1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright 2016 Joyent, Inc.
  25  * Copyright (c) 2013 by Delphix. All rights reserved.
  26  */
  27 
  28 #include <assert.h>
  29 #include <stdio.h>
  30 #include <stdlib.h>
  31 #include <stddef.h>
  32 #include <unistd.h>
  33 #include <ctype.h>
  34 #include <fcntl.h>
  35 #include <string.h>
  36 #include <strings.h>
  37 #include <memory.h>
  38 #include <errno.h>
  39 #include <dirent.h>
  40 #include <signal.h>
  41 #include <limits.h>
  42 #include <libgen.h>
  43 #include <sys/types.h>
  44 #include <sys/stat.h>
  45 #include <sys/sysmacros.h>
  46 #include <sys/crc32.h>
  47 
  48 #include "libproc.h"
  49 #include "Pcontrol.h"
  50 #include "Putil.h"
  51 #include "Psymtab_machelf.h"
  52 
  53 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *);
  54 static map_info_t *exec_map(struct ps_prochandle *);
  55 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *);
  56 static map_info_t *object_name_to_map(struct ps_prochandle *,
  57         Lmid_t, const char *);
  58 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *);
  59 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *,
  60     uintptr_t);
  61 #ifdef _LP64
  62 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *,
  63     uintptr_t);
  64 #endif
  65 static uint32_t psym_crc32[] = { CRC32_TABLE };
  66 
  67 #define DATA_TYPES      \
  68         ((1 << STT_OBJECT) | (1 << STT_FUNC) | \
  69         (1 << STT_COMMON) | (1 << STT_TLS))
  70 #define IS_DATA_TYPE(tp)        (((1 << (tp)) & DATA_TYPES) != 0)
  71 
  72 #define MA_RWX  (MA_READ | MA_WRITE | MA_EXEC)
  73 
  74 /*
  75  * Minimum and maximum length of a build-id that we'll accept. Generally it's a
  76  * 20 byte SHA1 and it's expected that the first byte (which is two ascii
  77  * characters) indicates a directory and the remaining bytes become the file
  78  * name. Therefore, our minimum length is at least 2 bytes (one for the
  79  * directory and one for the name) and the max is a bit over the minimum -- 64,
  80  * just in case folks do something odd. The string length is three times the max
  81  * length. This accounts for the fact that each byte is two characters, a null
  82  * terminator, and the directory '/' character.
  83  */
  84 #define MINBUILDID      2
  85 #define MAXBUILDID      64
  86 #define BUILDID_STRLEN  (3*MAXBUILDID)
  87 #define BUILDID_NAME    ".note.gnu.build-id"
  88 #define DBGLINK_NAME    ".gnu_debuglink"
  89 
  90 typedef enum {
  91         PRO_NATURAL,
  92         PRO_BYADDR,
  93         PRO_BYNAME
  94 } pr_order_t;
  95 
  96 static int
  97 addr_cmp(const void *aa, const void *bb)
  98 {
  99         uintptr_t a = *((uintptr_t *)aa);
 100         uintptr_t b = *((uintptr_t *)bb);
 101 
 102         if (a > b)
 103                 return (1);
 104         if (a < b)
 105                 return (-1);
 106         return (0);
 107 }
 108 
 109 /*
 110  * This function creates a list of addresses for a load object's sections.
 111  * The list is in ascending address order and alternates start address
 112  * then end address for each section we're interested in. The function
 113  * returns a pointer to the list, which must be freed by the caller.
 114  */
 115 static uintptr_t *
 116 get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n)
 117 {
 118         uintptr_t a, addr, *addrs, last = 0;
 119         uint_t i, naddrs = 0, unordered = 0;
 120 
 121         if (P->status.pr_dmodel == PR_MODEL_ILP32) {
 122                 Elf32_Ehdr ehdr;
 123                 Elf32_Phdr phdr;
 124                 uint_t phnum;
 125 
 126                 if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0)
 127                         return (NULL);
 128 
 129                 addrs = malloc(sizeof (uintptr_t) * phnum * 2);
 130                 a = ehdr_start + ehdr.e_phoff;
 131                 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
 132                         if (Pread(P, &phdr, sizeof (phdr), a) !=
 133                             sizeof (phdr)) {
 134                                 free(addrs);
 135                                 return (NULL);
 136                         }
 137                         if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
 138                                 continue;
 139 
 140                         addr = phdr.p_vaddr;
 141                         if (ehdr.e_type == ET_DYN)
 142                                 addr += ehdr_start;
 143                         if (last > addr)
 144                                 unordered = 1;
 145                         addrs[naddrs++] = addr;
 146                         addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
 147                 }
 148 #ifdef _LP64
 149         } else {
 150                 Elf64_Ehdr ehdr;
 151                 Elf64_Phdr phdr;
 152                 uint_t phnum;
 153 
 154                 if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0)
 155                         return (NULL);
 156 
 157                 addrs = malloc(sizeof (uintptr_t) * phnum * 2);
 158                 a = ehdr_start + ehdr.e_phoff;
 159                 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
 160                         if (Pread(P, &phdr, sizeof (phdr), a) !=
 161                             sizeof (phdr)) {
 162                                 free(addrs);
 163                                 return (NULL);
 164                         }
 165                         if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
 166                                 continue;
 167 
 168                         addr = phdr.p_vaddr;
 169                         if (ehdr.e_type == ET_DYN)
 170                                 addr += ehdr_start;
 171                         if (last > addr)
 172                                 unordered = 1;
 173                         addrs[naddrs++] = addr;
 174                         addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
 175                 }
 176 #endif
 177         }
 178 
 179         if (unordered)
 180                 qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp);
 181 
 182         *n = naddrs;
 183         return (addrs);
 184 }
 185 
 186 /*
 187  * Allocation function for a new file_info_t
 188  */
 189 file_info_t *
 190 file_info_new(struct ps_prochandle *P, map_info_t *mptr)
 191 {
 192         file_info_t *fptr;
 193         map_info_t *mp;
 194         uintptr_t mstart, mend, sstart, send;
 195         uint_t i;
 196 
 197         if ((fptr = calloc(1, sizeof (file_info_t))) == NULL)
 198                 return (NULL);
 199 
 200         list_link(fptr, &P->file_head);
 201         (void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname);
 202         mptr->map_file = fptr;
 203         fptr->file_ref = 1;
 204         fptr->file_fd = -1;
 205         fptr->file_dbgfile = -1;
 206         P->num_files++;
 207 
 208         /*
 209          * To figure out which map_info_t instances correspond to the mappings
 210          * for this load object we try to obtain the start and end address
 211          * for each section of our in-memory ELF image. If successful, we
 212          * walk down the list of addresses and the list of map_info_t
 213          * instances in lock step to correctly find the mappings that
 214          * correspond to this load object.
 215          */
 216         if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr,
 217             &fptr->file_nsaddrs)) == NULL)
 218                 return (fptr);
 219 
 220         mp = P->mappings;
 221         i = 0;
 222         while (mp < P->mappings + P->map_count && i < fptr->file_nsaddrs) {
 223 
 224                 /* Calculate the start and end of the mapping and section */
 225                 mstart = mp->map_pmap.pr_vaddr;
 226                 mend = mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size;
 227                 sstart = fptr->file_saddrs[i];
 228                 send = fptr->file_saddrs[i + 1];
 229 
 230                 if (mend <= sstart) {
 231                         /* This mapping is below the current section */
 232                         mp++;
 233                 } else if (mstart >= send) {
 234                         /* This mapping is above the current section */
 235                         i += 2;
 236                 } else {
 237                         /* This mapping overlaps the current section */
 238                         if (mp->map_file == NULL) {
 239                                 dprintf("file_info_new: associating "
 240                                     "segment at %p\n",
 241                                     (void *)mp->map_pmap.pr_vaddr);
 242                                 mp->map_file = fptr;
 243                                 fptr->file_ref++;
 244                         } else {
 245                                 dprintf("file_info_new: segment at %p "
 246                                     "already associated with %s\n",
 247                                     (void *)mp->map_pmap.pr_vaddr,
 248                                     (mp == mptr ? "this file" :
 249                                     mp->map_file->file_pname));
 250                         }
 251                         mp++;
 252                 }
 253         }
 254 
 255         return (fptr);
 256 }
 257 
 258 /*
 259  * Deallocation function for a file_info_t
 260  */
 261 static void
 262 file_info_free(struct ps_prochandle *P, file_info_t *fptr)
 263 {
 264         if (--fptr->file_ref == 0) {
 265                 list_unlink(fptr);
 266                 if (fptr->file_symtab.sym_elf) {
 267                         (void) elf_end(fptr->file_symtab.sym_elf);
 268                         free(fptr->file_symtab.sym_elfmem);
 269                 }
 270                 if (fptr->file_symtab.sym_byname)
 271                         free(fptr->file_symtab.sym_byname);
 272                 if (fptr->file_symtab.sym_byaddr)
 273                         free(fptr->file_symtab.sym_byaddr);
 274 
 275                 if (fptr->file_dynsym.sym_elf) {
 276                         (void) elf_end(fptr->file_dynsym.sym_elf);
 277                         free(fptr->file_dynsym.sym_elfmem);
 278                 }
 279                 if (fptr->file_dynsym.sym_byname)
 280                         free(fptr->file_dynsym.sym_byname);
 281                 if (fptr->file_dynsym.sym_byaddr)
 282                         free(fptr->file_dynsym.sym_byaddr);
 283 
 284                 if (fptr->file_lo)
 285                         free(fptr->file_lo);
 286                 if (fptr->file_lname)
 287                         free(fptr->file_lname);
 288                 if (fptr->file_rname)
 289                         free(fptr->file_rname);
 290                 if (fptr->file_elf)
 291                         (void) elf_end(fptr->file_elf);
 292                 if (fptr->file_elfmem != NULL)
 293                         free(fptr->file_elfmem);
 294                 if (fptr->file_fd >= 0)
 295                         (void) close(fptr->file_fd);
 296                 if (fptr->file_dbgelf)
 297                         (void) elf_end(fptr->file_dbgelf);
 298                 if (fptr->file_dbgfile >= 0)
 299                         (void) close(fptr->file_dbgfile);
 300                 if (fptr->file_ctfp) {
 301                         ctf_close(fptr->file_ctfp);
 302                         free(fptr->file_ctf_buf);
 303                 }
 304                 if (fptr->file_saddrs)
 305                         free(fptr->file_saddrs);
 306                 free(fptr);
 307                 P->num_files--;
 308         }
 309 }
 310 
 311 /*
 312  * Deallocation function for a map_info_t
 313  */
 314 static void
 315 map_info_free(struct ps_prochandle *P, map_info_t *mptr)
 316 {
 317         file_info_t *fptr;
 318 
 319         if ((fptr = mptr->map_file) != NULL) {
 320                 if (fptr->file_map == mptr)
 321                         fptr->file_map = NULL;
 322                 file_info_free(P, fptr);
 323         }
 324         if (P->execname && mptr == P->map_exec) {
 325                 free(P->execname);
 326                 P->execname = NULL;
 327         }
 328         if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) {
 329                 free(P->auxv);
 330                 P->auxv = NULL;
 331                 P->nauxv = 0;
 332         }
 333         if (mptr == P->map_exec)
 334                 P->map_exec = NULL;
 335         if (mptr == P->map_ldso)
 336                 P->map_ldso = NULL;
 337 }
 338 
 339 /*
 340  * Call-back function for librtld_db to iterate through all of its shared
 341  * libraries.  We use this to get the load object names for the mappings.
 342  */
 343 static int
 344 map_iter(const rd_loadobj_t *lop, void *cd)
 345 {
 346         char buf[PATH_MAX];
 347         struct ps_prochandle *P = cd;
 348         map_info_t *mptr;
 349         file_info_t *fptr;
 350 
 351         dprintf("encountered rd object at %p\n", (void *)lop->rl_base);
 352 
 353         if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) {
 354                 dprintf("map_iter: base address doesn't match any mapping\n");
 355                 return (1); /* Base address does not match any mapping */
 356         }
 357 
 358         if ((fptr = mptr->map_file) == NULL &&
 359             (fptr = file_info_new(P, mptr)) == NULL) {
 360                 dprintf("map_iter: failed to allocate a new file_info_t\n");
 361                 return (1); /* Failed to allocate a new file_info_t */
 362         }
 363 
 364         if ((fptr->file_lo == NULL) &&
 365             (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
 366                 dprintf("map_iter: failed to allocate rd_loadobj_t\n");
 367                 file_info_free(P, fptr);
 368                 return (1); /* Failed to allocate rd_loadobj_t */
 369         }
 370 
 371         fptr->file_map = mptr;
 372         *fptr->file_lo = *lop;
 373 
 374         fptr->file_lo->rl_plt_base = fptr->file_plt_base;
 375         fptr->file_lo->rl_plt_size = fptr->file_plt_size;
 376 
 377         if (fptr->file_lname) {
 378                 free(fptr->file_lname);
 379                 fptr->file_lname = NULL;
 380                 fptr->file_lbase = NULL;
 381         }
 382         if (fptr->file_rname) {
 383                 free(fptr->file_rname);
 384                 fptr->file_rname = NULL;
 385                 fptr->file_rbase = NULL;
 386         }
 387 
 388         if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) {
 389                 if ((fptr->file_lname = strdup(buf)) != NULL)
 390                         fptr->file_lbase = basename(fptr->file_lname);
 391         } else {
 392                 dprintf("map_iter: failed to read string at %p\n",
 393                     (void *)lop->rl_nameaddr);
 394         }
 395 
 396         if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
 397             ((fptr->file_rname = strdup(buf)) != NULL))
 398                 fptr->file_rbase = basename(fptr->file_rname);
 399 
 400         dprintf("loaded rd object %s lmid %lx\n",
 401             fptr->file_lname ? buf : "<NULL>", lop->rl_lmident);
 402         return (1);
 403 }
 404 
 405 static void
 406 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname)
 407 {
 408         file_info_t *fptr;
 409         char buf[PATH_MAX];
 410 
 411         if ((fptr = mptr->map_file) == NULL &&
 412             (fptr = file_info_new(P, mptr)) == NULL)
 413                 return; /* Failed to allocate a new file_info_t */
 414 
 415         fptr->file_map = mptr;
 416 
 417         if ((fptr->file_lo == NULL) &&
 418             (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
 419                 file_info_free(P, fptr);
 420                 return; /* Failed to allocate rd_loadobj_t */
 421         }
 422 
 423         (void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t));
 424         fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr;
 425         fptr->file_lo->rl_bend =
 426             mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
 427 
 428         fptr->file_lo->rl_plt_base = fptr->file_plt_base;
 429         fptr->file_lo->rl_plt_size = fptr->file_plt_size;
 430 
 431         if ((fptr->file_lname == NULL) &&
 432             (fptr->file_lname = strdup(lname)) != NULL)
 433                 fptr->file_lbase = basename(fptr->file_lname);
 434 
 435         if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
 436             ((fptr->file_rname = strdup(buf)) != NULL))
 437                 fptr->file_rbase = basename(fptr->file_rname);
 438 }
 439 
 440 static void
 441 load_static_maps(struct ps_prochandle *P)
 442 {
 443         map_info_t *mptr;
 444 
 445         /*
 446          * Construct the map for the a.out.
 447          */
 448         if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL)
 449                 map_set(P, mptr, "a.out");
 450 
 451         /*
 452          * If the dynamic linker exists for this process,
 453          * construct the map for it.
 454          */
 455         if (Pgetauxval(P, AT_BASE) != -1L &&
 456             (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL)
 457                 map_set(P, mptr, "ld.so.1");
 458 }
 459 
 460 int
 461 Preadmaps(struct ps_prochandle *P, prmap_t **Pmapp, ssize_t *nmapp)
 462 {
 463         return (P->ops.pop_read_maps(P, Pmapp, nmapp, P->data));
 464 }
 465 
 466 /*
 467  * Go through all the address space mappings, validating or updating
 468  * the information already gathered, or gathering new information.
 469  *
 470  * This function is only called when we suspect that the mappings have changed
 471  * because this is the first time we're calling it or because of rtld activity.
 472  */
 473 void
 474 Pupdate_maps(struct ps_prochandle *P)
 475 {
 476         prmap_t *Pmap = NULL;
 477         prmap_t *pmap;
 478         ssize_t nmap;
 479         int i;
 480         uint_t oldmapcount;
 481         map_info_t *newmap, *newp;
 482         map_info_t *mptr;
 483 
 484         if (P->info_valid || P->state == PS_UNDEAD)
 485                 return;
 486 
 487         Preadauxvec(P);
 488 
 489         if (Preadmaps(P, &Pmap, &nmap) != 0)
 490                 return;
 491 
 492         if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL)
 493                 return;
 494 
 495         /*
 496          * We try to merge any file information we may have for existing
 497          * mappings, to avoid having to rebuild the file info.
 498          */
 499         mptr = P->mappings;
 500         pmap = Pmap;
 501         newp = newmap;
 502         oldmapcount = P->map_count;
 503         for (i = 0; i < nmap; i++, pmap++, newp++) {
 504 
 505                 if (oldmapcount == 0) {
 506                         /*
 507                          * We've exhausted all the old mappings.  Every new
 508                          * mapping should be added.
 509                          */
 510                         newp->map_pmap = *pmap;
 511 
 512                 } else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr &&
 513                     pmap->pr_size == mptr->map_pmap.pr_size &&
 514                     pmap->pr_offset == mptr->map_pmap.pr_offset &&
 515                     (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) ==
 516                     (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) &&
 517                     pmap->pr_pagesize == mptr->map_pmap.pr_pagesize &&
 518                     pmap->pr_shmid == mptr->map_pmap.pr_shmid &&
 519                     strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) {
 520 
 521                         /*
 522                          * This mapping matches exactly.  Copy over the old
 523                          * mapping, taking care to get the latest flags.
 524                          * Make sure the associated file_info_t is updated
 525                          * appropriately.
 526                          */
 527                         *newp = *mptr;
 528                         if (P->map_exec == mptr)
 529                                 P->map_exec = newp;
 530                         if (P->map_ldso == mptr)
 531                                 P->map_ldso = newp;
 532                         newp->map_pmap.pr_mflags = pmap->pr_mflags;
 533                         if (mptr->map_file != NULL &&
 534                             mptr->map_file->file_map == mptr)
 535                                 mptr->map_file->file_map = newp;
 536                         oldmapcount--;
 537                         mptr++;
 538 
 539                 } else if (pmap->pr_vaddr + pmap->pr_size >
 540                     mptr->map_pmap.pr_vaddr) {
 541 
 542                         /*
 543                          * The old mapping doesn't exist any more, remove it
 544                          * from the list.
 545                          */
 546                         map_info_free(P, mptr);
 547                         oldmapcount--;
 548                         i--;
 549                         newp--;
 550                         pmap--;
 551                         mptr++;
 552 
 553                 } else {
 554 
 555                         /*
 556                          * This is a new mapping, add it directly.
 557                          */
 558                         newp->map_pmap = *pmap;
 559                 }
 560         }
 561 
 562         /*
 563          * Free any old maps
 564          */
 565         while (oldmapcount) {
 566                 map_info_free(P, mptr);
 567                 oldmapcount--;
 568                 mptr++;
 569         }
 570 
 571         free(Pmap);
 572         if (P->mappings != NULL)
 573                 free(P->mappings);
 574         P->mappings = newmap;
 575         P->map_count = P->map_alloc = nmap;
 576         P->info_valid = 1;
 577 
 578         /*
 579          * Consult librtld_db to get the load object
 580          * names for all of the shared libraries.
 581          */
 582         if (P->rap != NULL)
 583                 (void) rd_loadobj_iter(P->rap, map_iter, P);
 584 }
 585 
 586 /*
 587  * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then
 588  * forcibly cache all of the symbol tables associated with all object files.
 589  */
 590 void
 591 Pupdate_syms(struct ps_prochandle *P)
 592 {
 593         file_info_t *fptr;
 594         int i;
 595 
 596         Pupdate_maps(P);
 597 
 598         for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
 599             i++, fptr = list_next(fptr)) {
 600                 Pbuild_file_symtab(P, fptr);
 601                 (void) Pbuild_file_ctf(P, fptr);
 602         }
 603 }
 604 
 605 /*
 606  * Return the librtld_db agent handle for the victim process.
 607  * The handle will become invalid at the next successful exec() and the
 608  * client (caller of proc_rd_agent()) must not use it beyond that point.
 609  * If the process is already dead, we've already tried our best to
 610  * create the agent during core file initialization.
 611  */
 612 rd_agent_t *
 613 Prd_agent(struct ps_prochandle *P)
 614 {
 615         if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) {
 616                 Pupdate_maps(P);
 617                 if (P->num_files == 0)
 618                         load_static_maps(P);
 619                 rd_log(_libproc_debug);
 620                 if ((P->rap = rd_new(P)) != NULL)
 621                         (void) rd_loadobj_iter(P->rap, map_iter, P);
 622         }
 623         return (P->rap);
 624 }
 625 
 626 /*
 627  * Return the prmap_t structure containing 'addr', but only if it
 628  * is in the dynamic linker's link map and is the text section.
 629  */
 630 const prmap_t *
 631 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr)
 632 {
 633         map_info_t *mptr;
 634 
 635         if (!P->info_valid)
 636                 Pupdate_maps(P);
 637 
 638         if ((mptr = Paddr2mptr(P, addr)) != NULL) {
 639                 file_info_t *fptr = build_map_symtab(P, mptr);
 640                 const prmap_t *pmp = &mptr->map_pmap;
 641 
 642                 /*
 643                  * Assume that if rl_data_base is NULL, it means that no
 644                  * data section was found for this load object, and that
 645                  * a section must be text. Otherwise, a section will be
 646                  * text unless it ends above the start of the data
 647                  * section.
 648                  */
 649                 if (fptr != NULL && fptr->file_lo != NULL &&
 650                     (fptr->file_lo->rl_data_base == NULL ||
 651                     pmp->pr_vaddr + pmp->pr_size <=
 652                     fptr->file_lo->rl_data_base))
 653                         return (pmp);
 654         }
 655 
 656         return (NULL);
 657 }
 658 
 659 /*
 660  * Return the prmap_t structure containing 'addr' (no restrictions on
 661  * the type of mapping).
 662  */
 663 const prmap_t *
 664 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr)
 665 {
 666         map_info_t *mptr;
 667 
 668         if (!P->info_valid)
 669                 Pupdate_maps(P);
 670 
 671         if ((mptr = Paddr2mptr(P, addr)) != NULL)
 672                 return (&mptr->map_pmap);
 673 
 674         return (NULL);
 675 }
 676 
 677 /*
 678  * Convert a full or partial load object name to the prmap_t for its
 679  * corresponding primary text mapping.
 680  */
 681 const prmap_t *
 682 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
 683 {
 684         map_info_t *mptr;
 685 
 686         if (name == PR_OBJ_EVERY)
 687                 return (NULL); /* A reasonable mistake */
 688 
 689         if ((mptr = object_name_to_map(P, lmid, name)) != NULL)
 690                 return (&mptr->map_pmap);
 691 
 692         return (NULL);
 693 }
 694 
 695 const prmap_t *
 696 Pname_to_map(struct ps_prochandle *P, const char *name)
 697 {
 698         return (Plmid_to_map(P, PR_LMID_EVERY, name));
 699 }
 700 
 701 const rd_loadobj_t *
 702 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr)
 703 {
 704         map_info_t *mptr;
 705 
 706         if (!P->info_valid)
 707                 Pupdate_maps(P);
 708 
 709         if ((mptr = Paddr2mptr(P, addr)) == NULL)
 710                 return (NULL);
 711 
 712         /*
 713          * By building the symbol table, we implicitly bring the PLT
 714          * information up to date in the load object.
 715          */
 716         (void) build_map_symtab(P, mptr);
 717 
 718         return (mptr->map_file->file_lo);
 719 }
 720 
 721 const rd_loadobj_t *
 722 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name)
 723 {
 724         map_info_t *mptr;
 725 
 726         if (name == PR_OBJ_EVERY)
 727                 return (NULL);
 728 
 729         if ((mptr = object_name_to_map(P, lmid, name)) == NULL)
 730                 return (NULL);
 731 
 732         /*
 733          * By building the symbol table, we implicitly bring the PLT
 734          * information up to date in the load object.
 735          */
 736         (void) build_map_symtab(P, mptr);
 737 
 738         return (mptr->map_file->file_lo);
 739 }
 740 
 741 const rd_loadobj_t *
 742 Pname_to_loadobj(struct ps_prochandle *P, const char *name)
 743 {
 744         return (Plmid_to_loadobj(P, PR_LMID_EVERY, name));
 745 }
 746 
 747 /*
 748  * We've been given a file_info_t which doesn't have any CTF. However, it may
 749  * have information that's in a format that we could convert if on the fly.
 750  * We'll first try to convert the alternate debug file, if present, and then
 751  * move onto the default file. The reason we prefer the alternate debug file is
 752  * that if both exist, then it likely has any usable debugging information.
 753  */
 754 static ctf_file_t *
 755 Pconvert_file_ctf(file_info_t *fptr)
 756 {
 757         int err;
 758         ctf_file_t *fp;
 759         char errmsg[1024];
 760 
 761         /*
 762          * Provide an opt in.
 763          */
 764         if (getenv("LIBPROC_CTFCONVERT") == NULL)
 765                 return (NULL);
 766 
 767         /*
 768          * If we've already attempted to call this, then that's it. No reason to
 769          * pretend we'll be more successful again another time.
 770          */
 771         if (fptr->file_cvt == B_TRUE)
 772                 return (NULL);
 773         fptr->file_cvt = B_TRUE;
 774 
 775         fp = NULL;
 776         if (fptr->file_dbgelf != NULL) {
 777                 fp = ctf_elfconvert(fptr->file_fd, fptr->file_dbgelf, NULL, 1,
 778                     0, &err, errmsg, sizeof (errmsg));
 779                 if (fp == NULL) {
 780                         dprintf("failed to convert %s: %s\n", fptr->file_pname,
 781                             err == ECTF_CONVBKERR ? errmsg : ctf_errmsg(err));
 782                 }
 783         }
 784         if (fp == NULL) {
 785                 fp = ctf_elfconvert(fptr->file_fd, fptr->file_elf, NULL, 1,
 786                     0, &err, errmsg, sizeof (errmsg));
 787                 if (fp == NULL) {
 788                         dprintf("failed to convert %s: %s\n", fptr->file_pname,
 789                             err == ECTF_CONVBKERR ? errmsg : ctf_errmsg(err));
 790                 }
 791         }
 792         if (fp != NULL) {
 793                 fptr->file_ctfp = fp;
 794         }
 795 
 796         return (NULL);
 797 }
 798 
 799 ctf_file_t *
 800 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr)
 801 {
 802         ctf_sect_t ctdata, symtab, strtab;
 803         sym_tbl_t *symp;
 804         int err;
 805 
 806         if (fptr->file_ctfp != NULL)
 807                 return (fptr->file_ctfp);
 808 
 809         Pbuild_file_symtab(P, fptr);
 810 
 811         if (fptr->file_ctf_size == 0) {
 812                 return (Pconvert_file_ctf(fptr));
 813         }
 814 
 815         symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab;
 816         if (symp->sym_data_pri == NULL)
 817                 return (NULL);
 818 
 819         /*
 820          * The buffer may alread be allocated if this is a core file that
 821          * contained CTF data for this file.
 822          */
 823         if (fptr->file_ctf_buf == NULL) {
 824                 fptr->file_ctf_buf = malloc(fptr->file_ctf_size);
 825                 if (fptr->file_ctf_buf == NULL) {
 826                         dprintf("failed to allocate ctf buffer\n");
 827                         return (NULL);
 828                 }
 829 
 830                 if (pread(fptr->file_fd, fptr->file_ctf_buf,
 831                     fptr->file_ctf_size, fptr->file_ctf_off) !=
 832                     fptr->file_ctf_size) {
 833                         free(fptr->file_ctf_buf);
 834                         fptr->file_ctf_buf = NULL;
 835                         dprintf("failed to read ctf data\n");
 836                         return (NULL);
 837                 }
 838         }
 839 
 840         ctdata.cts_name = ".SUNW_ctf";
 841         ctdata.cts_type = SHT_PROGBITS;
 842         ctdata.cts_flags = 0;
 843         ctdata.cts_data = fptr->file_ctf_buf;
 844         ctdata.cts_size = fptr->file_ctf_size;
 845         ctdata.cts_entsize = 1;
 846         ctdata.cts_offset = 0;
 847 
 848         symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab";
 849         symtab.cts_type = symp->sym_hdr_pri.sh_type;
 850         symtab.cts_flags = symp->sym_hdr_pri.sh_flags;
 851         symtab.cts_data = symp->sym_data_pri->d_buf;
 852         symtab.cts_size = symp->sym_hdr_pri.sh_size;
 853         symtab.cts_entsize = symp->sym_hdr_pri.sh_entsize;
 854         symtab.cts_offset = symp->sym_hdr_pri.sh_offset;
 855 
 856         strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab";
 857         strtab.cts_type = symp->sym_strhdr.sh_type;
 858         strtab.cts_flags = symp->sym_strhdr.sh_flags;
 859         strtab.cts_data = symp->sym_strs;
 860         strtab.cts_size = symp->sym_strhdr.sh_size;
 861         strtab.cts_entsize = symp->sym_strhdr.sh_entsize;
 862         strtab.cts_offset = symp->sym_strhdr.sh_offset;
 863 
 864         fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err);
 865         if (fptr->file_ctfp == NULL) {
 866                 dprintf("ctf_bufopen() failed, error code %d\n", err);
 867                 free(fptr->file_ctf_buf);
 868                 fptr->file_ctf_buf = NULL;
 869                 return (NULL);
 870         }
 871 
 872         dprintf("loaded %lu bytes of CTF data for %s\n",
 873             (ulong_t)fptr->file_ctf_size, fptr->file_pname);
 874 
 875         return (fptr->file_ctfp);
 876 }
 877 
 878 ctf_file_t *
 879 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr)
 880 {
 881         map_info_t *mptr;
 882         file_info_t *fptr;
 883 
 884         if (!P->info_valid)
 885                 Pupdate_maps(P);
 886 
 887         if ((mptr = Paddr2mptr(P, addr)) == NULL ||
 888             (fptr = mptr->map_file) == NULL)
 889                 return (NULL);
 890 
 891         return (Pbuild_file_ctf(P, fptr));
 892 }
 893 
 894 ctf_file_t *
 895 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name)
 896 {
 897         map_info_t *mptr;
 898         file_info_t *fptr = NULL;
 899 
 900         if (name == PR_OBJ_EVERY)
 901                 return (NULL);
 902 
 903         /*
 904          * While most idle files are all ELF objects, not all of them have
 905          * mapping information available. There's nothing which would make
 906          * sense to fake up for ET_REL. Instead, if we're being asked for their
 907          * executable object and we know that the information is valid and they
 908          * only have a single file, we jump straight to that file pointer.
 909          */
 910         if (P->state == PS_IDLE && name == PR_OBJ_EXEC && P->info_valid == 1 &&
 911             P->num_files == 1 && P->mappings == NULL) {
 912                 fptr = list_next(&P->file_head);
 913         }
 914 
 915         if (fptr == NULL) {
 916                 if ((mptr = object_name_to_map(P, lmid, name)) == NULL ||
 917                     (fptr = mptr->map_file) == NULL)
 918                         return (NULL);
 919         }
 920 
 921         return (Pbuild_file_ctf(P, fptr));
 922 }
 923 
 924 ctf_file_t *
 925 Pname_to_ctf(struct ps_prochandle *P, const char *name)
 926 {
 927         return (Plmid_to_ctf(P, PR_LMID_EVERY, name));
 928 }
 929 
 930 void
 931 Preadauxvec(struct ps_prochandle *P)
 932 {
 933         if (P->auxv != NULL) {
 934                 free(P->auxv);
 935                 P->auxv = NULL;
 936                 P->nauxv = 0;
 937         }
 938 
 939         P->ops.pop_read_aux(P, &P->auxv, &P->nauxv, P->data);
 940 }
 941 
 942 /*
 943  * Return a requested element from the process's aux vector.
 944  * Return -1 on failure (this is adequate for our purposes).
 945  */
 946 long
 947 Pgetauxval(struct ps_prochandle *P, int type)
 948 {
 949         auxv_t *auxv;
 950 
 951         if (P->auxv == NULL)
 952                 Preadauxvec(P);
 953 
 954         if (P->auxv == NULL)
 955                 return (-1);
 956 
 957         for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) {
 958                 if (auxv->a_type == type)
 959                         return (auxv->a_un.a_val);
 960         }
 961 
 962         return (-1);
 963 }
 964 
 965 /*
 966  * Return a pointer to our internal copy of the process's aux vector.
 967  * The caller should not hold on to this pointer across any libproc calls.
 968  */
 969 const auxv_t *
 970 Pgetauxvec(struct ps_prochandle *P)
 971 {
 972         static const auxv_t empty = { AT_NULL, 0L };
 973 
 974         if (P->auxv == NULL)
 975                 Preadauxvec(P);
 976 
 977         if (P->auxv == NULL)
 978                 return (&empty);
 979 
 980         return (P->auxv);
 981 }
 982 
 983 /*
 984  * Return 1 if the given mapping corresponds to the given file_info_t's
 985  * load object; return 0 otherwise.
 986  */
 987 static int
 988 is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr)
 989 {
 990         prmap_t *pmap = &mptr->map_pmap;
 991         rd_loadobj_t *lop = fptr->file_lo;
 992         uint_t i;
 993         uintptr_t mstart, mend, sstart, send;
 994 
 995         /*
 996          * We can get for free the start address of the text and data
 997          * sections of the load object. Start by seeing if the mapping
 998          * encloses either of these.
 999          */
1000         if ((pmap->pr_vaddr <= lop->rl_base &&
1001             lop->rl_base < pmap->pr_vaddr + pmap->pr_size) ||
1002             (pmap->pr_vaddr <= lop->rl_data_base &&
1003             lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size))
1004                 return (1);
1005 
1006         /*
1007          * It's still possible that this mapping correponds to the load
1008          * object. Consider the example of a mapping whose start and end
1009          * addresses correspond to those of the load object's text section.
1010          * If the mapping splits, e.g. as a result of a segment demotion,
1011          * then although both mappings are still backed by the same section,
1012          * only one will be seen to enclose that section's start address.
1013          * Thus, to be rigorous, we ask not whether this mapping encloses
1014          * the start of a section, but whether there exists a section that
1015          * overlaps this mapping.
1016          *
1017          * If we don't already have the section addresses, and we successfully
1018          * get them, then we cache them in case we come here again.
1019          */
1020         if (fptr->file_saddrs == NULL &&
1021             (fptr->file_saddrs = get_saddrs(P,
1022             fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL)
1023                 return (0);
1024 
1025         mstart = mptr->map_pmap.pr_vaddr;
1026         mend = mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
1027         for (i = 0; i < fptr->file_nsaddrs; i += 2) {
1028                 /* Does this section overlap the mapping? */
1029                 sstart = fptr->file_saddrs[i];
1030                 send = fptr->file_saddrs[i + 1];
1031                 if (!(mend <= sstart || mstart >= send))
1032                         return (1);
1033         }
1034 
1035         return (0);
1036 }
1037 
1038 /*
1039  * Find or build the symbol table for the given mapping.
1040  */
1041 static file_info_t *
1042 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr)
1043 {
1044         prmap_t *pmap = &mptr->map_pmap;
1045         file_info_t *fptr;
1046         uint_t i;
1047 
1048         if ((fptr = mptr->map_file) != NULL) {
1049                 Pbuild_file_symtab(P, fptr);
1050                 return (fptr);
1051         }
1052 
1053         if (pmap->pr_mapname[0] == '\0')
1054                 return (NULL);
1055 
1056         /*
1057          * Attempt to find a matching file.
1058          * (A file can be mapped at several different addresses.)
1059          */
1060         for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
1061             i++, fptr = list_next(fptr)) {
1062                 if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 &&
1063                     fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) {
1064                         mptr->map_file = fptr;
1065                         fptr->file_ref++;
1066                         Pbuild_file_symtab(P, fptr);
1067                         return (fptr);
1068                 }
1069         }
1070 
1071         /*
1072          * If we need to create a new file_info structure, iterate
1073          * through the load objects in order to attempt to connect
1074          * this new file with its primary text mapping.  We again
1075          * need to handle ld.so as a special case because we need
1076          * to be able to bootstrap librtld_db.
1077          */
1078         if ((fptr = file_info_new(P, mptr)) == NULL)
1079                 return (NULL);
1080 
1081         if (P->map_ldso != mptr) {
1082                 if (P->rap != NULL)
1083                         (void) rd_loadobj_iter(P->rap, map_iter, P);
1084                 else
1085                         (void) Prd_agent(P);
1086         } else {
1087                 fptr->file_map = mptr;
1088         }
1089 
1090         /*
1091          * If librtld_db wasn't able to help us connect the file to a primary
1092          * text mapping, set file_map to the current mapping because we require
1093          * fptr->file_map to be set in Pbuild_file_symtab.  librtld_db may be
1094          * unaware of what's going on in the rare case that a legitimate ELF
1095          * file has been mmap(2)ed into the process address space *without*
1096          * the use of dlopen(3x).
1097          */
1098         if (fptr->file_map == NULL)
1099                 fptr->file_map = mptr;
1100 
1101         Pbuild_file_symtab(P, fptr);
1102 
1103         return (fptr);
1104 }
1105 
1106 static int
1107 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum,
1108     uintptr_t addr)
1109 {
1110         if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr))
1111                 return (-1);
1112 
1113         if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1114             ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1115             ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1116             ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1117             ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
1118 #ifdef _BIG_ENDIAN
1119             ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1120 #else
1121             ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1122 #endif
1123             ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1124                 return (-1);
1125 
1126         if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1127                 Elf32_Shdr shdr0;
1128 
1129                 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1130                     Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1131                     sizeof (shdr0))
1132                         return (-1);
1133 
1134                 if (shdr0.sh_info != 0)
1135                         *phnum = shdr0.sh_info;
1136         }
1137 
1138         return (0);
1139 }
1140 
1141 static int
1142 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr,
1143     uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr)
1144 {
1145         uint_t i;
1146 
1147         for (i = 0; i < phnum; i++) {
1148                 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1149                 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1150                         return (-1);
1151 
1152                 if (phdr->p_type == PT_DYNAMIC)
1153                         return (0);
1154         }
1155 
1156         return (-1);
1157 }
1158 
1159 #ifdef _LP64
1160 static int
1161 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum,
1162     uintptr_t addr)
1163 {
1164         if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr))
1165                 return (-1);
1166 
1167         if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1168             ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1169             ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1170             ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1171             ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
1172 #ifdef _BIG_ENDIAN
1173             ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1174 #else
1175             ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1176 #endif
1177             ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1178                 return (-1);
1179 
1180         if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1181                 Elf64_Shdr shdr0;
1182 
1183                 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1184                     Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1185                     sizeof (shdr0))
1186                         return (-1);
1187 
1188                 if (shdr0.sh_info != 0)
1189                         *phnum = shdr0.sh_info;
1190         }
1191 
1192         return (0);
1193 }
1194 
1195 static int
1196 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr,
1197     uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr)
1198 {
1199         uint_t i;
1200 
1201         for (i = 0; i < phnum; i++) {
1202                 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1203                 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1204                         return (-1);
1205 
1206                 if (phdr->p_type == PT_DYNAMIC)
1207                         return (0);
1208         }
1209 
1210         return (-1);
1211 }
1212 #endif  /* _LP64 */
1213 
1214 /*
1215  * The text segment for each load object contains the elf header and
1216  * program headers. We can use this information to determine if the
1217  * file that corresponds to the load object is the same file that
1218  * was loaded into the process's address space. There can be a discrepency
1219  * if a file is recompiled after the process is started or if the target
1220  * represents a core file from a differently configured system -- two
1221  * common examples. The DT_CHECKSUM entry in the dynamic section
1222  * provides an easy method of comparison. It is important to note that
1223  * the dynamic section usually lives in the data segment, but the meta
1224  * data we use to find the dynamic section lives in the text segment so
1225  * if either of those segments is absent we can't proceed.
1226  *
1227  * We're looking through the elf file for several items: the symbol tables
1228  * (both dynsym and symtab), the procedure linkage table (PLT) base,
1229  * size, and relocation base, and the CTF information. Most of this can
1230  * be recovered from the loaded image of the file itself, the exceptions
1231  * being the symtab and CTF data.
1232  *
1233  * First we try to open the file that we think corresponds to the load
1234  * object, if the DT_CHECKSUM values match, we're all set, and can simply
1235  * recover all the information we need from the file. If the values of
1236  * DT_CHECKSUM don't match, or if we can't access the file for whatever
1237  * reasaon, we fake up a elf file to use in its stead. If we can't read
1238  * the elf data in the process's address space, we fall back to using
1239  * the file even though it may give inaccurate information.
1240  *
1241  * The elf file that we fake up has to consist of sections for the
1242  * dynsym, the PLT and the dynamic section. Note that in the case of a
1243  * core file, we'll get the CTF data in the file_info_t later on from
1244  * a section embedded the core file (if it's present).
1245  *
1246  * file_differs() conservatively looks for mismatched files, identifying
1247  * a match when there is any ambiguity (since that's the legacy behavior).
1248  */
1249 static int
1250 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr)
1251 {
1252         Elf_Scn *scn;
1253         GElf_Shdr shdr;
1254         GElf_Dyn dyn;
1255         Elf_Data *data;
1256         uint_t i, ndyn;
1257         GElf_Xword cksum;
1258         uintptr_t addr;
1259 
1260         if (fptr->file_map == NULL)
1261                 return (0);
1262 
1263         if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1264             (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1265                 return (0);
1266 
1267         /*
1268          * First, we find the checksum value in the elf file.
1269          */
1270         scn = NULL;
1271         while ((scn = elf_nextscn(elf, scn)) != NULL) {
1272                 if (gelf_getshdr(scn, &shdr) != NULL &&
1273                     shdr.sh_type == SHT_DYNAMIC)
1274                         goto found_shdr;
1275         }
1276         return (0);
1277 
1278 found_shdr:
1279         if ((data = elf_getdata(scn, NULL)) == NULL)
1280                 return (0);
1281 
1282         if (P->status.pr_dmodel == PR_MODEL_ILP32)
1283                 ndyn = shdr.sh_size / sizeof (Elf32_Dyn);
1284 #ifdef _LP64
1285         else if (P->status.pr_dmodel == PR_MODEL_LP64)
1286                 ndyn = shdr.sh_size / sizeof (Elf64_Dyn);
1287 #endif
1288         else
1289                 return (0);
1290 
1291         for (i = 0; i < ndyn; i++) {
1292                 if (gelf_getdyn(data, i, &dyn) != NULL &&
1293                     dyn.d_tag == DT_CHECKSUM)
1294                         goto found_cksum;
1295         }
1296 
1297         /*
1298          * The in-memory ELF has no DT_CHECKSUM section, but we will report it
1299          * as matching the file anyhow.
1300          */
1301         return (0);
1302 
1303 found_cksum:
1304         cksum = dyn.d_un.d_val;
1305         dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum);
1306 
1307         /*
1308          * Get the base of the text mapping that corresponds to this file.
1309          */
1310         addr = fptr->file_map->map_pmap.pr_vaddr;
1311 
1312         if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1313                 Elf32_Ehdr ehdr;
1314                 Elf32_Phdr phdr;
1315                 Elf32_Dyn dync, *dynp;
1316                 uint_t phnum, i;
1317 
1318                 if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 ||
1319                     read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1320                         return (0);
1321 
1322                 if (ehdr.e_type == ET_DYN)
1323                         phdr.p_vaddr += addr;
1324                 if ((dynp = malloc(phdr.p_filesz)) == NULL)
1325                         return (0);
1326                 dync.d_tag = DT_NULL;
1327                 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1328                     phdr.p_filesz) {
1329                         free(dynp);
1330                         return (0);
1331                 }
1332 
1333                 for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) {
1334                         if (dynp[i].d_tag == DT_CHECKSUM)
1335                                 dync = dynp[i];
1336                 }
1337 
1338                 free(dynp);
1339 
1340                 if (dync.d_tag != DT_CHECKSUM)
1341                         return (0);
1342 
1343                 dprintf("image cksum value is %llx\n",
1344                     (u_longlong_t)dync.d_un.d_val);
1345                 return (dync.d_un.d_val != cksum);
1346 #ifdef _LP64
1347         } else if (P->status.pr_dmodel == PR_MODEL_LP64) {
1348                 Elf64_Ehdr ehdr;
1349                 Elf64_Phdr phdr;
1350                 Elf64_Dyn dync, *dynp;
1351                 uint_t phnum, i;
1352 
1353                 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1354                     read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1355                         return (0);
1356 
1357                 if (ehdr.e_type == ET_DYN)
1358                         phdr.p_vaddr += addr;
1359                 if ((dynp = malloc(phdr.p_filesz)) == NULL)
1360                         return (0);
1361                 dync.d_tag = DT_NULL;
1362                 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1363                     phdr.p_filesz) {
1364                         free(dynp);
1365                         return (0);
1366                 }
1367 
1368                 for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) {
1369                         if (dynp[i].d_tag == DT_CHECKSUM)
1370                                 dync = dynp[i];
1371                 }
1372 
1373                 free(dynp);
1374 
1375                 if (dync.d_tag != DT_CHECKSUM)
1376                         return (0);
1377 
1378                 dprintf("image cksum value is %llx\n",
1379                     (u_longlong_t)dync.d_un.d_val);
1380                 return (dync.d_un.d_val != cksum);
1381 #endif  /* _LP64 */
1382         }
1383 
1384         return (0);
1385 }
1386 
1387 /*
1388  * Read data from the specified process and construct an in memory
1389  * image of an ELF file that represents it well enough to let
1390  * us probe it for information.
1391  */
1392 static Elf *
1393 fake_elf(struct ps_prochandle *P, file_info_t *fptr)
1394 {
1395         Elf *elf;
1396         uintptr_t addr;
1397         uint_t phnum;
1398 
1399         if (fptr->file_map == NULL)
1400                 return (NULL);
1401 
1402         if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1403             (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1404                 return (NULL);
1405 
1406         addr = fptr->file_map->map_pmap.pr_vaddr;
1407 
1408         if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1409                 Elf32_Ehdr ehdr;
1410                 Elf32_Phdr phdr;
1411 
1412                 if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) ||
1413                     read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1414                         return (NULL);
1415 
1416                 elf = fake_elf32(P, fptr, addr, &ehdr, phnum, &phdr);
1417 #ifdef _LP64
1418         } else {
1419                 Elf64_Ehdr ehdr;
1420                 Elf64_Phdr phdr;
1421 
1422                 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1423                     read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1424                         return (NULL);
1425 
1426                 elf = fake_elf64(P, fptr, addr, &ehdr, phnum, &phdr);
1427 #endif
1428         }
1429 
1430         return (elf);
1431 }
1432 
1433 /*
1434  * We wouldn't need these if qsort(3C) took an argument for the callback...
1435  */
1436 static mutex_t sort_mtx = DEFAULTMUTEX;
1437 static char *sort_strs;
1438 static GElf_Sym *sort_syms;
1439 
1440 int
1441 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname)
1442 {
1443         if (a->st_value < b->st_value)
1444                 return (-1);
1445         if (a->st_value > b->st_value)
1446                 return (1);
1447 
1448         /*
1449          * Prefer the function to the non-function.
1450          */
1451         if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) {
1452                 if (GELF_ST_TYPE(a->st_info) == STT_FUNC)
1453                         return (-1);
1454                 if (GELF_ST_TYPE(b->st_info) == STT_FUNC)
1455                         return (1);
1456         }
1457 
1458         /*
1459          * Prefer the weak or strong global symbol to the local symbol.
1460          */
1461         if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) {
1462                 if (GELF_ST_BIND(b->st_info) == STB_LOCAL)
1463                         return (-1);
1464                 if (GELF_ST_BIND(a->st_info) == STB_LOCAL)
1465                         return (1);
1466         }
1467 
1468         /*
1469          * Prefer the symbol that doesn't begin with a '$' since compilers and
1470          * other symbol generators often use it as a prefix.
1471          */
1472         if (*bname == '$')
1473                 return (-1);
1474         if (*aname == '$')
1475                 return (1);
1476 
1477         /*
1478          * Prefer the name with fewer leading underscores in the name.
1479          */
1480         while (*aname == '_' && *bname == '_') {
1481                 aname++;
1482                 bname++;
1483         }
1484 
1485         if (*bname == '_')
1486                 return (-1);
1487         if (*aname == '_')
1488                 return (1);
1489 
1490         /*
1491          * Prefer the symbol with the smaller size.
1492          */
1493         if (a->st_size < b->st_size)
1494                 return (-1);
1495         if (a->st_size > b->st_size)
1496                 return (1);
1497 
1498         /*
1499          * All other factors being equal, fall back to lexicographic order.
1500          */
1501         return (strcmp(aname, bname));
1502 }
1503 
1504 static int
1505 byaddr_cmp(const void *aa, const void *bb)
1506 {
1507         GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1508         GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1509         char *aname = sort_strs + a->st_name;
1510         char *bname = sort_strs + b->st_name;
1511 
1512         return (byaddr_cmp_common(a, aname, b, bname));
1513 }
1514 
1515 static int
1516 byname_cmp(const void *aa, const void *bb)
1517 {
1518         GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1519         GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1520         char *aname = sort_strs + a->st_name;
1521         char *bname = sort_strs + b->st_name;
1522 
1523         return (strcmp(aname, bname));
1524 }
1525 
1526 /*
1527  * Given a symbol index, look up the corresponding symbol from the
1528  * given symbol table.
1529  *
1530  * This function allows the caller to treat the symbol table as a single
1531  * logical entity even though there may be 2 actual ELF symbol tables
1532  * involved. See the comments in Pcontrol.h for details.
1533  */
1534 static GElf_Sym *
1535 symtab_getsym(sym_tbl_t *symtab, int ndx, GElf_Sym *dst)
1536 {
1537         /* If index is in range of primary symtab, look it up there */
1538         if (ndx >= symtab->sym_symn_aux) {
1539                 return (gelf_getsym(symtab->sym_data_pri,
1540                     ndx - symtab->sym_symn_aux, dst));
1541         }
1542 
1543         /* Not in primary: Look it up in the auxiliary symtab */
1544         return (gelf_getsym(symtab->sym_data_aux, ndx, dst));
1545 }
1546 
1547 void
1548 optimize_symtab(sym_tbl_t *symtab)
1549 {
1550         GElf_Sym *symp, *syms;
1551         uint_t i, *indexa, *indexb;
1552         size_t symn, strsz, count;
1553 
1554         if (symtab == NULL || symtab->sym_data_pri == NULL ||
1555             symtab->sym_byaddr != NULL)
1556                 return;
1557 
1558         symn = symtab->sym_symn;
1559         strsz = symtab->sym_strsz;
1560 
1561         symp = syms = malloc(sizeof (GElf_Sym) * symn);
1562         if (symp == NULL) {
1563                 dprintf("optimize_symtab: failed to malloc symbol array");
1564                 return;
1565         }
1566 
1567         /*
1568          * First record all the symbols into a table and count up the ones
1569          * that we're interested in. We mark symbols as invalid by setting
1570          * the st_name to an illegal value.
1571          */
1572         for (i = 0, count = 0; i < symn; i++, symp++) {
1573                 if (symtab_getsym(symtab, i, symp) != NULL &&
1574                     symp->st_name < strsz &&
1575                     IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info)))
1576                         count++;
1577                 else
1578                         symp->st_name = strsz;
1579         }
1580 
1581         /*
1582          * Allocate sufficient space for both tables and populate them
1583          * with the same symbols we just counted.
1584          */
1585         symtab->sym_count = count;
1586         indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count);
1587         indexb = symtab->sym_byname = calloc(sizeof (uint_t), count);
1588         if (indexa == NULL || indexb == NULL) {
1589                 dprintf(
1590                     "optimize_symtab: failed to malloc symbol index arrays");
1591                 symtab->sym_count = 0;
1592                 if (indexa != NULL) {   /* First alloc succeeded. Free it */
1593                         free(indexa);
1594                         symtab->sym_byaddr = NULL;
1595                 }
1596                 free(syms);
1597                 return;
1598         }
1599         for (i = 0, symp = syms; i < symn; i++, symp++) {
1600                 if (symp->st_name < strsz)
1601                         *indexa++ = *indexb++ = i;
1602         }
1603 
1604         /*
1605          * Sort the two tables according to the appropriate criteria,
1606          * unless the user has overridden this behaviour.
1607          *
1608          * An example where we might not sort the tables is the relatively
1609          * unusual case of a process with very large symbol tables in which
1610          * we perform few lookups. In such a case the total time would be
1611          * dominated by the sort. It is difficult to determine a priori
1612          * how many lookups an arbitrary client will perform, and
1613          * hence whether the symbol tables should be sorted. We therefore
1614          * sort the tables by default, but provide the user with a
1615          * "chicken switch" in the form of the LIBPROC_NO_QSORT
1616          * environment variable.
1617          */
1618         if (!_libproc_no_qsort) {
1619                 (void) mutex_lock(&sort_mtx);
1620                 sort_strs = symtab->sym_strs;
1621                 sort_syms = syms;
1622 
1623                 qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp);
1624                 qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp);
1625 
1626                 sort_strs = NULL;
1627                 sort_syms = NULL;
1628                 (void) mutex_unlock(&sort_mtx);
1629         }
1630 
1631         free(syms);
1632 }
1633 
1634 
1635 static Elf *
1636 build_fake_elf(struct ps_prochandle *P, file_info_t *fptr, GElf_Ehdr *ehdr,
1637     size_t *nshdrs, Elf_Data **shdata)
1638 {
1639         size_t shstrndx;
1640         Elf_Scn *scn;
1641         Elf *elf;
1642 
1643         if ((elf = fake_elf(P, fptr)) == NULL ||
1644             elf_kind(elf) != ELF_K_ELF ||
1645             gelf_getehdr(elf, ehdr) == NULL ||
1646             elf_getshdrnum(elf, nshdrs) == -1 ||
1647             elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1648             (scn = elf_getscn(elf, shstrndx)) == NULL ||
1649             (*shdata = elf_getdata(scn, NULL)) == NULL) {
1650                 if (elf != NULL)
1651                         (void) elf_end(elf);
1652                 dprintf("failed to fake up ELF file\n");
1653                 return (NULL);
1654         }
1655 
1656         return (elf);
1657 }
1658 
1659 /*
1660  * Try and find the file described by path in the file system and validate that
1661  * it matches our CRC before we try and process it for symbol information. If we
1662  * instead have an ELF data section, then that means we're checking a build-id
1663  * section instead. In that case we just need to find and bcmp the corresponding
1664  * section.
1665  *
1666  * Before we validate if it's a valid CRC or data section, we check to ensure
1667  * that it's a normal file and not anything else.
1668  */
1669 static boolean_t
1670 build_alt_debug(file_info_t *fptr, const char *path, uint32_t crc,
1671     Elf_Data *data)
1672 {
1673         int fd;
1674         struct stat st;
1675         Elf *elf;
1676         Elf_Scn *scn;
1677         GElf_Shdr symshdr, strshdr;
1678         Elf_Data *symdata, *strdata;
1679         boolean_t valid;
1680         uint32_t c = -1U;
1681 
1682         if ((fd = open(path, O_RDONLY)) < 0)
1683                 return (B_FALSE);
1684 
1685         if (fstat(fd, &st) != 0) {
1686                 (void) close(fd);
1687                 return (B_FALSE);
1688         }
1689 
1690         if (S_ISREG(st.st_mode) == 0) {
1691                 (void) close(fd);
1692                 return (B_FALSE);
1693         }
1694 
1695         /*
1696          * Only check the CRC if we've come here through a GNU debug link
1697          * section as opposed to the build id. This is indicated by having the
1698          * value of data be NULL.
1699          */
1700         if (data == NULL) {
1701                 for (;;) {
1702                         char buf[4096];
1703                         ssize_t ret = read(fd, buf, sizeof (buf));
1704                         if (ret == -1) {
1705                                 if (ret == EINTR)
1706                                         continue;
1707                                 (void) close(fd);
1708                                 return (B_FALSE);
1709                         }
1710                         if (ret == 0) {
1711                                 c = ~c;
1712                                 if (c != crc) {
1713                                         dprintf("crc mismatch, found: 0x%x "
1714                                             "expected 0x%x\n", c, crc);
1715                                         (void) close(fd);
1716                                         return (B_FALSE);
1717                                 }
1718                                 break;
1719                         }
1720                         CRC32(c, buf, ret, c, psym_crc32);
1721                 }
1722         }
1723 
1724         elf = elf_begin(fd, ELF_C_READ, NULL);
1725         if (elf == NULL) {
1726                 (void) close(fd);
1727                 return (B_FALSE);
1728         }
1729 
1730         if (elf_kind(elf) != ELF_K_ELF) {
1731                 goto fail;
1732         }
1733 
1734         /*
1735          * If we have a data section, that indicates we have a build-id which
1736          * means we need to find the corresponding build-id section and compare
1737          * it.
1738          */
1739         scn = NULL;
1740         valid = B_FALSE;
1741         for (scn = elf_nextscn(elf, scn); data != NULL && scn != NULL;
1742             scn = elf_nextscn(elf, scn)) {
1743                 GElf_Shdr hdr;
1744                 Elf_Data *ntdata;
1745 
1746                 if (gelf_getshdr(scn, &hdr) == NULL)
1747                         goto fail;
1748 
1749                 if (hdr.sh_type != SHT_NOTE)
1750                         continue;
1751 
1752                 if ((ntdata = elf_getdata(scn, NULL)) == NULL)
1753                         goto fail;
1754 
1755                 /*
1756                  * First verify the data section sizes are equal, then the
1757                  * section name. If that's all true, then we can just do a bcmp.
1758                  */
1759                 if (data->d_size != ntdata->d_size)
1760                         continue;
1761 
1762                 dprintf("found corresponding section in alternate file\n");
1763                 if (bcmp(ntdata->d_buf, data->d_buf, data->d_size) != 0)
1764                         goto fail;
1765 
1766                 valid = B_TRUE;
1767                 break;
1768         }
1769         if (data != NULL && valid == B_FALSE) {
1770                 dprintf("failed to find a matching %s section in %s\n",
1771                     BUILDID_NAME, path);
1772                 goto fail;
1773         }
1774 
1775 
1776         /*
1777          * Do two passes, first see if we have a symbol header, then see if we
1778          * can find the corresponding linked string table.
1779          */
1780         scn = NULL;
1781         for (scn = elf_nextscn(elf, scn); scn != NULL;
1782             scn = elf_nextscn(elf, scn)) {
1783 
1784                 if (gelf_getshdr(scn, &symshdr) == NULL)
1785                         goto fail;
1786 
1787                 if (symshdr.sh_type != SHT_SYMTAB)
1788                         continue;
1789 
1790                 if ((symdata = elf_getdata(scn, NULL)) == NULL)
1791                         goto fail;
1792 
1793                 break;
1794         }
1795         if (scn == NULL)
1796                 goto fail;
1797 
1798         if ((scn = elf_getscn(elf, symshdr.sh_link)) == NULL)
1799                 goto fail;
1800 
1801         if (gelf_getshdr(scn, &strshdr) == NULL)
1802                 goto fail;
1803 
1804         if ((strdata = elf_getdata(scn, NULL)) == NULL)
1805                 goto fail;
1806 
1807         fptr->file_symtab.sym_data_pri = symdata;
1808         fptr->file_symtab.sym_symn += symshdr.sh_size / symshdr.sh_entsize;
1809         fptr->file_symtab.sym_strs = strdata->d_buf;
1810         fptr->file_symtab.sym_strsz = strdata->d_size;
1811         fptr->file_symtab.sym_hdr_pri = symshdr;
1812         fptr->file_symtab.sym_strhdr = strshdr;
1813 
1814         dprintf("successfully loaded additional debug symbols for %s from %s\n",
1815             fptr->file_rname, path);
1816 
1817         fptr->file_dbgfile = fd;
1818         fptr->file_dbgelf = elf;
1819         return (B_TRUE);
1820 fail:
1821         (void) elf_end(elf);
1822         (void) close(fd);
1823         return (B_FALSE);
1824 }
1825 
1826 /*
1827  * We're here because the object in question has no symbol information, that's a
1828  * bit unfortunate. However, we've found that there's a .gnu_debuglink sitting
1829  * around. By convention that means that given the current location of the
1830  * object on disk, and the debug name that we found in the binary we need to
1831  * search the following locations for a matching file.
1832  *
1833  * <dirname>/.debug/<debug-name>
1834  * /usr/lib/debug/<dirname>/<debug-name>
1835  *
1836  * In the future, we should consider supporting looking in the prefix's
1837  * lib/debug directory for a matching object or supporting an arbitrary user
1838  * defined set of places to look.
1839  */
1840 static void
1841 find_alt_debuglink(file_info_t *fptr, const char *name, uint32_t crc)
1842 {
1843         boolean_t r;
1844         char *dup = NULL, *path = NULL, *dname;
1845 
1846         dprintf("find_alt_debug: looking for %s, crc 0x%x\n", name, crc);
1847         if (fptr->file_rname == NULL) {
1848                 dprintf("find_alt_debug: encountered null file_rname\n");
1849                 return;
1850         }
1851 
1852         dup = strdup(fptr->file_rname);
1853         if (dup == NULL)
1854                 return;
1855 
1856         dname = dirname(dup);
1857         if (asprintf(&path, "%s/.debug/%s", dname, name) != -1) {
1858                 dprintf("attempting to load alternate debug information "
1859                     "from %s\n", path);
1860                 r = build_alt_debug(fptr, path, crc, NULL);
1861                 free(path);
1862                 if (r == B_TRUE)
1863                         goto out;
1864         }
1865 
1866         if (asprintf(&path, "/usr/lib/debug/%s/%s", dname, name) != -1) {
1867                 dprintf("attempting to load alternate debug information "
1868                     "from %s\n", path);
1869                 r = build_alt_debug(fptr, path, crc, NULL);
1870                 free(path);
1871                 if (r == B_TRUE)
1872                         goto out;
1873         }
1874 out:
1875         free(dup);
1876 }
1877 
1878 /*
1879  * Build the symbol table for the given mapped file.
1880  */
1881 void
1882 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr)
1883 {
1884         char objectfile[PATH_MAX];
1885         uint_t i;
1886 
1887         GElf_Ehdr ehdr;
1888         GElf_Sym s;
1889 
1890         Elf_Data *shdata;
1891         Elf_Scn *scn;
1892         Elf *elf;
1893         size_t nshdrs, shstrndx;
1894 
1895         struct {
1896                 GElf_Shdr c_shdr;
1897                 Elf_Data *c_data;
1898                 const char *c_name;
1899         } *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL,
1900         *dbglink = NULL, *buildid = NULL;
1901 
1902         if (fptr->file_init)
1903                 return; /* We've already processed this file */
1904 
1905         /*
1906          * Mark the file_info struct as having the symbol table initialized
1907          * even if we fail below.  We tried once; we don't try again.
1908          */
1909         fptr->file_init = 1;
1910 
1911         if (elf_version(EV_CURRENT) == EV_NONE) {
1912                 dprintf("libproc ELF version is more recent than libelf\n");
1913                 return;
1914         }
1915 
1916         if (P->state == PS_DEAD || P->state == PS_IDLE) {
1917                 char *name;
1918                 /*
1919                  * If we're a not live, we can't open files from the /proc
1920                  * object directory; we have only the mapping and file names
1921                  * to guide us.  We prefer the file_lname, but need to handle
1922                  * the case of it being NULL in order to bootstrap: we first
1923                  * come here during rd_new() when the only information we have
1924                  * is interpreter name associated with the AT_BASE mapping.
1925                  *
1926                  * Also, if the zone associated with the core file seems
1927                  * to exists on this machine we'll try to open the object
1928                  * file within the zone.
1929                  */
1930                 if (fptr->file_rname != NULL)
1931                         name = fptr->file_rname;
1932                 else if (fptr->file_lname != NULL)
1933                         name = fptr->file_lname;
1934                 else
1935                         name = fptr->file_pname;
1936                 (void) strlcpy(objectfile, name, sizeof (objectfile));
1937         } else {
1938                 (void) snprintf(objectfile, sizeof (objectfile),
1939                     "%s/%d/object/%s",
1940                     procfs_path, (int)P->pid, fptr->file_pname);
1941         }
1942 
1943         /*
1944          * Open the object file, create the elf file, and then get the elf
1945          * header and .shstrtab data buffer so we can process sections by
1946          * name. If anything goes wrong try to fake up an elf file from
1947          * the in-core elf image.
1948          */
1949 
1950         if (_libproc_incore_elf || (P->flags & INCORE)) {
1951                 dprintf("Pbuild_file_symtab: using in-core data for: %s\n",
1952                     fptr->file_pname);
1953 
1954                 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1955                     NULL)
1956                         return;
1957 
1958         } else if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) {
1959                 dprintf("Pbuild_file_symtab: failed to open %s: %s\n",
1960                     objectfile, strerror(errno));
1961 
1962                 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1963                     NULL)
1964                         return;
1965 
1966         } else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL ||
1967             elf_kind(elf) != ELF_K_ELF ||
1968             gelf_getehdr(elf, &ehdr) == NULL ||
1969             elf_getshdrnum(elf, &nshdrs) == -1 ||
1970             elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1971             (scn = elf_getscn(elf, shstrndx)) == NULL ||
1972             (shdata = elf_getdata(scn, NULL)) == NULL) {
1973                 int err = elf_errno();
1974 
1975                 dprintf("failed to process ELF file %s: %s\n",
1976                     objectfile, (err == 0) ? "<null>" : elf_errmsg(err));
1977                 (void) elf_end(elf);
1978 
1979                 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1980                     NULL)
1981                         return;
1982 
1983         } else if (file_differs(P, elf, fptr)) {
1984                 Elf *newelf;
1985 
1986                 /*
1987                  * Before we get too excited about this elf file, we'll check
1988                  * its checksum value against the value we have in memory. If
1989                  * they don't agree, we try to fake up a new elf file and
1990                  * proceed with that instead.
1991                  */
1992                 dprintf("ELF file %s (%lx) doesn't match in-core image\n",
1993                     fptr->file_pname,
1994                     (ulong_t)fptr->file_map->map_pmap.pr_vaddr);
1995 
1996                 if ((newelf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata))
1997                     != NULL) {
1998                         (void) elf_end(elf);
1999                         elf = newelf;
2000                         dprintf("switched to faked up ELF file\n");
2001 
2002                         /*
2003                          * Check to see if the file that we just discovered
2004                          * to be an imposter matches the execname that was
2005                          * determined by Pfindexec().  If it does, we (clearly)
2006                          * don't have the right binary, and we zero out
2007                          * execname before anyone gets hurt.
2008                          */
2009                         if (fptr->file_rname != NULL && P->execname != NULL &&
2010                             strcmp(fptr->file_rname, P->execname) == 0) {
2011                                 dprintf("file/in-core image mismatch was "
2012                                     "on P->execname; discarding\n");
2013                                 free(P->execname);
2014                                 P->execname = NULL;
2015                         }
2016                 }
2017         }
2018 
2019         if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) {
2020                 dprintf("failed to malloc section cache for %s\n", objectfile);
2021                 goto bad;
2022         }
2023 
2024         dprintf("processing ELF file %s\n", objectfile);
2025         fptr->file_class = ehdr.e_ident[EI_CLASS];
2026         fptr->file_etype = ehdr.e_type;
2027         fptr->file_elf = elf;
2028         fptr->file_shstrs = shdata->d_buf;
2029         fptr->file_shstrsz = shdata->d_size;
2030 
2031         /*
2032          * Iterate through each section, caching its section header, data
2033          * pointer, and name.  We use this for handling sh_link values below.
2034          */
2035         for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) {
2036                 if (gelf_getshdr(scn, &cp->c_shdr) == NULL) {
2037                         dprintf("Pbuild_file_symtab: Failed to get section "
2038                             "header\n");
2039                         goto bad; /* Failed to get section header */
2040                 }
2041 
2042                 if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) {
2043                         dprintf("Pbuild_file_symtab: Failed to get section "
2044                             "data\n");
2045                         goto bad; /* Failed to get section data */
2046                 }
2047 
2048                 if (cp->c_shdr.sh_name >= shdata->d_size) {
2049                         dprintf("Pbuild_file_symtab: corrupt section name");
2050                         goto bad; /* Corrupt section name */
2051                 }
2052 
2053                 cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name;
2054         }
2055 
2056         /*
2057          * Now iterate through the section cache in order to locate info
2058          * for the .symtab, .dynsym, .SUNW_ldynsym, .dynamic, .plt,
2059          * and .SUNW_ctf sections:
2060          */
2061         for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) {
2062                 GElf_Shdr *shp = &cp->c_shdr;
2063 
2064                 if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) {
2065                         sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ?
2066                             &fptr->file_symtab : &fptr->file_dynsym;
2067                         /*
2068                          * It's possible that the we already got the symbol
2069                          * table from the core file itself. Either the file
2070                          * differs in which case our faked up elf file will
2071                          * only contain the dynsym (not the symtab) or the
2072                          * file matches in which case we'll just be replacing
2073                          * the symbol table we pulled out of the core file
2074                          * with an equivalent one. In either case, this
2075                          * check isn't essential, but it's a good idea.
2076                          */
2077                         if (symp->sym_data_pri == NULL) {
2078                                 dprintf("Symbol table found for %s\n",
2079                                     objectfile);
2080                                 symp->sym_data_pri = cp->c_data;
2081                                 symp->sym_symn +=
2082                                     shp->sh_size / shp->sh_entsize;
2083                                 symp->sym_strs =
2084                                     cache[shp->sh_link].c_data->d_buf;
2085                                 symp->sym_strsz =
2086                                     cache[shp->sh_link].c_data->d_size;
2087                                 symp->sym_hdr_pri = cp->c_shdr;
2088                                 symp->sym_strhdr = cache[shp->sh_link].c_shdr;
2089                         } else {
2090                                 dprintf("Symbol table already there for %s\n",
2091                                     objectfile);
2092                         }
2093                 } else if (shp->sh_type == SHT_SUNW_LDYNSYM) {
2094                         /* .SUNW_ldynsym section is auxiliary to .dynsym */
2095                         if (fptr->file_dynsym.sym_data_aux == NULL) {
2096                                 dprintf(".SUNW_ldynsym symbol table"
2097                                     " found for %s\n", objectfile);
2098                                 fptr->file_dynsym.sym_data_aux = cp->c_data;
2099                                 fptr->file_dynsym.sym_symn_aux =
2100                                     shp->sh_size / shp->sh_entsize;
2101                                 fptr->file_dynsym.sym_symn +=
2102                                     fptr->file_dynsym.sym_symn_aux;
2103                                 fptr->file_dynsym.sym_hdr_aux = cp->c_shdr;
2104                         } else {
2105                                 dprintf(".SUNW_ldynsym symbol table already"
2106                                     " there for %s\n", objectfile);
2107                         }
2108                 } else if (shp->sh_type == SHT_DYNAMIC) {
2109                         dyn = cp;
2110                 } else if (strcmp(cp->c_name, ".plt") == 0) {
2111                         plt = cp;
2112                 } else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) {
2113                         /*
2114                          * Skip over bogus CTF sections so they don't come back
2115                          * to haunt us later.
2116                          */
2117                         if (shp->sh_link == 0 ||
2118                             shp->sh_link >= nshdrs ||
2119                             (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM &&
2120                             cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) {
2121                                 dprintf("Bad sh_link %d for "
2122                                     "CTF\n", shp->sh_link);
2123                                 continue;
2124                         }
2125                         ctf = cp;
2126                 } else if (strcmp(cp->c_name, BUILDID_NAME) == 0) {
2127                         dprintf("Found a %s section for %s\n", BUILDID_NAME,
2128                             fptr->file_rname);
2129                         /* The ElfXX_Nhdr is 32/64-bit neutral */
2130                         if (cp->c_shdr.sh_type == SHT_NOTE &&
2131                             cp->c_data->d_buf != NULL &&
2132                             cp->c_data->d_size >= sizeof (Elf32_Nhdr)) {
2133                                 Elf32_Nhdr *hdr = cp->c_data->d_buf;
2134                                 if (hdr->n_type != 3)
2135                                         continue;
2136                                 if (hdr->n_namesz != 4)
2137                                         continue;
2138                                 if (hdr->n_descsz < MINBUILDID)
2139                                         continue;
2140                                 /* Set a reasonable upper bound */
2141                                 if (hdr->n_descsz > MAXBUILDID) {
2142                                         dprintf("Skipped %s as too large "
2143                                             "(%ld)\n", BUILDID_NAME,
2144                                             (unsigned long)hdr->n_descsz);
2145                                         continue;
2146                                 }
2147 
2148                                 if (cp->c_data->d_size < sizeof (hdr) +
2149                                     hdr->n_namesz + hdr->n_descsz)
2150                                         continue;
2151                                 buildid = cp;
2152                         }
2153                 } else if (strcmp(cp->c_name, DBGLINK_NAME) == 0) {
2154                         dprintf("found %s section for %s\n", DBGLINK_NAME,
2155                             fptr->file_rname);
2156                         /*
2157                          * Let's make sure of a few things before we do this.
2158                          */
2159                         if (cp->c_shdr.sh_type == SHT_PROGBITS &&
2160                             cp->c_data->d_buf != NULL &&
2161                             cp->c_data->d_size) {
2162                                 dbglink = cp;
2163                         }
2164                 }
2165         }
2166 
2167         /*
2168          * If we haven't found any symbol table information and we have found
2169          * either a .note.gnu.build-id or a .gnu_debuglink, it's time to try and
2170          * figure out where we might find this. Originally, GNU used the
2171          * .gnu_debuglink solely, but then they added a .note.gnu.build-id. The
2172          * build-id is some size, usually 16 or 20 bytes, often a SHA1 sum of
2173          * the old, but not present file. All that you have to do to compare
2174          * things is see if the sections are less, in theory saving you from
2175          * doing lots of expensive I/O.
2176          *
2177          * For the .note.gnu.build-id, we're going to check a few things before
2178          * using it, first that the name is 4 bytes, and is GNU and that the
2179          * type is 3, which they say is the build-id identifier.
2180          *
2181          * To verify that the elf data for the .gnu_debuglink seems somewhat
2182          * sane, eg. the elf data should be a string, so we want to verify we
2183          * have a null-terminator.
2184          */
2185         if (fptr->file_symtab.sym_data_pri == NULL && buildid != NULL) {
2186                 int i, bo;
2187                 uint8_t *dp;
2188                 char buf[BUILDID_STRLEN], *path;
2189                 Elf32_Nhdr *hdr = buildid->c_data->d_buf;
2190 
2191                 /*
2192                  * This was checked for validity when assigning the buildid
2193                  * variable.
2194                  */
2195                 bzero(buf, sizeof (buf));
2196                 dp = (uint8_t *)((uintptr_t)hdr + sizeof (*hdr) +
2197                     hdr->n_namesz);
2198                 for (i = 0, bo = 0; i < hdr->n_descsz; i++, bo += 2, dp++) {
2199                         assert(sizeof (buf) - bo > 0);
2200 
2201                         /*
2202                          * Recall that the build-id is structured as a series of
2203                          * bytes. However, the first two characters are supposed
2204                          * to represent a directory. Hence, once we reach offset
2205                          * two, we insert a '/' character.
2206                          */
2207                         if (bo == 2) {
2208                                 buf[bo] = '/';
2209                                 bo++;
2210                         }
2211                         (void) snprintf(buf + bo, sizeof (buf) - bo, "%2x",
2212                             *dp);
2213                 }
2214 
2215                 if (asprintf(&path, "/usr/lib/debug/.build-id/%s.debug",
2216                     buf) != -1) {
2217                         boolean_t r;
2218                         dprintf("attempting to find build id alternate debug "
2219                             "file at %s\n", path);
2220                         r = build_alt_debug(fptr, path, 0, buildid->c_data);
2221                         dprintf("attempt %s\n", r == B_TRUE ?
2222                             "succeeded" : "failed");
2223                         free(path);
2224                 } else {
2225                         dprintf("failed to construct build id path: %s\n",
2226                             strerror(errno));
2227                 }
2228         }
2229 
2230         if (fptr->file_symtab.sym_data_pri == NULL && dbglink != NULL) {
2231                 char *c = dbglink->c_data->d_buf;
2232                 size_t i;
2233                 boolean_t found = B_FALSE;
2234                 Elf_Data *ed = dbglink->c_data;
2235                 uint32_t crc;
2236 
2237                 for (i = 0; i < ed->d_size; i++) {
2238                         if (c[i] == '\0') {
2239                                 uintptr_t off;
2240                                 dprintf("got .gnu_debuglink terminator at "
2241                                     "offset %lu\n", (unsigned long)i);
2242                                 /*
2243                                  * After the null terminator, there should be
2244                                  * padding, followed by a 4 byte CRC of the
2245                                  * file. If we don't see this, we're going to
2246                                  * assume this is bogus.
2247                                  */
2248                                 if ((i % sizeof (uint32_t)) == 0) {
2249                                         i += 4;
2250                                 } else {
2251                                         i += sizeof (uint32_t) -
2252                                             (i % sizeof (uint32_t));
2253                                 }
2254                                 if (i + sizeof (uint32_t) ==
2255                                     dbglink->c_data->d_size) {
2256                                         found = B_TRUE;
2257                                         off = (uintptr_t)ed->d_buf + i;
2258                                         crc = *(uint32_t *)off;
2259                                 } else {
2260                                         dprintf(".gnu_debuglink size mismatch, "
2261                                             "expected: %lu, found: %lu\n",
2262                                             (unsigned long)i,
2263                                             (unsigned long)ed->d_size);
2264                                 }
2265                                 break;
2266                         }
2267                 }
2268 
2269                 if (found == B_TRUE)
2270                         find_alt_debuglink(fptr, dbglink->c_data->d_buf, crc);
2271         }
2272 
2273         /*
2274          * At this point, we've found all the symbol tables we're ever going
2275          * to find: the ones in the loop above and possibly the symtab that
2276          * was included in the core file. Before we perform any lookups, we
2277          * create sorted versions to optimize for lookups.
2278          */
2279         optimize_symtab(&fptr->file_symtab);
2280         optimize_symtab(&fptr->file_dynsym);
2281 
2282         /*
2283          * Fill in the base address of the text mapping for shared libraries.
2284          * This allows us to translate symbols before librtld_db is ready.
2285          */
2286         if (fptr->file_etype == ET_DYN) {
2287                 fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr -
2288                     fptr->file_map->map_pmap.pr_offset;
2289                 dprintf("setting file_dyn_base for %s to %lx\n",
2290                     objectfile, (long)fptr->file_dyn_base);
2291         }
2292 
2293         /*
2294          * Record the CTF section information in the file info structure.
2295          */
2296         if (ctf != NULL) {
2297                 fptr->file_ctf_off = ctf->c_shdr.sh_offset;
2298                 fptr->file_ctf_size = ctf->c_shdr.sh_size;
2299                 if (ctf->c_shdr.sh_link != 0 &&
2300                     cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM)
2301                         fptr->file_ctf_dyn = 1;
2302         }
2303 
2304         if (fptr->file_lo == NULL)
2305                 goto done; /* Nothing else to do if no load object info */
2306 
2307         /*
2308          * If the object is a shared library and we have a different rl_base
2309          * value, reset file_dyn_base according to librtld_db's information.
2310          */
2311         if (fptr->file_etype == ET_DYN &&
2312             fptr->file_lo->rl_base != fptr->file_dyn_base) {
2313                 dprintf("resetting file_dyn_base for %s to %lx\n",
2314                     objectfile, (long)fptr->file_lo->rl_base);
2315                 fptr->file_dyn_base = fptr->file_lo->rl_base;
2316         }
2317 
2318         /*
2319          * Fill in the PLT information for this file if a PLT symbol is found.
2320          */
2321         if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s,
2322             NULL) != NULL) {
2323                 fptr->file_plt_base = s.st_value + fptr->file_dyn_base;
2324                 fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0;
2325 
2326                 /*
2327                  * Bring the load object up to date; it is the only way the
2328                  * user has to access the PLT data. The PLT information in the
2329                  * rd_loadobj_t is not set in the call to map_iter() (the
2330                  * callback for rd_loadobj_iter) where we set file_lo.
2331                  */
2332                 fptr->file_lo->rl_plt_base = fptr->file_plt_base;
2333                 fptr->file_lo->rl_plt_size = fptr->file_plt_size;
2334 
2335                 dprintf("PLT found at %p, size = %lu\n",
2336                     (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size);
2337         }
2338 
2339         /*
2340          * Fill in the PLT information.
2341          */
2342         if (dyn != NULL) {
2343                 uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base;
2344                 size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize;
2345                 GElf_Dyn d;
2346 
2347                 for (i = 0; i < ndyn; i++) {
2348                         if (gelf_getdyn(dyn->c_data, i, &d) == NULL)
2349                                 continue;
2350 
2351                         switch (d.d_tag) {
2352                         case DT_JMPREL:
2353                                 dprintf("DT_JMPREL is %p\n",
2354                                     (void *)(uintptr_t)d.d_un.d_ptr);
2355                                 fptr->file_jmp_rel =
2356                                     d.d_un.d_ptr + fptr->file_dyn_base;
2357                                 break;
2358                         case DT_STRTAB:
2359                                 dprintf("DT_STRTAB is %p\n",
2360                                     (void *)(uintptr_t)d.d_un.d_ptr);
2361                                 break;
2362                         case DT_PLTGOT:
2363                                 dprintf("DT_PLTGOT is %p\n",
2364                                     (void *)(uintptr_t)d.d_un.d_ptr);
2365                                 break;
2366                         case DT_SUNW_SYMTAB:
2367                                 dprintf("DT_SUNW_SYMTAB is %p\n",
2368                                     (void *)(uintptr_t)d.d_un.d_ptr);
2369                                 break;
2370                         case DT_SYMTAB:
2371                                 dprintf("DT_SYMTAB is %p\n",
2372                                     (void *)(uintptr_t)d.d_un.d_ptr);
2373                                 break;
2374                         case DT_HASH:
2375                                 dprintf("DT_HASH is %p\n",
2376                                     (void *)(uintptr_t)d.d_un.d_ptr);
2377                                 break;
2378                         }
2379                 }
2380 
2381                 dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n",
2382                     (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel);
2383         }
2384 
2385 done:
2386         free(cache);
2387         return;
2388 
2389 bad:
2390         if (cache != NULL)
2391                 free(cache);
2392 
2393         (void) elf_end(elf);
2394         fptr->file_elf = NULL;
2395         if (fptr->file_elfmem != NULL) {
2396                 free(fptr->file_elfmem);
2397                 fptr->file_elfmem = NULL;
2398         }
2399         (void) close(fptr->file_fd);
2400         if (fptr->file_dbgelf != NULL)
2401                 (void) elf_end(fptr->file_dbgelf);
2402         fptr->file_dbgelf = NULL;
2403         if (fptr->file_dbgfile >= 0)
2404                 (void) close(fptr->file_dbgfile);
2405         fptr->file_fd = -1;
2406         fptr->file_dbgfile = -1;
2407 }
2408 
2409 /*
2410  * Given a process virtual address, return the map_info_t containing it.
2411  * If none found, return NULL.
2412  */
2413 map_info_t *
2414 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr)
2415 {
2416         int lo = 0;
2417         int hi = P->map_count - 1;
2418         int mid;
2419         map_info_t *mp;
2420 
2421         while (lo <= hi) {
2422 
2423                 mid = (lo + hi) / 2;
2424                 mp = &P->mappings[mid];
2425 
2426                 /* check that addr is in [vaddr, vaddr + size) */
2427                 if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size)
2428                         return (mp);
2429 
2430                 if (addr < mp->map_pmap.pr_vaddr)
2431                         hi = mid - 1;
2432                 else
2433                         lo = mid + 1;
2434         }
2435 
2436         return (NULL);
2437 }
2438 
2439 /*
2440  * Return the map_info_t for the executable file.
2441  * If not found, return NULL.
2442  */
2443 static map_info_t *
2444 exec_map(struct ps_prochandle *P)
2445 {
2446         uint_t i;
2447         map_info_t *mptr;
2448         map_info_t *mold = NULL;
2449         file_info_t *fptr;
2450         uintptr_t base;
2451 
2452         for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2453                 if (mptr->map_pmap.pr_mapname[0] == '\0')
2454                         continue;
2455                 if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) {
2456                         if ((fptr = mptr->map_file) != NULL &&
2457                             fptr->file_lo != NULL) {
2458                                 base = fptr->file_lo->rl_base;
2459                                 if (base >= mptr->map_pmap.pr_vaddr &&
2460                                     base < mptr->map_pmap.pr_vaddr +
2461                                     mptr->map_pmap.pr_size)  /* text space */
2462                                         return (mptr);
2463                                 mold = mptr;    /* must be the data */
2464                                 continue;
2465                         }
2466                         /* This is a poor way to test for text space */
2467                         if (!(mptr->map_pmap.pr_mflags & MA_EXEC) ||
2468                             (mptr->map_pmap.pr_mflags & MA_WRITE)) {
2469                                 mold = mptr;
2470                                 continue;
2471                         }
2472                         return (mptr);
2473                 }
2474         }
2475 
2476         return (mold);
2477 }
2478 
2479 /*
2480  * Given a shared object name, return the map_info_t for it.  If no matching
2481  * object is found, return NULL.  Normally, the link maps contain the full
2482  * object pathname, e.g. /usr/lib/libc.so.1.  We allow the object name to
2483  * take one of the following forms:
2484  *
2485  * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1"
2486  * 2. An exact basename match: "libc.so.1"
2487  * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc"
2488  * 4. The literal string "a.out" is an alias for the executable mapping
2489  *
2490  * The third case is a convenience for callers and may not be necessary.
2491  *
2492  * As the exact same object name may be loaded on different link maps (see
2493  * dlmopen(3DL)), we also allow the caller to resolve the object name by
2494  * specifying a particular link map id.  If lmid is PR_LMID_EVERY, the
2495  * first matching name will be returned, regardless of the link map id.
2496  */
2497 static map_info_t *
2498 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname)
2499 {
2500         map_info_t *mp;
2501         file_info_t *fp;
2502         size_t objlen;
2503         uint_t i;
2504 
2505         /*
2506          * If we have no rtld_db, then always treat a request as one for all
2507          * link maps.
2508          */
2509         if (P->rap == NULL)
2510                 lmid = PR_LMID_EVERY;
2511 
2512         /*
2513          * First pass: look for exact matches of the entire pathname or
2514          * basename (cases 1 and 2 above):
2515          */
2516         for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2517 
2518                 if (mp->map_pmap.pr_mapname[0] == '\0' ||
2519                     (fp = mp->map_file) == NULL ||
2520                     ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2521                         continue;
2522 
2523                 if (lmid != PR_LMID_EVERY &&
2524                     (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2525                         continue;
2526 
2527                 /*
2528                  * If we match, return the primary text mapping; otherwise
2529                  * just return the mapping we matched.
2530                  */
2531                 if ((fp->file_lbase && strcmp(fp->file_lbase, objname) == 0) ||
2532                     (fp->file_rbase && strcmp(fp->file_rbase, objname) == 0) ||
2533                     (fp->file_lname && strcmp(fp->file_lname, objname) == 0) ||
2534                     (fp->file_rname && strcmp(fp->file_rname, objname) == 0))
2535                         return (fp->file_map ? fp->file_map : mp);
2536         }
2537 
2538         objlen = strlen(objname);
2539 
2540         /*
2541          * Second pass: look for partial matches (case 3 above):
2542          */
2543         for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2544 
2545                 if (mp->map_pmap.pr_mapname[0] == '\0' ||
2546                     (fp = mp->map_file) == NULL ||
2547                     ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2548                         continue;
2549 
2550                 if (lmid != PR_LMID_EVERY &&
2551                     (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2552                         continue;
2553 
2554                 /*
2555                  * If we match, return the primary text mapping; otherwise
2556                  * just return the mapping we matched.
2557                  */
2558                 if ((fp->file_lbase != NULL) &&
2559                     (strncmp(fp->file_lbase, objname, objlen) == 0) &&
2560                     (fp->file_lbase[objlen] == '.'))
2561                         return (fp->file_map ? fp->file_map : mp);
2562                 if ((fp->file_rbase != NULL) &&
2563                     (strncmp(fp->file_rbase, objname, objlen) == 0) &&
2564                     (fp->file_rbase[objlen] == '.'))
2565                         return (fp->file_map ? fp->file_map : mp);
2566         }
2567 
2568         /*
2569          * One last check: we allow "a.out" to always alias the executable,
2570          * assuming this name was not in use for something else.
2571          */
2572         if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) &&
2573             (strcmp(objname, "a.out") == 0))
2574                 return (P->map_exec);
2575 
2576         return (NULL);
2577 }
2578 
2579 static map_info_t *
2580 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
2581 {
2582         map_info_t *mptr;
2583 
2584         if (!P->info_valid)
2585                 Pupdate_maps(P);
2586 
2587         if (P->map_exec == NULL && ((mptr = Paddr2mptr(P,
2588             Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL))
2589                 P->map_exec = mptr;
2590 
2591         if (P->map_ldso == NULL && (mptr = Paddr2mptr(P,
2592             Pgetauxval(P, AT_BASE))) != NULL)
2593                 P->map_ldso = mptr;
2594 
2595         if (name == PR_OBJ_EXEC)
2596                 mptr = P->map_exec;
2597         else if (name == PR_OBJ_LDSO)
2598                 mptr = P->map_ldso;
2599         else if (Prd_agent(P) != NULL || P->state == PS_IDLE)
2600                 mptr = object_to_map(P, lmid, name);
2601         else
2602                 mptr = NULL;
2603 
2604         return (mptr);
2605 }
2606 
2607 /*
2608  * When two symbols are found by address, decide which one is to be preferred.
2609  */
2610 static GElf_Sym *
2611 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2)
2612 {
2613         /*
2614          * Prefer the non-NULL symbol.
2615          */
2616         if (sym1 == NULL)
2617                 return (sym2);
2618         if (sym2 == NULL)
2619                 return (sym1);
2620 
2621         /*
2622          * Defer to the sort ordering...
2623          */
2624         return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2);
2625 }
2626 
2627 /*
2628  * Use a binary search to do the work of sym_by_addr().
2629  */
2630 static GElf_Sym *
2631 sym_by_addr_binary(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp,
2632     uint_t *idp)
2633 {
2634         GElf_Sym sym, osym;
2635         uint_t i, oid, *byaddr = symtab->sym_byaddr;
2636         int min, max, mid, omid, found = 0;
2637 
2638         if (symtab->sym_data_pri == NULL || symtab->sym_count == 0)
2639                 return (NULL);
2640 
2641         min = 0;
2642         max = symtab->sym_count - 1;
2643         osym.st_value = 0;
2644 
2645         /*
2646          * We can't return when we've found a match, we have to continue
2647          * searching for the closest matching symbol.
2648          */
2649         while (min <= max) {
2650                 mid = (max + min) / 2;
2651 
2652                 i = byaddr[mid];
2653                 (void) symtab_getsym(symtab, i, &sym);
2654 
2655                 if (addr >= sym.st_value &&
2656                     addr < sym.st_value + sym.st_size &&
2657                     (!found || sym.st_value > osym.st_value)) {
2658                         osym = sym;
2659                         omid = mid;
2660                         oid = i;
2661                         found = 1;
2662                 }
2663 
2664                 if (addr < sym.st_value)
2665                         max = mid - 1;
2666                 else
2667                         min = mid + 1;
2668         }
2669 
2670         if (!found)
2671                 return (NULL);
2672 
2673         /*
2674          * There may be many symbols with identical values so we walk
2675          * backward in the byaddr table to find the best match.
2676          */
2677         do {
2678                 sym = osym;
2679                 i = oid;
2680 
2681                 if (omid == 0)
2682                         break;
2683 
2684                 oid = byaddr[--omid];
2685                 (void) symtab_getsym(symtab, oid, &osym);
2686         } while (addr >= osym.st_value &&
2687             addr < sym.st_value + osym.st_size &&
2688             osym.st_value == sym.st_value);
2689 
2690         *symp = sym;
2691         if (idp != NULL)
2692                 *idp = i;
2693         return (symp);
2694 }
2695 
2696 /*
2697  * Use a linear search to do the work of sym_by_addr().
2698  */
2699 static GElf_Sym *
2700 sym_by_addr_linear(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symbolp,
2701     uint_t *idp)
2702 {
2703         size_t symn = symtab->sym_symn;
2704         char *strs = symtab->sym_strs;
2705         GElf_Sym sym, *symp = NULL;
2706         GElf_Sym osym, *osymp = NULL;
2707         int i, id;
2708 
2709         if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2710                 return (NULL);
2711 
2712         for (i = 0; i < symn; i++) {
2713                 if ((symp = symtab_getsym(symtab, i, &sym)) != NULL) {
2714                         if (addr >= sym.st_value &&
2715                             addr < sym.st_value + sym.st_size) {
2716                                 if (osymp)
2717                                         symp = sym_prefer(
2718                                             symp, strs + symp->st_name,
2719                                             osymp, strs + osymp->st_name);
2720                                 if (symp != osymp) {
2721                                         osym = sym;
2722                                         osymp = &osym;
2723                                         id = i;
2724                                 }
2725                         }
2726                 }
2727         }
2728         if (osymp) {
2729                 *symbolp = osym;
2730                 if (idp)
2731                         *idp = id;
2732                 return (symbolp);
2733         }
2734         return (NULL);
2735 }
2736 
2737 /*
2738  * Look up a symbol by address in the specified symbol table.
2739  * Adjustment to 'addr' must already have been made for the
2740  * offset of the symbol if this is a dynamic library symbol table.
2741  *
2742  * Use a linear or a binary search depending on whether or not we
2743  * chose to sort the table in optimize_symtab().
2744  */
2745 static GElf_Sym *
2746 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp)
2747 {
2748         if (_libproc_no_qsort) {
2749                 return (sym_by_addr_linear(symtab, addr, symp, idp));
2750         } else {
2751                 return (sym_by_addr_binary(symtab, addr, symp, idp));
2752         }
2753 }
2754 
2755 /*
2756  * Use a binary search to do the work of sym_by_name().
2757  */
2758 static GElf_Sym *
2759 sym_by_name_binary(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2760     uint_t *idp)
2761 {
2762         char *strs = symtab->sym_strs;
2763         uint_t i, *byname = symtab->sym_byname;
2764         int min, mid, max, cmp;
2765 
2766         if (symtab->sym_data_pri == NULL || strs == NULL ||
2767             symtab->sym_count == 0)
2768                 return (NULL);
2769 
2770         min = 0;
2771         max = symtab->sym_count - 1;
2772 
2773         while (min <= max) {
2774                 mid = (max + min) / 2;
2775 
2776                 i = byname[mid];
2777                 (void) symtab_getsym(symtab, i, symp);
2778 
2779                 if ((cmp = strcmp(name, strs + symp->st_name)) == 0) {
2780                         if (idp != NULL)
2781                                 *idp = i;
2782                         return (symp);
2783                 }
2784 
2785                 if (cmp < 0)
2786                         max = mid - 1;
2787                 else
2788                         min = mid + 1;
2789         }
2790 
2791         return (NULL);
2792 }
2793 
2794 /*
2795  * Use a linear search to do the work of sym_by_name().
2796  */
2797 static GElf_Sym *
2798 sym_by_name_linear(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2799     uint_t *idp)
2800 {
2801         size_t symn = symtab->sym_symn;
2802         char *strs = symtab->sym_strs;
2803         int i;
2804 
2805         if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2806                 return (NULL);
2807 
2808         for (i = 0; i < symn; i++) {
2809                 if (symtab_getsym(symtab, i, symp) &&
2810                     strcmp(name, strs + symp->st_name) == 0) {
2811                         if (idp)
2812                                 *idp = i;
2813                         return (symp);
2814                 }
2815         }
2816 
2817         return (NULL);
2818 }
2819 
2820 /*
2821  * Look up a symbol by name in the specified symbol table.
2822  *
2823  * Use a linear or a binary search depending on whether or not we
2824  * chose to sort the table in optimize_symtab().
2825  */
2826 static GElf_Sym *
2827 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp)
2828 {
2829         if (_libproc_no_qsort) {
2830                 return (sym_by_name_linear(symtab, name, symp, idp));
2831         } else {
2832                 return (sym_by_name_binary(symtab, name, symp, idp));
2833         }
2834 }
2835 
2836 /*
2837  * Search the process symbol tables looking for a symbol whose
2838  * value to value+size contain the address specified by addr.
2839  * Return values are:
2840  *      sym_name_buffer containing the symbol name
2841  *      GElf_Sym symbol table entry
2842  *      prsyminfo_t ancillary symbol information
2843  * Returns 0 on success, -1 on failure.
2844  */
2845 static int
2846 i_Pxlookup_by_addr(
2847         struct ps_prochandle *P,
2848         int lmresolve,                  /* use resolve linker object names */
2849         uintptr_t addr,                 /* process address being sought */
2850         char *sym_name_buffer,          /* buffer for the symbol name */
2851         size_t bufsize,                 /* size of sym_name_buffer */
2852         GElf_Sym *symbolp,              /* returned symbol table entry */
2853         prsyminfo_t *sip)               /* returned symbol info */
2854 {
2855         GElf_Sym        *symp;
2856         char            *name;
2857         GElf_Sym        sym1, *sym1p = NULL;
2858         GElf_Sym        sym2, *sym2p = NULL;
2859         char            *name1 = NULL;
2860         char            *name2 = NULL;
2861         uint_t          i1;
2862         uint_t          i2;
2863         map_info_t      *mptr;
2864         file_info_t     *fptr;
2865 
2866         (void) Prd_agent(P);
2867 
2868         if ((mptr = Paddr2mptr(P, addr)) == NULL ||     /* no such address */
2869             (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2870             fptr->file_elf == NULL)                  /* not an ELF file */
2871                 return (-1);
2872 
2873         /*
2874          * Adjust the address by the load object base address in
2875          * case the address turns out to be in a shared library.
2876          */
2877         addr -= fptr->file_dyn_base;
2878 
2879         /*
2880          * Search both symbol tables, symtab first, then dynsym.
2881          */
2882         if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL)
2883                 name1 = fptr->file_symtab.sym_strs + sym1.st_name;
2884         if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL)
2885                 name2 = fptr->file_dynsym.sym_strs + sym2.st_name;
2886 
2887         if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL)
2888                 return (-1);
2889 
2890         name = (symp == sym1p) ? name1 : name2;
2891         if (bufsize > 0) {
2892                 (void) strncpy(sym_name_buffer, name, bufsize);
2893                 sym_name_buffer[bufsize - 1] = '\0';
2894         }
2895 
2896         *symbolp = *symp;
2897         if (sip != NULL) {
2898                 sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer;
2899                 if (lmresolve && (fptr->file_rname != NULL))
2900                         sip->prs_object = fptr->file_rbase;
2901                 else
2902                         sip->prs_object = fptr->file_lbase;
2903                 sip->prs_id = (symp == sym1p) ? i1 : i2;
2904                 sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM;
2905                 sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE :
2906                     fptr->file_lo->rl_lmident;
2907         }
2908 
2909         if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS)
2910                 symbolp->st_value += fptr->file_dyn_base;
2911 
2912         return (0);
2913 }
2914 
2915 int
2916 Pxlookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2917     size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2918 {
2919         return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, bufsize, symp, sip));
2920 }
2921 
2922 int
2923 Pxlookup_by_addr_resolved(struct ps_prochandle *P, uintptr_t addr, char *buf,
2924     size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2925 {
2926         return (i_Pxlookup_by_addr(P, B_TRUE, addr, buf, bufsize, symp, sip));
2927 }
2928 
2929 int
2930 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2931     size_t size, GElf_Sym *symp)
2932 {
2933         return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, size, symp, NULL));
2934 }
2935 
2936 /*
2937  * Search the process symbol tables looking for a symbol whose name matches the
2938  * specified name and whose object and link map optionally match the specified
2939  * parameters.  On success, the function returns 0 and fills in the GElf_Sym
2940  * symbol table entry.  On failure, -1 is returned.
2941  */
2942 int
2943 Pxlookup_by_name(
2944         struct ps_prochandle *P,
2945         Lmid_t lmid,                    /* link map to match, or -1 for any */
2946         const char *oname,              /* load object name */
2947         const char *sname,              /* symbol name */
2948         GElf_Sym *symp,                 /* returned symbol table entry */
2949         prsyminfo_t *sip)               /* returned symbol info */
2950 {
2951         map_info_t *mptr;
2952         file_info_t *fptr;
2953         int cnt;
2954 
2955         GElf_Sym sym;
2956         prsyminfo_t si;
2957         int rv = -1;
2958         uint_t id;
2959 
2960         if (oname == PR_OBJ_EVERY) {
2961                 /* create all the file_info_t's for all the mappings */
2962                 (void) Prd_agent(P);
2963                 cnt = P->num_files;
2964                 fptr = list_next(&P->file_head);
2965         } else {
2966                 cnt = 1;
2967                 if ((mptr = object_name_to_map(P, lmid, oname)) == NULL ||
2968                     (fptr = build_map_symtab(P, mptr)) == NULL)
2969                         return (-1);
2970         }
2971 
2972         /*
2973          * Iterate through the loaded object files and look for the symbol
2974          * name in the .symtab and .dynsym of each.  If we encounter a match
2975          * with SHN_UNDEF, keep looking in hopes of finding a better match.
2976          * This means that a name such as "puts" will match the puts function
2977          * in libc instead of matching the puts PLT entry in the a.out file.
2978          */
2979         for (; cnt > 0; cnt--, fptr = list_next(fptr)) {
2980                 Pbuild_file_symtab(P, fptr);
2981 
2982                 if (fptr->file_elf == NULL)
2983                         continue;
2984 
2985                 if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL &&
2986                     lmid != fptr->file_lo->rl_lmident)
2987                         continue;
2988 
2989                 if (fptr->file_symtab.sym_data_pri != NULL &&
2990                     sym_by_name(&fptr->file_symtab, sname, symp, &id)) {
2991                         if (sip != NULL) {
2992                                 sip->prs_id = id;
2993                                 sip->prs_table = PR_SYMTAB;
2994                                 sip->prs_object = oname;
2995                                 sip->prs_name = sname;
2996                                 sip->prs_lmid = fptr->file_lo == NULL ?
2997                                     LM_ID_BASE : fptr->file_lo->rl_lmident;
2998                         }
2999                 } else if (fptr->file_dynsym.sym_data_pri != NULL &&
3000                     sym_by_name(&fptr->file_dynsym, sname, symp, &id)) {
3001                         if (sip != NULL) {
3002                                 sip->prs_id = id;
3003                                 sip->prs_table = PR_DYNSYM;
3004                                 sip->prs_object = oname;
3005                                 sip->prs_name = sname;
3006                                 sip->prs_lmid = fptr->file_lo == NULL ?
3007                                     LM_ID_BASE : fptr->file_lo->rl_lmident;
3008                         }
3009                 } else {
3010                         continue;
3011                 }
3012 
3013                 if (GELF_ST_TYPE(symp->st_info) != STT_TLS)
3014                         symp->st_value += fptr->file_dyn_base;
3015 
3016                 if (symp->st_shndx != SHN_UNDEF)
3017                         return (0);
3018 
3019                 if (rv != 0) {
3020                         if (sip != NULL)
3021                                 si = *sip;
3022                         sym = *symp;
3023                         rv = 0;
3024                 }
3025         }
3026 
3027         if (rv == 0) {
3028                 if (sip != NULL)
3029                         *sip = si;
3030                 *symp = sym;
3031         }
3032 
3033         return (rv);
3034 }
3035 
3036 /*
3037  * Search the process symbol tables looking for a symbol whose name matches the
3038  * specified name, but without any restriction on the link map id.
3039  */
3040 int
3041 Plookup_by_name(struct ps_prochandle *P, const char *object,
3042     const char *symbol, GElf_Sym *symp)
3043 {
3044         return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL));
3045 }
3046 
3047 /*
3048  * Iterate over the process's address space mappings.
3049  */
3050 static int
3051 i_Pmapping_iter(struct ps_prochandle *P, boolean_t lmresolve,
3052     proc_map_f *func, void *cd)
3053 {
3054         map_info_t *mptr;
3055         file_info_t *fptr;
3056         char *object_name;
3057         int rc = 0;
3058         int i;
3059 
3060         /* create all the file_info_t's for all the mappings */
3061         (void) Prd_agent(P);
3062 
3063         for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
3064                 if ((fptr = mptr->map_file) == NULL)
3065                         object_name = NULL;
3066                 else if (lmresolve && (fptr->file_rname != NULL))
3067                         object_name = fptr->file_rname;
3068                 else
3069                         object_name = fptr->file_lname;
3070                 if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0)
3071                         return (rc);
3072         }
3073         return (0);
3074 }
3075 
3076 int
3077 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
3078 {
3079         return (i_Pmapping_iter(P, B_FALSE, func, cd));
3080 }
3081 
3082 int
3083 Pmapping_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
3084 {
3085         return (i_Pmapping_iter(P, B_TRUE, func, cd));
3086 }
3087 
3088 /*
3089  * Iterate over the process's mapped objects.
3090  */
3091 static int
3092 i_Pobject_iter(struct ps_prochandle *P, boolean_t lmresolve,
3093     proc_map_f *func, void *cd)
3094 {
3095         map_info_t *mptr;
3096         file_info_t *fptr;
3097         uint_t cnt;
3098         int rc = 0;
3099 
3100         (void) Prd_agent(P); /* create file_info_t's for all the mappings */
3101         Pupdate_maps(P);
3102 
3103         for (cnt = P->num_files, fptr = list_next(&P->file_head);
3104             cnt; cnt--, fptr = list_next(fptr)) {
3105                 const char *lname;
3106 
3107                 if (lmresolve && (fptr->file_rname != NULL))
3108                         lname = fptr->file_rname;
3109                 else if (fptr->file_lname != NULL)
3110                         lname = fptr->file_lname;
3111                 else
3112                         lname = "";
3113 
3114                 if ((mptr = fptr->file_map) == NULL)
3115                         continue;
3116 
3117                 if ((rc = func(cd, &mptr->map_pmap, lname)) != 0)
3118                         return (rc);
3119 
3120                 if (!P->info_valid)
3121                         Pupdate_maps(P);
3122         }
3123         return (0);
3124 }
3125 
3126 int
3127 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
3128 {
3129         return (i_Pobject_iter(P, B_FALSE, func, cd));
3130 }
3131 
3132 int
3133 Pobject_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
3134 {
3135         return (i_Pobject_iter(P, B_TRUE, func, cd));
3136 }
3137 
3138 static char *
3139 i_Pobjname(struct ps_prochandle *P, boolean_t lmresolve, uintptr_t addr,
3140     char *buffer, size_t bufsize)
3141 {
3142         map_info_t *mptr;
3143         file_info_t *fptr;
3144 
3145         /* create all the file_info_t's for all the mappings */
3146         (void) Prd_agent(P);
3147 
3148         if ((mptr = Paddr2mptr(P, addr)) == NULL)
3149                 return (NULL);
3150 
3151         if (!lmresolve) {
3152                 if (((fptr = mptr->map_file) == NULL) ||
3153                     (fptr->file_lname == NULL))
3154                         return (NULL);
3155                 (void) strlcpy(buffer, fptr->file_lname, bufsize);
3156                 return (buffer);
3157         }
3158 
3159         /* Check for a cached copy of the resolved path */
3160         if (Pfindmap(P, mptr, buffer, bufsize) != NULL)
3161                 return (buffer);
3162 
3163         return (NULL);
3164 }
3165 
3166 /*
3167  * Given a virtual address, return the name of the underlying
3168  * mapped object (file) as provided by the dynamic linker.
3169  * Return NULL if we can't find any name information for the object.
3170  */
3171 char *
3172 Pobjname(struct ps_prochandle *P, uintptr_t addr,
3173     char *buffer, size_t bufsize)
3174 {
3175         return (i_Pobjname(P, B_FALSE, addr, buffer, bufsize));
3176 }
3177 
3178 /*
3179  * Given a virtual address, try to return a filesystem path to the
3180  * underlying mapped object (file).  If we're in the global zone,
3181  * this path could resolve to an object in another zone.  If we're
3182  * unable return a valid filesystem path, we'll fall back to providing
3183  * the mapped object (file) name provided by the dynamic linker in
3184  * the target process (ie, the object reported by Pobjname()).
3185  */
3186 char *
3187 Pobjname_resolved(struct ps_prochandle *P, uintptr_t addr,
3188     char *buffer, size_t bufsize)
3189 {
3190         return (i_Pobjname(P, B_TRUE, addr, buffer, bufsize));
3191 }
3192 
3193 /*
3194  * Given a virtual address, return the link map id of the underlying mapped
3195  * object (file), as provided by the dynamic linker.  Return -1 on failure.
3196  */
3197 int
3198 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp)
3199 {
3200         map_info_t *mptr;
3201         file_info_t *fptr;
3202 
3203         /* create all the file_info_t's for all the mappings */
3204         (void) Prd_agent(P);
3205 
3206         if ((mptr = Paddr2mptr(P, addr)) != NULL &&
3207             (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) {
3208                 *lmidp = fptr->file_lo->rl_lmident;
3209                 return (0);
3210         }
3211 
3212         return (-1);
3213 }
3214 
3215 /*
3216  * Given an object name and optional lmid, iterate over the object's symbols.
3217  * If which == PR_SYMTAB, search the normal symbol table.
3218  * If which == PR_DYNSYM, search the dynamic symbol table.
3219  */
3220 static int
3221 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
3222     int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd)
3223 {
3224 #if STT_NUM != (STT_TLS + 1)
3225 #error "STT_NUM has grown. update Psymbol_iter_com()"
3226 #endif
3227 
3228         GElf_Sym sym;
3229         GElf_Shdr shdr;
3230         map_info_t *mptr;
3231         file_info_t *fptr;
3232         sym_tbl_t *symtab;
3233         size_t symn;
3234         const char *strs;
3235         size_t strsz;
3236         prsyminfo_t si;
3237         int rv;
3238         uint_t *map, i, count, ndx;
3239 
3240         if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL)
3241                 return (-1);
3242 
3243         if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
3244             fptr->file_elf == NULL)                  /* not an ELF file */
3245                 return (-1);
3246 
3247         /*
3248          * Search the specified symbol table.
3249          */
3250         switch (which) {
3251         case PR_SYMTAB:
3252                 symtab = &fptr->file_symtab;
3253                 si.prs_table = PR_SYMTAB;
3254                 break;
3255         case PR_DYNSYM:
3256                 symtab = &fptr->file_dynsym;
3257                 si.prs_table = PR_DYNSYM;
3258                 break;
3259         default:
3260                 return (-1);
3261         }
3262 
3263         si.prs_object = object_name;
3264         si.prs_lmid = fptr->file_lo == NULL ?
3265             LM_ID_BASE : fptr->file_lo->rl_lmident;
3266 
3267         symn = symtab->sym_symn;
3268         strs = symtab->sym_strs;
3269         strsz = symtab->sym_strsz;
3270 
3271         switch (order) {
3272         case PRO_NATURAL:
3273                 map = NULL;
3274                 count = symn;
3275                 break;
3276         case PRO_BYNAME:
3277                 map = symtab->sym_byname;
3278                 count = symtab->sym_count;
3279                 break;
3280         case PRO_BYADDR:
3281                 map = symtab->sym_byaddr;
3282                 count = symtab->sym_count;
3283                 break;
3284         default:
3285                 return (-1);
3286         }
3287 
3288         if (symtab->sym_data_pri == NULL || strs == NULL || count == 0)
3289                 return (-1);
3290 
3291         rv = 0;
3292 
3293         for (i = 0; i < count; i++) {
3294                 ndx = map == NULL ? i : map[i];
3295                 if (symtab_getsym(symtab, ndx, &sym) != NULL) {
3296                         uint_t s_bind, s_type, type;
3297 
3298                         if (sym.st_name >= strsz)    /* invalid st_name */
3299                                 continue;
3300 
3301                         s_bind = GELF_ST_BIND(sym.st_info);
3302                         s_type = GELF_ST_TYPE(sym.st_info);
3303 
3304                         /*
3305                          * In case you haven't already guessed, this relies on
3306                          * the bitmask used in <libproc.h> for encoding symbol
3307                          * type and binding matching the order of STB and STT
3308                          * constants in <sys/elf.h>.  Changes to ELF must
3309                          * maintain binary compatibility, so I think this is
3310                          * reasonably fair game.
3311                          */
3312                         if (s_bind < STB_NUM && s_type < STT_NUM) {
3313                                 type = (1 << (s_type + 8)) | (1 << s_bind);
3314                                 if ((type & ~mask) != 0)
3315                                         continue;
3316                         } else
3317                                 continue; /* Invalid type or binding */
3318 
3319                         if (GELF_ST_TYPE(sym.st_info) != STT_TLS)
3320                                 sym.st_value += fptr->file_dyn_base;
3321 
3322                         si.prs_name = strs + sym.st_name;
3323 
3324                         /*
3325                          * If symbol's type is STT_SECTION, then try to lookup
3326                          * the name of the corresponding section.
3327                          */
3328                         if (GELF_ST_TYPE(sym.st_info) == STT_SECTION &&
3329                             fptr->file_shstrs != NULL &&
3330                             gelf_getshdr(elf_getscn(fptr->file_elf,
3331                             sym.st_shndx), &shdr) != NULL &&
3332                             shdr.sh_name != 0 &&
3333                             shdr.sh_name < fptr->file_shstrsz)
3334                                 si.prs_name = fptr->file_shstrs + shdr.sh_name;
3335 
3336                         si.prs_id = ndx;
3337                         if ((rv = func(cd, &sym, si.prs_name, &si)) != 0)
3338                                 break;
3339                 }
3340         }
3341 
3342         return (rv);
3343 }
3344 
3345 int
3346 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
3347     int which, int mask, proc_xsym_f *func, void *cd)
3348 {
3349         return (Psymbol_iter_com(P, lmid, object_name, which, mask,
3350             PRO_NATURAL, func, cd));
3351 }
3352 
3353 int
3354 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid,
3355     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3356 {
3357         return (Psymbol_iter_com(P, lmid, object_name, which, mask,
3358             PRO_NATURAL, (proc_xsym_f *)func, cd));
3359 }
3360 
3361 int
3362 Psymbol_iter(struct ps_prochandle *P,
3363     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3364 {
3365         return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3366             PRO_NATURAL, (proc_xsym_f *)func, cd));
3367 }
3368 
3369 int
3370 Psymbol_iter_by_addr(struct ps_prochandle *P,
3371     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3372 {
3373         return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3374             PRO_BYADDR, (proc_xsym_f *)func, cd));
3375 }
3376 
3377 int
3378 Psymbol_iter_by_name(struct ps_prochandle *P,
3379     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3380 {
3381         return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3382             PRO_BYNAME, (proc_xsym_f *)func, cd));
3383 }
3384 
3385 /*
3386  * Get the platform string.
3387  */
3388 char *
3389 Pplatform(struct ps_prochandle *P, char *s, size_t n)
3390 {
3391         return (P->ops.pop_platform(P, s, n, P->data));
3392 }
3393 
3394 /*
3395  * Get the uname(2) information.
3396  */
3397 int
3398 Puname(struct ps_prochandle *P, struct utsname *u)
3399 {
3400         return (P->ops.pop_uname(P, u, P->data));
3401 }
3402 
3403 /*
3404  * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize
3405  * the symbol table heads in the new ps_prochandle.
3406  */
3407 void
3408 Pinitsym(struct ps_prochandle *P)
3409 {
3410         P->num_files = 0;
3411         list_link(&P->file_head, NULL);
3412 }
3413 
3414 /*
3415  * Called from Prelease() to destroy the symbol tables.
3416  * Must be called by the client after an exec() in the victim process.
3417  */
3418 void
3419 Preset_maps(struct ps_prochandle *P)
3420 {
3421         int i;
3422 
3423         if (P->rap != NULL) {
3424                 rd_delete(P->rap);
3425                 P->rap = NULL;
3426         }
3427 
3428         if (P->execname != NULL) {
3429                 free(P->execname);
3430                 P->execname = NULL;
3431         }
3432 
3433         if (P->auxv != NULL) {
3434                 free(P->auxv);
3435                 P->auxv = NULL;
3436                 P->nauxv = 0;
3437         }
3438 
3439         for (i = 0; i < P->map_count; i++)
3440                 map_info_free(P, &P->mappings[i]);
3441 
3442         if (P->mappings != NULL) {
3443                 free(P->mappings);
3444                 P->mappings = NULL;
3445         }
3446         P->map_count = P->map_alloc = 0;
3447 
3448         P->info_valid = 0;
3449 }
3450 
3451 typedef struct getenv_data {
3452         char *buf;
3453         size_t bufsize;
3454         const char *search;
3455         size_t searchlen;
3456 } getenv_data_t;
3457 
3458 /*ARGSUSED*/
3459 static int
3460 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr,
3461     const char *nameval)
3462 {
3463         getenv_data_t *d = data;
3464         size_t len;
3465 
3466         if (nameval == NULL)
3467                 return (0);
3468 
3469         if (d->searchlen < strlen(nameval) &&
3470             strncmp(nameval, d->search, d->searchlen) == 0 &&
3471             nameval[d->searchlen] == '=') {
3472                 len = MIN(strlen(nameval), d->bufsize - 1);
3473                 (void) strncpy(d->buf, nameval, len);
3474                 d->buf[len] = '\0';
3475                 return (1);
3476         }
3477 
3478         return (0);
3479 }
3480 
3481 char *
3482 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen)
3483 {
3484         getenv_data_t d;
3485 
3486         d.buf = buf;
3487         d.bufsize = buflen;
3488         d.search = name;
3489         d.searchlen = strlen(name);
3490 
3491         if (Penv_iter(P, getenv_func, &d) == 1) {
3492                 char *equals = strchr(d.buf, '=');
3493 
3494                 if (equals != NULL) {
3495                         (void) memmove(d.buf, equals + 1,
3496                             d.buf + buflen - equals - 1);
3497                         d.buf[d.buf + buflen - equals] = '\0';
3498 
3499                         return (buf);
3500                 }
3501         }
3502 
3503         return (NULL);
3504 }
3505 
3506 /* number of argument or environment pointers to read all at once */
3507 #define NARG    100
3508 
3509 int
3510 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data)
3511 {
3512         const psinfo_t *psp;
3513         uintptr_t envpoff;
3514         GElf_Sym sym;
3515         int ret;
3516         char *buf, *nameval;
3517         size_t buflen;
3518 
3519         int nenv = NARG;
3520         long envp[NARG];
3521 
3522         /*
3523          * Attempt to find the "_environ" variable in the process.
3524          * Failing that, use the original value provided by Ppsinfo().
3525          */
3526         if ((psp = Ppsinfo(P)) == NULL)
3527                 return (-1);
3528 
3529         envpoff = psp->pr_envp; /* Default if no _environ found */
3530 
3531         if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) {
3532                 if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3533                         if (Pread(P, &envpoff, sizeof (envpoff),
3534                             sym.st_value) != sizeof (envpoff))
3535                                 envpoff = psp->pr_envp;
3536                 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3537                         uint32_t envpoff32;
3538 
3539                         if (Pread(P, &envpoff32, sizeof (envpoff32),
3540                             sym.st_value) != sizeof (envpoff32))
3541                                 envpoff = psp->pr_envp;
3542                         else
3543                                 envpoff = envpoff32;
3544                 }
3545         }
3546 
3547         buflen = 128;
3548         buf = malloc(buflen);
3549 
3550         ret = 0;
3551         for (;;) {
3552                 uintptr_t envoff;
3553 
3554                 if (nenv == NARG) {
3555                         (void) memset(envp, 0, sizeof (envp));
3556                         if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3557                                 if (Pread(P, envp,
3558                                     sizeof (envp), envpoff) <= 0) {
3559                                         ret = -1;
3560                                         break;
3561                                 }
3562                         } else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3563                                 uint32_t e32[NARG];
3564                                 int i;
3565 
3566                                 (void) memset(e32, 0, sizeof (e32));
3567                                 if (Pread(P, e32, sizeof (e32), envpoff) <= 0) {
3568                                         ret = -1;
3569                                         break;
3570                                 }
3571                                 for (i = 0; i < NARG; i++)
3572                                         envp[i] = e32[i];
3573                         }
3574                         nenv = 0;
3575                 }
3576 
3577                 if ((envoff = envp[nenv++]) == NULL)
3578                         break;
3579 
3580                 /*
3581                  * Attempt to read the string from the process.
3582                  */
3583 again:
3584                 ret = Pread_string(P, buf, buflen, envoff);
3585 
3586                 if (ret <= 0) {
3587                         nameval = NULL;
3588                 } else if (ret == buflen - 1) {
3589                         free(buf);
3590                         /*
3591                          * Bail if we have a corrupted environment
3592                          */
3593                         if (buflen >= ARG_MAX)
3594                                 return (-1);
3595                         buflen *= 2;
3596                         buf = malloc(buflen);
3597                         goto again;
3598                 } else {
3599                         nameval = buf;
3600                 }
3601 
3602                 if ((ret = func(data, P, envoff, nameval)) != 0)
3603                         break;
3604 
3605                 envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4;
3606         }
3607 
3608         free(buf);
3609 
3610         return (ret);
3611 }