Print this page
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/fs/udfs/udf_vnops.c
+++ new/usr/src/uts/common/fs/udfs/udf_vnops.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 */
25 25
26 26 /*
27 27 * Copyright 2015, Joyent, Inc.
28 28 */
29 29
30 30 #include <sys/types.h>
31 31 #include <sys/t_lock.h>
32 32 #include <sys/param.h>
33 33 #include <sys/time.h>
34 34 #include <sys/systm.h>
35 35 #include <sys/sysmacros.h>
36 36 #include <sys/resource.h>
37 37 #include <sys/signal.h>
38 38 #include <sys/cred.h>
39 39 #include <sys/user.h>
40 40 #include <sys/buf.h>
41 41 #include <sys/vfs.h>
42 42 #include <sys/vfs_opreg.h>
43 43 #include <sys/stat.h>
44 44 #include <sys/vnode.h>
45 45 #include <sys/mode.h>
46 46 #include <sys/proc.h>
47 47 #include <sys/disp.h>
48 48 #include <sys/file.h>
49 49 #include <sys/fcntl.h>
50 50 #include <sys/flock.h>
51 51 #include <sys/kmem.h>
52 52 #include <sys/uio.h>
53 53 #include <sys/dnlc.h>
54 54 #include <sys/conf.h>
55 55 #include <sys/errno.h>
56 56 #include <sys/mman.h>
57 57 #include <sys/fbuf.h>
58 58 #include <sys/pathname.h>
59 59 #include <sys/debug.h>
60 60 #include <sys/vmsystm.h>
61 61 #include <sys/cmn_err.h>
62 62 #include <sys/dirent.h>
63 63 #include <sys/errno.h>
64 64 #include <sys/modctl.h>
65 65 #include <sys/statvfs.h>
66 66 #include <sys/mount.h>
67 67 #include <sys/sunddi.h>
68 68 #include <sys/bootconf.h>
69 69 #include <sys/policy.h>
70 70
71 71 #include <vm/hat.h>
72 72 #include <vm/page.h>
73 73 #include <vm/pvn.h>
74 74 #include <vm/as.h>
75 75 #include <vm/seg.h>
76 76 #include <vm/seg_map.h>
77 77 #include <vm/seg_kmem.h>
78 78 #include <vm/seg_vn.h>
79 79 #include <vm/rm.h>
80 80 #include <vm/page.h>
81 81 #include <sys/swap.h>
82 82
83 83 #include <fs/fs_subr.h>
84 84
85 85 #include <sys/fs/udf_volume.h>
86 86 #include <sys/fs/udf_inode.h>
87 87
88 88 static int32_t udf_open(struct vnode **,
89 89 int32_t, struct cred *, caller_context_t *);
90 90 static int32_t udf_close(struct vnode *,
91 91 int32_t, int32_t, offset_t, struct cred *, caller_context_t *);
92 92 static int32_t udf_read(struct vnode *,
93 93 struct uio *, int32_t, struct cred *, caller_context_t *);
94 94 static int32_t udf_write(struct vnode *,
95 95 struct uio *, int32_t, struct cred *, caller_context_t *);
96 96 static int32_t udf_ioctl(struct vnode *,
97 97 int32_t, intptr_t, int32_t, struct cred *, int32_t *,
98 98 caller_context_t *);
99 99 static int32_t udf_getattr(struct vnode *,
100 100 struct vattr *, int32_t, struct cred *, caller_context_t *);
101 101 static int32_t udf_setattr(struct vnode *,
102 102 struct vattr *, int32_t, struct cred *, caller_context_t *);
103 103 static int32_t udf_access(struct vnode *,
104 104 int32_t, int32_t, struct cred *, caller_context_t *);
105 105 static int32_t udf_lookup(struct vnode *,
106 106 char *, struct vnode **, struct pathname *,
107 107 int32_t, struct vnode *, struct cred *,
108 108 caller_context_t *, int *, pathname_t *);
109 109 static int32_t udf_create(struct vnode *,
110 110 char *, struct vattr *, enum vcexcl,
111 111 int32_t, struct vnode **, struct cred *, int32_t,
112 112 caller_context_t *, vsecattr_t *);
113 113 static int32_t udf_remove(struct vnode *,
114 114 char *, struct cred *, caller_context_t *, int);
115 115 static int32_t udf_link(struct vnode *,
116 116 struct vnode *, char *, struct cred *, caller_context_t *, int);
117 117 static int32_t udf_rename(struct vnode *,
118 118 char *, struct vnode *, char *, struct cred *, caller_context_t *, int);
119 119 static int32_t udf_mkdir(struct vnode *,
120 120 char *, struct vattr *, struct vnode **, struct cred *,
121 121 caller_context_t *, int, vsecattr_t *);
122 122 static int32_t udf_rmdir(struct vnode *,
123 123 char *, struct vnode *, struct cred *, caller_context_t *, int);
124 124 static int32_t udf_readdir(struct vnode *,
125 125 struct uio *, struct cred *, int32_t *, caller_context_t *, int);
126 126 static int32_t udf_symlink(struct vnode *,
127 127 char *, struct vattr *, char *, struct cred *, caller_context_t *, int);
128 128 static int32_t udf_readlink(struct vnode *,
129 129 struct uio *, struct cred *, caller_context_t *);
130 130 static int32_t udf_fsync(struct vnode *,
131 131 int32_t, struct cred *, caller_context_t *);
132 132 static void udf_inactive(struct vnode *,
133 133 struct cred *, caller_context_t *);
134 134 static int32_t udf_fid(struct vnode *, struct fid *, caller_context_t *);
135 135 static int udf_rwlock(struct vnode *, int32_t, caller_context_t *);
136 136 static void udf_rwunlock(struct vnode *, int32_t, caller_context_t *);
137 137 static int32_t udf_seek(struct vnode *, offset_t, offset_t *,
138 138 caller_context_t *);
139 139 static int32_t udf_frlock(struct vnode *, int32_t,
140 140 struct flock64 *, int32_t, offset_t, struct flk_callback *, cred_t *,
141 141 caller_context_t *);
142 142 static int32_t udf_space(struct vnode *, int32_t,
143 143 struct flock64 *, int32_t, offset_t, cred_t *, caller_context_t *);
144 144 static int32_t udf_getpage(struct vnode *, offset_t,
145 145 size_t, uint32_t *, struct page **, size_t,
146 146 struct seg *, caddr_t, enum seg_rw, struct cred *, caller_context_t *);
147 147 static int32_t udf_putpage(struct vnode *, offset_t,
148 148 size_t, int32_t, struct cred *, caller_context_t *);
149 149 static int32_t udf_map(struct vnode *, offset_t, struct as *,
150 150 caddr_t *, size_t, uint8_t, uint8_t, uint32_t, struct cred *,
151 151 caller_context_t *);
152 152 static int32_t udf_addmap(struct vnode *, offset_t, struct as *,
153 153 caddr_t, size_t, uint8_t, uint8_t, uint32_t, struct cred *,
154 154 caller_context_t *);
155 155 static int32_t udf_delmap(struct vnode *, offset_t, struct as *,
156 156 caddr_t, size_t, uint32_t, uint32_t, uint32_t, struct cred *,
157 157 caller_context_t *);
158 158 static int32_t udf_l_pathconf(struct vnode *, int32_t,
159 159 ulong_t *, struct cred *, caller_context_t *);
160 160 static int32_t udf_pageio(struct vnode *, struct page *,
161 161 u_offset_t, size_t, int32_t, struct cred *, caller_context_t *);
162 162
163 163 int32_t ud_getpage_miss(struct vnode *, u_offset_t,
164 164 size_t, struct seg *, caddr_t, page_t *pl[],
165 165 size_t, enum seg_rw, int32_t);
166 166 void ud_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t);
167 167 int32_t ud_putpages(struct vnode *, offset_t, size_t, int32_t, struct cred *);
168 168 int32_t ud_page_fill(struct ud_inode *, page_t *,
169 169 u_offset_t, uint32_t, u_offset_t *);
170 170 int32_t ud_iodone(struct buf *);
171 171 int32_t ud_rdip(struct ud_inode *, struct uio *, int32_t, cred_t *);
172 172 int32_t ud_wrip(struct ud_inode *, struct uio *, int32_t, cred_t *);
173 173 int32_t ud_multi_strat(struct ud_inode *, page_t *, struct buf *, u_offset_t);
174 174 int32_t ud_slave_done(struct buf *);
175 175
176 176 /*
177 177 * Structures to control multiple IO operations to get or put pages
178 178 * that are backed by discontiguous blocks. The master struct is
179 179 * a dummy that holds the original bp from pageio_setup. The
180 180 * slave struct holds the working bp's to do the actual IO. Once
181 181 * all the slave IOs complete. The master is processed as if a single
182 182 * IO op has completed.
183 183 */
184 184 uint32_t master_index = 0;
185 185 typedef struct mio_master {
186 186 kmutex_t mm_mutex; /* protect the fields below */
187 187 int32_t mm_size;
188 188 buf_t *mm_bp; /* original bp */
189 189 int32_t mm_resid; /* bytes remaining to transfer */
190 190 int32_t mm_error; /* accumulated error from slaves */
191 191 int32_t mm_index; /* XXX debugging */
192 192 } mio_master_t;
193 193
194 194 typedef struct mio_slave {
195 195 buf_t ms_buf; /* working buffer for this IO chunk */
196 196 mio_master_t *ms_ptr; /* pointer to master */
197 197 } mio_slave_t;
198 198
199 199 struct vnodeops *udf_vnodeops;
200 200
201 201 const fs_operation_def_t udf_vnodeops_template[] = {
202 202 VOPNAME_OPEN, { .vop_open = udf_open },
203 203 VOPNAME_CLOSE, { .vop_close = udf_close },
204 204 VOPNAME_READ, { .vop_read = udf_read },
205 205 VOPNAME_WRITE, { .vop_write = udf_write },
206 206 VOPNAME_IOCTL, { .vop_ioctl = udf_ioctl },
207 207 VOPNAME_GETATTR, { .vop_getattr = udf_getattr },
208 208 VOPNAME_SETATTR, { .vop_setattr = udf_setattr },
209 209 VOPNAME_ACCESS, { .vop_access = udf_access },
210 210 VOPNAME_LOOKUP, { .vop_lookup = udf_lookup },
211 211 VOPNAME_CREATE, { .vop_create = udf_create },
212 212 VOPNAME_REMOVE, { .vop_remove = udf_remove },
213 213 VOPNAME_LINK, { .vop_link = udf_link },
214 214 VOPNAME_RENAME, { .vop_rename = udf_rename },
215 215 VOPNAME_MKDIR, { .vop_mkdir = udf_mkdir },
216 216 VOPNAME_RMDIR, { .vop_rmdir = udf_rmdir },
217 217 VOPNAME_READDIR, { .vop_readdir = udf_readdir },
218 218 VOPNAME_SYMLINK, { .vop_symlink = udf_symlink },
219 219 VOPNAME_READLINK, { .vop_readlink = udf_readlink },
220 220 VOPNAME_FSYNC, { .vop_fsync = udf_fsync },
221 221 VOPNAME_INACTIVE, { .vop_inactive = udf_inactive },
222 222 VOPNAME_FID, { .vop_fid = udf_fid },
223 223 VOPNAME_RWLOCK, { .vop_rwlock = udf_rwlock },
224 224 VOPNAME_RWUNLOCK, { .vop_rwunlock = udf_rwunlock },
225 225 VOPNAME_SEEK, { .vop_seek = udf_seek },
226 226 VOPNAME_FRLOCK, { .vop_frlock = udf_frlock },
227 227 VOPNAME_SPACE, { .vop_space = udf_space },
228 228 VOPNAME_GETPAGE, { .vop_getpage = udf_getpage },
229 229 VOPNAME_PUTPAGE, { .vop_putpage = udf_putpage },
230 230 VOPNAME_MAP, { .vop_map = udf_map },
231 231 VOPNAME_ADDMAP, { .vop_addmap = udf_addmap },
232 232 VOPNAME_DELMAP, { .vop_delmap = udf_delmap },
233 233 VOPNAME_PATHCONF, { .vop_pathconf = udf_l_pathconf },
234 234 VOPNAME_PAGEIO, { .vop_pageio = udf_pageio },
235 235 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
236 236 NULL, NULL
237 237 };
238 238
239 239 /* ARGSUSED */
240 240 static int32_t
241 241 udf_open(
242 242 struct vnode **vpp,
243 243 int32_t flag,
244 244 struct cred *cr,
245 245 caller_context_t *ct)
246 246 {
247 247 ud_printf("udf_open\n");
248 248
249 249 return (0);
250 250 }
251 251
252 252 /* ARGSUSED */
253 253 static int32_t
254 254 udf_close(
255 255 struct vnode *vp,
256 256 int32_t flag,
257 257 int32_t count,
258 258 offset_t offset,
259 259 struct cred *cr,
260 260 caller_context_t *ct)
261 261 {
262 262 struct ud_inode *ip = VTOI(vp);
263 263
264 264 ud_printf("udf_close\n");
265 265
266 266 ITIMES(ip);
267 267
268 268 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
269 269 cleanshares(vp, ttoproc(curthread)->p_pid);
270 270
271 271 /*
272 272 * Push partially filled cluster at last close.
273 273 * ``last close'' is approximated because the dnlc
274 274 * may have a hold on the vnode.
275 275 */
276 276 if (vp->v_count <= 2 && vp->v_type != VBAD) {
277 277 struct ud_inode *ip = VTOI(vp);
278 278 if (ip->i_delaylen) {
279 279 (void) ud_putpages(vp, ip->i_delayoff, ip->i_delaylen,
280 280 B_ASYNC | B_FREE, cr);
281 281 ip->i_delaylen = 0;
282 282 }
283 283 }
284 284
285 285 return (0);
286 286 }
287 287
288 288 /* ARGSUSED */
289 289 static int32_t
290 290 udf_read(
291 291 struct vnode *vp,
292 292 struct uio *uiop,
293 293 int32_t ioflag,
294 294 struct cred *cr,
295 295 caller_context_t *ct)
296 296 {
297 297 struct ud_inode *ip = VTOI(vp);
298 298 int32_t error;
299 299
300 300 ud_printf("udf_read\n");
301 301
302 302 #ifdef __lock_lint
303 303 rw_enter(&ip->i_rwlock, RW_READER);
304 304 #endif
305 305
306 306 ASSERT(RW_READ_HELD(&ip->i_rwlock));
307 307
308 308 if (MANDLOCK(vp, ip->i_char)) {
309 309 /*
310 310 * udf_getattr ends up being called by chklock
311 311 */
312 312 error = chklock(vp, FREAD, uiop->uio_loffset,
313 313 uiop->uio_resid, uiop->uio_fmode, ct);
314 314 if (error) {
315 315 goto end;
316 316 }
317 317 }
318 318
319 319 rw_enter(&ip->i_contents, RW_READER);
320 320 error = ud_rdip(ip, uiop, ioflag, cr);
321 321 rw_exit(&ip->i_contents);
322 322
323 323 end:
324 324 #ifdef __lock_lint
325 325 rw_exit(&ip->i_rwlock);
326 326 #endif
327 327
328 328 return (error);
329 329 }
330 330
331 331
332 332 int32_t ud_WRITES = 1;
333 333 int32_t ud_HW = 96 * 1024;
334 334 int32_t ud_LW = 64 * 1024;
335 335 int32_t ud_throttles = 0;
336 336
337 337 /* ARGSUSED */
338 338 static int32_t
339 339 udf_write(
340 340 struct vnode *vp,
341 341 struct uio *uiop,
342 342 int32_t ioflag,
343 343 struct cred *cr,
344 344 caller_context_t *ct)
345 345 {
346 346 struct ud_inode *ip = VTOI(vp);
347 347 int32_t error = 0;
348 348
349 349 ud_printf("udf_write\n");
350 350
351 351 #ifdef __lock_lint
352 352 rw_enter(&ip->i_rwlock, RW_WRITER);
353 353 #endif
354 354
355 355 ASSERT(RW_WRITE_HELD(&ip->i_rwlock));
356 356
357 357 if (MANDLOCK(vp, ip->i_char)) {
358 358 /*
359 359 * ud_getattr ends up being called by chklock
360 360 */
361 361 error = chklock(vp, FWRITE, uiop->uio_loffset,
362 362 uiop->uio_resid, uiop->uio_fmode, ct);
363 363 if (error) {
364 364 goto end;
365 365 }
366 366 }
367 367 /*
368 368 * Throttle writes.
369 369 */
370 370 mutex_enter(&ip->i_tlock);
371 371 if (ud_WRITES && (ip->i_writes > ud_HW)) {
372 372 while (ip->i_writes > ud_HW) {
373 373 ud_throttles++;
374 374 cv_wait(&ip->i_wrcv, &ip->i_tlock);
375 375 }
376 376 }
377 377 mutex_exit(&ip->i_tlock);
378 378
379 379 /*
380 380 * Write to the file
381 381 */
382 382 rw_enter(&ip->i_contents, RW_WRITER);
383 383 if ((ioflag & FAPPEND) != 0 && (ip->i_type == VREG)) {
384 384 /*
385 385 * In append mode start at end of file.
386 386 */
387 387 uiop->uio_loffset = ip->i_size;
388 388 }
389 389 error = ud_wrip(ip, uiop, ioflag, cr);
390 390 rw_exit(&ip->i_contents);
391 391
392 392 end:
393 393 #ifdef __lock_lint
394 394 rw_exit(&ip->i_rwlock);
395 395 #endif
396 396
397 397 return (error);
398 398 }
399 399
400 400 /* ARGSUSED */
401 401 static int32_t
402 402 udf_ioctl(
403 403 struct vnode *vp,
404 404 int32_t cmd,
405 405 intptr_t arg,
406 406 int32_t flag,
407 407 struct cred *cr,
408 408 int32_t *rvalp,
409 409 caller_context_t *ct)
410 410 {
411 411 return (ENOTTY);
412 412 }
413 413
414 414 /* ARGSUSED */
415 415 static int32_t
416 416 udf_getattr(
417 417 struct vnode *vp,
418 418 struct vattr *vap,
419 419 int32_t flags,
420 420 struct cred *cr,
421 421 caller_context_t *ct)
422 422 {
423 423 struct ud_inode *ip = VTOI(vp);
424 424
425 425 ud_printf("udf_getattr\n");
426 426
427 427 if (vap->va_mask == AT_SIZE) {
428 428 /*
429 429 * for performance, if only the size is requested don't bother
430 430 * with anything else.
431 431 */
432 432 vap->va_size = ip->i_size;
433 433 return (0);
434 434 }
435 435
436 436 rw_enter(&ip->i_contents, RW_READER);
437 437
438 438 vap->va_type = vp->v_type;
439 439 vap->va_mode = UD2VA_PERM(ip->i_perm) | ip->i_char;
440 440
441 441 vap->va_uid = ip->i_uid;
442 442 vap->va_gid = ip->i_gid;
443 443 vap->va_fsid = ip->i_dev;
444 444 vap->va_nodeid = ip->i_icb_lbano;
445 445 vap->va_nlink = ip->i_nlink;
446 446 vap->va_size = ip->i_size;
447 447 vap->va_seq = ip->i_seq;
448 448 if (vp->v_type == VCHR || vp->v_type == VBLK) {
449 449 vap->va_rdev = ip->i_rdev;
450 450 } else {
451 451 vap->va_rdev = 0;
452 452 }
453 453
454 454 mutex_enter(&ip->i_tlock);
455 455 ITIMES_NOLOCK(ip); /* mark correct time in inode */
456 456 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec;
457 457 vap->va_atime.tv_nsec = ip->i_atime.tv_nsec;
458 458 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec;
459 459 vap->va_mtime.tv_nsec = ip->i_mtime.tv_nsec;
460 460 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec;
461 461 vap->va_ctime.tv_nsec = ip->i_ctime.tv_nsec;
462 462 mutex_exit(&ip->i_tlock);
463 463
464 464 switch (ip->i_type) {
465 465 case VBLK:
466 466 vap->va_blksize = MAXBSIZE;
467 467 break;
468 468 case VCHR:
469 469 vap->va_blksize = MAXBSIZE;
470 470 break;
471 471 default:
472 472 vap->va_blksize = ip->i_udf->udf_lbsize;
473 473 break;
474 474 }
475 475 vap->va_nblocks = ip->i_lbr << ip->i_udf->udf_l2d_shift;
476 476
477 477 rw_exit(&ip->i_contents);
478 478
479 479 return (0);
480 480 }
481 481
482 482 static int
483 483 ud_iaccess_vmode(void *ip, int mode, struct cred *cr)
484 484 {
485 485 return (ud_iaccess(ip, UD_UPERM2DPERM(mode), cr, 0));
486 486 }
487 487
488 488 /*ARGSUSED4*/
489 489 static int32_t
490 490 udf_setattr(
491 491 struct vnode *vp,
492 492 struct vattr *vap,
493 493 int32_t flags,
494 494 struct cred *cr,
495 495 caller_context_t *ct)
496 496 {
497 497 int32_t error = 0;
498 498 uint32_t mask = vap->va_mask;
499 499 struct ud_inode *ip;
500 500 timestruc_t now;
501 501 struct vattr ovap;
502 502
503 503 ud_printf("udf_setattr\n");
504 504
505 505 ip = VTOI(vp);
506 506
507 507 /*
508 508 * not updates allowed to 4096 files
509 509 */
510 510 if (ip->i_astrat == STRAT_TYPE4096) {
511 511 return (EINVAL);
512 512 }
513 513
514 514 /*
515 515 * Cannot set these attributes
516 516 */
517 517 if (mask & AT_NOSET) {
518 518 return (EINVAL);
519 519 }
520 520
521 521 rw_enter(&ip->i_rwlock, RW_WRITER);
522 522 rw_enter(&ip->i_contents, RW_WRITER);
523 523
524 524 ovap.va_uid = ip->i_uid;
525 525 ovap.va_mode = UD2VA_PERM(ip->i_perm) | ip->i_char;
526 526 error = secpolicy_vnode_setattr(cr, vp, vap, &ovap, flags,
527 527 ud_iaccess_vmode, ip);
528 528 if (error)
529 529 goto update_inode;
530 530
531 531 mask = vap->va_mask;
532 532 /*
533 533 * Change file access modes.
534 534 */
535 535 if (mask & AT_MODE) {
536 536 ip->i_perm = VA2UD_PERM(vap->va_mode);
537 537 ip->i_char = vap->va_mode & (VSUID | VSGID | VSVTX);
538 538 mutex_enter(&ip->i_tlock);
539 539 ip->i_flag |= ICHG;
540 540 mutex_exit(&ip->i_tlock);
541 541 }
542 542 if (mask & (AT_UID|AT_GID)) {
543 543 if (mask & AT_UID) {
544 544 ip->i_uid = vap->va_uid;
545 545 }
546 546 if (mask & AT_GID) {
547 547 ip->i_gid = vap->va_gid;
548 548 }
549 549 mutex_enter(&ip->i_tlock);
550 550 ip->i_flag |= ICHG;
551 551 mutex_exit(&ip->i_tlock);
552 552 }
553 553 /*
554 554 * Truncate file. Must have write permission and not be a directory.
555 555 */
556 556 if (mask & AT_SIZE) {
557 557 if (vp->v_type == VDIR) {
558 558 error = EISDIR;
559 559 goto update_inode;
560 560 }
561 561 if (error = ud_iaccess(ip, IWRITE, cr, 0)) {
562 562 goto update_inode;
563 563 }
564 564 if (vap->va_size > MAXOFFSET_T) {
565 565 error = EFBIG;
566 566 goto update_inode;
567 567 }
568 568 if (error = ud_itrunc(ip, vap->va_size, 0, cr)) {
569 569 goto update_inode;
570 570 }
571 571
572 572 if (vap->va_size == 0) {
573 573 vnevent_truncate(vp, ct);
574 574 } else {
575 575 vnevent_resize(vp, ct);
576 576 }
577 577 }
578 578 /*
579 579 * Change file access or modified times.
580 580 */
581 581 if (mask & (AT_ATIME|AT_MTIME)) {
582 582 mutex_enter(&ip->i_tlock);
583 583 if (mask & AT_ATIME) {
584 584 ip->i_atime.tv_sec = vap->va_atime.tv_sec;
585 585 ip->i_atime.tv_nsec = vap->va_atime.tv_nsec;
586 586 ip->i_flag &= ~IACC;
587 587 }
588 588 if (mask & AT_MTIME) {
589 589 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec;
590 590 ip->i_mtime.tv_nsec = vap->va_mtime.tv_nsec;
591 591 gethrestime(&now);
592 592 ip->i_ctime.tv_sec = now.tv_sec;
593 593 ip->i_ctime.tv_nsec = now.tv_nsec;
594 594 ip->i_flag &= ~(IUPD|ICHG);
595 595 ip->i_flag |= IMODTIME;
596 596 }
597 597 ip->i_flag |= IMOD;
598 598 mutex_exit(&ip->i_tlock);
599 599 }
600 600
601 601 update_inode:
602 602 if (curthread->t_flag & T_DONTPEND) {
603 603 ud_iupdat(ip, 1);
604 604 } else {
605 605 ITIMES_NOLOCK(ip);
606 606 }
607 607 rw_exit(&ip->i_contents);
608 608 rw_exit(&ip->i_rwlock);
609 609
610 610 return (error);
611 611 }
612 612
613 613 /* ARGSUSED */
614 614 static int32_t
615 615 udf_access(
616 616 struct vnode *vp,
617 617 int32_t mode,
618 618 int32_t flags,
619 619 struct cred *cr,
620 620 caller_context_t *ct)
621 621 {
622 622 struct ud_inode *ip = VTOI(vp);
623 623
624 624 ud_printf("udf_access\n");
625 625
626 626 if (ip->i_udf == NULL) {
627 627 return (EIO);
628 628 }
629 629
630 630 return (ud_iaccess(ip, UD_UPERM2DPERM(mode), cr, 1));
631 631 }
632 632
633 633 int32_t udfs_stickyhack = 1;
634 634
635 635 /* ARGSUSED */
636 636 static int32_t
637 637 udf_lookup(
638 638 struct vnode *dvp,
639 639 char *nm,
640 640 struct vnode **vpp,
641 641 struct pathname *pnp,
642 642 int32_t flags,
643 643 struct vnode *rdir,
644 644 struct cred *cr,
645 645 caller_context_t *ct,
646 646 int *direntflags,
647 647 pathname_t *realpnp)
648 648 {
649 649 int32_t error;
650 650 struct vnode *vp;
651 651 struct ud_inode *ip, *xip;
652 652
653 653 ud_printf("udf_lookup\n");
654 654 /*
655 655 * Null component name is a synonym for directory being searched.
656 656 */
657 657 if (*nm == '\0') {
658 658 VN_HOLD(dvp);
659 659 *vpp = dvp;
660 660 error = 0;
661 661 goto out;
662 662 }
663 663
664 664 /*
665 665 * Fast path: Check the directory name lookup cache.
666 666 */
667 667 ip = VTOI(dvp);
668 668 if (vp = dnlc_lookup(dvp, nm)) {
669 669 /*
670 670 * Check accessibility of directory.
671 671 */
672 672 if ((error = ud_iaccess(ip, IEXEC, cr, 1)) != 0) {
673 673 VN_RELE(vp);
674 674 }
675 675 xip = VTOI(vp);
676 676 } else {
677 677 error = ud_dirlook(ip, nm, &xip, cr, 1);
678 678 ITIMES(ip);
679 679 }
680 680
681 681 if (error == 0) {
682 682 ip = xip;
683 683 *vpp = ITOV(ip);
684 684 if ((ip->i_type != VDIR) &&
685 685 (ip->i_char & ISVTX) &&
686 686 ((ip->i_perm & IEXEC) == 0) &&
687 687 udfs_stickyhack) {
688 688 mutex_enter(&(*vpp)->v_lock);
689 689 (*vpp)->v_flag |= VISSWAP;
690 690 mutex_exit(&(*vpp)->v_lock);
691 691 }
692 692 ITIMES(ip);
693 693 /*
694 694 * If vnode is a device return special vnode instead.
695 695 */
696 696 if (IS_DEVVP(*vpp)) {
697 697 struct vnode *newvp;
698 698 newvp = specvp(*vpp, (*vpp)->v_rdev,
699 699 (*vpp)->v_type, cr);
700 700 VN_RELE(*vpp);
701 701 if (newvp == NULL) {
702 702 error = ENOSYS;
703 703 } else {
704 704 *vpp = newvp;
705 705 }
706 706 }
707 707 }
708 708 out:
709 709 return (error);
710 710 }
711 711
712 712 /* ARGSUSED */
713 713 static int32_t
714 714 udf_create(
715 715 struct vnode *dvp,
716 716 char *name,
717 717 struct vattr *vap,
718 718 enum vcexcl excl,
719 719 int32_t mode,
720 720 struct vnode **vpp,
721 721 struct cred *cr,
722 722 int32_t flag,
723 723 caller_context_t *ct,
724 724 vsecattr_t *vsecp)
725 725 {
726 726 int32_t error;
727 727 struct ud_inode *ip = VTOI(dvp), *xip;
728 728
729 729 ud_printf("udf_create\n");
730 730
731 731 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0)
732 732 vap->va_mode &= ~VSVTX;
733 733
734 734 if (*name == '\0') {
735 735 /*
736 736 * Null component name refers to the directory itself.
737 737 */
738 738 VN_HOLD(dvp);
739 739 ITIMES(ip);
740 740 error = EEXIST;
741 741 } else {
742 742 xip = NULL;
743 743 rw_enter(&ip->i_rwlock, RW_WRITER);
744 744 error = ud_direnter(ip, name, DE_CREATE,
745 745 (struct ud_inode *)0, (struct ud_inode *)0,
746 746 vap, &xip, cr, ct);
747 747 rw_exit(&ip->i_rwlock);
748 748 ITIMES(ip);
749 749 ip = xip;
750 750 }
751 751 #ifdef __lock_lint
752 752 rw_enter(&ip->i_contents, RW_WRITER);
753 753 #else
754 754 if (ip != NULL) {
755 755 rw_enter(&ip->i_contents, RW_WRITER);
756 756 }
757 757 #endif
758 758
759 759 /*
760 760 * If the file already exists and this is a non-exclusive create,
761 761 * check permissions and allow access for non-directories.
762 762 * Read-only create of an existing directory is also allowed.
763 763 * We fail an exclusive create of anything which already exists.
764 764 */
765 765 if (error == EEXIST) {
766 766 if (excl == NONEXCL) {
767 767 if ((ip->i_type == VDIR) && (mode & VWRITE)) {
768 768 error = EISDIR;
769 769 } else if (mode) {
770 770 error = ud_iaccess(ip,
771 771 UD_UPERM2DPERM(mode), cr, 0);
772 772 } else {
773 773 error = 0;
774 774 }
775 775 }
776 776 if (error) {
777 777 rw_exit(&ip->i_contents);
778 778 VN_RELE(ITOV(ip));
779 779 goto out;
780 780 } else if ((ip->i_type == VREG) &&
781 781 (vap->va_mask & AT_SIZE) && vap->va_size == 0) {
782 782 /*
783 783 * Truncate regular files, if requested by caller.
784 784 * Grab i_rwlock to make sure no one else is
785 785 * currently writing to the file (we promised
786 786 * bmap we would do this).
787 787 * Must get the locks in the correct order.
788 788 */
789 789 if (ip->i_size == 0) {
790 790 ip->i_flag |= ICHG | IUPD;
791 791 } else {
792 792 rw_exit(&ip->i_contents);
793 793 rw_enter(&ip->i_rwlock, RW_WRITER);
794 794 rw_enter(&ip->i_contents, RW_WRITER);
795 795 (void) ud_itrunc(ip, 0, 0, cr);
796 796 rw_exit(&ip->i_rwlock);
797 797 }
798 798 vnevent_create(ITOV(ip), ct);
799 799 }
800 800 }
801 801
802 802 if (error == 0) {
803 803 *vpp = ITOV(ip);
804 804 ITIMES(ip);
805 805 }
806 806 #ifdef __lock_lint
807 807 rw_exit(&ip->i_contents);
808 808 #else
809 809 if (ip != NULL) {
810 810 rw_exit(&ip->i_contents);
811 811 }
812 812 #endif
813 813 if (error) {
814 814 goto out;
815 815 }
816 816
817 817 /*
818 818 * If vnode is a device return special vnode instead.
819 819 */
820 820 if (!error && IS_DEVVP(*vpp)) {
821 821 struct vnode *newvp;
822 822
823 823 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
824 824 VN_RELE(*vpp);
825 825 if (newvp == NULL) {
826 826 error = ENOSYS;
827 827 goto out;
828 828 }
829 829 *vpp = newvp;
830 830 }
831 831 out:
832 832 return (error);
833 833 }
834 834
835 835 /* ARGSUSED */
836 836 static int32_t
837 837 udf_remove(
838 838 struct vnode *vp,
839 839 char *nm,
840 840 struct cred *cr,
841 841 caller_context_t *ct,
842 842 int flags)
843 843 {
844 844 int32_t error;
845 845 struct ud_inode *ip = VTOI(vp);
846 846
847 847 ud_printf("udf_remove\n");
848 848
849 849 rw_enter(&ip->i_rwlock, RW_WRITER);
850 850 error = ud_dirremove(ip, nm,
851 851 (struct ud_inode *)0, (struct vnode *)0, DR_REMOVE, cr, ct);
852 852 rw_exit(&ip->i_rwlock);
853 853 ITIMES(ip);
854 854
855 855 return (error);
856 856 }
857 857
858 858 /* ARGSUSED */
859 859 static int32_t
860 860 udf_link(
861 861 struct vnode *tdvp,
862 862 struct vnode *svp,
863 863 char *tnm,
864 864 struct cred *cr,
865 865 caller_context_t *ct,
866 866 int flags)
867 867 {
868 868 int32_t error;
869 869 struct vnode *realvp;
870 870 struct ud_inode *sip;
871 871 struct ud_inode *tdp;
872 872
873 873 ud_printf("udf_link\n");
874 874 if (VOP_REALVP(svp, &realvp, ct) == 0) {
875 875 svp = realvp;
876 876 }
877 877
878 878 /*
879 879 * Do not allow links to directories
880 880 */
881 881 if (svp->v_type == VDIR) {
882 882 return (EPERM);
883 883 }
884 884
885 885 sip = VTOI(svp);
886 886
887 887 if (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)
888 888 return (EPERM);
889 889
890 890 tdp = VTOI(tdvp);
891 891
892 892 rw_enter(&tdp->i_rwlock, RW_WRITER);
893 893 error = ud_direnter(tdp, tnm, DE_LINK, (struct ud_inode *)0,
894 894 sip, (struct vattr *)0, (struct ud_inode **)0, cr, ct);
895 895 rw_exit(&tdp->i_rwlock);
896 896 ITIMES(sip);
897 897 ITIMES(tdp);
898 898
899 899 if (error == 0) {
900 900 vnevent_link(svp, ct);
901 901 }
902 902
903 903 return (error);
904 904 }
905 905
906 906 /* ARGSUSED */
907 907 static int32_t
908 908 udf_rename(
909 909 struct vnode *sdvp,
910 910 char *snm,
911 911 struct vnode *tdvp,
912 912 char *tnm,
913 913 struct cred *cr,
914 914 caller_context_t *ct,
915 915 int flags)
916 916 {
917 917 int32_t error = 0;
918 918 struct udf_vfs *udf_vfsp;
919 919 struct ud_inode *sip; /* source inode */
920 920 struct ud_inode *tip; /* target inode */
921 921 struct ud_inode *sdp, *tdp; /* source and target parent inode */
922 922 struct vnode *realvp;
923 923
924 924 ud_printf("udf_rename\n");
925 925
926 926 if (VOP_REALVP(tdvp, &realvp, ct) == 0) {
927 927 tdvp = realvp;
928 928 }
929 929
930 930 sdp = VTOI(sdvp);
931 931 tdp = VTOI(tdvp);
932 932
933 933 udf_vfsp = sdp->i_udf;
934 934
935 935 mutex_enter(&udf_vfsp->udf_rename_lck);
936 936 /*
937 937 * Look up inode of file we're supposed to rename.
938 938 */
939 939 if (error = ud_dirlook(sdp, snm, &sip, cr, 0)) {
940 940 mutex_exit(&udf_vfsp->udf_rename_lck);
941 941 return (error);
942 942 }
943 943 /*
944 944 * be sure this is not a directory with another file system mounted
945 945 * over it. If it is just give up the locks, and return with
946 946 * EBUSY
947 947 */
948 948 if (vn_mountedvfs(ITOV(sip)) != NULL) {
949 949 error = EBUSY;
950 950 goto errout;
951 951 }
952 952 /*
953 953 * Make sure we can delete the source entry. This requires
954 954 * write permission on the containing directory. If that
955 955 * directory is "sticky" it further requires (except for
956 956 * privileged users) that the user own the directory or the
957 957 * source entry, or else have permission to write the source
958 958 * entry.
959 959 */
960 960 rw_enter(&sdp->i_contents, RW_READER);
961 961 rw_enter(&sip->i_contents, RW_READER);
962 962 if ((error = ud_iaccess(sdp, IWRITE, cr, 0)) != 0 ||
963 963 (error = ud_sticky_remove_access(sdp, sip, cr)) != 0) {
964 964 rw_exit(&sip->i_contents);
965 965 rw_exit(&sdp->i_contents);
966 966 ITIMES(sip);
967 967 goto errout;
968 968 }
969 969
970 970 /*
971 971 * Check for renaming '.' or '..' or alias of '.'
972 972 */
973 973 if ((strcmp(snm, ".") == 0) ||
974 974 (strcmp(snm, "..") == 0) ||
975 975 (sdp == sip)) {
976 976 error = EINVAL;
977 977 rw_exit(&sip->i_contents);
978 978 rw_exit(&sdp->i_contents);
979 979 goto errout;
980 980 }
981 981
982 982 rw_exit(&sip->i_contents);
983 983 rw_exit(&sdp->i_contents);
984 984
985 985 if (ud_dirlook(tdp, tnm, &tip, cr, 0) == 0) {
986 986 vnevent_pre_rename_dest(ITOV(tip), tdvp, tnm, ct);
987 987 VN_RELE(ITOV(tip));
988 988 }
989 989
990 990 /* Notify the target dir. if not the same as the source dir. */
991 991 if (sdvp != tdvp)
992 992 vnevent_pre_rename_dest_dir(tdvp, ITOV(sip), tnm, ct);
993 993
994 994 vnevent_pre_rename_src(ITOV(sip), sdvp, snm, ct);
995 995
996 996 /*
997 997 * Link source to the target.
998 998 */
999 999 rw_enter(&tdp->i_rwlock, RW_WRITER);
1000 1000 if (error = ud_direnter(tdp, tnm, DE_RENAME, sdp, sip,
1001 1001 (struct vattr *)0, (struct ud_inode **)0, cr, ct)) {
1002 1002 /*
1003 1003 * ESAME isn't really an error; it indicates that the
1004 1004 * operation should not be done because the source and target
1005 1005 * are the same file, but that no error should be reported.
1006 1006 */
1007 1007 if (error == ESAME) {
1008 1008 error = 0;
1009 1009 }
1010 1010 rw_exit(&tdp->i_rwlock);
1011 1011 goto errout;
1012 1012 }
1013 1013 rw_exit(&tdp->i_rwlock);
1014 1014
1015 1015 rw_enter(&sdp->i_rwlock, RW_WRITER);
1016 1016 /*
1017 1017 * Unlink the source.
1018 1018 * Remove the source entry. ud_dirremove() checks that the entry
1019 1019 * still reflects sip, and returns an error if it doesn't.
1020 1020 * If the entry has changed just forget about it. Release
1021 1021 * the source inode.
1022 1022 */
1023 1023 if ((error = ud_dirremove(sdp, snm, sip, (struct vnode *)0,
1024 1024 DR_RENAME, cr, ct)) == ENOENT) {
1025 1025 error = 0;
1026 1026 }
1027 1027 rw_exit(&sdp->i_rwlock);
1028 1028
1029 1029 if (error == 0) {
1030 1030 vnevent_rename_src(ITOV(sip), sdvp, snm, ct);
1031 1031 /*
1032 1032 * vnevent_rename_dest and vnevent_rename_dest_dir are called
1033 1033 * in ud_direnter().
1034 1034 */
1035 1035 }
1036 1036
1037 1037 errout:
1038 1038 ITIMES(sdp);
1039 1039 ITIMES(tdp);
1040 1040 VN_RELE(ITOV(sip));
1041 1041 mutex_exit(&udf_vfsp->udf_rename_lck);
1042 1042
1043 1043 return (error);
1044 1044 }
1045 1045
1046 1046 /* ARGSUSED */
1047 1047 static int32_t
1048 1048 udf_mkdir(
1049 1049 struct vnode *dvp,
1050 1050 char *dirname,
1051 1051 struct vattr *vap,
1052 1052 struct vnode **vpp,
1053 1053 struct cred *cr,
1054 1054 caller_context_t *ct,
1055 1055 int flags,
1056 1056 vsecattr_t *vsecp)
1057 1057 {
1058 1058 int32_t error;
1059 1059 struct ud_inode *ip;
1060 1060 struct ud_inode *xip;
1061 1061
1062 1062 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
1063 1063
1064 1064 ud_printf("udf_mkdir\n");
1065 1065
1066 1066 ip = VTOI(dvp);
1067 1067 rw_enter(&ip->i_rwlock, RW_WRITER);
1068 1068 error = ud_direnter(ip, dirname, DE_MKDIR,
1069 1069 (struct ud_inode *)0, (struct ud_inode *)0, vap, &xip, cr, ct);
1070 1070 rw_exit(&ip->i_rwlock);
1071 1071 ITIMES(ip);
1072 1072 if (error == 0) {
1073 1073 ip = xip;
1074 1074 *vpp = ITOV(ip);
1075 1075 ITIMES(ip);
1076 1076 } else if (error == EEXIST) {
1077 1077 ITIMES(xip);
1078 1078 VN_RELE(ITOV(xip));
1079 1079 }
1080 1080
1081 1081 return (error);
1082 1082 }
1083 1083
1084 1084 /* ARGSUSED */
1085 1085 static int32_t
1086 1086 udf_rmdir(
1087 1087 struct vnode *vp,
1088 1088 char *nm,
1089 1089 struct vnode *cdir,
1090 1090 struct cred *cr,
1091 1091 caller_context_t *ct,
1092 1092 int flags)
1093 1093 {
1094 1094 int32_t error;
1095 1095 struct ud_inode *ip = VTOI(vp);
1096 1096
1097 1097 ud_printf("udf_rmdir\n");
1098 1098
1099 1099 rw_enter(&ip->i_rwlock, RW_WRITER);
1100 1100 error = ud_dirremove(ip, nm, (struct ud_inode *)0, cdir, DR_RMDIR,
1101 1101 cr, ct);
1102 1102 rw_exit(&ip->i_rwlock);
1103 1103 ITIMES(ip);
1104 1104
1105 1105 return (error);
1106 1106 }
1107 1107
1108 1108 /* ARGSUSED */
1109 1109 static int32_t
1110 1110 udf_readdir(
1111 1111 struct vnode *vp,
1112 1112 struct uio *uiop,
1113 1113 struct cred *cr,
1114 1114 int32_t *eofp,
1115 1115 caller_context_t *ct,
1116 1116 int flags)
1117 1117 {
1118 1118 struct ud_inode *ip;
1119 1119 struct dirent64 *nd;
1120 1120 struct udf_vfs *udf_vfsp;
1121 1121 int32_t error = 0, len, outcount = 0;
1122 1122 uint32_t dirsiz, offset;
1123 1123 uint32_t bufsize, ndlen, dummy;
1124 1124 caddr_t outbuf;
1125 1125 caddr_t outb, end_outb;
1126 1126 struct iovec *iovp;
1127 1127
1128 1128 uint8_t *dname;
1129 1129 int32_t length;
1130 1130
1131 1131 uint8_t *buf = NULL;
1132 1132
1133 1133 struct fbuf *fbp = NULL;
1134 1134 struct file_id *fid;
1135 1135 uint8_t *name;
1136 1136
1137 1137
1138 1138 ud_printf("udf_readdir\n");
1139 1139
1140 1140 ip = VTOI(vp);
1141 1141 udf_vfsp = ip->i_udf;
1142 1142
1143 1143 dirsiz = ip->i_size;
1144 1144 if ((uiop->uio_offset >= dirsiz) ||
1145 1145 (ip->i_nlink <= 0)) {
1146 1146 if (eofp) {
1147 1147 *eofp = 1;
1148 1148 }
1149 1149 return (0);
1150 1150 }
1151 1151
1152 1152 offset = uiop->uio_offset;
1153 1153 iovp = uiop->uio_iov;
1154 1154 bufsize = iovp->iov_len;
1155 1155
1156 1156 outb = outbuf = (char *)kmem_alloc((uint32_t)bufsize, KM_SLEEP);
1157 1157 end_outb = outb + bufsize;
1158 1158 nd = (struct dirent64 *)outbuf;
1159 1159
1160 1160 dname = (uint8_t *)kmem_zalloc(1024, KM_SLEEP);
1161 1161 buf = (uint8_t *)kmem_zalloc(udf_vfsp->udf_lbsize, KM_SLEEP);
1162 1162
1163 1163 if (offset == 0) {
1164 1164 len = DIRENT64_RECLEN(1);
1165 1165 if (((caddr_t)nd + len) >= end_outb) {
1166 1166 error = EINVAL;
1167 1167 goto end;
1168 1168 }
1169 1169 nd->d_ino = ip->i_icb_lbano;
1170 1170 nd->d_reclen = (uint16_t)len;
1171 1171 nd->d_off = 0x10;
1172 1172 nd->d_name[0] = '.';
1173 1173 bzero(&nd->d_name[1], DIRENT64_NAMELEN(len) - 1);
1174 1174 nd = (struct dirent64 *)((char *)nd + nd->d_reclen);
1175 1175 outcount++;
1176 1176 } else if (offset == 0x10) {
1177 1177 offset = 0;
1178 1178 }
1179 1179
1180 1180 while (offset < dirsiz) {
1181 1181 error = ud_get_next_fid(ip, &fbp,
1182 1182 offset, &fid, &name, buf);
1183 1183 if (error != 0) {
1184 1184 break;
1185 1185 }
1186 1186
1187 1187 if ((fid->fid_flags & FID_DELETED) == 0) {
1188 1188 if (fid->fid_flags & FID_PARENT) {
1189 1189
1190 1190 len = DIRENT64_RECLEN(2);
1191 1191 if (((caddr_t)nd + len) >= end_outb) {
1192 1192 error = EINVAL;
1193 1193 break;
1194 1194 }
1195 1195
1196 1196 nd->d_ino = ip->i_icb_lbano;
1197 1197 nd->d_reclen = (uint16_t)len;
1198 1198 nd->d_off = offset + FID_LEN(fid);
1199 1199 nd->d_name[0] = '.';
1200 1200 nd->d_name[1] = '.';
1201 1201 bzero(&nd->d_name[2],
1202 1202 DIRENT64_NAMELEN(len) - 2);
1203 1203 nd = (struct dirent64 *)
1204 1204 ((char *)nd + nd->d_reclen);
1205 1205 } else {
1206 1206 if ((error = ud_uncompress(fid->fid_idlen,
1207 1207 &length, name, dname)) != 0) {
1208 1208 break;
1209 1209 }
1210 1210 if (length == 0) {
1211 1211 offset += FID_LEN(fid);
1212 1212 continue;
1213 1213 }
1214 1214 len = DIRENT64_RECLEN(length);
1215 1215 if (((caddr_t)nd + len) >= end_outb) {
1216 1216 if (!outcount) {
1217 1217 error = EINVAL;
1218 1218 }
1219 1219 break;
1220 1220 }
1221 1221 (void) strncpy(nd->d_name,
1222 1222 (caddr_t)dname, length);
1223 1223 bzero(&nd->d_name[length],
1224 1224 DIRENT64_NAMELEN(len) - length);
1225 1225 nd->d_ino = ud_xlate_to_daddr(udf_vfsp,
1226 1226 SWAP_16(fid->fid_icb.lad_ext_prn),
1227 1227 SWAP_32(fid->fid_icb.lad_ext_loc), 1,
1228 1228 &dummy);
1229 1229 nd->d_reclen = (uint16_t)len;
1230 1230 nd->d_off = offset + FID_LEN(fid);
1231 1231 nd = (struct dirent64 *)
1232 1232 ((char *)nd + nd->d_reclen);
1233 1233 }
1234 1234 outcount++;
1235 1235 }
1236 1236
1237 1237 offset += FID_LEN(fid);
1238 1238 }
1239 1239
1240 1240 end:
1241 1241 if (fbp != NULL) {
1242 1242 fbrelse(fbp, S_OTHER);
1243 1243 }
1244 1244 ndlen = ((char *)nd - outbuf);
1245 1245 /*
1246 1246 * In case of error do not call uiomove.
1247 1247 * Return the error to the caller.
1248 1248 */
1249 1249 if ((error == 0) && (ndlen != 0)) {
1250 1250 error = uiomove(outbuf, (long)ndlen, UIO_READ, uiop);
1251 1251 uiop->uio_offset = offset;
1252 1252 }
1253 1253 kmem_free((caddr_t)buf, udf_vfsp->udf_lbsize);
1254 1254 kmem_free((caddr_t)dname, 1024);
1255 1255 kmem_free(outbuf, (uint32_t)bufsize);
1256 1256 if (eofp && error == 0) {
1257 1257 *eofp = (uiop->uio_offset >= dirsiz);
1258 1258 }
1259 1259 return (error);
1260 1260 }
1261 1261
1262 1262 /* ARGSUSED */
1263 1263 static int32_t
1264 1264 udf_symlink(
1265 1265 struct vnode *dvp,
1266 1266 char *linkname,
1267 1267 struct vattr *vap,
1268 1268 char *target,
1269 1269 struct cred *cr,
1270 1270 caller_context_t *ct,
1271 1271 int flags)
1272 1272 {
1273 1273 int32_t error = 0, outlen;
1274 1274 uint32_t ioflag = 0;
1275 1275 struct ud_inode *ip, *dip = VTOI(dvp);
1276 1276
1277 1277 struct path_comp *pc;
1278 1278 int8_t *dname = NULL, *uname = NULL, *sp;
1279 1279
1280 1280 ud_printf("udf_symlink\n");
1281 1281
1282 1282 ip = (struct ud_inode *)0;
1283 1283 vap->va_type = VLNK;
1284 1284 vap->va_rdev = 0;
1285 1285
1286 1286 rw_enter(&dip->i_rwlock, RW_WRITER);
1287 1287 error = ud_direnter(dip, linkname, DE_CREATE,
1288 1288 (struct ud_inode *)0, (struct ud_inode *)0, vap, &ip, cr, ct);
1289 1289 rw_exit(&dip->i_rwlock);
1290 1290 if (error == 0) {
1291 1291 dname = kmem_zalloc(1024, KM_SLEEP);
1292 1292 uname = kmem_zalloc(PAGESIZE, KM_SLEEP);
1293 1293
1294 1294 pc = (struct path_comp *)uname;
1295 1295 /*
1296 1296 * If the first character in target is "/"
1297 1297 * then skip it and create entry for it
1298 1298 */
1299 1299 if (*target == '/') {
1300 1300 pc->pc_type = 2;
1301 1301 pc->pc_len = 0;
1302 1302 pc = (struct path_comp *)(((char *)pc) + 4);
1303 1303 while (*target == '/') {
1304 1304 target++;
1305 1305 }
1306 1306 }
1307 1307
1308 1308 while (*target != NULL) {
1309 1309 sp = target;
1310 1310 while ((*target != '/') && (*target != '\0')) {
1311 1311 target ++;
1312 1312 }
1313 1313 /*
1314 1314 * We got the next component of the
1315 1315 * path name. Create path_comp of
1316 1316 * appropriate type
1317 1317 */
1318 1318 if (((target - sp) == 1) && (*sp == '.')) {
1319 1319 /*
1320 1320 * Dot entry.
1321 1321 */
1322 1322 pc->pc_type = 4;
1323 1323 pc = (struct path_comp *)(((char *)pc) + 4);
1324 1324 } else if (((target - sp) == 2) &&
1325 1325 (*sp == '.') && ((*(sp + 1)) == '.')) {
1326 1326 /*
1327 1327 * DotDot entry.
1328 1328 */
1329 1329 pc->pc_type = 3;
1330 1330 pc = (struct path_comp *)(((char *)pc) + 4);
1331 1331 } else {
1332 1332 /*
1333 1333 * convert the user given name
1334 1334 * into appropriate form to be put
1335 1335 * on the media
1336 1336 */
1337 1337 outlen = 1024; /* set to size of dname */
1338 1338 if (error = ud_compress(target - sp, &outlen,
1339 1339 (uint8_t *)sp, (uint8_t *)dname)) {
1340 1340 break;
1341 1341 }
1342 1342 pc->pc_type = 5;
1343 1343 /* LINTED */
1344 1344 pc->pc_len = outlen;
1345 1345 dname[outlen] = '\0';
1346 1346 (void) strcpy((char *)pc->pc_id, dname);
1347 1347 pc = (struct path_comp *)
1348 1348 (((char *)pc) + 4 + outlen);
1349 1349 }
1350 1350 while (*target == '/') {
1351 1351 target++;
1352 1352 }
1353 1353 if (*target == NULL) {
1354 1354 break;
1355 1355 }
1356 1356 }
1357 1357
1358 1358 rw_enter(&ip->i_contents, RW_WRITER);
1359 1359 if (error == 0) {
1360 1360 ioflag = FWRITE;
1361 1361 if (curthread->t_flag & T_DONTPEND) {
1362 1362 ioflag |= FDSYNC;
1363 1363 }
1364 1364 error = ud_rdwri(UIO_WRITE, ioflag, ip,
1365 1365 uname, ((int8_t *)pc) - uname,
1366 1366 (offset_t)0, UIO_SYSSPACE, (int32_t *)0, cr);
1367 1367 }
1368 1368 if (error) {
1369 1369 ud_idrop(ip);
1370 1370 rw_exit(&ip->i_contents);
1371 1371 rw_enter(&dip->i_rwlock, RW_WRITER);
1372 1372 (void) ud_dirremove(dip, linkname, (struct ud_inode *)0,
1373 1373 (struct vnode *)0, DR_REMOVE, cr, ct);
1374 1374 rw_exit(&dip->i_rwlock);
1375 1375 goto update_inode;
1376 1376 }
1377 1377 rw_exit(&ip->i_contents);
1378 1378 }
1379 1379
1380 1380 if ((error == 0) || (error == EEXIST)) {
1381 1381 VN_RELE(ITOV(ip));
1382 1382 }
1383 1383
1384 1384 update_inode:
1385 1385 ITIMES(VTOI(dvp));
1386 1386 if (uname != NULL) {
1387 1387 kmem_free(uname, PAGESIZE);
1388 1388 }
1389 1389 if (dname != NULL) {
1390 1390 kmem_free(dname, 1024);
1391 1391 }
1392 1392
1393 1393 return (error);
1394 1394 }
1395 1395
1396 1396 /* ARGSUSED */
1397 1397 static int32_t
1398 1398 udf_readlink(
1399 1399 struct vnode *vp,
1400 1400 struct uio *uiop,
1401 1401 struct cred *cr,
1402 1402 caller_context_t *ct)
1403 1403 {
1404 1404 int32_t error = 0, off, id_len, size, len;
1405 1405 int8_t *dname = NULL, *uname = NULL;
1406 1406 struct ud_inode *ip;
1407 1407 struct fbuf *fbp = NULL;
1408 1408 struct path_comp *pc;
1409 1409
1410 1410 ud_printf("udf_readlink\n");
1411 1411
1412 1412 if (vp->v_type != VLNK) {
1413 1413 return (EINVAL);
1414 1414 }
1415 1415
1416 1416 ip = VTOI(vp);
1417 1417 size = ip->i_size;
1418 1418 if (size > PAGESIZE) {
1419 1419 return (EIO);
1420 1420 }
1421 1421
1422 1422 if (size == 0) {
1423 1423 return (0);
1424 1424 }
1425 1425
1426 1426 dname = kmem_zalloc(1024, KM_SLEEP);
1427 1427 uname = kmem_zalloc(PAGESIZE, KM_SLEEP);
1428 1428
1429 1429 rw_enter(&ip->i_contents, RW_READER);
1430 1430
1431 1431 if ((error = fbread(vp, 0, size, S_READ, &fbp)) != 0) {
1432 1432 goto end;
1433 1433 }
1434 1434
1435 1435 off = 0;
1436 1436
1437 1437 while (off < size) {
1438 1438 pc = (struct path_comp *)(fbp->fb_addr + off);
1439 1439 switch (pc->pc_type) {
1440 1440 case 1 :
1441 1441 (void) strcpy(uname, ip->i_udf->udf_fsmnt);
1442 1442 (void) strcat(uname, "/");
1443 1443 break;
1444 1444 case 2 :
1445 1445 if (pc->pc_len != 0) {
1446 1446 goto end;
1447 1447 }
1448 1448 uname[0] = '/';
1449 1449 uname[1] = '\0';
1450 1450 break;
1451 1451 case 3 :
1452 1452 (void) strcat(uname, "../");
1453 1453 break;
1454 1454 case 4 :
1455 1455 (void) strcat(uname, "./");
1456 1456 break;
1457 1457 case 5 :
1458 1458 if ((error = ud_uncompress(pc->pc_len, &id_len,
1459 1459 pc->pc_id, (uint8_t *)dname)) != 0) {
1460 1460 break;
1461 1461 }
1462 1462 dname[id_len] = '\0';
1463 1463 (void) strcat(uname, dname);
1464 1464 (void) strcat(uname, "/");
1465 1465 break;
1466 1466 default :
1467 1467 error = EINVAL;
1468 1468 goto end;
1469 1469 }
1470 1470 off += 4 + pc->pc_len;
1471 1471 }
1472 1472 len = strlen(uname) - 1;
1473 1473 if (uname[len] == '/') {
1474 1474 if (len == 0) {
1475 1475 /*
1476 1476 * special case link to /
1477 1477 */
1478 1478 len = 1;
1479 1479 } else {
1480 1480 uname[len] = '\0';
1481 1481 }
1482 1482 }
1483 1483
1484 1484 error = uiomove(uname, len, UIO_READ, uiop);
1485 1485
1486 1486 ITIMES(ip);
1487 1487
1488 1488 end:
1489 1489 if (fbp != NULL) {
1490 1490 fbrelse(fbp, S_OTHER);
1491 1491 }
1492 1492 rw_exit(&ip->i_contents);
1493 1493 if (uname != NULL) {
1494 1494 kmem_free(uname, PAGESIZE);
1495 1495 }
1496 1496 if (dname != NULL) {
1497 1497 kmem_free(dname, 1024);
1498 1498 }
1499 1499 return (error);
1500 1500 }
1501 1501
1502 1502 /* ARGSUSED */
1503 1503 static int32_t
1504 1504 udf_fsync(
1505 1505 struct vnode *vp,
1506 1506 int32_t syncflag,
1507 1507 struct cred *cr,
1508 1508 caller_context_t *ct)
1509 1509 {
1510 1510 int32_t error = 0;
1511 1511 struct ud_inode *ip = VTOI(vp);
1512 1512
1513 1513 ud_printf("udf_fsync\n");
1514 1514
1515 1515 rw_enter(&ip->i_contents, RW_WRITER);
1516 1516 if (!(IS_SWAPVP(vp))) {
1517 1517 error = ud_syncip(ip, 0, I_SYNC); /* Do synchronous writes */
1518 1518 }
1519 1519 if (error == 0) {
1520 1520 error = ud_sync_indir(ip);
1521 1521 }
1522 1522 ITIMES(ip); /* XXX: is this necessary ??? */
1523 1523 rw_exit(&ip->i_contents);
1524 1524
1525 1525 return (error);
1526 1526 }
1527 1527
1528 1528 /* ARGSUSED */
1529 1529 static void
1530 1530 udf_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct)
1531 1531 {
1532 1532 ud_printf("udf_iinactive\n");
1533 1533
1534 1534 ud_iinactive(VTOI(vp), cr);
1535 1535 }
1536 1536
1537 1537 /* ARGSUSED */
1538 1538 static int32_t
1539 1539 udf_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct)
1540 1540 {
1541 1541 struct udf_fid *udfidp;
1542 1542 struct ud_inode *ip = VTOI(vp);
1543 1543
1544 1544 ud_printf("udf_fid\n");
1545 1545
1546 1546 if (fidp->fid_len < (sizeof (struct udf_fid) - sizeof (uint16_t))) {
1547 1547 fidp->fid_len = sizeof (struct udf_fid) - sizeof (uint16_t);
1548 1548 return (ENOSPC);
1549 1549 }
1550 1550
1551 1551 udfidp = (struct udf_fid *)fidp;
1552 1552 bzero((char *)udfidp, sizeof (struct udf_fid));
1553 1553 rw_enter(&ip->i_contents, RW_READER);
1554 1554 udfidp->udfid_len = sizeof (struct udf_fid) - sizeof (uint16_t);
1555 1555 udfidp->udfid_uinq_lo = ip->i_uniqid & 0xffffffff;
1556 1556 udfidp->udfid_prn = ip->i_icb_prn;
1557 1557 udfidp->udfid_icb_lbn = ip->i_icb_block;
1558 1558 rw_exit(&ip->i_contents);
1559 1559
1560 1560 return (0);
1561 1561 }
1562 1562
1563 1563 /* ARGSUSED2 */
1564 1564 static int
1565 1565 udf_rwlock(struct vnode *vp, int32_t write_lock, caller_context_t *ctp)
1566 1566 {
1567 1567 struct ud_inode *ip = VTOI(vp);
1568 1568
1569 1569 ud_printf("udf_rwlock\n");
1570 1570
1571 1571 if (write_lock) {
1572 1572 rw_enter(&ip->i_rwlock, RW_WRITER);
1573 1573 } else {
1574 1574 rw_enter(&ip->i_rwlock, RW_READER);
1575 1575 }
1576 1576 #ifdef __lock_lint
1577 1577 rw_exit(&ip->i_rwlock);
1578 1578 #endif
1579 1579 return (write_lock);
1580 1580 }
1581 1581
1582 1582 /* ARGSUSED */
1583 1583 static void
1584 1584 udf_rwunlock(struct vnode *vp, int32_t write_lock, caller_context_t *ctp)
1585 1585 {
1586 1586 struct ud_inode *ip = VTOI(vp);
1587 1587
1588 1588 ud_printf("udf_rwunlock\n");
1589 1589
1590 1590 #ifdef __lock_lint
1591 1591 rw_enter(&ip->i_rwlock, RW_WRITER);
1592 1592 #endif
1593 1593
1594 1594 rw_exit(&ip->i_rwlock);
1595 1595
1596 1596 }
1597 1597
1598 1598 /* ARGSUSED */
1599 1599 static int32_t
1600 1600 udf_seek(struct vnode *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
1601 1601 {
1602 1602 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
1603 1603 }
1604 1604
1605 1605 static int32_t
1606 1606 udf_frlock(
1607 1607 struct vnode *vp,
1608 1608 int32_t cmd,
1609 1609 struct flock64 *bfp,
1610 1610 int32_t flag,
1611 1611 offset_t offset,
1612 1612 struct flk_callback *flk_cbp,
1613 1613 cred_t *cr,
1614 1614 caller_context_t *ct)
1615 1615 {
1616 1616 struct ud_inode *ip = VTOI(vp);
1617 1617
1618 1618 ud_printf("udf_frlock\n");
1619 1619
1620 1620 /*
1621 1621 * If file is being mapped, disallow frlock.
1622 1622 * XXX I am not holding tlock while checking i_mapcnt because the
1623 1623 * current locking strategy drops all locks before calling fs_frlock.
1624 1624 * So, mapcnt could change before we enter fs_frlock making is
1625 1625 * meaningless to have held tlock in the first place.
1626 1626 */
1627 1627 if ((ip->i_mapcnt > 0) &&
1628 1628 (MANDLOCK(vp, ip->i_char))) {
1629 1629 return (EAGAIN);
1630 1630 }
1631 1631
1632 1632 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
1633 1633 }
1634 1634
1635 1635 /*ARGSUSED6*/
1636 1636 static int32_t
1637 1637 udf_space(
1638 1638 struct vnode *vp,
1639 1639 int32_t cmd,
1640 1640 struct flock64 *bfp,
1641 1641 int32_t flag,
1642 1642 offset_t offset,
1643 1643 cred_t *cr,
1644 1644 caller_context_t *ct)
1645 1645 {
1646 1646 int32_t error = 0;
1647 1647
1648 1648 ud_printf("udf_space\n");
1649 1649
1650 1650 if (cmd != F_FREESP) {
1651 1651 error = EINVAL;
1652 1652 } else if ((error = convoff(vp, bfp, 0, offset)) == 0) {
1653 1653 error = ud_freesp(vp, bfp, flag, cr);
1654 1654
1655 1655 if (error == 0) {
1656 1656 if (bfp->l_start == 0) {
1657 1657 vnevent_truncate(vp, ct);
1658 1658 } else {
1659 1659 vnevent_resize(vp, ct);
1660 1660 }
1661 1661 }
1662 1662 }
1663 1663
1664 1664 return (error);
1665 1665 }
1666 1666
1667 1667 /* ARGSUSED */
1668 1668 static int32_t
1669 1669 udf_getpage(
1670 1670 struct vnode *vp,
1671 1671 offset_t off,
1672 1672 size_t len,
1673 1673 uint32_t *protp,
1674 1674 struct page **plarr,
1675 1675 size_t plsz,
1676 1676 struct seg *seg,
1677 1677 caddr_t addr,
1678 1678 enum seg_rw rw,
1679 1679 struct cred *cr,
1680 1680 caller_context_t *ct)
1681 1681 {
1682 1682 struct ud_inode *ip = VTOI(vp);
1683 1683 int32_t error, has_holes, beyond_eof, seqmode, dolock;
1684 1684 int32_t pgsize = PAGESIZE;
1685 1685 struct udf_vfs *udf_vfsp = ip->i_udf;
1686 1686 page_t **pl;
1687 1687 u_offset_t pgoff, eoff, uoff;
1688 1688 krw_t rwtype;
1689 1689 caddr_t pgaddr;
1690 1690
1691 1691 ud_printf("udf_getpage\n");
1692 1692
1693 1693 uoff = (u_offset_t)off; /* type conversion */
1694 1694 if (protp) {
1695 1695 *protp = PROT_ALL;
1696 1696 }
1697 1697 if (vp->v_flag & VNOMAP) {
1698 1698 return (ENOSYS);
1699 1699 }
1700 1700 seqmode = ip->i_nextr == uoff && rw != S_CREATE;
1701 1701
1702 1702 rwtype = RW_READER;
1703 1703 dolock = (rw_owner(&ip->i_contents) != curthread);
1704 1704 retrylock:
1705 1705 #ifdef __lock_lint
1706 1706 rw_enter(&ip->i_contents, rwtype);
1707 1707 #else
1708 1708 if (dolock) {
1709 1709 rw_enter(&ip->i_contents, rwtype);
1710 1710 }
1711 1711 #endif
1712 1712
1713 1713 /*
1714 1714 * We may be getting called as a side effect of a bmap using
1715 1715 * fbread() when the blocks might be being allocated and the
1716 1716 * size has not yet been up'ed. In this case we want to be
1717 1717 * able to return zero pages if we get back UDF_HOLE from
1718 1718 * calling bmap for a non write case here. We also might have
1719 1719 * to read some frags from the disk into a page if we are
1720 1720 * extending the number of frags for a given lbn in bmap().
1721 1721 */
1722 1722 beyond_eof = uoff + len > ip->i_size + PAGEOFFSET;
1723 1723 if (beyond_eof && seg != segkmap) {
1724 1724 #ifdef __lock_lint
1725 1725 rw_exit(&ip->i_contents);
1726 1726 #else
1727 1727 if (dolock) {
1728 1728 rw_exit(&ip->i_contents);
1729 1729 }
1730 1730 #endif
1731 1731 return (EFAULT);
1732 1732 }
1733 1733
1734 1734 /*
1735 1735 * Must hold i_contents lock throughout the call to pvn_getpages
1736 1736 * since locked pages are returned from each call to ud_getapage.
1737 1737 * Must *not* return locked pages and then try for contents lock
1738 1738 * due to lock ordering requirements (inode > page)
1739 1739 */
1740 1740
1741 1741 has_holes = ud_bmap_has_holes(ip);
1742 1742
1743 1743 if ((rw == S_WRITE || rw == S_CREATE) && (has_holes || beyond_eof)) {
1744 1744 int32_t blk_size, count;
1745 1745 u_offset_t offset;
1746 1746
1747 1747 /*
1748 1748 * We must acquire the RW_WRITER lock in order to
1749 1749 * call bmap_write().
1750 1750 */
1751 1751 if (dolock && rwtype == RW_READER) {
1752 1752 rwtype = RW_WRITER;
1753 1753
1754 1754 if (!rw_tryupgrade(&ip->i_contents)) {
1755 1755
1756 1756 rw_exit(&ip->i_contents);
1757 1757
1758 1758 goto retrylock;
1759 1759 }
1760 1760 }
1761 1761
1762 1762 /*
1763 1763 * May be allocating disk blocks for holes here as
1764 1764 * a result of mmap faults. write(2) does the bmap_write
1765 1765 * in rdip/wrip, not here. We are not dealing with frags
1766 1766 * in this case.
1767 1767 */
1768 1768 offset = uoff;
1769 1769 while ((offset < uoff + len) &&
1770 1770 (offset < ip->i_size)) {
1771 1771 /*
1772 1772 * the variable "bnp" is to simplify the expression for
1773 1773 * the compiler; * just passing in &bn to bmap_write
1774 1774 * causes a compiler "loop"
1775 1775 */
1776 1776
1777 1777 blk_size = udf_vfsp->udf_lbsize;
1778 1778 if ((offset + blk_size) > ip->i_size) {
1779 1779 count = ip->i_size - offset;
1780 1780 } else {
1781 1781 count = blk_size;
1782 1782 }
1783 1783 error = ud_bmap_write(ip, offset, count, 0, cr);
1784 1784 if (error) {
1785 1785 goto update_inode;
1786 1786 }
1787 1787 offset += count; /* XXX - make this contig */
1788 1788 }
1789 1789 }
1790 1790
1791 1791 /*
1792 1792 * Can be a reader from now on.
1793 1793 */
1794 1794 #ifdef __lock_lint
1795 1795 if (rwtype == RW_WRITER) {
1796 1796 rw_downgrade(&ip->i_contents);
1797 1797 }
1798 1798 #else
1799 1799 if (dolock && rwtype == RW_WRITER) {
1800 1800 rw_downgrade(&ip->i_contents);
1801 1801 }
1802 1802 #endif
1803 1803
1804 1804 /*
1805 1805 * We remove PROT_WRITE in cases when the file has UDF holes
1806 1806 * because we don't want to call bmap_read() to check each
1807 1807 * page if it is backed with a disk block.
1808 1808 */
1809 1809 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE) {
1810 1810 *protp &= ~PROT_WRITE;
1811 1811 }
1812 1812
1813 1813 error = 0;
1814 1814
1815 1815 /*
1816 1816 * The loop looks up pages in the range <off, off + len).
1817 1817 * For each page, we first check if we should initiate an asynchronous
1818 1818 * read ahead before we call page_lookup (we may sleep in page_lookup
1819 1819 * for a previously initiated disk read).
1820 1820 */
1821 1821 eoff = (uoff + len);
1822 1822 for (pgoff = uoff, pgaddr = addr, pl = plarr;
1823 1823 pgoff < eoff; /* empty */) {
1824 1824 page_t *pp;
1825 1825 u_offset_t nextrio;
1826 1826 se_t se;
1827 1827
1828 1828 se = ((rw == S_CREATE) ? SE_EXCL : SE_SHARED);
1829 1829
1830 1830 /*
1831 1831 * Handle async getpage (faultahead)
1832 1832 */
1833 1833 if (plarr == NULL) {
1834 1834 ip->i_nextrio = pgoff;
1835 1835 ud_getpage_ra(vp, pgoff, seg, pgaddr);
1836 1836 pgoff += pgsize;
1837 1837 pgaddr += pgsize;
1838 1838 continue;
1839 1839 }
1840 1840
1841 1841 /*
1842 1842 * Check if we should initiate read ahead of next cluster.
1843 1843 * We call page_exists only when we need to confirm that
1844 1844 * we have the current page before we initiate the read ahead.
1845 1845 */
1846 1846 nextrio = ip->i_nextrio;
1847 1847 if (seqmode &&
1848 1848 pgoff + RD_CLUSTSZ(ip) >= nextrio && pgoff <= nextrio &&
1849 1849 nextrio < ip->i_size && page_exists(vp, pgoff))
1850 1850 ud_getpage_ra(vp, pgoff, seg, pgaddr);
1851 1851
1852 1852 if ((pp = page_lookup(vp, pgoff, se)) != NULL) {
1853 1853
1854 1854 /*
1855 1855 * We found the page in the page cache.
1856 1856 */
1857 1857 *pl++ = pp;
1858 1858 pgoff += pgsize;
1859 1859 pgaddr += pgsize;
1860 1860 len -= pgsize;
1861 1861 plsz -= pgsize;
1862 1862 } else {
1863 1863
1864 1864 /*
1865 1865 * We have to create the page, or read it from disk.
1866 1866 */
1867 1867 if (error = ud_getpage_miss(vp, pgoff, len,
1868 1868 seg, pgaddr, pl, plsz, rw, seqmode)) {
1869 1869 goto error_out;
1870 1870 }
1871 1871
1872 1872 while (*pl != NULL) {
1873 1873 pl++;
1874 1874 pgoff += pgsize;
1875 1875 pgaddr += pgsize;
1876 1876 len -= pgsize;
1877 1877 plsz -= pgsize;
1878 1878 }
1879 1879 }
1880 1880 }
1881 1881
1882 1882 /*
1883 1883 * Return pages up to plsz if they are in the page cache.
1884 1884 * We cannot return pages if there is a chance that they are
1885 1885 * backed with a UDF hole and rw is S_WRITE or S_CREATE.
1886 1886 */
1887 1887 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) {
1888 1888
1889 1889 ASSERT((protp == NULL) ||
1890 1890 !(has_holes && (*protp & PROT_WRITE)));
1891 1891
1892 1892 eoff = pgoff + plsz;
1893 1893 while (pgoff < eoff) {
1894 1894 page_t *pp;
1895 1895
1896 1896 if ((pp = page_lookup_nowait(vp, pgoff,
1897 1897 SE_SHARED)) == NULL)
1898 1898 break;
1899 1899
1900 1900 *pl++ = pp;
1901 1901 pgoff += pgsize;
1902 1902 plsz -= pgsize;
1903 1903 }
1904 1904 }
1905 1905
1906 1906 if (plarr)
1907 1907 *pl = NULL; /* Terminate page list */
1908 1908 ip->i_nextr = pgoff;
1909 1909
1910 1910 error_out:
1911 1911 if (error && plarr) {
1912 1912 /*
1913 1913 * Release any pages we have locked.
1914 1914 */
1915 1915 while (pl > &plarr[0])
1916 1916 page_unlock(*--pl);
1917 1917
1918 1918 plarr[0] = NULL;
1919 1919 }
1920 1920
1921 1921 update_inode:
1922 1922 #ifdef __lock_lint
1923 1923 rw_exit(&ip->i_contents);
1924 1924 #else
1925 1925 if (dolock) {
1926 1926 rw_exit(&ip->i_contents);
1927 1927 }
1928 1928 #endif
1929 1929
1930 1930 /*
1931 1931 * If the inode is not already marked for IACC (in rwip() for read)
1932 1932 * and the inode is not marked for no access time update (in rwip()
1933 1933 * for write) then update the inode access time and mod time now.
1934 1934 */
1935 1935 mutex_enter(&ip->i_tlock);
1936 1936 if ((ip->i_flag & (IACC | INOACC)) == 0) {
1937 1937 if ((rw != S_OTHER) && (ip->i_type != VDIR)) {
1938 1938 ip->i_flag |= IACC;
1939 1939 }
1940 1940 if (rw == S_WRITE) {
1941 1941 ip->i_flag |= IUPD;
1942 1942 }
1943 1943 ITIMES_NOLOCK(ip);
1944 1944 }
1945 1945 mutex_exit(&ip->i_tlock);
1946 1946
1947 1947 return (error);
1948 1948 }
1949 1949
1950 1950 int32_t ud_delay = 1;
1951 1951
1952 1952 /* ARGSUSED */
1953 1953 static int32_t
1954 1954 udf_putpage(
1955 1955 struct vnode *vp,
1956 1956 offset_t off,
1957 1957 size_t len,
1958 1958 int32_t flags,
1959 1959 struct cred *cr,
1960 1960 caller_context_t *ct)
1961 1961 {
1962 1962 struct ud_inode *ip;
1963 1963 int32_t error = 0;
1964 1964
1965 1965 ud_printf("udf_putpage\n");
1966 1966
1967 1967 ip = VTOI(vp);
1968 1968 #ifdef __lock_lint
1969 1969 rw_enter(&ip->i_contents, RW_WRITER);
1970 1970 #endif
1971 1971
1972 1972 if (vp->v_count == 0) {
1973 1973 cmn_err(CE_WARN, "ud_putpage : bad v_count");
1974 1974 error = EINVAL;
1975 1975 goto out;
1976 1976 }
1977 1977
1978 1978 if (vp->v_flag & VNOMAP) {
1979 1979 error = ENOSYS;
1980 1980 goto out;
1981 1981 }
1982 1982
1983 1983 if (flags & B_ASYNC) {
1984 1984 if (ud_delay && len &&
1985 1985 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) {
1986 1986 mutex_enter(&ip->i_tlock);
1987 1987
1988 1988 /*
1989 1989 * If nobody stalled, start a new cluster.
1990 1990 */
1991 1991 if (ip->i_delaylen == 0) {
1992 1992 ip->i_delayoff = off;
1993 1993 ip->i_delaylen = len;
1994 1994 mutex_exit(&ip->i_tlock);
1995 1995 goto out;
1996 1996 }
1997 1997
1998 1998 /*
1999 1999 * If we have a full cluster or they are not contig,
2000 2000 * then push last cluster and start over.
2001 2001 */
2002 2002 if (ip->i_delaylen >= WR_CLUSTSZ(ip) ||
2003 2003 ip->i_delayoff + ip->i_delaylen != off) {
2004 2004 u_offset_t doff;
2005 2005 size_t dlen;
2006 2006
2007 2007 doff = ip->i_delayoff;
2008 2008 dlen = ip->i_delaylen;
2009 2009 ip->i_delayoff = off;
2010 2010 ip->i_delaylen = len;
2011 2011 mutex_exit(&ip->i_tlock);
2012 2012 error = ud_putpages(vp, doff, dlen, flags, cr);
2013 2013 /* LMXXX - flags are new val, not old */
2014 2014 goto out;
2015 2015 }
2016 2016
2017 2017 /*
2018 2018 * There is something there, it's not full, and
2019 2019 * it is contig.
2020 2020 */
2021 2021 ip->i_delaylen += len;
2022 2022 mutex_exit(&ip->i_tlock);
2023 2023 goto out;
2024 2024 }
2025 2025
2026 2026 /*
2027 2027 * Must have weird flags or we are not clustering.
2028 2028 */
2029 2029 }
2030 2030
2031 2031 error = ud_putpages(vp, off, len, flags, cr);
2032 2032
2033 2033 out:
2034 2034 #ifdef __lock_lint
2035 2035 rw_exit(&ip->i_contents);
2036 2036 #endif
2037 2037 return (error);
2038 2038 }
2039 2039
2040 2040 /* ARGSUSED */
2041 2041 static int32_t
2042 2042 udf_map(
2043 2043 struct vnode *vp,
2044 2044 offset_t off,
2045 2045 struct as *as,
2046 2046 caddr_t *addrp,
2047 2047 size_t len,
2048 2048 uint8_t prot,
2049 2049 uint8_t maxprot,
2050 2050 uint32_t flags,
2051 2051 struct cred *cr,
2052 2052 caller_context_t *ct)
2053 2053 {
2054 2054 struct segvn_crargs vn_a;
2055 2055 int32_t error = 0;
2056 2056
2057 2057 ud_printf("udf_map\n");
2058 2058
2059 2059 if (vp->v_flag & VNOMAP) {
2060 2060 error = ENOSYS;
2061 2061 goto end;
2062 2062 }
2063 2063
2064 2064 if ((off < (offset_t)0) ||
2065 2065 ((off + len) < (offset_t)0)) {
2066 2066 error = EINVAL;
2067 2067 goto end;
2068 2068 }
2069 2069
2070 2070 if (vp->v_type != VREG) {
2071 2071 error = ENODEV;
2072 2072 goto end;
2073 2073 }
2074 2074
2075 2075 /*
2076 2076 * If file is being locked, disallow mapping.
2077 2077 */
2078 2078 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_char)) {
2079 2079 error = EAGAIN;
2080 2080 goto end;
2081 2081 }
2082 2082
2083 2083 as_rangelock(as);
2084 2084 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
2085 2085 if (error != 0) {
2086 2086 as_rangeunlock(as);
2087 2087 goto end;
2088 2088 }
2089 2089
2090 2090 vn_a.vp = vp;
2091 2091 vn_a.offset = off;
2092 2092 vn_a.type = flags & MAP_TYPE;
2093 2093 vn_a.prot = prot;
2094 2094 vn_a.maxprot = maxprot;
2095 2095 vn_a.cred = cr;
2096 2096 vn_a.amp = NULL;
2097 2097 vn_a.flags = flags & ~MAP_TYPE;
2098 2098 vn_a.szc = 0;
2099 2099 vn_a.lgrp_mem_policy_flags = 0;
2100 2100
2101 2101 error = as_map(as, *addrp, len, segvn_create, (caddr_t)&vn_a);
2102 2102 as_rangeunlock(as);
2103 2103
2104 2104 end:
2105 2105 return (error);
2106 2106 }
2107 2107
2108 2108 /* ARGSUSED */
2109 2109 static int32_t
2110 2110 udf_addmap(struct vnode *vp,
2111 2111 offset_t off,
2112 2112 struct as *as,
2113 2113 caddr_t addr,
2114 2114 size_t len,
2115 2115 uint8_t prot,
2116 2116 uint8_t maxprot,
2117 2117 uint32_t flags,
2118 2118 struct cred *cr,
2119 2119 caller_context_t *ct)
2120 2120 {
2121 2121 struct ud_inode *ip = VTOI(vp);
2122 2122
2123 2123 ud_printf("udf_addmap\n");
2124 2124
2125 2125 if (vp->v_flag & VNOMAP) {
2126 2126 return (ENOSYS);
2127 2127 }
2128 2128
2129 2129 mutex_enter(&ip->i_tlock);
2130 2130 ip->i_mapcnt += btopr(len);
2131 2131 mutex_exit(&ip->i_tlock);
2132 2132
2133 2133 return (0);
2134 2134 }
2135 2135
2136 2136 /* ARGSUSED */
2137 2137 static int32_t
2138 2138 udf_delmap(
2139 2139 struct vnode *vp, offset_t off,
2140 2140 struct as *as,
2141 2141 caddr_t addr,
2142 2142 size_t len,
2143 2143 uint32_t prot,
2144 2144 uint32_t maxprot,
2145 2145 uint32_t flags,
2146 2146 struct cred *cr,
2147 2147 caller_context_t *ct)
2148 2148 {
2149 2149 struct ud_inode *ip = VTOI(vp);
2150 2150
2151 2151 ud_printf("udf_delmap\n");
2152 2152
2153 2153 if (vp->v_flag & VNOMAP) {
2154 2154 return (ENOSYS);
2155 2155 }
2156 2156
2157 2157 mutex_enter(&ip->i_tlock);
2158 2158 ip->i_mapcnt -= btopr(len); /* Count released mappings */
2159 2159 ASSERT(ip->i_mapcnt >= 0);
2160 2160 mutex_exit(&ip->i_tlock);
2161 2161
2162 2162 return (0);
2163 2163 }
2164 2164
2165 2165 /* ARGSUSED */
2166 2166 static int32_t
2167 2167 udf_l_pathconf(
2168 2168 struct vnode *vp,
2169 2169 int32_t cmd,
2170 2170 ulong_t *valp,
2171 2171 struct cred *cr,
2172 2172 caller_context_t *ct)
2173 2173 {
2174 2174 int32_t error = 0;
2175 2175
2176 2176 ud_printf("udf_l_pathconf\n");
2177 2177
2178 2178 if (cmd == _PC_FILESIZEBITS) {
2179 2179 /*
2180 2180 * udf supports 64 bits as file size
2181 2181 * but there are several other restrictions
2182 2182 * it only supports 32-bit block numbers and
2183 2183 * daddr32_t is only and int32_t so taking these
2184 2184 * into account we can stay just as where ufs is
2185 2185 */
2186 2186 *valp = 41;
2187 2187 } else if (cmd == _PC_TIMESTAMP_RESOLUTION) {
2188 2188 /* nanosecond timestamp resolution */
2189 2189 *valp = 1L;
2190 2190 } else {
2191 2191 error = fs_pathconf(vp, cmd, valp, cr, ct);
2192 2192 }
2193 2193
2194 2194 return (error);
2195 2195 }
2196 2196
2197 2197 uint32_t ud_pageio_reads = 0, ud_pageio_writes = 0;
2198 2198 #ifndef __lint
2199 2199 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", ud_pageio_reads))
2200 2200 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", ud_pageio_writes))
2201 2201 #endif
2202 2202 /*
2203 2203 * Assumption is that there will not be a pageio request
2204 2204 * to a enbedded file
2205 2205 */
2206 2206 /* ARGSUSED */
2207 2207 static int32_t
2208 2208 udf_pageio(
2209 2209 struct vnode *vp,
2210 2210 struct page *pp,
2211 2211 u_offset_t io_off,
2212 2212 size_t io_len,
2213 2213 int32_t flags,
2214 2214 struct cred *cr,
2215 2215 caller_context_t *ct)
2216 2216 {
2217 2217 daddr_t bn;
2218 2218 struct buf *bp;
2219 2219 struct ud_inode *ip = VTOI(vp);
2220 2220 int32_t dolock, error = 0, contig, multi_io;
2221 2221 size_t done_len = 0, cur_len = 0;
2222 2222 page_t *npp = NULL, *opp = NULL, *cpp = pp;
2223 2223
2224 2224 if (pp == NULL) {
2225 2225 return (EINVAL);
2226 2226 }
2227 2227
2228 2228 dolock = (rw_owner(&ip->i_contents) != curthread);
2229 2229
2230 2230 /*
2231 2231 * We need a better check. Ideally, we would use another
2232 2232 * vnodeops so that hlocked and forcibly unmounted file
2233 2233 * systems would return EIO where appropriate and w/o the
2234 2234 * need for these checks.
2235 2235 */
2236 2236 if (ip->i_udf == NULL) {
2237 2237 return (EIO);
2238 2238 }
2239 2239
2240 2240 #ifdef __lock_lint
2241 2241 rw_enter(&ip->i_contents, RW_READER);
2242 2242 #else
2243 2243 if (dolock) {
2244 2244 rw_enter(&ip->i_contents, RW_READER);
2245 2245 }
2246 2246 #endif
2247 2247
2248 2248 /*
2249 2249 * Break the io request into chunks, one for each contiguous
2250 2250 * stretch of disk blocks in the target file.
2251 2251 */
2252 2252 while (done_len < io_len) {
2253 2253 ASSERT(cpp);
2254 2254 bp = NULL;
2255 2255 contig = 0;
2256 2256 if (error = ud_bmap_read(ip, (u_offset_t)(io_off + done_len),
2257 2257 &bn, &contig)) {
2258 2258 break;
2259 2259 }
2260 2260
2261 2261 if (bn == UDF_HOLE) { /* No holey swapfiles */
2262 2262 cmn_err(CE_WARN, "SWAP file has HOLES");
2263 2263 error = EINVAL;
2264 2264 break;
2265 2265 }
2266 2266
2267 2267 cur_len = MIN(io_len - done_len, contig);
2268 2268
2269 2269 /*
2270 2270 * Check if more than one I/O is
2271 2271 * required to complete the given
2272 2272 * I/O operation
2273 2273 */
2274 2274 if (ip->i_udf->udf_lbsize < PAGESIZE) {
2275 2275 if (cur_len >= PAGESIZE) {
2276 2276 multi_io = 0;
2277 2277 cur_len &= PAGEMASK;
2278 2278 } else {
2279 2279 multi_io = 1;
2280 2280 cur_len = MIN(io_len - done_len, PAGESIZE);
2281 2281 }
2282 2282 }
2283 2283 page_list_break(&cpp, &npp, btop(cur_len));
2284 2284
2285 2285 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags);
2286 2286 ASSERT(bp != NULL);
2287 2287
2288 2288 bp->b_edev = ip->i_dev;
2289 2289 bp->b_dev = cmpdev(ip->i_dev);
2290 2290 bp->b_blkno = bn;
2291 2291 bp->b_un.b_addr = (caddr_t)0;
2292 2292 bp->b_file = vp;
2293 2293 bp->b_offset = (offset_t)(io_off + done_len);
2294 2294
2295 2295 /*
2296 2296 * ub.ub_pageios.value.ul++;
2297 2297 */
2298 2298 if (multi_io == 0) {
2299 2299 (void) bdev_strategy(bp);
2300 2300 } else {
2301 2301 error = ud_multi_strat(ip, cpp, bp,
2302 2302 (u_offset_t)(io_off + done_len));
2303 2303 if (error != 0) {
2304 2304 pageio_done(bp);
2305 2305 break;
2306 2306 }
2307 2307 }
2308 2308 if (flags & B_READ) {
2309 2309 ud_pageio_reads++;
2310 2310 } else {
2311 2311 ud_pageio_writes++;
2312 2312 }
2313 2313
2314 2314 /*
2315 2315 * If the request is not B_ASYNC, wait for i/o to complete
2316 2316 * and re-assemble the page list to return to the caller.
2317 2317 * If it is B_ASYNC we leave the page list in pieces and
2318 2318 * cleanup() will dispose of them.
2319 2319 */
2320 2320 if ((flags & B_ASYNC) == 0) {
2321 2321 error = biowait(bp);
2322 2322 pageio_done(bp);
2323 2323 if (error) {
2324 2324 break;
2325 2325 }
2326 2326 page_list_concat(&opp, &cpp);
2327 2327 }
2328 2328 cpp = npp;
2329 2329 npp = NULL;
2330 2330 done_len += cur_len;
2331 2331 }
2332 2332
2333 2333 ASSERT(error || (cpp == NULL && npp == NULL && done_len == io_len));
2334 2334 if (error) {
2335 2335 if (flags & B_ASYNC) {
2336 2336 /* Cleanup unprocessed parts of list */
2337 2337 page_list_concat(&cpp, &npp);
2338 2338 if (flags & B_READ) {
2339 2339 pvn_read_done(cpp, B_ERROR);
2340 2340 } else {
2341 2341 pvn_write_done(cpp, B_ERROR);
2342 2342 }
2343 2343 } else {
2344 2344 /* Re-assemble list and let caller clean up */
2345 2345 page_list_concat(&opp, &cpp);
2346 2346 page_list_concat(&opp, &npp);
2347 2347 }
2348 2348 }
2349 2349
2350 2350 #ifdef __lock_lint
2351 2351 rw_exit(&ip->i_contents);
2352 2352 #else
2353 2353 if (dolock) {
2354 2354 rw_exit(&ip->i_contents);
2355 2355 }
2356 2356 #endif
2357 2357 return (error);
2358 2358 }
2359 2359
2360 2360
2361 2361
2362 2362
2363 2363 /* -------------------- local functions --------------------------- */
2364 2364
2365 2365
2366 2366
2367 2367 int32_t
2368 2368 ud_rdwri(enum uio_rw rw, int32_t ioflag,
2369 2369 struct ud_inode *ip, caddr_t base, int32_t len,
2370 2370 offset_t offset, enum uio_seg seg, int32_t *aresid, struct cred *cr)
2371 2371 {
2372 2372 int32_t error;
2373 2373 struct uio auio;
2374 2374 struct iovec aiov;
2375 2375
2376 2376 ud_printf("ud_rdwri\n");
2377 2377
2378 2378 bzero((caddr_t)&auio, sizeof (uio_t));
2379 2379 bzero((caddr_t)&aiov, sizeof (iovec_t));
2380 2380
2381 2381 aiov.iov_base = base;
2382 2382 aiov.iov_len = len;
2383 2383 auio.uio_iov = &aiov;
2384 2384 auio.uio_iovcnt = 1;
2385 2385 auio.uio_loffset = offset;
2386 2386 auio.uio_segflg = (int16_t)seg;
2387 2387 auio.uio_resid = len;
2388 2388
2389 2389 if (rw == UIO_WRITE) {
2390 2390 auio.uio_fmode = FWRITE;
2391 2391 auio.uio_extflg = UIO_COPY_DEFAULT;
2392 2392 auio.uio_llimit = curproc->p_fsz_ctl;
2393 2393 error = ud_wrip(ip, &auio, ioflag, cr);
2394 2394 } else {
2395 2395 auio.uio_fmode = FREAD;
2396 2396 auio.uio_extflg = UIO_COPY_CACHED;
2397 2397 auio.uio_llimit = MAXOFFSET_T;
2398 2398 error = ud_rdip(ip, &auio, ioflag, cr);
2399 2399 }
2400 2400
2401 2401 if (aresid) {
2402 2402 *aresid = auio.uio_resid;
2403 2403 } else if (auio.uio_resid) {
2404 2404 error = EIO;
2405 2405 }
2406 2406 return (error);
2407 2407 }
2408 2408
2409 2409 /*
2410 2410 * Free behind hacks. The pager is busted.
2411 2411 * XXX - need to pass the information down to writedone() in a flag like B_SEQ
2412 2412 * or B_FREE_IF_TIGHT_ON_MEMORY.
2413 2413 */
2414 2414 int32_t ud_freebehind = 1;
2415 2415 int32_t ud_smallfile = 32 * 1024;
2416 2416
2417 2417 /* ARGSUSED */
2418 2418 int32_t
2419 2419 ud_getpage_miss(struct vnode *vp, u_offset_t off,
2420 2420 size_t len, struct seg *seg, caddr_t addr, page_t *pl[],
2421 2421 size_t plsz, enum seg_rw rw, int32_t seq)
2422 2422 {
2423 2423 struct ud_inode *ip = VTOI(vp);
2424 2424 int32_t err = 0;
2425 2425 size_t io_len;
2426 2426 u_offset_t io_off;
2427 2427 u_offset_t pgoff;
2428 2428 page_t *pp;
2429 2429
2430 2430 pl[0] = NULL;
2431 2431
2432 2432 /*
2433 2433 * Figure out whether the page can be created, or must be
2434 2434 * read from the disk
2435 2435 */
2436 2436 if (rw == S_CREATE) {
2437 2437 if ((pp = page_create_va(vp, off,
2438 2438 PAGESIZE, PG_WAIT, seg, addr)) == NULL) {
2439 2439 cmn_err(CE_WARN, "ud_getpage_miss: page_create");
2440 2440 return (EINVAL);
2441 2441 }
2442 2442 io_len = PAGESIZE;
2443 2443 } else {
2444 2444 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
2445 2445 &io_len, off, PAGESIZE, 0);
2446 2446
2447 2447 /*
2448 2448 * Some other thread has entered the page.
2449 2449 * ud_getpage will retry page_lookup.
2450 2450 */
2451 2451 if (pp == NULL) {
2452 2452 return (0);
2453 2453 }
2454 2454
2455 2455 /*
2456 2456 * Fill the page with as much data as we can from the file.
2457 2457 */
2458 2458 err = ud_page_fill(ip, pp, off, B_READ, &pgoff);
2459 2459 if (err) {
2460 2460 pvn_read_done(pp, B_ERROR);
2461 2461 return (err);
2462 2462 }
2463 2463
2464 2464 /*
2465 2465 * XXX ??? ufs has io_len instead of pgoff below
2466 2466 */
2467 2467 ip->i_nextrio = off + ((pgoff + PAGESIZE - 1) & PAGEMASK);
2468 2468
2469 2469 /*
2470 2470 * If the file access is sequential, initiate read ahead
2471 2471 * of the next cluster.
2472 2472 */
2473 2473 if (seq && ip->i_nextrio < ip->i_size) {
2474 2474 ud_getpage_ra(vp, off, seg, addr);
2475 2475 }
2476 2476 }
2477 2477
2478 2478 outmiss:
2479 2479 pvn_plist_init(pp, pl, plsz, (offset_t)off, io_len, rw);
2480 2480 return (err);
2481 2481 }
2482 2482
2483 2483 /* ARGSUSED */
2484 2484 void
2485 2485 ud_getpage_ra(struct vnode *vp,
2486 2486 u_offset_t off, struct seg *seg, caddr_t addr)
2487 2487 {
2488 2488 page_t *pp;
2489 2489 size_t io_len;
2490 2490 struct ud_inode *ip = VTOI(vp);
2491 2491 u_offset_t io_off = ip->i_nextrio, pgoff;
2492 2492 caddr_t addr2 = addr + (io_off - off);
2493 2493 daddr_t bn;
2494 2494 int32_t contig = 0;
2495 2495
2496 2496 /*
2497 2497 * Is this test needed?
2498 2498 */
2499 2499
2500 2500 if (addr2 >= seg->s_base + seg->s_size) {
2501 2501 return;
2502 2502 }
2503 2503
2504 2504 contig = 0;
2505 2505 if (ud_bmap_read(ip, io_off, &bn, &contig) != 0 || bn == UDF_HOLE) {
2506 2506 return;
2507 2507 }
2508 2508
2509 2509 pp = pvn_read_kluster(vp, io_off, seg, addr2,
2510 2510 &io_off, &io_len, io_off, PAGESIZE, 1);
2511 2511
2512 2512 /*
2513 2513 * Some other thread has entered the page.
2514 2514 * So no read head done here (ie we will have to and wait
2515 2515 * for the read when needed).
2516 2516 */
2517 2517
2518 2518 if (pp == NULL) {
2519 2519 return;
2520 2520 }
2521 2521
2522 2522 (void) ud_page_fill(ip, pp, io_off, (B_READ|B_ASYNC), &pgoff);
2523 2523 ip->i_nextrio = io_off + ((pgoff + PAGESIZE - 1) & PAGEMASK);
2524 2524 }
2525 2525
2526 2526 int
2527 2527 ud_page_fill(struct ud_inode *ip, page_t *pp, u_offset_t off,
2528 2528 uint32_t bflgs, u_offset_t *pg_off)
2529 2529 {
2530 2530 daddr_t bn;
2531 2531 struct buf *bp;
2532 2532 caddr_t kaddr, caddr;
2533 2533 int32_t error = 0, contig = 0, multi_io = 0;
2534 2534 int32_t lbsize = ip->i_udf->udf_lbsize;
2535 2535 int32_t lbmask = ip->i_udf->udf_lbmask;
2536 2536 uint64_t isize;
2537 2537
2538 2538 isize = (ip->i_size + lbmask) & (~lbmask);
2539 2539 if (ip->i_desc_type == ICB_FLAG_ONE_AD) {
2540 2540
2541 2541 /*
2542 2542 * Embedded file read file_entry
2543 2543 * from buffer cache and copy the required
2544 2544 * portions
2545 2545 */
2546 2546 bp = ud_bread(ip->i_dev,
2547 2547 ip->i_icb_lbano << ip->i_udf->udf_l2d_shift, lbsize);
2548 2548 if ((bp->b_error == 0) &&
2549 2549 (bp->b_resid == 0)) {
2550 2550
2551 2551 caddr = bp->b_un.b_addr + ip->i_data_off;
2552 2552
2553 2553 /*
2554 2554 * mapin to kvm
2555 2555 */
2556 2556 kaddr = (caddr_t)ppmapin(pp,
2557 2557 PROT_READ | PROT_WRITE, (caddr_t)-1);
2558 2558 (void) kcopy(caddr, kaddr, ip->i_size);
2559 2559
2560 2560 /*
2561 2561 * mapout of kvm
2562 2562 */
2563 2563 ppmapout(kaddr);
2564 2564 }
2565 2565 brelse(bp);
2566 2566 contig = ip->i_size;
2567 2567 } else {
2568 2568
2569 2569 /*
2570 2570 * Get the continuous size and block number
2571 2571 * at offset "off"
2572 2572 */
2573 2573 if (error = ud_bmap_read(ip, off, &bn, &contig))
2574 2574 goto out;
2575 2575 contig = MIN(contig, PAGESIZE);
2576 2576 contig = (contig + lbmask) & (~lbmask);
2577 2577
2578 2578 /*
2579 2579 * Zero part of the page which we are not
2580 2580 * going to read from the disk.
2581 2581 */
2582 2582
2583 2583 if (bn == UDF_HOLE) {
2584 2584
2585 2585 /*
2586 2586 * This is a HOLE. Just zero out
2587 2587 * the page
2588 2588 */
2589 2589 if (((off + contig) == isize) ||
2590 2590 (contig == PAGESIZE)) {
2591 2591 pagezero(pp->p_prev, 0, PAGESIZE);
2592 2592 goto out;
2593 2593 }
2594 2594 }
2595 2595
2596 2596 if (contig < PAGESIZE) {
2597 2597 uint64_t count;
2598 2598
2599 2599 count = isize - off;
2600 2600 if (contig != count) {
2601 2601 multi_io = 1;
2602 2602 contig = (int32_t)(MIN(count, PAGESIZE));
2603 2603 } else {
2604 2604 pagezero(pp->p_prev, contig, PAGESIZE - contig);
2605 2605 }
2606 2606 }
2607 2607
2608 2608 /*
2609 2609 * Get a bp and initialize it
2610 2610 */
2611 2611 bp = pageio_setup(pp, contig, ip->i_devvp, bflgs);
2612 2612 ASSERT(bp != NULL);
2613 2613
2614 2614 bp->b_edev = ip->i_dev;
2615 2615 bp->b_dev = cmpdev(ip->i_dev);
2616 2616 bp->b_blkno = bn;
2617 2617 bp->b_un.b_addr = 0;
2618 2618 bp->b_file = ip->i_vnode;
2619 2619
2620 2620 /*
2621 2621 * Start I/O
2622 2622 */
2623 2623 if (multi_io == 0) {
2624 2624
2625 2625 /*
2626 2626 * Single I/O is sufficient for this page
2627 2627 */
2628 2628 (void) bdev_strategy(bp);
2629 2629 } else {
2630 2630
2631 2631 /*
2632 2632 * We need to do the I/O in
2633 2633 * piece's
2634 2634 */
2635 2635 error = ud_multi_strat(ip, pp, bp, off);
2636 2636 if (error != 0) {
2637 2637 goto out;
2638 2638 }
2639 2639 }
2640 2640 if ((bflgs & B_ASYNC) == 0) {
2641 2641
2642 2642 /*
2643 2643 * Wait for i/o to complete.
2644 2644 */
2645 2645
2646 2646 error = biowait(bp);
2647 2647 pageio_done(bp);
2648 2648 if (error) {
2649 2649 goto out;
2650 2650 }
2651 2651 }
2652 2652 }
2653 2653 if ((off + contig) >= ip->i_size) {
2654 2654 contig = ip->i_size - off;
2655 2655 }
2656 2656
2657 2657 out:
2658 2658 *pg_off = contig;
2659 2659 return (error);
2660 2660 }
2661 2661
2662 2662 int32_t
2663 2663 ud_putpages(struct vnode *vp, offset_t off,
2664 2664 size_t len, int32_t flags, struct cred *cr)
2665 2665 {
2666 2666 struct ud_inode *ip;
2667 2667 page_t *pp;
2668 2668 u_offset_t io_off;
2669 2669 size_t io_len;
2670 2670 u_offset_t eoff;
2671 2671 int32_t err = 0;
2672 2672 int32_t dolock;
2673 2673
2674 2674 ud_printf("ud_putpages\n");
2675 2675
2676 2676 if (vp->v_count == 0) {
2677 2677 cmn_err(CE_WARN, "ud_putpages: bad v_count");
2678 2678 return (EINVAL);
2679 2679 }
2680 2680
2681 2681 ip = VTOI(vp);
2682 2682
2683 2683 /*
2684 2684 * Acquire the readers/write inode lock before locking
2685 2685 * any pages in this inode.
2686 2686 * The inode lock is held during i/o.
2687 2687 */
2688 2688 if (len == 0) {
2689 2689 mutex_enter(&ip->i_tlock);
2690 2690 ip->i_delayoff = ip->i_delaylen = 0;
2691 2691 mutex_exit(&ip->i_tlock);
2692 2692 }
2693 2693 #ifdef __lock_lint
2694 2694 rw_enter(&ip->i_contents, RW_READER);
2695 2695 #else
2696 2696 dolock = (rw_owner(&ip->i_contents) != curthread);
2697 2697 if (dolock) {
2698 2698 rw_enter(&ip->i_contents, RW_READER);
2699 2699 }
2700 2700 #endif
2701 2701
2702 2702 if (!vn_has_cached_data(vp)) {
2703 2703 #ifdef __lock_lint
2704 2704 rw_exit(&ip->i_contents);
2705 2705 #else
2706 2706 if (dolock) {
2707 2707 rw_exit(&ip->i_contents);
2708 2708 }
2709 2709 #endif
2710 2710 return (0);
2711 2711 }
2712 2712
2713 2713 if (len == 0) {
2714 2714 /*
2715 2715 * Search the entire vp list for pages >= off.
2716 2716 */
2717 2717 err = pvn_vplist_dirty(vp, (u_offset_t)off, ud_putapage,
2718 2718 flags, cr);
2719 2719 } else {
2720 2720 /*
2721 2721 * Loop over all offsets in the range looking for
2722 2722 * pages to deal with.
2723 2723 */
2724 2724 if ((eoff = blkroundup(ip->i_udf, ip->i_size)) != 0) {
2725 2725 eoff = MIN(off + len, eoff);
2726 2726 } else {
2727 2727 eoff = off + len;
2728 2728 }
2729 2729
2730 2730 for (io_off = off; io_off < eoff; io_off += io_len) {
2731 2731 /*
2732 2732 * If we are not invalidating, synchronously
2733 2733 * freeing or writing pages, use the routine
2734 2734 * page_lookup_nowait() to prevent reclaiming
2735 2735 * them from the free list.
2736 2736 */
2737 2737 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
2738 2738 pp = page_lookup(vp, io_off,
2739 2739 (flags & (B_INVAL | B_FREE)) ?
2740 2740 SE_EXCL : SE_SHARED);
2741 2741 } else {
2742 2742 pp = page_lookup_nowait(vp, io_off,
2743 2743 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
2744 2744 }
2745 2745
2746 2746 if (pp == NULL || pvn_getdirty(pp, flags) == 0) {
2747 2747 io_len = PAGESIZE;
2748 2748 } else {
2749 2749
2750 2750 err = ud_putapage(vp, pp,
2751 2751 &io_off, &io_len, flags, cr);
2752 2752 if (err != 0) {
2753 2753 break;
2754 2754 }
2755 2755 /*
2756 2756 * "io_off" and "io_len" are returned as
2757 2757 * the range of pages we actually wrote.
2758 2758 * This allows us to skip ahead more quickly
2759 2759 * since several pages may've been dealt
2760 2760 * with by this iteration of the loop.
2761 2761 */
2762 2762 }
2763 2763 }
2764 2764 }
2765 2765 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) {
2766 2766 /*
2767 2767 * We have just sync'ed back all the pages on
2768 2768 * the inode, turn off the IMODTIME flag.
2769 2769 */
2770 2770 mutex_enter(&ip->i_tlock);
2771 2771 ip->i_flag &= ~IMODTIME;
2772 2772 mutex_exit(&ip->i_tlock);
2773 2773 }
2774 2774 #ifdef __lock_lint
2775 2775 rw_exit(&ip->i_contents);
2776 2776 #else
2777 2777 if (dolock) {
2778 2778 rw_exit(&ip->i_contents);
2779 2779 }
2780 2780 #endif
2781 2781 return (err);
2782 2782 }
2783 2783
2784 2784 /* ARGSUSED */
2785 2785 int32_t
2786 2786 ud_putapage(struct vnode *vp,
2787 2787 page_t *pp, u_offset_t *offp,
2788 2788 size_t *lenp, int32_t flags, struct cred *cr)
2789 2789 {
2790 2790 daddr_t bn;
2791 2791 size_t io_len;
2792 2792 struct ud_inode *ip;
2793 2793 int32_t error = 0, contig, multi_io = 0;
2794 2794 struct udf_vfs *udf_vfsp;
2795 2795 u_offset_t off, io_off;
2796 2796 caddr_t kaddr, caddr;
2797 2797 struct buf *bp = NULL;
2798 2798 int32_t lbmask;
2799 2799 uint64_t isize;
2800 2800 uint16_t crc_len;
2801 2801 struct file_entry *fe;
2802 2802
2803 2803 ud_printf("ud_putapage\n");
2804 2804
2805 2805 ip = VTOI(vp);
2806 2806 ASSERT(ip);
2807 2807 ASSERT(RW_LOCK_HELD(&ip->i_contents));
2808 2808 lbmask = ip->i_udf->udf_lbmask;
2809 2809 isize = (ip->i_size + lbmask) & (~lbmask);
2810 2810
2811 2811 udf_vfsp = ip->i_udf;
2812 2812 ASSERT(udf_vfsp->udf_flags & UDF_FL_RW);
2813 2813
2814 2814 /*
2815 2815 * If the modified time on the inode has not already been
2816 2816 * set elsewhere (e.g. for write/setattr) we set the time now.
2817 2817 * This gives us approximate modified times for mmap'ed files
2818 2818 * which are modified via stores in the user address space.
2819 2819 */
2820 2820 if (((ip->i_flag & IMODTIME) == 0) || (flags & B_FORCE)) {
2821 2821 mutex_enter(&ip->i_tlock);
2822 2822 ip->i_flag |= IUPD;
2823 2823 ITIMES_NOLOCK(ip);
2824 2824 mutex_exit(&ip->i_tlock);
2825 2825 }
2826 2826
2827 2827
2828 2828 /*
2829 2829 * Align the request to a block boundry (for old file systems),
2830 2830 * and go ask bmap() how contiguous things are for this file.
2831 2831 */
2832 2832 off = pp->p_offset & ~(offset_t)lbmask;
2833 2833 /* block align it */
2834 2834
2835 2835
2836 2836 if (ip->i_desc_type == ICB_FLAG_ONE_AD) {
2837 2837 ASSERT(ip->i_size <= ip->i_max_emb);
2838 2838
2839 2839 pp = pvn_write_kluster(vp, pp, &io_off,
2840 2840 &io_len, off, PAGESIZE, flags);
2841 2841 if (io_len == 0) {
2842 2842 io_len = PAGESIZE;
2843 2843 }
2844 2844
2845 2845 bp = ud_bread(ip->i_dev,
2846 2846 ip->i_icb_lbano << udf_vfsp->udf_l2d_shift,
2847 2847 udf_vfsp->udf_lbsize);
2848 2848 fe = (struct file_entry *)bp->b_un.b_addr;
2849 2849 if ((bp->b_flags & B_ERROR) ||
2850 2850 (ud_verify_tag_and_desc(&fe->fe_tag, UD_FILE_ENTRY,
2851 2851 ip->i_icb_block,
2852 2852 1, udf_vfsp->udf_lbsize) != 0)) {
2853 2853 if (pp != NULL)
2854 2854 pvn_write_done(pp, B_ERROR | B_WRITE | flags);
2855 2855 if (bp->b_flags & B_ERROR) {
2856 2856 error = EIO;
2857 2857 } else {
2858 2858 error = EINVAL;
2859 2859 }
2860 2860 brelse(bp);
2861 2861 return (error);
2862 2862 }
2863 2863 if ((bp->b_error == 0) &&
2864 2864 (bp->b_resid == 0)) {
2865 2865
2866 2866 caddr = bp->b_un.b_addr + ip->i_data_off;
2867 2867 kaddr = (caddr_t)ppmapin(pp,
2868 2868 PROT_READ | PROT_WRITE, (caddr_t)-1);
2869 2869 (void) kcopy(kaddr, caddr, ip->i_size);
2870 2870 ppmapout(kaddr);
2871 2871 }
2872 2872 crc_len = offsetof(struct file_entry, fe_spec) +
2873 2873 SWAP_32(fe->fe_len_ear);
2874 2874 crc_len += ip->i_size;
2875 2875 ud_make_tag(ip->i_udf, &fe->fe_tag,
2876 2876 UD_FILE_ENTRY, ip->i_icb_block, crc_len);
2877 2877
2878 2878 bwrite(bp);
2879 2879
2880 2880 if (flags & B_ASYNC) {
2881 2881 pvn_write_done(pp, flags);
2882 2882 }
2883 2883 contig = ip->i_size;
2884 2884 } else {
2885 2885
2886 2886 if (error = ud_bmap_read(ip, off, &bn, &contig)) {
2887 2887 goto out;
2888 2888 }
2889 2889 contig = MIN(contig, PAGESIZE);
2890 2890 contig = (contig + lbmask) & (~lbmask);
2891 2891
2892 2892 if (contig < PAGESIZE) {
2893 2893 uint64_t count;
2894 2894
2895 2895 count = isize - off;
2896 2896 if (contig != count) {
2897 2897 multi_io = 1;
2898 2898 contig = (int32_t)(MIN(count, PAGESIZE));
2899 2899 }
2900 2900 }
2901 2901
2902 2902 if ((off + contig) > isize) {
2903 2903 contig = isize - off;
2904 2904 }
2905 2905
2906 2906 if (contig > PAGESIZE) {
2907 2907 if (contig & PAGEOFFSET) {
2908 2908 contig &= PAGEMASK;
2909 2909 }
2910 2910 }
2911 2911
2912 2912 pp = pvn_write_kluster(vp, pp, &io_off,
2913 2913 &io_len, off, contig, flags);
2914 2914 if (io_len == 0) {
2915 2915 io_len = PAGESIZE;
2916 2916 }
2917 2917
2918 2918 bp = pageio_setup(pp, contig, ip->i_devvp, B_WRITE | flags);
2919 2919 ASSERT(bp != NULL);
2920 2920
2921 2921 bp->b_edev = ip->i_dev;
2922 2922 bp->b_dev = cmpdev(ip->i_dev);
2923 2923 bp->b_blkno = bn;
2924 2924 bp->b_un.b_addr = 0;
2925 2925 bp->b_file = vp;
2926 2926 bp->b_offset = (offset_t)off;
2927 2927
2928 2928
2929 2929 /*
2930 2930 * write throttle
2931 2931 */
2932 2932 ASSERT(bp->b_iodone == NULL);
2933 2933 bp->b_iodone = ud_iodone;
2934 2934 mutex_enter(&ip->i_tlock);
2935 2935 ip->i_writes += bp->b_bcount;
2936 2936 mutex_exit(&ip->i_tlock);
2937 2937
2938 2938 if (multi_io == 0) {
2939 2939
2940 2940 (void) bdev_strategy(bp);
2941 2941 } else {
2942 2942 error = ud_multi_strat(ip, pp, bp, off);
2943 2943 if (error != 0) {
2944 2944 goto out;
2945 2945 }
2946 2946 }
2947 2947
2948 2948 if ((flags & B_ASYNC) == 0) {
2949 2949 /*
2950 2950 * Wait for i/o to complete.
2951 2951 */
2952 2952 error = biowait(bp);
2953 2953 pageio_done(bp);
2954 2954 }
2955 2955 }
2956 2956
2957 2957 if ((flags & B_ASYNC) == 0) {
2958 2958 pvn_write_done(pp, ((error) ? B_ERROR : 0) | B_WRITE | flags);
2959 2959 }
2960 2960
2961 2961 pp = NULL;
2962 2962
2963 2963 out:
2964 2964 if (error != 0 && pp != NULL) {
2965 2965 pvn_write_done(pp, B_ERROR | B_WRITE | flags);
2966 2966 }
2967 2967
2968 2968 if (offp) {
2969 2969 *offp = io_off;
2970 2970 }
2971 2971 if (lenp) {
2972 2972 *lenp = io_len;
2973 2973 }
2974 2974
2975 2975 return (error);
2976 2976 }
2977 2977
2978 2978
2979 2979 int32_t
2980 2980 ud_iodone(struct buf *bp)
2981 2981 {
2982 2982 struct ud_inode *ip;
2983 2983
2984 2984 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ));
2985 2985
2986 2986 bp->b_iodone = NULL;
2987 2987
2988 2988 ip = VTOI(bp->b_pages->p_vnode);
2989 2989
2990 2990 mutex_enter(&ip->i_tlock);
2991 2991 if (ip->i_writes >= ud_LW) {
2992 2992 if ((ip->i_writes -= bp->b_bcount) <= ud_LW) {
2993 2993 if (ud_WRITES) {
2994 2994 cv_broadcast(&ip->i_wrcv); /* wake all up */
2995 2995 }
2996 2996 }
2997 2997 } else {
2998 2998 ip->i_writes -= bp->b_bcount;
2999 2999 }
3000 3000 mutex_exit(&ip->i_tlock);
3001 3001 iodone(bp);
3002 3002 return (0);
3003 3003 }
3004 3004
3005 3005 /* ARGSUSED3 */
3006 3006 int32_t
3007 3007 ud_rdip(struct ud_inode *ip, struct uio *uio, int32_t ioflag, cred_t *cr)
3008 3008 {
3009 3009 struct vnode *vp;
3010 3010 struct udf_vfs *udf_vfsp;
3011 3011 krw_t rwtype;
3012 3012 caddr_t base;
3013 3013 uint32_t flags;
3014 3014 int32_t error, n, on, mapon, dofree;
3015 3015 u_offset_t off;
3016 3016 long oresid = uio->uio_resid;
3017 3017
3018 3018 ASSERT(RW_LOCK_HELD(&ip->i_contents));
3019 3019 if ((ip->i_type != VREG) &&
3020 3020 (ip->i_type != VDIR) &&
3021 3021 (ip->i_type != VLNK)) {
3022 3022 return (EIO);
3023 3023 }
3024 3024
3025 3025 if (uio->uio_loffset > MAXOFFSET_T) {
3026 3026 return (0);
3027 3027 }
3028 3028
3029 3029 if ((uio->uio_loffset < (offset_t)0) ||
3030 3030 ((uio->uio_loffset + uio->uio_resid) < 0)) {
3031 3031 return (EINVAL);
3032 3032 }
3033 3033 if (uio->uio_resid == 0) {
3034 3034 return (0);
3035 3035 }
3036 3036
3037 3037 vp = ITOV(ip);
3038 3038 udf_vfsp = ip->i_udf;
3039 3039 mutex_enter(&ip->i_tlock);
3040 3040 ip->i_flag |= IACC;
3041 3041 mutex_exit(&ip->i_tlock);
3042 3042
3043 3043 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER);
3044 3044
3045 3045 do {
3046 3046 offset_t diff;
3047 3047 u_offset_t uoff = uio->uio_loffset;
3048 3048 off = uoff & (offset_t)MAXBMASK;
3049 3049 mapon = (int)(uoff & (offset_t)MAXBOFFSET);
3050 3050 on = (int)blkoff(udf_vfsp, uoff);
3051 3051 n = (int)MIN(udf_vfsp->udf_lbsize - on, uio->uio_resid);
3052 3052
3053 3053 diff = ip->i_size - uoff;
3054 3054
3055 3055 if (diff <= (offset_t)0) {
3056 3056 error = 0;
3057 3057 goto out;
3058 3058 }
3059 3059 if (diff < (offset_t)n) {
3060 3060 n = (int)diff;
3061 3061 }
3062 3062 dofree = ud_freebehind &&
3063 3063 ip->i_nextr == (off & PAGEMASK) &&
3064 3064 off > ud_smallfile;
3065 3065
3066 3066 #ifndef __lock_lint
3067 3067 if (rwtype == RW_READER) {
3068 3068 rw_exit(&ip->i_contents);
3069 3069 }
3070 3070 #endif
3071 3071
3072 3072 base = segmap_getmapflt(segkmap, vp, (off + mapon),
3073 3073 (uint32_t)n, 1, S_READ);
3074 3074 error = uiomove(base + mapon, (long)n, UIO_READ, uio);
3075 3075
3076 3076 flags = 0;
3077 3077 if (!error) {
3078 3078 /*
3079 3079 * If read a whole block, or read to eof,
3080 3080 * won't need this buffer again soon.
3081 3081 */
3082 3082 if (n + on == MAXBSIZE && ud_freebehind && dofree &&
3083 3083 freemem < lotsfree + pages_before_pager) {
3084 3084 flags = SM_FREE | SM_DONTNEED |SM_ASYNC;
3085 3085 }
3086 3086 /*
3087 3087 * In POSIX SYNC (FSYNC and FDSYNC) read mode,
3088 3088 * we want to make sure that the page which has
3089 3089 * been read, is written on disk if it is dirty.
3090 3090 * And corresponding indirect blocks should also
3091 3091 * be flushed out.
3092 3092 */
3093 3093 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) {
3094 3094 flags &= ~SM_ASYNC;
3095 3095 flags |= SM_WRITE;
3096 3096 }
3097 3097 error = segmap_release(segkmap, base, flags);
3098 3098 } else {
3099 3099 (void) segmap_release(segkmap, base, flags);
3100 3100 }
3101 3101
3102 3102 #ifndef __lock_lint
3103 3103 if (rwtype == RW_READER) {
3104 3104 rw_enter(&ip->i_contents, rwtype);
3105 3105 }
3106 3106 #endif
3107 3107 } while (error == 0 && uio->uio_resid > 0 && n != 0);
3108 3108 out:
3109 3109 /*
3110 3110 * Inode is updated according to this table if FRSYNC is set.
3111 3111 *
3112 3112 * FSYNC FDSYNC(posix.4)
3113 3113 * --------------------------
3114 3114 * always IATTCHG|IBDWRITE
3115 3115 */
3116 3116 if (ioflag & FRSYNC) {
3117 3117 if ((ioflag & FSYNC) ||
3118 3118 ((ioflag & FDSYNC) &&
3119 3119 (ip->i_flag & (IATTCHG|IBDWRITE)))) {
3120 3120 rw_exit(&ip->i_contents);
3121 3121 rw_enter(&ip->i_contents, RW_WRITER);
3122 3122 ud_iupdat(ip, 1);
3123 3123 }
3124 3124 }
3125 3125 /*
3126 3126 * If we've already done a partial read, terminate
3127 3127 * the read but return no error.
3128 3128 */
3129 3129 if (oresid != uio->uio_resid) {
3130 3130 error = 0;
3131 3131 }
3132 3132 ITIMES(ip);
3133 3133
3134 3134 return (error);
3135 3135 }
3136 3136
3137 3137 int32_t
3138 3138 ud_wrip(struct ud_inode *ip, struct uio *uio, int ioflag, struct cred *cr)
3139 3139 {
3140 3140 caddr_t base;
3141 3141 struct vnode *vp;
3142 3142 struct udf_vfs *udf_vfsp;
3143 3143 uint32_t flags;
3144 3144 int32_t error = 0, iupdat_flag, n, on, mapon, i_size_changed = 0;
3145 3145 int32_t pagecreate, newpage;
3146 3146 uint64_t old_i_size;
3147 3147 u_offset_t off;
3148 3148 long start_resid = uio->uio_resid, premove_resid;
3149 3149 rlim64_t limit = uio->uio_limit;
3150 3150
3151 3151
3152 3152 ASSERT(RW_WRITE_HELD(&ip->i_contents));
3153 3153 if ((ip->i_type != VREG) &&
3154 3154 (ip->i_type != VDIR) &&
3155 3155 (ip->i_type != VLNK)) {
3156 3156 return (EIO);
3157 3157 }
3158 3158
3159 3159 if (uio->uio_loffset >= MAXOFFSET_T) {
3160 3160 return (EFBIG);
3161 3161 }
3162 3162 /*
3163 3163 * see udf_l_pathconf
3164 3164 */
3165 3165 if (limit > (((uint64_t)1 << 40) - 1)) {
3166 3166 limit = ((uint64_t)1 << 40) - 1;
3167 3167 }
3168 3168 if (uio->uio_loffset >= limit) {
3169 3169 proc_t *p = ttoproc(curthread);
3170 3170
3171 3171 mutex_enter(&p->p_lock);
3172 3172 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls,
3173 3173 p, RCA_UNSAFE_SIGINFO);
3174 3174 mutex_exit(&p->p_lock);
3175 3175 return (EFBIG);
3176 3176 }
3177 3177 if ((uio->uio_loffset < (offset_t)0) ||
3178 3178 ((uio->uio_loffset + uio->uio_resid) < 0)) {
3179 3179 return (EINVAL);
3180 3180 }
3181 3181 if (uio->uio_resid == 0) {
3182 3182 return (0);
3183 3183 }
3184 3184
3185 3185 mutex_enter(&ip->i_tlock);
3186 3186 ip->i_flag |= INOACC;
3187 3187
3188 3188 if (ioflag & (FSYNC | FDSYNC)) {
3189 3189 ip->i_flag |= ISYNC;
3190 3190 iupdat_flag = 1;
3191 3191 }
3192 3192 mutex_exit(&ip->i_tlock);
3193 3193
3194 3194 udf_vfsp = ip->i_udf;
3195 3195 vp = ITOV(ip);
3196 3196
3197 3197 do {
3198 3198 u_offset_t uoff = uio->uio_loffset;
3199 3199 off = uoff & (offset_t)MAXBMASK;
3200 3200 mapon = (int)(uoff & (offset_t)MAXBOFFSET);
3201 3201 on = (int)blkoff(udf_vfsp, uoff);
3202 3202 n = (int)MIN(udf_vfsp->udf_lbsize - on, uio->uio_resid);
3203 3203
3204 3204 if (ip->i_type == VREG && uoff + n >= limit) {
3205 3205 if (uoff >= limit) {
3206 3206 error = EFBIG;
3207 3207 goto out;
3208 3208 }
3209 3209 n = (int)(limit - (rlim64_t)uoff);
3210 3210 }
3211 3211 if (uoff + n > ip->i_size) {
3212 3212 /*
3213 3213 * We are extending the length of the file.
3214 3214 * bmap is used so that we are sure that
3215 3215 * if we need to allocate new blocks, that it
3216 3216 * is done here before we up the file size.
3217 3217 */
3218 3218 error = ud_bmap_write(ip, uoff,
3219 3219 (int)(on + n), mapon == 0, cr);
3220 3220 if (error) {
3221 3221 break;
3222 3222 }
3223 3223 i_size_changed = 1;
3224 3224 old_i_size = ip->i_size;
3225 3225 ip->i_size = uoff + n;
3226 3226 /*
3227 3227 * If we are writing from the beginning of
3228 3228 * the mapping, we can just create the
3229 3229 * pages without having to read them.
3230 3230 */
3231 3231 pagecreate = (mapon == 0);
3232 3232 } else if (n == MAXBSIZE) {
3233 3233 /*
3234 3234 * Going to do a whole mappings worth,
3235 3235 * so we can just create the pages w/o
3236 3236 * having to read them in. But before
3237 3237 * we do that, we need to make sure any
3238 3238 * needed blocks are allocated first.
3239 3239 */
3240 3240 error = ud_bmap_write(ip, uoff,
3241 3241 (int)(on + n), 1, cr);
3242 3242 if (error) {
3243 3243 break;
3244 3244 }
3245 3245 pagecreate = 1;
3246 3246 } else {
3247 3247 pagecreate = 0;
3248 3248 }
3249 3249
3250 3250 rw_exit(&ip->i_contents);
3251 3251
3252 3252 /*
3253 3253 * Touch the page and fault it in if it is not in
3254 3254 * core before segmap_getmapflt can lock it. This
3255 3255 * is to avoid the deadlock if the buffer is mapped
3256 3256 * to the same file through mmap which we want to
3257 3257 * write to.
3258 3258 */
3259 3259 uio_prefaultpages((long)n, uio);
3260 3260
3261 3261 base = segmap_getmapflt(segkmap, vp, (off + mapon),
3262 3262 (uint32_t)n, !pagecreate, S_WRITE);
3263 3263
3264 3264 /*
3265 3265 * segmap_pagecreate() returns 1 if it calls
3266 3266 * page_create_va() to allocate any pages.
3267 3267 */
3268 3268 newpage = 0;
3269 3269 if (pagecreate) {
3270 3270 newpage = segmap_pagecreate(segkmap, base,
3271 3271 (size_t)n, 0);
3272 3272 }
3273 3273
3274 3274 premove_resid = uio->uio_resid;
3275 3275 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio);
3276 3276
3277 3277 if (pagecreate &&
3278 3278 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) {
3279 3279 /*
3280 3280 * We created pages w/o initializing them completely,
3281 3281 * thus we need to zero the part that wasn't set up.
3282 3282 * This happens on most EOF write cases and if
3283 3283 * we had some sort of error during the uiomove.
3284 3284 */
3285 3285 int nzero, nmoved;
3286 3286
3287 3287 nmoved = (int)(uio->uio_loffset - (off + mapon));
3288 3288 ASSERT(nmoved >= 0 && nmoved <= n);
3289 3289 nzero = roundup(on + n, PAGESIZE) - nmoved;
3290 3290 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE);
3291 3291 (void) kzero(base + mapon + nmoved, (uint32_t)nzero);
3292 3292 }
3293 3293
3294 3294 /*
3295 3295 * Unlock the pages allocated by page_create_va()
3296 3296 * in segmap_pagecreate()
3297 3297 */
3298 3298 if (newpage) {
3299 3299 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE);
3300 3300 }
3301 3301
3302 3302 if (error) {
3303 3303 /*
3304 3304 * If we failed on a write, we may have already
3305 3305 * allocated file blocks as well as pages. It's
3306 3306 * hard to undo the block allocation, but we must
3307 3307 * be sure to invalidate any pages that may have
3308 3308 * been allocated.
3309 3309 */
3310 3310 (void) segmap_release(segkmap, base, SM_INVAL);
3311 3311 } else {
3312 3312 flags = 0;
3313 3313 /*
3314 3314 * Force write back for synchronous write cases.
3315 3315 */
3316 3316 if ((ioflag & (FSYNC|FDSYNC)) || ip->i_type == VDIR) {
3317 3317 /*
3318 3318 * If the sticky bit is set but the
3319 3319 * execute bit is not set, we do a
3320 3320 * synchronous write back and free
3321 3321 * the page when done. We set up swap
3322 3322 * files to be handled this way to
3323 3323 * prevent servers from keeping around
3324 3324 * the client's swap pages too long.
3325 3325 * XXX - there ought to be a better way.
3326 3326 */
3327 3327 if (IS_SWAPVP(vp)) {
3328 3328 flags = SM_WRITE | SM_FREE |
3329 3329 SM_DONTNEED;
3330 3330 iupdat_flag = 0;
3331 3331 } else {
3332 3332 flags = SM_WRITE;
3333 3333 }
3334 3334 } else if (((mapon + n) == MAXBSIZE) ||
3335 3335 IS_SWAPVP(vp)) {
3336 3336 /*
3337 3337 * Have written a whole block.
3338 3338 * Start an asynchronous write and
3339 3339 * mark the buffer to indicate that
3340 3340 * it won't be needed again soon.
3341 3341 */
3342 3342 flags = SM_WRITE |SM_ASYNC | SM_DONTNEED;
3343 3343 }
3344 3344 error = segmap_release(segkmap, base, flags);
3345 3345
3346 3346 /*
3347 3347 * If the operation failed and is synchronous,
3348 3348 * then we need to unwind what uiomove() last
3349 3349 * did so we can potentially return an error to
3350 3350 * the caller. If this write operation was
3351 3351 * done in two pieces and the first succeeded,
3352 3352 * then we won't return an error for the second
3353 3353 * piece that failed. However, we only want to
3354 3354 * return a resid value that reflects what was
3355 3355 * really done.
3356 3356 *
3357 3357 * Failures for non-synchronous operations can
3358 3358 * be ignored since the page subsystem will
3359 3359 * retry the operation until it succeeds or the
3360 3360 * file system is unmounted.
3361 3361 */
3362 3362 if (error) {
3363 3363 if ((ioflag & (FSYNC | FDSYNC)) ||
3364 3364 ip->i_type == VDIR) {
3365 3365 uio->uio_resid = premove_resid;
3366 3366 } else {
3367 3367 error = 0;
3368 3368 }
3369 3369 }
3370 3370 }
3371 3371
3372 3372 /*
3373 3373 * Re-acquire contents lock.
3374 3374 */
3375 3375 rw_enter(&ip->i_contents, RW_WRITER);
3376 3376 /*
3377 3377 * If the uiomove() failed or if a synchronous
3378 3378 * page push failed, fix up i_size.
3379 3379 */
3380 3380 if (error) {
3381 3381 if (i_size_changed) {
3382 3382 /*
3383 3383 * The uiomove failed, and we
3384 3384 * allocated blocks,so get rid
3385 3385 * of them.
3386 3386 */
3387 3387 (void) ud_itrunc(ip, old_i_size, 0, cr);
3388 3388 }
3389 3389 } else {
3390 3390 /*
3391 3391 * XXX - Can this be out of the loop?
3392 3392 */
3393 3393 ip->i_flag |= IUPD | ICHG;
3394 3394 if (i_size_changed) {
3395 3395 ip->i_flag |= IATTCHG;
3396 3396 }
3397 3397 if ((ip->i_perm & (IEXEC | (IEXEC >> 5) |
3398 3398 (IEXEC >> 10))) != 0 &&
3399 3399 (ip->i_char & (ISUID | ISGID)) != 0 &&
3400 3400 secpolicy_vnode_setid_retain(cr,
3401 3401 (ip->i_char & ISUID) != 0 && ip->i_uid == 0) != 0) {
3402 3402 /*
3403 3403 * Clear Set-UID & Set-GID bits on
3404 3404 * successful write if not privileged
3405 3405 * and at least one of the execute bits
3406 3406 * is set. If we always clear Set-GID,
3407 3407 * mandatory file and record locking is
3408 3408 * unuseable.
3409 3409 */
3410 3410 ip->i_char &= ~(ISUID | ISGID);
3411 3411 }
3412 3412 }
3413 3413 } while (error == 0 && uio->uio_resid > 0 && n != 0);
3414 3414
3415 3415 out:
3416 3416 /*
3417 3417 * Inode is updated according to this table -
3418 3418 *
3419 3419 * FSYNC FDSYNC(posix.4)
3420 3420 * --------------------------
3421 3421 * always@ IATTCHG|IBDWRITE
3422 3422 *
3423 3423 * @ - If we are doing synchronous write the only time we should
3424 3424 * not be sync'ing the ip here is if we have the stickyhack
3425 3425 * activated, the file is marked with the sticky bit and
3426 3426 * no exec bit, the file length has not been changed and
3427 3427 * no new blocks have been allocated during this write.
3428 3428 */
3429 3429 if ((ip->i_flag & ISYNC) != 0) {
3430 3430 /*
3431 3431 * we have eliminated nosync
3432 3432 */
3433 3433 if ((ip->i_flag & (IATTCHG|IBDWRITE)) ||
3434 3434 ((ioflag & FSYNC) && iupdat_flag)) {
3435 3435 ud_iupdat(ip, 1);
3436 3436 }
3437 3437 }
3438 3438
3439 3439 /*
3440 3440 * If we've already done a partial-write, terminate
3441 3441 * the write but return no error.
3442 3442 */
3443 3443 if (start_resid != uio->uio_resid) {
3444 3444 error = 0;
3445 3445 }
3446 3446 ip->i_flag &= ~(INOACC | ISYNC);
3447 3447 ITIMES_NOLOCK(ip);
3448 3448
3449 3449 return (error);
3450 3450 }
3451 3451
3452 3452 int32_t
3453 3453 ud_multi_strat(struct ud_inode *ip,
3454 3454 page_t *pp, struct buf *bp, u_offset_t start)
3455 3455 {
3456 3456 daddr_t bn;
3457 3457 int32_t error = 0, io_count, contig, alloc_sz, i;
3458 3458 uint32_t io_off;
3459 3459 mio_master_t *mm = NULL;
3460 3460 mio_slave_t *ms = NULL;
3461 3461 struct buf *rbp;
3462 3462
3463 3463 ASSERT(!(start & PAGEOFFSET));
3464 3464
3465 3465 /*
3466 3466 * Figure out how many buffers to allocate
3467 3467 */
3468 3468 io_count = 0;
3469 3469 for (io_off = 0; io_off < bp->b_bcount; io_off += contig) {
3470 3470 contig = 0;
3471 3471 if (error = ud_bmap_read(ip, (u_offset_t)(start + io_off),
3472 3472 &bn, &contig)) {
3473 3473 goto end;
3474 3474 }
3475 3475 if (contig == 0) {
3476 3476 goto end;
3477 3477 }
3478 3478 contig = MIN(contig, PAGESIZE - io_off);
3479 3479 if (bn != UDF_HOLE) {
3480 3480 io_count ++;
3481 3481 } else {
3482 3482 /*
3483 3483 * HOLE
3484 3484 */
3485 3485 if (bp->b_flags & B_READ) {
3486 3486
3487 3487 /*
3488 3488 * This is a hole and is read
3489 3489 * it should be filled with 0's
3490 3490 */
3491 3491 pagezero(pp, io_off, contig);
3492 3492 }
3493 3493 }
3494 3494 }
3495 3495
3496 3496
3497 3497 if (io_count != 0) {
3498 3498
3499 3499 /*
3500 3500 * Allocate memory for all the
3501 3501 * required number of buffers
3502 3502 */
3503 3503 alloc_sz = sizeof (mio_master_t) +
3504 3504 (sizeof (mio_slave_t) * io_count);
3505 3505 mm = (mio_master_t *)kmem_zalloc(alloc_sz, KM_SLEEP);
3506 3506 if (mm == NULL) {
3507 3507 error = ENOMEM;
3508 3508 goto end;
3509 3509 }
3510 3510
3511 3511 /*
3512 3512 * initialize master
3513 3513 */
3514 3514 mutex_init(&mm->mm_mutex, NULL, MUTEX_DEFAULT, NULL);
3515 3515 mm->mm_size = alloc_sz;
3516 3516 mm->mm_bp = bp;
3517 3517 mm->mm_resid = 0;
3518 3518 mm->mm_error = 0;
3519 3519 mm->mm_index = master_index++;
3520 3520
3521 3521 ms = (mio_slave_t *)(((caddr_t)mm) + sizeof (mio_master_t));
3522 3522
3523 3523 /*
3524 3524 * Initialize buffers
3525 3525 */
3526 3526 io_count = 0;
3527 3527 for (io_off = 0; io_off < bp->b_bcount; io_off += contig) {
3528 3528 contig = 0;
3529 3529 if (error = ud_bmap_read(ip,
3530 3530 (u_offset_t)(start + io_off),
3531 3531 &bn, &contig)) {
3532 3532 goto end;
3533 3533 }
3534 3534 ASSERT(contig);
3535 3535 if ((io_off + contig) > bp->b_bcount) {
3536 3536 contig = bp->b_bcount - io_off;
3537 3537 }
3538 3538 if (bn != UDF_HOLE) {
3539 3539 /*
3540 3540 * Clone the buffer
3541 3541 * and prepare to start I/O
3542 3542 */
3543 3543 ms->ms_ptr = mm;
3544 3544 bioinit(&ms->ms_buf);
3545 3545 rbp = bioclone(bp, io_off, (size_t)contig,
3546 3546 bp->b_edev, bn, ud_slave_done,
3547 3547 &ms->ms_buf, KM_NOSLEEP);
3548 3548 ASSERT(rbp == &ms->ms_buf);
3549 3549 mm->mm_resid += contig;
3550 3550 io_count++;
3551 3551 ms ++;
3552 3552 }
3553 3553 }
3554 3554
3555 3555 /*
3556 3556 * Start I/O's
3557 3557 */
3558 3558 ms = (mio_slave_t *)(((caddr_t)mm) + sizeof (mio_master_t));
3559 3559 for (i = 0; i < io_count; i++) {
3560 3560 (void) bdev_strategy(&ms->ms_buf);
3561 3561 ms ++;
3562 3562 }
3563 3563 }
3564 3564
3565 3565 end:
3566 3566 if (error != 0) {
3567 3567 bp->b_flags |= B_ERROR;
3568 3568 bp->b_error = error;
3569 3569 if (mm != NULL) {
3570 3570 mutex_destroy(&mm->mm_mutex);
3571 3571 kmem_free(mm, mm->mm_size);
3572 3572 }
3573 3573 }
3574 3574 return (error);
3575 3575 }
3576 3576
3577 3577 int32_t
3578 3578 ud_slave_done(struct buf *bp)
3579 3579 {
3580 3580 mio_master_t *mm;
3581 3581 int32_t resid;
3582 3582
3583 3583 ASSERT(SEMA_HELD(&bp->b_sem));
3584 3584 ASSERT((bp->b_flags & B_DONE) == 0);
3585 3585
3586 3586 mm = ((mio_slave_t *)bp)->ms_ptr;
3587 3587
3588 3588 /*
3589 3589 * Propagate error and byte count info from slave struct to
3590 3590 * the master struct
3591 3591 */
3592 3592 mutex_enter(&mm->mm_mutex);
3593 3593 if (bp->b_flags & B_ERROR) {
3594 3594
3595 3595 /*
3596 3596 * If multiple slave buffers get
3597 3597 * error we forget the old errors
3598 3598 * this is ok because we any way
3599 3599 * cannot return multiple errors
3600 3600 */
3601 3601 mm->mm_error = bp->b_error;
3602 3602 }
3603 3603 mm->mm_resid -= bp->b_bcount;
3604 3604 resid = mm->mm_resid;
3605 3605 mutex_exit(&mm->mm_mutex);
3606 3606
3607 3607 /*
3608 3608 * free up the resources allocated to cloned buffers.
3609 3609 */
3610 3610 bp_mapout(bp);
3611 3611 biofini(bp);
3612 3612
3613 3613 if (resid == 0) {
3614 3614
3615 3615 /*
3616 3616 * This is the last I/O operation
3617 3617 * clean up and return the original buffer
3618 3618 */
3619 3619 if (mm->mm_error) {
3620 3620 mm->mm_bp->b_flags |= B_ERROR;
3621 3621 mm->mm_bp->b_error = mm->mm_error;
3622 3622 }
3623 3623 biodone(mm->mm_bp);
3624 3624 mutex_destroy(&mm->mm_mutex);
3625 3625 kmem_free(mm, mm->mm_size);
3626 3626 }
3627 3627 return (0);
3628 3628 }
|
↓ open down ↓ |
3628 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX