1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright 2016 Joyent, Inc.
  25  * Copyright (c) 2013 by Delphix. All rights reserved.
  26  */
  27 
  28 #include <assert.h>
  29 #include <stdio.h>
  30 #include <stdlib.h>
  31 #include <stddef.h>
  32 #include <unistd.h>
  33 #include <ctype.h>
  34 #include <fcntl.h>
  35 #include <string.h>
  36 #include <strings.h>
  37 #include <memory.h>
  38 #include <errno.h>
  39 #include <dirent.h>
  40 #include <signal.h>
  41 #include <limits.h>
  42 #include <libgen.h>
  43 #include <sys/types.h>
  44 #include <sys/stat.h>
  45 #include <sys/sysmacros.h>
  46 #include <sys/crc32.h>
  47 
  48 #include "libproc.h"
  49 #include "Pcontrol.h"
  50 #include "Putil.h"
  51 #include "Psymtab_machelf.h"
  52 
  53 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *);
  54 static map_info_t *exec_map(struct ps_prochandle *);
  55 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *);
  56 static map_info_t *object_name_to_map(struct ps_prochandle *,
  57         Lmid_t, const char *);
  58 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *);
  59 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *,
  60     uintptr_t);
  61 #ifdef _LP64
  62 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *,
  63     uintptr_t);
  64 #endif
  65 static uint32_t psym_crc32[] = { CRC32_TABLE };
  66 
  67 #define DATA_TYPES      \
  68         ((1 << STT_OBJECT) | (1 << STT_FUNC) | \
  69         (1 << STT_COMMON) | (1 << STT_TLS))
  70 #define IS_DATA_TYPE(tp)        (((1 << (tp)) & DATA_TYPES) != 0)
  71 
  72 #define MA_RWX  (MA_READ | MA_WRITE | MA_EXEC)
  73 
  74 /*
  75  * Minimum and maximum length of a build-id that we'll accept. Generally it's a
  76  * 20 byte SHA1 and it's expected that the first byte (which is two ascii
  77  * characters) indicates a directory and the remaining bytes become the file
  78  * name. Therefore, our minimum length is at least 2 bytes (one for the
  79  * directory and one for the name) and the max is a bit over the minimum -- 64,
  80  * just in case folks do something odd. The string length is three times the max
  81  * length. This accounts for the fact that each byte is two characters, a null
  82  * terminator, and the directory '/' character.
  83  */
  84 #define MINBUILDID      2
  85 #define MAXBUILDID      64
  86 #define BUILDID_STRLEN  (3*MAXBUILDID)
  87 #define BUILDID_NAME    ".note.gnu.build-id"
  88 #define DBGLINK_NAME    ".gnu_debuglink"
  89 
  90 typedef enum {
  91         PRO_NATURAL,
  92         PRO_BYADDR,
  93         PRO_BYNAME
  94 } pr_order_t;
  95 
  96 static int
  97 addr_cmp(const void *aa, const void *bb)
  98 {
  99         uintptr_t a = *((uintptr_t *)aa);
 100         uintptr_t b = *((uintptr_t *)bb);
 101 
 102         if (a > b)
 103                 return (1);
 104         if (a < b)
 105                 return (-1);
 106         return (0);
 107 }
 108 
 109 /*
 110  * This function creates a list of addresses for a load object's sections.
 111  * The list is in ascending address order and alternates start address
 112  * then end address for each section we're interested in. The function
 113  * returns a pointer to the list, which must be freed by the caller.
 114  */
 115 static uintptr_t *
 116 get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n)
 117 {
 118         uintptr_t a, addr, *addrs, last = 0;
 119         uint_t i, naddrs = 0, unordered = 0;
 120 
 121         if (P->status.pr_dmodel == PR_MODEL_ILP32) {
 122                 Elf32_Ehdr ehdr;
 123                 Elf32_Phdr phdr;
 124                 uint_t phnum;
 125 
 126                 if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0)
 127                         return (NULL);
 128 
 129                 addrs = malloc(sizeof (uintptr_t) * phnum * 2);
 130                 a = ehdr_start + ehdr.e_phoff;
 131                 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
 132                         if (Pread(P, &phdr, sizeof (phdr), a) !=
 133                             sizeof (phdr)) {
 134                                 free(addrs);
 135                                 return (NULL);
 136                         }
 137                         if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
 138                                 continue;
 139 
 140                         addr = phdr.p_vaddr;
 141                         if (ehdr.e_type == ET_DYN)
 142                                 addr += ehdr_start;
 143                         if (last > addr)
 144                                 unordered = 1;
 145                         addrs[naddrs++] = addr;
 146                         addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
 147                 }
 148 #ifdef _LP64
 149         } else {
 150                 Elf64_Ehdr ehdr;
 151                 Elf64_Phdr phdr;
 152                 uint_t phnum;
 153 
 154                 if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0)
 155                         return (NULL);
 156 
 157                 addrs = malloc(sizeof (uintptr_t) * phnum * 2);
 158                 a = ehdr_start + ehdr.e_phoff;
 159                 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
 160                         if (Pread(P, &phdr, sizeof (phdr), a) !=
 161                             sizeof (phdr)) {
 162                                 free(addrs);
 163                                 return (NULL);
 164                         }
 165                         if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
 166                                 continue;
 167 
 168                         addr = phdr.p_vaddr;
 169                         if (ehdr.e_type == ET_DYN)
 170                                 addr += ehdr_start;
 171                         if (last > addr)
 172                                 unordered = 1;
 173                         addrs[naddrs++] = addr;
 174                         addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
 175                 }
 176 #endif
 177         }
 178 
 179         if (unordered)
 180                 qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp);
 181 
 182         *n = naddrs;
 183         return (addrs);
 184 }
 185 
 186 /*
 187  * Allocation function for a new file_info_t
 188  */
 189 file_info_t *
 190 file_info_new(struct ps_prochandle *P, map_info_t *mptr)
 191 {
 192         file_info_t *fptr;
 193         map_info_t *mp;
 194         uintptr_t mstart, mend, sstart, send;
 195         uint_t i;
 196 
 197         if ((fptr = calloc(1, sizeof (file_info_t))) == NULL)
 198                 return (NULL);
 199 
 200         list_link(fptr, &P->file_head);
 201         (void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname);
 202         mptr->map_file = fptr;
 203         fptr->file_ref = 1;
 204         fptr->file_fd = -1;
 205         fptr->file_dbgfile = -1;
 206         P->num_files++;
 207 
 208         /*
 209          * To figure out which map_info_t instances correspond to the mappings
 210          * for this load object we try to obtain the start and end address
 211          * for each section of our in-memory ELF image. If successful, we
 212          * walk down the list of addresses and the list of map_info_t
 213          * instances in lock step to correctly find the mappings that
 214          * correspond to this load object.
 215          */
 216         if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr,
 217             &fptr->file_nsaddrs)) == NULL)
 218                 return (fptr);
 219 
 220         mp = P->mappings;
 221         i = 0;
 222         while (mp < P->mappings + P->map_count && i < fptr->file_nsaddrs) {
 223 
 224                 /* Calculate the start and end of the mapping and section */
 225                 mstart = mp->map_pmap.pr_vaddr;
 226                 mend = mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size;
 227                 sstart = fptr->file_saddrs[i];
 228                 send = fptr->file_saddrs[i + 1];
 229 
 230                 if (mend <= sstart) {
 231                         /* This mapping is below the current section */
 232                         mp++;
 233                 } else if (mstart >= send) {
 234                         /* This mapping is above the current section */
 235                         i += 2;
 236                 } else {
 237                         /* This mapping overlaps the current section */
 238                         if (mp->map_file == NULL) {
 239                                 dprintf("file_info_new: associating "
 240                                     "segment at %p\n",
 241                                     (void *)mp->map_pmap.pr_vaddr);
 242                                 mp->map_file = fptr;
 243                                 fptr->file_ref++;
 244                         } else {
 245                                 dprintf("file_info_new: segment at %p "
 246                                     "already associated with %s\n",
 247                                     (void *)mp->map_pmap.pr_vaddr,
 248                                     (mp == mptr ? "this file" :
 249                                     mp->map_file->file_pname));
 250                         }
 251                         mp++;
 252                 }
 253         }
 254 
 255         return (fptr);
 256 }
 257 
 258 /*
 259  * Deallocation function for a file_info_t
 260  */
 261 static void
 262 file_info_free(struct ps_prochandle *P, file_info_t *fptr)
 263 {
 264         if (--fptr->file_ref == 0) {
 265                 list_unlink(fptr);
 266                 if (fptr->file_symtab.sym_elf) {
 267                         (void) elf_end(fptr->file_symtab.sym_elf);
 268                         free(fptr->file_symtab.sym_elfmem);
 269                 }
 270                 if (fptr->file_symtab.sym_byname)
 271                         free(fptr->file_symtab.sym_byname);
 272                 if (fptr->file_symtab.sym_byaddr)
 273                         free(fptr->file_symtab.sym_byaddr);
 274 
 275                 if (fptr->file_dynsym.sym_elf) {
 276                         (void) elf_end(fptr->file_dynsym.sym_elf);
 277                         free(fptr->file_dynsym.sym_elfmem);
 278                 }
 279                 if (fptr->file_dynsym.sym_byname)
 280                         free(fptr->file_dynsym.sym_byname);
 281                 if (fptr->file_dynsym.sym_byaddr)
 282                         free(fptr->file_dynsym.sym_byaddr);
 283 
 284                 if (fptr->file_lo)
 285                         free(fptr->file_lo);
 286                 if (fptr->file_lname)
 287                         free(fptr->file_lname);
 288                 if (fptr->file_rname)
 289                         free(fptr->file_rname);
 290                 if (fptr->file_elf)
 291                         (void) elf_end(fptr->file_elf);
 292                 if (fptr->file_elfmem != NULL)
 293                         free(fptr->file_elfmem);
 294                 if (fptr->file_fd >= 0)
 295                         (void) close(fptr->file_fd);
 296                 if (fptr->file_dbgelf)
 297                         (void) elf_end(fptr->file_dbgelf);
 298                 if (fptr->file_dbgfile >= 0)
 299                         (void) close(fptr->file_dbgfile);
 300                 if (fptr->file_ctfp) {
 301                         ctf_close(fptr->file_ctfp);
 302                         free(fptr->file_ctf_buf);
 303                 }
 304                 if (fptr->file_saddrs)
 305                         free(fptr->file_saddrs);
 306                 free(fptr);
 307                 P->num_files--;
 308         }
 309 }
 310 
 311 /*
 312  * Deallocation function for a map_info_t
 313  */
 314 static void
 315 map_info_free(struct ps_prochandle *P, map_info_t *mptr)
 316 {
 317         file_info_t *fptr;
 318 
 319         if ((fptr = mptr->map_file) != NULL) {
 320                 if (fptr->file_map == mptr)
 321                         fptr->file_map = NULL;
 322                 file_info_free(P, fptr);
 323         }
 324         if (P->execname && mptr == P->map_exec) {
 325                 free(P->execname);
 326                 P->execname = NULL;
 327         }
 328         if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) {
 329                 free(P->auxv);
 330                 P->auxv = NULL;
 331                 P->nauxv = 0;
 332         }
 333         if (mptr == P->map_exec)
 334                 P->map_exec = NULL;
 335         if (mptr == P->map_ldso)
 336                 P->map_ldso = NULL;
 337 }
 338 
 339 /*
 340  * Call-back function for librtld_db to iterate through all of its shared
 341  * libraries.  We use this to get the load object names for the mappings.
 342  */
 343 static int
 344 map_iter(const rd_loadobj_t *lop, void *cd)
 345 {
 346         char buf[PATH_MAX];
 347         struct ps_prochandle *P = cd;
 348         map_info_t *mptr;
 349         file_info_t *fptr;
 350 
 351         dprintf("encountered rd object at %p\n", (void *)lop->rl_base);
 352 
 353         if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) {
 354                 dprintf("map_iter: base address doesn't match any mapping\n");
 355                 return (1); /* Base address does not match any mapping */
 356         }
 357 
 358         if ((fptr = mptr->map_file) == NULL &&
 359             (fptr = file_info_new(P, mptr)) == NULL) {
 360                 dprintf("map_iter: failed to allocate a new file_info_t\n");
 361                 return (1); /* Failed to allocate a new file_info_t */
 362         }
 363 
 364         if ((fptr->file_lo == NULL) &&
 365             (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
 366                 dprintf("map_iter: failed to allocate rd_loadobj_t\n");
 367                 file_info_free(P, fptr);
 368                 return (1); /* Failed to allocate rd_loadobj_t */
 369         }
 370 
 371         fptr->file_map = mptr;
 372         *fptr->file_lo = *lop;
 373 
 374         fptr->file_lo->rl_plt_base = fptr->file_plt_base;
 375         fptr->file_lo->rl_plt_size = fptr->file_plt_size;
 376 
 377         if (fptr->file_lname) {
 378                 free(fptr->file_lname);
 379                 fptr->file_lname = NULL;
 380                 fptr->file_lbase = NULL;
 381         }
 382         if (fptr->file_rname) {
 383                 free(fptr->file_rname);
 384                 fptr->file_rname = NULL;
 385                 fptr->file_rbase = NULL;
 386         }
 387 
 388         if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) {
 389                 if ((fptr->file_lname = strdup(buf)) != NULL)
 390                         fptr->file_lbase = basename(fptr->file_lname);
 391         } else {
 392                 dprintf("map_iter: failed to read string at %p\n",
 393                     (void *)lop->rl_nameaddr);
 394         }
 395 
 396         if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
 397             ((fptr->file_rname = strdup(buf)) != NULL))
 398                 fptr->file_rbase = basename(fptr->file_rname);
 399 
 400         dprintf("loaded rd object %s lmid %lx\n",
 401             fptr->file_lname ? buf : "<NULL>", lop->rl_lmident);
 402         return (1);
 403 }
 404 
 405 static void
 406 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname)
 407 {
 408         file_info_t *fptr;
 409         char buf[PATH_MAX];
 410 
 411         if ((fptr = mptr->map_file) == NULL &&
 412             (fptr = file_info_new(P, mptr)) == NULL)
 413                 return; /* Failed to allocate a new file_info_t */
 414 
 415         fptr->file_map = mptr;
 416 
 417         if ((fptr->file_lo == NULL) &&
 418             (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
 419                 file_info_free(P, fptr);
 420                 return; /* Failed to allocate rd_loadobj_t */
 421         }
 422 
 423         (void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t));
 424         fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr;
 425         fptr->file_lo->rl_bend =
 426             mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
 427 
 428         fptr->file_lo->rl_plt_base = fptr->file_plt_base;
 429         fptr->file_lo->rl_plt_size = fptr->file_plt_size;
 430 
 431         if ((fptr->file_lname == NULL) &&
 432             (fptr->file_lname = strdup(lname)) != NULL)
 433                 fptr->file_lbase = basename(fptr->file_lname);
 434 
 435         if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
 436             ((fptr->file_rname = strdup(buf)) != NULL))
 437                 fptr->file_rbase = basename(fptr->file_rname);
 438 }
 439 
 440 static void
 441 load_static_maps(struct ps_prochandle *P)
 442 {
 443         map_info_t *mptr;
 444 
 445         /*
 446          * Construct the map for the a.out.
 447          */
 448         if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL)
 449                 map_set(P, mptr, "a.out");
 450 
 451         /*
 452          * If the dynamic linker exists for this process,
 453          * construct the map for it.
 454          */
 455         if (Pgetauxval(P, AT_BASE) != -1L &&
 456             (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL)
 457                 map_set(P, mptr, "ld.so.1");
 458 }
 459 
 460 int
 461 Preadmaps(struct ps_prochandle *P, prmap_t **Pmapp, ssize_t *nmapp)
 462 {
 463         return (P->ops.pop_read_maps(P, Pmapp, nmapp, P->data));
 464 }
 465 
 466 /*
 467  * Go through all the address space mappings, validating or updating
 468  * the information already gathered, or gathering new information.
 469  *
 470  * This function is only called when we suspect that the mappings have changed
 471  * because this is the first time we're calling it or because of rtld activity.
 472  */
 473 void
 474 Pupdate_maps(struct ps_prochandle *P)
 475 {
 476         prmap_t *Pmap = NULL;
 477         prmap_t *pmap;
 478         ssize_t nmap;
 479         int i;
 480         uint_t oldmapcount;
 481         map_info_t *newmap, *newp;
 482         map_info_t *mptr;
 483 
 484         if (P->info_valid || P->state == PS_UNDEAD)
 485                 return;
 486 
 487         Preadauxvec(P);
 488 
 489         if (Preadmaps(P, &Pmap, &nmap) != 0)
 490                 return;
 491 
 492         if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL)
 493                 return;
 494 
 495         /*
 496          * We try to merge any file information we may have for existing
 497          * mappings, to avoid having to rebuild the file info.
 498          */
 499         mptr = P->mappings;
 500         pmap = Pmap;
 501         newp = newmap;
 502         oldmapcount = P->map_count;
 503         for (i = 0; i < nmap; i++, pmap++, newp++) {
 504 
 505                 if (oldmapcount == 0) {
 506                         /*
 507                          * We've exhausted all the old mappings.  Every new
 508                          * mapping should be added.
 509                          */
 510                         newp->map_pmap = *pmap;
 511 
 512                 } else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr &&
 513                     pmap->pr_size == mptr->map_pmap.pr_size &&
 514                     pmap->pr_offset == mptr->map_pmap.pr_offset &&
 515                     (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) ==
 516                     (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) &&
 517                     pmap->pr_pagesize == mptr->map_pmap.pr_pagesize &&
 518                     pmap->pr_shmid == mptr->map_pmap.pr_shmid &&
 519                     strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) {
 520 
 521                         /*
 522                          * This mapping matches exactly.  Copy over the old
 523                          * mapping, taking care to get the latest flags.
 524                          * Make sure the associated file_info_t is updated
 525                          * appropriately.
 526                          */
 527                         *newp = *mptr;
 528                         if (P->map_exec == mptr)
 529                                 P->map_exec = newp;
 530                         if (P->map_ldso == mptr)
 531                                 P->map_ldso = newp;
 532                         newp->map_pmap.pr_mflags = pmap->pr_mflags;
 533                         if (mptr->map_file != NULL &&
 534                             mptr->map_file->file_map == mptr)
 535                                 mptr->map_file->file_map = newp;
 536                         oldmapcount--;
 537                         mptr++;
 538 
 539                 } else if (pmap->pr_vaddr + pmap->pr_size >
 540                     mptr->map_pmap.pr_vaddr) {
 541 
 542                         /*
 543                          * The old mapping doesn't exist any more, remove it
 544                          * from the list.
 545                          */
 546                         map_info_free(P, mptr);
 547                         oldmapcount--;
 548                         i--;
 549                         newp--;
 550                         pmap--;
 551                         mptr++;
 552 
 553                 } else {
 554 
 555                         /*
 556                          * This is a new mapping, add it directly.
 557                          */
 558                         newp->map_pmap = *pmap;
 559                 }
 560         }
 561 
 562         /*
 563          * Free any old maps
 564          */
 565         while (oldmapcount) {
 566                 map_info_free(P, mptr);
 567                 oldmapcount--;
 568                 mptr++;
 569         }
 570 
 571         free(Pmap);
 572         if (P->mappings != NULL)
 573                 free(P->mappings);
 574         P->mappings = newmap;
 575         P->map_count = P->map_alloc = nmap;
 576         P->info_valid = 1;
 577 
 578         /*
 579          * Consult librtld_db to get the load object
 580          * names for all of the shared libraries.
 581          */
 582         if (P->rap != NULL)
 583                 (void) rd_loadobj_iter(P->rap, map_iter, P);
 584 }
 585 
 586 /*
 587  * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then
 588  * forcibly cache all of the symbol tables associated with all object files.
 589  */
 590 void
 591 Pupdate_syms(struct ps_prochandle *P)
 592 {
 593         file_info_t *fptr;
 594         int i;
 595 
 596         Pupdate_maps(P);
 597 
 598         for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
 599             i++, fptr = list_next(fptr)) {
 600                 Pbuild_file_symtab(P, fptr);
 601                 (void) Pbuild_file_ctf(P, fptr);
 602         }
 603 }
 604 
 605 /*
 606  * Return the librtld_db agent handle for the victim process.
 607  * The handle will become invalid at the next successful exec() and the
 608  * client (caller of proc_rd_agent()) must not use it beyond that point.
 609  * If the process is already dead, we've already tried our best to
 610  * create the agent during core file initialization.
 611  */
 612 rd_agent_t *
 613 Prd_agent(struct ps_prochandle *P)
 614 {
 615         if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) {
 616                 Pupdate_maps(P);
 617                 if (P->num_files == 0)
 618                         load_static_maps(P);
 619                 rd_log(_libproc_debug);
 620                 if ((P->rap = rd_new(P)) != NULL)
 621                         (void) rd_loadobj_iter(P->rap, map_iter, P);
 622         }
 623         return (P->rap);
 624 }
 625 
 626 /*
 627  * Return the prmap_t structure containing 'addr', but only if it
 628  * is in the dynamic linker's link map and is the text section.
 629  */
 630 const prmap_t *
 631 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr)
 632 {
 633         map_info_t *mptr;
 634 
 635         if (!P->info_valid)
 636                 Pupdate_maps(P);
 637 
 638         if ((mptr = Paddr2mptr(P, addr)) != NULL) {
 639                 file_info_t *fptr = build_map_symtab(P, mptr);
 640                 const prmap_t *pmp = &mptr->map_pmap;
 641 
 642                 /*
 643                  * Assume that if rl_data_base is NULL, it means that no
 644                  * data section was found for this load object, and that
 645                  * a section must be text. Otherwise, a section will be
 646                  * text unless it ends above the start of the data
 647                  * section.
 648                  */
 649                 if (fptr != NULL && fptr->file_lo != NULL &&
 650                     (fptr->file_lo->rl_data_base == NULL ||
 651                     pmp->pr_vaddr + pmp->pr_size <=
 652                     fptr->file_lo->rl_data_base))
 653                         return (pmp);
 654         }
 655 
 656         return (NULL);
 657 }
 658 
 659 /*
 660  * Return the prmap_t structure containing 'addr' (no restrictions on
 661  * the type of mapping).
 662  */
 663 const prmap_t *
 664 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr)
 665 {
 666         map_info_t *mptr;
 667 
 668         if (!P->info_valid)
 669                 Pupdate_maps(P);
 670 
 671         if ((mptr = Paddr2mptr(P, addr)) != NULL)
 672                 return (&mptr->map_pmap);
 673 
 674         return (NULL);
 675 }
 676 
 677 /*
 678  * Convert a full or partial load object name to the prmap_t for its
 679  * corresponding primary text mapping.
 680  */
 681 const prmap_t *
 682 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
 683 {
 684         map_info_t *mptr;
 685 
 686         if (name == PR_OBJ_EVERY)
 687                 return (NULL); /* A reasonable mistake */
 688 
 689         if ((mptr = object_name_to_map(P, lmid, name)) != NULL)
 690                 return (&mptr->map_pmap);
 691 
 692         return (NULL);
 693 }
 694 
 695 const prmap_t *
 696 Pname_to_map(struct ps_prochandle *P, const char *name)
 697 {
 698         return (Plmid_to_map(P, PR_LMID_EVERY, name));
 699 }
 700 
 701 const rd_loadobj_t *
 702 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr)
 703 {
 704         map_info_t *mptr;
 705 
 706         if (!P->info_valid)
 707                 Pupdate_maps(P);
 708 
 709         if ((mptr = Paddr2mptr(P, addr)) == NULL)
 710                 return (NULL);
 711 
 712         /*
 713          * By building the symbol table, we implicitly bring the PLT
 714          * information up to date in the load object.
 715          */
 716         (void) build_map_symtab(P, mptr);
 717 
 718         return (mptr->map_file->file_lo);
 719 }
 720 
 721 const rd_loadobj_t *
 722 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name)
 723 {
 724         map_info_t *mptr;
 725 
 726         if (name == PR_OBJ_EVERY)
 727                 return (NULL);
 728 
 729         if ((mptr = object_name_to_map(P, lmid, name)) == NULL)
 730                 return (NULL);
 731 
 732         /*
 733          * By building the symbol table, we implicitly bring the PLT
 734          * information up to date in the load object.
 735          */
 736         (void) build_map_symtab(P, mptr);
 737 
 738         return (mptr->map_file->file_lo);
 739 }
 740 
 741 const rd_loadobj_t *
 742 Pname_to_loadobj(struct ps_prochandle *P, const char *name)
 743 {
 744         return (Plmid_to_loadobj(P, PR_LMID_EVERY, name));
 745 }
 746 
 747 ctf_file_t *
 748 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr)
 749 {
 750         ctf_sect_t ctdata, symtab, strtab;
 751         sym_tbl_t *symp;
 752         int err;
 753 
 754         if (fptr->file_ctfp != NULL)
 755                 return (fptr->file_ctfp);
 756 
 757         Pbuild_file_symtab(P, fptr);
 758 
 759         if (fptr->file_ctf_size == 0)
 760                 return (NULL);
 761 
 762         symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab;
 763         if (symp->sym_data_pri == NULL)
 764                 return (NULL);
 765 
 766         /*
 767          * The buffer may alread be allocated if this is a core file that
 768          * contained CTF data for this file.
 769          */
 770         if (fptr->file_ctf_buf == NULL) {
 771                 fptr->file_ctf_buf = malloc(fptr->file_ctf_size);
 772                 if (fptr->file_ctf_buf == NULL) {
 773                         dprintf("failed to allocate ctf buffer\n");
 774                         return (NULL);
 775                 }
 776 
 777                 if (pread(fptr->file_fd, fptr->file_ctf_buf,
 778                     fptr->file_ctf_size, fptr->file_ctf_off) !=
 779                     fptr->file_ctf_size) {
 780                         free(fptr->file_ctf_buf);
 781                         fptr->file_ctf_buf = NULL;
 782                         dprintf("failed to read ctf data\n");
 783                         return (NULL);
 784                 }
 785         }
 786 
 787         ctdata.cts_name = ".SUNW_ctf";
 788         ctdata.cts_type = SHT_PROGBITS;
 789         ctdata.cts_flags = 0;
 790         ctdata.cts_data = fptr->file_ctf_buf;
 791         ctdata.cts_size = fptr->file_ctf_size;
 792         ctdata.cts_entsize = 1;
 793         ctdata.cts_offset = 0;
 794 
 795         symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab";
 796         symtab.cts_type = symp->sym_hdr_pri.sh_type;
 797         symtab.cts_flags = symp->sym_hdr_pri.sh_flags;
 798         symtab.cts_data = symp->sym_data_pri->d_buf;
 799         symtab.cts_size = symp->sym_hdr_pri.sh_size;
 800         symtab.cts_entsize = symp->sym_hdr_pri.sh_entsize;
 801         symtab.cts_offset = symp->sym_hdr_pri.sh_offset;
 802 
 803         strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab";
 804         strtab.cts_type = symp->sym_strhdr.sh_type;
 805         strtab.cts_flags = symp->sym_strhdr.sh_flags;
 806         strtab.cts_data = symp->sym_strs;
 807         strtab.cts_size = symp->sym_strhdr.sh_size;
 808         strtab.cts_entsize = symp->sym_strhdr.sh_entsize;
 809         strtab.cts_offset = symp->sym_strhdr.sh_offset;
 810 
 811         fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err);
 812         if (fptr->file_ctfp == NULL) {
 813                 dprintf("ctf_bufopen() failed, error code %d\n", err);
 814                 free(fptr->file_ctf_buf);
 815                 fptr->file_ctf_buf = NULL;
 816                 return (NULL);
 817         }
 818 
 819         dprintf("loaded %lu bytes of CTF data for %s\n",
 820             (ulong_t)fptr->file_ctf_size, fptr->file_pname);
 821 
 822         return (fptr->file_ctfp);
 823 }
 824 
 825 ctf_file_t *
 826 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr)
 827 {
 828         map_info_t *mptr;
 829         file_info_t *fptr;
 830 
 831         if (!P->info_valid)
 832                 Pupdate_maps(P);
 833 
 834         if ((mptr = Paddr2mptr(P, addr)) == NULL ||
 835             (fptr = mptr->map_file) == NULL)
 836                 return (NULL);
 837 
 838         return (Pbuild_file_ctf(P, fptr));
 839 }
 840 
 841 ctf_file_t *
 842 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name)
 843 {
 844         map_info_t *mptr;
 845         file_info_t *fptr = NULL;
 846 
 847         if (name == PR_OBJ_EVERY)
 848                 return (NULL);
 849 
 850         /*
 851          * While most idle files are all ELF objects, not all of them have
 852          * mapping information available. There's nothing which would make
 853          * sense to fake up for ET_REL. Instead, if we're being asked for their
 854          * executable object and we know that the information is valid and they
 855          * only have a single file, we jump straight to that file pointer.
 856          */
 857         if (P->state == PS_IDLE && name == PR_OBJ_EXEC && P->info_valid == 1 &&
 858             P->num_files == 1 && P->mappings == NULL) {
 859                 fptr = list_next(&P->file_head);
 860         }
 861 
 862         if (fptr == NULL) {
 863                 if ((mptr = object_name_to_map(P, lmid, name)) == NULL ||
 864                     (fptr = mptr->map_file) == NULL)
 865                         return (NULL);
 866         }
 867 
 868         return (Pbuild_file_ctf(P, fptr));
 869 }
 870 
 871 ctf_file_t *
 872 Pname_to_ctf(struct ps_prochandle *P, const char *name)
 873 {
 874         return (Plmid_to_ctf(P, PR_LMID_EVERY, name));
 875 }
 876 
 877 void
 878 Preadauxvec(struct ps_prochandle *P)
 879 {
 880         if (P->auxv != NULL) {
 881                 free(P->auxv);
 882                 P->auxv = NULL;
 883                 P->nauxv = 0;
 884         }
 885 
 886         P->ops.pop_read_aux(P, &P->auxv, &P->nauxv, P->data);
 887 }
 888 
 889 /*
 890  * Return a requested element from the process's aux vector.
 891  * Return -1 on failure (this is adequate for our purposes).
 892  */
 893 long
 894 Pgetauxval(struct ps_prochandle *P, int type)
 895 {
 896         auxv_t *auxv;
 897 
 898         if (P->auxv == NULL)
 899                 Preadauxvec(P);
 900 
 901         if (P->auxv == NULL)
 902                 return (-1);
 903 
 904         for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) {
 905                 if (auxv->a_type == type)
 906                         return (auxv->a_un.a_val);
 907         }
 908 
 909         return (-1);
 910 }
 911 
 912 /*
 913  * Return a pointer to our internal copy of the process's aux vector.
 914  * The caller should not hold on to this pointer across any libproc calls.
 915  */
 916 const auxv_t *
 917 Pgetauxvec(struct ps_prochandle *P)
 918 {
 919         static const auxv_t empty = { AT_NULL, 0L };
 920 
 921         if (P->auxv == NULL)
 922                 Preadauxvec(P);
 923 
 924         if (P->auxv == NULL)
 925                 return (&empty);
 926 
 927         return (P->auxv);
 928 }
 929 
 930 /*
 931  * Return 1 if the given mapping corresponds to the given file_info_t's
 932  * load object; return 0 otherwise.
 933  */
 934 static int
 935 is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr)
 936 {
 937         prmap_t *pmap = &mptr->map_pmap;
 938         rd_loadobj_t *lop = fptr->file_lo;
 939         uint_t i;
 940         uintptr_t mstart, mend, sstart, send;
 941 
 942         /*
 943          * We can get for free the start address of the text and data
 944          * sections of the load object. Start by seeing if the mapping
 945          * encloses either of these.
 946          */
 947         if ((pmap->pr_vaddr <= lop->rl_base &&
 948             lop->rl_base < pmap->pr_vaddr + pmap->pr_size) ||
 949             (pmap->pr_vaddr <= lop->rl_data_base &&
 950             lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size))
 951                 return (1);
 952 
 953         /*
 954          * It's still possible that this mapping correponds to the load
 955          * object. Consider the example of a mapping whose start and end
 956          * addresses correspond to those of the load object's text section.
 957          * If the mapping splits, e.g. as a result of a segment demotion,
 958          * then although both mappings are still backed by the same section,
 959          * only one will be seen to enclose that section's start address.
 960          * Thus, to be rigorous, we ask not whether this mapping encloses
 961          * the start of a section, but whether there exists a section that
 962          * overlaps this mapping.
 963          *
 964          * If we don't already have the section addresses, and we successfully
 965          * get them, then we cache them in case we come here again.
 966          */
 967         if (fptr->file_saddrs == NULL &&
 968             (fptr->file_saddrs = get_saddrs(P,
 969             fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL)
 970                 return (0);
 971 
 972         mstart = mptr->map_pmap.pr_vaddr;
 973         mend = mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
 974         for (i = 0; i < fptr->file_nsaddrs; i += 2) {
 975                 /* Does this section overlap the mapping? */
 976                 sstart = fptr->file_saddrs[i];
 977                 send = fptr->file_saddrs[i + 1];
 978                 if (!(mend <= sstart || mstart >= send))
 979                         return (1);
 980         }
 981 
 982         return (0);
 983 }
 984 
 985 /*
 986  * Find or build the symbol table for the given mapping.
 987  */
 988 static file_info_t *
 989 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr)
 990 {
 991         prmap_t *pmap = &mptr->map_pmap;
 992         file_info_t *fptr;
 993         uint_t i;
 994 
 995         if ((fptr = mptr->map_file) != NULL) {
 996                 Pbuild_file_symtab(P, fptr);
 997                 return (fptr);
 998         }
 999 
1000         if (pmap->pr_mapname[0] == '\0')
1001                 return (NULL);
1002 
1003         /*
1004          * Attempt to find a matching file.
1005          * (A file can be mapped at several different addresses.)
1006          */
1007         for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
1008             i++, fptr = list_next(fptr)) {
1009                 if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 &&
1010                     fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) {
1011                         mptr->map_file = fptr;
1012                         fptr->file_ref++;
1013                         Pbuild_file_symtab(P, fptr);
1014                         return (fptr);
1015                 }
1016         }
1017 
1018         /*
1019          * If we need to create a new file_info structure, iterate
1020          * through the load objects in order to attempt to connect
1021          * this new file with its primary text mapping.  We again
1022          * need to handle ld.so as a special case because we need
1023          * to be able to bootstrap librtld_db.
1024          */
1025         if ((fptr = file_info_new(P, mptr)) == NULL)
1026                 return (NULL);
1027 
1028         if (P->map_ldso != mptr) {
1029                 if (P->rap != NULL)
1030                         (void) rd_loadobj_iter(P->rap, map_iter, P);
1031                 else
1032                         (void) Prd_agent(P);
1033         } else {
1034                 fptr->file_map = mptr;
1035         }
1036 
1037         /*
1038          * If librtld_db wasn't able to help us connect the file to a primary
1039          * text mapping, set file_map to the current mapping because we require
1040          * fptr->file_map to be set in Pbuild_file_symtab.  librtld_db may be
1041          * unaware of what's going on in the rare case that a legitimate ELF
1042          * file has been mmap(2)ed into the process address space *without*
1043          * the use of dlopen(3x).
1044          */
1045         if (fptr->file_map == NULL)
1046                 fptr->file_map = mptr;
1047 
1048         Pbuild_file_symtab(P, fptr);
1049 
1050         return (fptr);
1051 }
1052 
1053 static int
1054 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum,
1055     uintptr_t addr)
1056 {
1057         if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr))
1058                 return (-1);
1059 
1060         if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1061             ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1062             ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1063             ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1064             ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
1065 #ifdef _BIG_ENDIAN
1066             ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1067 #else
1068             ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1069 #endif
1070             ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1071                 return (-1);
1072 
1073         if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1074                 Elf32_Shdr shdr0;
1075 
1076                 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1077                     Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1078                     sizeof (shdr0))
1079                         return (-1);
1080 
1081                 if (shdr0.sh_info != 0)
1082                         *phnum = shdr0.sh_info;
1083         }
1084 
1085         return (0);
1086 }
1087 
1088 static int
1089 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr,
1090     uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr)
1091 {
1092         uint_t i;
1093 
1094         for (i = 0; i < phnum; i++) {
1095                 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1096                 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1097                         return (-1);
1098 
1099                 if (phdr->p_type == PT_DYNAMIC)
1100                         return (0);
1101         }
1102 
1103         return (-1);
1104 }
1105 
1106 #ifdef _LP64
1107 static int
1108 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum,
1109     uintptr_t addr)
1110 {
1111         if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr))
1112                 return (-1);
1113 
1114         if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1115             ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1116             ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1117             ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1118             ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
1119 #ifdef _BIG_ENDIAN
1120             ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1121 #else
1122             ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1123 #endif
1124             ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1125                 return (-1);
1126 
1127         if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1128                 Elf64_Shdr shdr0;
1129 
1130                 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1131                     Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1132                     sizeof (shdr0))
1133                         return (-1);
1134 
1135                 if (shdr0.sh_info != 0)
1136                         *phnum = shdr0.sh_info;
1137         }
1138 
1139         return (0);
1140 }
1141 
1142 static int
1143 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr,
1144     uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr)
1145 {
1146         uint_t i;
1147 
1148         for (i = 0; i < phnum; i++) {
1149                 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1150                 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1151                         return (-1);
1152 
1153                 if (phdr->p_type == PT_DYNAMIC)
1154                         return (0);
1155         }
1156 
1157         return (-1);
1158 }
1159 #endif  /* _LP64 */
1160 
1161 /*
1162  * The text segment for each load object contains the elf header and
1163  * program headers. We can use this information to determine if the
1164  * file that corresponds to the load object is the same file that
1165  * was loaded into the process's address space. There can be a discrepency
1166  * if a file is recompiled after the process is started or if the target
1167  * represents a core file from a differently configured system -- two
1168  * common examples. The DT_CHECKSUM entry in the dynamic section
1169  * provides an easy method of comparison. It is important to note that
1170  * the dynamic section usually lives in the data segment, but the meta
1171  * data we use to find the dynamic section lives in the text segment so
1172  * if either of those segments is absent we can't proceed.
1173  *
1174  * We're looking through the elf file for several items: the symbol tables
1175  * (both dynsym and symtab), the procedure linkage table (PLT) base,
1176  * size, and relocation base, and the CTF information. Most of this can
1177  * be recovered from the loaded image of the file itself, the exceptions
1178  * being the symtab and CTF data.
1179  *
1180  * First we try to open the file that we think corresponds to the load
1181  * object, if the DT_CHECKSUM values match, we're all set, and can simply
1182  * recover all the information we need from the file. If the values of
1183  * DT_CHECKSUM don't match, or if we can't access the file for whatever
1184  * reasaon, we fake up a elf file to use in its stead. If we can't read
1185  * the elf data in the process's address space, we fall back to using
1186  * the file even though it may give inaccurate information.
1187  *
1188  * The elf file that we fake up has to consist of sections for the
1189  * dynsym, the PLT and the dynamic section. Note that in the case of a
1190  * core file, we'll get the CTF data in the file_info_t later on from
1191  * a section embedded the core file (if it's present).
1192  *
1193  * file_differs() conservatively looks for mismatched files, identifying
1194  * a match when there is any ambiguity (since that's the legacy behavior).
1195  */
1196 static int
1197 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr)
1198 {
1199         Elf_Scn *scn;
1200         GElf_Shdr shdr;
1201         GElf_Dyn dyn;
1202         Elf_Data *data;
1203         uint_t i, ndyn;
1204         GElf_Xword cksum;
1205         uintptr_t addr;
1206 
1207         if (fptr->file_map == NULL)
1208                 return (0);
1209 
1210         if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1211             (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1212                 return (0);
1213 
1214         /*
1215          * First, we find the checksum value in the elf file.
1216          */
1217         scn = NULL;
1218         while ((scn = elf_nextscn(elf, scn)) != NULL) {
1219                 if (gelf_getshdr(scn, &shdr) != NULL &&
1220                     shdr.sh_type == SHT_DYNAMIC)
1221                         goto found_shdr;
1222         }
1223         return (0);
1224 
1225 found_shdr:
1226         if ((data = elf_getdata(scn, NULL)) == NULL)
1227                 return (0);
1228 
1229         if (P->status.pr_dmodel == PR_MODEL_ILP32)
1230                 ndyn = shdr.sh_size / sizeof (Elf32_Dyn);
1231 #ifdef _LP64
1232         else if (P->status.pr_dmodel == PR_MODEL_LP64)
1233                 ndyn = shdr.sh_size / sizeof (Elf64_Dyn);
1234 #endif
1235         else
1236                 return (0);
1237 
1238         for (i = 0; i < ndyn; i++) {
1239                 if (gelf_getdyn(data, i, &dyn) != NULL &&
1240                     dyn.d_tag == DT_CHECKSUM)
1241                         goto found_cksum;
1242         }
1243 
1244         /*
1245          * The in-memory ELF has no DT_CHECKSUM section, but we will report it
1246          * as matching the file anyhow.
1247          */
1248         return (0);
1249 
1250 found_cksum:
1251         cksum = dyn.d_un.d_val;
1252         dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum);
1253 
1254         /*
1255          * Get the base of the text mapping that corresponds to this file.
1256          */
1257         addr = fptr->file_map->map_pmap.pr_vaddr;
1258 
1259         if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1260                 Elf32_Ehdr ehdr;
1261                 Elf32_Phdr phdr;
1262                 Elf32_Dyn dync, *dynp;
1263                 uint_t phnum, i;
1264 
1265                 if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 ||
1266                     read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1267                         return (0);
1268 
1269                 if (ehdr.e_type == ET_DYN)
1270                         phdr.p_vaddr += addr;
1271                 if ((dynp = malloc(phdr.p_filesz)) == NULL)
1272                         return (0);
1273                 dync.d_tag = DT_NULL;
1274                 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1275                     phdr.p_filesz) {
1276                         free(dynp);
1277                         return (0);
1278                 }
1279 
1280                 for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) {
1281                         if (dynp[i].d_tag == DT_CHECKSUM)
1282                                 dync = dynp[i];
1283                 }
1284 
1285                 free(dynp);
1286 
1287                 if (dync.d_tag != DT_CHECKSUM)
1288                         return (0);
1289 
1290                 dprintf("image cksum value is %llx\n",
1291                     (u_longlong_t)dync.d_un.d_val);
1292                 return (dync.d_un.d_val != cksum);
1293 #ifdef _LP64
1294         } else if (P->status.pr_dmodel == PR_MODEL_LP64) {
1295                 Elf64_Ehdr ehdr;
1296                 Elf64_Phdr phdr;
1297                 Elf64_Dyn dync, *dynp;
1298                 uint_t phnum, i;
1299 
1300                 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1301                     read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1302                         return (0);
1303 
1304                 if (ehdr.e_type == ET_DYN)
1305                         phdr.p_vaddr += addr;
1306                 if ((dynp = malloc(phdr.p_filesz)) == NULL)
1307                         return (0);
1308                 dync.d_tag = DT_NULL;
1309                 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1310                     phdr.p_filesz) {
1311                         free(dynp);
1312                         return (0);
1313                 }
1314 
1315                 for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) {
1316                         if (dynp[i].d_tag == DT_CHECKSUM)
1317                                 dync = dynp[i];
1318                 }
1319 
1320                 free(dynp);
1321 
1322                 if (dync.d_tag != DT_CHECKSUM)
1323                         return (0);
1324 
1325                 dprintf("image cksum value is %llx\n",
1326                     (u_longlong_t)dync.d_un.d_val);
1327                 return (dync.d_un.d_val != cksum);
1328 #endif  /* _LP64 */
1329         }
1330 
1331         return (0);
1332 }
1333 
1334 /*
1335  * Read data from the specified process and construct an in memory
1336  * image of an ELF file that represents it well enough to let
1337  * us probe it for information.
1338  */
1339 static Elf *
1340 fake_elf(struct ps_prochandle *P, file_info_t *fptr)
1341 {
1342         Elf *elf;
1343         uintptr_t addr;
1344         uint_t phnum;
1345 
1346         if (fptr->file_map == NULL)
1347                 return (NULL);
1348 
1349         if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1350             (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1351                 return (NULL);
1352 
1353         addr = fptr->file_map->map_pmap.pr_vaddr;
1354 
1355         if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1356                 Elf32_Ehdr ehdr;
1357                 Elf32_Phdr phdr;
1358 
1359                 if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) ||
1360                     read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1361                         return (NULL);
1362 
1363                 elf = fake_elf32(P, fptr, addr, &ehdr, phnum, &phdr);
1364 #ifdef _LP64
1365         } else {
1366                 Elf64_Ehdr ehdr;
1367                 Elf64_Phdr phdr;
1368 
1369                 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1370                     read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1371                         return (NULL);
1372 
1373                 elf = fake_elf64(P, fptr, addr, &ehdr, phnum, &phdr);
1374 #endif
1375         }
1376 
1377         return (elf);
1378 }
1379 
1380 /*
1381  * We wouldn't need these if qsort(3C) took an argument for the callback...
1382  */
1383 static mutex_t sort_mtx = DEFAULTMUTEX;
1384 static char *sort_strs;
1385 static GElf_Sym *sort_syms;
1386 
1387 int
1388 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname)
1389 {
1390         if (a->st_value < b->st_value)
1391                 return (-1);
1392         if (a->st_value > b->st_value)
1393                 return (1);
1394 
1395         /*
1396          * Prefer the function to the non-function.
1397          */
1398         if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) {
1399                 if (GELF_ST_TYPE(a->st_info) == STT_FUNC)
1400                         return (-1);
1401                 if (GELF_ST_TYPE(b->st_info) == STT_FUNC)
1402                         return (1);
1403         }
1404 
1405         /*
1406          * Prefer the weak or strong global symbol to the local symbol.
1407          */
1408         if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) {
1409                 if (GELF_ST_BIND(b->st_info) == STB_LOCAL)
1410                         return (-1);
1411                 if (GELF_ST_BIND(a->st_info) == STB_LOCAL)
1412                         return (1);
1413         }
1414 
1415         /*
1416          * Prefer the symbol that doesn't begin with a '$' since compilers and
1417          * other symbol generators often use it as a prefix.
1418          */
1419         if (*bname == '$')
1420                 return (-1);
1421         if (*aname == '$')
1422                 return (1);
1423 
1424         /*
1425          * Prefer the name with fewer leading underscores in the name.
1426          */
1427         while (*aname == '_' && *bname == '_') {
1428                 aname++;
1429                 bname++;
1430         }
1431 
1432         if (*bname == '_')
1433                 return (-1);
1434         if (*aname == '_')
1435                 return (1);
1436 
1437         /*
1438          * Prefer the symbol with the smaller size.
1439          */
1440         if (a->st_size < b->st_size)
1441                 return (-1);
1442         if (a->st_size > b->st_size)
1443                 return (1);
1444 
1445         /*
1446          * All other factors being equal, fall back to lexicographic order.
1447          */
1448         return (strcmp(aname, bname));
1449 }
1450 
1451 static int
1452 byaddr_cmp(const void *aa, const void *bb)
1453 {
1454         GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1455         GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1456         char *aname = sort_strs + a->st_name;
1457         char *bname = sort_strs + b->st_name;
1458 
1459         return (byaddr_cmp_common(a, aname, b, bname));
1460 }
1461 
1462 static int
1463 byname_cmp(const void *aa, const void *bb)
1464 {
1465         GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1466         GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1467         char *aname = sort_strs + a->st_name;
1468         char *bname = sort_strs + b->st_name;
1469 
1470         return (strcmp(aname, bname));
1471 }
1472 
1473 /*
1474  * Given a symbol index, look up the corresponding symbol from the
1475  * given symbol table.
1476  *
1477  * This function allows the caller to treat the symbol table as a single
1478  * logical entity even though there may be 2 actual ELF symbol tables
1479  * involved. See the comments in Pcontrol.h for details.
1480  */
1481 static GElf_Sym *
1482 symtab_getsym(sym_tbl_t *symtab, int ndx, GElf_Sym *dst)
1483 {
1484         /* If index is in range of primary symtab, look it up there */
1485         if (ndx >= symtab->sym_symn_aux) {
1486                 return (gelf_getsym(symtab->sym_data_pri,
1487                     ndx - symtab->sym_symn_aux, dst));
1488         }
1489 
1490         /* Not in primary: Look it up in the auxiliary symtab */
1491         return (gelf_getsym(symtab->sym_data_aux, ndx, dst));
1492 }
1493 
1494 void
1495 optimize_symtab(sym_tbl_t *symtab)
1496 {
1497         GElf_Sym *symp, *syms;
1498         uint_t i, *indexa, *indexb;
1499         size_t symn, strsz, count;
1500 
1501         if (symtab == NULL || symtab->sym_data_pri == NULL ||
1502             symtab->sym_byaddr != NULL)
1503                 return;
1504 
1505         symn = symtab->sym_symn;
1506         strsz = symtab->sym_strsz;
1507 
1508         symp = syms = malloc(sizeof (GElf_Sym) * symn);
1509         if (symp == NULL) {
1510                 dprintf("optimize_symtab: failed to malloc symbol array");
1511                 return;
1512         }
1513 
1514         /*
1515          * First record all the symbols into a table and count up the ones
1516          * that we're interested in. We mark symbols as invalid by setting
1517          * the st_name to an illegal value.
1518          */
1519         for (i = 0, count = 0; i < symn; i++, symp++) {
1520                 if (symtab_getsym(symtab, i, symp) != NULL &&
1521                     symp->st_name < strsz &&
1522                     IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info)))
1523                         count++;
1524                 else
1525                         symp->st_name = strsz;
1526         }
1527 
1528         /*
1529          * Allocate sufficient space for both tables and populate them
1530          * with the same symbols we just counted.
1531          */
1532         symtab->sym_count = count;
1533         indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count);
1534         indexb = symtab->sym_byname = calloc(sizeof (uint_t), count);
1535         if (indexa == NULL || indexb == NULL) {
1536                 dprintf(
1537                     "optimize_symtab: failed to malloc symbol index arrays");
1538                 symtab->sym_count = 0;
1539                 if (indexa != NULL) {   /* First alloc succeeded. Free it */
1540                         free(indexa);
1541                         symtab->sym_byaddr = NULL;
1542                 }
1543                 free(syms);
1544                 return;
1545         }
1546         for (i = 0, symp = syms; i < symn; i++, symp++) {
1547                 if (symp->st_name < strsz)
1548                         *indexa++ = *indexb++ = i;
1549         }
1550 
1551         /*
1552          * Sort the two tables according to the appropriate criteria,
1553          * unless the user has overridden this behaviour.
1554          *
1555          * An example where we might not sort the tables is the relatively
1556          * unusual case of a process with very large symbol tables in which
1557          * we perform few lookups. In such a case the total time would be
1558          * dominated by the sort. It is difficult to determine a priori
1559          * how many lookups an arbitrary client will perform, and
1560          * hence whether the symbol tables should be sorted. We therefore
1561          * sort the tables by default, but provide the user with a
1562          * "chicken switch" in the form of the LIBPROC_NO_QSORT
1563          * environment variable.
1564          */
1565         if (!_libproc_no_qsort) {
1566                 (void) mutex_lock(&sort_mtx);
1567                 sort_strs = symtab->sym_strs;
1568                 sort_syms = syms;
1569 
1570                 qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp);
1571                 qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp);
1572 
1573                 sort_strs = NULL;
1574                 sort_syms = NULL;
1575                 (void) mutex_unlock(&sort_mtx);
1576         }
1577 
1578         free(syms);
1579 }
1580 
1581 
1582 static Elf *
1583 build_fake_elf(struct ps_prochandle *P, file_info_t *fptr, GElf_Ehdr *ehdr,
1584     size_t *nshdrs, Elf_Data **shdata)
1585 {
1586         size_t shstrndx;
1587         Elf_Scn *scn;
1588         Elf *elf;
1589 
1590         if ((elf = fake_elf(P, fptr)) == NULL ||
1591             elf_kind(elf) != ELF_K_ELF ||
1592             gelf_getehdr(elf, ehdr) == NULL ||
1593             elf_getshdrnum(elf, nshdrs) == -1 ||
1594             elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1595             (scn = elf_getscn(elf, shstrndx)) == NULL ||
1596             (*shdata = elf_getdata(scn, NULL)) == NULL) {
1597                 if (elf != NULL)
1598                         (void) elf_end(elf);
1599                 dprintf("failed to fake up ELF file\n");
1600                 return (NULL);
1601         }
1602 
1603         return (elf);
1604 }
1605 
1606 /*
1607  * Try and find the file described by path in the file system and validate that
1608  * it matches our CRC before we try and process it for symbol information. If we
1609  * instead have an ELF data section, then that means we're checking a build-id
1610  * section instead. In that case we just need to find and bcmp the corresponding
1611  * section.
1612  *
1613  * Before we validate if it's a valid CRC or data section, we check to ensure
1614  * that it's a normal file and not anything else.
1615  */
1616 static boolean_t
1617 build_alt_debug(file_info_t *fptr, const char *path, uint32_t crc,
1618     Elf_Data *data)
1619 {
1620         int fd;
1621         struct stat st;
1622         Elf *elf;
1623         Elf_Scn *scn;
1624         GElf_Shdr symshdr, strshdr;
1625         Elf_Data *symdata, *strdata;
1626         boolean_t valid;
1627         uint32_t c = -1U;
1628 
1629         if ((fd = open(path, O_RDONLY)) < 0)
1630                 return (B_FALSE);
1631 
1632         if (fstat(fd, &st) != 0) {
1633                 (void) close(fd);
1634                 return (B_FALSE);
1635         }
1636 
1637         if (S_ISREG(st.st_mode) == 0) {
1638                 (void) close(fd);
1639                 return (B_FALSE);
1640         }
1641 
1642         /*
1643          * Only check the CRC if we've come here through a GNU debug link
1644          * section as opposed to the build id. This is indicated by having the
1645          * value of data be NULL.
1646          */
1647         if (data == NULL) {
1648                 for (;;) {
1649                         char buf[4096];
1650                         ssize_t ret = read(fd, buf, sizeof (buf));
1651                         if (ret == -1) {
1652                                 if (ret == EINTR)
1653                                         continue;
1654                                 (void) close(fd);
1655                                 return (B_FALSE);
1656                         }
1657                         if (ret == 0) {
1658                                 c = ~c;
1659                                 if (c != crc) {
1660                                         dprintf("crc mismatch, found: 0x%x "
1661                                             "expected 0x%x\n", c, crc);
1662                                         (void) close(fd);
1663                                         return (B_FALSE);
1664                                 }
1665                                 break;
1666                         }
1667                         CRC32(c, buf, ret, c, psym_crc32);
1668                 }
1669         }
1670 
1671         elf = elf_begin(fd, ELF_C_READ, NULL);
1672         if (elf == NULL) {
1673                 (void) close(fd);
1674                 return (B_FALSE);
1675         }
1676 
1677         if (elf_kind(elf) != ELF_K_ELF) {
1678                 goto fail;
1679         }
1680 
1681         /*
1682          * If we have a data section, that indicates we have a build-id which
1683          * means we need to find the corresponding build-id section and compare
1684          * it.
1685          */
1686         scn = NULL;
1687         valid = B_FALSE;
1688         for (scn = elf_nextscn(elf, scn); data != NULL && scn != NULL;
1689             scn = elf_nextscn(elf, scn)) {
1690                 GElf_Shdr hdr;
1691                 Elf_Data *ntdata;
1692 
1693                 if (gelf_getshdr(scn, &hdr) == NULL)
1694                         goto fail;
1695 
1696                 if (hdr.sh_type != SHT_NOTE)
1697                         continue;
1698 
1699                 if ((ntdata = elf_getdata(scn, NULL)) == NULL)
1700                         goto fail;
1701 
1702                 /*
1703                  * First verify the data section sizes are equal, then the
1704                  * section name. If that's all true, then we can just do a bcmp.
1705                  */
1706                 if (data->d_size != ntdata->d_size)
1707                         continue;
1708 
1709                 dprintf("found corresponding section in alternate file\n");
1710                 if (bcmp(ntdata->d_buf, data->d_buf, data->d_size) != 0)
1711                         goto fail;
1712 
1713                 valid = B_TRUE;
1714                 break;
1715         }
1716         if (data != NULL && valid == B_FALSE) {
1717                 dprintf("failed to find a matching %s section in %s\n",
1718                     BUILDID_NAME, path);
1719                 goto fail;
1720         }
1721 
1722 
1723         /*
1724          * Do two passes, first see if we have a symbol header, then see if we
1725          * can find the corresponding linked string table.
1726          */
1727         scn = NULL;
1728         for (scn = elf_nextscn(elf, scn); scn != NULL;
1729             scn = elf_nextscn(elf, scn)) {
1730 
1731                 if (gelf_getshdr(scn, &symshdr) == NULL)
1732                         goto fail;
1733 
1734                 if (symshdr.sh_type != SHT_SYMTAB)
1735                         continue;
1736 
1737                 if ((symdata = elf_getdata(scn, NULL)) == NULL)
1738                         goto fail;
1739 
1740                 break;
1741         }
1742         if (scn == NULL)
1743                 goto fail;
1744 
1745         if ((scn = elf_getscn(elf, symshdr.sh_link)) == NULL)
1746                 goto fail;
1747 
1748         if (gelf_getshdr(scn, &strshdr) == NULL)
1749                 goto fail;
1750 
1751         if ((strdata = elf_getdata(scn, NULL)) == NULL)
1752                 goto fail;
1753 
1754         fptr->file_symtab.sym_data_pri = symdata;
1755         fptr->file_symtab.sym_symn += symshdr.sh_size / symshdr.sh_entsize;
1756         fptr->file_symtab.sym_strs = strdata->d_buf;
1757         fptr->file_symtab.sym_strsz = strdata->d_size;
1758         fptr->file_symtab.sym_hdr_pri = symshdr;
1759         fptr->file_symtab.sym_strhdr = strshdr;
1760 
1761         dprintf("successfully loaded additional debug symbols for %s from %s\n",
1762             fptr->file_rname, path);
1763 
1764         fptr->file_dbgfile = fd;
1765         fptr->file_dbgelf = elf;
1766         return (B_TRUE);
1767 fail:
1768         (void) elf_end(elf);
1769         (void) close(fd);
1770         return (B_FALSE);
1771 }
1772 
1773 /*
1774  * We're here because the object in question has no symbol information, that's a
1775  * bit unfortunate. However, we've found that there's a .gnu_debuglink sitting
1776  * around. By convention that means that given the current location of the
1777  * object on disk, and the debug name that we found in the binary we need to
1778  * search the following locations for a matching file.
1779  *
1780  * <dirname>/.debug/<debug-name>
1781  * /usr/lib/debug/<dirname>/<debug-name>
1782  *
1783  * In the future, we should consider supporting looking in the prefix's
1784  * lib/debug directory for a matching object or supporting an arbitrary user
1785  * defined set of places to look.
1786  */
1787 static void
1788 find_alt_debuglink(file_info_t *fptr, const char *name, uint32_t crc)
1789 {
1790         boolean_t r;
1791         char *dup = NULL, *path = NULL, *dname;
1792 
1793         dprintf("find_alt_debug: looking for %s, crc 0x%x\n", name, crc);
1794         if (fptr->file_rname == NULL) {
1795                 dprintf("find_alt_debug: encountered null file_rname\n");
1796                 return;
1797         }
1798 
1799         dup = strdup(fptr->file_rname);
1800         if (dup == NULL)
1801                 return;
1802 
1803         dname = dirname(dup);
1804         if (asprintf(&path, "%s/.debug/%s", dname, name) != -1) {
1805                 dprintf("attempting to load alternate debug information "
1806                     "from %s\n", path);
1807                 r = build_alt_debug(fptr, path, crc, NULL);
1808                 free(path);
1809                 if (r == B_TRUE)
1810                         goto out;
1811         }
1812 
1813         if (asprintf(&path, "/usr/lib/debug/%s/%s", dname, name) != -1) {
1814                 dprintf("attempting to load alternate debug information "
1815                     "from %s\n", path);
1816                 r = build_alt_debug(fptr, path, crc, NULL);
1817                 free(path);
1818                 if (r == B_TRUE)
1819                         goto out;
1820         }
1821 out:
1822         free(dup);
1823 }
1824 
1825 /*
1826  * Build the symbol table for the given mapped file.
1827  */
1828 void
1829 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr)
1830 {
1831         char objectfile[PATH_MAX];
1832         uint_t i;
1833 
1834         GElf_Ehdr ehdr;
1835         GElf_Sym s;
1836 
1837         Elf_Data *shdata;
1838         Elf_Scn *scn;
1839         Elf *elf;
1840         size_t nshdrs, shstrndx;
1841 
1842         struct {
1843                 GElf_Shdr c_shdr;
1844                 Elf_Data *c_data;
1845                 const char *c_name;
1846         } *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL,
1847         *dbglink = NULL, *buildid = NULL;
1848 
1849         if (fptr->file_init)
1850                 return; /* We've already processed this file */
1851 
1852         /*
1853          * Mark the file_info struct as having the symbol table initialized
1854          * even if we fail below.  We tried once; we don't try again.
1855          */
1856         fptr->file_init = 1;
1857 
1858         if (elf_version(EV_CURRENT) == EV_NONE) {
1859                 dprintf("libproc ELF version is more recent than libelf\n");
1860                 return;
1861         }
1862 
1863         if (P->state == PS_DEAD || P->state == PS_IDLE) {
1864                 char *name;
1865                 /*
1866                  * If we're a not live, we can't open files from the /proc
1867                  * object directory; we have only the mapping and file names
1868                  * to guide us.  We prefer the file_lname, but need to handle
1869                  * the case of it being NULL in order to bootstrap: we first
1870                  * come here during rd_new() when the only information we have
1871                  * is interpreter name associated with the AT_BASE mapping.
1872                  *
1873                  * Also, if the zone associated with the core file seems
1874                  * to exists on this machine we'll try to open the object
1875                  * file within the zone.
1876                  */
1877                 if (fptr->file_rname != NULL)
1878                         name = fptr->file_rname;
1879                 else if (fptr->file_lname != NULL)
1880                         name = fptr->file_lname;
1881                 else
1882                         name = fptr->file_pname;
1883                 (void) strlcpy(objectfile, name, sizeof (objectfile));
1884         } else {
1885                 (void) snprintf(objectfile, sizeof (objectfile),
1886                     "%s/%d/object/%s",
1887                     procfs_path, (int)P->pid, fptr->file_pname);
1888         }
1889 
1890         /*
1891          * Open the object file, create the elf file, and then get the elf
1892          * header and .shstrtab data buffer so we can process sections by
1893          * name. If anything goes wrong try to fake up an elf file from
1894          * the in-core elf image.
1895          */
1896 
1897         if (_libproc_incore_elf || (P->flags & INCORE)) {
1898                 dprintf("Pbuild_file_symtab: using in-core data for: %s\n",
1899                     fptr->file_pname);
1900 
1901                 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1902                     NULL)
1903                         return;
1904 
1905         } else if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) {
1906                 dprintf("Pbuild_file_symtab: failed to open %s: %s\n",
1907                     objectfile, strerror(errno));
1908 
1909                 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1910                     NULL)
1911                         return;
1912 
1913         } else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL ||
1914             elf_kind(elf) != ELF_K_ELF ||
1915             gelf_getehdr(elf, &ehdr) == NULL ||
1916             elf_getshdrnum(elf, &nshdrs) == -1 ||
1917             elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1918             (scn = elf_getscn(elf, shstrndx)) == NULL ||
1919             (shdata = elf_getdata(scn, NULL)) == NULL) {
1920                 int err = elf_errno();
1921 
1922                 dprintf("failed to process ELF file %s: %s\n",
1923                     objectfile, (err == 0) ? "<null>" : elf_errmsg(err));
1924                 (void) elf_end(elf);
1925 
1926                 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1927                     NULL)
1928                         return;
1929 
1930         } else if (file_differs(P, elf, fptr)) {
1931                 Elf *newelf;
1932 
1933                 /*
1934                  * Before we get too excited about this elf file, we'll check
1935                  * its checksum value against the value we have in memory. If
1936                  * they don't agree, we try to fake up a new elf file and
1937                  * proceed with that instead.
1938                  */
1939                 dprintf("ELF file %s (%lx) doesn't match in-core image\n",
1940                     fptr->file_pname,
1941                     (ulong_t)fptr->file_map->map_pmap.pr_vaddr);
1942 
1943                 if ((newelf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata))
1944                     != NULL) {
1945                         (void) elf_end(elf);
1946                         elf = newelf;
1947                         dprintf("switched to faked up ELF file\n");
1948 
1949                         /*
1950                          * Check to see if the file that we just discovered
1951                          * to be an imposter matches the execname that was
1952                          * determined by Pfindexec().  If it does, we (clearly)
1953                          * don't have the right binary, and we zero out
1954                          * execname before anyone gets hurt.
1955                          */
1956                         if (fptr->file_rname != NULL && P->execname != NULL &&
1957                             strcmp(fptr->file_rname, P->execname) == 0) {
1958                                 dprintf("file/in-core image mismatch was "
1959                                     "on P->execname; discarding\n");
1960                                 free(P->execname);
1961                                 P->execname = NULL;
1962                         }
1963                 }
1964         }
1965 
1966         if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) {
1967                 dprintf("failed to malloc section cache for %s\n", objectfile);
1968                 goto bad;
1969         }
1970 
1971         dprintf("processing ELF file %s\n", objectfile);
1972         fptr->file_class = ehdr.e_ident[EI_CLASS];
1973         fptr->file_etype = ehdr.e_type;
1974         fptr->file_elf = elf;
1975         fptr->file_shstrs = shdata->d_buf;
1976         fptr->file_shstrsz = shdata->d_size;
1977 
1978         /*
1979          * Iterate through each section, caching its section header, data
1980          * pointer, and name.  We use this for handling sh_link values below.
1981          */
1982         for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) {
1983                 if (gelf_getshdr(scn, &cp->c_shdr) == NULL) {
1984                         dprintf("Pbuild_file_symtab: Failed to get section "
1985                             "header\n");
1986                         goto bad; /* Failed to get section header */
1987                 }
1988 
1989                 if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) {
1990                         dprintf("Pbuild_file_symtab: Failed to get section "
1991                             "data\n");
1992                         goto bad; /* Failed to get section data */
1993                 }
1994 
1995                 if (cp->c_shdr.sh_name >= shdata->d_size) {
1996                         dprintf("Pbuild_file_symtab: corrupt section name");
1997                         goto bad; /* Corrupt section name */
1998                 }
1999 
2000                 cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name;
2001         }
2002 
2003         /*
2004          * Now iterate through the section cache in order to locate info
2005          * for the .symtab, .dynsym, .SUNW_ldynsym, .dynamic, .plt,
2006          * and .SUNW_ctf sections:
2007          */
2008         for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) {
2009                 GElf_Shdr *shp = &cp->c_shdr;
2010 
2011                 if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) {
2012                         sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ?
2013                             &fptr->file_symtab : &fptr->file_dynsym;
2014                         /*
2015                          * It's possible that the we already got the symbol
2016                          * table from the core file itself. Either the file
2017                          * differs in which case our faked up elf file will
2018                          * only contain the dynsym (not the symtab) or the
2019                          * file matches in which case we'll just be replacing
2020                          * the symbol table we pulled out of the core file
2021                          * with an equivalent one. In either case, this
2022                          * check isn't essential, but it's a good idea.
2023                          */
2024                         if (symp->sym_data_pri == NULL) {
2025                                 dprintf("Symbol table found for %s\n",
2026                                     objectfile);
2027                                 symp->sym_data_pri = cp->c_data;
2028                                 symp->sym_symn +=
2029                                     shp->sh_size / shp->sh_entsize;
2030                                 symp->sym_strs =
2031                                     cache[shp->sh_link].c_data->d_buf;
2032                                 symp->sym_strsz =
2033                                     cache[shp->sh_link].c_data->d_size;
2034                                 symp->sym_hdr_pri = cp->c_shdr;
2035                                 symp->sym_strhdr = cache[shp->sh_link].c_shdr;
2036                         } else {
2037                                 dprintf("Symbol table already there for %s\n",
2038                                     objectfile);
2039                         }
2040                 } else if (shp->sh_type == SHT_SUNW_LDYNSYM) {
2041                         /* .SUNW_ldynsym section is auxiliary to .dynsym */
2042                         if (fptr->file_dynsym.sym_data_aux == NULL) {
2043                                 dprintf(".SUNW_ldynsym symbol table"
2044                                     " found for %s\n", objectfile);
2045                                 fptr->file_dynsym.sym_data_aux = cp->c_data;
2046                                 fptr->file_dynsym.sym_symn_aux =
2047                                     shp->sh_size / shp->sh_entsize;
2048                                 fptr->file_dynsym.sym_symn +=
2049                                     fptr->file_dynsym.sym_symn_aux;
2050                                 fptr->file_dynsym.sym_hdr_aux = cp->c_shdr;
2051                         } else {
2052                                 dprintf(".SUNW_ldynsym symbol table already"
2053                                     " there for %s\n", objectfile);
2054                         }
2055                 } else if (shp->sh_type == SHT_DYNAMIC) {
2056                         dyn = cp;
2057                 } else if (strcmp(cp->c_name, ".plt") == 0) {
2058                         plt = cp;
2059                 } else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) {
2060                         /*
2061                          * Skip over bogus CTF sections so they don't come back
2062                          * to haunt us later.
2063                          */
2064                         if (shp->sh_link == 0 ||
2065                             shp->sh_link >= nshdrs ||
2066                             (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM &&
2067                             cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) {
2068                                 dprintf("Bad sh_link %d for "
2069                                     "CTF\n", shp->sh_link);
2070                                 continue;
2071                         }
2072                         ctf = cp;
2073                 } else if (strcmp(cp->c_name, BUILDID_NAME) == 0) {
2074                         dprintf("Found a %s section for %s\n", BUILDID_NAME,
2075                             fptr->file_rname);
2076                         /* The ElfXX_Nhdr is 32/64-bit neutral */
2077                         if (cp->c_shdr.sh_type == SHT_NOTE &&
2078                             cp->c_data->d_buf != NULL &&
2079                             cp->c_data->d_size >= sizeof (Elf32_Nhdr)) {
2080                                 Elf32_Nhdr *hdr = cp->c_data->d_buf;
2081                                 if (hdr->n_type != 3)
2082                                         continue;
2083                                 if (hdr->n_namesz != 4)
2084                                         continue;
2085                                 if (hdr->n_descsz < MINBUILDID)
2086                                         continue;
2087                                 /* Set a reasonable upper bound */
2088                                 if (hdr->n_descsz > MAXBUILDID) {
2089                                         dprintf("Skipped %s as too large "
2090                                             "(%ld)\n", BUILDID_NAME,
2091                                             (unsigned long)hdr->n_descsz);
2092                                         continue;
2093                                 }
2094 
2095                                 if (cp->c_data->d_size < sizeof (hdr) +
2096                                     hdr->n_namesz + hdr->n_descsz)
2097                                         continue;
2098                                 buildid = cp;
2099                         }
2100                 } else if (strcmp(cp->c_name, DBGLINK_NAME) == 0) {
2101                         dprintf("found %s section for %s\n", DBGLINK_NAME,
2102                             fptr->file_rname);
2103                         /*
2104                          * Let's make sure of a few things before we do this.
2105                          */
2106                         if (cp->c_shdr.sh_type == SHT_PROGBITS &&
2107                             cp->c_data->d_buf != NULL &&
2108                             cp->c_data->d_size) {
2109                                 dbglink = cp;
2110                         }
2111                 }
2112         }
2113 
2114         /*
2115          * If we haven't found any symbol table information and we have found
2116          * either a .note.gnu.build-id or a .gnu_debuglink, it's time to try and
2117          * figure out where we might find this. Originally, GNU used the
2118          * .gnu_debuglink solely, but then they added a .note.gnu.build-id. The
2119          * build-id is some size, usually 16 or 20 bytes, often a SHA1 sum of
2120          * the old, but not present file. All that you have to do to compare
2121          * things is see if the sections are less, in theory saving you from
2122          * doing lots of expensive I/O.
2123          *
2124          * For the .note.gnu.build-id, we're going to check a few things before
2125          * using it, first that the name is 4 bytes, and is GNU and that the
2126          * type is 3, which they say is the build-id identifier.
2127          *
2128          * To verify that the elf data for the .gnu_debuglink seems somewhat
2129          * sane, eg. the elf data should be a string, so we want to verify we
2130          * have a null-terminator.
2131          */
2132         if (fptr->file_symtab.sym_data_pri == NULL && buildid != NULL) {
2133                 int i, bo;
2134                 uint8_t *dp;
2135                 char buf[BUILDID_STRLEN], *path;
2136                 Elf32_Nhdr *hdr = buildid->c_data->d_buf;
2137 
2138                 /*
2139                  * This was checked for validity when assigning the buildid
2140                  * variable.
2141                  */
2142                 bzero(buf, sizeof (buf));
2143                 dp = (uint8_t *)((uintptr_t)hdr + sizeof (*hdr) +
2144                     hdr->n_namesz);
2145                 for (i = 0, bo = 0; i < hdr->n_descsz; i++, bo += 2, dp++) {
2146                         assert(sizeof (buf) - bo > 0);
2147 
2148                         /*
2149                          * Recall that the build-id is structured as a series of
2150                          * bytes. However, the first two characters are supposed
2151                          * to represent a directory. Hence, once we reach offset
2152                          * two, we insert a '/' character.
2153                          */
2154                         if (bo == 2) {
2155                                 buf[bo] = '/';
2156                                 bo++;
2157                         }
2158                         (void) snprintf(buf + bo, sizeof (buf) - bo, "%2x",
2159                             *dp);
2160                 }
2161 
2162                 if (asprintf(&path, "/usr/lib/debug/.build-id/%s.debug",
2163                     buf) != -1) {
2164                         boolean_t r;
2165                         dprintf("attempting to find build id alternate debug "
2166                             "file at %s\n", path);
2167                         r = build_alt_debug(fptr, path, 0, buildid->c_data);
2168                         dprintf("attempt %s\n", r == B_TRUE ?
2169                             "succeeded" : "failed");
2170                         free(path);
2171                 } else {
2172                         dprintf("failed to construct build id path: %s\n",
2173                             strerror(errno));
2174                 }
2175         }
2176 
2177         if (fptr->file_symtab.sym_data_pri == NULL && dbglink != NULL) {
2178                 char *c = dbglink->c_data->d_buf;
2179                 size_t i;
2180                 boolean_t found = B_FALSE;
2181                 Elf_Data *ed = dbglink->c_data;
2182                 uint32_t crc;
2183 
2184                 for (i = 0; i < ed->d_size; i++) {
2185                         if (c[i] == '\0') {
2186                                 uintptr_t off;
2187                                 dprintf("got .gnu_debuglink terminator at "
2188                                     "offset %lu\n", (unsigned long)i);
2189                                 /*
2190                                  * After the null terminator, there should be
2191                                  * padding, followed by a 4 byte CRC of the
2192                                  * file. If we don't see this, we're going to
2193                                  * assume this is bogus.
2194                                  */
2195                                 if ((i % sizeof (uint32_t)) == 0) {
2196                                         i += 4;
2197                                 } else {
2198                                         i += sizeof (uint32_t) -
2199                                             (i % sizeof (uint32_t));
2200                                 }
2201                                 if (i + sizeof (uint32_t) ==
2202                                     dbglink->c_data->d_size) {
2203                                         found = B_TRUE;
2204                                         off = (uintptr_t)ed->d_buf + i;
2205                                         crc = *(uint32_t *)off;
2206                                 } else {
2207                                         dprintf(".gnu_debuglink size mismatch, "
2208                                             "expected: %lu, found: %lu\n",
2209                                             (unsigned long)i,
2210                                             (unsigned long)ed->d_size);
2211                                 }
2212                                 break;
2213                         }
2214                 }
2215 
2216                 if (found == B_TRUE)
2217                         find_alt_debuglink(fptr, dbglink->c_data->d_buf, crc);
2218         }
2219 
2220         /*
2221          * At this point, we've found all the symbol tables we're ever going
2222          * to find: the ones in the loop above and possibly the symtab that
2223          * was included in the core file. Before we perform any lookups, we
2224          * create sorted versions to optimize for lookups.
2225          */
2226         optimize_symtab(&fptr->file_symtab);
2227         optimize_symtab(&fptr->file_dynsym);
2228 
2229         /*
2230          * Fill in the base address of the text mapping for shared libraries.
2231          * This allows us to translate symbols before librtld_db is ready.
2232          */
2233         if (fptr->file_etype == ET_DYN) {
2234                 fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr -
2235                     fptr->file_map->map_pmap.pr_offset;
2236                 dprintf("setting file_dyn_base for %s to %lx\n",
2237                     objectfile, (long)fptr->file_dyn_base);
2238         }
2239 
2240         /*
2241          * Record the CTF section information in the file info structure.
2242          */
2243         if (ctf != NULL) {
2244                 fptr->file_ctf_off = ctf->c_shdr.sh_offset;
2245                 fptr->file_ctf_size = ctf->c_shdr.sh_size;
2246                 if (ctf->c_shdr.sh_link != 0 &&
2247                     cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM)
2248                         fptr->file_ctf_dyn = 1;
2249         }
2250 
2251         if (fptr->file_lo == NULL)
2252                 goto done; /* Nothing else to do if no load object info */
2253 
2254         /*
2255          * If the object is a shared library and we have a different rl_base
2256          * value, reset file_dyn_base according to librtld_db's information.
2257          */
2258         if (fptr->file_etype == ET_DYN &&
2259             fptr->file_lo->rl_base != fptr->file_dyn_base) {
2260                 dprintf("resetting file_dyn_base for %s to %lx\n",
2261                     objectfile, (long)fptr->file_lo->rl_base);
2262                 fptr->file_dyn_base = fptr->file_lo->rl_base;
2263         }
2264 
2265         /*
2266          * Fill in the PLT information for this file if a PLT symbol is found.
2267          */
2268         if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s,
2269             NULL) != NULL) {
2270                 fptr->file_plt_base = s.st_value + fptr->file_dyn_base;
2271                 fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0;
2272 
2273                 /*
2274                  * Bring the load object up to date; it is the only way the
2275                  * user has to access the PLT data. The PLT information in the
2276                  * rd_loadobj_t is not set in the call to map_iter() (the
2277                  * callback for rd_loadobj_iter) where we set file_lo.
2278                  */
2279                 fptr->file_lo->rl_plt_base = fptr->file_plt_base;
2280                 fptr->file_lo->rl_plt_size = fptr->file_plt_size;
2281 
2282                 dprintf("PLT found at %p, size = %lu\n",
2283                     (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size);
2284         }
2285 
2286         /*
2287          * Fill in the PLT information.
2288          */
2289         if (dyn != NULL) {
2290                 uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base;
2291                 size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize;
2292                 GElf_Dyn d;
2293 
2294                 for (i = 0; i < ndyn; i++) {
2295                         if (gelf_getdyn(dyn->c_data, i, &d) == NULL)
2296                                 continue;
2297 
2298                         switch (d.d_tag) {
2299                         case DT_JMPREL:
2300                                 dprintf("DT_JMPREL is %p\n",
2301                                     (void *)(uintptr_t)d.d_un.d_ptr);
2302                                 fptr->file_jmp_rel =
2303                                     d.d_un.d_ptr + fptr->file_dyn_base;
2304                                 break;
2305                         case DT_STRTAB:
2306                                 dprintf("DT_STRTAB is %p\n",
2307                                     (void *)(uintptr_t)d.d_un.d_ptr);
2308                                 break;
2309                         case DT_PLTGOT:
2310                                 dprintf("DT_PLTGOT is %p\n",
2311                                     (void *)(uintptr_t)d.d_un.d_ptr);
2312                                 break;
2313                         case DT_SUNW_SYMTAB:
2314                                 dprintf("DT_SUNW_SYMTAB is %p\n",
2315                                     (void *)(uintptr_t)d.d_un.d_ptr);
2316                                 break;
2317                         case DT_SYMTAB:
2318                                 dprintf("DT_SYMTAB is %p\n",
2319                                     (void *)(uintptr_t)d.d_un.d_ptr);
2320                                 break;
2321                         case DT_HASH:
2322                                 dprintf("DT_HASH is %p\n",
2323                                     (void *)(uintptr_t)d.d_un.d_ptr);
2324                                 break;
2325                         }
2326                 }
2327 
2328                 dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n",
2329                     (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel);
2330         }
2331 
2332 done:
2333         free(cache);
2334         return;
2335 
2336 bad:
2337         if (cache != NULL)
2338                 free(cache);
2339 
2340         (void) elf_end(elf);
2341         fptr->file_elf = NULL;
2342         if (fptr->file_elfmem != NULL) {
2343                 free(fptr->file_elfmem);
2344                 fptr->file_elfmem = NULL;
2345         }
2346         (void) close(fptr->file_fd);
2347         if (fptr->file_dbgelf != NULL)
2348                 (void) elf_end(fptr->file_dbgelf);
2349         fptr->file_dbgelf = NULL;
2350         if (fptr->file_dbgfile >= 0)
2351                 (void) close(fptr->file_dbgfile);
2352         fptr->file_fd = -1;
2353         fptr->file_dbgfile = -1;
2354 }
2355 
2356 /*
2357  * Given a process virtual address, return the map_info_t containing it.
2358  * If none found, return NULL.
2359  */
2360 map_info_t *
2361 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr)
2362 {
2363         int lo = 0;
2364         int hi = P->map_count - 1;
2365         int mid;
2366         map_info_t *mp;
2367 
2368         while (lo <= hi) {
2369 
2370                 mid = (lo + hi) / 2;
2371                 mp = &P->mappings[mid];
2372 
2373                 /* check that addr is in [vaddr, vaddr + size) */
2374                 if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size)
2375                         return (mp);
2376 
2377                 if (addr < mp->map_pmap.pr_vaddr)
2378                         hi = mid - 1;
2379                 else
2380                         lo = mid + 1;
2381         }
2382 
2383         return (NULL);
2384 }
2385 
2386 /*
2387  * Return the map_info_t for the executable file.
2388  * If not found, return NULL.
2389  */
2390 static map_info_t *
2391 exec_map(struct ps_prochandle *P)
2392 {
2393         uint_t i;
2394         map_info_t *mptr;
2395         map_info_t *mold = NULL;
2396         file_info_t *fptr;
2397         uintptr_t base;
2398 
2399         for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2400                 if (mptr->map_pmap.pr_mapname[0] == '\0')
2401                         continue;
2402                 if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) {
2403                         if ((fptr = mptr->map_file) != NULL &&
2404                             fptr->file_lo != NULL) {
2405                                 base = fptr->file_lo->rl_base;
2406                                 if (base >= mptr->map_pmap.pr_vaddr &&
2407                                     base < mptr->map_pmap.pr_vaddr +
2408                                     mptr->map_pmap.pr_size)  /* text space */
2409                                         return (mptr);
2410                                 mold = mptr;    /* must be the data */
2411                                 continue;
2412                         }
2413                         /* This is a poor way to test for text space */
2414                         if (!(mptr->map_pmap.pr_mflags & MA_EXEC) ||
2415                             (mptr->map_pmap.pr_mflags & MA_WRITE)) {
2416                                 mold = mptr;
2417                                 continue;
2418                         }
2419                         return (mptr);
2420                 }
2421         }
2422 
2423         return (mold);
2424 }
2425 
2426 /*
2427  * Given a shared object name, return the map_info_t for it.  If no matching
2428  * object is found, return NULL.  Normally, the link maps contain the full
2429  * object pathname, e.g. /usr/lib/libc.so.1.  We allow the object name to
2430  * take one of the following forms:
2431  *
2432  * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1"
2433  * 2. An exact basename match: "libc.so.1"
2434  * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc"
2435  * 4. The literal string "a.out" is an alias for the executable mapping
2436  *
2437  * The third case is a convenience for callers and may not be necessary.
2438  *
2439  * As the exact same object name may be loaded on different link maps (see
2440  * dlmopen(3DL)), we also allow the caller to resolve the object name by
2441  * specifying a particular link map id.  If lmid is PR_LMID_EVERY, the
2442  * first matching name will be returned, regardless of the link map id.
2443  */
2444 static map_info_t *
2445 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname)
2446 {
2447         map_info_t *mp;
2448         file_info_t *fp;
2449         size_t objlen;
2450         uint_t i;
2451 
2452         /*
2453          * If we have no rtld_db, then always treat a request as one for all
2454          * link maps.
2455          */
2456         if (P->rap == NULL)
2457                 lmid = PR_LMID_EVERY;
2458 
2459         /*
2460          * First pass: look for exact matches of the entire pathname or
2461          * basename (cases 1 and 2 above):
2462          */
2463         for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2464 
2465                 if (mp->map_pmap.pr_mapname[0] == '\0' ||
2466                     (fp = mp->map_file) == NULL ||
2467                     ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2468                         continue;
2469 
2470                 if (lmid != PR_LMID_EVERY &&
2471                     (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2472                         continue;
2473 
2474                 /*
2475                  * If we match, return the primary text mapping; otherwise
2476                  * just return the mapping we matched.
2477                  */
2478                 if ((fp->file_lbase && strcmp(fp->file_lbase, objname) == 0) ||
2479                     (fp->file_rbase && strcmp(fp->file_rbase, objname) == 0) ||
2480                     (fp->file_lname && strcmp(fp->file_lname, objname) == 0) ||
2481                     (fp->file_rname && strcmp(fp->file_rname, objname) == 0))
2482                         return (fp->file_map ? fp->file_map : mp);
2483         }
2484 
2485         objlen = strlen(objname);
2486 
2487         /*
2488          * Second pass: look for partial matches (case 3 above):
2489          */
2490         for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2491 
2492                 if (mp->map_pmap.pr_mapname[0] == '\0' ||
2493                     (fp = mp->map_file) == NULL ||
2494                     ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2495                         continue;
2496 
2497                 if (lmid != PR_LMID_EVERY &&
2498                     (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2499                         continue;
2500 
2501                 /*
2502                  * If we match, return the primary text mapping; otherwise
2503                  * just return the mapping we matched.
2504                  */
2505                 if ((fp->file_lbase != NULL) &&
2506                     (strncmp(fp->file_lbase, objname, objlen) == 0) &&
2507                     (fp->file_lbase[objlen] == '.'))
2508                         return (fp->file_map ? fp->file_map : mp);
2509                 if ((fp->file_rbase != NULL) &&
2510                     (strncmp(fp->file_rbase, objname, objlen) == 0) &&
2511                     (fp->file_rbase[objlen] == '.'))
2512                         return (fp->file_map ? fp->file_map : mp);
2513         }
2514 
2515         /*
2516          * One last check: we allow "a.out" to always alias the executable,
2517          * assuming this name was not in use for something else.
2518          */
2519         if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) &&
2520             (strcmp(objname, "a.out") == 0))
2521                 return (P->map_exec);
2522 
2523         return (NULL);
2524 }
2525 
2526 static map_info_t *
2527 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
2528 {
2529         map_info_t *mptr;
2530 
2531         if (!P->info_valid)
2532                 Pupdate_maps(P);
2533 
2534         if (P->map_exec == NULL && ((mptr = Paddr2mptr(P,
2535             Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL))
2536                 P->map_exec = mptr;
2537 
2538         if (P->map_ldso == NULL && (mptr = Paddr2mptr(P,
2539             Pgetauxval(P, AT_BASE))) != NULL)
2540                 P->map_ldso = mptr;
2541 
2542         if (name == PR_OBJ_EXEC)
2543                 mptr = P->map_exec;
2544         else if (name == PR_OBJ_LDSO)
2545                 mptr = P->map_ldso;
2546         else if (Prd_agent(P) != NULL || P->state == PS_IDLE)
2547                 mptr = object_to_map(P, lmid, name);
2548         else
2549                 mptr = NULL;
2550 
2551         return (mptr);
2552 }
2553 
2554 /*
2555  * When two symbols are found by address, decide which one is to be preferred.
2556  */
2557 static GElf_Sym *
2558 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2)
2559 {
2560         /*
2561          * Prefer the non-NULL symbol.
2562          */
2563         if (sym1 == NULL)
2564                 return (sym2);
2565         if (sym2 == NULL)
2566                 return (sym1);
2567 
2568         /*
2569          * Defer to the sort ordering...
2570          */
2571         return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2);
2572 }
2573 
2574 /*
2575  * Use a binary search to do the work of sym_by_addr().
2576  */
2577 static GElf_Sym *
2578 sym_by_addr_binary(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp,
2579     uint_t *idp)
2580 {
2581         GElf_Sym sym, osym;
2582         uint_t i, oid, *byaddr = symtab->sym_byaddr;
2583         int min, max, mid, omid, found = 0;
2584 
2585         if (symtab->sym_data_pri == NULL || symtab->sym_count == 0)
2586                 return (NULL);
2587 
2588         min = 0;
2589         max = symtab->sym_count - 1;
2590         osym.st_value = 0;
2591 
2592         /*
2593          * We can't return when we've found a match, we have to continue
2594          * searching for the closest matching symbol.
2595          */
2596         while (min <= max) {
2597                 mid = (max + min) / 2;
2598 
2599                 i = byaddr[mid];
2600                 (void) symtab_getsym(symtab, i, &sym);
2601 
2602                 if (addr >= sym.st_value &&
2603                     addr < sym.st_value + sym.st_size &&
2604                     (!found || sym.st_value > osym.st_value)) {
2605                         osym = sym;
2606                         omid = mid;
2607                         oid = i;
2608                         found = 1;
2609                 }
2610 
2611                 if (addr < sym.st_value)
2612                         max = mid - 1;
2613                 else
2614                         min = mid + 1;
2615         }
2616 
2617         if (!found)
2618                 return (NULL);
2619 
2620         /*
2621          * There may be many symbols with identical values so we walk
2622          * backward in the byaddr table to find the best match.
2623          */
2624         do {
2625                 sym = osym;
2626                 i = oid;
2627 
2628                 if (omid == 0)
2629                         break;
2630 
2631                 oid = byaddr[--omid];
2632                 (void) symtab_getsym(symtab, oid, &osym);
2633         } while (addr >= osym.st_value &&
2634             addr < sym.st_value + osym.st_size &&
2635             osym.st_value == sym.st_value);
2636 
2637         *symp = sym;
2638         if (idp != NULL)
2639                 *idp = i;
2640         return (symp);
2641 }
2642 
2643 /*
2644  * Use a linear search to do the work of sym_by_addr().
2645  */
2646 static GElf_Sym *
2647 sym_by_addr_linear(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symbolp,
2648     uint_t *idp)
2649 {
2650         size_t symn = symtab->sym_symn;
2651         char *strs = symtab->sym_strs;
2652         GElf_Sym sym, *symp = NULL;
2653         GElf_Sym osym, *osymp = NULL;
2654         int i, id;
2655 
2656         if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2657                 return (NULL);
2658 
2659         for (i = 0; i < symn; i++) {
2660                 if ((symp = symtab_getsym(symtab, i, &sym)) != NULL) {
2661                         if (addr >= sym.st_value &&
2662                             addr < sym.st_value + sym.st_size) {
2663                                 if (osymp)
2664                                         symp = sym_prefer(
2665                                             symp, strs + symp->st_name,
2666                                             osymp, strs + osymp->st_name);
2667                                 if (symp != osymp) {
2668                                         osym = sym;
2669                                         osymp = &osym;
2670                                         id = i;
2671                                 }
2672                         }
2673                 }
2674         }
2675         if (osymp) {
2676                 *symbolp = osym;
2677                 if (idp)
2678                         *idp = id;
2679                 return (symbolp);
2680         }
2681         return (NULL);
2682 }
2683 
2684 /*
2685  * Look up a symbol by address in the specified symbol table.
2686  * Adjustment to 'addr' must already have been made for the
2687  * offset of the symbol if this is a dynamic library symbol table.
2688  *
2689  * Use a linear or a binary search depending on whether or not we
2690  * chose to sort the table in optimize_symtab().
2691  */
2692 static GElf_Sym *
2693 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp)
2694 {
2695         if (_libproc_no_qsort) {
2696                 return (sym_by_addr_linear(symtab, addr, symp, idp));
2697         } else {
2698                 return (sym_by_addr_binary(symtab, addr, symp, idp));
2699         }
2700 }
2701 
2702 /*
2703  * Use a binary search to do the work of sym_by_name().
2704  */
2705 static GElf_Sym *
2706 sym_by_name_binary(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2707     uint_t *idp)
2708 {
2709         char *strs = symtab->sym_strs;
2710         uint_t i, *byname = symtab->sym_byname;
2711         int min, mid, max, cmp;
2712 
2713         if (symtab->sym_data_pri == NULL || strs == NULL ||
2714             symtab->sym_count == 0)
2715                 return (NULL);
2716 
2717         min = 0;
2718         max = symtab->sym_count - 1;
2719 
2720         while (min <= max) {
2721                 mid = (max + min) / 2;
2722 
2723                 i = byname[mid];
2724                 (void) symtab_getsym(symtab, i, symp);
2725 
2726                 if ((cmp = strcmp(name, strs + symp->st_name)) == 0) {
2727                         if (idp != NULL)
2728                                 *idp = i;
2729                         return (symp);
2730                 }
2731 
2732                 if (cmp < 0)
2733                         max = mid - 1;
2734                 else
2735                         min = mid + 1;
2736         }
2737 
2738         return (NULL);
2739 }
2740 
2741 /*
2742  * Use a linear search to do the work of sym_by_name().
2743  */
2744 static GElf_Sym *
2745 sym_by_name_linear(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2746     uint_t *idp)
2747 {
2748         size_t symn = symtab->sym_symn;
2749         char *strs = symtab->sym_strs;
2750         int i;
2751 
2752         if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2753                 return (NULL);
2754 
2755         for (i = 0; i < symn; i++) {
2756                 if (symtab_getsym(symtab, i, symp) &&
2757                     strcmp(name, strs + symp->st_name) == 0) {
2758                         if (idp)
2759                                 *idp = i;
2760                         return (symp);
2761                 }
2762         }
2763 
2764         return (NULL);
2765 }
2766 
2767 /*
2768  * Look up a symbol by name in the specified symbol table.
2769  *
2770  * Use a linear or a binary search depending on whether or not we
2771  * chose to sort the table in optimize_symtab().
2772  */
2773 static GElf_Sym *
2774 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp)
2775 {
2776         if (_libproc_no_qsort) {
2777                 return (sym_by_name_linear(symtab, name, symp, idp));
2778         } else {
2779                 return (sym_by_name_binary(symtab, name, symp, idp));
2780         }
2781 }
2782 
2783 /*
2784  * Search the process symbol tables looking for a symbol whose
2785  * value to value+size contain the address specified by addr.
2786  * Return values are:
2787  *      sym_name_buffer containing the symbol name
2788  *      GElf_Sym symbol table entry
2789  *      prsyminfo_t ancillary symbol information
2790  * Returns 0 on success, -1 on failure.
2791  */
2792 static int
2793 i_Pxlookup_by_addr(
2794         struct ps_prochandle *P,
2795         int lmresolve,                  /* use resolve linker object names */
2796         uintptr_t addr,                 /* process address being sought */
2797         char *sym_name_buffer,          /* buffer for the symbol name */
2798         size_t bufsize,                 /* size of sym_name_buffer */
2799         GElf_Sym *symbolp,              /* returned symbol table entry */
2800         prsyminfo_t *sip)               /* returned symbol info */
2801 {
2802         GElf_Sym        *symp;
2803         char            *name;
2804         GElf_Sym        sym1, *sym1p = NULL;
2805         GElf_Sym        sym2, *sym2p = NULL;
2806         char            *name1 = NULL;
2807         char            *name2 = NULL;
2808         uint_t          i1;
2809         uint_t          i2;
2810         map_info_t      *mptr;
2811         file_info_t     *fptr;
2812 
2813         (void) Prd_agent(P);
2814 
2815         if ((mptr = Paddr2mptr(P, addr)) == NULL ||     /* no such address */
2816             (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2817             fptr->file_elf == NULL)                  /* not an ELF file */
2818                 return (-1);
2819 
2820         /*
2821          * Adjust the address by the load object base address in
2822          * case the address turns out to be in a shared library.
2823          */
2824         addr -= fptr->file_dyn_base;
2825 
2826         /*
2827          * Search both symbol tables, symtab first, then dynsym.
2828          */
2829         if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL)
2830                 name1 = fptr->file_symtab.sym_strs + sym1.st_name;
2831         if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL)
2832                 name2 = fptr->file_dynsym.sym_strs + sym2.st_name;
2833 
2834         if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL)
2835                 return (-1);
2836 
2837         name = (symp == sym1p) ? name1 : name2;
2838         if (bufsize > 0) {
2839                 (void) strncpy(sym_name_buffer, name, bufsize);
2840                 sym_name_buffer[bufsize - 1] = '\0';
2841         }
2842 
2843         *symbolp = *symp;
2844         if (sip != NULL) {
2845                 sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer;
2846                 if (lmresolve && (fptr->file_rname != NULL))
2847                         sip->prs_object = fptr->file_rbase;
2848                 else
2849                         sip->prs_object = fptr->file_lbase;
2850                 sip->prs_id = (symp == sym1p) ? i1 : i2;
2851                 sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM;
2852                 sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE :
2853                     fptr->file_lo->rl_lmident;
2854         }
2855 
2856         if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS)
2857                 symbolp->st_value += fptr->file_dyn_base;
2858 
2859         return (0);
2860 }
2861 
2862 int
2863 Pxlookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2864     size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2865 {
2866         return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, bufsize, symp, sip));
2867 }
2868 
2869 int
2870 Pxlookup_by_addr_resolved(struct ps_prochandle *P, uintptr_t addr, char *buf,
2871     size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2872 {
2873         return (i_Pxlookup_by_addr(P, B_TRUE, addr, buf, bufsize, symp, sip));
2874 }
2875 
2876 int
2877 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2878     size_t size, GElf_Sym *symp)
2879 {
2880         return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, size, symp, NULL));
2881 }
2882 
2883 /*
2884  * Search the process symbol tables looking for a symbol whose name matches the
2885  * specified name and whose object and link map optionally match the specified
2886  * parameters.  On success, the function returns 0 and fills in the GElf_Sym
2887  * symbol table entry.  On failure, -1 is returned.
2888  */
2889 int
2890 Pxlookup_by_name(
2891         struct ps_prochandle *P,
2892         Lmid_t lmid,                    /* link map to match, or -1 for any */
2893         const char *oname,              /* load object name */
2894         const char *sname,              /* symbol name */
2895         GElf_Sym *symp,                 /* returned symbol table entry */
2896         prsyminfo_t *sip)               /* returned symbol info */
2897 {
2898         map_info_t *mptr;
2899         file_info_t *fptr;
2900         int cnt;
2901 
2902         GElf_Sym sym;
2903         prsyminfo_t si;
2904         int rv = -1;
2905         uint_t id;
2906 
2907         if (oname == PR_OBJ_EVERY) {
2908                 /* create all the file_info_t's for all the mappings */
2909                 (void) Prd_agent(P);
2910                 cnt = P->num_files;
2911                 fptr = list_next(&P->file_head);
2912         } else {
2913                 cnt = 1;
2914                 if ((mptr = object_name_to_map(P, lmid, oname)) == NULL ||
2915                     (fptr = build_map_symtab(P, mptr)) == NULL)
2916                         return (-1);
2917         }
2918 
2919         /*
2920          * Iterate through the loaded object files and look for the symbol
2921          * name in the .symtab and .dynsym of each.  If we encounter a match
2922          * with SHN_UNDEF, keep looking in hopes of finding a better match.
2923          * This means that a name such as "puts" will match the puts function
2924          * in libc instead of matching the puts PLT entry in the a.out file.
2925          */
2926         for (; cnt > 0; cnt--, fptr = list_next(fptr)) {
2927                 Pbuild_file_symtab(P, fptr);
2928 
2929                 if (fptr->file_elf == NULL)
2930                         continue;
2931 
2932                 if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL &&
2933                     lmid != fptr->file_lo->rl_lmident)
2934                         continue;
2935 
2936                 if (fptr->file_symtab.sym_data_pri != NULL &&
2937                     sym_by_name(&fptr->file_symtab, sname, symp, &id)) {
2938                         if (sip != NULL) {
2939                                 sip->prs_id = id;
2940                                 sip->prs_table = PR_SYMTAB;
2941                                 sip->prs_object = oname;
2942                                 sip->prs_name = sname;
2943                                 sip->prs_lmid = fptr->file_lo == NULL ?
2944                                     LM_ID_BASE : fptr->file_lo->rl_lmident;
2945                         }
2946                 } else if (fptr->file_dynsym.sym_data_pri != NULL &&
2947                     sym_by_name(&fptr->file_dynsym, sname, symp, &id)) {
2948                         if (sip != NULL) {
2949                                 sip->prs_id = id;
2950                                 sip->prs_table = PR_DYNSYM;
2951                                 sip->prs_object = oname;
2952                                 sip->prs_name = sname;
2953                                 sip->prs_lmid = fptr->file_lo == NULL ?
2954                                     LM_ID_BASE : fptr->file_lo->rl_lmident;
2955                         }
2956                 } else {
2957                         continue;
2958                 }
2959 
2960                 if (GELF_ST_TYPE(symp->st_info) != STT_TLS)
2961                         symp->st_value += fptr->file_dyn_base;
2962 
2963                 if (symp->st_shndx != SHN_UNDEF)
2964                         return (0);
2965 
2966                 if (rv != 0) {
2967                         if (sip != NULL)
2968                                 si = *sip;
2969                         sym = *symp;
2970                         rv = 0;
2971                 }
2972         }
2973 
2974         if (rv == 0) {
2975                 if (sip != NULL)
2976                         *sip = si;
2977                 *symp = sym;
2978         }
2979 
2980         return (rv);
2981 }
2982 
2983 /*
2984  * Search the process symbol tables looking for a symbol whose name matches the
2985  * specified name, but without any restriction on the link map id.
2986  */
2987 int
2988 Plookup_by_name(struct ps_prochandle *P, const char *object,
2989     const char *symbol, GElf_Sym *symp)
2990 {
2991         return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL));
2992 }
2993 
2994 /*
2995  * Iterate over the process's address space mappings.
2996  */
2997 static int
2998 i_Pmapping_iter(struct ps_prochandle *P, boolean_t lmresolve,
2999     proc_map_f *func, void *cd)
3000 {
3001         map_info_t *mptr;
3002         file_info_t *fptr;
3003         char *object_name;
3004         int rc = 0;
3005         int i;
3006 
3007         /* create all the file_info_t's for all the mappings */
3008         (void) Prd_agent(P);
3009 
3010         for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
3011                 if ((fptr = mptr->map_file) == NULL)
3012                         object_name = NULL;
3013                 else if (lmresolve && (fptr->file_rname != NULL))
3014                         object_name = fptr->file_rname;
3015                 else
3016                         object_name = fptr->file_lname;
3017                 if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0)
3018                         return (rc);
3019         }
3020         return (0);
3021 }
3022 
3023 int
3024 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
3025 {
3026         return (i_Pmapping_iter(P, B_FALSE, func, cd));
3027 }
3028 
3029 int
3030 Pmapping_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
3031 {
3032         return (i_Pmapping_iter(P, B_TRUE, func, cd));
3033 }
3034 
3035 /*
3036  * Iterate over the process's mapped objects.
3037  */
3038 static int
3039 i_Pobject_iter(struct ps_prochandle *P, boolean_t lmresolve,
3040     proc_map_f *func, void *cd)
3041 {
3042         map_info_t *mptr;
3043         file_info_t *fptr;
3044         uint_t cnt;
3045         int rc = 0;
3046 
3047         (void) Prd_agent(P); /* create file_info_t's for all the mappings */
3048         Pupdate_maps(P);
3049 
3050         for (cnt = P->num_files, fptr = list_next(&P->file_head);
3051             cnt; cnt--, fptr = list_next(fptr)) {
3052                 const char *lname;
3053 
3054                 if (lmresolve && (fptr->file_rname != NULL))
3055                         lname = fptr->file_rname;
3056                 else if (fptr->file_lname != NULL)
3057                         lname = fptr->file_lname;
3058                 else
3059                         lname = "";
3060 
3061                 if ((mptr = fptr->file_map) == NULL)
3062                         continue;
3063 
3064                 if ((rc = func(cd, &mptr->map_pmap, lname)) != 0)
3065                         return (rc);
3066 
3067                 if (!P->info_valid)
3068                         Pupdate_maps(P);
3069         }
3070         return (0);
3071 }
3072 
3073 int
3074 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
3075 {
3076         return (i_Pobject_iter(P, B_FALSE, func, cd));
3077 }
3078 
3079 int
3080 Pobject_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
3081 {
3082         return (i_Pobject_iter(P, B_TRUE, func, cd));
3083 }
3084 
3085 static char *
3086 i_Pobjname(struct ps_prochandle *P, boolean_t lmresolve, uintptr_t addr,
3087     char *buffer, size_t bufsize)
3088 {
3089         map_info_t *mptr;
3090         file_info_t *fptr;
3091 
3092         /* create all the file_info_t's for all the mappings */
3093         (void) Prd_agent(P);
3094 
3095         if ((mptr = Paddr2mptr(P, addr)) == NULL)
3096                 return (NULL);
3097 
3098         if (!lmresolve) {
3099                 if (((fptr = mptr->map_file) == NULL) ||
3100                     (fptr->file_lname == NULL))
3101                         return (NULL);
3102                 (void) strlcpy(buffer, fptr->file_lname, bufsize);
3103                 return (buffer);
3104         }
3105 
3106         /* Check for a cached copy of the resolved path */
3107         if (Pfindmap(P, mptr, buffer, bufsize) != NULL)
3108                 return (buffer);
3109 
3110         return (NULL);
3111 }
3112 
3113 /*
3114  * Given a virtual address, return the name of the underlying
3115  * mapped object (file) as provided by the dynamic linker.
3116  * Return NULL if we can't find any name information for the object.
3117  */
3118 char *
3119 Pobjname(struct ps_prochandle *P, uintptr_t addr,
3120     char *buffer, size_t bufsize)
3121 {
3122         return (i_Pobjname(P, B_FALSE, addr, buffer, bufsize));
3123 }
3124 
3125 /*
3126  * Given a virtual address, try to return a filesystem path to the
3127  * underlying mapped object (file).  If we're in the global zone,
3128  * this path could resolve to an object in another zone.  If we're
3129  * unable return a valid filesystem path, we'll fall back to providing
3130  * the mapped object (file) name provided by the dynamic linker in
3131  * the target process (ie, the object reported by Pobjname()).
3132  */
3133 char *
3134 Pobjname_resolved(struct ps_prochandle *P, uintptr_t addr,
3135     char *buffer, size_t bufsize)
3136 {
3137         return (i_Pobjname(P, B_TRUE, addr, buffer, bufsize));
3138 }
3139 
3140 /*
3141  * Given a virtual address, return the link map id of the underlying mapped
3142  * object (file), as provided by the dynamic linker.  Return -1 on failure.
3143  */
3144 int
3145 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp)
3146 {
3147         map_info_t *mptr;
3148         file_info_t *fptr;
3149 
3150         /* create all the file_info_t's for all the mappings */
3151         (void) Prd_agent(P);
3152 
3153         if ((mptr = Paddr2mptr(P, addr)) != NULL &&
3154             (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) {
3155                 *lmidp = fptr->file_lo->rl_lmident;
3156                 return (0);
3157         }
3158 
3159         return (-1);
3160 }
3161 
3162 /*
3163  * Given an object name and optional lmid, iterate over the object's symbols.
3164  * If which == PR_SYMTAB, search the normal symbol table.
3165  * If which == PR_DYNSYM, search the dynamic symbol table.
3166  */
3167 static int
3168 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
3169     int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd)
3170 {
3171 #if STT_NUM != (STT_TLS + 1)
3172 #error "STT_NUM has grown. update Psymbol_iter_com()"
3173 #endif
3174 
3175         GElf_Sym sym;
3176         GElf_Shdr shdr;
3177         map_info_t *mptr;
3178         file_info_t *fptr;
3179         sym_tbl_t *symtab;
3180         size_t symn;
3181         const char *strs;
3182         size_t strsz;
3183         prsyminfo_t si;
3184         int rv;
3185         uint_t *map, i, count, ndx;
3186 
3187         if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL)
3188                 return (-1);
3189 
3190         if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
3191             fptr->file_elf == NULL)                  /* not an ELF file */
3192                 return (-1);
3193 
3194         /*
3195          * Search the specified symbol table.
3196          */
3197         switch (which) {
3198         case PR_SYMTAB:
3199                 symtab = &fptr->file_symtab;
3200                 si.prs_table = PR_SYMTAB;
3201                 break;
3202         case PR_DYNSYM:
3203                 symtab = &fptr->file_dynsym;
3204                 si.prs_table = PR_DYNSYM;
3205                 break;
3206         default:
3207                 return (-1);
3208         }
3209 
3210         si.prs_object = object_name;
3211         si.prs_lmid = fptr->file_lo == NULL ?
3212             LM_ID_BASE : fptr->file_lo->rl_lmident;
3213 
3214         symn = symtab->sym_symn;
3215         strs = symtab->sym_strs;
3216         strsz = symtab->sym_strsz;
3217 
3218         switch (order) {
3219         case PRO_NATURAL:
3220                 map = NULL;
3221                 count = symn;
3222                 break;
3223         case PRO_BYNAME:
3224                 map = symtab->sym_byname;
3225                 count = symtab->sym_count;
3226                 break;
3227         case PRO_BYADDR:
3228                 map = symtab->sym_byaddr;
3229                 count = symtab->sym_count;
3230                 break;
3231         default:
3232                 return (-1);
3233         }
3234 
3235         if (symtab->sym_data_pri == NULL || strs == NULL || count == 0)
3236                 return (-1);
3237 
3238         rv = 0;
3239 
3240         for (i = 0; i < count; i++) {
3241                 ndx = map == NULL ? i : map[i];
3242                 if (symtab_getsym(symtab, ndx, &sym) != NULL) {
3243                         uint_t s_bind, s_type, type;
3244 
3245                         if (sym.st_name >= strsz)    /* invalid st_name */
3246                                 continue;
3247 
3248                         s_bind = GELF_ST_BIND(sym.st_info);
3249                         s_type = GELF_ST_TYPE(sym.st_info);
3250 
3251                         /*
3252                          * In case you haven't already guessed, this relies on
3253                          * the bitmask used in <libproc.h> for encoding symbol
3254                          * type and binding matching the order of STB and STT
3255                          * constants in <sys/elf.h>.  Changes to ELF must
3256                          * maintain binary compatibility, so I think this is
3257                          * reasonably fair game.
3258                          */
3259                         if (s_bind < STB_NUM && s_type < STT_NUM) {
3260                                 type = (1 << (s_type + 8)) | (1 << s_bind);
3261                                 if ((type & ~mask) != 0)
3262                                         continue;
3263                         } else
3264                                 continue; /* Invalid type or binding */
3265 
3266                         if (GELF_ST_TYPE(sym.st_info) != STT_TLS)
3267                                 sym.st_value += fptr->file_dyn_base;
3268 
3269                         si.prs_name = strs + sym.st_name;
3270 
3271                         /*
3272                          * If symbol's type is STT_SECTION, then try to lookup
3273                          * the name of the corresponding section.
3274                          */
3275                         if (GELF_ST_TYPE(sym.st_info) == STT_SECTION &&
3276                             fptr->file_shstrs != NULL &&
3277                             gelf_getshdr(elf_getscn(fptr->file_elf,
3278                             sym.st_shndx), &shdr) != NULL &&
3279                             shdr.sh_name != 0 &&
3280                             shdr.sh_name < fptr->file_shstrsz)
3281                                 si.prs_name = fptr->file_shstrs + shdr.sh_name;
3282 
3283                         si.prs_id = ndx;
3284                         if ((rv = func(cd, &sym, si.prs_name, &si)) != 0)
3285                                 break;
3286                 }
3287         }
3288 
3289         return (rv);
3290 }
3291 
3292 int
3293 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
3294     int which, int mask, proc_xsym_f *func, void *cd)
3295 {
3296         return (Psymbol_iter_com(P, lmid, object_name, which, mask,
3297             PRO_NATURAL, func, cd));
3298 }
3299 
3300 int
3301 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid,
3302     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3303 {
3304         return (Psymbol_iter_com(P, lmid, object_name, which, mask,
3305             PRO_NATURAL, (proc_xsym_f *)func, cd));
3306 }
3307 
3308 int
3309 Psymbol_iter(struct ps_prochandle *P,
3310     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3311 {
3312         return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3313             PRO_NATURAL, (proc_xsym_f *)func, cd));
3314 }
3315 
3316 int
3317 Psymbol_iter_by_addr(struct ps_prochandle *P,
3318     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3319 {
3320         return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3321             PRO_BYADDR, (proc_xsym_f *)func, cd));
3322 }
3323 
3324 int
3325 Psymbol_iter_by_name(struct ps_prochandle *P,
3326     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3327 {
3328         return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3329             PRO_BYNAME, (proc_xsym_f *)func, cd));
3330 }
3331 
3332 /*
3333  * Get the platform string.
3334  */
3335 char *
3336 Pplatform(struct ps_prochandle *P, char *s, size_t n)
3337 {
3338         return (P->ops.pop_platform(P, s, n, P->data));
3339 }
3340 
3341 /*
3342  * Get the uname(2) information.
3343  */
3344 int
3345 Puname(struct ps_prochandle *P, struct utsname *u)
3346 {
3347         return (P->ops.pop_uname(P, u, P->data));
3348 }
3349 
3350 /*
3351  * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize
3352  * the symbol table heads in the new ps_prochandle.
3353  */
3354 void
3355 Pinitsym(struct ps_prochandle *P)
3356 {
3357         P->num_files = 0;
3358         list_link(&P->file_head, NULL);
3359 }
3360 
3361 /*
3362  * Called from Prelease() to destroy the symbol tables.
3363  * Must be called by the client after an exec() in the victim process.
3364  */
3365 void
3366 Preset_maps(struct ps_prochandle *P)
3367 {
3368         int i;
3369 
3370         if (P->rap != NULL) {
3371                 rd_delete(P->rap);
3372                 P->rap = NULL;
3373         }
3374 
3375         if (P->execname != NULL) {
3376                 free(P->execname);
3377                 P->execname = NULL;
3378         }
3379 
3380         if (P->auxv != NULL) {
3381                 free(P->auxv);
3382                 P->auxv = NULL;
3383                 P->nauxv = 0;
3384         }
3385 
3386         for (i = 0; i < P->map_count; i++)
3387                 map_info_free(P, &P->mappings[i]);
3388 
3389         if (P->mappings != NULL) {
3390                 free(P->mappings);
3391                 P->mappings = NULL;
3392         }
3393         P->map_count = P->map_alloc = 0;
3394 
3395         P->info_valid = 0;
3396 }
3397 
3398 typedef struct getenv_data {
3399         char *buf;
3400         size_t bufsize;
3401         const char *search;
3402         size_t searchlen;
3403 } getenv_data_t;
3404 
3405 /*ARGSUSED*/
3406 static int
3407 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr,
3408     const char *nameval)
3409 {
3410         getenv_data_t *d = data;
3411         size_t len;
3412 
3413         if (nameval == NULL)
3414                 return (0);
3415 
3416         if (d->searchlen < strlen(nameval) &&
3417             strncmp(nameval, d->search, d->searchlen) == 0 &&
3418             nameval[d->searchlen] == '=') {
3419                 len = MIN(strlen(nameval), d->bufsize - 1);
3420                 (void) strncpy(d->buf, nameval, len);
3421                 d->buf[len] = '\0';
3422                 return (1);
3423         }
3424 
3425         return (0);
3426 }
3427 
3428 char *
3429 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen)
3430 {
3431         getenv_data_t d;
3432 
3433         d.buf = buf;
3434         d.bufsize = buflen;
3435         d.search = name;
3436         d.searchlen = strlen(name);
3437 
3438         if (Penv_iter(P, getenv_func, &d) == 1) {
3439                 char *equals = strchr(d.buf, '=');
3440 
3441                 if (equals != NULL) {
3442                         (void) memmove(d.buf, equals + 1,
3443                             d.buf + buflen - equals - 1);
3444                         d.buf[d.buf + buflen - equals] = '\0';
3445 
3446                         return (buf);
3447                 }
3448         }
3449 
3450         return (NULL);
3451 }
3452 
3453 /* number of argument or environment pointers to read all at once */
3454 #define NARG    100
3455 
3456 int
3457 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data)
3458 {
3459         const psinfo_t *psp;
3460         uintptr_t envpoff;
3461         GElf_Sym sym;
3462         int ret;
3463         char *buf, *nameval;
3464         size_t buflen;
3465 
3466         int nenv = NARG;
3467         long envp[NARG];
3468 
3469         /*
3470          * Attempt to find the "_environ" variable in the process.
3471          * Failing that, use the original value provided by Ppsinfo().
3472          */
3473         if ((psp = Ppsinfo(P)) == NULL)
3474                 return (-1);
3475 
3476         envpoff = psp->pr_envp; /* Default if no _environ found */
3477 
3478         if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) {
3479                 if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3480                         if (Pread(P, &envpoff, sizeof (envpoff),
3481                             sym.st_value) != sizeof (envpoff))
3482                                 envpoff = psp->pr_envp;
3483                 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3484                         uint32_t envpoff32;
3485 
3486                         if (Pread(P, &envpoff32, sizeof (envpoff32),
3487                             sym.st_value) != sizeof (envpoff32))
3488                                 envpoff = psp->pr_envp;
3489                         else
3490                                 envpoff = envpoff32;
3491                 }
3492         }
3493 
3494         buflen = 128;
3495         buf = malloc(buflen);
3496 
3497         ret = 0;
3498         for (;;) {
3499                 uintptr_t envoff;
3500 
3501                 if (nenv == NARG) {
3502                         (void) memset(envp, 0, sizeof (envp));
3503                         if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3504                                 if (Pread(P, envp,
3505                                     sizeof (envp), envpoff) <= 0) {
3506                                         ret = -1;
3507                                         break;
3508                                 }
3509                         } else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3510                                 uint32_t e32[NARG];
3511                                 int i;
3512 
3513                                 (void) memset(e32, 0, sizeof (e32));
3514                                 if (Pread(P, e32, sizeof (e32), envpoff) <= 0) {
3515                                         ret = -1;
3516                                         break;
3517                                 }
3518                                 for (i = 0; i < NARG; i++)
3519                                         envp[i] = e32[i];
3520                         }
3521                         nenv = 0;
3522                 }
3523 
3524                 if ((envoff = envp[nenv++]) == NULL)
3525                         break;
3526 
3527                 /*
3528                  * Attempt to read the string from the process.
3529                  */
3530 again:
3531                 ret = Pread_string(P, buf, buflen, envoff);
3532 
3533                 if (ret <= 0) {
3534                         nameval = NULL;
3535                 } else if (ret == buflen - 1) {
3536                         free(buf);
3537                         /*
3538                          * Bail if we have a corrupted environment
3539                          */
3540                         if (buflen >= ARG_MAX)
3541                                 return (-1);
3542                         buflen *= 2;
3543                         buf = malloc(buflen);
3544                         goto again;
3545                 } else {
3546                         nameval = buf;
3547                 }
3548 
3549                 if ((ret = func(data, P, envoff, nameval)) != 0)
3550                         break;
3551 
3552                 envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4;
3553         }
3554 
3555         free(buf);
3556 
3557         return (ret);
3558 }