Print this page
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/fs/vnode.c
+++ new/usr/src/uts/common/fs/vnode.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
|
↓ open down ↓ |
13 lines elided |
↑ open up ↑ |
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24 - * Copyright 2016, Joyent, Inc.
24 + * Copyright (c) 2014, Joyent, Inc. All rights reserved.
25 25 */
26 26
27 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
28 28 /* All Rights Reserved */
29 29
30 30 /*
31 31 * University Copyright- Copyright (c) 1982, 1986, 1988
32 32 * The Regents of the University of California
33 33 * All Rights Reserved
34 34 *
35 35 * University Acknowledgment- Portions of this document are derived from
36 36 * software developed by the University of California, Berkeley, and its
37 37 * contributors.
38 38 */
39 39
40 40 #include <sys/types.h>
41 41 #include <sys/param.h>
42 42 #include <sys/t_lock.h>
43 43 #include <sys/errno.h>
44 44 #include <sys/cred.h>
45 45 #include <sys/user.h>
46 46 #include <sys/uio.h>
47 47 #include <sys/file.h>
48 48 #include <sys/pathname.h>
49 49 #include <sys/vfs.h>
50 50 #include <sys/vfs_opreg.h>
51 51 #include <sys/vnode.h>
52 52 #include <sys/rwstlock.h>
53 53 #include <sys/fem.h>
54 54 #include <sys/stat.h>
55 55 #include <sys/mode.h>
56 56 #include <sys/conf.h>
57 57 #include <sys/sysmacros.h>
58 58 #include <sys/cmn_err.h>
|
↓ open down ↓ |
24 lines elided |
↑ open up ↑ |
59 59 #include <sys/systm.h>
60 60 #include <sys/kmem.h>
61 61 #include <sys/debug.h>
62 62 #include <c2/audit.h>
63 63 #include <sys/acl.h>
64 64 #include <sys/nbmlock.h>
65 65 #include <sys/fcntl.h>
66 66 #include <fs/fs_subr.h>
67 67 #include <sys/taskq.h>
68 68 #include <fs/fs_reparse.h>
69 -#include <sys/time.h>
70 -#include <sys/sdt.h>
71 69
72 70 /* Determine if this vnode is a file that is read-only */
73 71 #define ISROFILE(vp) \
74 72 ((vp)->v_type != VCHR && (vp)->v_type != VBLK && \
75 73 (vp)->v_type != VFIFO && vn_is_readonly(vp))
76 74
77 75 /* Tunable via /etc/system; used only by admin/install */
78 76 int nfs_global_client_only;
79 77
80 78 /*
81 79 * Array of vopstats_t for per-FS-type vopstats. This array has the same
82 80 * number of entries as and parallel to the vfssw table. (Arguably, it could
83 81 * be part of the vfssw table.) Once it's initialized, it's accessed using
84 82 * the same fstype index that is used to index into the vfssw table.
85 83 */
86 84 vopstats_t **vopstats_fstype;
87 85
88 86 /* vopstats initialization template used for fast initialization via bcopy() */
89 87 static vopstats_t *vs_templatep;
90 88
91 89 /* Kmem cache handle for vsk_anchor_t allocations */
92 90 kmem_cache_t *vsk_anchor_cache;
93 91
94 92 /* file events cleanup routine */
95 93 extern void free_fopdata(vnode_t *);
96 94
|
↓ open down ↓ |
16 lines elided |
↑ open up ↑ |
97 95 /*
98 96 * Root of AVL tree for the kstats associated with vopstats. Lock protects
99 97 * updates to vsktat_tree.
100 98 */
101 99 avl_tree_t vskstat_tree;
102 100 kmutex_t vskstat_tree_lock;
103 101
104 102 /* Global variable which enables/disables the vopstats collection */
105 103 int vopstats_enabled = 1;
106 104
107 -/* Global used for empty/invalid v_path */
108 -char *vn_vpath_empty = "";
109 -
110 105 /*
111 106 * forward declarations for internal vnode specific data (vsd)
112 107 */
113 108 static void *vsd_realloc(void *, size_t, size_t);
114 109
115 110 /*
116 111 * forward declarations for reparse point functions
117 112 */
118 113 static int fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr);
119 114
120 115 /*
121 116 * VSD -- VNODE SPECIFIC DATA
122 117 * The v_data pointer is typically used by a file system to store a
123 118 * pointer to the file system's private node (e.g. ufs inode, nfs rnode).
124 119 * However, there are times when additional project private data needs
125 120 * to be stored separately from the data (node) pointed to by v_data.
126 121 * This additional data could be stored by the file system itself or
127 122 * by a completely different kernel entity. VSD provides a way for
128 123 * callers to obtain a key and store a pointer to private data associated
129 124 * with a vnode.
130 125 *
131 126 * Callers are responsible for protecting the vsd by holding v_vsd_lock
132 127 * for calls to vsd_set() and vsd_get().
133 128 */
134 129
135 130 /*
136 131 * vsd_lock protects:
137 132 * vsd_nkeys - creation and deletion of vsd keys
138 133 * vsd_list - insertion and deletion of vsd_node in the vsd_list
139 134 * vsd_destructor - adding and removing destructors to the list
140 135 */
141 136 static kmutex_t vsd_lock;
142 137 static uint_t vsd_nkeys; /* size of destructor array */
143 138 /* list of vsd_node's */
144 139 static list_t *vsd_list = NULL;
145 140 /* per-key destructor funcs */
146 141 static void (**vsd_destructor)(void *);
147 142
148 143 /*
149 144 * The following is the common set of actions needed to update the
150 145 * vopstats structure from a vnode op. Both VOPSTATS_UPDATE() and
151 146 * VOPSTATS_UPDATE_IO() do almost the same thing, except for the
152 147 * recording of the bytes transferred. Since the code is similar
153 148 * but small, it is nearly a duplicate. Consequently any changes
154 149 * to one may need to be reflected in the other.
155 150 * Rundown of the variables:
156 151 * vp - Pointer to the vnode
157 152 * counter - Partial name structure member to update in vopstats for counts
158 153 * bytecounter - Partial name structure member to update in vopstats for bytes
159 154 * bytesval - Value to update in vopstats for bytes
160 155 * fstype - Index into vsanchor_fstype[], same as index into vfssw[]
161 156 * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i])
162 157 */
163 158
164 159 #define VOPSTATS_UPDATE(vp, counter) { \
165 160 vfs_t *vfsp = (vp)->v_vfsp; \
166 161 if (vfsp && vfsp->vfs_implp && \
167 162 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \
168 163 vopstats_t *vsp = &vfsp->vfs_vopstats; \
169 164 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \
170 165 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \
171 166 size_t, uint64_t *); \
172 167 __dtrace_probe___fsinfo_##counter(vp, 0, stataddr); \
173 168 (*stataddr)++; \
174 169 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \
175 170 vsp->n##counter.value.ui64++; \
176 171 } \
177 172 } \
178 173 }
179 174
180 175 #define VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) { \
181 176 vfs_t *vfsp = (vp)->v_vfsp; \
182 177 if (vfsp && vfsp->vfs_implp && \
183 178 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \
184 179 vopstats_t *vsp = &vfsp->vfs_vopstats; \
185 180 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \
186 181 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \
187 182 size_t, uint64_t *); \
188 183 __dtrace_probe___fsinfo_##counter(vp, bytesval, stataddr); \
189 184 (*stataddr)++; \
190 185 vsp->bytecounter.value.ui64 += bytesval; \
191 186 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \
192 187 vsp->n##counter.value.ui64++; \
193 188 vsp->bytecounter.value.ui64 += bytesval; \
194 189 } \
195 190 } \
196 191 }
197 192
198 193 /*
199 194 * If the filesystem does not support XIDs map credential
200 195 * If the vfsp is NULL, perhaps we should also map?
|
↓ open down ↓ |
81 lines elided |
↑ open up ↑ |
201 196 */
202 197 #define VOPXID_MAP_CR(vp, cr) { \
203 198 vfs_t *vfsp = (vp)->v_vfsp; \
204 199 if (vfsp != NULL && (vfsp->vfs_flag & VFS_XID) == 0) \
205 200 cr = crgetmapped(cr); \
206 201 }
207 202
208 203 #define VOP_LATENCY_10MS 10000000
209 204 #define VOP_LATENCY_100MS 100000000
210 205 #define VOP_LATENCY_1S 1000000000
211 -#define VOP_LATENCY_10S 10000000000
212 206
213 207 /*
214 208 * Convert stat(2) formats to vnode types and vice versa. (Knows about
215 209 * numerical order of S_IFMT and vnode types.)
216 210 */
217 211 enum vtype iftovt_tab[] = {
218 212 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
219 213 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
220 214 };
221 215
222 216 ushort_t vttoif_tab[] = {
223 217 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO,
224 218 S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0
225 219 };
226 220
227 221 /*
228 222 * The system vnode cache.
229 223 */
230 224
231 225 kmem_cache_t *vn_cache;
232 226
233 227
234 228 /*
235 229 * Vnode operations vector.
236 230 */
237 231
238 232 static const fs_operation_trans_def_t vn_ops_table[] = {
239 233 VOPNAME_OPEN, offsetof(struct vnodeops, vop_open),
240 234 fs_nosys, fs_nosys,
241 235
242 236 VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close),
243 237 fs_nosys, fs_nosys,
244 238
245 239 VOPNAME_READ, offsetof(struct vnodeops, vop_read),
246 240 fs_nosys, fs_nosys,
247 241
248 242 VOPNAME_WRITE, offsetof(struct vnodeops, vop_write),
249 243 fs_nosys, fs_nosys,
250 244
251 245 VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl),
252 246 fs_nosys, fs_nosys,
253 247
254 248 VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl),
255 249 fs_setfl, fs_nosys,
256 250
257 251 VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr),
258 252 fs_nosys, fs_nosys,
259 253
260 254 VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr),
261 255 fs_nosys, fs_nosys,
262 256
263 257 VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access),
264 258 fs_nosys, fs_nosys,
265 259
266 260 VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup),
267 261 fs_nosys, fs_nosys,
268 262
269 263 VOPNAME_CREATE, offsetof(struct vnodeops, vop_create),
270 264 fs_nosys, fs_nosys,
271 265
272 266 VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove),
273 267 fs_nosys, fs_nosys,
274 268
275 269 VOPNAME_LINK, offsetof(struct vnodeops, vop_link),
276 270 fs_nosys, fs_nosys,
277 271
278 272 VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename),
279 273 fs_nosys, fs_nosys,
280 274
281 275 VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir),
282 276 fs_nosys, fs_nosys,
283 277
284 278 VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir),
285 279 fs_nosys, fs_nosys,
286 280
287 281 VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir),
288 282 fs_nosys, fs_nosys,
289 283
290 284 VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink),
291 285 fs_nosys, fs_nosys,
292 286
293 287 VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink),
294 288 fs_nosys, fs_nosys,
295 289
296 290 VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync),
297 291 fs_nosys, fs_nosys,
298 292
299 293 VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive),
300 294 fs_nosys, fs_nosys,
301 295
302 296 VOPNAME_FID, offsetof(struct vnodeops, vop_fid),
303 297 fs_nosys, fs_nosys,
304 298
305 299 VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock),
306 300 fs_rwlock, fs_rwlock,
307 301
308 302 VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock),
309 303 (fs_generic_func_p) fs_rwunlock,
310 304 (fs_generic_func_p) fs_rwunlock, /* no errors allowed */
311 305
312 306 VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek),
313 307 fs_nosys, fs_nosys,
314 308
315 309 VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp),
316 310 fs_cmp, fs_cmp, /* no errors allowed */
317 311
318 312 VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock),
319 313 fs_frlock, fs_nosys,
320 314
321 315 VOPNAME_SPACE, offsetof(struct vnodeops, vop_space),
322 316 fs_nosys, fs_nosys,
323 317
324 318 VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp),
325 319 fs_nosys, fs_nosys,
326 320
327 321 VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage),
328 322 fs_nosys, fs_nosys,
329 323
330 324 VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage),
331 325 fs_nosys, fs_nosys,
332 326
333 327 VOPNAME_MAP, offsetof(struct vnodeops, vop_map),
334 328 (fs_generic_func_p) fs_nosys_map,
335 329 (fs_generic_func_p) fs_nosys_map,
336 330
337 331 VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap),
338 332 (fs_generic_func_p) fs_nosys_addmap,
339 333 (fs_generic_func_p) fs_nosys_addmap,
340 334
341 335 VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap),
342 336 fs_nosys, fs_nosys,
343 337
344 338 VOPNAME_POLL, offsetof(struct vnodeops, vop_poll),
345 339 (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll,
346 340
347 341 VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump),
348 342 fs_nosys, fs_nosys,
349 343
350 344 VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf),
351 345 fs_pathconf, fs_nosys,
352 346
353 347 VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio),
354 348 fs_nosys, fs_nosys,
355 349
356 350 VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl),
357 351 fs_nosys, fs_nosys,
358 352
359 353 VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose),
360 354 (fs_generic_func_p) fs_dispose,
361 355 (fs_generic_func_p) fs_nodispose,
362 356
363 357 VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr),
364 358 fs_nosys, fs_nosys,
365 359
366 360 VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr),
367 361 fs_fab_acl, fs_nosys,
368 362
369 363 VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock),
370 364 fs_shrlock, fs_nosys,
371 365
372 366 VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent),
373 367 (fs_generic_func_p) fs_vnevent_nosupport,
374 368 (fs_generic_func_p) fs_vnevent_nosupport,
375 369
376 370 VOPNAME_REQZCBUF, offsetof(struct vnodeops, vop_reqzcbuf),
377 371 fs_nosys, fs_nosys,
378 372
379 373 VOPNAME_RETZCBUF, offsetof(struct vnodeops, vop_retzcbuf),
380 374 fs_nosys, fs_nosys,
381 375
382 376 NULL, 0, NULL, NULL
383 377 };
384 378
385 379 /* Extensible attribute (xva) routines. */
386 380
387 381 /*
388 382 * Zero out the structure, set the size of the requested/returned bitmaps,
389 383 * set AT_XVATTR in the embedded vattr_t's va_mask, and set up the pointer
390 384 * to the returned attributes array.
391 385 */
392 386 void
393 387 xva_init(xvattr_t *xvap)
394 388 {
395 389 bzero(xvap, sizeof (xvattr_t));
396 390 xvap->xva_mapsize = XVA_MAPSIZE;
397 391 xvap->xva_magic = XVA_MAGIC;
398 392 xvap->xva_vattr.va_mask = AT_XVATTR;
399 393 xvap->xva_rtnattrmapp = &(xvap->xva_rtnattrmap)[0];
400 394 }
401 395
402 396 /*
403 397 * If AT_XVATTR is set, returns a pointer to the embedded xoptattr_t
404 398 * structure. Otherwise, returns NULL.
405 399 */
406 400 xoptattr_t *
407 401 xva_getxoptattr(xvattr_t *xvap)
408 402 {
409 403 xoptattr_t *xoap = NULL;
410 404 if (xvap->xva_vattr.va_mask & AT_XVATTR)
411 405 xoap = &xvap->xva_xoptattrs;
412 406 return (xoap);
413 407 }
414 408
415 409 /*
416 410 * Used by the AVL routines to compare two vsk_anchor_t structures in the tree.
417 411 * We use the f_fsid reported by VFS_STATVFS() since we use that for the
418 412 * kstat name.
419 413 */
420 414 static int
421 415 vska_compar(const void *n1, const void *n2)
422 416 {
423 417 int ret;
424 418 ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid;
425 419 ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid;
426 420
427 421 if (p1 < p2) {
428 422 ret = -1;
429 423 } else if (p1 > p2) {
430 424 ret = 1;
431 425 } else {
432 426 ret = 0;
433 427 }
434 428
435 429 return (ret);
436 430 }
437 431
438 432 /*
439 433 * Used to create a single template which will be bcopy()ed to a newly
440 434 * allocated vsanchor_combo_t structure in new_vsanchor(), below.
441 435 */
442 436 static vopstats_t *
443 437 create_vopstats_template()
444 438 {
445 439 vopstats_t *vsp;
446 440
447 441 vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP);
448 442 bzero(vsp, sizeof (*vsp)); /* Start fresh */
449 443
450 444 /* VOP_OPEN */
451 445 kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64);
452 446 /* VOP_CLOSE */
453 447 kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64);
454 448 /* VOP_READ I/O */
455 449 kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64);
456 450 kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64);
457 451 /* VOP_WRITE I/O */
458 452 kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64);
459 453 kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64);
460 454 /* VOP_IOCTL */
461 455 kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64);
462 456 /* VOP_SETFL */
463 457 kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64);
464 458 /* VOP_GETATTR */
465 459 kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64);
466 460 /* VOP_SETATTR */
467 461 kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64);
468 462 /* VOP_ACCESS */
469 463 kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64);
470 464 /* VOP_LOOKUP */
471 465 kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64);
472 466 /* VOP_CREATE */
473 467 kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64);
474 468 /* VOP_REMOVE */
475 469 kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64);
476 470 /* VOP_LINK */
477 471 kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64);
478 472 /* VOP_RENAME */
479 473 kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64);
480 474 /* VOP_MKDIR */
481 475 kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64);
482 476 /* VOP_RMDIR */
483 477 kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64);
484 478 /* VOP_READDIR I/O */
485 479 kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64);
486 480 kstat_named_init(&vsp->readdir_bytes, "readdir_bytes",
487 481 KSTAT_DATA_UINT64);
488 482 /* VOP_SYMLINK */
489 483 kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64);
490 484 /* VOP_READLINK */
491 485 kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64);
492 486 /* VOP_FSYNC */
493 487 kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64);
494 488 /* VOP_INACTIVE */
495 489 kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64);
496 490 /* VOP_FID */
497 491 kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64);
498 492 /* VOP_RWLOCK */
499 493 kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64);
500 494 /* VOP_RWUNLOCK */
501 495 kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64);
502 496 /* VOP_SEEK */
503 497 kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64);
504 498 /* VOP_CMP */
505 499 kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64);
506 500 /* VOP_FRLOCK */
507 501 kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64);
508 502 /* VOP_SPACE */
509 503 kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64);
510 504 /* VOP_REALVP */
511 505 kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64);
512 506 /* VOP_GETPAGE */
513 507 kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64);
514 508 /* VOP_PUTPAGE */
515 509 kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64);
516 510 /* VOP_MAP */
517 511 kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64);
518 512 /* VOP_ADDMAP */
519 513 kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64);
520 514 /* VOP_DELMAP */
521 515 kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64);
522 516 /* VOP_POLL */
523 517 kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64);
524 518 /* VOP_DUMP */
525 519 kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64);
526 520 /* VOP_PATHCONF */
527 521 kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64);
528 522 /* VOP_PAGEIO */
529 523 kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64);
530 524 /* VOP_DUMPCTL */
531 525 kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64);
532 526 /* VOP_DISPOSE */
533 527 kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64);
534 528 /* VOP_SETSECATTR */
535 529 kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64);
536 530 /* VOP_GETSECATTR */
537 531 kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64);
538 532 /* VOP_SHRLOCK */
539 533 kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64);
540 534 /* VOP_VNEVENT */
541 535 kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64);
542 536 /* VOP_REQZCBUF */
543 537 kstat_named_init(&vsp->nreqzcbuf, "nreqzcbuf", KSTAT_DATA_UINT64);
544 538 /* VOP_RETZCBUF */
545 539 kstat_named_init(&vsp->nretzcbuf, "nretzcbuf", KSTAT_DATA_UINT64);
546 540
547 541 return (vsp);
548 542 }
549 543
550 544 /*
551 545 * Creates a kstat structure associated with a vopstats structure.
552 546 */
553 547 kstat_t *
554 548 new_vskstat(char *ksname, vopstats_t *vsp)
555 549 {
556 550 kstat_t *ksp;
557 551
558 552 if (!vopstats_enabled) {
559 553 return (NULL);
560 554 }
561 555
562 556 ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED,
563 557 sizeof (vopstats_t)/sizeof (kstat_named_t),
564 558 KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE);
565 559 if (ksp) {
566 560 ksp->ks_data = vsp;
567 561 kstat_install(ksp);
568 562 }
569 563
570 564 return (ksp);
571 565 }
572 566
573 567 /*
574 568 * Called from vfsinit() to initialize the support mechanisms for vopstats
575 569 */
576 570 void
577 571 vopstats_startup()
578 572 {
579 573 if (!vopstats_enabled)
580 574 return;
581 575
582 576 /*
583 577 * Creates the AVL tree which holds per-vfs vopstat anchors. This
584 578 * is necessary since we need to check if a kstat exists before we
585 579 * attempt to create it. Also, initialize its lock.
586 580 */
587 581 avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t),
588 582 offsetof(vsk_anchor_t, vsk_node));
589 583 mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL);
590 584
591 585 vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache",
592 586 sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL,
593 587 NULL, NULL, 0);
594 588
595 589 /*
596 590 * Set up the array of pointers for the vopstats-by-FS-type.
597 591 * The entries will be allocated/initialized as each file system
598 592 * goes through modload/mod_installfs.
599 593 */
600 594 vopstats_fstype = (vopstats_t **)kmem_zalloc(
601 595 (sizeof (vopstats_t *) * nfstype), KM_SLEEP);
602 596
603 597 /* Set up the global vopstats initialization template */
604 598 vs_templatep = create_vopstats_template();
605 599 }
606 600
607 601 /*
608 602 * We need to have the all of the counters zeroed.
609 603 * The initialization of the vopstats_t includes on the order of
610 604 * 50 calls to kstat_named_init(). Rather that do that on every call,
611 605 * we do it once in a template (vs_templatep) then bcopy it over.
612 606 */
613 607 void
614 608 initialize_vopstats(vopstats_t *vsp)
615 609 {
616 610 if (vsp == NULL)
617 611 return;
618 612
619 613 bcopy(vs_templatep, vsp, sizeof (vopstats_t));
620 614 }
621 615
622 616 /*
623 617 * If possible, determine which vopstats by fstype to use and
624 618 * return a pointer to the caller.
625 619 */
626 620 vopstats_t *
627 621 get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp)
628 622 {
629 623 int fstype = 0; /* Index into vfssw[] */
630 624 vopstats_t *vsp = NULL;
631 625
632 626 if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 ||
633 627 !vopstats_enabled)
634 628 return (NULL);
635 629 /*
636 630 * Set up the fstype. We go to so much trouble because all versions
637 631 * of NFS use the same fstype in their vfs even though they have
638 632 * distinct entries in the vfssw[] table.
639 633 * NOTE: A special vfs (e.g., EIO_vfs) may not have an entry.
640 634 */
641 635 if (vswp) {
642 636 fstype = vswp - vfssw; /* Gets us the index */
643 637 } else {
644 638 fstype = vfsp->vfs_fstype;
645 639 }
646 640
647 641 /*
648 642 * Point to the per-fstype vopstats. The only valid values are
649 643 * non-zero positive values less than the number of vfssw[] table
650 644 * entries.
651 645 */
652 646 if (fstype > 0 && fstype < nfstype) {
653 647 vsp = vopstats_fstype[fstype];
654 648 }
655 649
656 650 return (vsp);
657 651 }
658 652
659 653 /*
660 654 * Generate a kstat name, create the kstat structure, and allocate a
661 655 * vsk_anchor_t to hold it together. Return the pointer to the vsk_anchor_t
662 656 * to the caller. This must only be called from a mount.
663 657 */
664 658 vsk_anchor_t *
665 659 get_vskstat_anchor(vfs_t *vfsp)
666 660 {
667 661 char kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */
668 662 statvfs64_t statvfsbuf; /* Needed to find f_fsid */
669 663 vsk_anchor_t *vskp = NULL; /* vfs <--> kstat anchor */
670 664 kstat_t *ksp; /* Ptr to new kstat */
671 665 avl_index_t where; /* Location in the AVL tree */
672 666
673 667 if (vfsp == NULL || vfsp->vfs_implp == NULL ||
674 668 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled)
675 669 return (NULL);
676 670
677 671 /* Need to get the fsid to build a kstat name */
678 672 if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) {
679 673 /* Create a name for our kstats based on fsid */
680 674 (void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx",
681 675 VOPSTATS_STR, statvfsbuf.f_fsid);
682 676
683 677 /* Allocate and initialize the vsk_anchor_t */
684 678 vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP);
685 679 bzero(vskp, sizeof (*vskp));
686 680 vskp->vsk_fsid = statvfsbuf.f_fsid;
687 681
688 682 mutex_enter(&vskstat_tree_lock);
689 683 if (avl_find(&vskstat_tree, vskp, &where) == NULL) {
690 684 avl_insert(&vskstat_tree, vskp, where);
691 685 mutex_exit(&vskstat_tree_lock);
692 686
693 687 /*
694 688 * Now that we've got the anchor in the AVL
695 689 * tree, we can create the kstat.
696 690 */
697 691 ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats);
698 692 if (ksp) {
699 693 vskp->vsk_ksp = ksp;
700 694 }
701 695 } else {
702 696 /* Oops, found one! Release memory and lock. */
703 697 mutex_exit(&vskstat_tree_lock);
704 698 kmem_cache_free(vsk_anchor_cache, vskp);
705 699 vskp = NULL;
706 700 }
707 701 }
708 702 return (vskp);
709 703 }
710 704
711 705 /*
712 706 * We're in the process of tearing down the vfs and need to cleanup
713 707 * the data structures associated with the vopstats. Must only be called
714 708 * from dounmount().
715 709 */
716 710 void
717 711 teardown_vopstats(vfs_t *vfsp)
718 712 {
719 713 vsk_anchor_t *vskap;
720 714 avl_index_t where;
721 715
722 716 if (vfsp == NULL || vfsp->vfs_implp == NULL ||
723 717 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled)
724 718 return;
725 719
726 720 /* This is a safe check since VFS_STATS must be set (see above) */
727 721 if ((vskap = vfsp->vfs_vskap) == NULL)
728 722 return;
729 723
730 724 /* Whack the pointer right away */
731 725 vfsp->vfs_vskap = NULL;
732 726
733 727 /* Lock the tree, remove the node, and delete the kstat */
734 728 mutex_enter(&vskstat_tree_lock);
735 729 if (avl_find(&vskstat_tree, vskap, &where)) {
736 730 avl_remove(&vskstat_tree, vskap);
737 731 }
738 732
739 733 if (vskap->vsk_ksp) {
740 734 kstat_delete(vskap->vsk_ksp);
741 735 }
742 736 mutex_exit(&vskstat_tree_lock);
743 737
744 738 kmem_cache_free(vsk_anchor_cache, vskap);
745 739 }
746 740
747 741 /*
748 742 * Read or write a vnode. Called from kernel code.
749 743 */
750 744 int
751 745 vn_rdwr(
752 746 enum uio_rw rw,
753 747 struct vnode *vp,
754 748 caddr_t base,
755 749 ssize_t len,
756 750 offset_t offset,
757 751 enum uio_seg seg,
758 752 int ioflag,
759 753 rlim64_t ulimit, /* meaningful only if rw is UIO_WRITE */
760 754 cred_t *cr,
761 755 ssize_t *residp)
762 756 {
763 757 struct uio uio;
764 758 struct iovec iov;
765 759 int error;
766 760 int in_crit = 0;
767 761
768 762 if (rw == UIO_WRITE && ISROFILE(vp))
769 763 return (EROFS);
770 764
771 765 if (len < 0)
772 766 return (EIO);
773 767
774 768 VOPXID_MAP_CR(vp, cr);
775 769
776 770 iov.iov_base = base;
777 771 iov.iov_len = len;
778 772 uio.uio_iov = &iov;
779 773 uio.uio_iovcnt = 1;
780 774 uio.uio_loffset = offset;
781 775 uio.uio_segflg = (short)seg;
782 776 uio.uio_resid = len;
783 777 uio.uio_llimit = ulimit;
784 778
785 779 /*
786 780 * We have to enter the critical region before calling VOP_RWLOCK
787 781 * to avoid a deadlock with ufs.
788 782 */
789 783 if (nbl_need_check(vp)) {
790 784 int svmand;
791 785
792 786 nbl_start_crit(vp, RW_READER);
793 787 in_crit = 1;
794 788 error = nbl_svmand(vp, cr, &svmand);
795 789 if (error != 0)
796 790 goto done;
797 791 if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ,
798 792 uio.uio_offset, uio.uio_resid, svmand, NULL)) {
799 793 error = EACCES;
800 794 goto done;
801 795 }
802 796 }
803 797
804 798 (void) VOP_RWLOCK(vp,
805 799 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL);
806 800 if (rw == UIO_WRITE) {
807 801 uio.uio_fmode = FWRITE;
808 802 uio.uio_extflg = UIO_COPY_DEFAULT;
809 803 error = VOP_WRITE(vp, &uio, ioflag, cr, NULL);
810 804 } else {
811 805 uio.uio_fmode = FREAD;
812 806 uio.uio_extflg = UIO_COPY_CACHED;
813 807 error = VOP_READ(vp, &uio, ioflag, cr, NULL);
814 808 }
815 809 VOP_RWUNLOCK(vp,
816 810 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL);
817 811 if (residp)
818 812 *residp = uio.uio_resid;
819 813 else if (uio.uio_resid)
820 814 error = EIO;
821 815
822 816 done:
823 817 if (in_crit)
824 818 nbl_end_crit(vp);
825 819 return (error);
826 820 }
827 821
828 822 /*
829 823 * Release a vnode. Call VOP_INACTIVE on last reference or
830 824 * decrement reference count.
831 825 *
832 826 * To avoid race conditions, the v_count is left at 1 for
833 827 * the call to VOP_INACTIVE. This prevents another thread
834 828 * from reclaiming and releasing the vnode *before* the
835 829 * VOP_INACTIVE routine has a chance to destroy the vnode.
836 830 * We can't have more than 1 thread calling VOP_INACTIVE
837 831 * on a vnode.
838 832 */
839 833 void
840 834 vn_rele(vnode_t *vp)
841 835 {
842 836 VERIFY(vp->v_count > 0);
843 837 mutex_enter(&vp->v_lock);
844 838 if (vp->v_count == 1) {
845 839 mutex_exit(&vp->v_lock);
846 840 VOP_INACTIVE(vp, CRED(), NULL);
847 841 return;
848 842 }
849 843 vp->v_count--;
850 844 mutex_exit(&vp->v_lock);
851 845 }
852 846
853 847 /*
854 848 * Release a vnode referenced by the DNLC. Multiple DNLC references are treated
855 849 * as a single reference, so v_count is not decremented until the last DNLC hold
856 850 * is released. This makes it possible to distinguish vnodes that are referenced
857 851 * only by the DNLC.
858 852 */
859 853 void
860 854 vn_rele_dnlc(vnode_t *vp)
861 855 {
862 856 VERIFY((vp->v_count > 0) && (vp->v_count_dnlc > 0));
863 857 mutex_enter(&vp->v_lock);
864 858 if (--vp->v_count_dnlc == 0) {
865 859 if (vp->v_count == 1) {
866 860 mutex_exit(&vp->v_lock);
867 861 VOP_INACTIVE(vp, CRED(), NULL);
868 862 return;
869 863 }
870 864 vp->v_count--;
871 865 }
872 866 mutex_exit(&vp->v_lock);
873 867 }
874 868
875 869 /*
876 870 * Like vn_rele() except that it clears v_stream under v_lock.
877 871 * This is used by sockfs when it dismantels the association between
878 872 * the sockfs node and the vnode in the underlaying file system.
879 873 * v_lock has to be held to prevent a thread coming through the lookupname
880 874 * path from accessing a stream head that is going away.
881 875 */
882 876 void
883 877 vn_rele_stream(vnode_t *vp)
884 878 {
885 879 VERIFY(vp->v_count > 0);
886 880 mutex_enter(&vp->v_lock);
887 881 vp->v_stream = NULL;
888 882 if (vp->v_count == 1) {
889 883 mutex_exit(&vp->v_lock);
890 884 VOP_INACTIVE(vp, CRED(), NULL);
891 885 return;
892 886 }
893 887 vp->v_count--;
894 888 mutex_exit(&vp->v_lock);
895 889 }
896 890
897 891 static void
898 892 vn_rele_inactive(vnode_t *vp)
899 893 {
900 894 VOP_INACTIVE(vp, CRED(), NULL);
901 895 }
902 896
903 897 /*
904 898 * Like vn_rele() except if we are going to call VOP_INACTIVE() then do it
905 899 * asynchronously using a taskq. This can avoid deadlocks caused by re-entering
906 900 * the file system as a result of releasing the vnode. Note, file systems
907 901 * already have to handle the race where the vnode is incremented before the
908 902 * inactive routine is called and does its locking.
909 903 *
910 904 * Warning: Excessive use of this routine can lead to performance problems.
911 905 * This is because taskqs throttle back allocation if too many are created.
912 906 */
913 907 void
914 908 vn_rele_async(vnode_t *vp, taskq_t *taskq)
915 909 {
916 910 VERIFY(vp->v_count > 0);
917 911 mutex_enter(&vp->v_lock);
918 912 if (vp->v_count == 1) {
919 913 mutex_exit(&vp->v_lock);
920 914 VERIFY(taskq_dispatch(taskq, (task_func_t *)vn_rele_inactive,
921 915 vp, TQ_SLEEP) != NULL);
922 916 return;
923 917 }
924 918 vp->v_count--;
925 919 mutex_exit(&vp->v_lock);
926 920 }
927 921
928 922 int
929 923 vn_open(
930 924 char *pnamep,
931 925 enum uio_seg seg,
932 926 int filemode,
933 927 int createmode,
934 928 struct vnode **vpp,
935 929 enum create crwhy,
936 930 mode_t umask)
937 931 {
938 932 return (vn_openat(pnamep, seg, filemode, createmode, vpp, crwhy,
939 933 umask, NULL, -1));
940 934 }
941 935
942 936
943 937 /*
944 938 * Open/create a vnode.
945 939 * This may be callable by the kernel, the only known use
946 940 * of user context being that the current user credentials
947 941 * are used for permissions. crwhy is defined iff filemode & FCREAT.
948 942 */
949 943 int
950 944 vn_openat(
951 945 char *pnamep,
952 946 enum uio_seg seg,
953 947 int filemode,
954 948 int createmode,
955 949 struct vnode **vpp,
956 950 enum create crwhy,
957 951 mode_t umask,
958 952 struct vnode *startvp,
959 953 int fd)
960 954 {
961 955 struct vnode *vp;
962 956 int mode;
963 957 int accessflags;
964 958 int error;
965 959 int in_crit = 0;
966 960 int open_done = 0;
967 961 int shrlock_done = 0;
968 962 struct vattr vattr;
969 963 enum symfollow follow;
970 964 int estale_retry = 0;
971 965 struct shrlock shr;
972 966 struct shr_locowner shr_own;
973 967
974 968 mode = 0;
975 969 accessflags = 0;
976 970 if (filemode & FREAD)
977 971 mode |= VREAD;
978 972 if (filemode & (FWRITE|FTRUNC))
979 973 mode |= VWRITE;
980 974 if (filemode & (FSEARCH|FEXEC|FXATTRDIROPEN))
981 975 mode |= VEXEC;
982 976
983 977 /* symlink interpretation */
984 978 if (filemode & FNOFOLLOW)
985 979 follow = NO_FOLLOW;
986 980 else
987 981 follow = FOLLOW;
988 982
989 983 if (filemode & FAPPEND)
990 984 accessflags |= V_APPEND;
991 985
992 986 top:
993 987 if (filemode & FCREAT) {
994 988 enum vcexcl excl;
995 989
996 990 /*
997 991 * Wish to create a file.
998 992 */
999 993 vattr.va_type = VREG;
1000 994 vattr.va_mode = createmode;
1001 995 vattr.va_mask = AT_TYPE|AT_MODE;
1002 996 if (filemode & FTRUNC) {
1003 997 vattr.va_size = 0;
1004 998 vattr.va_mask |= AT_SIZE;
1005 999 }
1006 1000 if (filemode & FEXCL)
1007 1001 excl = EXCL;
1008 1002 else
1009 1003 excl = NONEXCL;
1010 1004
1011 1005 if (error =
1012 1006 vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy,
1013 1007 (filemode & ~(FTRUNC|FEXCL)), umask, startvp))
1014 1008 return (error);
1015 1009 } else {
1016 1010 /*
1017 1011 * Wish to open a file. Just look it up.
1018 1012 */
1019 1013 if (error = lookupnameat(pnamep, seg, follow,
1020 1014 NULLVPP, &vp, startvp)) {
1021 1015 if ((error == ESTALE) &&
1022 1016 fs_need_estale_retry(estale_retry++))
1023 1017 goto top;
1024 1018 return (error);
1025 1019 }
1026 1020
1027 1021 /*
1028 1022 * Get the attributes to check whether file is large.
1029 1023 * We do this only if the FOFFMAX flag is not set and
1030 1024 * only for regular files.
1031 1025 */
1032 1026
1033 1027 if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) {
1034 1028 vattr.va_mask = AT_SIZE;
1035 1029 if ((error = VOP_GETATTR(vp, &vattr, 0,
1036 1030 CRED(), NULL))) {
1037 1031 goto out;
1038 1032 }
1039 1033 if (vattr.va_size > (u_offset_t)MAXOFF32_T) {
1040 1034 /*
1041 1035 * Large File API - regular open fails
1042 1036 * if FOFFMAX flag is set in file mode
1043 1037 */
1044 1038 error = EOVERFLOW;
1045 1039 goto out;
1046 1040 }
1047 1041 }
1048 1042 /*
1049 1043 * Can't write directories, active texts, or
1050 1044 * read-only filesystems. Can't truncate files
1051 1045 * on which mandatory locking is in effect.
1052 1046 */
1053 1047 if (filemode & (FWRITE|FTRUNC)) {
1054 1048 /*
1055 1049 * Allow writable directory if VDIROPEN flag is set.
1056 1050 */
1057 1051 if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) {
1058 1052 error = EISDIR;
1059 1053 goto out;
1060 1054 }
1061 1055 if (ISROFILE(vp)) {
1062 1056 error = EROFS;
1063 1057 goto out;
1064 1058 }
1065 1059 /*
1066 1060 * Can't truncate files on which
1067 1061 * sysv mandatory locking is in effect.
1068 1062 */
1069 1063 if (filemode & FTRUNC) {
1070 1064 vnode_t *rvp;
1071 1065
1072 1066 if (VOP_REALVP(vp, &rvp, NULL) != 0)
1073 1067 rvp = vp;
1074 1068 if (rvp->v_filocks != NULL) {
1075 1069 vattr.va_mask = AT_MODE;
1076 1070 if ((error = VOP_GETATTR(vp,
1077 1071 &vattr, 0, CRED(), NULL)) == 0 &&
1078 1072 MANDLOCK(vp, vattr.va_mode))
1079 1073 error = EAGAIN;
1080 1074 }
1081 1075 }
1082 1076 if (error)
1083 1077 goto out;
1084 1078 }
1085 1079 /*
1086 1080 * Check permissions.
1087 1081 */
1088 1082 if (error = VOP_ACCESS(vp, mode, accessflags, CRED(), NULL))
1089 1083 goto out;
1090 1084 /*
1091 1085 * Require FSEARCH to return a directory.
1092 1086 * Require FEXEC to return a regular file.
1093 1087 */
1094 1088 if ((filemode & FSEARCH) && vp->v_type != VDIR) {
1095 1089 error = ENOTDIR;
1096 1090 goto out;
1097 1091 }
1098 1092 if ((filemode & FEXEC) && vp->v_type != VREG) {
1099 1093 error = ENOEXEC; /* XXX: error code? */
1100 1094 goto out;
1101 1095 }
1102 1096 }
1103 1097
1104 1098 /*
1105 1099 * Do remaining checks for FNOFOLLOW and FNOLINKS.
1106 1100 */
1107 1101 if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) {
1108 1102 error = ELOOP;
1109 1103 goto out;
1110 1104 }
1111 1105 if (filemode & FNOLINKS) {
1112 1106 vattr.va_mask = AT_NLINK;
1113 1107 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) {
1114 1108 goto out;
1115 1109 }
1116 1110 if (vattr.va_nlink != 1) {
1117 1111 error = EMLINK;
1118 1112 goto out;
1119 1113 }
1120 1114 }
1121 1115
1122 1116 /*
1123 1117 * Opening a socket corresponding to the AF_UNIX pathname
1124 1118 * in the filesystem name space is not supported.
1125 1119 * However, VSOCK nodes in namefs are supported in order
1126 1120 * to make fattach work for sockets.
1127 1121 *
1128 1122 * XXX This uses VOP_REALVP to distinguish between
1129 1123 * an unopened namefs node (where VOP_REALVP returns a
1130 1124 * different VSOCK vnode) and a VSOCK created by vn_create
1131 1125 * in some file system (where VOP_REALVP would never return
1132 1126 * a different vnode).
1133 1127 */
1134 1128 if (vp->v_type == VSOCK) {
1135 1129 struct vnode *nvp;
1136 1130
1137 1131 error = VOP_REALVP(vp, &nvp, NULL);
1138 1132 if (error != 0 || nvp == NULL || nvp == vp ||
1139 1133 nvp->v_type != VSOCK) {
1140 1134 error = EOPNOTSUPP;
1141 1135 goto out;
1142 1136 }
1143 1137 }
1144 1138
1145 1139 if ((vp->v_type == VREG) && nbl_need_check(vp)) {
1146 1140 /* get share reservation */
1147 1141 shr.s_access = 0;
1148 1142 if (filemode & FWRITE)
1149 1143 shr.s_access |= F_WRACC;
1150 1144 if (filemode & FREAD)
1151 1145 shr.s_access |= F_RDACC;
1152 1146 shr.s_deny = 0;
1153 1147 shr.s_sysid = 0;
1154 1148 shr.s_pid = ttoproc(curthread)->p_pid;
1155 1149 shr_own.sl_pid = shr.s_pid;
1156 1150 shr_own.sl_id = fd;
1157 1151 shr.s_own_len = sizeof (shr_own);
1158 1152 shr.s_owner = (caddr_t)&shr_own;
1159 1153 error = VOP_SHRLOCK(vp, F_SHARE_NBMAND, &shr, filemode, CRED(),
1160 1154 NULL);
1161 1155 if (error)
1162 1156 goto out;
1163 1157 shrlock_done = 1;
1164 1158
1165 1159 /* nbmand conflict check if truncating file */
1166 1160 if ((filemode & FTRUNC) && !(filemode & FCREAT)) {
1167 1161 nbl_start_crit(vp, RW_READER);
1168 1162 in_crit = 1;
1169 1163
1170 1164 vattr.va_mask = AT_SIZE;
1171 1165 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))
1172 1166 goto out;
1173 1167 if (nbl_conflict(vp, NBL_WRITE, 0, vattr.va_size, 0,
1174 1168 NULL)) {
1175 1169 error = EACCES;
1176 1170 goto out;
1177 1171 }
1178 1172 }
1179 1173 }
1180 1174
1181 1175 /*
1182 1176 * Do opening protocol.
1183 1177 */
1184 1178 error = VOP_OPEN(&vp, filemode, CRED(), NULL);
1185 1179 if (error)
1186 1180 goto out;
1187 1181 open_done = 1;
1188 1182
1189 1183 /*
1190 1184 * Truncate if required.
1191 1185 */
1192 1186 if ((filemode & FTRUNC) && !(filemode & FCREAT)) {
1193 1187 vattr.va_size = 0;
1194 1188 vattr.va_mask = AT_SIZE;
1195 1189 if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0)
1196 1190 goto out;
1197 1191 }
1198 1192 out:
1199 1193 ASSERT(vp->v_count > 0);
1200 1194
1201 1195 if (in_crit) {
1202 1196 nbl_end_crit(vp);
1203 1197 in_crit = 0;
1204 1198 }
1205 1199 if (error) {
1206 1200 if (open_done) {
1207 1201 (void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED(),
1208 1202 NULL);
1209 1203 open_done = 0;
1210 1204 shrlock_done = 0;
1211 1205 }
1212 1206 if (shrlock_done) {
1213 1207 (void) VOP_SHRLOCK(vp, F_UNSHARE, &shr, 0, CRED(),
1214 1208 NULL);
1215 1209 shrlock_done = 0;
1216 1210 }
1217 1211
1218 1212 /*
1219 1213 * The following clause was added to handle a problem
1220 1214 * with NFS consistency. It is possible that a lookup
1221 1215 * of the file to be opened succeeded, but the file
1222 1216 * itself doesn't actually exist on the server. This
1223 1217 * is chiefly due to the DNLC containing an entry for
1224 1218 * the file which has been removed on the server. In
1225 1219 * this case, we just start over. If there was some
1226 1220 * other cause for the ESTALE error, then the lookup
1227 1221 * of the file will fail and the error will be returned
1228 1222 * above instead of looping around from here.
1229 1223 */
1230 1224 VN_RELE(vp);
1231 1225 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1232 1226 goto top;
1233 1227 } else
1234 1228 *vpp = vp;
1235 1229 return (error);
1236 1230 }
1237 1231
1238 1232 /*
1239 1233 * The following two accessor functions are for the NFSv4 server. Since there
1240 1234 * is no VOP_OPEN_UP/DOWNGRADE we need a way for the NFS server to keep the
1241 1235 * vnode open counts correct when a client "upgrades" an open or does an
1242 1236 * open_downgrade. In NFS, an upgrade or downgrade can not only change the
1243 1237 * open mode (add or subtract read or write), but also change the share/deny
1244 1238 * modes. However, share reservations are not integrated with OPEN, yet, so
1245 1239 * we need to handle each separately. These functions are cleaner than having
1246 1240 * the NFS server manipulate the counts directly, however, nobody else should
1247 1241 * use these functions.
1248 1242 */
1249 1243 void
1250 1244 vn_open_upgrade(
1251 1245 vnode_t *vp,
1252 1246 int filemode)
1253 1247 {
1254 1248 ASSERT(vp->v_type == VREG);
1255 1249
1256 1250 if (filemode & FREAD)
1257 1251 atomic_inc_32(&vp->v_rdcnt);
1258 1252 if (filemode & FWRITE)
1259 1253 atomic_inc_32(&vp->v_wrcnt);
1260 1254
1261 1255 }
1262 1256
1263 1257 void
1264 1258 vn_open_downgrade(
1265 1259 vnode_t *vp,
1266 1260 int filemode)
1267 1261 {
1268 1262 ASSERT(vp->v_type == VREG);
1269 1263
1270 1264 if (filemode & FREAD) {
1271 1265 ASSERT(vp->v_rdcnt > 0);
1272 1266 atomic_dec_32(&vp->v_rdcnt);
1273 1267 }
1274 1268 if (filemode & FWRITE) {
1275 1269 ASSERT(vp->v_wrcnt > 0);
1276 1270 atomic_dec_32(&vp->v_wrcnt);
1277 1271 }
1278 1272
1279 1273 }
1280 1274
1281 1275 int
1282 1276 vn_create(
1283 1277 char *pnamep,
1284 1278 enum uio_seg seg,
1285 1279 struct vattr *vap,
1286 1280 enum vcexcl excl,
1287 1281 int mode,
1288 1282 struct vnode **vpp,
1289 1283 enum create why,
1290 1284 int flag,
1291 1285 mode_t umask)
1292 1286 {
1293 1287 return (vn_createat(pnamep, seg, vap, excl, mode, vpp, why, flag,
1294 1288 umask, NULL));
1295 1289 }
1296 1290
1297 1291 /*
1298 1292 * Create a vnode (makenode).
1299 1293 */
1300 1294 int
1301 1295 vn_createat(
1302 1296 char *pnamep,
1303 1297 enum uio_seg seg,
1304 1298 struct vattr *vap,
1305 1299 enum vcexcl excl,
1306 1300 int mode,
1307 1301 struct vnode **vpp,
1308 1302 enum create why,
1309 1303 int flag,
1310 1304 mode_t umask,
1311 1305 struct vnode *startvp)
1312 1306 {
1313 1307 struct vnode *dvp; /* ptr to parent dir vnode */
1314 1308 struct vnode *vp = NULL;
1315 1309 struct pathname pn;
1316 1310 int error;
1317 1311 int in_crit = 0;
1318 1312 struct vattr vattr;
1319 1313 enum symfollow follow;
1320 1314 int estale_retry = 0;
1321 1315 uint32_t auditing = AU_AUDITING();
1322 1316
1323 1317 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
1324 1318
1325 1319 /* symlink interpretation */
1326 1320 if ((flag & FNOFOLLOW) || excl == EXCL)
1327 1321 follow = NO_FOLLOW;
1328 1322 else
1329 1323 follow = FOLLOW;
1330 1324 flag &= ~(FNOFOLLOW|FNOLINKS);
1331 1325
1332 1326 top:
1333 1327 /*
1334 1328 * Lookup directory.
1335 1329 * If new object is a file, call lower level to create it.
1336 1330 * Note that it is up to the lower level to enforce exclusive
1337 1331 * creation, if the file is already there.
1338 1332 * This allows the lower level to do whatever
1339 1333 * locking or protocol that is needed to prevent races.
1340 1334 * If the new object is directory call lower level to make
1341 1335 * the new directory, with "." and "..".
1342 1336 */
1343 1337 if (error = pn_get(pnamep, seg, &pn))
1344 1338 return (error);
1345 1339 if (auditing)
1346 1340 audit_vncreate_start();
1347 1341 dvp = NULL;
1348 1342 *vpp = NULL;
1349 1343 /*
1350 1344 * lookup will find the parent directory for the vnode.
1351 1345 * When it is done the pn holds the name of the entry
1352 1346 * in the directory.
1353 1347 * If this is a non-exclusive create we also find the node itself.
1354 1348 */
1355 1349 error = lookuppnat(&pn, NULL, follow, &dvp,
1356 1350 (excl == EXCL) ? NULLVPP : vpp, startvp);
1357 1351 if (error) {
1358 1352 pn_free(&pn);
1359 1353 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1360 1354 goto top;
1361 1355 if (why == CRMKDIR && error == EINVAL)
1362 1356 error = EEXIST; /* SVID */
1363 1357 return (error);
1364 1358 }
1365 1359
1366 1360 if (why != CRMKNOD)
1367 1361 vap->va_mode &= ~VSVTX;
1368 1362
1369 1363 /*
1370 1364 * If default ACLs are defined for the directory don't apply the
1371 1365 * umask if umask is passed.
1372 1366 */
1373 1367
1374 1368 if (umask) {
1375 1369
1376 1370 vsecattr_t vsec;
1377 1371
1378 1372 vsec.vsa_aclcnt = 0;
1379 1373 vsec.vsa_aclentp = NULL;
1380 1374 vsec.vsa_dfaclcnt = 0;
1381 1375 vsec.vsa_dfaclentp = NULL;
1382 1376 vsec.vsa_mask = VSA_DFACLCNT;
1383 1377 error = VOP_GETSECATTR(dvp, &vsec, 0, CRED(), NULL);
1384 1378 /*
1385 1379 * If error is ENOSYS then treat it as no error
1386 1380 * Don't want to force all file systems to support
1387 1381 * aclent_t style of ACL's.
1388 1382 */
1389 1383 if (error == ENOSYS)
1390 1384 error = 0;
1391 1385 if (error) {
1392 1386 if (*vpp != NULL)
1393 1387 VN_RELE(*vpp);
1394 1388 goto out;
1395 1389 } else {
1396 1390 /*
1397 1391 * Apply the umask if no default ACLs.
1398 1392 */
1399 1393 if (vsec.vsa_dfaclcnt == 0)
1400 1394 vap->va_mode &= ~umask;
1401 1395
1402 1396 /*
1403 1397 * VOP_GETSECATTR() may have allocated memory for
1404 1398 * ACLs we didn't request, so double-check and
1405 1399 * free it if necessary.
1406 1400 */
1407 1401 if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL)
1408 1402 kmem_free((caddr_t)vsec.vsa_aclentp,
1409 1403 vsec.vsa_aclcnt * sizeof (aclent_t));
1410 1404 if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL)
1411 1405 kmem_free((caddr_t)vsec.vsa_dfaclentp,
1412 1406 vsec.vsa_dfaclcnt * sizeof (aclent_t));
1413 1407 }
1414 1408 }
1415 1409
1416 1410 /*
1417 1411 * In general we want to generate EROFS if the file system is
1418 1412 * readonly. However, POSIX (IEEE Std. 1003.1) section 5.3.1
1419 1413 * documents the open system call, and it says that O_CREAT has no
1420 1414 * effect if the file already exists. Bug 1119649 states
1421 1415 * that open(path, O_CREAT, ...) fails when attempting to open an
1422 1416 * existing file on a read only file system. Thus, the first part
1423 1417 * of the following if statement has 3 checks:
1424 1418 * if the file exists &&
1425 1419 * it is being open with write access &&
1426 1420 * the file system is read only
1427 1421 * then generate EROFS
1428 1422 */
1429 1423 if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) ||
1430 1424 (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
1431 1425 if (*vpp)
1432 1426 VN_RELE(*vpp);
1433 1427 error = EROFS;
1434 1428 } else if (excl == NONEXCL && *vpp != NULL) {
1435 1429 vnode_t *rvp;
1436 1430
1437 1431 /*
1438 1432 * File already exists. If a mandatory lock has been
1439 1433 * applied, return error.
1440 1434 */
1441 1435 vp = *vpp;
1442 1436 if (VOP_REALVP(vp, &rvp, NULL) != 0)
1443 1437 rvp = vp;
1444 1438 if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) {
1445 1439 nbl_start_crit(vp, RW_READER);
1446 1440 in_crit = 1;
1447 1441 }
1448 1442 if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) {
1449 1443 vattr.va_mask = AT_MODE|AT_SIZE;
1450 1444 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) {
1451 1445 goto out;
1452 1446 }
1453 1447 if (MANDLOCK(vp, vattr.va_mode)) {
1454 1448 error = EAGAIN;
1455 1449 goto out;
1456 1450 }
1457 1451 /*
1458 1452 * File cannot be truncated if non-blocking mandatory
1459 1453 * locks are currently on the file.
1460 1454 */
1461 1455 if ((vap->va_mask & AT_SIZE) && in_crit) {
1462 1456 u_offset_t offset;
1463 1457 ssize_t length;
1464 1458
1465 1459 offset = vap->va_size > vattr.va_size ?
1466 1460 vattr.va_size : vap->va_size;
1467 1461 length = vap->va_size > vattr.va_size ?
1468 1462 vap->va_size - vattr.va_size :
1469 1463 vattr.va_size - vap->va_size;
1470 1464 if (nbl_conflict(vp, NBL_WRITE, offset,
1471 1465 length, 0, NULL)) {
1472 1466 error = EACCES;
1473 1467 goto out;
1474 1468 }
1475 1469 }
1476 1470 }
1477 1471
1478 1472 /*
1479 1473 * If the file is the root of a VFS, we've crossed a
1480 1474 * mount point and the "containing" directory that we
1481 1475 * acquired above (dvp) is irrelevant because it's in
1482 1476 * a different file system. We apply VOP_CREATE to the
1483 1477 * target itself instead of to the containing directory
1484 1478 * and supply a null path name to indicate (conventionally)
1485 1479 * the node itself as the "component" of interest.
1486 1480 *
1487 1481 * The intercession of the file system is necessary to
1488 1482 * ensure that the appropriate permission checks are
1489 1483 * done.
1490 1484 */
1491 1485 if (vp->v_flag & VROOT) {
1492 1486 ASSERT(why != CRMKDIR);
1493 1487 error = VOP_CREATE(vp, "", vap, excl, mode, vpp,
1494 1488 CRED(), flag, NULL, NULL);
1495 1489 /*
1496 1490 * If the create succeeded, it will have created
1497 1491 * a new reference to the vnode. Give up the
1498 1492 * original reference. The assertion should not
1499 1493 * get triggered because NBMAND locks only apply to
1500 1494 * VREG files. And if in_crit is non-zero for some
1501 1495 * reason, detect that here, rather than when we
1502 1496 * deference a null vp.
1503 1497 */
1504 1498 ASSERT(in_crit == 0);
1505 1499 VN_RELE(vp);
1506 1500 vp = NULL;
1507 1501 goto out;
1508 1502 }
1509 1503
1510 1504 /*
1511 1505 * Large File API - non-large open (FOFFMAX flag not set)
1512 1506 * of regular file fails if the file size exceeds MAXOFF32_T.
1513 1507 */
1514 1508 if (why != CRMKDIR &&
1515 1509 !(flag & FOFFMAX) &&
1516 1510 (vp->v_type == VREG)) {
1517 1511 vattr.va_mask = AT_SIZE;
1518 1512 if ((error = VOP_GETATTR(vp, &vattr, 0,
1519 1513 CRED(), NULL))) {
1520 1514 goto out;
1521 1515 }
1522 1516 if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) {
1523 1517 error = EOVERFLOW;
1524 1518 goto out;
1525 1519 }
1526 1520 }
1527 1521 }
1528 1522
1529 1523 if (error == 0) {
1530 1524 /*
1531 1525 * Call mkdir() if specified, otherwise create().
1532 1526 */
1533 1527 int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */
1534 1528
1535 1529 if (why == CRMKDIR)
1536 1530 /*
1537 1531 * N.B., if vn_createat() ever requests
1538 1532 * case-insensitive behavior then it will need
1539 1533 * to be passed to VOP_MKDIR(). VOP_CREATE()
1540 1534 * will already get it via "flag"
1541 1535 */
1542 1536 error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED(),
1543 1537 NULL, 0, NULL);
1544 1538 else if (!must_be_dir)
1545 1539 error = VOP_CREATE(dvp, pn.pn_path, vap,
1546 1540 excl, mode, vpp, CRED(), flag, NULL, NULL);
1547 1541 else
1548 1542 error = ENOTDIR;
1549 1543 }
1550 1544
1551 1545 out:
1552 1546
1553 1547 if (auditing)
1554 1548 audit_vncreate_finish(*vpp, error);
1555 1549 if (in_crit) {
1556 1550 nbl_end_crit(vp);
1557 1551 in_crit = 0;
1558 1552 }
1559 1553 if (vp != NULL) {
1560 1554 VN_RELE(vp);
1561 1555 vp = NULL;
1562 1556 }
1563 1557 pn_free(&pn);
1564 1558 VN_RELE(dvp);
1565 1559 /*
1566 1560 * The following clause was added to handle a problem
1567 1561 * with NFS consistency. It is possible that a lookup
1568 1562 * of the file to be created succeeded, but the file
1569 1563 * itself doesn't actually exist on the server. This
1570 1564 * is chiefly due to the DNLC containing an entry for
1571 1565 * the file which has been removed on the server. In
1572 1566 * this case, we just start over. If there was some
1573 1567 * other cause for the ESTALE error, then the lookup
1574 1568 * of the file will fail and the error will be returned
1575 1569 * above instead of looping around from here.
1576 1570 */
1577 1571 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1578 1572 goto top;
1579 1573 return (error);
1580 1574 }
1581 1575
1582 1576 int
1583 1577 vn_link(char *from, char *to, enum uio_seg seg)
1584 1578 {
1585 1579 return (vn_linkat(NULL, from, NO_FOLLOW, NULL, to, seg));
1586 1580 }
1587 1581
1588 1582 int
1589 1583 vn_linkat(vnode_t *fstartvp, char *from, enum symfollow follow,
1590 1584 vnode_t *tstartvp, char *to, enum uio_seg seg)
1591 1585 {
1592 1586 struct vnode *fvp; /* from vnode ptr */
1593 1587 struct vnode *tdvp; /* to directory vnode ptr */
1594 1588 struct pathname pn;
1595 1589 int error;
1596 1590 struct vattr vattr;
1597 1591 dev_t fsid;
1598 1592 int estale_retry = 0;
1599 1593 uint32_t auditing = AU_AUDITING();
1600 1594
1601 1595 top:
1602 1596 fvp = tdvp = NULL;
1603 1597 if (error = pn_get(to, seg, &pn))
1604 1598 return (error);
1605 1599 if (auditing && fstartvp != NULL)
1606 1600 audit_setfsat_path(1);
1607 1601 if (error = lookupnameat(from, seg, follow, NULLVPP, &fvp, fstartvp))
1608 1602 goto out;
1609 1603 if (auditing && tstartvp != NULL)
1610 1604 audit_setfsat_path(3);
1611 1605 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP, tstartvp))
1612 1606 goto out;
1613 1607 /*
1614 1608 * Make sure both source vnode and target directory vnode are
1615 1609 * in the same vfs and that it is writeable.
1616 1610 */
1617 1611 vattr.va_mask = AT_FSID;
1618 1612 if (error = VOP_GETATTR(fvp, &vattr, 0, CRED(), NULL))
1619 1613 goto out;
1620 1614 fsid = vattr.va_fsid;
1621 1615 vattr.va_mask = AT_FSID;
1622 1616 if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED(), NULL))
1623 1617 goto out;
1624 1618 if (fsid != vattr.va_fsid) {
1625 1619 error = EXDEV;
1626 1620 goto out;
1627 1621 }
1628 1622 if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) {
1629 1623 error = EROFS;
1630 1624 goto out;
1631 1625 }
1632 1626 /*
1633 1627 * Do the link.
1634 1628 */
1635 1629 (void) pn_fixslash(&pn);
1636 1630 error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED(), NULL, 0);
1637 1631 out:
1638 1632 pn_free(&pn);
1639 1633 if (fvp)
1640 1634 VN_RELE(fvp);
1641 1635 if (tdvp)
1642 1636 VN_RELE(tdvp);
1643 1637 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1644 1638 goto top;
1645 1639 return (error);
|
↓ open down ↓ |
1424 lines elided |
↑ open up ↑ |
1646 1640 }
1647 1641
1648 1642 int
1649 1643 vn_rename(char *from, char *to, enum uio_seg seg)
1650 1644 {
1651 1645 return (vn_renameat(NULL, from, NULL, to, seg));
1652 1646 }
1653 1647
1654 1648 int
1655 1649 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp,
1656 - char *tname, enum uio_seg seg)
1650 + char *tname, enum uio_seg seg)
1657 1651 {
1658 1652 int error;
1659 1653 struct vattr vattr;
1660 1654 struct pathname fpn; /* from pathname */
1661 1655 struct pathname tpn; /* to pathname */
1662 1656 dev_t fsid;
1663 1657 int in_crit_src, in_crit_targ;
1664 1658 vnode_t *fromvp, *fvp;
1665 1659 vnode_t *tovp, *targvp;
1666 1660 int estale_retry = 0;
1667 1661 uint32_t auditing = AU_AUDITING();
1668 1662
1669 1663 top:
1670 1664 fvp = fromvp = tovp = targvp = NULL;
1671 1665 in_crit_src = in_crit_targ = 0;
1672 1666 /*
1673 1667 * Get to and from pathnames.
1674 1668 */
1675 1669 if (error = pn_get(fname, seg, &fpn))
1676 1670 return (error);
1677 1671 if (error = pn_get(tname, seg, &tpn)) {
1678 1672 pn_free(&fpn);
1679 1673 return (error);
1680 1674 }
1681 1675
1682 1676 /*
1683 1677 * First we need to resolve the correct directories
1684 1678 * The passed in directories may only be a starting point,
1685 1679 * but we need the real directories the file(s) live in.
1686 1680 * For example the fname may be something like usr/lib/sparc
1687 1681 * and we were passed in the / directory, but we need to
1688 1682 * use the lib directory for the rename.
1689 1683 */
1690 1684
1691 1685 if (auditing && fdvp != NULL)
1692 1686 audit_setfsat_path(1);
1693 1687 /*
1694 1688 * Lookup to and from directories.
1695 1689 */
1696 1690 if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) {
1697 1691 goto out;
1698 1692 }
1699 1693
1700 1694 /*
1701 1695 * Make sure there is an entry.
1702 1696 */
1703 1697 if (fvp == NULL) {
1704 1698 error = ENOENT;
1705 1699 goto out;
1706 1700 }
1707 1701
1708 1702 if (auditing && tdvp != NULL)
1709 1703 audit_setfsat_path(3);
1710 1704 if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, &targvp, tdvp)) {
1711 1705 goto out;
1712 1706 }
1713 1707
1714 1708 /*
1715 1709 * Make sure both the from vnode directory and the to directory
1716 1710 * are in the same vfs and the to directory is writable.
1717 1711 * We check fsid's, not vfs pointers, so loopback fs works.
1718 1712 */
1719 1713 if (fromvp != tovp) {
1720 1714 vattr.va_mask = AT_FSID;
1721 1715 if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED(), NULL))
1722 1716 goto out;
1723 1717 fsid = vattr.va_fsid;
1724 1718 vattr.va_mask = AT_FSID;
1725 1719 if (error = VOP_GETATTR(tovp, &vattr, 0, CRED(), NULL))
1726 1720 goto out;
1727 1721 if (fsid != vattr.va_fsid) {
1728 1722 error = EXDEV;
1729 1723 goto out;
1730 1724 }
1731 1725 }
1732 1726
1733 1727 if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) {
1734 1728 error = EROFS;
1735 1729 goto out;
1736 1730 }
1737 1731
1738 1732 if (targvp && (fvp != targvp)) {
1739 1733 nbl_start_crit(targvp, RW_READER);
1740 1734 in_crit_targ = 1;
1741 1735 if (nbl_conflict(targvp, NBL_REMOVE, 0, 0, 0, NULL)) {
1742 1736 error = EACCES;
1743 1737 goto out;
1744 1738 }
1745 1739 }
1746 1740
1747 1741 if (nbl_need_check(fvp)) {
1748 1742 nbl_start_crit(fvp, RW_READER);
1749 1743 in_crit_src = 1;
1750 1744 if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0, NULL)) {
1751 1745 error = EACCES;
1752 1746 goto out;
1753 1747 }
1754 1748 }
1755 1749
1756 1750 /*
1757 1751 * Do the rename.
1758 1752 */
1759 1753 (void) pn_fixslash(&tpn);
1760 1754 error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED(),
1761 1755 NULL, 0);
1762 1756
1763 1757 out:
1764 1758 pn_free(&fpn);
1765 1759 pn_free(&tpn);
1766 1760 if (in_crit_src)
1767 1761 nbl_end_crit(fvp);
1768 1762 if (in_crit_targ)
1769 1763 nbl_end_crit(targvp);
1770 1764 if (fromvp)
1771 1765 VN_RELE(fromvp);
1772 1766 if (tovp)
1773 1767 VN_RELE(tovp);
1774 1768 if (targvp)
1775 1769 VN_RELE(targvp);
1776 1770 if (fvp)
1777 1771 VN_RELE(fvp);
1778 1772 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1779 1773 goto top;
1780 1774 return (error);
1781 1775 }
1782 1776
1783 1777 /*
1784 1778 * Remove a file or directory.
1785 1779 */
1786 1780 int
1787 1781 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag)
1788 1782 {
1789 1783 return (vn_removeat(NULL, fnamep, seg, dirflag));
1790 1784 }
1791 1785
1792 1786 int
1793 1787 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag)
1794 1788 {
1795 1789 struct vnode *vp; /* entry vnode */
1796 1790 struct vnode *dvp; /* ptr to parent dir vnode */
1797 1791 struct vnode *coveredvp;
1798 1792 struct pathname pn; /* name of entry */
1799 1793 enum vtype vtype;
1800 1794 int error;
1801 1795 struct vfs *vfsp;
1802 1796 struct vfs *dvfsp; /* ptr to parent dir vfs */
1803 1797 int in_crit = 0;
1804 1798 int estale_retry = 0;
1805 1799
1806 1800 top:
1807 1801 if (error = pn_get(fnamep, seg, &pn))
1808 1802 return (error);
1809 1803 dvp = vp = NULL;
1810 1804 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) {
1811 1805 pn_free(&pn);
1812 1806 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1813 1807 goto top;
1814 1808 return (error);
1815 1809 }
1816 1810
1817 1811 /*
1818 1812 * Make sure there is an entry.
1819 1813 */
1820 1814 if (vp == NULL) {
1821 1815 error = ENOENT;
1822 1816 goto out;
1823 1817 }
1824 1818
1825 1819 vfsp = vp->v_vfsp;
1826 1820 dvfsp = dvp->v_vfsp;
1827 1821
1828 1822 /*
1829 1823 * If the named file is the root of a mounted filesystem, fail,
1830 1824 * unless it's marked unlinkable. In that case, unmount the
1831 1825 * filesystem and proceed to unlink the covered vnode. (If the
1832 1826 * covered vnode is a directory, use rmdir instead of unlink,
1833 1827 * to avoid file system corruption.)
1834 1828 */
1835 1829 if (vp->v_flag & VROOT) {
1836 1830 if ((vfsp->vfs_flag & VFS_UNLINKABLE) == 0) {
1837 1831 error = EBUSY;
1838 1832 goto out;
1839 1833 }
1840 1834
1841 1835 /*
1842 1836 * Namefs specific code starts here.
1843 1837 */
1844 1838
1845 1839 if (dirflag == RMDIRECTORY) {
1846 1840 /*
1847 1841 * User called rmdir(2) on a file that has
1848 1842 * been namefs mounted on top of. Since
1849 1843 * namefs doesn't allow directories to
1850 1844 * be mounted on other files we know
1851 1845 * vp is not of type VDIR so fail to operation.
1852 1846 */
1853 1847 error = ENOTDIR;
1854 1848 goto out;
1855 1849 }
1856 1850
1857 1851 /*
1858 1852 * If VROOT is still set after grabbing vp->v_lock,
1859 1853 * noone has finished nm_unmount so far and coveredvp
1860 1854 * is valid.
1861 1855 * If we manage to grab vn_vfswlock(coveredvp) before releasing
1862 1856 * vp->v_lock, any race window is eliminated.
1863 1857 */
1864 1858
1865 1859 mutex_enter(&vp->v_lock);
1866 1860 if ((vp->v_flag & VROOT) == 0) {
1867 1861 /* Someone beat us to the unmount */
1868 1862 mutex_exit(&vp->v_lock);
1869 1863 error = EBUSY;
1870 1864 goto out;
1871 1865 }
1872 1866 vfsp = vp->v_vfsp;
1873 1867 coveredvp = vfsp->vfs_vnodecovered;
1874 1868 ASSERT(coveredvp);
1875 1869 /*
1876 1870 * Note: Implementation of vn_vfswlock shows that ordering of
1877 1871 * v_lock / vn_vfswlock is not an issue here.
1878 1872 */
1879 1873 error = vn_vfswlock(coveredvp);
1880 1874 mutex_exit(&vp->v_lock);
1881 1875
1882 1876 if (error)
1883 1877 goto out;
1884 1878
1885 1879 VN_HOLD(coveredvp);
1886 1880 VN_RELE(vp);
1887 1881 error = dounmount(vfsp, 0, CRED());
1888 1882
1889 1883 /*
1890 1884 * Unmounted the namefs file system; now get
1891 1885 * the object it was mounted over.
1892 1886 */
1893 1887 vp = coveredvp;
1894 1888 /*
1895 1889 * If namefs was mounted over a directory, then
1896 1890 * we want to use rmdir() instead of unlink().
1897 1891 */
1898 1892 if (vp->v_type == VDIR)
1899 1893 dirflag = RMDIRECTORY;
1900 1894
1901 1895 if (error)
1902 1896 goto out;
1903 1897 }
1904 1898
1905 1899 /*
1906 1900 * Make sure filesystem is writeable.
1907 1901 * We check the parent directory's vfs in case this is an lofs vnode.
1908 1902 */
1909 1903 if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) {
1910 1904 error = EROFS;
1911 1905 goto out;
1912 1906 }
1913 1907
1914 1908 vtype = vp->v_type;
1915 1909
1916 1910 /*
1917 1911 * If there is the possibility of an nbmand share reservation, make
1918 1912 * sure it's okay to remove the file. Keep a reference to the
1919 1913 * vnode, so that we can exit the nbl critical region after
1920 1914 * calling VOP_REMOVE.
1921 1915 * If there is no possibility of an nbmand share reservation,
1922 1916 * release the vnode reference now. Filesystems like NFS may
1923 1917 * behave differently if there is an extra reference, so get rid of
1924 1918 * this one. Fortunately, we can't have nbmand mounts on NFS
1925 1919 * filesystems.
1926 1920 */
1927 1921 if (nbl_need_check(vp)) {
1928 1922 nbl_start_crit(vp, RW_READER);
1929 1923 in_crit = 1;
1930 1924 if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0, NULL)) {
1931 1925 error = EACCES;
1932 1926 goto out;
1933 1927 }
1934 1928 } else {
1935 1929 VN_RELE(vp);
1936 1930 vp = NULL;
1937 1931 }
1938 1932
1939 1933 if (dirflag == RMDIRECTORY) {
1940 1934 /*
1941 1935 * Caller is using rmdir(2), which can only be applied to
1942 1936 * directories.
1943 1937 */
1944 1938 if (vtype != VDIR) {
1945 1939 error = ENOTDIR;
1946 1940 } else {
1947 1941 vnode_t *cwd;
1948 1942 proc_t *pp = curproc;
1949 1943
1950 1944 mutex_enter(&pp->p_lock);
1951 1945 cwd = PTOU(pp)->u_cdir;
1952 1946 VN_HOLD(cwd);
1953 1947 mutex_exit(&pp->p_lock);
1954 1948 error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED(),
1955 1949 NULL, 0);
1956 1950 VN_RELE(cwd);
1957 1951 }
1958 1952 } else {
1959 1953 /*
1960 1954 * Unlink(2) can be applied to anything.
1961 1955 */
1962 1956 error = VOP_REMOVE(dvp, pn.pn_path, CRED(), NULL, 0);
1963 1957 }
1964 1958
1965 1959 out:
1966 1960 pn_free(&pn);
1967 1961 if (in_crit) {
1968 1962 nbl_end_crit(vp);
1969 1963 in_crit = 0;
1970 1964 }
1971 1965 if (vp != NULL)
1972 1966 VN_RELE(vp);
1973 1967 if (dvp != NULL)
1974 1968 VN_RELE(dvp);
1975 1969 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
1976 1970 goto top;
1977 1971 return (error);
1978 1972 }
1979 1973
1980 1974 /*
1981 1975 * Utility function to compare equality of vnodes.
1982 1976 * Compare the underlying real vnodes, if there are underlying vnodes.
1983 1977 * This is a more thorough comparison than the VN_CMP() macro provides.
1984 1978 */
1985 1979 int
1986 1980 vn_compare(vnode_t *vp1, vnode_t *vp2)
1987 1981 {
1988 1982 vnode_t *realvp;
1989 1983
1990 1984 if (vp1 != NULL && VOP_REALVP(vp1, &realvp, NULL) == 0)
1991 1985 vp1 = realvp;
1992 1986 if (vp2 != NULL && VOP_REALVP(vp2, &realvp, NULL) == 0)
1993 1987 vp2 = realvp;
1994 1988 return (VN_CMP(vp1, vp2));
1995 1989 }
1996 1990
1997 1991 /*
1998 1992 * The number of locks to hash into. This value must be a power
1999 1993 * of 2 minus 1 and should probably also be prime.
2000 1994 */
2001 1995 #define NUM_BUCKETS 1023
2002 1996
2003 1997 struct vn_vfslocks_bucket {
2004 1998 kmutex_t vb_lock;
2005 1999 vn_vfslocks_entry_t *vb_list;
2006 2000 char pad[64 - sizeof (kmutex_t) - sizeof (void *)];
2007 2001 };
2008 2002
2009 2003 /*
2010 2004 * Total number of buckets will be NUM_BUCKETS + 1 .
2011 2005 */
2012 2006
2013 2007 #pragma align 64(vn_vfslocks_buckets)
2014 2008 static struct vn_vfslocks_bucket vn_vfslocks_buckets[NUM_BUCKETS + 1];
2015 2009
2016 2010 #define VN_VFSLOCKS_SHIFT 9
2017 2011
2018 2012 #define VN_VFSLOCKS_HASH(vfsvpptr) \
2019 2013 ((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS)
2020 2014
2021 2015 /*
2022 2016 * vn_vfslocks_getlock() uses an HASH scheme to generate
2023 2017 * rwstlock using vfs/vnode pointer passed to it.
2024 2018 *
2025 2019 * vn_vfslocks_rele() releases a reference in the
2026 2020 * HASH table which allows the entry allocated by
2027 2021 * vn_vfslocks_getlock() to be freed at a later
2028 2022 * stage when the refcount drops to zero.
2029 2023 */
2030 2024
2031 2025 vn_vfslocks_entry_t *
2032 2026 vn_vfslocks_getlock(void *vfsvpptr)
2033 2027 {
2034 2028 struct vn_vfslocks_bucket *bp;
2035 2029 vn_vfslocks_entry_t *vep;
2036 2030 vn_vfslocks_entry_t *tvep;
2037 2031
2038 2032 ASSERT(vfsvpptr != NULL);
2039 2033 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)];
2040 2034
2041 2035 mutex_enter(&bp->vb_lock);
2042 2036 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
2043 2037 if (vep->ve_vpvfs == vfsvpptr) {
2044 2038 vep->ve_refcnt++;
2045 2039 mutex_exit(&bp->vb_lock);
2046 2040 return (vep);
2047 2041 }
2048 2042 }
2049 2043 mutex_exit(&bp->vb_lock);
2050 2044 vep = kmem_alloc(sizeof (*vep), KM_SLEEP);
2051 2045 rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL);
2052 2046 vep->ve_vpvfs = (char *)vfsvpptr;
2053 2047 vep->ve_refcnt = 1;
2054 2048 mutex_enter(&bp->vb_lock);
2055 2049 for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) {
2056 2050 if (tvep->ve_vpvfs == vfsvpptr) {
2057 2051 tvep->ve_refcnt++;
2058 2052 mutex_exit(&bp->vb_lock);
2059 2053
2060 2054 /*
2061 2055 * There is already an entry in the hash
2062 2056 * destroy what we just allocated.
2063 2057 */
2064 2058 rwst_destroy(&vep->ve_lock);
2065 2059 kmem_free(vep, sizeof (*vep));
2066 2060 return (tvep);
2067 2061 }
2068 2062 }
2069 2063 vep->ve_next = bp->vb_list;
2070 2064 bp->vb_list = vep;
2071 2065 mutex_exit(&bp->vb_lock);
2072 2066 return (vep);
2073 2067 }
2074 2068
2075 2069 void
2076 2070 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent)
2077 2071 {
2078 2072 struct vn_vfslocks_bucket *bp;
2079 2073 vn_vfslocks_entry_t *vep;
2080 2074 vn_vfslocks_entry_t *pvep;
2081 2075
2082 2076 ASSERT(vepent != NULL);
2083 2077 ASSERT(vepent->ve_vpvfs != NULL);
2084 2078
2085 2079 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)];
2086 2080
2087 2081 mutex_enter(&bp->vb_lock);
2088 2082 vepent->ve_refcnt--;
2089 2083
2090 2084 if ((int32_t)vepent->ve_refcnt < 0)
2091 2085 cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative");
2092 2086
2093 2087 if (vepent->ve_refcnt == 0) {
2094 2088 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
2095 2089 if (vep->ve_vpvfs == vepent->ve_vpvfs) {
2096 2090 if (bp->vb_list == vep)
2097 2091 bp->vb_list = vep->ve_next;
2098 2092 else {
2099 2093 /* LINTED */
2100 2094 pvep->ve_next = vep->ve_next;
2101 2095 }
2102 2096 mutex_exit(&bp->vb_lock);
2103 2097 rwst_destroy(&vep->ve_lock);
2104 2098 kmem_free(vep, sizeof (*vep));
2105 2099 return;
2106 2100 }
2107 2101 pvep = vep;
2108 2102 }
2109 2103 cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found");
2110 2104 }
2111 2105 mutex_exit(&bp->vb_lock);
2112 2106 }
2113 2107
2114 2108 /*
2115 2109 * vn_vfswlock_wait is used to implement a lock which is logically a writers
2116 2110 * lock protecting the v_vfsmountedhere field.
2117 2111 * vn_vfswlock_wait has been modified to be similar to vn_vfswlock,
2118 2112 * except that it blocks to acquire the lock VVFSLOCK.
2119 2113 *
2120 2114 * traverse() and routines re-implementing part of traverse (e.g. autofs)
2121 2115 * need to hold this lock. mount(), vn_rename(), vn_remove() and so on
2122 2116 * need the non-blocking version of the writers lock i.e. vn_vfswlock
2123 2117 */
2124 2118 int
2125 2119 vn_vfswlock_wait(vnode_t *vp)
2126 2120 {
2127 2121 int retval;
2128 2122 vn_vfslocks_entry_t *vpvfsentry;
2129 2123 ASSERT(vp != NULL);
2130 2124
2131 2125 vpvfsentry = vn_vfslocks_getlock(vp);
2132 2126 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER);
2133 2127
2134 2128 if (retval == EINTR) {
2135 2129 vn_vfslocks_rele(vpvfsentry);
2136 2130 return (EINTR);
2137 2131 }
2138 2132 return (retval);
2139 2133 }
2140 2134
2141 2135 int
2142 2136 vn_vfsrlock_wait(vnode_t *vp)
2143 2137 {
2144 2138 int retval;
2145 2139 vn_vfslocks_entry_t *vpvfsentry;
2146 2140 ASSERT(vp != NULL);
2147 2141
2148 2142 vpvfsentry = vn_vfslocks_getlock(vp);
2149 2143 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER);
2150 2144
2151 2145 if (retval == EINTR) {
2152 2146 vn_vfslocks_rele(vpvfsentry);
2153 2147 return (EINTR);
2154 2148 }
2155 2149
2156 2150 return (retval);
2157 2151 }
2158 2152
2159 2153
2160 2154 /*
2161 2155 * vn_vfswlock is used to implement a lock which is logically a writers lock
2162 2156 * protecting the v_vfsmountedhere field.
2163 2157 */
2164 2158 int
2165 2159 vn_vfswlock(vnode_t *vp)
2166 2160 {
2167 2161 vn_vfslocks_entry_t *vpvfsentry;
2168 2162
2169 2163 /*
2170 2164 * If vp is NULL then somebody is trying to lock the covered vnode
2171 2165 * of /. (vfs_vnodecovered is NULL for /). This situation will
2172 2166 * only happen when unmounting /. Since that operation will fail
2173 2167 * anyway, return EBUSY here instead of in VFS_UNMOUNT.
2174 2168 */
2175 2169 if (vp == NULL)
2176 2170 return (EBUSY);
2177 2171
2178 2172 vpvfsentry = vn_vfslocks_getlock(vp);
2179 2173
2180 2174 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
2181 2175 return (0);
2182 2176
2183 2177 vn_vfslocks_rele(vpvfsentry);
2184 2178 return (EBUSY);
2185 2179 }
2186 2180
2187 2181 int
2188 2182 vn_vfsrlock(vnode_t *vp)
2189 2183 {
2190 2184 vn_vfslocks_entry_t *vpvfsentry;
2191 2185
2192 2186 /*
2193 2187 * If vp is NULL then somebody is trying to lock the covered vnode
2194 2188 * of /. (vfs_vnodecovered is NULL for /). This situation will
2195 2189 * only happen when unmounting /. Since that operation will fail
2196 2190 * anyway, return EBUSY here instead of in VFS_UNMOUNT.
2197 2191 */
2198 2192 if (vp == NULL)
2199 2193 return (EBUSY);
2200 2194
2201 2195 vpvfsentry = vn_vfslocks_getlock(vp);
2202 2196
2203 2197 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
2204 2198 return (0);
2205 2199
2206 2200 vn_vfslocks_rele(vpvfsentry);
2207 2201 return (EBUSY);
2208 2202 }
2209 2203
2210 2204 void
2211 2205 vn_vfsunlock(vnode_t *vp)
2212 2206 {
2213 2207 vn_vfslocks_entry_t *vpvfsentry;
2214 2208
2215 2209 /*
2216 2210 * ve_refcnt needs to be decremented twice.
2217 2211 * 1. To release refernce after a call to vn_vfslocks_getlock()
2218 2212 * 2. To release the reference from the locking routines like
2219 2213 * vn_vfsrlock/vn_vfswlock etc,.
2220 2214 */
2221 2215 vpvfsentry = vn_vfslocks_getlock(vp);
2222 2216 vn_vfslocks_rele(vpvfsentry);
2223 2217
2224 2218 rwst_exit(&vpvfsentry->ve_lock);
2225 2219 vn_vfslocks_rele(vpvfsentry);
2226 2220 }
2227 2221
2228 2222 int
2229 2223 vn_vfswlock_held(vnode_t *vp)
2230 2224 {
2231 2225 int held;
2232 2226 vn_vfslocks_entry_t *vpvfsentry;
2233 2227
2234 2228 ASSERT(vp != NULL);
2235 2229
2236 2230 vpvfsentry = vn_vfslocks_getlock(vp);
2237 2231 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
2238 2232
2239 2233 vn_vfslocks_rele(vpvfsentry);
2240 2234 return (held);
2241 2235 }
2242 2236
2243 2237
2244 2238 int
2245 2239 vn_make_ops(
2246 2240 const char *name, /* Name of file system */
2247 2241 const fs_operation_def_t *templ, /* Operation specification */
2248 2242 vnodeops_t **actual) /* Return the vnodeops */
2249 2243 {
2250 2244 int unused_ops;
2251 2245 int error;
2252 2246
2253 2247 *actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP);
2254 2248
2255 2249 (*actual)->vnop_name = name;
2256 2250
2257 2251 error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ);
2258 2252 if (error) {
2259 2253 kmem_free(*actual, sizeof (vnodeops_t));
2260 2254 }
2261 2255
2262 2256 #if DEBUG
2263 2257 if (unused_ops != 0)
2264 2258 cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied "
2265 2259 "but not used", name, unused_ops);
2266 2260 #endif
2267 2261
2268 2262 return (error);
2269 2263 }
2270 2264
2271 2265 /*
2272 2266 * Free the vnodeops created as a result of vn_make_ops()
2273 2267 */
2274 2268 void
2275 2269 vn_freevnodeops(vnodeops_t *vnops)
2276 2270 {
2277 2271 kmem_free(vnops, sizeof (vnodeops_t));
2278 2272 }
2279 2273
2280 2274 /*
2281 2275 * Vnode cache.
2282 2276 */
2283 2277
2284 2278 /* ARGSUSED */
2285 2279 static int
2286 2280 vn_cache_constructor(void *buf, void *cdrarg, int kmflags)
|
↓ open down ↓ |
620 lines elided |
↑ open up ↑ |
2287 2281 {
2288 2282 struct vnode *vp;
2289 2283
2290 2284 vp = buf;
2291 2285
2292 2286 mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL);
2293 2287 mutex_init(&vp->v_vsd_lock, NULL, MUTEX_DEFAULT, NULL);
2294 2288 cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL);
2295 2289 rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL);
2296 2290 vp->v_femhead = NULL; /* Must be done before vn_reinit() */
2297 - vp->v_path = vn_vpath_empty;
2298 - vp->v_path_stamp = 0;
2291 + vp->v_path = NULL;
2299 2292 vp->v_mpssdata = NULL;
2300 2293 vp->v_vsd = NULL;
2301 2294 vp->v_fopdata = NULL;
2302 2295
2303 2296 return (0);
2304 2297 }
2305 2298
2306 2299 /* ARGSUSED */
2307 2300 static void
2308 2301 vn_cache_destructor(void *buf, void *cdrarg)
2309 2302 {
2310 2303 struct vnode *vp;
2311 2304
2312 2305 vp = buf;
2313 2306
2314 2307 rw_destroy(&vp->v_nbllock);
2315 2308 cv_destroy(&vp->v_cv);
2316 2309 mutex_destroy(&vp->v_vsd_lock);
2317 2310 mutex_destroy(&vp->v_lock);
2318 2311 }
2319 2312
2320 2313 void
2321 2314 vn_create_cache(void)
2322 2315 {
2323 2316 /* LINTED */
2324 2317 ASSERT((1 << VNODE_ALIGN_LOG2) ==
2325 2318 P2ROUNDUP(sizeof (struct vnode), VNODE_ALIGN));
2326 2319 vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode),
2327 2320 VNODE_ALIGN, vn_cache_constructor, vn_cache_destructor, NULL, NULL,
2328 2321 NULL, 0);
2329 2322 }
2330 2323
2331 2324 void
2332 2325 vn_destroy_cache(void)
2333 2326 {
2334 2327 kmem_cache_destroy(vn_cache);
|
↓ open down ↓ |
26 lines elided |
↑ open up ↑ |
2335 2328 }
2336 2329
2337 2330 /*
2338 2331 * Used by file systems when fs-specific nodes (e.g., ufs inodes) are
2339 2332 * cached by the file system and vnodes remain associated.
2340 2333 */
2341 2334 void
2342 2335 vn_recycle(vnode_t *vp)
2343 2336 {
2344 2337 ASSERT(vp->v_pages == NULL);
2345 - VERIFY(vp->v_path != NULL);
2346 2338
2347 2339 /*
2348 2340 * XXX - This really belongs in vn_reinit(), but we have some issues
2349 2341 * with the counts. Best to have it here for clean initialization.
2350 2342 */
2351 2343 vp->v_rdcnt = 0;
2352 2344 vp->v_wrcnt = 0;
2353 2345 vp->v_mmap_read = 0;
2354 2346 vp->v_mmap_write = 0;
2355 2347
2356 2348 /*
2357 2349 * If FEM was in use, make sure everything gets cleaned up
|
↓ open down ↓ |
2 lines elided |
↑ open up ↑ |
2358 2350 * NOTE: vp->v_femhead is initialized to NULL in the vnode
2359 2351 * constructor.
2360 2352 */
2361 2353 if (vp->v_femhead) {
2362 2354 /* XXX - There should be a free_femhead() that does all this */
2363 2355 ASSERT(vp->v_femhead->femh_list == NULL);
2364 2356 mutex_destroy(&vp->v_femhead->femh_lock);
2365 2357 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
2366 2358 vp->v_femhead = NULL;
2367 2359 }
2368 - if (vp->v_path != vn_vpath_empty) {
2360 + if (vp->v_path) {
2369 2361 kmem_free(vp->v_path, strlen(vp->v_path) + 1);
2370 - vp->v_path = vn_vpath_empty;
2362 + vp->v_path = NULL;
2371 2363 }
2372 - vp->v_path_stamp = 0;
2373 2364
2374 2365 if (vp->v_fopdata != NULL) {
2375 2366 free_fopdata(vp);
2376 2367 }
2377 2368 vp->v_mpssdata = NULL;
2378 2369 vsd_free(vp);
2379 2370 }
2380 2371
2381 2372 /*
2382 2373 * Used to reset the vnode fields including those that are directly accessible
2383 2374 * as well as those which require an accessor function.
2384 2375 *
2385 2376 * Does not initialize:
2386 2377 * synchronization objects: v_lock, v_vsd_lock, v_nbllock, v_cv
2387 2378 * v_data (since FS-nodes and vnodes point to each other and should
2388 2379 * be updated simultaneously)
2389 2380 * v_op (in case someone needs to make a VOP call on this object)
2390 2381 */
2391 2382 void
2392 2383 vn_reinit(vnode_t *vp)
2393 2384 {
2394 2385 vp->v_count = 1;
2395 2386 vp->v_count_dnlc = 0;
2396 2387 vp->v_vfsp = NULL;
2397 2388 vp->v_stream = NULL;
2398 2389 vp->v_vfsmountedhere = NULL;
2399 2390 vp->v_flag = 0;
2400 2391 vp->v_type = VNON;
2401 2392 vp->v_rdev = NODEV;
2402 2393
2403 2394 vp->v_filocks = NULL;
2404 2395 vp->v_shrlocks = NULL;
2405 2396 vp->v_pages = NULL;
2406 2397
2407 2398 vp->v_locality = NULL;
2408 2399 vp->v_xattrdir = NULL;
2409 2400
2410 2401 /* Handles v_femhead, v_path, and the r/w/map counts */
2411 2402 vn_recycle(vp);
2412 2403 }
2413 2404
2414 2405 vnode_t *
2415 2406 vn_alloc(int kmflag)
2416 2407 {
2417 2408 vnode_t *vp;
2418 2409
2419 2410 vp = kmem_cache_alloc(vn_cache, kmflag);
2420 2411
2421 2412 if (vp != NULL) {
2422 2413 vp->v_femhead = NULL; /* Must be done before vn_reinit() */
2423 2414 vp->v_fopdata = NULL;
2424 2415 vn_reinit(vp);
2425 2416 }
2426 2417
2427 2418 return (vp);
2428 2419 }
2429 2420
2430 2421 void
2431 2422 vn_free(vnode_t *vp)
2432 2423 {
|
↓ open down ↓ |
50 lines elided |
↑ open up ↑ |
2433 2424 ASSERT(vp->v_shrlocks == NULL);
2434 2425 ASSERT(vp->v_filocks == NULL);
2435 2426
2436 2427 /*
2437 2428 * Some file systems call vn_free() with v_count of zero,
2438 2429 * some with v_count of 1. In any case, the value should
2439 2430 * never be anything else.
2440 2431 */
2441 2432 ASSERT((vp->v_count == 0) || (vp->v_count == 1));
2442 2433 ASSERT(vp->v_count_dnlc == 0);
2443 - VERIFY(vp->v_path != NULL);
2444 - if (vp->v_path != vn_vpath_empty) {
2434 + if (vp->v_path != NULL) {
2445 2435 kmem_free(vp->v_path, strlen(vp->v_path) + 1);
2446 - vp->v_path = vn_vpath_empty;
2436 + vp->v_path = NULL;
2447 2437 }
2448 2438
2449 2439 /* If FEM was in use, make sure everything gets cleaned up */
2450 2440 if (vp->v_femhead) {
2451 2441 /* XXX - There should be a free_femhead() that does all this */
2452 2442 ASSERT(vp->v_femhead->femh_list == NULL);
2453 2443 mutex_destroy(&vp->v_femhead->femh_lock);
2454 2444 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
2455 2445 vp->v_femhead = NULL;
2456 2446 }
2457 2447
2458 2448 if (vp->v_fopdata != NULL) {
2459 2449 free_fopdata(vp);
2460 2450 }
2461 2451 vp->v_mpssdata = NULL;
2462 2452 vsd_free(vp);
2463 2453 kmem_cache_free(vn_cache, vp);
2464 2454 }
2465 2455
2466 2456 /*
2467 2457 * vnode status changes, should define better states than 1, 0.
2468 2458 */
2469 2459 void
2470 2460 vn_reclaim(vnode_t *vp)
2471 2461 {
2472 2462 vfs_t *vfsp = vp->v_vfsp;
2473 2463
2474 2464 if (vfsp == NULL ||
2475 2465 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2476 2466 return;
2477 2467 }
2478 2468 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED);
2479 2469 }
2480 2470
2481 2471 void
2482 2472 vn_idle(vnode_t *vp)
2483 2473 {
2484 2474 vfs_t *vfsp = vp->v_vfsp;
2485 2475
2486 2476 if (vfsp == NULL ||
2487 2477 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2488 2478 return;
2489 2479 }
2490 2480 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED);
2491 2481 }
2492 2482 void
2493 2483 vn_exists(vnode_t *vp)
2494 2484 {
2495 2485 vfs_t *vfsp = vp->v_vfsp;
2496 2486
2497 2487 if (vfsp == NULL ||
2498 2488 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2499 2489 return;
2500 2490 }
2501 2491 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS);
2502 2492 }
2503 2493
2504 2494 void
2505 2495 vn_invalid(vnode_t *vp)
2506 2496 {
2507 2497 vfs_t *vfsp = vp->v_vfsp;
2508 2498
2509 2499 if (vfsp == NULL ||
2510 2500 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
2511 2501 return;
2512 2502 }
2513 2503 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED);
2514 2504 }
2515 2505
2516 2506 /* Vnode event notification */
2517 2507
2518 2508 int
2519 2509 vnevent_support(vnode_t *vp, caller_context_t *ct)
2520 2510 {
2521 2511 if (vp == NULL)
2522 2512 return (EINVAL);
2523 2513
2524 2514 return (VOP_VNEVENT(vp, VE_SUPPORT, NULL, NULL, ct));
2525 2515 }
2526 2516
2527 2517 void
2528 2518 vnevent_rename_src(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2529 2519 {
2530 2520 if (vp == NULL || vp->v_femhead == NULL) {
2531 2521 return;
2532 2522 }
2533 2523 (void) VOP_VNEVENT(dvp, VE_RENAME_SRC_DIR, vp, name, ct);
2534 2524 (void) VOP_VNEVENT(vp, VE_RENAME_SRC, dvp, name, ct);
2535 2525 }
2536 2526
2537 2527 void
2538 2528 vnevent_rename_dest(vnode_t *vp, vnode_t *dvp, char *name,
2539 2529 caller_context_t *ct)
2540 2530 {
2541 2531 if (vp == NULL || vp->v_femhead == NULL) {
2542 2532 return;
2543 2533 }
2544 2534 (void) VOP_VNEVENT(vp, VE_RENAME_DEST, dvp, name, ct);
2545 2535 }
2546 2536
2547 2537 void
2548 2538 vnevent_rename_dest_dir(vnode_t *vp, vnode_t *nvp, char *name,
2549 2539 caller_context_t *ct)
2550 2540 {
2551 2541 if (vp == NULL || vp->v_femhead == NULL) {
2552 2542 return;
2553 2543 }
2554 2544 (void) VOP_VNEVENT(vp, VE_RENAME_DEST_DIR, nvp, name, ct);
2555 2545 }
2556 2546
2557 2547 void
2558 2548 vnevent_remove(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2559 2549 {
2560 2550 if (vp == NULL || vp->v_femhead == NULL) {
2561 2551 return;
2562 2552 }
2563 2553 (void) VOP_VNEVENT(vp, VE_REMOVE, dvp, name, ct);
2564 2554 }
2565 2555
2566 2556 void
2567 2557 vnevent_rmdir(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
2568 2558 {
2569 2559 if (vp == NULL || vp->v_femhead == NULL) {
2570 2560 return;
2571 2561 }
2572 2562 (void) VOP_VNEVENT(vp, VE_RMDIR, dvp, name, ct);
2573 2563 }
2574 2564
2575 2565 void
2576 2566 vnevent_pre_rename_src(vnode_t *vp, vnode_t *dvp, char *name,
2577 2567 caller_context_t *ct)
2578 2568 {
2579 2569 if (vp == NULL || vp->v_femhead == NULL) {
2580 2570 return;
2581 2571 }
2582 2572 (void) VOP_VNEVENT(vp, VE_PRE_RENAME_SRC, dvp, name, ct);
2583 2573 }
2584 2574
2585 2575 void
2586 2576 vnevent_pre_rename_dest(vnode_t *vp, vnode_t *dvp, char *name,
2587 2577 caller_context_t *ct)
2588 2578 {
2589 2579 if (vp == NULL || vp->v_femhead == NULL) {
2590 2580 return;
2591 2581 }
2592 2582 (void) VOP_VNEVENT(vp, VE_PRE_RENAME_DEST, dvp, name, ct);
2593 2583 }
2594 2584
2595 2585 void
2596 2586 vnevent_pre_rename_dest_dir(vnode_t *vp, vnode_t *nvp, char *name,
2597 2587 caller_context_t *ct)
2598 2588 {
2599 2589 if (vp == NULL || vp->v_femhead == NULL) {
2600 2590 return;
2601 2591 }
2602 2592 (void) VOP_VNEVENT(vp, VE_PRE_RENAME_DEST_DIR, nvp, name, ct);
2603 2593 }
2604 2594
2605 2595 void
2606 2596 vnevent_create(vnode_t *vp, caller_context_t *ct)
2607 2597 {
2608 2598 if (vp == NULL || vp->v_femhead == NULL) {
2609 2599 return;
2610 2600 }
2611 2601 (void) VOP_VNEVENT(vp, VE_CREATE, NULL, NULL, ct);
2612 2602 }
2613 2603
2614 2604 void
2615 2605 vnevent_link(vnode_t *vp, caller_context_t *ct)
2616 2606 {
2617 2607 if (vp == NULL || vp->v_femhead == NULL) {
2618 2608 return;
2619 2609 }
2620 2610 (void) VOP_VNEVENT(vp, VE_LINK, NULL, NULL, ct);
2621 2611 }
2622 2612
2623 2613 void
2624 2614 vnevent_mountedover(vnode_t *vp, caller_context_t *ct)
2625 2615 {
2626 2616 if (vp == NULL || vp->v_femhead == NULL) {
2627 2617 return;
2628 2618 }
2629 2619 (void) VOP_VNEVENT(vp, VE_MOUNTEDOVER, NULL, NULL, ct);
2630 2620 }
2631 2621
2632 2622 void
2633 2623 vnevent_truncate(vnode_t *vp, caller_context_t *ct)
2634 2624 {
2635 2625 if (vp == NULL || vp->v_femhead == NULL) {
2636 2626 return;
2637 2627 }
2638 2628 (void) VOP_VNEVENT(vp, VE_TRUNCATE, NULL, NULL, ct);
2639 2629 }
2640 2630
2641 2631 void
2642 2632 vnevent_resize(vnode_t *vp, caller_context_t *ct)
2643 2633 {
2644 2634 if (vp == NULL || vp->v_femhead == NULL) {
2645 2635 return;
2646 2636 }
2647 2637 (void) VOP_VNEVENT(vp, VE_RESIZE, NULL, NULL, ct);
2648 2638 }
2649 2639
2650 2640 /*
2651 2641 * Vnode accessors.
2652 2642 */
2653 2643
2654 2644 int
2655 2645 vn_is_readonly(vnode_t *vp)
2656 2646 {
2657 2647 return (vp->v_vfsp->vfs_flag & VFS_RDONLY);
2658 2648 }
2659 2649
2660 2650 int
2661 2651 vn_has_flocks(vnode_t *vp)
2662 2652 {
2663 2653 return (vp->v_filocks != NULL);
2664 2654 }
2665 2655
2666 2656 int
2667 2657 vn_has_mandatory_locks(vnode_t *vp, int mode)
2668 2658 {
2669 2659 return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode)));
2670 2660 }
2671 2661
2672 2662 int
2673 2663 vn_has_cached_data(vnode_t *vp)
2674 2664 {
2675 2665 return (vp->v_pages != NULL);
2676 2666 }
2677 2667
2678 2668 /*
2679 2669 * Return 0 if the vnode in question shouldn't be permitted into a zone via
2680 2670 * zone_enter(2).
2681 2671 */
2682 2672 int
2683 2673 vn_can_change_zones(vnode_t *vp)
2684 2674 {
2685 2675 struct vfssw *vswp;
2686 2676 int allow = 1;
2687 2677 vnode_t *rvp;
2688 2678
2689 2679 if (nfs_global_client_only != 0)
2690 2680 return (1);
2691 2681
2692 2682 /*
2693 2683 * We always want to look at the underlying vnode if there is one.
2694 2684 */
2695 2685 if (VOP_REALVP(vp, &rvp, NULL) != 0)
2696 2686 rvp = vp;
2697 2687 /*
2698 2688 * Some pseudo filesystems (including doorfs) don't actually register
2699 2689 * their vfsops_t, so the following may return NULL; we happily let
2700 2690 * such vnodes switch zones.
2701 2691 */
2702 2692 vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp));
2703 2693 if (vswp != NULL) {
2704 2694 if (vswp->vsw_flag & VSW_NOTZONESAFE)
2705 2695 allow = 0;
2706 2696 vfs_unrefvfssw(vswp);
2707 2697 }
2708 2698 return (allow);
2709 2699 }
2710 2700
2711 2701 /*
2712 2702 * Return nonzero if the vnode is a mount point, zero if not.
2713 2703 */
2714 2704 int
2715 2705 vn_ismntpt(vnode_t *vp)
2716 2706 {
2717 2707 return (vp->v_vfsmountedhere != NULL);
2718 2708 }
2719 2709
2720 2710 /* Retrieve the vfs (if any) mounted on this vnode */
2721 2711 vfs_t *
2722 2712 vn_mountedvfs(vnode_t *vp)
2723 2713 {
2724 2714 return (vp->v_vfsmountedhere);
2725 2715 }
2726 2716
2727 2717 /*
2728 2718 * Return nonzero if the vnode is referenced by the dnlc, zero if not.
2729 2719 */
2730 2720 int
2731 2721 vn_in_dnlc(vnode_t *vp)
2732 2722 {
2733 2723 return (vp->v_count_dnlc > 0);
2734 2724 }
2735 2725
2736 2726 /*
2737 2727 * vn_has_other_opens() checks whether a particular file is opened by more than
2738 2728 * just the caller and whether the open is for read and/or write.
2739 2729 * This routine is for calling after the caller has already called VOP_OPEN()
2740 2730 * and the caller wishes to know if they are the only one with it open for
2741 2731 * the mode(s) specified.
2742 2732 *
2743 2733 * Vnode counts are only kept on regular files (v_type=VREG).
2744 2734 */
2745 2735 int
2746 2736 vn_has_other_opens(
2747 2737 vnode_t *vp,
2748 2738 v_mode_t mode)
2749 2739 {
2750 2740
2751 2741 ASSERT(vp != NULL);
2752 2742
2753 2743 switch (mode) {
2754 2744 case V_WRITE:
2755 2745 if (vp->v_wrcnt > 1)
2756 2746 return (V_TRUE);
2757 2747 break;
2758 2748 case V_RDORWR:
2759 2749 if ((vp->v_rdcnt > 1) || (vp->v_wrcnt > 1))
2760 2750 return (V_TRUE);
2761 2751 break;
2762 2752 case V_RDANDWR:
2763 2753 if ((vp->v_rdcnt > 1) && (vp->v_wrcnt > 1))
2764 2754 return (V_TRUE);
2765 2755 break;
2766 2756 case V_READ:
2767 2757 if (vp->v_rdcnt > 1)
2768 2758 return (V_TRUE);
2769 2759 break;
2770 2760 }
2771 2761
2772 2762 return (V_FALSE);
2773 2763 }
2774 2764
2775 2765 /*
2776 2766 * vn_is_opened() checks whether a particular file is opened and
2777 2767 * whether the open is for read and/or write.
2778 2768 *
2779 2769 * Vnode counts are only kept on regular files (v_type=VREG).
2780 2770 */
2781 2771 int
2782 2772 vn_is_opened(
2783 2773 vnode_t *vp,
2784 2774 v_mode_t mode)
2785 2775 {
2786 2776
2787 2777 ASSERT(vp != NULL);
2788 2778
2789 2779 switch (mode) {
2790 2780 case V_WRITE:
2791 2781 if (vp->v_wrcnt)
2792 2782 return (V_TRUE);
2793 2783 break;
2794 2784 case V_RDANDWR:
2795 2785 if (vp->v_rdcnt && vp->v_wrcnt)
2796 2786 return (V_TRUE);
2797 2787 break;
2798 2788 case V_RDORWR:
2799 2789 if (vp->v_rdcnt || vp->v_wrcnt)
2800 2790 return (V_TRUE);
2801 2791 break;
2802 2792 case V_READ:
2803 2793 if (vp->v_rdcnt)
2804 2794 return (V_TRUE);
2805 2795 break;
2806 2796 }
2807 2797
2808 2798 return (V_FALSE);
2809 2799 }
2810 2800
2811 2801 /*
2812 2802 * vn_is_mapped() checks whether a particular file is mapped and whether
2813 2803 * the file is mapped read and/or write.
2814 2804 */
2815 2805 int
2816 2806 vn_is_mapped(
2817 2807 vnode_t *vp,
2818 2808 v_mode_t mode)
2819 2809 {
2820 2810
2821 2811 ASSERT(vp != NULL);
2822 2812
2823 2813 #if !defined(_LP64)
2824 2814 switch (mode) {
2825 2815 /*
2826 2816 * The atomic_add_64_nv functions force atomicity in the
2827 2817 * case of 32 bit architectures. Otherwise the 64 bit values
2828 2818 * require two fetches. The value of the fields may be
2829 2819 * (potentially) changed between the first fetch and the
2830 2820 * second
2831 2821 */
2832 2822 case V_WRITE:
2833 2823 if (atomic_add_64_nv((&(vp->v_mmap_write)), 0))
2834 2824 return (V_TRUE);
2835 2825 break;
2836 2826 case V_RDANDWR:
2837 2827 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) &&
2838 2828 (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
2839 2829 return (V_TRUE);
2840 2830 break;
2841 2831 case V_RDORWR:
2842 2832 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) ||
2843 2833 (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
2844 2834 return (V_TRUE);
2845 2835 break;
2846 2836 case V_READ:
2847 2837 if (atomic_add_64_nv((&(vp->v_mmap_read)), 0))
2848 2838 return (V_TRUE);
2849 2839 break;
2850 2840 }
2851 2841 #else
2852 2842 switch (mode) {
2853 2843 case V_WRITE:
2854 2844 if (vp->v_mmap_write)
2855 2845 return (V_TRUE);
2856 2846 break;
2857 2847 case V_RDANDWR:
2858 2848 if (vp->v_mmap_read && vp->v_mmap_write)
2859 2849 return (V_TRUE);
2860 2850 break;
2861 2851 case V_RDORWR:
2862 2852 if (vp->v_mmap_read || vp->v_mmap_write)
2863 2853 return (V_TRUE);
2864 2854 break;
2865 2855 case V_READ:
2866 2856 if (vp->v_mmap_read)
2867 2857 return (V_TRUE);
2868 2858 break;
2869 2859 }
2870 2860 #endif
2871 2861
2872 2862 return (V_FALSE);
2873 2863 }
2874 2864
2875 2865 /*
2876 2866 * Set the operations vector for a vnode.
2877 2867 *
2878 2868 * FEM ensures that the v_femhead pointer is filled in before the
2879 2869 * v_op pointer is changed. This means that if the v_femhead pointer
2880 2870 * is NULL, and the v_op field hasn't changed since before which checked
2881 2871 * the v_femhead pointer; then our update is ok - we are not racing with
2882 2872 * FEM.
2883 2873 */
2884 2874 void
2885 2875 vn_setops(vnode_t *vp, vnodeops_t *vnodeops)
2886 2876 {
2887 2877 vnodeops_t *op;
2888 2878
2889 2879 ASSERT(vp != NULL);
2890 2880 ASSERT(vnodeops != NULL);
2891 2881
2892 2882 op = vp->v_op;
2893 2883 membar_consumer();
2894 2884 /*
2895 2885 * If vp->v_femhead == NULL, then we'll call atomic_cas_ptr() to do
2896 2886 * the compare-and-swap on vp->v_op. If either fails, then FEM is
2897 2887 * in effect on the vnode and we need to have FEM deal with it.
2898 2888 */
2899 2889 if (vp->v_femhead != NULL || atomic_cas_ptr(&vp->v_op, op, vnodeops) !=
2900 2890 op) {
2901 2891 fem_setvnops(vp, vnodeops);
2902 2892 }
2903 2893 }
2904 2894
2905 2895 /*
2906 2896 * Retrieve the operations vector for a vnode
2907 2897 * As with vn_setops(above); make sure we aren't racing with FEM.
2908 2898 * FEM sets the v_op to a special, internal, vnodeops that wouldn't
2909 2899 * make sense to the callers of this routine.
2910 2900 */
2911 2901 vnodeops_t *
2912 2902 vn_getops(vnode_t *vp)
2913 2903 {
2914 2904 vnodeops_t *op;
2915 2905
2916 2906 ASSERT(vp != NULL);
2917 2907
2918 2908 op = vp->v_op;
2919 2909 membar_consumer();
2920 2910 if (vp->v_femhead == NULL && op == vp->v_op) {
2921 2911 return (op);
2922 2912 } else {
2923 2913 return (fem_getvnops(vp));
2924 2914 }
2925 2915 }
2926 2916
2927 2917 /*
2928 2918 * Returns non-zero (1) if the vnodeops matches that of the vnode.
2929 2919 * Returns zero (0) if not.
2930 2920 */
2931 2921 int
2932 2922 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops)
2933 2923 {
2934 2924 return (vn_getops(vp) == vnodeops);
2935 2925 }
2936 2926
2937 2927 /*
2938 2928 * Returns non-zero (1) if the specified operation matches the
2939 2929 * corresponding operation for that the vnode.
2940 2930 * Returns zero (0) if not.
2941 2931 */
2942 2932
2943 2933 #define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0))
2944 2934
2945 2935 int
2946 2936 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp)
2947 2937 {
2948 2938 const fs_operation_trans_def_t *otdp;
2949 2939 fs_generic_func_p *loc = NULL;
2950 2940 vnodeops_t *vop = vn_getops(vp);
2951 2941
2952 2942 ASSERT(vopname != NULL);
2953 2943
2954 2944 for (otdp = vn_ops_table; otdp->name != NULL; otdp++) {
2955 2945 if (MATCHNAME(otdp->name, vopname)) {
2956 2946 loc = (fs_generic_func_p *)
2957 2947 ((char *)(vop) + otdp->offset);
2958 2948 break;
2959 2949 }
2960 2950 }
2961 2951
2962 2952 return ((loc != NULL) && (*loc == funcp));
2963 2953 }
2964 2954
2965 2955 /*
2966 2956 * fs_new_caller_id() needs to return a unique ID on a given local system.
2967 2957 * The IDs do not need to survive across reboots. These are primarily
2968 2958 * used so that (FEM) monitors can detect particular callers (such as
2969 2959 * the NFS server) to a given vnode/vfs operation.
|
↓ open down ↓ |
513 lines elided |
↑ open up ↑ |
2970 2960 */
2971 2961 u_longlong_t
2972 2962 fs_new_caller_id()
2973 2963 {
2974 2964 static uint64_t next_caller_id = 0LL; /* First call returns 1 */
2975 2965
2976 2966 return ((u_longlong_t)atomic_inc_64_nv(&next_caller_id));
2977 2967 }
2978 2968
2979 2969 /*
2980 - * The value stored in v_path is relative to rootdir, located in the global
2981 - * zone. Zones or chroot environments which reside deeper inside the VFS
2982 - * hierarchy will have a relative view of MAXPATHLEN since they are unaware of
2983 - * what lies below their perceived root. In order to keep v_path usable for
2984 - * these child environments, its allocations are allowed to exceed MAXPATHLEN.
2985 - *
2986 - * An upper bound of max_vnode_path is placed upon v_path allocations to
2987 - * prevent the system from going too wild at the behest of pathological
2988 - * behavior from the operator.
2970 + * Given a starting vnode and a path, updates the path in the target vnode in
2971 + * a safe manner. If the vnode already has path information embedded, then the
2972 + * cached path is left untouched.
2989 2973 */
2974 +
2990 2975 size_t max_vnode_path = 4 * MAXPATHLEN;
2991 2976
2992 -
2993 2977 void
2994 -vn_clearpath(vnode_t *vp, hrtime_t compare_stamp)
2978 +vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp,
2979 + const char *path, size_t plen)
2995 2980 {
2996 - char *buf;
2981 + char *rpath;
2982 + vnode_t *base;
2983 + size_t rpathlen, rpathalloc;
2984 + int doslash = 1;
2997 2985
2998 - mutex_enter(&vp->v_lock);
2986 + if (*path == '/') {
2987 + base = rootvp;
2988 + path++;
2989 + plen--;
2990 + } else {
2991 + base = startvp;
2992 + }
2993 +
2999 2994 /*
3000 - * If the snapshot of v_path_stamp passed in via compare_stamp does not
3001 - * match the present value on the vnode, it indicates that subsequent
3002 - * changes have occurred. The v_path value is not cleared in this case
3003 - * since the new value may be valid.
2995 + * We cannot grab base->v_lock while we hold vp->v_lock because of
2996 + * the potential for deadlock.
3004 2997 */
3005 - if (compare_stamp != 0 && vp->v_path_stamp != compare_stamp) {
3006 - mutex_exit(&vp->v_lock);
2998 + mutex_enter(&base->v_lock);
2999 + if (base->v_path == NULL) {
3000 + mutex_exit(&base->v_lock);
3007 3001 return;
3008 3002 }
3009 - buf = vp->v_path;
3010 - vp->v_path = vn_vpath_empty;
3011 - vp->v_path_stamp = 0;
3012 - mutex_exit(&vp->v_lock);
3013 - if (buf != vn_vpath_empty) {
3014 - kmem_free(buf, strlen(buf) + 1);
3015 - }
3016 -}
3017 3003
3018 -static void
3019 -vn_setpath_common(vnode_t *pvp, vnode_t *vp, const char *name, size_t len,
3020 - boolean_t is_rename)
3021 -{
3022 - char *buf, *oldbuf;
3023 - hrtime_t pstamp;
3024 - size_t baselen, buflen = 0;
3004 + rpathlen = strlen(base->v_path);
3005 + rpathalloc = rpathlen + plen + 1;
3006 + /* Avoid adding a slash if there's already one there */
3007 + if (base->v_path[rpathlen-1] == '/')
3008 + doslash = 0;
3009 + else
3010 + rpathalloc++;
3025 3011
3026 - /* Handle the vn_setpath_str case. */
3027 - if (pvp == NULL) {
3028 - if (len + 1 > max_vnode_path) {
3029 - DTRACE_PROBE4(vn__setpath__too__long, vnode_t *, pvp,
3030 - vnode_t *, vp, char *, name, size_t, len + 1);
3031 - return;
3032 - }
3033 - buf = kmem_alloc(len + 1, KM_SLEEP);
3034 - bcopy(name, buf, len);
3035 - buf[len] = '\0';
3012 + /*
3013 + * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held,
3014 + * so we must do this dance. If, by chance, something changes the path,
3015 + * just give up since there is no real harm.
3016 + */
3017 + mutex_exit(&base->v_lock);
3036 3018
3037 - mutex_enter(&vp->v_lock);
3038 - oldbuf = vp->v_path;
3039 - vp->v_path = buf;
3040 - vp->v_path_stamp = gethrtime();
3041 - mutex_exit(&vp->v_lock);
3042 - if (oldbuf != vn_vpath_empty) {
3043 - kmem_free(oldbuf, strlen(oldbuf) + 1);
3044 - }
3019 + /* Paths should stay within reason */
3020 + if (rpathalloc > max_vnode_path)
3045 3021 return;
3046 - }
3047 3022
3048 - /* Take snapshot of parent dir */
3049 - mutex_enter(&pvp->v_lock);
3050 -retrybuf:
3051 - if (pvp->v_path == vn_vpath_empty) {
3052 - /*
3053 - * Without v_path from the parent directory, generating a child
3054 - * path from the name is impossible.
3055 - */
3056 - if (len > 0) {
3057 - pstamp = pvp->v_path_stamp;
3058 - mutex_exit(&pvp->v_lock);
3059 - vn_clearpath(vp, pstamp);
3060 - return;
3061 - }
3023 + rpath = kmem_alloc(rpathalloc, KM_SLEEP);
3062 3024
3063 - /*
3064 - * The only feasible case here is where a NUL lookup is being
3065 - * performed on rootdir prior to its v_path being populated.
3066 - */
3067 - ASSERT(pvp->v_path_stamp = 0);
3068 - baselen = 0;
3069 - pstamp = 0;
3070 - } else {
3071 - pstamp = pvp->v_path_stamp;
3072 - baselen = strlen(pvp->v_path);
3073 - /* ignore a trailing slash if present */
3074 - if (pvp->v_path[baselen - 1] == '/') {
3075 - /* This should only the be case for rootdir */
3076 - ASSERT(baselen == 1 && pvp == rootdir);
3077 - baselen--;
3078 - }
3079 - }
3080 - mutex_exit(&pvp->v_lock);
3081 -
3082 - if (buflen != 0) {
3083 - /* Free the existing (mis-sized) buffer in case of retry */
3084 - kmem_free(buf, buflen);
3085 - }
3086 - /* base, '/', name and trailing NUL */
3087 - buflen = baselen + len + 2;
3088 - if (buflen > max_vnode_path) {
3089 - DTRACE_PROBE4(vn__setpath_too__long, vnode_t *, pvp,
3090 - vnode_t *, vp, char *, name, size_t, buflen);
3025 + mutex_enter(&base->v_lock);
3026 + if (base->v_path == NULL || strlen(base->v_path) != rpathlen) {
3027 + mutex_exit(&base->v_lock);
3028 + kmem_free(rpath, rpathalloc);
3091 3029 return;
3092 3030 }
3093 - buf = kmem_alloc(buflen, KM_SLEEP);
3031 + bcopy(base->v_path, rpath, rpathlen);
3032 + mutex_exit(&base->v_lock);
3094 3033
3095 - mutex_enter(&pvp->v_lock);
3096 - if (pvp->v_path_stamp != pstamp) {
3097 - size_t vlen;
3034 + if (doslash)
3035 + rpath[rpathlen++] = '/';
3036 + bcopy(path, rpath + rpathlen, plen);
3037 + rpath[rpathlen + plen] = '\0';
3098 3038
3099 - /*
3100 - * Since v_path_stamp changed on the parent, it is likely that
3101 - * v_path has been altered as well. If the length does not
3102 - * exactly match what was previously measured, the buffer
3103 - * allocation must be repeated for proper sizing.
3104 - */
3105 - if (pvp->v_path == vn_vpath_empty) {
3106 - /* Give up if parent lack v_path */
3107 - mutex_exit(&pvp->v_lock);
3108 - kmem_free(buf, buflen);
3109 - return;
3110 - }
3111 - vlen = strlen(pvp->v_path);
3112 - if (pvp->v_path[vlen - 1] == '/') {
3113 - vlen--;
3114 - }
3115 - if (vlen != baselen) {
3116 - goto retrybuf;
3117 - }
3118 - }
3119 - bcopy(pvp->v_path, buf, baselen);
3120 - mutex_exit(&pvp->v_lock);
3121 -
3122 - buf[baselen] = '/';
3123 - baselen++;
3124 - bcopy(name, &buf[baselen], len + 1);
3125 -
3126 3039 mutex_enter(&vp->v_lock);
3127 - if (vp->v_path_stamp == 0) {
3128 - /* never-visited vnode can inherit stamp from parent */
3129 - ASSERT(vp->v_path == vn_vpath_empty);
3130 - vp->v_path_stamp = pstamp;
3131 - vp->v_path = buf;
3040 + if (vp->v_path != NULL) {
3132 3041 mutex_exit(&vp->v_lock);
3133 - } else if (vp->v_path_stamp < pstamp || is_rename) {
3134 - /*
3135 - * Install the updated path and stamp, ensuring that the v_path
3136 - * pointer is valid at all times for dtrace.
3137 - */
3138 - oldbuf = vp->v_path;
3139 - vp->v_path = buf;
3140 - vp->v_path_stamp = gethrtime();
3141 - mutex_exit(&vp->v_lock);
3142 - kmem_free(oldbuf, strlen(oldbuf) + 1);
3042 + kmem_free(rpath, rpathalloc);
3143 3043 } else {
3144 - /*
3145 - * If the timestamp matches or is greater, it means another
3146 - * thread performed the update first while locks were dropped
3147 - * here to make the allocation. We defer to the newer value.
3148 - */
3044 + vp->v_path = rpath;
3149 3045 mutex_exit(&vp->v_lock);
3150 - kmem_free(buf, buflen);
3151 3046 }
3152 - ASSERT(MUTEX_NOT_HELD(&vp->v_lock));
3153 3047 }
3154 3048
3049 +/*
3050 + * Sets the path to the vnode to be the given string, regardless of current
3051 + * context. The string must be a complete path from rootdir. This is only used
3052 + * by fsop_root() for setting the path based on the mountpoint.
3053 + */
3155 3054 void
3156 -vn_updatepath(vnode_t *pvp, vnode_t *vp, const char *name)
3055 +vn_setpath_str(struct vnode *vp, const char *str, size_t len)
3157 3056 {
3158 - size_t len;
3057 + char *buf = kmem_alloc(len + 1, KM_SLEEP);
3159 3058
3160 - /*
3161 - * If the parent is older or empty, there's nothing further to do.
3162 - */
3163 - if (pvp->v_path == vn_vpath_empty ||
3164 - pvp->v_path_stamp <= vp->v_path_stamp) {
3059 + mutex_enter(&vp->v_lock);
3060 + if (vp->v_path != NULL) {
3061 + mutex_exit(&vp->v_lock);
3062 + kmem_free(buf, len + 1);
3165 3063 return;
3166 3064 }
3167 3065
3168 - /*
3169 - * Given the lack of appropriate context, meaningful updates to v_path
3170 - * cannot be made for during lookups for the '.' or '..' entries.
3171 - */
3172 - len = strlen(name);
3173 - if (len == 0 || (len == 1 && name[0] == '.') ||
3174 - (len == 2 && name[0] == '.' && name[1] == '.')) {
3175 - return;
3176 - }
3066 + vp->v_path = buf;
3067 + bcopy(str, vp->v_path, len);
3068 + vp->v_path[len] = '\0';
3177 3069
3178 - vn_setpath_common(pvp, vp, name, len, B_FALSE);
3070 + mutex_exit(&vp->v_lock);
3179 3071 }
3180 3072
3181 3073 /*
3182 - * Given a starting vnode and a path, updates the path in the target vnode in
3183 - * a safe manner. If the vnode already has path information embedded, then the
3184 - * cached path is left untouched.
3185 - */
3186 -/* ARGSUSED */
3187 -void
3188 -vn_setpath(vnode_t *rootvp, vnode_t *pvp, vnode_t *vp, const char *name,
3189 - size_t len)
3190 -{
3191 - vn_setpath_common(pvp, vp, name, len, B_FALSE);
3192 -}
3193 -
3194 -/*
3195 - * Sets the path to the vnode to be the given string, regardless of current
3196 - * context. The string must be a complete path from rootdir. This is only used
3197 - * by fsop_root() for setting the path based on the mountpoint.
3198 - */
3199 -void
3200 -vn_setpath_str(vnode_t *vp, const char *str, size_t len)
3201 -{
3202 - vn_setpath_common(NULL, vp, str, len, B_FALSE);
3203 -}
3204 -
3205 -/*
3206 3074 * Called from within filesystem's vop_rename() to handle renames once the
3207 3075 * target vnode is available.
3208 3076 */
3209 3077 void
3210 -vn_renamepath(vnode_t *pvp, vnode_t *vp, const char *name, size_t len)
3078 +vn_renamepath(vnode_t *dvp, vnode_t *vp, const char *nm, size_t len)
3211 3079 {
3212 - vn_setpath_common(pvp, vp, name, len, B_TRUE);
3080 + char *tmp;
3081 +
3082 + mutex_enter(&vp->v_lock);
3083 + tmp = vp->v_path;
3084 + vp->v_path = NULL;
3085 + mutex_exit(&vp->v_lock);
3086 + vn_setpath(rootdir, dvp, vp, nm, len);
3087 + if (tmp != NULL)
3088 + kmem_free(tmp, strlen(tmp) + 1);
3213 3089 }
3214 3090
3215 3091 /*
3216 3092 * Similar to vn_setpath_str(), this function sets the path of the destination
3217 3093 * vnode to the be the same as the source vnode.
3218 3094 */
3219 3095 void
3220 3096 vn_copypath(struct vnode *src, struct vnode *dst)
3221 3097 {
3222 3098 char *buf;
3223 - hrtime_t stamp;
3224 - size_t buflen;
3099 + int alloc;
3225 3100
3226 3101 mutex_enter(&src->v_lock);
3227 - if (src->v_path == vn_vpath_empty) {
3102 + if (src->v_path == NULL) {
3228 3103 mutex_exit(&src->v_lock);
3229 3104 return;
3230 3105 }
3231 - buflen = strlen(src->v_path) + 1;
3232 - mutex_exit(&src->v_lock);
3106 + alloc = strlen(src->v_path) + 1;
3233 3107
3234 - buf = kmem_alloc(buflen, KM_SLEEP);
3235 -
3108 + /* avoid kmem_alloc() with lock held */
3109 + mutex_exit(&src->v_lock);
3110 + buf = kmem_alloc(alloc, KM_SLEEP);
3236 3111 mutex_enter(&src->v_lock);
3237 - if (src->v_path == vn_vpath_empty ||
3238 - strlen(src->v_path) + 1 != buflen) {
3112 + if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) {
3239 3113 mutex_exit(&src->v_lock);
3240 - kmem_free(buf, buflen);
3114 + kmem_free(buf, alloc);
3241 3115 return;
3242 3116 }
3243 - bcopy(src->v_path, buf, buflen);
3244 - stamp = src->v_path_stamp;
3117 + bcopy(src->v_path, buf, alloc);
3245 3118 mutex_exit(&src->v_lock);
3246 3119
3247 3120 mutex_enter(&dst->v_lock);
3248 - if (dst->v_path != vn_vpath_empty) {
3121 + if (dst->v_path != NULL) {
3249 3122 mutex_exit(&dst->v_lock);
3250 - kmem_free(buf, buflen);
3123 + kmem_free(buf, alloc);
3251 3124 return;
3252 3125 }
3253 3126 dst->v_path = buf;
3254 - dst->v_path_stamp = stamp;
3255 3127 mutex_exit(&dst->v_lock);
3256 3128 }
3257 3129
3258 -
3259 3130 /*
3260 3131 * XXX Private interface for segvn routines that handle vnode
3261 3132 * large page segments.
3262 3133 *
3263 3134 * return 1 if vp's file system VOP_PAGEIO() implementation
3264 3135 * can be safely used instead of VOP_GETPAGE() for handling
3265 3136 * pagefaults against regular non swap files. VOP_PAGEIO()
3266 3137 * interface is considered safe here if its implementation
3267 3138 * is very close to VOP_GETPAGE() implementation.
3268 3139 * e.g. It zero's out the part of the page beyond EOF. Doesn't
3269 3140 * panic if there're file holes but instead returns an error.
3270 3141 * Doesn't assume file won't be changed by user writes, etc.
3271 3142 *
3272 3143 * return 0 otherwise.
3273 3144 *
3274 3145 * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs.
3275 3146 */
3276 3147 int
3277 3148 vn_vmpss_usepageio(vnode_t *vp)
3278 3149 {
3279 3150 vfs_t *vfsp = vp->v_vfsp;
3280 3151 char *fsname = vfssw[vfsp->vfs_fstype].vsw_name;
3281 3152 char *pageio_ok_fss[] = {"ufs", "nfs", NULL};
3282 3153 char **fsok = pageio_ok_fss;
3283 3154
3284 3155 if (fsname == NULL) {
3285 3156 return (0);
3286 3157 }
3287 3158
3288 3159 for (; *fsok; fsok++) {
3289 3160 if (strcmp(*fsok, fsname) == 0) {
3290 3161 return (1);
3291 3162 }
3292 3163 }
3293 3164 return (0);
3294 3165 }
3295 3166
3296 3167 /* VOP_XXX() macros call the corresponding fop_xxx() function */
3297 3168
3298 3169 int
3299 3170 fop_open(
3300 3171 vnode_t **vpp,
3301 3172 int mode,
3302 3173 cred_t *cr,
3303 3174 caller_context_t *ct)
3304 3175 {
3305 3176 int ret;
3306 3177 vnode_t *vp = *vpp;
3307 3178
3308 3179 VN_HOLD(vp);
3309 3180 /*
3310 3181 * Adding to the vnode counts before calling open
3311 3182 * avoids the need for a mutex. It circumvents a race
3312 3183 * condition where a query made on the vnode counts results in a
3313 3184 * false negative. The inquirer goes away believing the file is
3314 3185 * not open when there is an open on the file already under way.
3315 3186 *
3316 3187 * The counts are meant to prevent NFS from granting a delegation
3317 3188 * when it would be dangerous to do so.
3318 3189 *
3319 3190 * The vnode counts are only kept on regular files
3320 3191 */
3321 3192 if ((*vpp)->v_type == VREG) {
3322 3193 if (mode & FREAD)
3323 3194 atomic_inc_32(&(*vpp)->v_rdcnt);
3324 3195 if (mode & FWRITE)
3325 3196 atomic_inc_32(&(*vpp)->v_wrcnt);
3326 3197 }
3327 3198
3328 3199 VOPXID_MAP_CR(vp, cr);
3329 3200
3330 3201 ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr, ct);
3331 3202
3332 3203 if (ret) {
3333 3204 /*
3334 3205 * Use the saved vp just in case the vnode ptr got trashed
3335 3206 * by the error.
3336 3207 */
3337 3208 VOPSTATS_UPDATE(vp, open);
3338 3209 if ((vp->v_type == VREG) && (mode & FREAD))
3339 3210 atomic_dec_32(&vp->v_rdcnt);
3340 3211 if ((vp->v_type == VREG) && (mode & FWRITE))
3341 3212 atomic_dec_32(&vp->v_wrcnt);
3342 3213 } else {
3343 3214 /*
3344 3215 * Some filesystems will return a different vnode,
3345 3216 * but the same path was still used to open it.
3346 3217 * So if we do change the vnode and need to
3347 3218 * copy over the path, do so here, rather than special
3348 3219 * casing each filesystem. Adjust the vnode counts to
3349 3220 * reflect the vnode switch.
3350 3221 */
3351 3222 VOPSTATS_UPDATE(*vpp, open);
3352 3223 if (*vpp != vp && *vpp != NULL) {
3353 3224 vn_copypath(vp, *vpp);
3354 3225 if (((*vpp)->v_type == VREG) && (mode & FREAD))
3355 3226 atomic_inc_32(&(*vpp)->v_rdcnt);
3356 3227 if ((vp->v_type == VREG) && (mode & FREAD))
3357 3228 atomic_dec_32(&vp->v_rdcnt);
3358 3229 if (((*vpp)->v_type == VREG) && (mode & FWRITE))
3359 3230 atomic_inc_32(&(*vpp)->v_wrcnt);
3360 3231 if ((vp->v_type == VREG) && (mode & FWRITE))
3361 3232 atomic_dec_32(&vp->v_wrcnt);
3362 3233 }
3363 3234 }
3364 3235 VN_RELE(vp);
3365 3236 return (ret);
3366 3237 }
3367 3238
3368 3239 int
3369 3240 fop_close(
3370 3241 vnode_t *vp,
3371 3242 int flag,
3372 3243 int count,
3373 3244 offset_t offset,
3374 3245 cred_t *cr,
3375 3246 caller_context_t *ct)
3376 3247 {
3377 3248 int err;
3378 3249
3379 3250 VOPXID_MAP_CR(vp, cr);
3380 3251
3381 3252 err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr, ct);
3382 3253 VOPSTATS_UPDATE(vp, close);
3383 3254 /*
3384 3255 * Check passed in count to handle possible dups. Vnode counts are only
3385 3256 * kept on regular files
3386 3257 */
3387 3258 if ((vp->v_type == VREG) && (count == 1)) {
3388 3259 if (flag & FREAD) {
3389 3260 ASSERT(vp->v_rdcnt > 0);
3390 3261 atomic_dec_32(&vp->v_rdcnt);
3391 3262 }
3392 3263 if (flag & FWRITE) {
3393 3264 ASSERT(vp->v_wrcnt > 0);
3394 3265 atomic_dec_32(&vp->v_wrcnt);
3395 3266 }
3396 3267 }
3397 3268 return (err);
3398 3269 }
3399 3270
3400 3271 int
3401 3272 fop_read(
3402 3273 vnode_t *vp,
3403 3274 uio_t *uiop,
3404 3275 int ioflag,
3405 3276 cred_t *cr,
3406 3277 caller_context_t *ct)
3407 3278 {
3408 3279 ssize_t resid_start = uiop->uio_resid;
3409 3280 zone_t *zonep = curzone;
3410 3281 zone_vfs_kstat_t *zvp = zonep->zone_vfs_stats;
3411 3282
3412 3283 hrtime_t start = 0, lat;
3413 3284 ssize_t len;
3414 3285 int err;
3415 3286
3416 3287 if ((vp->v_type == VREG || vp->v_type == VDIR || vp->v_type == VBLK) &&
3417 3288 vp->v_vfsp != NULL && (vp->v_vfsp->vfs_flag & VFS_STATS)) {
3418 3289 start = gethrtime();
3419 3290
3420 3291 mutex_enter(&zonep->zone_vfs_lock);
3421 3292 kstat_runq_enter(&zonep->zone_vfs_rwstats);
3422 3293 mutex_exit(&zonep->zone_vfs_lock);
3423 3294 }
3424 3295
3425 3296 VOPXID_MAP_CR(vp, cr);
3426 3297
3427 3298 err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct);
3428 3299 len = resid_start - uiop->uio_resid;
3429 3300
3430 3301 VOPSTATS_UPDATE_IO(vp, read, read_bytes, len);
3431 3302
3432 3303 if (start != 0) {
3433 3304 mutex_enter(&zonep->zone_vfs_lock);
3434 3305 zonep->zone_vfs_rwstats.reads++;
3435 3306 zonep->zone_vfs_rwstats.nread += len;
3436 3307 kstat_runq_exit(&zonep->zone_vfs_rwstats);
|
↓ open down ↓ |
168 lines elided |
↑ open up ↑ |
3437 3308 mutex_exit(&zonep->zone_vfs_lock);
3438 3309
3439 3310 lat = gethrtime() - start;
3440 3311
3441 3312 if (lat >= VOP_LATENCY_10MS) {
3442 3313 if (lat < VOP_LATENCY_100MS)
3443 3314 atomic_inc_64(&zvp->zv_10ms_ops.value.ui64);
3444 3315 else if (lat < VOP_LATENCY_1S) {
3445 3316 atomic_inc_64(&zvp->zv_10ms_ops.value.ui64);
3446 3317 atomic_inc_64(&zvp->zv_100ms_ops.value.ui64);
3447 - } else if (lat < VOP_LATENCY_10S) {
3448 - atomic_inc_64(&zvp->zv_10ms_ops.value.ui64);
3449 - atomic_inc_64(&zvp->zv_100ms_ops.value.ui64);
3450 - atomic_inc_64(&zvp->zv_1s_ops.value.ui64);
3451 3318 } else {
3452 3319 atomic_inc_64(&zvp->zv_10ms_ops.value.ui64);
3453 3320 atomic_inc_64(&zvp->zv_100ms_ops.value.ui64);
3454 3321 atomic_inc_64(&zvp->zv_1s_ops.value.ui64);
3455 - atomic_inc_64(&zvp->zv_10s_ops.value.ui64);
3456 3322 }
3457 3323 }
3458 3324 }
3459 3325
3460 3326 return (err);
3461 3327 }
3462 3328
3463 3329 int
3464 3330 fop_write(
3465 3331 vnode_t *vp,
3466 3332 uio_t *uiop,
3467 3333 int ioflag,
3468 3334 cred_t *cr,
3469 3335 caller_context_t *ct)
3470 3336 {
3471 3337 ssize_t resid_start = uiop->uio_resid;
3472 3338 zone_t *zonep = curzone;
3473 3339 zone_vfs_kstat_t *zvp = zonep->zone_vfs_stats;
3474 3340
3475 3341 hrtime_t start = 0, lat;
3476 3342 ssize_t len;
3477 3343 int err;
3478 3344
3479 3345 /*
3480 3346 * For the purposes of VFS kstat consumers, the "waitq" calculation is
3481 3347 * repurposed as the active queue for VFS write operations. There's no
3482 3348 * actual wait queue for VFS operations.
3483 3349 */
3484 3350 if ((vp->v_type == VREG || vp->v_type == VDIR || vp->v_type == VBLK) &&
3485 3351 vp->v_vfsp != NULL && (vp->v_vfsp->vfs_flag & VFS_STATS)) {
3486 3352 start = gethrtime();
3487 3353
3488 3354 mutex_enter(&zonep->zone_vfs_lock);
3489 3355 kstat_waitq_enter(&zonep->zone_vfs_rwstats);
3490 3356 mutex_exit(&zonep->zone_vfs_lock);
3491 3357 }
3492 3358
3493 3359 VOPXID_MAP_CR(vp, cr);
3494 3360
3495 3361 err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct);
3496 3362 len = resid_start - uiop->uio_resid;
3497 3363
3498 3364 VOPSTATS_UPDATE_IO(vp, write, write_bytes, len);
3499 3365
3500 3366 if (start != 0) {
3501 3367 mutex_enter(&zonep->zone_vfs_lock);
3502 3368 zonep->zone_vfs_rwstats.writes++;
3503 3369 zonep->zone_vfs_rwstats.nwritten += len;
3504 3370 kstat_waitq_exit(&zonep->zone_vfs_rwstats);
|
↓ open down ↓ |
39 lines elided |
↑ open up ↑ |
3505 3371 mutex_exit(&zonep->zone_vfs_lock);
3506 3372
3507 3373 lat = gethrtime() - start;
3508 3374
3509 3375 if (lat >= VOP_LATENCY_10MS) {
3510 3376 if (lat < VOP_LATENCY_100MS)
3511 3377 atomic_inc_64(&zvp->zv_10ms_ops.value.ui64);
3512 3378 else if (lat < VOP_LATENCY_1S) {
3513 3379 atomic_inc_64(&zvp->zv_10ms_ops.value.ui64);
3514 3380 atomic_inc_64(&zvp->zv_100ms_ops.value.ui64);
3515 - } else if (lat < VOP_LATENCY_10S) {
3516 - atomic_inc_64(&zvp->zv_10ms_ops.value.ui64);
3517 - atomic_inc_64(&zvp->zv_100ms_ops.value.ui64);
3518 - atomic_inc_64(&zvp->zv_1s_ops.value.ui64);
3519 3381 } else {
3520 3382 atomic_inc_64(&zvp->zv_10ms_ops.value.ui64);
3521 3383 atomic_inc_64(&zvp->zv_100ms_ops.value.ui64);
3522 3384 atomic_inc_64(&zvp->zv_1s_ops.value.ui64);
3523 - atomic_inc_64(&zvp->zv_10s_ops.value.ui64);
3524 3385 }
3525 3386 }
3526 3387 }
3527 3388
3528 3389 return (err);
3529 3390 }
3530 3391
3531 3392 int
3532 3393 fop_ioctl(
3533 3394 vnode_t *vp,
3534 3395 int cmd,
3535 3396 intptr_t arg,
3536 3397 int flag,
3537 3398 cred_t *cr,
3538 3399 int *rvalp,
3539 3400 caller_context_t *ct)
3540 3401 {
3541 3402 int err;
3542 3403
3543 3404 VOPXID_MAP_CR(vp, cr);
3544 3405
3545 3406 err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp, ct);
3546 3407 VOPSTATS_UPDATE(vp, ioctl);
3547 3408 return (err);
3548 3409 }
3549 3410
3550 3411 int
3551 3412 fop_setfl(
3552 3413 vnode_t *vp,
3553 3414 int oflags,
3554 3415 int nflags,
3555 3416 cred_t *cr,
3556 3417 caller_context_t *ct)
3557 3418 {
3558 3419 int err;
3559 3420
3560 3421 VOPXID_MAP_CR(vp, cr);
3561 3422
3562 3423 err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr, ct);
3563 3424 VOPSTATS_UPDATE(vp, setfl);
3564 3425 return (err);
3565 3426 }
3566 3427
3567 3428 int
3568 3429 fop_getattr(
3569 3430 vnode_t *vp,
3570 3431 vattr_t *vap,
3571 3432 int flags,
3572 3433 cred_t *cr,
3573 3434 caller_context_t *ct)
3574 3435 {
3575 3436 int err;
3576 3437
3577 3438 VOPXID_MAP_CR(vp, cr);
3578 3439
3579 3440 /*
3580 3441 * If this file system doesn't understand the xvattr extensions
3581 3442 * then turn off the xvattr bit.
3582 3443 */
3583 3444 if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) {
3584 3445 vap->va_mask &= ~AT_XVATTR;
3585 3446 }
3586 3447
3587 3448 /*
3588 3449 * We're only allowed to skip the ACL check iff we used a 32 bit
3589 3450 * ACE mask with VOP_ACCESS() to determine permissions.
3590 3451 */
3591 3452 if ((flags & ATTR_NOACLCHECK) &&
3592 3453 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3593 3454 return (EINVAL);
3594 3455 }
3595 3456 err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr, ct);
3596 3457 VOPSTATS_UPDATE(vp, getattr);
3597 3458 return (err);
3598 3459 }
3599 3460
3600 3461 int
3601 3462 fop_setattr(
3602 3463 vnode_t *vp,
3603 3464 vattr_t *vap,
3604 3465 int flags,
3605 3466 cred_t *cr,
3606 3467 caller_context_t *ct)
3607 3468 {
3608 3469 int err;
3609 3470
3610 3471 VOPXID_MAP_CR(vp, cr);
3611 3472
3612 3473 /*
3613 3474 * If this file system doesn't understand the xvattr extensions
3614 3475 * then turn off the xvattr bit.
3615 3476 */
3616 3477 if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) {
3617 3478 vap->va_mask &= ~AT_XVATTR;
3618 3479 }
3619 3480
3620 3481 /*
3621 3482 * We're only allowed to skip the ACL check iff we used a 32 bit
3622 3483 * ACE mask with VOP_ACCESS() to determine permissions.
3623 3484 */
3624 3485 if ((flags & ATTR_NOACLCHECK) &&
3625 3486 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3626 3487 return (EINVAL);
3627 3488 }
3628 3489 err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct);
3629 3490 VOPSTATS_UPDATE(vp, setattr);
3630 3491 return (err);
3631 3492 }
3632 3493
3633 3494 int
3634 3495 fop_access(
3635 3496 vnode_t *vp,
3636 3497 int mode,
3637 3498 int flags,
3638 3499 cred_t *cr,
3639 3500 caller_context_t *ct)
3640 3501 {
3641 3502 int err;
3642 3503
3643 3504 if ((flags & V_ACE_MASK) &&
3644 3505 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
3645 3506 return (EINVAL);
3646 3507 }
3647 3508
3648 3509 VOPXID_MAP_CR(vp, cr);
3649 3510
3650 3511 err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr, ct);
3651 3512 VOPSTATS_UPDATE(vp, access);
3652 3513 return (err);
3653 3514 }
3654 3515
3655 3516 int
3656 3517 fop_lookup(
3657 3518 vnode_t *dvp,
3658 3519 char *nm,
3659 3520 vnode_t **vpp,
3660 3521 pathname_t *pnp,
3661 3522 int flags,
3662 3523 vnode_t *rdir,
3663 3524 cred_t *cr,
3664 3525 caller_context_t *ct,
3665 3526 int *deflags, /* Returned per-dirent flags */
3666 3527 pathname_t *ppnp) /* Returned case-preserved name in directory */
3667 3528 {
3668 3529 int ret;
3669 3530
3670 3531 /*
3671 3532 * If this file system doesn't support case-insensitive access
3672 3533 * and said access is requested, fail quickly. It is required
3673 3534 * that if the vfs supports case-insensitive lookup, it also
3674 3535 * supports extended dirent flags.
3675 3536 */
3676 3537 if (flags & FIGNORECASE &&
3677 3538 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3678 3539 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3679 3540 return (EINVAL);
3680 3541
|
↓ open down ↓ |
147 lines elided |
↑ open up ↑ |
3681 3542 VOPXID_MAP_CR(dvp, cr);
3682 3543
3683 3544 if ((flags & LOOKUP_XATTR) && (flags & LOOKUP_HAVE_SYSATTR_DIR) == 0) {
3684 3545 ret = xattr_dir_lookup(dvp, vpp, flags, cr);
3685 3546 } else {
3686 3547 ret = (*(dvp)->v_op->vop_lookup)
3687 3548 (dvp, nm, vpp, pnp, flags, rdir, cr, ct, deflags, ppnp);
3688 3549 }
3689 3550 if (ret == 0 && *vpp) {
3690 3551 VOPSTATS_UPDATE(*vpp, lookup);
3691 - vn_updatepath(dvp, *vpp, nm);
3552 + if ((*vpp)->v_path == NULL) {
3553 + vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm));
3554 + }
3692 3555 }
3693 3556
3694 3557 return (ret);
3695 3558 }
3696 3559
3697 3560 int
3698 3561 fop_create(
3699 3562 vnode_t *dvp,
3700 3563 char *name,
3701 3564 vattr_t *vap,
3702 3565 vcexcl_t excl,
3703 3566 int mode,
3704 3567 vnode_t **vpp,
3705 3568 cred_t *cr,
3706 3569 int flags,
3707 3570 caller_context_t *ct,
3708 3571 vsecattr_t *vsecp) /* ACL to set during create */
3709 3572 {
3710 3573 int ret;
3711 3574
3712 3575 if (vsecp != NULL &&
3713 3576 vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) {
3714 3577 return (EINVAL);
3715 3578 }
3716 3579 /*
3717 3580 * If this file system doesn't support case-insensitive access
3718 3581 * and said access is requested, fail quickly.
3719 3582 */
3720 3583 if (flags & FIGNORECASE &&
|
↓ open down ↓ |
19 lines elided |
↑ open up ↑ |
3721 3584 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3722 3585 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3723 3586 return (EINVAL);
3724 3587
3725 3588 VOPXID_MAP_CR(dvp, cr);
3726 3589
3727 3590 ret = (*(dvp)->v_op->vop_create)
3728 3591 (dvp, name, vap, excl, mode, vpp, cr, flags, ct, vsecp);
3729 3592 if (ret == 0 && *vpp) {
3730 3593 VOPSTATS_UPDATE(*vpp, create);
3731 - vn_updatepath(dvp, *vpp, name);
3594 + if ((*vpp)->v_path == NULL) {
3595 + vn_setpath(rootdir, dvp, *vpp, name, strlen(name));
3596 + }
3732 3597 }
3733 3598
3734 3599 return (ret);
3735 3600 }
3736 3601
3737 3602 int
3738 3603 fop_remove(
3739 3604 vnode_t *dvp,
3740 3605 char *nm,
3741 3606 cred_t *cr,
3742 3607 caller_context_t *ct,
3743 3608 int flags)
3744 3609 {
3745 3610 int err;
3746 3611
3747 3612 /*
3748 3613 * If this file system doesn't support case-insensitive access
3749 3614 * and said access is requested, fail quickly.
3750 3615 */
3751 3616 if (flags & FIGNORECASE &&
3752 3617 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3753 3618 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3754 3619 return (EINVAL);
3755 3620
3756 3621 VOPXID_MAP_CR(dvp, cr);
3757 3622
3758 3623 err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr, ct, flags);
3759 3624 VOPSTATS_UPDATE(dvp, remove);
3760 3625 return (err);
3761 3626 }
3762 3627
3763 3628 int
3764 3629 fop_link(
3765 3630 vnode_t *tdvp,
3766 3631 vnode_t *svp,
3767 3632 char *tnm,
3768 3633 cred_t *cr,
3769 3634 caller_context_t *ct,
3770 3635 int flags)
3771 3636 {
3772 3637 int err;
3773 3638
3774 3639 /*
3775 3640 * If the target file system doesn't support case-insensitive access
3776 3641 * and said access is requested, fail quickly.
3777 3642 */
3778 3643 if (flags & FIGNORECASE &&
3779 3644 (vfs_has_feature(tdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3780 3645 vfs_has_feature(tdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3781 3646 return (EINVAL);
3782 3647
3783 3648 VOPXID_MAP_CR(tdvp, cr);
3784 3649
3785 3650 err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr, ct, flags);
3786 3651 VOPSTATS_UPDATE(tdvp, link);
3787 3652 return (err);
3788 3653 }
3789 3654
3790 3655 int
3791 3656 fop_rename(
3792 3657 vnode_t *sdvp,
3793 3658 char *snm,
3794 3659 vnode_t *tdvp,
3795 3660 char *tnm,
3796 3661 cred_t *cr,
3797 3662 caller_context_t *ct,
3798 3663 int flags)
3799 3664 {
3800 3665 int err;
3801 3666
3802 3667 /*
3803 3668 * If the file system involved does not support
3804 3669 * case-insensitive access and said access is requested, fail
3805 3670 * quickly.
3806 3671 */
3807 3672 if (flags & FIGNORECASE &&
3808 3673 ((vfs_has_feature(sdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3809 3674 vfs_has_feature(sdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)))
3810 3675 return (EINVAL);
3811 3676
3812 3677 VOPXID_MAP_CR(tdvp, cr);
3813 3678
3814 3679 err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr, ct, flags);
3815 3680 VOPSTATS_UPDATE(sdvp, rename);
3816 3681 return (err);
3817 3682 }
3818 3683
3819 3684 int
3820 3685 fop_mkdir(
3821 3686 vnode_t *dvp,
3822 3687 char *dirname,
3823 3688 vattr_t *vap,
3824 3689 vnode_t **vpp,
3825 3690 cred_t *cr,
3826 3691 caller_context_t *ct,
3827 3692 int flags,
3828 3693 vsecattr_t *vsecp) /* ACL to set during create */
3829 3694 {
3830 3695 int ret;
3831 3696
3832 3697 if (vsecp != NULL &&
3833 3698 vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) {
3834 3699 return (EINVAL);
3835 3700 }
3836 3701 /*
3837 3702 * If this file system doesn't support case-insensitive access
3838 3703 * and said access is requested, fail quickly.
3839 3704 */
3840 3705 if (flags & FIGNORECASE &&
|
↓ open down ↓ |
99 lines elided |
↑ open up ↑ |
3841 3706 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3842 3707 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3843 3708 return (EINVAL);
3844 3709
3845 3710 VOPXID_MAP_CR(dvp, cr);
3846 3711
3847 3712 ret = (*(dvp)->v_op->vop_mkdir)
3848 3713 (dvp, dirname, vap, vpp, cr, ct, flags, vsecp);
3849 3714 if (ret == 0 && *vpp) {
3850 3715 VOPSTATS_UPDATE(*vpp, mkdir);
3851 - vn_updatepath(dvp, *vpp, dirname);
3716 + if ((*vpp)->v_path == NULL) {
3717 + vn_setpath(rootdir, dvp, *vpp, dirname,
3718 + strlen(dirname));
3719 + }
3852 3720 }
3853 3721
3854 3722 return (ret);
3855 3723 }
3856 3724
3857 3725 int
3858 3726 fop_rmdir(
3859 3727 vnode_t *dvp,
3860 3728 char *nm,
3861 3729 vnode_t *cdir,
3862 3730 cred_t *cr,
3863 3731 caller_context_t *ct,
3864 3732 int flags)
3865 3733 {
3866 3734 int err;
3867 3735
3868 3736 /*
3869 3737 * If this file system doesn't support case-insensitive access
3870 3738 * and said access is requested, fail quickly.
3871 3739 */
3872 3740 if (flags & FIGNORECASE &&
3873 3741 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3874 3742 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3875 3743 return (EINVAL);
3876 3744
3877 3745 VOPXID_MAP_CR(dvp, cr);
3878 3746
3879 3747 err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr, ct, flags);
3880 3748 VOPSTATS_UPDATE(dvp, rmdir);
3881 3749 return (err);
3882 3750 }
3883 3751
3884 3752 int
3885 3753 fop_readdir(
3886 3754 vnode_t *vp,
3887 3755 uio_t *uiop,
3888 3756 cred_t *cr,
3889 3757 int *eofp,
3890 3758 caller_context_t *ct,
3891 3759 int flags)
3892 3760 {
3893 3761 int err;
3894 3762 ssize_t resid_start = uiop->uio_resid;
3895 3763
3896 3764 /*
3897 3765 * If this file system doesn't support retrieving directory
3898 3766 * entry flags and said access is requested, fail quickly.
3899 3767 */
3900 3768 if (flags & V_RDDIR_ENTFLAGS &&
3901 3769 vfs_has_feature(vp->v_vfsp, VFSFT_DIRENTFLAGS) == 0)
3902 3770 return (EINVAL);
3903 3771
3904 3772 VOPXID_MAP_CR(vp, cr);
3905 3773
3906 3774 err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp, ct, flags);
3907 3775 VOPSTATS_UPDATE_IO(vp, readdir,
3908 3776 readdir_bytes, (resid_start - uiop->uio_resid));
3909 3777 return (err);
3910 3778 }
3911 3779
3912 3780 int
3913 3781 fop_symlink(
3914 3782 vnode_t *dvp,
3915 3783 char *linkname,
3916 3784 vattr_t *vap,
3917 3785 char *target,
3918 3786 cred_t *cr,
3919 3787 caller_context_t *ct,
3920 3788 int flags)
3921 3789 {
3922 3790 int err;
3923 3791 xvattr_t xvattr;
3924 3792
3925 3793 /*
3926 3794 * If this file system doesn't support case-insensitive access
3927 3795 * and said access is requested, fail quickly.
3928 3796 */
3929 3797 if (flags & FIGNORECASE &&
3930 3798 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
3931 3799 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
3932 3800 return (EINVAL);
3933 3801
3934 3802 VOPXID_MAP_CR(dvp, cr);
3935 3803
3936 3804 /* check for reparse point */
3937 3805 if ((vfs_has_feature(dvp->v_vfsp, VFSFT_REPARSE)) &&
3938 3806 (strncmp(target, FS_REPARSE_TAG_STR,
3939 3807 strlen(FS_REPARSE_TAG_STR)) == 0)) {
3940 3808 if (!fs_reparse_mark(target, vap, &xvattr))
3941 3809 vap = (vattr_t *)&xvattr;
3942 3810 }
3943 3811
3944 3812 err = (*(dvp)->v_op->vop_symlink)
3945 3813 (dvp, linkname, vap, target, cr, ct, flags);
3946 3814 VOPSTATS_UPDATE(dvp, symlink);
3947 3815 return (err);
3948 3816 }
3949 3817
3950 3818 int
3951 3819 fop_readlink(
3952 3820 vnode_t *vp,
3953 3821 uio_t *uiop,
3954 3822 cred_t *cr,
3955 3823 caller_context_t *ct)
3956 3824 {
3957 3825 int err;
3958 3826
3959 3827 VOPXID_MAP_CR(vp, cr);
3960 3828
3961 3829 err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr, ct);
3962 3830 VOPSTATS_UPDATE(vp, readlink);
3963 3831 return (err);
3964 3832 }
3965 3833
3966 3834 int
3967 3835 fop_fsync(
3968 3836 vnode_t *vp,
3969 3837 int syncflag,
3970 3838 cred_t *cr,
3971 3839 caller_context_t *ct)
3972 3840 {
3973 3841 int err;
3974 3842
3975 3843 VOPXID_MAP_CR(vp, cr);
3976 3844
3977 3845 err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr, ct);
3978 3846 VOPSTATS_UPDATE(vp, fsync);
3979 3847 return (err);
3980 3848 }
3981 3849
3982 3850 void
3983 3851 fop_inactive(
3984 3852 vnode_t *vp,
3985 3853 cred_t *cr,
3986 3854 caller_context_t *ct)
3987 3855 {
3988 3856 /* Need to update stats before vop call since we may lose the vnode */
3989 3857 VOPSTATS_UPDATE(vp, inactive);
3990 3858
3991 3859 VOPXID_MAP_CR(vp, cr);
3992 3860
3993 3861 (*(vp)->v_op->vop_inactive)(vp, cr, ct);
3994 3862 }
3995 3863
3996 3864 int
3997 3865 fop_fid(
3998 3866 vnode_t *vp,
3999 3867 fid_t *fidp,
4000 3868 caller_context_t *ct)
4001 3869 {
4002 3870 int err;
4003 3871
4004 3872 err = (*(vp)->v_op->vop_fid)(vp, fidp, ct);
4005 3873 VOPSTATS_UPDATE(vp, fid);
4006 3874 return (err);
4007 3875 }
4008 3876
4009 3877 int
4010 3878 fop_rwlock(
4011 3879 vnode_t *vp,
4012 3880 int write_lock,
4013 3881 caller_context_t *ct)
4014 3882 {
4015 3883 int ret;
4016 3884
4017 3885 ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct));
4018 3886 VOPSTATS_UPDATE(vp, rwlock);
4019 3887 return (ret);
4020 3888 }
4021 3889
4022 3890 void
4023 3891 fop_rwunlock(
4024 3892 vnode_t *vp,
4025 3893 int write_lock,
4026 3894 caller_context_t *ct)
4027 3895 {
4028 3896 (*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct);
4029 3897 VOPSTATS_UPDATE(vp, rwunlock);
4030 3898 }
4031 3899
4032 3900 int
4033 3901 fop_seek(
4034 3902 vnode_t *vp,
4035 3903 offset_t ooff,
4036 3904 offset_t *noffp,
4037 3905 caller_context_t *ct)
4038 3906 {
4039 3907 int err;
4040 3908
4041 3909 err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp, ct);
4042 3910 VOPSTATS_UPDATE(vp, seek);
4043 3911 return (err);
4044 3912 }
4045 3913
4046 3914 int
4047 3915 fop_cmp(
4048 3916 vnode_t *vp1,
4049 3917 vnode_t *vp2,
4050 3918 caller_context_t *ct)
4051 3919 {
4052 3920 int err;
4053 3921
4054 3922 err = (*(vp1)->v_op->vop_cmp)(vp1, vp2, ct);
4055 3923 VOPSTATS_UPDATE(vp1, cmp);
4056 3924 return (err);
4057 3925 }
4058 3926
4059 3927 int
4060 3928 fop_frlock(
4061 3929 vnode_t *vp,
4062 3930 int cmd,
4063 3931 flock64_t *bfp,
4064 3932 int flag,
4065 3933 offset_t offset,
4066 3934 struct flk_callback *flk_cbp,
4067 3935 cred_t *cr,
4068 3936 caller_context_t *ct)
4069 3937 {
4070 3938 int err;
4071 3939
4072 3940 VOPXID_MAP_CR(vp, cr);
4073 3941
4074 3942 err = (*(vp)->v_op->vop_frlock)
4075 3943 (vp, cmd, bfp, flag, offset, flk_cbp, cr, ct);
4076 3944 VOPSTATS_UPDATE(vp, frlock);
4077 3945 return (err);
4078 3946 }
4079 3947
4080 3948 int
4081 3949 fop_space(
4082 3950 vnode_t *vp,
4083 3951 int cmd,
4084 3952 flock64_t *bfp,
4085 3953 int flag,
4086 3954 offset_t offset,
4087 3955 cred_t *cr,
4088 3956 caller_context_t *ct)
4089 3957 {
4090 3958 int err;
4091 3959
4092 3960 VOPXID_MAP_CR(vp, cr);
4093 3961
4094 3962 err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct);
4095 3963 VOPSTATS_UPDATE(vp, space);
4096 3964 return (err);
4097 3965 }
4098 3966
4099 3967 int
4100 3968 fop_realvp(
4101 3969 vnode_t *vp,
4102 3970 vnode_t **vpp,
4103 3971 caller_context_t *ct)
4104 3972 {
4105 3973 int err;
4106 3974
4107 3975 err = (*(vp)->v_op->vop_realvp)(vp, vpp, ct);
4108 3976 VOPSTATS_UPDATE(vp, realvp);
4109 3977 return (err);
4110 3978 }
4111 3979
4112 3980 int
4113 3981 fop_getpage(
4114 3982 vnode_t *vp,
4115 3983 offset_t off,
4116 3984 size_t len,
4117 3985 uint_t *protp,
4118 3986 page_t **plarr,
4119 3987 size_t plsz,
4120 3988 struct seg *seg,
4121 3989 caddr_t addr,
4122 3990 enum seg_rw rw,
4123 3991 cred_t *cr,
4124 3992 caller_context_t *ct)
4125 3993 {
4126 3994 int err;
4127 3995
4128 3996 VOPXID_MAP_CR(vp, cr);
4129 3997
4130 3998 err = (*(vp)->v_op->vop_getpage)
4131 3999 (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr, ct);
4132 4000 VOPSTATS_UPDATE(vp, getpage);
4133 4001 return (err);
4134 4002 }
4135 4003
4136 4004 int
4137 4005 fop_putpage(
4138 4006 vnode_t *vp,
4139 4007 offset_t off,
4140 4008 size_t len,
4141 4009 int flags,
4142 4010 cred_t *cr,
4143 4011 caller_context_t *ct)
4144 4012 {
4145 4013 int err;
4146 4014
4147 4015 VOPXID_MAP_CR(vp, cr);
4148 4016
4149 4017 err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr, ct);
4150 4018 VOPSTATS_UPDATE(vp, putpage);
4151 4019 return (err);
4152 4020 }
4153 4021
4154 4022 int
4155 4023 fop_map(
4156 4024 vnode_t *vp,
4157 4025 offset_t off,
4158 4026 struct as *as,
4159 4027 caddr_t *addrp,
4160 4028 size_t len,
4161 4029 uchar_t prot,
4162 4030 uchar_t maxprot,
4163 4031 uint_t flags,
4164 4032 cred_t *cr,
4165 4033 caller_context_t *ct)
4166 4034 {
4167 4035 int err;
4168 4036
4169 4037 VOPXID_MAP_CR(vp, cr);
4170 4038
4171 4039 err = (*(vp)->v_op->vop_map)
4172 4040 (vp, off, as, addrp, len, prot, maxprot, flags, cr, ct);
4173 4041 VOPSTATS_UPDATE(vp, map);
4174 4042 return (err);
4175 4043 }
4176 4044
4177 4045 int
4178 4046 fop_addmap(
4179 4047 vnode_t *vp,
4180 4048 offset_t off,
4181 4049 struct as *as,
4182 4050 caddr_t addr,
4183 4051 size_t len,
4184 4052 uchar_t prot,
4185 4053 uchar_t maxprot,
4186 4054 uint_t flags,
4187 4055 cred_t *cr,
4188 4056 caller_context_t *ct)
4189 4057 {
4190 4058 int error;
4191 4059 u_longlong_t delta;
4192 4060
4193 4061 VOPXID_MAP_CR(vp, cr);
4194 4062
4195 4063 error = (*(vp)->v_op->vop_addmap)
4196 4064 (vp, off, as, addr, len, prot, maxprot, flags, cr, ct);
4197 4065
4198 4066 if ((!error) && (vp->v_type == VREG)) {
4199 4067 delta = (u_longlong_t)btopr(len);
4200 4068 /*
4201 4069 * If file is declared MAP_PRIVATE, it can't be written back
4202 4070 * even if open for write. Handle as read.
4203 4071 */
4204 4072 if (flags & MAP_PRIVATE) {
4205 4073 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4206 4074 (int64_t)delta);
4207 4075 } else {
4208 4076 /*
4209 4077 * atomic_add_64 forces the fetch of a 64 bit value to
4210 4078 * be atomic on 32 bit machines
4211 4079 */
4212 4080 if (maxprot & PROT_WRITE)
4213 4081 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
4214 4082 (int64_t)delta);
4215 4083 if (maxprot & PROT_READ)
4216 4084 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4217 4085 (int64_t)delta);
4218 4086 if (maxprot & PROT_EXEC)
4219 4087 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4220 4088 (int64_t)delta);
4221 4089 }
4222 4090 }
4223 4091 VOPSTATS_UPDATE(vp, addmap);
4224 4092 return (error);
4225 4093 }
4226 4094
4227 4095 int
4228 4096 fop_delmap(
4229 4097 vnode_t *vp,
4230 4098 offset_t off,
4231 4099 struct as *as,
4232 4100 caddr_t addr,
4233 4101 size_t len,
4234 4102 uint_t prot,
4235 4103 uint_t maxprot,
4236 4104 uint_t flags,
4237 4105 cred_t *cr,
4238 4106 caller_context_t *ct)
4239 4107 {
4240 4108 int error;
4241 4109 u_longlong_t delta;
4242 4110
4243 4111 VOPXID_MAP_CR(vp, cr);
4244 4112
4245 4113 error = (*(vp)->v_op->vop_delmap)
4246 4114 (vp, off, as, addr, len, prot, maxprot, flags, cr, ct);
4247 4115
4248 4116 /*
4249 4117 * NFS calls into delmap twice, the first time
4250 4118 * it simply establishes a callback mechanism and returns EAGAIN
4251 4119 * while the real work is being done upon the second invocation.
4252 4120 * We have to detect this here and only decrement the counts upon
4253 4121 * the second delmap request.
4254 4122 */
4255 4123 if ((error != EAGAIN) && (vp->v_type == VREG)) {
4256 4124
4257 4125 delta = (u_longlong_t)btopr(len);
4258 4126
4259 4127 if (flags & MAP_PRIVATE) {
4260 4128 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4261 4129 (int64_t)(-delta));
4262 4130 } else {
4263 4131 /*
4264 4132 * atomic_add_64 forces the fetch of a 64 bit value
4265 4133 * to be atomic on 32 bit machines
4266 4134 */
4267 4135 if (maxprot & PROT_WRITE)
4268 4136 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
4269 4137 (int64_t)(-delta));
4270 4138 if (maxprot & PROT_READ)
4271 4139 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4272 4140 (int64_t)(-delta));
4273 4141 if (maxprot & PROT_EXEC)
4274 4142 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
4275 4143 (int64_t)(-delta));
4276 4144 }
4277 4145 }
4278 4146 VOPSTATS_UPDATE(vp, delmap);
4279 4147 return (error);
4280 4148 }
4281 4149
4282 4150
4283 4151 int
4284 4152 fop_poll(
4285 4153 vnode_t *vp,
4286 4154 short events,
4287 4155 int anyyet,
4288 4156 short *reventsp,
4289 4157 struct pollhead **phpp,
4290 4158 caller_context_t *ct)
4291 4159 {
4292 4160 int err;
4293 4161
4294 4162 err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp, ct);
4295 4163 VOPSTATS_UPDATE(vp, poll);
4296 4164 return (err);
4297 4165 }
4298 4166
4299 4167 int
4300 4168 fop_dump(
4301 4169 vnode_t *vp,
4302 4170 caddr_t addr,
4303 4171 offset_t lbdn,
4304 4172 offset_t dblks,
4305 4173 caller_context_t *ct)
4306 4174 {
4307 4175 int err;
4308 4176
4309 4177 /* ensure lbdn and dblks can be passed safely to bdev_dump */
4310 4178 if ((lbdn != (daddr_t)lbdn) || (dblks != (int)dblks))
4311 4179 return (EIO);
4312 4180
4313 4181 err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks, ct);
4314 4182 VOPSTATS_UPDATE(vp, dump);
4315 4183 return (err);
4316 4184 }
4317 4185
4318 4186 int
4319 4187 fop_pathconf(
4320 4188 vnode_t *vp,
4321 4189 int cmd,
4322 4190 ulong_t *valp,
4323 4191 cred_t *cr,
4324 4192 caller_context_t *ct)
4325 4193 {
4326 4194 int err;
4327 4195
4328 4196 VOPXID_MAP_CR(vp, cr);
4329 4197
4330 4198 err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr, ct);
4331 4199 VOPSTATS_UPDATE(vp, pathconf);
4332 4200 return (err);
4333 4201 }
4334 4202
4335 4203 int
4336 4204 fop_pageio(
4337 4205 vnode_t *vp,
4338 4206 struct page *pp,
4339 4207 u_offset_t io_off,
4340 4208 size_t io_len,
4341 4209 int flags,
4342 4210 cred_t *cr,
4343 4211 caller_context_t *ct)
4344 4212 {
4345 4213 int err;
4346 4214
4347 4215 VOPXID_MAP_CR(vp, cr);
4348 4216
4349 4217 err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr, ct);
4350 4218 VOPSTATS_UPDATE(vp, pageio);
4351 4219 return (err);
4352 4220 }
4353 4221
4354 4222 int
4355 4223 fop_dumpctl(
4356 4224 vnode_t *vp,
4357 4225 int action,
4358 4226 offset_t *blkp,
4359 4227 caller_context_t *ct)
4360 4228 {
4361 4229 int err;
4362 4230 err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp, ct);
4363 4231 VOPSTATS_UPDATE(vp, dumpctl);
4364 4232 return (err);
4365 4233 }
4366 4234
4367 4235 void
4368 4236 fop_dispose(
4369 4237 vnode_t *vp,
4370 4238 page_t *pp,
4371 4239 int flag,
4372 4240 int dn,
4373 4241 cred_t *cr,
4374 4242 caller_context_t *ct)
4375 4243 {
4376 4244 /* Must do stats first since it's possible to lose the vnode */
4377 4245 VOPSTATS_UPDATE(vp, dispose);
4378 4246
4379 4247 VOPXID_MAP_CR(vp, cr);
4380 4248
4381 4249 (*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr, ct);
4382 4250 }
4383 4251
4384 4252 int
4385 4253 fop_setsecattr(
4386 4254 vnode_t *vp,
4387 4255 vsecattr_t *vsap,
4388 4256 int flag,
4389 4257 cred_t *cr,
4390 4258 caller_context_t *ct)
4391 4259 {
4392 4260 int err;
4393 4261
4394 4262 VOPXID_MAP_CR(vp, cr);
4395 4263
4396 4264 /*
4397 4265 * We're only allowed to skip the ACL check iff we used a 32 bit
4398 4266 * ACE mask with VOP_ACCESS() to determine permissions.
4399 4267 */
4400 4268 if ((flag & ATTR_NOACLCHECK) &&
4401 4269 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
4402 4270 return (EINVAL);
4403 4271 }
4404 4272 err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr, ct);
4405 4273 VOPSTATS_UPDATE(vp, setsecattr);
4406 4274 return (err);
4407 4275 }
4408 4276
4409 4277 int
4410 4278 fop_getsecattr(
4411 4279 vnode_t *vp,
4412 4280 vsecattr_t *vsap,
4413 4281 int flag,
4414 4282 cred_t *cr,
4415 4283 caller_context_t *ct)
4416 4284 {
4417 4285 int err;
4418 4286
4419 4287 /*
4420 4288 * We're only allowed to skip the ACL check iff we used a 32 bit
4421 4289 * ACE mask with VOP_ACCESS() to determine permissions.
4422 4290 */
4423 4291 if ((flag & ATTR_NOACLCHECK) &&
4424 4292 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
4425 4293 return (EINVAL);
4426 4294 }
4427 4295
4428 4296 VOPXID_MAP_CR(vp, cr);
4429 4297
4430 4298 err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr, ct);
4431 4299 VOPSTATS_UPDATE(vp, getsecattr);
4432 4300 return (err);
4433 4301 }
4434 4302
4435 4303 int
4436 4304 fop_shrlock(
4437 4305 vnode_t *vp,
4438 4306 int cmd,
4439 4307 struct shrlock *shr,
4440 4308 int flag,
4441 4309 cred_t *cr,
4442 4310 caller_context_t *ct)
4443 4311 {
4444 4312 int err;
4445 4313
4446 4314 VOPXID_MAP_CR(vp, cr);
4447 4315
4448 4316 err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr, ct);
4449 4317 VOPSTATS_UPDATE(vp, shrlock);
4450 4318 return (err);
4451 4319 }
4452 4320
4453 4321 int
4454 4322 fop_vnevent(vnode_t *vp, vnevent_t vnevent, vnode_t *dvp, char *fnm,
4455 4323 caller_context_t *ct)
4456 4324 {
4457 4325 int err;
4458 4326
4459 4327 err = (*(vp)->v_op->vop_vnevent)(vp, vnevent, dvp, fnm, ct);
4460 4328 VOPSTATS_UPDATE(vp, vnevent);
4461 4329 return (err);
4462 4330 }
4463 4331
4464 4332 int
4465 4333 fop_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *uiop, cred_t *cr,
4466 4334 caller_context_t *ct)
4467 4335 {
4468 4336 int err;
4469 4337
4470 4338 if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0)
4471 4339 return (ENOTSUP);
4472 4340 err = (*(vp)->v_op->vop_reqzcbuf)(vp, ioflag, uiop, cr, ct);
4473 4341 VOPSTATS_UPDATE(vp, reqzcbuf);
4474 4342 return (err);
4475 4343 }
4476 4344
4477 4345 int
4478 4346 fop_retzcbuf(vnode_t *vp, xuio_t *uiop, cred_t *cr, caller_context_t *ct)
4479 4347 {
4480 4348 int err;
4481 4349
4482 4350 if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0)
4483 4351 return (ENOTSUP);
4484 4352 err = (*(vp)->v_op->vop_retzcbuf)(vp, uiop, cr, ct);
4485 4353 VOPSTATS_UPDATE(vp, retzcbuf);
4486 4354 return (err);
4487 4355 }
4488 4356
4489 4357 /*
4490 4358 * Default destructor
4491 4359 * Needed because NULL destructor means that the key is unused
4492 4360 */
4493 4361 /* ARGSUSED */
4494 4362 void
4495 4363 vsd_defaultdestructor(void *value)
4496 4364 {}
4497 4365
4498 4366 /*
4499 4367 * Create a key (index into per vnode array)
4500 4368 * Locks out vsd_create, vsd_destroy, and vsd_free
4501 4369 * May allocate memory with lock held
4502 4370 */
4503 4371 void
4504 4372 vsd_create(uint_t *keyp, void (*destructor)(void *))
4505 4373 {
4506 4374 int i;
4507 4375 uint_t nkeys;
4508 4376
4509 4377 /*
4510 4378 * if key is allocated, do nothing
4511 4379 */
4512 4380 mutex_enter(&vsd_lock);
4513 4381 if (*keyp) {
4514 4382 mutex_exit(&vsd_lock);
4515 4383 return;
4516 4384 }
4517 4385 /*
4518 4386 * find an unused key
4519 4387 */
4520 4388 if (destructor == NULL)
4521 4389 destructor = vsd_defaultdestructor;
4522 4390
4523 4391 for (i = 0; i < vsd_nkeys; ++i)
4524 4392 if (vsd_destructor[i] == NULL)
4525 4393 break;
4526 4394
4527 4395 /*
4528 4396 * if no unused keys, increase the size of the destructor array
4529 4397 */
4530 4398 if (i == vsd_nkeys) {
4531 4399 if ((nkeys = (vsd_nkeys << 1)) == 0)
4532 4400 nkeys = 1;
4533 4401 vsd_destructor =
4534 4402 (void (**)(void *))vsd_realloc((void *)vsd_destructor,
4535 4403 (size_t)(vsd_nkeys * sizeof (void (*)(void *))),
4536 4404 (size_t)(nkeys * sizeof (void (*)(void *))));
4537 4405 vsd_nkeys = nkeys;
4538 4406 }
4539 4407
4540 4408 /*
4541 4409 * allocate the next available unused key
4542 4410 */
4543 4411 vsd_destructor[i] = destructor;
4544 4412 *keyp = i + 1;
4545 4413
4546 4414 /* create vsd_list, if it doesn't exist */
4547 4415 if (vsd_list == NULL) {
4548 4416 vsd_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
4549 4417 list_create(vsd_list, sizeof (struct vsd_node),
4550 4418 offsetof(struct vsd_node, vs_nodes));
4551 4419 }
4552 4420
4553 4421 mutex_exit(&vsd_lock);
4554 4422 }
4555 4423
4556 4424 /*
4557 4425 * Destroy a key
4558 4426 *
4559 4427 * Assumes that the caller is preventing vsd_set and vsd_get
4560 4428 * Locks out vsd_create, vsd_destroy, and vsd_free
4561 4429 * May free memory with lock held
4562 4430 */
4563 4431 void
4564 4432 vsd_destroy(uint_t *keyp)
4565 4433 {
4566 4434 uint_t key;
4567 4435 struct vsd_node *vsd;
4568 4436
4569 4437 /*
4570 4438 * protect the key namespace and our destructor lists
4571 4439 */
4572 4440 mutex_enter(&vsd_lock);
4573 4441 key = *keyp;
4574 4442 *keyp = 0;
4575 4443
4576 4444 ASSERT(key <= vsd_nkeys);
4577 4445
4578 4446 /*
4579 4447 * if the key is valid
4580 4448 */
4581 4449 if (key != 0) {
4582 4450 uint_t k = key - 1;
4583 4451 /*
4584 4452 * for every vnode with VSD, call key's destructor
4585 4453 */
4586 4454 for (vsd = list_head(vsd_list); vsd != NULL;
4587 4455 vsd = list_next(vsd_list, vsd)) {
4588 4456 /*
4589 4457 * no VSD for key in this vnode
4590 4458 */
4591 4459 if (key > vsd->vs_nkeys)
4592 4460 continue;
4593 4461 /*
4594 4462 * call destructor for key
4595 4463 */
4596 4464 if (vsd->vs_value[k] && vsd_destructor[k])
4597 4465 (*vsd_destructor[k])(vsd->vs_value[k]);
4598 4466 /*
4599 4467 * reset value for key
4600 4468 */
4601 4469 vsd->vs_value[k] = NULL;
4602 4470 }
4603 4471 /*
4604 4472 * actually free the key (NULL destructor == unused)
4605 4473 */
4606 4474 vsd_destructor[k] = NULL;
4607 4475 }
4608 4476
4609 4477 mutex_exit(&vsd_lock);
4610 4478 }
4611 4479
4612 4480 /*
4613 4481 * Quickly return the per vnode value that was stored with the specified key
4614 4482 * Assumes the caller is protecting key from vsd_create and vsd_destroy
4615 4483 * Assumes the caller is holding v_vsd_lock to protect the vsd.
4616 4484 */
4617 4485 void *
4618 4486 vsd_get(vnode_t *vp, uint_t key)
4619 4487 {
4620 4488 struct vsd_node *vsd;
4621 4489
4622 4490 ASSERT(vp != NULL);
4623 4491 ASSERT(mutex_owned(&vp->v_vsd_lock));
4624 4492
4625 4493 vsd = vp->v_vsd;
4626 4494
4627 4495 if (key && vsd != NULL && key <= vsd->vs_nkeys)
4628 4496 return (vsd->vs_value[key - 1]);
4629 4497 return (NULL);
4630 4498 }
4631 4499
4632 4500 /*
4633 4501 * Set a per vnode value indexed with the specified key
4634 4502 * Assumes the caller is holding v_vsd_lock to protect the vsd.
4635 4503 */
4636 4504 int
4637 4505 vsd_set(vnode_t *vp, uint_t key, void *value)
4638 4506 {
4639 4507 struct vsd_node *vsd;
4640 4508
4641 4509 ASSERT(vp != NULL);
4642 4510 ASSERT(mutex_owned(&vp->v_vsd_lock));
4643 4511
4644 4512 if (key == 0)
4645 4513 return (EINVAL);
4646 4514
4647 4515 vsd = vp->v_vsd;
4648 4516 if (vsd == NULL)
4649 4517 vsd = vp->v_vsd = kmem_zalloc(sizeof (*vsd), KM_SLEEP);
4650 4518
4651 4519 /*
4652 4520 * If the vsd was just allocated, vs_nkeys will be 0, so the following
4653 4521 * code won't happen and we will continue down and allocate space for
4654 4522 * the vs_value array.
4655 4523 * If the caller is replacing one value with another, then it is up
4656 4524 * to the caller to free/rele/destroy the previous value (if needed).
4657 4525 */
4658 4526 if (key <= vsd->vs_nkeys) {
4659 4527 vsd->vs_value[key - 1] = value;
4660 4528 return (0);
4661 4529 }
4662 4530
4663 4531 ASSERT(key <= vsd_nkeys);
4664 4532
4665 4533 if (vsd->vs_nkeys == 0) {
4666 4534 mutex_enter(&vsd_lock); /* lock out vsd_destroy() */
4667 4535 /*
4668 4536 * Link onto list of all VSD nodes.
4669 4537 */
4670 4538 list_insert_head(vsd_list, vsd);
4671 4539 mutex_exit(&vsd_lock);
4672 4540 }
4673 4541
4674 4542 /*
4675 4543 * Allocate vnode local storage and set the value for key
4676 4544 */
4677 4545 vsd->vs_value = vsd_realloc(vsd->vs_value,
4678 4546 vsd->vs_nkeys * sizeof (void *),
4679 4547 key * sizeof (void *));
4680 4548 vsd->vs_nkeys = key;
4681 4549 vsd->vs_value[key - 1] = value;
4682 4550
4683 4551 return (0);
4684 4552 }
4685 4553
4686 4554 /*
4687 4555 * Called from vn_free() to run the destructor function for each vsd
4688 4556 * Locks out vsd_create and vsd_destroy
4689 4557 * Assumes that the destructor *DOES NOT* use vsd
4690 4558 */
4691 4559 void
4692 4560 vsd_free(vnode_t *vp)
4693 4561 {
4694 4562 int i;
4695 4563 struct vsd_node *vsd = vp->v_vsd;
4696 4564
4697 4565 if (vsd == NULL)
4698 4566 return;
4699 4567
4700 4568 if (vsd->vs_nkeys == 0) {
4701 4569 kmem_free(vsd, sizeof (*vsd));
4702 4570 vp->v_vsd = NULL;
4703 4571 return;
4704 4572 }
4705 4573
4706 4574 /*
4707 4575 * lock out vsd_create and vsd_destroy, call
4708 4576 * the destructor, and mark the value as destroyed.
4709 4577 */
4710 4578 mutex_enter(&vsd_lock);
4711 4579
4712 4580 for (i = 0; i < vsd->vs_nkeys; i++) {
4713 4581 if (vsd->vs_value[i] && vsd_destructor[i])
4714 4582 (*vsd_destructor[i])(vsd->vs_value[i]);
4715 4583 vsd->vs_value[i] = NULL;
4716 4584 }
4717 4585
4718 4586 /*
4719 4587 * remove from linked list of VSD nodes
4720 4588 */
4721 4589 list_remove(vsd_list, vsd);
4722 4590
4723 4591 mutex_exit(&vsd_lock);
4724 4592
4725 4593 /*
4726 4594 * free up the VSD
4727 4595 */
4728 4596 kmem_free(vsd->vs_value, vsd->vs_nkeys * sizeof (void *));
4729 4597 kmem_free(vsd, sizeof (struct vsd_node));
4730 4598 vp->v_vsd = NULL;
4731 4599 }
4732 4600
4733 4601 /*
4734 4602 * realloc
4735 4603 */
4736 4604 static void *
4737 4605 vsd_realloc(void *old, size_t osize, size_t nsize)
4738 4606 {
4739 4607 void *new;
4740 4608
4741 4609 new = kmem_zalloc(nsize, KM_SLEEP);
4742 4610 if (old) {
4743 4611 bcopy(old, new, osize);
4744 4612 kmem_free(old, osize);
4745 4613 }
4746 4614 return (new);
4747 4615 }
4748 4616
4749 4617 /*
4750 4618 * Setup the extensible system attribute for creating a reparse point.
4751 4619 * The symlink data 'target' is validated for proper format of a reparse
4752 4620 * string and a check also made to make sure the symlink data does not
4753 4621 * point to an existing file.
4754 4622 *
4755 4623 * return 0 if ok else -1.
4756 4624 */
4757 4625 static int
4758 4626 fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr)
4759 4627 {
4760 4628 xoptattr_t *xoap;
4761 4629
4762 4630 if ((!target) || (!vap) || (!xvattr))
4763 4631 return (-1);
4764 4632
4765 4633 /* validate reparse string */
4766 4634 if (reparse_validate((const char *)target))
4767 4635 return (-1);
4768 4636
4769 4637 xva_init(xvattr);
4770 4638 xvattr->xva_vattr = *vap;
4771 4639 xvattr->xva_vattr.va_mask |= AT_XVATTR;
4772 4640 xoap = xva_getxoptattr(xvattr);
4773 4641 ASSERT(xoap);
4774 4642 XVA_SET_REQ(xvattr, XAT_REPARSE);
4775 4643 xoap->xoa_reparse = 1;
4776 4644
4777 4645 return (0);
4778 4646 }
4779 4647
4780 4648 /*
4781 4649 * Function to check whether a symlink is a reparse point.
4782 4650 * Return B_TRUE if it is a reparse point, else return B_FALSE
4783 4651 */
4784 4652 boolean_t
4785 4653 vn_is_reparse(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4786 4654 {
4787 4655 xvattr_t xvattr;
4788 4656 xoptattr_t *xoap;
4789 4657
4790 4658 if ((vp->v_type != VLNK) ||
4791 4659 !(vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR)))
4792 4660 return (B_FALSE);
4793 4661
4794 4662 xva_init(&xvattr);
4795 4663 xoap = xva_getxoptattr(&xvattr);
4796 4664 ASSERT(xoap);
4797 4665 XVA_SET_REQ(&xvattr, XAT_REPARSE);
4798 4666
4799 4667 if (VOP_GETATTR(vp, &xvattr.xva_vattr, 0, cr, ct))
4800 4668 return (B_FALSE);
4801 4669
4802 4670 if ((!(xvattr.xva_vattr.va_mask & AT_XVATTR)) ||
4803 4671 (!(XVA_ISSET_RTN(&xvattr, XAT_REPARSE))))
4804 4672 return (B_FALSE);
4805 4673
4806 4674 return (xoap->xoa_reparse ? B_TRUE : B_FALSE);
4807 4675 }
|
↓ open down ↓ |
946 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX