Print this page
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/inet/tcp/tcp.c
+++ new/usr/src/uts/common/inet/tcp/tcp.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright 2015 Joyent, Inc.
25 25 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
26 26 * Copyright (c) 2013,2014 by Delphix. All rights reserved.
27 27 * Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
28 28 */
29 29 /* Copyright (c) 1990 Mentat Inc. */
30 30
31 31 #include <sys/types.h>
32 32 #include <sys/stream.h>
33 33 #include <sys/strsun.h>
34 34 #include <sys/strsubr.h>
35 35 #include <sys/stropts.h>
36 36 #include <sys/strlog.h>
37 37 #define _SUN_TPI_VERSION 2
38 38 #include <sys/tihdr.h>
39 39 #include <sys/timod.h>
40 40 #include <sys/ddi.h>
41 41 #include <sys/sunddi.h>
42 42 #include <sys/suntpi.h>
43 43 #include <sys/xti_inet.h>
44 44 #include <sys/cmn_err.h>
45 45 #include <sys/debug.h>
46 46 #include <sys/sdt.h>
47 47 #include <sys/vtrace.h>
48 48 #include <sys/kmem.h>
49 49 #include <sys/ethernet.h>
50 50 #include <sys/cpuvar.h>
51 51 #include <sys/dlpi.h>
52 52 #include <sys/pattr.h>
53 53 #include <sys/policy.h>
54 54 #include <sys/priv.h>
55 55 #include <sys/zone.h>
56 56 #include <sys/sunldi.h>
57 57
58 58 #include <sys/errno.h>
59 59 #include <sys/signal.h>
60 60 #include <sys/socket.h>
61 61 #include <sys/socketvar.h>
62 62 #include <sys/sockio.h>
63 63 #include <sys/isa_defs.h>
64 64 #include <sys/md5.h>
65 65 #include <sys/random.h>
66 66 #include <sys/uio.h>
67 67 #include <sys/systm.h>
68 68 #include <netinet/in.h>
69 69 #include <netinet/tcp.h>
70 70 #include <netinet/ip6.h>
71 71 #include <netinet/icmp6.h>
72 72 #include <net/if.h>
73 73 #include <net/route.h>
74 74 #include <inet/ipsec_impl.h>
75 75
76 76 #include <inet/common.h>
77 77 #include <inet/ip.h>
78 78 #include <inet/ip_impl.h>
79 79 #include <inet/ip6.h>
80 80 #include <inet/ip_ndp.h>
81 81 #include <inet/proto_set.h>
82 82 #include <inet/mib2.h>
83 83 #include <inet/optcom.h>
84 84 #include <inet/snmpcom.h>
85 85 #include <inet/kstatcom.h>
86 86 #include <inet/tcp.h>
87 87 #include <inet/tcp_impl.h>
88 88 #include <inet/tcp_cluster.h>
89 89 #include <inet/udp_impl.h>
90 90 #include <net/pfkeyv2.h>
91 91 #include <inet/ipdrop.h>
92 92
93 93 #include <inet/ipclassifier.h>
94 94 #include <inet/ip_ire.h>
95 95 #include <inet/ip_ftable.h>
96 96 #include <inet/ip_if.h>
97 97 #include <inet/ipp_common.h>
98 98 #include <inet/ip_rts.h>
99 99 #include <inet/ip_netinfo.h>
100 100 #include <sys/squeue_impl.h>
101 101 #include <sys/squeue.h>
102 102 #include <sys/tsol/label.h>
103 103 #include <sys/tsol/tnet.h>
104 104 #include <rpc/pmap_prot.h>
105 105 #include <sys/callo.h>
106 106
107 107 /*
108 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109 109 *
110 110 * (Read the detailed design doc in PSARC case directory)
111 111 *
112 112 * The entire tcp state is contained in tcp_t and conn_t structure
113 113 * which are allocated in tandem using ipcl_conn_create() and passing
114 114 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
115 115 * the references on the tcp_t. The tcp_t structure is never compressed
116 116 * and packets always land on the correct TCP perimeter from the time
117 117 * eager is created till the time tcp_t dies (as such the old mentat
118 118 * TCP global queue is not used for detached state and no IPSEC checking
119 119 * is required). The global queue is still allocated to send out resets
120 120 * for connection which have no listeners and IP directly calls
121 121 * tcp_xmit_listeners_reset() which does any policy check.
122 122 *
123 123 * Protection and Synchronisation mechanism:
124 124 *
125 125 * The tcp data structure does not use any kind of lock for protecting
126 126 * its state but instead uses 'squeues' for mutual exclusion from various
127 127 * read and write side threads. To access a tcp member, the thread should
128 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
129 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
130 130 * can pass any tcp function having prototype of edesc_t as argument
131 131 * (different from traditional STREAMs model where packets come in only
132 132 * designated entry points). The list of functions that can be directly
133 133 * called via squeue are listed before the usual function prototype.
134 134 *
135 135 * Referencing:
136 136 *
137 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the
138 138 * tcp structure doesn't disappear when its needed. When the application
139 139 * creates an outgoing connection or accepts an incoming connection, we
140 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141 141 * The IP reference is just a symbolic reference since ip_tcpclose()
142 142 * looks at tcp structure after tcp_close_output() returns which could
143 143 * have dropped the last TCP reference. So as long as the connection is
144 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145 145 * conn_t. The classifier puts its own reference when the connection is
146 146 * inserted in listen or connected hash. Anytime a thread needs to enter
147 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148 148 * on write side or by doing a classify on read side and then puts a
149 149 * reference on the conn before doing squeue_enter/tryenter/fill. For
150 150 * read side, the classifier itself puts the reference under fanout lock
151 151 * to make sure that tcp can't disappear before it gets processed. The
152 152 * squeue will drop this reference automatically so the called function
153 153 * doesn't have to do a DEC_REF.
154 154 *
155 155 * Opening a new connection:
156 156 *
157 157 * The outgoing connection open is pretty simple. tcp_open() does the
158 158 * work in creating the conn/tcp structure and initializing it. The
159 159 * squeue assignment is done based on the CPU the application
160 160 * is running on. So for outbound connections, processing is always done
161 161 * on application CPU which might be different from the incoming CPU
162 162 * being interrupted by the NIC. An optimal way would be to figure out
163 163 * the NIC <-> CPU binding at listen time, and assign the outgoing
164 164 * connection to the squeue attached to the CPU that will be interrupted
165 165 * for incoming packets (we know the NIC based on the bind IP address).
166 166 * This might seem like a problem if more data is going out but the
167 167 * fact is that in most cases the transmit is ACK driven transmit where
168 168 * the outgoing data normally sits on TCP's xmit queue waiting to be
169 169 * transmitted.
170 170 *
171 171 * Accepting a connection:
172 172 *
173 173 * This is a more interesting case because of various races involved in
174 174 * establishing a eager in its own perimeter. Read the meta comment on
175 175 * top of tcp_input_listener(). But briefly, the squeue is picked by
176 176 * ip_fanout based on the ring or the sender (if loopback).
177 177 *
178 178 * Closing a connection:
179 179 *
180 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181 181 * via squeue to do the close and mark the tcp as detached if the connection
182 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183 183 * reference but tcp_close() drop IP's reference always. So if tcp was
184 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185 185 * and 1 because it is in classifier's connected hash. This is the condition
186 186 * we use to determine that its OK to clean up the tcp outside of squeue
187 187 * when time wait expires (check the ref under fanout and conn_lock and
188 188 * if it is 2, remove it from fanout hash and kill it).
189 189 *
190 190 * Although close just drops the necessary references and marks the
191 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been
192 192 * set (under squeue) before letting the STREAM go away (because a
193 193 * inbound packet might attempt to go up the STREAM while the close
194 194 * has happened and tcp_detached is not set). So a special lock and
195 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197 197 * tcp_detached.
198 198 *
199 199 * Special provisions and fast paths:
200 200 *
201 201 * We make special provisions for sockfs by marking tcp_issocket
202 202 * whenever we have only sockfs on top of TCP. This allows us to skip
203 203 * putting the tcp in acceptor hash since a sockfs listener can never
204 204 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
205 205 * since eager has already been allocated and the accept now happens
206 206 * on acceptor STREAM. There is a big blob of comment on top of
207 207 * tcp_input_listener explaining the new accept. When socket is POP'd,
208 208 * sockfs sends us an ioctl to mark the fact and we go back to old
209 209 * behaviour. Once tcp_issocket is unset, its never set for the
210 210 * life of that connection.
211 211 *
212 212 * IPsec notes :
213 213 *
214 214 * Since a packet is always executed on the correct TCP perimeter
215 215 * all IPsec processing is defered to IP including checking new
216 216 * connections and setting IPSEC policies for new connection. The
217 217 * only exception is tcp_xmit_listeners_reset() which is called
218 218 * directly from IP and needs to policy check to see if TH_RST
219 219 * can be sent out.
220 220 */
221 221
222 222 /*
223 223 * Values for squeue switch:
224 224 * 1: SQ_NODRAIN
225 225 * 2: SQ_PROCESS
226 226 * 3: SQ_FILL
227 227 */
228 228 int tcp_squeue_wput = 2; /* /etc/systems */
229 229 int tcp_squeue_flag;
230 230
231 231 /*
232 232 * To prevent memory hog, limit the number of entries in tcp_free_list
233 233 * to 1% of available memory / number of cpus
234 234 */
235 235 uint_t tcp_free_list_max_cnt = 0;
236 236
237 237 #define TIDUSZ 4096 /* transport interface data unit size */
238 238
239 239 /*
240 240 * Size of acceptor hash list. It has to be a power of 2 for hashing.
241 241 */
242 242 #define TCP_ACCEPTOR_FANOUT_SIZE 512
243 243
244 244 #ifdef _ILP32
245 245 #define TCP_ACCEPTOR_HASH(accid) \
246 246 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
247 247 #else
248 248 #define TCP_ACCEPTOR_HASH(accid) \
249 249 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
250 250 #endif /* _ILP32 */
251 251
252 252 /*
253 253 * Minimum number of connections which can be created per listener. Used
254 254 * when the listener connection count is in effect.
255 255 */
256 256 static uint32_t tcp_min_conn_listener = 2;
257 257
258 258 uint32_t tcp_early_abort = 30;
259 259
260 260 /* TCP Timer control structure */
261 261 typedef struct tcpt_s {
262 262 pfv_t tcpt_pfv; /* The routine we are to call */
263 263 tcp_t *tcpt_tcp; /* The parameter we are to pass in */
264 264 } tcpt_t;
265 265
266 266 /*
267 267 * Functions called directly via squeue having a prototype of edesc_t.
268 268 */
269 269 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2,
270 270 ip_recv_attr_t *ira);
271 271 void tcp_input_data(void *arg, mblk_t *mp, void *arg2,
272 272 ip_recv_attr_t *ira);
273 273 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
274 274 ip_recv_attr_t *dummy);
275 275
276 276
277 277 /* Prototype for TCP functions */
278 278 static void tcp_random_init(void);
279 279 int tcp_random(void);
280 280 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
281 281 in_port_t dstport, uint_t srcid);
282 282 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
283 283 in_port_t dstport, uint32_t flowinfo,
284 284 uint_t srcid, uint32_t scope_id);
285 285 static void tcp_iss_init(tcp_t *tcp);
286 286 static void tcp_reinit(tcp_t *tcp);
287 287 static void tcp_reinit_values(tcp_t *tcp);
288 288
289 289 static void tcp_wsrv(queue_t *q);
290 290 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
291 291 static void tcp_update_zcopy(tcp_t *tcp);
292 292 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
293 293 ixa_notify_arg_t);
294 294 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns);
295 295 static void tcp_stack_fini(netstackid_t stackid, void *arg);
296 296
297 297 static int tcp_squeue_switch(int);
298 298
299 299 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
300 300 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
301 301 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
302 302
303 303 static void tcp_squeue_add(squeue_t *);
304 304
305 305 struct module_info tcp_rinfo = {
306 306 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
307 307 };
308 308
309 309 static struct module_info tcp_winfo = {
310 310 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
311 311 };
312 312
313 313 /*
314 314 * Entry points for TCP as a device. The normal case which supports
315 315 * the TCP functionality.
316 316 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
317 317 */
318 318 struct qinit tcp_rinitv4 = {
319 319 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
320 320 };
321 321
322 322 struct qinit tcp_rinitv6 = {
323 323 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
324 324 };
325 325
326 326 struct qinit tcp_winit = {
327 327 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
328 328 };
329 329
330 330 /* Initial entry point for TCP in socket mode. */
331 331 struct qinit tcp_sock_winit = {
332 332 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
333 333 };
334 334
335 335 /* TCP entry point during fallback */
336 336 struct qinit tcp_fallback_sock_winit = {
337 337 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
338 338 };
339 339
340 340 /*
341 341 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
342 342 * an accept. Avoid allocating data structures since eager has already
343 343 * been created.
344 344 */
345 345 struct qinit tcp_acceptor_rinit = {
346 346 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
347 347 };
348 348
349 349 struct qinit tcp_acceptor_winit = {
350 350 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
351 351 };
352 352
353 353 /* For AF_INET aka /dev/tcp */
354 354 struct streamtab tcpinfov4 = {
355 355 &tcp_rinitv4, &tcp_winit
356 356 };
357 357
358 358 /* For AF_INET6 aka /dev/tcp6 */
359 359 struct streamtab tcpinfov6 = {
360 360 &tcp_rinitv6, &tcp_winit
361 361 };
362 362
363 363 /*
364 364 * Following assumes TPI alignment requirements stay along 32 bit
365 365 * boundaries
366 366 */
367 367 #define ROUNDUP32(x) \
368 368 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
369 369
370 370 /* Template for response to info request. */
371 371 struct T_info_ack tcp_g_t_info_ack = {
372 372 T_INFO_ACK, /* PRIM_type */
373 373 0, /* TSDU_size */
374 374 T_INFINITE, /* ETSDU_size */
375 375 T_INVALID, /* CDATA_size */
376 376 T_INVALID, /* DDATA_size */
377 377 sizeof (sin_t), /* ADDR_size */
378 378 0, /* OPT_size - not initialized here */
379 379 TIDUSZ, /* TIDU_size */
380 380 T_COTS_ORD, /* SERV_type */
381 381 TCPS_IDLE, /* CURRENT_state */
382 382 (XPG4_1|EXPINLINE) /* PROVIDER_flag */
383 383 };
384 384
385 385 struct T_info_ack tcp_g_t_info_ack_v6 = {
386 386 T_INFO_ACK, /* PRIM_type */
387 387 0, /* TSDU_size */
388 388 T_INFINITE, /* ETSDU_size */
389 389 T_INVALID, /* CDATA_size */
390 390 T_INVALID, /* DDATA_size */
391 391 sizeof (sin6_t), /* ADDR_size */
392 392 0, /* OPT_size - not initialized here */
393 393 TIDUSZ, /* TIDU_size */
394 394 T_COTS_ORD, /* SERV_type */
395 395 TCPS_IDLE, /* CURRENT_state */
396 396 (XPG4_1|EXPINLINE) /* PROVIDER_flag */
397 397 };
398 398
399 399 /*
400 400 * TCP tunables related declarations. Definitions are in tcp_tunables.c
401 401 */
402 402 extern mod_prop_info_t tcp_propinfo_tbl[];
403 403 extern int tcp_propinfo_count;
404 404
405 405 #define IS_VMLOANED_MBLK(mp) \
406 406 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
407 407
408 408 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */
409 409
410 410 /*
411 411 * Forces all connections to obey the value of the tcps_maxpsz_multiplier
412 412 * tunable settable via NDD. Otherwise, the per-connection behavior is
413 413 * determined dynamically during tcp_set_destination(), which is the default.
414 414 */
415 415 boolean_t tcp_static_maxpsz = B_FALSE;
416 416
417 417 /*
418 418 * If the receive buffer size is changed, this function is called to update
419 419 * the upper socket layer on the new delayed receive wake up threshold.
420 420 */
421 421 static void
422 422 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
423 423 {
424 424 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
425 425
426 426 if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
427 427 conn_t *connp = tcp->tcp_connp;
428 428 struct sock_proto_props sopp;
429 429
430 430 /*
431 431 * only increase rcvthresh upto default_threshold
432 432 */
433 433 if (new_rcvthresh > default_threshold)
434 434 new_rcvthresh = default_threshold;
435 435
436 436 sopp.sopp_flags = SOCKOPT_RCVTHRESH;
437 437 sopp.sopp_rcvthresh = new_rcvthresh;
438 438
439 439 (*connp->conn_upcalls->su_set_proto_props)
440 440 (connp->conn_upper_handle, &sopp);
441 441 }
442 442 }
443 443
444 444 /*
445 445 * Figure out the value of window scale opton. Note that the rwnd is
446 446 * ASSUMED to be rounded up to the nearest MSS before the calculation.
447 447 * We cannot find the scale value and then do a round up of tcp_rwnd
448 448 * because the scale value may not be correct after that.
449 449 *
450 450 * Set the compiler flag to make this function inline.
451 451 */
452 452 void
453 453 tcp_set_ws_value(tcp_t *tcp)
454 454 {
455 455 int i;
456 456 uint32_t rwnd = tcp->tcp_rwnd;
457 457
458 458 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
459 459 i++, rwnd >>= 1)
460 460 ;
461 461 tcp->tcp_rcv_ws = i;
462 462 }
463 463
464 464 /*
465 465 * Remove cached/latched IPsec references.
466 466 */
467 467 void
468 468 tcp_ipsec_cleanup(tcp_t *tcp)
469 469 {
470 470 conn_t *connp = tcp->tcp_connp;
471 471
472 472 ASSERT(connp->conn_flags & IPCL_TCPCONN);
473 473
474 474 if (connp->conn_latch != NULL) {
475 475 IPLATCH_REFRELE(connp->conn_latch);
476 476 connp->conn_latch = NULL;
477 477 }
478 478 if (connp->conn_latch_in_policy != NULL) {
479 479 IPPOL_REFRELE(connp->conn_latch_in_policy);
480 480 connp->conn_latch_in_policy = NULL;
481 481 }
482 482 if (connp->conn_latch_in_action != NULL) {
483 483 IPACT_REFRELE(connp->conn_latch_in_action);
484 484 connp->conn_latch_in_action = NULL;
485 485 }
486 486 if (connp->conn_policy != NULL) {
487 487 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
488 488 connp->conn_policy = NULL;
489 489 }
490 490 }
491 491
492 492 /*
493 493 * Cleaup before placing on free list.
494 494 * Disassociate from the netstack/tcp_stack_t since the freelist
495 495 * is per squeue and not per netstack.
496 496 */
497 497 void
498 498 tcp_cleanup(tcp_t *tcp)
499 499 {
500 500 mblk_t *mp;
501 501 conn_t *connp = tcp->tcp_connp;
502 502 tcp_stack_t *tcps = tcp->tcp_tcps;
503 503 netstack_t *ns = tcps->tcps_netstack;
504 504 mblk_t *tcp_rsrv_mp;
505 505
506 506 tcp_bind_hash_remove(tcp);
507 507
508 508 /* Cleanup that which needs the netstack first */
509 509 tcp_ipsec_cleanup(tcp);
510 510 ixa_cleanup(connp->conn_ixa);
511 511
512 512 if (connp->conn_ht_iphc != NULL) {
513 513 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
514 514 connp->conn_ht_iphc = NULL;
515 515 connp->conn_ht_iphc_allocated = 0;
516 516 connp->conn_ht_iphc_len = 0;
517 517 connp->conn_ht_ulp = NULL;
518 518 connp->conn_ht_ulp_len = 0;
519 519 tcp->tcp_ipha = NULL;
520 520 tcp->tcp_ip6h = NULL;
521 521 tcp->tcp_tcpha = NULL;
522 522 }
523 523
524 524 /* We clear any IP_OPTIONS and extension headers */
525 525 ip_pkt_free(&connp->conn_xmit_ipp);
526 526
527 527 tcp_free(tcp);
528 528
529 529 /*
530 530 * Since we will bzero the entire structure, we need to
531 531 * remove it and reinsert it in global hash list. We
532 532 * know the walkers can't get to this conn because we
533 533 * had set CONDEMNED flag earlier and checked reference
534 534 * under conn_lock so walker won't pick it and when we
535 535 * go the ipcl_globalhash_remove() below, no walker
536 536 * can get to it.
537 537 */
538 538 ipcl_globalhash_remove(connp);
539 539
540 540 /* Save some state */
541 541 mp = tcp->tcp_timercache;
542 542
543 543 tcp_rsrv_mp = tcp->tcp_rsrv_mp;
544 544
545 545 if (connp->conn_cred != NULL) {
546 546 crfree(connp->conn_cred);
547 547 connp->conn_cred = NULL;
548 548 }
549 549 ipcl_conn_cleanup(connp);
550 550 connp->conn_flags = IPCL_TCPCONN;
551 551
552 552 /*
553 553 * Now it is safe to decrement the reference counts.
554 554 * This might be the last reference on the netstack
555 555 * in which case it will cause the freeing of the IP Instance.
556 556 */
557 557 connp->conn_netstack = NULL;
558 558 connp->conn_ixa->ixa_ipst = NULL;
559 559 netstack_rele(ns);
560 560 ASSERT(tcps != NULL);
561 561 tcp->tcp_tcps = NULL;
562 562
563 563 bzero(tcp, sizeof (tcp_t));
564 564
565 565 /* restore the state */
566 566 tcp->tcp_timercache = mp;
567 567
568 568 tcp->tcp_rsrv_mp = tcp_rsrv_mp;
569 569
570 570 tcp->tcp_connp = connp;
571 571
572 572 ASSERT(connp->conn_tcp == tcp);
573 573 ASSERT(connp->conn_flags & IPCL_TCPCONN);
574 574 connp->conn_state_flags = CONN_INCIPIENT;
575 575 ASSERT(connp->conn_proto == IPPROTO_TCP);
576 576 ASSERT(connp->conn_ref == 1);
577 577 }
578 578
579 579 /*
580 580 * Adapt to the information, such as rtt and rtt_sd, provided from the
581 581 * DCE and IRE maintained by IP.
582 582 *
583 583 * Checks for multicast and broadcast destination address.
584 584 * Returns zero if ok; an errno on failure.
585 585 *
586 586 * Note that the MSS calculation here is based on the info given in
587 587 * the DCE and IRE. We do not do any calculation based on TCP options. They
588 588 * will be handled in tcp_input_data() when TCP knows which options to use.
589 589 *
590 590 * Note on how TCP gets its parameters for a connection.
591 591 *
592 592 * When a tcp_t structure is allocated, it gets all the default parameters.
593 593 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
594 594 * spipe, rpipe, ... from the route metrics. Route metric overrides the
595 595 * default.
596 596 *
597 597 * An incoming SYN with a multicast or broadcast destination address is dropped
598 598 * in ip_fanout_v4/v6.
599 599 *
600 600 * An incoming SYN with a multicast or broadcast source address is always
601 601 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
602 602 * conn_connect.
603 603 * The same logic in tcp_set_destination also serves to
604 604 * reject an attempt to connect to a broadcast or multicast (destination)
605 605 * address.
606 606 */
607 607 int
608 608 tcp_set_destination(tcp_t *tcp)
609 609 {
610 610 uint32_t mss_max;
611 611 uint32_t mss;
612 612 boolean_t tcp_detached = TCP_IS_DETACHED(tcp);
613 613 conn_t *connp = tcp->tcp_connp;
614 614 tcp_stack_t *tcps = tcp->tcp_tcps;
615 615 iulp_t uinfo;
616 616 int error;
617 617 uint32_t flags;
618 618
619 619 flags = IPDF_LSO | IPDF_ZCOPY;
620 620 /*
621 621 * Make sure we have a dce for the destination to avoid dce_ident
622 622 * contention for connected sockets.
623 623 */
624 624 flags |= IPDF_UNIQUE_DCE;
625 625
626 626 if (!tcps->tcps_ignore_path_mtu)
627 627 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
628 628
629 629 /* Use conn_lock to satify ASSERT; tcp is already serialized */
630 630 mutex_enter(&connp->conn_lock);
631 631 error = conn_connect(connp, &uinfo, flags);
632 632 mutex_exit(&connp->conn_lock);
633 633 if (error != 0)
634 634 return (error);
635 635
636 636 error = tcp_build_hdrs(tcp);
637 637 if (error != 0)
638 638 return (error);
639 639
640 640 tcp->tcp_localnet = uinfo.iulp_localnet;
641 641
642 642 if (uinfo.iulp_rtt != 0) {
643 643 clock_t rto;
644 644
645 645 tcp->tcp_rtt_sa = uinfo.iulp_rtt;
646 646 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd;
647 647 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
648 648 tcps->tcps_rexmit_interval_extra +
649 649 (tcp->tcp_rtt_sa >> 5);
650 650
651 651 TCP_SET_RTO(tcp, rto);
652 652 }
653 653 if (uinfo.iulp_ssthresh != 0)
654 654 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
655 655 else
656 656 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
657 657 if (uinfo.iulp_spipe > 0) {
658 658 connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
659 659 tcps->tcps_max_buf);
660 660 if (tcps->tcps_snd_lowat_fraction != 0) {
661 661 connp->conn_sndlowat = connp->conn_sndbuf /
662 662 tcps->tcps_snd_lowat_fraction;
663 663 }
664 664 (void) tcp_maxpsz_set(tcp, B_TRUE);
665 665 }
666 666 /*
667 667 * Note that up till now, acceptor always inherits receive
668 668 * window from the listener. But if there is a metrics
669 669 * associated with a host, we should use that instead of
670 670 * inheriting it from listener. Thus we need to pass this
671 671 * info back to the caller.
672 672 */
673 673 if (uinfo.iulp_rpipe > 0) {
674 674 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
675 675 tcps->tcps_max_buf);
676 676 }
677 677
678 678 if (uinfo.iulp_rtomax > 0) {
679 679 tcp->tcp_second_timer_threshold =
680 680 uinfo.iulp_rtomax;
681 681 }
682 682
683 683 /*
684 684 * Use the metric option settings, iulp_tstamp_ok and
685 685 * iulp_wscale_ok, only for active open. What this means
686 686 * is that if the other side uses timestamp or window
687 687 * scale option, TCP will also use those options. That
688 688 * is for passive open. If the application sets a
689 689 * large window, window scale is enabled regardless of
690 690 * the value in iulp_wscale_ok. This is the behavior
691 691 * since 2.6. So we keep it.
692 692 * The only case left in passive open processing is the
693 693 * check for SACK.
694 694 * For ECN, it should probably be like SACK. But the
695 695 * current value is binary, so we treat it like the other
696 696 * cases. The metric only controls active open.For passive
697 697 * open, the ndd param, tcp_ecn_permitted, controls the
698 698 * behavior.
699 699 */
700 700 if (!tcp_detached) {
701 701 /*
702 702 * The if check means that the following can only
703 703 * be turned on by the metrics only IRE, but not off.
704 704 */
705 705 if (uinfo.iulp_tstamp_ok)
706 706 tcp->tcp_snd_ts_ok = B_TRUE;
707 707 if (uinfo.iulp_wscale_ok)
708 708 tcp->tcp_snd_ws_ok = B_TRUE;
709 709 if (uinfo.iulp_sack == 2)
710 710 tcp->tcp_snd_sack_ok = B_TRUE;
711 711 if (uinfo.iulp_ecn_ok)
712 712 tcp->tcp_ecn_ok = B_TRUE;
713 713 } else {
714 714 /*
715 715 * Passive open.
716 716 *
717 717 * As above, the if check means that SACK can only be
718 718 * turned on by the metric only IRE.
719 719 */
720 720 if (uinfo.iulp_sack > 0) {
721 721 tcp->tcp_snd_sack_ok = B_TRUE;
722 722 }
723 723 }
724 724
725 725 /*
726 726 * XXX Note that currently, iulp_mtu can be as small as 68
727 727 * because of PMTUd. So tcp_mss may go to negative if combined
728 728 * length of all those options exceeds 28 bytes. But because
729 729 * of the tcp_mss_min check below, we may not have a problem if
730 730 * tcp_mss_min is of a reasonable value. The default is 1 so
731 731 * the negative problem still exists. And the check defeats PMTUd.
732 732 * In fact, if PMTUd finds that the MSS should be smaller than
733 733 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
734 734 * value.
735 735 *
736 736 * We do not deal with that now. All those problems related to
737 737 * PMTUd will be fixed later.
738 738 */
739 739 ASSERT(uinfo.iulp_mtu != 0);
740 740 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
741 741
742 742 /* Sanity check for MSS value. */
743 743 if (connp->conn_ipversion == IPV4_VERSION)
744 744 mss_max = tcps->tcps_mss_max_ipv4;
745 745 else
746 746 mss_max = tcps->tcps_mss_max_ipv6;
747 747
748 748 if (tcp->tcp_ipsec_overhead == 0)
749 749 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
750 750
751 751 mss -= tcp->tcp_ipsec_overhead;
752 752
753 753 if (mss < tcps->tcps_mss_min)
754 754 mss = tcps->tcps_mss_min;
755 755 if (mss > mss_max)
756 756 mss = mss_max;
757 757
758 758 /* Note that this is the maximum MSS, excluding all options. */
759 759 tcp->tcp_mss = mss;
760 760
761 761 /*
762 762 * Update the tcp connection with LSO capability.
763 763 */
764 764 tcp_update_lso(tcp, connp->conn_ixa);
765 765
766 766 /*
767 767 * Initialize the ISS here now that we have the full connection ID.
768 768 * The RFC 1948 method of initial sequence number generation requires
769 769 * knowledge of the full connection ID before setting the ISS.
770 770 */
771 771 tcp_iss_init(tcp);
772 772
773 773 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
774 774
775 775 /*
776 776 * Make sure that conn is not marked incipient
777 777 * for incoming connections. A blind
778 778 * removal of incipient flag is cheaper than
779 779 * check and removal.
780 780 */
781 781 mutex_enter(&connp->conn_lock);
782 782 connp->conn_state_flags &= ~CONN_INCIPIENT;
783 783 mutex_exit(&connp->conn_lock);
784 784 return (0);
785 785 }
786 786
787 787 /*
788 788 * tcp_clean_death / tcp_close_detached must not be called more than once
789 789 * on a tcp. Thus every function that potentially calls tcp_clean_death
790 790 * must check for the tcp state before calling tcp_clean_death.
791 791 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
792 792 * tcp_timer_handler, all check for the tcp state.
793 793 */
794 794 /* ARGSUSED */
795 795 void
796 796 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
797 797 ip_recv_attr_t *dummy)
798 798 {
799 799 tcp_t *tcp = ((conn_t *)arg)->conn_tcp;
800 800
801 801 freemsg(mp);
802 802 if (tcp->tcp_state > TCPS_BOUND)
803 803 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT);
804 804 }
805 805
806 806 /*
807 807 * We are dying for some reason. Try to do it gracefully. (May be called
808 808 * as writer.)
809 809 *
810 810 * Return -1 if the structure was not cleaned up (if the cleanup had to be
811 811 * done by a service procedure).
812 812 * TBD - Should the return value distinguish between the tcp_t being
813 813 * freed and it being reinitialized?
814 814 */
815 815 int
816 816 tcp_clean_death(tcp_t *tcp, int err)
817 817 {
818 818 mblk_t *mp;
819 819 queue_t *q;
820 820 conn_t *connp = tcp->tcp_connp;
821 821 tcp_stack_t *tcps = tcp->tcp_tcps;
822 822
823 823 if (tcp->tcp_fused)
824 824 tcp_unfuse(tcp);
825 825
826 826 if (tcp->tcp_linger_tid != 0 &&
827 827 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
828 828 tcp_stop_lingering(tcp);
829 829 }
830 830
831 831 ASSERT(tcp != NULL);
832 832 ASSERT((connp->conn_family == AF_INET &&
833 833 connp->conn_ipversion == IPV4_VERSION) ||
834 834 (connp->conn_family == AF_INET6 &&
835 835 (connp->conn_ipversion == IPV4_VERSION ||
836 836 connp->conn_ipversion == IPV6_VERSION)));
837 837
838 838 if (TCP_IS_DETACHED(tcp)) {
839 839 if (tcp->tcp_hard_binding) {
840 840 /*
841 841 * Its an eager that we are dealing with. We close the
842 842 * eager but in case a conn_ind has already gone to the
843 843 * listener, let tcp_accept_finish() send a discon_ind
844 844 * to the listener and drop the last reference. If the
845 845 * listener doesn't even know about the eager i.e. the
846 846 * conn_ind hasn't gone up, blow away the eager and drop
847 847 * the last reference as well. If the conn_ind has gone
848 848 * up, state should be BOUND. tcp_accept_finish
849 849 * will figure out that the connection has received a
850 850 * RST and will send a DISCON_IND to the application.
851 851 */
852 852 tcp_closei_local(tcp);
853 853 if (!tcp->tcp_tconnind_started) {
854 854 CONN_DEC_REF(connp);
855 855 } else {
856 856 tcp->tcp_state = TCPS_BOUND;
857 857 DTRACE_TCP6(state__change, void, NULL,
858 858 ip_xmit_attr_t *, connp->conn_ixa,
859 859 void, NULL, tcp_t *, tcp, void, NULL,
860 860 int32_t, TCPS_CLOSED);
861 861 }
862 862 } else {
863 863 tcp_close_detached(tcp);
864 864 }
865 865 return (0);
866 866 }
867 867
868 868 TCP_STAT(tcps, tcp_clean_death_nondetached);
869 869
870 870 /*
871 871 * The connection is dead. Decrement listener connection counter if
872 872 * necessary.
873 873 */
874 874 if (tcp->tcp_listen_cnt != NULL)
875 875 TCP_DECR_LISTEN_CNT(tcp);
876 876
877 877 /*
878 878 * When a connection is moved to TIME_WAIT state, the connection
879 879 * counter is already decremented. So no need to decrement here
880 880 * again. See SET_TIME_WAIT() macro.
881 881 */
882 882 if (tcp->tcp_state >= TCPS_ESTABLISHED &&
883 883 tcp->tcp_state < TCPS_TIME_WAIT) {
884 884 TCPS_CONN_DEC(tcps);
885 885 }
886 886
887 887 q = connp->conn_rq;
888 888
889 889 /* Trash all inbound data */
890 890 if (!IPCL_IS_NONSTR(connp)) {
891 891 ASSERT(q != NULL);
892 892 flushq(q, FLUSHALL);
893 893 }
894 894
895 895 /*
896 896 * If we are at least part way open and there is error
897 897 * (err==0 implies no error)
898 898 * notify our client by a T_DISCON_IND.
899 899 */
900 900 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
901 901 if (tcp->tcp_state >= TCPS_ESTABLISHED &&
902 902 !TCP_IS_SOCKET(tcp)) {
903 903 /*
904 904 * Send M_FLUSH according to TPI. Because sockets will
905 905 * (and must) ignore FLUSHR we do that only for TPI
906 906 * endpoints and sockets in STREAMS mode.
907 907 */
908 908 (void) putnextctl1(q, M_FLUSH, FLUSHR);
909 909 }
910 910 if (connp->conn_debug) {
911 911 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
912 912 "tcp_clean_death: discon err %d", err);
913 913 }
914 914 if (IPCL_IS_NONSTR(connp)) {
915 915 /* Direct socket, use upcall */
916 916 (*connp->conn_upcalls->su_disconnected)(
917 917 connp->conn_upper_handle, tcp->tcp_connid, err);
918 918 } else {
919 919 mp = mi_tpi_discon_ind(NULL, err, 0);
920 920 if (mp != NULL) {
921 921 putnext(q, mp);
922 922 } else {
923 923 if (connp->conn_debug) {
924 924 (void) strlog(TCP_MOD_ID, 0, 1,
925 925 SL_ERROR|SL_TRACE,
926 926 "tcp_clean_death, sending M_ERROR");
927 927 }
928 928 (void) putnextctl1(q, M_ERROR, EPROTO);
929 929 }
930 930 }
931 931 if (tcp->tcp_state <= TCPS_SYN_RCVD) {
932 932 /* SYN_SENT or SYN_RCVD */
933 933 TCPS_BUMP_MIB(tcps, tcpAttemptFails);
934 934 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
935 935 /* ESTABLISHED or CLOSE_WAIT */
936 936 TCPS_BUMP_MIB(tcps, tcpEstabResets);
937 937 }
938 938 }
939 939
940 940 /*
941 941 * ESTABLISHED non-STREAMS eagers are not 'detached' because
942 942 * an upper handle is obtained when the SYN-ACK comes in. So it
943 943 * should receive the 'disconnected' upcall, but tcp_reinit should
944 944 * not be called since this is an eager.
945 945 */
946 946 if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) {
947 947 tcp_closei_local(tcp);
948 948 tcp->tcp_state = TCPS_BOUND;
949 949 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
950 950 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
951 951 int32_t, TCPS_CLOSED);
952 952 return (0);
953 953 }
954 954
955 955 tcp_reinit(tcp);
956 956 if (IPCL_IS_NONSTR(connp))
957 957 (void) tcp_do_unbind(connp);
958 958
959 959 return (-1);
960 960 }
961 961
962 962 /*
963 963 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
964 964 * to expire, stop the wait and finish the close.
965 965 */
966 966 void
967 967 tcp_stop_lingering(tcp_t *tcp)
968 968 {
969 969 clock_t delta = 0;
970 970 tcp_stack_t *tcps = tcp->tcp_tcps;
971 971 conn_t *connp = tcp->tcp_connp;
972 972
973 973 tcp->tcp_linger_tid = 0;
974 974 if (tcp->tcp_state > TCPS_LISTEN) {
975 975 tcp_acceptor_hash_remove(tcp);
976 976 mutex_enter(&tcp->tcp_non_sq_lock);
977 977 if (tcp->tcp_flow_stopped) {
978 978 tcp_clrqfull(tcp);
979 979 }
980 980 mutex_exit(&tcp->tcp_non_sq_lock);
981 981
982 982 if (tcp->tcp_timer_tid != 0) {
983 983 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
984 984 tcp->tcp_timer_tid = 0;
985 985 }
986 986 /*
987 987 * Need to cancel those timers which will not be used when
988 988 * TCP is detached. This has to be done before the conn_wq
989 989 * is cleared.
990 990 */
991 991 tcp_timers_stop(tcp);
992 992
993 993 tcp->tcp_detached = B_TRUE;
994 994 connp->conn_rq = NULL;
995 995 connp->conn_wq = NULL;
996 996
997 997 if (tcp->tcp_state == TCPS_TIME_WAIT) {
998 998 tcp_time_wait_append(tcp);
999 999 TCP_DBGSTAT(tcps, tcp_detach_time_wait);
1000 1000 goto finish;
1001 1001 }
1002 1002
1003 1003 /*
1004 1004 * If delta is zero the timer event wasn't executed and was
1005 1005 * successfully canceled. In this case we need to restart it
1006 1006 * with the minimal delta possible.
1007 1007 */
1008 1008 if (delta >= 0) {
1009 1009 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
1010 1010 delta ? delta : 1);
1011 1011 }
1012 1012 } else {
1013 1013 tcp_closei_local(tcp);
1014 1014 CONN_DEC_REF(connp);
1015 1015 }
1016 1016 finish:
1017 1017 tcp->tcp_detached = B_TRUE;
1018 1018 connp->conn_rq = NULL;
1019 1019 connp->conn_wq = NULL;
1020 1020
1021 1021 /* Signal closing thread that it can complete close */
1022 1022 mutex_enter(&tcp->tcp_closelock);
1023 1023 tcp->tcp_closed = 1;
1024 1024 cv_signal(&tcp->tcp_closecv);
1025 1025 mutex_exit(&tcp->tcp_closelock);
1026 1026
1027 1027 /* If we have an upper handle (socket), release it */
1028 1028 if (IPCL_IS_NONSTR(connp)) {
1029 1029 ASSERT(connp->conn_upper_handle != NULL);
1030 1030 (*connp->conn_upcalls->su_closed)(connp->conn_upper_handle);
1031 1031 connp->conn_upper_handle = NULL;
1032 1032 connp->conn_upcalls = NULL;
1033 1033 }
1034 1034 }
1035 1035
1036 1036 void
1037 1037 tcp_close_common(conn_t *connp, int flags)
1038 1038 {
1039 1039 tcp_t *tcp = connp->conn_tcp;
1040 1040 mblk_t *mp = &tcp->tcp_closemp;
1041 1041 boolean_t conn_ioctl_cleanup_reqd = B_FALSE;
1042 1042 mblk_t *bp;
1043 1043
1044 1044 ASSERT(connp->conn_ref >= 2);
1045 1045
1046 1046 /*
1047 1047 * Mark the conn as closing. ipsq_pending_mp_add will not
1048 1048 * add any mp to the pending mp list, after this conn has
1049 1049 * started closing.
1050 1050 */
1051 1051 mutex_enter(&connp->conn_lock);
1052 1052 connp->conn_state_flags |= CONN_CLOSING;
1053 1053 if (connp->conn_oper_pending_ill != NULL)
1054 1054 conn_ioctl_cleanup_reqd = B_TRUE;
1055 1055 CONN_INC_REF_LOCKED(connp);
1056 1056 mutex_exit(&connp->conn_lock);
1057 1057 tcp->tcp_closeflags = (uint8_t)flags;
1058 1058 ASSERT(connp->conn_ref >= 3);
1059 1059
1060 1060 /*
1061 1061 * tcp_closemp_used is used below without any protection of a lock
1062 1062 * as we don't expect any one else to use it concurrently at this
1063 1063 * point otherwise it would be a major defect.
1064 1064 */
1065 1065
1066 1066 if (mp->b_prev == NULL)
1067 1067 tcp->tcp_closemp_used = B_TRUE;
1068 1068 else
1069 1069 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
1070 1070 "connp %p tcp %p\n", (void *)connp, (void *)tcp);
1071 1071
1072 1072 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1073 1073
1074 1074 /*
1075 1075 * Cleanup any queued ioctls here. This must be done before the wq/rq
1076 1076 * are re-written by tcp_close_output().
1077 1077 */
1078 1078 if (conn_ioctl_cleanup_reqd)
1079 1079 conn_ioctl_cleanup(connp);
1080 1080
1081 1081 /*
1082 1082 * As CONN_CLOSING is set, no further ioctls should be passed down to
1083 1083 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and
1084 1084 * tcp_wput_iocdata). If the ioctl was queued on an ipsq,
1085 1085 * conn_ioctl_cleanup should have found it and removed it. If the ioctl
1086 1086 * was still in flight at the time, we wait for it here. See comments
1087 1087 * for CONN_INC_IOCTLREF in ip.h for details.
1088 1088 */
1089 1089 mutex_enter(&connp->conn_lock);
1090 1090 while (connp->conn_ioctlref > 0)
1091 1091 cv_wait(&connp->conn_cv, &connp->conn_lock);
1092 1092 ASSERT(connp->conn_ioctlref == 0);
1093 1093 ASSERT(connp->conn_oper_pending_ill == NULL);
1094 1094 mutex_exit(&connp->conn_lock);
1095 1095
1096 1096 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
1097 1097 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1098 1098
1099 1099 /*
1100 1100 * For non-STREAMS sockets, the normal case is that the conn makes
1101 1101 * an upcall when it's finally closed, so there is no need to wait
1102 1102 * in the protocol. But in case of SO_LINGER the thread sleeps here
1103 1103 * so it can properly deal with the thread being interrupted.
1104 1104 */
1105 1105 if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0)
1106 1106 goto nowait;
1107 1107
1108 1108 mutex_enter(&tcp->tcp_closelock);
1109 1109 while (!tcp->tcp_closed) {
1110 1110 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
1111 1111 /*
1112 1112 * The cv_wait_sig() was interrupted. We now do the
1113 1113 * following:
1114 1114 *
1115 1115 * 1) If the endpoint was lingering, we allow this
1116 1116 * to be interrupted by cancelling the linger timeout
1117 1117 * and closing normally.
1118 1118 *
1119 1119 * 2) Revert to calling cv_wait()
1120 1120 *
1121 1121 * We revert to using cv_wait() to avoid an
1122 1122 * infinite loop which can occur if the calling
1123 1123 * thread is higher priority than the squeue worker
1124 1124 * thread and is bound to the same cpu.
1125 1125 */
1126 1126 if (connp->conn_linger && connp->conn_lingertime > 0) {
1127 1127 mutex_exit(&tcp->tcp_closelock);
1128 1128 /* Entering squeue, bump ref count. */
1129 1129 CONN_INC_REF(connp);
1130 1130 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
1131 1131 SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
1132 1132 tcp_linger_interrupted, connp, NULL,
1133 1133 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1134 1134 mutex_enter(&tcp->tcp_closelock);
1135 1135 }
1136 1136 break;
1137 1137 }
1138 1138 }
1139 1139 while (!tcp->tcp_closed)
1140 1140 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
1141 1141 mutex_exit(&tcp->tcp_closelock);
1142 1142
1143 1143 /*
1144 1144 * In the case of listener streams that have eagers in the q or q0
1145 1145 * we wait for the eagers to drop their reference to us. conn_rq and
1146 1146 * conn_wq of the eagers point to our queues. By waiting for the
1147 1147 * refcnt to drop to 1, we are sure that the eagers have cleaned
1148 1148 * up their queue pointers and also dropped their references to us.
1149 1149 *
1150 1150 * For non-STREAMS sockets we do not have to wait here; the
1151 1151 * listener will instead make a su_closed upcall when the last
1152 1152 * reference is dropped.
1153 1153 */
1154 1154 if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) {
1155 1155 mutex_enter(&connp->conn_lock);
1156 1156 while (connp->conn_ref != 1) {
1157 1157 cv_wait(&connp->conn_cv, &connp->conn_lock);
1158 1158 }
1159 1159 mutex_exit(&connp->conn_lock);
1160 1160 }
1161 1161
1162 1162 nowait:
1163 1163 connp->conn_cpid = NOPID;
1164 1164 }
1165 1165
1166 1166 /*
1167 1167 * Called by tcp_close() routine via squeue when lingering is
1168 1168 * interrupted by a signal.
1169 1169 */
1170 1170
1171 1171 /* ARGSUSED */
1172 1172 static void
1173 1173 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1174 1174 {
1175 1175 conn_t *connp = (conn_t *)arg;
1176 1176 tcp_t *tcp = connp->conn_tcp;
1177 1177
1178 1178 freeb(mp);
1179 1179 if (tcp->tcp_linger_tid != 0 &&
1180 1180 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
1181 1181 tcp_stop_lingering(tcp);
1182 1182 tcp->tcp_client_errno = EINTR;
1183 1183 }
1184 1184 }
1185 1185
1186 1186 /*
1187 1187 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
1188 1188 * Some stream heads get upset if they see these later on as anything but NULL.
1189 1189 */
1190 1190 void
1191 1191 tcp_close_mpp(mblk_t **mpp)
1192 1192 {
1193 1193 mblk_t *mp;
1194 1194
1195 1195 if ((mp = *mpp) != NULL) {
1196 1196 do {
1197 1197 mp->b_next = NULL;
1198 1198 mp->b_prev = NULL;
1199 1199 } while ((mp = mp->b_cont) != NULL);
1200 1200
1201 1201 mp = *mpp;
1202 1202 *mpp = NULL;
1203 1203 freemsg(mp);
1204 1204 }
1205 1205 }
1206 1206
1207 1207 /* Do detached close. */
1208 1208 void
1209 1209 tcp_close_detached(tcp_t *tcp)
1210 1210 {
1211 1211 if (tcp->tcp_fused)
1212 1212 tcp_unfuse(tcp);
1213 1213
1214 1214 /*
1215 1215 * Clustering code serializes TCP disconnect callbacks and
1216 1216 * cluster tcp list walks by blocking a TCP disconnect callback
1217 1217 * if a cluster tcp list walk is in progress. This ensures
1218 1218 * accurate accounting of TCPs in the cluster code even though
1219 1219 * the TCP list walk itself is not atomic.
1220 1220 */
1221 1221 tcp_closei_local(tcp);
1222 1222 CONN_DEC_REF(tcp->tcp_connp);
1223 1223 }
1224 1224
1225 1225 /*
1226 1226 * The tcp_t is going away. Remove it from all lists and set it
1227 1227 * to TCPS_CLOSED. The freeing up of memory is deferred until
1228 1228 * tcp_inactive. This is needed since a thread in tcp_rput might have
1229 1229 * done a CONN_INC_REF on this structure before it was removed from the
1230 1230 * hashes.
1231 1231 */
1232 1232 void
1233 1233 tcp_closei_local(tcp_t *tcp)
1234 1234 {
1235 1235 conn_t *connp = tcp->tcp_connp;
1236 1236 tcp_stack_t *tcps = tcp->tcp_tcps;
1237 1237 int32_t oldstate;
1238 1238
1239 1239 if (!TCP_IS_SOCKET(tcp))
1240 1240 tcp_acceptor_hash_remove(tcp);
1241 1241
1242 1242 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1243 1243 tcp->tcp_ibsegs = 0;
1244 1244 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1245 1245 tcp->tcp_obsegs = 0;
1246 1246
1247 1247 /*
1248 1248 * This can be called via tcp_time_wait_processing() if TCP gets a
1249 1249 * SYN with sequence number outside the TIME-WAIT connection's
1250 1250 * window. So we need to check for TIME-WAIT state here as the
1251 1251 * connection counter is already decremented. See SET_TIME_WAIT()
1252 1252 * macro
1253 1253 */
1254 1254 if (tcp->tcp_state >= TCPS_ESTABLISHED &&
1255 1255 tcp->tcp_state < TCPS_TIME_WAIT) {
1256 1256 TCPS_CONN_DEC(tcps);
1257 1257 }
1258 1258
1259 1259 /*
1260 1260 * If we are an eager connection hanging off a listener that
1261 1261 * hasn't formally accepted the connection yet, get off his
1262 1262 * list and blow off any data that we have accumulated.
1263 1263 */
1264 1264 if (tcp->tcp_listener != NULL) {
1265 1265 tcp_t *listener = tcp->tcp_listener;
1266 1266 mutex_enter(&listener->tcp_eager_lock);
1267 1267 /*
1268 1268 * tcp_tconnind_started == B_TRUE means that the
1269 1269 * conn_ind has already gone to listener. At
1270 1270 * this point, eager will be closed but we
1271 1271 * leave it in listeners eager list so that
1272 1272 * if listener decides to close without doing
1273 1273 * accept, we can clean this up. In tcp_tli_accept
1274 1274 * we take care of the case of accept on closed
1275 1275 * eager.
1276 1276 */
1277 1277 if (!tcp->tcp_tconnind_started) {
1278 1278 tcp_eager_unlink(tcp);
1279 1279 mutex_exit(&listener->tcp_eager_lock);
1280 1280 /*
1281 1281 * We don't want to have any pointers to the
1282 1282 * listener queue, after we have released our
1283 1283 * reference on the listener
1284 1284 */
1285 1285 ASSERT(tcp->tcp_detached);
1286 1286 connp->conn_rq = NULL;
1287 1287 connp->conn_wq = NULL;
1288 1288 CONN_DEC_REF(listener->tcp_connp);
1289 1289 } else {
1290 1290 mutex_exit(&listener->tcp_eager_lock);
1291 1291 }
1292 1292 }
1293 1293
1294 1294 /* Stop all the timers */
1295 1295 tcp_timers_stop(tcp);
1296 1296
1297 1297 if (tcp->tcp_state == TCPS_LISTEN) {
1298 1298 if (tcp->tcp_ip_addr_cache) {
1299 1299 kmem_free((void *)tcp->tcp_ip_addr_cache,
1300 1300 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1301 1301 tcp->tcp_ip_addr_cache = NULL;
1302 1302 }
1303 1303 }
1304 1304
1305 1305 /* Decrement listerner connection counter if necessary. */
1306 1306 if (tcp->tcp_listen_cnt != NULL)
1307 1307 TCP_DECR_LISTEN_CNT(tcp);
1308 1308
1309 1309 mutex_enter(&tcp->tcp_non_sq_lock);
1310 1310 if (tcp->tcp_flow_stopped)
1311 1311 tcp_clrqfull(tcp);
1312 1312 mutex_exit(&tcp->tcp_non_sq_lock);
1313 1313
1314 1314 tcp_bind_hash_remove(tcp);
1315 1315 /*
1316 1316 * If the tcp_time_wait_collector (which runs outside the squeue)
1317 1317 * is trying to remove this tcp from the time wait list, we will
1318 1318 * block in tcp_time_wait_remove while trying to acquire the
1319 1319 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
1320 1320 * requires the ipcl_hash_remove to be ordered after the
1321 1321 * tcp_time_wait_remove for the refcnt checks to work correctly.
1322 1322 */
1323 1323 if (tcp->tcp_state == TCPS_TIME_WAIT)
1324 1324 (void) tcp_time_wait_remove(tcp, NULL);
1325 1325 CL_INET_DISCONNECT(connp);
1326 1326 ipcl_hash_remove(connp);
1327 1327 oldstate = tcp->tcp_state;
1328 1328 tcp->tcp_state = TCPS_CLOSED;
1329 1329 /* Need to probe before ixa_cleanup() is called */
1330 1330 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1331 1331 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
1332 1332 int32_t, oldstate);
1333 1333 ixa_cleanup(connp->conn_ixa);
1334 1334
1335 1335 /*
1336 1336 * Mark the conn as CONDEMNED
1337 1337 */
1338 1338 mutex_enter(&connp->conn_lock);
1339 1339 connp->conn_state_flags |= CONN_CONDEMNED;
1340 1340 mutex_exit(&connp->conn_lock);
1341 1341
1342 1342 ASSERT(tcp->tcp_time_wait_next == NULL);
1343 1343 ASSERT(tcp->tcp_time_wait_prev == NULL);
1344 1344 ASSERT(tcp->tcp_time_wait_expire == 0);
1345 1345
1346 1346 tcp_ipsec_cleanup(tcp);
1347 1347 }
1348 1348
1349 1349 /*
1350 1350 * tcp is dying (called from ipcl_conn_destroy and error cases).
1351 1351 * Free the tcp_t in either case.
1352 1352 */
1353 1353 void
1354 1354 tcp_free(tcp_t *tcp)
1355 1355 {
1356 1356 mblk_t *mp;
1357 1357 conn_t *connp = tcp->tcp_connp;
1358 1358
1359 1359 ASSERT(tcp != NULL);
1360 1360 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
1361 1361
1362 1362 connp->conn_rq = NULL;
1363 1363 connp->conn_wq = NULL;
1364 1364
1365 1365 tcp_close_mpp(&tcp->tcp_xmit_head);
1366 1366 tcp_close_mpp(&tcp->tcp_reass_head);
1367 1367 if (tcp->tcp_rcv_list != NULL) {
1368 1368 /* Free b_next chain */
1369 1369 tcp_close_mpp(&tcp->tcp_rcv_list);
1370 1370 }
1371 1371 if ((mp = tcp->tcp_urp_mp) != NULL) {
1372 1372 freemsg(mp);
1373 1373 }
1374 1374 if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1375 1375 freemsg(mp);
1376 1376 }
1377 1377
1378 1378 if (tcp->tcp_fused_sigurg_mp != NULL) {
1379 1379 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1380 1380 freeb(tcp->tcp_fused_sigurg_mp);
1381 1381 tcp->tcp_fused_sigurg_mp = NULL;
1382 1382 }
1383 1383
1384 1384 if (tcp->tcp_ordrel_mp != NULL) {
1385 1385 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1386 1386 freeb(tcp->tcp_ordrel_mp);
1387 1387 tcp->tcp_ordrel_mp = NULL;
1388 1388 }
1389 1389
1390 1390 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
1391 1391 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
1392 1392
1393 1393 if (tcp->tcp_hopopts != NULL) {
1394 1394 mi_free(tcp->tcp_hopopts);
1395 1395 tcp->tcp_hopopts = NULL;
1396 1396 tcp->tcp_hopoptslen = 0;
1397 1397 }
1398 1398 ASSERT(tcp->tcp_hopoptslen == 0);
1399 1399 if (tcp->tcp_dstopts != NULL) {
1400 1400 mi_free(tcp->tcp_dstopts);
1401 1401 tcp->tcp_dstopts = NULL;
1402 1402 tcp->tcp_dstoptslen = 0;
1403 1403 }
1404 1404 ASSERT(tcp->tcp_dstoptslen == 0);
1405 1405 if (tcp->tcp_rthdrdstopts != NULL) {
1406 1406 mi_free(tcp->tcp_rthdrdstopts);
1407 1407 tcp->tcp_rthdrdstopts = NULL;
1408 1408 tcp->tcp_rthdrdstoptslen = 0;
1409 1409 }
1410 1410 ASSERT(tcp->tcp_rthdrdstoptslen == 0);
1411 1411 if (tcp->tcp_rthdr != NULL) {
1412 1412 mi_free(tcp->tcp_rthdr);
1413 1413 tcp->tcp_rthdr = NULL;
1414 1414 tcp->tcp_rthdrlen = 0;
1415 1415 }
1416 1416 ASSERT(tcp->tcp_rthdrlen == 0);
1417 1417
1418 1418 /*
1419 1419 * Following is really a blowing away a union.
1420 1420 * It happens to have exactly two members of identical size
1421 1421 * the following code is enough.
1422 1422 */
1423 1423 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1424 1424
1425 1425 /*
1426 1426 * Destroy any association with SO_REUSEPORT group.
1427 1427 */
1428 1428 if (tcp->tcp_rg_bind != NULL) {
1429 1429 /*
1430 1430 * This is only necessary for connections which enabled
1431 1431 * SO_REUSEPORT but were never bound. Such connections should
1432 1432 * be the one and only member of the tcp_rg_tp to which they
1433 1433 * have been associated.
1434 1434 */
1435 1435 VERIFY(tcp_rg_remove(tcp->tcp_rg_bind, tcp));
1436 1436 tcp_rg_destroy(tcp->tcp_rg_bind);
1437 1437 tcp->tcp_rg_bind = NULL;
1438 1438 }
1439 1439
1440 1440 /*
1441 1441 * If this is a non-STREAM socket still holding on to an upper
1442 1442 * handle, release it. As a result of fallback we might also see
1443 1443 * STREAMS based conns with upper handles, in which case there is
1444 1444 * nothing to do other than clearing the field.
1445 1445 */
1446 1446 if (connp->conn_upper_handle != NULL) {
1447 1447 if (IPCL_IS_NONSTR(connp)) {
1448 1448 (*connp->conn_upcalls->su_closed)(
1449 1449 connp->conn_upper_handle);
1450 1450 tcp->tcp_detached = B_TRUE;
1451 1451 }
1452 1452 connp->conn_upper_handle = NULL;
1453 1453 connp->conn_upcalls = NULL;
1454 1454 }
1455 1455 }
1456 1456
1457 1457 /*
1458 1458 * tcp_get_conn/tcp_free_conn
1459 1459 *
1460 1460 * tcp_get_conn is used to get a clean tcp connection structure.
1461 1461 * It tries to reuse the connections put on the freelist by the
1462 1462 * time_wait_collector failing which it goes to kmem_cache. This
1463 1463 * way has two benefits compared to just allocating from and
1464 1464 * freeing to kmem_cache.
1465 1465 * 1) The time_wait_collector can free (which includes the cleanup)
1466 1466 * outside the squeue. So when the interrupt comes, we have a clean
1467 1467 * connection sitting in the freelist. Obviously, this buys us
1468 1468 * performance.
1469 1469 *
1470 1470 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
1471 1471 * has multiple disadvantages - tying up the squeue during alloc.
1472 1472 * But allocating the conn/tcp in IP land is also not the best since
1473 1473 * we can't check the 'q' and 'q0' which are protected by squeue and
1474 1474 * blindly allocate memory which might have to be freed here if we are
1475 1475 * not allowed to accept the connection. By using the freelist and
1476 1476 * putting the conn/tcp back in freelist, we don't pay a penalty for
1477 1477 * allocating memory without checking 'q/q0' and freeing it if we can't
1478 1478 * accept the connection.
1479 1479 *
1480 1480 * Care should be taken to put the conn back in the same squeue's freelist
1481 1481 * from which it was allocated. Best results are obtained if conn is
1482 1482 * allocated from listener's squeue and freed to the same. Time wait
1483 1483 * collector will free up the freelist is the connection ends up sitting
1484 1484 * there for too long.
1485 1485 */
1486 1486 void *
1487 1487 tcp_get_conn(void *arg, tcp_stack_t *tcps)
1488 1488 {
1489 1489 tcp_t *tcp = NULL;
1490 1490 conn_t *connp = NULL;
1491 1491 squeue_t *sqp = (squeue_t *)arg;
1492 1492 tcp_squeue_priv_t *tcp_time_wait;
1493 1493 netstack_t *ns;
1494 1494 mblk_t *tcp_rsrv_mp = NULL;
1495 1495
1496 1496 tcp_time_wait =
1497 1497 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1498 1498
1499 1499 mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1500 1500 tcp = tcp_time_wait->tcp_free_list;
1501 1501 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
1502 1502 if (tcp != NULL) {
1503 1503 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1504 1504 tcp_time_wait->tcp_free_list_cnt--;
1505 1505 mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1506 1506 tcp->tcp_time_wait_next = NULL;
1507 1507 connp = tcp->tcp_connp;
1508 1508 connp->conn_flags |= IPCL_REUSED;
1509 1509
1510 1510 ASSERT(tcp->tcp_tcps == NULL);
1511 1511 ASSERT(connp->conn_netstack == NULL);
1512 1512 ASSERT(tcp->tcp_rsrv_mp != NULL);
1513 1513 ns = tcps->tcps_netstack;
1514 1514 netstack_hold(ns);
1515 1515 connp->conn_netstack = ns;
1516 1516 connp->conn_ixa->ixa_ipst = ns->netstack_ip;
1517 1517 tcp->tcp_tcps = tcps;
1518 1518 ipcl_globalhash_insert(connp);
1519 1519
1520 1520 connp->conn_ixa->ixa_notify_cookie = tcp;
1521 1521 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
1522 1522 connp->conn_recv = tcp_input_data;
1523 1523 ASSERT(connp->conn_recvicmp == tcp_icmp_input);
1524 1524 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
1525 1525 return ((void *)connp);
1526 1526 }
1527 1527 mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1528 1528 /*
1529 1529 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
1530 1530 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
1531 1531 */
1532 1532 tcp_rsrv_mp = allocb(0, BPRI_HI);
1533 1533 if (tcp_rsrv_mp == NULL)
1534 1534 return (NULL);
1535 1535
1536 1536 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
1537 1537 tcps->tcps_netstack)) == NULL) {
1538 1538 freeb(tcp_rsrv_mp);
1539 1539 return (NULL);
1540 1540 }
1541 1541
1542 1542 tcp = connp->conn_tcp;
1543 1543 tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1544 1544 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
1545 1545
1546 1546 tcp->tcp_tcps = tcps;
1547 1547
1548 1548 connp->conn_recv = tcp_input_data;
1549 1549 connp->conn_recvicmp = tcp_icmp_input;
1550 1550 connp->conn_verifyicmp = tcp_verifyicmp;
1551 1551
1552 1552 /*
1553 1553 * Register tcp_notify to listen to capability changes detected by IP.
1554 1554 * This upcall is made in the context of the call to conn_ip_output
1555 1555 * thus it is inside the squeue.
1556 1556 */
1557 1557 connp->conn_ixa->ixa_notify = tcp_notify;
1558 1558 connp->conn_ixa->ixa_notify_cookie = tcp;
1559 1559
1560 1560 return ((void *)connp);
1561 1561 }
1562 1562
1563 1563 /*
1564 1564 * Handle connect to IPv4 destinations, including connections for AF_INET6
1565 1565 * sockets connecting to IPv4 mapped IPv6 destinations.
1566 1566 * Returns zero if OK, a positive errno, or a negative TLI error.
1567 1567 */
1568 1568 static int
1569 1569 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
1570 1570 uint_t srcid)
1571 1571 {
1572 1572 ipaddr_t dstaddr = *dstaddrp;
1573 1573 uint16_t lport;
1574 1574 conn_t *connp = tcp->tcp_connp;
1575 1575 tcp_stack_t *tcps = tcp->tcp_tcps;
1576 1576 int error;
1577 1577
1578 1578 ASSERT(connp->conn_ipversion == IPV4_VERSION);
1579 1579
1580 1580 /* Check for attempt to connect to INADDR_ANY */
1581 1581 if (dstaddr == INADDR_ANY) {
1582 1582 /*
1583 1583 * SunOS 4.x and 4.3 BSD allow an application
1584 1584 * to connect a TCP socket to INADDR_ANY.
1585 1585 * When they do this, the kernel picks the
1586 1586 * address of one interface and uses it
1587 1587 * instead. The kernel usually ends up
1588 1588 * picking the address of the loopback
1589 1589 * interface. This is an undocumented feature.
1590 1590 * However, we provide the same thing here
1591 1591 * in order to have source and binary
1592 1592 * compatibility with SunOS 4.x.
1593 1593 * Update the T_CONN_REQ (sin/sin6) since it is used to
1594 1594 * generate the T_CONN_CON.
1595 1595 */
1596 1596 dstaddr = htonl(INADDR_LOOPBACK);
1597 1597 *dstaddrp = dstaddr;
1598 1598 }
1599 1599
1600 1600 /* Handle __sin6_src_id if socket not bound to an IP address */
1601 1601 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
1602 1602 if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1603 1603 IPCL_ZONEID(connp), B_TRUE, tcps->tcps_netstack)) {
1604 1604 /* Mismatch - conn_laddr_v6 would be v6 address. */
1605 1605 return (EADDRNOTAVAIL);
1606 1606 }
1607 1607 connp->conn_saddr_v6 = connp->conn_laddr_v6;
1608 1608 }
1609 1609
1610 1610 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
1611 1611 connp->conn_fport = dstport;
1612 1612
1613 1613 /*
1614 1614 * At this point the remote destination address and remote port fields
1615 1615 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1616 1616 * have to see which state tcp was in so we can take appropriate action.
1617 1617 */
1618 1618 if (tcp->tcp_state == TCPS_IDLE) {
1619 1619 /*
1620 1620 * We support a quick connect capability here, allowing
1621 1621 * clients to transition directly from IDLE to SYN_SENT
1622 1622 * tcp_bindi will pick an unused port, insert the connection
1623 1623 * in the bind hash and transition to BOUND state.
1624 1624 */
1625 1625 lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1626 1626 tcp, B_TRUE);
1627 1627 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1628 1628 B_FALSE, B_FALSE);
1629 1629 if (lport == 0)
1630 1630 return (-TNOADDR);
1631 1631 }
1632 1632
1633 1633 /*
1634 1634 * Lookup the route to determine a source address and the uinfo.
1635 1635 * Setup TCP parameters based on the metrics/DCE.
1636 1636 */
1637 1637 error = tcp_set_destination(tcp);
1638 1638 if (error != 0)
1639 1639 return (error);
1640 1640
1641 1641 /*
1642 1642 * Don't let an endpoint connect to itself.
1643 1643 */
1644 1644 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
1645 1645 connp->conn_fport == connp->conn_lport)
1646 1646 return (-TBADADDR);
1647 1647
1648 1648 tcp->tcp_state = TCPS_SYN_SENT;
1649 1649
1650 1650 return (ipcl_conn_insert_v4(connp));
1651 1651 }
1652 1652
1653 1653 /*
1654 1654 * Handle connect to IPv6 destinations.
1655 1655 * Returns zero if OK, a positive errno, or a negative TLI error.
1656 1656 */
1657 1657 static int
1658 1658 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
1659 1659 uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
1660 1660 {
1661 1661 uint16_t lport;
1662 1662 conn_t *connp = tcp->tcp_connp;
1663 1663 tcp_stack_t *tcps = tcp->tcp_tcps;
1664 1664 int error;
1665 1665
1666 1666 ASSERT(connp->conn_family == AF_INET6);
1667 1667
1668 1668 /*
1669 1669 * If we're here, it means that the destination address is a native
1670 1670 * IPv6 address. Return an error if conn_ipversion is not IPv6. A
1671 1671 * reason why it might not be IPv6 is if the socket was bound to an
1672 1672 * IPv4-mapped IPv6 address.
1673 1673 */
1674 1674 if (connp->conn_ipversion != IPV6_VERSION)
1675 1675 return (-TBADADDR);
1676 1676
1677 1677 /*
1678 1678 * Interpret a zero destination to mean loopback.
1679 1679 * Update the T_CONN_REQ (sin/sin6) since it is used to
1680 1680 * generate the T_CONN_CON.
1681 1681 */
1682 1682 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
1683 1683 *dstaddrp = ipv6_loopback;
1684 1684
1685 1685 /* Handle __sin6_src_id if socket not bound to an IP address */
1686 1686 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1687 1687 if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1688 1688 IPCL_ZONEID(connp), B_FALSE, tcps->tcps_netstack)) {
1689 1689 /* Mismatch - conn_laddr_v6 would be v4-mapped. */
1690 1690 return (EADDRNOTAVAIL);
1691 1691 }
1692 1692 connp->conn_saddr_v6 = connp->conn_laddr_v6;
1693 1693 }
1694 1694
1695 1695 /*
1696 1696 * Take care of the scope_id now.
1697 1697 */
1698 1698 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
1699 1699 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1700 1700 connp->conn_ixa->ixa_scopeid = scope_id;
1701 1701 } else {
1702 1702 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
1703 1703 }
1704 1704
1705 1705 connp->conn_flowinfo = flowinfo;
1706 1706 connp->conn_faddr_v6 = *dstaddrp;
1707 1707 connp->conn_fport = dstport;
1708 1708
1709 1709 /*
1710 1710 * At this point the remote destination address and remote port fields
1711 1711 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1712 1712 * have to see which state tcp was in so we can take appropriate action.
1713 1713 */
1714 1714 if (tcp->tcp_state == TCPS_IDLE) {
1715 1715 /*
1716 1716 * We support a quick connect capability here, allowing
1717 1717 * clients to transition directly from IDLE to SYN_SENT
1718 1718 * tcp_bindi will pick an unused port, insert the connection
1719 1719 * in the bind hash and transition to BOUND state.
1720 1720 */
1721 1721 lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1722 1722 tcp, B_TRUE);
1723 1723 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1724 1724 B_FALSE, B_FALSE);
1725 1725 if (lport == 0)
1726 1726 return (-TNOADDR);
1727 1727 }
1728 1728
1729 1729 /*
1730 1730 * Lookup the route to determine a source address and the uinfo.
1731 1731 * Setup TCP parameters based on the metrics/DCE.
1732 1732 */
1733 1733 error = tcp_set_destination(tcp);
1734 1734 if (error != 0)
1735 1735 return (error);
1736 1736
1737 1737 /*
1738 1738 * Don't let an endpoint connect to itself.
1739 1739 */
1740 1740 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
1741 1741 connp->conn_fport == connp->conn_lport)
1742 1742 return (-TBADADDR);
1743 1743
1744 1744 tcp->tcp_state = TCPS_SYN_SENT;
1745 1745
1746 1746 return (ipcl_conn_insert_v6(connp));
1747 1747 }
1748 1748
1749 1749 /*
1750 1750 * Disconnect
1751 1751 * Note that unlike other functions this returns a positive tli error
1752 1752 * when it fails; it never returns an errno.
1753 1753 */
1754 1754 static int
1755 1755 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
1756 1756 {
1757 1757 conn_t *lconnp;
1758 1758 tcp_stack_t *tcps = tcp->tcp_tcps;
1759 1759 conn_t *connp = tcp->tcp_connp;
1760 1760
1761 1761 /*
1762 1762 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
1763 1763 * when the stream is in BOUND state. Do not send a reset,
1764 1764 * since the destination IP address is not valid, and it can
1765 1765 * be the initialized value of all zeros (broadcast address).
1766 1766 */
1767 1767 if (tcp->tcp_state <= TCPS_BOUND) {
1768 1768 if (connp->conn_debug) {
1769 1769 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
1770 1770 "tcp_disconnect: bad state, %d", tcp->tcp_state);
1771 1771 }
1772 1772 return (TOUTSTATE);
1773 1773 } else if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1774 1774 TCPS_CONN_DEC(tcps);
1775 1775 }
1776 1776
1777 1777 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
1778 1778
1779 1779 /*
1780 1780 * According to TPI, for non-listeners, ignore seqnum
1781 1781 * and disconnect.
1782 1782 * Following interpretation of -1 seqnum is historical
1783 1783 * and implied TPI ? (TPI only states that for T_CONN_IND,
1784 1784 * a valid seqnum should not be -1).
1785 1785 *
1786 1786 * -1 means disconnect everything
1787 1787 * regardless even on a listener.
1788 1788 */
1789 1789
1790 1790 int old_state = tcp->tcp_state;
1791 1791 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
1792 1792
1793 1793 /*
1794 1794 * The connection can't be on the tcp_time_wait_head list
1795 1795 * since it is not detached.
1796 1796 */
1797 1797 ASSERT(tcp->tcp_time_wait_next == NULL);
1798 1798 ASSERT(tcp->tcp_time_wait_prev == NULL);
1799 1799 ASSERT(tcp->tcp_time_wait_expire == 0);
1800 1800 /*
1801 1801 * If it used to be a listener, check to make sure no one else
1802 1802 * has taken the port before switching back to LISTEN state.
1803 1803 */
1804 1804 if (connp->conn_ipversion == IPV4_VERSION) {
1805 1805 lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
1806 1806 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
1807 1807 } else {
1808 1808 uint_t ifindex = 0;
1809 1809
1810 1810 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
1811 1811 ifindex = connp->conn_ixa->ixa_scopeid;
1812 1812
1813 1813 /* Allow conn_bound_if listeners? */
1814 1814 lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
1815 1815 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
1816 1816 ipst);
1817 1817 }
1818 1818 if (tcp->tcp_conn_req_max && lconnp == NULL) {
1819 1819 tcp->tcp_state = TCPS_LISTEN;
1820 1820 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1821 1821 connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1822 1822 NULL, int32_t, old_state);
1823 1823 } else if (old_state > TCPS_BOUND) {
1824 1824 tcp->tcp_conn_req_max = 0;
1825 1825 tcp->tcp_state = TCPS_BOUND;
1826 1826 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1827 1827 connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1828 1828 NULL, int32_t, old_state);
1829 1829
1830 1830 /*
1831 1831 * If this end point is not going to become a listener,
1832 1832 * decrement the listener connection count if
1833 1833 * necessary. Note that we do not do this if it is
1834 1834 * going to be a listner (the above if case) since
1835 1835 * then it may remove the counter struct.
1836 1836 */
1837 1837 if (tcp->tcp_listen_cnt != NULL)
1838 1838 TCP_DECR_LISTEN_CNT(tcp);
1839 1839 }
1840 1840 if (lconnp != NULL)
1841 1841 CONN_DEC_REF(lconnp);
1842 1842 switch (old_state) {
1843 1843 case TCPS_SYN_SENT:
1844 1844 case TCPS_SYN_RCVD:
1845 1845 TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1846 1846 break;
1847 1847 case TCPS_ESTABLISHED:
1848 1848 case TCPS_CLOSE_WAIT:
1849 1849 TCPS_BUMP_MIB(tcps, tcpEstabResets);
1850 1850 break;
1851 1851 }
1852 1852
1853 1853 if (tcp->tcp_fused)
1854 1854 tcp_unfuse(tcp);
1855 1855
1856 1856 mutex_enter(&tcp->tcp_eager_lock);
1857 1857 if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
1858 1858 (tcp->tcp_conn_req_cnt_q != 0)) {
1859 1859 tcp_eager_cleanup(tcp, 0);
1860 1860 }
1861 1861 mutex_exit(&tcp->tcp_eager_lock);
1862 1862
1863 1863 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
1864 1864 tcp->tcp_rnxt, TH_RST | TH_ACK);
1865 1865
1866 1866 tcp_reinit(tcp);
1867 1867
1868 1868 return (0);
1869 1869 } else if (!tcp_eager_blowoff(tcp, seqnum)) {
1870 1870 return (TBADSEQ);
1871 1871 }
1872 1872 return (0);
1873 1873 }
1874 1874
1875 1875 /*
1876 1876 * Our client hereby directs us to reject the connection request
1877 1877 * that tcp_input_listener() marked with 'seqnum'. Rejection consists
1878 1878 * of sending the appropriate RST, not an ICMP error.
1879 1879 */
1880 1880 void
1881 1881 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
1882 1882 {
1883 1883 t_scalar_t seqnum;
1884 1884 int error;
1885 1885 conn_t *connp = tcp->tcp_connp;
1886 1886
1887 1887 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
1888 1888 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
1889 1889 tcp_err_ack(tcp, mp, TPROTO, 0);
1890 1890 return;
1891 1891 }
1892 1892 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
1893 1893 error = tcp_disconnect_common(tcp, seqnum);
1894 1894 if (error != 0)
1895 1895 tcp_err_ack(tcp, mp, error, 0);
1896 1896 else {
1897 1897 if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1898 1898 /* Send M_FLUSH according to TPI */
1899 1899 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
1900 1900 }
1901 1901 mp = mi_tpi_ok_ack_alloc(mp);
1902 1902 if (mp != NULL)
1903 1903 putnext(connp->conn_rq, mp);
1904 1904 }
1905 1905 }
1906 1906
1907 1907 /*
1908 1908 * Handle reinitialization of a tcp structure.
1909 1909 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
1910 1910 */
1911 1911 static void
1912 1912 tcp_reinit(tcp_t *tcp)
1913 1913 {
1914 1914 mblk_t *mp;
1915 1915 tcp_stack_t *tcps = tcp->tcp_tcps;
1916 1916 conn_t *connp = tcp->tcp_connp;
1917 1917 int32_t oldstate;
1918 1918
1919 1919 /* tcp_reinit should never be called for detached tcp_t's */
1920 1920 ASSERT(tcp->tcp_listener == NULL);
1921 1921 ASSERT((connp->conn_family == AF_INET &&
1922 1922 connp->conn_ipversion == IPV4_VERSION) ||
1923 1923 (connp->conn_family == AF_INET6 &&
1924 1924 (connp->conn_ipversion == IPV4_VERSION ||
1925 1925 connp->conn_ipversion == IPV6_VERSION)));
1926 1926
1927 1927 /* Cancel outstanding timers */
1928 1928 tcp_timers_stop(tcp);
1929 1929
1930 1930 /*
1931 1931 * Reset everything in the state vector, after updating global
1932 1932 * MIB data from instance counters.
1933 1933 */
1934 1934 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1935 1935 tcp->tcp_ibsegs = 0;
1936 1936 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1937 1937 tcp->tcp_obsegs = 0;
1938 1938
1939 1939 tcp_close_mpp(&tcp->tcp_xmit_head);
1940 1940 if (tcp->tcp_snd_zcopy_aware)
1941 1941 tcp_zcopy_notify(tcp);
1942 1942 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
1943 1943 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
1944 1944 mutex_enter(&tcp->tcp_non_sq_lock);
1945 1945 if (tcp->tcp_flow_stopped &&
1946 1946 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
1947 1947 tcp_clrqfull(tcp);
1948 1948 }
1949 1949 mutex_exit(&tcp->tcp_non_sq_lock);
1950 1950 tcp_close_mpp(&tcp->tcp_reass_head);
1951 1951 tcp->tcp_reass_tail = NULL;
1952 1952 if (tcp->tcp_rcv_list != NULL) {
1953 1953 /* Free b_next chain */
1954 1954 tcp_close_mpp(&tcp->tcp_rcv_list);
1955 1955 tcp->tcp_rcv_last_head = NULL;
1956 1956 tcp->tcp_rcv_last_tail = NULL;
1957 1957 tcp->tcp_rcv_cnt = 0;
1958 1958 }
1959 1959 tcp->tcp_rcv_last_tail = NULL;
1960 1960
1961 1961 if ((mp = tcp->tcp_urp_mp) != NULL) {
1962 1962 freemsg(mp);
1963 1963 tcp->tcp_urp_mp = NULL;
1964 1964 }
1965 1965 if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1966 1966 freemsg(mp);
1967 1967 tcp->tcp_urp_mark_mp = NULL;
1968 1968 }
1969 1969 if (tcp->tcp_fused_sigurg_mp != NULL) {
1970 1970 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1971 1971 freeb(tcp->tcp_fused_sigurg_mp);
1972 1972 tcp->tcp_fused_sigurg_mp = NULL;
1973 1973 }
1974 1974 if (tcp->tcp_ordrel_mp != NULL) {
1975 1975 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1976 1976 freeb(tcp->tcp_ordrel_mp);
1977 1977 tcp->tcp_ordrel_mp = NULL;
1978 1978 }
1979 1979
1980 1980 /*
1981 1981 * Following is a union with two members which are
1982 1982 * identical types and size so the following cleanup
1983 1983 * is enough.
1984 1984 */
1985 1985 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1986 1986
1987 1987 CL_INET_DISCONNECT(connp);
1988 1988
1989 1989 /*
1990 1990 * The connection can't be on the tcp_time_wait_head list
1991 1991 * since it is not detached.
1992 1992 */
1993 1993 ASSERT(tcp->tcp_time_wait_next == NULL);
1994 1994 ASSERT(tcp->tcp_time_wait_prev == NULL);
1995 1995 ASSERT(tcp->tcp_time_wait_expire == 0);
1996 1996
1997 1997 /*
1998 1998 * Reset/preserve other values
1999 1999 */
2000 2000 tcp_reinit_values(tcp);
2001 2001 ipcl_hash_remove(connp);
2002 2002 /* Note that ixa_cred gets cleared in ixa_cleanup */
2003 2003 ixa_cleanup(connp->conn_ixa);
2004 2004 tcp_ipsec_cleanup(tcp);
2005 2005
2006 2006 connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
2007 2007 connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
2008 2008 oldstate = tcp->tcp_state;
2009 2009
2010 2010 if (tcp->tcp_conn_req_max != 0) {
2011 2011 /*
2012 2012 * This is the case when a TLI program uses the same
2013 2013 * transport end point to accept a connection. This
2014 2014 * makes the TCP both a listener and acceptor. When
2015 2015 * this connection is closed, we need to set the state
2016 2016 * back to TCPS_LISTEN. Make sure that the eager list
2017 2017 * is reinitialized.
2018 2018 *
2019 2019 * Note that this stream is still bound to the four
2020 2020 * tuples of the previous connection in IP. If a new
2021 2021 * SYN with different foreign address comes in, IP will
2022 2022 * not find it and will send it to the global queue. In
2023 2023 * the global queue, TCP will do a tcp_lookup_listener()
2024 2024 * to find this stream. This works because this stream
2025 2025 * is only removed from connected hash.
2026 2026 *
2027 2027 */
2028 2028 tcp->tcp_state = TCPS_LISTEN;
2029 2029 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
2030 2030 tcp->tcp_eager_next_drop_q0 = tcp;
2031 2031 tcp->tcp_eager_prev_drop_q0 = tcp;
2032 2032 /*
2033 2033 * Initially set conn_recv to tcp_input_listener_unbound to try
2034 2034 * to pick a good squeue for the listener when the first SYN
2035 2035 * arrives. tcp_input_listener_unbound sets it to
2036 2036 * tcp_input_listener on that first SYN.
2037 2037 */
2038 2038 connp->conn_recv = tcp_input_listener_unbound;
2039 2039
2040 2040 connp->conn_proto = IPPROTO_TCP;
2041 2041 connp->conn_faddr_v6 = ipv6_all_zeros;
2042 2042 connp->conn_fport = 0;
2043 2043
2044 2044 (void) ipcl_bind_insert(connp);
2045 2045 } else {
2046 2046 tcp->tcp_state = TCPS_BOUND;
2047 2047 }
2048 2048
2049 2049 /*
2050 2050 * Initialize to default values
2051 2051 */
2052 2052 tcp_init_values(tcp, NULL);
2053 2053
2054 2054 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2055 2055 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
2056 2056 int32_t, oldstate);
2057 2057
2058 2058 ASSERT(tcp->tcp_ptpbhn != NULL);
2059 2059 tcp->tcp_rwnd = connp->conn_rcvbuf;
2060 2060 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
2061 2061 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
2062 2062 }
2063 2063
2064 2064 /*
2065 2065 * Force values to zero that need be zero.
2066 2066 * Do not touch values asociated with the BOUND or LISTEN state
2067 2067 * since the connection will end up in that state after the reinit.
2068 2068 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
2069 2069 * structure!
2070 2070 */
2071 2071 static void
2072 2072 tcp_reinit_values(tcp_t *tcp)
2073 2073 {
2074 2074 tcp_stack_t *tcps = tcp->tcp_tcps;
2075 2075 conn_t *connp = tcp->tcp_connp;
2076 2076
2077 2077 #ifndef lint
2078 2078 #define DONTCARE(x)
2079 2079 #define PRESERVE(x)
2080 2080 #else
2081 2081 #define DONTCARE(x) ((x) = (x))
2082 2082 #define PRESERVE(x) ((x) = (x))
2083 2083 #endif /* lint */
2084 2084
2085 2085 PRESERVE(tcp->tcp_bind_hash_port);
2086 2086 PRESERVE(tcp->tcp_bind_hash);
2087 2087 PRESERVE(tcp->tcp_ptpbhn);
2088 2088 PRESERVE(tcp->tcp_acceptor_hash);
2089 2089 PRESERVE(tcp->tcp_ptpahn);
2090 2090
2091 2091 /* Should be ASSERT NULL on these with new code! */
2092 2092 ASSERT(tcp->tcp_time_wait_next == NULL);
2093 2093 ASSERT(tcp->tcp_time_wait_prev == NULL);
2094 2094 ASSERT(tcp->tcp_time_wait_expire == 0);
2095 2095 PRESERVE(tcp->tcp_state);
2096 2096 PRESERVE(connp->conn_rq);
2097 2097 PRESERVE(connp->conn_wq);
2098 2098
2099 2099 ASSERT(tcp->tcp_xmit_head == NULL);
2100 2100 ASSERT(tcp->tcp_xmit_last == NULL);
2101 2101 ASSERT(tcp->tcp_unsent == 0);
2102 2102 ASSERT(tcp->tcp_xmit_tail == NULL);
2103 2103 ASSERT(tcp->tcp_xmit_tail_unsent == 0);
2104 2104
2105 2105 tcp->tcp_snxt = 0; /* Displayed in mib */
2106 2106 tcp->tcp_suna = 0; /* Displayed in mib */
2107 2107 tcp->tcp_swnd = 0;
2108 2108 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */
2109 2109
2110 2110 ASSERT(tcp->tcp_ibsegs == 0);
2111 2111 ASSERT(tcp->tcp_obsegs == 0);
2112 2112
2113 2113 if (connp->conn_ht_iphc != NULL) {
2114 2114 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
2115 2115 connp->conn_ht_iphc = NULL;
2116 2116 connp->conn_ht_iphc_allocated = 0;
2117 2117 connp->conn_ht_iphc_len = 0;
2118 2118 connp->conn_ht_ulp = NULL;
2119 2119 connp->conn_ht_ulp_len = 0;
2120 2120 tcp->tcp_ipha = NULL;
2121 2121 tcp->tcp_ip6h = NULL;
2122 2122 tcp->tcp_tcpha = NULL;
2123 2123 }
2124 2124
2125 2125 /* We clear any IP_OPTIONS and extension headers */
2126 2126 ip_pkt_free(&connp->conn_xmit_ipp);
2127 2127
2128 2128 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */
2129 2129 DONTCARE(tcp->tcp_ipha);
2130 2130 DONTCARE(tcp->tcp_ip6h);
2131 2131 DONTCARE(tcp->tcp_tcpha);
2132 2132 tcp->tcp_valid_bits = 0;
2133 2133
2134 2134 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */
2135 2135 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */
2136 2136 tcp->tcp_last_rcv_lbolt = 0;
2137 2137
2138 2138 tcp->tcp_init_cwnd = 0;
2139 2139
2140 2140 tcp->tcp_urp_last_valid = 0;
2141 2141 tcp->tcp_hard_binding = 0;
2142 2142
2143 2143 tcp->tcp_fin_acked = 0;
2144 2144 tcp->tcp_fin_rcvd = 0;
2145 2145 tcp->tcp_fin_sent = 0;
2146 2146 tcp->tcp_ordrel_done = 0;
2147 2147
2148 2148 tcp->tcp_detached = 0;
2149 2149
2150 2150 tcp->tcp_snd_ws_ok = B_FALSE;
2151 2151 tcp->tcp_snd_ts_ok = B_FALSE;
2152 2152 tcp->tcp_zero_win_probe = 0;
2153 2153
2154 2154 tcp->tcp_loopback = 0;
2155 2155 tcp->tcp_localnet = 0;
2156 2156 tcp->tcp_syn_defense = 0;
2157 2157 tcp->tcp_set_timer = 0;
2158 2158
2159 2159 tcp->tcp_active_open = 0;
2160 2160 tcp->tcp_rexmit = B_FALSE;
2161 2161 tcp->tcp_xmit_zc_clean = B_FALSE;
2162 2162
2163 2163 tcp->tcp_snd_sack_ok = B_FALSE;
2164 2164 tcp->tcp_hwcksum = B_FALSE;
2165 2165
2166 2166 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */
2167 2167
2168 2168 tcp->tcp_conn_def_q0 = 0;
2169 2169 tcp->tcp_ip_forward_progress = B_FALSE;
2170 2170 tcp->tcp_ecn_ok = B_FALSE;
2171 2171
2172 2172 tcp->tcp_cwr = B_FALSE;
2173 2173 tcp->tcp_ecn_echo_on = B_FALSE;
2174 2174 tcp->tcp_is_wnd_shrnk = B_FALSE;
2175 2175
2176 2176 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
2177 2177 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
2178 2178
2179 2179 tcp->tcp_rcv_ws = 0;
2180 2180 tcp->tcp_snd_ws = 0;
2181 2181 tcp->tcp_ts_recent = 0;
2182 2182 tcp->tcp_rnxt = 0; /* Displayed in mib */
2183 2183 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */
2184 2184 tcp->tcp_initial_pmtu = 0;
2185 2185
2186 2186 ASSERT(tcp->tcp_reass_head == NULL);
2187 2187 ASSERT(tcp->tcp_reass_tail == NULL);
2188 2188
2189 2189 tcp->tcp_cwnd_cnt = 0;
2190 2190
2191 2191 ASSERT(tcp->tcp_rcv_list == NULL);
2192 2192 ASSERT(tcp->tcp_rcv_last_head == NULL);
2193 2193 ASSERT(tcp->tcp_rcv_last_tail == NULL);
2194 2194 ASSERT(tcp->tcp_rcv_cnt == 0);
2195 2195
2196 2196 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
2197 2197 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */
2198 2198 tcp->tcp_csuna = 0;
2199 2199
2200 2200 tcp->tcp_rto = 0; /* Displayed in MIB */
2201 2201 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */
2202 2202 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */
2203 2203 tcp->tcp_rtt_update = 0;
2204 2204
2205 2205 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2206 2206 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2207 2207
2208 2208 tcp->tcp_rack = 0; /* Displayed in mib */
2209 2209 tcp->tcp_rack_cnt = 0;
2210 2210 tcp->tcp_rack_cur_max = 0;
2211 2211 tcp->tcp_rack_abs_max = 0;
2212 2212
2213 2213 tcp->tcp_max_swnd = 0;
2214 2214
2215 2215 ASSERT(tcp->tcp_listener == NULL);
2216 2216
2217 2217 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */
2218 2218 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */
2219 2219 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */
2220 2220 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */
2221 2221
2222 2222 ASSERT(tcp->tcp_conn_req_cnt_q == 0);
2223 2223 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
2224 2224 PRESERVE(tcp->tcp_conn_req_max);
2225 2225 PRESERVE(tcp->tcp_conn_req_seqnum);
2226 2226
2227 2227 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
2228 2228 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
2229 2229 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
2230 2230 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
2231 2231
2232 2232 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */
2233 2233 ASSERT(tcp->tcp_urp_mp == NULL);
2234 2234 ASSERT(tcp->tcp_urp_mark_mp == NULL);
2235 2235 ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
2236 2236
2237 2237 ASSERT(tcp->tcp_eager_next_q == NULL);
2238 2238 ASSERT(tcp->tcp_eager_last_q == NULL);
2239 2239 ASSERT((tcp->tcp_eager_next_q0 == NULL &&
2240 2240 tcp->tcp_eager_prev_q0 == NULL) ||
2241 2241 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
2242 2242 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
2243 2243
2244 2244 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
2245 2245 tcp->tcp_eager_prev_drop_q0 == NULL) ||
2246 2246 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
2247 2247
2248 2248 DONTCARE(tcp->tcp_ka_rinterval); /* Init in tcp_init_values */
2249 2249 DONTCARE(tcp->tcp_ka_abort_thres); /* Init in tcp_init_values */
2250 2250 DONTCARE(tcp->tcp_ka_cnt); /* Init in tcp_init_values */
2251 2251
2252 2252 tcp->tcp_client_errno = 0;
2253 2253
2254 2254 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */
2255 2255
2256 2256 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */
2257 2257
2258 2258 PRESERVE(connp->conn_bound_addr_v6);
2259 2259 tcp->tcp_last_sent_len = 0;
2260 2260 tcp->tcp_dupack_cnt = 0;
2261 2261
2262 2262 connp->conn_fport = 0; /* Displayed in MIB */
2263 2263 PRESERVE(connp->conn_lport);
2264 2264
2265 2265 PRESERVE(tcp->tcp_acceptor_lockp);
2266 2266
2267 2267 ASSERT(tcp->tcp_ordrel_mp == NULL);
2268 2268 PRESERVE(tcp->tcp_acceptor_id);
2269 2269 DONTCARE(tcp->tcp_ipsec_overhead);
2270 2270
2271 2271 PRESERVE(connp->conn_family);
2272 2272 /* Remove any remnants of mapped address binding */
2273 2273 if (connp->conn_family == AF_INET6) {
2274 2274 connp->conn_ipversion = IPV6_VERSION;
2275 2275 tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2276 2276 } else {
2277 2277 connp->conn_ipversion = IPV4_VERSION;
2278 2278 tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2279 2279 }
2280 2280
2281 2281 connp->conn_bound_if = 0;
2282 2282 connp->conn_recv_ancillary.crb_all = 0;
2283 2283 tcp->tcp_recvifindex = 0;
2284 2284 tcp->tcp_recvhops = 0;
2285 2285 tcp->tcp_closed = 0;
2286 2286 if (tcp->tcp_hopopts != NULL) {
2287 2287 mi_free(tcp->tcp_hopopts);
2288 2288 tcp->tcp_hopopts = NULL;
2289 2289 tcp->tcp_hopoptslen = 0;
2290 2290 }
2291 2291 ASSERT(tcp->tcp_hopoptslen == 0);
2292 2292 if (tcp->tcp_dstopts != NULL) {
2293 2293 mi_free(tcp->tcp_dstopts);
2294 2294 tcp->tcp_dstopts = NULL;
2295 2295 tcp->tcp_dstoptslen = 0;
2296 2296 }
2297 2297 ASSERT(tcp->tcp_dstoptslen == 0);
2298 2298 if (tcp->tcp_rthdrdstopts != NULL) {
2299 2299 mi_free(tcp->tcp_rthdrdstopts);
2300 2300 tcp->tcp_rthdrdstopts = NULL;
2301 2301 tcp->tcp_rthdrdstoptslen = 0;
2302 2302 }
2303 2303 ASSERT(tcp->tcp_rthdrdstoptslen == 0);
2304 2304 if (tcp->tcp_rthdr != NULL) {
2305 2305 mi_free(tcp->tcp_rthdr);
2306 2306 tcp->tcp_rthdr = NULL;
2307 2307 tcp->tcp_rthdrlen = 0;
2308 2308 }
2309 2309 ASSERT(tcp->tcp_rthdrlen == 0);
2310 2310
2311 2311 /* Reset fusion-related fields */
2312 2312 tcp->tcp_fused = B_FALSE;
2313 2313 tcp->tcp_unfusable = B_FALSE;
2314 2314 tcp->tcp_fused_sigurg = B_FALSE;
2315 2315 tcp->tcp_loopback_peer = NULL;
2316 2316
2317 2317 tcp->tcp_lso = B_FALSE;
2318 2318
2319 2319 tcp->tcp_in_ack_unsent = 0;
2320 2320 tcp->tcp_cork = B_FALSE;
2321 2321 tcp->tcp_tconnind_started = B_FALSE;
2322 2322
2323 2323 PRESERVE(tcp->tcp_squeue_bytes);
2324 2324
2325 2325 tcp->tcp_closemp_used = B_FALSE;
2326 2326
2327 2327 PRESERVE(tcp->tcp_rsrv_mp);
2328 2328 PRESERVE(tcp->tcp_rsrv_mp_lock);
2329 2329
2330 2330 #ifdef DEBUG
2331 2331 DONTCARE(tcp->tcmp_stk[0]);
2332 2332 #endif
2333 2333
2334 2334 PRESERVE(tcp->tcp_connid);
2335 2335
2336 2336 ASSERT(tcp->tcp_listen_cnt == NULL);
2337 2337 ASSERT(tcp->tcp_reass_tid == 0);
2338 2338
2339 2339 #undef DONTCARE
2340 2340 #undef PRESERVE
2341 2341 }
2342 2342
2343 2343 /*
2344 2344 * Initialize the various fields in tcp_t. If parent (the listener) is non
2345 2345 * NULL, certain values will be inheritted from it.
2346 2346 */
2347 2347 void
2348 2348 tcp_init_values(tcp_t *tcp, tcp_t *parent)
2349 2349 {
2350 2350 tcp_stack_t *tcps = tcp->tcp_tcps;
2351 2351 conn_t *connp = tcp->tcp_connp;
2352 2352 clock_t rto;
2353 2353
2354 2354 ASSERT((connp->conn_family == AF_INET &&
2355 2355 connp->conn_ipversion == IPV4_VERSION) ||
2356 2356 (connp->conn_family == AF_INET6 &&
2357 2357 (connp->conn_ipversion == IPV4_VERSION ||
2358 2358 connp->conn_ipversion == IPV6_VERSION)));
2359 2359
2360 2360 if (parent == NULL) {
2361 2361 tcp->tcp_naglim = tcps->tcps_naglim_def;
2362 2362
2363 2363 tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial;
2364 2364 tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min;
2365 2365 tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max;
2366 2366
2367 2367 tcp->tcp_first_ctimer_threshold =
2368 2368 tcps->tcps_ip_notify_cinterval;
2369 2369 tcp->tcp_second_ctimer_threshold =
2370 2370 tcps->tcps_ip_abort_cinterval;
2371 2371 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
2372 2372 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
2373 2373
2374 2374 tcp->tcp_fin_wait_2_flush_interval =
2375 2375 tcps->tcps_fin_wait_2_flush_interval;
2376 2376
2377 2377 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
2378 2378 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
2379 2379 tcp->tcp_ka_cnt = 0;
2380 2380 tcp->tcp_ka_rinterval = 0;
2381 2381
2382 2382 /*
2383 2383 * Default value of tcp_init_cwnd is 0, so no need to set here
2384 2384 * if parent is NULL. But we need to inherit it from parent.
2385 2385 */
2386 2386 } else {
2387 2387 /* Inherit various TCP parameters from the parent. */
2388 2388 tcp->tcp_naglim = parent->tcp_naglim;
2389 2389
2390 2390 tcp->tcp_rto_initial = parent->tcp_rto_initial;
2391 2391 tcp->tcp_rto_min = parent->tcp_rto_min;
2392 2392 tcp->tcp_rto_max = parent->tcp_rto_max;
2393 2393
2394 2394 tcp->tcp_first_ctimer_threshold =
2395 2395 parent->tcp_first_ctimer_threshold;
2396 2396 tcp->tcp_second_ctimer_threshold =
2397 2397 parent->tcp_second_ctimer_threshold;
2398 2398 tcp->tcp_first_timer_threshold =
2399 2399 parent->tcp_first_timer_threshold;
2400 2400 tcp->tcp_second_timer_threshold =
2401 2401 parent->tcp_second_timer_threshold;
2402 2402
2403 2403 tcp->tcp_fin_wait_2_flush_interval =
2404 2404 parent->tcp_fin_wait_2_flush_interval;
2405 2405
2406 2406 tcp->tcp_ka_interval = parent->tcp_ka_interval;
2407 2407 tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres;
2408 2408 tcp->tcp_ka_cnt = parent->tcp_ka_cnt;
2409 2409 tcp->tcp_ka_rinterval = parent->tcp_ka_rinterval;
2410 2410
2411 2411 tcp->tcp_init_cwnd = parent->tcp_init_cwnd;
2412 2412 }
2413 2413
2414 2414 /*
2415 2415 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
2416 2416 * will be close to tcp_rexmit_interval_initial. By doing this, we
2417 2417 * allow the algorithm to adjust slowly to large fluctuations of RTT
2418 2418 * during first few transmissions of a connection as seen in slow
2419 2419 * links.
2420 2420 */
2421 2421 tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2;
2422 2422 tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1;
2423 2423 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2424 2424 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
2425 2425 tcps->tcps_conn_grace_period;
2426 2426 TCP_SET_RTO(tcp, rto);
2427 2427
2428 2428 tcp->tcp_timer_backoff = 0;
2429 2429 tcp->tcp_ms_we_have_waited = 0;
2430 2430 tcp->tcp_last_recv_time = ddi_get_lbolt();
2431 2431 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
2432 2432 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2433 2433
2434 2434 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
2435 2435
2436 2436 /* NOTE: ISS is now set in tcp_set_destination(). */
2437 2437
2438 2438 /* Reset fusion-related fields */
2439 2439 tcp->tcp_fused = B_FALSE;
2440 2440 tcp->tcp_unfusable = B_FALSE;
2441 2441 tcp->tcp_fused_sigurg = B_FALSE;
2442 2442 tcp->tcp_loopback_peer = NULL;
2443 2443
2444 2444 /* We rebuild the header template on the next connect/conn_request */
2445 2445
2446 2446 connp->conn_mlp_type = mlptSingle;
2447 2447
2448 2448 /*
2449 2449 * Init the window scale to the max so tcp_rwnd_set() won't pare
2450 2450 * down tcp_rwnd. tcp_set_destination() will set the right value later.
2451 2451 */
2452 2452 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
2453 2453 tcp->tcp_rwnd = connp->conn_rcvbuf;
2454 2454
2455 2455 tcp->tcp_cork = B_FALSE;
2456 2456 /*
2457 2457 * Init the tcp_debug option if it wasn't already set. This value
2458 2458 * determines whether TCP
2459 2459 * calls strlog() to print out debug messages. Doing this
2460 2460 * initialization here means that this value is not inherited thru
2461 2461 * tcp_reinit().
2462 2462 */
2463 2463 if (!connp->conn_debug)
2464 2464 connp->conn_debug = tcps->tcps_dbg;
2465 2465 }
2466 2466
2467 2467 /*
2468 2468 * Update the TCP connection according to change of PMTU.
2469 2469 *
2470 2470 * Path MTU might have changed by either increase or decrease, so need to
2471 2471 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
2472 2472 * or negative MSS, since tcp_mss_set() will do it.
2473 2473 */
2474 2474 void
2475 2475 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
2476 2476 {
2477 2477 uint32_t pmtu;
2478 2478 int32_t mss;
2479 2479 conn_t *connp = tcp->tcp_connp;
2480 2480 ip_xmit_attr_t *ixa = connp->conn_ixa;
2481 2481 iaflags_t ixaflags;
2482 2482
2483 2483 if (tcp->tcp_tcps->tcps_ignore_path_mtu)
2484 2484 return;
2485 2485
2486 2486 if (tcp->tcp_state < TCPS_ESTABLISHED)
2487 2487 return;
2488 2488
2489 2489 /*
2490 2490 * Always call ip_get_pmtu() to make sure that IP has updated
2491 2491 * ixa_flags properly.
2492 2492 */
2493 2493 pmtu = ip_get_pmtu(ixa);
2494 2494 ixaflags = ixa->ixa_flags;
2495 2495
2496 2496 /*
2497 2497 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
2498 2498 * IPsec overhead if applied. Make sure to use the most recent
2499 2499 * IPsec information.
2500 2500 */
2501 2501 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
2502 2502
2503 2503 /*
2504 2504 * Nothing to change, so just return.
2505 2505 */
2506 2506 if (mss == tcp->tcp_mss)
2507 2507 return;
2508 2508
2509 2509 /*
2510 2510 * Currently, for ICMP errors, only PMTU decrease is handled.
2511 2511 */
2512 2512 if (mss > tcp->tcp_mss && decrease_only)
2513 2513 return;
2514 2514
2515 2515 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
2516 2516
2517 2517 /*
2518 2518 * Update ixa_fragsize and ixa_pmtu.
2519 2519 */
2520 2520 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
2521 2521
2522 2522 /*
2523 2523 * Adjust MSS and all relevant variables.
2524 2524 */
2525 2525 tcp_mss_set(tcp, mss);
2526 2526
2527 2527 /*
2528 2528 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu
2529 2529 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
2530 2530 * has a (potentially different) min size we do the same. Make sure to
2531 2531 * clear IXAF_DONTFRAG, which is used by IP to decide whether to
2532 2532 * fragment the packet.
2533 2533 *
2534 2534 * LSO over IPv6 can not be fragmented. So need to disable LSO
2535 2535 * when IPv6 fragmentation is needed.
2536 2536 */
2537 2537 if (mss < tcp->tcp_tcps->tcps_mss_min)
2538 2538 ixaflags |= IXAF_PMTU_TOO_SMALL;
2539 2539
2540 2540 if (ixaflags & IXAF_PMTU_TOO_SMALL)
2541 2541 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
2542 2542
2543 2543 if ((connp->conn_ipversion == IPV4_VERSION) &&
2544 2544 !(ixaflags & IXAF_PMTU_IPV4_DF)) {
2545 2545 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
2546 2546 }
2547 2547 ixa->ixa_flags = ixaflags;
2548 2548 }
2549 2549
2550 2550 int
2551 2551 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
2552 2552 {
2553 2553 conn_t *connp = tcp->tcp_connp;
2554 2554 queue_t *q = connp->conn_rq;
2555 2555 int32_t mss = tcp->tcp_mss;
2556 2556 int maxpsz;
2557 2557
2558 2558 if (TCP_IS_DETACHED(tcp))
2559 2559 return (mss);
2560 2560 if (tcp->tcp_fused) {
2561 2561 maxpsz = tcp_fuse_maxpsz(tcp);
2562 2562 mss = INFPSZ;
2563 2563 } else if (tcp->tcp_maxpsz_multiplier == 0) {
2564 2564 /*
2565 2565 * Set the sd_qn_maxpsz according to the socket send buffer
2566 2566 * size, and sd_maxblk to INFPSZ (-1). This will essentially
2567 2567 * instruct the stream head to copyin user data into contiguous
2568 2568 * kernel-allocated buffers without breaking it up into smaller
2569 2569 * chunks. We round up the buffer size to the nearest SMSS.
2570 2570 */
2571 2571 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
2572 2572 mss = INFPSZ;
2573 2573 } else {
2574 2574 /*
2575 2575 * Set sd_qn_maxpsz to approx half the (receivers) buffer
2576 2576 * (and a multiple of the mss). This instructs the stream
2577 2577 * head to break down larger than SMSS writes into SMSS-
2578 2578 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
2579 2579 */
2580 2580 maxpsz = tcp->tcp_maxpsz_multiplier * mss;
2581 2581 if (maxpsz > connp->conn_sndbuf / 2) {
2582 2582 maxpsz = connp->conn_sndbuf / 2;
2583 2583 /* Round up to nearest mss */
2584 2584 maxpsz = MSS_ROUNDUP(maxpsz, mss);
2585 2585 }
2586 2586 }
2587 2587
2588 2588 (void) proto_set_maxpsz(q, connp, maxpsz);
2589 2589 if (!(IPCL_IS_NONSTR(connp)))
2590 2590 connp->conn_wq->q_maxpsz = maxpsz;
2591 2591 if (set_maxblk)
2592 2592 (void) proto_set_tx_maxblk(q, connp, mss);
2593 2593 return (mss);
2594 2594 }
2595 2595
2596 2596 /* For /dev/tcp aka AF_INET open */
2597 2597 static int
2598 2598 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2599 2599 {
2600 2600 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
2601 2601 }
2602 2602
2603 2603 /* For /dev/tcp6 aka AF_INET6 open */
2604 2604 static int
2605 2605 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2606 2606 {
2607 2607 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
2608 2608 }
2609 2609
2610 2610 conn_t *
2611 2611 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
2612 2612 int *errorp)
2613 2613 {
2614 2614 tcp_t *tcp = NULL;
2615 2615 conn_t *connp;
2616 2616 zoneid_t zoneid;
2617 2617 tcp_stack_t *tcps;
2618 2618 squeue_t *sqp;
2619 2619
2620 2620 ASSERT(errorp != NULL);
2621 2621 /*
2622 2622 * Find the proper zoneid and netstack.
2623 2623 */
2624 2624 /*
2625 2625 * Special case for install: miniroot needs to be able to
2626 2626 * access files via NFS as though it were always in the
2627 2627 * global zone.
2628 2628 */
2629 2629 if (credp == kcred && nfs_global_client_only != 0) {
2630 2630 zoneid = GLOBAL_ZONEID;
2631 2631 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
2632 2632 netstack_tcp;
2633 2633 ASSERT(tcps != NULL);
2634 2634 } else {
2635 2635 netstack_t *ns;
2636 2636 int err;
2637 2637
2638 2638 if ((err = secpolicy_basic_net_access(credp)) != 0) {
2639 2639 *errorp = err;
2640 2640 return (NULL);
2641 2641 }
2642 2642
2643 2643 ns = netstack_find_by_cred(credp);
2644 2644 ASSERT(ns != NULL);
2645 2645 tcps = ns->netstack_tcp;
2646 2646 ASSERT(tcps != NULL);
2647 2647
2648 2648 /*
2649 2649 * For exclusive stacks we set the zoneid to zero
2650 2650 * to make TCP operate as if in the global zone.
2651 2651 */
2652 2652 if (tcps->tcps_netstack->netstack_stackid !=
2653 2653 GLOBAL_NETSTACKID)
2654 2654 zoneid = GLOBAL_ZONEID;
2655 2655 else
2656 2656 zoneid = crgetzoneid(credp);
2657 2657 }
2658 2658
2659 2659 sqp = IP_SQUEUE_GET((uint_t)gethrtime());
2660 2660 connp = (conn_t *)tcp_get_conn(sqp, tcps);
2661 2661 /*
2662 2662 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
2663 2663 * so we drop it by one.
2664 2664 */
2665 2665 netstack_rele(tcps->tcps_netstack);
2666 2666 if (connp == NULL) {
2667 2667 *errorp = ENOSR;
2668 2668 return (NULL);
2669 2669 }
2670 2670 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
2671 2671
2672 2672 connp->conn_sqp = sqp;
2673 2673 connp->conn_initial_sqp = connp->conn_sqp;
2674 2674 connp->conn_ixa->ixa_sqp = connp->conn_sqp;
2675 2675 tcp = connp->conn_tcp;
2676 2676
2677 2677 /*
2678 2678 * Besides asking IP to set the checksum for us, have conn_ip_output
2679 2679 * to do the following checks when necessary:
2680 2680 *
2681 2681 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
2682 2682 * IXAF_VERIFY_PMTU: verify PMTU changes
2683 2683 * IXAF_VERIFY_LSO: verify LSO capability changes
2684 2684 */
2685 2685 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
2686 2686 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
2687 2687
2688 2688 if (!tcps->tcps_dev_flow_ctl)
2689 2689 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
2690 2690
2691 2691 if (isv6) {
2692 2692 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
2693 2693 connp->conn_ipversion = IPV6_VERSION;
2694 2694 connp->conn_family = AF_INET6;
2695 2695 tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2696 2696 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
2697 2697 } else {
2698 2698 connp->conn_ipversion = IPV4_VERSION;
2699 2699 connp->conn_family = AF_INET;
2700 2700 tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2701 2701 connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
2702 2702 }
2703 2703 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
2704 2704
2705 2705 crhold(credp);
2706 2706 connp->conn_cred = credp;
2707 2707 connp->conn_cpid = curproc->p_pid;
2708 2708 connp->conn_open_time = ddi_get_lbolt64();
2709 2709
2710 2710 /* Cache things in the ixa without any refhold */
2711 2711 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
2712 2712 connp->conn_ixa->ixa_cred = credp;
2713 2713 connp->conn_ixa->ixa_cpid = connp->conn_cpid;
2714 2714
2715 2715 connp->conn_zoneid = zoneid;
2716 2716 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
2717 2717 connp->conn_ixa->ixa_zoneid = zoneid;
2718 2718 connp->conn_mlp_type = mlptSingle;
2719 2719 ASSERT(connp->conn_netstack == tcps->tcps_netstack);
2720 2720 ASSERT(tcp->tcp_tcps == tcps);
2721 2721
2722 2722 /*
2723 2723 * If the caller has the process-wide flag set, then default to MAC
2724 2724 * exempt mode. This allows read-down to unlabeled hosts.
2725 2725 */
2726 2726 if (getpflags(NET_MAC_AWARE, credp) != 0)
2727 2727 connp->conn_mac_mode = CONN_MAC_AWARE;
2728 2728
2729 2729 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
2730 2730
2731 2731 if (issocket) {
2732 2732 tcp->tcp_issocket = 1;
2733 2733 }
2734 2734
2735 2735 connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
2736 2736 connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
2737 2737 if (tcps->tcps_snd_lowat_fraction != 0) {
2738 2738 connp->conn_sndlowat = connp->conn_sndbuf /
2739 2739 tcps->tcps_snd_lowat_fraction;
2740 2740 } else {
2741 2741 connp->conn_sndlowat = tcps->tcps_xmit_lowat;
2742 2742 }
2743 2743 connp->conn_so_type = SOCK_STREAM;
2744 2744 connp->conn_wroff = connp->conn_ht_iphc_allocated +
2745 2745 tcps->tcps_wroff_xtra;
2746 2746
2747 2747 SOCK_CONNID_INIT(tcp->tcp_connid);
2748 2748 /* DTrace ignores this - it isn't a tcp:::state-change */
2749 2749 tcp->tcp_state = TCPS_IDLE;
2750 2750 tcp_init_values(tcp, NULL);
2751 2751 return (connp);
2752 2752 }
2753 2753
2754 2754 static int
2755 2755 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2756 2756 boolean_t isv6)
2757 2757 {
2758 2758 tcp_t *tcp = NULL;
2759 2759 conn_t *connp = NULL;
2760 2760 int err;
2761 2761 vmem_t *minor_arena = NULL;
2762 2762 dev_t conn_dev;
2763 2763 boolean_t issocket;
2764 2764
2765 2765 if (q->q_ptr != NULL)
2766 2766 return (0);
2767 2767
2768 2768 if (sflag == MODOPEN)
2769 2769 return (EINVAL);
2770 2770
2771 2771 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2772 2772 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2773 2773 minor_arena = ip_minor_arena_la;
2774 2774 } else {
2775 2775 /*
2776 2776 * Either minor numbers in the large arena were exhausted
2777 2777 * or a non socket application is doing the open.
2778 2778 * Try to allocate from the small arena.
2779 2779 */
2780 2780 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2781 2781 return (EBUSY);
2782 2782 }
2783 2783 minor_arena = ip_minor_arena_sa;
2784 2784 }
2785 2785
2786 2786 ASSERT(minor_arena != NULL);
2787 2787
2788 2788 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
2789 2789
2790 2790 if (flag & SO_FALLBACK) {
2791 2791 /*
2792 2792 * Non streams socket needs a stream to fallback to
2793 2793 */
2794 2794 RD(q)->q_ptr = (void *)conn_dev;
2795 2795 WR(q)->q_qinfo = &tcp_fallback_sock_winit;
2796 2796 WR(q)->q_ptr = (void *)minor_arena;
2797 2797 qprocson(q);
2798 2798 return (0);
2799 2799 } else if (flag & SO_ACCEPTOR) {
2800 2800 q->q_qinfo = &tcp_acceptor_rinit;
2801 2801 /*
2802 2802 * the conn_dev and minor_arena will be subsequently used by
2803 2803 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out
2804 2804 * the minor device number for this connection from the q_ptr.
2805 2805 */
2806 2806 RD(q)->q_ptr = (void *)conn_dev;
2807 2807 WR(q)->q_qinfo = &tcp_acceptor_winit;
2808 2808 WR(q)->q_ptr = (void *)minor_arena;
2809 2809 qprocson(q);
2810 2810 return (0);
2811 2811 }
2812 2812
2813 2813 issocket = flag & SO_SOCKSTR;
2814 2814 connp = tcp_create_common(credp, isv6, issocket, &err);
2815 2815
2816 2816 if (connp == NULL) {
2817 2817 inet_minor_free(minor_arena, conn_dev);
2818 2818 q->q_ptr = WR(q)->q_ptr = NULL;
2819 2819 return (err);
2820 2820 }
2821 2821
2822 2822 connp->conn_rq = q;
2823 2823 connp->conn_wq = WR(q);
2824 2824 q->q_ptr = WR(q)->q_ptr = connp;
2825 2825
2826 2826 connp->conn_dev = conn_dev;
2827 2827 connp->conn_minor_arena = minor_arena;
2828 2828
2829 2829 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
2830 2830 ASSERT(WR(q)->q_qinfo == &tcp_winit);
2831 2831
2832 2832 tcp = connp->conn_tcp;
2833 2833
2834 2834 if (issocket) {
2835 2835 WR(q)->q_qinfo = &tcp_sock_winit;
2836 2836 } else {
2837 2837 #ifdef _ILP32
2838 2838 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
2839 2839 #else
2840 2840 tcp->tcp_acceptor_id = conn_dev;
2841 2841 #endif /* _ILP32 */
2842 2842 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
2843 2843 }
2844 2844
2845 2845 /*
2846 2846 * Put the ref for TCP. Ref for IP was already put
2847 2847 * by ipcl_conn_create. Also Make the conn_t globally
2848 2848 * visible to walkers
2849 2849 */
2850 2850 mutex_enter(&connp->conn_lock);
2851 2851 CONN_INC_REF_LOCKED(connp);
2852 2852 ASSERT(connp->conn_ref == 2);
2853 2853 connp->conn_state_flags &= ~CONN_INCIPIENT;
2854 2854 mutex_exit(&connp->conn_lock);
2855 2855
2856 2856 qprocson(q);
2857 2857 return (0);
2858 2858 }
2859 2859
2860 2860 /*
2861 2861 * Build/update the tcp header template (in conn_ht_iphc) based on
2862 2862 * conn_xmit_ipp. The headers include ip6_t, any extension
2863 2863 * headers, and the maximum size tcp header (to avoid reallocation
2864 2864 * on the fly for additional tcp options).
2865 2865 *
2866 2866 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
2867 2867 * Returns failure if can't allocate memory.
2868 2868 */
2869 2869 int
2870 2870 tcp_build_hdrs(tcp_t *tcp)
2871 2871 {
2872 2872 tcp_stack_t *tcps = tcp->tcp_tcps;
2873 2873 conn_t *connp = tcp->tcp_connp;
2874 2874 char buf[TCP_MAX_HDR_LENGTH];
2875 2875 uint_t buflen;
2876 2876 uint_t ulplen = TCP_MIN_HEADER_LENGTH;
2877 2877 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH;
2878 2878 tcpha_t *tcpha;
2879 2879 uint32_t cksum;
2880 2880 int error;
2881 2881
2882 2882 /*
2883 2883 * We might be called after the connection is set up, and we might
2884 2884 * have TS options already in the TCP header. Thus we save any
2885 2885 * existing tcp header.
2886 2886 */
2887 2887 buflen = connp->conn_ht_ulp_len;
2888 2888 if (buflen != 0) {
2889 2889 bcopy(connp->conn_ht_ulp, buf, buflen);
2890 2890 extralen -= buflen - ulplen;
2891 2891 ulplen = buflen;
2892 2892 }
2893 2893
2894 2894 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
2895 2895 mutex_enter(&connp->conn_lock);
2896 2896 error = conn_build_hdr_template(connp, ulplen, extralen,
2897 2897 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
2898 2898 mutex_exit(&connp->conn_lock);
2899 2899 if (error != 0)
2900 2900 return (error);
2901 2901
2902 2902 /*
2903 2903 * Any routing header/option has been massaged. The checksum difference
2904 2904 * is stored in conn_sum for later use.
2905 2905 */
2906 2906 tcpha = (tcpha_t *)connp->conn_ht_ulp;
2907 2907 tcp->tcp_tcpha = tcpha;
2908 2908
2909 2909 /* restore any old tcp header */
2910 2910 if (buflen != 0) {
2911 2911 bcopy(buf, connp->conn_ht_ulp, buflen);
2912 2912 } else {
2913 2913 tcpha->tha_sum = 0;
2914 2914 tcpha->tha_urp = 0;
2915 2915 tcpha->tha_ack = 0;
2916 2916 tcpha->tha_offset_and_reserved = (5 << 4);
2917 2917 tcpha->tha_lport = connp->conn_lport;
2918 2918 tcpha->tha_fport = connp->conn_fport;
2919 2919 }
2920 2920
2921 2921 /*
2922 2922 * IP wants our header length in the checksum field to
2923 2923 * allow it to perform a single pseudo-header+checksum
2924 2924 * calculation on behalf of TCP.
2925 2925 * Include the adjustment for a source route once IP_OPTIONS is set.
2926 2926 */
2927 2927 cksum = sizeof (tcpha_t) + connp->conn_sum;
2928 2928 cksum = (cksum >> 16) + (cksum & 0xFFFF);
2929 2929 ASSERT(cksum < 0x10000);
2930 2930 tcpha->tha_sum = htons(cksum);
2931 2931
2932 2932 if (connp->conn_ipversion == IPV4_VERSION)
2933 2933 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
2934 2934 else
2935 2935 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
2936 2936
2937 2937 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
2938 2938 connp->conn_wroff) {
2939 2939 connp->conn_wroff = connp->conn_ht_iphc_allocated +
2940 2940 tcps->tcps_wroff_xtra;
2941 2941 (void) proto_set_tx_wroff(connp->conn_rq, connp,
2942 2942 connp->conn_wroff);
2943 2943 }
2944 2944 return (0);
2945 2945 }
2946 2946
2947 2947 /*
2948 2948 * tcp_rwnd_set() is called to adjust the receive window to a desired value.
2949 2949 * We do not allow the receive window to shrink. After setting rwnd,
2950 2950 * set the flow control hiwat of the stream.
2951 2951 *
2952 2952 * This function is called in 2 cases:
2953 2953 *
2954 2954 * 1) Before data transfer begins, in tcp_input_listener() for accepting a
2955 2955 * connection (passive open) and in tcp_input_data() for active connect.
2956 2956 * This is called after tcp_mss_set() when the desired MSS value is known.
2957 2957 * This makes sure that our window size is a mutiple of the other side's
2958 2958 * MSS.
2959 2959 * 2) Handling SO_RCVBUF option.
2960 2960 *
2961 2961 * It is ASSUMED that the requested size is a multiple of the current MSS.
2962 2962 *
2963 2963 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
2964 2964 * user requests so.
2965 2965 */
2966 2966 int
2967 2967 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
2968 2968 {
2969 2969 uint32_t mss = tcp->tcp_mss;
2970 2970 uint32_t old_max_rwnd;
2971 2971 uint32_t max_transmittable_rwnd;
2972 2972 boolean_t tcp_detached = TCP_IS_DETACHED(tcp);
2973 2973 tcp_stack_t *tcps = tcp->tcp_tcps;
2974 2974 conn_t *connp = tcp->tcp_connp;
2975 2975
2976 2976 /*
2977 2977 * Insist on a receive window that is at least
2978 2978 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
2979 2979 * funny TCP interactions of Nagle algorithm, SWS avoidance
2980 2980 * and delayed acknowledgement.
2981 2981 */
2982 2982 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
2983 2983
2984 2984 if (tcp->tcp_fused) {
2985 2985 size_t sth_hiwat;
2986 2986 tcp_t *peer_tcp = tcp->tcp_loopback_peer;
2987 2987
2988 2988 ASSERT(peer_tcp != NULL);
2989 2989 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
2990 2990 if (!tcp_detached) {
2991 2991 (void) proto_set_rx_hiwat(connp->conn_rq, connp,
2992 2992 sth_hiwat);
2993 2993 tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
2994 2994 }
2995 2995
2996 2996 /* Caller could have changed tcp_rwnd; update tha_win */
2997 2997 if (tcp->tcp_tcpha != NULL) {
2998 2998 tcp->tcp_tcpha->tha_win =
2999 2999 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
3000 3000 }
3001 3001 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
3002 3002 tcp->tcp_cwnd_max = rwnd;
3003 3003
3004 3004 /*
3005 3005 * In the fusion case, the maxpsz stream head value of
3006 3006 * our peer is set according to its send buffer size
3007 3007 * and our receive buffer size; since the latter may
3008 3008 * have changed we need to update the peer's maxpsz.
3009 3009 */
3010 3010 (void) tcp_maxpsz_set(peer_tcp, B_TRUE);
3011 3011 return (sth_hiwat);
3012 3012 }
3013 3013
3014 3014 if (tcp_detached)
3015 3015 old_max_rwnd = tcp->tcp_rwnd;
3016 3016 else
3017 3017 old_max_rwnd = connp->conn_rcvbuf;
3018 3018
3019 3019
3020 3020 /*
3021 3021 * If window size info has already been exchanged, TCP should not
3022 3022 * shrink the window. Shrinking window is doable if done carefully.
3023 3023 * We may add that support later. But so far there is not a real
3024 3024 * need to do that.
3025 3025 */
3026 3026 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
3027 3027 /* MSS may have changed, do a round up again. */
3028 3028 rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
3029 3029 }
3030 3030
3031 3031 /*
3032 3032 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
3033 3033 * can be applied even before the window scale option is decided.
3034 3034 */
3035 3035 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
3036 3036 if (rwnd > max_transmittable_rwnd) {
3037 3037 rwnd = max_transmittable_rwnd -
3038 3038 (max_transmittable_rwnd % mss);
3039 3039 if (rwnd < mss)
3040 3040 rwnd = max_transmittable_rwnd;
3041 3041 /*
3042 3042 * If we're over the limit we may have to back down tcp_rwnd.
3043 3043 * The increment below won't work for us. So we set all three
3044 3044 * here and the increment below will have no effect.
3045 3045 */
3046 3046 tcp->tcp_rwnd = old_max_rwnd = rwnd;
3047 3047 }
3048 3048 if (tcp->tcp_localnet) {
3049 3049 tcp->tcp_rack_abs_max =
3050 3050 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
3051 3051 } else {
3052 3052 /*
3053 3053 * For a remote host on a different subnet (through a router),
3054 3054 * we ack every other packet to be conforming to RFC1122.
3055 3055 * tcp_deferred_acks_max is default to 2.
3056 3056 */
3057 3057 tcp->tcp_rack_abs_max =
3058 3058 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
3059 3059 }
3060 3060 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
3061 3061 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
3062 3062 else
3063 3063 tcp->tcp_rack_cur_max = 0;
3064 3064 /*
3065 3065 * Increment the current rwnd by the amount the maximum grew (we
3066 3066 * can not overwrite it since we might be in the middle of a
3067 3067 * connection.)
3068 3068 */
3069 3069 tcp->tcp_rwnd += rwnd - old_max_rwnd;
3070 3070 connp->conn_rcvbuf = rwnd;
3071 3071
3072 3072 /* Are we already connected? */
3073 3073 if (tcp->tcp_tcpha != NULL) {
3074 3074 tcp->tcp_tcpha->tha_win =
3075 3075 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
3076 3076 }
3077 3077
3078 3078 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
3079 3079 tcp->tcp_cwnd_max = rwnd;
3080 3080
3081 3081 if (tcp_detached)
3082 3082 return (rwnd);
3083 3083
3084 3084 tcp_set_recv_threshold(tcp, rwnd >> 3);
3085 3085
3086 3086 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
3087 3087 return (rwnd);
3088 3088 }
3089 3089
3090 3090 int
3091 3091 tcp_do_unbind(conn_t *connp)
3092 3092 {
3093 3093 tcp_t *tcp = connp->conn_tcp;
3094 3094 int32_t oldstate;
3095 3095
3096 3096 switch (tcp->tcp_state) {
3097 3097 case TCPS_BOUND:
3098 3098 case TCPS_LISTEN:
3099 3099 break;
3100 3100 default:
3101 3101 return (-TOUTSTATE);
3102 3102 }
3103 3103
3104 3104 /*
3105 3105 * Need to clean up all the eagers since after the unbind, segments
3106 3106 * will no longer be delivered to this listener stream.
3107 3107 */
3108 3108 mutex_enter(&tcp->tcp_eager_lock);
3109 3109 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3110 3110 tcp_eager_cleanup(tcp, 0);
3111 3111 }
3112 3112 mutex_exit(&tcp->tcp_eager_lock);
3113 3113
3114 3114 /* Clean up the listener connection counter if necessary. */
3115 3115 if (tcp->tcp_listen_cnt != NULL)
3116 3116 TCP_DECR_LISTEN_CNT(tcp);
3117 3117 connp->conn_laddr_v6 = ipv6_all_zeros;
3118 3118 connp->conn_saddr_v6 = ipv6_all_zeros;
3119 3119 tcp_bind_hash_remove(tcp);
3120 3120 oldstate = tcp->tcp_state;
3121 3121 tcp->tcp_state = TCPS_IDLE;
3122 3122 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3123 3123 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3124 3124 int32_t, oldstate);
3125 3125
3126 3126 ip_unbind(connp);
3127 3127 bzero(&connp->conn_ports, sizeof (connp->conn_ports));
3128 3128
3129 3129 return (0);
3130 3130 }
3131 3131
3132 3132 /*
3133 3133 * Collect protocol properties to send to the upper handle.
3134 3134 */
3135 3135 void
3136 3136 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp)
3137 3137 {
3138 3138 conn_t *connp = tcp->tcp_connp;
3139 3139
3140 3140 sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
3141 3141 sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
3142 3142
3143 3143 sopp->sopp_rxhiwat = tcp->tcp_fused ?
3144 3144 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
3145 3145 connp->conn_rcvbuf;
3146 3146 /*
3147 3147 * Determine what write offset value to use depending on SACK and
3148 3148 * whether the endpoint is fused or not.
3149 3149 */
3150 3150 if (tcp->tcp_fused) {
3151 3151 ASSERT(tcp->tcp_loopback);
3152 3152 ASSERT(tcp->tcp_loopback_peer != NULL);
3153 3153 /*
3154 3154 * For fused tcp loopback, set the stream head's write
3155 3155 * offset value to zero since we won't be needing any room
3156 3156 * for TCP/IP headers. This would also improve performance
3157 3157 * since it would reduce the amount of work done by kmem.
3158 3158 * Non-fused tcp loopback case is handled separately below.
3159 3159 */
3160 3160 sopp->sopp_wroff = 0;
3161 3161 /*
3162 3162 * Update the peer's transmit parameters according to
3163 3163 * our recently calculated high water mark value.
3164 3164 */
3165 3165 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
3166 3166 } else if (tcp->tcp_snd_sack_ok) {
3167 3167 sopp->sopp_wroff = connp->conn_ht_iphc_allocated +
3168 3168 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3169 3169 } else {
3170 3170 sopp->sopp_wroff = connp->conn_ht_iphc_len +
3171 3171 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3172 3172 }
3173 3173
3174 3174 if (tcp->tcp_loopback) {
3175 3175 sopp->sopp_flags |= SOCKOPT_LOOPBACK;
3176 3176 sopp->sopp_loopback = B_TRUE;
3177 3177 }
3178 3178 }
3179 3179
3180 3180 /*
3181 3181 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
3182 3182 */
3183 3183 boolean_t
3184 3184 tcp_zcopy_check(tcp_t *tcp)
3185 3185 {
3186 3186 conn_t *connp = tcp->tcp_connp;
3187 3187 ip_xmit_attr_t *ixa = connp->conn_ixa;
3188 3188 boolean_t zc_enabled = B_FALSE;
3189 3189 tcp_stack_t *tcps = tcp->tcp_tcps;
3190 3190
3191 3191 if (do_tcpzcopy == 2)
3192 3192 zc_enabled = B_TRUE;
3193 3193 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
3194 3194 zc_enabled = B_TRUE;
3195 3195
3196 3196 tcp->tcp_snd_zcopy_on = zc_enabled;
3197 3197 if (!TCP_IS_DETACHED(tcp)) {
3198 3198 if (zc_enabled) {
3199 3199 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
3200 3200 (void) proto_set_tx_copyopt(connp->conn_rq, connp,
3201 3201 ZCVMSAFE);
3202 3202 TCP_STAT(tcps, tcp_zcopy_on);
3203 3203 } else {
3204 3204 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
3205 3205 (void) proto_set_tx_copyopt(connp->conn_rq, connp,
3206 3206 ZCVMUNSAFE);
3207 3207 TCP_STAT(tcps, tcp_zcopy_off);
3208 3208 }
3209 3209 }
3210 3210 return (zc_enabled);
3211 3211 }
3212 3212
3213 3213 /*
3214 3214 * Backoff from a zero-copy message by copying data to a new allocated
3215 3215 * message and freeing the original desballoca'ed segmapped message.
3216 3216 *
3217 3217 * This function is called by following two callers:
3218 3218 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
3219 3219 * the origial desballoca'ed message and notify sockfs. This is in re-
3220 3220 * transmit state.
3221 3221 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
3222 3222 * to be copied to new message.
3223 3223 */
3224 3224 mblk_t *
3225 3225 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
3226 3226 {
3227 3227 mblk_t *nbp;
3228 3228 mblk_t *head = NULL;
3229 3229 mblk_t *tail = NULL;
3230 3230 tcp_stack_t *tcps = tcp->tcp_tcps;
3231 3231
3232 3232 ASSERT(bp != NULL);
3233 3233 while (bp != NULL) {
3234 3234 if (IS_VMLOANED_MBLK(bp)) {
3235 3235 TCP_STAT(tcps, tcp_zcopy_backoff);
3236 3236 if ((nbp = copyb(bp)) == NULL) {
3237 3237 tcp->tcp_xmit_zc_clean = B_FALSE;
3238 3238 if (tail != NULL)
3239 3239 tail->b_cont = bp;
3240 3240 return ((head == NULL) ? bp : head);
3241 3241 }
3242 3242
3243 3243 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
3244 3244 if (fix_xmitlist)
3245 3245 tcp_zcopy_notify(tcp);
3246 3246 else
3247 3247 nbp->b_datap->db_struioflag |=
3248 3248 STRUIO_ZCNOTIFY;
3249 3249 }
3250 3250 nbp->b_cont = bp->b_cont;
3251 3251
3252 3252 /*
3253 3253 * Copy saved information and adjust tcp_xmit_tail
3254 3254 * if needed.
3255 3255 */
3256 3256 if (fix_xmitlist) {
3257 3257 nbp->b_prev = bp->b_prev;
3258 3258 nbp->b_next = bp->b_next;
3259 3259
3260 3260 if (tcp->tcp_xmit_tail == bp)
3261 3261 tcp->tcp_xmit_tail = nbp;
3262 3262 }
3263 3263
3264 3264 /* Free the original message. */
3265 3265 bp->b_prev = NULL;
3266 3266 bp->b_next = NULL;
3267 3267 freeb(bp);
3268 3268
3269 3269 bp = nbp;
3270 3270 }
3271 3271
3272 3272 if (head == NULL) {
3273 3273 head = bp;
3274 3274 }
3275 3275 if (tail == NULL) {
3276 3276 tail = bp;
3277 3277 } else {
3278 3278 tail->b_cont = bp;
3279 3279 tail = bp;
3280 3280 }
3281 3281
3282 3282 /* Move forward. */
3283 3283 bp = bp->b_cont;
3284 3284 }
3285 3285
3286 3286 if (fix_xmitlist) {
3287 3287 tcp->tcp_xmit_last = tail;
3288 3288 tcp->tcp_xmit_zc_clean = B_TRUE;
3289 3289 }
3290 3290
3291 3291 return (head);
3292 3292 }
3293 3293
3294 3294 void
3295 3295 tcp_zcopy_notify(tcp_t *tcp)
3296 3296 {
3297 3297 struct stdata *stp;
3298 3298 conn_t *connp;
3299 3299
3300 3300 if (tcp->tcp_detached)
3301 3301 return;
3302 3302 connp = tcp->tcp_connp;
3303 3303 if (IPCL_IS_NONSTR(connp)) {
3304 3304 (*connp->conn_upcalls->su_zcopy_notify)
3305 3305 (connp->conn_upper_handle);
3306 3306 return;
3307 3307 }
3308 3308 stp = STREAM(connp->conn_rq);
3309 3309 mutex_enter(&stp->sd_lock);
3310 3310 stp->sd_flag |= STZCNOTIFY;
3311 3311 cv_broadcast(&stp->sd_zcopy_wait);
3312 3312 mutex_exit(&stp->sd_lock);
3313 3313 }
3314 3314
3315 3315 /*
3316 3316 * Update the TCP connection according to change of LSO capability.
3317 3317 */
3318 3318 static void
3319 3319 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
3320 3320 {
3321 3321 /*
3322 3322 * We check against IPv4 header length to preserve the old behavior
3323 3323 * of only enabling LSO when there are no IP options.
3324 3324 * But this restriction might not be necessary at all. Before removing
3325 3325 * it, need to verify how LSO is handled for source routing case, with
3326 3326 * which IP does software checksum.
3327 3327 *
3328 3328 * For IPv6, whenever any extension header is needed, LSO is supressed.
3329 3329 */
3330 3330 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
3331 3331 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
3332 3332 return;
3333 3333
3334 3334 /*
3335 3335 * Either the LSO capability newly became usable, or it has changed.
3336 3336 */
3337 3337 if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
3338 3338 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab;
3339 3339
3340 3340 ASSERT(lsoc->ill_lso_max > 0);
3341 3341 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max);
3342 3342
3343 3343 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3344 3344 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
3345 3345
3346 3346 /*
3347 3347 * If LSO to be enabled, notify the STREAM header with larger
3348 3348 * data block.
3349 3349 */
3350 3350 if (!tcp->tcp_lso)
3351 3351 tcp->tcp_maxpsz_multiplier = 0;
3352 3352
3353 3353 tcp->tcp_lso = B_TRUE;
3354 3354 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
3355 3355 } else { /* LSO capability is not usable any more. */
3356 3356 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3357 3357 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
3358 3358
3359 3359 /*
3360 3360 * If LSO to be disabled, notify the STREAM header with smaller
3361 3361 * data block. And need to restore fragsize to PMTU.
3362 3362 */
3363 3363 if (tcp->tcp_lso) {
3364 3364 tcp->tcp_maxpsz_multiplier =
3365 3365 tcp->tcp_tcps->tcps_maxpsz_multiplier;
3366 3366 ixa->ixa_fragsize = ixa->ixa_pmtu;
3367 3367 tcp->tcp_lso = B_FALSE;
3368 3368 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
3369 3369 }
3370 3370 }
3371 3371
3372 3372 (void) tcp_maxpsz_set(tcp, B_TRUE);
3373 3373 }
3374 3374
3375 3375 /*
3376 3376 * Update the TCP connection according to change of ZEROCOPY capability.
3377 3377 */
3378 3378 static void
3379 3379 tcp_update_zcopy(tcp_t *tcp)
3380 3380 {
3381 3381 conn_t *connp = tcp->tcp_connp;
3382 3382 tcp_stack_t *tcps = tcp->tcp_tcps;
3383 3383
3384 3384 if (tcp->tcp_snd_zcopy_on) {
3385 3385 tcp->tcp_snd_zcopy_on = B_FALSE;
3386 3386 if (!TCP_IS_DETACHED(tcp)) {
3387 3387 (void) proto_set_tx_copyopt(connp->conn_rq, connp,
3388 3388 ZCVMUNSAFE);
3389 3389 TCP_STAT(tcps, tcp_zcopy_off);
3390 3390 }
3391 3391 } else {
3392 3392 tcp->tcp_snd_zcopy_on = B_TRUE;
3393 3393 if (!TCP_IS_DETACHED(tcp)) {
3394 3394 (void) proto_set_tx_copyopt(connp->conn_rq, connp,
3395 3395 ZCVMSAFE);
3396 3396 TCP_STAT(tcps, tcp_zcopy_on);
3397 3397 }
3398 3398 }
3399 3399 }
3400 3400
3401 3401 /*
3402 3402 * Notify function registered with ip_xmit_attr_t. It's called in the squeue
3403 3403 * so it's safe to update the TCP connection.
3404 3404 */
3405 3405 /* ARGSUSED1 */
3406 3406 static void
3407 3407 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
3408 3408 ixa_notify_arg_t narg)
3409 3409 {
3410 3410 tcp_t *tcp = (tcp_t *)arg;
3411 3411 conn_t *connp = tcp->tcp_connp;
3412 3412
3413 3413 switch (ntype) {
3414 3414 case IXAN_LSO:
3415 3415 tcp_update_lso(tcp, connp->conn_ixa);
3416 3416 break;
3417 3417 case IXAN_PMTU:
3418 3418 tcp_update_pmtu(tcp, B_FALSE);
3419 3419 break;
3420 3420 case IXAN_ZCOPY:
3421 3421 tcp_update_zcopy(tcp);
3422 3422 break;
3423 3423 default:
3424 3424 break;
3425 3425 }
3426 3426 }
3427 3427
3428 3428 /*
3429 3429 * The TCP write service routine should never be called...
3430 3430 */
3431 3431 /* ARGSUSED */
3432 3432 static void
3433 3433 tcp_wsrv(queue_t *q)
3434 3434 {
3435 3435 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps;
3436 3436
3437 3437 TCP_STAT(tcps, tcp_wsrv_called);
3438 3438 }
3439 3439
3440 3440 /*
3441 3441 * Hash list lookup routine for tcp_t structures.
3442 3442 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
3443 3443 */
3444 3444 tcp_t *
3445 3445 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
3446 3446 {
3447 3447 tf_t *tf;
3448 3448 tcp_t *tcp;
3449 3449
3450 3450 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3451 3451 mutex_enter(&tf->tf_lock);
3452 3452 for (tcp = tf->tf_tcp; tcp != NULL;
3453 3453 tcp = tcp->tcp_acceptor_hash) {
3454 3454 if (tcp->tcp_acceptor_id == id) {
3455 3455 CONN_INC_REF(tcp->tcp_connp);
3456 3456 mutex_exit(&tf->tf_lock);
3457 3457 return (tcp);
3458 3458 }
3459 3459 }
3460 3460 mutex_exit(&tf->tf_lock);
3461 3461 return (NULL);
3462 3462 }
3463 3463
3464 3464 /*
3465 3465 * Hash list insertion routine for tcp_t structures.
3466 3466 */
3467 3467 void
3468 3468 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
3469 3469 {
3470 3470 tf_t *tf;
3471 3471 tcp_t **tcpp;
3472 3472 tcp_t *tcpnext;
3473 3473 tcp_stack_t *tcps = tcp->tcp_tcps;
3474 3474
3475 3475 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3476 3476
3477 3477 if (tcp->tcp_ptpahn != NULL)
3478 3478 tcp_acceptor_hash_remove(tcp);
3479 3479 tcpp = &tf->tf_tcp;
3480 3480 mutex_enter(&tf->tf_lock);
3481 3481 tcpnext = tcpp[0];
3482 3482 if (tcpnext)
3483 3483 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
3484 3484 tcp->tcp_acceptor_hash = tcpnext;
3485 3485 tcp->tcp_ptpahn = tcpp;
3486 3486 tcpp[0] = tcp;
3487 3487 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */
3488 3488 mutex_exit(&tf->tf_lock);
3489 3489 }
3490 3490
3491 3491 /*
3492 3492 * Hash list removal routine for tcp_t structures.
3493 3493 */
3494 3494 void
3495 3495 tcp_acceptor_hash_remove(tcp_t *tcp)
3496 3496 {
3497 3497 tcp_t *tcpnext;
3498 3498 kmutex_t *lockp;
3499 3499
3500 3500 /*
3501 3501 * Extract the lock pointer in case there are concurrent
3502 3502 * hash_remove's for this instance.
3503 3503 */
3504 3504 lockp = tcp->tcp_acceptor_lockp;
3505 3505
3506 3506 if (tcp->tcp_ptpahn == NULL)
3507 3507 return;
3508 3508
3509 3509 ASSERT(lockp != NULL);
3510 3510 mutex_enter(lockp);
3511 3511 if (tcp->tcp_ptpahn) {
3512 3512 tcpnext = tcp->tcp_acceptor_hash;
3513 3513 if (tcpnext) {
3514 3514 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
3515 3515 tcp->tcp_acceptor_hash = NULL;
3516 3516 }
3517 3517 *tcp->tcp_ptpahn = tcpnext;
3518 3518 tcp->tcp_ptpahn = NULL;
3519 3519 }
3520 3520 mutex_exit(lockp);
3521 3521 tcp->tcp_acceptor_lockp = NULL;
3522 3522 }
3523 3523
3524 3524 /*
3525 3525 * Type three generator adapted from the random() function in 4.4 BSD:
3526 3526 */
3527 3527
3528 3528 /*
3529 3529 * Copyright (c) 1983, 1993
3530 3530 * The Regents of the University of California. All rights reserved.
3531 3531 *
3532 3532 * Redistribution and use in source and binary forms, with or without
3533 3533 * modification, are permitted provided that the following conditions
3534 3534 * are met:
3535 3535 * 1. Redistributions of source code must retain the above copyright
3536 3536 * notice, this list of conditions and the following disclaimer.
3537 3537 * 2. Redistributions in binary form must reproduce the above copyright
3538 3538 * notice, this list of conditions and the following disclaimer in the
3539 3539 * documentation and/or other materials provided with the distribution.
3540 3540 * 3. All advertising materials mentioning features or use of this software
3541 3541 * must display the following acknowledgement:
3542 3542 * This product includes software developed by the University of
3543 3543 * California, Berkeley and its contributors.
3544 3544 * 4. Neither the name of the University nor the names of its contributors
3545 3545 * may be used to endorse or promote products derived from this software
3546 3546 * without specific prior written permission.
3547 3547 *
3548 3548 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3549 3549 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3550 3550 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3551 3551 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3552 3552 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3553 3553 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3554 3554 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3555 3555 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3556 3556 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3557 3557 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3558 3558 * SUCH DAMAGE.
3559 3559 */
3560 3560
3561 3561 /* Type 3 -- x**31 + x**3 + 1 */
3562 3562 #define DEG_3 31
3563 3563 #define SEP_3 3
3564 3564
3565 3565
3566 3566 /* Protected by tcp_random_lock */
3567 3567 static int tcp_randtbl[DEG_3 + 1];
3568 3568
3569 3569 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
3570 3570 static int *tcp_random_rptr = &tcp_randtbl[1];
3571 3571
3572 3572 static int *tcp_random_state = &tcp_randtbl[1];
3573 3573 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
3574 3574
3575 3575 kmutex_t tcp_random_lock;
3576 3576
3577 3577 void
3578 3578 tcp_random_init(void)
3579 3579 {
3580 3580 int i;
3581 3581 hrtime_t hrt;
3582 3582 time_t wallclock;
3583 3583 uint64_t result;
3584 3584
3585 3585 /*
3586 3586 * Use high-res timer and current time for seed. Gethrtime() returns
3587 3587 * a longlong, which may contain resolution down to nanoseconds.
3588 3588 * The current time will either be a 32-bit or a 64-bit quantity.
3589 3589 * XOR the two together in a 64-bit result variable.
3590 3590 * Convert the result to a 32-bit value by multiplying the high-order
3591 3591 * 32-bits by the low-order 32-bits.
3592 3592 */
3593 3593
3594 3594 hrt = gethrtime();
3595 3595 (void) drv_getparm(TIME, &wallclock);
3596 3596 result = (uint64_t)wallclock ^ (uint64_t)hrt;
3597 3597 mutex_enter(&tcp_random_lock);
3598 3598 tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
3599 3599 (result & 0xffffffff);
3600 3600
3601 3601 for (i = 1; i < DEG_3; i++)
3602 3602 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
3603 3603 + 12345;
3604 3604 tcp_random_fptr = &tcp_random_state[SEP_3];
3605 3605 tcp_random_rptr = &tcp_random_state[0];
3606 3606 mutex_exit(&tcp_random_lock);
3607 3607 for (i = 0; i < 10 * DEG_3; i++)
3608 3608 (void) tcp_random();
3609 3609 }
3610 3610
3611 3611 /*
3612 3612 * tcp_random: Return a random number in the range [1 - (128K + 1)].
3613 3613 * This range is selected to be approximately centered on TCP_ISS / 2,
3614 3614 * and easy to compute. We get this value by generating a 32-bit random
3615 3615 * number, selecting out the high-order 17 bits, and then adding one so
3616 3616 * that we never return zero.
3617 3617 */
3618 3618 int
3619 3619 tcp_random(void)
3620 3620 {
3621 3621 int i;
3622 3622
3623 3623 mutex_enter(&tcp_random_lock);
3624 3624 *tcp_random_fptr += *tcp_random_rptr;
3625 3625
3626 3626 /*
3627 3627 * The high-order bits are more random than the low-order bits,
3628 3628 * so we select out the high-order 17 bits and add one so that
3629 3629 * we never return zero.
3630 3630 */
3631 3631 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
3632 3632 if (++tcp_random_fptr >= tcp_random_end_ptr) {
3633 3633 tcp_random_fptr = tcp_random_state;
3634 3634 ++tcp_random_rptr;
3635 3635 } else if (++tcp_random_rptr >= tcp_random_end_ptr)
3636 3636 tcp_random_rptr = tcp_random_state;
3637 3637
3638 3638 mutex_exit(&tcp_random_lock);
3639 3639 return (i);
3640 3640 }
3641 3641
3642 3642 /*
3643 3643 * Split this function out so that if the secret changes, I'm okay.
3644 3644 *
3645 3645 * Initialize the tcp_iss_cookie and tcp_iss_key.
3646 3646 */
3647 3647
3648 3648 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */
3649 3649
3650 3650 void
3651 3651 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
3652 3652 {
3653 3653 struct {
3654 3654 int32_t current_time;
3655 3655 uint32_t randnum;
3656 3656 uint16_t pad;
3657 3657 uint8_t ether[6];
3658 3658 uint8_t passwd[PASSWD_SIZE];
3659 3659 } tcp_iss_cookie;
3660 3660 time_t t;
3661 3661
3662 3662 /*
3663 3663 * Start with the current absolute time.
3664 3664 */
3665 3665 (void) drv_getparm(TIME, &t);
3666 3666 tcp_iss_cookie.current_time = t;
3667 3667
3668 3668 /*
3669 3669 * XXX - Need a more random number per RFC 1750, not this crap.
3670 3670 * OTOH, if what follows is pretty random, then I'm in better shape.
3671 3671 */
3672 3672 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
3673 3673 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */
3674 3674
3675 3675 /*
3676 3676 * The cpu_type_info is pretty non-random. Ugggh. It does serve
3677 3677 * as a good template.
3678 3678 */
3679 3679 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
3680 3680 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
3681 3681
3682 3682 /*
3683 3683 * The pass-phrase. Normally this is supplied by user-called NDD.
3684 3684 */
3685 3685 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
3686 3686
3687 3687 /*
3688 3688 * See 4010593 if this section becomes a problem again,
3689 3689 * but the local ethernet address is useful here.
3690 3690 */
3691 3691 (void) localetheraddr(NULL,
3692 3692 (struct ether_addr *)&tcp_iss_cookie.ether);
3693 3693
3694 3694 /*
3695 3695 * Hash 'em all together. The MD5Final is called per-connection.
3696 3696 */
3697 3697 mutex_enter(&tcps->tcps_iss_key_lock);
3698 3698 MD5Init(&tcps->tcps_iss_key);
3699 3699 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
3700 3700 sizeof (tcp_iss_cookie));
3701 3701 mutex_exit(&tcps->tcps_iss_key_lock);
3702 3702 }
3703 3703
3704 3704 /*
3705 3705 * Called by IP when IP is loaded into the kernel
3706 3706 */
3707 3707 void
3708 3708 tcp_ddi_g_init(void)
3709 3709 {
3710 3710 tcp_timercache = kmem_cache_create("tcp_timercache",
3711 3711 sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
3712 3712 NULL, NULL, NULL, NULL, NULL, 0);
3713 3713
3714 3714 tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache",
3715 3715 sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3716 3716
3717 3717 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
3718 3718
3719 3719 /* Initialize the random number generator */
3720 3720 tcp_random_init();
3721 3721
3722 3722 /* A single callback independently of how many netstacks we have */
3723 3723 ip_squeue_init(tcp_squeue_add);
3724 3724
3725 3725 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
3726 3726
3727 3727 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
3728 3728
3729 3729 /*
3730 3730 * We want to be informed each time a stack is created or
3731 3731 * destroyed in the kernel, so we can maintain the
3732 3732 * set of tcp_stack_t's.
3733 3733 */
3734 3734 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
3735 3735 }
3736 3736
3737 3737
3738 3738 #define INET_NAME "ip"
3739 3739
3740 3740 /*
3741 3741 * Initialize the TCP stack instance.
3742 3742 */
3743 3743 static void *
3744 3744 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
3745 3745 {
3746 3746 tcp_stack_t *tcps;
3747 3747 int i;
3748 3748 int error = 0;
3749 3749 major_t major;
3750 3750 size_t arrsz;
3751 3751
3752 3752 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
3753 3753 tcps->tcps_netstack = ns;
3754 3754
3755 3755 /* Initialize locks */
3756 3756 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
3757 3757 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
3758 3758
3759 3759 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
3760 3760 tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1;
3761 3761 tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2;
3762 3762 tcps->tcps_min_anonpriv_port = 512;
3763 3763
3764 3764 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
3765 3765 TCP_BIND_FANOUT_SIZE, KM_SLEEP);
3766 3766 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
3767 3767 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP);
3768 3768
3769 3769 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3770 3770 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
3771 3771 MUTEX_DEFAULT, NULL);
3772 3772 }
3773 3773
3774 3774 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3775 3775 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
3776 3776 MUTEX_DEFAULT, NULL);
3777 3777 }
3778 3778
3779 3779 /* TCP's IPsec code calls the packet dropper. */
3780 3780 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
3781 3781
3782 3782 arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t);
3783 3783 tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz,
3784 3784 KM_SLEEP);
3785 3785 bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz);
3786 3786
3787 3787 /*
3788 3788 * Note: To really walk the device tree you need the devinfo
3789 3789 * pointer to your device which is only available after probe/attach.
3790 3790 * The following is safe only because it uses ddi_root_node()
3791 3791 */
3792 3792 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
3793 3793 tcp_opt_obj.odb_opt_arr_cnt);
3794 3794
3795 3795 /*
3796 3796 * Initialize RFC 1948 secret values. This will probably be reset once
3797 3797 * by the boot scripts.
3798 3798 *
3799 3799 * Use NULL name, as the name is caught by the new lockstats.
3800 3800 *
3801 3801 * Initialize with some random, non-guessable string, like the global
3802 3802 * T_INFO_ACK.
3803 3803 */
3804 3804
3805 3805 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
3806 3806 sizeof (tcp_g_t_info_ack), tcps);
3807 3807
3808 3808 tcps->tcps_kstat = tcp_kstat2_init(stackid);
3809 3809 tcps->tcps_mibkp = tcp_kstat_init(stackid);
3810 3810
3811 3811 major = mod_name_to_major(INET_NAME);
3812 3812 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
3813 3813 ASSERT(error == 0);
3814 3814 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
3815 3815 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
3816 3816 cv_init(&tcps->tcps_ixa_cleanup_ready_cv, NULL, CV_DEFAULT, NULL);
3817 3817 cv_init(&tcps->tcps_ixa_cleanup_done_cv, NULL, CV_DEFAULT, NULL);
3818 3818 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
3819 3819
3820 3820 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
3821 3821 tcps->tcps_reclaim = B_FALSE;
3822 3822 tcps->tcps_reclaim_tid = 0;
3823 3823 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max;
3824 3824
3825 3825 /*
3826 3826 * ncpus is the current number of CPUs, which can be bigger than
3827 3827 * boot_ncpus. But we don't want to use ncpus to allocate all the
3828 3828 * tcp_stats_cpu_t at system boot up time since it will be 1. While
3829 3829 * we handle adding CPU in tcp_cpu_update(), it will be slow if
3830 3830 * there are many CPUs as we will be adding them 1 by 1.
3831 3831 *
3832 3832 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers
3833 3833 * are not freed until the stack is going away. So there is no need
3834 3834 * to grab a lock to access the per CPU tcps_sc[x] pointer.
3835 3835 */
3836 3836 mutex_enter(&cpu_lock);
3837 3837 tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus);
3838 3838 mutex_exit(&cpu_lock);
3839 3839 tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *),
3840 3840 KM_SLEEP);
3841 3841 for (i = 0; i < tcps->tcps_sc_cnt; i++) {
3842 3842 tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t),
3843 3843 KM_SLEEP);
3844 3844 }
3845 3845
3846 3846 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL);
3847 3847 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t),
3848 3848 offsetof(tcp_listener_t, tl_link));
3849 3849
3850 3850 return (tcps);
3851 3851 }
3852 3852
3853 3853 /*
3854 3854 * Called when the IP module is about to be unloaded.
3855 3855 */
3856 3856 void
3857 3857 tcp_ddi_g_destroy(void)
3858 3858 {
3859 3859 tcp_g_kstat_fini(tcp_g_kstat);
3860 3860 tcp_g_kstat = NULL;
3861 3861 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
3862 3862
3863 3863 mutex_destroy(&tcp_random_lock);
3864 3864
3865 3865 kmem_cache_destroy(tcp_timercache);
3866 3866 kmem_cache_destroy(tcp_notsack_blk_cache);
3867 3867
3868 3868 netstack_unregister(NS_TCP);
3869 3869 }
3870 3870
3871 3871 /*
3872 3872 * Free the TCP stack instance.
3873 3873 */
3874 3874 static void
3875 3875 tcp_stack_fini(netstackid_t stackid, void *arg)
3876 3876 {
3877 3877 tcp_stack_t *tcps = (tcp_stack_t *)arg;
3878 3878 int i;
3879 3879
3880 3880 freeb(tcps->tcps_ixa_cleanup_mp);
3881 3881 tcps->tcps_ixa_cleanup_mp = NULL;
3882 3882 cv_destroy(&tcps->tcps_ixa_cleanup_ready_cv);
3883 3883 cv_destroy(&tcps->tcps_ixa_cleanup_done_cv);
3884 3884 mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
3885 3885
3886 3886 /*
3887 3887 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart
3888 3888 * the timer.
3889 3889 */
3890 3890 mutex_enter(&tcps->tcps_reclaim_lock);
3891 3891 tcps->tcps_reclaim = B_FALSE;
3892 3892 mutex_exit(&tcps->tcps_reclaim_lock);
3893 3893 if (tcps->tcps_reclaim_tid != 0)
3894 3894 (void) untimeout(tcps->tcps_reclaim_tid);
3895 3895 mutex_destroy(&tcps->tcps_reclaim_lock);
3896 3896
3897 3897 tcp_listener_conf_cleanup(tcps);
3898 3898
3899 3899 for (i = 0; i < tcps->tcps_sc_cnt; i++)
3900 3900 kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t));
3901 3901 kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *));
3902 3902
3903 3903 kmem_free(tcps->tcps_propinfo_tbl,
3904 3904 tcp_propinfo_count * sizeof (mod_prop_info_t));
3905 3905 tcps->tcps_propinfo_tbl = NULL;
3906 3906
3907 3907 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3908 3908 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
3909 3909 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
3910 3910 }
3911 3911
3912 3912 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3913 3913 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
3914 3914 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
3915 3915 }
3916 3916
3917 3917 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
3918 3918 tcps->tcps_bind_fanout = NULL;
3919 3919
3920 3920 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) *
3921 3921 TCP_ACCEPTOR_FANOUT_SIZE);
3922 3922 tcps->tcps_acceptor_fanout = NULL;
3923 3923
3924 3924 mutex_destroy(&tcps->tcps_iss_key_lock);
3925 3925 mutex_destroy(&tcps->tcps_epriv_port_lock);
3926 3926
3927 3927 ip_drop_unregister(&tcps->tcps_dropper);
3928 3928
3929 3929 tcp_kstat2_fini(stackid, tcps->tcps_kstat);
3930 3930 tcps->tcps_kstat = NULL;
3931 3931
3932 3932 tcp_kstat_fini(stackid, tcps->tcps_mibkp);
3933 3933 tcps->tcps_mibkp = NULL;
3934 3934
3935 3935 ldi_ident_release(tcps->tcps_ldi_ident);
3936 3936 kmem_free(tcps, sizeof (*tcps));
3937 3937 }
3938 3938
3939 3939 /*
3940 3940 * Generate ISS, taking into account NDD changes may happen halfway through.
3941 3941 * (If the iss is not zero, set it.)
3942 3942 */
3943 3943
3944 3944 static void
3945 3945 tcp_iss_init(tcp_t *tcp)
3946 3946 {
3947 3947 MD5_CTX context;
3948 3948 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
3949 3949 uint32_t answer[4];
3950 3950 tcp_stack_t *tcps = tcp->tcp_tcps;
3951 3951 conn_t *connp = tcp->tcp_connp;
3952 3952
3953 3953 tcps->tcps_iss_incr_extra += (tcps->tcps_iss_incr >> 1);
3954 3954 tcp->tcp_iss = tcps->tcps_iss_incr_extra;
3955 3955 switch (tcps->tcps_strong_iss) {
3956 3956 case 2:
3957 3957 mutex_enter(&tcps->tcps_iss_key_lock);
3958 3958 context = tcps->tcps_iss_key;
3959 3959 mutex_exit(&tcps->tcps_iss_key_lock);
3960 3960 arg.ports = connp->conn_ports;
3961 3961 arg.src = connp->conn_laddr_v6;
3962 3962 arg.dst = connp->conn_faddr_v6;
3963 3963 MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
3964 3964 MD5Final((uchar_t *)answer, &context);
3965 3965 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
3966 3966 /*
3967 3967 * Now that we've hashed into a unique per-connection sequence
3968 3968 * space, add a random increment per strong_iss == 1. So I
3969 3969 * guess we'll have to...
3970 3970 */
3971 3971 /* FALLTHRU */
3972 3972 case 1:
3973 3973 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
3974 3974 break;
3975 3975 default:
3976 3976 tcp->tcp_iss += (uint32_t)gethrestime_sec() *
3977 3977 tcps->tcps_iss_incr;
3978 3978 break;
3979 3979 }
3980 3980 tcp->tcp_valid_bits = TCP_ISS_VALID;
3981 3981 tcp->tcp_fss = tcp->tcp_iss - 1;
3982 3982 tcp->tcp_suna = tcp->tcp_iss;
3983 3983 tcp->tcp_snxt = tcp->tcp_iss + 1;
3984 3984 tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3985 3985 tcp->tcp_csuna = tcp->tcp_snxt;
3986 3986 }
3987 3987
3988 3988 /*
3989 3989 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
3990 3990 * on the specified backing STREAMS q. Note, the caller may make the
3991 3991 * decision to call based on the tcp_t.tcp_flow_stopped value which
3992 3992 * when check outside the q's lock is only an advisory check ...
3993 3993 */
3994 3994 void
3995 3995 tcp_setqfull(tcp_t *tcp)
3996 3996 {
3997 3997 tcp_stack_t *tcps = tcp->tcp_tcps;
3998 3998 conn_t *connp = tcp->tcp_connp;
3999 3999
4000 4000 if (tcp->tcp_closed)
4001 4001 return;
4002 4002
4003 4003 conn_setqfull(connp, &tcp->tcp_flow_stopped);
4004 4004 if (tcp->tcp_flow_stopped)
4005 4005 TCP_STAT(tcps, tcp_flwctl_on);
4006 4006 }
4007 4007
4008 4008 void
4009 4009 tcp_clrqfull(tcp_t *tcp)
4010 4010 {
4011 4011 conn_t *connp = tcp->tcp_connp;
4012 4012
4013 4013 if (tcp->tcp_closed)
4014 4014 return;
4015 4015 conn_clrqfull(connp, &tcp->tcp_flow_stopped);
4016 4016 }
4017 4017
4018 4018 static int
4019 4019 tcp_squeue_switch(int val)
4020 4020 {
4021 4021 int rval = SQ_FILL;
4022 4022
4023 4023 switch (val) {
4024 4024 case 1:
4025 4025 rval = SQ_NODRAIN;
4026 4026 break;
4027 4027 case 2:
4028 4028 rval = SQ_PROCESS;
4029 4029 break;
4030 4030 default:
4031 4031 break;
4032 4032 }
4033 4033 return (rval);
4034 4034 }
4035 4035
4036 4036 /*
4037 4037 * This is called once for each squeue - globally for all stack
4038 4038 * instances.
4039 4039 */
4040 4040 static void
4041 4041 tcp_squeue_add(squeue_t *sqp)
4042 4042 {
4043 4043 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
4044 4044 sizeof (tcp_squeue_priv_t), KM_SLEEP);
4045 4045
4046 4046 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
4047 4047 if (tcp_free_list_max_cnt == 0) {
4048 4048 int tcp_ncpus = ((boot_max_ncpus == -1) ?
4049 4049 max_ncpus : boot_max_ncpus);
4050 4050
4051 4051 /*
4052 4052 * Limit number of entries to 1% of availble memory / tcp_ncpus
4053 4053 */
4054 4054 tcp_free_list_max_cnt = (freemem * PAGESIZE) /
4055 4055 (tcp_ncpus * sizeof (tcp_t) * 100);
4056 4056 }
4057 4057 tcp_time_wait->tcp_free_list_cnt = 0;
4058 4058 }
4059 4059 /*
4060 4060 * Return unix error is tli error is TSYSERR, otherwise return a negative
4061 4061 * tli error.
4062 4062 */
4063 4063 int
4064 4064 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
4065 4065 boolean_t bind_to_req_port_only)
4066 4066 {
4067 4067 int error;
4068 4068 tcp_t *tcp = connp->conn_tcp;
4069 4069
4070 4070 if (tcp->tcp_state >= TCPS_BOUND) {
4071 4071 if (connp->conn_debug) {
4072 4072 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4073 4073 "tcp_bind: bad state, %d", tcp->tcp_state);
4074 4074 }
4075 4075 return (-TOUTSTATE);
4076 4076 }
4077 4077
4078 4078 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
4079 4079 if (error != 0)
4080 4080 return (error);
4081 4081
4082 4082 ASSERT(tcp->tcp_state == TCPS_BOUND);
4083 4083 tcp->tcp_conn_req_max = 0;
4084 4084 return (0);
4085 4085 }
4086 4086
4087 4087 /*
4088 4088 * If the return value from this function is positive, it's a UNIX error.
4089 4089 * Otherwise, if it's negative, then the absolute value is a TLI error.
4090 4090 * the TPI routine tcp_tpi_connect() is a wrapper function for this.
4091 4091 */
4092 4092 int
4093 4093 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
4094 4094 cred_t *cr, pid_t pid)
4095 4095 {
4096 4096 tcp_t *tcp = connp->conn_tcp;
4097 4097 sin_t *sin = (sin_t *)sa;
4098 4098 sin6_t *sin6 = (sin6_t *)sa;
4099 4099 ipaddr_t *dstaddrp;
4100 4100 in_port_t dstport;
4101 4101 uint_t srcid;
4102 4102 int error;
4103 4103 uint32_t mss;
4104 4104 mblk_t *syn_mp;
4105 4105 tcp_stack_t *tcps = tcp->tcp_tcps;
4106 4106 int32_t oldstate;
4107 4107 ip_xmit_attr_t *ixa = connp->conn_ixa;
4108 4108
4109 4109 oldstate = tcp->tcp_state;
4110 4110
4111 4111 switch (len) {
4112 4112 default:
4113 4113 /*
4114 4114 * Should never happen
4115 4115 */
4116 4116 return (EINVAL);
4117 4117
4118 4118 case sizeof (sin_t):
4119 4119 sin = (sin_t *)sa;
4120 4120 if (sin->sin_port == 0) {
4121 4121 return (-TBADADDR);
4122 4122 }
4123 4123 if (connp->conn_ipv6_v6only) {
4124 4124 return (EAFNOSUPPORT);
4125 4125 }
4126 4126 break;
4127 4127
4128 4128 case sizeof (sin6_t):
4129 4129 sin6 = (sin6_t *)sa;
4130 4130 if (sin6->sin6_port == 0) {
4131 4131 return (-TBADADDR);
4132 4132 }
4133 4133 break;
4134 4134 }
4135 4135 /*
4136 4136 * If we're connecting to an IPv4-mapped IPv6 address, we need to
4137 4137 * make sure that the conn_ipversion is IPV4_VERSION. We
4138 4138 * need to this before we call tcp_bindi() so that the port lookup
4139 4139 * code will look for ports in the correct port space (IPv4 and
4140 4140 * IPv6 have separate port spaces).
4141 4141 */
4142 4142 if (connp->conn_family == AF_INET6 &&
4143 4143 connp->conn_ipversion == IPV6_VERSION &&
4144 4144 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4145 4145 if (connp->conn_ipv6_v6only)
4146 4146 return (EADDRNOTAVAIL);
4147 4147
4148 4148 connp->conn_ipversion = IPV4_VERSION;
4149 4149 }
4150 4150
4151 4151 switch (tcp->tcp_state) {
4152 4152 case TCPS_LISTEN:
4153 4153 /*
4154 4154 * Listening sockets are not allowed to issue connect().
4155 4155 */
4156 4156 if (IPCL_IS_NONSTR(connp))
4157 4157 return (EOPNOTSUPP);
4158 4158 /* FALLTHRU */
4159 4159 case TCPS_IDLE:
4160 4160 /*
4161 4161 * We support quick connect, refer to comments in
4162 4162 * tcp_connect_*()
4163 4163 */
4164 4164 /* FALLTHRU */
4165 4165 case TCPS_BOUND:
4166 4166 break;
4167 4167 default:
4168 4168 return (-TOUTSTATE);
4169 4169 }
4170 4170
4171 4171 /*
4172 4172 * We update our cred/cpid based on the caller of connect
4173 4173 */
4174 4174 if (connp->conn_cred != cr) {
4175 4175 crhold(cr);
4176 4176 crfree(connp->conn_cred);
4177 4177 connp->conn_cred = cr;
4178 4178 }
4179 4179 connp->conn_cpid = pid;
4180 4180
4181 4181 /* Cache things in the ixa without any refhold */
4182 4182 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
4183 4183 ixa->ixa_cred = cr;
4184 4184 ixa->ixa_cpid = pid;
4185 4185 if (is_system_labeled()) {
4186 4186 /* We need to restart with a label based on the cred */
4187 4187 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
4188 4188 }
4189 4189
4190 4190 if (connp->conn_family == AF_INET6) {
4191 4191 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4192 4192 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
4193 4193 sin6->sin6_port, sin6->sin6_flowinfo,
4194 4194 sin6->__sin6_src_id, sin6->sin6_scope_id);
4195 4195 } else {
4196 4196 /*
4197 4197 * Destination adress is mapped IPv6 address.
4198 4198 * Source bound address should be unspecified or
4199 4199 * IPv6 mapped address as well.
4200 4200 */
4201 4201 if (!IN6_IS_ADDR_UNSPECIFIED(
4202 4202 &connp->conn_bound_addr_v6) &&
4203 4203 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
4204 4204 return (EADDRNOTAVAIL);
4205 4205 }
4206 4206 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
4207 4207 dstport = sin6->sin6_port;
4208 4208 srcid = sin6->__sin6_src_id;
4209 4209 error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
4210 4210 srcid);
4211 4211 }
4212 4212 } else {
4213 4213 dstaddrp = &sin->sin_addr.s_addr;
4214 4214 dstport = sin->sin_port;
4215 4215 srcid = 0;
4216 4216 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
4217 4217 }
4218 4218
4219 4219 if (error != 0)
4220 4220 goto connect_failed;
4221 4221
4222 4222 CL_INET_CONNECT(connp, B_TRUE, error);
4223 4223 if (error != 0)
4224 4224 goto connect_failed;
4225 4225
4226 4226 /* connect succeeded */
4227 4227 TCPS_BUMP_MIB(tcps, tcpActiveOpens);
4228 4228 tcp->tcp_active_open = 1;
4229 4229
4230 4230 /*
4231 4231 * tcp_set_destination() does not adjust for TCP/IP header length.
4232 4232 */
4233 4233 mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
4234 4234
4235 4235 /*
4236 4236 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up
4237 4237 * to the nearest MSS.
4238 4238 *
4239 4239 * We do the round up here because we need to get the interface MTU
4240 4240 * first before we can do the round up.
4241 4241 */
4242 4242 tcp->tcp_rwnd = connp->conn_rcvbuf;
4243 4243 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
4244 4244 tcps->tcps_recv_hiwat_minmss * mss);
4245 4245 connp->conn_rcvbuf = tcp->tcp_rwnd;
4246 4246 tcp_set_ws_value(tcp);
4247 4247 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
4248 4248 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
4249 4249 tcp->tcp_snd_ws_ok = B_TRUE;
4250 4250
4251 4251 /*
4252 4252 * Set tcp_snd_ts_ok to true
4253 4253 * so that tcp_xmit_mp will
4254 4254 * include the timestamp
4255 4255 * option in the SYN segment.
4256 4256 */
4257 4257 if (tcps->tcps_tstamp_always ||
4258 4258 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
4259 4259 tcp->tcp_snd_ts_ok = B_TRUE;
4260 4260 }
4261 4261
4262 4262 /*
4263 4263 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if
4264 4264 * the SACK metric is set. So here we just check the per stack SACK
4265 4265 * permitted param.
4266 4266 */
4267 4267 if (tcps->tcps_sack_permitted == 2) {
4268 4268 ASSERT(tcp->tcp_num_sack_blk == 0);
4269 4269 ASSERT(tcp->tcp_notsack_list == NULL);
4270 4270 tcp->tcp_snd_sack_ok = B_TRUE;
4271 4271 }
4272 4272
4273 4273 /*
4274 4274 * Should we use ECN? Note that the current
4275 4275 * default value (SunOS 5.9) of tcp_ecn_permitted
4276 4276 * is 1. The reason for doing this is that there
4277 4277 * are equipments out there that will drop ECN
4278 4278 * enabled IP packets. Setting it to 1 avoids
4279 4279 * compatibility problems.
4280 4280 */
4281 4281 if (tcps->tcps_ecn_permitted == 2)
4282 4282 tcp->tcp_ecn_ok = B_TRUE;
4283 4283
4284 4284 /* Trace change from BOUND -> SYN_SENT here */
4285 4285 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4286 4286 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4287 4287 int32_t, TCPS_BOUND);
4288 4288
4289 4289 TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4290 4290 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
4291 4291 tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
4292 4292 if (syn_mp != NULL) {
4293 4293 /*
4294 4294 * We must bump the generation before sending the syn
4295 4295 * to ensure that we use the right generation in case
4296 4296 * this thread issues a "connected" up call.
4297 4297 */
4298 4298 SOCK_CONNID_BUMP(tcp->tcp_connid);
4299 4299 /*
4300 4300 * DTrace sending the first SYN as a
4301 4301 * tcp:::connect-request event.
4302 4302 */
4303 4303 DTRACE_TCP5(connect__request, mblk_t *, NULL,
4304 4304 ip_xmit_attr_t *, connp->conn_ixa,
4305 4305 void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp,
4306 4306 tcph_t *,
4307 4307 &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]);
4308 4308 tcp_send_data(tcp, syn_mp);
4309 4309 }
4310 4310
4311 4311 if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4312 4312 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4313 4313 return (0);
4314 4314
4315 4315 connect_failed:
4316 4316 connp->conn_faddr_v6 = ipv6_all_zeros;
4317 4317 connp->conn_fport = 0;
4318 4318 tcp->tcp_state = oldstate;
4319 4319 if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4320 4320 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4321 4321 return (error);
4322 4322 }
4323 4323
4324 4324 int
4325 4325 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
4326 4326 int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
4327 4327 {
4328 4328 tcp_t *tcp = connp->conn_tcp;
4329 4329 int error = 0;
4330 4330 tcp_stack_t *tcps = tcp->tcp_tcps;
4331 4331 int32_t oldstate;
4332 4332
4333 4333 /* All Solaris components should pass a cred for this operation. */
4334 4334 ASSERT(cr != NULL);
4335 4335
4336 4336 if (tcp->tcp_state >= TCPS_BOUND) {
4337 4337 if ((tcp->tcp_state == TCPS_BOUND ||
4338 4338 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
4339 4339 /*
4340 4340 * Handle listen() increasing backlog.
4341 4341 * This is more "liberal" then what the TPI spec
4342 4342 * requires but is needed to avoid a t_unbind
4343 4343 * when handling listen() since the port number
4344 4344 * might be "stolen" between the unbind and bind.
4345 4345 */
4346 4346 goto do_listen;
4347 4347 }
4348 4348 if (connp->conn_debug) {
4349 4349 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4350 4350 "tcp_listen: bad state, %d", tcp->tcp_state);
4351 4351 }
4352 4352 return (-TOUTSTATE);
4353 4353 } else {
4354 4354 if (sa == NULL) {
4355 4355 sin6_t addr;
4356 4356 sin_t *sin;
4357 4357 sin6_t *sin6;
4358 4358
4359 4359 ASSERT(IPCL_IS_NONSTR(connp));
4360 4360 /* Do an implicit bind: Request for a generic port. */
4361 4361 if (connp->conn_family == AF_INET) {
4362 4362 len = sizeof (sin_t);
4363 4363 sin = (sin_t *)&addr;
4364 4364 *sin = sin_null;
4365 4365 sin->sin_family = AF_INET;
4366 4366 } else {
4367 4367 ASSERT(connp->conn_family == AF_INET6);
4368 4368 len = sizeof (sin6_t);
4369 4369 sin6 = (sin6_t *)&addr;
4370 4370 *sin6 = sin6_null;
4371 4371 sin6->sin6_family = AF_INET6;
4372 4372 }
4373 4373 sa = (struct sockaddr *)&addr;
4374 4374 }
4375 4375
4376 4376 error = tcp_bind_check(connp, sa, len, cr,
4377 4377 bind_to_req_port_only);
4378 4378 if (error)
4379 4379 return (error);
4380 4380 /* Fall through and do the fanout insertion */
4381 4381 }
4382 4382
4383 4383 do_listen:
4384 4384 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
4385 4385 tcp->tcp_conn_req_max = backlog;
4386 4386 if (tcp->tcp_conn_req_max) {
4387 4387 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
4388 4388 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
4389 4389 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
4390 4390 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
4391 4391 /*
4392 4392 * If this is a listener, do not reset the eager list
4393 4393 * and other stuffs. Note that we don't check if the
4394 4394 * existing eager list meets the new tcp_conn_req_max
4395 4395 * requirement.
4396 4396 */
4397 4397 if (tcp->tcp_state != TCPS_LISTEN) {
4398 4398 tcp->tcp_state = TCPS_LISTEN;
4399 4399 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4400 4400 connp->conn_ixa, void, NULL, tcp_t *, tcp,
4401 4401 void, NULL, int32_t, TCPS_BOUND);
4402 4402 /* Initialize the chain. Don't need the eager_lock */
4403 4403 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
4404 4404 tcp->tcp_eager_next_drop_q0 = tcp;
4405 4405 tcp->tcp_eager_prev_drop_q0 = tcp;
4406 4406 tcp->tcp_second_ctimer_threshold =
4407 4407 tcps->tcps_ip_abort_linterval;
4408 4408 }
4409 4409 }
4410 4410
4411 4411 /*
4412 4412 * We need to make sure that the conn_recv is set to a non-null
4413 4413 * value before we insert the conn into the classifier table.
4414 4414 * This is to avoid a race with an incoming packet which does an
4415 4415 * ipcl_classify().
4416 4416 * We initially set it to tcp_input_listener_unbound to try to
4417 4417 * pick a good squeue for the listener when the first SYN arrives.
4418 4418 * tcp_input_listener_unbound sets it to tcp_input_listener on that
4419 4419 * first SYN.
4420 4420 */
4421 4421 connp->conn_recv = tcp_input_listener_unbound;
4422 4422
4423 4423 /* Insert the listener in the classifier table */
4424 4424 error = ip_laddr_fanout_insert(connp);
4425 4425 if (error != 0) {
4426 4426 /* Undo the bind - release the port number */
4427 4427 oldstate = tcp->tcp_state;
4428 4428 tcp->tcp_state = TCPS_IDLE;
4429 4429 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4430 4430 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4431 4431 int32_t, oldstate);
4432 4432 connp->conn_bound_addr_v6 = ipv6_all_zeros;
4433 4433
4434 4434 connp->conn_laddr_v6 = ipv6_all_zeros;
4435 4435 connp->conn_saddr_v6 = ipv6_all_zeros;
4436 4436 connp->conn_ports = 0;
4437 4437
4438 4438 if (connp->conn_anon_port) {
4439 4439 zone_t *zone;
4440 4440
4441 4441 zone = crgetzone(cr);
4442 4442 connp->conn_anon_port = B_FALSE;
4443 4443 (void) tsol_mlp_anon(zone, connp->conn_mlp_type,
4444 4444 connp->conn_proto, connp->conn_lport, B_FALSE);
4445 4445 }
4446 4446 connp->conn_mlp_type = mlptSingle;
4447 4447
4448 4448 tcp_bind_hash_remove(tcp);
4449 4449 return (error);
4450 4450 } else {
4451 4451 /*
4452 4452 * If there is a connection limit, allocate and initialize
4453 4453 * the counter struct. Note that since listen can be called
4454 4454 * multiple times, the struct may have been allready allocated.
4455 4455 */
4456 4456 if (!list_is_empty(&tcps->tcps_listener_conf) &&
4457 4457 tcp->tcp_listen_cnt == NULL) {
4458 4458 tcp_listen_cnt_t *tlc;
4459 4459 uint32_t ratio;
4460 4460
4461 4461 ratio = tcp_find_listener_conf(tcps,
4462 4462 ntohs(connp->conn_lport));
4463 4463 if (ratio != 0) {
4464 4464 uint32_t mem_ratio, tot_buf;
4465 4465
4466 4466 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t),
4467 4467 KM_SLEEP);
4468 4468 /*
4469 4469 * Calculate the connection limit based on
4470 4470 * the configured ratio and maxusers. Maxusers
4471 4471 * are calculated based on memory size,
4472 4472 * ~ 1 user per MB. Note that the conn_rcvbuf
4473 4473 * and conn_sndbuf may change after a
4474 4474 * connection is accepted. So what we have
4475 4475 * is only an approximation.
4476 4476 */
4477 4477 if ((tot_buf = connp->conn_rcvbuf +
4478 4478 connp->conn_sndbuf) < MB) {
4479 4479 mem_ratio = MB / tot_buf;
4480 4480 tlc->tlc_max = maxusers / ratio *
4481 4481 mem_ratio;
4482 4482 } else {
4483 4483 mem_ratio = tot_buf / MB;
4484 4484 tlc->tlc_max = maxusers / ratio /
4485 4485 mem_ratio;
4486 4486 }
4487 4487 /* At least we should allow two connections! */
4488 4488 if (tlc->tlc_max <= tcp_min_conn_listener)
4489 4489 tlc->tlc_max = tcp_min_conn_listener;
4490 4490 tlc->tlc_cnt = 1;
4491 4491 tlc->tlc_drop = 0;
4492 4492 tcp->tcp_listen_cnt = tlc;
4493 4493 }
4494 4494 }
4495 4495 }
4496 4496 return (error);
4497 4497 }
|
↓ open down ↓ |
4497 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX