1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
  24  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
  25  * Copyright (c) 2014 Integros [integros.com]
  26  * Copyright 2016 Joyent, Inc.
  27  */
  28 
  29 /* Portions Copyright 2007 Jeremy Teo */
  30 /* Portions Copyright 2010 Robert Milkowski */
  31 
  32 #include <sys/types.h>
  33 #include <sys/param.h>
  34 #include <sys/time.h>
  35 #include <sys/systm.h>
  36 #include <sys/sysmacros.h>
  37 #include <sys/resource.h>
  38 #include <sys/vfs.h>
  39 #include <sys/vfs_opreg.h>
  40 #include <sys/vnode.h>
  41 #include <sys/file.h>
  42 #include <sys/stat.h>
  43 #include <sys/kmem.h>
  44 #include <sys/taskq.h>
  45 #include <sys/uio.h>
  46 #include <sys/vmsystm.h>
  47 #include <sys/atomic.h>
  48 #include <sys/vm.h>
  49 #include <vm/seg_vn.h>
  50 #include <vm/pvn.h>
  51 #include <vm/as.h>
  52 #include <vm/kpm.h>
  53 #include <vm/seg_kpm.h>
  54 #include <sys/mman.h>
  55 #include <sys/pathname.h>
  56 #include <sys/cmn_err.h>
  57 #include <sys/errno.h>
  58 #include <sys/unistd.h>
  59 #include <sys/zfs_dir.h>
  60 #include <sys/zfs_acl.h>
  61 #include <sys/zfs_ioctl.h>
  62 #include <sys/fs/zfs.h>
  63 #include <sys/dmu.h>
  64 #include <sys/dmu_objset.h>
  65 #include <sys/spa.h>
  66 #include <sys/txg.h>
  67 #include <sys/dbuf.h>
  68 #include <sys/zap.h>
  69 #include <sys/sa.h>
  70 #include <sys/dirent.h>
  71 #include <sys/policy.h>
  72 #include <sys/sunddi.h>
  73 #include <sys/filio.h>
  74 #include <sys/sid.h>
  75 #include "fs/fs_subr.h"
  76 #include <sys/zfs_ctldir.h>
  77 #include <sys/zfs_fuid.h>
  78 #include <sys/zfs_sa.h>
  79 #include <sys/dnlc.h>
  80 #include <sys/zfs_rlock.h>
  81 #include <sys/extdirent.h>
  82 #include <sys/kidmap.h>
  83 #include <sys/cred.h>
  84 #include <sys/attr.h>
  85 
  86 /*
  87  * Programming rules.
  88  *
  89  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
  90  * properly lock its in-core state, create a DMU transaction, do the work,
  91  * record this work in the intent log (ZIL), commit the DMU transaction,
  92  * and wait for the intent log to commit if it is a synchronous operation.
  93  * Moreover, the vnode ops must work in both normal and log replay context.
  94  * The ordering of events is important to avoid deadlocks and references
  95  * to freed memory.  The example below illustrates the following Big Rules:
  96  *
  97  *  (1) A check must be made in each zfs thread for a mounted file system.
  98  *      This is done avoiding races using ZFS_ENTER(zfsvfs).
  99  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
 100  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
 101  *      can return EIO from the calling function.
 102  *
 103  *  (2) VN_RELE() should always be the last thing except for zil_commit()
 104  *      (if necessary) and ZFS_EXIT(). This is for 3 reasons:
 105  *      First, if it's the last reference, the vnode/znode
 106  *      can be freed, so the zp may point to freed memory.  Second, the last
 107  *      reference will call zfs_zinactive(), which may induce a lot of work --
 108  *      pushing cached pages (which acquires range locks) and syncing out
 109  *      cached atime changes.  Third, zfs_zinactive() may require a new tx,
 110  *      which could deadlock the system if you were already holding one.
 111  *      If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
 112  *
 113  *  (3) All range locks must be grabbed before calling dmu_tx_assign(),
 114  *      as they can span dmu_tx_assign() calls.
 115  *
 116  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
 117  *      dmu_tx_assign().  This is critical because we don't want to block
 118  *      while holding locks.
 119  *
 120  *      If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
 121  *      reduces lock contention and CPU usage when we must wait (note that if
 122  *      throughput is constrained by the storage, nearly every transaction
 123  *      must wait).
 124  *
 125  *      Note, in particular, that if a lock is sometimes acquired before
 126  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
 127  *      to use a non-blocking assign can deadlock the system.  The scenario:
 128  *
 129  *      Thread A has grabbed a lock before calling dmu_tx_assign().
 130  *      Thread B is in an already-assigned tx, and blocks for this lock.
 131  *      Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
 132  *      forever, because the previous txg can't quiesce until B's tx commits.
 133  *
 134  *      If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
 135  *      then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
 136  *      calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
 137  *      to indicate that this operation has already called dmu_tx_wait().
 138  *      This will ensure that we don't retry forever, waiting a short bit
 139  *      each time.
 140  *
 141  *  (5) If the operation succeeded, generate the intent log entry for it
 142  *      before dropping locks.  This ensures that the ordering of events
 143  *      in the intent log matches the order in which they actually occurred.
 144  *      During ZIL replay the zfs_log_* functions will update the sequence
 145  *      number to indicate the zil transaction has replayed.
 146  *
 147  *  (6) At the end of each vnode op, the DMU tx must always commit,
 148  *      regardless of whether there were any errors.
 149  *
 150  *  (7) After dropping all locks, invoke zil_commit(zilog, foid)
 151  *      to ensure that synchronous semantics are provided when necessary.
 152  *
 153  * In general, this is how things should be ordered in each vnode op:
 154  *
 155  *      ZFS_ENTER(zfsvfs);              // exit if unmounted
 156  * top:
 157  *      zfs_dirent_lock(&dl, ...)   // lock directory entry (may VN_HOLD())
 158  *      rw_enter(...);                  // grab any other locks you need
 159  *      tx = dmu_tx_create(...);        // get DMU tx
 160  *      dmu_tx_hold_*();                // hold each object you might modify
 161  *      error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
 162  *      if (error) {
 163  *              rw_exit(...);           // drop locks
 164  *              zfs_dirent_unlock(dl);  // unlock directory entry
 165  *              VN_RELE(...);           // release held vnodes
 166  *              if (error == ERESTART) {
 167  *                      waited = B_TRUE;
 168  *                      dmu_tx_wait(tx);
 169  *                      dmu_tx_abort(tx);
 170  *                      goto top;
 171  *              }
 172  *              dmu_tx_abort(tx);       // abort DMU tx
 173  *              ZFS_EXIT(zfsvfs);       // finished in zfs
 174  *              return (error);         // really out of space
 175  *      }
 176  *      error = do_real_work();         // do whatever this VOP does
 177  *      if (error == 0)
 178  *              zfs_log_*(...);         // on success, make ZIL entry
 179  *      dmu_tx_commit(tx);              // commit DMU tx -- error or not
 180  *      rw_exit(...);                   // drop locks
 181  *      zfs_dirent_unlock(dl);          // unlock directory entry
 182  *      VN_RELE(...);                   // release held vnodes
 183  *      zil_commit(zilog, foid);        // synchronous when necessary
 184  *      ZFS_EXIT(zfsvfs);               // finished in zfs
 185  *      return (error);                 // done, report error
 186  */
 187 
 188 /* ARGSUSED */
 189 static int
 190 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
 191 {
 192         znode_t *zp = VTOZ(*vpp);
 193         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
 194 
 195         ZFS_ENTER(zfsvfs);
 196         ZFS_VERIFY_ZP(zp);
 197 
 198         if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
 199             ((flag & FAPPEND) == 0)) {
 200                 ZFS_EXIT(zfsvfs);
 201                 return (SET_ERROR(EPERM));
 202         }
 203 
 204         if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
 205             ZTOV(zp)->v_type == VREG &&
 206             !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
 207                 if (fs_vscan(*vpp, cr, 0) != 0) {
 208                         ZFS_EXIT(zfsvfs);
 209                         return (SET_ERROR(EACCES));
 210                 }
 211         }
 212 
 213         /* Keep a count of the synchronous opens in the znode */
 214         if (flag & (FSYNC | FDSYNC))
 215                 atomic_inc_32(&zp->z_sync_cnt);
 216 
 217         ZFS_EXIT(zfsvfs);
 218         return (0);
 219 }
 220 
 221 /* ARGSUSED */
 222 static int
 223 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
 224     caller_context_t *ct)
 225 {
 226         znode_t *zp = VTOZ(vp);
 227         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
 228 
 229         /*
 230          * Clean up any locks held by this process on the vp.
 231          */
 232         cleanlocks(vp, ddi_get_pid(), 0);
 233         cleanshares(vp, ddi_get_pid());
 234 
 235         ZFS_ENTER(zfsvfs);
 236         ZFS_VERIFY_ZP(zp);
 237 
 238         /* Decrement the synchronous opens in the znode */
 239         if ((flag & (FSYNC | FDSYNC)) && (count == 1))
 240                 atomic_dec_32(&zp->z_sync_cnt);
 241 
 242         if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
 243             ZTOV(zp)->v_type == VREG &&
 244             !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
 245                 VERIFY(fs_vscan(vp, cr, 1) == 0);
 246 
 247         ZFS_EXIT(zfsvfs);
 248         return (0);
 249 }
 250 
 251 /*
 252  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
 253  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
 254  */
 255 static int
 256 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
 257 {
 258         znode_t *zp = VTOZ(vp);
 259         uint64_t noff = (uint64_t)*off; /* new offset */
 260         uint64_t file_sz;
 261         int error;
 262         boolean_t hole;
 263 
 264         file_sz = zp->z_size;
 265         if (noff >= file_sz)  {
 266                 return (SET_ERROR(ENXIO));
 267         }
 268 
 269         if (cmd == _FIO_SEEK_HOLE)
 270                 hole = B_TRUE;
 271         else
 272                 hole = B_FALSE;
 273 
 274         error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
 275 
 276         if (error == ESRCH)
 277                 return (SET_ERROR(ENXIO));
 278 
 279         /*
 280          * We could find a hole that begins after the logical end-of-file,
 281          * because dmu_offset_next() only works on whole blocks.  If the
 282          * EOF falls mid-block, then indicate that the "virtual hole"
 283          * at the end of the file begins at the logical EOF, rather than
 284          * at the end of the last block.
 285          */
 286         if (noff > file_sz) {
 287                 ASSERT(hole);
 288                 noff = file_sz;
 289         }
 290 
 291         if (noff < *off)
 292                 return (error);
 293         *off = noff;
 294         return (error);
 295 }
 296 
 297 /* ARGSUSED */
 298 static int
 299 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
 300     int *rvalp, caller_context_t *ct)
 301 {
 302         offset_t off;
 303         offset_t ndata;
 304         dmu_object_info_t doi;
 305         int error;
 306         zfsvfs_t *zfsvfs;
 307         znode_t *zp;
 308 
 309         switch (com) {
 310         case _FIOFFS:
 311         {
 312                 return (zfs_sync(vp->v_vfsp, 0, cred));
 313 
 314                 /*
 315                  * The following two ioctls are used by bfu.  Faking out,
 316                  * necessary to avoid bfu errors.
 317                  */
 318         }
 319         case _FIOGDIO:
 320         case _FIOSDIO:
 321         {
 322                 return (0);
 323         }
 324 
 325         case _FIO_SEEK_DATA:
 326         case _FIO_SEEK_HOLE:
 327         {
 328                 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
 329                         return (SET_ERROR(EFAULT));
 330 
 331                 zp = VTOZ(vp);
 332                 zfsvfs = zp->z_zfsvfs;
 333                 ZFS_ENTER(zfsvfs);
 334                 ZFS_VERIFY_ZP(zp);
 335 
 336                 /* offset parameter is in/out */
 337                 error = zfs_holey(vp, com, &off);
 338                 ZFS_EXIT(zfsvfs);
 339                 if (error)
 340                         return (error);
 341                 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
 342                         return (SET_ERROR(EFAULT));
 343                 return (0);
 344         }
 345         case _FIO_COUNT_FILLED:
 346         {
 347                 /*
 348                  * _FIO_COUNT_FILLED adds a new ioctl command which
 349                  * exposes the number of filled blocks in a
 350                  * ZFS object.
 351                  */
 352                 zp = VTOZ(vp);
 353                 zfsvfs = zp->z_zfsvfs;
 354                 ZFS_ENTER(zfsvfs);
 355                 ZFS_VERIFY_ZP(zp);
 356 
 357                 /*
 358                  * Wait for all dirty blocks for this object
 359                  * to get synced out to disk, and the DMU info
 360                  * updated.
 361                  */
 362                 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
 363                 if (error) {
 364                         ZFS_EXIT(zfsvfs);
 365                         return (error);
 366                 }
 367 
 368                 /*
 369                  * Retrieve fill count from DMU object.
 370                  */
 371                 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
 372                 if (error) {
 373                         ZFS_EXIT(zfsvfs);
 374                         return (error);
 375                 }
 376 
 377                 ndata = doi.doi_fill_count;
 378 
 379                 ZFS_EXIT(zfsvfs);
 380                 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
 381                         return (SET_ERROR(EFAULT));
 382                 return (0);
 383         }
 384         }
 385         return (SET_ERROR(ENOTTY));
 386 }
 387 
 388 /*
 389  * Utility functions to map and unmap a single physical page.  These
 390  * are used to manage the mappable copies of ZFS file data, and therefore
 391  * do not update ref/mod bits.
 392  */
 393 caddr_t
 394 zfs_map_page(page_t *pp, enum seg_rw rw)
 395 {
 396         if (kpm_enable)
 397                 return (hat_kpm_mapin(pp, 0));
 398         ASSERT(rw == S_READ || rw == S_WRITE);
 399         return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
 400             (caddr_t)-1));
 401 }
 402 
 403 void
 404 zfs_unmap_page(page_t *pp, caddr_t addr)
 405 {
 406         if (kpm_enable) {
 407                 hat_kpm_mapout(pp, 0, addr);
 408         } else {
 409                 ppmapout(addr);
 410         }
 411 }
 412 
 413 /*
 414  * When a file is memory mapped, we must keep the IO data synchronized
 415  * between the DMU cache and the memory mapped pages.  What this means:
 416  *
 417  * On Write:    If we find a memory mapped page, we write to *both*
 418  *              the page and the dmu buffer.
 419  */
 420 static void
 421 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
 422 {
 423         int64_t off;
 424 
 425         off = start & PAGEOFFSET;
 426         for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
 427                 page_t *pp;
 428                 uint64_t nbytes = MIN(PAGESIZE - off, len);
 429 
 430                 if (pp = page_lookup(vp, start, SE_SHARED)) {
 431                         caddr_t va;
 432 
 433                         va = zfs_map_page(pp, S_WRITE);
 434                         (void) dmu_read(os, oid, start+off, nbytes, va+off,
 435                             DMU_READ_PREFETCH);
 436                         zfs_unmap_page(pp, va);
 437                         page_unlock(pp);
 438                 }
 439                 len -= nbytes;
 440                 off = 0;
 441         }
 442 }
 443 
 444 /*
 445  * When a file is memory mapped, we must keep the IO data synchronized
 446  * between the DMU cache and the memory mapped pages.  What this means:
 447  *
 448  * On Read:     We "read" preferentially from memory mapped pages,
 449  *              else we default from the dmu buffer.
 450  *
 451  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
 452  *       the file is memory mapped.
 453  */
 454 static int
 455 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
 456 {
 457         znode_t *zp = VTOZ(vp);
 458         int64_t start, off;
 459         int len = nbytes;
 460         int error = 0;
 461 
 462         start = uio->uio_loffset;
 463         off = start & PAGEOFFSET;
 464         for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
 465                 page_t *pp;
 466                 uint64_t bytes = MIN(PAGESIZE - off, len);
 467 
 468                 if (pp = page_lookup(vp, start, SE_SHARED)) {
 469                         caddr_t va;
 470 
 471                         va = zfs_map_page(pp, S_READ);
 472                         error = uiomove(va + off, bytes, UIO_READ, uio);
 473                         zfs_unmap_page(pp, va);
 474                         page_unlock(pp);
 475                 } else {
 476                         error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 477                             uio, bytes);
 478                 }
 479                 len -= bytes;
 480                 off = 0;
 481                 if (error)
 482                         break;
 483         }
 484         return (error);
 485 }
 486 
 487 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
 488 
 489 /*
 490  * Read bytes from specified file into supplied buffer.
 491  *
 492  *      IN:     vp      - vnode of file to be read from.
 493  *              uio     - structure supplying read location, range info,
 494  *                        and return buffer.
 495  *              ioflag  - SYNC flags; used to provide FRSYNC semantics.
 496  *              cr      - credentials of caller.
 497  *              ct      - caller context
 498  *
 499  *      OUT:    uio     - updated offset and range, buffer filled.
 500  *
 501  *      RETURN: 0 on success, error code on failure.
 502  *
 503  * Side Effects:
 504  *      vp - atime updated if byte count > 0
 505  */
 506 /* ARGSUSED */
 507 static int
 508 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
 509 {
 510         znode_t         *zp = VTOZ(vp);
 511         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
 512         ssize_t         n, nbytes;
 513         int             error = 0;
 514         rl_t            *rl;
 515         xuio_t          *xuio = NULL;
 516 
 517         ZFS_ENTER(zfsvfs);
 518         ZFS_VERIFY_ZP(zp);
 519 
 520         if (zp->z_pflags & ZFS_AV_QUARANTINED) {
 521                 ZFS_EXIT(zfsvfs);
 522                 return (SET_ERROR(EACCES));
 523         }
 524 
 525         /*
 526          * Validate file offset
 527          */
 528         if (uio->uio_loffset < (offset_t)0) {
 529                 ZFS_EXIT(zfsvfs);
 530                 return (SET_ERROR(EINVAL));
 531         }
 532 
 533         /*
 534          * Fasttrack empty reads
 535          */
 536         if (uio->uio_resid == 0) {
 537                 ZFS_EXIT(zfsvfs);
 538                 return (0);
 539         }
 540 
 541         /*
 542          * Check for mandatory locks
 543          */
 544         if (MANDMODE(zp->z_mode)) {
 545                 if (error = chklock(vp, FREAD,
 546                     uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
 547                         ZFS_EXIT(zfsvfs);
 548                         return (error);
 549                 }
 550         }
 551 
 552         /*
 553          * If we're in FRSYNC mode, sync out this znode before reading it.
 554          */
 555         if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
 556                 zil_commit(zfsvfs->z_log, zp->z_id);
 557 
 558         /*
 559          * Lock the range against changes.
 560          */
 561         rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
 562 
 563         /*
 564          * If we are reading past end-of-file we can skip
 565          * to the end; but we might still need to set atime.
 566          */
 567         if (uio->uio_loffset >= zp->z_size) {
 568                 error = 0;
 569                 goto out;
 570         }
 571 
 572         ASSERT(uio->uio_loffset < zp->z_size);
 573         n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
 574 
 575         if ((uio->uio_extflg == UIO_XUIO) &&
 576             (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
 577                 int nblk;
 578                 int blksz = zp->z_blksz;
 579                 uint64_t offset = uio->uio_loffset;
 580 
 581                 xuio = (xuio_t *)uio;
 582                 if ((ISP2(blksz))) {
 583                         nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
 584                             blksz)) / blksz;
 585                 } else {
 586                         ASSERT(offset + n <= blksz);
 587                         nblk = 1;
 588                 }
 589                 (void) dmu_xuio_init(xuio, nblk);
 590 
 591                 if (vn_has_cached_data(vp)) {
 592                         /*
 593                          * For simplicity, we always allocate a full buffer
 594                          * even if we only expect to read a portion of a block.
 595                          */
 596                         while (--nblk >= 0) {
 597                                 (void) dmu_xuio_add(xuio,
 598                                     dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
 599                                     blksz), 0, blksz);
 600                         }
 601                 }
 602         }
 603 
 604         while (n > 0) {
 605                 nbytes = MIN(n, zfs_read_chunk_size -
 606                     P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
 607 
 608                 if (vn_has_cached_data(vp)) {
 609                         error = mappedread(vp, nbytes, uio);
 610                 } else {
 611                         error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 612                             uio, nbytes);
 613                 }
 614                 if (error) {
 615                         /* convert checksum errors into IO errors */
 616                         if (error == ECKSUM)
 617                                 error = SET_ERROR(EIO);
 618                         break;
 619                 }
 620 
 621                 n -= nbytes;
 622         }
 623 out:
 624         zfs_range_unlock(rl);
 625 
 626         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
 627         ZFS_EXIT(zfsvfs);
 628         return (error);
 629 }
 630 
 631 /*
 632  * Write the bytes to a file.
 633  *
 634  *      IN:     vp      - vnode of file to be written to.
 635  *              uio     - structure supplying write location, range info,
 636  *                        and data buffer.
 637  *              ioflag  - FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
 638  *                        set if in append mode.
 639  *              cr      - credentials of caller.
 640  *              ct      - caller context (NFS/CIFS fem monitor only)
 641  *
 642  *      OUT:    uio     - updated offset and range.
 643  *
 644  *      RETURN: 0 on success, error code on failure.
 645  *
 646  * Timestamps:
 647  *      vp - ctime|mtime updated if byte count > 0
 648  */
 649 
 650 /* ARGSUSED */
 651 static int
 652 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
 653 {
 654         znode_t         *zp = VTOZ(vp);
 655         rlim64_t        limit = uio->uio_llimit;
 656         ssize_t         start_resid = uio->uio_resid;
 657         ssize_t         tx_bytes;
 658         uint64_t        end_size;
 659         dmu_tx_t        *tx;
 660         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
 661         zilog_t         *zilog;
 662         offset_t        woff;
 663         ssize_t         n, nbytes;
 664         rl_t            *rl;
 665         int             max_blksz = zfsvfs->z_max_blksz;
 666         int             error = 0;
 667         int             prev_error;
 668         arc_buf_t       *abuf;
 669         iovec_t         *aiov = NULL;
 670         xuio_t          *xuio = NULL;
 671         int             i_iov = 0;
 672         int             iovcnt = uio->uio_iovcnt;
 673         iovec_t         *iovp = uio->uio_iov;
 674         int             write_eof;
 675         int             count = 0;
 676         sa_bulk_attr_t  bulk[4];
 677         uint64_t        mtime[2], ctime[2];
 678 
 679         /*
 680          * Fasttrack empty write
 681          */
 682         n = start_resid;
 683         if (n == 0)
 684                 return (0);
 685 
 686         if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
 687                 limit = MAXOFFSET_T;
 688 
 689         /*
 690          * Pre-fault the pages to ensure slow (eg NFS) pages
 691          * don't hold up txg.
 692          * Skip this if uio contains loaned arc_buf.
 693          */
 694         if ((uio->uio_extflg == UIO_XUIO) &&
 695             (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
 696                 xuio = (xuio_t *)uio;
 697         else
 698                 uio_prefaultpages(n, uio);
 699 
 700         ZFS_ENTER(zfsvfs);
 701         ZFS_VERIFY_ZP(zp);
 702 
 703         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
 704         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
 705         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
 706             &zp->z_size, 8);
 707         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
 708             &zp->z_pflags, 8);
 709 
 710         /*
 711          * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
 712          * callers might not be able to detect properly that we are read-only,
 713          * so check it explicitly here.
 714          */
 715         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
 716                 ZFS_EXIT(zfsvfs);
 717                 return (SET_ERROR(EROFS));
 718         }
 719 
 720         /*
 721          * If immutable or not appending then return EPERM
 722          */
 723         if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
 724             ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
 725             (uio->uio_loffset < zp->z_size))) {
 726                 ZFS_EXIT(zfsvfs);
 727                 return (SET_ERROR(EPERM));
 728         }
 729 
 730         zilog = zfsvfs->z_log;
 731 
 732         /*
 733          * Validate file offset
 734          */
 735         woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
 736         if (woff < 0) {
 737                 ZFS_EXIT(zfsvfs);
 738                 return (SET_ERROR(EINVAL));
 739         }
 740 
 741         /*
 742          * Check for mandatory locks before calling zfs_range_lock()
 743          * in order to prevent a deadlock with locks set via fcntl().
 744          */
 745         if (MANDMODE((mode_t)zp->z_mode) &&
 746             (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
 747                 ZFS_EXIT(zfsvfs);
 748                 return (error);
 749         }
 750 
 751         /*
 752          * If in append mode, set the io offset pointer to eof.
 753          */
 754         if (ioflag & FAPPEND) {
 755                 /*
 756                  * Obtain an appending range lock to guarantee file append
 757                  * semantics.  We reset the write offset once we have the lock.
 758                  */
 759                 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
 760                 woff = rl->r_off;
 761                 if (rl->r_len == UINT64_MAX) {
 762                         /*
 763                          * We overlocked the file because this write will cause
 764                          * the file block size to increase.
 765                          * Note that zp_size cannot change with this lock held.
 766                          */
 767                         woff = zp->z_size;
 768                 }
 769                 uio->uio_loffset = woff;
 770         } else {
 771                 /*
 772                  * Note that if the file block size will change as a result of
 773                  * this write, then this range lock will lock the entire file
 774                  * so that we can re-write the block safely.
 775                  */
 776                 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
 777         }
 778 
 779         if (woff >= limit) {
 780                 zfs_range_unlock(rl);
 781                 ZFS_EXIT(zfsvfs);
 782                 return (SET_ERROR(EFBIG));
 783         }
 784 
 785         if ((woff + n) > limit || woff > (limit - n))
 786                 n = limit - woff;
 787 
 788         /* Will this write extend the file length? */
 789         write_eof = (woff + n > zp->z_size);
 790 
 791         end_size = MAX(zp->z_size, woff + n);
 792 
 793         /*
 794          * Write the file in reasonable size chunks.  Each chunk is written
 795          * in a separate transaction; this keeps the intent log records small
 796          * and allows us to do more fine-grained space accounting.
 797          */
 798         while (n > 0) {
 799                 abuf = NULL;
 800                 woff = uio->uio_loffset;
 801                 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
 802                     zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
 803                         if (abuf != NULL)
 804                                 dmu_return_arcbuf(abuf);
 805                         error = SET_ERROR(EDQUOT);
 806                         break;
 807                 }
 808 
 809                 if (xuio && abuf == NULL) {
 810                         ASSERT(i_iov < iovcnt);
 811                         aiov = &iovp[i_iov];
 812                         abuf = dmu_xuio_arcbuf(xuio, i_iov);
 813                         dmu_xuio_clear(xuio, i_iov);
 814                         DTRACE_PROBE3(zfs_cp_write, int, i_iov,
 815                             iovec_t *, aiov, arc_buf_t *, abuf);
 816                         ASSERT((aiov->iov_base == abuf->b_data) ||
 817                             ((char *)aiov->iov_base - (char *)abuf->b_data +
 818                             aiov->iov_len == arc_buf_size(abuf)));
 819                         i_iov++;
 820                 } else if (abuf == NULL && n >= max_blksz &&
 821                     woff >= zp->z_size &&
 822                     P2PHASE(woff, max_blksz) == 0 &&
 823                     zp->z_blksz == max_blksz) {
 824                         /*
 825                          * This write covers a full block.  "Borrow" a buffer
 826                          * from the dmu so that we can fill it before we enter
 827                          * a transaction.  This avoids the possibility of
 828                          * holding up the transaction if the data copy hangs
 829                          * up on a pagefault (e.g., from an NFS server mapping).
 830                          */
 831                         size_t cbytes;
 832 
 833                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
 834                             max_blksz);
 835                         ASSERT(abuf != NULL);
 836                         ASSERT(arc_buf_size(abuf) == max_blksz);
 837                         if (error = uiocopy(abuf->b_data, max_blksz,
 838                             UIO_WRITE, uio, &cbytes)) {
 839                                 dmu_return_arcbuf(abuf);
 840                                 break;
 841                         }
 842                         ASSERT(cbytes == max_blksz);
 843                 }
 844 
 845                 /*
 846                  * Start a transaction.
 847                  */
 848                 tx = dmu_tx_create(zfsvfs->z_os);
 849                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
 850                 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
 851                 zfs_sa_upgrade_txholds(tx, zp);
 852                 error = dmu_tx_assign(tx, TXG_WAIT);
 853                 if (error) {
 854                         dmu_tx_abort(tx);
 855                         if (abuf != NULL)
 856                                 dmu_return_arcbuf(abuf);
 857                         break;
 858                 }
 859 
 860                 /*
 861                  * If zfs_range_lock() over-locked we grow the blocksize
 862                  * and then reduce the lock range.  This will only happen
 863                  * on the first iteration since zfs_range_reduce() will
 864                  * shrink down r_len to the appropriate size.
 865                  */
 866                 if (rl->r_len == UINT64_MAX) {
 867                         uint64_t new_blksz;
 868 
 869                         if (zp->z_blksz > max_blksz) {
 870                                 /*
 871                                  * File's blocksize is already larger than the
 872                                  * "recordsize" property.  Only let it grow to
 873                                  * the next power of 2.
 874                                  */
 875                                 ASSERT(!ISP2(zp->z_blksz));
 876                                 new_blksz = MIN(end_size,
 877                                     1 << highbit64(zp->z_blksz));
 878                         } else {
 879                                 new_blksz = MIN(end_size, max_blksz);
 880                         }
 881                         zfs_grow_blocksize(zp, new_blksz, tx);
 882                         zfs_range_reduce(rl, woff, n);
 883                 }
 884 
 885                 /*
 886                  * XXX - should we really limit each write to z_max_blksz?
 887                  * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
 888                  */
 889                 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
 890 
 891                 if (abuf == NULL) {
 892                         tx_bytes = uio->uio_resid;
 893                         error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 894                             uio, nbytes, tx);
 895                         tx_bytes -= uio->uio_resid;
 896                 } else {
 897                         tx_bytes = nbytes;
 898                         ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
 899                         /*
 900                          * If this is not a full block write, but we are
 901                          * extending the file past EOF and this data starts
 902                          * block-aligned, use assign_arcbuf().  Otherwise,
 903                          * write via dmu_write().
 904                          */
 905                         if (tx_bytes < max_blksz && (!write_eof ||
 906                             aiov->iov_base != abuf->b_data)) {
 907                                 ASSERT(xuio);
 908                                 dmu_write(zfsvfs->z_os, zp->z_id, woff,
 909                                     aiov->iov_len, aiov->iov_base, tx);
 910                                 dmu_return_arcbuf(abuf);
 911                                 xuio_stat_wbuf_copied();
 912                         } else {
 913                                 ASSERT(xuio || tx_bytes == max_blksz);
 914                                 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
 915                                     woff, abuf, tx);
 916                         }
 917                         ASSERT(tx_bytes <= uio->uio_resid);
 918                         uioskip(uio, tx_bytes);
 919                 }
 920                 if (tx_bytes && vn_has_cached_data(vp)) {
 921                         update_pages(vp, woff,
 922                             tx_bytes, zfsvfs->z_os, zp->z_id);
 923                 }
 924 
 925                 /*
 926                  * If we made no progress, we're done.  If we made even
 927                  * partial progress, update the znode and ZIL accordingly.
 928                  */
 929                 if (tx_bytes == 0) {
 930                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
 931                             (void *)&zp->z_size, sizeof (uint64_t), tx);
 932                         dmu_tx_commit(tx);
 933                         ASSERT(error != 0);
 934                         break;
 935                 }
 936 
 937                 /*
 938                  * Clear Set-UID/Set-GID bits on successful write if not
 939                  * privileged and at least one of the excute bits is set.
 940                  *
 941                  * It would be nice to to this after all writes have
 942                  * been done, but that would still expose the ISUID/ISGID
 943                  * to another app after the partial write is committed.
 944                  *
 945                  * Note: we don't call zfs_fuid_map_id() here because
 946                  * user 0 is not an ephemeral uid.
 947                  */
 948                 mutex_enter(&zp->z_acl_lock);
 949                 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
 950                     (S_IXUSR >> 6))) != 0 &&
 951                     (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
 952                     secpolicy_vnode_setid_retain(cr,
 953                     (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
 954                         uint64_t newmode;
 955                         zp->z_mode &= ~(S_ISUID | S_ISGID);
 956                         newmode = zp->z_mode;
 957                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
 958                             (void *)&newmode, sizeof (uint64_t), tx);
 959                 }
 960                 mutex_exit(&zp->z_acl_lock);
 961 
 962                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
 963                     B_TRUE);
 964 
 965                 /*
 966                  * Update the file size (zp_size) if it has changed;
 967                  * account for possible concurrent updates.
 968                  */
 969                 while ((end_size = zp->z_size) < uio->uio_loffset) {
 970                         (void) atomic_cas_64(&zp->z_size, end_size,
 971                             uio->uio_loffset);
 972                 }
 973                 /*
 974                  * If we are replaying and eof is non zero then force
 975                  * the file size to the specified eof. Note, there's no
 976                  * concurrency during replay.
 977                  */
 978                 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
 979                         zp->z_size = zfsvfs->z_replay_eof;
 980 
 981                 /*
 982                  * Keep track of a possible pre-existing error from a partial
 983                  * write via dmu_write_uio_dbuf above.
 984                  */
 985                 prev_error = error;
 986                 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
 987 
 988                 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
 989                 dmu_tx_commit(tx);
 990 
 991                 if (prev_error != 0 || error != 0)
 992                         break;
 993                 ASSERT(tx_bytes == nbytes);
 994                 n -= nbytes;
 995         }
 996 
 997         zfs_range_unlock(rl);
 998 
 999         /*
1000          * If we're in replay mode, or we made no progress, return error.
1001          * Otherwise, it's at least a partial write, so it's successful.
1002          */
1003         if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1004                 ZFS_EXIT(zfsvfs);
1005                 return (error);
1006         }
1007 
1008         if (ioflag & (FSYNC | FDSYNC) ||
1009             zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1010                 zil_commit(zilog, zp->z_id);
1011 
1012         ZFS_EXIT(zfsvfs);
1013         return (0);
1014 }
1015 
1016 void
1017 zfs_get_done(zgd_t *zgd, int error)
1018 {
1019         znode_t *zp = zgd->zgd_private;
1020         objset_t *os = zp->z_zfsvfs->z_os;
1021 
1022         if (zgd->zgd_db)
1023                 dmu_buf_rele(zgd->zgd_db, zgd);
1024 
1025         zfs_range_unlock(zgd->zgd_rl);
1026 
1027         /*
1028          * Release the vnode asynchronously as we currently have the
1029          * txg stopped from syncing.
1030          */
1031         VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1032 
1033         if (error == 0 && zgd->zgd_bp)
1034                 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1035 
1036         kmem_free(zgd, sizeof (zgd_t));
1037 }
1038 
1039 #ifdef DEBUG
1040 static int zil_fault_io = 0;
1041 #endif
1042 
1043 /*
1044  * Get data to generate a TX_WRITE intent log record.
1045  */
1046 int
1047 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1048 {
1049         zfsvfs_t *zfsvfs = arg;
1050         objset_t *os = zfsvfs->z_os;
1051         znode_t *zp;
1052         uint64_t object = lr->lr_foid;
1053         uint64_t offset = lr->lr_offset;
1054         uint64_t size = lr->lr_length;
1055         blkptr_t *bp = &lr->lr_blkptr;
1056         dmu_buf_t *db;
1057         zgd_t *zgd;
1058         int error = 0;
1059 
1060         ASSERT(zio != NULL);
1061         ASSERT(size != 0);
1062 
1063         /*
1064          * Nothing to do if the file has been removed
1065          */
1066         if (zfs_zget(zfsvfs, object, &zp) != 0)
1067                 return (SET_ERROR(ENOENT));
1068         if (zp->z_unlinked) {
1069                 /*
1070                  * Release the vnode asynchronously as we currently have the
1071                  * txg stopped from syncing.
1072                  */
1073                 VN_RELE_ASYNC(ZTOV(zp),
1074                     dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1075                 return (SET_ERROR(ENOENT));
1076         }
1077 
1078         zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1079         zgd->zgd_zilog = zfsvfs->z_log;
1080         zgd->zgd_private = zp;
1081 
1082         /*
1083          * Write records come in two flavors: immediate and indirect.
1084          * For small writes it's cheaper to store the data with the
1085          * log record (immediate); for large writes it's cheaper to
1086          * sync the data and get a pointer to it (indirect) so that
1087          * we don't have to write the data twice.
1088          */
1089         if (buf != NULL) { /* immediate write */
1090                 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1091                 /* test for truncation needs to be done while range locked */
1092                 if (offset >= zp->z_size) {
1093                         error = SET_ERROR(ENOENT);
1094                 } else {
1095                         error = dmu_read(os, object, offset, size, buf,
1096                             DMU_READ_NO_PREFETCH);
1097                 }
1098                 ASSERT(error == 0 || error == ENOENT);
1099         } else { /* indirect write */
1100                 /*
1101                  * Have to lock the whole block to ensure when it's
1102                  * written out and it's checksum is being calculated
1103                  * that no one can change the data. We need to re-check
1104                  * blocksize after we get the lock in case it's changed!
1105                  */
1106                 for (;;) {
1107                         uint64_t blkoff;
1108                         size = zp->z_blksz;
1109                         blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1110                         offset -= blkoff;
1111                         zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1112                             RL_READER);
1113                         if (zp->z_blksz == size)
1114                                 break;
1115                         offset += blkoff;
1116                         zfs_range_unlock(zgd->zgd_rl);
1117                 }
1118                 /* test for truncation needs to be done while range locked */
1119                 if (lr->lr_offset >= zp->z_size)
1120                         error = SET_ERROR(ENOENT);
1121 #ifdef DEBUG
1122                 if (zil_fault_io) {
1123                         error = SET_ERROR(EIO);
1124                         zil_fault_io = 0;
1125                 }
1126 #endif
1127                 if (error == 0)
1128                         error = dmu_buf_hold(os, object, offset, zgd, &db,
1129                             DMU_READ_NO_PREFETCH);
1130 
1131                 if (error == 0) {
1132                         blkptr_t *obp = dmu_buf_get_blkptr(db);
1133                         if (obp) {
1134                                 ASSERT(BP_IS_HOLE(bp));
1135                                 *bp = *obp;
1136                         }
1137 
1138                         zgd->zgd_db = db;
1139                         zgd->zgd_bp = bp;
1140 
1141                         ASSERT(db->db_offset == offset);
1142                         ASSERT(db->db_size == size);
1143 
1144                         error = dmu_sync(zio, lr->lr_common.lrc_txg,
1145                             zfs_get_done, zgd);
1146                         ASSERT(error || lr->lr_length <= zp->z_blksz);
1147 
1148                         /*
1149                          * On success, we need to wait for the write I/O
1150                          * initiated by dmu_sync() to complete before we can
1151                          * release this dbuf.  We will finish everything up
1152                          * in the zfs_get_done() callback.
1153                          */
1154                         if (error == 0)
1155                                 return (0);
1156 
1157                         if (error == EALREADY) {
1158                                 lr->lr_common.lrc_txtype = TX_WRITE2;
1159                                 error = 0;
1160                         }
1161                 }
1162         }
1163 
1164         zfs_get_done(zgd, error);
1165 
1166         return (error);
1167 }
1168 
1169 /*ARGSUSED*/
1170 static int
1171 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1172     caller_context_t *ct)
1173 {
1174         znode_t *zp = VTOZ(vp);
1175         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1176         int error;
1177 
1178         ZFS_ENTER(zfsvfs);
1179         ZFS_VERIFY_ZP(zp);
1180 
1181         if (flag & V_ACE_MASK)
1182                 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1183         else
1184                 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1185 
1186         ZFS_EXIT(zfsvfs);
1187         return (error);
1188 }
1189 
1190 /*
1191  * If vnode is for a device return a specfs vnode instead.
1192  */
1193 static int
1194 specvp_check(vnode_t **vpp, cred_t *cr)
1195 {
1196         int error = 0;
1197 
1198         if (IS_DEVVP(*vpp)) {
1199                 struct vnode *svp;
1200 
1201                 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1202                 VN_RELE(*vpp);
1203                 if (svp == NULL)
1204                         error = SET_ERROR(ENOSYS);
1205                 *vpp = svp;
1206         }
1207         return (error);
1208 }
1209 
1210 
1211 /*
1212  * Lookup an entry in a directory, or an extended attribute directory.
1213  * If it exists, return a held vnode reference for it.
1214  *
1215  *      IN:     dvp     - vnode of directory to search.
1216  *              nm      - name of entry to lookup.
1217  *              pnp     - full pathname to lookup [UNUSED].
1218  *              flags   - LOOKUP_XATTR set if looking for an attribute.
1219  *              rdir    - root directory vnode [UNUSED].
1220  *              cr      - credentials of caller.
1221  *              ct      - caller context
1222  *              direntflags - directory lookup flags
1223  *              realpnp - returned pathname.
1224  *
1225  *      OUT:    vpp     - vnode of located entry, NULL if not found.
1226  *
1227  *      RETURN: 0 on success, error code on failure.
1228  *
1229  * Timestamps:
1230  *      NA
1231  */
1232 /* ARGSUSED */
1233 static int
1234 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1235     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1236     int *direntflags, pathname_t *realpnp)
1237 {
1238         znode_t *zdp = VTOZ(dvp);
1239         zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1240         int     error = 0;
1241 
1242         /* fast path */
1243         if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1244 
1245                 if (dvp->v_type != VDIR) {
1246                         return (SET_ERROR(ENOTDIR));
1247                 } else if (zdp->z_sa_hdl == NULL) {
1248                         return (SET_ERROR(EIO));
1249                 }
1250 
1251                 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1252                         error = zfs_fastaccesschk_execute(zdp, cr);
1253                         if (!error) {
1254                                 *vpp = dvp;
1255                                 VN_HOLD(*vpp);
1256                                 return (0);
1257                         }
1258                         return (error);
1259                 } else {
1260                         vnode_t *tvp = dnlc_lookup(dvp, nm);
1261 
1262                         if (tvp) {
1263                                 error = zfs_fastaccesschk_execute(zdp, cr);
1264                                 if (error) {
1265                                         VN_RELE(tvp);
1266                                         return (error);
1267                                 }
1268                                 if (tvp == DNLC_NO_VNODE) {
1269                                         VN_RELE(tvp);
1270                                         return (SET_ERROR(ENOENT));
1271                                 } else {
1272                                         *vpp = tvp;
1273                                         return (specvp_check(vpp, cr));
1274                                 }
1275                         }
1276                 }
1277         }
1278 
1279         DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1280 
1281         ZFS_ENTER(zfsvfs);
1282         ZFS_VERIFY_ZP(zdp);
1283 
1284         *vpp = NULL;
1285 
1286         if (flags & LOOKUP_XATTR) {
1287                 /*
1288                  * If the xattr property is off, refuse the lookup request.
1289                  */
1290                 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1291                         ZFS_EXIT(zfsvfs);
1292                         return (SET_ERROR(EINVAL));
1293                 }
1294 
1295                 /*
1296                  * We don't allow recursive attributes..
1297                  * Maybe someday we will.
1298                  */
1299                 if (zdp->z_pflags & ZFS_XATTR) {
1300                         ZFS_EXIT(zfsvfs);
1301                         return (SET_ERROR(EINVAL));
1302                 }
1303 
1304                 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1305                         ZFS_EXIT(zfsvfs);
1306                         return (error);
1307                 }
1308 
1309                 /*
1310                  * Do we have permission to get into attribute directory?
1311                  */
1312 
1313                 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1314                     B_FALSE, cr)) {
1315                         VN_RELE(*vpp);
1316                         *vpp = NULL;
1317                 }
1318 
1319                 ZFS_EXIT(zfsvfs);
1320                 return (error);
1321         }
1322 
1323         if (dvp->v_type != VDIR) {
1324                 ZFS_EXIT(zfsvfs);
1325                 return (SET_ERROR(ENOTDIR));
1326         }
1327 
1328         /*
1329          * Check accessibility of directory.
1330          */
1331 
1332         if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1333                 ZFS_EXIT(zfsvfs);
1334                 return (error);
1335         }
1336 
1337         if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1338             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1339                 ZFS_EXIT(zfsvfs);
1340                 return (SET_ERROR(EILSEQ));
1341         }
1342 
1343         error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1344         if (error == 0)
1345                 error = specvp_check(vpp, cr);
1346 
1347         ZFS_EXIT(zfsvfs);
1348         return (error);
1349 }
1350 
1351 /*
1352  * Attempt to create a new entry in a directory.  If the entry
1353  * already exists, truncate the file if permissible, else return
1354  * an error.  Return the vp of the created or trunc'd file.
1355  *
1356  *      IN:     dvp     - vnode of directory to put new file entry in.
1357  *              name    - name of new file entry.
1358  *              vap     - attributes of new file.
1359  *              excl    - flag indicating exclusive or non-exclusive mode.
1360  *              mode    - mode to open file with.
1361  *              cr      - credentials of caller.
1362  *              flag    - large file flag [UNUSED].
1363  *              ct      - caller context
1364  *              vsecp   - ACL to be set
1365  *
1366  *      OUT:    vpp     - vnode of created or trunc'd entry.
1367  *
1368  *      RETURN: 0 on success, error code on failure.
1369  *
1370  * Timestamps:
1371  *      dvp - ctime|mtime updated if new entry created
1372  *       vp - ctime|mtime always, atime if new
1373  */
1374 
1375 /* ARGSUSED */
1376 static int
1377 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1378     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1379     vsecattr_t *vsecp)
1380 {
1381         znode_t         *zp, *dzp = VTOZ(dvp);
1382         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1383         zilog_t         *zilog;
1384         objset_t        *os;
1385         zfs_dirlock_t   *dl;
1386         dmu_tx_t        *tx;
1387         int             error;
1388         ksid_t          *ksid;
1389         uid_t           uid;
1390         gid_t           gid = crgetgid(cr);
1391         zfs_acl_ids_t   acl_ids;
1392         boolean_t       fuid_dirtied;
1393         boolean_t       have_acl = B_FALSE;
1394         boolean_t       waited = B_FALSE;
1395 
1396         /*
1397          * If we have an ephemeral id, ACL, or XVATTR then
1398          * make sure file system is at proper version
1399          */
1400 
1401         ksid = crgetsid(cr, KSID_OWNER);
1402         if (ksid)
1403                 uid = ksid_getid(ksid);
1404         else
1405                 uid = crgetuid(cr);
1406 
1407         if (zfsvfs->z_use_fuids == B_FALSE &&
1408             (vsecp || (vap->va_mask & AT_XVATTR) ||
1409             IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1410                 return (SET_ERROR(EINVAL));
1411 
1412         ZFS_ENTER(zfsvfs);
1413         ZFS_VERIFY_ZP(dzp);
1414         os = zfsvfs->z_os;
1415         zilog = zfsvfs->z_log;
1416 
1417         if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1418             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1419                 ZFS_EXIT(zfsvfs);
1420                 return (SET_ERROR(EILSEQ));
1421         }
1422 
1423         if (vap->va_mask & AT_XVATTR) {
1424                 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1425                     crgetuid(cr), cr, vap->va_type)) != 0) {
1426                         ZFS_EXIT(zfsvfs);
1427                         return (error);
1428                 }
1429         }
1430 top:
1431         *vpp = NULL;
1432 
1433         if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1434                 vap->va_mode &= ~VSVTX;
1435 
1436         if (*name == '\0') {
1437                 /*
1438                  * Null component name refers to the directory itself.
1439                  */
1440                 VN_HOLD(dvp);
1441                 zp = dzp;
1442                 dl = NULL;
1443                 error = 0;
1444         } else {
1445                 /* possible VN_HOLD(zp) */
1446                 int zflg = 0;
1447 
1448                 if (flag & FIGNORECASE)
1449                         zflg |= ZCILOOK;
1450 
1451                 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1452                     NULL, NULL);
1453                 if (error) {
1454                         if (have_acl)
1455                                 zfs_acl_ids_free(&acl_ids);
1456                         if (strcmp(name, "..") == 0)
1457                                 error = SET_ERROR(EISDIR);
1458                         ZFS_EXIT(zfsvfs);
1459                         return (error);
1460                 }
1461         }
1462 
1463         if (zp == NULL) {
1464                 uint64_t txtype;
1465 
1466                 /*
1467                  * Create a new file object and update the directory
1468                  * to reference it.
1469                  */
1470                 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1471                         if (have_acl)
1472                                 zfs_acl_ids_free(&acl_ids);
1473                         goto out;
1474                 }
1475 
1476                 /*
1477                  * We only support the creation of regular files in
1478                  * extended attribute directories.
1479                  */
1480 
1481                 if ((dzp->z_pflags & ZFS_XATTR) &&
1482                     (vap->va_type != VREG)) {
1483                         if (have_acl)
1484                                 zfs_acl_ids_free(&acl_ids);
1485                         error = SET_ERROR(EINVAL);
1486                         goto out;
1487                 }
1488 
1489                 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1490                     cr, vsecp, &acl_ids)) != 0)
1491                         goto out;
1492                 have_acl = B_TRUE;
1493 
1494                 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1495                         zfs_acl_ids_free(&acl_ids);
1496                         error = SET_ERROR(EDQUOT);
1497                         goto out;
1498                 }
1499 
1500                 tx = dmu_tx_create(os);
1501 
1502                 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1503                     ZFS_SA_BASE_ATTR_SIZE);
1504 
1505                 fuid_dirtied = zfsvfs->z_fuid_dirty;
1506                 if (fuid_dirtied)
1507                         zfs_fuid_txhold(zfsvfs, tx);
1508                 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1509                 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1510                 if (!zfsvfs->z_use_sa &&
1511                     acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1512                         dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1513                             0, acl_ids.z_aclp->z_acl_bytes);
1514                 }
1515                 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1516                 if (error) {
1517                         zfs_dirent_unlock(dl);
1518                         if (error == ERESTART) {
1519                                 waited = B_TRUE;
1520                                 dmu_tx_wait(tx);
1521                                 dmu_tx_abort(tx);
1522                                 goto top;
1523                         }
1524                         zfs_acl_ids_free(&acl_ids);
1525                         dmu_tx_abort(tx);
1526                         ZFS_EXIT(zfsvfs);
1527                         return (error);
1528                 }
1529                 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1530 
1531                 if (fuid_dirtied)
1532                         zfs_fuid_sync(zfsvfs, tx);
1533 
1534                 (void) zfs_link_create(dl, zp, tx, ZNEW);
1535                 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1536                 if (flag & FIGNORECASE)
1537                         txtype |= TX_CI;
1538                 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1539                     vsecp, acl_ids.z_fuidp, vap);
1540                 zfs_acl_ids_free(&acl_ids);
1541                 dmu_tx_commit(tx);
1542         } else {
1543                 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1544 
1545                 if (have_acl)
1546                         zfs_acl_ids_free(&acl_ids);
1547                 have_acl = B_FALSE;
1548 
1549                 /*
1550                  * A directory entry already exists for this name.
1551                  */
1552                 /*
1553                  * Can't truncate an existing file if in exclusive mode.
1554                  */
1555                 if (excl == EXCL) {
1556                         error = SET_ERROR(EEXIST);
1557                         goto out;
1558                 }
1559                 /*
1560                  * Can't open a directory for writing.
1561                  */
1562                 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1563                         error = SET_ERROR(EISDIR);
1564                         goto out;
1565                 }
1566                 /*
1567                  * Verify requested access to file.
1568                  */
1569                 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1570                         goto out;
1571                 }
1572 
1573                 mutex_enter(&dzp->z_lock);
1574                 dzp->z_seq++;
1575                 mutex_exit(&dzp->z_lock);
1576 
1577                 /*
1578                  * Truncate regular files if requested.
1579                  */
1580                 if ((ZTOV(zp)->v_type == VREG) &&
1581                     (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1582                         /* we can't hold any locks when calling zfs_freesp() */
1583                         zfs_dirent_unlock(dl);
1584                         dl = NULL;
1585                         error = zfs_freesp(zp, 0, 0, mode, TRUE);
1586                         if (error == 0) {
1587                                 vnevent_create(ZTOV(zp), ct);
1588                         }
1589                 }
1590         }
1591 out:
1592 
1593         if (dl)
1594                 zfs_dirent_unlock(dl);
1595 
1596         if (error) {
1597                 if (zp)
1598                         VN_RELE(ZTOV(zp));
1599         } else {
1600                 *vpp = ZTOV(zp);
1601                 error = specvp_check(vpp, cr);
1602         }
1603 
1604         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1605                 zil_commit(zilog, 0);
1606 
1607         ZFS_EXIT(zfsvfs);
1608         return (error);
1609 }
1610 
1611 /*
1612  * Remove an entry from a directory.
1613  *
1614  *      IN:     dvp     - vnode of directory to remove entry from.
1615  *              name    - name of entry to remove.
1616  *              cr      - credentials of caller.
1617  *              ct      - caller context
1618  *              flags   - case flags
1619  *
1620  *      RETURN: 0 on success, error code on failure.
1621  *
1622  * Timestamps:
1623  *      dvp - ctime|mtime
1624  *       vp - ctime (if nlink > 0)
1625  */
1626 
1627 uint64_t null_xattr = 0;
1628 
1629 /*ARGSUSED*/
1630 static int
1631 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1632     int flags)
1633 {
1634         znode_t         *zp, *dzp = VTOZ(dvp);
1635         znode_t         *xzp;
1636         vnode_t         *vp;
1637         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1638         zilog_t         *zilog;
1639         uint64_t        acl_obj, xattr_obj;
1640         uint64_t        xattr_obj_unlinked = 0;
1641         uint64_t        obj = 0;
1642         zfs_dirlock_t   *dl;
1643         dmu_tx_t        *tx;
1644         boolean_t       may_delete_now, delete_now = FALSE;
1645         boolean_t       unlinked, toobig = FALSE;
1646         uint64_t        txtype;
1647         pathname_t      *realnmp = NULL;
1648         pathname_t      realnm;
1649         int             error;
1650         int             zflg = ZEXISTS;
1651         boolean_t       waited = B_FALSE;
1652 
1653         ZFS_ENTER(zfsvfs);
1654         ZFS_VERIFY_ZP(dzp);
1655         zilog = zfsvfs->z_log;
1656 
1657         if (flags & FIGNORECASE) {
1658                 zflg |= ZCILOOK;
1659                 pn_alloc(&realnm);
1660                 realnmp = &realnm;
1661         }
1662 
1663 top:
1664         xattr_obj = 0;
1665         xzp = NULL;
1666         /*
1667          * Attempt to lock directory; fail if entry doesn't exist.
1668          */
1669         if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1670             NULL, realnmp)) {
1671                 if (realnmp)
1672                         pn_free(realnmp);
1673                 ZFS_EXIT(zfsvfs);
1674                 return (error);
1675         }
1676 
1677         vp = ZTOV(zp);
1678 
1679         if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1680                 goto out;
1681         }
1682 
1683         /*
1684          * Need to use rmdir for removing directories.
1685          */
1686         if (vp->v_type == VDIR) {
1687                 error = SET_ERROR(EPERM);
1688                 goto out;
1689         }
1690 
1691         vnevent_remove(vp, dvp, name, ct);
1692 
1693         if (realnmp)
1694                 dnlc_remove(dvp, realnmp->pn_buf);
1695         else
1696                 dnlc_remove(dvp, name);
1697 
1698         mutex_enter(&vp->v_lock);
1699         may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1700         mutex_exit(&vp->v_lock);
1701 
1702         /*
1703          * We may delete the znode now, or we may put it in the unlinked set;
1704          * it depends on whether we're the last link, and on whether there are
1705          * other holds on the vnode.  So we dmu_tx_hold() the right things to
1706          * allow for either case.
1707          */
1708         obj = zp->z_id;
1709         tx = dmu_tx_create(zfsvfs->z_os);
1710         dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1711         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1712         zfs_sa_upgrade_txholds(tx, zp);
1713         zfs_sa_upgrade_txholds(tx, dzp);
1714         if (may_delete_now) {
1715                 toobig =
1716                     zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1717                 /* if the file is too big, only hold_free a token amount */
1718                 dmu_tx_hold_free(tx, zp->z_id, 0,
1719                     (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1720         }
1721 
1722         /* are there any extended attributes? */
1723         error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1724             &xattr_obj, sizeof (xattr_obj));
1725         if (error == 0 && xattr_obj) {
1726                 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1727                 ASSERT0(error);
1728                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1729                 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1730         }
1731 
1732         mutex_enter(&zp->z_lock);
1733         if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1734                 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1735         mutex_exit(&zp->z_lock);
1736 
1737         /* charge as an update -- would be nice not to charge at all */
1738         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1739 
1740         /*
1741          * Mark this transaction as typically resulting in a net free of space
1742          */
1743         dmu_tx_mark_netfree(tx);
1744 
1745         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1746         if (error) {
1747                 zfs_dirent_unlock(dl);
1748                 VN_RELE(vp);
1749                 if (xzp)
1750                         VN_RELE(ZTOV(xzp));
1751                 if (error == ERESTART) {
1752                         waited = B_TRUE;
1753                         dmu_tx_wait(tx);
1754                         dmu_tx_abort(tx);
1755                         goto top;
1756                 }
1757                 if (realnmp)
1758                         pn_free(realnmp);
1759                 dmu_tx_abort(tx);
1760                 ZFS_EXIT(zfsvfs);
1761                 return (error);
1762         }
1763 
1764         /*
1765          * Remove the directory entry.
1766          */
1767         error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1768 
1769         if (error) {
1770                 dmu_tx_commit(tx);
1771                 goto out;
1772         }
1773 
1774         if (unlinked) {
1775                 /*
1776                  * Hold z_lock so that we can make sure that the ACL obj
1777                  * hasn't changed.  Could have been deleted due to
1778                  * zfs_sa_upgrade().
1779                  */
1780                 mutex_enter(&zp->z_lock);
1781                 mutex_enter(&vp->v_lock);
1782                 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1783                     &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1784                 delete_now = may_delete_now && !toobig &&
1785                     vp->v_count == 1 && !vn_has_cached_data(vp) &&
1786                     xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1787                     acl_obj;
1788                 mutex_exit(&vp->v_lock);
1789         }
1790 
1791         if (delete_now) {
1792                 if (xattr_obj_unlinked) {
1793                         ASSERT3U(xzp->z_links, ==, 2);
1794                         mutex_enter(&xzp->z_lock);
1795                         xzp->z_unlinked = 1;
1796                         xzp->z_links = 0;
1797                         error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1798                             &xzp->z_links, sizeof (xzp->z_links), tx);
1799                         ASSERT3U(error,  ==,  0);
1800                         mutex_exit(&xzp->z_lock);
1801                         zfs_unlinked_add(xzp, tx);
1802 
1803                         if (zp->z_is_sa)
1804                                 error = sa_remove(zp->z_sa_hdl,
1805                                     SA_ZPL_XATTR(zfsvfs), tx);
1806                         else
1807                                 error = sa_update(zp->z_sa_hdl,
1808                                     SA_ZPL_XATTR(zfsvfs), &null_xattr,
1809                                     sizeof (uint64_t), tx);
1810                         ASSERT0(error);
1811                 }
1812                 mutex_enter(&vp->v_lock);
1813                 vp->v_count--;
1814                 ASSERT0(vp->v_count);
1815                 mutex_exit(&vp->v_lock);
1816                 mutex_exit(&zp->z_lock);
1817                 zfs_znode_delete(zp, tx);
1818         } else if (unlinked) {
1819                 mutex_exit(&zp->z_lock);
1820                 zfs_unlinked_add(zp, tx);
1821         }
1822 
1823         txtype = TX_REMOVE;
1824         if (flags & FIGNORECASE)
1825                 txtype |= TX_CI;
1826         zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1827 
1828         dmu_tx_commit(tx);
1829 out:
1830         if (realnmp)
1831                 pn_free(realnmp);
1832 
1833         zfs_dirent_unlock(dl);
1834 
1835         if (!delete_now)
1836                 VN_RELE(vp);
1837         if (xzp)
1838                 VN_RELE(ZTOV(xzp));
1839 
1840         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1841                 zil_commit(zilog, 0);
1842 
1843         ZFS_EXIT(zfsvfs);
1844         return (error);
1845 }
1846 
1847 /*
1848  * Create a new directory and insert it into dvp using the name
1849  * provided.  Return a pointer to the inserted directory.
1850  *
1851  *      IN:     dvp     - vnode of directory to add subdir to.
1852  *              dirname - name of new directory.
1853  *              vap     - attributes of new directory.
1854  *              cr      - credentials of caller.
1855  *              ct      - caller context
1856  *              flags   - case flags
1857  *              vsecp   - ACL to be set
1858  *
1859  *      OUT:    vpp     - vnode of created directory.
1860  *
1861  *      RETURN: 0 on success, error code on failure.
1862  *
1863  * Timestamps:
1864  *      dvp - ctime|mtime updated
1865  *       vp - ctime|mtime|atime updated
1866  */
1867 /*ARGSUSED*/
1868 static int
1869 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1870     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1871 {
1872         znode_t         *zp, *dzp = VTOZ(dvp);
1873         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1874         zilog_t         *zilog;
1875         zfs_dirlock_t   *dl;
1876         uint64_t        txtype;
1877         dmu_tx_t        *tx;
1878         int             error;
1879         int             zf = ZNEW;
1880         ksid_t          *ksid;
1881         uid_t           uid;
1882         gid_t           gid = crgetgid(cr);
1883         zfs_acl_ids_t   acl_ids;
1884         boolean_t       fuid_dirtied;
1885         boolean_t       waited = B_FALSE;
1886 
1887         ASSERT(vap->va_type == VDIR);
1888 
1889         /*
1890          * If we have an ephemeral id, ACL, or XVATTR then
1891          * make sure file system is at proper version
1892          */
1893 
1894         ksid = crgetsid(cr, KSID_OWNER);
1895         if (ksid)
1896                 uid = ksid_getid(ksid);
1897         else
1898                 uid = crgetuid(cr);
1899         if (zfsvfs->z_use_fuids == B_FALSE &&
1900             (vsecp || (vap->va_mask & AT_XVATTR) ||
1901             IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1902                 return (SET_ERROR(EINVAL));
1903 
1904         ZFS_ENTER(zfsvfs);
1905         ZFS_VERIFY_ZP(dzp);
1906         zilog = zfsvfs->z_log;
1907 
1908         if (dzp->z_pflags & ZFS_XATTR) {
1909                 ZFS_EXIT(zfsvfs);
1910                 return (SET_ERROR(EINVAL));
1911         }
1912 
1913         if (zfsvfs->z_utf8 && u8_validate(dirname,
1914             strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1915                 ZFS_EXIT(zfsvfs);
1916                 return (SET_ERROR(EILSEQ));
1917         }
1918         if (flags & FIGNORECASE)
1919                 zf |= ZCILOOK;
1920 
1921         if (vap->va_mask & AT_XVATTR) {
1922                 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1923                     crgetuid(cr), cr, vap->va_type)) != 0) {
1924                         ZFS_EXIT(zfsvfs);
1925                         return (error);
1926                 }
1927         }
1928 
1929         if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1930             vsecp, &acl_ids)) != 0) {
1931                 ZFS_EXIT(zfsvfs);
1932                 return (error);
1933         }
1934         /*
1935          * First make sure the new directory doesn't exist.
1936          *
1937          * Existence is checked first to make sure we don't return
1938          * EACCES instead of EEXIST which can cause some applications
1939          * to fail.
1940          */
1941 top:
1942         *vpp = NULL;
1943 
1944         if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1945             NULL, NULL)) {
1946                 zfs_acl_ids_free(&acl_ids);
1947                 ZFS_EXIT(zfsvfs);
1948                 return (error);
1949         }
1950 
1951         if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1952                 zfs_acl_ids_free(&acl_ids);
1953                 zfs_dirent_unlock(dl);
1954                 ZFS_EXIT(zfsvfs);
1955                 return (error);
1956         }
1957 
1958         if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1959                 zfs_acl_ids_free(&acl_ids);
1960                 zfs_dirent_unlock(dl);
1961                 ZFS_EXIT(zfsvfs);
1962                 return (SET_ERROR(EDQUOT));
1963         }
1964 
1965         /*
1966          * Add a new entry to the directory.
1967          */
1968         tx = dmu_tx_create(zfsvfs->z_os);
1969         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1970         dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1971         fuid_dirtied = zfsvfs->z_fuid_dirty;
1972         if (fuid_dirtied)
1973                 zfs_fuid_txhold(zfsvfs, tx);
1974         if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1975                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1976                     acl_ids.z_aclp->z_acl_bytes);
1977         }
1978 
1979         dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1980             ZFS_SA_BASE_ATTR_SIZE);
1981 
1982         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1983         if (error) {
1984                 zfs_dirent_unlock(dl);
1985                 if (error == ERESTART) {
1986                         waited = B_TRUE;
1987                         dmu_tx_wait(tx);
1988                         dmu_tx_abort(tx);
1989                         goto top;
1990                 }
1991                 zfs_acl_ids_free(&acl_ids);
1992                 dmu_tx_abort(tx);
1993                 ZFS_EXIT(zfsvfs);
1994                 return (error);
1995         }
1996 
1997         /*
1998          * Create new node.
1999          */
2000         zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2001 
2002         if (fuid_dirtied)
2003                 zfs_fuid_sync(zfsvfs, tx);
2004 
2005         /*
2006          * Now put new name in parent dir.
2007          */
2008         (void) zfs_link_create(dl, zp, tx, ZNEW);
2009 
2010         *vpp = ZTOV(zp);
2011 
2012         txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2013         if (flags & FIGNORECASE)
2014                 txtype |= TX_CI;
2015         zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2016             acl_ids.z_fuidp, vap);
2017 
2018         zfs_acl_ids_free(&acl_ids);
2019 
2020         dmu_tx_commit(tx);
2021 
2022         zfs_dirent_unlock(dl);
2023 
2024         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2025                 zil_commit(zilog, 0);
2026 
2027         ZFS_EXIT(zfsvfs);
2028         return (0);
2029 }
2030 
2031 /*
2032  * Remove a directory subdir entry.  If the current working
2033  * directory is the same as the subdir to be removed, the
2034  * remove will fail.
2035  *
2036  *      IN:     dvp     - vnode of directory to remove from.
2037  *              name    - name of directory to be removed.
2038  *              cwd     - vnode of current working directory.
2039  *              cr      - credentials of caller.
2040  *              ct      - caller context
2041  *              flags   - case flags
2042  *
2043  *      RETURN: 0 on success, error code on failure.
2044  *
2045  * Timestamps:
2046  *      dvp - ctime|mtime updated
2047  */
2048 /*ARGSUSED*/
2049 static int
2050 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2051     caller_context_t *ct, int flags)
2052 {
2053         znode_t         *dzp = VTOZ(dvp);
2054         znode_t         *zp;
2055         vnode_t         *vp;
2056         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
2057         zilog_t         *zilog;
2058         zfs_dirlock_t   *dl;
2059         dmu_tx_t        *tx;
2060         int             error;
2061         int             zflg = ZEXISTS;
2062         boolean_t       waited = B_FALSE;
2063 
2064         ZFS_ENTER(zfsvfs);
2065         ZFS_VERIFY_ZP(dzp);
2066         zilog = zfsvfs->z_log;
2067 
2068         if (flags & FIGNORECASE)
2069                 zflg |= ZCILOOK;
2070 top:
2071         zp = NULL;
2072 
2073         /*
2074          * Attempt to lock directory; fail if entry doesn't exist.
2075          */
2076         if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2077             NULL, NULL)) {
2078                 ZFS_EXIT(zfsvfs);
2079                 return (error);
2080         }
2081 
2082         vp = ZTOV(zp);
2083 
2084         if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2085                 goto out;
2086         }
2087 
2088         if (vp->v_type != VDIR) {
2089                 error = SET_ERROR(ENOTDIR);
2090                 goto out;
2091         }
2092 
2093         if (vp == cwd) {
2094                 error = SET_ERROR(EINVAL);
2095                 goto out;
2096         }
2097 
2098         vnevent_rmdir(vp, dvp, name, ct);
2099 
2100         /*
2101          * Grab a lock on the directory to make sure that noone is
2102          * trying to add (or lookup) entries while we are removing it.
2103          */
2104         rw_enter(&zp->z_name_lock, RW_WRITER);
2105 
2106         /*
2107          * Grab a lock on the parent pointer to make sure we play well
2108          * with the treewalk and directory rename code.
2109          */
2110         rw_enter(&zp->z_parent_lock, RW_WRITER);
2111 
2112         tx = dmu_tx_create(zfsvfs->z_os);
2113         dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2114         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2115         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2116         zfs_sa_upgrade_txholds(tx, zp);
2117         zfs_sa_upgrade_txholds(tx, dzp);
2118         dmu_tx_mark_netfree(tx);
2119         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2120         if (error) {
2121                 rw_exit(&zp->z_parent_lock);
2122                 rw_exit(&zp->z_name_lock);
2123                 zfs_dirent_unlock(dl);
2124                 VN_RELE(vp);
2125                 if (error == ERESTART) {
2126                         waited = B_TRUE;
2127                         dmu_tx_wait(tx);
2128                         dmu_tx_abort(tx);
2129                         goto top;
2130                 }
2131                 dmu_tx_abort(tx);
2132                 ZFS_EXIT(zfsvfs);
2133                 return (error);
2134         }
2135 
2136         error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2137 
2138         if (error == 0) {
2139                 uint64_t txtype = TX_RMDIR;
2140                 if (flags & FIGNORECASE)
2141                         txtype |= TX_CI;
2142                 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2143         }
2144 
2145         dmu_tx_commit(tx);
2146 
2147         rw_exit(&zp->z_parent_lock);
2148         rw_exit(&zp->z_name_lock);
2149 out:
2150         zfs_dirent_unlock(dl);
2151 
2152         VN_RELE(vp);
2153 
2154         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2155                 zil_commit(zilog, 0);
2156 
2157         ZFS_EXIT(zfsvfs);
2158         return (error);
2159 }
2160 
2161 /*
2162  * Read as many directory entries as will fit into the provided
2163  * buffer from the given directory cursor position (specified in
2164  * the uio structure).
2165  *
2166  *      IN:     vp      - vnode of directory to read.
2167  *              uio     - structure supplying read location, range info,
2168  *                        and return buffer.
2169  *              cr      - credentials of caller.
2170  *              ct      - caller context
2171  *              flags   - case flags
2172  *
2173  *      OUT:    uio     - updated offset and range, buffer filled.
2174  *              eofp    - set to true if end-of-file detected.
2175  *
2176  *      RETURN: 0 on success, error code on failure.
2177  *
2178  * Timestamps:
2179  *      vp - atime updated
2180  *
2181  * Note that the low 4 bits of the cookie returned by zap is always zero.
2182  * This allows us to use the low range for "special" directory entries:
2183  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2184  * we use the offset 2 for the '.zfs' directory.
2185  */
2186 /* ARGSUSED */
2187 static int
2188 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2189     caller_context_t *ct, int flags)
2190 {
2191         znode_t         *zp = VTOZ(vp);
2192         iovec_t         *iovp;
2193         edirent_t       *eodp;
2194         dirent64_t      *odp;
2195         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
2196         objset_t        *os;
2197         caddr_t         outbuf;
2198         size_t          bufsize;
2199         zap_cursor_t    zc;
2200         zap_attribute_t zap;
2201         uint_t          bytes_wanted;
2202         uint64_t        offset; /* must be unsigned; checks for < 1 */
2203         uint64_t        parent;
2204         int             local_eof;
2205         int             outcount;
2206         int             error;
2207         uint8_t         prefetch;
2208         boolean_t       check_sysattrs;
2209 
2210         ZFS_ENTER(zfsvfs);
2211         ZFS_VERIFY_ZP(zp);
2212 
2213         if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2214             &parent, sizeof (parent))) != 0) {
2215                 ZFS_EXIT(zfsvfs);
2216                 return (error);
2217         }
2218 
2219         /*
2220          * If we are not given an eof variable,
2221          * use a local one.
2222          */
2223         if (eofp == NULL)
2224                 eofp = &local_eof;
2225 
2226         /*
2227          * Check for valid iov_len.
2228          */
2229         if (uio->uio_iov->iov_len <= 0) {
2230                 ZFS_EXIT(zfsvfs);
2231                 return (SET_ERROR(EINVAL));
2232         }
2233 
2234         /*
2235          * Quit if directory has been removed (posix)
2236          */
2237         if ((*eofp = zp->z_unlinked) != 0) {
2238                 ZFS_EXIT(zfsvfs);
2239                 return (0);
2240         }
2241 
2242         error = 0;
2243         os = zfsvfs->z_os;
2244         offset = uio->uio_loffset;
2245         prefetch = zp->z_zn_prefetch;
2246 
2247         /*
2248          * Initialize the iterator cursor.
2249          */
2250         if (offset <= 3) {
2251                 /*
2252                  * Start iteration from the beginning of the directory.
2253                  */
2254                 zap_cursor_init(&zc, os, zp->z_id);
2255         } else {
2256                 /*
2257                  * The offset is a serialized cursor.
2258                  */
2259                 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2260         }
2261 
2262         /*
2263          * Get space to change directory entries into fs independent format.
2264          */
2265         iovp = uio->uio_iov;
2266         bytes_wanted = iovp->iov_len;
2267         if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2268                 bufsize = bytes_wanted;
2269                 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2270                 odp = (struct dirent64 *)outbuf;
2271         } else {
2272                 bufsize = bytes_wanted;
2273                 outbuf = NULL;
2274                 odp = (struct dirent64 *)iovp->iov_base;
2275         }
2276         eodp = (struct edirent *)odp;
2277 
2278         /*
2279          * If this VFS supports the system attribute view interface; and
2280          * we're looking at an extended attribute directory; and we care
2281          * about normalization conflicts on this vfs; then we must check
2282          * for normalization conflicts with the sysattr name space.
2283          */
2284         check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2285             (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2286             (flags & V_RDDIR_ENTFLAGS);
2287 
2288         /*
2289          * Transform to file-system independent format
2290          */
2291         outcount = 0;
2292         while (outcount < bytes_wanted) {
2293                 ino64_t objnum;
2294                 ushort_t reclen;
2295                 off64_t *next = NULL;
2296 
2297                 /*
2298                  * Special case `.', `..', and `.zfs'.
2299                  */
2300                 if (offset == 0) {
2301                         (void) strcpy(zap.za_name, ".");
2302                         zap.za_normalization_conflict = 0;
2303                         objnum = zp->z_id;
2304                 } else if (offset == 1) {
2305                         (void) strcpy(zap.za_name, "..");
2306                         zap.za_normalization_conflict = 0;
2307                         objnum = parent;
2308                 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2309                         (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2310                         zap.za_normalization_conflict = 0;
2311                         objnum = ZFSCTL_INO_ROOT;
2312                 } else {
2313                         /*
2314                          * Grab next entry.
2315                          */
2316                         if (error = zap_cursor_retrieve(&zc, &zap)) {
2317                                 if ((*eofp = (error == ENOENT)) != 0)
2318                                         break;
2319                                 else
2320                                         goto update;
2321                         }
2322 
2323                         if (zap.za_integer_length != 8 ||
2324                             zap.za_num_integers != 1) {
2325                                 cmn_err(CE_WARN, "zap_readdir: bad directory "
2326                                     "entry, obj = %lld, offset = %lld\n",
2327                                     (u_longlong_t)zp->z_id,
2328                                     (u_longlong_t)offset);
2329                                 error = SET_ERROR(ENXIO);
2330                                 goto update;
2331                         }
2332 
2333                         objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2334                         /*
2335                          * MacOS X can extract the object type here such as:
2336                          * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2337                          */
2338 
2339                         if (check_sysattrs && !zap.za_normalization_conflict) {
2340                                 zap.za_normalization_conflict =
2341                                     xattr_sysattr_casechk(zap.za_name);
2342                         }
2343                 }
2344 
2345                 if (flags & V_RDDIR_ACCFILTER) {
2346                         /*
2347                          * If we have no access at all, don't include
2348                          * this entry in the returned information
2349                          */
2350                         znode_t *ezp;
2351                         if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2352                                 goto skip_entry;
2353                         if (!zfs_has_access(ezp, cr)) {
2354                                 VN_RELE(ZTOV(ezp));
2355                                 goto skip_entry;
2356                         }
2357                         VN_RELE(ZTOV(ezp));
2358                 }
2359 
2360                 if (flags & V_RDDIR_ENTFLAGS)
2361                         reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2362                 else
2363                         reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2364 
2365                 /*
2366                  * Will this entry fit in the buffer?
2367                  */
2368                 if (outcount + reclen > bufsize) {
2369                         /*
2370                          * Did we manage to fit anything in the buffer?
2371                          */
2372                         if (!outcount) {
2373                                 error = SET_ERROR(EINVAL);
2374                                 goto update;
2375                         }
2376                         break;
2377                 }
2378                 if (flags & V_RDDIR_ENTFLAGS) {
2379                         /*
2380                          * Add extended flag entry:
2381                          */
2382                         eodp->ed_ino = objnum;
2383                         eodp->ed_reclen = reclen;
2384                         /* NOTE: ed_off is the offset for the *next* entry */
2385                         next = &(eodp->ed_off);
2386                         eodp->ed_eflags = zap.za_normalization_conflict ?
2387                             ED_CASE_CONFLICT : 0;
2388                         (void) strncpy(eodp->ed_name, zap.za_name,
2389                             EDIRENT_NAMELEN(reclen));
2390                         eodp = (edirent_t *)((intptr_t)eodp + reclen);
2391                 } else {
2392                         /*
2393                          * Add normal entry:
2394                          */
2395                         odp->d_ino = objnum;
2396                         odp->d_reclen = reclen;
2397                         /* NOTE: d_off is the offset for the *next* entry */
2398                         next = &(odp->d_off);
2399                         (void) strncpy(odp->d_name, zap.za_name,
2400                             DIRENT64_NAMELEN(reclen));
2401                         odp = (dirent64_t *)((intptr_t)odp + reclen);
2402                 }
2403                 outcount += reclen;
2404 
2405                 ASSERT(outcount <= bufsize);
2406 
2407                 /* Prefetch znode */
2408                 if (prefetch)
2409                         dmu_prefetch(os, objnum, 0, 0, 0,
2410                             ZIO_PRIORITY_SYNC_READ);
2411 
2412         skip_entry:
2413                 /*
2414                  * Move to the next entry, fill in the previous offset.
2415                  */
2416                 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2417                         zap_cursor_advance(&zc);
2418                         offset = zap_cursor_serialize(&zc);
2419                 } else {
2420                         offset += 1;
2421                 }
2422                 if (next)
2423                         *next = offset;
2424         }
2425         zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2426 
2427         if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2428                 iovp->iov_base += outcount;
2429                 iovp->iov_len -= outcount;
2430                 uio->uio_resid -= outcount;
2431         } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2432                 /*
2433                  * Reset the pointer.
2434                  */
2435                 offset = uio->uio_loffset;
2436         }
2437 
2438 update:
2439         zap_cursor_fini(&zc);
2440         if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2441                 kmem_free(outbuf, bufsize);
2442 
2443         if (error == ENOENT)
2444                 error = 0;
2445 
2446         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2447 
2448         uio->uio_loffset = offset;
2449         ZFS_EXIT(zfsvfs);
2450         return (error);
2451 }
2452 
2453 ulong_t zfs_fsync_sync_cnt = 4;
2454 
2455 static int
2456 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2457 {
2458         znode_t *zp = VTOZ(vp);
2459         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2460 
2461         /*
2462          * Regardless of whether this is required for standards conformance,
2463          * this is the logical behavior when fsync() is called on a file with
2464          * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2465          * going to be pushed out as part of the zil_commit().
2466          */
2467         if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2468             (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2469                 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2470 
2471         (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2472 
2473         if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2474                 ZFS_ENTER(zfsvfs);
2475                 ZFS_VERIFY_ZP(zp);
2476                 zil_commit(zfsvfs->z_log, zp->z_id);
2477                 ZFS_EXIT(zfsvfs);
2478         }
2479         return (0);
2480 }
2481 
2482 
2483 /*
2484  * Get the requested file attributes and place them in the provided
2485  * vattr structure.
2486  *
2487  *      IN:     vp      - vnode of file.
2488  *              vap     - va_mask identifies requested attributes.
2489  *                        If AT_XVATTR set, then optional attrs are requested
2490  *              flags   - ATTR_NOACLCHECK (CIFS server context)
2491  *              cr      - credentials of caller.
2492  *              ct      - caller context
2493  *
2494  *      OUT:    vap     - attribute values.
2495  *
2496  *      RETURN: 0 (always succeeds).
2497  */
2498 /* ARGSUSED */
2499 static int
2500 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2501     caller_context_t *ct)
2502 {
2503         znode_t *zp = VTOZ(vp);
2504         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2505         int     error = 0;
2506         uint64_t links;
2507         uint64_t mtime[2], ctime[2];
2508         xvattr_t *xvap = (xvattr_t *)vap;       /* vap may be an xvattr_t * */
2509         xoptattr_t *xoap = NULL;
2510         boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2511         sa_bulk_attr_t bulk[2];
2512         int count = 0;
2513 
2514         ZFS_ENTER(zfsvfs);
2515         ZFS_VERIFY_ZP(zp);
2516 
2517         zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2518 
2519         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2520         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2521 
2522         if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2523                 ZFS_EXIT(zfsvfs);
2524                 return (error);
2525         }
2526 
2527         /*
2528          * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2529          * Also, if we are the owner don't bother, since owner should
2530          * always be allowed to read basic attributes of file.
2531          */
2532         if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2533             (vap->va_uid != crgetuid(cr))) {
2534                 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2535                     skipaclchk, cr)) {
2536                         ZFS_EXIT(zfsvfs);
2537                         return (error);
2538                 }
2539         }
2540 
2541         /*
2542          * Return all attributes.  It's cheaper to provide the answer
2543          * than to determine whether we were asked the question.
2544          */
2545 
2546         mutex_enter(&zp->z_lock);
2547         vap->va_type = vp->v_type;
2548         vap->va_mode = zp->z_mode & MODEMASK;
2549         vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2550         vap->va_nodeid = zp->z_id;
2551         if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2552                 links = zp->z_links + 1;
2553         else
2554                 links = zp->z_links;
2555         vap->va_nlink = MIN(links, UINT32_MAX);      /* nlink_t limit! */
2556         vap->va_size = zp->z_size;
2557         vap->va_rdev = vp->v_rdev;
2558         vap->va_seq = zp->z_seq;
2559 
2560         /*
2561          * Add in any requested optional attributes and the create time.
2562          * Also set the corresponding bits in the returned attribute bitmap.
2563          */
2564         if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2565                 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2566                         xoap->xoa_archive =
2567                             ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2568                         XVA_SET_RTN(xvap, XAT_ARCHIVE);
2569                 }
2570 
2571                 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2572                         xoap->xoa_readonly =
2573                             ((zp->z_pflags & ZFS_READONLY) != 0);
2574                         XVA_SET_RTN(xvap, XAT_READONLY);
2575                 }
2576 
2577                 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2578                         xoap->xoa_system =
2579                             ((zp->z_pflags & ZFS_SYSTEM) != 0);
2580                         XVA_SET_RTN(xvap, XAT_SYSTEM);
2581                 }
2582 
2583                 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2584                         xoap->xoa_hidden =
2585                             ((zp->z_pflags & ZFS_HIDDEN) != 0);
2586                         XVA_SET_RTN(xvap, XAT_HIDDEN);
2587                 }
2588 
2589                 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2590                         xoap->xoa_nounlink =
2591                             ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2592                         XVA_SET_RTN(xvap, XAT_NOUNLINK);
2593                 }
2594 
2595                 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2596                         xoap->xoa_immutable =
2597                             ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2598                         XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2599                 }
2600 
2601                 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2602                         xoap->xoa_appendonly =
2603                             ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2604                         XVA_SET_RTN(xvap, XAT_APPENDONLY);
2605                 }
2606 
2607                 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2608                         xoap->xoa_nodump =
2609                             ((zp->z_pflags & ZFS_NODUMP) != 0);
2610                         XVA_SET_RTN(xvap, XAT_NODUMP);
2611                 }
2612 
2613                 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2614                         xoap->xoa_opaque =
2615                             ((zp->z_pflags & ZFS_OPAQUE) != 0);
2616                         XVA_SET_RTN(xvap, XAT_OPAQUE);
2617                 }
2618 
2619                 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2620                         xoap->xoa_av_quarantined =
2621                             ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2622                         XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2623                 }
2624 
2625                 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2626                         xoap->xoa_av_modified =
2627                             ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2628                         XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2629                 }
2630 
2631                 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2632                     vp->v_type == VREG) {
2633                         zfs_sa_get_scanstamp(zp, xvap);
2634                 }
2635 
2636                 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2637                         uint64_t times[2];
2638 
2639                         (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2640                             times, sizeof (times));
2641                         ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2642                         XVA_SET_RTN(xvap, XAT_CREATETIME);
2643                 }
2644 
2645                 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2646                         xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2647                         XVA_SET_RTN(xvap, XAT_REPARSE);
2648                 }
2649                 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2650                         xoap->xoa_generation = zp->z_gen;
2651                         XVA_SET_RTN(xvap, XAT_GEN);
2652                 }
2653 
2654                 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2655                         xoap->xoa_offline =
2656                             ((zp->z_pflags & ZFS_OFFLINE) != 0);
2657                         XVA_SET_RTN(xvap, XAT_OFFLINE);
2658                 }
2659 
2660                 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2661                         xoap->xoa_sparse =
2662                             ((zp->z_pflags & ZFS_SPARSE) != 0);
2663                         XVA_SET_RTN(xvap, XAT_SPARSE);
2664                 }
2665         }
2666 
2667         ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2668         ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2669         ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2670 
2671         mutex_exit(&zp->z_lock);
2672 
2673         sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2674 
2675         if (zp->z_blksz == 0) {
2676                 /*
2677                  * Block size hasn't been set; suggest maximal I/O transfers.
2678                  */
2679                 vap->va_blksize = zfsvfs->z_max_blksz;
2680         }
2681 
2682         ZFS_EXIT(zfsvfs);
2683         return (0);
2684 }
2685 
2686 /*
2687  * Set the file attributes to the values contained in the
2688  * vattr structure.
2689  *
2690  *      IN:     vp      - vnode of file to be modified.
2691  *              vap     - new attribute values.
2692  *                        If AT_XVATTR set, then optional attrs are being set
2693  *              flags   - ATTR_UTIME set if non-default time values provided.
2694  *                      - ATTR_NOACLCHECK (CIFS context only).
2695  *              cr      - credentials of caller.
2696  *              ct      - caller context
2697  *
2698  *      RETURN: 0 on success, error code on failure.
2699  *
2700  * Timestamps:
2701  *      vp - ctime updated, mtime updated if size changed.
2702  */
2703 /* ARGSUSED */
2704 static int
2705 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2706     caller_context_t *ct)
2707 {
2708         znode_t         *zp = VTOZ(vp);
2709         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
2710         zilog_t         *zilog;
2711         dmu_tx_t        *tx;
2712         vattr_t         oldva;
2713         xvattr_t        tmpxvattr;
2714         uint_t          mask = vap->va_mask;
2715         uint_t          saved_mask = 0;
2716         int             trim_mask = 0;
2717         uint64_t        new_mode;
2718         uint64_t        new_uid, new_gid;
2719         uint64_t        xattr_obj;
2720         uint64_t        mtime[2], ctime[2];
2721         znode_t         *attrzp;
2722         int             need_policy = FALSE;
2723         int             err, err2;
2724         zfs_fuid_info_t *fuidp = NULL;
2725         xvattr_t *xvap = (xvattr_t *)vap;       /* vap may be an xvattr_t * */
2726         xoptattr_t      *xoap;
2727         zfs_acl_t       *aclp;
2728         boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2729         boolean_t       fuid_dirtied = B_FALSE;
2730         sa_bulk_attr_t  bulk[7], xattr_bulk[7];
2731         int             count = 0, xattr_count = 0;
2732 
2733         if (mask == 0)
2734                 return (0);
2735 
2736         if (mask & AT_NOSET)
2737                 return (SET_ERROR(EINVAL));
2738 
2739         ZFS_ENTER(zfsvfs);
2740         ZFS_VERIFY_ZP(zp);
2741 
2742         zilog = zfsvfs->z_log;
2743 
2744         /*
2745          * Make sure that if we have ephemeral uid/gid or xvattr specified
2746          * that file system is at proper version level
2747          */
2748 
2749         if (zfsvfs->z_use_fuids == B_FALSE &&
2750             (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2751             ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2752             (mask & AT_XVATTR))) {
2753                 ZFS_EXIT(zfsvfs);
2754                 return (SET_ERROR(EINVAL));
2755         }
2756 
2757         if (mask & AT_SIZE && vp->v_type == VDIR) {
2758                 ZFS_EXIT(zfsvfs);
2759                 return (SET_ERROR(EISDIR));
2760         }
2761 
2762         if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2763                 ZFS_EXIT(zfsvfs);
2764                 return (SET_ERROR(EINVAL));
2765         }
2766 
2767         /*
2768          * If this is an xvattr_t, then get a pointer to the structure of
2769          * optional attributes.  If this is NULL, then we have a vattr_t.
2770          */
2771         xoap = xva_getxoptattr(xvap);
2772 
2773         xva_init(&tmpxvattr);
2774 
2775         /*
2776          * Immutable files can only alter immutable bit and atime
2777          */
2778         if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2779             ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2780             ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2781                 ZFS_EXIT(zfsvfs);
2782                 return (SET_ERROR(EPERM));
2783         }
2784 
2785         if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2786                 ZFS_EXIT(zfsvfs);
2787                 return (SET_ERROR(EPERM));
2788         }
2789 
2790         /*
2791          * Verify timestamps doesn't overflow 32 bits.
2792          * ZFS can handle large timestamps, but 32bit syscalls can't
2793          * handle times greater than 2039.  This check should be removed
2794          * once large timestamps are fully supported.
2795          */
2796         if (mask & (AT_ATIME | AT_MTIME)) {
2797                 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2798                     ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2799                         ZFS_EXIT(zfsvfs);
2800                         return (SET_ERROR(EOVERFLOW));
2801                 }
2802         }
2803 
2804 top:
2805         attrzp = NULL;
2806         aclp = NULL;
2807 
2808         /* Can this be moved to before the top label? */
2809         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2810                 ZFS_EXIT(zfsvfs);
2811                 return (SET_ERROR(EROFS));
2812         }
2813 
2814         /*
2815          * First validate permissions
2816          */
2817 
2818         if (mask & AT_SIZE) {
2819                 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2820                 if (err) {
2821                         ZFS_EXIT(zfsvfs);
2822                         return (err);
2823                 }
2824                 /*
2825                  * XXX - Note, we are not providing any open
2826                  * mode flags here (like FNDELAY), so we may
2827                  * block if there are locks present... this
2828                  * should be addressed in openat().
2829                  */
2830                 /* XXX - would it be OK to generate a log record here? */
2831                 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2832                 if (err) {
2833                         ZFS_EXIT(zfsvfs);
2834                         return (err);
2835                 }
2836 
2837                 if (vap->va_size == 0) {
2838                         vnevent_truncate(ZTOV(zp), ct);
2839                 } else {
2840                         vnevent_resize(ZTOV(zp), ct);
2841                 }
2842         }
2843 
2844         if (mask & (AT_ATIME|AT_MTIME) ||
2845             ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2846             XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2847             XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2848             XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2849             XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2850             XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2851             XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2852                 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2853                     skipaclchk, cr);
2854         }
2855 
2856         if (mask & (AT_UID|AT_GID)) {
2857                 int     idmask = (mask & (AT_UID|AT_GID));
2858                 int     take_owner;
2859                 int     take_group;
2860 
2861                 /*
2862                  * NOTE: even if a new mode is being set,
2863                  * we may clear S_ISUID/S_ISGID bits.
2864                  */
2865 
2866                 if (!(mask & AT_MODE))
2867                         vap->va_mode = zp->z_mode;
2868 
2869                 /*
2870                  * Take ownership or chgrp to group we are a member of
2871                  */
2872 
2873                 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2874                 take_group = (mask & AT_GID) &&
2875                     zfs_groupmember(zfsvfs, vap->va_gid, cr);
2876 
2877                 /*
2878                  * If both AT_UID and AT_GID are set then take_owner and
2879                  * take_group must both be set in order to allow taking
2880                  * ownership.
2881                  *
2882                  * Otherwise, send the check through secpolicy_vnode_setattr()
2883                  *
2884                  */
2885 
2886                 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2887                     ((idmask == AT_UID) && take_owner) ||
2888                     ((idmask == AT_GID) && take_group)) {
2889                         if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2890                             skipaclchk, cr) == 0) {
2891                                 /*
2892                                  * Remove setuid/setgid for non-privileged users
2893                                  */
2894                                 secpolicy_setid_clear(vap, cr);
2895                                 trim_mask = (mask & (AT_UID|AT_GID));
2896                         } else {
2897                                 need_policy =  TRUE;
2898                         }
2899                 } else {
2900                         need_policy =  TRUE;
2901                 }
2902         }
2903 
2904         mutex_enter(&zp->z_lock);
2905         oldva.va_mode = zp->z_mode;
2906         zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2907         if (mask & AT_XVATTR) {
2908                 /*
2909                  * Update xvattr mask to include only those attributes
2910                  * that are actually changing.
2911                  *
2912                  * the bits will be restored prior to actually setting
2913                  * the attributes so the caller thinks they were set.
2914                  */
2915                 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2916                         if (xoap->xoa_appendonly !=
2917                             ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2918                                 need_policy = TRUE;
2919                         } else {
2920                                 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2921                                 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2922                         }
2923                 }
2924 
2925                 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2926                         if (xoap->xoa_nounlink !=
2927                             ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2928                                 need_policy = TRUE;
2929                         } else {
2930                                 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2931                                 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2932                         }
2933                 }
2934 
2935                 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2936                         if (xoap->xoa_immutable !=
2937                             ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2938                                 need_policy = TRUE;
2939                         } else {
2940                                 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2941                                 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2942                         }
2943                 }
2944 
2945                 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2946                         if (xoap->xoa_nodump !=
2947                             ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2948                                 need_policy = TRUE;
2949                         } else {
2950                                 XVA_CLR_REQ(xvap, XAT_NODUMP);
2951                                 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2952                         }
2953                 }
2954 
2955                 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2956                         if (xoap->xoa_av_modified !=
2957                             ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2958                                 need_policy = TRUE;
2959                         } else {
2960                                 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2961                                 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2962                         }
2963                 }
2964 
2965                 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2966                         if ((vp->v_type != VREG &&
2967                             xoap->xoa_av_quarantined) ||
2968                             xoap->xoa_av_quarantined !=
2969                             ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2970                                 need_policy = TRUE;
2971                         } else {
2972                                 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2973                                 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2974                         }
2975                 }
2976 
2977                 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2978                         mutex_exit(&zp->z_lock);
2979                         ZFS_EXIT(zfsvfs);
2980                         return (SET_ERROR(EPERM));
2981                 }
2982 
2983                 if (need_policy == FALSE &&
2984                     (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2985                     XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2986                         need_policy = TRUE;
2987                 }
2988         }
2989 
2990         mutex_exit(&zp->z_lock);
2991 
2992         if (mask & AT_MODE) {
2993                 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2994                         err = secpolicy_setid_setsticky_clear(vp, vap,
2995                             &oldva, cr);
2996                         if (err) {
2997                                 ZFS_EXIT(zfsvfs);
2998                                 return (err);
2999                         }
3000                         trim_mask |= AT_MODE;
3001                 } else {
3002                         need_policy = TRUE;
3003                 }
3004         }
3005 
3006         if (need_policy) {
3007                 /*
3008                  * If trim_mask is set then take ownership
3009                  * has been granted or write_acl is present and user
3010                  * has the ability to modify mode.  In that case remove
3011                  * UID|GID and or MODE from mask so that
3012                  * secpolicy_vnode_setattr() doesn't revoke it.
3013                  */
3014 
3015                 if (trim_mask) {
3016                         saved_mask = vap->va_mask;
3017                         vap->va_mask &= ~trim_mask;
3018                 }
3019                 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3020                     (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3021                 if (err) {
3022                         ZFS_EXIT(zfsvfs);
3023                         return (err);
3024                 }
3025 
3026                 if (trim_mask)
3027                         vap->va_mask |= saved_mask;
3028         }
3029 
3030         /*
3031          * secpolicy_vnode_setattr, or take ownership may have
3032          * changed va_mask
3033          */
3034         mask = vap->va_mask;
3035 
3036         if ((mask & (AT_UID | AT_GID))) {
3037                 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3038                     &xattr_obj, sizeof (xattr_obj));
3039 
3040                 if (err == 0 && xattr_obj) {
3041                         err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3042                         if (err)
3043                                 goto out2;
3044                 }
3045                 if (mask & AT_UID) {
3046                         new_uid = zfs_fuid_create(zfsvfs,
3047                             (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3048                         if (new_uid != zp->z_uid &&
3049                             zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3050                                 if (attrzp)
3051                                         VN_RELE(ZTOV(attrzp));
3052                                 err = SET_ERROR(EDQUOT);
3053                                 goto out2;
3054                         }
3055                 }
3056 
3057                 if (mask & AT_GID) {
3058                         new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3059                             cr, ZFS_GROUP, &fuidp);
3060                         if (new_gid != zp->z_gid &&
3061                             zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3062                                 if (attrzp)
3063                                         VN_RELE(ZTOV(attrzp));
3064                                 err = SET_ERROR(EDQUOT);
3065                                 goto out2;
3066                         }
3067                 }
3068         }
3069         tx = dmu_tx_create(zfsvfs->z_os);
3070 
3071         if (mask & AT_MODE) {
3072                 uint64_t pmode = zp->z_mode;
3073                 uint64_t acl_obj;
3074                 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3075 
3076                 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3077                     !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3078                         err = SET_ERROR(EPERM);
3079                         goto out;
3080                 }
3081 
3082                 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3083                         goto out;
3084 
3085                 mutex_enter(&zp->z_lock);
3086                 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3087                         /*
3088                          * Are we upgrading ACL from old V0 format
3089                          * to V1 format?
3090                          */
3091                         if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3092                             zfs_znode_acl_version(zp) ==
3093                             ZFS_ACL_VERSION_INITIAL) {
3094                                 dmu_tx_hold_free(tx, acl_obj, 0,
3095                                     DMU_OBJECT_END);
3096                                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3097                                     0, aclp->z_acl_bytes);
3098                         } else {
3099                                 dmu_tx_hold_write(tx, acl_obj, 0,
3100                                     aclp->z_acl_bytes);
3101                         }
3102                 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3103                         dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3104                             0, aclp->z_acl_bytes);
3105                 }
3106                 mutex_exit(&zp->z_lock);
3107                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3108         } else {
3109                 if ((mask & AT_XVATTR) &&
3110                     XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3111                         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3112                 else
3113                         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3114         }
3115 
3116         if (attrzp) {
3117                 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3118         }
3119 
3120         fuid_dirtied = zfsvfs->z_fuid_dirty;
3121         if (fuid_dirtied)
3122                 zfs_fuid_txhold(zfsvfs, tx);
3123 
3124         zfs_sa_upgrade_txholds(tx, zp);
3125 
3126         err = dmu_tx_assign(tx, TXG_WAIT);
3127         if (err)
3128                 goto out;
3129 
3130         count = 0;
3131         /*
3132          * Set each attribute requested.
3133          * We group settings according to the locks they need to acquire.
3134          *
3135          * Note: you cannot set ctime directly, although it will be
3136          * updated as a side-effect of calling this function.
3137          */
3138 
3139 
3140         if (mask & (AT_UID|AT_GID|AT_MODE))
3141                 mutex_enter(&zp->z_acl_lock);
3142         mutex_enter(&zp->z_lock);
3143 
3144         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3145             &zp->z_pflags, sizeof (zp->z_pflags));
3146 
3147         if (attrzp) {
3148                 if (mask & (AT_UID|AT_GID|AT_MODE))
3149                         mutex_enter(&attrzp->z_acl_lock);
3150                 mutex_enter(&attrzp->z_lock);
3151                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3152                     SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3153                     sizeof (attrzp->z_pflags));
3154         }
3155 
3156         if (mask & (AT_UID|AT_GID)) {
3157 
3158                 if (mask & AT_UID) {
3159                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3160                             &new_uid, sizeof (new_uid));
3161                         zp->z_uid = new_uid;
3162                         if (attrzp) {
3163                                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3164                                     SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3165                                     sizeof (new_uid));
3166                                 attrzp->z_uid = new_uid;
3167                         }
3168                 }
3169 
3170                 if (mask & AT_GID) {
3171                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3172                             NULL, &new_gid, sizeof (new_gid));
3173                         zp->z_gid = new_gid;
3174                         if (attrzp) {
3175                                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3176                                     SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3177                                     sizeof (new_gid));
3178                                 attrzp->z_gid = new_gid;
3179                         }
3180                 }
3181                 if (!(mask & AT_MODE)) {
3182                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3183                             NULL, &new_mode, sizeof (new_mode));
3184                         new_mode = zp->z_mode;
3185                 }
3186                 err = zfs_acl_chown_setattr(zp);
3187                 ASSERT(err == 0);
3188                 if (attrzp) {
3189                         err = zfs_acl_chown_setattr(attrzp);
3190                         ASSERT(err == 0);
3191                 }
3192         }
3193 
3194         if (mask & AT_MODE) {
3195                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3196                     &new_mode, sizeof (new_mode));
3197                 zp->z_mode = new_mode;
3198                 ASSERT3U((uintptr_t)aclp, !=, NULL);
3199                 err = zfs_aclset_common(zp, aclp, cr, tx);
3200                 ASSERT0(err);
3201                 if (zp->z_acl_cached)
3202                         zfs_acl_free(zp->z_acl_cached);
3203                 zp->z_acl_cached = aclp;
3204                 aclp = NULL;
3205         }
3206 
3207 
3208         if (mask & AT_ATIME) {
3209                 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3210                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3211                     &zp->z_atime, sizeof (zp->z_atime));
3212         }
3213 
3214         if (mask & AT_MTIME) {
3215                 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3216                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3217                     mtime, sizeof (mtime));
3218         }
3219 
3220         /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3221         if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3222                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3223                     NULL, mtime, sizeof (mtime));
3224                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3225                     &ctime, sizeof (ctime));
3226                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3227                     B_TRUE);
3228         } else if (mask != 0) {
3229                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3230                     &ctime, sizeof (ctime));
3231                 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3232                     B_TRUE);
3233                 if (attrzp) {
3234                         SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3235                             SA_ZPL_CTIME(zfsvfs), NULL,
3236                             &ctime, sizeof (ctime));
3237                         zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3238                             mtime, ctime, B_TRUE);
3239                 }
3240         }
3241         /*
3242          * Do this after setting timestamps to prevent timestamp
3243          * update from toggling bit
3244          */
3245 
3246         if (xoap && (mask & AT_XVATTR)) {
3247 
3248                 /*
3249                  * restore trimmed off masks
3250                  * so that return masks can be set for caller.
3251                  */
3252 
3253                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3254                         XVA_SET_REQ(xvap, XAT_APPENDONLY);
3255                 }
3256                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3257                         XVA_SET_REQ(xvap, XAT_NOUNLINK);
3258                 }
3259                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3260                         XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3261                 }
3262                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3263                         XVA_SET_REQ(xvap, XAT_NODUMP);
3264                 }
3265                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3266                         XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3267                 }
3268                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3269                         XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3270                 }
3271 
3272                 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3273                         ASSERT(vp->v_type == VREG);
3274 
3275                 zfs_xvattr_set(zp, xvap, tx);
3276         }
3277 
3278         if (fuid_dirtied)
3279                 zfs_fuid_sync(zfsvfs, tx);
3280 
3281         if (mask != 0)
3282                 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3283 
3284         mutex_exit(&zp->z_lock);
3285         if (mask & (AT_UID|AT_GID|AT_MODE))
3286                 mutex_exit(&zp->z_acl_lock);
3287 
3288         if (attrzp) {
3289                 if (mask & (AT_UID|AT_GID|AT_MODE))
3290                         mutex_exit(&attrzp->z_acl_lock);
3291                 mutex_exit(&attrzp->z_lock);
3292         }
3293 out:
3294         if (err == 0 && attrzp) {
3295                 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3296                     xattr_count, tx);
3297                 ASSERT(err2 == 0);
3298         }
3299 
3300         if (attrzp)
3301                 VN_RELE(ZTOV(attrzp));
3302 
3303         if (aclp)
3304                 zfs_acl_free(aclp);
3305 
3306         if (fuidp) {
3307                 zfs_fuid_info_free(fuidp);
3308                 fuidp = NULL;
3309         }
3310 
3311         if (err) {
3312                 dmu_tx_abort(tx);
3313                 if (err == ERESTART)
3314                         goto top;
3315         } else {
3316                 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3317                 dmu_tx_commit(tx);
3318         }
3319 
3320 out2:
3321         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3322                 zil_commit(zilog, 0);
3323 
3324         ZFS_EXIT(zfsvfs);
3325         return (err);
3326 }
3327 
3328 typedef struct zfs_zlock {
3329         krwlock_t       *zl_rwlock;     /* lock we acquired */
3330         znode_t         *zl_znode;      /* znode we held */
3331         struct zfs_zlock *zl_next;      /* next in list */
3332 } zfs_zlock_t;
3333 
3334 /*
3335  * Drop locks and release vnodes that were held by zfs_rename_lock().
3336  */
3337 static void
3338 zfs_rename_unlock(zfs_zlock_t **zlpp)
3339 {
3340         zfs_zlock_t *zl;
3341 
3342         while ((zl = *zlpp) != NULL) {
3343                 if (zl->zl_znode != NULL)
3344                         VN_RELE(ZTOV(zl->zl_znode));
3345                 rw_exit(zl->zl_rwlock);
3346                 *zlpp = zl->zl_next;
3347                 kmem_free(zl, sizeof (*zl));
3348         }
3349 }
3350 
3351 /*
3352  * Search back through the directory tree, using the ".." entries.
3353  * Lock each directory in the chain to prevent concurrent renames.
3354  * Fail any attempt to move a directory into one of its own descendants.
3355  * XXX - z_parent_lock can overlap with map or grow locks
3356  */
3357 static int
3358 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3359 {
3360         zfs_zlock_t     *zl;
3361         znode_t         *zp = tdzp;
3362         uint64_t        rootid = zp->z_zfsvfs->z_root;
3363         uint64_t        oidp = zp->z_id;
3364         krwlock_t       *rwlp = &szp->z_parent_lock;
3365         krw_t           rw = RW_WRITER;
3366 
3367         /*
3368          * First pass write-locks szp and compares to zp->z_id.
3369          * Later passes read-lock zp and compare to zp->z_parent.
3370          */
3371         do {
3372                 if (!rw_tryenter(rwlp, rw)) {
3373                         /*
3374                          * Another thread is renaming in this path.
3375                          * Note that if we are a WRITER, we don't have any
3376                          * parent_locks held yet.
3377                          */
3378                         if (rw == RW_READER && zp->z_id > szp->z_id) {
3379                                 /*
3380                                  * Drop our locks and restart
3381                                  */
3382                                 zfs_rename_unlock(&zl);
3383                                 *zlpp = NULL;
3384                                 zp = tdzp;
3385                                 oidp = zp->z_id;
3386                                 rwlp = &szp->z_parent_lock;
3387                                 rw = RW_WRITER;
3388                                 continue;
3389                         } else {
3390                                 /*
3391                                  * Wait for other thread to drop its locks
3392                                  */
3393                                 rw_enter(rwlp, rw);
3394                         }
3395                 }
3396 
3397                 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3398                 zl->zl_rwlock = rwlp;
3399                 zl->zl_znode = NULL;
3400                 zl->zl_next = *zlpp;
3401                 *zlpp = zl;
3402 
3403                 if (oidp == szp->z_id)               /* We're a descendant of szp */
3404                         return (SET_ERROR(EINVAL));
3405 
3406                 if (oidp == rootid)             /* We've hit the top */
3407                         return (0);
3408 
3409                 if (rw == RW_READER) {          /* i.e. not the first pass */
3410                         int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3411                         if (error)
3412                                 return (error);
3413                         zl->zl_znode = zp;
3414                 }
3415                 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3416                     &oidp, sizeof (oidp));
3417                 rwlp = &zp->z_parent_lock;
3418                 rw = RW_READER;
3419 
3420         } while (zp->z_id != sdzp->z_id);
3421 
3422         return (0);
3423 }
3424 
3425 /*
3426  * Move an entry from the provided source directory to the target
3427  * directory.  Change the entry name as indicated.
3428  *
3429  *      IN:     sdvp    - Source directory containing the "old entry".
3430  *              snm     - Old entry name.
3431  *              tdvp    - Target directory to contain the "new entry".
3432  *              tnm     - New entry name.
3433  *              cr      - credentials of caller.
3434  *              ct      - caller context
3435  *              flags   - case flags
3436  *
3437  *      RETURN: 0 on success, error code on failure.
3438  *
3439  * Timestamps:
3440  *      sdvp,tdvp - ctime|mtime updated
3441  */
3442 /*ARGSUSED*/
3443 static int
3444 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3445     caller_context_t *ct, int flags)
3446 {
3447         znode_t         *tdzp, *szp, *tzp;
3448         znode_t         *sdzp = VTOZ(sdvp);
3449         zfsvfs_t        *zfsvfs = sdzp->z_zfsvfs;
3450         zilog_t         *zilog;
3451         vnode_t         *realvp;
3452         zfs_dirlock_t   *sdl, *tdl;
3453         dmu_tx_t        *tx;
3454         zfs_zlock_t     *zl;
3455         int             cmp, serr, terr;
3456         int             error = 0, rm_err = 0;
3457         int             zflg = 0;
3458         boolean_t       waited = B_FALSE;
3459 
3460         ZFS_ENTER(zfsvfs);
3461         ZFS_VERIFY_ZP(sdzp);
3462         zilog = zfsvfs->z_log;
3463 
3464         /*
3465          * Make sure we have the real vp for the target directory.
3466          */
3467         if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3468                 tdvp = realvp;
3469 
3470         tdzp = VTOZ(tdvp);
3471         ZFS_VERIFY_ZP(tdzp);
3472 
3473         /*
3474          * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3475          * ctldir appear to have the same v_vfsp.
3476          */
3477         if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3478                 ZFS_EXIT(zfsvfs);
3479                 return (SET_ERROR(EXDEV));
3480         }
3481 
3482         if (zfsvfs->z_utf8 && u8_validate(tnm,
3483             strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3484                 ZFS_EXIT(zfsvfs);
3485                 return (SET_ERROR(EILSEQ));
3486         }
3487 
3488         if (flags & FIGNORECASE)
3489                 zflg |= ZCILOOK;
3490 
3491 top:
3492         szp = NULL;
3493         tzp = NULL;
3494         zl = NULL;
3495 
3496         /*
3497          * This is to prevent the creation of links into attribute space
3498          * by renaming a linked file into/outof an attribute directory.
3499          * See the comment in zfs_link() for why this is considered bad.
3500          */
3501         if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3502                 ZFS_EXIT(zfsvfs);
3503                 return (SET_ERROR(EINVAL));
3504         }
3505 
3506         /*
3507          * Lock source and target directory entries.  To prevent deadlock,
3508          * a lock ordering must be defined.  We lock the directory with
3509          * the smallest object id first, or if it's a tie, the one with
3510          * the lexically first name.
3511          */
3512         if (sdzp->z_id < tdzp->z_id) {
3513                 cmp = -1;
3514         } else if (sdzp->z_id > tdzp->z_id) {
3515                 cmp = 1;
3516         } else {
3517                 /*
3518                  * First compare the two name arguments without
3519                  * considering any case folding.
3520                  */
3521                 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3522 
3523                 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3524                 ASSERT(error == 0 || !zfsvfs->z_utf8);
3525                 if (cmp == 0) {
3526                         /*
3527                          * POSIX: "If the old argument and the new argument
3528                          * both refer to links to the same existing file,
3529                          * the rename() function shall return successfully
3530                          * and perform no other action."
3531                          */
3532                         ZFS_EXIT(zfsvfs);
3533                         return (0);
3534                 }
3535                 /*
3536                  * If the file system is case-folding, then we may
3537                  * have some more checking to do.  A case-folding file
3538                  * system is either supporting mixed case sensitivity
3539                  * access or is completely case-insensitive.  Note
3540                  * that the file system is always case preserving.
3541                  *
3542                  * In mixed sensitivity mode case sensitive behavior
3543                  * is the default.  FIGNORECASE must be used to
3544                  * explicitly request case insensitive behavior.
3545                  *
3546                  * If the source and target names provided differ only
3547                  * by case (e.g., a request to rename 'tim' to 'Tim'),
3548                  * we will treat this as a special case in the
3549                  * case-insensitive mode: as long as the source name
3550                  * is an exact match, we will allow this to proceed as
3551                  * a name-change request.
3552                  */
3553                 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3554                     (zfsvfs->z_case == ZFS_CASE_MIXED &&
3555                     flags & FIGNORECASE)) &&
3556                     u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3557                     &error) == 0) {
3558                         /*
3559                          * case preserving rename request, require exact
3560                          * name matches
3561                          */
3562                         zflg |= ZCIEXACT;
3563                         zflg &= ~ZCILOOK;
3564                 }
3565         }
3566 
3567         /*
3568          * If the source and destination directories are the same, we should
3569          * grab the z_name_lock of that directory only once.
3570          */
3571         if (sdzp == tdzp) {
3572                 zflg |= ZHAVELOCK;
3573                 rw_enter(&sdzp->z_name_lock, RW_READER);
3574         }
3575 
3576         if (cmp < 0) {
3577                 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3578                     ZEXISTS | zflg, NULL, NULL);
3579                 terr = zfs_dirent_lock(&tdl,
3580                     tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3581         } else {
3582                 terr = zfs_dirent_lock(&tdl,
3583                     tdzp, tnm, &tzp, zflg, NULL, NULL);
3584                 serr = zfs_dirent_lock(&sdl,
3585                     sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3586                     NULL, NULL);
3587         }
3588 
3589         if (serr) {
3590                 /*
3591                  * Source entry invalid or not there.
3592                  */
3593                 if (!terr) {
3594                         zfs_dirent_unlock(tdl);
3595                         if (tzp)
3596                                 VN_RELE(ZTOV(tzp));
3597                 }
3598 
3599                 if (sdzp == tdzp)
3600                         rw_exit(&sdzp->z_name_lock);
3601 
3602                 if (strcmp(snm, "..") == 0)
3603                         serr = SET_ERROR(EINVAL);
3604                 ZFS_EXIT(zfsvfs);
3605                 return (serr);
3606         }
3607         if (terr) {
3608                 zfs_dirent_unlock(sdl);
3609                 VN_RELE(ZTOV(szp));
3610 
3611                 if (sdzp == tdzp)
3612                         rw_exit(&sdzp->z_name_lock);
3613 
3614                 if (strcmp(tnm, "..") == 0)
3615                         terr = SET_ERROR(EINVAL);
3616                 ZFS_EXIT(zfsvfs);
3617                 return (terr);
3618         }
3619 
3620         /*
3621          * Must have write access at the source to remove the old entry
3622          * and write access at the target to create the new entry.
3623          * Note that if target and source are the same, this can be
3624          * done in a single check.
3625          */
3626 
3627         if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3628                 goto out;
3629 
3630         if (ZTOV(szp)->v_type == VDIR) {
3631                 /*
3632                  * Check to make sure rename is valid.
3633                  * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3634                  */
3635                 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3636                         goto out;
3637         }
3638 
3639         /*
3640          * Does target exist?
3641          */
3642         if (tzp) {
3643                 /*
3644                  * Source and target must be the same type.
3645                  */
3646                 if (ZTOV(szp)->v_type == VDIR) {
3647                         if (ZTOV(tzp)->v_type != VDIR) {
3648                                 error = SET_ERROR(ENOTDIR);
3649                                 goto out;
3650                         }
3651                 } else {
3652                         if (ZTOV(tzp)->v_type == VDIR) {
3653                                 error = SET_ERROR(EISDIR);
3654                                 goto out;
3655                         }
3656                 }
3657                 /*
3658                  * POSIX dictates that when the source and target
3659                  * entries refer to the same file object, rename
3660                  * must do nothing and exit without error.
3661                  */
3662                 if (szp->z_id == tzp->z_id) {
3663                         error = 0;
3664                         goto out;
3665                 }
3666         }
3667 
3668         vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
3669         if (tzp)
3670                 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3671 
3672         /*
3673          * notify the target directory if it is not the same
3674          * as source directory.
3675          */
3676         if (tdvp != sdvp) {
3677                 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
3678         }
3679 
3680         tx = dmu_tx_create(zfsvfs->z_os);
3681         dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3682         dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3683         dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3684         dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3685         if (sdzp != tdzp) {
3686                 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3687                 zfs_sa_upgrade_txholds(tx, tdzp);
3688         }
3689         if (tzp) {
3690                 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3691                 zfs_sa_upgrade_txholds(tx, tzp);
3692         }
3693 
3694         zfs_sa_upgrade_txholds(tx, szp);
3695         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3696         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3697         if (error) {
3698                 if (zl != NULL)
3699                         zfs_rename_unlock(&zl);
3700                 zfs_dirent_unlock(sdl);
3701                 zfs_dirent_unlock(tdl);
3702 
3703                 if (sdzp == tdzp)
3704                         rw_exit(&sdzp->z_name_lock);
3705 
3706                 VN_RELE(ZTOV(szp));
3707                 if (tzp)
3708                         VN_RELE(ZTOV(tzp));
3709                 if (error == ERESTART) {
3710                         waited = B_TRUE;
3711                         dmu_tx_wait(tx);
3712                         dmu_tx_abort(tx);
3713                         goto top;
3714                 }
3715                 dmu_tx_abort(tx);
3716                 ZFS_EXIT(zfsvfs);
3717                 return (error);
3718         }
3719 
3720         if (tzp)        /* Attempt to remove the existing target */
3721                 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3722 
3723         if (error == 0) {
3724                 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3725                 if (error == 0) {
3726                         szp->z_pflags |= ZFS_AV_MODIFIED;
3727 
3728                         error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3729                             (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3730                         ASSERT0(error);
3731 
3732                         error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3733                         if (error == 0) {
3734                                 zfs_log_rename(zilog, tx, TX_RENAME |
3735                                     (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3736                                     sdl->dl_name, tdzp, tdl->dl_name, szp);
3737 
3738                                 /*
3739                                  * Update path information for the target vnode
3740                                  */
3741                                 vn_renamepath(tdvp, ZTOV(szp), tnm,
3742                                     strlen(tnm));
3743                         } else {
3744                                 /*
3745                                  * At this point, we have successfully created
3746                                  * the target name, but have failed to remove
3747                                  * the source name.  Since the create was done
3748                                  * with the ZRENAMING flag, there are
3749                                  * complications; for one, the link count is
3750                                  * wrong.  The easiest way to deal with this
3751                                  * is to remove the newly created target, and
3752                                  * return the original error.  This must
3753                                  * succeed; fortunately, it is very unlikely to
3754                                  * fail, since we just created it.
3755                                  */
3756                                 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3757                                     ZRENAMING, NULL), ==, 0);
3758                         }
3759                 }
3760         }
3761 
3762         dmu_tx_commit(tx);
3763 
3764         if (tzp && rm_err == 0)
3765                 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3766 
3767         if (error == 0) {
3768                 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3769                 vnevent_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
3770         }
3771 out:
3772         if (zl != NULL)
3773                 zfs_rename_unlock(&zl);
3774 
3775         zfs_dirent_unlock(sdl);
3776         zfs_dirent_unlock(tdl);
3777 
3778         if (sdzp == tdzp)
3779                 rw_exit(&sdzp->z_name_lock);
3780 
3781 
3782         VN_RELE(ZTOV(szp));
3783         if (tzp)
3784                 VN_RELE(ZTOV(tzp));
3785 
3786         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3787                 zil_commit(zilog, 0);
3788 
3789         ZFS_EXIT(zfsvfs);
3790         return (error);
3791 }
3792 
3793 /*
3794  * Insert the indicated symbolic reference entry into the directory.
3795  *
3796  *      IN:     dvp     - Directory to contain new symbolic link.
3797  *              link    - Name for new symlink entry.
3798  *              vap     - Attributes of new entry.
3799  *              cr      - credentials of caller.
3800  *              ct      - caller context
3801  *              flags   - case flags
3802  *
3803  *      RETURN: 0 on success, error code on failure.
3804  *
3805  * Timestamps:
3806  *      dvp - ctime|mtime updated
3807  */
3808 /*ARGSUSED*/
3809 static int
3810 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3811     caller_context_t *ct, int flags)
3812 {
3813         znode_t         *zp, *dzp = VTOZ(dvp);
3814         zfs_dirlock_t   *dl;
3815         dmu_tx_t        *tx;
3816         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
3817         zilog_t         *zilog;
3818         uint64_t        len = strlen(link);
3819         int             error;
3820         int             zflg = ZNEW;
3821         zfs_acl_ids_t   acl_ids;
3822         boolean_t       fuid_dirtied;
3823         uint64_t        txtype = TX_SYMLINK;
3824         boolean_t       waited = B_FALSE;
3825 
3826         ASSERT(vap->va_type == VLNK);
3827 
3828         ZFS_ENTER(zfsvfs);
3829         ZFS_VERIFY_ZP(dzp);
3830         zilog = zfsvfs->z_log;
3831 
3832         if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3833             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3834                 ZFS_EXIT(zfsvfs);
3835                 return (SET_ERROR(EILSEQ));
3836         }
3837         if (flags & FIGNORECASE)
3838                 zflg |= ZCILOOK;
3839 
3840         if (len > MAXPATHLEN) {
3841                 ZFS_EXIT(zfsvfs);
3842                 return (SET_ERROR(ENAMETOOLONG));
3843         }
3844 
3845         if ((error = zfs_acl_ids_create(dzp, 0,
3846             vap, cr, NULL, &acl_ids)) != 0) {
3847                 ZFS_EXIT(zfsvfs);
3848                 return (error);
3849         }
3850 top:
3851         /*
3852          * Attempt to lock directory; fail if entry already exists.
3853          */
3854         error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3855         if (error) {
3856                 zfs_acl_ids_free(&acl_ids);
3857                 ZFS_EXIT(zfsvfs);
3858                 return (error);
3859         }
3860 
3861         if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3862                 zfs_acl_ids_free(&acl_ids);
3863                 zfs_dirent_unlock(dl);
3864                 ZFS_EXIT(zfsvfs);
3865                 return (error);
3866         }
3867 
3868         if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3869                 zfs_acl_ids_free(&acl_ids);
3870                 zfs_dirent_unlock(dl);
3871                 ZFS_EXIT(zfsvfs);
3872                 return (SET_ERROR(EDQUOT));
3873         }
3874         tx = dmu_tx_create(zfsvfs->z_os);
3875         fuid_dirtied = zfsvfs->z_fuid_dirty;
3876         dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3877         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3878         dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3879             ZFS_SA_BASE_ATTR_SIZE + len);
3880         dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3881         if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3882                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3883                     acl_ids.z_aclp->z_acl_bytes);
3884         }
3885         if (fuid_dirtied)
3886                 zfs_fuid_txhold(zfsvfs, tx);
3887         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3888         if (error) {
3889                 zfs_dirent_unlock(dl);
3890                 if (error == ERESTART) {
3891                         waited = B_TRUE;
3892                         dmu_tx_wait(tx);
3893                         dmu_tx_abort(tx);
3894                         goto top;
3895                 }
3896                 zfs_acl_ids_free(&acl_ids);
3897                 dmu_tx_abort(tx);
3898                 ZFS_EXIT(zfsvfs);
3899                 return (error);
3900         }
3901 
3902         /*
3903          * Create a new object for the symlink.
3904          * for version 4 ZPL datsets the symlink will be an SA attribute
3905          */
3906         zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3907 
3908         if (fuid_dirtied)
3909                 zfs_fuid_sync(zfsvfs, tx);
3910 
3911         mutex_enter(&zp->z_lock);
3912         if (zp->z_is_sa)
3913                 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3914                     link, len, tx);
3915         else
3916                 zfs_sa_symlink(zp, link, len, tx);
3917         mutex_exit(&zp->z_lock);
3918 
3919         zp->z_size = len;
3920         (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3921             &zp->z_size, sizeof (zp->z_size), tx);
3922         /*
3923          * Insert the new object into the directory.
3924          */
3925         (void) zfs_link_create(dl, zp, tx, ZNEW);
3926 
3927         if (flags & FIGNORECASE)
3928                 txtype |= TX_CI;
3929         zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3930 
3931         zfs_acl_ids_free(&acl_ids);
3932 
3933         dmu_tx_commit(tx);
3934 
3935         zfs_dirent_unlock(dl);
3936 
3937         VN_RELE(ZTOV(zp));
3938 
3939         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3940                 zil_commit(zilog, 0);
3941 
3942         ZFS_EXIT(zfsvfs);
3943         return (error);
3944 }
3945 
3946 /*
3947  * Return, in the buffer contained in the provided uio structure,
3948  * the symbolic path referred to by vp.
3949  *
3950  *      IN:     vp      - vnode of symbolic link.
3951  *              uio     - structure to contain the link path.
3952  *              cr      - credentials of caller.
3953  *              ct      - caller context
3954  *
3955  *      OUT:    uio     - structure containing the link path.
3956  *
3957  *      RETURN: 0 on success, error code on failure.
3958  *
3959  * Timestamps:
3960  *      vp - atime updated
3961  */
3962 /* ARGSUSED */
3963 static int
3964 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3965 {
3966         znode_t         *zp = VTOZ(vp);
3967         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
3968         int             error;
3969 
3970         ZFS_ENTER(zfsvfs);
3971         ZFS_VERIFY_ZP(zp);
3972 
3973         mutex_enter(&zp->z_lock);
3974         if (zp->z_is_sa)
3975                 error = sa_lookup_uio(zp->z_sa_hdl,
3976                     SA_ZPL_SYMLINK(zfsvfs), uio);
3977         else
3978                 error = zfs_sa_readlink(zp, uio);
3979         mutex_exit(&zp->z_lock);
3980 
3981         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3982 
3983         ZFS_EXIT(zfsvfs);
3984         return (error);
3985 }
3986 
3987 /*
3988  * Insert a new entry into directory tdvp referencing svp.
3989  *
3990  *      IN:     tdvp    - Directory to contain new entry.
3991  *              svp     - vnode of new entry.
3992  *              name    - name of new entry.
3993  *              cr      - credentials of caller.
3994  *              ct      - caller context
3995  *
3996  *      RETURN: 0 on success, error code on failure.
3997  *
3998  * Timestamps:
3999  *      tdvp - ctime|mtime updated
4000  *       svp - ctime updated
4001  */
4002 /* ARGSUSED */
4003 static int
4004 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4005     caller_context_t *ct, int flags)
4006 {
4007         znode_t         *dzp = VTOZ(tdvp);
4008         znode_t         *tzp, *szp;
4009         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
4010         zilog_t         *zilog;
4011         zfs_dirlock_t   *dl;
4012         dmu_tx_t        *tx;
4013         vnode_t         *realvp;
4014         int             error;
4015         int             zf = ZNEW;
4016         uint64_t        parent;
4017         uid_t           owner;
4018         boolean_t       waited = B_FALSE;
4019 
4020         ASSERT(tdvp->v_type == VDIR);
4021 
4022         ZFS_ENTER(zfsvfs);
4023         ZFS_VERIFY_ZP(dzp);
4024         zilog = zfsvfs->z_log;
4025 
4026         if (VOP_REALVP(svp, &realvp, ct) == 0)
4027                 svp = realvp;
4028 
4029         /*
4030          * POSIX dictates that we return EPERM here.
4031          * Better choices include ENOTSUP or EISDIR.
4032          */
4033         if (svp->v_type == VDIR) {
4034                 ZFS_EXIT(zfsvfs);
4035                 return (SET_ERROR(EPERM));
4036         }
4037 
4038         szp = VTOZ(svp);
4039         ZFS_VERIFY_ZP(szp);
4040 
4041         /*
4042          * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4043          * ctldir appear to have the same v_vfsp.
4044          */
4045         if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4046                 ZFS_EXIT(zfsvfs);
4047                 return (SET_ERROR(EXDEV));
4048         }
4049 
4050         /* Prevent links to .zfs/shares files */
4051 
4052         if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4053             &parent, sizeof (uint64_t))) != 0) {
4054                 ZFS_EXIT(zfsvfs);
4055                 return (error);
4056         }
4057         if (parent == zfsvfs->z_shares_dir) {
4058                 ZFS_EXIT(zfsvfs);
4059                 return (SET_ERROR(EPERM));
4060         }
4061 
4062         if (zfsvfs->z_utf8 && u8_validate(name,
4063             strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4064                 ZFS_EXIT(zfsvfs);
4065                 return (SET_ERROR(EILSEQ));
4066         }
4067         if (flags & FIGNORECASE)
4068                 zf |= ZCILOOK;
4069 
4070         /*
4071          * We do not support links between attributes and non-attributes
4072          * because of the potential security risk of creating links
4073          * into "normal" file space in order to circumvent restrictions
4074          * imposed in attribute space.
4075          */
4076         if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4077                 ZFS_EXIT(zfsvfs);
4078                 return (SET_ERROR(EINVAL));
4079         }
4080 
4081 
4082         owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4083         if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4084                 ZFS_EXIT(zfsvfs);
4085                 return (SET_ERROR(EPERM));
4086         }
4087 
4088         if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4089                 ZFS_EXIT(zfsvfs);
4090                 return (error);
4091         }
4092 
4093 top:
4094         /*
4095          * Attempt to lock directory; fail if entry already exists.
4096          */
4097         error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4098         if (error) {
4099                 ZFS_EXIT(zfsvfs);
4100                 return (error);
4101         }
4102 
4103         tx = dmu_tx_create(zfsvfs->z_os);
4104         dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4105         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4106         zfs_sa_upgrade_txholds(tx, szp);
4107         zfs_sa_upgrade_txholds(tx, dzp);
4108         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4109         if (error) {
4110                 zfs_dirent_unlock(dl);
4111                 if (error == ERESTART) {
4112                         waited = B_TRUE;
4113                         dmu_tx_wait(tx);
4114                         dmu_tx_abort(tx);
4115                         goto top;
4116                 }
4117                 dmu_tx_abort(tx);
4118                 ZFS_EXIT(zfsvfs);
4119                 return (error);
4120         }
4121 
4122         error = zfs_link_create(dl, szp, tx, 0);
4123 
4124         if (error == 0) {
4125                 uint64_t txtype = TX_LINK;
4126                 if (flags & FIGNORECASE)
4127                         txtype |= TX_CI;
4128                 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4129         }
4130 
4131         dmu_tx_commit(tx);
4132 
4133         zfs_dirent_unlock(dl);
4134 
4135         if (error == 0) {
4136                 vnevent_link(svp, ct);
4137         }
4138 
4139         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4140                 zil_commit(zilog, 0);
4141 
4142         ZFS_EXIT(zfsvfs);
4143         return (error);
4144 }
4145 
4146 /*
4147  * zfs_null_putapage() is used when the file system has been force
4148  * unmounted. It just drops the pages.
4149  */
4150 /* ARGSUSED */
4151 static int
4152 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4153     size_t *lenp, int flags, cred_t *cr)
4154 {
4155         pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4156         return (0);
4157 }
4158 
4159 /*
4160  * Push a page out to disk, klustering if possible.
4161  *
4162  *      IN:     vp      - file to push page to.
4163  *              pp      - page to push.
4164  *              flags   - additional flags.
4165  *              cr      - credentials of caller.
4166  *
4167  *      OUT:    offp    - start of range pushed.
4168  *              lenp    - len of range pushed.
4169  *
4170  *      RETURN: 0 on success, error code on failure.
4171  *
4172  * NOTE: callers must have locked the page to be pushed.  On
4173  * exit, the page (and all other pages in the kluster) must be
4174  * unlocked.
4175  */
4176 /* ARGSUSED */
4177 static int
4178 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4179     size_t *lenp, int flags, cred_t *cr)
4180 {
4181         znode_t         *zp = VTOZ(vp);
4182         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4183         dmu_tx_t        *tx;
4184         u_offset_t      off, koff;
4185         size_t          len, klen;
4186         int             err;
4187 
4188         off = pp->p_offset;
4189         len = PAGESIZE;
4190         /*
4191          * If our blocksize is bigger than the page size, try to kluster
4192          * multiple pages so that we write a full block (thus avoiding
4193          * a read-modify-write).
4194          */
4195         if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4196                 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4197                 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4198                 ASSERT(koff <= zp->z_size);
4199                 if (koff + klen > zp->z_size)
4200                         klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4201                 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4202         }
4203         ASSERT3U(btop(len), ==, btopr(len));
4204 
4205         /*
4206          * Can't push pages past end-of-file.
4207          */
4208         if (off >= zp->z_size) {
4209                 /* ignore all pages */
4210                 err = 0;
4211                 goto out;
4212         } else if (off + len > zp->z_size) {
4213                 int npages = btopr(zp->z_size - off);
4214                 page_t *trunc;
4215 
4216                 page_list_break(&pp, &trunc, npages);
4217                 /* ignore pages past end of file */
4218                 if (trunc)
4219                         pvn_write_done(trunc, flags);
4220                 len = zp->z_size - off;
4221         }
4222 
4223         if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4224             zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4225                 err = SET_ERROR(EDQUOT);
4226                 goto out;
4227         }
4228         tx = dmu_tx_create(zfsvfs->z_os);
4229         dmu_tx_hold_write(tx, zp->z_id, off, len);
4230 
4231         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4232         zfs_sa_upgrade_txholds(tx, zp);
4233         err = dmu_tx_assign(tx, TXG_WAIT);
4234         if (err != 0) {
4235                 dmu_tx_abort(tx);
4236                 goto out;
4237         }
4238 
4239         if (zp->z_blksz <= PAGESIZE) {
4240                 caddr_t va = zfs_map_page(pp, S_READ);
4241                 ASSERT3U(len, <=, PAGESIZE);
4242                 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4243                 zfs_unmap_page(pp, va);
4244         } else {
4245                 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4246         }
4247 
4248         if (err == 0) {
4249                 uint64_t mtime[2], ctime[2];
4250                 sa_bulk_attr_t bulk[3];
4251                 int count = 0;
4252 
4253                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4254                     &mtime, 16);
4255                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4256                     &ctime, 16);
4257                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4258                     &zp->z_pflags, 8);
4259                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4260                     B_TRUE);
4261                 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
4262 
4263                 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4264         }
4265         dmu_tx_commit(tx);
4266 
4267 out:
4268         pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4269         if (offp)
4270                 *offp = off;
4271         if (lenp)
4272                 *lenp = len;
4273 
4274         return (err);
4275 }
4276 
4277 /*
4278  * Copy the portion of the file indicated from pages into the file.
4279  * The pages are stored in a page list attached to the files vnode.
4280  *
4281  *      IN:     vp      - vnode of file to push page data to.
4282  *              off     - position in file to put data.
4283  *              len     - amount of data to write.
4284  *              flags   - flags to control the operation.
4285  *              cr      - credentials of caller.
4286  *              ct      - caller context.
4287  *
4288  *      RETURN: 0 on success, error code on failure.
4289  *
4290  * Timestamps:
4291  *      vp - ctime|mtime updated
4292  */
4293 /*ARGSUSED*/
4294 static int
4295 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4296     caller_context_t *ct)
4297 {
4298         znode_t         *zp = VTOZ(vp);
4299         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4300         page_t          *pp;
4301         size_t          io_len;
4302         u_offset_t      io_off;
4303         uint_t          blksz;
4304         rl_t            *rl;
4305         int             error = 0;
4306 
4307         ZFS_ENTER(zfsvfs);
4308         ZFS_VERIFY_ZP(zp);
4309 
4310         /*
4311          * There's nothing to do if no data is cached.
4312          */
4313         if (!vn_has_cached_data(vp)) {
4314                 ZFS_EXIT(zfsvfs);
4315                 return (0);
4316         }
4317 
4318         /*
4319          * Align this request to the file block size in case we kluster.
4320          * XXX - this can result in pretty aggresive locking, which can
4321          * impact simultanious read/write access.  One option might be
4322          * to break up long requests (len == 0) into block-by-block
4323          * operations to get narrower locking.
4324          */
4325         blksz = zp->z_blksz;
4326         if (ISP2(blksz))
4327                 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4328         else
4329                 io_off = 0;
4330         if (len > 0 && ISP2(blksz))
4331                 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4332         else
4333                 io_len = 0;
4334 
4335         if (io_len == 0) {
4336                 /*
4337                  * Search the entire vp list for pages >= io_off.
4338                  */
4339                 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4340                 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4341                 goto out;
4342         }
4343         rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4344 
4345         if (off > zp->z_size) {
4346                 /* past end of file */
4347                 zfs_range_unlock(rl);
4348                 ZFS_EXIT(zfsvfs);
4349                 return (0);
4350         }
4351 
4352         len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4353 
4354         for (off = io_off; io_off < off + len; io_off += io_len) {
4355                 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4356                         pp = page_lookup(vp, io_off,
4357                             (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4358                 } else {
4359                         pp = page_lookup_nowait(vp, io_off,
4360                             (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4361                 }
4362 
4363                 if (pp != NULL && pvn_getdirty(pp, flags)) {
4364                         int err;
4365 
4366                         /*
4367                          * Found a dirty page to push
4368                          */
4369                         err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4370                         if (err)
4371                                 error = err;
4372                 } else {
4373                         io_len = PAGESIZE;
4374                 }
4375         }
4376 out:
4377         zfs_range_unlock(rl);
4378         if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4379                 zil_commit(zfsvfs->z_log, zp->z_id);
4380         ZFS_EXIT(zfsvfs);
4381         return (error);
4382 }
4383 
4384 /*ARGSUSED*/
4385 void
4386 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4387 {
4388         znode_t *zp = VTOZ(vp);
4389         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4390         int error;
4391 
4392         rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4393         if (zp->z_sa_hdl == NULL) {
4394                 /*
4395                  * The fs has been unmounted, or we did a
4396                  * suspend/resume and this file no longer exists.
4397                  */
4398                 if (vn_has_cached_data(vp)) {
4399                         (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4400                             B_INVAL, cr);
4401                 }
4402 
4403                 mutex_enter(&zp->z_lock);
4404                 mutex_enter(&vp->v_lock);
4405                 ASSERT(vp->v_count == 1);
4406                 vp->v_count = 0;
4407                 mutex_exit(&vp->v_lock);
4408                 mutex_exit(&zp->z_lock);
4409                 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4410                 zfs_znode_free(zp);
4411                 return;
4412         }
4413 
4414         /*
4415          * Attempt to push any data in the page cache.  If this fails
4416          * we will get kicked out later in zfs_zinactive().
4417          */
4418         if (vn_has_cached_data(vp)) {
4419                 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4420                     cr);
4421         }
4422 
4423         if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4424                 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4425 
4426                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4427                 zfs_sa_upgrade_txholds(tx, zp);
4428                 error = dmu_tx_assign(tx, TXG_WAIT);
4429                 if (error) {
4430                         dmu_tx_abort(tx);
4431                 } else {
4432                         mutex_enter(&zp->z_lock);
4433                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4434                             (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4435                         zp->z_atime_dirty = 0;
4436                         mutex_exit(&zp->z_lock);
4437                         dmu_tx_commit(tx);
4438                 }
4439         }
4440 
4441         zfs_zinactive(zp);
4442         rw_exit(&zfsvfs->z_teardown_inactive_lock);
4443 }
4444 
4445 /*
4446  * Bounds-check the seek operation.
4447  *
4448  *      IN:     vp      - vnode seeking within
4449  *              ooff    - old file offset
4450  *              noffp   - pointer to new file offset
4451  *              ct      - caller context
4452  *
4453  *      RETURN: 0 on success, EINVAL if new offset invalid.
4454  */
4455 /* ARGSUSED */
4456 static int
4457 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4458     caller_context_t *ct)
4459 {
4460         if (vp->v_type == VDIR)
4461                 return (0);
4462         return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4463 }
4464 
4465 /*
4466  * Pre-filter the generic locking function to trap attempts to place
4467  * a mandatory lock on a memory mapped file.
4468  */
4469 static int
4470 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4471     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4472 {
4473         znode_t *zp = VTOZ(vp);
4474         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4475 
4476         ZFS_ENTER(zfsvfs);
4477         ZFS_VERIFY_ZP(zp);
4478 
4479         /*
4480          * We are following the UFS semantics with respect to mapcnt
4481          * here: If we see that the file is mapped already, then we will
4482          * return an error, but we don't worry about races between this
4483          * function and zfs_map().
4484          */
4485         if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4486                 ZFS_EXIT(zfsvfs);
4487                 return (SET_ERROR(EAGAIN));
4488         }
4489         ZFS_EXIT(zfsvfs);
4490         return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4491 }
4492 
4493 /*
4494  * If we can't find a page in the cache, we will create a new page
4495  * and fill it with file data.  For efficiency, we may try to fill
4496  * multiple pages at once (klustering) to fill up the supplied page
4497  * list.  Note that the pages to be filled are held with an exclusive
4498  * lock to prevent access by other threads while they are being filled.
4499  */
4500 static int
4501 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4502     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4503 {
4504         znode_t *zp = VTOZ(vp);
4505         page_t *pp, *cur_pp;
4506         objset_t *os = zp->z_zfsvfs->z_os;
4507         u_offset_t io_off, total;
4508         size_t io_len;
4509         int err;
4510 
4511         if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4512                 /*
4513                  * We only have a single page, don't bother klustering
4514                  */
4515                 io_off = off;
4516                 io_len = PAGESIZE;
4517                 pp = page_create_va(vp, io_off, io_len,
4518                     PG_EXCL | PG_WAIT, seg, addr);
4519         } else {
4520                 /*
4521                  * Try to find enough pages to fill the page list
4522                  */
4523                 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4524                     &io_len, off, plsz, 0);
4525         }
4526         if (pp == NULL) {
4527                 /*
4528                  * The page already exists, nothing to do here.
4529                  */
4530                 *pl = NULL;
4531                 return (0);
4532         }
4533 
4534         /*
4535          * Fill the pages in the kluster.
4536          */
4537         cur_pp = pp;
4538         for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4539                 caddr_t va;
4540 
4541                 ASSERT3U(io_off, ==, cur_pp->p_offset);
4542                 va = zfs_map_page(cur_pp, S_WRITE);
4543                 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4544                     DMU_READ_PREFETCH);
4545                 zfs_unmap_page(cur_pp, va);
4546                 if (err) {
4547                         /* On error, toss the entire kluster */
4548                         pvn_read_done(pp, B_ERROR);
4549                         /* convert checksum errors into IO errors */
4550                         if (err == ECKSUM)
4551                                 err = SET_ERROR(EIO);
4552                         return (err);
4553                 }
4554                 cur_pp = cur_pp->p_next;
4555         }
4556 
4557         /*
4558          * Fill in the page list array from the kluster starting
4559          * from the desired offset `off'.
4560          * NOTE: the page list will always be null terminated.
4561          */
4562         pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4563         ASSERT(pl == NULL || (*pl)->p_offset == off);
4564 
4565         return (0);
4566 }
4567 
4568 /*
4569  * Return pointers to the pages for the file region [off, off + len]
4570  * in the pl array.  If plsz is greater than len, this function may
4571  * also return page pointers from after the specified region
4572  * (i.e. the region [off, off + plsz]).  These additional pages are
4573  * only returned if they are already in the cache, or were created as
4574  * part of a klustered read.
4575  *
4576  *      IN:     vp      - vnode of file to get data from.
4577  *              off     - position in file to get data from.
4578  *              len     - amount of data to retrieve.
4579  *              plsz    - length of provided page list.
4580  *              seg     - segment to obtain pages for.
4581  *              addr    - virtual address of fault.
4582  *              rw      - mode of created pages.
4583  *              cr      - credentials of caller.
4584  *              ct      - caller context.
4585  *
4586  *      OUT:    protp   - protection mode of created pages.
4587  *              pl      - list of pages created.
4588  *
4589  *      RETURN: 0 on success, error code on failure.
4590  *
4591  * Timestamps:
4592  *      vp - atime updated
4593  */
4594 /* ARGSUSED */
4595 static int
4596 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4597     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4598     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4599 {
4600         znode_t         *zp = VTOZ(vp);
4601         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4602         page_t          **pl0 = pl;
4603         int             err = 0;
4604 
4605         /* we do our own caching, faultahead is unnecessary */
4606         if (pl == NULL)
4607                 return (0);
4608         else if (len > plsz)
4609                 len = plsz;
4610         else
4611                 len = P2ROUNDUP(len, PAGESIZE);
4612         ASSERT(plsz >= len);
4613 
4614         ZFS_ENTER(zfsvfs);
4615         ZFS_VERIFY_ZP(zp);
4616 
4617         if (protp)
4618                 *protp = PROT_ALL;
4619 
4620         /*
4621          * Loop through the requested range [off, off + len) looking
4622          * for pages.  If we don't find a page, we will need to create
4623          * a new page and fill it with data from the file.
4624          */
4625         while (len > 0) {
4626                 if (*pl = page_lookup(vp, off, SE_SHARED))
4627                         *(pl+1) = NULL;
4628                 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4629                         goto out;
4630                 while (*pl) {
4631                         ASSERT3U((*pl)->p_offset, ==, off);
4632                         off += PAGESIZE;
4633                         addr += PAGESIZE;
4634                         if (len > 0) {
4635                                 ASSERT3U(len, >=, PAGESIZE);
4636                                 len -= PAGESIZE;
4637                         }
4638                         ASSERT3U(plsz, >=, PAGESIZE);
4639                         plsz -= PAGESIZE;
4640                         pl++;
4641                 }
4642         }
4643 
4644         /*
4645          * Fill out the page array with any pages already in the cache.
4646          */
4647         while (plsz > 0 &&
4648             (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4649                         off += PAGESIZE;
4650                         plsz -= PAGESIZE;
4651         }
4652 out:
4653         if (err) {
4654                 /*
4655                  * Release any pages we have previously locked.
4656                  */
4657                 while (pl > pl0)
4658                         page_unlock(*--pl);
4659         } else {
4660                 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4661         }
4662 
4663         *pl = NULL;
4664 
4665         ZFS_EXIT(zfsvfs);
4666         return (err);
4667 }
4668 
4669 /*
4670  * Request a memory map for a section of a file.  This code interacts
4671  * with common code and the VM system as follows:
4672  *
4673  * - common code calls mmap(), which ends up in smmap_common()
4674  * - this calls VOP_MAP(), which takes you into (say) zfs
4675  * - zfs_map() calls as_map(), passing segvn_create() as the callback
4676  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4677  * - zfs_addmap() updates z_mapcnt
4678  */
4679 /*ARGSUSED*/
4680 static int
4681 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4682     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4683     caller_context_t *ct)
4684 {
4685         znode_t *zp = VTOZ(vp);
4686         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4687         segvn_crargs_t  vn_a;
4688         int             error;
4689 
4690         ZFS_ENTER(zfsvfs);
4691         ZFS_VERIFY_ZP(zp);
4692 
4693         if ((prot & PROT_WRITE) && (zp->z_pflags &
4694             (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4695                 ZFS_EXIT(zfsvfs);
4696                 return (SET_ERROR(EPERM));
4697         }
4698 
4699         if ((prot & (PROT_READ | PROT_EXEC)) &&
4700             (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4701                 ZFS_EXIT(zfsvfs);
4702                 return (SET_ERROR(EACCES));
4703         }
4704 
4705         if (vp->v_flag & VNOMAP) {
4706                 ZFS_EXIT(zfsvfs);
4707                 return (SET_ERROR(ENOSYS));
4708         }
4709 
4710         if (off < 0 || len > MAXOFFSET_T - off) {
4711                 ZFS_EXIT(zfsvfs);
4712                 return (SET_ERROR(ENXIO));
4713         }
4714 
4715         if (vp->v_type != VREG) {
4716                 ZFS_EXIT(zfsvfs);
4717                 return (SET_ERROR(ENODEV));
4718         }
4719 
4720         /*
4721          * If file is locked, disallow mapping.
4722          */
4723         if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4724                 ZFS_EXIT(zfsvfs);
4725                 return (SET_ERROR(EAGAIN));
4726         }
4727 
4728         as_rangelock(as);
4729         error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4730         if (error != 0) {
4731                 as_rangeunlock(as);
4732                 ZFS_EXIT(zfsvfs);
4733                 return (error);
4734         }
4735 
4736         vn_a.vp = vp;
4737         vn_a.offset = (u_offset_t)off;
4738         vn_a.type = flags & MAP_TYPE;
4739         vn_a.prot = prot;
4740         vn_a.maxprot = maxprot;
4741         vn_a.cred = cr;
4742         vn_a.amp = NULL;
4743         vn_a.flags = flags & ~MAP_TYPE;
4744         vn_a.szc = 0;
4745         vn_a.lgrp_mem_policy_flags = 0;
4746 
4747         error = as_map(as, *addrp, len, segvn_create, &vn_a);
4748 
4749         as_rangeunlock(as);
4750         ZFS_EXIT(zfsvfs);
4751         return (error);
4752 }
4753 
4754 /* ARGSUSED */
4755 static int
4756 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4757     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4758     caller_context_t *ct)
4759 {
4760         uint64_t pages = btopr(len);
4761 
4762         atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4763         return (0);
4764 }
4765 
4766 /*
4767  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4768  * more accurate mtime for the associated file.  Since we don't have a way of
4769  * detecting when the data was actually modified, we have to resort to
4770  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4771  * last page is pushed.  The problem occurs when the msync() call is omitted,
4772  * which by far the most common case:
4773  *
4774  *      open()
4775  *      mmap()
4776  *      <modify memory>
4777  *      munmap()
4778  *      close()
4779  *      <time lapse>
4780  *      putpage() via fsflush
4781  *
4782  * If we wait until fsflush to come along, we can have a modification time that
4783  * is some arbitrary point in the future.  In order to prevent this in the
4784  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4785  * torn down.
4786  */
4787 /* ARGSUSED */
4788 static int
4789 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4790     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4791     caller_context_t *ct)
4792 {
4793         uint64_t pages = btopr(len);
4794 
4795         ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4796         atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4797 
4798         return (0);
4799 }
4800 
4801 /*
4802  * Free or allocate space in a file.  Currently, this function only
4803  * supports the `F_FREESP' command.  However, this command is somewhat
4804  * misnamed, as its functionality includes the ability to allocate as
4805  * well as free space.
4806  *
4807  *      IN:     vp      - vnode of file to free data in.
4808  *              cmd     - action to take (only F_FREESP supported).
4809  *              bfp     - section of file to free/alloc.
4810  *              flag    - current file open mode flags.
4811  *              offset  - current file offset.
4812  *              cr      - credentials of caller [UNUSED].
4813  *              ct      - caller context.
4814  *
4815  *      RETURN: 0 on success, error code on failure.
4816  *
4817  * Timestamps:
4818  *      vp - ctime|mtime updated
4819  */
4820 /* ARGSUSED */
4821 static int
4822 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4823     offset_t offset, cred_t *cr, caller_context_t *ct)
4824 {
4825         znode_t         *zp = VTOZ(vp);
4826         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4827         uint64_t        off, len;
4828         int             error;
4829 
4830         ZFS_ENTER(zfsvfs);
4831         ZFS_VERIFY_ZP(zp);
4832 
4833         if (cmd != F_FREESP) {
4834                 ZFS_EXIT(zfsvfs);
4835                 return (SET_ERROR(EINVAL));
4836         }
4837 
4838         /*
4839          * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4840          * callers might not be able to detect properly that we are read-only,
4841          * so check it explicitly here.
4842          */
4843         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4844                 ZFS_EXIT(zfsvfs);
4845                 return (SET_ERROR(EROFS));
4846         }
4847 
4848         if (error = convoff(vp, bfp, 0, offset)) {
4849                 ZFS_EXIT(zfsvfs);
4850                 return (error);
4851         }
4852 
4853         if (bfp->l_len < 0) {
4854                 ZFS_EXIT(zfsvfs);
4855                 return (SET_ERROR(EINVAL));
4856         }
4857 
4858         off = bfp->l_start;
4859         len = bfp->l_len; /* 0 means from off to end of file */
4860 
4861         error = zfs_freesp(zp, off, len, flag, TRUE);
4862 
4863         if (error == 0 && len == 0) {
4864                 if (off == 0) {
4865                         vnevent_truncate(ZTOV(zp), ct);
4866                 } else {
4867                         vnevent_resize(ZTOV(zp), ct);
4868                 }
4869         }
4870 
4871         ZFS_EXIT(zfsvfs);
4872         return (error);
4873 }
4874 
4875 /*ARGSUSED*/
4876 static int
4877 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4878 {
4879         znode_t         *zp = VTOZ(vp);
4880         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4881         uint32_t        gen;
4882         uint64_t        gen64;
4883         uint64_t        object = zp->z_id;
4884         zfid_short_t    *zfid;
4885         int             size, i, error;
4886 
4887         ZFS_ENTER(zfsvfs);
4888         ZFS_VERIFY_ZP(zp);
4889 
4890         if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4891             &gen64, sizeof (uint64_t))) != 0) {
4892                 ZFS_EXIT(zfsvfs);
4893                 return (error);
4894         }
4895 
4896         gen = (uint32_t)gen64;
4897 
4898         size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4899         if (fidp->fid_len < size) {
4900                 fidp->fid_len = size;
4901                 ZFS_EXIT(zfsvfs);
4902                 return (SET_ERROR(ENOSPC));
4903         }
4904 
4905         zfid = (zfid_short_t *)fidp;
4906 
4907         zfid->zf_len = size;
4908 
4909         for (i = 0; i < sizeof (zfid->zf_object); i++)
4910                 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4911 
4912         /* Must have a non-zero generation number to distinguish from .zfs */
4913         if (gen == 0)
4914                 gen = 1;
4915         for (i = 0; i < sizeof (zfid->zf_gen); i++)
4916                 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4917 
4918         if (size == LONG_FID_LEN) {
4919                 uint64_t        objsetid = dmu_objset_id(zfsvfs->z_os);
4920                 zfid_long_t     *zlfid;
4921 
4922                 zlfid = (zfid_long_t *)fidp;
4923 
4924                 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4925                         zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4926 
4927                 /* XXX - this should be the generation number for the objset */
4928                 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4929                         zlfid->zf_setgen[i] = 0;
4930         }
4931 
4932         ZFS_EXIT(zfsvfs);
4933         return (0);
4934 }
4935 
4936 static int
4937 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4938     caller_context_t *ct)
4939 {
4940         znode_t         *zp, *xzp;
4941         zfsvfs_t        *zfsvfs;
4942         zfs_dirlock_t   *dl;
4943         int             error;
4944 
4945         switch (cmd) {
4946         case _PC_LINK_MAX:
4947                 *valp = ULONG_MAX;
4948                 return (0);
4949 
4950         case _PC_FILESIZEBITS:
4951                 *valp = 64;
4952                 return (0);
4953 
4954         case _PC_XATTR_EXISTS:
4955                 zp = VTOZ(vp);
4956                 zfsvfs = zp->z_zfsvfs;
4957                 ZFS_ENTER(zfsvfs);
4958                 ZFS_VERIFY_ZP(zp);
4959                 *valp = 0;
4960                 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4961                     ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4962                 if (error == 0) {
4963                         zfs_dirent_unlock(dl);
4964                         if (!zfs_dirempty(xzp))
4965                                 *valp = 1;
4966                         VN_RELE(ZTOV(xzp));
4967                 } else if (error == ENOENT) {
4968                         /*
4969                          * If there aren't extended attributes, it's the
4970                          * same as having zero of them.
4971                          */
4972                         error = 0;
4973                 }
4974                 ZFS_EXIT(zfsvfs);
4975                 return (error);
4976 
4977         case _PC_SATTR_ENABLED:
4978         case _PC_SATTR_EXISTS:
4979                 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4980                     (vp->v_type == VREG || vp->v_type == VDIR);
4981                 return (0);
4982 
4983         case _PC_ACCESS_FILTERING:
4984                 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4985                     vp->v_type == VDIR;
4986                 return (0);
4987 
4988         case _PC_ACL_ENABLED:
4989                 *valp = _ACL_ACE_ENABLED;
4990                 return (0);
4991 
4992         case _PC_MIN_HOLE_SIZE:
4993                 *valp = (ulong_t)SPA_MINBLOCKSIZE;
4994                 return (0);
4995 
4996         case _PC_TIMESTAMP_RESOLUTION:
4997                 /* nanosecond timestamp resolution */
4998                 *valp = 1L;
4999                 return (0);
5000 
5001         default:
5002                 return (fs_pathconf(vp, cmd, valp, cr, ct));
5003         }
5004 }
5005 
5006 /*ARGSUSED*/
5007 static int
5008 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5009     caller_context_t *ct)
5010 {
5011         znode_t *zp = VTOZ(vp);
5012         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5013         int error;
5014         boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5015 
5016         ZFS_ENTER(zfsvfs);
5017         ZFS_VERIFY_ZP(zp);
5018         error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5019         ZFS_EXIT(zfsvfs);
5020 
5021         return (error);
5022 }
5023 
5024 /*ARGSUSED*/
5025 static int
5026 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5027     caller_context_t *ct)
5028 {
5029         znode_t *zp = VTOZ(vp);
5030         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5031         int error;
5032         boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5033         zilog_t *zilog = zfsvfs->z_log;
5034 
5035         ZFS_ENTER(zfsvfs);
5036         ZFS_VERIFY_ZP(zp);
5037 
5038         error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5039 
5040         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5041                 zil_commit(zilog, 0);
5042 
5043         ZFS_EXIT(zfsvfs);
5044         return (error);
5045 }
5046 
5047 /*
5048  * The smallest read we may consider to loan out an arcbuf.
5049  * This must be a power of 2.
5050  */
5051 int zcr_blksz_min = (1 << 10);    /* 1K */
5052 /*
5053  * If set to less than the file block size, allow loaning out of an
5054  * arcbuf for a partial block read.  This must be a power of 2.
5055  */
5056 int zcr_blksz_max = (1 << 17);    /* 128K */
5057 
5058 /*ARGSUSED*/
5059 static int
5060 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5061     caller_context_t *ct)
5062 {
5063         znode_t *zp = VTOZ(vp);
5064         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5065         int max_blksz = zfsvfs->z_max_blksz;
5066         uio_t *uio = &xuio->xu_uio;
5067         ssize_t size = uio->uio_resid;
5068         offset_t offset = uio->uio_loffset;
5069         int blksz;
5070         int fullblk, i;
5071         arc_buf_t *abuf;
5072         ssize_t maxsize;
5073         int preamble, postamble;
5074 
5075         if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5076                 return (SET_ERROR(EINVAL));
5077 
5078         ZFS_ENTER(zfsvfs);
5079         ZFS_VERIFY_ZP(zp);
5080         switch (ioflag) {
5081         case UIO_WRITE:
5082                 /*
5083                  * Loan out an arc_buf for write if write size is bigger than
5084                  * max_blksz, and the file's block size is also max_blksz.
5085                  */
5086                 blksz = max_blksz;
5087                 if (size < blksz || zp->z_blksz != blksz) {
5088                         ZFS_EXIT(zfsvfs);
5089                         return (SET_ERROR(EINVAL));
5090                 }
5091                 /*
5092                  * Caller requests buffers for write before knowing where the
5093                  * write offset might be (e.g. NFS TCP write).
5094                  */
5095                 if (offset == -1) {
5096                         preamble = 0;
5097                 } else {
5098                         preamble = P2PHASE(offset, blksz);
5099                         if (preamble) {
5100                                 preamble = blksz - preamble;
5101                                 size -= preamble;
5102                         }
5103                 }
5104 
5105                 postamble = P2PHASE(size, blksz);
5106                 size -= postamble;
5107 
5108                 fullblk = size / blksz;
5109                 (void) dmu_xuio_init(xuio,
5110                     (preamble != 0) + fullblk + (postamble != 0));
5111                 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5112                     int, postamble, int,
5113                     (preamble != 0) + fullblk + (postamble != 0));
5114 
5115                 /*
5116                  * Have to fix iov base/len for partial buffers.  They
5117                  * currently represent full arc_buf's.
5118                  */
5119                 if (preamble) {
5120                         /* data begins in the middle of the arc_buf */
5121                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5122                             blksz);
5123                         ASSERT(abuf);
5124                         (void) dmu_xuio_add(xuio, abuf,
5125                             blksz - preamble, preamble);
5126                 }
5127 
5128                 for (i = 0; i < fullblk; i++) {
5129                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5130                             blksz);
5131                         ASSERT(abuf);
5132                         (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5133                 }
5134 
5135                 if (postamble) {
5136                         /* data ends in the middle of the arc_buf */
5137                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5138                             blksz);
5139                         ASSERT(abuf);
5140                         (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5141                 }
5142                 break;
5143         case UIO_READ:
5144                 /*
5145                  * Loan out an arc_buf for read if the read size is larger than
5146                  * the current file block size.  Block alignment is not
5147                  * considered.  Partial arc_buf will be loaned out for read.
5148                  */
5149                 blksz = zp->z_blksz;
5150                 if (blksz < zcr_blksz_min)
5151                         blksz = zcr_blksz_min;
5152                 if (blksz > zcr_blksz_max)
5153                         blksz = zcr_blksz_max;
5154                 /* avoid potential complexity of dealing with it */
5155                 if (blksz > max_blksz) {
5156                         ZFS_EXIT(zfsvfs);
5157                         return (SET_ERROR(EINVAL));
5158                 }
5159 
5160                 maxsize = zp->z_size - uio->uio_loffset;
5161                 if (size > maxsize)
5162                         size = maxsize;
5163 
5164                 if (size < blksz || vn_has_cached_data(vp)) {
5165                         ZFS_EXIT(zfsvfs);
5166                         return (SET_ERROR(EINVAL));
5167                 }
5168                 break;
5169         default:
5170                 ZFS_EXIT(zfsvfs);
5171                 return (SET_ERROR(EINVAL));
5172         }
5173 
5174         uio->uio_extflg = UIO_XUIO;
5175         XUIO_XUZC_RW(xuio) = ioflag;
5176         ZFS_EXIT(zfsvfs);
5177         return (0);
5178 }
5179 
5180 /*ARGSUSED*/
5181 static int
5182 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5183 {
5184         int i;
5185         arc_buf_t *abuf;
5186         int ioflag = XUIO_XUZC_RW(xuio);
5187 
5188         ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5189 
5190         i = dmu_xuio_cnt(xuio);
5191         while (i-- > 0) {
5192                 abuf = dmu_xuio_arcbuf(xuio, i);
5193                 /*
5194                  * if abuf == NULL, it must be a write buffer
5195                  * that has been returned in zfs_write().
5196                  */
5197                 if (abuf)
5198                         dmu_return_arcbuf(abuf);
5199                 ASSERT(abuf || ioflag == UIO_WRITE);
5200         }
5201 
5202         dmu_xuio_fini(xuio);
5203         return (0);
5204 }
5205 
5206 /*
5207  * Predeclare these here so that the compiler assumes that
5208  * this is an "old style" function declaration that does
5209  * not include arguments => we won't get type mismatch errors
5210  * in the initializations that follow.
5211  */
5212 static int zfs_inval();
5213 static int zfs_isdir();
5214 
5215 static int
5216 zfs_inval()
5217 {
5218         return (SET_ERROR(EINVAL));
5219 }
5220 
5221 static int
5222 zfs_isdir()
5223 {
5224         return (SET_ERROR(EISDIR));
5225 }
5226 /*
5227  * Directory vnode operations template
5228  */
5229 vnodeops_t *zfs_dvnodeops;
5230 const fs_operation_def_t zfs_dvnodeops_template[] = {
5231         VOPNAME_OPEN,           { .vop_open = zfs_open },
5232         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5233         VOPNAME_READ,           { .error = zfs_isdir },
5234         VOPNAME_WRITE,          { .error = zfs_isdir },
5235         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5236         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5237         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5238         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5239         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5240         VOPNAME_CREATE,         { .vop_create = zfs_create },
5241         VOPNAME_REMOVE,         { .vop_remove = zfs_remove },
5242         VOPNAME_LINK,           { .vop_link = zfs_link },
5243         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5244         VOPNAME_MKDIR,          { .vop_mkdir = zfs_mkdir },
5245         VOPNAME_RMDIR,          { .vop_rmdir = zfs_rmdir },
5246         VOPNAME_READDIR,        { .vop_readdir = zfs_readdir },
5247         VOPNAME_SYMLINK,        { .vop_symlink = zfs_symlink },
5248         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5249         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5250         VOPNAME_FID,            { .vop_fid = zfs_fid },
5251         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5252         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5253         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5254         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5255         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5256         NULL,                   NULL
5257 };
5258 
5259 /*
5260  * Regular file vnode operations template
5261  */
5262 vnodeops_t *zfs_fvnodeops;
5263 const fs_operation_def_t zfs_fvnodeops_template[] = {
5264         VOPNAME_OPEN,           { .vop_open = zfs_open },
5265         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5266         VOPNAME_READ,           { .vop_read = zfs_read },
5267         VOPNAME_WRITE,          { .vop_write = zfs_write },
5268         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5269         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5270         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5271         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5272         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5273         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5274         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5275         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5276         VOPNAME_FID,            { .vop_fid = zfs_fid },
5277         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5278         VOPNAME_FRLOCK,         { .vop_frlock = zfs_frlock },
5279         VOPNAME_SPACE,          { .vop_space = zfs_space },
5280         VOPNAME_GETPAGE,        { .vop_getpage = zfs_getpage },
5281         VOPNAME_PUTPAGE,        { .vop_putpage = zfs_putpage },
5282         VOPNAME_MAP,            { .vop_map = zfs_map },
5283         VOPNAME_ADDMAP,         { .vop_addmap = zfs_addmap },
5284         VOPNAME_DELMAP,         { .vop_delmap = zfs_delmap },
5285         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5286         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5287         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5288         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5289         VOPNAME_REQZCBUF,       { .vop_reqzcbuf = zfs_reqzcbuf },
5290         VOPNAME_RETZCBUF,       { .vop_retzcbuf = zfs_retzcbuf },
5291         NULL,                   NULL
5292 };
5293 
5294 /*
5295  * Symbolic link vnode operations template
5296  */
5297 vnodeops_t *zfs_symvnodeops;
5298 const fs_operation_def_t zfs_symvnodeops_template[] = {
5299         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5300         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5301         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5302         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5303         VOPNAME_READLINK,       { .vop_readlink = zfs_readlink },
5304         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5305         VOPNAME_FID,            { .vop_fid = zfs_fid },
5306         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5307         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5308         NULL,                   NULL
5309 };
5310 
5311 /*
5312  * special share hidden files vnode operations template
5313  */
5314 vnodeops_t *zfs_sharevnodeops;
5315 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5316         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5317         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5318         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5319         VOPNAME_FID,            { .vop_fid = zfs_fid },
5320         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5321         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5322         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5323         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5324         NULL,                   NULL
5325 };
5326 
5327 /*
5328  * Extended attribute directory vnode operations template
5329  *
5330  * This template is identical to the directory vnodes
5331  * operation template except for restricted operations:
5332  *      VOP_MKDIR()
5333  *      VOP_SYMLINK()
5334  *
5335  * Note that there are other restrictions embedded in:
5336  *      zfs_create()    - restrict type to VREG
5337  *      zfs_link()      - no links into/out of attribute space
5338  *      zfs_rename()    - no moves into/out of attribute space
5339  */
5340 vnodeops_t *zfs_xdvnodeops;
5341 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5342         VOPNAME_OPEN,           { .vop_open = zfs_open },
5343         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5344         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5345         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5346         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5347         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5348         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5349         VOPNAME_CREATE,         { .vop_create = zfs_create },
5350         VOPNAME_REMOVE,         { .vop_remove = zfs_remove },
5351         VOPNAME_LINK,           { .vop_link = zfs_link },
5352         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5353         VOPNAME_MKDIR,          { .error = zfs_inval },
5354         VOPNAME_RMDIR,          { .vop_rmdir = zfs_rmdir },
5355         VOPNAME_READDIR,        { .vop_readdir = zfs_readdir },
5356         VOPNAME_SYMLINK,        { .error = zfs_inval },
5357         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5358         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5359         VOPNAME_FID,            { .vop_fid = zfs_fid },
5360         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5361         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5362         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5363         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5364         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5365         NULL,                   NULL
5366 };
5367 
5368 /*
5369  * Error vnode operations template
5370  */
5371 vnodeops_t *zfs_evnodeops;
5372 const fs_operation_def_t zfs_evnodeops_template[] = {
5373         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5374         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5375         NULL,                   NULL
5376 };