1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright 2015 Joyent, Inc.
  24  */
  25 
  26 #include <sys/types.h>
  27 #include <sys/param.h>
  28 #include <sys/sysmacros.h>
  29 #include <sys/kmem.h>
  30 #include <sys/time.h>
  31 #include <sys/pathname.h>
  32 #include <sys/vfs.h>
  33 #include <sys/vfs_opreg.h>
  34 #include <sys/vnode.h>
  35 #include <sys/stat.h>
  36 #include <sys/uio.h>
  37 #include <sys/stat.h>
  38 #include <sys/errno.h>
  39 #include <sys/cmn_err.h>
  40 #include <sys/cred.h>
  41 #include <sys/statvfs.h>
  42 #include <sys/mount.h>
  43 #include <sys/debug.h>
  44 #include <sys/systm.h>
  45 #include <sys/mntent.h>
  46 #include <fs/fs_subr.h>
  47 #include <vm/page.h>
  48 #include <vm/anon.h>
  49 #include <sys/model.h>
  50 #include <sys/policy.h>
  51 
  52 #include <sys/fs/swapnode.h>
  53 #include <sys/fs/tmp.h>
  54 #include <sys/fs/tmpnode.h>
  55 
  56 static int tmpfsfstype;
  57 
  58 /*
  59  * tmpfs vfs operations.
  60  */
  61 static int tmpfsinit(int, char *);
  62 static int tmp_mount(struct vfs *, struct vnode *,
  63         struct mounta *, struct cred *);
  64 static int tmp_unmount(struct vfs *, int, struct cred *);
  65 static int tmp_root(struct vfs *, struct vnode **);
  66 static int tmp_statvfs(struct vfs *, struct statvfs64 *);
  67 static int tmp_vget(struct vfs *, struct vnode **, struct fid *);
  68 
  69 /*
  70  * Loadable module wrapper
  71  */
  72 #include <sys/modctl.h>
  73 
  74 static mntopts_t tmpfs_proto_opttbl;
  75 
  76 static vfsdef_t vfw = {
  77         VFSDEF_VERSION,
  78         "tmpfs",
  79         tmpfsinit,
  80         VSW_HASPROTO|VSW_CANREMOUNT|VSW_STATS|VSW_ZMOUNT,
  81         &tmpfs_proto_opttbl
  82 };
  83 
  84 /*
  85  * in-kernel mnttab options
  86  */
  87 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
  88 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
  89 
  90 static mntopt_t tmpfs_options[] = {
  91         /* Option name          Cancel Opt      Arg     Flags           Data */
  92         { MNTOPT_XATTR,         xattr_cancel,   NULL,   MO_DEFAULT,     NULL},
  93         { MNTOPT_NOXATTR,       noxattr_cancel, NULL,   NULL,           NULL},
  94         { "size",               NULL,           "0",    MO_HASVALUE,    NULL},
  95         { "mode",               NULL,           NULL,   MO_HASVALUE,    NULL}
  96 };
  97 
  98 
  99 static mntopts_t tmpfs_proto_opttbl = {
 100         sizeof (tmpfs_options) / sizeof (mntopt_t),
 101         tmpfs_options
 102 };
 103 
 104 /*
 105  * Module linkage information
 106  */
 107 static struct modlfs modlfs = {
 108         &mod_fsops, "filesystem for tmpfs", &vfw
 109 };
 110 
 111 static struct modlinkage modlinkage = {
 112         MODREV_1, &modlfs, NULL
 113 };
 114 
 115 int
 116 _init()
 117 {
 118         return (mod_install(&modlinkage));
 119 }
 120 
 121 int
 122 _fini()
 123 {
 124         int error;
 125 
 126         error = mod_remove(&modlinkage);
 127         if (error)
 128                 return (error);
 129         /*
 130          * Tear down the operations vectors
 131          */
 132         (void) vfs_freevfsops_by_type(tmpfsfstype);
 133         vn_freevnodeops(tmp_vnodeops);
 134         return (0);
 135 }
 136 
 137 int
 138 _info(struct modinfo *modinfop)
 139 {
 140         return (mod_info(&modlinkage, modinfop));
 141 }
 142 
 143 /*
 144  * The following are patchable variables limiting the amount of system
 145  * resources tmpfs can use.
 146  *
 147  * tmpfs_maxkmem limits the amount of kernel kmem_alloc memory
 148  * tmpfs can use for it's data structures (e.g. tmpnodes, directory entries)
 149  * It is not determined by setting a hard limit but rather as a percentage of
 150  * physical memory which is determined when tmpfs is first used in the system.
 151  *
 152  * tmpfs_minfree is the minimum amount of swap space that tmpfs leaves for
 153  * the rest of the system.  In other words, if the amount of free swap space
 154  * in the system (i.e. anoninfo.ani_free) drops below tmpfs_minfree, tmpfs
 155  * anon allocations will fail.
 156  *
 157  * There is also a per mount limit on the amount of swap space
 158  * (tmount.tm_anonmax) settable via a mount option.
 159  */
 160 size_t tmpfs_maxkmem = 0;
 161 size_t tmpfs_minfree = 0;
 162 size_t tmp_kmemspace;           /* bytes of kernel heap used by all tmpfs */
 163 
 164 static major_t tmpfs_major;
 165 static minor_t tmpfs_minor;
 166 static kmutex_t tmpfs_minor_lock;
 167 
 168 /*
 169  * initialize global tmpfs locks and such
 170  * called when loading tmpfs module
 171  */
 172 static int
 173 tmpfsinit(int fstype, char *name)
 174 {
 175         static const fs_operation_def_t tmp_vfsops_template[] = {
 176                 VFSNAME_MOUNT,          { .vfs_mount = tmp_mount },
 177                 VFSNAME_UNMOUNT,        { .vfs_unmount = tmp_unmount },
 178                 VFSNAME_ROOT,           { .vfs_root = tmp_root },
 179                 VFSNAME_STATVFS,        { .vfs_statvfs = tmp_statvfs },
 180                 VFSNAME_VGET,           { .vfs_vget = tmp_vget },
 181                 NULL,                   NULL
 182         };
 183         int error;
 184         extern  void    tmpfs_hash_init();
 185 
 186         tmpfs_hash_init();
 187         tmpfsfstype = fstype;
 188         ASSERT(tmpfsfstype != 0);
 189 
 190         error = vfs_setfsops(fstype, tmp_vfsops_template, NULL);
 191         if (error != 0) {
 192                 cmn_err(CE_WARN, "tmpfsinit: bad vfs ops template");
 193                 return (error);
 194         }
 195 
 196         error = vn_make_ops(name, tmp_vnodeops_template, &tmp_vnodeops);
 197         if (error != 0) {
 198                 (void) vfs_freevfsops_by_type(fstype);
 199                 cmn_err(CE_WARN, "tmpfsinit: bad vnode ops template");
 200                 return (error);
 201         }
 202 
 203         /*
 204          * tmpfs_minfree doesn't need to be some function of configured
 205          * swap space since it really is an absolute limit of swap space
 206          * which still allows other processes to execute.
 207          */
 208         if (tmpfs_minfree == 0) {
 209                 /*
 210                  * Set if not patched
 211                  */
 212                 tmpfs_minfree = btopr(TMPMINFREE);
 213         }
 214 
 215         /*
 216          * The maximum amount of space tmpfs can allocate is
 217          * TMPMAXPROCKMEM percent of kernel memory
 218          */
 219         if (tmpfs_maxkmem == 0)
 220                 tmpfs_maxkmem = MAX(PAGESIZE, kmem_maxavail() / TMPMAXFRACKMEM);
 221 
 222         if ((tmpfs_major = getudev()) == (major_t)-1) {
 223                 cmn_err(CE_WARN, "tmpfsinit: Can't get unique device number.");
 224                 tmpfs_major = 0;
 225         }
 226         mutex_init(&tmpfs_minor_lock, NULL, MUTEX_DEFAULT, NULL);
 227         return (0);
 228 }
 229 
 230 static int
 231 tmp_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
 232 {
 233         struct tmount *tm = NULL;
 234         struct tmpnode *tp;
 235         struct pathname dpn;
 236         int error;
 237         pgcnt_t anonmax;
 238         struct vattr rattr;
 239         int got_attrs;
 240         boolean_t mode_arg = B_FALSE;
 241         mode_t root_mode = 0777;
 242         char *argstr;
 243 
 244         if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
 245                 return (error);
 246 
 247         if (mvp->v_type != VDIR)
 248                 return (ENOTDIR);
 249 
 250         mutex_enter(&mvp->v_lock);
 251         if ((uap->flags & MS_REMOUNT) == 0 && (uap->flags & MS_OVERLAY) == 0 &&
 252             (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
 253                 mutex_exit(&mvp->v_lock);
 254                 return (EBUSY);
 255         }
 256         mutex_exit(&mvp->v_lock);
 257 
 258         /*
 259          * Having the resource be anything but "swap" doesn't make sense.
 260          */
 261         vfs_setresource(vfsp, "swap", 0);
 262 
 263         /*
 264          * now look for options we understand...
 265          */
 266 
 267         /* tmpfs doesn't support read-only mounts */
 268         if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
 269                 error = EINVAL;
 270                 goto out;
 271         }
 272 
 273         /*
 274          * tm_anonmax is set according to the mount arguments
 275          * if any.  Otherwise, it is set to a maximum value.
 276          */
 277         if (vfs_optionisset(vfsp, "size", &argstr)) {
 278                 if ((error = tmp_convnum(argstr, &anonmax)) != 0)
 279                         goto out;
 280         } else {
 281                 anonmax = ULONG_MAX;
 282         }
 283 
 284         /*
 285          * The "mode" mount argument allows the operator to override the
 286          * permissions of the root of the tmpfs mount.
 287          */
 288         if (vfs_optionisset(vfsp, "mode", &argstr)) {
 289                 if ((error = tmp_convmode(argstr, &root_mode)) != 0) {
 290                         goto out;
 291                 }
 292                 mode_arg = B_TRUE;
 293         }
 294 
 295         if (error = pn_get(uap->dir,
 296             (uap->flags & MS_SYSSPACE) ? UIO_SYSSPACE : UIO_USERSPACE, &dpn))
 297                 goto out;
 298 
 299         if (uap->flags & MS_REMOUNT) {
 300                 tm = (struct tmount *)VFSTOTM(vfsp);
 301 
 302                 /*
 303                  * If we change the size so its less than what is currently
 304                  * being used, we allow that. The file system will simply be
 305                  * full until enough files have been removed to get below the
 306                  * new max.
 307                  */
 308                 mutex_enter(&tm->tm_contents);
 309                 tm->tm_anonmax = anonmax;
 310                 mutex_exit(&tm->tm_contents);
 311                 goto out;
 312         }
 313 
 314         if ((tm = tmp_memalloc(sizeof (struct tmount), 0)) == NULL) {
 315                 pn_free(&dpn);
 316                 error = ENOMEM;
 317                 goto out;
 318         }
 319 
 320         /*
 321          * find an available minor device number for this mount
 322          */
 323         mutex_enter(&tmpfs_minor_lock);
 324         do {
 325                 tmpfs_minor = (tmpfs_minor + 1) & L_MAXMIN32;
 326                 tm->tm_dev = makedevice(tmpfs_major, tmpfs_minor);
 327         } while (vfs_devismounted(tm->tm_dev));
 328         mutex_exit(&tmpfs_minor_lock);
 329 
 330         /*
 331          * Set but don't bother entering the mutex
 332          * (tmount not on mount list yet)
 333          */
 334         mutex_init(&tm->tm_contents, NULL, MUTEX_DEFAULT, NULL);
 335         mutex_init(&tm->tm_renamelck, NULL, MUTEX_DEFAULT, NULL);
 336 
 337         tm->tm_vfsp = vfsp;
 338         tm->tm_anonmax = anonmax;
 339 
 340         vfsp->vfs_data = (caddr_t)tm;
 341         vfsp->vfs_fstype = tmpfsfstype;
 342         vfsp->vfs_dev = tm->tm_dev;
 343         vfsp->vfs_bsize = PAGESIZE;
 344         vfsp->vfs_flag |= VFS_NOTRUNC;
 345         vfs_make_fsid(&vfsp->vfs_fsid, tm->tm_dev, tmpfsfstype);
 346         tm->tm_mntpath = tmp_memalloc(dpn.pn_pathlen + 1, TMP_MUSTHAVE);
 347         (void) strcpy(tm->tm_mntpath, dpn.pn_path);
 348 
 349         /*
 350          * allocate and initialize root tmpnode structure
 351          */
 352         bzero(&rattr, sizeof (struct vattr));
 353         rattr.va_mode = (mode_t)(S_IFDIR | root_mode);
 354         rattr.va_type = VDIR;
 355         rattr.va_rdev = 0;
 356         tp = tmp_memalloc(sizeof (struct tmpnode), TMP_MUSTHAVE);
 357         tmpnode_init(tm, tp, &rattr, cr);
 358 
 359         /*
 360          * Get the mode, uid, and gid from the underlying mount point.
 361          */
 362         rattr.va_mask = AT_MODE|AT_UID|AT_GID;  /* Hint to getattr */
 363         got_attrs = VOP_GETATTR(mvp, &rattr, 0, cr, NULL);
 364 
 365         rw_enter(&tp->tn_rwlock, RW_WRITER);
 366         TNTOV(tp)->v_flag |= VROOT;
 367 
 368         /*
 369          * If the getattr succeeded, use its results.  Otherwise allow
 370          * the previously set hardwired defaults to prevail.
 371          */
 372         if (got_attrs == 0) {
 373                 if (!mode_arg) {
 374                         /*
 375                          * Only use the underlying mount point for the
 376                          * mode if the "mode" mount argument was not
 377                          * provided.
 378                          */
 379                         tp->tn_mode = rattr.va_mode;
 380                 }
 381                 tp->tn_uid = rattr.va_uid;
 382                 tp->tn_gid = rattr.va_gid;
 383         }
 384 
 385         /*
 386          * initialize linked list of tmpnodes so that the back pointer of
 387          * the root tmpnode always points to the last one on the list
 388          * and the forward pointer of the last node is null
 389          */
 390         tp->tn_back = tp;
 391         tp->tn_forw = NULL;
 392         tp->tn_nlink = 0;
 393         tm->tm_rootnode = tp;
 394 
 395         tdirinit(tp, tp);
 396 
 397         rw_exit(&tp->tn_rwlock);
 398 
 399         pn_free(&dpn);
 400         error = 0;
 401 
 402 out:
 403         if (error == 0)
 404                 vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS);
 405 
 406         return (error);
 407 }
 408 
 409 static int
 410 tmp_unmount(struct vfs *vfsp, int flag, struct cred *cr)
 411 {
 412         struct tmount *tm = (struct tmount *)VFSTOTM(vfsp);
 413         struct tmpnode *tnp, *cancel;
 414         struct vnode    *vp;
 415         int error;
 416 
 417         if ((error = secpolicy_fs_unmount(cr, vfsp)) != 0)
 418                 return (error);
 419 
 420         /*
 421          * forced unmount is not supported by this file system
 422          * and thus, ENOTSUP, is being returned.
 423          */
 424         if (flag & MS_FORCE)
 425                 return (ENOTSUP);
 426 
 427         mutex_enter(&tm->tm_contents);
 428 
 429         /*
 430          * If there are no open files, only the root node should have
 431          * a reference count.
 432          * With tm_contents held, nothing can be added or removed.
 433          * There may be some dirty pages.  To prevent fsflush from
 434          * disrupting the unmount, put a hold on each node while scanning.
 435          * If we find a previously referenced node, undo the holds we have
 436          * placed and fail EBUSY.
 437          */
 438         tnp = tm->tm_rootnode;
 439         if (TNTOV(tnp)->v_count > 1) {
 440                 mutex_exit(&tm->tm_contents);
 441                 return (EBUSY);
 442         }
 443 
 444         for (tnp = tnp->tn_forw; tnp; tnp = tnp->tn_forw) {
 445                 if ((vp = TNTOV(tnp))->v_count > 0) {
 446                         cancel = tm->tm_rootnode->tn_forw;
 447                         while (cancel != tnp) {
 448                                 vp = TNTOV(cancel);
 449                                 ASSERT(vp->v_count > 0);
 450                                 VN_RELE(vp);
 451                                 cancel = cancel->tn_forw;
 452                         }
 453                         mutex_exit(&tm->tm_contents);
 454                         return (EBUSY);
 455                 }
 456                 VN_HOLD(vp);
 457         }
 458 
 459         /*
 460          * We can drop the mutex now because no one can find this mount
 461          */
 462         mutex_exit(&tm->tm_contents);
 463 
 464         /*
 465          * Free all kmemalloc'd and anonalloc'd memory associated with
 466          * this filesystem.  To do this, we go through the file list twice,
 467          * once to remove all the directory entries, and then to remove
 468          * all the files.  We do this because there is useful code in
 469          * tmpnode_free which assumes that the directory entry has been
 470          * removed before the file.
 471          */
 472         /*
 473          * Remove all directory entries
 474          */
 475         for (tnp = tm->tm_rootnode; tnp; tnp = tnp->tn_forw) {
 476                 rw_enter(&tnp->tn_rwlock, RW_WRITER);
 477                 if (tnp->tn_type == VDIR)
 478                         tdirtrunc(tnp);
 479                 if (tnp->tn_vnode->v_flag & V_XATTRDIR) {
 480                         /*
 481                          * Account for implicit attrdir reference.
 482                          */
 483                         ASSERT(tnp->tn_nlink > 0);
 484                         DECR_COUNT(&tnp->tn_nlink, &tnp->tn_tlock);
 485                 }
 486                 rw_exit(&tnp->tn_rwlock);
 487         }
 488 
 489         ASSERT(tm->tm_rootnode);
 490 
 491         /*
 492          * All links are gone, v_count is keeping nodes in place.
 493          * VN_RELE should make the node disappear, unless somebody
 494          * is holding pages against it.  Nap and retry until it disappears.
 495          *
 496          * We re-acquire the lock to prevent others who have a HOLD on
 497          * a tmpnode via its pages or anon slots from blowing it away
 498          * (in tmp_inactive) while we're trying to get to it here. Once
 499          * we have a HOLD on it we know it'll stick around.
 500          *
 501          */
 502         mutex_enter(&tm->tm_contents);
 503         /*
 504          * Remove all the files (except the rootnode) backwards.
 505          */
 506         while ((tnp = tm->tm_rootnode->tn_back) != tm->tm_rootnode) {
 507                 mutex_exit(&tm->tm_contents);
 508                 /*
 509                  * Inhibit tmp_inactive from touching attribute directory
 510                  * as all nodes will be released here.
 511                  * Note we handled the link count in pass 2 above.
 512                  */
 513                 rw_enter(&tnp->tn_rwlock, RW_WRITER);
 514                 tnp->tn_xattrdp = NULL;
 515                 rw_exit(&tnp->tn_rwlock);
 516                 vp = TNTOV(tnp);
 517                 VN_RELE(vp);
 518                 mutex_enter(&tm->tm_contents);
 519                 /*
 520                  * It's still there after the RELE. Someone else like pageout
 521                  * has a hold on it so wait a bit and then try again - we know
 522                  * they'll give it up soon.
 523                  */
 524                 if (tnp == tm->tm_rootnode->tn_back) {
 525                         VN_HOLD(vp);
 526                         mutex_exit(&tm->tm_contents);
 527                         delay(hz / 4);
 528                         mutex_enter(&tm->tm_contents);
 529                 }
 530         }
 531         mutex_exit(&tm->tm_contents);
 532 
 533         tm->tm_rootnode->tn_xattrdp = NULL;
 534         VN_RELE(TNTOV(tm->tm_rootnode));
 535 
 536         ASSERT(tm->tm_mntpath);
 537 
 538         tmp_memfree(tm->tm_mntpath, strlen(tm->tm_mntpath) + 1);
 539 
 540         ASSERT(tm->tm_anonmem == 0);
 541 
 542         mutex_destroy(&tm->tm_contents);
 543         mutex_destroy(&tm->tm_renamelck);
 544         tmp_memfree(tm, sizeof (struct tmount));
 545 
 546         return (0);
 547 }
 548 
 549 /*
 550  * return root tmpnode for given vnode
 551  */
 552 static int
 553 tmp_root(struct vfs *vfsp, struct vnode **vpp)
 554 {
 555         struct tmount *tm = (struct tmount *)VFSTOTM(vfsp);
 556         struct tmpnode *tp = tm->tm_rootnode;
 557         struct vnode *vp;
 558 
 559         ASSERT(tp);
 560 
 561         vp = TNTOV(tp);
 562         VN_HOLD(vp);
 563         *vpp = vp;
 564         return (0);
 565 }
 566 
 567 static int
 568 tmp_statvfs(struct vfs *vfsp, struct statvfs64 *sbp)
 569 {
 570         struct tmount   *tm = (struct tmount *)VFSTOTM(vfsp);
 571         ulong_t blocks;
 572         dev32_t d32;
 573         zoneid_t eff_zid;
 574         struct zone *zp;
 575 
 576         /*
 577          * The file system may have been mounted by the global zone on
 578          * behalf of the non-global zone.  In that case, the tmount zone_id
 579          * will be the global zone.  We still want to show the swap cap inside
 580          * the zone in this case, even though the file system was mounted by
 581          * the global zone.
 582          */
 583         if (curproc->p_zone->zone_id != GLOBAL_ZONEUNIQID)
 584                 zp = curproc->p_zone;
 585         else
 586                 zp = tm->tm_vfsp->vfs_zone;
 587 
 588         if (zp == NULL)
 589                 eff_zid = GLOBAL_ZONEUNIQID;
 590         else
 591                 eff_zid = zp->zone_id;
 592 
 593         sbp->f_bsize = PAGESIZE;
 594         sbp->f_frsize = PAGESIZE;
 595 
 596         /*
 597          * Find the amount of available physical and memory swap
 598          */
 599         mutex_enter(&anoninfo_lock);
 600         ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
 601         blocks = (ulong_t)CURRENT_TOTAL_AVAILABLE_SWAP;
 602         mutex_exit(&anoninfo_lock);
 603 
 604         /*
 605          * If tm_anonmax for this mount is less than the available swap space
 606          * (minus the amount tmpfs can't use), use that instead
 607          */
 608         if (blocks > tmpfs_minfree)
 609                 sbp->f_bfree = MIN(blocks - tmpfs_minfree,
 610                     tm->tm_anonmax - tm->tm_anonmem);
 611         else
 612                 sbp->f_bfree = 0;
 613 
 614         sbp->f_bavail = sbp->f_bfree;
 615 
 616         /*
 617          * Total number of blocks is what's available plus what's been used
 618          */
 619         sbp->f_blocks = (fsblkcnt64_t)(sbp->f_bfree + tm->tm_anonmem);
 620 
 621         if (eff_zid != GLOBAL_ZONEUNIQID &&
 622             zp->zone_max_swap_ctl != UINT64_MAX) {
 623                 /*
 624                  * If the fs is used by a non-global zone with a swap cap,
 625                  * then report the capped size.
 626                  */
 627                 rctl_qty_t cap, used;
 628                 pgcnt_t pgcap, pgused;
 629 
 630                 mutex_enter(&zp->zone_mem_lock);
 631                 cap = zp->zone_max_swap_ctl;
 632                 used = zp->zone_max_swap;
 633                 mutex_exit(&zp->zone_mem_lock);
 634 
 635                 pgcap = btop(cap);
 636                 pgused = btop(used);
 637 
 638                 sbp->f_bfree = MIN(pgcap - pgused, sbp->f_bfree);
 639                 sbp->f_bavail = sbp->f_bfree;
 640                 sbp->f_blocks = MIN(pgcap, sbp->f_blocks);
 641         }
 642 
 643         /*
 644          * The maximum number of files available is approximately the number
 645          * of tmpnodes we can allocate from the remaining kernel memory
 646          * available to tmpfs.  This is fairly inaccurate since it doesn't
 647          * take into account the names stored in the directory entries.
 648          */
 649         if (tmpfs_maxkmem > tmp_kmemspace)
 650                 sbp->f_ffree = (tmpfs_maxkmem - tmp_kmemspace) /
 651                     (sizeof (struct tmpnode) + sizeof (struct tdirent));
 652         else
 653                 sbp->f_ffree = 0;
 654 
 655         sbp->f_files = tmpfs_maxkmem /
 656             (sizeof (struct tmpnode) + sizeof (struct tdirent));
 657         sbp->f_favail = (fsfilcnt64_t)(sbp->f_ffree);
 658         (void) cmpldev(&d32, vfsp->vfs_dev);
 659         sbp->f_fsid = d32;
 660         (void) strcpy(sbp->f_basetype, vfssw[tmpfsfstype].vsw_name);
 661         (void) strncpy(sbp->f_fstr, tm->tm_mntpath, sizeof (sbp->f_fstr));
 662         /*
 663          * ensure null termination
 664          */
 665         sbp->f_fstr[sizeof (sbp->f_fstr) - 1] = '\0';
 666         sbp->f_flag = vf_to_stf(vfsp->vfs_flag);
 667         sbp->f_namemax = MAXNAMELEN - 1;
 668         return (0);
 669 }
 670 
 671 static int
 672 tmp_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp)
 673 {
 674         struct tfid *tfid;
 675         struct tmount *tm = (struct tmount *)VFSTOTM(vfsp);
 676         struct tmpnode *tp = NULL;
 677 
 678         tfid = (struct tfid *)fidp;
 679         *vpp = NULL;
 680 
 681         mutex_enter(&tm->tm_contents);
 682         for (tp = tm->tm_rootnode; tp; tp = tp->tn_forw) {
 683                 mutex_enter(&tp->tn_tlock);
 684                 if (tp->tn_nodeid == tfid->tfid_ino) {
 685                         /*
 686                          * If the gen numbers don't match we know the
 687                          * file won't be found since only one tmpnode
 688                          * can have this number at a time.
 689                          */
 690                         if (tp->tn_gen != tfid->tfid_gen || tp->tn_nlink == 0) {
 691                                 mutex_exit(&tp->tn_tlock);
 692                                 mutex_exit(&tm->tm_contents);
 693                                 return (0);
 694                         }
 695                         *vpp = (struct vnode *)TNTOV(tp);
 696 
 697                         VN_HOLD(*vpp);
 698 
 699                         if ((tp->tn_mode & S_ISVTX) &&
 700                             !(tp->tn_mode & (S_IXUSR | S_IFDIR))) {
 701                                 mutex_enter(&(*vpp)->v_lock);
 702                                 (*vpp)->v_flag |= VISSWAP;
 703                                 mutex_exit(&(*vpp)->v_lock);
 704                         }
 705                         mutex_exit(&tp->tn_tlock);
 706                         mutex_exit(&tm->tm_contents);
 707                         return (0);
 708                 }
 709                 mutex_exit(&tp->tn_tlock);
 710         }
 711         mutex_exit(&tm->tm_contents);
 712         return (0);
 713 }