1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2007-2012 Intel Corporation. All rights reserved.
  24  */
  25 
  26 /*
  27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
  28  * Copyright 2013, Nexenta Systems, Inc. All rights reserved.
  29  */
  30 
  31 #include "igb_sw.h"
  32 
  33 static char ident[] = "Intel 1Gb Ethernet";
  34 static char igb_version[] = "igb 1.1.18";
  35 
  36 /*
  37  * Local function protoypes
  38  */
  39 static int igb_register_mac(igb_t *);
  40 static int igb_identify_hardware(igb_t *);
  41 static int igb_regs_map(igb_t *);
  42 static void igb_init_properties(igb_t *);
  43 static int igb_init_driver_settings(igb_t *);
  44 static void igb_init_locks(igb_t *);
  45 static void igb_destroy_locks(igb_t *);
  46 static int igb_init_mac_address(igb_t *);
  47 static int igb_init(igb_t *);
  48 static int igb_init_adapter(igb_t *);
  49 static void igb_stop_adapter(igb_t *);
  50 static int igb_reset(igb_t *);
  51 static void igb_tx_clean(igb_t *);
  52 static boolean_t igb_tx_drain(igb_t *);
  53 static boolean_t igb_rx_drain(igb_t *);
  54 static int igb_alloc_rings(igb_t *);
  55 static int igb_alloc_rx_data(igb_t *);
  56 static void igb_free_rx_data(igb_t *);
  57 static void igb_free_rings(igb_t *);
  58 static void igb_setup_rings(igb_t *);
  59 static void igb_setup_rx(igb_t *);
  60 static void igb_setup_tx(igb_t *);
  61 static void igb_setup_rx_ring(igb_rx_ring_t *);
  62 static void igb_setup_tx_ring(igb_tx_ring_t *);
  63 static void igb_setup_rss(igb_t *);
  64 static void igb_setup_mac_rss_classify(igb_t *);
  65 static void igb_setup_mac_classify(igb_t *);
  66 static void igb_init_unicst(igb_t *);
  67 static void igb_setup_multicst(igb_t *);
  68 static void igb_get_phy_state(igb_t *);
  69 static void igb_param_sync(igb_t *);
  70 static void igb_get_conf(igb_t *);
  71 static int igb_get_prop(igb_t *, char *, int, int, int);
  72 static boolean_t igb_is_link_up(igb_t *);
  73 static boolean_t igb_link_check(igb_t *);
  74 static void igb_local_timer(void *);
  75 static void igb_link_timer(void *);
  76 static void igb_arm_watchdog_timer(igb_t *);
  77 static void igb_start_watchdog_timer(igb_t *);
  78 static void igb_restart_watchdog_timer(igb_t *);
  79 static void igb_stop_watchdog_timer(igb_t *);
  80 static void igb_start_link_timer(igb_t *);
  81 static void igb_stop_link_timer(igb_t *);
  82 static void igb_disable_adapter_interrupts(igb_t *);
  83 static void igb_enable_adapter_interrupts_82575(igb_t *);
  84 static void igb_enable_adapter_interrupts_82576(igb_t *);
  85 static void igb_enable_adapter_interrupts_82580(igb_t *);
  86 static boolean_t is_valid_mac_addr(uint8_t *);
  87 static boolean_t igb_stall_check(igb_t *);
  88 static boolean_t igb_set_loopback_mode(igb_t *, uint32_t);
  89 static void igb_set_external_loopback(igb_t *);
  90 static void igb_set_internal_phy_loopback(igb_t *);
  91 static void igb_set_internal_serdes_loopback(igb_t *);
  92 static boolean_t igb_find_mac_address(igb_t *);
  93 static int igb_alloc_intrs(igb_t *);
  94 static int igb_alloc_intr_handles(igb_t *, int);
  95 static int igb_add_intr_handlers(igb_t *);
  96 static void igb_rem_intr_handlers(igb_t *);
  97 static void igb_rem_intrs(igb_t *);
  98 static int igb_enable_intrs(igb_t *);
  99 static int igb_disable_intrs(igb_t *);
 100 static void igb_setup_msix_82575(igb_t *);
 101 static void igb_setup_msix_82576(igb_t *);
 102 static void igb_setup_msix_82580(igb_t *);
 103 static uint_t igb_intr_legacy(void *, void *);
 104 static uint_t igb_intr_msi(void *, void *);
 105 static uint_t igb_intr_rx(void *, void *);
 106 static uint_t igb_intr_tx(void *, void *);
 107 static uint_t igb_intr_tx_other(void *, void *);
 108 static void igb_intr_rx_work(igb_rx_ring_t *);
 109 static void igb_intr_tx_work(igb_tx_ring_t *);
 110 static void igb_intr_link_work(igb_t *);
 111 static void igb_get_driver_control(struct e1000_hw *);
 112 static void igb_release_driver_control(struct e1000_hw *);
 113 
 114 static int igb_attach(dev_info_t *, ddi_attach_cmd_t);
 115 static int igb_detach(dev_info_t *, ddi_detach_cmd_t);
 116 static int igb_resume(dev_info_t *);
 117 static int igb_suspend(dev_info_t *);
 118 static int igb_quiesce(dev_info_t *);
 119 static void igb_unconfigure(dev_info_t *, igb_t *);
 120 static int igb_fm_error_cb(dev_info_t *, ddi_fm_error_t *,
 121     const void *);
 122 static void igb_fm_init(igb_t *);
 123 static void igb_fm_fini(igb_t *);
 124 static void igb_release_multicast(igb_t *);
 125 
 126 char *igb_priv_props[] = {
 127         "_eee_support",
 128         "_tx_copy_thresh",
 129         "_tx_recycle_thresh",
 130         "_tx_overload_thresh",
 131         "_tx_resched_thresh",
 132         "_rx_copy_thresh",
 133         "_rx_limit_per_intr",
 134         "_intr_throttling",
 135         "_adv_pause_cap",
 136         "_adv_asym_pause_cap",
 137         NULL
 138 };
 139 
 140 static struct cb_ops igb_cb_ops = {
 141         nulldev,                /* cb_open */
 142         nulldev,                /* cb_close */
 143         nodev,                  /* cb_strategy */
 144         nodev,                  /* cb_print */
 145         nodev,                  /* cb_dump */
 146         nodev,                  /* cb_read */
 147         nodev,                  /* cb_write */
 148         nodev,                  /* cb_ioctl */
 149         nodev,                  /* cb_devmap */
 150         nodev,                  /* cb_mmap */
 151         nodev,                  /* cb_segmap */
 152         nochpoll,               /* cb_chpoll */
 153         ddi_prop_op,            /* cb_prop_op */
 154         NULL,                   /* cb_stream */
 155         D_MP | D_HOTPLUG,       /* cb_flag */
 156         CB_REV,                 /* cb_rev */
 157         nodev,                  /* cb_aread */
 158         nodev                   /* cb_awrite */
 159 };
 160 
 161 static struct dev_ops igb_dev_ops = {
 162         DEVO_REV,               /* devo_rev */
 163         0,                      /* devo_refcnt */
 164         NULL,                   /* devo_getinfo */
 165         nulldev,                /* devo_identify */
 166         nulldev,                /* devo_probe */
 167         igb_attach,             /* devo_attach */
 168         igb_detach,             /* devo_detach */
 169         nodev,                  /* devo_reset */
 170         &igb_cb_ops,                /* devo_cb_ops */
 171         NULL,                   /* devo_bus_ops */
 172         ddi_power,              /* devo_power */
 173         igb_quiesce,    /* devo_quiesce */
 174 };
 175 
 176 static struct modldrv igb_modldrv = {
 177         &mod_driverops,             /* Type of module.  This one is a driver */
 178         ident,                  /* Discription string */
 179         &igb_dev_ops,               /* driver ops */
 180 };
 181 
 182 static struct modlinkage igb_modlinkage = {
 183         MODREV_1, &igb_modldrv, NULL
 184 };
 185 
 186 /* Access attributes for register mapping */
 187 ddi_device_acc_attr_t igb_regs_acc_attr = {
 188         DDI_DEVICE_ATTR_V1,
 189         DDI_STRUCTURE_LE_ACC,
 190         DDI_STRICTORDER_ACC,
 191         DDI_FLAGERR_ACC
 192 };
 193 
 194 #define IGB_M_CALLBACK_FLAGS \
 195         (MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
 196 
 197 static mac_callbacks_t igb_m_callbacks = {
 198         IGB_M_CALLBACK_FLAGS,
 199         igb_m_stat,
 200         igb_m_start,
 201         igb_m_stop,
 202         igb_m_promisc,
 203         igb_m_multicst,
 204         NULL,
 205         NULL,
 206         NULL,
 207         igb_m_ioctl,
 208         igb_m_getcapab,
 209         NULL,
 210         NULL,
 211         igb_m_setprop,
 212         igb_m_getprop,
 213         igb_m_propinfo
 214 };
 215 
 216 /*
 217  * Initialize capabilities of each supported adapter type
 218  */
 219 static adapter_info_t igb_82575_cap = {
 220         /* limits */
 221         4,              /* maximum number of rx queues */
 222         1,              /* minimum number of rx queues */
 223         4,              /* default number of rx queues */
 224         4,              /* maximum number of tx queues */
 225         1,              /* minimum number of tx queues */
 226         4,              /* default number of tx queues */
 227         65535,          /* maximum interrupt throttle rate */
 228         0,              /* minimum interrupt throttle rate */
 229         200,            /* default interrupt throttle rate */
 230 
 231         /* function pointers */
 232         igb_enable_adapter_interrupts_82575,
 233         igb_setup_msix_82575,
 234 
 235         /* capabilities */
 236         (IGB_FLAG_HAS_DCA |     /* capability flags */
 237         IGB_FLAG_VMDQ_POOL),
 238 
 239         0xffc00000              /* mask for RXDCTL register */
 240 };
 241 
 242 static adapter_info_t igb_82576_cap = {
 243         /* limits */
 244         16,             /* maximum number of rx queues */
 245         1,              /* minimum number of rx queues */
 246         4,              /* default number of rx queues */
 247         16,             /* maximum number of tx queues */
 248         1,              /* minimum number of tx queues */
 249         4,              /* default number of tx queues */
 250         65535,          /* maximum interrupt throttle rate */
 251         0,              /* minimum interrupt throttle rate */
 252         200,            /* default interrupt throttle rate */
 253 
 254         /* function pointers */
 255         igb_enable_adapter_interrupts_82576,
 256         igb_setup_msix_82576,
 257 
 258         /* capabilities */
 259         (IGB_FLAG_HAS_DCA |     /* capability flags */
 260         IGB_FLAG_VMDQ_POOL |
 261         IGB_FLAG_NEED_CTX_IDX),
 262 
 263         0xffe00000              /* mask for RXDCTL register */
 264 };
 265 
 266 static adapter_info_t igb_82580_cap = {
 267         /* limits */
 268         8,              /* maximum number of rx queues */
 269         1,              /* minimum number of rx queues */
 270         4,              /* default number of rx queues */
 271         8,              /* maximum number of tx queues */
 272         1,              /* minimum number of tx queues */
 273         4,              /* default number of tx queues */
 274         65535,          /* maximum interrupt throttle rate */
 275         0,              /* minimum interrupt throttle rate */
 276         200,            /* default interrupt throttle rate */
 277 
 278         /* function pointers */
 279         igb_enable_adapter_interrupts_82580,
 280         igb_setup_msix_82580,
 281 
 282         /* capabilities */
 283         (IGB_FLAG_HAS_DCA |     /* capability flags */
 284         IGB_FLAG_VMDQ_POOL |
 285         IGB_FLAG_NEED_CTX_IDX),
 286 
 287         0xffe00000              /* mask for RXDCTL register */
 288 };
 289 
 290 static adapter_info_t igb_i350_cap = {
 291         /* limits */
 292         8,              /* maximum number of rx queues */
 293         1,              /* minimum number of rx queues */
 294         4,              /* default number of rx queues */
 295         8,              /* maximum number of tx queues */
 296         1,              /* minimum number of tx queues */
 297         4,              /* default number of tx queues */
 298         65535,          /* maximum interrupt throttle rate */
 299         0,              /* minimum interrupt throttle rate */
 300         200,            /* default interrupt throttle rate */
 301 
 302         /* function pointers */
 303         igb_enable_adapter_interrupts_82580,
 304         igb_setup_msix_82580,
 305 
 306         /* capabilities */
 307         (IGB_FLAG_HAS_DCA |     /* capability flags */
 308         IGB_FLAG_VMDQ_POOL |
 309         IGB_FLAG_NEED_CTX_IDX),
 310 
 311         0xffe00000              /* mask for RXDCTL register */
 312 };
 313 
 314 /*
 315  * Module Initialization Functions
 316  */
 317 
 318 int
 319 _init(void)
 320 {
 321         int status;
 322 
 323         mac_init_ops(&igb_dev_ops, MODULE_NAME);
 324 
 325         status = mod_install(&igb_modlinkage);
 326 
 327         if (status != DDI_SUCCESS) {
 328                 mac_fini_ops(&igb_dev_ops);
 329         }
 330 
 331         return (status);
 332 }
 333 
 334 int
 335 _fini(void)
 336 {
 337         int status;
 338 
 339         status = mod_remove(&igb_modlinkage);
 340 
 341         if (status == DDI_SUCCESS) {
 342                 mac_fini_ops(&igb_dev_ops);
 343         }
 344 
 345         return (status);
 346 
 347 }
 348 
 349 int
 350 _info(struct modinfo *modinfop)
 351 {
 352         int status;
 353 
 354         status = mod_info(&igb_modlinkage, modinfop);
 355 
 356         return (status);
 357 }
 358 
 359 /*
 360  * igb_attach - driver attach
 361  *
 362  * This function is the device specific initialization entry
 363  * point. This entry point is required and must be written.
 364  * The DDI_ATTACH command must be provided in the attach entry
 365  * point. When attach() is called with cmd set to DDI_ATTACH,
 366  * all normal kernel services (such as kmem_alloc(9F)) are
 367  * available for use by the driver.
 368  *
 369  * The attach() function will be called once for each instance
 370  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
 371  * Until attach() succeeds, the only driver entry points which
 372  * may be called are open(9E) and getinfo(9E).
 373  */
 374 static int
 375 igb_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
 376 {
 377         igb_t *igb;
 378         struct igb_osdep *osdep;
 379         struct e1000_hw *hw;
 380         int instance;
 381 
 382         /*
 383          * Check the command and perform corresponding operations
 384          */
 385         switch (cmd) {
 386         default:
 387                 return (DDI_FAILURE);
 388 
 389         case DDI_RESUME:
 390                 return (igb_resume(devinfo));
 391 
 392         case DDI_ATTACH:
 393                 break;
 394         }
 395 
 396         /* Get the device instance */
 397         instance = ddi_get_instance(devinfo);
 398 
 399         /* Allocate memory for the instance data structure */
 400         igb = kmem_zalloc(sizeof (igb_t), KM_SLEEP);
 401 
 402         igb->dip = devinfo;
 403         igb->instance = instance;
 404 
 405         hw = &igb->hw;
 406         osdep = &igb->osdep;
 407         hw->back = osdep;
 408         osdep->igb = igb;
 409 
 410         /* Attach the instance pointer to the dev_info data structure */
 411         ddi_set_driver_private(devinfo, igb);
 412 
 413 
 414         /* Initialize for fma support */
 415         igb->fm_capabilities = igb_get_prop(igb, "fm-capable",
 416             0, 0x0f,
 417             DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
 418             DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
 419         igb_fm_init(igb);
 420         igb->attach_progress |= ATTACH_PROGRESS_FMINIT;
 421 
 422         /*
 423          * Map PCI config space registers
 424          */
 425         if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
 426                 igb_error(igb, "Failed to map PCI configurations");
 427                 goto attach_fail;
 428         }
 429         igb->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
 430 
 431         /*
 432          * Identify the chipset family
 433          */
 434         if (igb_identify_hardware(igb) != IGB_SUCCESS) {
 435                 igb_error(igb, "Failed to identify hardware");
 436                 goto attach_fail;
 437         }
 438 
 439         /*
 440          * Map device registers
 441          */
 442         if (igb_regs_map(igb) != IGB_SUCCESS) {
 443                 igb_error(igb, "Failed to map device registers");
 444                 goto attach_fail;
 445         }
 446         igb->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
 447 
 448         /*
 449          * Initialize driver parameters
 450          */
 451         igb_init_properties(igb);
 452         igb->attach_progress |= ATTACH_PROGRESS_PROPS;
 453 
 454         /*
 455          * Allocate interrupts
 456          */
 457         if (igb_alloc_intrs(igb) != IGB_SUCCESS) {
 458                 igb_error(igb, "Failed to allocate interrupts");
 459                 goto attach_fail;
 460         }
 461         igb->attach_progress |= ATTACH_PROGRESS_ALLOC_INTR;
 462 
 463         /*
 464          * Allocate rx/tx rings based on the ring numbers.
 465          * The actual numbers of rx/tx rings are decided by the number of
 466          * allocated interrupt vectors, so we should allocate the rings after
 467          * interrupts are allocated.
 468          */
 469         if (igb_alloc_rings(igb) != IGB_SUCCESS) {
 470                 igb_error(igb, "Failed to allocate rx/tx rings or groups");
 471                 goto attach_fail;
 472         }
 473         igb->attach_progress |= ATTACH_PROGRESS_ALLOC_RINGS;
 474 
 475         /*
 476          * Add interrupt handlers
 477          */
 478         if (igb_add_intr_handlers(igb) != IGB_SUCCESS) {
 479                 igb_error(igb, "Failed to add interrupt handlers");
 480                 goto attach_fail;
 481         }
 482         igb->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
 483 
 484         /*
 485          * Initialize driver parameters
 486          */
 487         if (igb_init_driver_settings(igb) != IGB_SUCCESS) {
 488                 igb_error(igb, "Failed to initialize driver settings");
 489                 goto attach_fail;
 490         }
 491 
 492         if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) {
 493                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
 494                 goto attach_fail;
 495         }
 496 
 497         /*
 498          * Initialize mutexes for this device.
 499          * Do this before enabling the interrupt handler and
 500          * register the softint to avoid the condition where
 501          * interrupt handler can try using uninitialized mutex
 502          */
 503         igb_init_locks(igb);
 504         igb->attach_progress |= ATTACH_PROGRESS_LOCKS;
 505 
 506         /*
 507          * Initialize the adapter
 508          */
 509         if (igb_init(igb) != IGB_SUCCESS) {
 510                 igb_error(igb, "Failed to initialize adapter");
 511                 goto attach_fail;
 512         }
 513         igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
 514 
 515         /*
 516          * Initialize statistics
 517          */
 518         if (igb_init_stats(igb) != IGB_SUCCESS) {
 519                 igb_error(igb, "Failed to initialize statistics");
 520                 goto attach_fail;
 521         }
 522         igb->attach_progress |= ATTACH_PROGRESS_STATS;
 523 
 524         /*
 525          * Register the driver to the MAC
 526          */
 527         if (igb_register_mac(igb) != IGB_SUCCESS) {
 528                 igb_error(igb, "Failed to register MAC");
 529                 goto attach_fail;
 530         }
 531         igb->attach_progress |= ATTACH_PROGRESS_MAC;
 532 
 533         /*
 534          * Now that mutex locks are initialized, and the chip is also
 535          * initialized, enable interrupts.
 536          */
 537         if (igb_enable_intrs(igb) != IGB_SUCCESS) {
 538                 igb_error(igb, "Failed to enable DDI interrupts");
 539                 goto attach_fail;
 540         }
 541         igb->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
 542 
 543         igb_log(igb, "%s", igb_version);
 544         atomic_or_32(&igb->igb_state, IGB_INITIALIZED);
 545 
 546         /*
 547          * Newer models have Energy Efficient Ethernet, let's disable this by
 548          * default.
 549          */
 550         if (igb->hw.mac.type == e1000_i350)
 551                 (void) e1000_set_eee_i350(&igb->hw);
 552 
 553         return (DDI_SUCCESS);
 554 
 555 attach_fail:
 556         igb_unconfigure(devinfo, igb);
 557         return (DDI_FAILURE);
 558 }
 559 
 560 /*
 561  * igb_detach - driver detach
 562  *
 563  * The detach() function is the complement of the attach routine.
 564  * If cmd is set to DDI_DETACH, detach() is used to remove  the
 565  * state  associated  with  a  given  instance of a device node
 566  * prior to the removal of that instance from the system.
 567  *
 568  * The detach() function will be called once for each  instance
 569  * of the device for which there has been a successful attach()
 570  * once there are no longer  any  opens  on  the  device.
 571  *
 572  * Interrupts routine are disabled, All memory allocated by this
 573  * driver are freed.
 574  */
 575 static int
 576 igb_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
 577 {
 578         igb_t *igb;
 579 
 580         /*
 581          * Check detach command
 582          */
 583         switch (cmd) {
 584         default:
 585                 return (DDI_FAILURE);
 586 
 587         case DDI_SUSPEND:
 588                 return (igb_suspend(devinfo));
 589 
 590         case DDI_DETACH:
 591                 break;
 592         }
 593 
 594 
 595         /*
 596          * Get the pointer to the driver private data structure
 597          */
 598         igb = (igb_t *)ddi_get_driver_private(devinfo);
 599         if (igb == NULL)
 600                 return (DDI_FAILURE);
 601 
 602         /*
 603          * Unregister MAC. If failed, we have to fail the detach
 604          */
 605         if (mac_unregister(igb->mac_hdl) != 0) {
 606                 igb_error(igb, "Failed to unregister MAC");
 607                 return (DDI_FAILURE);
 608         }
 609         igb->attach_progress &= ~ATTACH_PROGRESS_MAC;
 610 
 611         /*
 612          * If the device is still running, it needs to be stopped first.
 613          * This check is necessary because under some specific circumstances,
 614          * the detach routine can be called without stopping the interface
 615          * first.
 616          */
 617         mutex_enter(&igb->gen_lock);
 618         if (igb->igb_state & IGB_STARTED) {
 619                 atomic_and_32(&igb->igb_state, ~IGB_STARTED);
 620                 igb_stop(igb, B_TRUE);
 621                 mutex_exit(&igb->gen_lock);
 622                 /* Disable and stop the watchdog timer */
 623                 igb_disable_watchdog_timer(igb);
 624         } else
 625                 mutex_exit(&igb->gen_lock);
 626 
 627         /*
 628          * Check if there are still rx buffers held by the upper layer.
 629          * If so, fail the detach.
 630          */
 631         if (!igb_rx_drain(igb))
 632                 return (DDI_FAILURE);
 633 
 634         /*
 635          * Do the remaining unconfigure routines
 636          */
 637         igb_unconfigure(devinfo, igb);
 638 
 639         return (DDI_SUCCESS);
 640 }
 641 
 642 /*
 643  * quiesce(9E) entry point.
 644  *
 645  * This function is called when the system is single-threaded at high
 646  * PIL with preemption disabled. Therefore, this function must not be
 647  * blocked.
 648  *
 649  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
 650  * DDI_FAILURE indicates an error condition and should almost never happen.
 651  */
 652 static int
 653 igb_quiesce(dev_info_t *devinfo)
 654 {
 655         igb_t *igb;
 656         struct e1000_hw *hw;
 657 
 658         igb = (igb_t *)ddi_get_driver_private(devinfo);
 659 
 660         if (igb == NULL)
 661                 return (DDI_FAILURE);
 662 
 663         hw = &igb->hw;
 664 
 665         /*
 666          * Disable the adapter interrupts
 667          */
 668         igb_disable_adapter_interrupts(igb);
 669 
 670         /* Tell firmware driver is no longer in control */
 671         igb_release_driver_control(hw);
 672 
 673         /*
 674          * Reset the chipset
 675          */
 676         (void) e1000_reset_hw(hw);
 677 
 678         /*
 679          * Reset PHY if possible
 680          */
 681         if (e1000_check_reset_block(hw) == E1000_SUCCESS)
 682                 (void) e1000_phy_hw_reset(hw);
 683 
 684         return (DDI_SUCCESS);
 685 }
 686 
 687 /*
 688  * igb_unconfigure - release all resources held by this instance
 689  */
 690 static void
 691 igb_unconfigure(dev_info_t *devinfo, igb_t *igb)
 692 {
 693         /*
 694          * Disable interrupt
 695          */
 696         if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
 697                 (void) igb_disable_intrs(igb);
 698         }
 699 
 700         /*
 701          * Unregister MAC
 702          */
 703         if (igb->attach_progress & ATTACH_PROGRESS_MAC) {
 704                 (void) mac_unregister(igb->mac_hdl);
 705         }
 706 
 707         /*
 708          * Free statistics
 709          */
 710         if (igb->attach_progress & ATTACH_PROGRESS_STATS) {
 711                 kstat_delete((kstat_t *)igb->igb_ks);
 712         }
 713 
 714         /*
 715          * Remove interrupt handlers
 716          */
 717         if (igb->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
 718                 igb_rem_intr_handlers(igb);
 719         }
 720 
 721         /*
 722          * Remove interrupts
 723          */
 724         if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_INTR) {
 725                 igb_rem_intrs(igb);
 726         }
 727 
 728         /*
 729          * Remove driver properties
 730          */
 731         if (igb->attach_progress & ATTACH_PROGRESS_PROPS) {
 732                 (void) ddi_prop_remove_all(devinfo);
 733         }
 734 
 735         /*
 736          * Stop the adapter
 737          */
 738         if (igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) {
 739                 mutex_enter(&igb->gen_lock);
 740                 igb_stop_adapter(igb);
 741                 mutex_exit(&igb->gen_lock);
 742                 if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
 743                         ddi_fm_service_impact(igb->dip, DDI_SERVICE_UNAFFECTED);
 744         }
 745 
 746         /*
 747          * Free multicast table
 748          */
 749         igb_release_multicast(igb);
 750 
 751         /*
 752          * Free register handle
 753          */
 754         if (igb->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
 755                 if (igb->osdep.reg_handle != NULL)
 756                         ddi_regs_map_free(&igb->osdep.reg_handle);
 757         }
 758 
 759         /*
 760          * Free PCI config handle
 761          */
 762         if (igb->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
 763                 if (igb->osdep.cfg_handle != NULL)
 764                         pci_config_teardown(&igb->osdep.cfg_handle);
 765         }
 766 
 767         /*
 768          * Free locks
 769          */
 770         if (igb->attach_progress & ATTACH_PROGRESS_LOCKS) {
 771                 igb_destroy_locks(igb);
 772         }
 773 
 774         /*
 775          * Free the rx/tx rings
 776          */
 777         if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_RINGS) {
 778                 igb_free_rings(igb);
 779         }
 780 
 781         /*
 782          * Remove FMA
 783          */
 784         if (igb->attach_progress & ATTACH_PROGRESS_FMINIT) {
 785                 igb_fm_fini(igb);
 786         }
 787 
 788         /*
 789          * Free the driver data structure
 790          */
 791         kmem_free(igb, sizeof (igb_t));
 792 
 793         ddi_set_driver_private(devinfo, NULL);
 794 }
 795 
 796 /*
 797  * igb_register_mac - Register the driver and its function pointers with
 798  * the GLD interface
 799  */
 800 static int
 801 igb_register_mac(igb_t *igb)
 802 {
 803         struct e1000_hw *hw = &igb->hw;
 804         mac_register_t *mac;
 805         int status;
 806 
 807         if ((mac = mac_alloc(MAC_VERSION)) == NULL)
 808                 return (IGB_FAILURE);
 809 
 810         mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
 811         mac->m_driver = igb;
 812         mac->m_dip = igb->dip;
 813         mac->m_src_addr = hw->mac.addr;
 814         mac->m_callbacks = &igb_m_callbacks;
 815         mac->m_min_sdu = 0;
 816         mac->m_max_sdu = igb->max_frame_size -
 817             sizeof (struct ether_vlan_header) - ETHERFCSL;
 818         mac->m_margin = VLAN_TAGSZ;
 819         mac->m_priv_props = igb_priv_props;
 820         mac->m_v12n = MAC_VIRT_LEVEL1;
 821 
 822         status = mac_register(mac, &igb->mac_hdl);
 823 
 824         mac_free(mac);
 825 
 826         return ((status == 0) ? IGB_SUCCESS : IGB_FAILURE);
 827 }
 828 
 829 /*
 830  * igb_identify_hardware - Identify the type of the chipset
 831  */
 832 static int
 833 igb_identify_hardware(igb_t *igb)
 834 {
 835         struct e1000_hw *hw = &igb->hw;
 836         struct igb_osdep *osdep = &igb->osdep;
 837 
 838         /*
 839          * Get the device id
 840          */
 841         hw->vendor_id =
 842             pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
 843         hw->device_id =
 844             pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
 845         hw->revision_id =
 846             pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
 847         hw->subsystem_device_id =
 848             pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
 849         hw->subsystem_vendor_id =
 850             pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
 851 
 852         /*
 853          * Set the mac type of the adapter based on the device id
 854          */
 855         if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
 856                 return (IGB_FAILURE);
 857         }
 858 
 859         /*
 860          * Install adapter capabilities based on mac type
 861          */
 862         switch (hw->mac.type) {
 863         case e1000_82575:
 864                 igb->capab = &igb_82575_cap;
 865                 break;
 866         case e1000_82576:
 867                 igb->capab = &igb_82576_cap;
 868                 break;
 869         case e1000_82580:
 870                 igb->capab = &igb_82580_cap;
 871                 break;
 872         case e1000_i350:
 873                 igb->capab = &igb_i350_cap;
 874                 break;
 875         default:
 876                 return (IGB_FAILURE);
 877         }
 878 
 879         return (IGB_SUCCESS);
 880 }
 881 
 882 /*
 883  * igb_regs_map - Map the device registers
 884  */
 885 static int
 886 igb_regs_map(igb_t *igb)
 887 {
 888         dev_info_t *devinfo = igb->dip;
 889         struct e1000_hw *hw = &igb->hw;
 890         struct igb_osdep *osdep = &igb->osdep;
 891         off_t mem_size;
 892 
 893         /*
 894          * First get the size of device registers to be mapped.
 895          */
 896         if (ddi_dev_regsize(devinfo, IGB_ADAPTER_REGSET, &mem_size) !=
 897             DDI_SUCCESS) {
 898                 return (IGB_FAILURE);
 899         }
 900 
 901         /*
 902          * Call ddi_regs_map_setup() to map registers
 903          */
 904         if ((ddi_regs_map_setup(devinfo, IGB_ADAPTER_REGSET,
 905             (caddr_t *)&hw->hw_addr, 0,
 906             mem_size, &igb_regs_acc_attr,
 907             &osdep->reg_handle)) != DDI_SUCCESS) {
 908                 return (IGB_FAILURE);
 909         }
 910 
 911         return (IGB_SUCCESS);
 912 }
 913 
 914 /*
 915  * igb_init_properties - Initialize driver properties
 916  */
 917 static void
 918 igb_init_properties(igb_t *igb)
 919 {
 920         /*
 921          * Get conf file properties, including link settings
 922          * jumbo frames, ring number, descriptor number, etc.
 923          */
 924         igb_get_conf(igb);
 925 }
 926 
 927 /*
 928  * igb_init_driver_settings - Initialize driver settings
 929  *
 930  * The settings include hardware function pointers, bus information,
 931  * rx/tx rings settings, link state, and any other parameters that
 932  * need to be setup during driver initialization.
 933  */
 934 static int
 935 igb_init_driver_settings(igb_t *igb)
 936 {
 937         struct e1000_hw *hw = &igb->hw;
 938         igb_rx_ring_t *rx_ring;
 939         igb_tx_ring_t *tx_ring;
 940         uint32_t rx_size;
 941         uint32_t tx_size;
 942         int i;
 943 
 944         /*
 945          * Initialize chipset specific hardware function pointers
 946          */
 947         if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
 948                 return (IGB_FAILURE);
 949         }
 950 
 951         /*
 952          * Get bus information
 953          */
 954         if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
 955                 return (IGB_FAILURE);
 956         }
 957 
 958         /*
 959          * Get the system page size
 960          */
 961         igb->page_size = ddi_ptob(igb->dip, (ulong_t)1);
 962 
 963         /*
 964          * Set rx buffer size
 965          * The IP header alignment room is counted in the calculation.
 966          * The rx buffer size is in unit of 1K that is required by the
 967          * chipset hardware.
 968          */
 969         rx_size = igb->max_frame_size + IPHDR_ALIGN_ROOM;
 970         igb->rx_buf_size = ((rx_size >> 10) +
 971             ((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
 972 
 973         /*
 974          * Set tx buffer size
 975          */
 976         tx_size = igb->max_frame_size;
 977         igb->tx_buf_size = ((tx_size >> 10) +
 978             ((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
 979 
 980         /*
 981          * Initialize rx/tx rings parameters
 982          */
 983         for (i = 0; i < igb->num_rx_rings; i++) {
 984                 rx_ring = &igb->rx_rings[i];
 985                 rx_ring->index = i;
 986                 rx_ring->igb = igb;
 987         }
 988 
 989         for (i = 0; i < igb->num_tx_rings; i++) {
 990                 tx_ring = &igb->tx_rings[i];
 991                 tx_ring->index = i;
 992                 tx_ring->igb = igb;
 993                 if (igb->tx_head_wb_enable)
 994                         tx_ring->tx_recycle = igb_tx_recycle_head_wb;
 995                 else
 996                         tx_ring->tx_recycle = igb_tx_recycle_legacy;
 997 
 998                 tx_ring->ring_size = igb->tx_ring_size;
 999                 tx_ring->free_list_size = igb->tx_ring_size +
1000                     (igb->tx_ring_size >> 1);
1001         }
1002 
1003         /*
1004          * Initialize values of interrupt throttling rates
1005          */
1006         for (i = 1; i < MAX_NUM_EITR; i++)
1007                 igb->intr_throttling[i] = igb->intr_throttling[0];
1008 
1009         /*
1010          * The initial link state should be "unknown"
1011          */
1012         igb->link_state = LINK_STATE_UNKNOWN;
1013 
1014         return (IGB_SUCCESS);
1015 }
1016 
1017 /*
1018  * igb_init_locks - Initialize locks
1019  */
1020 static void
1021 igb_init_locks(igb_t *igb)
1022 {
1023         igb_rx_ring_t *rx_ring;
1024         igb_tx_ring_t *tx_ring;
1025         int i;
1026 
1027         for (i = 0; i < igb->num_rx_rings; i++) {
1028                 rx_ring = &igb->rx_rings[i];
1029                 mutex_init(&rx_ring->rx_lock, NULL,
1030                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1031         }
1032 
1033         for (i = 0; i < igb->num_tx_rings; i++) {
1034                 tx_ring = &igb->tx_rings[i];
1035                 mutex_init(&tx_ring->tx_lock, NULL,
1036                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1037                 mutex_init(&tx_ring->recycle_lock, NULL,
1038                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1039                 mutex_init(&tx_ring->tcb_head_lock, NULL,
1040                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1041                 mutex_init(&tx_ring->tcb_tail_lock, NULL,
1042                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1043         }
1044 
1045         mutex_init(&igb->gen_lock, NULL,
1046             MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1047 
1048         mutex_init(&igb->watchdog_lock, NULL,
1049             MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1050 
1051         mutex_init(&igb->link_lock, NULL,
1052             MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1053 }
1054 
1055 /*
1056  * igb_destroy_locks - Destroy locks
1057  */
1058 static void
1059 igb_destroy_locks(igb_t *igb)
1060 {
1061         igb_rx_ring_t *rx_ring;
1062         igb_tx_ring_t *tx_ring;
1063         int i;
1064 
1065         for (i = 0; i < igb->num_rx_rings; i++) {
1066                 rx_ring = &igb->rx_rings[i];
1067                 mutex_destroy(&rx_ring->rx_lock);
1068         }
1069 
1070         for (i = 0; i < igb->num_tx_rings; i++) {
1071                 tx_ring = &igb->tx_rings[i];
1072                 mutex_destroy(&tx_ring->tx_lock);
1073                 mutex_destroy(&tx_ring->recycle_lock);
1074                 mutex_destroy(&tx_ring->tcb_head_lock);
1075                 mutex_destroy(&tx_ring->tcb_tail_lock);
1076         }
1077 
1078         mutex_destroy(&igb->gen_lock);
1079         mutex_destroy(&igb->watchdog_lock);
1080         mutex_destroy(&igb->link_lock);
1081 }
1082 
1083 static int
1084 igb_resume(dev_info_t *devinfo)
1085 {
1086         igb_t *igb;
1087 
1088         igb = (igb_t *)ddi_get_driver_private(devinfo);
1089         if (igb == NULL)
1090                 return (DDI_FAILURE);
1091 
1092         mutex_enter(&igb->gen_lock);
1093 
1094         /*
1095          * Enable interrupts
1096          */
1097         if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1098                 if (igb_enable_intrs(igb) != IGB_SUCCESS) {
1099                         igb_error(igb, "Failed to enable DDI interrupts");
1100                         mutex_exit(&igb->gen_lock);
1101                         return (DDI_FAILURE);
1102                 }
1103         }
1104 
1105         if (igb->igb_state & IGB_STARTED) {
1106                 if (igb_start(igb, B_FALSE) != IGB_SUCCESS) {
1107                         mutex_exit(&igb->gen_lock);
1108                         return (DDI_FAILURE);
1109                 }
1110 
1111                 /*
1112                  * Enable and start the watchdog timer
1113                  */
1114                 igb_enable_watchdog_timer(igb);
1115         }
1116 
1117         atomic_and_32(&igb->igb_state, ~IGB_SUSPENDED);
1118 
1119         mutex_exit(&igb->gen_lock);
1120 
1121         return (DDI_SUCCESS);
1122 }
1123 
1124 static int
1125 igb_suspend(dev_info_t *devinfo)
1126 {
1127         igb_t *igb;
1128 
1129         igb = (igb_t *)ddi_get_driver_private(devinfo);
1130         if (igb == NULL)
1131                 return (DDI_FAILURE);
1132 
1133         mutex_enter(&igb->gen_lock);
1134 
1135         atomic_or_32(&igb->igb_state, IGB_SUSPENDED);
1136 
1137         /*
1138          * Disable interrupts
1139          */
1140         if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1141                 (void) igb_disable_intrs(igb);
1142         }
1143 
1144         if (!(igb->igb_state & IGB_STARTED)) {
1145                 mutex_exit(&igb->gen_lock);
1146                 return (DDI_SUCCESS);
1147         }
1148 
1149         igb_stop(igb, B_FALSE);
1150 
1151         mutex_exit(&igb->gen_lock);
1152 
1153         /*
1154          * Disable and stop the watchdog timer
1155          */
1156         igb_disable_watchdog_timer(igb);
1157 
1158         return (DDI_SUCCESS);
1159 }
1160 
1161 static int
1162 igb_init(igb_t *igb)
1163 {
1164         mutex_enter(&igb->gen_lock);
1165 
1166         /*
1167          * Initilize the adapter
1168          */
1169         if (igb_init_adapter(igb) != IGB_SUCCESS) {
1170                 mutex_exit(&igb->gen_lock);
1171                 igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1172                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1173                 return (IGB_FAILURE);
1174         }
1175 
1176         mutex_exit(&igb->gen_lock);
1177 
1178         return (IGB_SUCCESS);
1179 }
1180 
1181 /*
1182  * igb_init_mac_address - Initialize the default MAC address
1183  *
1184  * On success, the MAC address is entered in the igb->hw.mac.addr
1185  * and hw->mac.perm_addr fields and the adapter's RAR(0) receive
1186  * address register.
1187  *
1188  * Important side effects:
1189  * 1. adapter is reset - this is required to put it in a known state.
1190  * 2. all of non-volatile memory (NVM) is read & checksummed - NVM is where
1191  * MAC address and all default settings are stored, so a valid checksum
1192  * is required.
1193  */
1194 static int
1195 igb_init_mac_address(igb_t *igb)
1196 {
1197         struct e1000_hw *hw = &igb->hw;
1198 
1199         ASSERT(mutex_owned(&igb->gen_lock));
1200 
1201         /*
1202          * Reset chipset to put the hardware in a known state
1203          * before we try to get MAC address from NVM.
1204          */
1205         if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1206                 igb_error(igb, "Adapter reset failed.");
1207                 goto init_mac_fail;
1208         }
1209 
1210         /*
1211          * NVM validation
1212          */
1213         if (e1000_validate_nvm_checksum(hw) < 0) {
1214                 /*
1215                  * Some PCI-E parts fail the first check due to
1216                  * the link being in sleep state.  Call it again,
1217                  * if it fails a second time its a real issue.
1218                  */
1219                 if (e1000_validate_nvm_checksum(hw) < 0) {
1220                         igb_error(igb,
1221                             "Invalid NVM checksum. Please contact "
1222                             "the vendor to update the NVM.");
1223                         goto init_mac_fail;
1224                 }
1225         }
1226 
1227         /*
1228          * Get the mac address
1229          * This function should handle SPARC case correctly.
1230          */
1231         if (!igb_find_mac_address(igb)) {
1232                 igb_error(igb, "Failed to get the mac address");
1233                 goto init_mac_fail;
1234         }
1235 
1236         /* Validate mac address */
1237         if (!is_valid_mac_addr(hw->mac.addr)) {
1238                 igb_error(igb, "Invalid mac address");
1239                 goto init_mac_fail;
1240         }
1241 
1242         return (IGB_SUCCESS);
1243 
1244 init_mac_fail:
1245         return (IGB_FAILURE);
1246 }
1247 
1248 /*
1249  * igb_init_adapter - Initialize the adapter
1250  */
1251 static int
1252 igb_init_adapter(igb_t *igb)
1253 {
1254         struct e1000_hw *hw = &igb->hw;
1255         uint32_t pba;
1256         uint32_t high_water;
1257         int i;
1258 
1259         ASSERT(mutex_owned(&igb->gen_lock));
1260 
1261         /*
1262          * In order to obtain the default MAC address, this will reset the
1263          * adapter and validate the NVM that the address and many other
1264          * default settings come from.
1265          */
1266         if (igb_init_mac_address(igb) != IGB_SUCCESS) {
1267                 igb_error(igb, "Failed to initialize MAC address");
1268                 goto init_adapter_fail;
1269         }
1270 
1271         /*
1272          * Setup flow control
1273          *
1274          * These parameters set thresholds for the adapter's generation(Tx)
1275          * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1276          * settings.  Flow control is enabled or disabled in the configuration
1277          * file.
1278          * High-water mark is set down from the top of the rx fifo (not
1279          * sensitive to max_frame_size) and low-water is set just below
1280          * high-water mark.
1281          * The high water mark must be low enough to fit one full frame above
1282          * it in the rx FIFO.  Should be the lower of:
1283          * 90% of the Rx FIFO size, or the full Rx FIFO size minus one full
1284          * frame.
1285          */
1286         /*
1287          * The default setting of PBA is correct for 82575 and other supported
1288          * adapters do not have the E1000_PBA register, so PBA value is only
1289          * used for calculation here and is never written to the adapter.
1290          */
1291         if (hw->mac.type == e1000_82575) {
1292                 pba = E1000_PBA_34K;
1293         } else {
1294                 pba = E1000_PBA_64K;
1295         }
1296 
1297         high_water = min(((pba << 10) * 9 / 10),
1298             ((pba << 10) - igb->max_frame_size));
1299 
1300         if (hw->mac.type == e1000_82575) {
1301                 /* 8-byte granularity */
1302                 hw->fc.high_water = high_water & 0xFFF8;
1303                 hw->fc.low_water = hw->fc.high_water - 8;
1304         } else {
1305                 /* 16-byte granularity */
1306                 hw->fc.high_water = high_water & 0xFFF0;
1307                 hw->fc.low_water = hw->fc.high_water - 16;
1308         }
1309 
1310         hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1311         hw->fc.send_xon = B_TRUE;
1312 
1313         (void) e1000_validate_mdi_setting(hw);
1314 
1315         /*
1316          * Reset the chipset hardware the second time to put PBA settings
1317          * into effect.
1318          */
1319         if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1320                 igb_error(igb, "Second reset failed");
1321                 goto init_adapter_fail;
1322         }
1323 
1324         /*
1325          * Don't wait for auto-negotiation to complete
1326          */
1327         hw->phy.autoneg_wait_to_complete = B_FALSE;
1328 
1329         /*
1330          * Copper options
1331          */
1332         if (hw->phy.media_type == e1000_media_type_copper) {
1333                 hw->phy.mdix = 0;    /* AUTO_ALL_MODES */
1334                 hw->phy.disable_polarity_correction = B_FALSE;
1335                 hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */
1336         }
1337 
1338         /*
1339          * Initialize link settings
1340          */
1341         (void) igb_setup_link(igb, B_FALSE);
1342 
1343         /*
1344          * Configure/Initialize hardware
1345          */
1346         if (e1000_init_hw(hw) != E1000_SUCCESS) {
1347                 igb_error(igb, "Failed to initialize hardware");
1348                 goto init_adapter_fail;
1349         }
1350 
1351         /*
1352          *  Start the link setup timer
1353          */
1354         igb_start_link_timer(igb);
1355 
1356         /*
1357          * Disable wakeup control by default
1358          */
1359         E1000_WRITE_REG(hw, E1000_WUC, 0);
1360 
1361         /*
1362          * Record phy info in hw struct
1363          */
1364         (void) e1000_get_phy_info(hw);
1365 
1366         /*
1367          * Make sure driver has control
1368          */
1369         igb_get_driver_control(hw);
1370 
1371         /*
1372          * Restore LED settings to the default from EEPROM
1373          * to meet the standard for Sun platforms.
1374          */
1375         (void) e1000_cleanup_led(hw);
1376 
1377         /*
1378          * Setup MSI-X interrupts
1379          */
1380         if (igb->intr_type == DDI_INTR_TYPE_MSIX)
1381                 igb->capab->setup_msix(igb);
1382 
1383         /*
1384          * Initialize unicast addresses.
1385          */
1386         igb_init_unicst(igb);
1387 
1388         /*
1389          * Setup and initialize the mctable structures.
1390          */
1391         igb_setup_multicst(igb);
1392 
1393         /*
1394          * Set interrupt throttling rate
1395          */
1396         for (i = 0; i < igb->intr_cnt; i++)
1397                 E1000_WRITE_REG(hw, E1000_EITR(i), igb->intr_throttling[i]);
1398 
1399         /*
1400          * Save the state of the phy
1401          */
1402         igb_get_phy_state(igb);
1403 
1404         igb_param_sync(igb);
1405 
1406         return (IGB_SUCCESS);
1407 
1408 init_adapter_fail:
1409         /*
1410          * Reset PHY if possible
1411          */
1412         if (e1000_check_reset_block(hw) == E1000_SUCCESS)
1413                 (void) e1000_phy_hw_reset(hw);
1414 
1415         return (IGB_FAILURE);
1416 }
1417 
1418 /*
1419  * igb_stop_adapter - Stop the adapter
1420  */
1421 static void
1422 igb_stop_adapter(igb_t *igb)
1423 {
1424         struct e1000_hw *hw = &igb->hw;
1425 
1426         ASSERT(mutex_owned(&igb->gen_lock));
1427 
1428         /* Stop the link setup timer */
1429         igb_stop_link_timer(igb);
1430 
1431         /* Tell firmware driver is no longer in control */
1432         igb_release_driver_control(hw);
1433 
1434         /*
1435          * Reset the chipset
1436          */
1437         if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1438                 igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1439                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1440         }
1441 
1442         /*
1443          * e1000_phy_hw_reset is not needed here, MAC reset above is sufficient
1444          */
1445 }
1446 
1447 /*
1448  * igb_reset - Reset the chipset and restart the driver.
1449  *
1450  * It involves stopping and re-starting the chipset,
1451  * and re-configuring the rx/tx rings.
1452  */
1453 static int
1454 igb_reset(igb_t *igb)
1455 {
1456         int i;
1457 
1458         mutex_enter(&igb->gen_lock);
1459 
1460         ASSERT(igb->igb_state & IGB_STARTED);
1461         atomic_and_32(&igb->igb_state, ~IGB_STARTED);
1462 
1463         /*
1464          * Disable the adapter interrupts to stop any rx/tx activities
1465          * before draining pending data and resetting hardware.
1466          */
1467         igb_disable_adapter_interrupts(igb);
1468 
1469         /*
1470          * Drain the pending transmit packets
1471          */
1472         (void) igb_tx_drain(igb);
1473 
1474         for (i = 0; i < igb->num_rx_rings; i++)
1475                 mutex_enter(&igb->rx_rings[i].rx_lock);
1476         for (i = 0; i < igb->num_tx_rings; i++)
1477                 mutex_enter(&igb->tx_rings[i].tx_lock);
1478 
1479         /*
1480          * Stop the adapter
1481          */
1482         igb_stop_adapter(igb);
1483 
1484         /*
1485          * Clean the pending tx data/resources
1486          */
1487         igb_tx_clean(igb);
1488 
1489         /*
1490          * Start the adapter
1491          */
1492         if (igb_init_adapter(igb) != IGB_SUCCESS) {
1493                 igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1494                 goto reset_failure;
1495         }
1496 
1497         /*
1498          * Setup the rx/tx rings
1499          */
1500         igb->tx_ring_init = B_FALSE;
1501         igb_setup_rings(igb);
1502 
1503         atomic_and_32(&igb->igb_state, ~(IGB_ERROR | IGB_STALL));
1504 
1505         /*
1506          * Enable adapter interrupts
1507          * The interrupts must be enabled after the driver state is START
1508          */
1509         igb->capab->enable_intr(igb);
1510 
1511         if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1512                 goto reset_failure;
1513 
1514         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1515                 goto reset_failure;
1516 
1517         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1518                 mutex_exit(&igb->tx_rings[i].tx_lock);
1519         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1520                 mutex_exit(&igb->rx_rings[i].rx_lock);
1521 
1522         atomic_or_32(&igb->igb_state, IGB_STARTED);
1523 
1524         mutex_exit(&igb->gen_lock);
1525 
1526         return (IGB_SUCCESS);
1527 
1528 reset_failure:
1529         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1530                 mutex_exit(&igb->tx_rings[i].tx_lock);
1531         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1532                 mutex_exit(&igb->rx_rings[i].rx_lock);
1533 
1534         mutex_exit(&igb->gen_lock);
1535 
1536         ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1537 
1538         return (IGB_FAILURE);
1539 }
1540 
1541 /*
1542  * igb_tx_clean - Clean the pending transmit packets and DMA resources
1543  */
1544 static void
1545 igb_tx_clean(igb_t *igb)
1546 {
1547         igb_tx_ring_t *tx_ring;
1548         tx_control_block_t *tcb;
1549         link_list_t pending_list;
1550         uint32_t desc_num;
1551         int i, j;
1552 
1553         LINK_LIST_INIT(&pending_list);
1554 
1555         for (i = 0; i < igb->num_tx_rings; i++) {
1556                 tx_ring = &igb->tx_rings[i];
1557 
1558                 mutex_enter(&tx_ring->recycle_lock);
1559 
1560                 /*
1561                  * Clean the pending tx data - the pending packets in the
1562                  * work_list that have no chances to be transmitted again.
1563                  *
1564                  * We must ensure the chipset is stopped or the link is down
1565                  * before cleaning the transmit packets.
1566                  */
1567                 desc_num = 0;
1568                 for (j = 0; j < tx_ring->ring_size; j++) {
1569                         tcb = tx_ring->work_list[j];
1570                         if (tcb != NULL) {
1571                                 desc_num += tcb->desc_num;
1572 
1573                                 tx_ring->work_list[j] = NULL;
1574 
1575                                 igb_free_tcb(tcb);
1576 
1577                                 LIST_PUSH_TAIL(&pending_list, &tcb->link);
1578                         }
1579                 }
1580 
1581                 if (desc_num > 0) {
1582                         atomic_add_32(&tx_ring->tbd_free, desc_num);
1583                         ASSERT(tx_ring->tbd_free == tx_ring->ring_size);
1584 
1585                         /*
1586                          * Reset the head and tail pointers of the tbd ring;
1587                          * Reset the head write-back if it is enabled.
1588                          */
1589                         tx_ring->tbd_head = 0;
1590                         tx_ring->tbd_tail = 0;
1591                         if (igb->tx_head_wb_enable)
1592                                 *tx_ring->tbd_head_wb = 0;
1593 
1594                         E1000_WRITE_REG(&igb->hw, E1000_TDH(tx_ring->index), 0);
1595                         E1000_WRITE_REG(&igb->hw, E1000_TDT(tx_ring->index), 0);
1596                 }
1597 
1598                 mutex_exit(&tx_ring->recycle_lock);
1599 
1600                 /*
1601                  * Add the tx control blocks in the pending list to
1602                  * the free list.
1603                  */
1604                 igb_put_free_list(tx_ring, &pending_list);
1605         }
1606 }
1607 
1608 /*
1609  * igb_tx_drain - Drain the tx rings to allow pending packets to be transmitted
1610  */
1611 static boolean_t
1612 igb_tx_drain(igb_t *igb)
1613 {
1614         igb_tx_ring_t *tx_ring;
1615         boolean_t done;
1616         int i, j;
1617 
1618         /*
1619          * Wait for a specific time to allow pending tx packets
1620          * to be transmitted.
1621          *
1622          * Check the counter tbd_free to see if transmission is done.
1623          * No lock protection is needed here.
1624          *
1625          * Return B_TRUE if all pending packets have been transmitted;
1626          * Otherwise return B_FALSE;
1627          */
1628         for (i = 0; i < TX_DRAIN_TIME; i++) {
1629 
1630                 done = B_TRUE;
1631                 for (j = 0; j < igb->num_tx_rings; j++) {
1632                         tx_ring = &igb->tx_rings[j];
1633                         done = done &&
1634                             (tx_ring->tbd_free == tx_ring->ring_size);
1635                 }
1636 
1637                 if (done)
1638                         break;
1639 
1640                 msec_delay(1);
1641         }
1642 
1643         return (done);
1644 }
1645 
1646 /*
1647  * igb_rx_drain - Wait for all rx buffers to be released by upper layer
1648  */
1649 static boolean_t
1650 igb_rx_drain(igb_t *igb)
1651 {
1652         boolean_t done;
1653         int i;
1654 
1655         /*
1656          * Polling the rx free list to check if those rx buffers held by
1657          * the upper layer are released.
1658          *
1659          * Check the counter rcb_free to see if all pending buffers are
1660          * released. No lock protection is needed here.
1661          *
1662          * Return B_TRUE if all pending buffers have been released;
1663          * Otherwise return B_FALSE;
1664          */
1665         for (i = 0; i < RX_DRAIN_TIME; i++) {
1666                 done = (igb->rcb_pending == 0);
1667 
1668                 if (done)
1669                         break;
1670 
1671                 msec_delay(1);
1672         }
1673 
1674         return (done);
1675 }
1676 
1677 /*
1678  * igb_start - Start the driver/chipset
1679  */
1680 int
1681 igb_start(igb_t *igb, boolean_t alloc_buffer)
1682 {
1683         int i;
1684 
1685         ASSERT(mutex_owned(&igb->gen_lock));
1686 
1687         if (alloc_buffer) {
1688                 if (igb_alloc_rx_data(igb) != IGB_SUCCESS) {
1689                         igb_error(igb,
1690                             "Failed to allocate software receive rings");
1691                         return (IGB_FAILURE);
1692                 }
1693 
1694                 /* Allocate buffers for all the rx/tx rings */
1695                 if (igb_alloc_dma(igb) != IGB_SUCCESS) {
1696                         igb_error(igb, "Failed to allocate DMA resource");
1697                         return (IGB_FAILURE);
1698                 }
1699 
1700                 igb->tx_ring_init = B_TRUE;
1701         } else {
1702                 igb->tx_ring_init = B_FALSE;
1703         }
1704 
1705         for (i = 0; i < igb->num_rx_rings; i++)
1706                 mutex_enter(&igb->rx_rings[i].rx_lock);
1707         for (i = 0; i < igb->num_tx_rings; i++)
1708                 mutex_enter(&igb->tx_rings[i].tx_lock);
1709 
1710         /*
1711          * Start the adapter
1712          */
1713         if ((igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) == 0) {
1714                 if (igb_init_adapter(igb) != IGB_SUCCESS) {
1715                         igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1716                         goto start_failure;
1717                 }
1718                 igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
1719         }
1720 
1721         /*
1722          * Setup the rx/tx rings
1723          */
1724         igb_setup_rings(igb);
1725 
1726         /*
1727          * Enable adapter interrupts
1728          * The interrupts must be enabled after the driver state is START
1729          */
1730         igb->capab->enable_intr(igb);
1731 
1732         if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1733                 goto start_failure;
1734 
1735         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1736                 goto start_failure;
1737 
1738         if (igb->hw.mac.type == e1000_i350)
1739                 (void) e1000_set_eee_i350(&igb->hw);
1740 
1741         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1742                 mutex_exit(&igb->tx_rings[i].tx_lock);
1743         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1744                 mutex_exit(&igb->rx_rings[i].rx_lock);
1745 
1746         return (IGB_SUCCESS);
1747 
1748 start_failure:
1749         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1750                 mutex_exit(&igb->tx_rings[i].tx_lock);
1751         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1752                 mutex_exit(&igb->rx_rings[i].rx_lock);
1753 
1754         ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1755 
1756         return (IGB_FAILURE);
1757 }
1758 
1759 /*
1760  * igb_stop - Stop the driver/chipset
1761  */
1762 void
1763 igb_stop(igb_t *igb, boolean_t free_buffer)
1764 {
1765         int i;
1766 
1767         ASSERT(mutex_owned(&igb->gen_lock));
1768 
1769         igb->attach_progress &= ~ATTACH_PROGRESS_INIT_ADAPTER;
1770 
1771         /*
1772          * Disable the adapter interrupts
1773          */
1774         igb_disable_adapter_interrupts(igb);
1775 
1776         /*
1777          * Drain the pending tx packets
1778          */
1779         (void) igb_tx_drain(igb);
1780 
1781         for (i = 0; i < igb->num_rx_rings; i++)
1782                 mutex_enter(&igb->rx_rings[i].rx_lock);
1783         for (i = 0; i < igb->num_tx_rings; i++)
1784                 mutex_enter(&igb->tx_rings[i].tx_lock);
1785 
1786         /*
1787          * Stop the adapter
1788          */
1789         igb_stop_adapter(igb);
1790 
1791         /*
1792          * Clean the pending tx data/resources
1793          */
1794         igb_tx_clean(igb);
1795 
1796         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1797                 mutex_exit(&igb->tx_rings[i].tx_lock);
1798         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1799                 mutex_exit(&igb->rx_rings[i].rx_lock);
1800 
1801         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1802                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1803 
1804         if (igb->link_state == LINK_STATE_UP) {
1805                 igb->link_state = LINK_STATE_UNKNOWN;
1806                 mac_link_update(igb->mac_hdl, igb->link_state);
1807         }
1808 
1809         if (free_buffer) {
1810                 /*
1811                  * Release the DMA/memory resources of rx/tx rings
1812                  */
1813                 igb_free_dma(igb);
1814                 igb_free_rx_data(igb);
1815         }
1816 }
1817 
1818 /*
1819  * igb_alloc_rings - Allocate memory space for rx/tx rings
1820  */
1821 static int
1822 igb_alloc_rings(igb_t *igb)
1823 {
1824         /*
1825          * Allocate memory space for rx rings
1826          */
1827         igb->rx_rings = kmem_zalloc(
1828             sizeof (igb_rx_ring_t) * igb->num_rx_rings,
1829             KM_NOSLEEP);
1830 
1831         if (igb->rx_rings == NULL) {
1832                 return (IGB_FAILURE);
1833         }
1834 
1835         /*
1836          * Allocate memory space for tx rings
1837          */
1838         igb->tx_rings = kmem_zalloc(
1839             sizeof (igb_tx_ring_t) * igb->num_tx_rings,
1840             KM_NOSLEEP);
1841 
1842         if (igb->tx_rings == NULL) {
1843                 kmem_free(igb->rx_rings,
1844                     sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1845                 igb->rx_rings = NULL;
1846                 return (IGB_FAILURE);
1847         }
1848 
1849         /*
1850          * Allocate memory space for rx ring groups
1851          */
1852         igb->rx_groups = kmem_zalloc(
1853             sizeof (igb_rx_group_t) * igb->num_rx_groups,
1854             KM_NOSLEEP);
1855 
1856         if (igb->rx_groups == NULL) {
1857                 kmem_free(igb->rx_rings,
1858                     sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1859                 kmem_free(igb->tx_rings,
1860                     sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1861                 igb->rx_rings = NULL;
1862                 igb->tx_rings = NULL;
1863                 return (IGB_FAILURE);
1864         }
1865 
1866         return (IGB_SUCCESS);
1867 }
1868 
1869 /*
1870  * igb_free_rings - Free the memory space of rx/tx rings.
1871  */
1872 static void
1873 igb_free_rings(igb_t *igb)
1874 {
1875         if (igb->rx_rings != NULL) {
1876                 kmem_free(igb->rx_rings,
1877                     sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1878                 igb->rx_rings = NULL;
1879         }
1880 
1881         if (igb->tx_rings != NULL) {
1882                 kmem_free(igb->tx_rings,
1883                     sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1884                 igb->tx_rings = NULL;
1885         }
1886 
1887         if (igb->rx_groups != NULL) {
1888                 kmem_free(igb->rx_groups,
1889                     sizeof (igb_rx_group_t) * igb->num_rx_groups);
1890                 igb->rx_groups = NULL;
1891         }
1892 }
1893 
1894 static int
1895 igb_alloc_rx_data(igb_t *igb)
1896 {
1897         igb_rx_ring_t *rx_ring;
1898         int i;
1899 
1900         for (i = 0; i < igb->num_rx_rings; i++) {
1901                 rx_ring = &igb->rx_rings[i];
1902                 if (igb_alloc_rx_ring_data(rx_ring) != IGB_SUCCESS)
1903                         goto alloc_rx_rings_failure;
1904         }
1905         return (IGB_SUCCESS);
1906 
1907 alloc_rx_rings_failure:
1908         igb_free_rx_data(igb);
1909         return (IGB_FAILURE);
1910 }
1911 
1912 static void
1913 igb_free_rx_data(igb_t *igb)
1914 {
1915         igb_rx_ring_t *rx_ring;
1916         igb_rx_data_t *rx_data;
1917         int i;
1918 
1919         for (i = 0; i < igb->num_rx_rings; i++) {
1920                 rx_ring = &igb->rx_rings[i];
1921 
1922                 mutex_enter(&igb->rx_pending_lock);
1923                 rx_data = rx_ring->rx_data;
1924 
1925                 if (rx_data != NULL) {
1926                         rx_data->flag |= IGB_RX_STOPPED;
1927 
1928                         if (rx_data->rcb_pending == 0) {
1929                                 igb_free_rx_ring_data(rx_data);
1930                                 rx_ring->rx_data = NULL;
1931                         }
1932                 }
1933 
1934                 mutex_exit(&igb->rx_pending_lock);
1935         }
1936 }
1937 
1938 /*
1939  * igb_setup_rings - Setup rx/tx rings
1940  */
1941 static void
1942 igb_setup_rings(igb_t *igb)
1943 {
1944         /*
1945          * Setup the rx/tx rings, including the following:
1946          *
1947          * 1. Setup the descriptor ring and the control block buffers;
1948          * 2. Initialize necessary registers for receive/transmit;
1949          * 3. Initialize software pointers/parameters for receive/transmit;
1950          */
1951         igb_setup_rx(igb);
1952 
1953         igb_setup_tx(igb);
1954 }
1955 
1956 static void
1957 igb_setup_rx_ring(igb_rx_ring_t *rx_ring)
1958 {
1959         igb_t *igb = rx_ring->igb;
1960         igb_rx_data_t *rx_data = rx_ring->rx_data;
1961         struct e1000_hw *hw = &igb->hw;
1962         rx_control_block_t *rcb;
1963         union e1000_adv_rx_desc *rbd;
1964         uint32_t size;
1965         uint32_t buf_low;
1966         uint32_t buf_high;
1967         uint32_t rxdctl;
1968         int i;
1969 
1970         ASSERT(mutex_owned(&rx_ring->rx_lock));
1971         ASSERT(mutex_owned(&igb->gen_lock));
1972 
1973         /*
1974          * Initialize descriptor ring with buffer addresses
1975          */
1976         for (i = 0; i < igb->rx_ring_size; i++) {
1977                 rcb = rx_data->work_list[i];
1978                 rbd = &rx_data->rbd_ring[i];
1979 
1980                 rbd->read.pkt_addr = rcb->rx_buf.dma_address;
1981                 rbd->read.hdr_addr = NULL;
1982         }
1983 
1984         /*
1985          * Initialize the base address registers
1986          */
1987         buf_low = (uint32_t)rx_data->rbd_area.dma_address;
1988         buf_high = (uint32_t)(rx_data->rbd_area.dma_address >> 32);
1989         E1000_WRITE_REG(hw, E1000_RDBAH(rx_ring->index), buf_high);
1990         E1000_WRITE_REG(hw, E1000_RDBAL(rx_ring->index), buf_low);
1991 
1992         /*
1993          * Initialize the length register
1994          */
1995         size = rx_data->ring_size * sizeof (union e1000_adv_rx_desc);
1996         E1000_WRITE_REG(hw, E1000_RDLEN(rx_ring->index), size);
1997 
1998         /*
1999          * Initialize buffer size & descriptor type
2000          */
2001         E1000_WRITE_REG(hw, E1000_SRRCTL(rx_ring->index),
2002             ((igb->rx_buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) |
2003             E1000_SRRCTL_DESCTYPE_ADV_ONEBUF));
2004 
2005         /*
2006          * Setup the Receive Descriptor Control Register (RXDCTL)
2007          */
2008         rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rx_ring->index));
2009         rxdctl &= igb->capab->rxdctl_mask;
2010         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2011         rxdctl |= 16;           /* pthresh */
2012         rxdctl |= 8 << 8; /* hthresh */
2013         rxdctl |= 1 << 16;        /* wthresh */
2014         E1000_WRITE_REG(hw, E1000_RXDCTL(rx_ring->index), rxdctl);
2015 
2016         rx_data->rbd_next = 0;
2017 }
2018 
2019 static void
2020 igb_setup_rx(igb_t *igb)
2021 {
2022         igb_rx_ring_t *rx_ring;
2023         igb_rx_data_t *rx_data;
2024         igb_rx_group_t *rx_group;
2025         struct e1000_hw *hw = &igb->hw;
2026         uint32_t rctl, rxcsum;
2027         uint32_t ring_per_group;
2028         int i;
2029 
2030         /*
2031          * Setup the Receive Control Register (RCTL), and enable the
2032          * receiver. The initial configuration is to: enable the receiver,
2033          * accept broadcasts, discard bad packets, accept long packets,
2034          * disable VLAN filter checking, and set receive buffer size to
2035          * 2k.  For 82575, also set the receive descriptor minimum
2036          * threshold size to 1/2 the ring.
2037          */
2038         rctl = E1000_READ_REG(hw, E1000_RCTL);
2039 
2040         /*
2041          * Clear the field used for wakeup control.  This driver doesn't do
2042          * wakeup but leave this here for completeness.
2043          */
2044         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2045         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2046 
2047         rctl |= (E1000_RCTL_EN |        /* Enable Receive Unit */
2048             E1000_RCTL_BAM |            /* Accept Broadcast Packets */
2049             E1000_RCTL_LPE |            /* Large Packet Enable */
2050                                         /* Multicast filter offset */
2051             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
2052             E1000_RCTL_RDMTS_HALF |     /* rx descriptor threshold */
2053             E1000_RCTL_SECRC);          /* Strip Ethernet CRC */
2054 
2055         for (i = 0; i < igb->num_rx_groups; i++) {
2056                 rx_group = &igb->rx_groups[i];
2057                 rx_group->index = i;
2058                 rx_group->igb = igb;
2059         }
2060 
2061         /*
2062          * Set up all rx descriptor rings - must be called before receive unit
2063          * enabled.
2064          */
2065         ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2066         for (i = 0; i < igb->num_rx_rings; i++) {
2067                 rx_ring = &igb->rx_rings[i];
2068                 igb_setup_rx_ring(rx_ring);
2069 
2070                 /*
2071                  * Map a ring to a group by assigning a group index
2072                  */
2073                 rx_ring->group_index = i / ring_per_group;
2074         }
2075 
2076         /*
2077          * Setup the Rx Long Packet Max Length register
2078          */
2079         E1000_WRITE_REG(hw, E1000_RLPML, igb->max_frame_size);
2080 
2081         /*
2082          * Hardware checksum settings
2083          */
2084         if (igb->rx_hcksum_enable) {
2085                 rxcsum =
2086                     E1000_RXCSUM_TUOFL |        /* TCP/UDP checksum */
2087                     E1000_RXCSUM_IPOFL;         /* IP checksum */
2088 
2089                 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2090         }
2091 
2092         /*
2093          * Setup classify and RSS for multiple receive queues
2094          */
2095         switch (igb->vmdq_mode) {
2096         case E1000_VMDQ_OFF:
2097                 /*
2098                  * One ring group, only RSS is needed when more than
2099                  * one ring enabled.
2100                  */
2101                 if (igb->num_rx_rings > 1)
2102                         igb_setup_rss(igb);
2103                 break;
2104         case E1000_VMDQ_MAC:
2105                 /*
2106                  * Multiple groups, each group has one ring,
2107                  * only the MAC classification is needed.
2108                  */
2109                 igb_setup_mac_classify(igb);
2110                 break;
2111         case E1000_VMDQ_MAC_RSS:
2112                 /*
2113                  * Multiple groups and multiple rings, both
2114                  * MAC classification and RSS are needed.
2115                  */
2116                 igb_setup_mac_rss_classify(igb);
2117                 break;
2118         }
2119 
2120         /*
2121          * Enable the receive unit - must be done after all
2122          * the rx setup above.
2123          */
2124         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2125 
2126         /*
2127          * Initialize all adapter ring head & tail pointers - must
2128          * be done after receive unit is enabled
2129          */
2130         for (i = 0; i < igb->num_rx_rings; i++) {
2131                 rx_ring = &igb->rx_rings[i];
2132                 rx_data = rx_ring->rx_data;
2133                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2134                 E1000_WRITE_REG(hw, E1000_RDT(i), rx_data->ring_size - 1);
2135         }
2136 
2137         /*
2138          * 82575 with manageability enabled needs a special flush to make
2139          * sure the fifos start clean.
2140          */
2141         if ((hw->mac.type == e1000_82575) &&
2142             (E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) {
2143                 e1000_rx_fifo_flush_82575(hw);
2144         }
2145 }
2146 
2147 static void
2148 igb_setup_tx_ring(igb_tx_ring_t *tx_ring)
2149 {
2150         igb_t *igb = tx_ring->igb;
2151         struct e1000_hw *hw = &igb->hw;
2152         uint32_t size;
2153         uint32_t buf_low;
2154         uint32_t buf_high;
2155         uint32_t reg_val;
2156 
2157         ASSERT(mutex_owned(&tx_ring->tx_lock));
2158         ASSERT(mutex_owned(&igb->gen_lock));
2159 
2160 
2161         /*
2162          * Initialize the length register
2163          */
2164         size = tx_ring->ring_size * sizeof (union e1000_adv_tx_desc);
2165         E1000_WRITE_REG(hw, E1000_TDLEN(tx_ring->index), size);
2166 
2167         /*
2168          * Initialize the base address registers
2169          */
2170         buf_low = (uint32_t)tx_ring->tbd_area.dma_address;
2171         buf_high = (uint32_t)(tx_ring->tbd_area.dma_address >> 32);
2172         E1000_WRITE_REG(hw, E1000_TDBAL(tx_ring->index), buf_low);
2173         E1000_WRITE_REG(hw, E1000_TDBAH(tx_ring->index), buf_high);
2174 
2175         /*
2176          * Setup head & tail pointers
2177          */
2178         E1000_WRITE_REG(hw, E1000_TDH(tx_ring->index), 0);
2179         E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), 0);
2180 
2181         /*
2182          * Setup head write-back
2183          */
2184         if (igb->tx_head_wb_enable) {
2185                 /*
2186                  * The memory of the head write-back is allocated using
2187                  * the extra tbd beyond the tail of the tbd ring.
2188                  */
2189                 tx_ring->tbd_head_wb = (uint32_t *)
2190                     ((uintptr_t)tx_ring->tbd_area.address + size);
2191                 *tx_ring->tbd_head_wb = 0;
2192 
2193                 buf_low = (uint32_t)
2194                     (tx_ring->tbd_area.dma_address + size);
2195                 buf_high = (uint32_t)
2196                     ((tx_ring->tbd_area.dma_address + size) >> 32);
2197 
2198                 /* Set the head write-back enable bit */
2199                 buf_low |= E1000_TX_HEAD_WB_ENABLE;
2200 
2201                 E1000_WRITE_REG(hw, E1000_TDWBAL(tx_ring->index), buf_low);
2202                 E1000_WRITE_REG(hw, E1000_TDWBAH(tx_ring->index), buf_high);
2203 
2204                 /*
2205                  * Turn off relaxed ordering for head write back or it will
2206                  * cause problems with the tx recycling
2207                  */
2208                 reg_val = E1000_READ_REG(hw,
2209                     E1000_DCA_TXCTRL(tx_ring->index));
2210                 reg_val &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2211                 E1000_WRITE_REG(hw,
2212                     E1000_DCA_TXCTRL(tx_ring->index), reg_val);
2213         } else {
2214                 tx_ring->tbd_head_wb = NULL;
2215         }
2216 
2217         tx_ring->tbd_head = 0;
2218         tx_ring->tbd_tail = 0;
2219         tx_ring->tbd_free = tx_ring->ring_size;
2220 
2221         if (igb->tx_ring_init == B_TRUE) {
2222                 tx_ring->tcb_head = 0;
2223                 tx_ring->tcb_tail = 0;
2224                 tx_ring->tcb_free = tx_ring->free_list_size;
2225         }
2226 
2227         /*
2228          * Enable TXDCTL per queue
2229          */
2230         reg_val = E1000_READ_REG(hw, E1000_TXDCTL(tx_ring->index));
2231         reg_val |= E1000_TXDCTL_QUEUE_ENABLE;
2232         E1000_WRITE_REG(hw, E1000_TXDCTL(tx_ring->index), reg_val);
2233 
2234         /*
2235          * Initialize hardware checksum offload settings
2236          */
2237         bzero(&tx_ring->tx_context, sizeof (tx_context_t));
2238 }
2239 
2240 static void
2241 igb_setup_tx(igb_t *igb)
2242 {
2243         igb_tx_ring_t *tx_ring;
2244         struct e1000_hw *hw = &igb->hw;
2245         uint32_t reg_val;
2246         int i;
2247 
2248         for (i = 0; i < igb->num_tx_rings; i++) {
2249                 tx_ring = &igb->tx_rings[i];
2250                 igb_setup_tx_ring(tx_ring);
2251         }
2252 
2253         /*
2254          * Setup the Transmit Control Register (TCTL)
2255          */
2256         reg_val = E1000_READ_REG(hw, E1000_TCTL);
2257         reg_val &= ~E1000_TCTL_CT;
2258         reg_val |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2259             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2260 
2261         /* Enable transmits */
2262         reg_val |= E1000_TCTL_EN;
2263 
2264         E1000_WRITE_REG(hw, E1000_TCTL, reg_val);
2265 }
2266 
2267 /*
2268  * igb_setup_rss - Setup receive-side scaling feature
2269  */
2270 static void
2271 igb_setup_rss(igb_t *igb)
2272 {
2273         struct e1000_hw *hw = &igb->hw;
2274         uint32_t i, mrqc, rxcsum;
2275         int shift = 0;
2276         uint32_t random;
2277         union e1000_reta {
2278                 uint32_t        dword;
2279                 uint8_t         bytes[4];
2280         } reta;
2281 
2282         /* Setup the Redirection Table */
2283         if (hw->mac.type == e1000_82576) {
2284                 shift = 3;
2285         } else if (hw->mac.type == e1000_82575) {
2286                 shift = 6;
2287         }
2288         for (i = 0; i < (32 * 4); i++) {
2289                 reta.bytes[i & 3] = (i % igb->num_rx_rings) << shift;
2290                 if ((i & 3) == 3) {
2291                         E1000_WRITE_REG(hw,
2292                             (E1000_RETA(0) + (i & ~3)), reta.dword);
2293                 }
2294         }
2295 
2296         /* Fill out hash function seeds */
2297         for (i = 0; i < 10; i++) {
2298                 (void) random_get_pseudo_bytes((uint8_t *)&random,
2299                     sizeof (uint32_t));
2300                 E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2301         }
2302 
2303         /* Setup the Multiple Receive Queue Control register */
2304         mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2305         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2306             E1000_MRQC_RSS_FIELD_IPV4_TCP |
2307             E1000_MRQC_RSS_FIELD_IPV6 |
2308             E1000_MRQC_RSS_FIELD_IPV6_TCP |
2309             E1000_MRQC_RSS_FIELD_IPV4_UDP |
2310             E1000_MRQC_RSS_FIELD_IPV6_UDP |
2311             E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2312             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2313 
2314         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2315 
2316         /*
2317          * Disable Packet Checksum to enable RSS for multiple receive queues.
2318          *
2319          * The Packet Checksum is not ethernet CRC. It is another kind of
2320          * checksum offloading provided by the 82575 chipset besides the IP
2321          * header checksum offloading and the TCP/UDP checksum offloading.
2322          * The Packet Checksum is by default computed over the entire packet
2323          * from the first byte of the DA through the last byte of the CRC,
2324          * including the Ethernet and IP headers.
2325          *
2326          * It is a hardware limitation that Packet Checksum is mutually
2327          * exclusive with RSS.
2328          */
2329         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2330         rxcsum |= E1000_RXCSUM_PCSD;
2331         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2332 }
2333 
2334 /*
2335  * igb_setup_mac_rss_classify - Setup MAC classification and rss
2336  */
2337 static void
2338 igb_setup_mac_rss_classify(igb_t *igb)
2339 {
2340         struct e1000_hw *hw = &igb->hw;
2341         uint32_t i, mrqc, vmdctl, rxcsum;
2342         uint32_t ring_per_group;
2343         int shift_group0, shift_group1;
2344         uint32_t random;
2345         union e1000_reta {
2346                 uint32_t        dword;
2347                 uint8_t         bytes[4];
2348         } reta;
2349 
2350         ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2351 
2352         /* Setup the Redirection Table, it is shared between two groups */
2353         shift_group0 = 2;
2354         shift_group1 = 6;
2355         for (i = 0; i < (32 * 4); i++) {
2356                 reta.bytes[i & 3] = ((i % ring_per_group) << shift_group0) |
2357                     ((ring_per_group + (i % ring_per_group)) << shift_group1);
2358                 if ((i & 3) == 3) {
2359                         E1000_WRITE_REG(hw,
2360                             (E1000_RETA(0) + (i & ~3)), reta.dword);
2361                 }
2362         }
2363 
2364         /* Fill out hash function seeds */
2365         for (i = 0; i < 10; i++) {
2366                 (void) random_get_pseudo_bytes((uint8_t *)&random,
2367                     sizeof (uint32_t));
2368                 E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2369         }
2370 
2371         /*
2372          * Setup the Multiple Receive Queue Control register,
2373          * enable VMDq based on packet destination MAC address and RSS.
2374          */
2375         mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_RSS_GROUP;
2376         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2377             E1000_MRQC_RSS_FIELD_IPV4_TCP |
2378             E1000_MRQC_RSS_FIELD_IPV6 |
2379             E1000_MRQC_RSS_FIELD_IPV6_TCP |
2380             E1000_MRQC_RSS_FIELD_IPV4_UDP |
2381             E1000_MRQC_RSS_FIELD_IPV6_UDP |
2382             E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2383             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2384 
2385         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2386 
2387 
2388         /* Define the default group and default queues */
2389         vmdctl = E1000_VMDQ_MAC_GROUP_DEFAULT_QUEUE;
2390         E1000_WRITE_REG(hw, E1000_VT_CTL, vmdctl);
2391 
2392         /*
2393          * Disable Packet Checksum to enable RSS for multiple receive queues.
2394          *
2395          * The Packet Checksum is not ethernet CRC. It is another kind of
2396          * checksum offloading provided by the 82575 chipset besides the IP
2397          * header checksum offloading and the TCP/UDP checksum offloading.
2398          * The Packet Checksum is by default computed over the entire packet
2399          * from the first byte of the DA through the last byte of the CRC,
2400          * including the Ethernet and IP headers.
2401          *
2402          * It is a hardware limitation that Packet Checksum is mutually
2403          * exclusive with RSS.
2404          */
2405         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2406         rxcsum |= E1000_RXCSUM_PCSD;
2407         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2408 }
2409 
2410 /*
2411  * igb_setup_mac_classify - Setup MAC classification feature
2412  */
2413 static void
2414 igb_setup_mac_classify(igb_t *igb)
2415 {
2416         struct e1000_hw *hw = &igb->hw;
2417         uint32_t mrqc, rxcsum;
2418 
2419         /*
2420          * Setup the Multiple Receive Queue Control register,
2421          * enable VMDq based on packet destination MAC address.
2422          */
2423         mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_GROUP;
2424         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2425 
2426         /*
2427          * Disable Packet Checksum to enable RSS for multiple receive queues.
2428          *
2429          * The Packet Checksum is not ethernet CRC. It is another kind of
2430          * checksum offloading provided by the 82575 chipset besides the IP
2431          * header checksum offloading and the TCP/UDP checksum offloading.
2432          * The Packet Checksum is by default computed over the entire packet
2433          * from the first byte of the DA through the last byte of the CRC,
2434          * including the Ethernet and IP headers.
2435          *
2436          * It is a hardware limitation that Packet Checksum is mutually
2437          * exclusive with RSS.
2438          */
2439         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2440         rxcsum |= E1000_RXCSUM_PCSD;
2441         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2442 
2443 }
2444 
2445 /*
2446  * igb_init_unicst - Initialize the unicast addresses
2447  */
2448 static void
2449 igb_init_unicst(igb_t *igb)
2450 {
2451         struct e1000_hw *hw = &igb->hw;
2452         int slot;
2453 
2454         /*
2455          * Here we should consider two situations:
2456          *
2457          * 1. Chipset is initialized the first time
2458          *    Initialize the multiple unicast addresses, and
2459          *    save the default MAC address.
2460          *
2461          * 2. Chipset is reset
2462          *    Recover the multiple unicast addresses from the
2463          *    software data structure to the RAR registers.
2464          */
2465 
2466         /*
2467          * Clear the default MAC address in the RAR0 rgister,
2468          * which is loaded from EEPROM when system boot or chipreset,
2469          * this will cause the conficts with add_mac/rem_mac entry
2470          * points when VMDq is enabled. For this reason, the RAR0
2471          * must be cleared for both cases mentioned above.
2472          */
2473         e1000_rar_clear(hw, 0);
2474 
2475         if (!igb->unicst_init) {
2476 
2477                 /* Initialize the multiple unicast addresses */
2478                 igb->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2479                 igb->unicst_avail = igb->unicst_total;
2480 
2481                 for (slot = 0; slot < igb->unicst_total; slot++)
2482                         igb->unicst_addr[slot].mac.set = 0;
2483 
2484                 igb->unicst_init = B_TRUE;
2485         } else {
2486                 /* Re-configure the RAR registers */
2487                 for (slot = 0; slot < igb->unicst_total; slot++) {
2488                         e1000_rar_set_vmdq(hw, igb->unicst_addr[slot].mac.addr,
2489                             slot, igb->vmdq_mode,
2490                             igb->unicst_addr[slot].mac.group_index);
2491                 }
2492         }
2493 }
2494 
2495 /*
2496  * igb_unicst_find - Find the slot for the specified unicast address
2497  */
2498 int
2499 igb_unicst_find(igb_t *igb, const uint8_t *mac_addr)
2500 {
2501         int slot;
2502 
2503         ASSERT(mutex_owned(&igb->gen_lock));
2504 
2505         for (slot = 0; slot < igb->unicst_total; slot++) {
2506                 if (bcmp(igb->unicst_addr[slot].mac.addr,
2507                     mac_addr, ETHERADDRL) == 0)
2508                         return (slot);
2509         }
2510 
2511         return (-1);
2512 }
2513 
2514 /*
2515  * igb_unicst_set - Set the unicast address to the specified slot
2516  */
2517 int
2518 igb_unicst_set(igb_t *igb, const uint8_t *mac_addr,
2519     int slot)
2520 {
2521         struct e1000_hw *hw = &igb->hw;
2522 
2523         ASSERT(mutex_owned(&igb->gen_lock));
2524 
2525         /*
2526          * Save the unicast address in the software data structure
2527          */
2528         bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL);
2529 
2530         /*
2531          * Set the unicast address to the RAR register
2532          */
2533         e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2534 
2535         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2536                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2537                 return (EIO);
2538         }
2539 
2540         return (0);
2541 }
2542 
2543 /*
2544  * igb_multicst_add - Add a multicst address
2545  */
2546 int
2547 igb_multicst_add(igb_t *igb, const uint8_t *multiaddr)
2548 {
2549         struct ether_addr *new_table;
2550         size_t new_len;
2551         size_t old_len;
2552 
2553         ASSERT(mutex_owned(&igb->gen_lock));
2554 
2555         if ((multiaddr[0] & 01) == 0) {
2556                 igb_error(igb, "Illegal multicast address");
2557                 return (EINVAL);
2558         }
2559 
2560         if (igb->mcast_count >= igb->mcast_max_num) {
2561                 igb_error(igb, "Adapter requested more than %d mcast addresses",
2562                     igb->mcast_max_num);
2563                 return (ENOENT);
2564         }
2565 
2566         if (igb->mcast_count == igb->mcast_alloc_count) {
2567                 old_len = igb->mcast_alloc_count *
2568                     sizeof (struct ether_addr);
2569                 new_len = (igb->mcast_alloc_count + MCAST_ALLOC_COUNT) *
2570                     sizeof (struct ether_addr);
2571 
2572                 new_table = kmem_alloc(new_len, KM_NOSLEEP);
2573                 if (new_table == NULL) {
2574                         igb_error(igb,
2575                             "Not enough memory to alloc mcast table");
2576                         return (ENOMEM);
2577                 }
2578 
2579                 if (igb->mcast_table != NULL) {
2580                         bcopy(igb->mcast_table, new_table, old_len);
2581                         kmem_free(igb->mcast_table, old_len);
2582                 }
2583                 igb->mcast_alloc_count += MCAST_ALLOC_COUNT;
2584                 igb->mcast_table = new_table;
2585         }
2586 
2587         bcopy(multiaddr,
2588             &igb->mcast_table[igb->mcast_count], ETHERADDRL);
2589         igb->mcast_count++;
2590 
2591         /*
2592          * Update the multicast table in the hardware
2593          */
2594         igb_setup_multicst(igb);
2595 
2596         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2597                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2598                 return (EIO);
2599         }
2600 
2601         return (0);
2602 }
2603 
2604 /*
2605  * igb_multicst_remove - Remove a multicst address
2606  */
2607 int
2608 igb_multicst_remove(igb_t *igb, const uint8_t *multiaddr)
2609 {
2610         struct ether_addr *new_table;
2611         size_t new_len;
2612         size_t old_len;
2613         int i;
2614 
2615         ASSERT(mutex_owned(&igb->gen_lock));
2616 
2617         for (i = 0; i < igb->mcast_count; i++) {
2618                 if (bcmp(multiaddr, &igb->mcast_table[i],
2619                     ETHERADDRL) == 0) {
2620                         for (i++; i < igb->mcast_count; i++) {
2621                                 igb->mcast_table[i - 1] =
2622                                     igb->mcast_table[i];
2623                         }
2624                         igb->mcast_count--;
2625                         break;
2626                 }
2627         }
2628 
2629         if ((igb->mcast_alloc_count - igb->mcast_count) >
2630             MCAST_ALLOC_COUNT) {
2631                 old_len = igb->mcast_alloc_count *
2632                     sizeof (struct ether_addr);
2633                 new_len = (igb->mcast_alloc_count - MCAST_ALLOC_COUNT) *
2634                     sizeof (struct ether_addr);
2635 
2636                 new_table = kmem_alloc(new_len, KM_NOSLEEP);
2637                 if (new_table != NULL) {
2638                         bcopy(igb->mcast_table, new_table, new_len);
2639                         kmem_free(igb->mcast_table, old_len);
2640                         igb->mcast_alloc_count -= MCAST_ALLOC_COUNT;
2641                         igb->mcast_table = new_table;
2642                 }
2643         }
2644 
2645         /*
2646          * Update the multicast table in the hardware
2647          */
2648         igb_setup_multicst(igb);
2649 
2650         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2651                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2652                 return (EIO);
2653         }
2654 
2655         return (0);
2656 }
2657 
2658 static void
2659 igb_release_multicast(igb_t *igb)
2660 {
2661         if (igb->mcast_table != NULL) {
2662                 kmem_free(igb->mcast_table,
2663                     igb->mcast_alloc_count * sizeof (struct ether_addr));
2664                 igb->mcast_table = NULL;
2665         }
2666 }
2667 
2668 /*
2669  * igb_setup_multicast - setup multicast data structures
2670  *
2671  * This routine initializes all of the multicast related structures
2672  * and save them in the hardware registers.
2673  */
2674 static void
2675 igb_setup_multicst(igb_t *igb)
2676 {
2677         uint8_t *mc_addr_list;
2678         uint32_t mc_addr_count;
2679         struct e1000_hw *hw = &igb->hw;
2680 
2681         ASSERT(mutex_owned(&igb->gen_lock));
2682         ASSERT(igb->mcast_count <= igb->mcast_max_num);
2683 
2684         mc_addr_list = (uint8_t *)igb->mcast_table;
2685         mc_addr_count = igb->mcast_count;
2686 
2687         /*
2688          * Update the multicase addresses to the MTA registers
2689          */
2690         e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2691 }
2692 
2693 /*
2694  * igb_get_conf - Get driver configurations set in driver.conf
2695  *
2696  * This routine gets user-configured values out of the configuration
2697  * file igb.conf.
2698  *
2699  * For each configurable value, there is a minimum, a maximum, and a
2700  * default.
2701  * If user does not configure a value, use the default.
2702  * If user configures below the minimum, use the minumum.
2703  * If user configures above the maximum, use the maxumum.
2704  */
2705 static void
2706 igb_get_conf(igb_t *igb)
2707 {
2708         struct e1000_hw *hw = &igb->hw;
2709         uint32_t default_mtu;
2710         uint32_t flow_control;
2711         uint32_t ring_per_group;
2712         int i;
2713 
2714         /*
2715          * igb driver supports the following user configurations:
2716          *
2717          * Link configurations:
2718          *    adv_autoneg_cap
2719          *    adv_1000fdx_cap
2720          *    adv_100fdx_cap
2721          *    adv_100hdx_cap
2722          *    adv_10fdx_cap
2723          *    adv_10hdx_cap
2724          * Note: 1000hdx is not supported.
2725          *
2726          * Jumbo frame configuration:
2727          *    default_mtu
2728          *
2729          * Ethernet flow control configuration:
2730          *    flow_control
2731          *
2732          * Multiple rings configurations:
2733          *    tx_queue_number
2734          *    tx_ring_size
2735          *    rx_queue_number
2736          *    rx_ring_size
2737          *
2738          * Call igb_get_prop() to get the value for a specific
2739          * configuration parameter.
2740          */
2741 
2742         /*
2743          * Link configurations
2744          */
2745         igb->param_adv_autoneg_cap = igb_get_prop(igb,
2746             PROP_ADV_AUTONEG_CAP, 0, 1, 1);
2747         igb->param_adv_1000fdx_cap = igb_get_prop(igb,
2748             PROP_ADV_1000FDX_CAP, 0, 1, 1);
2749         igb->param_adv_100fdx_cap = igb_get_prop(igb,
2750             PROP_ADV_100FDX_CAP, 0, 1, 1);
2751         igb->param_adv_100hdx_cap = igb_get_prop(igb,
2752             PROP_ADV_100HDX_CAP, 0, 1, 1);
2753         igb->param_adv_10fdx_cap = igb_get_prop(igb,
2754             PROP_ADV_10FDX_CAP, 0, 1, 1);
2755         igb->param_adv_10hdx_cap = igb_get_prop(igb,
2756             PROP_ADV_10HDX_CAP, 0, 1, 1);
2757 
2758         /*
2759          * Jumbo frame configurations
2760          */
2761         default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
2762             MIN_MTU, MAX_MTU, DEFAULT_MTU);
2763 
2764         igb->max_frame_size = default_mtu +
2765             sizeof (struct ether_vlan_header) + ETHERFCSL;
2766 
2767         /*
2768          * Ethernet flow control configuration
2769          */
2770         flow_control = igb_get_prop(igb, PROP_FLOW_CONTROL,
2771             e1000_fc_none, 4, e1000_fc_full);
2772         if (flow_control == 4)
2773                 flow_control = e1000_fc_default;
2774 
2775         hw->fc.requested_mode = flow_control;
2776 
2777         /*
2778          * Multiple rings configurations
2779          */
2780         igb->tx_ring_size = igb_get_prop(igb, PROP_TX_RING_SIZE,
2781             MIN_TX_RING_SIZE, MAX_TX_RING_SIZE, DEFAULT_TX_RING_SIZE);
2782         igb->rx_ring_size = igb_get_prop(igb, PROP_RX_RING_SIZE,
2783             MIN_RX_RING_SIZE, MAX_RX_RING_SIZE, DEFAULT_RX_RING_SIZE);
2784 
2785         igb->mr_enable = igb_get_prop(igb, PROP_MR_ENABLE, 0, 1, 0);
2786         igb->num_rx_groups = igb_get_prop(igb, PROP_RX_GROUP_NUM,
2787             MIN_RX_GROUP_NUM, MAX_RX_GROUP_NUM, DEFAULT_RX_GROUP_NUM);
2788         /*
2789          * Currently we do not support VMDq for 82576 and 82580.
2790          * If it is e1000_82576, set num_rx_groups to 1.
2791          */
2792         if (hw->mac.type >= e1000_82576)
2793                 igb->num_rx_groups = 1;
2794 
2795         if (igb->mr_enable) {
2796                 igb->num_tx_rings = igb->capab->def_tx_que_num;
2797                 igb->num_rx_rings = igb->capab->def_rx_que_num;
2798         } else {
2799                 igb->num_tx_rings = 1;
2800                 igb->num_rx_rings = 1;
2801 
2802                 if (igb->num_rx_groups > 1) {
2803                         igb_error(igb,
2804                             "Invalid rx groups number. Please enable multiple "
2805                             "rings first");
2806                         igb->num_rx_groups = 1;
2807                 }
2808         }
2809 
2810         /*
2811          * Check the divisibility between rx rings and rx groups.
2812          */
2813         for (i = igb->num_rx_groups; i > 0; i--) {
2814                 if ((igb->num_rx_rings % i) == 0)
2815                         break;
2816         }
2817         if (i != igb->num_rx_groups) {
2818                 igb_error(igb,
2819                     "Invalid rx groups number. Downgrade the rx group "
2820                     "number to %d.", i);
2821                 igb->num_rx_groups = i;
2822         }
2823 
2824         /*
2825          * Get the ring number per group.
2826          */
2827         ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2828 
2829         if (igb->num_rx_groups == 1) {
2830                 /*
2831                  * One rx ring group, the rx ring number is num_rx_rings.
2832                  */
2833                 igb->vmdq_mode = E1000_VMDQ_OFF;
2834         } else if (ring_per_group == 1) {
2835                 /*
2836                  * Multiple rx groups, each group has one rx ring.
2837                  */
2838                 igb->vmdq_mode = E1000_VMDQ_MAC;
2839         } else {
2840                 /*
2841                  * Multiple groups and multiple rings.
2842                  */
2843                 igb->vmdq_mode = E1000_VMDQ_MAC_RSS;
2844         }
2845 
2846         /*
2847          * Tunable used to force an interrupt type. The only use is
2848          * for testing of the lesser interrupt types.
2849          * 0 = don't force interrupt type
2850          * 1 = force interrupt type MSIX
2851          * 2 = force interrupt type MSI
2852          * 3 = force interrupt type Legacy
2853          */
2854         igb->intr_force = igb_get_prop(igb, PROP_INTR_FORCE,
2855             IGB_INTR_NONE, IGB_INTR_LEGACY, IGB_INTR_NONE);
2856 
2857         igb->tx_hcksum_enable = igb_get_prop(igb, PROP_TX_HCKSUM_ENABLE,
2858             0, 1, 1);
2859         igb->rx_hcksum_enable = igb_get_prop(igb, PROP_RX_HCKSUM_ENABLE,
2860             0, 1, 1);
2861         igb->lso_enable = igb_get_prop(igb, PROP_LSO_ENABLE,
2862             0, 1, 1);
2863         igb->tx_head_wb_enable = igb_get_prop(igb, PROP_TX_HEAD_WB_ENABLE,
2864             0, 1, 1);
2865 
2866         /*
2867          * igb LSO needs the tx h/w checksum support.
2868          * Here LSO will be disabled if tx h/w checksum has been disabled.
2869          */
2870         if (igb->tx_hcksum_enable == B_FALSE)
2871                 igb->lso_enable = B_FALSE;
2872 
2873         igb->tx_copy_thresh = igb_get_prop(igb, PROP_TX_COPY_THRESHOLD,
2874             MIN_TX_COPY_THRESHOLD, MAX_TX_COPY_THRESHOLD,
2875             DEFAULT_TX_COPY_THRESHOLD);
2876         igb->tx_recycle_thresh = igb_get_prop(igb, PROP_TX_RECYCLE_THRESHOLD,
2877             MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
2878             DEFAULT_TX_RECYCLE_THRESHOLD);
2879         igb->tx_overload_thresh = igb_get_prop(igb, PROP_TX_OVERLOAD_THRESHOLD,
2880             MIN_TX_OVERLOAD_THRESHOLD, MAX_TX_OVERLOAD_THRESHOLD,
2881             DEFAULT_TX_OVERLOAD_THRESHOLD);
2882         igb->tx_resched_thresh = igb_get_prop(igb, PROP_TX_RESCHED_THRESHOLD,
2883             MIN_TX_RESCHED_THRESHOLD,
2884             MIN(igb->tx_ring_size, MAX_TX_RESCHED_THRESHOLD),
2885             igb->tx_ring_size > DEFAULT_TX_RESCHED_THRESHOLD ?
2886             DEFAULT_TX_RESCHED_THRESHOLD : DEFAULT_TX_RESCHED_THRESHOLD_LOW);
2887 
2888         igb->rx_copy_thresh = igb_get_prop(igb, PROP_RX_COPY_THRESHOLD,
2889             MIN_RX_COPY_THRESHOLD, MAX_RX_COPY_THRESHOLD,
2890             DEFAULT_RX_COPY_THRESHOLD);
2891         igb->rx_limit_per_intr = igb_get_prop(igb, PROP_RX_LIMIT_PER_INTR,
2892             MIN_RX_LIMIT_PER_INTR, MAX_RX_LIMIT_PER_INTR,
2893             DEFAULT_RX_LIMIT_PER_INTR);
2894 
2895         igb->intr_throttling[0] = igb_get_prop(igb, PROP_INTR_THROTTLING,
2896             igb->capab->min_intr_throttle,
2897             igb->capab->max_intr_throttle,
2898             igb->capab->def_intr_throttle);
2899 
2900         /*
2901          * Max number of multicast addresses
2902          */
2903         igb->mcast_max_num =
2904             igb_get_prop(igb, PROP_MCAST_MAX_NUM,
2905             MIN_MCAST_NUM, MAX_MCAST_NUM, DEFAULT_MCAST_NUM);
2906 }
2907 
2908 /*
2909  * igb_get_prop - Get a property value out of the configuration file igb.conf
2910  *
2911  * Caller provides the name of the property, a default value, a minimum
2912  * value, and a maximum value.
2913  *
2914  * Return configured value of the property, with default, minimum and
2915  * maximum properly applied.
2916  */
2917 static int
2918 igb_get_prop(igb_t *igb,
2919     char *propname,     /* name of the property */
2920     int minval,         /* minimum acceptable value */
2921     int maxval,         /* maximim acceptable value */
2922     int defval)         /* default value */
2923 {
2924         int value;
2925 
2926         /*
2927          * Call ddi_prop_get_int() to read the conf settings
2928          */
2929         value = ddi_prop_get_int(DDI_DEV_T_ANY, igb->dip,
2930             DDI_PROP_DONTPASS, propname, defval);
2931 
2932         if (value > maxval)
2933                 value = maxval;
2934 
2935         if (value < minval)
2936                 value = minval;
2937 
2938         return (value);
2939 }
2940 
2941 /*
2942  * igb_setup_link - Using the link properties to setup the link
2943  */
2944 int
2945 igb_setup_link(igb_t *igb, boolean_t setup_hw)
2946 {
2947         struct e1000_mac_info *mac;
2948         struct e1000_phy_info *phy;
2949         boolean_t invalid;
2950 
2951         mac = &igb->hw.mac;
2952         phy = &igb->hw.phy;
2953         invalid = B_FALSE;
2954 
2955         if (igb->param_adv_autoneg_cap == 1) {
2956                 mac->autoneg = B_TRUE;
2957                 phy->autoneg_advertised = 0;
2958 
2959                 /*
2960                  * 1000hdx is not supported for autonegotiation
2961                  */
2962                 if (igb->param_adv_1000fdx_cap == 1)
2963                         phy->autoneg_advertised |= ADVERTISE_1000_FULL;
2964 
2965                 if (igb->param_adv_100fdx_cap == 1)
2966                         phy->autoneg_advertised |= ADVERTISE_100_FULL;
2967 
2968                 if (igb->param_adv_100hdx_cap == 1)
2969                         phy->autoneg_advertised |= ADVERTISE_100_HALF;
2970 
2971                 if (igb->param_adv_10fdx_cap == 1)
2972                         phy->autoneg_advertised |= ADVERTISE_10_FULL;
2973 
2974                 if (igb->param_adv_10hdx_cap == 1)
2975                         phy->autoneg_advertised |= ADVERTISE_10_HALF;
2976 
2977                 if (phy->autoneg_advertised == 0)
2978                         invalid = B_TRUE;
2979         } else {
2980                 mac->autoneg = B_FALSE;
2981 
2982                 /*
2983                  * 1000fdx and 1000hdx are not supported for forced link
2984                  */
2985                 if (igb->param_adv_100fdx_cap == 1)
2986                         mac->forced_speed_duplex = ADVERTISE_100_FULL;
2987                 else if (igb->param_adv_100hdx_cap == 1)
2988                         mac->forced_speed_duplex = ADVERTISE_100_HALF;
2989                 else if (igb->param_adv_10fdx_cap == 1)
2990                         mac->forced_speed_duplex = ADVERTISE_10_FULL;
2991                 else if (igb->param_adv_10hdx_cap == 1)
2992                         mac->forced_speed_duplex = ADVERTISE_10_HALF;
2993                 else
2994                         invalid = B_TRUE;
2995         }
2996 
2997         if (invalid) {
2998                 igb_notice(igb, "Invalid link settings. Setup link to "
2999                     "autonegotiation with full link capabilities.");
3000                 mac->autoneg = B_TRUE;
3001                 phy->autoneg_advertised = ADVERTISE_1000_FULL |
3002                     ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3003                     ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3004         }
3005 
3006         if (setup_hw) {
3007                 if (e1000_setup_link(&igb->hw) != E1000_SUCCESS)
3008                         return (IGB_FAILURE);
3009         }
3010 
3011         return (IGB_SUCCESS);
3012 }
3013 
3014 
3015 /*
3016  * igb_is_link_up - Check if the link is up
3017  */
3018 static boolean_t
3019 igb_is_link_up(igb_t *igb)
3020 {
3021         struct e1000_hw *hw = &igb->hw;
3022         boolean_t link_up = B_FALSE;
3023 
3024         ASSERT(mutex_owned(&igb->gen_lock));
3025 
3026         /*
3027          * get_link_status is set in the interrupt handler on link-status-change
3028          * or rx sequence error interrupt.  get_link_status will stay
3029          * false until the e1000_check_for_link establishes link only
3030          * for copper adapters.
3031          */
3032         switch (hw->phy.media_type) {
3033         case e1000_media_type_copper:
3034                 if (hw->mac.get_link_status) {
3035                         (void) e1000_check_for_link(hw);
3036                         link_up = !hw->mac.get_link_status;
3037                 } else {
3038                         link_up = B_TRUE;
3039                 }
3040                 break;
3041         case e1000_media_type_fiber:
3042                 (void) e1000_check_for_link(hw);
3043                 link_up = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
3044                 break;
3045         case e1000_media_type_internal_serdes:
3046                 (void) e1000_check_for_link(hw);
3047                 link_up = hw->mac.serdes_has_link;
3048                 break;
3049         }
3050 
3051         return (link_up);
3052 }
3053 
3054 /*
3055  * igb_link_check - Link status processing
3056  */
3057 static boolean_t
3058 igb_link_check(igb_t *igb)
3059 {
3060         struct e1000_hw *hw = &igb->hw;
3061         uint16_t speed = 0, duplex = 0;
3062         boolean_t link_changed = B_FALSE;
3063 
3064         ASSERT(mutex_owned(&igb->gen_lock));
3065 
3066         if (igb_is_link_up(igb)) {
3067                 /*
3068                  * The Link is up, check whether it was marked as down earlier
3069                  */
3070                 if (igb->link_state != LINK_STATE_UP) {
3071                         (void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3072                         igb->link_speed = speed;
3073                         igb->link_duplex = duplex;
3074                         igb->link_state = LINK_STATE_UP;
3075                         link_changed = B_TRUE;
3076                         if (!igb->link_complete)
3077                                 igb_stop_link_timer(igb);
3078                 }
3079         } else if (igb->link_complete) {
3080                 if (igb->link_state != LINK_STATE_DOWN) {
3081                         igb->link_speed = 0;
3082                         igb->link_duplex = 0;
3083                         igb->link_state = LINK_STATE_DOWN;
3084                         link_changed = B_TRUE;
3085                 }
3086         }
3087 
3088         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3089                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3090                 return (B_FALSE);
3091         }
3092 
3093         return (link_changed);
3094 }
3095 
3096 /*
3097  * igb_local_timer - driver watchdog function
3098  *
3099  * This function will handle the hardware stall check, link status
3100  * check and other routines.
3101  */
3102 static void
3103 igb_local_timer(void *arg)
3104 {
3105         igb_t *igb = (igb_t *)arg;
3106         boolean_t link_changed = B_FALSE;
3107 
3108         if (igb->igb_state & IGB_ERROR) {
3109                 igb->reset_count++;
3110                 if (igb_reset(igb) == IGB_SUCCESS)
3111                         ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3112 
3113                 igb_restart_watchdog_timer(igb);
3114                 return;
3115         }
3116 
3117         if (igb_stall_check(igb) || (igb->igb_state & IGB_STALL)) {
3118                 igb_fm_ereport(igb, DDI_FM_DEVICE_STALL);
3119                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
3120                 igb->reset_count++;
3121                 if (igb_reset(igb) == IGB_SUCCESS)
3122                         ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3123 
3124                 igb_restart_watchdog_timer(igb);
3125                 return;
3126         }
3127 
3128         mutex_enter(&igb->gen_lock);
3129         if (!(igb->igb_state & IGB_SUSPENDED) && (igb->igb_state & IGB_STARTED))
3130                 link_changed = igb_link_check(igb);
3131         mutex_exit(&igb->gen_lock);
3132 
3133         if (link_changed)
3134                 mac_link_update(igb->mac_hdl, igb->link_state);
3135 
3136         igb_restart_watchdog_timer(igb);
3137 }
3138 
3139 /*
3140  * igb_link_timer - link setup timer function
3141  *
3142  * It is called when the timer for link setup is expired, which indicates
3143  * the completion of the link setup. The link state will not be updated
3144  * until the link setup is completed. And the link state will not be sent
3145  * to the upper layer through mac_link_update() in this function. It will
3146  * be updated in the local timer routine or the interrupts service routine
3147  * after the interface is started (plumbed).
3148  */
3149 static void
3150 igb_link_timer(void *arg)
3151 {
3152         igb_t *igb = (igb_t *)arg;
3153 
3154         mutex_enter(&igb->link_lock);
3155         igb->link_complete = B_TRUE;
3156         igb->link_tid = 0;
3157         mutex_exit(&igb->link_lock);
3158 }
3159 /*
3160  * igb_stall_check - check for transmit stall
3161  *
3162  * This function checks if the adapter is stalled (in transmit).
3163  *
3164  * It is called each time the watchdog timeout is invoked.
3165  * If the transmit descriptor reclaim continuously fails,
3166  * the watchdog value will increment by 1. If the watchdog
3167  * value exceeds the threshold, the igb is assumed to
3168  * have stalled and need to be reset.
3169  */
3170 static boolean_t
3171 igb_stall_check(igb_t *igb)
3172 {
3173         igb_tx_ring_t *tx_ring;
3174         struct e1000_hw *hw = &igb->hw;
3175         boolean_t result;
3176         int i;
3177 
3178         if (igb->link_state != LINK_STATE_UP)
3179                 return (B_FALSE);
3180 
3181         /*
3182          * If any tx ring is stalled, we'll reset the chipset
3183          */
3184         result = B_FALSE;
3185         for (i = 0; i < igb->num_tx_rings; i++) {
3186                 tx_ring = &igb->tx_rings[i];
3187 
3188                 if (tx_ring->recycle_fail > 0)
3189                         tx_ring->stall_watchdog++;
3190                 else
3191                         tx_ring->stall_watchdog = 0;
3192 
3193                 if (tx_ring->stall_watchdog >= STALL_WATCHDOG_TIMEOUT) {
3194                         result = B_TRUE;
3195                         if (hw->mac.type == e1000_82580) {
3196                                 hw->dev_spec._82575.global_device_reset
3197                                     = B_TRUE;
3198                         }
3199                         break;
3200                 }
3201         }
3202 
3203         if (result) {
3204                 tx_ring->stall_watchdog = 0;
3205                 tx_ring->recycle_fail = 0;
3206         }
3207 
3208         return (result);
3209 }
3210 
3211 
3212 /*
3213  * is_valid_mac_addr - Check if the mac address is valid
3214  */
3215 static boolean_t
3216 is_valid_mac_addr(uint8_t *mac_addr)
3217 {
3218         const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
3219         const uint8_t addr_test2[6] =
3220             { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3221 
3222         if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
3223             !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
3224                 return (B_FALSE);
3225 
3226         return (B_TRUE);
3227 }
3228 
3229 static boolean_t
3230 igb_find_mac_address(igb_t *igb)
3231 {
3232         struct e1000_hw *hw = &igb->hw;
3233 #ifdef __sparc
3234         uchar_t *bytes;
3235         struct ether_addr sysaddr;
3236         uint_t nelts;
3237         int err;
3238         boolean_t found = B_FALSE;
3239 
3240         /*
3241          * The "vendor's factory-set address" may already have
3242          * been extracted from the chip, but if the property
3243          * "local-mac-address" is set we use that instead.
3244          *
3245          * We check whether it looks like an array of 6
3246          * bytes (which it should, if OBP set it).  If we can't
3247          * make sense of it this way, we'll ignore it.
3248          */
3249         err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3250             DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
3251         if (err == DDI_PROP_SUCCESS) {
3252                 if (nelts == ETHERADDRL) {
3253                         while (nelts--)
3254                                 hw->mac.addr[nelts] = bytes[nelts];
3255                         found = B_TRUE;
3256                 }
3257                 ddi_prop_free(bytes);
3258         }
3259 
3260         /*
3261          * Look up the OBP property "local-mac-address?". If the user has set
3262          * 'local-mac-address? = false', use "the system address" instead.
3263          */
3264         if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, 0,
3265             "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
3266                 if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
3267                         if (localetheraddr(NULL, &sysaddr) != 0) {
3268                                 bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
3269                                 found = B_TRUE;
3270                         }
3271                 }
3272                 ddi_prop_free(bytes);
3273         }
3274 
3275         /*
3276          * Finally(!), if there's a valid "mac-address" property (created
3277          * if we netbooted from this interface), we must use this instead
3278          * of any of the above to ensure that the NFS/install server doesn't
3279          * get confused by the address changing as Solaris takes over!
3280          */
3281         err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3282             DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
3283         if (err == DDI_PROP_SUCCESS) {
3284                 if (nelts == ETHERADDRL) {
3285                         while (nelts--)
3286                                 hw->mac.addr[nelts] = bytes[nelts];
3287                         found = B_TRUE;
3288                 }
3289                 ddi_prop_free(bytes);
3290         }
3291 
3292         if (found) {
3293                 bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
3294                 return (B_TRUE);
3295         }
3296 #endif
3297 
3298         /*
3299          * Read the device MAC address from the EEPROM
3300          */
3301         if (e1000_read_mac_addr(hw) != E1000_SUCCESS)
3302                 return (B_FALSE);
3303 
3304         return (B_TRUE);
3305 }
3306 
3307 #pragma inline(igb_arm_watchdog_timer)
3308 
3309 static void
3310 igb_arm_watchdog_timer(igb_t *igb)
3311 {
3312         /*
3313          * Fire a watchdog timer
3314          */
3315         igb->watchdog_tid =
3316             timeout(igb_local_timer,
3317             (void *)igb, 1 * drv_usectohz(1000000));
3318 
3319 }
3320 
3321 /*
3322  * igb_enable_watchdog_timer - Enable and start the driver watchdog timer
3323  */
3324 void
3325 igb_enable_watchdog_timer(igb_t *igb)
3326 {
3327         mutex_enter(&igb->watchdog_lock);
3328 
3329         if (!igb->watchdog_enable) {
3330                 igb->watchdog_enable = B_TRUE;
3331                 igb->watchdog_start = B_TRUE;
3332                 igb_arm_watchdog_timer(igb);
3333         }
3334 
3335         mutex_exit(&igb->watchdog_lock);
3336 
3337 }
3338 
3339 /*
3340  * igb_disable_watchdog_timer - Disable and stop the driver watchdog timer
3341  */
3342 void
3343 igb_disable_watchdog_timer(igb_t *igb)
3344 {
3345         timeout_id_t tid;
3346 
3347         mutex_enter(&igb->watchdog_lock);
3348 
3349         igb->watchdog_enable = B_FALSE;
3350         igb->watchdog_start = B_FALSE;
3351         tid = igb->watchdog_tid;
3352         igb->watchdog_tid = 0;
3353 
3354         mutex_exit(&igb->watchdog_lock);
3355 
3356         if (tid != 0)
3357                 (void) untimeout(tid);
3358 
3359 }
3360 
3361 /*
3362  * igb_start_watchdog_timer - Start the driver watchdog timer
3363  */
3364 static void
3365 igb_start_watchdog_timer(igb_t *igb)
3366 {
3367         mutex_enter(&igb->watchdog_lock);
3368 
3369         if (igb->watchdog_enable) {
3370                 if (!igb->watchdog_start) {
3371                         igb->watchdog_start = B_TRUE;
3372                         igb_arm_watchdog_timer(igb);
3373                 }
3374         }
3375 
3376         mutex_exit(&igb->watchdog_lock);
3377 }
3378 
3379 /*
3380  * igb_restart_watchdog_timer - Restart the driver watchdog timer
3381  */
3382 static void
3383 igb_restart_watchdog_timer(igb_t *igb)
3384 {
3385         mutex_enter(&igb->watchdog_lock);
3386 
3387         if (igb->watchdog_start)
3388                 igb_arm_watchdog_timer(igb);
3389 
3390         mutex_exit(&igb->watchdog_lock);
3391 }
3392 
3393 /*
3394  * igb_stop_watchdog_timer - Stop the driver watchdog timer
3395  */
3396 static void
3397 igb_stop_watchdog_timer(igb_t *igb)
3398 {
3399         timeout_id_t tid;
3400 
3401         mutex_enter(&igb->watchdog_lock);
3402 
3403         igb->watchdog_start = B_FALSE;
3404         tid = igb->watchdog_tid;
3405         igb->watchdog_tid = 0;
3406 
3407         mutex_exit(&igb->watchdog_lock);
3408 
3409         if (tid != 0)
3410                 (void) untimeout(tid);
3411 }
3412 
3413 /*
3414  * igb_start_link_timer - Start the link setup timer
3415  */
3416 static void
3417 igb_start_link_timer(struct igb *igb)
3418 {
3419         struct e1000_hw *hw = &igb->hw;
3420         clock_t link_timeout;
3421 
3422         if (hw->mac.autoneg)
3423                 link_timeout = PHY_AUTO_NEG_LIMIT *
3424                     drv_usectohz(100000);
3425         else
3426                 link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
3427 
3428         mutex_enter(&igb->link_lock);
3429         if (hw->phy.autoneg_wait_to_complete) {
3430                 igb->link_complete = B_TRUE;
3431         } else {
3432                 igb->link_complete = B_FALSE;
3433                 igb->link_tid = timeout(igb_link_timer, (void *)igb,
3434                     link_timeout);
3435         }
3436         mutex_exit(&igb->link_lock);
3437 }
3438 
3439 /*
3440  * igb_stop_link_timer - Stop the link setup timer
3441  */
3442 static void
3443 igb_stop_link_timer(struct igb *igb)
3444 {
3445         timeout_id_t tid;
3446 
3447         mutex_enter(&igb->link_lock);
3448         igb->link_complete = B_TRUE;
3449         tid = igb->link_tid;
3450         igb->link_tid = 0;
3451         mutex_exit(&igb->link_lock);
3452 
3453         if (tid != 0)
3454                 (void) untimeout(tid);
3455 }
3456 
3457 /*
3458  * igb_disable_adapter_interrupts - Clear/disable all hardware interrupts
3459  */
3460 static void
3461 igb_disable_adapter_interrupts(igb_t *igb)
3462 {
3463         struct e1000_hw *hw = &igb->hw;
3464 
3465         /*
3466          * Set the IMC register to mask all the interrupts,
3467          * including the tx interrupts.
3468          */
3469         E1000_WRITE_REG(hw, E1000_IMC, ~0);
3470         E1000_WRITE_REG(hw, E1000_IAM, 0);
3471 
3472         /*
3473          * Additional disabling for MSI-X
3474          */
3475         if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3476                 E1000_WRITE_REG(hw, E1000_EIMC, ~0);
3477                 E1000_WRITE_REG(hw, E1000_EIAC, 0);
3478                 E1000_WRITE_REG(hw, E1000_EIAM, 0);
3479         }
3480 
3481         E1000_WRITE_FLUSH(hw);
3482 }
3483 
3484 /*
3485  * igb_enable_adapter_interrupts_82580 - Enable NIC interrupts for 82580
3486  */
3487 static void
3488 igb_enable_adapter_interrupts_82580(igb_t *igb)
3489 {
3490         struct e1000_hw *hw = &igb->hw;
3491 
3492         /* Clear any pending interrupts */
3493         (void) E1000_READ_REG(hw, E1000_ICR);
3494         igb->ims_mask |= E1000_IMS_DRSTA;
3495 
3496         if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3497 
3498                 /* Interrupt enabling for MSI-X */
3499                 E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3500                 E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3501                 igb->ims_mask = (E1000_IMS_LSC | E1000_IMS_DRSTA);
3502                 E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3503         } else { /* Interrupt enabling for MSI and legacy */
3504                 E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3505                 igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3506                 igb->ims_mask |= E1000_IMS_DRSTA;
3507                 E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3508         }
3509 
3510         /* Disable auto-mask for ICR interrupt bits */
3511         E1000_WRITE_REG(hw, E1000_IAM, 0);
3512 
3513         E1000_WRITE_FLUSH(hw);
3514 }
3515 
3516 /*
3517  * igb_enable_adapter_interrupts_82576 - Enable NIC interrupts for 82576
3518  */
3519 static void
3520 igb_enable_adapter_interrupts_82576(igb_t *igb)
3521 {
3522         struct e1000_hw *hw = &igb->hw;
3523 
3524         /* Clear any pending interrupts */
3525         (void) E1000_READ_REG(hw, E1000_ICR);
3526 
3527         if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3528 
3529                 /* Interrupt enabling for MSI-X */
3530                 E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3531                 E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3532                 igb->ims_mask = E1000_IMS_LSC;
3533                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3534         } else {
3535                 /* Interrupt enabling for MSI and legacy */
3536                 E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3537                 igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3538                 E1000_WRITE_REG(hw, E1000_IMS,
3539                     (IMS_ENABLE_MASK | E1000_IMS_TXQE));
3540         }
3541 
3542         /* Disable auto-mask for ICR interrupt bits */
3543         E1000_WRITE_REG(hw, E1000_IAM, 0);
3544 
3545         E1000_WRITE_FLUSH(hw);
3546 }
3547 
3548 /*
3549  * igb_enable_adapter_interrupts_82575 - Enable NIC interrupts for 82575
3550  */
3551 static void
3552 igb_enable_adapter_interrupts_82575(igb_t *igb)
3553 {
3554         struct e1000_hw *hw = &igb->hw;
3555         uint32_t reg;
3556 
3557         /* Clear any pending interrupts */
3558         (void) E1000_READ_REG(hw, E1000_ICR);
3559 
3560         if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3561                 /* Interrupt enabling for MSI-X */
3562                 E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3563                 E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3564                 igb->ims_mask = E1000_IMS_LSC;
3565                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3566 
3567                 /* Enable MSI-X PBA support */
3568                 reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
3569                 reg |= E1000_CTRL_EXT_PBA_CLR;
3570 
3571                 /* Non-selective interrupt clear-on-read */
3572                 reg |= E1000_CTRL_EXT_IRCA;     /* Called NSICR in the EAS */
3573 
3574                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
3575         } else {
3576                 /* Interrupt enabling for MSI and legacy */
3577                 igb->ims_mask = IMS_ENABLE_MASK;
3578                 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3579         }
3580 
3581         E1000_WRITE_FLUSH(hw);
3582 }
3583 
3584 /*
3585  * Loopback Support
3586  */
3587 static lb_property_t lb_normal =
3588         { normal,       "normal",       IGB_LB_NONE             };
3589 static lb_property_t lb_external =
3590         { external,     "External",     IGB_LB_EXTERNAL         };
3591 static lb_property_t lb_phy =
3592         { internal,     "PHY",          IGB_LB_INTERNAL_PHY     };
3593 static lb_property_t lb_serdes =
3594         { internal,     "SerDes",       IGB_LB_INTERNAL_SERDES  };
3595 
3596 enum ioc_reply
3597 igb_loopback_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp)
3598 {
3599         lb_info_sz_t *lbsp;
3600         lb_property_t *lbpp;
3601         struct e1000_hw *hw;
3602         uint32_t *lbmp;
3603         uint32_t size;
3604         uint32_t value;
3605 
3606         hw = &igb->hw;
3607 
3608         if (mp->b_cont == NULL)
3609                 return (IOC_INVAL);
3610 
3611         switch (iocp->ioc_cmd) {
3612         default:
3613                 return (IOC_INVAL);
3614 
3615         case LB_GET_INFO_SIZE:
3616                 size = sizeof (lb_info_sz_t);
3617                 if (iocp->ioc_count != size)
3618                         return (IOC_INVAL);
3619 
3620                 value = sizeof (lb_normal);
3621                 if (hw->phy.media_type == e1000_media_type_copper)
3622                         value += sizeof (lb_phy);
3623                 else
3624                         value += sizeof (lb_serdes);
3625                 value += sizeof (lb_external);
3626 
3627                 lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
3628                 *lbsp = value;
3629                 break;
3630 
3631         case LB_GET_INFO:
3632                 value = sizeof (lb_normal);
3633                 if (hw->phy.media_type == e1000_media_type_copper)
3634                         value += sizeof (lb_phy);
3635                 else
3636                         value += sizeof (lb_serdes);
3637                 value += sizeof (lb_external);
3638 
3639                 size = value;
3640                 if (iocp->ioc_count != size)
3641                         return (IOC_INVAL);
3642 
3643                 value = 0;
3644                 lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
3645 
3646                 lbpp[value++] = lb_normal;
3647                 if (hw->phy.media_type == e1000_media_type_copper)
3648                         lbpp[value++] = lb_phy;
3649                 else
3650                         lbpp[value++] = lb_serdes;
3651                 lbpp[value++] = lb_external;
3652                 break;
3653 
3654         case LB_GET_MODE:
3655                 size = sizeof (uint32_t);
3656                 if (iocp->ioc_count != size)
3657                         return (IOC_INVAL);
3658 
3659                 lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3660                 *lbmp = igb->loopback_mode;
3661                 break;
3662 
3663         case LB_SET_MODE:
3664                 size = 0;
3665                 if (iocp->ioc_count != sizeof (uint32_t))
3666                         return (IOC_INVAL);
3667 
3668                 lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3669                 if (!igb_set_loopback_mode(igb, *lbmp))
3670                         return (IOC_INVAL);
3671                 break;
3672         }
3673 
3674         iocp->ioc_count = size;
3675         iocp->ioc_error = 0;
3676 
3677         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3678                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3679                 return (IOC_INVAL);
3680         }
3681 
3682         return (IOC_REPLY);
3683 }
3684 
3685 /*
3686  * igb_set_loopback_mode - Setup loopback based on the loopback mode
3687  */
3688 static boolean_t
3689 igb_set_loopback_mode(igb_t *igb, uint32_t mode)
3690 {
3691         struct e1000_hw *hw;
3692         int i;
3693 
3694         if (mode == igb->loopback_mode)
3695                 return (B_TRUE);
3696 
3697         hw = &igb->hw;
3698 
3699         igb->loopback_mode = mode;
3700 
3701         if (mode == IGB_LB_NONE) {
3702                 /* Reset the chip */
3703                 hw->phy.autoneg_wait_to_complete = B_TRUE;
3704                 (void) igb_reset(igb);
3705                 hw->phy.autoneg_wait_to_complete = B_FALSE;
3706                 return (B_TRUE);
3707         }
3708 
3709         mutex_enter(&igb->gen_lock);
3710 
3711         switch (mode) {
3712         default:
3713                 mutex_exit(&igb->gen_lock);
3714                 return (B_FALSE);
3715 
3716         case IGB_LB_EXTERNAL:
3717                 igb_set_external_loopback(igb);
3718                 break;
3719 
3720         case IGB_LB_INTERNAL_PHY:
3721                 igb_set_internal_phy_loopback(igb);
3722                 break;
3723 
3724         case IGB_LB_INTERNAL_SERDES:
3725                 igb_set_internal_serdes_loopback(igb);
3726                 break;
3727         }
3728 
3729         mutex_exit(&igb->gen_lock);
3730 
3731         /*
3732          * When external loopback is set, wait up to 1000ms to get the link up.
3733          * According to test, 1000ms can work and it's an experimental value.
3734          */
3735         if (mode == IGB_LB_EXTERNAL) {
3736                 for (i = 0; i <= 10; i++) {
3737                         mutex_enter(&igb->gen_lock);
3738                         (void) igb_link_check(igb);
3739                         mutex_exit(&igb->gen_lock);
3740 
3741                         if (igb->link_state == LINK_STATE_UP)
3742                                 break;
3743 
3744                         msec_delay(100);
3745                 }
3746 
3747                 if (igb->link_state != LINK_STATE_UP) {
3748                         /*
3749                          * Does not support external loopback.
3750                          * Reset driver to loopback none.
3751                          */
3752                         igb->loopback_mode = IGB_LB_NONE;
3753 
3754                         /* Reset the chip */
3755                         hw->phy.autoneg_wait_to_complete = B_TRUE;
3756                         (void) igb_reset(igb);
3757                         hw->phy.autoneg_wait_to_complete = B_FALSE;
3758 
3759                         IGB_DEBUGLOG_0(igb, "Set external loopback failed, "
3760                             "reset to loopback none.");
3761 
3762                         return (B_FALSE);
3763                 }
3764         }
3765 
3766         return (B_TRUE);
3767 }
3768 
3769 /*
3770  * igb_set_external_loopback - Set the external loopback mode
3771  */
3772 static void
3773 igb_set_external_loopback(igb_t *igb)
3774 {
3775         struct e1000_hw *hw;
3776         uint32_t ctrl_ext;
3777 
3778         hw = &igb->hw;
3779 
3780         /* Set link mode to PHY (00b) in the Extended Control register */
3781         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3782         ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3783         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3784 
3785         (void) e1000_write_phy_reg(hw, 0x0, 0x0140);
3786         (void) e1000_write_phy_reg(hw, 0x9, 0x1a00);
3787         (void) e1000_write_phy_reg(hw, 0x12, 0x1610);
3788         (void) e1000_write_phy_reg(hw, 0x1f37, 0x3f1c);
3789 }
3790 
3791 /*
3792  * igb_set_internal_phy_loopback - Set the internal PHY loopback mode
3793  */
3794 static void
3795 igb_set_internal_phy_loopback(igb_t *igb)
3796 {
3797         struct e1000_hw *hw;
3798         uint32_t ctrl_ext;
3799         uint16_t phy_ctrl;
3800         uint16_t phy_pconf;
3801 
3802         hw = &igb->hw;
3803 
3804         /* Set link mode to PHY (00b) in the Extended Control register */
3805         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3806         ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3807         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3808 
3809         /*
3810          * Set PHY control register (0x4140):
3811          *    Set full duplex mode
3812          *    Set loopback bit
3813          *    Clear auto-neg enable bit
3814          *    Set PHY speed
3815          */
3816         phy_ctrl = MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000 | MII_CR_LOOPBACK;
3817         (void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3818 
3819         /* Set the link disable bit in the Port Configuration register */
3820         (void) e1000_read_phy_reg(hw, 0x10, &phy_pconf);
3821         phy_pconf |= (uint16_t)1 << 14;
3822         (void) e1000_write_phy_reg(hw, 0x10, phy_pconf);
3823 }
3824 
3825 /*
3826  * igb_set_internal_serdes_loopback - Set the internal SerDes loopback mode
3827  */
3828 static void
3829 igb_set_internal_serdes_loopback(igb_t *igb)
3830 {
3831         struct e1000_hw *hw;
3832         uint32_t ctrl_ext;
3833         uint32_t ctrl;
3834         uint32_t pcs_lctl;
3835         uint32_t connsw;
3836 
3837         hw = &igb->hw;
3838 
3839         /* Set link mode to SerDes (11b) in the Extended Control register */
3840         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3841         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
3842         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3843 
3844         /* Configure the SerDes to loopback */
3845         E1000_WRITE_REG(hw, E1000_SCTL, 0x410);
3846 
3847         /* Set Device Control register */
3848         ctrl = E1000_READ_REG(hw, E1000_CTRL);
3849         ctrl |= (E1000_CTRL_FD |        /* Force full duplex */
3850             E1000_CTRL_SLU);            /* Force link up */
3851         ctrl &= ~(E1000_CTRL_RFCE | /* Disable receive flow control */
3852             E1000_CTRL_TFCE |           /* Disable transmit flow control */
3853             E1000_CTRL_LRST);           /* Clear link reset */
3854         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3855 
3856         /* Set PCS Link Control register */
3857         pcs_lctl = E1000_READ_REG(hw, E1000_PCS_LCTL);
3858         pcs_lctl |= (E1000_PCS_LCTL_FORCE_LINK |
3859             E1000_PCS_LCTL_FSD |
3860             E1000_PCS_LCTL_FDV_FULL |
3861             E1000_PCS_LCTL_FLV_LINK_UP);
3862         pcs_lctl &= ~E1000_PCS_LCTL_AN_ENABLE;
3863         E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_lctl);
3864 
3865         /* Set the Copper/Fiber Switch Control - CONNSW register */
3866         connsw = E1000_READ_REG(hw, E1000_CONNSW);
3867         connsw &= ~E1000_CONNSW_ENRGSRC;
3868         E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
3869 }
3870 
3871 #pragma inline(igb_intr_rx_work)
3872 /*
3873  * igb_intr_rx_work - rx processing of ISR
3874  */
3875 static void
3876 igb_intr_rx_work(igb_rx_ring_t *rx_ring)
3877 {
3878         mblk_t *mp;
3879 
3880         mutex_enter(&rx_ring->rx_lock);
3881         mp = igb_rx(rx_ring, IGB_NO_POLL);
3882         mutex_exit(&rx_ring->rx_lock);
3883 
3884         if (mp != NULL)
3885                 mac_rx_ring(rx_ring->igb->mac_hdl, rx_ring->ring_handle, mp,
3886                     rx_ring->ring_gen_num);
3887 }
3888 
3889 #pragma inline(igb_intr_tx_work)
3890 /*
3891  * igb_intr_tx_work - tx processing of ISR
3892  */
3893 static void
3894 igb_intr_tx_work(igb_tx_ring_t *tx_ring)
3895 {
3896         igb_t *igb = tx_ring->igb;
3897 
3898         /* Recycle the tx descriptors */
3899         tx_ring->tx_recycle(tx_ring);
3900 
3901         /* Schedule the re-transmit */
3902         if (tx_ring->reschedule &&
3903             (tx_ring->tbd_free >= igb->tx_resched_thresh)) {
3904                 tx_ring->reschedule = B_FALSE;
3905                 mac_tx_ring_update(tx_ring->igb->mac_hdl, tx_ring->ring_handle);
3906                 IGB_DEBUG_STAT(tx_ring->stat_reschedule);
3907         }
3908 }
3909 
3910 #pragma inline(igb_intr_link_work)
3911 /*
3912  * igb_intr_link_work - link-status-change processing of ISR
3913  */
3914 static void
3915 igb_intr_link_work(igb_t *igb)
3916 {
3917         boolean_t link_changed;
3918 
3919         igb_stop_watchdog_timer(igb);
3920 
3921         mutex_enter(&igb->gen_lock);
3922 
3923         /*
3924          * Because we got a link-status-change interrupt, force
3925          * e1000_check_for_link() to look at phy
3926          */
3927         igb->hw.mac.get_link_status = B_TRUE;
3928 
3929         /* igb_link_check takes care of link status change */
3930         link_changed = igb_link_check(igb);
3931 
3932         /* Get new phy state */
3933         igb_get_phy_state(igb);
3934 
3935         mutex_exit(&igb->gen_lock);
3936 
3937         if (link_changed)
3938                 mac_link_update(igb->mac_hdl, igb->link_state);
3939 
3940         igb_start_watchdog_timer(igb);
3941 }
3942 
3943 /*
3944  * igb_intr_legacy - Interrupt handler for legacy interrupts
3945  */
3946 static uint_t
3947 igb_intr_legacy(void *arg1, void *arg2)
3948 {
3949         igb_t *igb = (igb_t *)arg1;
3950         igb_tx_ring_t *tx_ring;
3951         uint32_t icr;
3952         mblk_t *mp;
3953         boolean_t tx_reschedule;
3954         boolean_t link_changed;
3955         uint_t result;
3956 
3957         _NOTE(ARGUNUSED(arg2));
3958 
3959         mutex_enter(&igb->gen_lock);
3960 
3961         if (igb->igb_state & IGB_SUSPENDED) {
3962                 mutex_exit(&igb->gen_lock);
3963                 return (DDI_INTR_UNCLAIMED);
3964         }
3965 
3966         mp = NULL;
3967         tx_reschedule = B_FALSE;
3968         link_changed = B_FALSE;
3969         icr = E1000_READ_REG(&igb->hw, E1000_ICR);
3970 
3971         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3972                 mutex_exit(&igb->gen_lock);
3973                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3974                 atomic_or_32(&igb->igb_state, IGB_ERROR);
3975                 return (DDI_INTR_UNCLAIMED);
3976         }
3977 
3978         if (icr & E1000_ICR_INT_ASSERTED) {
3979                 /*
3980                  * E1000_ICR_INT_ASSERTED bit was set:
3981                  * Read(Clear) the ICR, claim this interrupt,
3982                  * look for work to do.
3983                  */
3984                 ASSERT(igb->num_rx_rings == 1);
3985                 ASSERT(igb->num_tx_rings == 1);
3986 
3987                 /* Make sure all interrupt causes cleared */
3988                 (void) E1000_READ_REG(&igb->hw, E1000_EICR);
3989 
3990                 if (icr & E1000_ICR_RXT0) {
3991                         mp = igb_rx(&igb->rx_rings[0], IGB_NO_POLL);
3992                 }
3993 
3994                 if (icr & E1000_ICR_TXDW) {
3995                         tx_ring = &igb->tx_rings[0];
3996 
3997                         /* Recycle the tx descriptors */
3998                         tx_ring->tx_recycle(tx_ring);
3999 
4000                         /* Schedule the re-transmit */
4001                         tx_reschedule = (tx_ring->reschedule &&
4002                             (tx_ring->tbd_free >= igb->tx_resched_thresh));
4003                 }
4004 
4005                 if (icr & E1000_ICR_LSC) {
4006                         /*
4007                          * Because we got a link-status-change interrupt, force
4008                          * e1000_check_for_link() to look at phy
4009                          */
4010                         igb->hw.mac.get_link_status = B_TRUE;
4011 
4012                         /* igb_link_check takes care of link status change */
4013                         link_changed = igb_link_check(igb);
4014 
4015                         /* Get new phy state */
4016                         igb_get_phy_state(igb);
4017                 }
4018 
4019                 if (icr & E1000_ICR_DRSTA) {
4020                         /* 82580 Full Device Reset needed */
4021                         atomic_or_32(&igb->igb_state, IGB_STALL);
4022                 }
4023 
4024                 result = DDI_INTR_CLAIMED;
4025         } else {
4026                 /*
4027                  * E1000_ICR_INT_ASSERTED bit was not set:
4028                  * Don't claim this interrupt.
4029                  */
4030                 result = DDI_INTR_UNCLAIMED;
4031         }
4032 
4033         mutex_exit(&igb->gen_lock);
4034 
4035         /*
4036          * Do the following work outside of the gen_lock
4037          */
4038         if (mp != NULL)
4039                 mac_rx(igb->mac_hdl, NULL, mp);
4040 
4041         if (tx_reschedule)  {
4042                 tx_ring->reschedule = B_FALSE;
4043                 mac_tx_ring_update(igb->mac_hdl, tx_ring->ring_handle);
4044                 IGB_DEBUG_STAT(tx_ring->stat_reschedule);
4045         }
4046 
4047         if (link_changed)
4048                 mac_link_update(igb->mac_hdl, igb->link_state);
4049 
4050         return (result);
4051 }
4052 
4053 /*
4054  * igb_intr_msi - Interrupt handler for MSI
4055  */
4056 static uint_t
4057 igb_intr_msi(void *arg1, void *arg2)
4058 {
4059         igb_t *igb = (igb_t *)arg1;
4060         uint32_t icr;
4061 
4062         _NOTE(ARGUNUSED(arg2));
4063 
4064         icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4065 
4066         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4067                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4068                 atomic_or_32(&igb->igb_state, IGB_ERROR);
4069                 return (DDI_INTR_CLAIMED);
4070         }
4071 
4072         /* Make sure all interrupt causes cleared */
4073         (void) E1000_READ_REG(&igb->hw, E1000_EICR);
4074 
4075         /*
4076          * For MSI interrupt, we have only one vector,
4077          * so we have only one rx ring and one tx ring enabled.
4078          */
4079         ASSERT(igb->num_rx_rings == 1);
4080         ASSERT(igb->num_tx_rings == 1);
4081 
4082         if (icr & E1000_ICR_RXT0) {
4083                 igb_intr_rx_work(&igb->rx_rings[0]);
4084         }
4085 
4086         if (icr & E1000_ICR_TXDW) {
4087                 igb_intr_tx_work(&igb->tx_rings[0]);
4088         }
4089 
4090         if (icr & E1000_ICR_LSC) {
4091                 igb_intr_link_work(igb);
4092         }
4093 
4094         if (icr & E1000_ICR_DRSTA) {
4095                 /* 82580 Full Device Reset needed */
4096                 atomic_or_32(&igb->igb_state, IGB_STALL);
4097         }
4098 
4099         return (DDI_INTR_CLAIMED);
4100 }
4101 
4102 /*
4103  * igb_intr_rx - Interrupt handler for rx
4104  */
4105 static uint_t
4106 igb_intr_rx(void *arg1, void *arg2)
4107 {
4108         igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)arg1;
4109 
4110         _NOTE(ARGUNUSED(arg2));
4111 
4112         /*
4113          * Only used via MSI-X vector so don't check cause bits
4114          * and only clean the given ring.
4115          */
4116         igb_intr_rx_work(rx_ring);
4117 
4118         return (DDI_INTR_CLAIMED);
4119 }
4120 
4121 /*
4122  * igb_intr_tx - Interrupt handler for tx
4123  */
4124 static uint_t
4125 igb_intr_tx(void *arg1, void *arg2)
4126 {
4127         igb_tx_ring_t *tx_ring = (igb_tx_ring_t *)arg1;
4128 
4129         _NOTE(ARGUNUSED(arg2));
4130 
4131         /*
4132          * Only used via MSI-X vector so don't check cause bits
4133          * and only clean the given ring.
4134          */
4135         igb_intr_tx_work(tx_ring);
4136 
4137         return (DDI_INTR_CLAIMED);
4138 }
4139 
4140 /*
4141  * igb_intr_tx_other - Interrupt handler for both tx and other
4142  *
4143  */
4144 static uint_t
4145 igb_intr_tx_other(void *arg1, void *arg2)
4146 {
4147         igb_t *igb = (igb_t *)arg1;
4148         uint32_t icr;
4149 
4150         _NOTE(ARGUNUSED(arg2));
4151 
4152         icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4153 
4154         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4155                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4156                 atomic_or_32(&igb->igb_state, IGB_ERROR);
4157                 return (DDI_INTR_CLAIMED);
4158         }
4159 
4160         /*
4161          * Look for tx reclaiming work first. Remember, in the
4162          * case of only interrupt sharing, only one tx ring is
4163          * used
4164          */
4165         igb_intr_tx_work(&igb->tx_rings[0]);
4166 
4167         /*
4168          * Check for "other" causes.
4169          */
4170         if (icr & E1000_ICR_LSC) {
4171                 igb_intr_link_work(igb);
4172         }
4173 
4174         /*
4175          * The DOUTSYNC bit indicates a tx packet dropped because
4176          * DMA engine gets "out of sync". There isn't a real fix
4177          * for this. The Intel recommendation is to count the number
4178          * of occurrences so user can detect when it is happening.
4179          * The issue is non-fatal and there's no recovery action
4180          * available.
4181          */
4182         if (icr & E1000_ICR_DOUTSYNC) {
4183                 IGB_STAT(igb->dout_sync);
4184         }
4185 
4186         if (icr & E1000_ICR_DRSTA) {
4187                 /* 82580 Full Device Reset needed */
4188                 atomic_or_32(&igb->igb_state, IGB_STALL);
4189         }
4190 
4191         return (DDI_INTR_CLAIMED);
4192 }
4193 
4194 /*
4195  * igb_alloc_intrs - Allocate interrupts for the driver
4196  *
4197  * Normal sequence is to try MSI-X; if not sucessful, try MSI;
4198  * if not successful, try Legacy.
4199  * igb->intr_force can be used to force sequence to start with
4200  * any of the 3 types.
4201  * If MSI-X is not used, number of tx/rx rings is forced to 1.
4202  */
4203 static int
4204 igb_alloc_intrs(igb_t *igb)
4205 {
4206         dev_info_t *devinfo;
4207         int intr_types;
4208         int rc;
4209 
4210         devinfo = igb->dip;
4211 
4212         /* Get supported interrupt types */
4213         rc = ddi_intr_get_supported_types(devinfo, &intr_types);
4214 
4215         if (rc != DDI_SUCCESS) {
4216                 igb_log(igb,
4217                     "Get supported interrupt types failed: %d", rc);
4218                 return (IGB_FAILURE);
4219         }
4220         IGB_DEBUGLOG_1(igb, "Supported interrupt types: %x", intr_types);
4221 
4222         igb->intr_type = 0;
4223 
4224         /* Install MSI-X interrupts */
4225         if ((intr_types & DDI_INTR_TYPE_MSIX) &&
4226             (igb->intr_force <= IGB_INTR_MSIX)) {
4227                 rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSIX);
4228 
4229                 if (rc == IGB_SUCCESS)
4230                         return (IGB_SUCCESS);
4231 
4232                 igb_log(igb,
4233                     "Allocate MSI-X failed, trying MSI interrupts...");
4234         }
4235 
4236         /* MSI-X not used, force rings to 1 */
4237         igb->num_rx_rings = 1;
4238         igb->num_tx_rings = 1;
4239         igb_log(igb,
4240             "MSI-X not used, force rx and tx queue number to 1");
4241 
4242         /* Install MSI interrupts */
4243         if ((intr_types & DDI_INTR_TYPE_MSI) &&
4244             (igb->intr_force <= IGB_INTR_MSI)) {
4245                 rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSI);
4246 
4247                 if (rc == IGB_SUCCESS)
4248                         return (IGB_SUCCESS);
4249 
4250                 igb_log(igb,
4251                     "Allocate MSI failed, trying Legacy interrupts...");
4252         }
4253 
4254         /* Install legacy interrupts */
4255         if (intr_types & DDI_INTR_TYPE_FIXED) {
4256                 rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_FIXED);
4257 
4258                 if (rc == IGB_SUCCESS)
4259                         return (IGB_SUCCESS);
4260 
4261                 igb_log(igb,
4262                     "Allocate Legacy interrupts failed");
4263         }
4264 
4265         /* If none of the 3 types succeeded, return failure */
4266         return (IGB_FAILURE);
4267 }
4268 
4269 /*
4270  * igb_alloc_intr_handles - Allocate interrupt handles.
4271  *
4272  * For legacy and MSI, only 1 handle is needed.  For MSI-X,
4273  * if fewer than 2 handles are available, return failure.
4274  * Upon success, this sets the number of Rx rings to a number that
4275  * matches the handles available for Rx interrupts.
4276  */
4277 static int
4278 igb_alloc_intr_handles(igb_t *igb, int intr_type)
4279 {
4280         dev_info_t *devinfo;
4281         int orig, request, count, avail, actual;
4282         int diff, minimum;
4283         int rc;
4284 
4285         devinfo = igb->dip;
4286 
4287         switch (intr_type) {
4288         case DDI_INTR_TYPE_FIXED:
4289                 request = 1;    /* Request 1 legacy interrupt handle */
4290                 minimum = 1;
4291                 IGB_DEBUGLOG_0(igb, "interrupt type: legacy");
4292                 break;
4293 
4294         case DDI_INTR_TYPE_MSI:
4295                 request = 1;    /* Request 1 MSI interrupt handle */
4296                 minimum = 1;
4297                 IGB_DEBUGLOG_0(igb, "interrupt type: MSI");
4298                 break;
4299 
4300         case DDI_INTR_TYPE_MSIX:
4301                 /*
4302                  * Number of vectors for the adapter is
4303                  * # rx rings + # tx rings
4304                  * One of tx vectors is for tx & other
4305                  */
4306                 request = igb->num_rx_rings + igb->num_tx_rings;
4307                 orig = request;
4308                 minimum = 2;
4309                 IGB_DEBUGLOG_0(igb, "interrupt type: MSI-X");
4310                 break;
4311 
4312         default:
4313                 igb_log(igb,
4314                     "invalid call to igb_alloc_intr_handles(): %d\n",
4315                     intr_type);
4316                 return (IGB_FAILURE);
4317         }
4318         IGB_DEBUGLOG_2(igb, "interrupt handles requested: %d  minimum: %d",
4319             request, minimum);
4320 
4321         /*
4322          * Get number of supported interrupts
4323          */
4324         rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4325         if ((rc != DDI_SUCCESS) || (count < minimum)) {
4326                 igb_log(igb,
4327                     "Get supported interrupt number failed. "
4328                     "Return: %d, count: %d", rc, count);
4329                 return (IGB_FAILURE);
4330         }
4331         IGB_DEBUGLOG_1(igb, "interrupts supported: %d", count);
4332 
4333         /*
4334          * Get number of available interrupts
4335          */
4336         rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4337         if ((rc != DDI_SUCCESS) || (avail < minimum)) {
4338                 igb_log(igb,
4339                     "Get available interrupt number failed. "
4340                     "Return: %d, available: %d", rc, avail);
4341                 return (IGB_FAILURE);
4342         }
4343         IGB_DEBUGLOG_1(igb, "interrupts available: %d", avail);
4344 
4345         if (avail < request) {
4346                 igb_log(igb, "Request %d handles, %d available",
4347                     request, avail);
4348                 request = avail;
4349         }
4350 
4351         actual = 0;
4352         igb->intr_cnt = 0;
4353 
4354         /*
4355          * Allocate an array of interrupt handles
4356          */
4357         igb->intr_size = request * sizeof (ddi_intr_handle_t);
4358         igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP);
4359 
4360         rc = ddi_intr_alloc(devinfo, igb->htable, intr_type, 0,
4361             request, &actual, DDI_INTR_ALLOC_NORMAL);
4362         if (rc != DDI_SUCCESS) {
4363                 igb_log(igb, "Allocate interrupts failed. "
4364                     "return: %d, request: %d, actual: %d",
4365                     rc, request, actual);
4366                 goto alloc_handle_fail;
4367         }
4368         IGB_DEBUGLOG_1(igb, "interrupts actually allocated: %d", actual);
4369 
4370         igb->intr_cnt = actual;
4371 
4372         if (actual < minimum) {
4373                 igb_log(igb, "Insufficient interrupt handles allocated: %d",
4374                     actual);
4375                 goto alloc_handle_fail;
4376         }
4377 
4378         /*
4379          * For MSI-X, actual might force us to reduce number of tx & rx rings
4380          */
4381         if ((intr_type == DDI_INTR_TYPE_MSIX) && (orig > actual)) {
4382                 diff = orig - actual;
4383                 if (diff < igb->num_tx_rings) {
4384                         igb_log(igb,
4385                             "MSI-X vectors force Tx queue number to %d",
4386                             igb->num_tx_rings - diff);
4387                         igb->num_tx_rings -= diff;
4388                 } else {
4389                         igb_log(igb,
4390                             "MSI-X vectors force Tx queue number to 1");
4391                         igb->num_tx_rings = 1;
4392 
4393                         igb_log(igb,
4394                             "MSI-X vectors force Rx queue number to %d",
4395                             actual - 1);
4396                         igb->num_rx_rings = actual - 1;
4397                 }
4398         }
4399 
4400         /*
4401          * Get priority for first vector, assume remaining are all the same
4402          */
4403         rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri);
4404         if (rc != DDI_SUCCESS) {
4405                 igb_log(igb,
4406                     "Get interrupt priority failed: %d", rc);
4407                 goto alloc_handle_fail;
4408         }
4409 
4410         rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap);
4411         if (rc != DDI_SUCCESS) {
4412                 igb_log(igb,
4413                     "Get interrupt cap failed: %d", rc);
4414                 goto alloc_handle_fail;
4415         }
4416 
4417         igb->intr_type = intr_type;
4418 
4419         return (IGB_SUCCESS);
4420 
4421 alloc_handle_fail:
4422         igb_rem_intrs(igb);
4423 
4424         return (IGB_FAILURE);
4425 }
4426 
4427 /*
4428  * igb_add_intr_handlers - Add interrupt handlers based on the interrupt type
4429  *
4430  * Before adding the interrupt handlers, the interrupt vectors have
4431  * been allocated, and the rx/tx rings have also been allocated.
4432  */
4433 static int
4434 igb_add_intr_handlers(igb_t *igb)
4435 {
4436         igb_rx_ring_t *rx_ring;
4437         igb_tx_ring_t *tx_ring;
4438         int vector;
4439         int rc;
4440         int i;
4441 
4442         vector = 0;
4443 
4444         switch (igb->intr_type) {
4445         case DDI_INTR_TYPE_MSIX:
4446                 /* Add interrupt handler for tx + other */
4447                 tx_ring = &igb->tx_rings[0];
4448                 rc = ddi_intr_add_handler(igb->htable[vector],
4449                     (ddi_intr_handler_t *)igb_intr_tx_other,
4450                     (void *)igb, NULL);
4451 
4452                 if (rc != DDI_SUCCESS) {
4453                         igb_log(igb,
4454                             "Add tx/other interrupt handler failed: %d", rc);
4455                         return (IGB_FAILURE);
4456                 }
4457                 tx_ring->intr_vector = vector;
4458                 vector++;
4459 
4460                 /* Add interrupt handler for each rx ring */
4461                 for (i = 0; i < igb->num_rx_rings; i++) {
4462                         rx_ring = &igb->rx_rings[i];
4463 
4464                         rc = ddi_intr_add_handler(igb->htable[vector],
4465                             (ddi_intr_handler_t *)igb_intr_rx,
4466                             (void *)rx_ring, NULL);
4467 
4468                         if (rc != DDI_SUCCESS) {
4469                                 igb_log(igb,
4470                                     "Add rx interrupt handler failed. "
4471                                     "return: %d, rx ring: %d", rc, i);
4472                                 for (vector--; vector >= 0; vector--) {
4473                                         (void) ddi_intr_remove_handler(
4474                                             igb->htable[vector]);
4475                                 }
4476                                 return (IGB_FAILURE);
4477                         }
4478 
4479                         rx_ring->intr_vector = vector;
4480 
4481                         vector++;
4482                 }
4483 
4484                 /* Add interrupt handler for each tx ring from 2nd ring */
4485                 for (i = 1; i < igb->num_tx_rings; i++) {
4486                         tx_ring = &igb->tx_rings[i];
4487 
4488                         rc = ddi_intr_add_handler(igb->htable[vector],
4489                             (ddi_intr_handler_t *)igb_intr_tx,
4490                             (void *)tx_ring, NULL);
4491 
4492                         if (rc != DDI_SUCCESS) {
4493                                 igb_log(igb,
4494                                     "Add tx interrupt handler failed. "
4495                                     "return: %d, tx ring: %d", rc, i);
4496                                 for (vector--; vector >= 0; vector--) {
4497                                         (void) ddi_intr_remove_handler(
4498                                             igb->htable[vector]);
4499                                 }
4500                                 return (IGB_FAILURE);
4501                         }
4502 
4503                         tx_ring->intr_vector = vector;
4504 
4505                         vector++;
4506                 }
4507 
4508                 break;
4509 
4510         case DDI_INTR_TYPE_MSI:
4511                 /* Add interrupt handlers for the only vector */
4512                 rc = ddi_intr_add_handler(igb->htable[vector],
4513                     (ddi_intr_handler_t *)igb_intr_msi,
4514                     (void *)igb, NULL);
4515 
4516                 if (rc != DDI_SUCCESS) {
4517                         igb_log(igb,
4518                             "Add MSI interrupt handler failed: %d", rc);
4519                         return (IGB_FAILURE);
4520                 }
4521 
4522                 rx_ring = &igb->rx_rings[0];
4523                 rx_ring->intr_vector = vector;
4524 
4525                 vector++;
4526                 break;
4527 
4528         case DDI_INTR_TYPE_FIXED:
4529                 /* Add interrupt handlers for the only vector */
4530                 rc = ddi_intr_add_handler(igb->htable[vector],
4531                     (ddi_intr_handler_t *)igb_intr_legacy,
4532                     (void *)igb, NULL);
4533 
4534                 if (rc != DDI_SUCCESS) {
4535                         igb_log(igb,
4536                             "Add legacy interrupt handler failed: %d", rc);
4537                         return (IGB_FAILURE);
4538                 }
4539 
4540                 rx_ring = &igb->rx_rings[0];
4541                 rx_ring->intr_vector = vector;
4542 
4543                 vector++;
4544                 break;
4545 
4546         default:
4547                 return (IGB_FAILURE);
4548         }
4549 
4550         ASSERT(vector == igb->intr_cnt);
4551 
4552         return (IGB_SUCCESS);
4553 }
4554 
4555 /*
4556  * igb_setup_msix_82575 - setup 82575 adapter to use MSI-X interrupts
4557  *
4558  * For each vector enabled on the adapter, Set the MSIXBM register accordingly
4559  */
4560 static void
4561 igb_setup_msix_82575(igb_t *igb)
4562 {
4563         uint32_t eims = 0;
4564         int i, vector;
4565         struct e1000_hw *hw = &igb->hw;
4566 
4567         /*
4568          * Set vector for tx ring 0 and other causes.
4569          * NOTE assumption that it is vector 0.
4570          */
4571         vector = 0;
4572 
4573         igb->eims_mask = E1000_EICR_TX_QUEUE0 | E1000_EICR_OTHER;
4574         E1000_WRITE_REG(hw, E1000_MSIXBM(vector), igb->eims_mask);
4575         vector++;
4576 
4577         for (i = 0; i < igb->num_rx_rings; i++) {
4578                 /*
4579                  * Set vector for each rx ring
4580                  */
4581                 eims = (E1000_EICR_RX_QUEUE0 << i);
4582                 E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4583 
4584                 /*
4585                  * Accumulate bits to enable in
4586                  * igb_enable_adapter_interrupts_82575()
4587                  */
4588                 igb->eims_mask |= eims;
4589 
4590                 vector++;
4591         }
4592 
4593         for (i = 1; i < igb->num_tx_rings; i++) {
4594                 /*
4595                  * Set vector for each tx ring from 2nd tx ring
4596                  */
4597                 eims = (E1000_EICR_TX_QUEUE0 << i);
4598                 E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4599 
4600                 /*
4601                  * Accumulate bits to enable in
4602                  * igb_enable_adapter_interrupts_82575()
4603                  */
4604                 igb->eims_mask |= eims;
4605 
4606                 vector++;
4607         }
4608 
4609         ASSERT(vector == igb->intr_cnt);
4610 
4611         /*
4612          * Disable IAM for ICR interrupt bits
4613          */
4614         E1000_WRITE_REG(hw, E1000_IAM, 0);
4615         E1000_WRITE_FLUSH(hw);
4616 }
4617 
4618 /*
4619  * igb_setup_msix_82576 - setup 82576 adapter to use MSI-X interrupts
4620  *
4621  * 82576 uses a table based method for assigning vectors.  Each queue has a
4622  * single entry in the table to which we write a vector number along with a
4623  * "valid" bit.  The entry is a single byte in a 4-byte register.  Vectors
4624  * take a different position in the 4-byte register depending on whether
4625  * they are numbered above or below 8.
4626  */
4627 static void
4628 igb_setup_msix_82576(igb_t *igb)
4629 {
4630         struct e1000_hw *hw = &igb->hw;
4631         uint32_t ivar, index, vector;
4632         int i;
4633 
4634         /* must enable msi-x capability before IVAR settings */
4635         E1000_WRITE_REG(hw, E1000_GPIE,
4636             (E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_NSICR));
4637 
4638         /*
4639          * Set vector for tx ring 0 and other causes.
4640          * NOTE assumption that it is vector 0.
4641          * This is also interdependent with installation of interrupt service
4642          * routines in igb_add_intr_handlers().
4643          */
4644 
4645         /* assign "other" causes to vector 0 */
4646         vector = 0;
4647         ivar = ((vector | E1000_IVAR_VALID) << 8);
4648         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4649 
4650         /* assign tx ring 0 to vector 0 */
4651         ivar = ((vector | E1000_IVAR_VALID) << 8);
4652         E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4653 
4654         /* prepare to enable tx & other interrupt causes */
4655         igb->eims_mask = (1 << vector);
4656 
4657         vector ++;
4658         for (i = 0; i < igb->num_rx_rings; i++) {
4659                 /*
4660                  * Set vector for each rx ring
4661                  */
4662                 index = (i & 0x7);
4663                 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4664 
4665                 if (i < 8) {
4666                         /* vector goes into low byte of register */
4667                         ivar = ivar & 0xFFFFFF00;
4668                         ivar |= (vector | E1000_IVAR_VALID);
4669                 } else {
4670                         /* vector goes into third byte of register */
4671                         ivar = ivar & 0xFF00FFFF;
4672                         ivar |= ((vector | E1000_IVAR_VALID) << 16);
4673                 }
4674                 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4675 
4676                 /* Accumulate interrupt-cause bits to enable */
4677                 igb->eims_mask |= (1 << vector);
4678 
4679                 vector ++;
4680         }
4681 
4682         for (i = 1; i < igb->num_tx_rings; i++) {
4683                 /*
4684                  * Set vector for each tx ring from 2nd tx ring.
4685                  * Note assumption that tx vectors numericall follow rx vectors.
4686                  */
4687                 index = (i & 0x7);
4688                 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4689 
4690                 if (i < 8) {
4691                         /* vector goes into second byte of register */
4692                         ivar = ivar & 0xFFFF00FF;
4693                         ivar |= ((vector | E1000_IVAR_VALID) << 8);
4694                 } else {
4695                         /* vector goes into fourth byte of register */
4696                         ivar = ivar & 0x00FFFFFF;
4697                         ivar |= (vector | E1000_IVAR_VALID) << 24;
4698                 }
4699                 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4700 
4701                 /* Accumulate interrupt-cause bits to enable */
4702                 igb->eims_mask |= (1 << vector);
4703 
4704                 vector ++;
4705         }
4706 
4707         ASSERT(vector == igb->intr_cnt);
4708 }
4709 
4710 /*
4711  * igb_setup_msix_82580 - setup 82580 adapter to use MSI-X interrupts
4712  *
4713  * 82580 uses same table approach at 82576 but has fewer entries.  Each
4714  * queue has a single entry in the table to which we write a vector number
4715  * along with a "valid" bit.  Vectors take a different position in the
4716  * register depending on * whether * they are numbered above or below 4.
4717  */
4718 static void
4719 igb_setup_msix_82580(igb_t *igb)
4720 {
4721         struct e1000_hw *hw = &igb->hw;
4722         uint32_t ivar, index, vector;
4723         int i;
4724 
4725         /* must enable msi-x capability before IVAR settings */
4726         E1000_WRITE_REG(hw, E1000_GPIE, (E1000_GPIE_MSIX_MODE |
4727             E1000_GPIE_PBA | E1000_GPIE_NSICR | E1000_GPIE_EIAME));
4728         /*
4729          * Set vector for tx ring 0 and other causes.
4730          * NOTE assumption that it is vector 0.
4731          * This is also interdependent with installation of interrupt service
4732          * routines in igb_add_intr_handlers().
4733          */
4734 
4735         /* assign "other" causes to vector 0 */
4736         vector = 0;
4737         ivar = ((vector | E1000_IVAR_VALID) << 8);
4738         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4739 
4740         /* assign tx ring 0 to vector 0 */
4741         ivar = ((vector | E1000_IVAR_VALID) << 8);
4742         E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4743 
4744         /* prepare to enable tx & other interrupt causes */
4745         igb->eims_mask = (1 << vector);
4746 
4747         vector ++;
4748 
4749         for (i = 0; i < igb->num_rx_rings; i++) {
4750                 /*
4751                  * Set vector for each rx ring
4752                  */
4753                 index = (i >> 1);
4754                 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4755 
4756                 if (i & 1) {
4757                         /* vector goes into third byte of register */
4758                         ivar = ivar & 0xFF00FFFF;
4759                         ivar |= ((vector | E1000_IVAR_VALID) << 16);
4760                 } else {
4761                         /* vector goes into low byte of register */
4762                         ivar = ivar & 0xFFFFFF00;
4763                         ivar |= (vector | E1000_IVAR_VALID);
4764                 }
4765                 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4766 
4767                 /* Accumulate interrupt-cause bits to enable */
4768                 igb->eims_mask |= (1 << vector);
4769 
4770                 vector ++;
4771         }
4772 
4773         for (i = 1; i < igb->num_tx_rings; i++) {
4774                 /*
4775                  * Set vector for each tx ring from 2nd tx ring.
4776                  * Note assumption that tx vectors numericall follow rx vectors.
4777                  */
4778                 index = (i >> 1);
4779                 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4780 
4781                 if (i & 1) {
4782                         /* vector goes into high byte of register */
4783                         ivar = ivar & 0x00FFFFFF;
4784                         ivar |= ((vector | E1000_IVAR_VALID) << 24);
4785                 } else {
4786                         /* vector goes into second byte of register */
4787                         ivar = ivar & 0xFFFF00FF;
4788                         ivar |= (vector | E1000_IVAR_VALID) << 8;
4789                 }
4790                 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4791 
4792                 /* Accumulate interrupt-cause bits to enable */
4793                 igb->eims_mask |= (1 << vector);
4794 
4795                 vector ++;
4796         }
4797         ASSERT(vector == igb->intr_cnt);
4798 }
4799 
4800 /*
4801  * igb_rem_intr_handlers - remove the interrupt handlers
4802  */
4803 static void
4804 igb_rem_intr_handlers(igb_t *igb)
4805 {
4806         int i;
4807         int rc;
4808 
4809         for (i = 0; i < igb->intr_cnt; i++) {
4810                 rc = ddi_intr_remove_handler(igb->htable[i]);
4811                 if (rc != DDI_SUCCESS) {
4812                         IGB_DEBUGLOG_1(igb,
4813                             "Remove intr handler failed: %d", rc);
4814                 }
4815         }
4816 }
4817 
4818 /*
4819  * igb_rem_intrs - remove the allocated interrupts
4820  */
4821 static void
4822 igb_rem_intrs(igb_t *igb)
4823 {
4824         int i;
4825         int rc;
4826 
4827         for (i = 0; i < igb->intr_cnt; i++) {
4828                 rc = ddi_intr_free(igb->htable[i]);
4829                 if (rc != DDI_SUCCESS) {
4830                         IGB_DEBUGLOG_1(igb,
4831                             "Free intr failed: %d", rc);
4832                 }
4833         }
4834 
4835         kmem_free(igb->htable, igb->intr_size);
4836         igb->htable = NULL;
4837 }
4838 
4839 /*
4840  * igb_enable_intrs - enable all the ddi interrupts
4841  */
4842 static int
4843 igb_enable_intrs(igb_t *igb)
4844 {
4845         int i;
4846         int rc;
4847 
4848         /* Enable interrupts */
4849         if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4850                 /* Call ddi_intr_block_enable() for MSI */
4851                 rc = ddi_intr_block_enable(igb->htable, igb->intr_cnt);
4852                 if (rc != DDI_SUCCESS) {
4853                         igb_log(igb,
4854                             "Enable block intr failed: %d", rc);
4855                         return (IGB_FAILURE);
4856                 }
4857         } else {
4858                 /* Call ddi_intr_enable() for Legacy/MSI non block enable */
4859                 for (i = 0; i < igb->intr_cnt; i++) {
4860                         rc = ddi_intr_enable(igb->htable[i]);
4861                         if (rc != DDI_SUCCESS) {
4862                                 igb_log(igb,
4863                                     "Enable intr failed: %d", rc);
4864                                 return (IGB_FAILURE);
4865                         }
4866                 }
4867         }
4868 
4869         return (IGB_SUCCESS);
4870 }
4871 
4872 /*
4873  * igb_disable_intrs - disable all the ddi interrupts
4874  */
4875 static int
4876 igb_disable_intrs(igb_t *igb)
4877 {
4878         int i;
4879         int rc;
4880 
4881         /* Disable all interrupts */
4882         if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4883                 rc = ddi_intr_block_disable(igb->htable, igb->intr_cnt);
4884                 if (rc != DDI_SUCCESS) {
4885                         igb_log(igb,
4886                             "Disable block intr failed: %d", rc);
4887                         return (IGB_FAILURE);
4888                 }
4889         } else {
4890                 for (i = 0; i < igb->intr_cnt; i++) {
4891                         rc = ddi_intr_disable(igb->htable[i]);
4892                         if (rc != DDI_SUCCESS) {
4893                                 igb_log(igb,
4894                                     "Disable intr failed: %d", rc);
4895                                 return (IGB_FAILURE);
4896                         }
4897                 }
4898         }
4899 
4900         return (IGB_SUCCESS);
4901 }
4902 
4903 /*
4904  * igb_get_phy_state - Get and save the parameters read from PHY registers
4905  */
4906 static void
4907 igb_get_phy_state(igb_t *igb)
4908 {
4909         struct e1000_hw *hw = &igb->hw;
4910         uint16_t phy_ctrl;
4911         uint16_t phy_status;
4912         uint16_t phy_an_adv;
4913         uint16_t phy_an_exp;
4914         uint16_t phy_ext_status;
4915         uint16_t phy_1000t_ctrl;
4916         uint16_t phy_1000t_status;
4917         uint16_t phy_lp_able;
4918 
4919         ASSERT(mutex_owned(&igb->gen_lock));
4920 
4921         if (hw->phy.media_type == e1000_media_type_copper) {
4922                 (void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4923                 (void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
4924                 (void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_an_adv);
4925                 (void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_an_exp);
4926                 (void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
4927                 (void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_1000t_ctrl);
4928                 (void) e1000_read_phy_reg(hw,
4929                     PHY_1000T_STATUS, &phy_1000t_status);
4930                 (void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_lp_able);
4931 
4932                 igb->param_autoneg_cap =
4933                     (phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
4934                 igb->param_pause_cap =
4935                     (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
4936                 igb->param_asym_pause_cap =
4937                     (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
4938                 igb->param_1000fdx_cap =
4939                     ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4940                     (phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
4941                 igb->param_1000hdx_cap =
4942                     ((phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
4943                     (phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
4944                 igb->param_100t4_cap =
4945                     (phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
4946                 igb->param_100fdx_cap = ((phy_status & MII_SR_100X_FD_CAPS) ||
4947                     (phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
4948                 igb->param_100hdx_cap = ((phy_status & MII_SR_100X_HD_CAPS) ||
4949                     (phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
4950                 igb->param_10fdx_cap =
4951                     (phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
4952                 igb->param_10hdx_cap =
4953                     (phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
4954                 igb->param_rem_fault =
4955                     (phy_status & MII_SR_REMOTE_FAULT) ? 1 : 0;
4956 
4957                 igb->param_adv_autoneg_cap = hw->mac.autoneg;
4958                 igb->param_adv_pause_cap =
4959                     (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
4960                 igb->param_adv_asym_pause_cap =
4961                     (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
4962                 igb->param_adv_1000hdx_cap =
4963                     (phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
4964                 igb->param_adv_100t4_cap =
4965                     (phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
4966                 igb->param_adv_rem_fault =
4967                     (phy_an_adv & NWAY_AR_REMOTE_FAULT) ? 1 : 0;
4968                 if (igb->param_adv_autoneg_cap == 1) {
4969                         igb->param_adv_1000fdx_cap =
4970                             (phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
4971                         igb->param_adv_100fdx_cap =
4972                             (phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
4973                         igb->param_adv_100hdx_cap =
4974                             (phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
4975                         igb->param_adv_10fdx_cap =
4976                             (phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
4977                         igb->param_adv_10hdx_cap =
4978                             (phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
4979                 }
4980 
4981                 igb->param_lp_autoneg_cap =
4982                     (phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
4983                 igb->param_lp_pause_cap =
4984                     (phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
4985                 igb->param_lp_asym_pause_cap =
4986                     (phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
4987                 igb->param_lp_1000fdx_cap =
4988                     (phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
4989                 igb->param_lp_1000hdx_cap =
4990                     (phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
4991                 igb->param_lp_100t4_cap =
4992                     (phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
4993                 igb->param_lp_100fdx_cap =
4994                     (phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
4995                 igb->param_lp_100hdx_cap =
4996                     (phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
4997                 igb->param_lp_10fdx_cap =
4998                     (phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
4999                 igb->param_lp_10hdx_cap =
5000                     (phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5001                 igb->param_lp_rem_fault =
5002                     (phy_lp_able & NWAY_LPAR_REMOTE_FAULT) ? 1 : 0;
5003         } else {
5004                 /*
5005                  * 1Gig Fiber adapter only offers 1Gig Full Duplex.
5006                  */
5007                 igb->param_autoneg_cap = 0;
5008                 igb->param_pause_cap = 1;
5009                 igb->param_asym_pause_cap = 1;
5010                 igb->param_1000fdx_cap = 1;
5011                 igb->param_1000hdx_cap = 0;
5012                 igb->param_100t4_cap = 0;
5013                 igb->param_100fdx_cap = 0;
5014                 igb->param_100hdx_cap = 0;
5015                 igb->param_10fdx_cap = 0;
5016                 igb->param_10hdx_cap = 0;
5017 
5018                 igb->param_adv_autoneg_cap = 0;
5019                 igb->param_adv_pause_cap = 1;
5020                 igb->param_adv_asym_pause_cap = 1;
5021                 igb->param_adv_1000fdx_cap = 1;
5022                 igb->param_adv_1000hdx_cap = 0;
5023                 igb->param_adv_100t4_cap = 0;
5024                 igb->param_adv_100fdx_cap = 0;
5025                 igb->param_adv_100hdx_cap = 0;
5026                 igb->param_adv_10fdx_cap = 0;
5027                 igb->param_adv_10hdx_cap = 0;
5028 
5029                 igb->param_lp_autoneg_cap = 0;
5030                 igb->param_lp_pause_cap = 0;
5031                 igb->param_lp_asym_pause_cap = 0;
5032                 igb->param_lp_1000fdx_cap = 0;
5033                 igb->param_lp_1000hdx_cap = 0;
5034                 igb->param_lp_100t4_cap = 0;
5035                 igb->param_lp_100fdx_cap = 0;
5036                 igb->param_lp_100hdx_cap = 0;
5037                 igb->param_lp_10fdx_cap = 0;
5038                 igb->param_lp_10hdx_cap = 0;
5039                 igb->param_lp_rem_fault = 0;
5040         }
5041 }
5042 
5043 /*
5044  * synchronize the adv* and en* parameters.
5045  *
5046  * See comments in <sys/dld.h> for details of the *_en_*
5047  * parameters. The usage of ndd for setting adv parameters will
5048  * synchronize all the en parameters with the e1000g parameters,
5049  * implicitly disabling any settings made via dladm.
5050  */
5051 static void
5052 igb_param_sync(igb_t *igb)
5053 {
5054         igb->param_en_1000fdx_cap = igb->param_adv_1000fdx_cap;
5055         igb->param_en_1000hdx_cap = igb->param_adv_1000hdx_cap;
5056         igb->param_en_100t4_cap = igb->param_adv_100t4_cap;
5057         igb->param_en_100fdx_cap = igb->param_adv_100fdx_cap;
5058         igb->param_en_100hdx_cap = igb->param_adv_100hdx_cap;
5059         igb->param_en_10fdx_cap = igb->param_adv_10fdx_cap;
5060         igb->param_en_10hdx_cap = igb->param_adv_10hdx_cap;
5061 }
5062 
5063 /*
5064  * igb_get_driver_control
5065  */
5066 static void
5067 igb_get_driver_control(struct e1000_hw *hw)
5068 {
5069         uint32_t ctrl_ext;
5070 
5071         /* Notify firmware that driver is in control of device */
5072         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5073         ctrl_ext |= E1000_CTRL_EXT_DRV_LOAD;
5074         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5075 }
5076 
5077 /*
5078  * igb_release_driver_control
5079  */
5080 static void
5081 igb_release_driver_control(struct e1000_hw *hw)
5082 {
5083         uint32_t ctrl_ext;
5084 
5085         /* Notify firmware that driver is no longer in control of device */
5086         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5087         ctrl_ext &= ~E1000_CTRL_EXT_DRV_LOAD;
5088         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5089 }
5090 
5091 /*
5092  * igb_atomic_reserve - Atomic decrease operation
5093  */
5094 int
5095 igb_atomic_reserve(uint32_t *count_p, uint32_t n)
5096 {
5097         uint32_t oldval;
5098         uint32_t newval;
5099 
5100         /* ATOMICALLY */
5101         do {
5102                 oldval = *count_p;
5103                 if (oldval < n)
5104                         return (-1);
5105                 newval = oldval - n;
5106         } while (atomic_cas_32(count_p, oldval, newval) != oldval);
5107 
5108         return (newval);
5109 }
5110 
5111 /*
5112  * FMA support
5113  */
5114 
5115 int
5116 igb_check_acc_handle(ddi_acc_handle_t handle)
5117 {
5118         ddi_fm_error_t de;
5119 
5120         ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5121         ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5122         return (de.fme_status);
5123 }
5124 
5125 int
5126 igb_check_dma_handle(ddi_dma_handle_t handle)
5127 {
5128         ddi_fm_error_t de;
5129 
5130         ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5131         return (de.fme_status);
5132 }
5133 
5134 /*
5135  * The IO fault service error handling callback function
5136  */
5137 /*ARGSUSED*/
5138 static int
5139 igb_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5140 {
5141         /*
5142          * as the driver can always deal with an error in any dma or
5143          * access handle, we can just return the fme_status value.
5144          */
5145         pci_ereport_post(dip, err, NULL);
5146         return (err->fme_status);
5147 }
5148 
5149 static void
5150 igb_fm_init(igb_t *igb)
5151 {
5152         ddi_iblock_cookie_t iblk;
5153         int fma_dma_flag;
5154 
5155         /* Only register with IO Fault Services if we have some capability */
5156         if (igb->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5157                 igb_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5158         } else {
5159                 igb_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5160         }
5161 
5162         if (igb->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5163                 fma_dma_flag = 1;
5164         } else {
5165                 fma_dma_flag = 0;
5166         }
5167 
5168         (void) igb_set_fma_flags(fma_dma_flag);
5169 
5170         if (igb->fm_capabilities) {
5171 
5172                 /* Register capabilities with IO Fault Services */
5173                 ddi_fm_init(igb->dip, &igb->fm_capabilities, &iblk);
5174 
5175                 /*
5176                  * Initialize pci ereport capabilities if ereport capable
5177                  */
5178                 if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5179                     DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5180                         pci_ereport_setup(igb->dip);
5181 
5182                 /*
5183                  * Register error callback if error callback capable
5184                  */
5185                 if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5186                         ddi_fm_handler_register(igb->dip,
5187                             igb_fm_error_cb, (void*) igb);
5188         }
5189 }
5190 
5191 static void
5192 igb_fm_fini(igb_t *igb)
5193 {
5194         /* Only unregister FMA capabilities if we registered some */
5195         if (igb->fm_capabilities) {
5196 
5197                 /*
5198                  * Release any resources allocated by pci_ereport_setup()
5199                  */
5200                 if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5201                     DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5202                         pci_ereport_teardown(igb->dip);
5203 
5204                 /*
5205                  * Un-register error callback if error callback capable
5206                  */
5207                 if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5208                         ddi_fm_handler_unregister(igb->dip);
5209 
5210                 /* Unregister from IO Fault Services */
5211                 ddi_fm_fini(igb->dip);
5212         }
5213 }
5214 
5215 void
5216 igb_fm_ereport(igb_t *igb, char *detail)
5217 {
5218         uint64_t ena;
5219         char buf[FM_MAX_CLASS];
5220 
5221         (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5222         ena = fm_ena_generate(0, FM_ENA_FMT1);
5223         if (DDI_FM_EREPORT_CAP(igb->fm_capabilities)) {
5224                 ddi_fm_ereport_post(igb->dip, buf, ena, DDI_NOSLEEP,
5225                     FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5226         }
5227 }