbuf;
4243         kmem_magtype_t *mtp;
4244 
4245         for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4246                 char name[KMEM_CACHE_NAMELEN + 1];
4247 
4248                 mtp = &kmem_magtype[i];
4249                 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
4250                 mtp->mt_cache = kmem_cache_create(name,
4251                     (mtp->mt_magsize + 1) * sizeof (void *),
4252                     mtp->mt_align, NULL, NULL, NULL, NULL,
4253                     kmem_msb_arena, KMC_NOHASH);
4254         }
4255 
4256         kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
4257             sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
4258             kmem_msb_arena, KMC_NOHASH);
4259 
4260         kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
4261             sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
4262             kmem_msb_arena, KMC_NOHASH);
4263 
4264         kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
4265             sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
4266             kmem_msb_arena, KMC_NOHASH);
4267 
4268         if (pass == 2) {
4269                 kmem_va_arena = vmem_create("kmem_va",
4270                     NULL, 0, PAGESIZE,
4271                     vmem_alloc, vmem_free, heap_arena,
4272                     8 * PAGESIZE, VM_SLEEP);
4273 
4274                 if (use_large_pages) {
4275                         kmem_default_arena = vmem_xcreate("kmem_default",
4276                             NULL, 0, PAGESIZE,
4277                             segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
4278                             0, VMC_DUMPSAFE | VM_SLEEP);
4279                 } else {
4280                         kmem_default_arena = vmem_create("kmem_default",
4281                             NULL, 0, PAGESIZE,
4282                             segkmem_alloc, segkmem_free, kmem_va_arena,
4283                             0, VMC_DUMPSAFE | VM_SLEEP);
4284                 }
4285 
4286                 /* Figure out what our maximum cache size is */
4287                 maxbuf = kmem_max_cached;
4288                 if (maxbuf <= KMEM_MAXBUF) {
4289                         maxbuf = 0;
4290                         kmem_max_cached = KMEM_MAXBUF;
4291                 } else {
4292                         size_t size = 0;
4293                         size_t max =
4294                             sizeof (kmem_big_alloc_sizes) / sizeof (int);
4295                         /*
4296                          * Round maxbuf up to an existing cache size.  If maxbuf
4297                          * is larger than the largest cache, we truncate it to
4298                          * the largest cache's size.
4299                          */
4300                         for (i = 0; i < max; i++) {
4301                                 size = kmem_big_alloc_sizes[i];
4302                                 if (maxbuf <= size)
4303                                         break;
4304                         }
4305                         kmem_max_cached = maxbuf = size;
4306                 }
4307 
4308                 /*
4309                  * The big alloc table may not be completely overwritten, so
4310                  * we clear out any stale cache pointers from the first pass.
4311                  */
4312                 bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
4313         } else {
4314                 /*
4315                  * During the first pass, the kmem_alloc_* caches
4316                  * are treated as metadata.
4317                  */
4318                 kmem_default_arena = kmem_msb_arena;
4319                 maxbuf = KMEM_BIG_MAXBUF_32BIT;
4320         }
4321 
4322         /*
4323          * Set up the default caches to back kmem_alloc()
4324          */
4325         kmem_alloc_caches_create(
4326             kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4327             kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4328 
4329         kmem_alloc_caches_create(
4330             kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4331             kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4332 
4333         kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
4334 }
4335 
4336 void
4337 kmem_init(void)
4338 {
4339         kmem_cache_t *cp;
4340         int old_kmem_flags = kmem_flags;
4341         int use_large_pages = 0;
4342         size_t maxverify, minfirewall;
4343 
4344         kstat_init();
4345 
4346         /*
4347          * Don't do firewalled allocations if the heap is less than 1TB
4348          * (i.e. on a 32-bit kernel)
4349          * The resulting VM_NEXTFIT allocations would create too much
4350          * fragmentation in a small heap.
4351          */
4352 #if defined(_LP64)
4353         maxverify = minfirewall = PAGESIZE / 2;
4354 #else
4355         maxverify = minfirewall = ULONG_MAX;
4356 #endif
4357 
4358         /* LINTED */
4359         ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
4360 
4361         list_create(&kmem_caches, sizeof (kmem_cache_t),
4362             offsetof(kmem_cache_t, cache_link));
4363 
4364         kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
4365             vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
4366             VM_SLEEP | VMC_NO_QCACHE);
4367 
4368         kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
4369             PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
4370             VMC_DUMPSAFE | VM_SLEEP);
4371 
4372         kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
4373             segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4374 
4375         kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
4376             segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4377 
4378         kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
4379             segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4380 
4381         kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
4382             NULL, 0, PAGESIZE,
4383             kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
4384             0, VM_SLEEP);
4385 
4386         kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
4387             segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
4388             VMC_DUMPSAFE | VM_SLEEP);
4389 
4390         /* temporary oversize arena for mod_read_system_file */
4391         kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
4392             segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4393 
4394         kmem_reap_interval = 15 * hz;
4395 
4396         /*
4397          * Read /etc/system.  This is a chicken-and-egg problem because
4398          * kmem_flags may be set in /etc/system, but mod_read_system_file()
4399          * needs to use the allocator.  The simplest solution is to create
4400          * all the standard kmem caches, read /etc/system, destroy all the
4401          * caches we just created, and then create them all again in light
4402          * of the (possibly) new kmem_flags and other kmem tunables.
4403          */
4404         kmem_cache_init(1, 0);
4405 
4406         mod_read_system_file(boothowto & RB_ASKNAME);
4407 
4408         while ((cp = list_tail(&kmem_caches)) != NULL)
4409                 kmem_cache_destroy(cp);
4410 
4411         vmem_destroy(kmem_oversize_arena);
4412 
4413         if (old_kmem_flags & KMF_STICKY)
4414                 kmem_flags = old_kmem_flags;
4415 
4416         if (!(kmem_flags & KMF_AUDIT))
4417                 vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
4418 
4419         if (kmem_maxverify == 0)
4420                 kmem_maxverify = maxverify;
4421 
4422         if (kmem_minfirewall == 0)
4423                 kmem_minfirewall = minfirewall;
4424 
4425         /*
4426          * give segkmem a chance to figure out if we are using large pages
4427          * for the kernel heap
4428          */
4429         use_large_pages = segkmem_lpsetup();
4430 
4431         /*
4432          * To protect against corruption, we keep the actual number of callers
4433          * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
4434          * to 16, since the overhead for small buffers quickly gets out of
4435          * hand.
4436          *
4437          * The real limit would depend on the needs of the largest KMC_NOHASH
4438          * cache.
4439          */
4440         kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
4441         kmem_lite_pcs = kmem_lite_count;
4442 
4443         /*
4444          * Normally, we firewall oversized allocations when possible, but
4445          * if we are using large pages for kernel memory, and we don't have
4446          * any non-LITE debugging flags set, we want to allocate oversized
4447          * buffers from large pages, and so skip the firewalling.
4448          */
4449         if (use_large_pages &&
4450             ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
4451                 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
4452                     PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
4453                     0, VMC_DUMPSAFE | VM_SLEEP);
4454         } else {
4455                 kmem_oversize_arena = vmem_create("kmem_oversize",
4456                     NULL, 0, PAGESIZE,
4457                     segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
4458                     kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
4459                     VM_SLEEP);
4460         }
4461 
4462         kmem_cache_init(2, use_large_pages);
4463 
4464         if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
4465                 if (kmem_transaction_log_size == 0)
4466                         kmem_transaction_log_size = kmem_maxavail() / 50;
4467                 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
4468         }
4469 
4470         if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
4471                 if (kmem_content_log_size == 0)
4472                         kmem_content_log_size = kmem_maxavail() / 50;
4473                 kmem_content_log = kmem_log_init(kmem_content_log_size);
4474         }
4475 
4476         kmem_failure_log = kmem_log_init(kmem_failure_log_size);
4477         kmem_slab_log = kmem_log_init(kmem_slab_log_size);
4478         kmem_zerosized_log = kmem_log_init(kmem_zerosized_log_size);
4479 
4480         /*
4481          * Initialize STREAMS message caches so allocb() is available.
4482          * This allows us to initialize the logging framework (cmn_err(9F),
4483          * strlog(9F), etc) so we can start recording messages.
4484          */
4485         streams_msg_init();
4486 
4487         /*
4488          * Initialize the ZSD framework in Zones so modules loaded henceforth
4489          * can register their callbacks.
4490          */
4491         zone_zsd_init();
4492 
4493         log_init();
4494         taskq_init();
4495 
4496         /*
4497          * Warn about invalid or dangerous values of kmem_flags.
4498          * Always warn about unsupported values.
4499          */
4500         if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
4501             KMF_CONTENTS | KMF_LITE)) != 0) ||
4502             ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
4503                 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
4504                     "See the Solaris Tunable Parameters Reference Manual.",
4505                     kmem_flags);
4506 
4507 #ifdef DEBUG
4508         if ((kmem_flags & KMF_DEBUG) == 0)
4509                 cmn_err(CE_NOTE, "kmem debugging disabled.");
4510 #else
4511         /*
4512          * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
4513          * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
4514          * if KMF_AUDIT is set). We should warn the user about the performance
4515          * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
4516          * isn't set (since that disables AUDIT).
4517          */
4518         if (!(kmem_flags & KMF_LITE) &&
4519             (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
4520                 cmn_err(CE_WARN, "High-overhead kmem debugging features "
4521                     "enabled (kmem_flags = 0x%x).  Performance degradation "
4522                     "and large memory overhead possible. See the Solaris "
4523                     "Tunable Parameters Reference Manual.", kmem_flags);
4524 #endif /* not DEBUG */
4525 
4526         kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
4527 
4528         kmem_ready = 1;
4529 
4530         /*
4531          * Initialize the platform-specific aligned/DMA memory allocator.
4532          */
4533         ka_init();
4534 
4535         /*
4536          * Initialize 32-bit ID cache.
4537          */
4538         id32_init();
4539 
4540         /*
4541          * Initialize the networking stack so modules loaded can
4542          * register their callbacks.
4543          */
4544         netstack_init();
4545 }
4546 
4547 static void
4548 kmem_move_init(void)
4549 {
4550         kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4551             sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4552             kmem_msb_arena, KMC_NOHASH);
4553         kmem_move_cache = kmem_cache_create("kmem_move_cache",
4554             sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4555             kmem_msb_arena, KMC_NOHASH);
4556 
4557         /*
4558          * kmem guarantees that move callbacks are sequential and that even
4559          * across multiple caches no two moves ever execute simultaneously.
4560          * Move callbacks are processed on a separate taskq so that client code
4561          * does not interfere with internal maintenance tasks.
4562          */
4563         kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4564             minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4565 }
4566 
4567 void
4568 kmem_thread_init(void)
4569 {
4570         kmem_move_init();
4571         kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
4572             300, INT_MAX, TASKQ_PREPOPULATE);
4573 }
4574 
4575 void
4576 kmem_mp_init(void)
4577 {
4578         mutex_enter(&cpu_lock);
4579         register_cpu_setup_func(kmem_cpu_setup, NULL);
4580         mutex_exit(&cpu_lock);
4581 
4582         kmem_update_timeout(NULL);
4583 
4584         taskq_mp_init();
4585 }
4586 
4587 /*
4588  * Return the slab of the allocated buffer, or NULL if the buffer is not
4589  * allocated. This function may be called with a known slab address to determine
4590  * whether or not the buffer is allocated, or with a NULL slab address to obtain
4591  * an allocated buffer's slab.
4592  */
4593 static kmem_slab_t *
4594 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4595 {
4596         kmem_bufctl_t *bcp, *bufbcp;
4597 
4598         ASSERT(MUTEX_HELD(&cp->cache_lock));
4599         ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4600 
4601         if (cp->cache_flags & KMF_HASH) {
4602                 for (bcp = *KMEM_HASH(cp, buf);
4603                     (bcp != NULL) && (bcp->bc_addr != buf);
4604                     bcp = bcp->bc_next) {
4605                         continue;
4606                 }
4607                 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4608                 return (bcp == NULL ? NULL : bcp->bc_slab);
4609         }
4610 
4611         if (sp == NULL) {
4612                 sp = KMEM_SLAB(cp, buf);
4613         }
4614         bufbcp = KMEM_BUFCTL(cp, buf);
4615         for (bcp = sp->slab_head;
4616             (bcp != NULL) && (bcp != bufbcp);
4617             bcp = bcp->bc_next) {
4618                 continue;
4619         }
4620         return (bcp == NULL ? sp : NULL);
4621 }
4622 
4623 static boolean_t
4624 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4625 {
4626         long refcnt = sp->slab_refcnt;
4627 
4628         ASSERT(cp->cache_defrag != NULL);
4629 
4630         /*
4631          * For code coverage we want to be able to move an object within the
4632          * same slab (the only partial slab) even if allocating the destination
4633          * buffer resulted in a completely allocated slab.
4634          */
4635         if (flags & KMM_DEBUG) {
4636                 return ((flags & KMM_DESPERATE) ||
4637                     ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4638         }
4639 
4640         /* If we're desperate, we don't care if the client said NO. */
4641         if (flags & KMM_DESPERATE) {
4642                 return (refcnt < sp->slab_chunks); /* any partial */
4643         }
4644 
4645         if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4646                 return (B_FALSE);
4647         }
4648 
4649         if ((refcnt == 1) || kmem_move_any_partial) {
4650                 return (refcnt < sp->slab_chunks);
4651         }
4652 
4653         /*
4654          * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4655          * slabs with a progressively higher percentage of used buffers can be
4656          * reclaimed until the cache as a whole is no longer fragmented.
4657          *
4658          *      sp->slab_refcnt   kmd_reclaim_numer
4659          *      --------------- < ------------------
4660          *      sp->slab_chunks   KMEM_VOID_FRACTION
4661          */
4662         return ((refcnt * KMEM_VOID_FRACTION) <
4663             (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4664 }
4665 
4666 /*
4667  * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4668  * or when the buffer is freed.
4669  */
4670 static void
4671 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4672 {
4673         ASSERT(MUTEX_HELD(&cp->cache_lock));
4674         ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4675 
4676         if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4677                 return;
4678         }
4679 
4680         if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4681                 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4682                         avl_remove(&cp->cache_partial_slabs, sp);
4683                         sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4684                         sp->slab_stuck_offset = (uint32_t)-1;
4685                         avl_add(&cp->cache_partial_slabs, sp);
4686                 }
4687         } else {
4688                 sp->slab_later_count = 0;
4689                 sp->slab_stuck_offset = (uint32_t)-1;
4690         }
4691 }
4692 
4693 static void
4694 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4695 {
4696         ASSERT(taskq_member(kmem_move_taskq, curthread));
4697         ASSERT(MUTEX_HELD(&cp->cache_lock));
4698         ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4699 
4700         if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4701                 return;
4702         }
4703 
4704         avl_remove(&cp->cache_partial_slabs, sp);
4705         sp->slab_later_count = 0;
4706         sp->slab_flags |= KMEM_SLAB_NOMOVE;
4707         sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4708         avl_add(&cp->cache_partial_slabs, sp);
4709 }
4710 
4711 static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4712 
4713 /*
4714  * The move callback takes two buffer addresses, the buffer to be moved, and a
4715  * newly allocated and constructed buffer selected by kmem as the destination.
4716  * It also takes the size of the buffer and an optional user argument specified
4717  * at cache creation time. kmem guarantees that the buffer to be moved has not
4718  * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4719  * guarantee the present whereabouts of the buffer to be moved, so it is up to
4720  * the client to safely determine whether or not it is still using the buffer.
4721  * The client must not free either of the buffers passed to the move callback,
4722  * since kmem wants to free them directly to the slab layer. The client response
4723  * tells kmem which of the two buffers to free:
4724  *
4725  * YES          kmem frees the old buffer (the move was successful)
4726  * NO           kmem frees the new buffer, marks the slab of the old buffer
4727  *              non-reclaimable to avoid bothering the client again
4728  * LATER        kmem frees the new buffer, increments slab_later_count
4729  * DONT_KNOW    kmem frees the new buffer
4730  * DONT_NEED    kmem frees both the old buffer and the new buffer
4731  *
4732  * The pending callback argument now being processed contains both of the
4733  * buffers (old and new) passed to the move callback function, the slab of the
4734  * old buffer, and flags related to the move request, such as whether or not the
4735  * system was desperate for memory.
4736  *
4737  * Slabs are not freed while there is a pending callback, but instead are kept
4738  * on a deadlist, which is drained after the last callback completes. This means
4739  * that slabs are safe to access until kmem_move_end(), no matter how many of
4740  * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4741  * zero for as long as the slab remains on the deadlist and until the slab is
4742  * freed.
4743  */
4744 static void
4745 kmem_move_buffer(kmem_move_t *callback)
4746 {
4747         kmem_cbrc_t response;
4748         kmem_slab_t *sp = callback->kmm_from_slab;
4749         kmem_cache_t *cp = sp->slab_cache;
4750         boolean_t free_on_slab;
4751 
4752         ASSERT(taskq_member(kmem_move_taskq, curthread));
4753         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4754         ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4755 
4756         /*
4757          * The number of allocated buffers on the slab may have changed since we
4758          * last checked the slab's reclaimability (when the pending move was
4759          * enqueued), or the client may have responded NO when asked to move
4760          * another buffer on the same slab.
4761          */
4762         if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4763                 kmem_slab_free(cp, callback->kmm_to_buf);
4764                 kmem_move_end(cp, callback);
4765                 return;
4766         }
4767 
4768         /*
4769          * Checking the slab layer is easy, so we might as well do that here
4770          * in case we can avoid bothering the client.
4771          */
4772         mutex_enter(&cp->cache_lock);
4773         free_on_slab = (kmem_slab_allocated(cp, sp,
4774             callback->kmm_from_buf) == NULL);
4775         mutex_exit(&cp->cache_lock);
4776 
4777         if (free_on_slab) {
4778                 kmem_slab_free(cp, callback->kmm_to_buf);
4779                 kmem_move_end(cp, callback);
4780                 return;
4781         }
4782 
4783         if (cp->cache_flags & KMF_BUFTAG) {
4784                 /*
4785                  * Make kmem_cache_alloc_debug() apply the constructor for us.
4786                  */
4787                 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4788                     KM_NOSLEEP, 1, caller()) != 0) {
4789                         kmem_move_end(cp, callback);
4790                         return;
4791                 }
4792         } else if (cp->cache_constructor != NULL &&
4793             cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4794             KM_NOSLEEP) != 0) {
4795                 atomic_inc_64(&cp->cache_alloc_fail);
4796                 kmem_slab_free(cp, callback->kmm_to_buf);
4797                 kmem_move_end(cp, callback);
4798                 return;
4799         }
4800 
4801         cp->cache_defrag->kmd_callbacks++;
4802         cp->cache_defrag->kmd_thread = curthread;
4803         cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4804         cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4805         DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4806             callback);
4807 
4808         response = cp->cache_move(callback->kmm_from_buf,
4809             callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4810 
4811         DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4812             callback, kmem_cbrc_t, response);
4813         cp->cache_defrag->kmd_thread = NULL;
4814         cp->cache_defrag->kmd_from_buf = NULL;
4815         cp->cache_defrag->kmd_to_buf = NULL;
4816 
4817         if (response == KMEM_CBRC_YES) {
4818                 cp->cache_defrag->kmd_yes++;
4819                 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4820                 /* slab safe to access until kmem_move_end() */
4821                 if (sp->slab_refcnt == 0)
4822                         cp->cache_defrag->kmd_slabs_freed++;
4823                 mutex_enter(&cp->cache_lock);
4824                 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4825                 mutex_exit(&cp->cache_lock);
4826                 kmem_move_end(cp, callback);
4827                 return;
4828         }
4829 
4830         switch (response) {
4831         case KMEM_CBRC_NO:
4832                 cp->cache_defrag->kmd_no++;
4833                 mutex_enter(&cp->cache_lock);
4834                 kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4835                 mutex_exit(&cp->cache_lock);
4836                 break;
4837         case KMEM_CBRC_LATER:
4838                 cp->cache_defrag->kmd_later++;
4839                 mutex_enter(&cp->cache_lock);
4840                 if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4841                         mutex_exit(&cp->cache_lock);
4842                         break;
4843                 }
4844 
4845                 if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4846                         kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4847                 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4848                         sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4849                             callback->kmm_from_buf);
4850                 }
4851                 mutex_exit(&cp->cache_lock);
4852                 break;
4853         case KMEM_CBRC_DONT_NEED:
4854                 cp->cache_defrag->kmd_dont_need++;
4855                 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4856                 if (sp->slab_refcnt == 0)
4857                         cp->cache_defrag->kmd_slabs_freed++;
4858                 mutex_enter(&cp->cache_lock);
4859                 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4860                 mutex_exit(&cp->cache_lock);
4861                 break;
4862         case KMEM_CBRC_DONT_KNOW:
4863                 /*
4864                  * If we don't know if we can move this buffer or not, we'll
4865                  * just assume that we can't:  if the buffer is in fact free,
4866                  * then it is sitting in one of the per-CPU magazines or in
4867                  * a full magazine in the depot layer.  Either way, because
4868                  * defrag is induced in the same logic that reaps a cache,
4869                  * it's likely that full magazines will be returned to the
4870                  * system soon (thereby accomplishing what we're trying to
4871                  * accomplish here: return those magazines to their slabs).
4872                  * Given this, any work that we might do now to locate a buffer
4873                  * in a magazine is wasted (and expensive!) work; we bump
4874                  * a counter in this case and otherwise assume that we can't
4875                  * move it.
4876                  */
4877                 cp->cache_defrag->kmd_dont_know++;
4878                 break;
4879         default:
4880                 panic("'%s' (%p) unexpected move callback response %d\n",
4881                     cp->cache_name, (void *)cp, response);
4882         }
4883 
4884         kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4885         kmem_move_end(cp, callback);
4886 }
4887 
4888 /* Return B_FALSE if there is insufficient memory for the move request. */
4889 static boolean_t
4890 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4891 {
4892         void *to_buf;
4893         avl_index_t index;
4894         kmem_move_t *callback, *pending;
4895         ulong_t n;
4896 
4897         ASSERT(taskq_member(kmem_taskq, curthread));
4898         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4899         ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4900 
4901         callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4902 
4903         if (callback == NULL)
4904                 return (B_FALSE);
4905 
4906         callback->kmm_from_slab = sp;
4907         callback->kmm_from_buf = buf;
4908         callback->kmm_flags = flags;
4909 
4910         mutex_enter(&cp->cache_lock);
4911 
4912         n = avl_numnodes(&cp->cache_partial_slabs);
4913         if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
4914                 mutex_exit(&cp->cache_lock);
4915                 kmem_cache_free(kmem_move_cache, callback);
4916                 return (B_TRUE); /* there is no need for the move request */
4917         }
4918 
4919         pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
4920         if (pending != NULL) {
4921                 /*
4922                  * If the move is already pending and we're desperate now,
4923                  * update the move flags.
4924                  */
4925                 if (flags & KMM_DESPERATE) {
4926                         pending->kmm_flags |= KMM_DESPERATE;
4927                 }
4928                 mutex_exit(&cp->cache_lock);
4929                 kmem_cache_free(kmem_move_cache, callback);
4930                 return (B_TRUE);
4931         }
4932 
4933         to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
4934             B_FALSE);
4935         callback->kmm_to_buf = to_buf;
4936         avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
4937 
4938         mutex_exit(&cp->cache_lock);
4939 
4940         if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
4941             callback, TQ_NOSLEEP)) {
4942                 mutex_enter(&cp->cache_lock);
4943                 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4944                 mutex_exit(&cp->cache_lock);
4945                 kmem_slab_free(cp, to_buf);
4946                 kmem_cache_free(kmem_move_cache, callback);
4947                 return (B_FALSE);
4948         }
4949 
4950         return (B_TRUE);
4951 }
4952 
4953 static void
4954 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
4955 {
4956         avl_index_t index;
4957 
4958         ASSERT(cp->cache_defrag != NULL);
4959         ASSERT(taskq_member(kmem_move_taskq, curthread));
4960         ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4961 
4962         mutex_enter(&cp->cache_lock);
4963         VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
4964             callback->kmm_from_buf, &index) != NULL);
4965         avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4966         if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
4967                 list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4968                 kmem_slab_t *sp;
4969 
4970                 /*
4971                  * The last pending move completed. Release all slabs from the
4972                  * front of the dead list except for any slab at the tail that
4973                  * needs to be released from the context of kmem_move_buffers().
4974                  * kmem deferred unmapping the buffers on these slabs in order
4975                  * to guarantee that buffers passed to the move callback have
4976                  * been touched only by kmem or by the client itself.
4977                  */
4978                 while ((sp = list_remove_head(deadlist)) != NULL) {
4979                         if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
4980                                 list_insert_tail(deadlist, sp);
4981                                 break;
4982                         }
4983                         cp->cache_defrag->kmd_deadcount--;
4984                         cp->cache_slab_destroy++;
4985                         mutex_exit(&cp->cache_lock);
4986                         kmem_slab_destroy(cp, sp);
4987                         mutex_enter(&cp->cache_lock);
4988                 }
4989         }
4990         mutex_exit(&cp->cache_lock);
4991         kmem_cache_free(kmem_move_cache, callback);
4992 }
4993 
4994 /*
4995  * Move buffers from least used slabs first by scanning backwards from the end
4996  * of the partial slab list. Scan at most max_scan candidate slabs and move
4997  * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
4998  * If desperate to reclaim memory, move buffers from any partial slab, otherwise
4999  * skip slabs with a ratio of allocated buffers at or above the current
5000  * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
5001  * scan is aborted) so that the caller can adjust the reclaimability threshold
5002  * depending on how many reclaimable slabs it finds.
5003  *
5004  * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
5005  * move request, since it is not valid for kmem_move_begin() to call
5006  * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
5007  */
5008 static int
5009 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
5010     int flags)
5011 {
5012         kmem_slab_t *sp;
5013         void *buf;
5014         int i, j; /* slab index, buffer index */
5015         int s; /* reclaimable slabs */
5016         int b; /* allocated (movable) buffers on reclaimable slab */
5017         boolean_t success;
5018         int refcnt;
5019         int nomove;
5020 
5021         ASSERT(taskq_member(kmem_taskq, curthread));
5022         ASSERT(MUTEX_HELD(&cp->cache_lock));
5023         ASSERT(kmem_move_cache != NULL);
5024         ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
5025         ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
5026             avl_numnodes(&cp->cache_partial_slabs) > 1);
5027 
5028         if (kmem_move_blocked) {
5029                 return (0);
5030         }
5031 
5032         if (kmem_move_fulltilt) {
5033                 flags |= KMM_DESPERATE;
5034         }
5035 
5036         if (max_scan == 0 || (flags & KMM_DESPERATE)) {
5037                 /*
5038                  * Scan as many slabs as needed to find the desired number of
5039                  * candidate slabs.
5040                  */
5041                 max_scan = (size_t)-1;
5042         }
5043 
5044         if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
5045                 /* Find as many candidate slabs as possible. */
5046                 max_slabs = (size_t)-1;
5047         }
5048 
5049         sp = avl_last(&cp->cache_partial_slabs);
5050         ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
5051         for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
5052             ((sp != avl_first(&cp->cache_partial_slabs)) ||
5053             (flags & KMM_DEBUG));
5054             sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
5055 
5056                 if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
5057                         continue;
5058                 }
5059                 s++;
5060 
5061                 /* Look for allocated buffers to move. */
5062                 for (j = 0, b = 0, buf = sp->slab_base;
5063                     (j < sp->slab_chunks) && (b < sp->slab_refcnt);
5064                     buf = (((char *)buf) + cp->cache_chunksize), j++) {
5065 
5066                         if (kmem_slab_allocated(cp, sp, buf) == NULL) {
5067                                 continue;
5068                         }
5069 
5070                         b++;
5071 
5072                         /*
5073                          * Prevent the slab from being destroyed while we drop
5074                          * cache_lock and while the pending move is not yet
5075                          * registered. Flag the pending move while
5076                          * kmd_moves_pending may still be empty, since we can't
5077                          * yet rely on a non-zero pending move count to prevent
5078                          * the slab from being destroyed.
5079                          */
5080                         ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5081                         sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5082                         /*
5083                          * Recheck refcnt and nomove after reacquiring the lock,
5084                          * since these control the order of partial slabs, and
5085                          * we want to know if we can pick up the scan where we
5086                          * left off.
5087                          */
5088                         refcnt = sp->slab_refcnt;
5089                         nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
5090                         mutex_exit(&cp->cache_lock);
5091 
5092                         success = kmem_move_begin(cp, sp, buf, flags);
5093 
5094                         /*
5095                          * Now, before the lock is reacquired, kmem could
5096                          * process all pending move requests and purge the
5097                          * deadlist, so that upon reacquiring the lock, sp has
5098                          * been remapped. Or, the client may free all the
5099                          * objects on the slab while the pending moves are still
5100                          * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5101                          * flag causes the slab to be put at the end of the
5102                          * deadlist and prevents it from being destroyed, since
5103                          * we plan to destroy it here after reacquiring the
5104                          * lock.
5105                          */
5106                         mutex_enter(&cp->cache_lock);
5107                         ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5108                         sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5109 
5110                         if (sp->slab_refcnt == 0) {
5111                                 list_t *deadlist =
5112                                     &cp->cache_defrag->kmd_deadlist;
5113                                 list_remove(deadlist, sp);
5114 
5115                                 if (!avl_is_empty(
5116                                     &cp->cache_defrag->kmd_moves_pending)) {
5117                                         /*
5118                                          * A pending move makes it unsafe to
5119                                          * destroy the slab, because even though
5120                                          * the move is no longer needed, the
5121                                          * context where that is determined
5122                                          * requires the slab to exist.
5123                                          * Fortunately, a pending move also
5124                                          * means we don't need to destroy the
5125                                          * slab here, since it will get
5126                                          * destroyed along with any other slabs
5127                                          * on the deadlist after the last
5128                                          * pending move completes.
5129                                          */
5130                                         list_insert_head(deadlist, sp);
5131                                         return (-1);
5132                                 }
5133 
5134                                 /*
5135                                  * Destroy the slab now if it was completely
5136                                  * freed while we dropped cache_lock and there
5137                                  * are no pending moves. Since slab_refcnt
5138                                  * cannot change once it reaches zero, no new
5139                                  * pending moves from that slab are possible.
5140                                  */
5141                                 cp->cache_defrag->kmd_deadcount--;
5142                                 cp->cache_slab_destroy++;
5143                                 mutex_exit(&cp->cache_lock);
5144                                 kmem_slab_destroy(cp, sp);
5145                                 mutex_enter(&cp->cache_lock);
5146                                 /*
5147                                  * Since we can't pick up the scan where we left
5148                                  * off, abort the scan and say nothing about the
5149                                  * number of reclaimable slabs.
5150                                  */
5151                                 return (-1);
5152                         }
5153 
5154                         if (!success) {
5155                                 /*
5156                                  * Abort the scan if there is not enough memory
5157                                  * for the request and say nothing about the
5158                                  * number of reclaimable slabs.
5159                                  */
5160                                 return (-1);
5161                         }
5162 
5163                         /*
5164                          * The slab's position changed while the lock was
5165                          * dropped, so we don't know where we are in the
5166                          * sequence any more.
5167                          */
5168                         if (sp->slab_refcnt != refcnt) {
5169                                 /*
5170                                  * If this is a KMM_DEBUG move, the slab_refcnt
5171                                  * may have changed because we allocated a
5172                                  * destination buffer on the same slab. In that
5173                                  * case, we're not interested in counting it.
5174                                  */
5175                                 return (-1);
5176                         }
5177                         if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove)
5178                                 return (-1);
5179 
5180                         /*
5181                          * Generating a move request allocates a destination
5182                          * buffer from the slab layer, bumping the first partial
5183                          * slab if it is completely allocated. If the current
5184                          * slab becomes the first partial slab as a result, we
5185                          * can't continue to scan backwards.
5186                          *
5187                          * If this is a KMM_DEBUG move and we allocated the
5188                          * destination buffer from the last partial slab, then
5189                          * the buffer we're moving is on the same slab and our
5190                          * slab_refcnt has changed, causing us to return before
5191                          * reaching here if there are no partial slabs left.
5192                          */
5193                         ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5194                         if (sp == avl_first(&cp->cache_partial_slabs)) {
5195                                 /*
5196                                  * We're not interested in a second KMM_DEBUG
5197                                  * move.
5198                                  */
5199                                 goto end_scan;
5200                         }
5201                 }
5202         }
5203 end_scan:
5204 
5205         return (s);
5206 }
5207 
5208 typedef struct kmem_move_notify_args {
5209         kmem_cache_t *kmna_cache;
5210         void *kmna_buf;
5211 } kmem_move_notify_args_t;
5212 
5213 static void
5214 kmem_cache_move_notify_task(void *arg)
5215 {
5216         kmem_move_notify_args_t *args = arg;
5217         kmem_cache_t *cp = args->kmna_cache;
5218         void *buf = args->kmna_buf;
5219         kmem_slab_t *sp;
5220 
5221         ASSERT(taskq_member(kmem_taskq, curthread));
5222         ASSERT(list_link_active(&cp->cache_link));
5223 
5224         kmem_free(args, sizeof (kmem_move_notify_args_t));
5225         mutex_enter(&cp->cache_lock);
5226         sp = kmem_slab_allocated(cp, NULL, buf);
5227 
5228         /* Ignore the notification if the buffer is no longer allocated. */
5229         if (sp == NULL) {
5230                 mutex_exit(&cp->cache_lock);
5231                 return;
5232         }
5233 
5234         /* Ignore the notification if there's no reason to move the buffer. */
5235         if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5236                 /*
5237                  * So far the notification is not ignored. Ignore the
5238                  * notification if the slab is not marked by an earlier refusal
5239                  * to move a buffer.
5240                  */
5241                 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5242                     (sp->slab_later_count == 0)) {
5243                         mutex_exit(&cp->cache_lock);
5244                         return;
5245                 }
5246 
5247                 kmem_slab_move_yes(cp, sp, buf);
5248                 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5249                 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5250                 mutex_exit(&cp->cache_lock);
5251                 /* see kmem_move_buffers() about dropping the lock */
5252                 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5253                 mutex_enter(&cp->cache_lock);
5254                 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5255                 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5256                 if (sp->slab_refcnt == 0) {
5257                         list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5258                         list_remove(deadlist, sp);
5259 
5260                         if (!avl_is_empty(
5261                             &cp->cache_defrag->kmd_moves_pending)) {
5262                                 list_insert_head(deadlist, sp);
5263                                 mutex_exit(&cp->cache_lock);
5264                                 return;
5265                         }
5266 
5267                         cp->cache_defrag->kmd_deadcount--;
5268                         cp->cache_slab_destroy++;
5269                         mutex_exit(&cp->cache_lock);
5270                         kmem_slab_destroy(cp, sp);
5271                         return;
5272                 }
5273         } else {
5274                 kmem_slab_move_yes(cp, sp, buf);
5275         }
5276         mutex_exit(&cp->cache_lock);
5277 }
5278 
5279 void
5280 kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5281 {
5282         kmem_move_notify_args_t *args;
5283 
5284         args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5285         if (args != NULL) {
5286                 args->kmna_cache = cp;
5287                 args->kmna_buf = buf;
5288                 if (!taskq_dispatch(kmem_taskq,
5289                     (task_func_t *)kmem_cache_move_notify_task, args,
5290                     TQ_NOSLEEP))
5291                         kmem_free(args, sizeof (kmem_move_notify_args_t));
5292         }
5293 }
5294 
5295 static void
5296 kmem_cache_defrag(kmem_cache_t *cp)
5297 {
5298         size_t n;
5299 
5300         ASSERT(cp->cache_defrag != NULL);
5301 
5302         mutex_enter(&cp->cache_lock);
5303         n = avl_numnodes(&cp->cache_partial_slabs);
5304         if (n > 1) {
5305                 /* kmem_move_buffers() drops and reacquires cache_lock */
5306                 cp->cache_defrag->kmd_defrags++;
5307                 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5308         }
5309         mutex_exit(&cp->cache_lock);
5310 }
5311 
5312 /* Is this cache above the fragmentation threshold? */
5313 static boolean_t
5314 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5315 {
5316         /*
5317          *      nfree           kmem_frag_numer
5318          * ------------------ > ---------------
5319          * cp->cache_buftotal        kmem_frag_denom
5320          */
5321         return ((nfree * kmem_frag_denom) >
5322             (cp->cache_buftotal * kmem_frag_numer));
5323 }
5324 
5325 static boolean_t
5326 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5327 {
5328         boolean_t fragmented;
5329         uint64_t nfree;
5330 
5331         ASSERT(MUTEX_HELD(&cp->cache_lock));
5332         *doreap = B_FALSE;
5333 
5334         if (kmem_move_fulltilt) {
5335                 if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5336                         return (B_TRUE);
5337                 }
5338         } else {
5339                 if ((cp->cache_complete_slab_count + avl_numnodes(
5340                     &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5341                         return (B_FALSE);
5342                 }
5343         }
5344 
5345         nfree = cp->cache_bufslab;
5346         fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5347             kmem_cache_frag_threshold(cp, nfree));
5348 
5349         /*
5350          * Free buffers in the magazine layer appear allocated from the point of
5351          * view of the slab layer. We want to know if the slab layer would
5352          * appear fragmented if we included free buffers from magazines that
5353          * have fallen out of the working set.
5354          */
5355         if (!fragmented) {
5356                 long reap;
5357 
5358                 mutex_enter(&cp->cache_depot_lock);
5359                 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5360                 reap = MIN(reap, cp->cache_full.ml_total);
5361                 mutex_exit(&cp->cache_depot_lock);
5362 
5363                 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5364                 if (kmem_cache_frag_threshold(cp, nfree)) {
5365                         *doreap = B_TRUE;
5366                 }
5367         }
5368 
5369         return (fragmented);
5370 }
5371 
5372 /* Called periodically from kmem_taskq */
5373 static void
5374 kmem_cache_scan(kmem_cache_t *cp)
5375 {
5376         boolean_t reap = B_FALSE;
5377         kmem_defrag_t *kmd;
5378 
5379         ASSERT(taskq_member(kmem_taskq, curthread));
5380 
5381         mutex_enter(&cp->cache_lock);
5382 
5383         kmd = cp->cache_defrag;
5384         if (kmd->kmd_consolidate > 0) {
5385                 kmd->kmd_consolidate--;
5386                 mutex_exit(&cp->cache_lock);
5387                 kmem_cache_reap(cp);
5388                 return;
5389         }
5390 
5391         if (kmem_cache_is_fragmented(cp, &reap)) {
5392                 size_t slabs_found;
5393 
5394                 /*
5395                  * Consolidate reclaimable slabs from the end of the partial
5396                  * slab list (scan at most kmem_reclaim_scan_range slabs to find
5397                  * reclaimable slabs). Keep track of how many candidate slabs we
5398                  * looked for and how many we actually found so we can adjust
5399                  * the definition of a candidate slab if we're having trouble
5400                  * finding them.
5401                  *
5402                  * kmem_move_buffers() drops and reacquires cache_lock.
5403                  */
5404                 kmd->kmd_scans++;
5405                 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5406                     kmem_reclaim_max_slabs, 0);
5407                 if (slabs_found >= 0) {
5408                         kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5409                         kmd->kmd_slabs_found += slabs_found;
5410                 }
5411 
5412                 if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5413                         kmd->kmd_tries = 0;
5414 
5415                         /*
5416                          * If we had difficulty finding candidate slabs in
5417                          * previous scans, adjust the threshold so that
5418                          * candidates are easier to find.
5419                          */
5420                         if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5421                                 kmem_adjust_reclaim_threshold(kmd, -1);
5422                         } else if ((kmd->kmd_slabs_found * 2) <
5423                             kmd->kmd_slabs_sought) {
5424                                 kmem_adjust_reclaim_threshold(kmd, 1);
5425                         }
5426                         kmd->kmd_slabs_sought = 0;
5427                         kmd->kmd_slabs_found = 0;
5428                 }
5429         } else {
5430                 kmem_reset_reclaim_threshold(cp->cache_defrag);
5431 #ifdef  DEBUG
5432                 if (!avl_is_empty(&cp->cache_partial_slabs)) {
5433                         /*
5434                          * In a debug kernel we want the consolidator to
5435                          * run occasionally even when there is plenty of
5436                          * memory.
5437                          */
5438                         uint16_t debug_rand;
5439 
5440                         (void) random_get_bytes((uint8_t *)&debug_rand, 2);
5441                         if (!kmem_move_noreap &&
5442                             ((debug_rand % kmem_mtb_reap) == 0)) {
5443                                 mutex_exit(&cp->cache_lock);
5444                                 kmem_cache_reap(cp);
5445                                 return;
5446                         } else if ((debug_rand % kmem_mtb_move) == 0) {
5447                                 kmd->kmd_scans++;
5448                                 (void) kmem_move_buffers(cp,
5449                                     kmem_reclaim_scan_range, 1, KMM_DEBUG);
5450                         }
5451                 }
5452 #endif  /* DEBUG */
5453         }
5454 
5455         mutex_exit(&cp->cache_lock);
5456 
5457         if (reap)
5458                 kmem_depot_ws_reap(cp);
5459 }