1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
  24  * Use is subject to license terms.
  25  */
  26 
  27 /*      Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
  28 /*      All Rights Reserved */
  29 
  30 /*
  31  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  32  * Copyright 2015 Joyent, Inc.
  33  */
  34 
  35 #include <sys/flock_impl.h>
  36 #include <sys/vfs.h>
  37 #include <sys/t_lock.h>           /* for <sys/callb.h> */
  38 #include <sys/callb.h>
  39 #include <sys/clconf.h>
  40 #include <sys/cladm.h>
  41 #include <sys/nbmlock.h>
  42 #include <sys/cred.h>
  43 #include <sys/policy.h>
  44 
  45 /*
  46  * The following four variables are for statistics purposes and they are
  47  * not protected by locks. They may not be accurate but will at least be
  48  * close to the actual value.
  49  */
  50 
  51 int     flk_lock_allocs;
  52 int     flk_lock_frees;
  53 int     edge_allocs;
  54 int     edge_frees;
  55 int     flk_proc_vertex_allocs;
  56 int     flk_proc_edge_allocs;
  57 int     flk_proc_vertex_frees;
  58 int     flk_proc_edge_frees;
  59 
  60 static kmutex_t flock_lock;
  61 
  62 #ifdef DEBUG
  63 int check_debug = 0;
  64 #define CHECK_ACTIVE_LOCKS(gp)  if (check_debug) \
  65                                         check_active_locks(gp);
  66 #define CHECK_SLEEPING_LOCKS(gp)        if (check_debug) \
  67                                                 check_sleeping_locks(gp);
  68 #define CHECK_OWNER_LOCKS(gp, pid, sysid, vp)   \
  69                 if (check_debug)        \
  70                         check_owner_locks(gp, pid, sysid, vp);
  71 #define CHECK_LOCK_TRANSITION(old_state, new_state) \
  72         { \
  73                 if (check_lock_transition(old_state, new_state)) { \
  74                         cmn_err(CE_PANIC, "Illegal lock transition \
  75                             from %d to %d", old_state, new_state); \
  76                 } \
  77         }
  78 #else
  79 
  80 #define CHECK_ACTIVE_LOCKS(gp)
  81 #define CHECK_SLEEPING_LOCKS(gp)
  82 #define CHECK_OWNER_LOCKS(gp, pid, sysid, vp)
  83 #define CHECK_LOCK_TRANSITION(old_state, new_state)
  84 
  85 #endif /* DEBUG */
  86 
  87 struct kmem_cache       *flk_edge_cache;
  88 
  89 graph_t         *lock_graph[HASH_SIZE];
  90 proc_graph_t    pgraph;
  91 
  92 /*
  93  * Clustering.
  94  *
  95  * NLM REGISTRY TYPE IMPLEMENTATION
  96  *
  97  * Assumptions:
  98  *  1.  Nodes in a cluster are numbered starting at 1; always non-negative
  99  *      integers; maximum node id is returned by clconf_maximum_nodeid().
 100  *  2.  We use this node id to identify the node an NLM server runs on.
 101  */
 102 
 103 /*
 104  * NLM registry object keeps track of NLM servers via their
 105  * nlmids (which are the node ids of the node in the cluster they run on)
 106  * that have requested locks at this LLM with which this registry is
 107  * associated.
 108  *
 109  * Representation of abstraction:
 110  *    rep = record[     states: array[nlm_state],
 111  *                      lock: mutex]
 112  *
 113  *    Representation invariants:
 114  *      1. index i of rep.states is between 0 and n - 1 where n is number
 115  *         of elements in the array, which happen to be the maximum number
 116  *         of nodes in the cluster configuration + 1.
 117  *      2. map nlmid to index i of rep.states
 118  *              0   -> 0
 119  *              1   -> 1
 120  *              2   -> 2
 121  *              n-1 -> clconf_maximum_nodeid()+1
 122  *      3.  This 1-1 mapping is quite convenient and it avoids errors resulting
 123  *          from forgetting to subtract 1 from the index.
 124  *      4.  The reason we keep the 0th index is the following.  A legitimate
 125  *          cluster configuration includes making a UFS file system NFS
 126  *          exportable.  The code is structured so that if you're in a cluster
 127  *          you do one thing; otherwise, you do something else.  The problem
 128  *          is what to do if you think you're in a cluster with PXFS loaded,
 129  *          but you're using UFS not PXFS?  The upper two bytes of the sysid
 130  *          encode the node id of the node where NLM server runs; these bytes
 131  *          are zero for UFS.  Since the nodeid is used to index into the
 132  *          registry, we can record the NLM server state information at index
 133  *          0 using the same mechanism used for PXFS file locks!
 134  */
 135 static flk_nlm_status_t *nlm_reg_status = NULL; /* state array 0..N-1 */
 136 static kmutex_t nlm_reg_lock;                   /* lock to protect arrary */
 137 static uint_t nlm_status_size;                  /* size of state array */
 138 
 139 /*
 140  * Although we need a global lock dependency graph (and associated data
 141  * structures), we also need a per-zone notion of whether the lock manager is
 142  * running, and so whether to allow lock manager requests or not.
 143  *
 144  * Thus, on a per-zone basis we maintain a ``global'' variable
 145  * (flk_lockmgr_status), protected by flock_lock, and set when the lock
 146  * manager is determined to be changing state (starting or stopping).
 147  *
 148  * Each graph/zone pair also has a copy of this variable, which is protected by
 149  * the graph's mutex.
 150  *
 151  * The per-graph copies are used to synchronize lock requests with shutdown
 152  * requests.  The global copy is used to initialize the per-graph field when a
 153  * new graph is created.
 154  */
 155 struct flock_globals {
 156         flk_lockmgr_status_t flk_lockmgr_status;
 157         flk_lockmgr_status_t lockmgr_status[HASH_SIZE];
 158 };
 159 
 160 zone_key_t flock_zone_key;
 161 
 162 static void create_flock(lock_descriptor_t *, flock64_t *);
 163 static lock_descriptor_t        *flk_get_lock(void);
 164 static void     flk_free_lock(lock_descriptor_t *lock);
 165 static void     flk_get_first_blocking_lock(lock_descriptor_t *request);
 166 static int flk_process_request(lock_descriptor_t *);
 167 static int flk_add_edge(lock_descriptor_t *, lock_descriptor_t *, int, int);
 168 static edge_t *flk_get_edge(void);
 169 static int flk_wait_execute_request(lock_descriptor_t *);
 170 static int flk_relation(lock_descriptor_t *, lock_descriptor_t *);
 171 static void flk_insert_active_lock(lock_descriptor_t *);
 172 static void flk_delete_active_lock(lock_descriptor_t *, int);
 173 static void flk_insert_sleeping_lock(lock_descriptor_t *);
 174 static void flk_graph_uncolor(graph_t *);
 175 static void flk_wakeup(lock_descriptor_t *, int);
 176 static void flk_free_edge(edge_t *);
 177 static void flk_recompute_dependencies(lock_descriptor_t *,
 178                         lock_descriptor_t **,  int, int);
 179 static int flk_find_barriers(lock_descriptor_t *);
 180 static void flk_update_barriers(lock_descriptor_t *);
 181 static int flk_color_reachables(lock_descriptor_t *);
 182 static int flk_canceled(lock_descriptor_t *);
 183 static void flk_delete_locks_by_sysid(lock_descriptor_t *);
 184 static void report_blocker(lock_descriptor_t *, lock_descriptor_t *);
 185 static void wait_for_lock(lock_descriptor_t *);
 186 static void unlock_lockmgr_granted(struct flock_globals *);
 187 static void wakeup_sleeping_lockmgr_locks(struct flock_globals *);
 188 
 189 /* Clustering hooks */
 190 static void cl_flk_change_nlm_state_all_locks(int, flk_nlm_status_t);
 191 static void cl_flk_wakeup_sleeping_nlm_locks(int);
 192 static void cl_flk_unlock_nlm_granted(int);
 193 
 194 #ifdef DEBUG
 195 static int check_lock_transition(int, int);
 196 static void check_sleeping_locks(graph_t *);
 197 static void check_active_locks(graph_t *);
 198 static int no_path(lock_descriptor_t *, lock_descriptor_t *);
 199 static void path(lock_descriptor_t *, lock_descriptor_t *);
 200 static void check_owner_locks(graph_t *, pid_t, int, vnode_t *);
 201 static int level_one_path(lock_descriptor_t *, lock_descriptor_t *);
 202 static int level_two_path(lock_descriptor_t *, lock_descriptor_t *, int);
 203 #endif
 204 
 205 /*      proc_graph function definitions */
 206 static int flk_check_deadlock(lock_descriptor_t *);
 207 static void flk_proc_graph_uncolor(void);
 208 static proc_vertex_t *flk_get_proc_vertex(lock_descriptor_t *);
 209 static proc_edge_t *flk_get_proc_edge(void);
 210 static void flk_proc_release(proc_vertex_t *);
 211 static void flk_free_proc_edge(proc_edge_t *);
 212 static void flk_update_proc_graph(edge_t *, int);
 213 
 214 /* Non-blocking mandatory locking */
 215 static int lock_blocks_io(nbl_op_t, u_offset_t, ssize_t, int, u_offset_t,
 216                         u_offset_t);
 217 
 218 static struct flock_globals *
 219 flk_get_globals(void)
 220 {
 221         /*
 222          * The KLM module had better be loaded if we're attempting to handle
 223          * lockmgr requests.
 224          */
 225         ASSERT(flock_zone_key != ZONE_KEY_UNINITIALIZED);
 226         return (zone_getspecific(flock_zone_key, curproc->p_zone));
 227 }
 228 
 229 static flk_lockmgr_status_t
 230 flk_get_lockmgr_status(void)
 231 {
 232         struct flock_globals *fg;
 233 
 234         ASSERT(MUTEX_HELD(&flock_lock));
 235 
 236         if (flock_zone_key == ZONE_KEY_UNINITIALIZED) {
 237                 /*
 238                  * KLM module not loaded; lock manager definitely not running.
 239                  */
 240                 return (FLK_LOCKMGR_DOWN);
 241         }
 242         fg = flk_get_globals();
 243         return (fg->flk_lockmgr_status);
 244 }
 245 
 246 /*
 247  * This implements Open File Description (not descriptor) style record locking.
 248  * These locks can also be thought of as pid-less since they are not tied to a
 249  * specific process, thus they're preserved across fork.
 250  *
 251  * Called directly from fcntl.
 252  *
 253  * See reclock() for the implementation of the traditional POSIX style record
 254  * locking scheme (pid-ful). This function is derived from reclock() but
 255  * simplified and modified to work for OFD style locking.
 256  *
 257  * The two primary advantages of OFD style of locking are:
 258  * 1) It is per-file description, so closing a file descriptor that refers to a
 259  *    different file description for the same file will not drop the lock (i.e.
 260  *    two open's of the same file get different descriptions but a dup or fork
 261  *    will refer to the same description).
 262  * 2) Locks are preserved across fork(2).
 263  *
 264  * Because these locks are per-description a lock ptr lives at the f_filocks
 265  * member of the file_t and the lock_descriptor includes a file_t pointer
 266  * to enable unique lock identification and management.
 267  *
 268  * Since these locks are pid-less we cannot do deadlock detection with the
 269  * current process-oriented implementation. This is consistent with OFD locking
 270  * behavior on other operating systems such as Linux. Since we don't do
 271  * deadlock detection we never interact with the process graph that is
 272  * maintained for deadlock detection on the traditional POSIX-style locks.
 273  *
 274  * Future Work:
 275  *
 276  * The current implementation does not support record locks. That is,
 277  * currently the single lock must cover the entire file. This is validated in
 278  * fcntl. To support record locks the f_filock pointer in the file_t needs to
 279  * be changed to a list of pointers to the locks. That list needs to be
 280  * managed independently of the lock list on the vnode itself and it needs to
 281  * be maintained as record locks are created, split, coalesced and deleted.
 282  *
 283  * The current implementation does not support remote file systems (e.g.
 284  * NFS or CIFS). This is handled in fs_frlock(). The design of how OFD locks
 285  * interact with the NLM is not clear since the NLM protocol/implementation
 286  * appears to be oriented around locks associated with a process. A further
 287  * problem is that a design is needed for what nlm_send_siglost() should do and
 288  * where it will send SIGLOST. More recent versions of Linux apparently try to
 289  * emulate OFD locks on NFS by converting them to traditional POSIX style locks
 290  * that work with the NLM. It is not clear that this provides the correct
 291  * semantics in all cases.
 292  */
 293 int
 294 ofdlock(file_t *fp, int fcmd, flock64_t *lckdat, int flag, u_offset_t offset)
 295 {
 296         int cmd = 0;
 297         vnode_t *vp;
 298         lock_descriptor_t       stack_lock_request;
 299         lock_descriptor_t       *lock_request;
 300         int error = 0;
 301         graph_t *gp;
 302         int serialize = 0;
 303 
 304         if (fcmd != F_OFD_GETLK)
 305                 cmd = SETFLCK;
 306 
 307         if (fcmd == F_OFD_SETLKW || fcmd == F_FLOCKW)
 308                 cmd |= SLPFLCK;
 309 
 310         /* see block comment */
 311         VERIFY(lckdat->l_whence == 0);
 312         VERIFY(lckdat->l_start == 0);
 313         VERIFY(lckdat->l_len == 0);
 314 
 315         vp = fp->f_vnode;
 316 
 317         /*
 318          * For reclock fs_frlock() would normally have set these in a few
 319          * places but for us it's cleaner to centralize it here. Note that
 320          * IGN_PID is -1. We use 0 for our pid-less locks.
 321          */
 322         lckdat->l_pid = 0;
 323         lckdat->l_sysid = 0;
 324 
 325         /*
 326          * Check access permissions
 327          */
 328         if ((fcmd == F_OFD_SETLK || fcmd == F_OFD_SETLKW) &&
 329             ((lckdat->l_type == F_RDLCK && (flag & FREAD) == 0) ||
 330             (lckdat->l_type == F_WRLCK && (flag & FWRITE) == 0)))
 331                 return (EBADF);
 332 
 333         /*
 334          * for query and unlock we use the stack_lock_request
 335          */
 336         if (lckdat->l_type == F_UNLCK || !(cmd & SETFLCK)) {
 337                 lock_request = &stack_lock_request;
 338                 (void) bzero((caddr_t)lock_request,
 339                     sizeof (lock_descriptor_t));
 340 
 341                 /*
 342                  * following is added to make the assertions in
 343                  * flk_execute_request() pass
 344                  */
 345                 lock_request->l_edge.edge_in_next = &lock_request->l_edge;
 346                 lock_request->l_edge.edge_in_prev = &lock_request->l_edge;
 347                 lock_request->l_edge.edge_adj_next = &lock_request->l_edge;
 348                 lock_request->l_edge.edge_adj_prev = &lock_request->l_edge;
 349                 lock_request->l_status = FLK_INITIAL_STATE;
 350         } else {
 351                 lock_request = flk_get_lock();
 352                 fp->f_filock = (struct filock *)lock_request;
 353         }
 354         lock_request->l_state = 0;
 355         lock_request->l_vnode = vp;
 356         lock_request->l_zoneid = getzoneid();
 357         lock_request->l_ofd = fp;
 358 
 359         /*
 360          * Convert the request range into the canonical start and end
 361          * values then check the validity of the lock range.
 362          */
 363         error = flk_convert_lock_data(vp, lckdat, &lock_request->l_start,
 364             &lock_request->l_end, offset);
 365         if (error)
 366                 goto done;
 367 
 368         error = flk_check_lock_data(lock_request->l_start, lock_request->l_end,
 369             MAXEND);
 370         if (error)
 371                 goto done;
 372 
 373         ASSERT(lock_request->l_end >= lock_request->l_start);
 374 
 375         lock_request->l_type = lckdat->l_type;
 376         if (cmd & SLPFLCK)
 377                 lock_request->l_state |= WILLING_TO_SLEEP_LOCK;
 378 
 379         if (!(cmd & SETFLCK)) {
 380                 if (lock_request->l_type == F_RDLCK ||
 381                     lock_request->l_type == F_WRLCK)
 382                         lock_request->l_state |= QUERY_LOCK;
 383         }
 384         lock_request->l_flock = (*lckdat);
 385 
 386         /*
 387          * We are ready for processing the request
 388          */
 389 
 390         if (fcmd != F_OFD_GETLK && lock_request->l_type != F_UNLCK &&
 391             nbl_need_check(vp)) {
 392                 nbl_start_crit(vp, RW_WRITER);
 393                 serialize = 1;
 394         }
 395 
 396         /* Get the lock graph for a particular vnode */
 397         gp = flk_get_lock_graph(vp, FLK_INIT_GRAPH);
 398 
 399         mutex_enter(&gp->gp_mutex);
 400 
 401         lock_request->l_state |= REFERENCED_LOCK;
 402         lock_request->l_graph = gp;
 403 
 404         switch (lock_request->l_type) {
 405         case F_RDLCK:
 406         case F_WRLCK:
 407                 if (IS_QUERY_LOCK(lock_request)) {
 408                         flk_get_first_blocking_lock(lock_request);
 409                         if (lock_request->l_ofd != NULL)
 410                                 lock_request->l_flock.l_pid = -1;
 411                         (*lckdat) = lock_request->l_flock;
 412                 } else {
 413                         /* process the request now */
 414                         error = flk_process_request(lock_request);
 415                 }
 416                 break;
 417 
 418         case F_UNLCK:
 419                 /* unlock request will not block so execute it immediately */
 420                 error = flk_execute_request(lock_request);
 421                 break;
 422 
 423         default:
 424                 error = EINVAL;
 425                 break;
 426         }
 427 
 428         if (lock_request == &stack_lock_request) {
 429                 flk_set_state(lock_request, FLK_DEAD_STATE);
 430         } else {
 431                 lock_request->l_state &= ~REFERENCED_LOCK;
 432                 if ((error != 0) || IS_DELETED(lock_request)) {
 433                         flk_set_state(lock_request, FLK_DEAD_STATE);
 434                         flk_free_lock(lock_request);
 435                 }
 436         }
 437 
 438         mutex_exit(&gp->gp_mutex);
 439         if (serialize)
 440                 nbl_end_crit(vp);
 441 
 442         return (error);
 443 
 444 done:
 445         flk_set_state(lock_request, FLK_DEAD_STATE);
 446         if (lock_request != &stack_lock_request)
 447                 flk_free_lock(lock_request);
 448         return (error);
 449 }
 450 
 451 /*
 452  * Remove any lock on the vnode belonging to the given file_t.
 453  * Called from closef on last close, file_t is locked.
 454  *
 455  * This is modeled on the cleanlocks() function but only removes the single
 456  * lock associated with fp.
 457  */
 458 void
 459 ofdcleanlock(file_t *fp)
 460 {
 461         lock_descriptor_t *fplock, *lock, *nlock;
 462         vnode_t *vp;
 463         graph_t *gp;
 464 
 465         ASSERT(MUTEX_HELD(&fp->f_tlock));
 466 
 467         if ((fplock = (lock_descriptor_t *)fp->f_filock) == NULL)
 468                 return;
 469 
 470         fp->f_filock = NULL;
 471         vp = fp->f_vnode;
 472 
 473         gp = flk_get_lock_graph(vp, FLK_USE_GRAPH);
 474 
 475         if (gp == NULL)
 476                 return;
 477         mutex_enter(&gp->gp_mutex);
 478 
 479         CHECK_SLEEPING_LOCKS(gp);
 480         CHECK_ACTIVE_LOCKS(gp);
 481 
 482         SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
 483 
 484         if (lock) {
 485                 do {
 486                         nlock = lock->l_next;
 487                         if (fplock == lock) {
 488                                 CANCEL_WAKEUP(lock);
 489                                 break;
 490                         }
 491                         lock = nlock;
 492                 } while (lock->l_vnode == vp);
 493         }
 494 
 495         SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
 496 
 497         if (lock) {
 498                 do {
 499                         nlock = lock->l_next;
 500                         if (fplock == lock) {
 501                                 flk_delete_active_lock(lock, 0);
 502                                 flk_wakeup(lock, 1);
 503                                 flk_free_lock(lock);
 504                                 break;
 505                         }
 506                         lock = nlock;
 507                 } while (lock->l_vnode == vp);
 508         }
 509 
 510         CHECK_SLEEPING_LOCKS(gp);
 511         CHECK_ACTIVE_LOCKS(gp);
 512         mutex_exit(&gp->gp_mutex);
 513 }
 514 
 515 /*
 516  * Routine called from fs_frlock in fs/fs_subr.c
 517  *
 518  * This implements traditional POSIX style record locking. The two primary
 519  * drawbacks to this style of locking are:
 520  * 1) It is per-process, so any close of a file descriptor that refers to the
 521  *    file will drop the lock (e.g. lock /etc/passwd, call a library function
 522  *    which opens /etc/passwd to read the file, when the library closes it's
 523  *    file descriptor the application loses its lock and does not know).
 524  * 2) Locks are not preserved across fork(2).
 525  *
 526  * Because these locks are only associated with a PID, they are per-process.
 527  * This is why any close will drop the lock and is also why, once the process
 528  * forks, the lock is no longer related to the new process. These locks can
 529  * be considered as PID-ful.
 530  *
 531  * See ofdlock() for the implementation of a similar but improved locking
 532  * scheme.
 533  */
 534 int
 535 reclock(vnode_t         *vp,
 536         flock64_t       *lckdat,
 537         int             cmd,
 538         int             flag,
 539         u_offset_t      offset,
 540         flk_callback_t  *flk_cbp)
 541 {
 542         lock_descriptor_t       stack_lock_request;
 543         lock_descriptor_t       *lock_request;
 544         int error = 0;
 545         graph_t *gp;
 546         int                     nlmid;
 547 
 548         /*
 549          * Check access permissions
 550          */
 551         if ((cmd & SETFLCK) &&
 552             ((lckdat->l_type == F_RDLCK && (flag & FREAD) == 0) ||
 553             (lckdat->l_type == F_WRLCK && (flag & FWRITE) == 0)))
 554                         return (EBADF);
 555 
 556         /*
 557          * for query and unlock we use the stack_lock_request
 558          */
 559 
 560         if ((lckdat->l_type == F_UNLCK) ||
 561             !((cmd & INOFLCK) || (cmd & SETFLCK))) {
 562                 lock_request = &stack_lock_request;
 563                 (void) bzero((caddr_t)lock_request,
 564                     sizeof (lock_descriptor_t));
 565 
 566                 /*
 567                  * following is added to make the assertions in
 568                  * flk_execute_request() to pass through
 569                  */
 570 
 571                 lock_request->l_edge.edge_in_next = &lock_request->l_edge;
 572                 lock_request->l_edge.edge_in_prev = &lock_request->l_edge;
 573                 lock_request->l_edge.edge_adj_next = &lock_request->l_edge;
 574                 lock_request->l_edge.edge_adj_prev = &lock_request->l_edge;
 575                 lock_request->l_status = FLK_INITIAL_STATE;
 576         } else {
 577                 lock_request = flk_get_lock();
 578         }
 579         lock_request->l_state = 0;
 580         lock_request->l_vnode = vp;
 581         lock_request->l_zoneid = getzoneid();
 582 
 583         /*
 584          * Convert the request range into the canonical start and end
 585          * values.  The NLM protocol supports locking over the entire
 586          * 32-bit range, so there's no range checking for remote requests,
 587          * but we still need to verify that local requests obey the rules.
 588          */
 589         /* Clustering */
 590         if ((cmd & (RCMDLCK | PCMDLCK)) != 0) {
 591                 ASSERT(lckdat->l_whence == 0);
 592                 lock_request->l_start = lckdat->l_start;
 593                 lock_request->l_end = (lckdat->l_len == 0) ? MAX_U_OFFSET_T :
 594                     lckdat->l_start + (lckdat->l_len - 1);
 595         } else {
 596                 /* check the validity of the lock range */
 597                 error = flk_convert_lock_data(vp, lckdat,
 598                     &lock_request->l_start, &lock_request->l_end,
 599                     offset);
 600                 if (error) {
 601                         goto done;
 602                 }
 603                 error = flk_check_lock_data(lock_request->l_start,
 604                     lock_request->l_end, MAXEND);
 605                 if (error) {
 606                         goto done;
 607                 }
 608         }
 609 
 610         ASSERT(lock_request->l_end >= lock_request->l_start);
 611 
 612         lock_request->l_type = lckdat->l_type;
 613         if (cmd & INOFLCK)
 614                 lock_request->l_state |= IO_LOCK;
 615         if (cmd & SLPFLCK)
 616                 lock_request->l_state |= WILLING_TO_SLEEP_LOCK;
 617         if (cmd & RCMDLCK)
 618                 lock_request->l_state |= LOCKMGR_LOCK;
 619         if (cmd & NBMLCK)
 620                 lock_request->l_state |= NBMAND_LOCK;
 621         /*
 622          * Clustering: set flag for PXFS locks
 623          * We do not _only_ check for the PCMDLCK flag because PXFS locks could
 624          * also be of type 'RCMDLCK'.
 625          * We do not _only_ check the GETPXFSID() macro because local PXFS
 626          * clients use a pxfsid of zero to permit deadlock detection in the LLM.
 627          */
 628 
 629         if ((cmd & PCMDLCK) || (GETPXFSID(lckdat->l_sysid) != 0)) {
 630                 lock_request->l_state |= PXFS_LOCK;
 631         }
 632         if (!((cmd & SETFLCK) || (cmd & INOFLCK))) {
 633                 if (lock_request->l_type == F_RDLCK ||
 634                     lock_request->l_type == F_WRLCK)
 635                         lock_request->l_state |= QUERY_LOCK;
 636         }
 637         lock_request->l_flock = (*lckdat);
 638         lock_request->l_callbacks = flk_cbp;
 639 
 640         /*
 641          * We are ready for processing the request
 642          */
 643         if (IS_LOCKMGR(lock_request)) {
 644                 /*
 645                  * If the lock request is an NLM server request ....
 646                  */
 647                 if (nlm_status_size == 0) { /* not booted as cluster */
 648                         mutex_enter(&flock_lock);
 649                         /*
 650                          * Bail out if this is a lock manager request and the
 651                          * lock manager is not supposed to be running.
 652                          */
 653                         if (flk_get_lockmgr_status() != FLK_LOCKMGR_UP) {
 654                                 mutex_exit(&flock_lock);
 655                                 error = ENOLCK;
 656                                 goto done;
 657                         }
 658                         mutex_exit(&flock_lock);
 659                 } else {                        /* booted as a cluster */
 660                         nlmid = GETNLMID(lock_request->l_flock.l_sysid);
 661                         ASSERT(nlmid <= nlm_status_size && nlmid >= 0);
 662 
 663                         mutex_enter(&nlm_reg_lock);
 664                         /*
 665                          * If the NLM registry does not know about this
 666                          * NLM server making the request, add its nlmid
 667                          * to the registry.
 668                          */
 669                         if (FLK_REGISTRY_IS_NLM_UNKNOWN(nlm_reg_status,
 670                             nlmid)) {
 671                                 FLK_REGISTRY_ADD_NLMID(nlm_reg_status, nlmid);
 672                         } else if (!FLK_REGISTRY_IS_NLM_UP(nlm_reg_status,
 673                             nlmid)) {
 674                                 /*
 675                                  * If the NLM server is already known (has made
 676                                  * previous lock requests) and its state is
 677                                  * not NLM_UP (means that NLM server is
 678                                  * shutting down), then bail out with an
 679                                  * error to deny the lock request.
 680                                  */
 681                                 mutex_exit(&nlm_reg_lock);
 682                                 error = ENOLCK;
 683                                 goto done;
 684                         }
 685                         mutex_exit(&nlm_reg_lock);
 686                 }
 687         }
 688 
 689         /* Now get the lock graph for a particular vnode */
 690         gp = flk_get_lock_graph(vp, FLK_INIT_GRAPH);
 691 
 692         /*
 693          * We drop rwlock here otherwise this might end up causing a
 694          * deadlock if this IOLOCK sleeps. (bugid # 1183392).
 695          */
 696 
 697         if (IS_IO_LOCK(lock_request)) {
 698                 VOP_RWUNLOCK(vp,
 699                     (lock_request->l_type == F_RDLCK) ?
 700                     V_WRITELOCK_FALSE : V_WRITELOCK_TRUE, NULL);
 701         }
 702         mutex_enter(&gp->gp_mutex);
 703 
 704         lock_request->l_state |= REFERENCED_LOCK;
 705         lock_request->l_graph = gp;
 706 
 707         switch (lock_request->l_type) {
 708         case F_RDLCK:
 709         case F_WRLCK:
 710                 if (IS_QUERY_LOCK(lock_request)) {
 711                         flk_get_first_blocking_lock(lock_request);
 712                         if (lock_request->l_ofd != NULL)
 713                                 lock_request->l_flock.l_pid = -1;
 714                         (*lckdat) = lock_request->l_flock;
 715                         break;
 716                 }
 717 
 718                 /* process the request now */
 719 
 720                 error = flk_process_request(lock_request);
 721                 break;
 722 
 723         case F_UNLCK:
 724                 /* unlock request will not block so execute it immediately */
 725 
 726                 if (IS_LOCKMGR(lock_request) &&
 727                     flk_canceled(lock_request)) {
 728                         error = 0;
 729                 } else {
 730                         error = flk_execute_request(lock_request);
 731                 }
 732                 break;
 733 
 734         case F_UNLKSYS:
 735                 /*
 736                  * Recovery mechanism to release lock manager locks when
 737                  * NFS client crashes and restart. NFS server will clear
 738                  * old locks and grant new locks.
 739                  */
 740 
 741                 if (lock_request->l_flock.l_sysid == 0) {
 742                         mutex_exit(&gp->gp_mutex);
 743                         return (EINVAL);
 744                 }
 745                 if (secpolicy_nfs(CRED()) != 0) {
 746                         mutex_exit(&gp->gp_mutex);
 747                         return (EPERM);
 748                 }
 749                 flk_delete_locks_by_sysid(lock_request);
 750                 lock_request->l_state &= ~REFERENCED_LOCK;
 751                 flk_set_state(lock_request, FLK_DEAD_STATE);
 752                 flk_free_lock(lock_request);
 753                 mutex_exit(&gp->gp_mutex);
 754                 return (0);
 755 
 756         default:
 757                 error = EINVAL;
 758                 break;
 759         }
 760 
 761         /* Clustering: For blocked PXFS locks, return */
 762         if (error == PXFS_LOCK_BLOCKED) {
 763                 lock_request->l_state &= ~REFERENCED_LOCK;
 764                 mutex_exit(&gp->gp_mutex);
 765                 return (error);
 766         }
 767 
 768         /*
 769          * Now that we have seen the status of locks in the system for
 770          * this vnode we acquire the rwlock if it is an IO_LOCK.
 771          */
 772 
 773         if (IS_IO_LOCK(lock_request)) {
 774                 (void) VOP_RWLOCK(vp,
 775                     (lock_request->l_type == F_RDLCK) ?
 776                     V_WRITELOCK_FALSE : V_WRITELOCK_TRUE, NULL);
 777                 if (!error) {
 778                         lckdat->l_type = F_UNLCK;
 779 
 780                         /*
 781                          * This wake up is needed otherwise
 782                          * if IO_LOCK has slept the dependents on this
 783                          * will not be woken up at all. (bugid # 1185482).
 784                          */
 785 
 786                         flk_wakeup(lock_request, 1);
 787                         flk_set_state(lock_request, FLK_DEAD_STATE);
 788                         flk_free_lock(lock_request);
 789                 }
 790                 /*
 791                  * else if error had occurred either flk_process_request()
 792                  * has returned EDEADLK in which case there will be no
 793                  * dependents for this lock or EINTR from flk_wait_execute_
 794                  * request() in which case flk_cancel_sleeping_lock()
 795                  * would have been done. same is true with EBADF.
 796                  */
 797         }
 798 
 799         if (lock_request == &stack_lock_request) {
 800                 flk_set_state(lock_request, FLK_DEAD_STATE);
 801         } else {
 802                 lock_request->l_state &= ~REFERENCED_LOCK;
 803                 if ((error != 0) || IS_DELETED(lock_request)) {
 804                         flk_set_state(lock_request, FLK_DEAD_STATE);
 805                         flk_free_lock(lock_request);
 806                 }
 807         }
 808 
 809         mutex_exit(&gp->gp_mutex);
 810         return (error);
 811 
 812 done:
 813         flk_set_state(lock_request, FLK_DEAD_STATE);
 814         if (lock_request != &stack_lock_request)
 815                 flk_free_lock(lock_request);
 816         return (error);
 817 }
 818 
 819 /*
 820  * Invoke the callbacks in the given list.  If before sleeping, invoke in
 821  * list order.  If after sleeping, invoke in reverse order.
 822  *
 823  * CPR (suspend/resume) support: if one of the callbacks returns a
 824  * callb_cpr_t, return it.   This will be used to make the thread CPR-safe
 825  * while it is sleeping.  There should be at most one callb_cpr_t for the
 826  * thread.
 827  * XXX This is unnecessarily complicated.  The CPR information should just
 828  * get passed in directly through VOP_FRLOCK and reclock, rather than
 829  * sneaking it in via a callback.
 830  */
 831 
 832 callb_cpr_t *
 833 flk_invoke_callbacks(flk_callback_t *cblist, flk_cb_when_t when)
 834 {
 835         callb_cpr_t *cpr_callbackp = NULL;
 836         callb_cpr_t *one_result;
 837         flk_callback_t *cb;
 838 
 839         if (cblist == NULL)
 840                 return (NULL);
 841 
 842         if (when == FLK_BEFORE_SLEEP) {
 843                 cb = cblist;
 844                 do {
 845                         one_result = (*cb->cb_callback)(when, cb->cb_data);
 846                         if (one_result != NULL) {
 847                                 ASSERT(cpr_callbackp == NULL);
 848                                 cpr_callbackp = one_result;
 849                         }
 850                         cb = cb->cb_next;
 851                 } while (cb != cblist);
 852         } else {
 853                 cb = cblist->cb_prev;
 854                 do {
 855                         one_result = (*cb->cb_callback)(when, cb->cb_data);
 856                         if (one_result != NULL) {
 857                                 cpr_callbackp = one_result;
 858                         }
 859                         cb = cb->cb_prev;
 860                 } while (cb != cblist->cb_prev);
 861         }
 862 
 863         return (cpr_callbackp);
 864 }
 865 
 866 /*
 867  * Initialize a flk_callback_t to hold the given callback.
 868  */
 869 
 870 void
 871 flk_init_callback(flk_callback_t *flk_cb,
 872         callb_cpr_t *(*cb_fcn)(flk_cb_when_t, void *), void *cbdata)
 873 {
 874         flk_cb->cb_next = flk_cb;
 875         flk_cb->cb_prev = flk_cb;
 876         flk_cb->cb_callback = cb_fcn;
 877         flk_cb->cb_data = cbdata;
 878 }
 879 
 880 /*
 881  * Initialize an flk_callback_t and then link it into the head of an
 882  * existing list (which may be NULL).
 883  */
 884 
 885 void
 886 flk_add_callback(flk_callback_t *newcb,
 887                 callb_cpr_t *(*cb_fcn)(flk_cb_when_t, void *),
 888                 void *cbdata, flk_callback_t *cblist)
 889 {
 890         flk_init_callback(newcb, cb_fcn, cbdata);
 891 
 892         if (cblist == NULL)
 893                 return;
 894 
 895         newcb->cb_prev = cblist->cb_prev;
 896         newcb->cb_next = cblist;
 897         cblist->cb_prev->cb_next = newcb;
 898         cblist->cb_prev = newcb;
 899 }
 900 
 901 /*
 902  * Initialize the flk_edge_cache data structure and create the
 903  * nlm_reg_status array.
 904  */
 905 
 906 void
 907 flk_init(void)
 908 {
 909         uint_t  i;
 910 
 911         flk_edge_cache = kmem_cache_create("flk_edges",
 912             sizeof (struct edge), 0, NULL, NULL, NULL, NULL, NULL, 0);
 913         if (flk_edge_cache == NULL) {
 914                 cmn_err(CE_PANIC, "Couldn't create flk_edge_cache\n");
 915         }
 916         /*
 917          * Create the NLM registry object.
 918          */
 919 
 920         if (cluster_bootflags & CLUSTER_BOOTED) {
 921                 /*
 922                  * This routine tells you the maximum node id that will be used
 923                  * in the cluster.  This number will be the size of the nlm
 924                  * registry status array.  We add 1 because we will be using
 925                  * all entries indexed from 0 to maxnodeid; e.g., from 0
 926                  * to 64, for a total of 65 entries.
 927                  */
 928                 nlm_status_size = clconf_maximum_nodeid() + 1;
 929         } else {
 930                 nlm_status_size = 0;
 931         }
 932 
 933         if (nlm_status_size != 0) {     /* booted as a cluster */
 934                 nlm_reg_status = (flk_nlm_status_t *)
 935                     kmem_alloc(sizeof (flk_nlm_status_t) * nlm_status_size,
 936                     KM_SLEEP);
 937 
 938                 /* initialize all NLM states in array to NLM_UNKNOWN */
 939                 for (i = 0; i < nlm_status_size; i++) {
 940                         nlm_reg_status[i] = FLK_NLM_UNKNOWN;
 941                 }
 942         }
 943 }
 944 
 945 /*
 946  * Zone constructor/destructor callbacks to be executed when a zone is
 947  * created/destroyed.
 948  */
 949 /* ARGSUSED */
 950 void *
 951 flk_zone_init(zoneid_t zoneid)
 952 {
 953         struct flock_globals *fg;
 954         uint_t i;
 955 
 956         fg = kmem_alloc(sizeof (*fg), KM_SLEEP);
 957         fg->flk_lockmgr_status = FLK_LOCKMGR_UP;
 958         for (i = 0; i < HASH_SIZE; i++)
 959                 fg->lockmgr_status[i] = FLK_LOCKMGR_UP;
 960         return (fg);
 961 }
 962 
 963 /* ARGSUSED */
 964 void
 965 flk_zone_fini(zoneid_t zoneid, void *data)
 966 {
 967         struct flock_globals *fg = data;
 968 
 969         kmem_free(fg, sizeof (*fg));
 970 }
 971 
 972 /*
 973  * Get a lock_descriptor structure with initialization of edge lists.
 974  */
 975 
 976 static lock_descriptor_t *
 977 flk_get_lock(void)
 978 {
 979         lock_descriptor_t       *l;
 980 
 981         l = kmem_zalloc(sizeof (lock_descriptor_t), KM_SLEEP);
 982 
 983         cv_init(&l->l_cv, NULL, CV_DRIVER, NULL);
 984         l->l_edge.edge_in_next = &l->l_edge;
 985         l->l_edge.edge_in_prev = &l->l_edge;
 986         l->l_edge.edge_adj_next = &l->l_edge;
 987         l->l_edge.edge_adj_prev = &l->l_edge;
 988         l->pvertex = -1;
 989         l->l_status = FLK_INITIAL_STATE;
 990         flk_lock_allocs++;
 991         return (l);
 992 }
 993 
 994 /*
 995  * Free a lock_descriptor structure. Just sets the DELETED_LOCK flag
 996  * when some thread has a reference to it as in reclock().
 997  */
 998 
 999 void
1000 flk_free_lock(lock_descriptor_t *lock)
1001 {
1002         file_t *fp;
1003 
1004         ASSERT(IS_DEAD(lock));
1005 
1006         if ((fp = lock->l_ofd) != NULL && fp->f_filock == (struct filock *)lock)
1007                 fp->f_filock = NULL;
1008 
1009         if (IS_REFERENCED(lock)) {
1010                 lock->l_state |= DELETED_LOCK;
1011                 return;
1012         }
1013         flk_lock_frees++;
1014         kmem_free((void *)lock, sizeof (lock_descriptor_t));
1015 }
1016 
1017 void
1018 flk_set_state(lock_descriptor_t *lock, int new_state)
1019 {
1020         /*
1021          * Locks in the sleeping list may be woken up in a number of ways,
1022          * and more than once.  If a sleeping lock is signaled awake more
1023          * than once, then it may or may not change state depending on its
1024          * current state.
1025          * Also note that NLM locks that are sleeping could be moved to an
1026          * interrupted state more than once if the unlock request is
1027          * retransmitted by the NLM client - the second time around, this is
1028          * just a nop.
1029          * The ordering of being signaled awake is:
1030          * INTERRUPTED_STATE > CANCELLED_STATE > GRANTED_STATE.
1031          * The checks below implement this ordering.
1032          */
1033         if (IS_INTERRUPTED(lock)) {
1034                 if ((new_state == FLK_CANCELLED_STATE) ||
1035                     (new_state == FLK_GRANTED_STATE) ||
1036                     (new_state == FLK_INTERRUPTED_STATE)) {
1037                         return;
1038                 }
1039         }
1040         if (IS_CANCELLED(lock)) {
1041                 if ((new_state == FLK_GRANTED_STATE) ||
1042                     (new_state == FLK_CANCELLED_STATE)) {
1043                         return;
1044                 }
1045         }
1046         CHECK_LOCK_TRANSITION(lock->l_status, new_state);
1047         if (IS_PXFS(lock)) {
1048                 cl_flk_state_transition_notify(lock, lock->l_status, new_state);
1049         }
1050         lock->l_status = new_state;
1051 }
1052 
1053 /*
1054  * Routine that checks whether there are any blocking locks in the system.
1055  *
1056  * The policy followed is if a write lock is sleeping we don't allow read
1057  * locks before this write lock even though there may not be any active
1058  * locks corresponding to the read locks' region.
1059  *
1060  * flk_add_edge() function adds an edge between l1 and l2 iff there
1061  * is no path between l1 and l2. This is done to have a "minimum
1062  * storage representation" of the dependency graph.
1063  *
1064  * Another property of the graph is since only the new request throws
1065  * edges to the existing locks in the graph, the graph is always topologically
1066  * ordered.
1067  */
1068 
1069 static int
1070 flk_process_request(lock_descriptor_t *request)
1071 {
1072         graph_t *gp = request->l_graph;
1073         lock_descriptor_t *lock;
1074         int request_blocked_by_active = 0;
1075         int request_blocked_by_granted = 0;
1076         int request_blocked_by_sleeping = 0;
1077         vnode_t *vp = request->l_vnode;
1078         int     error = 0;
1079         int request_will_wait = 0;
1080         int found_covering_lock = 0;
1081         lock_descriptor_t *covered_by = NULL;
1082 
1083         ASSERT(MUTEX_HELD(&gp->gp_mutex));
1084         request_will_wait = IS_WILLING_TO_SLEEP(request);
1085 
1086         /*
1087          * check active locks
1088          */
1089 
1090         SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
1091 
1092 
1093         if (lock) {
1094                 do {
1095                         if (BLOCKS(lock, request)) {
1096                                 if (!request_will_wait)
1097                                         return (EAGAIN);
1098                                 request_blocked_by_active = 1;
1099                                 break;
1100                         }
1101                         /*
1102                          * Grant lock if it is for the same owner holding active
1103                          * lock that covers the request.
1104                          */
1105 
1106                         if (SAME_OWNER(lock, request) &&
1107                             COVERS(lock, request) &&
1108                             (request->l_type == F_RDLCK))
1109                                 return (flk_execute_request(request));
1110                         lock = lock->l_next;
1111                 } while (lock->l_vnode == vp);
1112         }
1113 
1114         if (!request_blocked_by_active) {
1115                         lock_descriptor_t *lk[1];
1116                         lock_descriptor_t *first_glock = NULL;
1117                 /*
1118                  * Shall we grant this?! NO!!
1119                  * What about those locks that were just granted and still
1120                  * in sleep queue. Those threads are woken up and so locks
1121                  * are almost active.
1122                  */
1123                 SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
1124                 if (lock) {
1125                         do {
1126                                 if (BLOCKS(lock, request)) {
1127                                         if (IS_GRANTED(lock)) {
1128                                                 request_blocked_by_granted = 1;
1129                                         } else {
1130                                                 request_blocked_by_sleeping = 1;
1131                                         }
1132                                 }
1133 
1134                                 lock = lock->l_next;
1135                         } while ((lock->l_vnode == vp));
1136                         first_glock = lock->l_prev;
1137                         ASSERT(first_glock->l_vnode == vp);
1138                 }
1139 
1140                 if (request_blocked_by_granted)
1141                         goto block;
1142 
1143                 if (!request_blocked_by_sleeping) {
1144                         /*
1145                          * If the request isn't going to be blocked by a
1146                          * sleeping request, we know that it isn't going to
1147                          * be blocked; we can just execute the request --
1148                          * without performing costly deadlock detection.
1149                          */
1150                         ASSERT(!request_blocked_by_active);
1151                         return (flk_execute_request(request));
1152                 } else if (request->l_type == F_RDLCK) {
1153                         /*
1154                          * If we have a sleeping writer in the requested
1155                          * lock's range, block.
1156                          */
1157                         goto block;
1158                 }
1159 
1160                 lk[0] = request;
1161                 request->l_state |= RECOMPUTE_LOCK;
1162                 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
1163                 if (lock) {
1164                         do {
1165                                 flk_recompute_dependencies(lock, lk, 1, 0);
1166                                 lock = lock->l_next;
1167                         } while (lock->l_vnode == vp);
1168                 }
1169                 lock = first_glock;
1170                 if (lock) {
1171                         do {
1172                                 if (IS_GRANTED(lock)) {
1173                                 flk_recompute_dependencies(lock, lk, 1, 0);
1174                                 }
1175                                 lock = lock->l_prev;
1176                         } while ((lock->l_vnode == vp));
1177                 }
1178                 request->l_state &= ~RECOMPUTE_LOCK;
1179                 if (!NO_DEPENDENTS(request) && flk_check_deadlock(request))
1180                         return (EDEADLK);
1181                 return (flk_execute_request(request));
1182         }
1183 
1184 block:
1185         if (request_will_wait)
1186                 flk_graph_uncolor(gp);
1187 
1188         /* check sleeping locks */
1189 
1190         SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
1191 
1192         /*
1193          * If we find a sleeping write lock that is a superset of the
1194          * region wanted by request we can be assured that by adding an
1195          * edge to this write lock we have paths to all locks in the
1196          * graph that blocks the request except in one case and that is why
1197          * another check for SAME_OWNER in the loop below. The exception
1198          * case is when this process that owns the sleeping write lock 'l1'
1199          * has other locks l2, l3, l4 that are in the system and arrived
1200          * before l1. l1 does not have path to these locks as they are from
1201          * same process. We break when we find a second covering sleeping
1202          * lock l5 owned by a process different from that owning l1, because
1203          * there cannot be any of l2, l3, l4, etc., arrived before l5, and if
1204          * it has l1 would have produced a deadlock already.
1205          */
1206 
1207         if (lock) {
1208                 do {
1209                         if (BLOCKS(lock, request)) {
1210                                 if (!request_will_wait)
1211                                         return (EAGAIN);
1212                                 if (COVERS(lock, request) &&
1213                                     lock->l_type == F_WRLCK) {
1214                                         if (found_covering_lock &&
1215                                             !SAME_OWNER(lock, covered_by)) {
1216                                                 found_covering_lock++;
1217                                                 break;
1218                                         }
1219                                         found_covering_lock = 1;
1220                                         covered_by = lock;
1221                                 }
1222                                 if (found_covering_lock &&
1223                                     !SAME_OWNER(lock, covered_by)) {
1224                                         lock = lock->l_next;
1225                                         continue;
1226                                 }
1227                                 if ((error = flk_add_edge(request, lock,
1228                                     !found_covering_lock, 0)))
1229                                         return (error);
1230                         }
1231                         lock = lock->l_next;
1232                 } while (lock->l_vnode == vp);
1233         }
1234 
1235 /*
1236  * found_covering_lock == 2 iff at this point 'request' has paths
1237  * to all locks that blocks 'request'. found_covering_lock == 1 iff at this
1238  * point 'request' has paths to all locks that blocks 'request' whose owners
1239  * are not same as the one that covers 'request' (covered_by above) and
1240  * we can have locks whose owner is same as covered_by in the active list.
1241  */
1242 
1243         if (request_blocked_by_active && found_covering_lock != 2) {
1244                 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
1245                 ASSERT(lock != NULL);
1246                 do {
1247                         if (BLOCKS(lock, request)) {
1248                                 if (found_covering_lock &&
1249                                     !SAME_OWNER(lock, covered_by)) {
1250                                         lock = lock->l_next;
1251                                         continue;
1252                                 }
1253                                 if ((error = flk_add_edge(request, lock,
1254                                     CHECK_CYCLE, 0)))
1255                                         return (error);
1256                         }
1257                         lock = lock->l_next;
1258                 } while (lock->l_vnode == vp);
1259         }
1260 
1261         if (NOT_BLOCKED(request)) {
1262                 /*
1263                  * request not dependent on any other locks
1264                  * so execute this request
1265                  */
1266                 return (flk_execute_request(request));
1267         } else {
1268                 /*
1269                  * check for deadlock
1270                  */
1271                 if (flk_check_deadlock(request))
1272                         return (EDEADLK);
1273                 /*
1274                  * this thread has to sleep
1275                  */
1276                 return (flk_wait_execute_request(request));
1277         }
1278 }
1279 
1280 /*
1281  * The actual execution of the request in the simple case is only to
1282  * insert the 'request' in the list of active locks if it is not an
1283  * UNLOCK.
1284  * We have to consider the existing active locks' relation to
1285  * this 'request' if they are owned by same process. flk_relation() does
1286  * this job and sees to that the dependency graph information is maintained
1287  * properly.
1288  */
1289 
1290 int
1291 flk_execute_request(lock_descriptor_t *request)
1292 {
1293         graph_t *gp = request->l_graph;
1294         vnode_t *vp = request->l_vnode;
1295         lock_descriptor_t       *lock, *lock1;
1296         int done_searching = 0;
1297 
1298         CHECK_SLEEPING_LOCKS(gp);
1299         CHECK_ACTIVE_LOCKS(gp);
1300 
1301         ASSERT(MUTEX_HELD(&gp->gp_mutex));
1302 
1303         flk_set_state(request, FLK_START_STATE);
1304 
1305         ASSERT(NOT_BLOCKED(request));
1306 
1307         /* IO_LOCK requests are only to check status */
1308 
1309         if (IS_IO_LOCK(request))
1310                 return (0);
1311 
1312         SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
1313 
1314         if (lock == NULL && request->l_type == F_UNLCK)
1315                 return (0);
1316         if (lock == NULL) {
1317                 flk_insert_active_lock(request);
1318                 return (0);
1319         }
1320 
1321         do {
1322                 lock1 = lock->l_next;
1323                 if (SAME_OWNER(request, lock)) {
1324                         done_searching = flk_relation(lock, request);
1325                 }
1326                 lock = lock1;
1327         } while (lock->l_vnode == vp && !done_searching);
1328 
1329         /*
1330          * insert in active queue
1331          */
1332 
1333         if (request->l_type != F_UNLCK)
1334                 flk_insert_active_lock(request);
1335 
1336         return (0);
1337 }
1338 
1339 /*
1340  * 'request' is blocked by some one therefore we put it into sleep queue.
1341  */
1342 static int
1343 flk_wait_execute_request(lock_descriptor_t *request)
1344 {
1345         graph_t *gp = request->l_graph;
1346         callb_cpr_t     *cprp;          /* CPR info from callback */
1347         struct flock_globals *fg;
1348         int index;
1349 
1350         ASSERT(MUTEX_HELD(&gp->gp_mutex));
1351         ASSERT(IS_WILLING_TO_SLEEP(request));
1352 
1353         flk_insert_sleeping_lock(request);
1354 
1355         if (IS_LOCKMGR(request)) {
1356                 index = HASH_INDEX(request->l_vnode);
1357                 fg = flk_get_globals();
1358 
1359                 if (nlm_status_size == 0) {     /* not booted as a cluster */
1360                         if (fg->lockmgr_status[index] != FLK_LOCKMGR_UP) {
1361                                 flk_cancel_sleeping_lock(request, 1);
1362                                 return (ENOLCK);
1363                         }
1364                 } else {                        /* booted as a cluster */
1365                         /*
1366                          * If the request is an NLM server lock request,
1367                          * and the NLM state of the lock request is not
1368                          * NLM_UP (because the NLM server is shutting
1369                          * down), then cancel the sleeping lock and
1370                          * return error ENOLCK that will encourage the
1371                          * client to retransmit.
1372                          */
1373                         if (!IS_NLM_UP(request)) {
1374                                 flk_cancel_sleeping_lock(request, 1);
1375                                 return (ENOLCK);
1376                         }
1377                 }
1378         }
1379 
1380         /* Clustering: For blocking PXFS locks, return */
1381         if (IS_PXFS(request)) {
1382                 /*
1383                  * PXFS locks sleep on the client side.
1384                  * The callback argument is used to wake up the sleeper
1385                  * when the lock is granted.
1386                  * We return -1 (rather than an errno value) to indicate
1387                  * the client side should sleep
1388                  */
1389                 return (PXFS_LOCK_BLOCKED);
1390         }
1391 
1392         if (request->l_callbacks != NULL) {
1393                 /*
1394                  * To make sure the shutdown code works correctly, either
1395                  * the callback must happen after putting the lock on the
1396                  * sleep list, or we must check the shutdown status after
1397                  * returning from the callback (and before sleeping).  At
1398                  * least for now, we'll use the first option.  If a
1399                  * shutdown or signal or whatever happened while the graph
1400                  * mutex was dropped, that will be detected by
1401                  * wait_for_lock().
1402                  */
1403                 mutex_exit(&gp->gp_mutex);
1404 
1405                 cprp = flk_invoke_callbacks(request->l_callbacks,
1406                     FLK_BEFORE_SLEEP);
1407 
1408                 mutex_enter(&gp->gp_mutex);
1409 
1410                 if (cprp == NULL) {
1411                         wait_for_lock(request);
1412                 } else {
1413                         mutex_enter(cprp->cc_lockp);
1414                         CALLB_CPR_SAFE_BEGIN(cprp);
1415                         mutex_exit(cprp->cc_lockp);
1416                         wait_for_lock(request);
1417                         mutex_enter(cprp->cc_lockp);
1418                         CALLB_CPR_SAFE_END(cprp, cprp->cc_lockp);
1419                         mutex_exit(cprp->cc_lockp);
1420                 }
1421 
1422                 mutex_exit(&gp->gp_mutex);
1423                 (void) flk_invoke_callbacks(request->l_callbacks,
1424                     FLK_AFTER_SLEEP);
1425                 mutex_enter(&gp->gp_mutex);
1426         } else {
1427                 wait_for_lock(request);
1428         }
1429 
1430         if (IS_LOCKMGR(request)) {
1431                 /*
1432                  * If the lock manager is shutting down, return an
1433                  * error that will encourage the client to retransmit.
1434                  */
1435                 if (fg->lockmgr_status[index] != FLK_LOCKMGR_UP &&
1436                     !IS_GRANTED(request)) {
1437                         flk_cancel_sleeping_lock(request, 1);
1438                         return (ENOLCK);
1439                 }
1440         }
1441 
1442         if (IS_INTERRUPTED(request)) {
1443                 /* we got a signal, or act like we did */
1444                 flk_cancel_sleeping_lock(request, 1);
1445                 return (EINTR);
1446         }
1447 
1448         /* Cancelled if some other thread has closed the file */
1449 
1450         if (IS_CANCELLED(request)) {
1451                 flk_cancel_sleeping_lock(request, 1);
1452                 return (EBADF);
1453         }
1454 
1455         request->l_state &= ~GRANTED_LOCK;
1456         REMOVE_SLEEP_QUEUE(request);
1457         return (flk_execute_request(request));
1458 }
1459 
1460 /*
1461  * This routine adds an edge between from and to because from depends
1462  * to. If asked to check for deadlock it checks whether there are any
1463  * reachable locks from "from_lock" that is owned by the same process
1464  * as "from_lock".
1465  * NOTE: It is the caller's responsibility to make sure that the color
1466  * of the graph is consistent between the calls to flk_add_edge as done
1467  * in flk_process_request. This routine does not color and check for
1468  * deadlock explicitly.
1469  */
1470 
1471 static int
1472 flk_add_edge(lock_descriptor_t *from_lock, lock_descriptor_t *to_lock,
1473                         int check_cycle, int update_graph)
1474 {
1475         edge_t  *edge;
1476         edge_t  *ep;
1477         lock_descriptor_t       *vertex;
1478         lock_descriptor_t *vertex_stack;
1479 
1480         STACK_INIT(vertex_stack);
1481 
1482         /*
1483          * if to vertex already has mark_color just return
1484          * don't add an edge as it is reachable from from vertex
1485          * before itself.
1486          */
1487 
1488         if (COLORED(to_lock))
1489                 return (0);
1490 
1491         edge = flk_get_edge();
1492 
1493         /*
1494          * set the from and to vertex
1495          */
1496 
1497         edge->from_vertex = from_lock;
1498         edge->to_vertex = to_lock;
1499 
1500         /*
1501          * put in adjacency list of from vertex
1502          */
1503 
1504         from_lock->l_edge.edge_adj_next->edge_adj_prev = edge;
1505         edge->edge_adj_next = from_lock->l_edge.edge_adj_next;
1506         edge->edge_adj_prev = &from_lock->l_edge;
1507         from_lock->l_edge.edge_adj_next = edge;
1508 
1509         /*
1510          * put in list of to vertex
1511          */
1512 
1513         to_lock->l_edge.edge_in_next->edge_in_prev = edge;
1514         edge->edge_in_next = to_lock->l_edge.edge_in_next;
1515         to_lock->l_edge.edge_in_next = edge;
1516         edge->edge_in_prev = &to_lock->l_edge;
1517 
1518 
1519         if (update_graph) {
1520                 flk_update_proc_graph(edge, 0);
1521                 return (0);
1522         }
1523         if (!check_cycle) {
1524                 return (0);
1525         }
1526 
1527         STACK_PUSH(vertex_stack, from_lock, l_stack);
1528 
1529         while ((vertex = STACK_TOP(vertex_stack)) != NULL) {
1530 
1531                 STACK_POP(vertex_stack, l_stack);
1532 
1533                 for (ep = FIRST_ADJ(vertex);
1534                     ep != HEAD(vertex);
1535                     ep = NEXT_ADJ(ep)) {
1536                         if (COLORED(ep->to_vertex))
1537                                 continue;
1538                         COLOR(ep->to_vertex);
1539                         if (SAME_OWNER(ep->to_vertex, from_lock))
1540                                 goto dead_lock;
1541                         STACK_PUSH(vertex_stack, ep->to_vertex, l_stack);
1542                 }
1543         }
1544         return (0);
1545 
1546 dead_lock:
1547 
1548         /*
1549          * remove all edges
1550          */
1551 
1552         ep = FIRST_ADJ(from_lock);
1553 
1554         while (ep != HEAD(from_lock)) {
1555                 IN_LIST_REMOVE(ep);
1556                 from_lock->l_sedge = NEXT_ADJ(ep);
1557                 ADJ_LIST_REMOVE(ep);
1558                 flk_free_edge(ep);
1559                 ep = from_lock->l_sedge;
1560         }
1561         return (EDEADLK);
1562 }
1563 
1564 /*
1565  * Get an edge structure for representing the dependency between two locks.
1566  */
1567 
1568 static edge_t *
1569 flk_get_edge()
1570 {
1571         edge_t  *ep;
1572 
1573         ASSERT(flk_edge_cache != NULL);
1574 
1575         ep = kmem_cache_alloc(flk_edge_cache, KM_SLEEP);
1576         edge_allocs++;
1577         return (ep);
1578 }
1579 
1580 /*
1581  * Free the edge structure.
1582  */
1583 
1584 static void
1585 flk_free_edge(edge_t *ep)
1586 {
1587         edge_frees++;
1588         kmem_cache_free(flk_edge_cache, (void *)ep);
1589 }
1590 
1591 /*
1592  * Check the relationship of request with lock and perform the
1593  * recomputation of dependencies, break lock if required, and return
1594  * 1 if request cannot have any more relationship with the next
1595  * active locks.
1596  * The 'lock' and 'request' are compared and in case of overlap we
1597  * delete the 'lock' and form new locks to represent the non-overlapped
1598  * portion of original 'lock'. This function has side effects such as
1599  * 'lock' will be freed, new locks will be added to the active list.
1600  */
1601 
1602 static int
1603 flk_relation(lock_descriptor_t *lock, lock_descriptor_t *request)
1604 {
1605         int lock_effect;
1606         lock_descriptor_t *lock1, *lock2;
1607         lock_descriptor_t *topology[3];
1608         int nvertex = 0;
1609         int i;
1610         edge_t  *ep;
1611         graph_t *gp = (lock->l_graph);
1612 
1613 
1614         CHECK_SLEEPING_LOCKS(gp);
1615         CHECK_ACTIVE_LOCKS(gp);
1616 
1617         ASSERT(MUTEX_HELD(&gp->gp_mutex));
1618 
1619         topology[0] = topology[1] = topology[2] = NULL;
1620 
1621         if (request->l_type == F_UNLCK)
1622                 lock_effect = FLK_UNLOCK;
1623         else if (request->l_type == F_RDLCK &&
1624             lock->l_type == F_WRLCK)
1625                 lock_effect = FLK_DOWNGRADE;
1626         else if (request->l_type == F_WRLCK &&
1627             lock->l_type == F_RDLCK)
1628                 lock_effect = FLK_UPGRADE;
1629         else
1630                 lock_effect = FLK_STAY_SAME;
1631 
1632         if (lock->l_end < request->l_start) {
1633                 if (lock->l_end == request->l_start - 1 &&
1634                     lock_effect == FLK_STAY_SAME) {
1635                         topology[0] = request;
1636                         request->l_start = lock->l_start;
1637                         nvertex = 1;
1638                         goto recompute;
1639                 } else {
1640                         return (0);
1641                 }
1642         }
1643 
1644         if (lock->l_start > request->l_end) {
1645                 if (request->l_end == lock->l_start - 1 &&
1646                     lock_effect == FLK_STAY_SAME) {
1647                         topology[0] = request;
1648                         request->l_end = lock->l_end;
1649                         nvertex = 1;
1650                         goto recompute;
1651                 } else {
1652                         return (1);
1653                 }
1654         }
1655 
1656         if (request->l_end < lock->l_end) {
1657                 if (request->l_start > lock->l_start) {
1658                         if (lock_effect == FLK_STAY_SAME) {
1659                                 request->l_start = lock->l_start;
1660                                 request->l_end = lock->l_end;
1661                                 topology[0] = request;
1662                                 nvertex = 1;
1663                         } else {
1664                                 lock1 = flk_get_lock();
1665                                 lock2 = flk_get_lock();
1666                                 COPY(lock1, lock);
1667                                 COPY(lock2, lock);
1668                                 lock1->l_start = lock->l_start;
1669                                 lock1->l_end = request->l_start - 1;
1670                                 lock2->l_start = request->l_end + 1;
1671                                 lock2->l_end = lock->l_end;
1672                                 topology[0] = lock1;
1673                                 topology[1] = lock2;
1674                                 topology[2] = request;
1675                                 nvertex = 3;
1676                         }
1677                 } else if (request->l_start < lock->l_start) {
1678                         if (lock_effect == FLK_STAY_SAME) {
1679                                 request->l_end = lock->l_end;
1680                                 topology[0] = request;
1681                                 nvertex = 1;
1682                         } else {
1683                                 lock1 = flk_get_lock();
1684                                 COPY(lock1, lock);
1685                                 lock1->l_start = request->l_end + 1;
1686                                 topology[0] = lock1;
1687                                 topology[1] = request;
1688                                 nvertex = 2;
1689                         }
1690                 } else  {
1691                         if (lock_effect == FLK_STAY_SAME) {
1692                                 request->l_start = lock->l_start;
1693                                 request->l_end = lock->l_end;
1694                                 topology[0] = request;
1695                                 nvertex = 1;
1696                         } else {
1697                                 lock1 = flk_get_lock();
1698                                 COPY(lock1, lock);
1699                                 lock1->l_start = request->l_end + 1;
1700                                 topology[0] = lock1;
1701                                 topology[1] = request;
1702                                 nvertex = 2;
1703                         }
1704                 }
1705         } else if (request->l_end > lock->l_end) {
1706                 if (request->l_start > lock->l_start)  {
1707                         if (lock_effect == FLK_STAY_SAME) {
1708                                 request->l_start = lock->l_start;
1709                                 topology[0] = request;
1710                                 nvertex = 1;
1711                         } else {
1712                                 lock1 = flk_get_lock();
1713                                 COPY(lock1, lock);
1714                                 lock1->l_end = request->l_start - 1;
1715                                 topology[0] = lock1;
1716                                 topology[1] = request;
1717                                 nvertex = 2;
1718                         }
1719                 } else if (request->l_start < lock->l_start)  {
1720                         topology[0] = request;
1721                         nvertex = 1;
1722                 } else {
1723                         topology[0] = request;
1724                         nvertex = 1;
1725                 }
1726         } else {
1727                 if (request->l_start > lock->l_start) {
1728                         if (lock_effect == FLK_STAY_SAME) {
1729                                 request->l_start = lock->l_start;
1730                                 topology[0] = request;
1731                                 nvertex = 1;
1732                         } else {
1733                                 lock1 = flk_get_lock();
1734                                 COPY(lock1, lock);
1735                                 lock1->l_end = request->l_start - 1;
1736                                 topology[0] = lock1;
1737                                 topology[1] = request;
1738                                 nvertex = 2;
1739                         }
1740                 } else if (request->l_start < lock->l_start) {
1741                         topology[0] = request;
1742                         nvertex = 1;
1743                 } else {
1744                         if (lock_effect !=  FLK_UNLOCK) {
1745                                 topology[0] = request;
1746                                 nvertex = 1;
1747                         } else {
1748                                 flk_delete_active_lock(lock, 0);
1749                                 flk_wakeup(lock, 1);
1750                                 flk_free_lock(lock);
1751                                 CHECK_SLEEPING_LOCKS(gp);
1752                                 CHECK_ACTIVE_LOCKS(gp);
1753                                 return (1);
1754                         }
1755                 }
1756         }
1757 
1758 recompute:
1759 
1760         /*
1761          * For unlock we don't send the 'request' to for recomputing
1762          * dependencies because no lock will add an edge to this.
1763          */
1764 
1765         if (lock_effect == FLK_UNLOCK) {
1766                 topology[nvertex-1] = NULL;
1767                 nvertex--;
1768         }
1769         for (i = 0; i < nvertex; i++) {
1770                 topology[i]->l_state |= RECOMPUTE_LOCK;
1771                 topology[i]->l_color = NO_COLOR;
1772         }
1773 
1774         ASSERT(FIRST_ADJ(lock) == HEAD(lock));
1775 
1776         /*
1777          * we remove the adjacent edges for all vertices' to this vertex
1778          * 'lock'.
1779          */
1780 
1781         ep = FIRST_IN(lock);
1782         while (ep != HEAD(lock)) {
1783                 ADJ_LIST_REMOVE(ep);
1784                 ep = NEXT_IN(ep);
1785         }
1786 
1787         flk_delete_active_lock(lock, 0);
1788 
1789         /* We are ready for recomputing the dependencies now */
1790 
1791         flk_recompute_dependencies(lock, topology, nvertex, 1);
1792 
1793         for (i = 0; i < nvertex; i++) {
1794                 topology[i]->l_state &= ~RECOMPUTE_LOCK;
1795                 topology[i]->l_color = NO_COLOR;
1796         }
1797 
1798 
1799         if (lock_effect == FLK_UNLOCK) {
1800                 nvertex++;
1801         }
1802         for (i = 0; i < nvertex - 1; i++) {
1803                 flk_insert_active_lock(topology[i]);
1804         }
1805 
1806 
1807         if (lock_effect == FLK_DOWNGRADE || lock_effect == FLK_UNLOCK) {
1808                 flk_wakeup(lock, 0);
1809         } else {
1810                 ep = FIRST_IN(lock);
1811                 while (ep != HEAD(lock)) {
1812                         lock->l_sedge = NEXT_IN(ep);
1813                         IN_LIST_REMOVE(ep);
1814                         flk_update_proc_graph(ep, 1);
1815                         flk_free_edge(ep);
1816                         ep = lock->l_sedge;
1817                 }
1818         }
1819         flk_free_lock(lock);
1820 
1821         CHECK_SLEEPING_LOCKS(gp);
1822         CHECK_ACTIVE_LOCKS(gp);
1823         return (0);
1824 }
1825 
1826 /*
1827  * Insert a lock into the active queue.
1828  */
1829 
1830 static void
1831 flk_insert_active_lock(lock_descriptor_t *new_lock)
1832 {
1833         graph_t *gp = new_lock->l_graph;
1834         vnode_t *vp = new_lock->l_vnode;
1835         lock_descriptor_t *first_lock, *lock;
1836 
1837         ASSERT(MUTEX_HELD(&gp->gp_mutex));
1838 
1839         SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
1840         first_lock = lock;
1841 
1842         if (first_lock != NULL) {
1843                 for (; (lock->l_vnode == vp &&
1844                     lock->l_start < new_lock->l_start); lock = lock->l_next)
1845                         ;
1846         } else {
1847                 lock = ACTIVE_HEAD(gp);
1848         }
1849 
1850         lock->l_prev->l_next = new_lock;
1851         new_lock->l_next = lock;
1852         new_lock->l_prev = lock->l_prev;
1853         lock->l_prev = new_lock;
1854 
1855         if (first_lock == NULL || (new_lock->l_start <= first_lock->l_start)) {
1856                 vp->v_filocks = (struct filock *)new_lock;
1857         }
1858         flk_set_state(new_lock, FLK_ACTIVE_STATE);
1859         new_lock->l_state |= ACTIVE_LOCK;
1860 
1861         CHECK_ACTIVE_LOCKS(gp);
1862         CHECK_SLEEPING_LOCKS(gp);
1863 }
1864 
1865 /*
1866  * Delete the active lock : Performs two functions depending on the
1867  * value of second parameter. One is to remove from the active lists
1868  * only and other is to both remove and free the lock.
1869  */
1870 
1871 static void
1872 flk_delete_active_lock(lock_descriptor_t *lock, int free_lock)
1873 {
1874         vnode_t *vp = lock->l_vnode;
1875         graph_t *gp = lock->l_graph;
1876 
1877         ASSERT(MUTEX_HELD(&gp->gp_mutex));
1878         if (free_lock)
1879                 ASSERT(NO_DEPENDENTS(lock));
1880         ASSERT(NOT_BLOCKED(lock));
1881         ASSERT(IS_ACTIVE(lock));
1882 
1883         ASSERT((vp->v_filocks != NULL));
1884 
1885         if (vp->v_filocks == (struct filock *)lock) {
1886                 vp->v_filocks = (struct filock *)
1887                     ((lock->l_next->l_vnode == vp) ? lock->l_next :
1888                     NULL);
1889         }
1890         lock->l_next->l_prev = lock->l_prev;
1891         lock->l_prev->l_next = lock->l_next;
1892         lock->l_next = lock->l_prev = NULL;
1893         flk_set_state(lock, FLK_DEAD_STATE);
1894         lock->l_state &= ~ACTIVE_LOCK;
1895 
1896         if (free_lock)
1897                 flk_free_lock(lock);
1898         CHECK_ACTIVE_LOCKS(gp);
1899         CHECK_SLEEPING_LOCKS(gp);
1900 }
1901 
1902 /*
1903  * Insert into the sleep queue.
1904  */
1905 
1906 static void
1907 flk_insert_sleeping_lock(lock_descriptor_t *request)
1908 {
1909         graph_t *gp = request->l_graph;
1910         vnode_t *vp = request->l_vnode;
1911         lock_descriptor_t       *lock;
1912 
1913         ASSERT(MUTEX_HELD(&gp->gp_mutex));
1914         ASSERT(IS_INITIAL(request));
1915 
1916         for (lock = gp->sleeping_locks.l_next; (lock != &gp->sleeping_locks &&
1917             lock->l_vnode < vp); lock = lock->l_next)
1918                 ;
1919 
1920         lock->l_prev->l_next = request;
1921         request->l_prev = lock->l_prev;
1922         lock->l_prev = request;
1923         request->l_next = lock;
1924         flk_set_state(request, FLK_SLEEPING_STATE);
1925         request->l_state |= SLEEPING_LOCK;
1926 }
1927 
1928 /*
1929  * Cancelling a sleeping lock implies removing a vertex from the
1930  * dependency graph and therefore we should recompute the dependencies
1931  * of all vertices that have a path  to this vertex, w.r.t. all
1932  * vertices reachable from this vertex.
1933  */
1934 
1935 void
1936 flk_cancel_sleeping_lock(lock_descriptor_t *request, int remove_from_queue)
1937 {
1938         graph_t *gp = request->l_graph;
1939         vnode_t *vp = request->l_vnode;
1940         lock_descriptor_t **topology = NULL;
1941         edge_t  *ep;
1942         lock_descriptor_t *vertex, *lock;
1943         int nvertex = 0;
1944         int i;
1945         lock_descriptor_t *vertex_stack;
1946 
1947         STACK_INIT(vertex_stack);
1948 
1949         ASSERT(MUTEX_HELD(&gp->gp_mutex));
1950         /*
1951          * count number of vertex pointers that has to be allocated
1952          * All vertices that are reachable from request.
1953          */
1954 
1955         STACK_PUSH(vertex_stack, request, l_stack);
1956 
1957         while ((vertex = STACK_TOP(vertex_stack)) != NULL) {
1958                 STACK_POP(vertex_stack, l_stack);
1959                 for (ep = FIRST_ADJ(vertex); ep != HEAD(vertex);
1960                     ep = NEXT_ADJ(ep)) {
1961                         if (IS_RECOMPUTE(ep->to_vertex))
1962                                 continue;
1963                         ep->to_vertex->l_state |= RECOMPUTE_LOCK;
1964                         STACK_PUSH(vertex_stack, ep->to_vertex, l_stack);
1965                         nvertex++;
1966                 }
1967         }
1968 
1969         /*
1970          * allocate memory for holding the vertex pointers
1971          */
1972 
1973         if (nvertex) {
1974                 topology = kmem_zalloc(nvertex * sizeof (lock_descriptor_t *),
1975                     KM_SLEEP);
1976         }
1977 
1978         /*
1979          * one more pass to actually store the vertices in the
1980          * allocated array.
1981          * We first check sleeping locks and then active locks
1982          * so that topology array will be in a topological
1983          * order.
1984          */
1985 
1986         nvertex = 0;
1987         SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
1988 
1989         if (lock) {
1990                 do {
1991                         if (IS_RECOMPUTE(lock)) {
1992                                 lock->l_index = nvertex;
1993                                 topology[nvertex++] = lock;
1994                         }
1995                         lock->l_color = NO_COLOR;
1996                         lock = lock->l_next;
1997                 } while (lock->l_vnode == vp);
1998         }
1999 
2000         SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
2001 
2002         if (lock) {
2003                 do {
2004                         if (IS_RECOMPUTE(lock)) {
2005                                 lock->l_index = nvertex;
2006                                 topology[nvertex++] = lock;
2007                         }
2008                         lock->l_color = NO_COLOR;
2009                         lock = lock->l_next;
2010                 } while (lock->l_vnode == vp);
2011         }
2012 
2013         /*
2014          * remove in and out edges of request
2015          * They are freed after updating proc_graph below.
2016          */
2017 
2018         for (ep = FIRST_IN(request); ep != HEAD(request); ep = NEXT_IN(ep)) {
2019                 ADJ_LIST_REMOVE(ep);
2020         }
2021 
2022 
2023         if (remove_from_queue)
2024                 REMOVE_SLEEP_QUEUE(request);
2025 
2026         /* we are ready to recompute */
2027 
2028         flk_recompute_dependencies(request, topology, nvertex, 1);
2029 
2030         ep = FIRST_ADJ(request);
2031         while (ep != HEAD(request)) {
2032                 IN_LIST_REMOVE(ep);
2033                 request->l_sedge = NEXT_ADJ(ep);
2034                 ADJ_LIST_REMOVE(ep);
2035                 flk_update_proc_graph(ep, 1);
2036                 flk_free_edge(ep);
2037                 ep = request->l_sedge;
2038         }
2039 
2040 
2041         /*
2042          * unset the RECOMPUTE flag in those vertices
2043          */
2044 
2045         for (i = 0; i < nvertex; i++) {
2046                 topology[i]->l_state &= ~RECOMPUTE_LOCK;
2047         }
2048 
2049         /*
2050          * free the topology
2051          */
2052         if (nvertex)
2053                 kmem_free((void *)topology,
2054                     (nvertex * sizeof (lock_descriptor_t *)));
2055         /*
2056          * Possibility of some locks unblocked now
2057          */
2058 
2059         flk_wakeup(request, 0);
2060 
2061         /*
2062          * we expect to have a correctly recomputed graph  now.
2063          */
2064         flk_set_state(request, FLK_DEAD_STATE);
2065         flk_free_lock(request);
2066         CHECK_SLEEPING_LOCKS(gp);
2067         CHECK_ACTIVE_LOCKS(gp);
2068 
2069 }
2070 
2071 /*
2072  * Uncoloring the graph is simply to increment the mark value of the graph
2073  * And only when wrap round takes place will we color all vertices in
2074  * the graph explicitly.
2075  */
2076 
2077 static void
2078 flk_graph_uncolor(graph_t *gp)
2079 {
2080         lock_descriptor_t *lock;
2081 
2082         if (gp->mark == UINT_MAX) {
2083                 gp->mark = 1;
2084         for (lock = ACTIVE_HEAD(gp)->l_next; lock != ACTIVE_HEAD(gp);
2085             lock = lock->l_next)
2086                         lock->l_color  = 0;
2087 
2088         for (lock = SLEEPING_HEAD(gp)->l_next; lock != SLEEPING_HEAD(gp);
2089             lock = lock->l_next)
2090                         lock->l_color  = 0;
2091         } else {
2092                 gp->mark++;
2093         }
2094 }
2095 
2096 /*
2097  * Wake up locks that are blocked on the given lock.
2098  */
2099 
2100 static void
2101 flk_wakeup(lock_descriptor_t *lock, int adj_list_remove)
2102 {
2103         edge_t  *ep;
2104         graph_t *gp = lock->l_graph;
2105         lock_descriptor_t       *lck;
2106 
2107         ASSERT(MUTEX_HELD(&gp->gp_mutex));
2108         if (NO_DEPENDENTS(lock))
2109                 return;
2110         ep = FIRST_IN(lock);
2111         do {
2112                 /*
2113                  * delete the edge from the adjacency list
2114                  * of from vertex. if no more adjacent edges
2115                  * for this vertex wake this process.
2116                  */
2117                 lck = ep->from_vertex;
2118                 if (adj_list_remove)
2119                         ADJ_LIST_REMOVE(ep);
2120                 flk_update_proc_graph(ep, 1);
2121                 if (NOT_BLOCKED(lck)) {
2122                         GRANT_WAKEUP(lck);
2123                 }
2124                 lock->l_sedge = NEXT_IN(ep);
2125                 IN_LIST_REMOVE(ep);
2126                 flk_free_edge(ep);
2127                 ep = lock->l_sedge;
2128         } while (ep != HEAD(lock));
2129         ASSERT(NO_DEPENDENTS(lock));
2130 }
2131 
2132 /*
2133  * The dependents of request, is checked for its dependency against the
2134  * locks in topology (called topology because the array is and should be in
2135  * topological order for this algorithm, if not in topological order the
2136  * inner loop below might add more edges than necessary. Topological ordering
2137  * of vertices satisfies the property that all edges will be from left to
2138  * right i.e., topology[i] can have an edge to  topology[j], iff i<j)
2139  * If lock l1 in the dependent set of request is dependent (blocked by)
2140  * on lock l2 in topology but does not have a path to it, we add an edge
2141  * in the inner loop below.
2142  *
2143  * We don't want to add an edge between l1 and l2 if there exists
2144  * already a path from l1 to l2, so care has to be taken for those vertices
2145  * that  have two paths to 'request'. These vertices are referred to here
2146  * as barrier locks.
2147  *
2148  * The barriers has to be found (those vertex that originally had two paths
2149  * to request) because otherwise we may end up adding edges unnecessarily
2150  * to vertices in topology, and thus barrier vertices can have an edge
2151  * to a vertex in topology as well a path to it.
2152  */
2153 
2154 static void
2155 flk_recompute_dependencies(lock_descriptor_t *request,
2156                 lock_descriptor_t **topology,
2157                         int nvertex, int update_graph)
2158 {
2159         lock_descriptor_t *vertex, *lock;
2160         graph_t *gp = request->l_graph;
2161         int i, count;
2162         int barrier_found = 0;
2163         edge_t  *ep;
2164         lock_descriptor_t *vertex_stack;
2165 
2166         STACK_INIT(vertex_stack);
2167 
2168         ASSERT(MUTEX_HELD(&gp->gp_mutex));
2169         if (nvertex == 0)
2170                 return;
2171         flk_graph_uncolor(request->l_graph);
2172         barrier_found = flk_find_barriers(request);
2173         request->l_state |= RECOMPUTE_DONE;
2174 
2175         STACK_PUSH(vertex_stack, request, l_stack);
2176         request->l_sedge = FIRST_IN(request);
2177 
2178 
2179         while ((vertex = STACK_TOP(vertex_stack)) != NULL) {
2180                 if (vertex->l_state & RECOMPUTE_DONE) {
2181                         count = 0;
2182                         goto next_in_edge;
2183                 }
2184                 if (IS_BARRIER(vertex)) {
2185                         /* decrement the barrier count */
2186                         if (vertex->l_index) {
2187                                 vertex->l_index--;
2188                                 /* this guy will be pushed again anyway ? */
2189                                 STACK_POP(vertex_stack, l_stack);
2190                                 if (vertex->l_index == 0)  {
2191                                 /*
2192                                  * barrier is over we can recompute
2193                                  * dependencies for this lock in the
2194                                  * next stack pop
2195                                  */
2196                                         vertex->l_state &= ~BARRIER_LOCK;
2197                                 }
2198                                 continue;
2199                         }
2200                 }
2201                 vertex->l_state |= RECOMPUTE_DONE;
2202                 flk_graph_uncolor(gp);
2203                 count = flk_color_reachables(vertex);
2204                 for (i = 0; i < nvertex; i++) {
2205                         lock = topology[i];
2206                         if (COLORED(lock))
2207                                 continue;
2208                         if (BLOCKS(lock, vertex)) {
2209                                 (void) flk_add_edge(vertex, lock,
2210                                     NO_CHECK_CYCLE, update_graph);
2211                                 COLOR(lock);
2212                                 count++;
2213                                 count += flk_color_reachables(lock);
2214                         }
2215 
2216                 }
2217 
2218 next_in_edge:
2219                 if (count == nvertex ||
2220                     vertex->l_sedge == HEAD(vertex)) {
2221                         /* prune the tree below this */
2222                         STACK_POP(vertex_stack, l_stack);
2223                         vertex->l_state &= ~RECOMPUTE_DONE;
2224                         /* update the barrier locks below this! */
2225                         if (vertex->l_sedge != HEAD(vertex) && barrier_found) {
2226                                 flk_graph_uncolor(gp);
2227                                 flk_update_barriers(vertex);
2228                         }
2229                         continue;
2230                 }
2231 
2232                 ep = vertex->l_sedge;
2233                 lock = ep->from_vertex;
2234                 STACK_PUSH(vertex_stack, lock, l_stack);
2235                 lock->l_sedge = FIRST_IN(lock);
2236                 vertex->l_sedge = NEXT_IN(ep);
2237         }
2238 
2239 }
2240 
2241 /*
2242  * Color all reachable vertices from vertex that belongs to topology (here
2243  * those that have RECOMPUTE_LOCK set in their state) and yet uncolored.
2244  *
2245  * Note: we need to use a different stack_link l_stack1 because this is
2246  * called from flk_recompute_dependencies() that already uses a stack with
2247  * l_stack as stack_link.
2248  */
2249 
2250 static int
2251 flk_color_reachables(lock_descriptor_t *vertex)
2252 {
2253         lock_descriptor_t *ver, *lock;
2254         int count;
2255         edge_t  *ep;
2256         lock_descriptor_t *vertex_stack;
2257 
2258         STACK_INIT(vertex_stack);
2259 
2260         STACK_PUSH(vertex_stack, vertex, l_stack1);
2261         count = 0;
2262         while ((ver = STACK_TOP(vertex_stack)) != NULL) {
2263 
2264                 STACK_POP(vertex_stack, l_stack1);
2265                 for (ep = FIRST_ADJ(ver); ep != HEAD(ver);
2266                     ep = NEXT_ADJ(ep)) {
2267                         lock = ep->to_vertex;
2268                         if (COLORED(lock))
2269                                 continue;
2270                         COLOR(lock);
2271                         if (IS_RECOMPUTE(lock))
2272                                 count++;
2273                         STACK_PUSH(vertex_stack, lock, l_stack1);
2274                 }
2275 
2276         }
2277         return (count);
2278 }
2279 
2280 /*
2281  * Called from flk_recompute_dependencies() this routine decrements
2282  * the barrier count of barrier vertices that are reachable from lock.
2283  */
2284 
2285 static void
2286 flk_update_barriers(lock_descriptor_t *lock)
2287 {
2288         lock_descriptor_t *vertex, *lck;
2289         edge_t  *ep;
2290         lock_descriptor_t *vertex_stack;
2291 
2292         STACK_INIT(vertex_stack);
2293 
2294         STACK_PUSH(vertex_stack, lock, l_stack1);
2295 
2296         while ((vertex = STACK_TOP(vertex_stack)) != NULL) {
2297                 STACK_POP(vertex_stack, l_stack1);
2298                 for (ep = FIRST_IN(vertex); ep != HEAD(vertex);
2299                     ep = NEXT_IN(ep)) {
2300                         lck = ep->from_vertex;
2301                         if (COLORED(lck)) {
2302                                 if (IS_BARRIER(lck)) {
2303                                         ASSERT(lck->l_index > 0);
2304                                         lck->l_index--;
2305                                         if (lck->l_index == 0)
2306                                                 lck->l_state &= ~BARRIER_LOCK;
2307                                 }
2308                                 continue;
2309                         }
2310                         COLOR(lck);
2311                         if (IS_BARRIER(lck)) {
2312                                 ASSERT(lck->l_index > 0);
2313                                 lck->l_index--;
2314                                 if (lck->l_index == 0)
2315                                         lck->l_state &= ~BARRIER_LOCK;
2316                         }
2317                         STACK_PUSH(vertex_stack, lck, l_stack1);
2318                 }
2319         }
2320 }
2321 
2322 /*
2323  * Finds all vertices that are reachable from 'lock' more than once and
2324  * mark them as barrier vertices and increment their barrier count.
2325  * The barrier count is one minus the total number of paths from lock
2326  * to that vertex.
2327  */
2328 
2329 static int
2330 flk_find_barriers(lock_descriptor_t *lock)
2331 {
2332         lock_descriptor_t *vertex, *lck;
2333         int found = 0;
2334         edge_t  *ep;
2335         lock_descriptor_t *vertex_stack;
2336 
2337         STACK_INIT(vertex_stack);
2338 
2339         STACK_PUSH(vertex_stack, lock, l_stack1);
2340 
2341         while ((vertex = STACK_TOP(vertex_stack)) != NULL) {
2342                 STACK_POP(vertex_stack, l_stack1);
2343                 for (ep = FIRST_IN(vertex); ep != HEAD(vertex);
2344                     ep = NEXT_IN(ep)) {
2345                         lck = ep->from_vertex;
2346                         if (COLORED(lck)) {
2347                                 /* this is a barrier */
2348                                 lck->l_state |= BARRIER_LOCK;
2349                                 /* index will have barrier count */
2350                                 lck->l_index++;
2351                                 if (!found)
2352                                         found = 1;
2353                                 continue;
2354                         }
2355                         COLOR(lck);
2356                         lck->l_index = 0;
2357                         STACK_PUSH(vertex_stack, lck, l_stack1);
2358                 }
2359         }
2360         return (found);
2361 }
2362 
2363 /*
2364  * Finds the first lock that is mainly responsible for blocking this
2365  * request.  If there is no such lock, request->l_flock.l_type is set to
2366  * F_UNLCK.  Otherwise, request->l_flock is filled in with the particulars
2367  * of the blocking lock.
2368  *
2369  * Note: It is possible a request is blocked by a sleeping lock because
2370  * of the fairness policy used in flk_process_request() to construct the
2371  * dependencies. (see comments before flk_process_request()).
2372  */
2373 
2374 static void
2375 flk_get_first_blocking_lock(lock_descriptor_t *request)
2376 {
2377         graph_t *gp = request->l_graph;
2378         vnode_t *vp = request->l_vnode;
2379         lock_descriptor_t *lock, *blocker;
2380 
2381         ASSERT(MUTEX_HELD(&gp->gp_mutex));
2382         blocker = NULL;
2383         SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
2384 
2385         if (lock) {
2386                 do {
2387                         if (BLOCKS(lock, request)) {
2388                                 blocker = lock;
2389                                 break;
2390                         }
2391                         lock = lock->l_next;
2392                 } while (lock->l_vnode == vp);
2393         }
2394 
2395         if (blocker == NULL && request->l_flock.l_type == F_RDLCK) {
2396                 /*
2397                  * No active lock is blocking this request, but if a read
2398                  * lock is requested, it may also get blocked by a waiting
2399                  * writer. So search all sleeping locks and see if there is
2400                  * a writer waiting.
2401                  */
2402                 SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
2403                 if (lock) {
2404                         do {
2405                                 if (BLOCKS(lock, request)) {
2406                                         blocker = lock;
2407                                         break;
2408                                 }
2409                                 lock = lock->l_next;
2410                         } while (lock->l_vnode == vp);
2411                 }
2412         }
2413 
2414         if (blocker) {
2415                 report_blocker(blocker, request);
2416         } else
2417                 request->l_flock.l_type = F_UNLCK;
2418 }
2419 
2420 /*
2421  * Get the graph_t structure associated with a vnode.
2422  * If 'initialize' is non-zero, and the graph_t structure for this vnode has
2423  * not yet been initialized, then a new element is allocated and returned.
2424  */
2425 graph_t *
2426 flk_get_lock_graph(vnode_t *vp, int initialize)
2427 {
2428         graph_t *gp;
2429         graph_t *gp_alloc = NULL;
2430         int index = HASH_INDEX(vp);
2431 
2432         if (initialize == FLK_USE_GRAPH) {
2433                 mutex_enter(&flock_lock);
2434                 gp = lock_graph[index];
2435                 mutex_exit(&flock_lock);
2436                 return (gp);
2437         }
2438 
2439         ASSERT(initialize == FLK_INIT_GRAPH);
2440 
2441         if (lock_graph[index] == NULL) {
2442 
2443                 gp_alloc = kmem_zalloc(sizeof (graph_t), KM_SLEEP);
2444 
2445                 /* Initialize the graph */
2446 
2447                 gp_alloc->active_locks.l_next =
2448                     gp_alloc->active_locks.l_prev =
2449                     (lock_descriptor_t *)ACTIVE_HEAD(gp_alloc);
2450                 gp_alloc->sleeping_locks.l_next =
2451                     gp_alloc->sleeping_locks.l_prev =
2452                     (lock_descriptor_t *)SLEEPING_HEAD(gp_alloc);
2453                 gp_alloc->index = index;
2454                 mutex_init(&gp_alloc->gp_mutex, NULL, MUTEX_DEFAULT, NULL);
2455         }
2456 
2457         mutex_enter(&flock_lock);
2458 
2459         gp = lock_graph[index];
2460 
2461         /* Recheck the value within flock_lock */
2462         if (gp == NULL) {
2463                 struct flock_globals *fg;
2464 
2465                 /* We must have previously allocated the graph_t structure */
2466                 ASSERT(gp_alloc != NULL);
2467                 lock_graph[index] = gp = gp_alloc;
2468                 /*
2469                  * The lockmgr status is only needed if KLM is loaded.
2470                  */
2471                 if (flock_zone_key != ZONE_KEY_UNINITIALIZED) {
2472                         fg = flk_get_globals();
2473                         fg->lockmgr_status[index] = fg->flk_lockmgr_status;
2474                 }
2475         }
2476 
2477         mutex_exit(&flock_lock);
2478 
2479         if ((gp_alloc != NULL) && (gp != gp_alloc)) {
2480                 /* There was a race to allocate the graph_t and we lost */
2481                 mutex_destroy(&gp_alloc->gp_mutex);
2482                 kmem_free(gp_alloc, sizeof (graph_t));
2483         }
2484 
2485         return (gp);
2486 }
2487 
2488 /*
2489  * PSARC case 1997/292
2490  */
2491 int
2492 cl_flk_has_remote_locks_for_nlmid(vnode_t *vp, int nlmid)
2493 {
2494         lock_descriptor_t *lock;
2495         int result = 0;
2496         graph_t *gp;
2497         int                     lock_nlmid;
2498 
2499         /*
2500          * Check to see if node is booted as a cluster. If not, return.
2501          */
2502         if ((cluster_bootflags & CLUSTER_BOOTED) == 0) {
2503                 return (0);
2504         }
2505 
2506         gp = flk_get_lock_graph(vp, FLK_USE_GRAPH);
2507         if (gp == NULL) {
2508                 return (0);
2509         }
2510 
2511         mutex_enter(&gp->gp_mutex);
2512 
2513         SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
2514 
2515         if (lock) {
2516                 while (lock->l_vnode == vp) {
2517                         /* get NLM id from sysid */
2518                         lock_nlmid = GETNLMID(lock->l_flock.l_sysid);
2519 
2520                         /*
2521                          * If NLM server request _and_ nlmid of lock matches
2522                          * nlmid of argument, then we've found a remote lock.
2523                          */
2524                         if (IS_LOCKMGR(lock) && nlmid == lock_nlmid) {
2525                                 result = 1;
2526                                 goto done;
2527                         }
2528                         lock = lock->l_next;
2529                 }
2530         }
2531 
2532         SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
2533 
2534         if (lock) {
2535                 while (lock->l_vnode == vp) {
2536                         /* get NLM id from sysid */
2537                         lock_nlmid = GETNLMID(lock->l_flock.l_sysid);
2538 
2539                         /*
2540                          * If NLM server request _and_ nlmid of lock matches
2541                          * nlmid of argument, then we've found a remote lock.
2542                          */
2543                         if (IS_LOCKMGR(lock) && nlmid == lock_nlmid) {
2544                                 result = 1;
2545                                 goto done;
2546                         }
2547                         lock = lock->l_next;
2548                 }
2549         }
2550 
2551 done:
2552         mutex_exit(&gp->gp_mutex);
2553         return (result);
2554 }
2555 
2556 /*
2557  * Determine whether there are any locks for the given vnode with a remote
2558  * sysid.  Returns zero if not, non-zero if there are.
2559  *
2560  * Note that the return value from this function is potentially invalid
2561  * once it has been returned.  The caller is responsible for providing its
2562  * own synchronization mechanism to ensure that the return value is useful
2563  * (e.g., see nfs_lockcompletion()).
2564  */
2565 int
2566 flk_has_remote_locks(vnode_t *vp)
2567 {
2568         lock_descriptor_t *lock;
2569         int result = 0;
2570         graph_t *gp;
2571 
2572         gp = flk_get_lock_graph(vp, FLK_USE_GRAPH);
2573         if (gp == NULL) {
2574                 return (0);
2575         }
2576 
2577         mutex_enter(&gp->gp_mutex);
2578 
2579         SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
2580 
2581         if (lock) {
2582                 while (lock->l_vnode == vp) {
2583                         if (IS_REMOTE(lock)) {
2584                                 result = 1;
2585                                 goto done;
2586                         }
2587                         lock = lock->l_next;
2588                 }
2589         }
2590 
2591         SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
2592 
2593         if (lock) {
2594                 while (lock->l_vnode == vp) {
2595                         if (IS_REMOTE(lock)) {
2596                                 result = 1;
2597                                 goto done;
2598                         }
2599                         lock = lock->l_next;
2600                 }
2601         }
2602 
2603 done:
2604         mutex_exit(&gp->gp_mutex);
2605         return (result);
2606 }
2607 
2608 /*
2609  * Determine whether there are any locks for the given vnode with a remote
2610  * sysid matching given sysid.
2611  * Used by the new (open source) NFS Lock Manager (NLM)
2612  */
2613 int
2614 flk_has_remote_locks_for_sysid(vnode_t *vp, int sysid)
2615 {
2616         lock_descriptor_t *lock;
2617         int result = 0;
2618         graph_t *gp;
2619 
2620         if (sysid == 0)
2621                 return (0);
2622 
2623         gp = flk_get_lock_graph(vp, FLK_USE_GRAPH);
2624         if (gp == NULL) {
2625                 return (0);
2626         }
2627 
2628         mutex_enter(&gp->gp_mutex);
2629 
2630         SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
2631 
2632         if (lock) {
2633                 while (lock->l_vnode == vp) {
2634                         if (lock->l_flock.l_sysid == sysid) {
2635                                 result = 1;
2636                                 goto done;
2637                         }
2638                         lock = lock->l_next;
2639                 }
2640         }
2641 
2642         SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
2643 
2644         if (lock) {
2645                 while (lock->l_vnode == vp) {
2646                         if (lock->l_flock.l_sysid == sysid) {
2647                                 result = 1;
2648                                 goto done;
2649                         }
2650                         lock = lock->l_next;
2651                 }
2652         }
2653 
2654 done:
2655         mutex_exit(&gp->gp_mutex);
2656         return (result);
2657 }
2658 
2659 /*
2660  * Determine if there are any locks owned by the given sysid.
2661  * Returns zero if not, non-zero if there are.  Note that this return code
2662  * could be derived from flk_get_{sleeping,active}_locks, but this routine
2663  * avoids all the memory allocations of those routines.
2664  *
2665  * This routine has the same synchronization issues as
2666  * flk_has_remote_locks.
2667  */
2668 
2669 int
2670 flk_sysid_has_locks(int sysid, int lck_type)
2671 {
2672         int             has_locks = 0;
2673         lock_descriptor_t       *lock;
2674         graph_t         *gp;
2675         int             i;
2676 
2677         for (i = 0; i < HASH_SIZE && !has_locks; i++) {
2678                 mutex_enter(&flock_lock);
2679                 gp = lock_graph[i];
2680                 mutex_exit(&flock_lock);
2681                 if (gp == NULL) {
2682                         continue;
2683                 }
2684 
2685                 mutex_enter(&gp->gp_mutex);
2686 
2687                 if (lck_type & FLK_QUERY_ACTIVE) {
2688                         for (lock = ACTIVE_HEAD(gp)->l_next;
2689                             lock != ACTIVE_HEAD(gp) && !has_locks;
2690                             lock = lock->l_next) {
2691                                 if (lock->l_flock.l_sysid == sysid)
2692                                         has_locks = 1;
2693                         }
2694                 }
2695 
2696                 if (lck_type & FLK_QUERY_SLEEPING) {
2697                         for (lock = SLEEPING_HEAD(gp)->l_next;
2698                             lock != SLEEPING_HEAD(gp) && !has_locks;
2699                             lock = lock->l_next) {
2700                                 if (lock->l_flock.l_sysid == sysid)
2701                                         has_locks = 1;
2702                         }
2703                 }
2704                 mutex_exit(&gp->gp_mutex);
2705         }
2706 
2707         return (has_locks);
2708 }
2709 
2710 
2711 /*
2712  * PSARC case 1997/292
2713  *
2714  * Requires: "sysid" is a pair [nlmid, sysid].  The lower half is 16-bit
2715  *  quantity, the real sysid generated by the NLM server; the upper half
2716  *  identifies the node of the cluster where the NLM server ran.
2717  *  This routine is only called by an NLM server running in a cluster.
2718  * Effects: Remove all locks held on behalf of the client identified
2719  *  by "sysid."
2720  */
2721 void
2722 cl_flk_remove_locks_by_sysid(int sysid)
2723 {
2724         graph_t *gp;
2725         int i;
2726         lock_descriptor_t *lock, *nlock;
2727 
2728         /*
2729          * Check to see if node is booted as a cluster. If not, return.
2730          */
2731         if ((cluster_bootflags & CLUSTER_BOOTED) == 0) {
2732                 return;
2733         }
2734 
2735         ASSERT(sysid != 0);
2736         for (i = 0; i < HASH_SIZE; i++) {
2737                 mutex_enter(&flock_lock);
2738                 gp = lock_graph[i];
2739                 mutex_exit(&flock_lock);
2740 
2741                 if (gp == NULL)
2742                         continue;
2743 
2744                 mutex_enter(&gp->gp_mutex);      /*  get mutex on lock graph */
2745 
2746                 /* signal sleeping requests so that they bail out */
2747                 lock = SLEEPING_HEAD(gp)->l_next;
2748                 while (lock != SLEEPING_HEAD(gp)) {
2749                         nlock = lock->l_next;
2750                         if (lock->l_flock.l_sysid == sysid) {
2751                                 INTERRUPT_WAKEUP(lock);
2752                         }
2753                         lock = nlock;
2754                 }
2755 
2756                 /* delete active locks */
2757                 lock = ACTIVE_HEAD(gp)->l_next;
2758                 while (lock != ACTIVE_HEAD(gp)) {
2759                         nlock = lock->l_next;
2760                         if (lock->l_flock.l_sysid == sysid) {
2761                                 flk_delete_active_lock(lock, 0);
2762                                 flk_wakeup(lock, 1);
2763                                 flk_free_lock(lock);
2764                         }
2765                         lock = nlock;
2766                 }
2767                 mutex_exit(&gp->gp_mutex);    /* release mutex on lock graph */
2768         }
2769 }
2770 
2771 /*
2772  * Delete all locks in the system that belongs to the sysid of the request.
2773  */
2774 
2775 static void
2776 flk_delete_locks_by_sysid(lock_descriptor_t *request)
2777 {
2778         int     sysid  = request->l_flock.l_sysid;
2779         lock_descriptor_t *lock, *nlock;
2780         graph_t *gp;
2781         int i;
2782 
2783         ASSERT(MUTEX_HELD(&request->l_graph->gp_mutex));
2784         ASSERT(sysid != 0);
2785 
2786         mutex_exit(&request->l_graph->gp_mutex);
2787 
2788         for (i = 0; i < HASH_SIZE; i++) {
2789                 mutex_enter(&flock_lock);
2790                 gp = lock_graph[i];
2791                 mutex_exit(&flock_lock);
2792 
2793                 if (gp == NULL)
2794                         continue;
2795 
2796                 mutex_enter(&gp->gp_mutex);
2797 
2798                 /* signal sleeping requests so that they bail out */
2799                 lock = SLEEPING_HEAD(gp)->l_next;
2800                 while (lock != SLEEPING_HEAD(gp)) {
2801                         nlock = lock->l_next;
2802                         if (lock->l_flock.l_sysid == sysid) {
2803                                 INTERRUPT_WAKEUP(lock);
2804                         }
2805                         lock = nlock;
2806                 }
2807 
2808                 /* delete active locks */
2809                 lock = ACTIVE_HEAD(gp)->l_next;
2810                 while (lock != ACTIVE_HEAD(gp)) {
2811                         nlock = lock->l_next;
2812                         if (lock->l_flock.l_sysid == sysid) {
2813                                 flk_delete_active_lock(lock, 0);
2814                                 flk_wakeup(lock, 1);
2815                                 flk_free_lock(lock);
2816                         }
2817                         lock = nlock;
2818                 }
2819                 mutex_exit(&gp->gp_mutex);
2820         }
2821 
2822         mutex_enter(&request->l_graph->gp_mutex);
2823 }
2824 
2825 /*
2826  * Clustering: Deletes PXFS locks
2827  * Effects: Delete all locks on files in the given file system and with the
2828  *  given PXFS id.
2829  */
2830 void
2831 cl_flk_delete_pxfs_locks(struct vfs *vfsp, int pxfsid)
2832 {
2833         lock_descriptor_t *lock, *nlock;
2834         graph_t *gp;
2835         int i;
2836 
2837         for (i = 0; i < HASH_SIZE; i++) {
2838                 mutex_enter(&flock_lock);
2839                 gp = lock_graph[i];
2840                 mutex_exit(&flock_lock);
2841 
2842                 if (gp == NULL)
2843                         continue;
2844 
2845                 mutex_enter(&gp->gp_mutex);
2846 
2847                 /* signal sleeping requests so that they bail out */
2848                 lock = SLEEPING_HEAD(gp)->l_next;
2849                 while (lock != SLEEPING_HEAD(gp)) {
2850                         nlock = lock->l_next;
2851                         if (lock->l_vnode->v_vfsp == vfsp) {
2852                                 ASSERT(IS_PXFS(lock));
2853                                 if (GETPXFSID(lock->l_flock.l_sysid) ==
2854                                     pxfsid) {
2855                                         flk_set_state(lock,
2856                                             FLK_CANCELLED_STATE);
2857                                         flk_cancel_sleeping_lock(lock, 1);
2858                                 }
2859                         }
2860                         lock = nlock;
2861                 }
2862 
2863                 /* delete active locks */
2864                 lock = ACTIVE_HEAD(gp)->l_next;
2865                 while (lock != ACTIVE_HEAD(gp)) {
2866                         nlock = lock->l_next;
2867                         if (lock->l_vnode->v_vfsp == vfsp) {
2868                                 ASSERT(IS_PXFS(lock));
2869                                 if (GETPXFSID(lock->l_flock.l_sysid) ==
2870                                     pxfsid) {
2871                                         flk_delete_active_lock(lock, 0);
2872                                         flk_wakeup(lock, 1);
2873                                         flk_free_lock(lock);
2874                                 }
2875                         }
2876                         lock = nlock;
2877                 }
2878                 mutex_exit(&gp->gp_mutex);
2879         }
2880 }
2881 
2882 /*
2883  * Search for a sleeping lock manager lock which matches exactly this lock
2884  * request; if one is found, fake a signal to cancel it.
2885  *
2886  * Return 1 if a matching lock was found, 0 otherwise.
2887  */
2888 
2889 static int
2890 flk_canceled(lock_descriptor_t *request)
2891 {
2892         lock_descriptor_t *lock, *nlock;
2893         graph_t *gp = request->l_graph;
2894         vnode_t *vp = request->l_vnode;
2895 
2896         ASSERT(MUTEX_HELD(&gp->gp_mutex));
2897         ASSERT(IS_LOCKMGR(request));
2898         SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
2899 
2900         if (lock) {
2901                 while (lock->l_vnode == vp) {
2902                         nlock = lock->l_next;
2903                         if (SAME_OWNER(lock, request) &&
2904                             lock->l_start == request->l_start &&
2905                             lock->l_end == request->l_end) {
2906                                 INTERRUPT_WAKEUP(lock);
2907                                 return (1);
2908                         }
2909                         lock = nlock;
2910                 }
2911         }
2912         return (0);
2913 }
2914 
2915 /*
2916  * Remove all non-OFD locks for the vnode belonging to the given pid and sysid.
2917  * That is, since OFD locks are pid-less we'll never match on the incoming
2918  * pid. OFD locks are removed earlier in the close() path via closef() and
2919  * ofdcleanlock().
2920  */
2921 void
2922 cleanlocks(vnode_t *vp, pid_t pid, int sysid)
2923 {
2924         graph_t *gp;
2925         lock_descriptor_t *lock, *nlock;
2926         lock_descriptor_t *link_stack;
2927 
2928         STACK_INIT(link_stack);
2929 
2930         gp = flk_get_lock_graph(vp, FLK_USE_GRAPH);
2931 
2932         if (gp == NULL)
2933                 return;
2934         mutex_enter(&gp->gp_mutex);
2935 
2936         CHECK_SLEEPING_LOCKS(gp);
2937         CHECK_ACTIVE_LOCKS(gp);
2938 
2939         SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
2940 
2941         if (lock) {
2942                 do {
2943                         nlock = lock->l_next;
2944                         if ((lock->l_flock.l_pid == pid ||
2945                             pid == IGN_PID) &&
2946                             lock->l_flock.l_sysid == sysid) {
2947                                 CANCEL_WAKEUP(lock);
2948                         }
2949                         lock = nlock;
2950                 } while (lock->l_vnode == vp);
2951         }
2952 
2953         SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
2954 
2955         if (lock) {
2956                 do {
2957                         nlock = lock->l_next;
2958                         if ((lock->l_flock.l_pid == pid ||
2959                             pid == IGN_PID) &&
2960                             lock->l_flock.l_sysid == sysid) {
2961                                 flk_delete_active_lock(lock, 0);
2962                                 STACK_PUSH(link_stack, lock, l_stack);
2963                         }
2964                         lock = nlock;
2965                 } while (lock->l_vnode == vp);
2966         }
2967 
2968         while ((lock = STACK_TOP(link_stack)) != NULL) {
2969                 STACK_POP(link_stack, l_stack);
2970                 flk_wakeup(lock, 1);
2971                 flk_free_lock(lock);
2972         }
2973 
2974         CHECK_SLEEPING_LOCKS(gp);
2975         CHECK_ACTIVE_LOCKS(gp);
2976         CHECK_OWNER_LOCKS(gp, pid, sysid, vp);
2977         mutex_exit(&gp->gp_mutex);
2978 }
2979 
2980 
2981 /*
2982  * Called from 'fs' read and write routines for files that have mandatory
2983  * locking enabled.
2984  */
2985 
2986 int
2987 chklock(
2988         struct vnode    *vp,
2989         int             iomode,
2990         u_offset_t      offset,
2991         ssize_t         len,
2992         int             fmode,
2993         caller_context_t *ct)
2994 {
2995         register int    i;
2996         struct flock64  bf;
2997         int             error = 0;
2998 
2999         bf.l_type = (iomode & FWRITE) ? F_WRLCK : F_RDLCK;
3000         bf.l_whence = 0;
3001         bf.l_start = offset;
3002         bf.l_len = len;
3003         if (ct == NULL) {
3004                 bf.l_pid = curproc->p_pid;
3005                 bf.l_sysid = 0;
3006         } else {
3007                 bf.l_pid = ct->cc_pid;
3008                 bf.l_sysid = ct->cc_sysid;
3009         }
3010         i = (fmode & (FNDELAY|FNONBLOCK)) ? INOFLCK : INOFLCK|SLPFLCK;
3011         if ((i = reclock(vp, &bf, i, 0, offset, NULL)) != 0 ||
3012             bf.l_type != F_UNLCK)
3013                 error = i ? i : EAGAIN;
3014         return (error);
3015 }
3016 
3017 /*
3018  * convoff - converts the given data (start, whence) to the
3019  * given whence.
3020  */
3021 int
3022 convoff(vp, lckdat, whence, offset)
3023         struct vnode    *vp;
3024         struct flock64  *lckdat;
3025         int             whence;
3026         offset_t        offset;
3027 {
3028         int             error;
3029         struct vattr    vattr;
3030 
3031         if ((lckdat->l_whence == 2) || (whence == 2)) {
3032                 vattr.va_mask = AT_SIZE;
3033                 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))
3034                         return (error);
3035         }
3036 
3037         switch (lckdat->l_whence) {
3038         case 1:
3039                 lckdat->l_start += offset;
3040                 break;
3041         case 2:
3042                 lckdat->l_start += vattr.va_size;
3043                 /* FALLTHRU */
3044         case 0:
3045                 break;
3046         default:
3047                 return (EINVAL);
3048         }
3049 
3050         if (lckdat->l_start < 0)
3051                 return (EINVAL);
3052 
3053         switch (whence) {
3054         case 1:
3055                 lckdat->l_start -= offset;
3056                 break;
3057         case 2:
3058                 lckdat->l_start -= vattr.va_size;
3059                 /* FALLTHRU */
3060         case 0:
3061                 break;
3062         default:
3063                 return (EINVAL);
3064         }
3065 
3066         lckdat->l_whence = (short)whence;
3067         return (0);
3068 }
3069 
3070 
3071 /*      proc_graph function definitions */
3072 
3073 /*
3074  * Function checks for deadlock due to the new 'lock'. If deadlock found
3075  * edges of this lock are freed and returned.
3076  */
3077 
3078 static int
3079 flk_check_deadlock(lock_descriptor_t *lock)
3080 {
3081         proc_vertex_t   *start_vertex, *pvertex;
3082         proc_vertex_t *dvertex;
3083         proc_edge_t *pep, *ppep;
3084         edge_t  *ep, *nep;
3085         proc_vertex_t *process_stack;
3086 
3087         /*
3088          * OFD style locks are not associated with any process so there is
3089          * no proc graph for these. Thus we cannot, and do not, do deadlock
3090          * detection.
3091          */
3092         if (lock->l_ofd != NULL)
3093                 return (0);
3094 
3095         STACK_INIT(process_stack);
3096 
3097         mutex_enter(&flock_lock);
3098         start_vertex = flk_get_proc_vertex(lock);
3099         ASSERT(start_vertex != NULL);
3100 
3101         /* construct the edges from this process to other processes */
3102 
3103         ep = FIRST_ADJ(lock);
3104         while (ep != HEAD(lock)) {
3105                 proc_vertex_t *adj_proc;
3106 
3107                 adj_proc = flk_get_proc_vertex(ep->to_vertex);
3108                 for (pep = start_vertex->edge; pep != NULL; pep = pep->next) {
3109                         if (pep->to_proc == adj_proc) {
3110                                 ASSERT(pep->refcount);
3111                                 pep->refcount++;
3112                                 break;
3113                         }
3114                 }
3115                 if (pep == NULL) {
3116                         pep = flk_get_proc_edge();
3117                         pep->to_proc = adj_proc;
3118                         pep->refcount = 1;
3119                         adj_proc->incount++;
3120                         pep->next = start_vertex->edge;
3121                         start_vertex->edge = pep;
3122                 }
3123                 ep = NEXT_ADJ(ep);
3124         }
3125 
3126         ep = FIRST_IN(lock);
3127 
3128         while (ep != HEAD(lock)) {
3129                 proc_vertex_t *in_proc;
3130 
3131                 in_proc = flk_get_proc_vertex(ep->from_vertex);
3132 
3133                 for (pep = in_proc->edge; pep != NULL; pep = pep->next) {
3134                         if (pep->to_proc == start_vertex) {
3135                                 ASSERT(pep->refcount);
3136                                 pep->refcount++;
3137                                 break;
3138                         }
3139                 }
3140                 if (pep == NULL) {
3141                         pep = flk_get_proc_edge();
3142                         pep->to_proc = start_vertex;
3143                         pep->refcount = 1;
3144                         start_vertex->incount++;
3145                         pep->next = in_proc->edge;
3146                         in_proc->edge = pep;
3147                 }
3148                 ep = NEXT_IN(ep);
3149         }
3150 
3151         if (start_vertex->incount == 0) {
3152                 mutex_exit(&flock_lock);
3153                 return (0);
3154         }
3155 
3156         flk_proc_graph_uncolor();
3157 
3158         start_vertex->p_sedge = start_vertex->edge;
3159 
3160         STACK_PUSH(process_stack, start_vertex, p_stack);
3161 
3162         while ((pvertex = STACK_TOP(process_stack)) != NULL) {
3163                 for (pep = pvertex->p_sedge; pep != NULL; pep = pep->next) {
3164                         dvertex = pep->to_proc;
3165                         if (!PROC_ARRIVED(dvertex)) {
3166                                 STACK_PUSH(process_stack, dvertex, p_stack);
3167                                 dvertex->p_sedge = dvertex->edge;
3168                                 PROC_ARRIVE(pvertex);
3169                                 pvertex->p_sedge = pep->next;
3170                                 break;
3171                         }
3172                         if (!PROC_DEPARTED(dvertex))
3173                                 goto deadlock;
3174                 }
3175                 if (pep == NULL) {
3176                         PROC_DEPART(pvertex);
3177                         STACK_POP(process_stack, p_stack);
3178                 }
3179         }
3180         mutex_exit(&flock_lock);
3181         return (0);
3182 
3183 deadlock:
3184 
3185         /* we remove all lock edges and proc edges */
3186 
3187         ep = FIRST_ADJ(lock);
3188         while (ep != HEAD(lock)) {
3189                 proc_vertex_t *adj_proc;
3190                 adj_proc = flk_get_proc_vertex(ep->to_vertex);
3191                 nep = NEXT_ADJ(ep);
3192                 IN_LIST_REMOVE(ep);
3193                 ADJ_LIST_REMOVE(ep);
3194                 flk_free_edge(ep);
3195                 ppep = start_vertex->edge;
3196                 for (pep = start_vertex->edge; pep != NULL; ppep = pep,
3197                     pep = ppep->next) {
3198                         if (pep->to_proc == adj_proc) {
3199                                 pep->refcount--;
3200                                 if (pep->refcount == 0) {
3201                                         if (pep == ppep) {
3202                                                 start_vertex->edge = pep->next;
3203                                         } else {
3204                                                 ppep->next = pep->next;
3205                                         }
3206                                         adj_proc->incount--;
3207                                         flk_proc_release(adj_proc);
3208                                         flk_free_proc_edge(pep);
3209                                 }
3210                                 break;
3211                         }
3212                 }
3213                 ep = nep;
3214         }
3215         ep = FIRST_IN(lock);
3216         while (ep != HEAD(lock)) {
3217                 proc_vertex_t *in_proc;
3218                 in_proc = flk_get_proc_vertex(ep->from_vertex);
3219                 nep = NEXT_IN(ep);
3220                 IN_LIST_REMOVE(ep);
3221                 ADJ_LIST_REMOVE(ep);
3222                 flk_free_edge(ep);
3223                 ppep = in_proc->edge;
3224                 for (pep = in_proc->edge; pep != NULL; ppep = pep,
3225                     pep = ppep->next) {
3226                         if (pep->to_proc == start_vertex) {
3227                                 pep->refcount--;
3228                                 if (pep->refcount == 0) {
3229                                         if (pep == ppep) {
3230                                                 in_proc->edge = pep->next;
3231                                         } else {
3232                                                 ppep->next = pep->next;
3233                                         }
3234                                         start_vertex->incount--;
3235                                         flk_proc_release(in_proc);
3236                                         flk_free_proc_edge(pep);
3237                                 }
3238                                 break;
3239                         }
3240                 }
3241                 ep = nep;
3242         }
3243         flk_proc_release(start_vertex);
3244         mutex_exit(&flock_lock);
3245         return (1);
3246 }
3247 
3248 /*
3249  * Get a proc vertex. If lock's pvertex value gets a correct proc vertex
3250  * from the list we return that, otherwise we allocate one. If necessary,
3251  * we grow the list of vertices also.
3252  */
3253 
3254 static proc_vertex_t *
3255 flk_get_proc_vertex(lock_descriptor_t *lock)
3256 {
3257         int i;
3258         proc_vertex_t   *pv;
3259         proc_vertex_t   **palloc;
3260 
3261         ASSERT(MUTEX_HELD(&flock_lock));
3262         if (lock->pvertex != -1) {
3263                 ASSERT(lock->pvertex >= 0);
3264                 pv = pgraph.proc[lock->pvertex];
3265                 if (pv != NULL && PROC_SAME_OWNER(lock, pv)) {
3266                         return (pv);
3267                 }
3268         }
3269         for (i = 0; i < pgraph.gcount; i++) {
3270                 pv = pgraph.proc[i];
3271                 if (pv != NULL && PROC_SAME_OWNER(lock, pv)) {
3272                         lock->pvertex = pv->index = i;
3273                         return (pv);
3274                 }
3275         }
3276         pv = kmem_zalloc(sizeof (struct proc_vertex), KM_SLEEP);
3277         pv->pid = lock->l_flock.l_pid;
3278         pv->sysid = lock->l_flock.l_sysid;
3279         flk_proc_vertex_allocs++;
3280         if (pgraph.free != 0) {
3281                 for (i = 0; i < pgraph.gcount; i++) {
3282                         if (pgraph.proc[i] == NULL) {
3283                                 pgraph.proc[i] = pv;
3284                                 lock->pvertex = pv->index = i;
3285                                 pgraph.free--;
3286                                 return (pv);
3287                         }
3288                 }
3289         }
3290         palloc = kmem_zalloc((pgraph.gcount + PROC_CHUNK) *
3291             sizeof (proc_vertex_t *), KM_SLEEP);
3292 
3293         if (pgraph.proc) {
3294                 bcopy(pgraph.proc, palloc,
3295                     pgraph.gcount * sizeof (proc_vertex_t *));
3296 
3297                 kmem_free(pgraph.proc,
3298                     pgraph.gcount * sizeof (proc_vertex_t *));
3299         }
3300         pgraph.proc = palloc;
3301         pgraph.free += (PROC_CHUNK - 1);
3302         pv->index = lock->pvertex = pgraph.gcount;
3303         pgraph.gcount += PROC_CHUNK;
3304         pgraph.proc[pv->index] = pv;
3305         return (pv);
3306 }
3307 
3308 /*
3309  * Allocate a proc edge.
3310  */
3311 
3312 static proc_edge_t *
3313 flk_get_proc_edge()
3314 {
3315         proc_edge_t *pep;
3316 
3317         pep = kmem_zalloc(sizeof (proc_edge_t), KM_SLEEP);
3318         flk_proc_edge_allocs++;
3319         return (pep);
3320 }
3321 
3322 /*
3323  * Free the proc edge. Called whenever its reference count goes to zero.
3324  */
3325 
3326 static void
3327 flk_free_proc_edge(proc_edge_t *pep)
3328 {
3329         ASSERT(pep->refcount == 0);
3330         kmem_free((void *)pep, sizeof (proc_edge_t));
3331         flk_proc_edge_frees++;
3332 }
3333 
3334 /*
3335  * Color the graph explicitly done only when the mark value hits max value.
3336  */
3337 
3338 static void
3339 flk_proc_graph_uncolor()
3340 {
3341         int i;
3342 
3343         if (pgraph.mark == UINT_MAX) {
3344                 for (i = 0; i < pgraph.gcount; i++)
3345                         if (pgraph.proc[i] != NULL) {
3346                                 pgraph.proc[i]->atime = 0;
3347                                 pgraph.proc[i]->dtime = 0;
3348                         }
3349                 pgraph.mark = 1;
3350         } else {
3351                 pgraph.mark++;
3352         }
3353 }
3354 
3355 /*
3356  * Release the proc vertex iff both there are no in edges and out edges
3357  */
3358 
3359 static void
3360 flk_proc_release(proc_vertex_t *proc)
3361 {
3362         ASSERT(MUTEX_HELD(&flock_lock));
3363         if (proc->edge == NULL && proc->incount == 0) {
3364                 pgraph.proc[proc->index] = NULL;
3365                 pgraph.free++;
3366                 kmem_free(proc, sizeof (proc_vertex_t));
3367                 flk_proc_vertex_frees++;
3368         }
3369 }
3370 
3371 /*
3372  * Updates process graph to reflect change in a lock_graph.
3373  * Note: We should call this function only after we have a correctly
3374  * recomputed lock graph. Otherwise we might miss a deadlock detection.
3375  * eg: in function flk_relation() we call this function after flk_recompute_
3376  * dependencies() otherwise if a process tries to lock a vnode hashed
3377  * into another graph it might sleep for ever.
3378  */
3379 
3380 static void
3381 flk_update_proc_graph(edge_t *ep, int delete)
3382 {
3383         proc_vertex_t *toproc, *fromproc;
3384         proc_edge_t *pep, *prevpep;
3385 
3386         mutex_enter(&flock_lock);
3387 
3388         /*
3389          * OFD style locks are not associated with any process so there is
3390          * no proc graph for these.
3391          */
3392         if (ep->from_vertex->l_ofd != NULL) {
3393                 mutex_exit(&flock_lock);
3394                 return;
3395         }
3396 
3397         toproc = flk_get_proc_vertex(ep->to_vertex);
3398         fromproc = flk_get_proc_vertex(ep->from_vertex);
3399 
3400         if (!delete)
3401                 goto add;
3402         pep = prevpep = fromproc->edge;
3403 
3404         ASSERT(pep != NULL);
3405         while (pep != NULL) {
3406                 if (pep->to_proc == toproc) {
3407                         ASSERT(pep->refcount > 0);
3408                         pep->refcount--;
3409                         if (pep->refcount == 0) {
3410                                 if (pep == prevpep) {
3411                                         fromproc->edge = pep->next;
3412                                 } else {
3413                                         prevpep->next = pep->next;
3414                                 }
3415                                 toproc->incount--;
3416                                 flk_proc_release(toproc);
3417                                 flk_free_proc_edge(pep);
3418                         }
3419                         break;
3420                 }
3421                 prevpep = pep;
3422                 pep = pep->next;
3423         }
3424         flk_proc_release(fromproc);
3425         mutex_exit(&flock_lock);
3426         return;
3427 add:
3428 
3429         pep = fromproc->edge;
3430 
3431         while (pep != NULL) {
3432                 if (pep->to_proc == toproc) {
3433                         ASSERT(pep->refcount > 0);
3434                         pep->refcount++;
3435                         break;
3436                 }
3437                 pep = pep->next;
3438         }
3439         if (pep == NULL) {
3440                 pep = flk_get_proc_edge();
3441                 pep->to_proc = toproc;
3442                 pep->refcount = 1;
3443                 toproc->incount++;
3444                 pep->next = fromproc->edge;
3445                 fromproc->edge = pep;
3446         }
3447         mutex_exit(&flock_lock);
3448 }
3449 
3450 /*
3451  * Set the control status for lock manager requests.
3452  *
3453  */
3454 
3455 /*
3456  * PSARC case 1997/292
3457  *
3458  * Requires: "nlmid" must be >= 1 and <= clconf_maximum_nodeid().
3459  * Effects: Set the state of the NLM server identified by "nlmid"
3460  *   in the NLM registry to state "nlm_state."
3461  *   Raises exception no_such_nlm if "nlmid" doesn't identify a known
3462  *   NLM server to this LLM.
3463  *   Note that when this routine is called with NLM_SHUTTING_DOWN there
3464  *   may be locks requests that have gotten started but not finished.  In
3465  *   particular, there may be blocking requests that are in the callback code
3466  *   before sleeping (so they're not holding the lock for the graph).  If
3467  *   such a thread reacquires the graph's lock (to go to sleep) after
3468  *   NLM state in the NLM registry  is set to a non-up value,
3469  *   it will notice the status and bail out.  If the request gets
3470  *   granted before the thread can check the NLM registry, let it
3471  *   continue normally.  It will get flushed when we are called with NLM_DOWN.
3472  *
3473  * Modifies: nlm_reg_obj (global)
3474  * Arguments:
3475  *    nlmid     (IN):    id uniquely identifying an NLM server
3476  *    nlm_state (IN):    NLM server state to change "nlmid" to
3477  */
3478 void
3479 cl_flk_set_nlm_status(int nlmid, flk_nlm_status_t nlm_state)
3480 {
3481         /*
3482          * Check to see if node is booted as a cluster. If not, return.
3483          */
3484         if ((cluster_bootflags & CLUSTER_BOOTED) == 0) {
3485                 return;
3486         }
3487 
3488         /*
3489          * Check for development/debugging.  It is possible to boot a node
3490          * in non-cluster mode, and then run a special script, currently
3491          * available only to developers, to bring up the node as part of a
3492          * cluster.  The problem is that running such a script does not
3493          * result in the routine flk_init() being called and hence global array
3494          * nlm_reg_status is NULL.  The NLM thinks it's in cluster mode,
3495          * but the LLM needs to do an additional check to see if the global
3496          * array has been created or not. If nlm_reg_status is NULL, then
3497          * return, else continue.
3498          */
3499         if (nlm_reg_status == NULL) {
3500                 return;
3501         }
3502 
3503         ASSERT(nlmid <= nlm_status_size && nlmid >= 0);
3504         mutex_enter(&nlm_reg_lock);
3505 
3506         if (FLK_REGISTRY_IS_NLM_UNKNOWN(nlm_reg_status, nlmid)) {
3507                 /*
3508                  * If the NLM server "nlmid" is unknown in the NLM registry,
3509                  * add it to the registry in the nlm shutting down state.
3510                  */
3511                 FLK_REGISTRY_CHANGE_NLM_STATE(nlm_reg_status, nlmid,
3512                     FLK_NLM_SHUTTING_DOWN);
3513         } else {
3514                 /*
3515                  * Change the state of the NLM server identified by "nlmid"
3516                  * in the NLM registry to the argument "nlm_state."
3517                  */
3518                 FLK_REGISTRY_CHANGE_NLM_STATE(nlm_reg_status, nlmid,
3519                     nlm_state);
3520         }
3521 
3522         /*
3523          *  The reason we must register the NLM server that is shutting down
3524          *  with an LLM that doesn't already know about it (never sent a lock
3525          *  request) is to handle correctly a race between shutdown and a new
3526          *  lock request.  Suppose that a shutdown request from the NLM server
3527          *  invokes this routine at the LLM, and a thread is spawned to
3528          *  service the request. Now suppose a new lock request is in
3529          *  progress and has already passed the first line of defense in
3530          *  reclock(), which denies new locks requests from NLM servers
3531          *  that are not in the NLM_UP state.  After the current routine
3532          *  is invoked for both phases of shutdown, the routine will return,
3533          *  having done nothing, and the lock request will proceed and
3534          *  probably be granted.  The problem is that the shutdown was ignored
3535          *  by the lock request because there was no record of that NLM server
3536          *  shutting down.   We will be in the peculiar position of thinking
3537          *  that we've shutdown the NLM server and all locks at all LLMs have
3538          *  been discarded, but in fact there's still one lock held.
3539          *  The solution is to record the existence of NLM server and change
3540          *  its state immediately to NLM_SHUTTING_DOWN.  The lock request in
3541          *  progress may proceed because the next phase NLM_DOWN will catch
3542          *  this lock and discard it.
3543          */
3544         mutex_exit(&nlm_reg_lock);
3545 
3546         switch (nlm_state) {
3547         case FLK_NLM_UP:
3548                 /*
3549                  * Change the NLM state of all locks still held on behalf of
3550                  * the NLM server identified by "nlmid" to NLM_UP.
3551                  */
3552                 cl_flk_change_nlm_state_all_locks(nlmid, FLK_NLM_UP);
3553                 break;
3554 
3555         case FLK_NLM_SHUTTING_DOWN:
3556                 /*
3557                  * Wake up all sleeping locks for the NLM server identified
3558                  * by "nlmid." Note that eventually all woken threads will
3559                  * have their lock requests cancelled and descriptors
3560                  * removed from the sleeping lock list.  Note that the NLM
3561                  * server state associated with each lock descriptor is
3562                  * changed to FLK_NLM_SHUTTING_DOWN.
3563                  */
3564                 cl_flk_wakeup_sleeping_nlm_locks(nlmid);
3565                 break;
3566 
3567         case FLK_NLM_DOWN:
3568                 /*
3569                  * Discard all active, granted locks for this NLM server
3570                  * identified by "nlmid."
3571                  */
3572                 cl_flk_unlock_nlm_granted(nlmid);
3573                 break;
3574 
3575         default:
3576                 panic("cl_set_nlm_status: bad status (%d)", nlm_state);
3577         }
3578 }
3579 
3580 /*
3581  * Set the control status for lock manager requests.
3582  *
3583  * Note that when this routine is called with FLK_WAKEUP_SLEEPERS, there
3584  * may be locks requests that have gotten started but not finished.  In
3585  * particular, there may be blocking requests that are in the callback code
3586  * before sleeping (so they're not holding the lock for the graph).  If
3587  * such a thread reacquires the graph's lock (to go to sleep) after
3588  * flk_lockmgr_status is set to a non-up value, it will notice the status
3589  * and bail out.  If the request gets granted before the thread can check
3590  * flk_lockmgr_status, let it continue normally.  It will get flushed when
3591  * we are called with FLK_LOCKMGR_DOWN.
3592  */
3593 
3594 void
3595 flk_set_lockmgr_status(flk_lockmgr_status_t status)
3596 {
3597         int i;
3598         graph_t *gp;
3599         struct flock_globals *fg;
3600 
3601         fg = flk_get_globals();
3602         ASSERT(fg != NULL);
3603 
3604         mutex_enter(&flock_lock);
3605         fg->flk_lockmgr_status = status;
3606         mutex_exit(&flock_lock);
3607 
3608         /*
3609          * If the lock manager is coming back up, all that's needed is to
3610          * propagate this information to the graphs.  If the lock manager
3611          * is going down, additional action is required, and each graph's
3612          * copy of the state is updated atomically with this other action.
3613          */
3614         switch (status) {
3615         case FLK_LOCKMGR_UP:
3616                 for (i = 0; i < HASH_SIZE; i++) {
3617                         mutex_enter(&flock_lock);
3618                         gp = lock_graph[i];
3619                         mutex_exit(&flock_lock);
3620                         if (gp == NULL)
3621                                 continue;
3622                         mutex_enter(&gp->gp_mutex);
3623                         fg->lockmgr_status[i] = status;
3624                         mutex_exit(&gp->gp_mutex);
3625                 }
3626                 break;
3627         case FLK_WAKEUP_SLEEPERS:
3628                 wakeup_sleeping_lockmgr_locks(fg);
3629                 break;
3630         case FLK_LOCKMGR_DOWN:
3631                 unlock_lockmgr_granted(fg);
3632                 break;
3633         default:
3634                 panic("flk_set_lockmgr_status: bad status (%d)", status);
3635                 break;
3636         }
3637 }
3638 
3639 /*
3640  * This routine returns all the locks that are active or sleeping and are
3641  * associated with a particular set of identifiers.  If lock_state != 0, then
3642  * only locks that match the lock_state are returned. If lock_state == 0, then
3643  * all locks are returned. If pid == NOPID, the pid is ignored.  If
3644  * use_sysid is FALSE, then the sysid is ignored.  If vp is NULL, then the
3645  * vnode pointer is ignored.
3646  *
3647  * A list containing the vnode pointer and an flock structure
3648  * describing the lock is returned.  Each element in the list is
3649  * dynamically allocated and must be freed by the caller.  The
3650  * last item in the list is denoted by a NULL value in the ll_next
3651  * field.
3652  *
3653  * The vnode pointers returned are held.  The caller is responsible
3654  * for releasing these.  Note that the returned list is only a snapshot of
3655  * the current lock information, and that it is a snapshot of a moving
3656  * target (only one graph is locked at a time).
3657  */
3658 
3659 locklist_t *
3660 get_lock_list(int list_type, int lock_state, int sysid, boolean_t use_sysid,
3661                 pid_t pid, const vnode_t *vp, zoneid_t zoneid)
3662 {
3663         lock_descriptor_t       *lock;
3664         lock_descriptor_t       *graph_head;
3665         locklist_t              listhead;
3666         locklist_t              *llheadp;
3667         locklist_t              *llp;
3668         locklist_t              *lltp;
3669         graph_t                 *gp;
3670         int                     i;
3671         int                     first_index; /* graph index */
3672         int                     num_indexes; /* graph index */
3673 
3674         ASSERT((list_type == FLK_ACTIVE_STATE) ||
3675             (list_type == FLK_SLEEPING_STATE));
3676 
3677         /*
3678          * Get a pointer to something to use as a list head while building
3679          * the rest of the list.
3680          */
3681         llheadp = &listhead;
3682         lltp = llheadp;
3683         llheadp->ll_next = (locklist_t *)NULL;
3684 
3685         /* Figure out which graphs we want to look at. */
3686         if (vp == NULL) {
3687                 first_index = 0;
3688                 num_indexes = HASH_SIZE;
3689         } else {
3690                 first_index = HASH_INDEX(vp);
3691                 num_indexes = 1;
3692         }
3693 
3694         for (i = first_index; i < first_index + num_indexes; i++) {
3695                 mutex_enter(&flock_lock);
3696                 gp = lock_graph[i];
3697                 mutex_exit(&flock_lock);
3698                 if (gp == NULL) {
3699                         continue;
3700                 }
3701 
3702                 mutex_enter(&gp->gp_mutex);
3703                 graph_head = (list_type == FLK_ACTIVE_STATE) ?
3704                     ACTIVE_HEAD(gp) : SLEEPING_HEAD(gp);
3705                 for (lock = graph_head->l_next;
3706                     lock != graph_head;
3707                     lock = lock->l_next) {
3708                         if (use_sysid && lock->l_flock.l_sysid != sysid)
3709                                 continue;
3710                         if (pid != NOPID && lock->l_flock.l_pid != pid)
3711                                 continue;
3712                         if (vp != NULL && lock->l_vnode != vp)
3713                                 continue;
3714                         if (lock_state && !(lock_state & lock->l_state))
3715                                 continue;
3716                         if (zoneid != lock->l_zoneid && zoneid != ALL_ZONES)
3717                                 continue;
3718                         /*
3719                          * A matching lock was found.  Allocate
3720                          * space for a new locklist entry and fill
3721                          * it in.
3722                          */
3723                         llp = kmem_alloc(sizeof (locklist_t), KM_SLEEP);
3724                         lltp->ll_next = llp;
3725                         VN_HOLD(lock->l_vnode);
3726                         llp->ll_vp = lock->l_vnode;
3727                         create_flock(lock, &(llp->ll_flock));
3728                         llp->ll_next = (locklist_t *)NULL;
3729                         lltp = llp;
3730                 }
3731                 mutex_exit(&gp->gp_mutex);
3732         }
3733 
3734         llp = llheadp->ll_next;
3735         return (llp);
3736 }
3737 
3738 /*
3739  * These two functions are simply interfaces to get_lock_list.  They return
3740  * a list of sleeping or active locks for the given sysid and pid.  See
3741  * get_lock_list for details.
3742  *
3743  * In either case we don't particularly care to specify the zone of interest;
3744  * the sysid-space is global across zones, so the sysid will map to exactly one
3745  * zone, and we'll return information for that zone.
3746  */
3747 
3748 locklist_t *
3749 flk_get_sleeping_locks(int sysid, pid_t pid)
3750 {
3751         return (get_lock_list(FLK_SLEEPING_STATE, 0, sysid, B_TRUE, pid, NULL,
3752             ALL_ZONES));
3753 }
3754 
3755 locklist_t *
3756 flk_get_active_locks(int sysid, pid_t pid)
3757 {
3758         return (get_lock_list(FLK_ACTIVE_STATE, 0, sysid, B_TRUE, pid, NULL,
3759             ALL_ZONES));
3760 }
3761 
3762 /*
3763  * Another interface to get_lock_list.  This one returns all the active
3764  * locks for a given vnode.  Again, see get_lock_list for details.
3765  *
3766  * We don't need to specify which zone's locks we're interested in.  The matter
3767  * would only be interesting if the vnode belonged to NFS, and NFS vnodes can't
3768  * be used by multiple zones, so the list of locks will all be from the right
3769  * zone.
3770  */
3771 
3772 locklist_t *
3773 flk_active_locks_for_vp(const vnode_t *vp)
3774 {
3775         return (get_lock_list(FLK_ACTIVE_STATE, 0, 0, B_FALSE, NOPID, vp,
3776             ALL_ZONES));
3777 }
3778 
3779 /*
3780  * Another interface to get_lock_list.  This one returns all the active
3781  * nbmand locks for a given vnode.  Again, see get_lock_list for details.
3782  *
3783  * See the comment for flk_active_locks_for_vp() for why we don't care to
3784  * specify the particular zone of interest.
3785  */
3786 locklist_t *
3787 flk_active_nbmand_locks_for_vp(const vnode_t *vp)
3788 {
3789         return (get_lock_list(FLK_ACTIVE_STATE, NBMAND_LOCK, 0, B_FALSE,
3790             NOPID, vp, ALL_ZONES));
3791 }
3792 
3793 /*
3794  * Another interface to get_lock_list.  This one returns all the active
3795  * nbmand locks for a given pid.  Again, see get_lock_list for details.
3796  *
3797  * The zone doesn't need to be specified here; the locks held by a
3798  * particular process will either be local (ie, non-NFS) or from the zone
3799  * the process is executing in.  This is because other parts of the system
3800  * ensure that an NFS vnode can't be used in a zone other than that in
3801  * which it was opened.
3802  */
3803 locklist_t *
3804 flk_active_nbmand_locks(pid_t pid)
3805 {
3806         return (get_lock_list(FLK_ACTIVE_STATE, NBMAND_LOCK, 0, B_FALSE,
3807             pid, NULL, ALL_ZONES));
3808 }
3809 
3810 /*
3811  * Free up all entries in the locklist.
3812  */
3813 void
3814 flk_free_locklist(locklist_t *llp)
3815 {
3816         locklist_t *next_llp;
3817 
3818         while (llp) {
3819                 next_llp = llp->ll_next;
3820                 VN_RELE(llp->ll_vp);
3821                 kmem_free(llp, sizeof (*llp));
3822                 llp = next_llp;
3823         }
3824 }
3825 
3826 static void
3827 cl_flk_change_nlm_state_all_locks(int nlmid, flk_nlm_status_t nlm_state)
3828 {
3829         /*
3830          * For each graph "lg" in the hash table lock_graph do
3831          * a.  Get the list of sleeping locks
3832          * b.  For each lock descriptor in the list do
3833          *      i.   If the requested lock is an NLM server request AND
3834          *              the nlmid is the same as the routine argument then
3835          *              change the lock descriptor's state field to
3836          *              "nlm_state."
3837          * c.  Get the list of active locks
3838          * d.  For each lock descriptor in the list do
3839          *      i.   If the requested lock is an NLM server request AND
3840          *              the nlmid is the same as the routine argument then
3841          *              change the lock descriptor's state field to
3842          *              "nlm_state."
3843          */
3844 
3845         int                     i;
3846         graph_t                 *gp;                    /* lock graph */
3847         lock_descriptor_t       *lock;                  /* lock */
3848         lock_descriptor_t       *nlock = NULL;          /* next lock */
3849         int                     lock_nlmid;
3850 
3851         for (i = 0; i < HASH_SIZE; i++) {
3852                 mutex_enter(&flock_lock);
3853                 gp = lock_graph[i];
3854                 mutex_exit(&flock_lock);
3855                 if (gp == NULL) {
3856                         continue;
3857                 }
3858 
3859                 /* Get list of sleeping locks in current lock graph. */
3860                 mutex_enter(&gp->gp_mutex);
3861                 for (lock = SLEEPING_HEAD(gp)->l_next;
3862                     lock != SLEEPING_HEAD(gp);
3863                     lock = nlock) {
3864                         nlock = lock->l_next;
3865                         /* get NLM id */
3866                         lock_nlmid = GETNLMID(lock->l_flock.l_sysid);
3867 
3868                         /*
3869                          * If NLM server request AND nlmid of lock matches
3870                          * nlmid of argument, then set the NLM state of the
3871                          * lock to "nlm_state."
3872                          */
3873                         if (IS_LOCKMGR(lock) && nlmid == lock_nlmid) {
3874                                 SET_NLM_STATE(lock, nlm_state);
3875                         }
3876                 }
3877 
3878                 /* Get list of active locks in current lock graph. */
3879                 for (lock = ACTIVE_HEAD(gp)->l_next;
3880                     lock != ACTIVE_HEAD(gp);
3881                     lock = nlock) {
3882                         nlock = lock->l_next;
3883                         /* get NLM id */
3884                         lock_nlmid = GETNLMID(lock->l_flock.l_sysid);
3885 
3886                         /*
3887                          * If NLM server request AND nlmid of lock matches
3888                          * nlmid of argument, then set the NLM state of the
3889                          * lock to "nlm_state."
3890                          */
3891                         if (IS_LOCKMGR(lock) && nlmid == lock_nlmid) {
3892                                 ASSERT(IS_ACTIVE(lock));
3893                                 SET_NLM_STATE(lock, nlm_state);
3894                         }
3895                 }
3896                 mutex_exit(&gp->gp_mutex);
3897         }
3898 }
3899 
3900 /*
3901  * Requires: "nlmid" >= 1 and <= clconf_maximum_nodeid().
3902  * Effects: Find all sleeping lock manager requests _only_ for the NLM server
3903  *   identified by "nlmid." Poke those lock requests.
3904  */
3905 static void
3906 cl_flk_wakeup_sleeping_nlm_locks(int nlmid)
3907 {
3908         lock_descriptor_t *lock;
3909         lock_descriptor_t *nlock = NULL; /* next lock */
3910         int i;
3911         graph_t *gp;
3912         int     lock_nlmid;
3913 
3914         for (i = 0; i < HASH_SIZE; i++) {
3915                 mutex_enter(&flock_lock);
3916                 gp = lock_graph[i];
3917                 mutex_exit(&flock_lock);
3918                 if (gp == NULL) {
3919                         continue;
3920                 }
3921 
3922                 mutex_enter(&gp->gp_mutex);
3923                 for (lock = SLEEPING_HEAD(gp)->l_next;
3924                     lock != SLEEPING_HEAD(gp);
3925                     lock = nlock) {
3926                         nlock = lock->l_next;
3927                         /*
3928                          * If NLM server request _and_ nlmid of lock matches
3929                          * nlmid of argument, then set the NLM state of the
3930                          * lock to NLM_SHUTTING_DOWN, and wake up sleeping
3931                          * request.
3932                          */
3933                         if (IS_LOCKMGR(lock)) {
3934                                 /* get NLM id */
3935                                 lock_nlmid =
3936                                     GETNLMID(lock->l_flock.l_sysid);
3937                                 if (nlmid == lock_nlmid) {
3938                                         SET_NLM_STATE(lock,
3939                                             FLK_NLM_SHUTTING_DOWN);
3940                                         INTERRUPT_WAKEUP(lock);
3941                                 }
3942                         }
3943                 }
3944                 mutex_exit(&gp->gp_mutex);
3945         }
3946 }
3947 
3948 /*
3949  * Requires: "nlmid" >= 1 and <= clconf_maximum_nodeid()
3950  * Effects:  Find all active (granted) lock manager locks _only_ for the
3951  *   NLM server identified by "nlmid" and release them.
3952  */
3953 static void
3954 cl_flk_unlock_nlm_granted(int nlmid)
3955 {
3956         lock_descriptor_t *lock;
3957         lock_descriptor_t *nlock = NULL; /* next lock */
3958         int i;
3959         graph_t *gp;
3960         int     lock_nlmid;
3961 
3962         for (i = 0; i < HASH_SIZE; i++) {
3963                 mutex_enter(&flock_lock);
3964                 gp = lock_graph[i];
3965                 mutex_exit(&flock_lock);
3966                 if (gp == NULL) {
3967                         continue;
3968                 }
3969 
3970                 mutex_enter(&gp->gp_mutex);
3971                 for (lock = ACTIVE_HEAD(gp)->l_next;
3972                     lock != ACTIVE_HEAD(gp);
3973                     lock = nlock) {
3974                         nlock = lock->l_next;
3975                         ASSERT(IS_ACTIVE(lock));
3976 
3977                         /*
3978                          * If it's an  NLM server request _and_ nlmid of
3979                          * the lock matches nlmid of argument, then
3980                          * remove the active lock the list, wakup blocked
3981                          * threads, and free the storage for the lock.
3982                          * Note that there's no need to mark the NLM state
3983                          * of this lock to NLM_DOWN because the lock will
3984                          * be deleted anyway and its storage freed.
3985                          */
3986                         if (IS_LOCKMGR(lock)) {
3987                                 /* get NLM id */
3988                                 lock_nlmid = GETNLMID(lock->l_flock.l_sysid);
3989                                 if (nlmid == lock_nlmid) {
3990                                         flk_delete_active_lock(lock, 0);
3991                                         flk_wakeup(lock, 1);
3992                                         flk_free_lock(lock);
3993                                 }
3994                         }
3995                 }
3996                 mutex_exit(&gp->gp_mutex);
3997         }
3998 }
3999 
4000 /*
4001  * Find all sleeping lock manager requests and poke them.
4002  */
4003 static void
4004 wakeup_sleeping_lockmgr_locks(struct flock_globals *fg)
4005 {
4006         lock_descriptor_t *lock;
4007         lock_descriptor_t *nlock = NULL; /* next lock */
4008         int i;
4009         graph_t *gp;
4010         zoneid_t zoneid = getzoneid();
4011 
4012         for (i = 0; i < HASH_SIZE; i++) {
4013                 mutex_enter(&flock_lock);
4014                 gp = lock_graph[i];
4015                 mutex_exit(&flock_lock);
4016                 if (gp == NULL) {
4017                         continue;
4018                 }
4019 
4020                 mutex_enter(&gp->gp_mutex);
4021                 fg->lockmgr_status[i] = FLK_WAKEUP_SLEEPERS;
4022                 for (lock = SLEEPING_HEAD(gp)->l_next;
4023                     lock != SLEEPING_HEAD(gp);
4024                     lock = nlock) {
4025                         nlock = lock->l_next;
4026                         if (IS_LOCKMGR(lock) && lock->l_zoneid == zoneid) {
4027                                 INTERRUPT_WAKEUP(lock);
4028                         }
4029                 }
4030                 mutex_exit(&gp->gp_mutex);
4031         }
4032 }
4033 
4034 
4035 /*
4036  * Find all active (granted) lock manager locks and release them.
4037  */
4038 static void
4039 unlock_lockmgr_granted(struct flock_globals *fg)
4040 {
4041         lock_descriptor_t *lock;
4042         lock_descriptor_t *nlock = NULL; /* next lock */
4043         int i;
4044         graph_t *gp;
4045         zoneid_t zoneid = getzoneid();
4046 
4047         for (i = 0; i < HASH_SIZE; i++) {
4048                 mutex_enter(&flock_lock);
4049                 gp = lock_graph[i];
4050                 mutex_exit(&flock_lock);
4051                 if (gp == NULL) {
4052                         continue;
4053                 }
4054 
4055                 mutex_enter(&gp->gp_mutex);
4056                 fg->lockmgr_status[i] = FLK_LOCKMGR_DOWN;
4057                 for (lock = ACTIVE_HEAD(gp)->l_next;
4058                     lock != ACTIVE_HEAD(gp);
4059                     lock = nlock) {
4060                         nlock = lock->l_next;
4061                         if (IS_LOCKMGR(lock) && lock->l_zoneid == zoneid) {
4062                                 ASSERT(IS_ACTIVE(lock));
4063                                 flk_delete_active_lock(lock, 0);
4064                                 flk_wakeup(lock, 1);
4065                                 flk_free_lock(lock);
4066                         }
4067                 }
4068                 mutex_exit(&gp->gp_mutex);
4069         }
4070 }
4071 
4072 
4073 /*
4074  * Wait until a lock is granted, cancelled, or interrupted.
4075  */
4076 
4077 static void
4078 wait_for_lock(lock_descriptor_t *request)
4079 {
4080         graph_t *gp = request->l_graph;
4081 
4082         ASSERT(MUTEX_HELD(&gp->gp_mutex));
4083 
4084         while (!(IS_GRANTED(request)) && !(IS_CANCELLED(request)) &&
4085             !(IS_INTERRUPTED(request))) {
4086                 if (!cv_wait_sig(&request->l_cv, &gp->gp_mutex)) {
4087                         flk_set_state(request, FLK_INTERRUPTED_STATE);
4088                         request->l_state |= INTERRUPTED_LOCK;
4089                 }
4090         }
4091 }
4092 
4093 /*
4094  * Create an flock structure from the existing lock information
4095  *
4096  * This routine is used to create flock structures for the lock manager
4097  * to use in a reclaim request.  Since the lock was originated on this
4098  * host, it must be conforming to UNIX semantics, so no checking is
4099  * done to make sure it falls within the lower half of the 32-bit range.
4100  */
4101 
4102 static void
4103 create_flock(lock_descriptor_t *lp, flock64_t *flp)
4104 {
4105         ASSERT(lp->l_end == MAX_U_OFFSET_T || lp->l_end <= MAXEND);
4106         ASSERT(lp->l_end >= lp->l_start);
4107 
4108         flp->l_type = lp->l_type;
4109         flp->l_whence = 0;
4110         flp->l_start = lp->l_start;
4111         flp->l_len = (lp->l_end == MAX_U_OFFSET_T) ? 0 :
4112             (lp->l_end - lp->l_start + 1);
4113         flp->l_sysid = lp->l_flock.l_sysid;
4114         flp->l_pid = lp->l_flock.l_pid;
4115 }
4116 
4117 /*
4118  * Convert flock_t data describing a lock range into unsigned long starting
4119  * and ending points, which are put into lock_request.  Returns 0 or an
4120  * errno value.
4121  * Large Files: max is passed by the caller and we return EOVERFLOW
4122  * as defined by LFS API.
4123  */
4124 
4125 int
4126 flk_convert_lock_data(vnode_t *vp, flock64_t *flp,
4127     u_offset_t *start, u_offset_t *end, offset_t offset)
4128 {
4129         struct vattr    vattr;
4130         int     error;
4131 
4132         /*
4133          * Determine the starting point of the request
4134          */
4135         switch (flp->l_whence) {
4136         case 0:         /* SEEK_SET */
4137                 *start = (u_offset_t)flp->l_start;
4138                 break;
4139         case 1:         /* SEEK_CUR */
4140                 *start = (u_offset_t)(flp->l_start + offset);
4141                 break;
4142         case 2:         /* SEEK_END */
4143                 vattr.va_mask = AT_SIZE;
4144                 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))
4145                         return (error);
4146                 *start = (u_offset_t)(flp->l_start + vattr.va_size);
4147                 break;
4148         default:
4149                 return (EINVAL);
4150         }
4151 
4152         /*
4153          * Determine the range covered by the request.
4154          */
4155         if (flp->l_len == 0)
4156                 *end = MAX_U_OFFSET_T;
4157         else if ((offset_t)flp->l_len > 0) {
4158                 *end = (u_offset_t)(*start + (flp->l_len - 1));
4159         } else {
4160                 /*
4161                  * Negative length; why do we even allow this ?
4162                  * Because this allows easy specification of
4163                  * the last n bytes of the file.
4164                  */
4165                 *end = *start;
4166                 *start += (u_offset_t)flp->l_len;
4167                 (*start)++;
4168         }
4169         return (0);
4170 }
4171 
4172 /*
4173  * Check the validity of lock data.  This can used by the NFS
4174  * frlock routines to check data before contacting the server.  The
4175  * server must support semantics that aren't as restrictive as
4176  * the UNIX API, so the NFS client is required to check.
4177  * The maximum is now passed in by the caller.
4178  */
4179 
4180 int
4181 flk_check_lock_data(u_offset_t start, u_offset_t end, offset_t max)
4182 {
4183         /*
4184          * The end (length) for local locking should never be greater
4185          * than MAXEND. However, the representation for
4186          * the entire file is MAX_U_OFFSET_T.
4187          */
4188         if ((start > max) ||
4189             ((end > max) && (end != MAX_U_OFFSET_T))) {
4190                 return (EINVAL);
4191         }
4192         if (start > end) {
4193                 return (EINVAL);
4194         }
4195         return (0);
4196 }
4197 
4198 /*
4199  * Fill in request->l_flock with information about the lock blocking the
4200  * request.  The complexity here is that lock manager requests are allowed
4201  * to see into the upper part of the 32-bit address range, whereas local
4202  * requests are only allowed to see signed values.
4203  *
4204  * What should be done when "blocker" is a lock manager lock that uses the
4205  * upper portion of the 32-bit range, but "request" is local?  Since the
4206  * request has already been determined to have been blocked by the blocker,
4207  * at least some portion of "blocker" must be in the range of the request,
4208  * or the request extends to the end of file.  For the first case, the
4209  * portion in the lower range is returned with the indication that it goes
4210  * "to EOF."  For the second case, the last byte of the lower range is
4211  * returned with the indication that it goes "to EOF."
4212  */
4213 
4214 static void
4215 report_blocker(lock_descriptor_t *blocker, lock_descriptor_t *request)
4216 {
4217         flock64_t *flrp;                        /* l_flock portion of request */
4218 
4219         ASSERT(blocker != NULL);
4220 
4221         flrp = &request->l_flock;
4222         flrp->l_whence = 0;
4223         flrp->l_type = blocker->l_type;
4224         flrp->l_pid = blocker->l_flock.l_pid;
4225         flrp->l_sysid = blocker->l_flock.l_sysid;
4226         request->l_ofd = blocker->l_ofd;
4227 
4228         if (IS_LOCKMGR(request)) {
4229                 flrp->l_start = blocker->l_start;
4230                 if (blocker->l_end == MAX_U_OFFSET_T)
4231                         flrp->l_len = 0;
4232                 else
4233                         flrp->l_len = blocker->l_end - blocker->l_start + 1;
4234         } else {
4235                 if (blocker->l_start > MAXEND) {
4236                         flrp->l_start = MAXEND;
4237                         flrp->l_len = 0;
4238                 } else {
4239                         flrp->l_start = blocker->l_start;
4240                         if (blocker->l_end == MAX_U_OFFSET_T)
4241                                 flrp->l_len = 0;
4242                         else
4243                                 flrp->l_len = blocker->l_end -
4244                                     blocker->l_start + 1;
4245                 }
4246         }
4247 }
4248 
4249 /*
4250  * PSARC case 1997/292
4251  */
4252 /*
4253  * This is the public routine exported by flock.h.
4254  */
4255 void
4256 cl_flk_change_nlm_state_to_unknown(int nlmid)
4257 {
4258         /*
4259          * Check to see if node is booted as a cluster. If not, return.
4260          */
4261         if ((cluster_bootflags & CLUSTER_BOOTED) == 0) {
4262                 return;
4263         }
4264 
4265         /*
4266          * See comment in cl_flk_set_nlm_status().
4267          */
4268         if (nlm_reg_status == NULL) {
4269                 return;
4270         }
4271 
4272         /*
4273          * protect NLM registry state with a mutex.
4274          */
4275         ASSERT(nlmid <= nlm_status_size && nlmid >= 0);
4276         mutex_enter(&nlm_reg_lock);
4277         FLK_REGISTRY_CHANGE_NLM_STATE(nlm_reg_status, nlmid, FLK_NLM_UNKNOWN);
4278         mutex_exit(&nlm_reg_lock);
4279 }
4280 
4281 /*
4282  * Return non-zero if the given I/O request conflicts with an active NBMAND
4283  * lock.
4284  * If svmand is non-zero, it means look at all active locks, not just NBMAND
4285  * locks.
4286  */
4287 
4288 int
4289 nbl_lock_conflict(vnode_t *vp, nbl_op_t op, u_offset_t offset,
4290                 ssize_t length, int svmand, caller_context_t *ct)
4291 {
4292         int conflict = 0;
4293         graph_t                 *gp;
4294         lock_descriptor_t       *lock;
4295         pid_t pid;
4296         int sysid;
4297 
4298         if (ct == NULL) {
4299                 pid = curproc->p_pid;
4300                 sysid = 0;
4301         } else {
4302                 pid = ct->cc_pid;
4303                 sysid = ct->cc_sysid;
4304         }
4305 
4306         mutex_enter(&flock_lock);
4307         gp = lock_graph[HASH_INDEX(vp)];
4308         mutex_exit(&flock_lock);
4309         if (gp == NULL)
4310                 return (0);
4311 
4312         mutex_enter(&gp->gp_mutex);
4313         SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
4314 
4315         for (; lock && lock->l_vnode == vp; lock = lock->l_next) {
4316                 if ((svmand || (lock->l_state & NBMAND_LOCK)) &&
4317                     (lock->l_flock.l_sysid != sysid ||
4318                     lock->l_flock.l_pid != pid) &&
4319                     lock_blocks_io(op, offset, length,
4320                     lock->l_type, lock->l_start, lock->l_end)) {
4321                         conflict = 1;
4322                         break;
4323                 }
4324         }
4325         mutex_exit(&gp->gp_mutex);
4326 
4327         return (conflict);
4328 }
4329 
4330 /*
4331  * Return non-zero if the given I/O request conflicts with the given lock.
4332  */
4333 
4334 static int
4335 lock_blocks_io(nbl_op_t op, u_offset_t offset, ssize_t length,
4336             int lock_type, u_offset_t lock_start, u_offset_t lock_end)
4337 {
4338         ASSERT(op == NBL_READ || op == NBL_WRITE || op == NBL_READWRITE);
4339         ASSERT(lock_type == F_RDLCK || lock_type == F_WRLCK);
4340 
4341         if (op == NBL_READ && lock_type == F_RDLCK)
4342                 return (0);
4343 
4344         if (offset <= lock_start && lock_start < offset + length)
4345                 return (1);
4346         if (lock_start <= offset && offset <= lock_end)
4347                 return (1);
4348 
4349         return (0);
4350 }
4351 
4352 #ifdef DEBUG
4353 static void
4354 check_active_locks(graph_t *gp)
4355 {
4356         lock_descriptor_t *lock, *lock1;
4357         edge_t  *ep;
4358 
4359         for (lock = ACTIVE_HEAD(gp)->l_next; lock != ACTIVE_HEAD(gp);
4360             lock = lock->l_next) {
4361                 ASSERT(IS_ACTIVE(lock));
4362                 ASSERT(NOT_BLOCKED(lock));
4363                 ASSERT(!IS_BARRIER(lock));
4364 
4365                 ep = FIRST_IN(lock);
4366 
4367                 while (ep != HEAD(lock)) {
4368                         ASSERT(IS_SLEEPING(ep->from_vertex));
4369                         ASSERT(!NOT_BLOCKED(ep->from_vertex));
4370                         ep = NEXT_IN(ep);
4371                 }
4372 
4373                 for (lock1 = lock->l_next; lock1 != ACTIVE_HEAD(gp);
4374                     lock1 = lock1->l_next) {
4375                         if (lock1->l_vnode == lock->l_vnode) {
4376                         if (BLOCKS(lock1, lock)) {
4377                                 cmn_err(CE_PANIC,
4378                                     "active lock %p blocks %p",
4379                                     (void *)lock1, (void *)lock);
4380                         } else if (BLOCKS(lock, lock1)) {
4381                                 cmn_err(CE_PANIC,
4382                                     "active lock %p blocks %p",
4383                                     (void *)lock, (void *)lock1);
4384                         }
4385                         }
4386                 }
4387         }
4388 }
4389 
4390 /*
4391  * Effect: This functions checks to see if the transition from 'old_state' to
4392  *      'new_state' is a valid one.  It returns 0 if the transition is valid
4393  *      and 1 if it is not.
4394  *      For a map of valid transitions, see sys/flock_impl.h
4395  */
4396 static int
4397 check_lock_transition(int old_state, int new_state)
4398 {
4399         switch (old_state) {
4400         case FLK_INITIAL_STATE:
4401                 if ((new_state == FLK_START_STATE) ||
4402                     (new_state == FLK_SLEEPING_STATE) ||
4403                     (new_state == FLK_ACTIVE_STATE) ||
4404                     (new_state == FLK_DEAD_STATE)) {
4405                         return (0);
4406                 } else {
4407                         return (1);
4408                 }
4409         case FLK_START_STATE:
4410                 if ((new_state == FLK_ACTIVE_STATE) ||
4411                     (new_state == FLK_DEAD_STATE)) {
4412                         return (0);
4413                 } else {
4414                         return (1);
4415                 }
4416         case FLK_ACTIVE_STATE:
4417                 if (new_state == FLK_DEAD_STATE) {
4418                         return (0);
4419                 } else {
4420                         return (1);
4421                 }
4422         case FLK_SLEEPING_STATE:
4423                 if ((new_state == FLK_GRANTED_STATE) ||
4424                     (new_state == FLK_INTERRUPTED_STATE) ||
4425                     (new_state == FLK_CANCELLED_STATE)) {
4426                         return (0);
4427                 } else {
4428                         return (1);
4429                 }
4430         case FLK_GRANTED_STATE:
4431                 if ((new_state == FLK_START_STATE) ||
4432                     (new_state == FLK_INTERRUPTED_STATE) ||
4433                     (new_state == FLK_CANCELLED_STATE)) {
4434                         return (0);
4435                 } else {
4436                         return (1);
4437                 }
4438         case FLK_CANCELLED_STATE:
4439                 if ((new_state == FLK_INTERRUPTED_STATE) ||
4440                     (new_state == FLK_DEAD_STATE)) {
4441                         return (0);
4442                 } else {
4443                         return (1);
4444                 }
4445         case FLK_INTERRUPTED_STATE:
4446                 if (new_state == FLK_DEAD_STATE) {
4447                         return (0);
4448                 } else {
4449                         return (1);
4450                 }
4451         case FLK_DEAD_STATE:
4452                 /* May be set more than once */
4453                 if (new_state == FLK_DEAD_STATE) {
4454                         return (0);
4455                 } else {
4456                         return (1);
4457                 }
4458         default:
4459                 return (1);
4460         }
4461 }
4462 
4463 static void
4464 check_sleeping_locks(graph_t *gp)
4465 {
4466         lock_descriptor_t *lock1, *lock2;
4467         edge_t *ep;
4468         for (lock1 = SLEEPING_HEAD(gp)->l_next; lock1 != SLEEPING_HEAD(gp);
4469             lock1 = lock1->l_next) {
4470                                 ASSERT(!IS_BARRIER(lock1));
4471         for (lock2 = lock1->l_next; lock2 != SLEEPING_HEAD(gp);
4472             lock2 = lock2->l_next) {
4473                 if (lock1->l_vnode == lock2->l_vnode) {
4474                         if (BLOCKS(lock2, lock1)) {
4475                                 ASSERT(!IS_GRANTED(lock1));
4476                                 ASSERT(!NOT_BLOCKED(lock1));
4477                                 path(lock1, lock2);
4478                         }
4479                 }
4480         }
4481 
4482         for (lock2 = ACTIVE_HEAD(gp)->l_next; lock2 != ACTIVE_HEAD(gp);
4483             lock2 = lock2->l_next) {
4484                                 ASSERT(!IS_BARRIER(lock1));
4485                 if (lock1->l_vnode == lock2->l_vnode) {
4486                         if (BLOCKS(lock2, lock1)) {
4487                                 ASSERT(!IS_GRANTED(lock1));
4488                                 ASSERT(!NOT_BLOCKED(lock1));
4489                                 path(lock1, lock2);
4490                         }
4491                 }
4492         }
4493         ep = FIRST_ADJ(lock1);
4494         while (ep != HEAD(lock1)) {
4495                 ASSERT(BLOCKS(ep->to_vertex, lock1));
4496                 ep = NEXT_ADJ(ep);
4497         }
4498         }
4499 }
4500 
4501 static int
4502 level_two_path(lock_descriptor_t *lock1, lock_descriptor_t *lock2, int no_path)
4503 {
4504         edge_t  *ep;
4505         lock_descriptor_t       *vertex;
4506         lock_descriptor_t *vertex_stack;
4507 
4508         STACK_INIT(vertex_stack);
4509 
4510         flk_graph_uncolor(lock1->l_graph);
4511         ep = FIRST_ADJ(lock1);
4512         ASSERT(ep != HEAD(lock1));
4513         while (ep != HEAD(lock1)) {
4514                 if (no_path)
4515                         ASSERT(ep->to_vertex != lock2);
4516                 STACK_PUSH(vertex_stack, ep->to_vertex, l_dstack);
4517                 COLOR(ep->to_vertex);
4518                 ep = NEXT_ADJ(ep);
4519         }
4520 
4521         while ((vertex = STACK_TOP(vertex_stack)) != NULL) {
4522                 STACK_POP(vertex_stack, l_dstack);
4523                 for (ep = FIRST_ADJ(vertex); ep != HEAD(vertex);
4524                     ep = NEXT_ADJ(ep)) {
4525                         if (COLORED(ep->to_vertex))
4526                                 continue;
4527                         COLOR(ep->to_vertex);
4528                         if (ep->to_vertex == lock2)
4529                                 return (1);
4530 
4531                         STACK_PUSH(vertex_stack, ep->to_vertex, l_dstack);
4532                 }
4533         }
4534         return (0);
4535 }
4536 
4537 static void
4538 check_owner_locks(graph_t *gp, pid_t pid, int sysid, vnode_t *vp)
4539 {
4540         lock_descriptor_t *lock;
4541 
4542         /* Ignore OFD style locks since they're not process-wide. */
4543         if (pid == 0)
4544                 return;
4545 
4546         SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
4547 
4548         if (lock) {
4549                 while (lock != ACTIVE_HEAD(gp) && (lock->l_vnode == vp)) {
4550                         if (lock->l_flock.l_pid == pid &&
4551                             lock->l_flock.l_sysid == sysid)
4552                                 cmn_err(CE_PANIC,
4553                                     "owner pid %d's lock %p in active queue",
4554                                     pid, (void *)lock);
4555                         lock = lock->l_next;
4556                 }
4557         }
4558         SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
4559 
4560         if (lock) {
4561                 while (lock != SLEEPING_HEAD(gp) && (lock->l_vnode == vp)) {
4562                         if (lock->l_flock.l_pid == pid &&
4563                             lock->l_flock.l_sysid == sysid)
4564                                 cmn_err(CE_PANIC,
4565                                     "owner pid %d's lock %p in sleep queue",
4566                                     pid, (void *)lock);
4567                         lock = lock->l_next;
4568                 }
4569         }
4570 }
4571 
4572 static int
4573 level_one_path(lock_descriptor_t *lock1, lock_descriptor_t *lock2)
4574 {
4575         edge_t *ep = FIRST_ADJ(lock1);
4576 
4577         while (ep != HEAD(lock1)) {
4578                 if (ep->to_vertex == lock2)
4579                         return (1);
4580                 else
4581                         ep = NEXT_ADJ(ep);
4582         }
4583         return (0);
4584 }
4585 
4586 static int
4587 no_path(lock_descriptor_t *lock1, lock_descriptor_t *lock2)
4588 {
4589         return (!level_two_path(lock1, lock2, 1));
4590 }
4591 
4592 static void
4593 path(lock_descriptor_t *lock1, lock_descriptor_t *lock2)
4594 {
4595         if (level_one_path(lock1, lock2)) {
4596                 if (level_two_path(lock1, lock2, 0) != 0) {
4597                         cmn_err(CE_WARN,
4598                             "one edge one path from lock1 %p lock2 %p",
4599                             (void *)lock1, (void *)lock2);
4600                 }
4601         } else if (no_path(lock1, lock2)) {
4602                 cmn_err(CE_PANIC,
4603                     "No path from  lock1 %p to lock2 %p",
4604                     (void *)lock1, (void *)lock2);
4605         }
4606 }
4607 #endif /* DEBUG */