1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright 2015 Joyent, Inc.
  25  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
  26  */
  27 
  28 #include <stdio.h>
  29 #include <stdlib.h>
  30 #include <string.h>
  31 #include <errno.h>
  32 #include <fcntl.h>
  33 #include <unistd.h>
  34 #include <stropts.h>
  35 #include <sys/sockio.h>
  36 #include <sys/types.h>
  37 #include <sys/stat.h>
  38 #include <sys/socket.h>
  39 #include <net/route.h>
  40 #include <netinet/in.h>
  41 #include <inet/ip.h>
  42 #include <arpa/inet.h>
  43 #include <libintl.h>
  44 #include <libdlpi.h>
  45 #include <libinetutil.h>
  46 #include <libdladm.h>
  47 #include <libdllink.h>
  48 #include <libdliptun.h>
  49 #include <strings.h>
  50 #include <zone.h>
  51 #include <ctype.h>
  52 #include <limits.h>
  53 #include <assert.h>
  54 #include <netdb.h>
  55 #include <pwd.h>
  56 #include <auth_attr.h>
  57 #include <secdb.h>
  58 #include <nss_dbdefs.h>
  59 #include "libipadm_impl.h"
  60 
  61 /* error codes and text description */
  62 static struct ipadm_error_info {
  63         ipadm_status_t  error_code;
  64         const char      *error_desc;
  65 } ipadm_errors[] = {
  66         { IPADM_SUCCESS,        "Operation succeeded" },
  67         { IPADM_FAILURE,        "Operation failed" },
  68         { IPADM_EAUTH,          "Insufficient user authorizations" },
  69         { IPADM_EPERM,          "Permission denied" },
  70         { IPADM_NO_BUFS,        "No buffer space available" },
  71         { IPADM_NO_MEMORY,      "Insufficient memory" },
  72         { IPADM_BAD_ADDR,       "Invalid address" },
  73         { IPADM_BAD_PROTOCOL,   "Incorrect protocol family for operation" },
  74         { IPADM_DAD_FOUND,      "Duplicate address detected" },
  75         { IPADM_EXISTS,         "Already exists" },
  76         { IPADM_IF_EXISTS,      "Interface already exists" },
  77         { IPADM_ADDROBJ_EXISTS, "Address object already exists" },
  78         { IPADM_ADDRCONF_EXISTS, "Addrconf already in progress" },
  79         { IPADM_ENXIO,          "Interface does not exist" },
  80         { IPADM_GRP_NOTEMPTY,   "IPMP group is not empty" },
  81         { IPADM_INVALID_ARG,    "Invalid argument provided" },
  82         { IPADM_INVALID_NAME,   "Invalid name" },
  83         { IPADM_DLPI_FAILURE,   "Could not open DLPI link" },
  84         { IPADM_DLADM_FAILURE,  "Datalink does not exist" },
  85         { IPADM_PROP_UNKNOWN,   "Unknown property" },
  86         { IPADM_ERANGE,         "Value is outside the allowed range" },
  87         { IPADM_ESRCH,          "Value does not exist" },
  88         { IPADM_EOVERFLOW,      "Number of values exceeds the allowed limit" },
  89         { IPADM_NOTFOUND,       "Object not found" },
  90         { IPADM_IF_INUSE,       "Interface already in use" },
  91         { IPADM_ADDR_INUSE,     "Address already in use" },
  92         { IPADM_BAD_HOSTNAME,   "Hostname maps to multiple IP addresses" },
  93         { IPADM_ADDR_NOTAVAIL,  "Can't assign requested address" },
  94         { IPADM_ALL_ADDRS_NOT_ENABLED, "All addresses could not be enabled" },
  95         { IPADM_NDPD_NOT_RUNNING, "IPv6 autoconf daemon in.ndpd not running" },
  96         { IPADM_DHCP_START_ERROR, "Could not start dhcpagent" },
  97         { IPADM_DHCP_IPC_ERROR, "Could not communicate with dhcpagent" },
  98         { IPADM_DHCP_IPC_TIMEOUT, "Communication with dhcpagent timed out" },
  99         { IPADM_TEMPORARY_OBJ,  "Persistent operation on temporary object" },
 100         { IPADM_IPC_ERROR,      "Could not communicate with ipmgmtd" },
 101         { IPADM_NOTSUP,         "Operation not supported" },
 102         { IPADM_OP_DISABLE_OBJ, "Operation not supported on disabled object" },
 103         { IPADM_EBADE,          "Invalid data exchange with daemon" },
 104         { IPADM_GZ_PERM,        "Operation not permitted on from-gz interface"}
 105 };
 106 
 107 #define IPADM_NUM_ERRORS        (sizeof (ipadm_errors) / sizeof (*ipadm_errors))
 108 
 109 ipadm_status_t
 110 ipadm_errno2status(int error)
 111 {
 112         switch (error) {
 113         case 0:
 114                 return (IPADM_SUCCESS);
 115         case ENXIO:
 116                 return (IPADM_ENXIO);
 117         case ENOMEM:
 118                 return (IPADM_NO_MEMORY);
 119         case ENOBUFS:
 120                 return (IPADM_NO_BUFS);
 121         case EINVAL:
 122                 return (IPADM_INVALID_ARG);
 123         case EBUSY:
 124                 return (IPADM_IF_INUSE);
 125         case EEXIST:
 126                 return (IPADM_EXISTS);
 127         case EADDRNOTAVAIL:
 128                 return (IPADM_ADDR_NOTAVAIL);
 129         case EADDRINUSE:
 130                 return (IPADM_ADDR_INUSE);
 131         case ENOENT:
 132                 return (IPADM_NOTFOUND);
 133         case ERANGE:
 134                 return (IPADM_ERANGE);
 135         case EPERM:
 136                 return (IPADM_EPERM);
 137         case ENOTSUP:
 138         case EOPNOTSUPP:
 139                 return (IPADM_NOTSUP);
 140         case EBADF:
 141                 return (IPADM_IPC_ERROR);
 142         case EBADE:
 143                 return (IPADM_EBADE);
 144         case ESRCH:
 145                 return (IPADM_ESRCH);
 146         case EOVERFLOW:
 147                 return (IPADM_EOVERFLOW);
 148         default:
 149                 return (IPADM_FAILURE);
 150         }
 151 }
 152 
 153 /*
 154  * Returns a message string for the given libipadm error status.
 155  */
 156 const char *
 157 ipadm_status2str(ipadm_status_t status)
 158 {
 159         int     i;
 160 
 161         for (i = 0; i < IPADM_NUM_ERRORS; i++) {
 162                 if (status == ipadm_errors[i].error_code)
 163                         return (dgettext(TEXT_DOMAIN,
 164                             ipadm_errors[i].error_desc));
 165         }
 166 
 167         return (dgettext(TEXT_DOMAIN, "<unknown error>"));
 168 }
 169 
 170 /*
 171  * Opens a handle to libipadm.
 172  * Possible values for flags:
 173  *  IPH_VRRP:   Used by VRRP daemon to set the socket option SO_VRRP.
 174  *  IPH_LEGACY: This is used whenever an application needs to provide a
 175  *              logical interface name while creating or deleting
 176  *              interfaces and static addresses.
 177  *  IPH_INIT:   Used by ipadm_init_prop(), to initialize protocol properties
 178  *              on reboot.
 179  */
 180 ipadm_status_t
 181 ipadm_open(ipadm_handle_t *handle, uint32_t flags)
 182 {
 183         ipadm_handle_t  iph;
 184         ipadm_status_t  status = IPADM_SUCCESS;
 185         zoneid_t        zoneid;
 186         ushort_t        zflags;
 187         int             on = B_TRUE;
 188 
 189         if (handle == NULL)
 190                 return (IPADM_INVALID_ARG);
 191         *handle = NULL;
 192 
 193         if (flags & ~(IPH_VRRP|IPH_LEGACY|IPH_INIT|IPH_IPMGMTD))
 194                 return (IPADM_INVALID_ARG);
 195 
 196         if ((iph = calloc(1, sizeof (struct ipadm_handle))) == NULL)
 197                 return (IPADM_NO_MEMORY);
 198         iph->iph_sock = -1;
 199         iph->iph_sock6 = -1;
 200         iph->iph_door_fd = -1;
 201         iph->iph_rtsock = -1;
 202         iph->iph_flags = flags;
 203         (void) pthread_mutex_init(&iph->iph_lock, NULL);
 204 
 205         if ((iph->iph_sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0 ||
 206             (iph->iph_sock6 = socket(AF_INET6, SOCK_DGRAM, 0)) < 0) {
 207                 goto errnofail;
 208         }
 209 
 210         /*
 211          * We open a handle to libdladm here, to facilitate some daemons (like
 212          * nwamd) which opens handle to libipadm before devfsadmd installs the
 213          * right device permissions into the kernel and requires "all"
 214          * privileges to open DLD_CONTROL_DEV.
 215          *
 216          * In a non-global shared-ip zone there will be no DLD_CONTROL_DEV node
 217          * and dladm_open() will fail. So, we avoid this by not calling
 218          * dladm_open() for such zones.
 219          */
 220         zoneid = getzoneid();
 221         iph->iph_zoneid = zoneid;
 222         if (zoneid != GLOBAL_ZONEID) {
 223                 if (zone_getattr(zoneid, ZONE_ATTR_FLAGS, &zflags,
 224                     sizeof (zflags)) < 0) {
 225                         goto errnofail;
 226                 }
 227         }
 228         if ((zoneid == GLOBAL_ZONEID) || (zflags & ZF_NET_EXCL)) {
 229                 if (dladm_open(&iph->iph_dlh) != DLADM_STATUS_OK) {
 230                         ipadm_close(iph);
 231                         return (IPADM_DLADM_FAILURE);
 232                 }
 233                 if (zoneid != GLOBAL_ZONEID) {
 234                         iph->iph_rtsock = socket(PF_ROUTE, SOCK_RAW, 0);
 235                         /*
 236                          * Failure to open rtsock is ignored as this is
 237                          * only used in non-global zones to initialize
 238                          * routing socket information.
 239                          */
 240                 }
 241         } else {
 242                 assert(zoneid != GLOBAL_ZONEID);
 243                 iph->iph_dlh = NULL;
 244         }
 245         if (flags & IPH_VRRP) {
 246                 if (setsockopt(iph->iph_sock6, SOL_SOCKET, SO_VRRP, &on,
 247                     sizeof (on)) < 0 || setsockopt(iph->iph_sock, SOL_SOCKET,
 248                     SO_VRRP, &on, sizeof (on)) < 0) {
 249                         goto errnofail;
 250                 }
 251         }
 252         *handle = iph;
 253         return (status);
 254 
 255 errnofail:
 256         status = ipadm_errno2status(errno);
 257         ipadm_close(iph);
 258         return (status);
 259 }
 260 
 261 /*
 262  * Closes and frees the libipadm handle.
 263  */
 264 void
 265 ipadm_close(ipadm_handle_t iph)
 266 {
 267         if (iph == NULL)
 268                 return;
 269         if (iph->iph_sock != -1)
 270                 (void) close(iph->iph_sock);
 271         if (iph->iph_sock6 != -1)
 272                 (void) close(iph->iph_sock6);
 273         if (iph->iph_rtsock != -1)
 274                 (void) close(iph->iph_rtsock);
 275         if (iph->iph_door_fd != -1)
 276                 (void) close(iph->iph_door_fd);
 277         dladm_close(iph->iph_dlh);
 278         (void) pthread_mutex_destroy(&iph->iph_lock);
 279         free(iph);
 280 }
 281 
 282 /*
 283  * Checks if the caller has the authorization to configure network
 284  * interfaces.
 285  */
 286 boolean_t
 287 ipadm_check_auth(void)
 288 {
 289         int             uid;
 290         struct passwd   pwd;
 291         char            buf[NSS_BUFLEN_PASSWD];
 292 
 293         /*
 294          * Branded zones may have different kinds of auth, but root always
 295          * allowed.
 296          */
 297         if ((uid = getuid()) == 0)
 298                 return (B_TRUE);
 299 
 300         /* get the password entry for the given user ID */
 301         if (getpwuid_r(uid, &pwd, buf, sizeof (buf)) == NULL)
 302                 return (B_FALSE);
 303 
 304         /* check for presence of given authorization */
 305         return (chkauthattr(NETWORK_INTERFACE_CONFIG_AUTH, pwd.pw_name) != 0);
 306 }
 307 
 308 /*
 309  * Stores the index value of the interface in `ifname' for the address
 310  * family `af' into the buffer pointed to by `index'.
 311  */
 312 static ipadm_status_t
 313 i_ipadm_get_index(ipadm_handle_t iph, const char *ifname, sa_family_t af,
 314     int *index)
 315 {
 316         struct lifreq   lifr;
 317         int             sock;
 318 
 319         bzero(&lifr, sizeof (lifr));
 320         (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
 321         if (af == AF_INET)
 322                 sock = iph->iph_sock;
 323         else
 324                 sock = iph->iph_sock6;
 325 
 326         if (ioctl(sock, SIOCGLIFINDEX, (caddr_t)&lifr) < 0)
 327                 return (ipadm_errno2status(errno));
 328         *index = lifr.lifr_index;
 329 
 330         return (IPADM_SUCCESS);
 331 }
 332 
 333 /*
 334  * Maximum amount of time (in milliseconds) to wait for Duplicate Address
 335  * Detection to complete in the kernel.
 336  */
 337 #define DAD_WAIT_TIME           1000
 338 
 339 /*
 340  * Any time that flags are changed on an interface where either the new or the
 341  * existing flags have IFF_UP set, we'll get a RTM_NEWADDR message to
 342  * announce the new address added and its flag status.
 343  * We wait here for that message and look for IFF_UP.
 344  * If something's amiss with the kernel, though, we don't wait forever.
 345  * (Note that IFF_DUPLICATE is a high-order bit, and we cannot see
 346  * it in the routing socket messages.)
 347  */
 348 static ipadm_status_t
 349 i_ipadm_dad_wait(ipadm_handle_t handle, const char *lifname, sa_family_t af,
 350     int rtsock)
 351 {
 352         struct pollfd   fds[1];
 353         union {
 354                 struct if_msghdr ifm;
 355                 char buf[1024];
 356         } msg;
 357         int             index;
 358         ipadm_status_t  retv;
 359         uint64_t        flags;
 360         hrtime_t        starttime, now;
 361 
 362         fds[0].fd = rtsock;
 363         fds[0].events = POLLIN;
 364         fds[0].revents = 0;
 365 
 366         retv = i_ipadm_get_index(handle, lifname, af, &index);
 367         if (retv != IPADM_SUCCESS)
 368                 return (retv);
 369 
 370         starttime = gethrtime();
 371         for (;;) {
 372                 now = gethrtime();
 373                 now = (now - starttime) / 1000000;
 374                 if (now >= DAD_WAIT_TIME)
 375                         break;
 376                 if (poll(fds, 1, DAD_WAIT_TIME - (int)now) <= 0)
 377                         break;
 378                 if (read(rtsock, &msg, sizeof (msg)) <= 0)
 379                         break;
 380                 if (msg.ifm.ifm_type != RTM_NEWADDR)
 381                         continue;
 382                 /* Note that ifm_index is just 16 bits */
 383                 if (index == msg.ifm.ifm_index && (msg.ifm.ifm_flags & IFF_UP))
 384                         return (IPADM_SUCCESS);
 385         }
 386 
 387         retv = i_ipadm_get_flags(handle, lifname, af, &flags);
 388         if (retv != IPADM_SUCCESS)
 389                 return (retv);
 390         if (flags & IFF_DUPLICATE)
 391                 return (IPADM_DAD_FOUND);
 392 
 393         return (IPADM_SUCCESS);
 394 }
 395 
 396 /*
 397  * Sets the flags `on_flags' and resets the flags `off_flags' for the logical
 398  * interface in `lifname'.
 399  *
 400  * If the new flags value will transition the interface from "down" to "up"
 401  * then duplicate address detection is performed by the kernel.  This routine
 402  * waits to get the outcome of that test.
 403  */
 404 ipadm_status_t
 405 i_ipadm_set_flags(ipadm_handle_t iph, const char *lifname, sa_family_t af,
 406     uint64_t on_flags, uint64_t off_flags)
 407 {
 408         struct lifreq   lifr;
 409         uint64_t        oflags;
 410         ipadm_status_t  ret;
 411         int             rtsock = -1;
 412         int             sock, err;
 413 
 414         ret = i_ipadm_get_flags(iph, lifname, af, &oflags);
 415         if (ret != IPADM_SUCCESS)
 416                 return (ret);
 417 
 418         sock = (af == AF_INET ? iph->iph_sock : iph->iph_sock6);
 419 
 420         /*
 421          * Any time flags are changed on an interface that has IFF_UP set,
 422          * we get a routing socket message.  We care about the status,
 423          * though, only when the new flags are marked "up."
 424          */
 425         if (!(oflags & IFF_UP) && (on_flags & IFF_UP))
 426                 rtsock = socket(PF_ROUTE, SOCK_RAW, af);
 427 
 428         oflags |= on_flags;
 429         oflags &= ~off_flags;
 430         bzero(&lifr, sizeof (lifr));
 431         (void) strlcpy(lifr.lifr_name, lifname, sizeof (lifr.lifr_name));
 432         lifr.lifr_flags = oflags;
 433         if (ioctl(sock, SIOCSLIFFLAGS, (caddr_t)&lifr) < 0) {
 434                 err = errno;
 435                 if (rtsock != -1)
 436                         (void) close(rtsock);
 437                 return (ipadm_errno2status(err));
 438         }
 439         if (rtsock == -1) {
 440                 return (IPADM_SUCCESS);
 441         } else {
 442                 /* Wait for DAD to complete. */
 443                 ret = i_ipadm_dad_wait(iph, lifname, af, rtsock);
 444                 (void) close(rtsock);
 445                 return (ret);
 446         }
 447 }
 448 
 449 /*
 450  * Returns the flags value for the logical interface in `lifname'
 451  * in the buffer pointed to by `flags'.
 452  */
 453 ipadm_status_t
 454 i_ipadm_get_flags(ipadm_handle_t iph, const char *lifname, sa_family_t af,
 455     uint64_t *flags)
 456 {
 457         struct lifreq   lifr;
 458         int             sock;
 459 
 460         bzero(&lifr, sizeof (lifr));
 461         (void) strlcpy(lifr.lifr_name, lifname, sizeof (lifr.lifr_name));
 462         if (af == AF_INET)
 463                 sock = iph->iph_sock;
 464         else
 465                 sock = iph->iph_sock6;
 466 
 467         if (ioctl(sock, SIOCGLIFFLAGS, (caddr_t)&lifr) < 0) {
 468                 return (ipadm_errno2status(errno));
 469         }
 470         *flags = lifr.lifr_flags;
 471 
 472         return (IPADM_SUCCESS);
 473 }
 474 
 475 /*
 476  * Determines whether or not an interface name represents a loopback
 477  * interface, before the interface has been plumbed.
 478  * It is assumed that the interface name in `ifname' is of correct format
 479  * as verified by ifparse_ifspec().
 480  *
 481  * Returns: B_TRUE if loopback, B_FALSE if not.
 482  */
 483 boolean_t
 484 i_ipadm_is_loopback(const char *ifname)
 485 {
 486         int len = strlen(LOOPBACK_IF);
 487 
 488         return (strncmp(ifname, LOOPBACK_IF, len) == 0 &&
 489             (ifname[len] == '\0' || ifname[len] == IPADM_LOGICAL_SEP));
 490 }
 491 
 492 /*
 493  * Determines whether or not an interface name represents a vni
 494  * interface, before the interface has been plumbed.
 495  * It is assumed that the interface name in `ifname' is of correct format
 496  * as verified by ifparse_ifspec().
 497  *
 498  * Returns: B_TRUE if vni, B_FALSE if not.
 499  */
 500 boolean_t
 501 i_ipadm_is_vni(const char *ifname)
 502 {
 503         ifspec_t        ifsp;
 504 
 505         return (ifparse_ifspec(ifname, &ifsp) &&
 506             strcmp(ifsp.ifsp_devnm, "vni") == 0);
 507 }
 508 
 509 /*
 510  * Returns B_TRUE if `ifname' is an IP interface on a 6to4 tunnel.
 511  */
 512 boolean_t
 513 i_ipadm_is_6to4(ipadm_handle_t iph, char *ifname)
 514 {
 515         dladm_status_t          dlstatus;
 516         datalink_class_t        class;
 517         iptun_params_t          params;
 518         datalink_id_t           linkid;
 519 
 520         if (iph->iph_dlh == NULL) {
 521                 assert(iph->iph_zoneid != GLOBAL_ZONEID);
 522                 return (B_FALSE);
 523         }
 524         dlstatus = dladm_name2info(iph->iph_dlh, ifname, &linkid, NULL,
 525             &class, NULL);
 526         if (dlstatus == DLADM_STATUS_OK && class == DATALINK_CLASS_IPTUN) {
 527                 params.iptun_param_linkid = linkid;
 528                 dlstatus = dladm_iptun_getparams(iph->iph_dlh, &params,
 529                     DLADM_OPT_ACTIVE);
 530                 if (dlstatus == DLADM_STATUS_OK &&
 531                     params.iptun_param_type == IPTUN_TYPE_6TO4) {
 532                         return (B_TRUE);
 533                 }
 534         }
 535         return (B_FALSE);
 536 }
 537 
 538 /*
 539  * Returns B_TRUE if `ifname' represents an IPMP underlying interface.
 540  */
 541 boolean_t
 542 i_ipadm_is_under_ipmp(ipadm_handle_t iph, const char *ifname)
 543 {
 544         struct lifreq   lifr;
 545 
 546         (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
 547         if (ioctl(iph->iph_sock, SIOCGLIFGROUPNAME, (caddr_t)&lifr) < 0) {
 548                 if (ioctl(iph->iph_sock6, SIOCGLIFGROUPNAME,
 549                     (caddr_t)&lifr) < 0) {
 550                         return (B_FALSE);
 551                 }
 552         }
 553         return (lifr.lifr_groupname[0] != '\0');
 554 }
 555 
 556 /*
 557  * Returns B_TRUE if `ifname' represents an IPMP meta-interface.
 558  */
 559 boolean_t
 560 i_ipadm_is_ipmp(ipadm_handle_t iph, const char *ifname)
 561 {
 562         uint64_t flags;
 563 
 564         if (i_ipadm_get_flags(iph, ifname, AF_INET, &flags) != IPADM_SUCCESS &&
 565             i_ipadm_get_flags(iph, ifname, AF_INET6, &flags) != IPADM_SUCCESS)
 566                 return (B_FALSE);
 567 
 568         return ((flags & IFF_IPMP) != 0);
 569 }
 570 
 571 /*
 572  * For a given interface name, ipadm_if_enabled() checks if v4
 573  * or v6 or both IP interfaces exist in the active configuration.
 574  */
 575 boolean_t
 576 ipadm_if_enabled(ipadm_handle_t iph, const char *ifname, sa_family_t af)
 577 {
 578         struct lifreq   lifr;
 579         int             s4 = iph->iph_sock;
 580         int             s6 = iph->iph_sock6;
 581 
 582         bzero(&lifr, sizeof (lifr));
 583         (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
 584         switch (af) {
 585         case AF_INET:
 586                 if (ioctl(s4, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0)
 587                         return (B_TRUE);
 588                 break;
 589         case AF_INET6:
 590                 if (ioctl(s6, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0)
 591                         return (B_TRUE);
 592                 break;
 593         case AF_UNSPEC:
 594                 if (ioctl(s4, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0 ||
 595                     ioctl(s6, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0) {
 596                         return (B_TRUE);
 597                 }
 598         }
 599         return (B_FALSE);
 600 }
 601 
 602 /*
 603  * Apply the interface property by retrieving information from nvl.
 604  */
 605 static ipadm_status_t
 606 i_ipadm_init_ifprop(ipadm_handle_t iph, nvlist_t *nvl)
 607 {
 608         nvpair_t        *nvp;
 609         char            *name, *pname = NULL;
 610         char            *protostr = NULL, *ifname = NULL, *pval = NULL;
 611         uint_t          proto;
 612         int             err = 0;
 613 
 614         for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
 615             nvp = nvlist_next_nvpair(nvl, nvp)) {
 616                 name = nvpair_name(nvp);
 617                 if (strcmp(name, IPADM_NVP_IFNAME) == 0) {
 618                         if ((err = nvpair_value_string(nvp, &ifname)) != 0)
 619                                 break;
 620                 } else if (strcmp(name, IPADM_NVP_PROTONAME) == 0) {
 621                         if ((err = nvpair_value_string(nvp, &protostr)) != 0)
 622                                 break;
 623                 } else {
 624                         assert(!IPADM_PRIV_NVP(name));
 625                         pname = name;
 626                         if ((err = nvpair_value_string(nvp, &pval)) != 0)
 627                                 break;
 628                 }
 629         }
 630         if (err != 0)
 631                 return (ipadm_errno2status(err));
 632         proto = ipadm_str2proto(protostr);
 633         return (ipadm_set_ifprop(iph, ifname, pname, pval, proto,
 634             IPADM_OPT_ACTIVE));
 635 }
 636 
 637 /*
 638  * Instantiate the address object or set the address object property by
 639  * retrieving the configuration from the nvlist `nvl'.
 640  */
 641 ipadm_status_t
 642 i_ipadm_init_addrobj(ipadm_handle_t iph, nvlist_t *nvl)
 643 {
 644         nvpair_t        *nvp;
 645         char            *name;
 646         char            *aobjname = NULL, *pval = NULL, *ifname = NULL;
 647         sa_family_t     af = AF_UNSPEC;
 648         ipadm_addr_type_t atype = IPADM_ADDR_NONE;
 649         int             err = 0;
 650         ipadm_status_t  status = IPADM_SUCCESS;
 651 
 652         for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
 653             nvp = nvlist_next_nvpair(nvl, nvp)) {
 654                 name = nvpair_name(nvp);
 655                 if (strcmp(name, IPADM_NVP_IFNAME) == 0) {
 656                         if ((err = nvpair_value_string(nvp, &ifname)) != 0)
 657                                 break;
 658                 } else if (strcmp(name, IPADM_NVP_AOBJNAME) == 0) {
 659                         if ((err = nvpair_value_string(nvp, &aobjname)) != 0)
 660                                 break;
 661                 } else if (i_ipadm_name2atype(name, &af, &atype)) {
 662                         break;
 663                 } else {
 664                         assert(!IPADM_PRIV_NVP(name));
 665                         err = nvpair_value_string(nvp, &pval);
 666                         break;
 667                 }
 668         }
 669         if (err != 0)
 670                 return (ipadm_errno2status(err));
 671 
 672         switch (atype) {
 673         case IPADM_ADDR_STATIC:
 674                 status = i_ipadm_enable_static(iph, ifname, nvl, af);
 675                 break;
 676         case IPADM_ADDR_DHCP:
 677                 status = i_ipadm_enable_dhcp(iph, ifname, nvl);
 678                 if (status == IPADM_DHCP_IPC_TIMEOUT)
 679                         status = IPADM_SUCCESS;
 680                 break;
 681         case IPADM_ADDR_IPV6_ADDRCONF:
 682                 status = i_ipadm_enable_addrconf(iph, ifname, nvl);
 683                 break;
 684         case IPADM_ADDR_NONE:
 685                 status = ipadm_set_addrprop(iph, name, pval, aobjname,
 686                     IPADM_OPT_ACTIVE);
 687                 break;
 688         }
 689 
 690         return (status);
 691 }
 692 
 693 /*
 694  * Instantiate the interface object by retrieving the configuration from
 695  * `ifnvl'. The nvlist `ifnvl' contains all the persistent configuration
 696  * (interface properties and address objects on that interface) for the
 697  * given `ifname'.
 698  */
 699 ipadm_status_t
 700 i_ipadm_init_ifobj(ipadm_handle_t iph, const char *ifname, nvlist_t *ifnvl)
 701 {
 702         nvlist_t        *nvl = NULL;
 703         nvpair_t        *nvp;
 704         char            *afstr;
 705         ipadm_status_t  status;
 706         ipadm_status_t  ret_status = IPADM_SUCCESS;
 707         char            newifname[LIFNAMSIZ];
 708         char            *aobjstr;
 709         sa_family_t     af = AF_UNSPEC;
 710         boolean_t       is_ngz = (iph->iph_zoneid != GLOBAL_ZONEID);
 711 
 712         (void) strlcpy(newifname, ifname, sizeof (newifname));
 713         /*
 714          * First plumb the given interface and then apply all the persistent
 715          * interface properties and then instantiate any persistent addresses
 716          * objects on that interface.
 717          */
 718         for (nvp = nvlist_next_nvpair(ifnvl, NULL); nvp != NULL;
 719             nvp = nvlist_next_nvpair(ifnvl, nvp)) {
 720                 if (nvpair_value_nvlist(nvp, &nvl) != 0)
 721                         continue;
 722 
 723                 if (nvlist_lookup_string(nvl, IPADM_NVP_FAMILY, &afstr) == 0) {
 724                         status = i_ipadm_plumb_if(iph, newifname, atoi(afstr),
 725                             IPADM_OPT_ACTIVE);
 726                         /*
 727                          * If the interface is already plumbed, we should
 728                          * ignore this error because there might be address
 729                          * address objects on that interface that needs to
 730                          * be enabled again.
 731                          */
 732                         if (status == IPADM_IF_EXISTS)
 733                                 status = IPADM_SUCCESS;
 734 
 735                         if (is_ngz)
 736                                 af = atoi(afstr);
 737                 } else if (nvlist_lookup_string(nvl, IPADM_NVP_AOBJNAME,
 738                     &aobjstr) == 0) {
 739                         /*
 740                          * For a static address, we need to search for
 741                          * the prefixlen in the nvlist `ifnvl'.
 742                          */
 743                         if (nvlist_exists(nvl, IPADM_NVP_IPV4ADDR) ||
 744                             nvlist_exists(nvl, IPADM_NVP_IPV6ADDR)) {
 745                                 status = i_ipadm_merge_prefixlen_from_nvl(ifnvl,
 746                                     nvl, aobjstr);
 747                                 if (status != IPADM_SUCCESS)
 748                                         continue;
 749                         }
 750                         status = i_ipadm_init_addrobj(iph, nvl);
 751                         /*
 752                          * If this address is in use on some other interface,
 753                          * we want to record an error to be returned as
 754                          * a soft error and continue processing the rest of
 755                          * the addresses.
 756                          */
 757                         if (status == IPADM_ADDR_NOTAVAIL) {
 758                                 ret_status = IPADM_ALL_ADDRS_NOT_ENABLED;
 759                                 status = IPADM_SUCCESS;
 760                         }
 761                 } else {
 762                         assert(nvlist_exists(nvl, IPADM_NVP_PROTONAME));
 763                         status = i_ipadm_init_ifprop(iph, nvl);
 764                 }
 765                 if (status != IPADM_SUCCESS)
 766                         return (status);
 767         }
 768 
 769         if (is_ngz && af != AF_UNSPEC)
 770                 ret_status = ipadm_init_net_from_gz(iph, newifname, NULL);
 771         return (ret_status);
 772 }
 773 
 774 /*
 775  * Retrieves the persistent configuration for the given interface(s) in `ifs'
 776  * by contacting the daemon and dumps the information in `allifs'.
 777  */
 778 ipadm_status_t
 779 i_ipadm_init_ifs(ipadm_handle_t iph, const char *ifs, nvlist_t **allifs)
 780 {
 781         nvlist_t                *nvl = NULL;
 782         size_t                  nvlsize, bufsize;
 783         ipmgmt_initif_arg_t     *iargp;
 784         char                    *buf = NULL, *nvlbuf = NULL;
 785         ipmgmt_get_rval_t       *rvalp = NULL;
 786         int                     err;
 787         ipadm_status_t          status = IPADM_SUCCESS;
 788 
 789         if ((err = ipadm_str2nvlist(ifs, &nvl, IPADM_NORVAL)) != 0)
 790                 return (ipadm_errno2status(err));
 791 
 792         err = nvlist_pack(nvl, &nvlbuf, &nvlsize, NV_ENCODE_NATIVE, 0);
 793         if (err != 0) {
 794                 status = ipadm_errno2status(err);
 795                 goto done;
 796         }
 797         bufsize = sizeof (*iargp) + nvlsize;
 798         if ((buf = malloc(bufsize)) == NULL) {
 799                 status = ipadm_errno2status(errno);
 800                 goto done;
 801         }
 802 
 803         /* populate the door_call argument structure */
 804         iargp = (void *)buf;
 805         iargp->ia_cmd = IPMGMT_CMD_INITIF;
 806         iargp->ia_flags = 0;
 807         iargp->ia_family = AF_UNSPEC;
 808         iargp->ia_nvlsize = nvlsize;
 809         (void) bcopy(nvlbuf, buf + sizeof (*iargp), nvlsize);
 810 
 811         if ((rvalp = malloc(sizeof (ipmgmt_get_rval_t))) == NULL) {
 812                 status = ipadm_errno2status(errno);
 813                 goto done;
 814         }
 815         if ((err = ipadm_door_call(iph, iargp, bufsize, (void **)&rvalp,
 816             sizeof (*rvalp), B_TRUE)) != 0) {
 817                 status = ipadm_errno2status(err);
 818                 goto done;
 819         }
 820 
 821         /*
 822          * Daemon reply pointed to by rvalp contains ipmgmt_get_rval_t structure
 823          * followed by a list of packed nvlists, each of which represents
 824          * configuration information for the given interface(s).
 825          */
 826         err = nvlist_unpack((char *)rvalp + sizeof (ipmgmt_get_rval_t),
 827             rvalp->ir_nvlsize, allifs, NV_ENCODE_NATIVE);
 828         if (err != 0)
 829                 status = ipadm_errno2status(err);
 830 done:
 831         nvlist_free(nvl);
 832         free(buf);
 833         free(nvlbuf);
 834         free(rvalp);
 835         return (status);
 836 }
 837 
 838 /*
 839  * Returns B_FALSE if
 840  * (1) `ifname' is NULL or has no string or has a string of invalid length
 841  * (2) ifname is a logical interface and IPH_LEGACY is not set, or
 842  */
 843 boolean_t
 844 i_ipadm_validate_ifname(ipadm_handle_t iph, const char *ifname)
 845 {
 846         ifspec_t ifsp;
 847 
 848         if (ifname == NULL || ifname[0] == '\0' ||
 849             !ifparse_ifspec(ifname, &ifsp))
 850                 return (B_FALSE);
 851         if (ifsp.ifsp_lunvalid)
 852                 return (ifsp.ifsp_lun > 0 && (iph->iph_flags & IPH_LEGACY));
 853         return (B_TRUE);
 854 }
 855 
 856 /*
 857  * Wrapper for sending a non-transparent I_STR ioctl().
 858  * Returns: Result from ioctl().
 859  */
 860 int
 861 i_ipadm_strioctl(int s, int cmd, char *buf, int buflen)
 862 {
 863         struct strioctl ioc;
 864 
 865         (void) memset(&ioc, 0, sizeof (ioc));
 866         ioc.ic_cmd = cmd;
 867         ioc.ic_timout = 0;
 868         ioc.ic_len = buflen;
 869         ioc.ic_dp = buf;
 870 
 871         return (ioctl(s, I_STR, (char *)&ioc));
 872 }
 873 
 874 /*
 875  * Make a door call to the server and checks if the door call succeeded or not.
 876  * `is_varsize' specifies that the data returned by ipmgmtd daemon is of
 877  * variable size and door will allocate buffer using mmap(). In such cases
 878  * we re-allocate the required memory,n assign it to `rbufp', copy the data to
 879  * `rbufp' and then call munmap() (see below).
 880  *
 881  * It also checks to see if the server side procedure ran successfully by
 882  * checking for ir_err. Therefore, for some callers who just care about the
 883  * return status can set `rbufp' to NULL and set `rsize' to 0.
 884  */
 885 int
 886 ipadm_door_call(ipadm_handle_t iph, void *arg, size_t asize, void **rbufp,
 887     size_t rsize, boolean_t is_varsize)
 888 {
 889         door_arg_t      darg;
 890         int             err;
 891         ipmgmt_retval_t rval, *rvalp;
 892         boolean_t       reopen = B_FALSE;
 893 
 894         if (rbufp == NULL) {
 895                 rvalp = &rval;
 896                 rbufp = (void **)&rvalp;
 897                 rsize = sizeof (rval);
 898         }
 899 
 900         darg.data_ptr = arg;
 901         darg.data_size = asize;
 902         darg.desc_ptr = NULL;
 903         darg.desc_num = 0;
 904         darg.rbuf = *rbufp;
 905         darg.rsize = rsize;
 906 
 907 reopen:
 908         (void) pthread_mutex_lock(&iph->iph_lock);
 909         /*
 910          * The door descriptor is opened if it isn't already.
 911          */
 912         if (iph->iph_door_fd == -1) {
 913                 char door[MAXPATHLEN];
 914                 const char *zroot = zone_get_nroot();
 915 
 916                 /*
 917                  * If this is a branded zone, make sure we use the "/native"
 918                  * prefix for the door path:
 919                  */
 920                 (void) snprintf(door, sizeof (door), "%s%s", zroot != NULL ?
 921                     zroot : "", IPMGMT_DOOR);
 922 
 923                 if ((iph->iph_door_fd = open(door, O_RDONLY)) < 0) {
 924                         err = errno;
 925                         (void) pthread_mutex_unlock(&iph->iph_lock);
 926                         return (err);
 927                 }
 928         }
 929         (void) pthread_mutex_unlock(&iph->iph_lock);
 930 
 931         if (door_call(iph->iph_door_fd, &darg) == -1) {
 932                 /*
 933                  * Stale door descriptor is possible if ipmgmtd was restarted
 934                  * since last iph_door_fd was opened, so try re-opening door
 935                  * descriptor.
 936                  */
 937                 if (!reopen && errno == EBADF) {
 938                         (void) close(iph->iph_door_fd);
 939                         iph->iph_door_fd = -1;
 940                         reopen = B_TRUE;
 941                         goto reopen;
 942                 }
 943                 return (errno);
 944         }
 945         err = ((ipmgmt_retval_t *)(void *)(darg.rbuf))->ir_err;
 946         if (darg.rbuf != *rbufp) {
 947                 /*
 948                  * if the caller is expecting the result to fit in specified
 949                  * buffer then return failure.
 950                  */
 951                 if (!is_varsize)
 952                         err = EBADE;
 953                 /*
 954                  * The size of the buffer `*rbufp' was not big enough
 955                  * and the door itself allocated buffer, for us. We will
 956                  * hit this, on several occasion as for some cases
 957                  * we cannot predict the size of the return structure.
 958                  * Reallocate the buffer `*rbufp' and memcpy() the contents
 959                  * to new buffer.
 960                  */
 961                 if (err == 0) {
 962                         void *newp;
 963 
 964                         /* allocated memory will be freed by the caller */
 965                         if ((newp = realloc(*rbufp, darg.rsize)) == NULL) {
 966                                 err = ENOMEM;
 967                         } else {
 968                                 *rbufp = newp;
 969                                 (void) memcpy(*rbufp, darg.rbuf, darg.rsize);
 970                         }
 971                 }
 972                 /* munmap() the door buffer */
 973                 (void) munmap(darg.rbuf, darg.rsize);
 974         } else {
 975                 if (darg.rsize != rsize)
 976                         err = EBADE;
 977         }
 978         return (err);
 979 }