1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright(c) 2007-2010 Intel Corporation. All rights reserved.
  24  */
  25 
  26 /*
  27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
  28  */
  29 
  30 #include "igb_sw.h"
  31 
  32 static char ident[] = "Intel 1Gb Ethernet";
  33 static char igb_version[] = "igb 1.1.17";
  34 
  35 /*
  36  * Local function protoypes
  37  */
  38 static int igb_register_mac(igb_t *);
  39 static int igb_identify_hardware(igb_t *);
  40 static int igb_regs_map(igb_t *);
  41 static void igb_init_properties(igb_t *);
  42 static int igb_init_driver_settings(igb_t *);
  43 static void igb_init_locks(igb_t *);
  44 static void igb_destroy_locks(igb_t *);
  45 static int igb_init_mac_address(igb_t *);
  46 static int igb_init(igb_t *);
  47 static int igb_init_adapter(igb_t *);
  48 static void igb_stop_adapter(igb_t *);
  49 static int igb_reset(igb_t *);
  50 static void igb_tx_clean(igb_t *);
  51 static boolean_t igb_tx_drain(igb_t *);
  52 static boolean_t igb_rx_drain(igb_t *);
  53 static int igb_alloc_rings(igb_t *);
  54 static int igb_alloc_rx_data(igb_t *);
  55 static void igb_free_rx_data(igb_t *);
  56 static void igb_free_rings(igb_t *);
  57 static void igb_setup_rings(igb_t *);
  58 static void igb_setup_rx(igb_t *);
  59 static void igb_setup_tx(igb_t *);
  60 static void igb_setup_rx_ring(igb_rx_ring_t *);
  61 static void igb_setup_tx_ring(igb_tx_ring_t *);
  62 static void igb_setup_rss(igb_t *);
  63 static void igb_setup_mac_rss_classify(igb_t *);
  64 static void igb_setup_mac_classify(igb_t *);
  65 static void igb_init_unicst(igb_t *);
  66 static void igb_setup_multicst(igb_t *);
  67 static void igb_get_phy_state(igb_t *);
  68 static void igb_param_sync(igb_t *);
  69 static void igb_get_conf(igb_t *);
  70 static int igb_get_prop(igb_t *, char *, int, int, int);
  71 static boolean_t igb_is_link_up(igb_t *);
  72 static boolean_t igb_link_check(igb_t *);
  73 static void igb_local_timer(void *);
  74 static void igb_link_timer(void *);
  75 static void igb_arm_watchdog_timer(igb_t *);
  76 static void igb_start_watchdog_timer(igb_t *);
  77 static void igb_restart_watchdog_timer(igb_t *);
  78 static void igb_stop_watchdog_timer(igb_t *);
  79 static void igb_start_link_timer(igb_t *);
  80 static void igb_stop_link_timer(igb_t *);
  81 static void igb_disable_adapter_interrupts(igb_t *);
  82 static void igb_enable_adapter_interrupts_82575(igb_t *);
  83 static void igb_enable_adapter_interrupts_82576(igb_t *);
  84 static void igb_enable_adapter_interrupts_82580(igb_t *);
  85 static boolean_t is_valid_mac_addr(uint8_t *);
  86 static boolean_t igb_stall_check(igb_t *);
  87 static boolean_t igb_set_loopback_mode(igb_t *, uint32_t);
  88 static void igb_set_external_loopback(igb_t *);
  89 static void igb_set_internal_phy_loopback(igb_t *);
  90 static void igb_set_internal_serdes_loopback(igb_t *);
  91 static boolean_t igb_find_mac_address(igb_t *);
  92 static int igb_alloc_intrs(igb_t *);
  93 static int igb_alloc_intr_handles(igb_t *, int);
  94 static int igb_add_intr_handlers(igb_t *);
  95 static void igb_rem_intr_handlers(igb_t *);
  96 static void igb_rem_intrs(igb_t *);
  97 static int igb_enable_intrs(igb_t *);
  98 static int igb_disable_intrs(igb_t *);
  99 static void igb_setup_msix_82575(igb_t *);
 100 static void igb_setup_msix_82576(igb_t *);
 101 static void igb_setup_msix_82580(igb_t *);
 102 static uint_t igb_intr_legacy(void *, void *);
 103 static uint_t igb_intr_msi(void *, void *);
 104 static uint_t igb_intr_rx(void *, void *);
 105 static uint_t igb_intr_tx(void *, void *);
 106 static uint_t igb_intr_tx_other(void *, void *);
 107 static void igb_intr_rx_work(igb_rx_ring_t *);
 108 static void igb_intr_tx_work(igb_tx_ring_t *);
 109 static void igb_intr_link_work(igb_t *);
 110 static void igb_get_driver_control(struct e1000_hw *);
 111 static void igb_release_driver_control(struct e1000_hw *);
 112 
 113 static int igb_attach(dev_info_t *, ddi_attach_cmd_t);
 114 static int igb_detach(dev_info_t *, ddi_detach_cmd_t);
 115 static int igb_resume(dev_info_t *);
 116 static int igb_suspend(dev_info_t *);
 117 static int igb_quiesce(dev_info_t *);
 118 static void igb_unconfigure(dev_info_t *, igb_t *);
 119 static int igb_fm_error_cb(dev_info_t *, ddi_fm_error_t *,
 120     const void *);
 121 static void igb_fm_init(igb_t *);
 122 static void igb_fm_fini(igb_t *);
 123 static void igb_release_multicast(igb_t *);
 124 
 125 char *igb_priv_props[] = {
 126         "_tx_copy_thresh",
 127         "_tx_recycle_thresh",
 128         "_tx_overload_thresh",
 129         "_tx_resched_thresh",
 130         "_rx_copy_thresh",
 131         "_rx_limit_per_intr",
 132         "_intr_throttling",
 133         "_adv_pause_cap",
 134         "_adv_asym_pause_cap",
 135         NULL
 136 };
 137 
 138 static struct cb_ops igb_cb_ops = {
 139         nulldev,                /* cb_open */
 140         nulldev,                /* cb_close */
 141         nodev,                  /* cb_strategy */
 142         nodev,                  /* cb_print */
 143         nodev,                  /* cb_dump */
 144         nodev,                  /* cb_read */
 145         nodev,                  /* cb_write */
 146         nodev,                  /* cb_ioctl */
 147         nodev,                  /* cb_devmap */
 148         nodev,                  /* cb_mmap */
 149         nodev,                  /* cb_segmap */
 150         nochpoll,               /* cb_chpoll */
 151         ddi_prop_op,            /* cb_prop_op */
 152         NULL,                   /* cb_stream */
 153         D_MP | D_HOTPLUG,       /* cb_flag */
 154         CB_REV,                 /* cb_rev */
 155         nodev,                  /* cb_aread */
 156         nodev                   /* cb_awrite */
 157 };
 158 
 159 static struct dev_ops igb_dev_ops = {
 160         DEVO_REV,               /* devo_rev */
 161         0,                      /* devo_refcnt */
 162         NULL,                   /* devo_getinfo */
 163         nulldev,                /* devo_identify */
 164         nulldev,                /* devo_probe */
 165         igb_attach,             /* devo_attach */
 166         igb_detach,             /* devo_detach */
 167         nodev,                  /* devo_reset */
 168         &igb_cb_ops,                /* devo_cb_ops */
 169         NULL,                   /* devo_bus_ops */
 170         ddi_power,              /* devo_power */
 171         igb_quiesce,    /* devo_quiesce */
 172 };
 173 
 174 static struct modldrv igb_modldrv = {
 175         &mod_driverops,             /* Type of module.  This one is a driver */
 176         ident,                  /* Discription string */
 177         &igb_dev_ops,               /* driver ops */
 178 };
 179 
 180 static struct modlinkage igb_modlinkage = {
 181         MODREV_1, &igb_modldrv, NULL
 182 };
 183 
 184 /* Access attributes for register mapping */
 185 ddi_device_acc_attr_t igb_regs_acc_attr = {
 186         DDI_DEVICE_ATTR_V1,
 187         DDI_STRUCTURE_LE_ACC,
 188         DDI_STRICTORDER_ACC,
 189         DDI_FLAGERR_ACC
 190 };
 191 
 192 #define IGB_M_CALLBACK_FLAGS \
 193         (MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
 194 
 195 static mac_callbacks_t igb_m_callbacks = {
 196         IGB_M_CALLBACK_FLAGS,
 197         igb_m_stat,
 198         igb_m_start,
 199         igb_m_stop,
 200         igb_m_promisc,
 201         igb_m_multicst,
 202         NULL,
 203         NULL,
 204         NULL,
 205         igb_m_ioctl,
 206         igb_m_getcapab,
 207         NULL,
 208         NULL,
 209         igb_m_setprop,
 210         igb_m_getprop,
 211         igb_m_propinfo
 212 };
 213 
 214 /*
 215  * Initialize capabilities of each supported adapter type
 216  */
 217 static adapter_info_t igb_82575_cap = {
 218         /* limits */
 219         4,              /* maximum number of rx queues */
 220         1,              /* minimum number of rx queues */
 221         4,              /* default number of rx queues */
 222         4,              /* maximum number of tx queues */
 223         1,              /* minimum number of tx queues */
 224         4,              /* default number of tx queues */
 225         65535,          /* maximum interrupt throttle rate */
 226         0,              /* minimum interrupt throttle rate */
 227         200,            /* default interrupt throttle rate */
 228 
 229         /* function pointers */
 230         igb_enable_adapter_interrupts_82575,
 231         igb_setup_msix_82575,
 232 
 233         /* capabilities */
 234         (IGB_FLAG_HAS_DCA |     /* capability flags */
 235         IGB_FLAG_VMDQ_POOL),
 236 
 237         0xffc00000              /* mask for RXDCTL register */
 238 };
 239 
 240 static adapter_info_t igb_82576_cap = {
 241         /* limits */
 242         16,             /* maximum number of rx queues */
 243         1,              /* minimum number of rx queues */
 244         4,              /* default number of rx queues */
 245         16,             /* maximum number of tx queues */
 246         1,              /* minimum number of tx queues */
 247         4,              /* default number of tx queues */
 248         65535,          /* maximum interrupt throttle rate */
 249         0,              /* minimum interrupt throttle rate */
 250         200,            /* default interrupt throttle rate */
 251 
 252         /* function pointers */
 253         igb_enable_adapter_interrupts_82576,
 254         igb_setup_msix_82576,
 255 
 256         /* capabilities */
 257         (IGB_FLAG_HAS_DCA |     /* capability flags */
 258         IGB_FLAG_VMDQ_POOL |
 259         IGB_FLAG_NEED_CTX_IDX),
 260 
 261         0xffe00000              /* mask for RXDCTL register */
 262 };
 263 
 264 static adapter_info_t igb_82580_cap = {
 265         /* limits */
 266         8,              /* maximum number of rx queues */
 267         1,              /* minimum number of rx queues */
 268         4,              /* default number of rx queues */
 269         8,              /* maximum number of tx queues */
 270         1,              /* minimum number of tx queues */
 271         4,              /* default number of tx queues */
 272         65535,          /* maximum interrupt throttle rate */
 273         0,              /* minimum interrupt throttle rate */
 274         200,            /* default interrupt throttle rate */
 275 
 276         /* function pointers */
 277         igb_enable_adapter_interrupts_82580,
 278         igb_setup_msix_82580,
 279 
 280         /* capabilities */
 281         (IGB_FLAG_HAS_DCA |     /* capability flags */
 282         IGB_FLAG_VMDQ_POOL |
 283         IGB_FLAG_NEED_CTX_IDX),
 284 
 285         0xffe00000              /* mask for RXDCTL register */
 286 };
 287 
 288 /*
 289  * Module Initialization Functions
 290  */
 291 
 292 int
 293 _init(void)
 294 {
 295         int status;
 296 
 297         mac_init_ops(&igb_dev_ops, MODULE_NAME);
 298 
 299         status = mod_install(&igb_modlinkage);
 300 
 301         if (status != DDI_SUCCESS) {
 302                 mac_fini_ops(&igb_dev_ops);
 303         }
 304 
 305         return (status);
 306 }
 307 
 308 int
 309 _fini(void)
 310 {
 311         int status;
 312 
 313         status = mod_remove(&igb_modlinkage);
 314 
 315         if (status == DDI_SUCCESS) {
 316                 mac_fini_ops(&igb_dev_ops);
 317         }
 318 
 319         return (status);
 320 
 321 }
 322 
 323 int
 324 _info(struct modinfo *modinfop)
 325 {
 326         int status;
 327 
 328         status = mod_info(&igb_modlinkage, modinfop);
 329 
 330         return (status);
 331 }
 332 
 333 /*
 334  * igb_attach - driver attach
 335  *
 336  * This function is the device specific initialization entry
 337  * point. This entry point is required and must be written.
 338  * The DDI_ATTACH command must be provided in the attach entry
 339  * point. When attach() is called with cmd set to DDI_ATTACH,
 340  * all normal kernel services (such as kmem_alloc(9F)) are
 341  * available for use by the driver.
 342  *
 343  * The attach() function will be called once for each instance
 344  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
 345  * Until attach() succeeds, the only driver entry points which
 346  * may be called are open(9E) and getinfo(9E).
 347  */
 348 static int
 349 igb_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
 350 {
 351         igb_t *igb;
 352         struct igb_osdep *osdep;
 353         struct e1000_hw *hw;
 354         int instance;
 355 
 356         /*
 357          * Check the command and perform corresponding operations
 358          */
 359         switch (cmd) {
 360         default:
 361                 return (DDI_FAILURE);
 362 
 363         case DDI_RESUME:
 364                 return (igb_resume(devinfo));
 365 
 366         case DDI_ATTACH:
 367                 break;
 368         }
 369 
 370         /* Get the device instance */
 371         instance = ddi_get_instance(devinfo);
 372 
 373         /* Allocate memory for the instance data structure */
 374         igb = kmem_zalloc(sizeof (igb_t), KM_SLEEP);
 375 
 376         igb->dip = devinfo;
 377         igb->instance = instance;
 378 
 379         hw = &igb->hw;
 380         osdep = &igb->osdep;
 381         hw->back = osdep;
 382         osdep->igb = igb;
 383 
 384         /* Attach the instance pointer to the dev_info data structure */
 385         ddi_set_driver_private(devinfo, igb);
 386 
 387 
 388         /* Initialize for fma support */
 389         igb->fm_capabilities = igb_get_prop(igb, "fm-capable",
 390             0, 0x0f,
 391             DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
 392             DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
 393         igb_fm_init(igb);
 394         igb->attach_progress |= ATTACH_PROGRESS_FMINIT;
 395 
 396         /*
 397          * Map PCI config space registers
 398          */
 399         if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
 400                 igb_error(igb, "Failed to map PCI configurations");
 401                 goto attach_fail;
 402         }
 403         igb->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
 404 
 405         /*
 406          * Identify the chipset family
 407          */
 408         if (igb_identify_hardware(igb) != IGB_SUCCESS) {
 409                 igb_error(igb, "Failed to identify hardware");
 410                 goto attach_fail;
 411         }
 412 
 413         /*
 414          * Map device registers
 415          */
 416         if (igb_regs_map(igb) != IGB_SUCCESS) {
 417                 igb_error(igb, "Failed to map device registers");
 418                 goto attach_fail;
 419         }
 420         igb->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
 421 
 422         /*
 423          * Initialize driver parameters
 424          */
 425         igb_init_properties(igb);
 426         igb->attach_progress |= ATTACH_PROGRESS_PROPS;
 427 
 428         /*
 429          * Allocate interrupts
 430          */
 431         if (igb_alloc_intrs(igb) != IGB_SUCCESS) {
 432                 igb_error(igb, "Failed to allocate interrupts");
 433                 goto attach_fail;
 434         }
 435         igb->attach_progress |= ATTACH_PROGRESS_ALLOC_INTR;
 436 
 437         /*
 438          * Allocate rx/tx rings based on the ring numbers.
 439          * The actual numbers of rx/tx rings are decided by the number of
 440          * allocated interrupt vectors, so we should allocate the rings after
 441          * interrupts are allocated.
 442          */
 443         if (igb_alloc_rings(igb) != IGB_SUCCESS) {
 444                 igb_error(igb, "Failed to allocate rx/tx rings or groups");
 445                 goto attach_fail;
 446         }
 447         igb->attach_progress |= ATTACH_PROGRESS_ALLOC_RINGS;
 448 
 449         /*
 450          * Add interrupt handlers
 451          */
 452         if (igb_add_intr_handlers(igb) != IGB_SUCCESS) {
 453                 igb_error(igb, "Failed to add interrupt handlers");
 454                 goto attach_fail;
 455         }
 456         igb->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
 457 
 458         /*
 459          * Initialize driver parameters
 460          */
 461         if (igb_init_driver_settings(igb) != IGB_SUCCESS) {
 462                 igb_error(igb, "Failed to initialize driver settings");
 463                 goto attach_fail;
 464         }
 465 
 466         if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) {
 467                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
 468                 goto attach_fail;
 469         }
 470 
 471         /*
 472          * Initialize mutexes for this device.
 473          * Do this before enabling the interrupt handler and
 474          * register the softint to avoid the condition where
 475          * interrupt handler can try using uninitialized mutex
 476          */
 477         igb_init_locks(igb);
 478         igb->attach_progress |= ATTACH_PROGRESS_LOCKS;
 479 
 480         /*
 481          * Initialize the adapter
 482          */
 483         if (igb_init(igb) != IGB_SUCCESS) {
 484                 igb_error(igb, "Failed to initialize adapter");
 485                 goto attach_fail;
 486         }
 487         igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
 488 
 489         /*
 490          * Initialize statistics
 491          */
 492         if (igb_init_stats(igb) != IGB_SUCCESS) {
 493                 igb_error(igb, "Failed to initialize statistics");
 494                 goto attach_fail;
 495         }
 496         igb->attach_progress |= ATTACH_PROGRESS_STATS;
 497 
 498         /*
 499          * Register the driver to the MAC
 500          */
 501         if (igb_register_mac(igb) != IGB_SUCCESS) {
 502                 igb_error(igb, "Failed to register MAC");
 503                 goto attach_fail;
 504         }
 505         igb->attach_progress |= ATTACH_PROGRESS_MAC;
 506 
 507         /*
 508          * Now that mutex locks are initialized, and the chip is also
 509          * initialized, enable interrupts.
 510          */
 511         if (igb_enable_intrs(igb) != IGB_SUCCESS) {
 512                 igb_error(igb, "Failed to enable DDI interrupts");
 513                 goto attach_fail;
 514         }
 515         igb->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
 516 
 517         igb_log(igb, "%s", igb_version);
 518         atomic_or_32(&igb->igb_state, IGB_INITIALIZED);
 519 
 520         return (DDI_SUCCESS);
 521 
 522 attach_fail:
 523         igb_unconfigure(devinfo, igb);
 524         return (DDI_FAILURE);
 525 }
 526 
 527 /*
 528  * igb_detach - driver detach
 529  *
 530  * The detach() function is the complement of the attach routine.
 531  * If cmd is set to DDI_DETACH, detach() is used to remove  the
 532  * state  associated  with  a  given  instance of a device node
 533  * prior to the removal of that instance from the system.
 534  *
 535  * The detach() function will be called once for each  instance
 536  * of the device for which there has been a successful attach()
 537  * once there are no longer  any  opens  on  the  device.
 538  *
 539  * Interrupts routine are disabled, All memory allocated by this
 540  * driver are freed.
 541  */
 542 static int
 543 igb_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
 544 {
 545         igb_t *igb;
 546 
 547         /*
 548          * Check detach command
 549          */
 550         switch (cmd) {
 551         default:
 552                 return (DDI_FAILURE);
 553 
 554         case DDI_SUSPEND:
 555                 return (igb_suspend(devinfo));
 556 
 557         case DDI_DETACH:
 558                 break;
 559         }
 560 
 561 
 562         /*
 563          * Get the pointer to the driver private data structure
 564          */
 565         igb = (igb_t *)ddi_get_driver_private(devinfo);
 566         if (igb == NULL)
 567                 return (DDI_FAILURE);
 568 
 569         /*
 570          * Unregister MAC. If failed, we have to fail the detach
 571          */
 572         if (mac_unregister(igb->mac_hdl) != 0) {
 573                 igb_error(igb, "Failed to unregister MAC");
 574                 return (DDI_FAILURE);
 575         }
 576         igb->attach_progress &= ~ATTACH_PROGRESS_MAC;
 577 
 578         /*
 579          * If the device is still running, it needs to be stopped first.
 580          * This check is necessary because under some specific circumstances,
 581          * the detach routine can be called without stopping the interface
 582          * first.
 583          */
 584         mutex_enter(&igb->gen_lock);
 585         if (igb->igb_state & IGB_STARTED) {
 586                 atomic_and_32(&igb->igb_state, ~IGB_STARTED);
 587                 igb_stop(igb, B_TRUE);
 588                 mutex_exit(&igb->gen_lock);
 589                 /* Disable and stop the watchdog timer */
 590                 igb_disable_watchdog_timer(igb);
 591         } else
 592                 mutex_exit(&igb->gen_lock);
 593 
 594         /*
 595          * Check if there are still rx buffers held by the upper layer.
 596          * If so, fail the detach.
 597          */
 598         if (!igb_rx_drain(igb))
 599                 return (DDI_FAILURE);
 600 
 601         /*
 602          * Do the remaining unconfigure routines
 603          */
 604         igb_unconfigure(devinfo, igb);
 605 
 606         return (DDI_SUCCESS);
 607 }
 608 
 609 /*
 610  * quiesce(9E) entry point.
 611  *
 612  * This function is called when the system is single-threaded at high
 613  * PIL with preemption disabled. Therefore, this function must not be
 614  * blocked.
 615  *
 616  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
 617  * DDI_FAILURE indicates an error condition and should almost never happen.
 618  */
 619 static int
 620 igb_quiesce(dev_info_t *devinfo)
 621 {
 622         igb_t *igb;
 623         struct e1000_hw *hw;
 624 
 625         igb = (igb_t *)ddi_get_driver_private(devinfo);
 626 
 627         if (igb == NULL)
 628                 return (DDI_FAILURE);
 629 
 630         hw = &igb->hw;
 631 
 632         /*
 633          * Disable the adapter interrupts
 634          */
 635         igb_disable_adapter_interrupts(igb);
 636 
 637         /* Tell firmware driver is no longer in control */
 638         igb_release_driver_control(hw);
 639 
 640         /*
 641          * Reset the chipset
 642          */
 643         (void) e1000_reset_hw(hw);
 644 
 645         /*
 646          * Reset PHY if possible
 647          */
 648         if (e1000_check_reset_block(hw) == E1000_SUCCESS)
 649                 (void) e1000_phy_hw_reset(hw);
 650 
 651         return (DDI_SUCCESS);
 652 }
 653 
 654 /*
 655  * igb_unconfigure - release all resources held by this instance
 656  */
 657 static void
 658 igb_unconfigure(dev_info_t *devinfo, igb_t *igb)
 659 {
 660         /*
 661          * Disable interrupt
 662          */
 663         if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
 664                 (void) igb_disable_intrs(igb);
 665         }
 666 
 667         /*
 668          * Unregister MAC
 669          */
 670         if (igb->attach_progress & ATTACH_PROGRESS_MAC) {
 671                 (void) mac_unregister(igb->mac_hdl);
 672         }
 673 
 674         /*
 675          * Free statistics
 676          */
 677         if (igb->attach_progress & ATTACH_PROGRESS_STATS) {
 678                 kstat_delete((kstat_t *)igb->igb_ks);
 679         }
 680 
 681         /*
 682          * Remove interrupt handlers
 683          */
 684         if (igb->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
 685                 igb_rem_intr_handlers(igb);
 686         }
 687 
 688         /*
 689          * Remove interrupts
 690          */
 691         if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_INTR) {
 692                 igb_rem_intrs(igb);
 693         }
 694 
 695         /*
 696          * Remove driver properties
 697          */
 698         if (igb->attach_progress & ATTACH_PROGRESS_PROPS) {
 699                 (void) ddi_prop_remove_all(devinfo);
 700         }
 701 
 702         /*
 703          * Stop the adapter
 704          */
 705         if (igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) {
 706                 mutex_enter(&igb->gen_lock);
 707                 igb_stop_adapter(igb);
 708                 mutex_exit(&igb->gen_lock);
 709                 if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
 710                         ddi_fm_service_impact(igb->dip, DDI_SERVICE_UNAFFECTED);
 711         }
 712 
 713         /*
 714          * Free multicast table
 715          */
 716         igb_release_multicast(igb);
 717 
 718         /*
 719          * Free register handle
 720          */
 721         if (igb->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
 722                 if (igb->osdep.reg_handle != NULL)
 723                         ddi_regs_map_free(&igb->osdep.reg_handle);
 724         }
 725 
 726         /*
 727          * Free PCI config handle
 728          */
 729         if (igb->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
 730                 if (igb->osdep.cfg_handle != NULL)
 731                         pci_config_teardown(&igb->osdep.cfg_handle);
 732         }
 733 
 734         /*
 735          * Free locks
 736          */
 737         if (igb->attach_progress & ATTACH_PROGRESS_LOCKS) {
 738                 igb_destroy_locks(igb);
 739         }
 740 
 741         /*
 742          * Free the rx/tx rings
 743          */
 744         if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_RINGS) {
 745                 igb_free_rings(igb);
 746         }
 747 
 748         /*
 749          * Remove FMA
 750          */
 751         if (igb->attach_progress & ATTACH_PROGRESS_FMINIT) {
 752                 igb_fm_fini(igb);
 753         }
 754 
 755         /*
 756          * Free the driver data structure
 757          */
 758         kmem_free(igb, sizeof (igb_t));
 759 
 760         ddi_set_driver_private(devinfo, NULL);
 761 }
 762 
 763 /*
 764  * igb_register_mac - Register the driver and its function pointers with
 765  * the GLD interface
 766  */
 767 static int
 768 igb_register_mac(igb_t *igb)
 769 {
 770         struct e1000_hw *hw = &igb->hw;
 771         mac_register_t *mac;
 772         int status;
 773 
 774         if ((mac = mac_alloc(MAC_VERSION)) == NULL)
 775                 return (IGB_FAILURE);
 776 
 777         mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
 778         mac->m_driver = igb;
 779         mac->m_dip = igb->dip;
 780         mac->m_src_addr = hw->mac.addr;
 781         mac->m_callbacks = &igb_m_callbacks;
 782         mac->m_min_sdu = 0;
 783         mac->m_max_sdu = igb->max_frame_size -
 784             sizeof (struct ether_vlan_header) - ETHERFCSL;
 785         mac->m_margin = VLAN_TAGSZ;
 786         mac->m_priv_props = igb_priv_props;
 787         mac->m_v12n = MAC_VIRT_LEVEL1;
 788 
 789         status = mac_register(mac, &igb->mac_hdl);
 790 
 791         mac_free(mac);
 792 
 793         return ((status == 0) ? IGB_SUCCESS : IGB_FAILURE);
 794 }
 795 
 796 /*
 797  * igb_identify_hardware - Identify the type of the chipset
 798  */
 799 static int
 800 igb_identify_hardware(igb_t *igb)
 801 {
 802         struct e1000_hw *hw = &igb->hw;
 803         struct igb_osdep *osdep = &igb->osdep;
 804 
 805         /*
 806          * Get the device id
 807          */
 808         hw->vendor_id =
 809             pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
 810         hw->device_id =
 811             pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
 812         hw->revision_id =
 813             pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
 814         hw->subsystem_device_id =
 815             pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
 816         hw->subsystem_vendor_id =
 817             pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
 818 
 819         /*
 820          * Set the mac type of the adapter based on the device id
 821          */
 822         if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
 823                 return (IGB_FAILURE);
 824         }
 825 
 826         /*
 827          * Install adapter capabilities based on mac type
 828          */
 829         switch (hw->mac.type) {
 830         case e1000_82575:
 831                 igb->capab = &igb_82575_cap;
 832                 break;
 833         case e1000_82576:
 834                 igb->capab = &igb_82576_cap;
 835                 break;
 836         case e1000_82580:
 837                 igb->capab = &igb_82580_cap;
 838                 break;
 839         default:
 840                 return (IGB_FAILURE);
 841         }
 842 
 843         return (IGB_SUCCESS);
 844 }
 845 
 846 /*
 847  * igb_regs_map - Map the device registers
 848  */
 849 static int
 850 igb_regs_map(igb_t *igb)
 851 {
 852         dev_info_t *devinfo = igb->dip;
 853         struct e1000_hw *hw = &igb->hw;
 854         struct igb_osdep *osdep = &igb->osdep;
 855         off_t mem_size;
 856 
 857         /*
 858          * First get the size of device registers to be mapped.
 859          */
 860         if (ddi_dev_regsize(devinfo, IGB_ADAPTER_REGSET, &mem_size) !=
 861             DDI_SUCCESS) {
 862                 return (IGB_FAILURE);
 863         }
 864 
 865         /*
 866          * Call ddi_regs_map_setup() to map registers
 867          */
 868         if ((ddi_regs_map_setup(devinfo, IGB_ADAPTER_REGSET,
 869             (caddr_t *)&hw->hw_addr, 0,
 870             mem_size, &igb_regs_acc_attr,
 871             &osdep->reg_handle)) != DDI_SUCCESS) {
 872                 return (IGB_FAILURE);
 873         }
 874 
 875         return (IGB_SUCCESS);
 876 }
 877 
 878 /*
 879  * igb_init_properties - Initialize driver properties
 880  */
 881 static void
 882 igb_init_properties(igb_t *igb)
 883 {
 884         /*
 885          * Get conf file properties, including link settings
 886          * jumbo frames, ring number, descriptor number, etc.
 887          */
 888         igb_get_conf(igb);
 889 }
 890 
 891 /*
 892  * igb_init_driver_settings - Initialize driver settings
 893  *
 894  * The settings include hardware function pointers, bus information,
 895  * rx/tx rings settings, link state, and any other parameters that
 896  * need to be setup during driver initialization.
 897  */
 898 static int
 899 igb_init_driver_settings(igb_t *igb)
 900 {
 901         struct e1000_hw *hw = &igb->hw;
 902         igb_rx_ring_t *rx_ring;
 903         igb_tx_ring_t *tx_ring;
 904         uint32_t rx_size;
 905         uint32_t tx_size;
 906         int i;
 907 
 908         /*
 909          * Initialize chipset specific hardware function pointers
 910          */
 911         if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
 912                 return (IGB_FAILURE);
 913         }
 914 
 915         /*
 916          * Get bus information
 917          */
 918         if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
 919                 return (IGB_FAILURE);
 920         }
 921 
 922         /*
 923          * Get the system page size
 924          */
 925         igb->page_size = ddi_ptob(igb->dip, (ulong_t)1);
 926 
 927         /*
 928          * Set rx buffer size
 929          * The IP header alignment room is counted in the calculation.
 930          * The rx buffer size is in unit of 1K that is required by the
 931          * chipset hardware.
 932          */
 933         rx_size = igb->max_frame_size + IPHDR_ALIGN_ROOM;
 934         igb->rx_buf_size = ((rx_size >> 10) +
 935             ((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
 936 
 937         /*
 938          * Set tx buffer size
 939          */
 940         tx_size = igb->max_frame_size;
 941         igb->tx_buf_size = ((tx_size >> 10) +
 942             ((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
 943 
 944         /*
 945          * Initialize rx/tx rings parameters
 946          */
 947         for (i = 0; i < igb->num_rx_rings; i++) {
 948                 rx_ring = &igb->rx_rings[i];
 949                 rx_ring->index = i;
 950                 rx_ring->igb = igb;
 951         }
 952 
 953         for (i = 0; i < igb->num_tx_rings; i++) {
 954                 tx_ring = &igb->tx_rings[i];
 955                 tx_ring->index = i;
 956                 tx_ring->igb = igb;
 957                 if (igb->tx_head_wb_enable)
 958                         tx_ring->tx_recycle = igb_tx_recycle_head_wb;
 959                 else
 960                         tx_ring->tx_recycle = igb_tx_recycle_legacy;
 961 
 962                 tx_ring->ring_size = igb->tx_ring_size;
 963                 tx_ring->free_list_size = igb->tx_ring_size +
 964                     (igb->tx_ring_size >> 1);
 965         }
 966 
 967         /*
 968          * Initialize values of interrupt throttling rates
 969          */
 970         for (i = 1; i < MAX_NUM_EITR; i++)
 971                 igb->intr_throttling[i] = igb->intr_throttling[0];
 972 
 973         /*
 974          * The initial link state should be "unknown"
 975          */
 976         igb->link_state = LINK_STATE_UNKNOWN;
 977 
 978         return (IGB_SUCCESS);
 979 }
 980 
 981 /*
 982  * igb_init_locks - Initialize locks
 983  */
 984 static void
 985 igb_init_locks(igb_t *igb)
 986 {
 987         igb_rx_ring_t *rx_ring;
 988         igb_tx_ring_t *tx_ring;
 989         int i;
 990 
 991         for (i = 0; i < igb->num_rx_rings; i++) {
 992                 rx_ring = &igb->rx_rings[i];
 993                 mutex_init(&rx_ring->rx_lock, NULL,
 994                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
 995         }
 996 
 997         for (i = 0; i < igb->num_tx_rings; i++) {
 998                 tx_ring = &igb->tx_rings[i];
 999                 mutex_init(&tx_ring->tx_lock, NULL,
1000                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1001                 mutex_init(&tx_ring->recycle_lock, NULL,
1002                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1003                 mutex_init(&tx_ring->tcb_head_lock, NULL,
1004                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1005                 mutex_init(&tx_ring->tcb_tail_lock, NULL,
1006                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1007         }
1008 
1009         mutex_init(&igb->gen_lock, NULL,
1010             MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1011 
1012         mutex_init(&igb->watchdog_lock, NULL,
1013             MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1014 
1015         mutex_init(&igb->link_lock, NULL,
1016             MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1017 }
1018 
1019 /*
1020  * igb_destroy_locks - Destroy locks
1021  */
1022 static void
1023 igb_destroy_locks(igb_t *igb)
1024 {
1025         igb_rx_ring_t *rx_ring;
1026         igb_tx_ring_t *tx_ring;
1027         int i;
1028 
1029         for (i = 0; i < igb->num_rx_rings; i++) {
1030                 rx_ring = &igb->rx_rings[i];
1031                 mutex_destroy(&rx_ring->rx_lock);
1032         }
1033 
1034         for (i = 0; i < igb->num_tx_rings; i++) {
1035                 tx_ring = &igb->tx_rings[i];
1036                 mutex_destroy(&tx_ring->tx_lock);
1037                 mutex_destroy(&tx_ring->recycle_lock);
1038                 mutex_destroy(&tx_ring->tcb_head_lock);
1039                 mutex_destroy(&tx_ring->tcb_tail_lock);
1040         }
1041 
1042         mutex_destroy(&igb->gen_lock);
1043         mutex_destroy(&igb->watchdog_lock);
1044         mutex_destroy(&igb->link_lock);
1045 }
1046 
1047 static int
1048 igb_resume(dev_info_t *devinfo)
1049 {
1050         igb_t *igb;
1051 
1052         igb = (igb_t *)ddi_get_driver_private(devinfo);
1053         if (igb == NULL)
1054                 return (DDI_FAILURE);
1055 
1056         mutex_enter(&igb->gen_lock);
1057 
1058         /*
1059          * Enable interrupts
1060          */
1061         if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1062                 if (igb_enable_intrs(igb) != IGB_SUCCESS) {
1063                         igb_error(igb, "Failed to enable DDI interrupts");
1064                         mutex_exit(&igb->gen_lock);
1065                         return (DDI_FAILURE);
1066                 }
1067         }
1068 
1069         if (igb->igb_state & IGB_STARTED) {
1070                 if (igb_start(igb, B_FALSE) != IGB_SUCCESS) {
1071                         mutex_exit(&igb->gen_lock);
1072                         return (DDI_FAILURE);
1073                 }
1074 
1075                 /*
1076                  * Enable and start the watchdog timer
1077                  */
1078                 igb_enable_watchdog_timer(igb);
1079         }
1080 
1081         atomic_and_32(&igb->igb_state, ~IGB_SUSPENDED);
1082 
1083         mutex_exit(&igb->gen_lock);
1084 
1085         return (DDI_SUCCESS);
1086 }
1087 
1088 static int
1089 igb_suspend(dev_info_t *devinfo)
1090 {
1091         igb_t *igb;
1092 
1093         igb = (igb_t *)ddi_get_driver_private(devinfo);
1094         if (igb == NULL)
1095                 return (DDI_FAILURE);
1096 
1097         mutex_enter(&igb->gen_lock);
1098 
1099         atomic_or_32(&igb->igb_state, IGB_SUSPENDED);
1100 
1101         /*
1102          * Disable interrupts
1103          */
1104         if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1105                 (void) igb_disable_intrs(igb);
1106         }
1107 
1108         if (!(igb->igb_state & IGB_STARTED)) {
1109                 mutex_exit(&igb->gen_lock);
1110                 return (DDI_SUCCESS);
1111         }
1112 
1113         igb_stop(igb, B_FALSE);
1114 
1115         mutex_exit(&igb->gen_lock);
1116 
1117         /*
1118          * Disable and stop the watchdog timer
1119          */
1120         igb_disable_watchdog_timer(igb);
1121 
1122         return (DDI_SUCCESS);
1123 }
1124 
1125 static int
1126 igb_init(igb_t *igb)
1127 {
1128         mutex_enter(&igb->gen_lock);
1129 
1130         /*
1131          * Initilize the adapter
1132          */
1133         if (igb_init_adapter(igb) != IGB_SUCCESS) {
1134                 mutex_exit(&igb->gen_lock);
1135                 igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1136                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1137                 return (IGB_FAILURE);
1138         }
1139 
1140         mutex_exit(&igb->gen_lock);
1141 
1142         return (IGB_SUCCESS);
1143 }
1144 
1145 /*
1146  * igb_init_mac_address - Initialize the default MAC address
1147  *
1148  * On success, the MAC address is entered in the igb->hw.mac.addr
1149  * and hw->mac.perm_addr fields and the adapter's RAR(0) receive
1150  * address register.
1151  *
1152  * Important side effects:
1153  * 1. adapter is reset - this is required to put it in a known state.
1154  * 2. all of non-volatile memory (NVM) is read & checksummed - NVM is where
1155  * MAC address and all default settings are stored, so a valid checksum
1156  * is required.
1157  */
1158 static int
1159 igb_init_mac_address(igb_t *igb)
1160 {
1161         struct e1000_hw *hw = &igb->hw;
1162 
1163         ASSERT(mutex_owned(&igb->gen_lock));
1164 
1165         /*
1166          * Reset chipset to put the hardware in a known state
1167          * before we try to get MAC address from NVM.
1168          */
1169         if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1170                 igb_error(igb, "Adapter reset failed.");
1171                 goto init_mac_fail;
1172         }
1173 
1174         /*
1175          * NVM validation
1176          */
1177         if (e1000_validate_nvm_checksum(hw) < 0) {
1178                 /*
1179                  * Some PCI-E parts fail the first check due to
1180                  * the link being in sleep state.  Call it again,
1181                  * if it fails a second time its a real issue.
1182                  */
1183                 if (e1000_validate_nvm_checksum(hw) < 0) {
1184                         igb_error(igb,
1185                             "Invalid NVM checksum. Please contact "
1186                             "the vendor to update the NVM.");
1187                         goto init_mac_fail;
1188                 }
1189         }
1190 
1191         /*
1192          * Get the mac address
1193          * This function should handle SPARC case correctly.
1194          */
1195         if (!igb_find_mac_address(igb)) {
1196                 igb_error(igb, "Failed to get the mac address");
1197                 goto init_mac_fail;
1198         }
1199 
1200         /* Validate mac address */
1201         if (!is_valid_mac_addr(hw->mac.addr)) {
1202                 igb_error(igb, "Invalid mac address");
1203                 goto init_mac_fail;
1204         }
1205 
1206         return (IGB_SUCCESS);
1207 
1208 init_mac_fail:
1209         return (IGB_FAILURE);
1210 }
1211 
1212 /*
1213  * igb_init_adapter - Initialize the adapter
1214  */
1215 static int
1216 igb_init_adapter(igb_t *igb)
1217 {
1218         struct e1000_hw *hw = &igb->hw;
1219         uint32_t pba;
1220         uint32_t high_water;
1221         int i;
1222 
1223         ASSERT(mutex_owned(&igb->gen_lock));
1224 
1225         /*
1226          * In order to obtain the default MAC address, this will reset the
1227          * adapter and validate the NVM that the address and many other
1228          * default settings come from.
1229          */
1230         if (igb_init_mac_address(igb) != IGB_SUCCESS) {
1231                 igb_error(igb, "Failed to initialize MAC address");
1232                 goto init_adapter_fail;
1233         }
1234 
1235         /*
1236          * Setup flow control
1237          *
1238          * These parameters set thresholds for the adapter's generation(Tx)
1239          * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1240          * settings.  Flow control is enabled or disabled in the configuration
1241          * file.
1242          * High-water mark is set down from the top of the rx fifo (not
1243          * sensitive to max_frame_size) and low-water is set just below
1244          * high-water mark.
1245          * The high water mark must be low enough to fit one full frame above
1246          * it in the rx FIFO.  Should be the lower of:
1247          * 90% of the Rx FIFO size, or the full Rx FIFO size minus one full
1248          * frame.
1249          */
1250         /*
1251          * The default setting of PBA is correct for 82575 and other supported
1252          * adapters do not have the E1000_PBA register, so PBA value is only
1253          * used for calculation here and is never written to the adapter.
1254          */
1255         if (hw->mac.type == e1000_82575) {
1256                 pba = E1000_PBA_34K;
1257         } else {
1258                 pba = E1000_PBA_64K;
1259         }
1260 
1261         high_water = min(((pba << 10) * 9 / 10),
1262             ((pba << 10) - igb->max_frame_size));
1263 
1264         if (hw->mac.type == e1000_82575) {
1265                 /* 8-byte granularity */
1266                 hw->fc.high_water = high_water & 0xFFF8;
1267                 hw->fc.low_water = hw->fc.high_water - 8;
1268         } else {
1269                 /* 16-byte granularity */
1270                 hw->fc.high_water = high_water & 0xFFF0;
1271                 hw->fc.low_water = hw->fc.high_water - 16;
1272         }
1273 
1274         hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1275         hw->fc.send_xon = B_TRUE;
1276 
1277         (void) e1000_validate_mdi_setting(hw);
1278 
1279         /*
1280          * Reset the chipset hardware the second time to put PBA settings
1281          * into effect.
1282          */
1283         if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1284                 igb_error(igb, "Second reset failed");
1285                 goto init_adapter_fail;
1286         }
1287 
1288         /*
1289          * Don't wait for auto-negotiation to complete
1290          */
1291         hw->phy.autoneg_wait_to_complete = B_FALSE;
1292 
1293         /*
1294          * Copper options
1295          */
1296         if (hw->phy.media_type == e1000_media_type_copper) {
1297                 hw->phy.mdix = 0;    /* AUTO_ALL_MODES */
1298                 hw->phy.disable_polarity_correction = B_FALSE;
1299                 hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */
1300         }
1301 
1302         /*
1303          * Initialize link settings
1304          */
1305         (void) igb_setup_link(igb, B_FALSE);
1306 
1307         /*
1308          * Configure/Initialize hardware
1309          */
1310         if (e1000_init_hw(hw) != E1000_SUCCESS) {
1311                 igb_error(igb, "Failed to initialize hardware");
1312                 goto init_adapter_fail;
1313         }
1314 
1315         /*
1316          *  Start the link setup timer
1317          */
1318         igb_start_link_timer(igb);
1319 
1320         /*
1321          * Disable wakeup control by default
1322          */
1323         E1000_WRITE_REG(hw, E1000_WUC, 0);
1324 
1325         /*
1326          * Record phy info in hw struct
1327          */
1328         (void) e1000_get_phy_info(hw);
1329 
1330         /*
1331          * Make sure driver has control
1332          */
1333         igb_get_driver_control(hw);
1334 
1335         /*
1336          * Restore LED settings to the default from EEPROM
1337          * to meet the standard for Sun platforms.
1338          */
1339         (void) e1000_cleanup_led(hw);
1340 
1341         /*
1342          * Setup MSI-X interrupts
1343          */
1344         if (igb->intr_type == DDI_INTR_TYPE_MSIX)
1345                 igb->capab->setup_msix(igb);
1346 
1347         /*
1348          * Initialize unicast addresses.
1349          */
1350         igb_init_unicst(igb);
1351 
1352         /*
1353          * Setup and initialize the mctable structures.
1354          */
1355         igb_setup_multicst(igb);
1356 
1357         /*
1358          * Set interrupt throttling rate
1359          */
1360         for (i = 0; i < igb->intr_cnt; i++)
1361                 E1000_WRITE_REG(hw, E1000_EITR(i), igb->intr_throttling[i]);
1362 
1363         /*
1364          * Save the state of the phy
1365          */
1366         igb_get_phy_state(igb);
1367 
1368         igb_param_sync(igb);
1369 
1370         return (IGB_SUCCESS);
1371 
1372 init_adapter_fail:
1373         /*
1374          * Reset PHY if possible
1375          */
1376         if (e1000_check_reset_block(hw) == E1000_SUCCESS)
1377                 (void) e1000_phy_hw_reset(hw);
1378 
1379         return (IGB_FAILURE);
1380 }
1381 
1382 /*
1383  * igb_stop_adapter - Stop the adapter
1384  */
1385 static void
1386 igb_stop_adapter(igb_t *igb)
1387 {
1388         struct e1000_hw *hw = &igb->hw;
1389 
1390         ASSERT(mutex_owned(&igb->gen_lock));
1391 
1392         /* Stop the link setup timer */
1393         igb_stop_link_timer(igb);
1394 
1395         /* Tell firmware driver is no longer in control */
1396         igb_release_driver_control(hw);
1397 
1398         /*
1399          * Reset the chipset
1400          */
1401         if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1402                 igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1403                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1404         }
1405 
1406         /*
1407          * e1000_phy_hw_reset is not needed here, MAC reset above is sufficient
1408          */
1409 }
1410 
1411 /*
1412  * igb_reset - Reset the chipset and restart the driver.
1413  *
1414  * It involves stopping and re-starting the chipset,
1415  * and re-configuring the rx/tx rings.
1416  */
1417 static int
1418 igb_reset(igb_t *igb)
1419 {
1420         int i;
1421 
1422         mutex_enter(&igb->gen_lock);
1423 
1424         ASSERT(igb->igb_state & IGB_STARTED);
1425         atomic_and_32(&igb->igb_state, ~IGB_STARTED);
1426 
1427         /*
1428          * Disable the adapter interrupts to stop any rx/tx activities
1429          * before draining pending data and resetting hardware.
1430          */
1431         igb_disable_adapter_interrupts(igb);
1432 
1433         /*
1434          * Drain the pending transmit packets
1435          */
1436         (void) igb_tx_drain(igb);
1437 
1438         for (i = 0; i < igb->num_rx_rings; i++)
1439                 mutex_enter(&igb->rx_rings[i].rx_lock);
1440         for (i = 0; i < igb->num_tx_rings; i++)
1441                 mutex_enter(&igb->tx_rings[i].tx_lock);
1442 
1443         /*
1444          * Stop the adapter
1445          */
1446         igb_stop_adapter(igb);
1447 
1448         /*
1449          * Clean the pending tx data/resources
1450          */
1451         igb_tx_clean(igb);
1452 
1453         /*
1454          * Start the adapter
1455          */
1456         if (igb_init_adapter(igb) != IGB_SUCCESS) {
1457                 igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1458                 goto reset_failure;
1459         }
1460 
1461         /*
1462          * Setup the rx/tx rings
1463          */
1464         igb->tx_ring_init = B_FALSE;
1465         igb_setup_rings(igb);
1466 
1467         atomic_and_32(&igb->igb_state, ~(IGB_ERROR | IGB_STALL));
1468 
1469         /*
1470          * Enable adapter interrupts
1471          * The interrupts must be enabled after the driver state is START
1472          */
1473         igb->capab->enable_intr(igb);
1474 
1475         if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1476                 goto reset_failure;
1477 
1478         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1479                 goto reset_failure;
1480 
1481         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1482                 mutex_exit(&igb->tx_rings[i].tx_lock);
1483         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1484                 mutex_exit(&igb->rx_rings[i].rx_lock);
1485 
1486         atomic_or_32(&igb->igb_state, IGB_STARTED);
1487 
1488         mutex_exit(&igb->gen_lock);
1489 
1490         return (IGB_SUCCESS);
1491 
1492 reset_failure:
1493         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1494                 mutex_exit(&igb->tx_rings[i].tx_lock);
1495         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1496                 mutex_exit(&igb->rx_rings[i].rx_lock);
1497 
1498         mutex_exit(&igb->gen_lock);
1499 
1500         ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1501 
1502         return (IGB_FAILURE);
1503 }
1504 
1505 /*
1506  * igb_tx_clean - Clean the pending transmit packets and DMA resources
1507  */
1508 static void
1509 igb_tx_clean(igb_t *igb)
1510 {
1511         igb_tx_ring_t *tx_ring;
1512         tx_control_block_t *tcb;
1513         link_list_t pending_list;
1514         uint32_t desc_num;
1515         int i, j;
1516 
1517         LINK_LIST_INIT(&pending_list);
1518 
1519         for (i = 0; i < igb->num_tx_rings; i++) {
1520                 tx_ring = &igb->tx_rings[i];
1521 
1522                 mutex_enter(&tx_ring->recycle_lock);
1523 
1524                 /*
1525                  * Clean the pending tx data - the pending packets in the
1526                  * work_list that have no chances to be transmitted again.
1527                  *
1528                  * We must ensure the chipset is stopped or the link is down
1529                  * before cleaning the transmit packets.
1530                  */
1531                 desc_num = 0;
1532                 for (j = 0; j < tx_ring->ring_size; j++) {
1533                         tcb = tx_ring->work_list[j];
1534                         if (tcb != NULL) {
1535                                 desc_num += tcb->desc_num;
1536 
1537                                 tx_ring->work_list[j] = NULL;
1538 
1539                                 igb_free_tcb(tcb);
1540 
1541                                 LIST_PUSH_TAIL(&pending_list, &tcb->link);
1542                         }
1543                 }
1544 
1545                 if (desc_num > 0) {
1546                         atomic_add_32(&tx_ring->tbd_free, desc_num);
1547                         ASSERT(tx_ring->tbd_free == tx_ring->ring_size);
1548 
1549                         /*
1550                          * Reset the head and tail pointers of the tbd ring;
1551                          * Reset the head write-back if it is enabled.
1552                          */
1553                         tx_ring->tbd_head = 0;
1554                         tx_ring->tbd_tail = 0;
1555                         if (igb->tx_head_wb_enable)
1556                                 *tx_ring->tbd_head_wb = 0;
1557 
1558                         E1000_WRITE_REG(&igb->hw, E1000_TDH(tx_ring->index), 0);
1559                         E1000_WRITE_REG(&igb->hw, E1000_TDT(tx_ring->index), 0);
1560                 }
1561 
1562                 mutex_exit(&tx_ring->recycle_lock);
1563 
1564                 /*
1565                  * Add the tx control blocks in the pending list to
1566                  * the free list.
1567                  */
1568                 igb_put_free_list(tx_ring, &pending_list);
1569         }
1570 }
1571 
1572 /*
1573  * igb_tx_drain - Drain the tx rings to allow pending packets to be transmitted
1574  */
1575 static boolean_t
1576 igb_tx_drain(igb_t *igb)
1577 {
1578         igb_tx_ring_t *tx_ring;
1579         boolean_t done;
1580         int i, j;
1581 
1582         /*
1583          * Wait for a specific time to allow pending tx packets
1584          * to be transmitted.
1585          *
1586          * Check the counter tbd_free to see if transmission is done.
1587          * No lock protection is needed here.
1588          *
1589          * Return B_TRUE if all pending packets have been transmitted;
1590          * Otherwise return B_FALSE;
1591          */
1592         for (i = 0; i < TX_DRAIN_TIME; i++) {
1593 
1594                 done = B_TRUE;
1595                 for (j = 0; j < igb->num_tx_rings; j++) {
1596                         tx_ring = &igb->tx_rings[j];
1597                         done = done &&
1598                             (tx_ring->tbd_free == tx_ring->ring_size);
1599                 }
1600 
1601                 if (done)
1602                         break;
1603 
1604                 msec_delay(1);
1605         }
1606 
1607         return (done);
1608 }
1609 
1610 /*
1611  * igb_rx_drain - Wait for all rx buffers to be released by upper layer
1612  */
1613 static boolean_t
1614 igb_rx_drain(igb_t *igb)
1615 {
1616         boolean_t done;
1617         int i;
1618 
1619         /*
1620          * Polling the rx free list to check if those rx buffers held by
1621          * the upper layer are released.
1622          *
1623          * Check the counter rcb_free to see if all pending buffers are
1624          * released. No lock protection is needed here.
1625          *
1626          * Return B_TRUE if all pending buffers have been released;
1627          * Otherwise return B_FALSE;
1628          */
1629         for (i = 0; i < RX_DRAIN_TIME; i++) {
1630                 done = (igb->rcb_pending == 0);
1631 
1632                 if (done)
1633                         break;
1634 
1635                 msec_delay(1);
1636         }
1637 
1638         return (done);
1639 }
1640 
1641 /*
1642  * igb_start - Start the driver/chipset
1643  */
1644 int
1645 igb_start(igb_t *igb, boolean_t alloc_buffer)
1646 {
1647         int i;
1648 
1649         ASSERT(mutex_owned(&igb->gen_lock));
1650 
1651         if (alloc_buffer) {
1652                 if (igb_alloc_rx_data(igb) != IGB_SUCCESS) {
1653                         igb_error(igb,
1654                             "Failed to allocate software receive rings");
1655                         return (IGB_FAILURE);
1656                 }
1657 
1658                 /* Allocate buffers for all the rx/tx rings */
1659                 if (igb_alloc_dma(igb) != IGB_SUCCESS) {
1660                         igb_error(igb, "Failed to allocate DMA resource");
1661                         return (IGB_FAILURE);
1662                 }
1663 
1664                 igb->tx_ring_init = B_TRUE;
1665         } else {
1666                 igb->tx_ring_init = B_FALSE;
1667         }
1668 
1669         for (i = 0; i < igb->num_rx_rings; i++)
1670                 mutex_enter(&igb->rx_rings[i].rx_lock);
1671         for (i = 0; i < igb->num_tx_rings; i++)
1672                 mutex_enter(&igb->tx_rings[i].tx_lock);
1673 
1674         /*
1675          * Start the adapter
1676          */
1677         if ((igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) == 0) {
1678                 if (igb_init_adapter(igb) != IGB_SUCCESS) {
1679                         igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1680                         goto start_failure;
1681                 }
1682                 igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
1683         }
1684 
1685         /*
1686          * Setup the rx/tx rings
1687          */
1688         igb_setup_rings(igb);
1689 
1690         /*
1691          * Enable adapter interrupts
1692          * The interrupts must be enabled after the driver state is START
1693          */
1694         igb->capab->enable_intr(igb);
1695 
1696         if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1697                 goto start_failure;
1698 
1699         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1700                 goto start_failure;
1701 
1702         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1703                 mutex_exit(&igb->tx_rings[i].tx_lock);
1704         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1705                 mutex_exit(&igb->rx_rings[i].rx_lock);
1706 
1707         return (IGB_SUCCESS);
1708 
1709 start_failure:
1710         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1711                 mutex_exit(&igb->tx_rings[i].tx_lock);
1712         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1713                 mutex_exit(&igb->rx_rings[i].rx_lock);
1714 
1715         ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1716 
1717         return (IGB_FAILURE);
1718 }
1719 
1720 /*
1721  * igb_stop - Stop the driver/chipset
1722  */
1723 void
1724 igb_stop(igb_t *igb, boolean_t free_buffer)
1725 {
1726         int i;
1727 
1728         ASSERT(mutex_owned(&igb->gen_lock));
1729 
1730         igb->attach_progress &= ~ATTACH_PROGRESS_INIT_ADAPTER;
1731 
1732         /*
1733          * Disable the adapter interrupts
1734          */
1735         igb_disable_adapter_interrupts(igb);
1736 
1737         /*
1738          * Drain the pending tx packets
1739          */
1740         (void) igb_tx_drain(igb);
1741 
1742         for (i = 0; i < igb->num_rx_rings; i++)
1743                 mutex_enter(&igb->rx_rings[i].rx_lock);
1744         for (i = 0; i < igb->num_tx_rings; i++)
1745                 mutex_enter(&igb->tx_rings[i].tx_lock);
1746 
1747         /*
1748          * Stop the adapter
1749          */
1750         igb_stop_adapter(igb);
1751 
1752         /*
1753          * Clean the pending tx data/resources
1754          */
1755         igb_tx_clean(igb);
1756 
1757         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1758                 mutex_exit(&igb->tx_rings[i].tx_lock);
1759         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1760                 mutex_exit(&igb->rx_rings[i].rx_lock);
1761 
1762         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1763                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1764 
1765         if (igb->link_state == LINK_STATE_UP) {
1766                 igb->link_state = LINK_STATE_UNKNOWN;
1767                 mac_link_update(igb->mac_hdl, igb->link_state);
1768         }
1769 
1770         if (free_buffer) {
1771                 /*
1772                  * Release the DMA/memory resources of rx/tx rings
1773                  */
1774                 igb_free_dma(igb);
1775                 igb_free_rx_data(igb);
1776         }
1777 }
1778 
1779 /*
1780  * igb_alloc_rings - Allocate memory space for rx/tx rings
1781  */
1782 static int
1783 igb_alloc_rings(igb_t *igb)
1784 {
1785         /*
1786          * Allocate memory space for rx rings
1787          */
1788         igb->rx_rings = kmem_zalloc(
1789             sizeof (igb_rx_ring_t) * igb->num_rx_rings,
1790             KM_NOSLEEP);
1791 
1792         if (igb->rx_rings == NULL) {
1793                 return (IGB_FAILURE);
1794         }
1795 
1796         /*
1797          * Allocate memory space for tx rings
1798          */
1799         igb->tx_rings = kmem_zalloc(
1800             sizeof (igb_tx_ring_t) * igb->num_tx_rings,
1801             KM_NOSLEEP);
1802 
1803         if (igb->tx_rings == NULL) {
1804                 kmem_free(igb->rx_rings,
1805                     sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1806                 igb->rx_rings = NULL;
1807                 return (IGB_FAILURE);
1808         }
1809 
1810         /*
1811          * Allocate memory space for rx ring groups
1812          */
1813         igb->rx_groups = kmem_zalloc(
1814             sizeof (igb_rx_group_t) * igb->num_rx_groups,
1815             KM_NOSLEEP);
1816 
1817         if (igb->rx_groups == NULL) {
1818                 kmem_free(igb->rx_rings,
1819                     sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1820                 kmem_free(igb->tx_rings,
1821                     sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1822                 igb->rx_rings = NULL;
1823                 igb->tx_rings = NULL;
1824                 return (IGB_FAILURE);
1825         }
1826 
1827         return (IGB_SUCCESS);
1828 }
1829 
1830 /*
1831  * igb_free_rings - Free the memory space of rx/tx rings.
1832  */
1833 static void
1834 igb_free_rings(igb_t *igb)
1835 {
1836         if (igb->rx_rings != NULL) {
1837                 kmem_free(igb->rx_rings,
1838                     sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1839                 igb->rx_rings = NULL;
1840         }
1841 
1842         if (igb->tx_rings != NULL) {
1843                 kmem_free(igb->tx_rings,
1844                     sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1845                 igb->tx_rings = NULL;
1846         }
1847 
1848         if (igb->rx_groups != NULL) {
1849                 kmem_free(igb->rx_groups,
1850                     sizeof (igb_rx_group_t) * igb->num_rx_groups);
1851                 igb->rx_groups = NULL;
1852         }
1853 }
1854 
1855 static int
1856 igb_alloc_rx_data(igb_t *igb)
1857 {
1858         igb_rx_ring_t *rx_ring;
1859         int i;
1860 
1861         for (i = 0; i < igb->num_rx_rings; i++) {
1862                 rx_ring = &igb->rx_rings[i];
1863                 if (igb_alloc_rx_ring_data(rx_ring) != IGB_SUCCESS)
1864                         goto alloc_rx_rings_failure;
1865         }
1866         return (IGB_SUCCESS);
1867 
1868 alloc_rx_rings_failure:
1869         igb_free_rx_data(igb);
1870         return (IGB_FAILURE);
1871 }
1872 
1873 static void
1874 igb_free_rx_data(igb_t *igb)
1875 {
1876         igb_rx_ring_t *rx_ring;
1877         igb_rx_data_t *rx_data;
1878         int i;
1879 
1880         for (i = 0; i < igb->num_rx_rings; i++) {
1881                 rx_ring = &igb->rx_rings[i];
1882 
1883                 mutex_enter(&igb->rx_pending_lock);
1884                 rx_data = rx_ring->rx_data;
1885 
1886                 if (rx_data != NULL) {
1887                         rx_data->flag |= IGB_RX_STOPPED;
1888 
1889                         if (rx_data->rcb_pending == 0) {
1890                                 igb_free_rx_ring_data(rx_data);
1891                                 rx_ring->rx_data = NULL;
1892                         }
1893                 }
1894 
1895                 mutex_exit(&igb->rx_pending_lock);
1896         }
1897 }
1898 
1899 /*
1900  * igb_setup_rings - Setup rx/tx rings
1901  */
1902 static void
1903 igb_setup_rings(igb_t *igb)
1904 {
1905         /*
1906          * Setup the rx/tx rings, including the following:
1907          *
1908          * 1. Setup the descriptor ring and the control block buffers;
1909          * 2. Initialize necessary registers for receive/transmit;
1910          * 3. Initialize software pointers/parameters for receive/transmit;
1911          */
1912         igb_setup_rx(igb);
1913 
1914         igb_setup_tx(igb);
1915 }
1916 
1917 static void
1918 igb_setup_rx_ring(igb_rx_ring_t *rx_ring)
1919 {
1920         igb_t *igb = rx_ring->igb;
1921         igb_rx_data_t *rx_data = rx_ring->rx_data;
1922         struct e1000_hw *hw = &igb->hw;
1923         rx_control_block_t *rcb;
1924         union e1000_adv_rx_desc *rbd;
1925         uint32_t size;
1926         uint32_t buf_low;
1927         uint32_t buf_high;
1928         uint32_t rxdctl;
1929         int i;
1930 
1931         ASSERT(mutex_owned(&rx_ring->rx_lock));
1932         ASSERT(mutex_owned(&igb->gen_lock));
1933 
1934         /*
1935          * Initialize descriptor ring with buffer addresses
1936          */
1937         for (i = 0; i < igb->rx_ring_size; i++) {
1938                 rcb = rx_data->work_list[i];
1939                 rbd = &rx_data->rbd_ring[i];
1940 
1941                 rbd->read.pkt_addr = rcb->rx_buf.dma_address;
1942                 rbd->read.hdr_addr = NULL;
1943         }
1944 
1945         /*
1946          * Initialize the base address registers
1947          */
1948         buf_low = (uint32_t)rx_data->rbd_area.dma_address;
1949         buf_high = (uint32_t)(rx_data->rbd_area.dma_address >> 32);
1950         E1000_WRITE_REG(hw, E1000_RDBAH(rx_ring->index), buf_high);
1951         E1000_WRITE_REG(hw, E1000_RDBAL(rx_ring->index), buf_low);
1952 
1953         /*
1954          * Initialize the length register
1955          */
1956         size = rx_data->ring_size * sizeof (union e1000_adv_rx_desc);
1957         E1000_WRITE_REG(hw, E1000_RDLEN(rx_ring->index), size);
1958 
1959         /*
1960          * Initialize buffer size & descriptor type
1961          */
1962         E1000_WRITE_REG(hw, E1000_SRRCTL(rx_ring->index),
1963             ((igb->rx_buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) |
1964             E1000_SRRCTL_DESCTYPE_ADV_ONEBUF));
1965 
1966         /*
1967          * Setup the Receive Descriptor Control Register (RXDCTL)
1968          */
1969         rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rx_ring->index));
1970         rxdctl &= igb->capab->rxdctl_mask;
1971         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1972         rxdctl |= 16;           /* pthresh */
1973         rxdctl |= 8 << 8; /* hthresh */
1974         rxdctl |= 1 << 16;        /* wthresh */
1975         E1000_WRITE_REG(hw, E1000_RXDCTL(rx_ring->index), rxdctl);
1976 
1977         rx_data->rbd_next = 0;
1978 }
1979 
1980 static void
1981 igb_setup_rx(igb_t *igb)
1982 {
1983         igb_rx_ring_t *rx_ring;
1984         igb_rx_data_t *rx_data;
1985         igb_rx_group_t *rx_group;
1986         struct e1000_hw *hw = &igb->hw;
1987         uint32_t rctl, rxcsum;
1988         uint32_t ring_per_group;
1989         int i;
1990 
1991         /*
1992          * Setup the Receive Control Register (RCTL), and enable the
1993          * receiver. The initial configuration is to: enable the receiver,
1994          * accept broadcasts, discard bad packets, accept long packets,
1995          * disable VLAN filter checking, and set receive buffer size to
1996          * 2k.  For 82575, also set the receive descriptor minimum
1997          * threshold size to 1/2 the ring.
1998          */
1999         rctl = E1000_READ_REG(hw, E1000_RCTL);
2000 
2001         /*
2002          * Clear the field used for wakeup control.  This driver doesn't do
2003          * wakeup but leave this here for completeness.
2004          */
2005         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2006         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2007 
2008         rctl |= (E1000_RCTL_EN |        /* Enable Receive Unit */
2009             E1000_RCTL_BAM |            /* Accept Broadcast Packets */
2010             E1000_RCTL_LPE |            /* Large Packet Enable */
2011                                         /* Multicast filter offset */
2012             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
2013             E1000_RCTL_RDMTS_HALF |     /* rx descriptor threshold */
2014             E1000_RCTL_SECRC);          /* Strip Ethernet CRC */
2015 
2016         for (i = 0; i < igb->num_rx_groups; i++) {
2017                 rx_group = &igb->rx_groups[i];
2018                 rx_group->index = i;
2019                 rx_group->igb = igb;
2020         }
2021 
2022         /*
2023          * Set up all rx descriptor rings - must be called before receive unit
2024          * enabled.
2025          */
2026         ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2027         for (i = 0; i < igb->num_rx_rings; i++) {
2028                 rx_ring = &igb->rx_rings[i];
2029                 igb_setup_rx_ring(rx_ring);
2030 
2031                 /*
2032                  * Map a ring to a group by assigning a group index
2033                  */
2034                 rx_ring->group_index = i / ring_per_group;
2035         }
2036 
2037         /*
2038          * Setup the Rx Long Packet Max Length register
2039          */
2040         E1000_WRITE_REG(hw, E1000_RLPML, igb->max_frame_size);
2041 
2042         /*
2043          * Hardware checksum settings
2044          */
2045         if (igb->rx_hcksum_enable) {
2046                 rxcsum =
2047                     E1000_RXCSUM_TUOFL |        /* TCP/UDP checksum */
2048                     E1000_RXCSUM_IPOFL;         /* IP checksum */
2049 
2050                 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2051         }
2052 
2053         /*
2054          * Setup classify and RSS for multiple receive queues
2055          */
2056         switch (igb->vmdq_mode) {
2057         case E1000_VMDQ_OFF:
2058                 /*
2059                  * One ring group, only RSS is needed when more than
2060                  * one ring enabled.
2061                  */
2062                 if (igb->num_rx_rings > 1)
2063                         igb_setup_rss(igb);
2064                 break;
2065         case E1000_VMDQ_MAC:
2066                 /*
2067                  * Multiple groups, each group has one ring,
2068                  * only the MAC classification is needed.
2069                  */
2070                 igb_setup_mac_classify(igb);
2071                 break;
2072         case E1000_VMDQ_MAC_RSS:
2073                 /*
2074                  * Multiple groups and multiple rings, both
2075                  * MAC classification and RSS are needed.
2076                  */
2077                 igb_setup_mac_rss_classify(igb);
2078                 break;
2079         }
2080 
2081         /*
2082          * Enable the receive unit - must be done after all
2083          * the rx setup above.
2084          */
2085         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2086 
2087         /*
2088          * Initialize all adapter ring head & tail pointers - must
2089          * be done after receive unit is enabled
2090          */
2091         for (i = 0; i < igb->num_rx_rings; i++) {
2092                 rx_ring = &igb->rx_rings[i];
2093                 rx_data = rx_ring->rx_data;
2094                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2095                 E1000_WRITE_REG(hw, E1000_RDT(i), rx_data->ring_size - 1);
2096         }
2097 
2098         /*
2099          * 82575 with manageability enabled needs a special flush to make
2100          * sure the fifos start clean.
2101          */
2102         if ((hw->mac.type == e1000_82575) &&
2103             (E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) {
2104                 e1000_rx_fifo_flush_82575(hw);
2105         }
2106 }
2107 
2108 static void
2109 igb_setup_tx_ring(igb_tx_ring_t *tx_ring)
2110 {
2111         igb_t *igb = tx_ring->igb;
2112         struct e1000_hw *hw = &igb->hw;
2113         uint32_t size;
2114         uint32_t buf_low;
2115         uint32_t buf_high;
2116         uint32_t reg_val;
2117 
2118         ASSERT(mutex_owned(&tx_ring->tx_lock));
2119         ASSERT(mutex_owned(&igb->gen_lock));
2120 
2121 
2122         /*
2123          * Initialize the length register
2124          */
2125         size = tx_ring->ring_size * sizeof (union e1000_adv_tx_desc);
2126         E1000_WRITE_REG(hw, E1000_TDLEN(tx_ring->index), size);
2127 
2128         /*
2129          * Initialize the base address registers
2130          */
2131         buf_low = (uint32_t)tx_ring->tbd_area.dma_address;
2132         buf_high = (uint32_t)(tx_ring->tbd_area.dma_address >> 32);
2133         E1000_WRITE_REG(hw, E1000_TDBAL(tx_ring->index), buf_low);
2134         E1000_WRITE_REG(hw, E1000_TDBAH(tx_ring->index), buf_high);
2135 
2136         /*
2137          * Setup head & tail pointers
2138          */
2139         E1000_WRITE_REG(hw, E1000_TDH(tx_ring->index), 0);
2140         E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), 0);
2141 
2142         /*
2143          * Setup head write-back
2144          */
2145         if (igb->tx_head_wb_enable) {
2146                 /*
2147                  * The memory of the head write-back is allocated using
2148                  * the extra tbd beyond the tail of the tbd ring.
2149                  */
2150                 tx_ring->tbd_head_wb = (uint32_t *)
2151                     ((uintptr_t)tx_ring->tbd_area.address + size);
2152                 *tx_ring->tbd_head_wb = 0;
2153 
2154                 buf_low = (uint32_t)
2155                     (tx_ring->tbd_area.dma_address + size);
2156                 buf_high = (uint32_t)
2157                     ((tx_ring->tbd_area.dma_address + size) >> 32);
2158 
2159                 /* Set the head write-back enable bit */
2160                 buf_low |= E1000_TX_HEAD_WB_ENABLE;
2161 
2162                 E1000_WRITE_REG(hw, E1000_TDWBAL(tx_ring->index), buf_low);
2163                 E1000_WRITE_REG(hw, E1000_TDWBAH(tx_ring->index), buf_high);
2164 
2165                 /*
2166                  * Turn off relaxed ordering for head write back or it will
2167                  * cause problems with the tx recycling
2168                  */
2169                 reg_val = E1000_READ_REG(hw,
2170                     E1000_DCA_TXCTRL(tx_ring->index));
2171                 reg_val &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2172                 E1000_WRITE_REG(hw,
2173                     E1000_DCA_TXCTRL(tx_ring->index), reg_val);
2174         } else {
2175                 tx_ring->tbd_head_wb = NULL;
2176         }
2177 
2178         tx_ring->tbd_head = 0;
2179         tx_ring->tbd_tail = 0;
2180         tx_ring->tbd_free = tx_ring->ring_size;
2181 
2182         if (igb->tx_ring_init == B_TRUE) {
2183                 tx_ring->tcb_head = 0;
2184                 tx_ring->tcb_tail = 0;
2185                 tx_ring->tcb_free = tx_ring->free_list_size;
2186         }
2187 
2188         /*
2189          * Enable TXDCTL per queue
2190          */
2191         reg_val = E1000_READ_REG(hw, E1000_TXDCTL(tx_ring->index));
2192         reg_val |= E1000_TXDCTL_QUEUE_ENABLE;
2193         E1000_WRITE_REG(hw, E1000_TXDCTL(tx_ring->index), reg_val);
2194 
2195         /*
2196          * Initialize hardware checksum offload settings
2197          */
2198         bzero(&tx_ring->tx_context, sizeof (tx_context_t));
2199 }
2200 
2201 static void
2202 igb_setup_tx(igb_t *igb)
2203 {
2204         igb_tx_ring_t *tx_ring;
2205         struct e1000_hw *hw = &igb->hw;
2206         uint32_t reg_val;
2207         int i;
2208 
2209         for (i = 0; i < igb->num_tx_rings; i++) {
2210                 tx_ring = &igb->tx_rings[i];
2211                 igb_setup_tx_ring(tx_ring);
2212         }
2213 
2214         /*
2215          * Setup the Transmit Control Register (TCTL)
2216          */
2217         reg_val = E1000_READ_REG(hw, E1000_TCTL);
2218         reg_val &= ~E1000_TCTL_CT;
2219         reg_val |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2220             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2221 
2222         /* Enable transmits */
2223         reg_val |= E1000_TCTL_EN;
2224 
2225         E1000_WRITE_REG(hw, E1000_TCTL, reg_val);
2226 }
2227 
2228 /*
2229  * igb_setup_rss - Setup receive-side scaling feature
2230  */
2231 static void
2232 igb_setup_rss(igb_t *igb)
2233 {
2234         struct e1000_hw *hw = &igb->hw;
2235         uint32_t i, mrqc, rxcsum;
2236         int shift = 0;
2237         uint32_t random;
2238         union e1000_reta {
2239                 uint32_t        dword;
2240                 uint8_t         bytes[4];
2241         } reta;
2242 
2243         /* Setup the Redirection Table */
2244         if (hw->mac.type == e1000_82576) {
2245                 shift = 3;
2246         } else if (hw->mac.type == e1000_82575) {
2247                 shift = 6;
2248         }
2249         for (i = 0; i < (32 * 4); i++) {
2250                 reta.bytes[i & 3] = (i % igb->num_rx_rings) << shift;
2251                 if ((i & 3) == 3) {
2252                         E1000_WRITE_REG(hw,
2253                             (E1000_RETA(0) + (i & ~3)), reta.dword);
2254                 }
2255         }
2256 
2257         /* Fill out hash function seeds */
2258         for (i = 0; i < 10; i++) {
2259                 (void) random_get_pseudo_bytes((uint8_t *)&random,
2260                     sizeof (uint32_t));
2261                 E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2262         }
2263 
2264         /* Setup the Multiple Receive Queue Control register */
2265         mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2266         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2267             E1000_MRQC_RSS_FIELD_IPV4_TCP |
2268             E1000_MRQC_RSS_FIELD_IPV6 |
2269             E1000_MRQC_RSS_FIELD_IPV6_TCP |
2270             E1000_MRQC_RSS_FIELD_IPV4_UDP |
2271             E1000_MRQC_RSS_FIELD_IPV6_UDP |
2272             E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2273             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2274 
2275         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2276 
2277         /*
2278          * Disable Packet Checksum to enable RSS for multiple receive queues.
2279          *
2280          * The Packet Checksum is not ethernet CRC. It is another kind of
2281          * checksum offloading provided by the 82575 chipset besides the IP
2282          * header checksum offloading and the TCP/UDP checksum offloading.
2283          * The Packet Checksum is by default computed over the entire packet
2284          * from the first byte of the DA through the last byte of the CRC,
2285          * including the Ethernet and IP headers.
2286          *
2287          * It is a hardware limitation that Packet Checksum is mutually
2288          * exclusive with RSS.
2289          */
2290         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2291         rxcsum |= E1000_RXCSUM_PCSD;
2292         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2293 }
2294 
2295 /*
2296  * igb_setup_mac_rss_classify - Setup MAC classification and rss
2297  */
2298 static void
2299 igb_setup_mac_rss_classify(igb_t *igb)
2300 {
2301         struct e1000_hw *hw = &igb->hw;
2302         uint32_t i, mrqc, vmdctl, rxcsum;
2303         uint32_t ring_per_group;
2304         int shift_group0, shift_group1;
2305         uint32_t random;
2306         union e1000_reta {
2307                 uint32_t        dword;
2308                 uint8_t         bytes[4];
2309         } reta;
2310 
2311         ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2312 
2313         /* Setup the Redirection Table, it is shared between two groups */
2314         shift_group0 = 2;
2315         shift_group1 = 6;
2316         for (i = 0; i < (32 * 4); i++) {
2317                 reta.bytes[i & 3] = ((i % ring_per_group) << shift_group0) |
2318                     ((ring_per_group + (i % ring_per_group)) << shift_group1);
2319                 if ((i & 3) == 3) {
2320                         E1000_WRITE_REG(hw,
2321                             (E1000_RETA(0) + (i & ~3)), reta.dword);
2322                 }
2323         }
2324 
2325         /* Fill out hash function seeds */
2326         for (i = 0; i < 10; i++) {
2327                 (void) random_get_pseudo_bytes((uint8_t *)&random,
2328                     sizeof (uint32_t));
2329                 E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2330         }
2331 
2332         /*
2333          * Setup the Multiple Receive Queue Control register,
2334          * enable VMDq based on packet destination MAC address and RSS.
2335          */
2336         mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_RSS_GROUP;
2337         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2338             E1000_MRQC_RSS_FIELD_IPV4_TCP |
2339             E1000_MRQC_RSS_FIELD_IPV6 |
2340             E1000_MRQC_RSS_FIELD_IPV6_TCP |
2341             E1000_MRQC_RSS_FIELD_IPV4_UDP |
2342             E1000_MRQC_RSS_FIELD_IPV6_UDP |
2343             E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2344             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2345 
2346         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2347 
2348 
2349         /* Define the default group and default queues */
2350         vmdctl = E1000_VMDQ_MAC_GROUP_DEFAULT_QUEUE;
2351         E1000_WRITE_REG(hw, E1000_VT_CTL, vmdctl);
2352 
2353         /*
2354          * Disable Packet Checksum to enable RSS for multiple receive queues.
2355          *
2356          * The Packet Checksum is not ethernet CRC. It is another kind of
2357          * checksum offloading provided by the 82575 chipset besides the IP
2358          * header checksum offloading and the TCP/UDP checksum offloading.
2359          * The Packet Checksum is by default computed over the entire packet
2360          * from the first byte of the DA through the last byte of the CRC,
2361          * including the Ethernet and IP headers.
2362          *
2363          * It is a hardware limitation that Packet Checksum is mutually
2364          * exclusive with RSS.
2365          */
2366         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2367         rxcsum |= E1000_RXCSUM_PCSD;
2368         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2369 }
2370 
2371 /*
2372  * igb_setup_mac_classify - Setup MAC classification feature
2373  */
2374 static void
2375 igb_setup_mac_classify(igb_t *igb)
2376 {
2377         struct e1000_hw *hw = &igb->hw;
2378         uint32_t mrqc, rxcsum;
2379 
2380         /*
2381          * Setup the Multiple Receive Queue Control register,
2382          * enable VMDq based on packet destination MAC address.
2383          */
2384         mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_GROUP;
2385         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2386 
2387         /*
2388          * Disable Packet Checksum to enable RSS for multiple receive queues.
2389          *
2390          * The Packet Checksum is not ethernet CRC. It is another kind of
2391          * checksum offloading provided by the 82575 chipset besides the IP
2392          * header checksum offloading and the TCP/UDP checksum offloading.
2393          * The Packet Checksum is by default computed over the entire packet
2394          * from the first byte of the DA through the last byte of the CRC,
2395          * including the Ethernet and IP headers.
2396          *
2397          * It is a hardware limitation that Packet Checksum is mutually
2398          * exclusive with RSS.
2399          */
2400         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2401         rxcsum |= E1000_RXCSUM_PCSD;
2402         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2403 
2404 }
2405 
2406 /*
2407  * igb_init_unicst - Initialize the unicast addresses
2408  */
2409 static void
2410 igb_init_unicst(igb_t *igb)
2411 {
2412         struct e1000_hw *hw = &igb->hw;
2413         int slot;
2414 
2415         /*
2416          * Here we should consider two situations:
2417          *
2418          * 1. Chipset is initialized the first time
2419          *    Initialize the multiple unicast addresses, and
2420          *    save the default MAC address.
2421          *
2422          * 2. Chipset is reset
2423          *    Recover the multiple unicast addresses from the
2424          *    software data structure to the RAR registers.
2425          */
2426 
2427         /*
2428          * Clear the default MAC address in the RAR0 rgister,
2429          * which is loaded from EEPROM when system boot or chipreset,
2430          * this will cause the conficts with add_mac/rem_mac entry
2431          * points when VMDq is enabled. For this reason, the RAR0
2432          * must be cleared for both cases mentioned above.
2433          */
2434         e1000_rar_clear(hw, 0);
2435 
2436         if (!igb->unicst_init) {
2437 
2438                 /* Initialize the multiple unicast addresses */
2439                 igb->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2440                 igb->unicst_avail = igb->unicst_total;
2441 
2442                 for (slot = 0; slot < igb->unicst_total; slot++)
2443                         igb->unicst_addr[slot].mac.set = 0;
2444 
2445                 igb->unicst_init = B_TRUE;
2446         } else {
2447                 /* Re-configure the RAR registers */
2448                 for (slot = 0; slot < igb->unicst_total; slot++) {
2449                         e1000_rar_set_vmdq(hw, igb->unicst_addr[slot].mac.addr,
2450                             slot, igb->vmdq_mode,
2451                             igb->unicst_addr[slot].mac.group_index);
2452                 }
2453         }
2454 }
2455 
2456 /*
2457  * igb_unicst_find - Find the slot for the specified unicast address
2458  */
2459 int
2460 igb_unicst_find(igb_t *igb, const uint8_t *mac_addr)
2461 {
2462         int slot;
2463 
2464         ASSERT(mutex_owned(&igb->gen_lock));
2465 
2466         for (slot = 0; slot < igb->unicst_total; slot++) {
2467                 if (bcmp(igb->unicst_addr[slot].mac.addr,
2468                     mac_addr, ETHERADDRL) == 0)
2469                         return (slot);
2470         }
2471 
2472         return (-1);
2473 }
2474 
2475 /*
2476  * igb_unicst_set - Set the unicast address to the specified slot
2477  */
2478 int
2479 igb_unicst_set(igb_t *igb, const uint8_t *mac_addr,
2480     int slot)
2481 {
2482         struct e1000_hw *hw = &igb->hw;
2483 
2484         ASSERT(mutex_owned(&igb->gen_lock));
2485 
2486         /*
2487          * Save the unicast address in the software data structure
2488          */
2489         bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL);
2490 
2491         /*
2492          * Set the unicast address to the RAR register
2493          */
2494         e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2495 
2496         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2497                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2498                 return (EIO);
2499         }
2500 
2501         return (0);
2502 }
2503 
2504 /*
2505  * igb_multicst_add - Add a multicst address
2506  */
2507 int
2508 igb_multicst_add(igb_t *igb, const uint8_t *multiaddr)
2509 {
2510         struct ether_addr *new_table;
2511         size_t new_len;
2512         size_t old_len;
2513 
2514         ASSERT(mutex_owned(&igb->gen_lock));
2515 
2516         if ((multiaddr[0] & 01) == 0) {
2517                 igb_error(igb, "Illegal multicast address");
2518                 return (EINVAL);
2519         }
2520 
2521         if (igb->mcast_count >= igb->mcast_max_num) {
2522                 igb_error(igb, "Adapter requested more than %d mcast addresses",
2523                     igb->mcast_max_num);
2524                 return (ENOENT);
2525         }
2526 
2527         if (igb->mcast_count == igb->mcast_alloc_count) {
2528                 old_len = igb->mcast_alloc_count *
2529                     sizeof (struct ether_addr);
2530                 new_len = (igb->mcast_alloc_count + MCAST_ALLOC_COUNT) *
2531                     sizeof (struct ether_addr);
2532 
2533                 new_table = kmem_alloc(new_len, KM_NOSLEEP);
2534                 if (new_table == NULL) {
2535                         igb_error(igb,
2536                             "Not enough memory to alloc mcast table");
2537                         return (ENOMEM);
2538                 }
2539 
2540                 if (igb->mcast_table != NULL) {
2541                         bcopy(igb->mcast_table, new_table, old_len);
2542                         kmem_free(igb->mcast_table, old_len);
2543                 }
2544                 igb->mcast_alloc_count += MCAST_ALLOC_COUNT;
2545                 igb->mcast_table = new_table;
2546         }
2547 
2548         bcopy(multiaddr,
2549             &igb->mcast_table[igb->mcast_count], ETHERADDRL);
2550         igb->mcast_count++;
2551 
2552         /*
2553          * Update the multicast table in the hardware
2554          */
2555         igb_setup_multicst(igb);
2556 
2557         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2558                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2559                 return (EIO);
2560         }
2561 
2562         return (0);
2563 }
2564 
2565 /*
2566  * igb_multicst_remove - Remove a multicst address
2567  */
2568 int
2569 igb_multicst_remove(igb_t *igb, const uint8_t *multiaddr)
2570 {
2571         struct ether_addr *new_table;
2572         size_t new_len;
2573         size_t old_len;
2574         int i;
2575 
2576         ASSERT(mutex_owned(&igb->gen_lock));
2577 
2578         for (i = 0; i < igb->mcast_count; i++) {
2579                 if (bcmp(multiaddr, &igb->mcast_table[i],
2580                     ETHERADDRL) == 0) {
2581                         for (i++; i < igb->mcast_count; i++) {
2582                                 igb->mcast_table[i - 1] =
2583                                     igb->mcast_table[i];
2584                         }
2585                         igb->mcast_count--;
2586                         break;
2587                 }
2588         }
2589 
2590         if ((igb->mcast_alloc_count - igb->mcast_count) >
2591             MCAST_ALLOC_COUNT) {
2592                 old_len = igb->mcast_alloc_count *
2593                     sizeof (struct ether_addr);
2594                 new_len = (igb->mcast_alloc_count - MCAST_ALLOC_COUNT) *
2595                     sizeof (struct ether_addr);
2596 
2597                 new_table = kmem_alloc(new_len, KM_NOSLEEP);
2598                 if (new_table != NULL) {
2599                         bcopy(igb->mcast_table, new_table, new_len);
2600                         kmem_free(igb->mcast_table, old_len);
2601                         igb->mcast_alloc_count -= MCAST_ALLOC_COUNT;
2602                         igb->mcast_table = new_table;
2603                 }
2604         }
2605 
2606         /*
2607          * Update the multicast table in the hardware
2608          */
2609         igb_setup_multicst(igb);
2610 
2611         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2612                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2613                 return (EIO);
2614         }
2615 
2616         return (0);
2617 }
2618 
2619 static void
2620 igb_release_multicast(igb_t *igb)
2621 {
2622         if (igb->mcast_table != NULL) {
2623                 kmem_free(igb->mcast_table,
2624                     igb->mcast_alloc_count * sizeof (struct ether_addr));
2625                 igb->mcast_table = NULL;
2626         }
2627 }
2628 
2629 /*
2630  * igb_setup_multicast - setup multicast data structures
2631  *
2632  * This routine initializes all of the multicast related structures
2633  * and save them in the hardware registers.
2634  */
2635 static void
2636 igb_setup_multicst(igb_t *igb)
2637 {
2638         uint8_t *mc_addr_list;
2639         uint32_t mc_addr_count;
2640         struct e1000_hw *hw = &igb->hw;
2641 
2642         ASSERT(mutex_owned(&igb->gen_lock));
2643         ASSERT(igb->mcast_count <= igb->mcast_max_num);
2644 
2645         mc_addr_list = (uint8_t *)igb->mcast_table;
2646         mc_addr_count = igb->mcast_count;
2647 
2648         /*
2649          * Update the multicase addresses to the MTA registers
2650          */
2651         e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2652 }
2653 
2654 /*
2655  * igb_get_conf - Get driver configurations set in driver.conf
2656  *
2657  * This routine gets user-configured values out of the configuration
2658  * file igb.conf.
2659  *
2660  * For each configurable value, there is a minimum, a maximum, and a
2661  * default.
2662  * If user does not configure a value, use the default.
2663  * If user configures below the minimum, use the minumum.
2664  * If user configures above the maximum, use the maxumum.
2665  */
2666 static void
2667 igb_get_conf(igb_t *igb)
2668 {
2669         struct e1000_hw *hw = &igb->hw;
2670         uint32_t default_mtu;
2671         uint32_t flow_control;
2672         uint32_t ring_per_group;
2673         int i;
2674 
2675         /*
2676          * igb driver supports the following user configurations:
2677          *
2678          * Link configurations:
2679          *    adv_autoneg_cap
2680          *    adv_1000fdx_cap
2681          *    adv_100fdx_cap
2682          *    adv_100hdx_cap
2683          *    adv_10fdx_cap
2684          *    adv_10hdx_cap
2685          * Note: 1000hdx is not supported.
2686          *
2687          * Jumbo frame configuration:
2688          *    default_mtu
2689          *
2690          * Ethernet flow control configuration:
2691          *    flow_control
2692          *
2693          * Multiple rings configurations:
2694          *    tx_queue_number
2695          *    tx_ring_size
2696          *    rx_queue_number
2697          *    rx_ring_size
2698          *
2699          * Call igb_get_prop() to get the value for a specific
2700          * configuration parameter.
2701          */
2702 
2703         /*
2704          * Link configurations
2705          */
2706         igb->param_adv_autoneg_cap = igb_get_prop(igb,
2707             PROP_ADV_AUTONEG_CAP, 0, 1, 1);
2708         igb->param_adv_1000fdx_cap = igb_get_prop(igb,
2709             PROP_ADV_1000FDX_CAP, 0, 1, 1);
2710         igb->param_adv_100fdx_cap = igb_get_prop(igb,
2711             PROP_ADV_100FDX_CAP, 0, 1, 1);
2712         igb->param_adv_100hdx_cap = igb_get_prop(igb,
2713             PROP_ADV_100HDX_CAP, 0, 1, 1);
2714         igb->param_adv_10fdx_cap = igb_get_prop(igb,
2715             PROP_ADV_10FDX_CAP, 0, 1, 1);
2716         igb->param_adv_10hdx_cap = igb_get_prop(igb,
2717             PROP_ADV_10HDX_CAP, 0, 1, 1);
2718 
2719         /*
2720          * Jumbo frame configurations
2721          */
2722         default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
2723             MIN_MTU, MAX_MTU, DEFAULT_MTU);
2724 
2725         igb->max_frame_size = default_mtu +
2726             sizeof (struct ether_vlan_header) + ETHERFCSL;
2727 
2728         /*
2729          * Ethernet flow control configuration
2730          */
2731         flow_control = igb_get_prop(igb, PROP_FLOW_CONTROL,
2732             e1000_fc_none, 4, e1000_fc_full);
2733         if (flow_control == 4)
2734                 flow_control = e1000_fc_default;
2735 
2736         hw->fc.requested_mode = flow_control;
2737 
2738         /*
2739          * Multiple rings configurations
2740          */
2741         igb->tx_ring_size = igb_get_prop(igb, PROP_TX_RING_SIZE,
2742             MIN_TX_RING_SIZE, MAX_TX_RING_SIZE, DEFAULT_TX_RING_SIZE);
2743         igb->rx_ring_size = igb_get_prop(igb, PROP_RX_RING_SIZE,
2744             MIN_RX_RING_SIZE, MAX_RX_RING_SIZE, DEFAULT_RX_RING_SIZE);
2745 
2746         igb->mr_enable = igb_get_prop(igb, PROP_MR_ENABLE, 0, 1, 0);
2747         igb->num_rx_groups = igb_get_prop(igb, PROP_RX_GROUP_NUM,
2748             MIN_RX_GROUP_NUM, MAX_RX_GROUP_NUM, DEFAULT_RX_GROUP_NUM);
2749         /*
2750          * Currently we do not support VMDq for 82576 and 82580.
2751          * If it is e1000_82576, set num_rx_groups to 1.
2752          */
2753         if (hw->mac.type >= e1000_82576)
2754                 igb->num_rx_groups = 1;
2755 
2756         if (igb->mr_enable) {
2757                 igb->num_tx_rings = igb->capab->def_tx_que_num;
2758                 igb->num_rx_rings = igb->capab->def_rx_que_num;
2759         } else {
2760                 igb->num_tx_rings = 1;
2761                 igb->num_rx_rings = 1;
2762 
2763                 if (igb->num_rx_groups > 1) {
2764                         igb_error(igb,
2765                             "Invalid rx groups number. Please enable multiple "
2766                             "rings first");
2767                         igb->num_rx_groups = 1;
2768                 }
2769         }
2770 
2771         /*
2772          * Check the divisibility between rx rings and rx groups.
2773          */
2774         for (i = igb->num_rx_groups; i > 0; i--) {
2775                 if ((igb->num_rx_rings % i) == 0)
2776                         break;
2777         }
2778         if (i != igb->num_rx_groups) {
2779                 igb_error(igb,
2780                     "Invalid rx groups number. Downgrade the rx group "
2781                     "number to %d.", i);
2782                 igb->num_rx_groups = i;
2783         }
2784 
2785         /*
2786          * Get the ring number per group.
2787          */
2788         ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2789 
2790         if (igb->num_rx_groups == 1) {
2791                 /*
2792                  * One rx ring group, the rx ring number is num_rx_rings.
2793                  */
2794                 igb->vmdq_mode = E1000_VMDQ_OFF;
2795         } else if (ring_per_group == 1) {
2796                 /*
2797                  * Multiple rx groups, each group has one rx ring.
2798                  */
2799                 igb->vmdq_mode = E1000_VMDQ_MAC;
2800         } else {
2801                 /*
2802                  * Multiple groups and multiple rings.
2803                  */
2804                 igb->vmdq_mode = E1000_VMDQ_MAC_RSS;
2805         }
2806 
2807         /*
2808          * Tunable used to force an interrupt type. The only use is
2809          * for testing of the lesser interrupt types.
2810          * 0 = don't force interrupt type
2811          * 1 = force interrupt type MSIX
2812          * 2 = force interrupt type MSI
2813          * 3 = force interrupt type Legacy
2814          */
2815         igb->intr_force = igb_get_prop(igb, PROP_INTR_FORCE,
2816             IGB_INTR_NONE, IGB_INTR_LEGACY, IGB_INTR_NONE);
2817 
2818         igb->tx_hcksum_enable = igb_get_prop(igb, PROP_TX_HCKSUM_ENABLE,
2819             0, 1, 1);
2820         igb->rx_hcksum_enable = igb_get_prop(igb, PROP_RX_HCKSUM_ENABLE,
2821             0, 1, 1);
2822         igb->lso_enable = igb_get_prop(igb, PROP_LSO_ENABLE,
2823             0, 1, 1);
2824         igb->tx_head_wb_enable = igb_get_prop(igb, PROP_TX_HEAD_WB_ENABLE,
2825             0, 1, 1);
2826 
2827         /*
2828          * igb LSO needs the tx h/w checksum support.
2829          * Here LSO will be disabled if tx h/w checksum has been disabled.
2830          */
2831         if (igb->tx_hcksum_enable == B_FALSE)
2832                 igb->lso_enable = B_FALSE;
2833 
2834         igb->tx_copy_thresh = igb_get_prop(igb, PROP_TX_COPY_THRESHOLD,
2835             MIN_TX_COPY_THRESHOLD, MAX_TX_COPY_THRESHOLD,
2836             DEFAULT_TX_COPY_THRESHOLD);
2837         igb->tx_recycle_thresh = igb_get_prop(igb, PROP_TX_RECYCLE_THRESHOLD,
2838             MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
2839             DEFAULT_TX_RECYCLE_THRESHOLD);
2840         igb->tx_overload_thresh = igb_get_prop(igb, PROP_TX_OVERLOAD_THRESHOLD,
2841             MIN_TX_OVERLOAD_THRESHOLD, MAX_TX_OVERLOAD_THRESHOLD,
2842             DEFAULT_TX_OVERLOAD_THRESHOLD);
2843         igb->tx_resched_thresh = igb_get_prop(igb, PROP_TX_RESCHED_THRESHOLD,
2844             MIN_TX_RESCHED_THRESHOLD,
2845             MIN(igb->tx_ring_size, MAX_TX_RESCHED_THRESHOLD),
2846             igb->tx_ring_size > DEFAULT_TX_RESCHED_THRESHOLD ?
2847             DEFAULT_TX_RESCHED_THRESHOLD : DEFAULT_TX_RESCHED_THRESHOLD_LOW);
2848 
2849         igb->rx_copy_thresh = igb_get_prop(igb, PROP_RX_COPY_THRESHOLD,
2850             MIN_RX_COPY_THRESHOLD, MAX_RX_COPY_THRESHOLD,
2851             DEFAULT_RX_COPY_THRESHOLD);
2852         igb->rx_limit_per_intr = igb_get_prop(igb, PROP_RX_LIMIT_PER_INTR,
2853             MIN_RX_LIMIT_PER_INTR, MAX_RX_LIMIT_PER_INTR,
2854             DEFAULT_RX_LIMIT_PER_INTR);
2855 
2856         igb->intr_throttling[0] = igb_get_prop(igb, PROP_INTR_THROTTLING,
2857             igb->capab->min_intr_throttle,
2858             igb->capab->max_intr_throttle,
2859             igb->capab->def_intr_throttle);
2860 
2861         /*
2862          * Max number of multicast addresses
2863          */
2864         igb->mcast_max_num =
2865             igb_get_prop(igb, PROP_MCAST_MAX_NUM,
2866             MIN_MCAST_NUM, MAX_MCAST_NUM, DEFAULT_MCAST_NUM);
2867 }
2868 
2869 /*
2870  * igb_get_prop - Get a property value out of the configuration file igb.conf
2871  *
2872  * Caller provides the name of the property, a default value, a minimum
2873  * value, and a maximum value.
2874  *
2875  * Return configured value of the property, with default, minimum and
2876  * maximum properly applied.
2877  */
2878 static int
2879 igb_get_prop(igb_t *igb,
2880     char *propname,     /* name of the property */
2881     int minval,         /* minimum acceptable value */
2882     int maxval,         /* maximim acceptable value */
2883     int defval)         /* default value */
2884 {
2885         int value;
2886 
2887         /*
2888          * Call ddi_prop_get_int() to read the conf settings
2889          */
2890         value = ddi_prop_get_int(DDI_DEV_T_ANY, igb->dip,
2891             DDI_PROP_DONTPASS, propname, defval);
2892 
2893         if (value > maxval)
2894                 value = maxval;
2895 
2896         if (value < minval)
2897                 value = minval;
2898 
2899         return (value);
2900 }
2901 
2902 /*
2903  * igb_setup_link - Using the link properties to setup the link
2904  */
2905 int
2906 igb_setup_link(igb_t *igb, boolean_t setup_hw)
2907 {
2908         struct e1000_mac_info *mac;
2909         struct e1000_phy_info *phy;
2910         boolean_t invalid;
2911 
2912         mac = &igb->hw.mac;
2913         phy = &igb->hw.phy;
2914         invalid = B_FALSE;
2915 
2916         if (igb->param_adv_autoneg_cap == 1) {
2917                 mac->autoneg = B_TRUE;
2918                 phy->autoneg_advertised = 0;
2919 
2920                 /*
2921                  * 1000hdx is not supported for autonegotiation
2922                  */
2923                 if (igb->param_adv_1000fdx_cap == 1)
2924                         phy->autoneg_advertised |= ADVERTISE_1000_FULL;
2925 
2926                 if (igb->param_adv_100fdx_cap == 1)
2927                         phy->autoneg_advertised |= ADVERTISE_100_FULL;
2928 
2929                 if (igb->param_adv_100hdx_cap == 1)
2930                         phy->autoneg_advertised |= ADVERTISE_100_HALF;
2931 
2932                 if (igb->param_adv_10fdx_cap == 1)
2933                         phy->autoneg_advertised |= ADVERTISE_10_FULL;
2934 
2935                 if (igb->param_adv_10hdx_cap == 1)
2936                         phy->autoneg_advertised |= ADVERTISE_10_HALF;
2937 
2938                 if (phy->autoneg_advertised == 0)
2939                         invalid = B_TRUE;
2940         } else {
2941                 mac->autoneg = B_FALSE;
2942 
2943                 /*
2944                  * 1000fdx and 1000hdx are not supported for forced link
2945                  */
2946                 if (igb->param_adv_100fdx_cap == 1)
2947                         mac->forced_speed_duplex = ADVERTISE_100_FULL;
2948                 else if (igb->param_adv_100hdx_cap == 1)
2949                         mac->forced_speed_duplex = ADVERTISE_100_HALF;
2950                 else if (igb->param_adv_10fdx_cap == 1)
2951                         mac->forced_speed_duplex = ADVERTISE_10_FULL;
2952                 else if (igb->param_adv_10hdx_cap == 1)
2953                         mac->forced_speed_duplex = ADVERTISE_10_HALF;
2954                 else
2955                         invalid = B_TRUE;
2956         }
2957 
2958         if (invalid) {
2959                 igb_notice(igb, "Invalid link settings. Setup link to "
2960                     "autonegotiation with full link capabilities.");
2961                 mac->autoneg = B_TRUE;
2962                 phy->autoneg_advertised = ADVERTISE_1000_FULL |
2963                     ADVERTISE_100_FULL | ADVERTISE_100_HALF |
2964                     ADVERTISE_10_FULL | ADVERTISE_10_HALF;
2965         }
2966 
2967         if (setup_hw) {
2968                 if (e1000_setup_link(&igb->hw) != E1000_SUCCESS)
2969                         return (IGB_FAILURE);
2970         }
2971 
2972         return (IGB_SUCCESS);
2973 }
2974 
2975 
2976 /*
2977  * igb_is_link_up - Check if the link is up
2978  */
2979 static boolean_t
2980 igb_is_link_up(igb_t *igb)
2981 {
2982         struct e1000_hw *hw = &igb->hw;
2983         boolean_t link_up = B_FALSE;
2984 
2985         ASSERT(mutex_owned(&igb->gen_lock));
2986 
2987         /*
2988          * get_link_status is set in the interrupt handler on link-status-change
2989          * or rx sequence error interrupt.  get_link_status will stay
2990          * false until the e1000_check_for_link establishes link only
2991          * for copper adapters.
2992          */
2993         switch (hw->phy.media_type) {
2994         case e1000_media_type_copper:
2995                 if (hw->mac.get_link_status) {
2996                         (void) e1000_check_for_link(hw);
2997                         link_up = !hw->mac.get_link_status;
2998                 } else {
2999                         link_up = B_TRUE;
3000                 }
3001                 break;
3002         case e1000_media_type_fiber:
3003                 (void) e1000_check_for_link(hw);
3004                 link_up = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
3005                 break;
3006         case e1000_media_type_internal_serdes:
3007                 (void) e1000_check_for_link(hw);
3008                 link_up = hw->mac.serdes_has_link;
3009                 break;
3010         }
3011 
3012         return (link_up);
3013 }
3014 
3015 /*
3016  * igb_link_check - Link status processing
3017  */
3018 static boolean_t
3019 igb_link_check(igb_t *igb)
3020 {
3021         struct e1000_hw *hw = &igb->hw;
3022         uint16_t speed = 0, duplex = 0;
3023         boolean_t link_changed = B_FALSE;
3024 
3025         ASSERT(mutex_owned(&igb->gen_lock));
3026 
3027         if (igb_is_link_up(igb)) {
3028                 /*
3029                  * The Link is up, check whether it was marked as down earlier
3030                  */
3031                 if (igb->link_state != LINK_STATE_UP) {
3032                         (void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3033                         igb->link_speed = speed;
3034                         igb->link_duplex = duplex;
3035                         igb->link_state = LINK_STATE_UP;
3036                         link_changed = B_TRUE;
3037                         if (!igb->link_complete)
3038                                 igb_stop_link_timer(igb);
3039                 }
3040         } else if (igb->link_complete) {
3041                 if (igb->link_state != LINK_STATE_DOWN) {
3042                         igb->link_speed = 0;
3043                         igb->link_duplex = 0;
3044                         igb->link_state = LINK_STATE_DOWN;
3045                         link_changed = B_TRUE;
3046                 }
3047         }
3048 
3049         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3050                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3051                 return (B_FALSE);
3052         }
3053 
3054         return (link_changed);
3055 }
3056 
3057 /*
3058  * igb_local_timer - driver watchdog function
3059  *
3060  * This function will handle the hardware stall check, link status
3061  * check and other routines.
3062  */
3063 static void
3064 igb_local_timer(void *arg)
3065 {
3066         igb_t *igb = (igb_t *)arg;
3067         boolean_t link_changed = B_FALSE;
3068 
3069         if (igb->igb_state & IGB_ERROR) {
3070                 igb->reset_count++;
3071                 if (igb_reset(igb) == IGB_SUCCESS)
3072                         ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3073 
3074                 igb_restart_watchdog_timer(igb);
3075                 return;
3076         }
3077 
3078         if (igb_stall_check(igb) || (igb->igb_state & IGB_STALL)) {
3079                 igb_fm_ereport(igb, DDI_FM_DEVICE_STALL);
3080                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
3081                 igb->reset_count++;
3082                 if (igb_reset(igb) == IGB_SUCCESS)
3083                         ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3084 
3085                 igb_restart_watchdog_timer(igb);
3086                 return;
3087         }
3088 
3089         mutex_enter(&igb->gen_lock);
3090         if (!(igb->igb_state & IGB_SUSPENDED) && (igb->igb_state & IGB_STARTED))
3091                 link_changed = igb_link_check(igb);
3092         mutex_exit(&igb->gen_lock);
3093 
3094         if (link_changed)
3095                 mac_link_update(igb->mac_hdl, igb->link_state);
3096 
3097         igb_restart_watchdog_timer(igb);
3098 }
3099 
3100 /*
3101  * igb_link_timer - link setup timer function
3102  *
3103  * It is called when the timer for link setup is expired, which indicates
3104  * the completion of the link setup. The link state will not be updated
3105  * until the link setup is completed. And the link state will not be sent
3106  * to the upper layer through mac_link_update() in this function. It will
3107  * be updated in the local timer routine or the interrupts service routine
3108  * after the interface is started (plumbed).
3109  */
3110 static void
3111 igb_link_timer(void *arg)
3112 {
3113         igb_t *igb = (igb_t *)arg;
3114 
3115         mutex_enter(&igb->link_lock);
3116         igb->link_complete = B_TRUE;
3117         igb->link_tid = 0;
3118         mutex_exit(&igb->link_lock);
3119 }
3120 /*
3121  * igb_stall_check - check for transmit stall
3122  *
3123  * This function checks if the adapter is stalled (in transmit).
3124  *
3125  * It is called each time the watchdog timeout is invoked.
3126  * If the transmit descriptor reclaim continuously fails,
3127  * the watchdog value will increment by 1. If the watchdog
3128  * value exceeds the threshold, the igb is assumed to
3129  * have stalled and need to be reset.
3130  */
3131 static boolean_t
3132 igb_stall_check(igb_t *igb)
3133 {
3134         igb_tx_ring_t *tx_ring;
3135         struct e1000_hw *hw = &igb->hw;
3136         boolean_t result;
3137         int i;
3138 
3139         if (igb->link_state != LINK_STATE_UP)
3140                 return (B_FALSE);
3141 
3142         /*
3143          * If any tx ring is stalled, we'll reset the chipset
3144          */
3145         result = B_FALSE;
3146         for (i = 0; i < igb->num_tx_rings; i++) {
3147                 tx_ring = &igb->tx_rings[i];
3148 
3149                 if (tx_ring->recycle_fail > 0)
3150                         tx_ring->stall_watchdog++;
3151                 else
3152                         tx_ring->stall_watchdog = 0;
3153 
3154                 if (tx_ring->stall_watchdog >= STALL_WATCHDOG_TIMEOUT) {
3155                         result = B_TRUE;
3156                         if (hw->mac.type == e1000_82580) {
3157                                 hw->dev_spec._82575.global_device_reset
3158                                     = B_TRUE;
3159                         }
3160                         break;
3161                 }
3162         }
3163 
3164         if (result) {
3165                 tx_ring->stall_watchdog = 0;
3166                 tx_ring->recycle_fail = 0;
3167         }
3168 
3169         return (result);
3170 }
3171 
3172 
3173 /*
3174  * is_valid_mac_addr - Check if the mac address is valid
3175  */
3176 static boolean_t
3177 is_valid_mac_addr(uint8_t *mac_addr)
3178 {
3179         const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
3180         const uint8_t addr_test2[6] =
3181             { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3182 
3183         if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
3184             !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
3185                 return (B_FALSE);
3186 
3187         return (B_TRUE);
3188 }
3189 
3190 static boolean_t
3191 igb_find_mac_address(igb_t *igb)
3192 {
3193         struct e1000_hw *hw = &igb->hw;
3194 #ifdef __sparc
3195         uchar_t *bytes;
3196         struct ether_addr sysaddr;
3197         uint_t nelts;
3198         int err;
3199         boolean_t found = B_FALSE;
3200 
3201         /*
3202          * The "vendor's factory-set address" may already have
3203          * been extracted from the chip, but if the property
3204          * "local-mac-address" is set we use that instead.
3205          *
3206          * We check whether it looks like an array of 6
3207          * bytes (which it should, if OBP set it).  If we can't
3208          * make sense of it this way, we'll ignore it.
3209          */
3210         err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3211             DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
3212         if (err == DDI_PROP_SUCCESS) {
3213                 if (nelts == ETHERADDRL) {
3214                         while (nelts--)
3215                                 hw->mac.addr[nelts] = bytes[nelts];
3216                         found = B_TRUE;
3217                 }
3218                 ddi_prop_free(bytes);
3219         }
3220 
3221         /*
3222          * Look up the OBP property "local-mac-address?". If the user has set
3223          * 'local-mac-address? = false', use "the system address" instead.
3224          */
3225         if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, 0,
3226             "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
3227                 if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
3228                         if (localetheraddr(NULL, &sysaddr) != 0) {
3229                                 bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
3230                                 found = B_TRUE;
3231                         }
3232                 }
3233                 ddi_prop_free(bytes);
3234         }
3235 
3236         /*
3237          * Finally(!), if there's a valid "mac-address" property (created
3238          * if we netbooted from this interface), we must use this instead
3239          * of any of the above to ensure that the NFS/install server doesn't
3240          * get confused by the address changing as Solaris takes over!
3241          */
3242         err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3243             DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
3244         if (err == DDI_PROP_SUCCESS) {
3245                 if (nelts == ETHERADDRL) {
3246                         while (nelts--)
3247                                 hw->mac.addr[nelts] = bytes[nelts];
3248                         found = B_TRUE;
3249                 }
3250                 ddi_prop_free(bytes);
3251         }
3252 
3253         if (found) {
3254                 bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
3255                 return (B_TRUE);
3256         }
3257 #endif
3258 
3259         /*
3260          * Read the device MAC address from the EEPROM
3261          */
3262         if (e1000_read_mac_addr(hw) != E1000_SUCCESS)
3263                 return (B_FALSE);
3264 
3265         return (B_TRUE);
3266 }
3267 
3268 #pragma inline(igb_arm_watchdog_timer)
3269 
3270 static void
3271 igb_arm_watchdog_timer(igb_t *igb)
3272 {
3273         /*
3274          * Fire a watchdog timer
3275          */
3276         igb->watchdog_tid =
3277             timeout(igb_local_timer,
3278             (void *)igb, 1 * drv_usectohz(1000000));
3279 
3280 }
3281 
3282 /*
3283  * igb_enable_watchdog_timer - Enable and start the driver watchdog timer
3284  */
3285 void
3286 igb_enable_watchdog_timer(igb_t *igb)
3287 {
3288         mutex_enter(&igb->watchdog_lock);
3289 
3290         if (!igb->watchdog_enable) {
3291                 igb->watchdog_enable = B_TRUE;
3292                 igb->watchdog_start = B_TRUE;
3293                 igb_arm_watchdog_timer(igb);
3294         }
3295 
3296         mutex_exit(&igb->watchdog_lock);
3297 
3298 }
3299 
3300 /*
3301  * igb_disable_watchdog_timer - Disable and stop the driver watchdog timer
3302  */
3303 void
3304 igb_disable_watchdog_timer(igb_t *igb)
3305 {
3306         timeout_id_t tid;
3307 
3308         mutex_enter(&igb->watchdog_lock);
3309 
3310         igb->watchdog_enable = B_FALSE;
3311         igb->watchdog_start = B_FALSE;
3312         tid = igb->watchdog_tid;
3313         igb->watchdog_tid = 0;
3314 
3315         mutex_exit(&igb->watchdog_lock);
3316 
3317         if (tid != 0)
3318                 (void) untimeout(tid);
3319 
3320 }
3321 
3322 /*
3323  * igb_start_watchdog_timer - Start the driver watchdog timer
3324  */
3325 static void
3326 igb_start_watchdog_timer(igb_t *igb)
3327 {
3328         mutex_enter(&igb->watchdog_lock);
3329 
3330         if (igb->watchdog_enable) {
3331                 if (!igb->watchdog_start) {
3332                         igb->watchdog_start = B_TRUE;
3333                         igb_arm_watchdog_timer(igb);
3334                 }
3335         }
3336 
3337         mutex_exit(&igb->watchdog_lock);
3338 }
3339 
3340 /*
3341  * igb_restart_watchdog_timer - Restart the driver watchdog timer
3342  */
3343 static void
3344 igb_restart_watchdog_timer(igb_t *igb)
3345 {
3346         mutex_enter(&igb->watchdog_lock);
3347 
3348         if (igb->watchdog_start)
3349                 igb_arm_watchdog_timer(igb);
3350 
3351         mutex_exit(&igb->watchdog_lock);
3352 }
3353 
3354 /*
3355  * igb_stop_watchdog_timer - Stop the driver watchdog timer
3356  */
3357 static void
3358 igb_stop_watchdog_timer(igb_t *igb)
3359 {
3360         timeout_id_t tid;
3361 
3362         mutex_enter(&igb->watchdog_lock);
3363 
3364         igb->watchdog_start = B_FALSE;
3365         tid = igb->watchdog_tid;
3366         igb->watchdog_tid = 0;
3367 
3368         mutex_exit(&igb->watchdog_lock);
3369 
3370         if (tid != 0)
3371                 (void) untimeout(tid);
3372 }
3373 
3374 /*
3375  * igb_start_link_timer - Start the link setup timer
3376  */
3377 static void
3378 igb_start_link_timer(struct igb *igb)
3379 {
3380         struct e1000_hw *hw = &igb->hw;
3381         clock_t link_timeout;
3382 
3383         if (hw->mac.autoneg)
3384                 link_timeout = PHY_AUTO_NEG_LIMIT *
3385                     drv_usectohz(100000);
3386         else
3387                 link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
3388 
3389         mutex_enter(&igb->link_lock);
3390         if (hw->phy.autoneg_wait_to_complete) {
3391                 igb->link_complete = B_TRUE;
3392         } else {
3393                 igb->link_complete = B_FALSE;
3394                 igb->link_tid = timeout(igb_link_timer, (void *)igb,
3395                     link_timeout);
3396         }
3397         mutex_exit(&igb->link_lock);
3398 }
3399 
3400 /*
3401  * igb_stop_link_timer - Stop the link setup timer
3402  */
3403 static void
3404 igb_stop_link_timer(struct igb *igb)
3405 {
3406         timeout_id_t tid;
3407 
3408         mutex_enter(&igb->link_lock);
3409         igb->link_complete = B_TRUE;
3410         tid = igb->link_tid;
3411         igb->link_tid = 0;
3412         mutex_exit(&igb->link_lock);
3413 
3414         if (tid != 0)
3415                 (void) untimeout(tid);
3416 }
3417 
3418 /*
3419  * igb_disable_adapter_interrupts - Clear/disable all hardware interrupts
3420  */
3421 static void
3422 igb_disable_adapter_interrupts(igb_t *igb)
3423 {
3424         struct e1000_hw *hw = &igb->hw;
3425 
3426         /*
3427          * Set the IMC register to mask all the interrupts,
3428          * including the tx interrupts.
3429          */
3430         E1000_WRITE_REG(hw, E1000_IMC, ~0);
3431         E1000_WRITE_REG(hw, E1000_IAM, 0);
3432 
3433         /*
3434          * Additional disabling for MSI-X
3435          */
3436         if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3437                 E1000_WRITE_REG(hw, E1000_EIMC, ~0);
3438                 E1000_WRITE_REG(hw, E1000_EIAC, 0);
3439                 E1000_WRITE_REG(hw, E1000_EIAM, 0);
3440         }
3441 
3442         E1000_WRITE_FLUSH(hw);
3443 }
3444 
3445 /*
3446  * igb_enable_adapter_interrupts_82580 - Enable NIC interrupts for 82580
3447  */
3448 static void
3449 igb_enable_adapter_interrupts_82580(igb_t *igb)
3450 {
3451         struct e1000_hw *hw = &igb->hw;
3452 
3453         /* Clear any pending interrupts */
3454         (void) E1000_READ_REG(hw, E1000_ICR);
3455         igb->ims_mask |= E1000_IMS_DRSTA;
3456 
3457         if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3458 
3459                 /* Interrupt enabling for MSI-X */
3460                 E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3461                 E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3462                 igb->ims_mask = (E1000_IMS_LSC | E1000_IMS_DRSTA);
3463                 E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3464         } else { /* Interrupt enabling for MSI and legacy */
3465                 E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3466                 igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3467                 igb->ims_mask |= E1000_IMS_DRSTA;
3468                 E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3469         }
3470 
3471         /* Disable auto-mask for ICR interrupt bits */
3472         E1000_WRITE_REG(hw, E1000_IAM, 0);
3473 
3474         E1000_WRITE_FLUSH(hw);
3475 }
3476 
3477 /*
3478  * igb_enable_adapter_interrupts_82576 - Enable NIC interrupts for 82576
3479  */
3480 static void
3481 igb_enable_adapter_interrupts_82576(igb_t *igb)
3482 {
3483         struct e1000_hw *hw = &igb->hw;
3484 
3485         /* Clear any pending interrupts */
3486         (void) E1000_READ_REG(hw, E1000_ICR);
3487 
3488         if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3489 
3490                 /* Interrupt enabling for MSI-X */
3491                 E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3492                 E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3493                 igb->ims_mask = E1000_IMS_LSC;
3494                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3495         } else {
3496                 /* Interrupt enabling for MSI and legacy */
3497                 E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3498                 igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3499                 E1000_WRITE_REG(hw, E1000_IMS,
3500                     (IMS_ENABLE_MASK | E1000_IMS_TXQE));
3501         }
3502 
3503         /* Disable auto-mask for ICR interrupt bits */
3504         E1000_WRITE_REG(hw, E1000_IAM, 0);
3505 
3506         E1000_WRITE_FLUSH(hw);
3507 }
3508 
3509 /*
3510  * igb_enable_adapter_interrupts_82575 - Enable NIC interrupts for 82575
3511  */
3512 static void
3513 igb_enable_adapter_interrupts_82575(igb_t *igb)
3514 {
3515         struct e1000_hw *hw = &igb->hw;
3516         uint32_t reg;
3517 
3518         /* Clear any pending interrupts */
3519         (void) E1000_READ_REG(hw, E1000_ICR);
3520 
3521         if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3522                 /* Interrupt enabling for MSI-X */
3523                 E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3524                 E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3525                 igb->ims_mask = E1000_IMS_LSC;
3526                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3527 
3528                 /* Enable MSI-X PBA support */
3529                 reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
3530                 reg |= E1000_CTRL_EXT_PBA_CLR;
3531 
3532                 /* Non-selective interrupt clear-on-read */
3533                 reg |= E1000_CTRL_EXT_IRCA;     /* Called NSICR in the EAS */
3534 
3535                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
3536         } else {
3537                 /* Interrupt enabling for MSI and legacy */
3538                 igb->ims_mask = IMS_ENABLE_MASK;
3539                 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3540         }
3541 
3542         E1000_WRITE_FLUSH(hw);
3543 }
3544 
3545 /*
3546  * Loopback Support
3547  */
3548 static lb_property_t lb_normal =
3549         { normal,       "normal",       IGB_LB_NONE             };
3550 static lb_property_t lb_external =
3551         { external,     "External",     IGB_LB_EXTERNAL         };
3552 static lb_property_t lb_phy =
3553         { internal,     "PHY",          IGB_LB_INTERNAL_PHY     };
3554 static lb_property_t lb_serdes =
3555         { internal,     "SerDes",       IGB_LB_INTERNAL_SERDES  };
3556 
3557 enum ioc_reply
3558 igb_loopback_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp)
3559 {
3560         lb_info_sz_t *lbsp;
3561         lb_property_t *lbpp;
3562         struct e1000_hw *hw;
3563         uint32_t *lbmp;
3564         uint32_t size;
3565         uint32_t value;
3566 
3567         hw = &igb->hw;
3568 
3569         if (mp->b_cont == NULL)
3570                 return (IOC_INVAL);
3571 
3572         switch (iocp->ioc_cmd) {
3573         default:
3574                 return (IOC_INVAL);
3575 
3576         case LB_GET_INFO_SIZE:
3577                 size = sizeof (lb_info_sz_t);
3578                 if (iocp->ioc_count != size)
3579                         return (IOC_INVAL);
3580 
3581                 value = sizeof (lb_normal);
3582                 if (hw->phy.media_type == e1000_media_type_copper)
3583                         value += sizeof (lb_phy);
3584                 else
3585                         value += sizeof (lb_serdes);
3586                 value += sizeof (lb_external);
3587 
3588                 lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
3589                 *lbsp = value;
3590                 break;
3591 
3592         case LB_GET_INFO:
3593                 value = sizeof (lb_normal);
3594                 if (hw->phy.media_type == e1000_media_type_copper)
3595                         value += sizeof (lb_phy);
3596                 else
3597                         value += sizeof (lb_serdes);
3598                 value += sizeof (lb_external);
3599 
3600                 size = value;
3601                 if (iocp->ioc_count != size)
3602                         return (IOC_INVAL);
3603 
3604                 value = 0;
3605                 lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
3606 
3607                 lbpp[value++] = lb_normal;
3608                 if (hw->phy.media_type == e1000_media_type_copper)
3609                         lbpp[value++] = lb_phy;
3610                 else
3611                         lbpp[value++] = lb_serdes;
3612                 lbpp[value++] = lb_external;
3613                 break;
3614 
3615         case LB_GET_MODE:
3616                 size = sizeof (uint32_t);
3617                 if (iocp->ioc_count != size)
3618                         return (IOC_INVAL);
3619 
3620                 lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3621                 *lbmp = igb->loopback_mode;
3622                 break;
3623 
3624         case LB_SET_MODE:
3625                 size = 0;
3626                 if (iocp->ioc_count != sizeof (uint32_t))
3627                         return (IOC_INVAL);
3628 
3629                 lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3630                 if (!igb_set_loopback_mode(igb, *lbmp))
3631                         return (IOC_INVAL);
3632                 break;
3633         }
3634 
3635         iocp->ioc_count = size;
3636         iocp->ioc_error = 0;
3637 
3638         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3639                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3640                 return (IOC_INVAL);
3641         }
3642 
3643         return (IOC_REPLY);
3644 }
3645 
3646 /*
3647  * igb_set_loopback_mode - Setup loopback based on the loopback mode
3648  */
3649 static boolean_t
3650 igb_set_loopback_mode(igb_t *igb, uint32_t mode)
3651 {
3652         struct e1000_hw *hw;
3653         int i;
3654 
3655         if (mode == igb->loopback_mode)
3656                 return (B_TRUE);
3657 
3658         hw = &igb->hw;
3659 
3660         igb->loopback_mode = mode;
3661 
3662         if (mode == IGB_LB_NONE) {
3663                 /* Reset the chip */
3664                 hw->phy.autoneg_wait_to_complete = B_TRUE;
3665                 (void) igb_reset(igb);
3666                 hw->phy.autoneg_wait_to_complete = B_FALSE;
3667                 return (B_TRUE);
3668         }
3669 
3670         mutex_enter(&igb->gen_lock);
3671 
3672         switch (mode) {
3673         default:
3674                 mutex_exit(&igb->gen_lock);
3675                 return (B_FALSE);
3676 
3677         case IGB_LB_EXTERNAL:
3678                 igb_set_external_loopback(igb);
3679                 break;
3680 
3681         case IGB_LB_INTERNAL_PHY:
3682                 igb_set_internal_phy_loopback(igb);
3683                 break;
3684 
3685         case IGB_LB_INTERNAL_SERDES:
3686                 igb_set_internal_serdes_loopback(igb);
3687                 break;
3688         }
3689 
3690         mutex_exit(&igb->gen_lock);
3691 
3692         /*
3693          * When external loopback is set, wait up to 1000ms to get the link up.
3694          * According to test, 1000ms can work and it's an experimental value.
3695          */
3696         if (mode == IGB_LB_EXTERNAL) {
3697                 for (i = 0; i <= 10; i++) {
3698                         mutex_enter(&igb->gen_lock);
3699                         (void) igb_link_check(igb);
3700                         mutex_exit(&igb->gen_lock);
3701 
3702                         if (igb->link_state == LINK_STATE_UP)
3703                                 break;
3704 
3705                         msec_delay(100);
3706                 }
3707 
3708                 if (igb->link_state != LINK_STATE_UP) {
3709                         /*
3710                          * Does not support external loopback.
3711                          * Reset driver to loopback none.
3712                          */
3713                         igb->loopback_mode = IGB_LB_NONE;
3714 
3715                         /* Reset the chip */
3716                         hw->phy.autoneg_wait_to_complete = B_TRUE;
3717                         (void) igb_reset(igb);
3718                         hw->phy.autoneg_wait_to_complete = B_FALSE;
3719 
3720                         IGB_DEBUGLOG_0(igb, "Set external loopback failed, "
3721                             "reset to loopback none.");
3722 
3723                         return (B_FALSE);
3724                 }
3725         }
3726 
3727         return (B_TRUE);
3728 }
3729 
3730 /*
3731  * igb_set_external_loopback - Set the external loopback mode
3732  */
3733 static void
3734 igb_set_external_loopback(igb_t *igb)
3735 {
3736         struct e1000_hw *hw;
3737         uint32_t ctrl_ext;
3738 
3739         hw = &igb->hw;
3740 
3741         /* Set link mode to PHY (00b) in the Extended Control register */
3742         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3743         ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3744         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3745 
3746         (void) e1000_write_phy_reg(hw, 0x0, 0x0140);
3747         (void) e1000_write_phy_reg(hw, 0x9, 0x1a00);
3748         (void) e1000_write_phy_reg(hw, 0x12, 0x1610);
3749         (void) e1000_write_phy_reg(hw, 0x1f37, 0x3f1c);
3750 }
3751 
3752 /*
3753  * igb_set_internal_phy_loopback - Set the internal PHY loopback mode
3754  */
3755 static void
3756 igb_set_internal_phy_loopback(igb_t *igb)
3757 {
3758         struct e1000_hw *hw;
3759         uint32_t ctrl_ext;
3760         uint16_t phy_ctrl;
3761         uint16_t phy_pconf;
3762 
3763         hw = &igb->hw;
3764 
3765         /* Set link mode to PHY (00b) in the Extended Control register */
3766         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3767         ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3768         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3769 
3770         /*
3771          * Set PHY control register (0x4140):
3772          *    Set full duplex mode
3773          *    Set loopback bit
3774          *    Clear auto-neg enable bit
3775          *    Set PHY speed
3776          */
3777         phy_ctrl = MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000 | MII_CR_LOOPBACK;
3778         (void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3779 
3780         /* Set the link disable bit in the Port Configuration register */
3781         (void) e1000_read_phy_reg(hw, 0x10, &phy_pconf);
3782         phy_pconf |= (uint16_t)1 << 14;
3783         (void) e1000_write_phy_reg(hw, 0x10, phy_pconf);
3784 }
3785 
3786 /*
3787  * igb_set_internal_serdes_loopback - Set the internal SerDes loopback mode
3788  */
3789 static void
3790 igb_set_internal_serdes_loopback(igb_t *igb)
3791 {
3792         struct e1000_hw *hw;
3793         uint32_t ctrl_ext;
3794         uint32_t ctrl;
3795         uint32_t pcs_lctl;
3796         uint32_t connsw;
3797 
3798         hw = &igb->hw;
3799 
3800         /* Set link mode to SerDes (11b) in the Extended Control register */
3801         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3802         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
3803         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3804 
3805         /* Configure the SerDes to loopback */
3806         E1000_WRITE_REG(hw, E1000_SCTL, 0x410);
3807 
3808         /* Set Device Control register */
3809         ctrl = E1000_READ_REG(hw, E1000_CTRL);
3810         ctrl |= (E1000_CTRL_FD |        /* Force full duplex */
3811             E1000_CTRL_SLU);            /* Force link up */
3812         ctrl &= ~(E1000_CTRL_RFCE | /* Disable receive flow control */
3813             E1000_CTRL_TFCE |           /* Disable transmit flow control */
3814             E1000_CTRL_LRST);           /* Clear link reset */
3815         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3816 
3817         /* Set PCS Link Control register */
3818         pcs_lctl = E1000_READ_REG(hw, E1000_PCS_LCTL);
3819         pcs_lctl |= (E1000_PCS_LCTL_FORCE_LINK |
3820             E1000_PCS_LCTL_FSD |
3821             E1000_PCS_LCTL_FDV_FULL |
3822             E1000_PCS_LCTL_FLV_LINK_UP);
3823         pcs_lctl &= ~E1000_PCS_LCTL_AN_ENABLE;
3824         E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_lctl);
3825 
3826         /* Set the Copper/Fiber Switch Control - CONNSW register */
3827         connsw = E1000_READ_REG(hw, E1000_CONNSW);
3828         connsw &= ~E1000_CONNSW_ENRGSRC;
3829         E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
3830 }
3831 
3832 #pragma inline(igb_intr_rx_work)
3833 /*
3834  * igb_intr_rx_work - rx processing of ISR
3835  */
3836 static void
3837 igb_intr_rx_work(igb_rx_ring_t *rx_ring)
3838 {
3839         mblk_t *mp;
3840 
3841         mutex_enter(&rx_ring->rx_lock);
3842         mp = igb_rx(rx_ring, IGB_NO_POLL);
3843         mutex_exit(&rx_ring->rx_lock);
3844 
3845         if (mp != NULL)
3846                 mac_rx_ring(rx_ring->igb->mac_hdl, rx_ring->ring_handle, mp,
3847                     rx_ring->ring_gen_num);
3848 }
3849 
3850 #pragma inline(igb_intr_tx_work)
3851 /*
3852  * igb_intr_tx_work - tx processing of ISR
3853  */
3854 static void
3855 igb_intr_tx_work(igb_tx_ring_t *tx_ring)
3856 {
3857         igb_t *igb = tx_ring->igb;
3858 
3859         /* Recycle the tx descriptors */
3860         tx_ring->tx_recycle(tx_ring);
3861 
3862         /* Schedule the re-transmit */
3863         if (tx_ring->reschedule &&
3864             (tx_ring->tbd_free >= igb->tx_resched_thresh)) {
3865                 tx_ring->reschedule = B_FALSE;
3866                 mac_tx_ring_update(tx_ring->igb->mac_hdl, tx_ring->ring_handle);
3867                 IGB_DEBUG_STAT(tx_ring->stat_reschedule);
3868         }
3869 }
3870 
3871 #pragma inline(igb_intr_link_work)
3872 /*
3873  * igb_intr_link_work - link-status-change processing of ISR
3874  */
3875 static void
3876 igb_intr_link_work(igb_t *igb)
3877 {
3878         boolean_t link_changed;
3879 
3880         igb_stop_watchdog_timer(igb);
3881 
3882         mutex_enter(&igb->gen_lock);
3883 
3884         /*
3885          * Because we got a link-status-change interrupt, force
3886          * e1000_check_for_link() to look at phy
3887          */
3888         igb->hw.mac.get_link_status = B_TRUE;
3889 
3890         /* igb_link_check takes care of link status change */
3891         link_changed = igb_link_check(igb);
3892 
3893         /* Get new phy state */
3894         igb_get_phy_state(igb);
3895 
3896         mutex_exit(&igb->gen_lock);
3897 
3898         if (link_changed)
3899                 mac_link_update(igb->mac_hdl, igb->link_state);
3900 
3901         igb_start_watchdog_timer(igb);
3902 }
3903 
3904 /*
3905  * igb_intr_legacy - Interrupt handler for legacy interrupts
3906  */
3907 static uint_t
3908 igb_intr_legacy(void *arg1, void *arg2)
3909 {
3910         igb_t *igb = (igb_t *)arg1;
3911         igb_tx_ring_t *tx_ring;
3912         uint32_t icr;
3913         mblk_t *mp;
3914         boolean_t tx_reschedule;
3915         boolean_t link_changed;
3916         uint_t result;
3917 
3918         _NOTE(ARGUNUSED(arg2));
3919 
3920         mutex_enter(&igb->gen_lock);
3921 
3922         if (igb->igb_state & IGB_SUSPENDED) {
3923                 mutex_exit(&igb->gen_lock);
3924                 return (DDI_INTR_UNCLAIMED);
3925         }
3926 
3927         mp = NULL;
3928         tx_reschedule = B_FALSE;
3929         link_changed = B_FALSE;
3930         icr = E1000_READ_REG(&igb->hw, E1000_ICR);
3931 
3932         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3933                 mutex_exit(&igb->gen_lock);
3934                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3935                 atomic_or_32(&igb->igb_state, IGB_ERROR);
3936                 return (DDI_INTR_UNCLAIMED);
3937         }
3938 
3939         if (icr & E1000_ICR_INT_ASSERTED) {
3940                 /*
3941                  * E1000_ICR_INT_ASSERTED bit was set:
3942                  * Read(Clear) the ICR, claim this interrupt,
3943                  * look for work to do.
3944                  */
3945                 ASSERT(igb->num_rx_rings == 1);
3946                 ASSERT(igb->num_tx_rings == 1);
3947 
3948                 /* Make sure all interrupt causes cleared */
3949                 (void) E1000_READ_REG(&igb->hw, E1000_EICR);
3950 
3951                 if (icr & E1000_ICR_RXT0) {
3952                         mp = igb_rx(&igb->rx_rings[0], IGB_NO_POLL);
3953                 }
3954 
3955                 if (icr & E1000_ICR_TXDW) {
3956                         tx_ring = &igb->tx_rings[0];
3957 
3958                         /* Recycle the tx descriptors */
3959                         tx_ring->tx_recycle(tx_ring);
3960 
3961                         /* Schedule the re-transmit */
3962                         tx_reschedule = (tx_ring->reschedule &&
3963                             (tx_ring->tbd_free >= igb->tx_resched_thresh));
3964                 }
3965 
3966                 if (icr & E1000_ICR_LSC) {
3967                         /*
3968                          * Because we got a link-status-change interrupt, force
3969                          * e1000_check_for_link() to look at phy
3970                          */
3971                         igb->hw.mac.get_link_status = B_TRUE;
3972 
3973                         /* igb_link_check takes care of link status change */
3974                         link_changed = igb_link_check(igb);
3975 
3976                         /* Get new phy state */
3977                         igb_get_phy_state(igb);
3978                 }
3979 
3980                 if (icr & E1000_ICR_DRSTA) {
3981                         /* 82580 Full Device Reset needed */
3982                         atomic_or_32(&igb->igb_state, IGB_STALL);
3983                 }
3984 
3985                 result = DDI_INTR_CLAIMED;
3986         } else {
3987                 /*
3988                  * E1000_ICR_INT_ASSERTED bit was not set:
3989                  * Don't claim this interrupt.
3990                  */
3991                 result = DDI_INTR_UNCLAIMED;
3992         }
3993 
3994         mutex_exit(&igb->gen_lock);
3995 
3996         /*
3997          * Do the following work outside of the gen_lock
3998          */
3999         if (mp != NULL)
4000                 mac_rx(igb->mac_hdl, NULL, mp);
4001 
4002         if (tx_reschedule)  {
4003                 tx_ring->reschedule = B_FALSE;
4004                 mac_tx_ring_update(igb->mac_hdl, tx_ring->ring_handle);
4005                 IGB_DEBUG_STAT(tx_ring->stat_reschedule);
4006         }
4007 
4008         if (link_changed)
4009                 mac_link_update(igb->mac_hdl, igb->link_state);
4010 
4011         return (result);
4012 }
4013 
4014 /*
4015  * igb_intr_msi - Interrupt handler for MSI
4016  */
4017 static uint_t
4018 igb_intr_msi(void *arg1, void *arg2)
4019 {
4020         igb_t *igb = (igb_t *)arg1;
4021         uint32_t icr;
4022 
4023         _NOTE(ARGUNUSED(arg2));
4024 
4025         icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4026 
4027         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4028                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4029                 atomic_or_32(&igb->igb_state, IGB_ERROR);
4030                 return (DDI_INTR_CLAIMED);
4031         }
4032 
4033         /* Make sure all interrupt causes cleared */
4034         (void) E1000_READ_REG(&igb->hw, E1000_EICR);
4035 
4036         /*
4037          * For MSI interrupt, we have only one vector,
4038          * so we have only one rx ring and one tx ring enabled.
4039          */
4040         ASSERT(igb->num_rx_rings == 1);
4041         ASSERT(igb->num_tx_rings == 1);
4042 
4043         if (icr & E1000_ICR_RXT0) {
4044                 igb_intr_rx_work(&igb->rx_rings[0]);
4045         }
4046 
4047         if (icr & E1000_ICR_TXDW) {
4048                 igb_intr_tx_work(&igb->tx_rings[0]);
4049         }
4050 
4051         if (icr & E1000_ICR_LSC) {
4052                 igb_intr_link_work(igb);
4053         }
4054 
4055         if (icr & E1000_ICR_DRSTA) {
4056                 /* 82580 Full Device Reset needed */
4057                 atomic_or_32(&igb->igb_state, IGB_STALL);
4058         }
4059 
4060         return (DDI_INTR_CLAIMED);
4061 }
4062 
4063 /*
4064  * igb_intr_rx - Interrupt handler for rx
4065  */
4066 static uint_t
4067 igb_intr_rx(void *arg1, void *arg2)
4068 {
4069         igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)arg1;
4070 
4071         _NOTE(ARGUNUSED(arg2));
4072 
4073         /*
4074          * Only used via MSI-X vector so don't check cause bits
4075          * and only clean the given ring.
4076          */
4077         igb_intr_rx_work(rx_ring);
4078 
4079         return (DDI_INTR_CLAIMED);
4080 }
4081 
4082 /*
4083  * igb_intr_tx - Interrupt handler for tx
4084  */
4085 static uint_t
4086 igb_intr_tx(void *arg1, void *arg2)
4087 {
4088         igb_tx_ring_t *tx_ring = (igb_tx_ring_t *)arg1;
4089 
4090         _NOTE(ARGUNUSED(arg2));
4091 
4092         /*
4093          * Only used via MSI-X vector so don't check cause bits
4094          * and only clean the given ring.
4095          */
4096         igb_intr_tx_work(tx_ring);
4097 
4098         return (DDI_INTR_CLAIMED);
4099 }
4100 
4101 /*
4102  * igb_intr_tx_other - Interrupt handler for both tx and other
4103  *
4104  */
4105 static uint_t
4106 igb_intr_tx_other(void *arg1, void *arg2)
4107 {
4108         igb_t *igb = (igb_t *)arg1;
4109         uint32_t icr;
4110 
4111         _NOTE(ARGUNUSED(arg2));
4112 
4113         icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4114 
4115         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4116                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4117                 atomic_or_32(&igb->igb_state, IGB_ERROR);
4118                 return (DDI_INTR_CLAIMED);
4119         }
4120 
4121         /*
4122          * Look for tx reclaiming work first. Remember, in the
4123          * case of only interrupt sharing, only one tx ring is
4124          * used
4125          */
4126         igb_intr_tx_work(&igb->tx_rings[0]);
4127 
4128         /*
4129          * Check for "other" causes.
4130          */
4131         if (icr & E1000_ICR_LSC) {
4132                 igb_intr_link_work(igb);
4133         }
4134 
4135         /*
4136          * The DOUTSYNC bit indicates a tx packet dropped because
4137          * DMA engine gets "out of sync". There isn't a real fix
4138          * for this. The Intel recommendation is to count the number
4139          * of occurrences so user can detect when it is happening.
4140          * The issue is non-fatal and there's no recovery action
4141          * available.
4142          */
4143         if (icr & E1000_ICR_DOUTSYNC) {
4144                 IGB_STAT(igb->dout_sync);
4145         }
4146 
4147         if (icr & E1000_ICR_DRSTA) {
4148                 /* 82580 Full Device Reset needed */
4149                 atomic_or_32(&igb->igb_state, IGB_STALL);
4150         }
4151 
4152         return (DDI_INTR_CLAIMED);
4153 }
4154 
4155 /*
4156  * igb_alloc_intrs - Allocate interrupts for the driver
4157  *
4158  * Normal sequence is to try MSI-X; if not sucessful, try MSI;
4159  * if not successful, try Legacy.
4160  * igb->intr_force can be used to force sequence to start with
4161  * any of the 3 types.
4162  * If MSI-X is not used, number of tx/rx rings is forced to 1.
4163  */
4164 static int
4165 igb_alloc_intrs(igb_t *igb)
4166 {
4167         dev_info_t *devinfo;
4168         int intr_types;
4169         int rc;
4170 
4171         devinfo = igb->dip;
4172 
4173         /* Get supported interrupt types */
4174         rc = ddi_intr_get_supported_types(devinfo, &intr_types);
4175 
4176         if (rc != DDI_SUCCESS) {
4177                 igb_log(igb,
4178                     "Get supported interrupt types failed: %d", rc);
4179                 return (IGB_FAILURE);
4180         }
4181         IGB_DEBUGLOG_1(igb, "Supported interrupt types: %x", intr_types);
4182 
4183         igb->intr_type = 0;
4184 
4185         /* Install MSI-X interrupts */
4186         if ((intr_types & DDI_INTR_TYPE_MSIX) &&
4187             (igb->intr_force <= IGB_INTR_MSIX)) {
4188                 rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSIX);
4189 
4190                 if (rc == IGB_SUCCESS)
4191                         return (IGB_SUCCESS);
4192 
4193                 igb_log(igb,
4194                     "Allocate MSI-X failed, trying MSI interrupts...");
4195         }
4196 
4197         /* MSI-X not used, force rings to 1 */
4198         igb->num_rx_rings = 1;
4199         igb->num_tx_rings = 1;
4200         igb_log(igb,
4201             "MSI-X not used, force rx and tx queue number to 1");
4202 
4203         /* Install MSI interrupts */
4204         if ((intr_types & DDI_INTR_TYPE_MSI) &&
4205             (igb->intr_force <= IGB_INTR_MSI)) {
4206                 rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSI);
4207 
4208                 if (rc == IGB_SUCCESS)
4209                         return (IGB_SUCCESS);
4210 
4211                 igb_log(igb,
4212                     "Allocate MSI failed, trying Legacy interrupts...");
4213         }
4214 
4215         /* Install legacy interrupts */
4216         if (intr_types & DDI_INTR_TYPE_FIXED) {
4217                 rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_FIXED);
4218 
4219                 if (rc == IGB_SUCCESS)
4220                         return (IGB_SUCCESS);
4221 
4222                 igb_log(igb,
4223                     "Allocate Legacy interrupts failed");
4224         }
4225 
4226         /* If none of the 3 types succeeded, return failure */
4227         return (IGB_FAILURE);
4228 }
4229 
4230 /*
4231  * igb_alloc_intr_handles - Allocate interrupt handles.
4232  *
4233  * For legacy and MSI, only 1 handle is needed.  For MSI-X,
4234  * if fewer than 2 handles are available, return failure.
4235  * Upon success, this sets the number of Rx rings to a number that
4236  * matches the handles available for Rx interrupts.
4237  */
4238 static int
4239 igb_alloc_intr_handles(igb_t *igb, int intr_type)
4240 {
4241         dev_info_t *devinfo;
4242         int orig, request, count, avail, actual;
4243         int diff, minimum;
4244         int rc;
4245 
4246         devinfo = igb->dip;
4247 
4248         switch (intr_type) {
4249         case DDI_INTR_TYPE_FIXED:
4250                 request = 1;    /* Request 1 legacy interrupt handle */
4251                 minimum = 1;
4252                 IGB_DEBUGLOG_0(igb, "interrupt type: legacy");
4253                 break;
4254 
4255         case DDI_INTR_TYPE_MSI:
4256                 request = 1;    /* Request 1 MSI interrupt handle */
4257                 minimum = 1;
4258                 IGB_DEBUGLOG_0(igb, "interrupt type: MSI");
4259                 break;
4260 
4261         case DDI_INTR_TYPE_MSIX:
4262                 /*
4263                  * Number of vectors for the adapter is
4264                  * # rx rings + # tx rings
4265                  * One of tx vectors is for tx & other
4266                  */
4267                 request = igb->num_rx_rings + igb->num_tx_rings;
4268                 orig = request;
4269                 minimum = 2;
4270                 IGB_DEBUGLOG_0(igb, "interrupt type: MSI-X");
4271                 break;
4272 
4273         default:
4274                 igb_log(igb,
4275                     "invalid call to igb_alloc_intr_handles(): %d\n",
4276                     intr_type);
4277                 return (IGB_FAILURE);
4278         }
4279         IGB_DEBUGLOG_2(igb, "interrupt handles requested: %d  minimum: %d",
4280             request, minimum);
4281 
4282         /*
4283          * Get number of supported interrupts
4284          */
4285         rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4286         if ((rc != DDI_SUCCESS) || (count < minimum)) {
4287                 igb_log(igb,
4288                     "Get supported interrupt number failed. "
4289                     "Return: %d, count: %d", rc, count);
4290                 return (IGB_FAILURE);
4291         }
4292         IGB_DEBUGLOG_1(igb, "interrupts supported: %d", count);
4293 
4294         /*
4295          * Get number of available interrupts
4296          */
4297         rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4298         if ((rc != DDI_SUCCESS) || (avail < minimum)) {
4299                 igb_log(igb,
4300                     "Get available interrupt number failed. "
4301                     "Return: %d, available: %d", rc, avail);
4302                 return (IGB_FAILURE);
4303         }
4304         IGB_DEBUGLOG_1(igb, "interrupts available: %d", avail);
4305 
4306         if (avail < request) {
4307                 igb_log(igb, "Request %d handles, %d available",
4308                     request, avail);
4309                 request = avail;
4310         }
4311 
4312         actual = 0;
4313         igb->intr_cnt = 0;
4314 
4315         /*
4316          * Allocate an array of interrupt handles
4317          */
4318         igb->intr_size = request * sizeof (ddi_intr_handle_t);
4319         igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP);
4320 
4321         rc = ddi_intr_alloc(devinfo, igb->htable, intr_type, 0,
4322             request, &actual, DDI_INTR_ALLOC_NORMAL);
4323         if (rc != DDI_SUCCESS) {
4324                 igb_log(igb, "Allocate interrupts failed. "
4325                     "return: %d, request: %d, actual: %d",
4326                     rc, request, actual);
4327                 goto alloc_handle_fail;
4328         }
4329         IGB_DEBUGLOG_1(igb, "interrupts actually allocated: %d", actual);
4330 
4331         igb->intr_cnt = actual;
4332 
4333         if (actual < minimum) {
4334                 igb_log(igb, "Insufficient interrupt handles allocated: %d",
4335                     actual);
4336                 goto alloc_handle_fail;
4337         }
4338 
4339         /*
4340          * For MSI-X, actual might force us to reduce number of tx & rx rings
4341          */
4342         if ((intr_type == DDI_INTR_TYPE_MSIX) && (orig > actual)) {
4343                 diff = orig - actual;
4344                 if (diff < igb->num_tx_rings) {
4345                         igb_log(igb,
4346                             "MSI-X vectors force Tx queue number to %d",
4347                             igb->num_tx_rings - diff);
4348                         igb->num_tx_rings -= diff;
4349                 } else {
4350                         igb_log(igb,
4351                             "MSI-X vectors force Tx queue number to 1");
4352                         igb->num_tx_rings = 1;
4353 
4354                         igb_log(igb,
4355                             "MSI-X vectors force Rx queue number to %d",
4356                             actual - 1);
4357                         igb->num_rx_rings = actual - 1;
4358                 }
4359         }
4360 
4361         /*
4362          * Get priority for first vector, assume remaining are all the same
4363          */
4364         rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri);
4365         if (rc != DDI_SUCCESS) {
4366                 igb_log(igb,
4367                     "Get interrupt priority failed: %d", rc);
4368                 goto alloc_handle_fail;
4369         }
4370 
4371         rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap);
4372         if (rc != DDI_SUCCESS) {
4373                 igb_log(igb,
4374                     "Get interrupt cap failed: %d", rc);
4375                 goto alloc_handle_fail;
4376         }
4377 
4378         igb->intr_type = intr_type;
4379 
4380         return (IGB_SUCCESS);
4381 
4382 alloc_handle_fail:
4383         igb_rem_intrs(igb);
4384 
4385         return (IGB_FAILURE);
4386 }
4387 
4388 /*
4389  * igb_add_intr_handlers - Add interrupt handlers based on the interrupt type
4390  *
4391  * Before adding the interrupt handlers, the interrupt vectors have
4392  * been allocated, and the rx/tx rings have also been allocated.
4393  */
4394 static int
4395 igb_add_intr_handlers(igb_t *igb)
4396 {
4397         igb_rx_ring_t *rx_ring;
4398         igb_tx_ring_t *tx_ring;
4399         int vector;
4400         int rc;
4401         int i;
4402 
4403         vector = 0;
4404 
4405         switch (igb->intr_type) {
4406         case DDI_INTR_TYPE_MSIX:
4407                 /* Add interrupt handler for tx + other */
4408                 tx_ring = &igb->tx_rings[0];
4409                 rc = ddi_intr_add_handler(igb->htable[vector],
4410                     (ddi_intr_handler_t *)igb_intr_tx_other,
4411                     (void *)igb, NULL);
4412 
4413                 if (rc != DDI_SUCCESS) {
4414                         igb_log(igb,
4415                             "Add tx/other interrupt handler failed: %d", rc);
4416                         return (IGB_FAILURE);
4417                 }
4418                 tx_ring->intr_vector = vector;
4419                 vector++;
4420 
4421                 /* Add interrupt handler for each rx ring */
4422                 for (i = 0; i < igb->num_rx_rings; i++) {
4423                         rx_ring = &igb->rx_rings[i];
4424 
4425                         rc = ddi_intr_add_handler(igb->htable[vector],
4426                             (ddi_intr_handler_t *)igb_intr_rx,
4427                             (void *)rx_ring, NULL);
4428 
4429                         if (rc != DDI_SUCCESS) {
4430                                 igb_log(igb,
4431                                     "Add rx interrupt handler failed. "
4432                                     "return: %d, rx ring: %d", rc, i);
4433                                 for (vector--; vector >= 0; vector--) {
4434                                         (void) ddi_intr_remove_handler(
4435                                             igb->htable[vector]);
4436                                 }
4437                                 return (IGB_FAILURE);
4438                         }
4439 
4440                         rx_ring->intr_vector = vector;
4441 
4442                         vector++;
4443                 }
4444 
4445                 /* Add interrupt handler for each tx ring from 2nd ring */
4446                 for (i = 1; i < igb->num_tx_rings; i++) {
4447                         tx_ring = &igb->tx_rings[i];
4448 
4449                         rc = ddi_intr_add_handler(igb->htable[vector],
4450                             (ddi_intr_handler_t *)igb_intr_tx,
4451                             (void *)tx_ring, NULL);
4452 
4453                         if (rc != DDI_SUCCESS) {
4454                                 igb_log(igb,
4455                                     "Add tx interrupt handler failed. "
4456                                     "return: %d, tx ring: %d", rc, i);
4457                                 for (vector--; vector >= 0; vector--) {
4458                                         (void) ddi_intr_remove_handler(
4459                                             igb->htable[vector]);
4460                                 }
4461                                 return (IGB_FAILURE);
4462                         }
4463 
4464                         tx_ring->intr_vector = vector;
4465 
4466                         vector++;
4467                 }
4468 
4469                 break;
4470 
4471         case DDI_INTR_TYPE_MSI:
4472                 /* Add interrupt handlers for the only vector */
4473                 rc = ddi_intr_add_handler(igb->htable[vector],
4474                     (ddi_intr_handler_t *)igb_intr_msi,
4475                     (void *)igb, NULL);
4476 
4477                 if (rc != DDI_SUCCESS) {
4478                         igb_log(igb,
4479                             "Add MSI interrupt handler failed: %d", rc);
4480                         return (IGB_FAILURE);
4481                 }
4482 
4483                 rx_ring = &igb->rx_rings[0];
4484                 rx_ring->intr_vector = vector;
4485 
4486                 vector++;
4487                 break;
4488 
4489         case DDI_INTR_TYPE_FIXED:
4490                 /* Add interrupt handlers for the only vector */
4491                 rc = ddi_intr_add_handler(igb->htable[vector],
4492                     (ddi_intr_handler_t *)igb_intr_legacy,
4493                     (void *)igb, NULL);
4494 
4495                 if (rc != DDI_SUCCESS) {
4496                         igb_log(igb,
4497                             "Add legacy interrupt handler failed: %d", rc);
4498                         return (IGB_FAILURE);
4499                 }
4500 
4501                 rx_ring = &igb->rx_rings[0];
4502                 rx_ring->intr_vector = vector;
4503 
4504                 vector++;
4505                 break;
4506 
4507         default:
4508                 return (IGB_FAILURE);
4509         }
4510 
4511         ASSERT(vector == igb->intr_cnt);
4512 
4513         return (IGB_SUCCESS);
4514 }
4515 
4516 /*
4517  * igb_setup_msix_82575 - setup 82575 adapter to use MSI-X interrupts
4518  *
4519  * For each vector enabled on the adapter, Set the MSIXBM register accordingly
4520  */
4521 static void
4522 igb_setup_msix_82575(igb_t *igb)
4523 {
4524         uint32_t eims = 0;
4525         int i, vector;
4526         struct e1000_hw *hw = &igb->hw;
4527 
4528         /*
4529          * Set vector for tx ring 0 and other causes.
4530          * NOTE assumption that it is vector 0.
4531          */
4532         vector = 0;
4533 
4534         igb->eims_mask = E1000_EICR_TX_QUEUE0 | E1000_EICR_OTHER;
4535         E1000_WRITE_REG(hw, E1000_MSIXBM(vector), igb->eims_mask);
4536         vector++;
4537 
4538         for (i = 0; i < igb->num_rx_rings; i++) {
4539                 /*
4540                  * Set vector for each rx ring
4541                  */
4542                 eims = (E1000_EICR_RX_QUEUE0 << i);
4543                 E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4544 
4545                 /*
4546                  * Accumulate bits to enable in
4547                  * igb_enable_adapter_interrupts_82575()
4548                  */
4549                 igb->eims_mask |= eims;
4550 
4551                 vector++;
4552         }
4553 
4554         for (i = 1; i < igb->num_tx_rings; i++) {
4555                 /*
4556                  * Set vector for each tx ring from 2nd tx ring
4557                  */
4558                 eims = (E1000_EICR_TX_QUEUE0 << i);
4559                 E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4560 
4561                 /*
4562                  * Accumulate bits to enable in
4563                  * igb_enable_adapter_interrupts_82575()
4564                  */
4565                 igb->eims_mask |= eims;
4566 
4567                 vector++;
4568         }
4569 
4570         ASSERT(vector == igb->intr_cnt);
4571 
4572         /*
4573          * Disable IAM for ICR interrupt bits
4574          */
4575         E1000_WRITE_REG(hw, E1000_IAM, 0);
4576         E1000_WRITE_FLUSH(hw);
4577 }
4578 
4579 /*
4580  * igb_setup_msix_82576 - setup 82576 adapter to use MSI-X interrupts
4581  *
4582  * 82576 uses a table based method for assigning vectors.  Each queue has a
4583  * single entry in the table to which we write a vector number along with a
4584  * "valid" bit.  The entry is a single byte in a 4-byte register.  Vectors
4585  * take a different position in the 4-byte register depending on whether
4586  * they are numbered above or below 8.
4587  */
4588 static void
4589 igb_setup_msix_82576(igb_t *igb)
4590 {
4591         struct e1000_hw *hw = &igb->hw;
4592         uint32_t ivar, index, vector;
4593         int i;
4594 
4595         /* must enable msi-x capability before IVAR settings */
4596         E1000_WRITE_REG(hw, E1000_GPIE,
4597             (E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_NSICR));
4598 
4599         /*
4600          * Set vector for tx ring 0 and other causes.
4601          * NOTE assumption that it is vector 0.
4602          * This is also interdependent with installation of interrupt service
4603          * routines in igb_add_intr_handlers().
4604          */
4605 
4606         /* assign "other" causes to vector 0 */
4607         vector = 0;
4608         ivar = ((vector | E1000_IVAR_VALID) << 8);
4609         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4610 
4611         /* assign tx ring 0 to vector 0 */
4612         ivar = ((vector | E1000_IVAR_VALID) << 8);
4613         E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4614 
4615         /* prepare to enable tx & other interrupt causes */
4616         igb->eims_mask = (1 << vector);
4617 
4618         vector ++;
4619         for (i = 0; i < igb->num_rx_rings; i++) {
4620                 /*
4621                  * Set vector for each rx ring
4622                  */
4623                 index = (i & 0x7);
4624                 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4625 
4626                 if (i < 8) {
4627                         /* vector goes into low byte of register */
4628                         ivar = ivar & 0xFFFFFF00;
4629                         ivar |= (vector | E1000_IVAR_VALID);
4630                 } else {
4631                         /* vector goes into third byte of register */
4632                         ivar = ivar & 0xFF00FFFF;
4633                         ivar |= ((vector | E1000_IVAR_VALID) << 16);
4634                 }
4635                 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4636 
4637                 /* Accumulate interrupt-cause bits to enable */
4638                 igb->eims_mask |= (1 << vector);
4639 
4640                 vector ++;
4641         }
4642 
4643         for (i = 1; i < igb->num_tx_rings; i++) {
4644                 /*
4645                  * Set vector for each tx ring from 2nd tx ring.
4646                  * Note assumption that tx vectors numericall follow rx vectors.
4647                  */
4648                 index = (i & 0x7);
4649                 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4650 
4651                 if (i < 8) {
4652                         /* vector goes into second byte of register */
4653                         ivar = ivar & 0xFFFF00FF;
4654                         ivar |= ((vector | E1000_IVAR_VALID) << 8);
4655                 } else {
4656                         /* vector goes into fourth byte of register */
4657                         ivar = ivar & 0x00FFFFFF;
4658                         ivar |= (vector | E1000_IVAR_VALID) << 24;
4659                 }
4660                 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4661 
4662                 /* Accumulate interrupt-cause bits to enable */
4663                 igb->eims_mask |= (1 << vector);
4664 
4665                 vector ++;
4666         }
4667 
4668         ASSERT(vector == igb->intr_cnt);
4669 }
4670 
4671 /*
4672  * igb_setup_msix_82580 - setup 82580 adapter to use MSI-X interrupts
4673  *
4674  * 82580 uses same table approach at 82576 but has fewer entries.  Each
4675  * queue has a single entry in the table to which we write a vector number
4676  * along with a "valid" bit.  Vectors take a different position in the
4677  * register depending on * whether * they are numbered above or below 4.
4678  */
4679 static void
4680 igb_setup_msix_82580(igb_t *igb)
4681 {
4682         struct e1000_hw *hw = &igb->hw;
4683         uint32_t ivar, index, vector;
4684         int i;
4685 
4686         /* must enable msi-x capability before IVAR settings */
4687         E1000_WRITE_REG(hw, E1000_GPIE, (E1000_GPIE_MSIX_MODE |
4688             E1000_GPIE_PBA | E1000_GPIE_NSICR | E1000_GPIE_EIAME));
4689         /*
4690          * Set vector for tx ring 0 and other causes.
4691          * NOTE assumption that it is vector 0.
4692          * This is also interdependent with installation of interrupt service
4693          * routines in igb_add_intr_handlers().
4694          */
4695 
4696         /* assign "other" causes to vector 0 */
4697         vector = 0;
4698         ivar = ((vector | E1000_IVAR_VALID) << 8);
4699         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4700 
4701         /* assign tx ring 0 to vector 0 */
4702         ivar = ((vector | E1000_IVAR_VALID) << 8);
4703         E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4704 
4705         /* prepare to enable tx & other interrupt causes */
4706         igb->eims_mask = (1 << vector);
4707 
4708         vector ++;
4709 
4710         for (i = 0; i < igb->num_rx_rings; i++) {
4711                 /*
4712                  * Set vector for each rx ring
4713                  */
4714                 index = (i >> 1);
4715                 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4716 
4717                 if (i & 1) {
4718                         /* vector goes into third byte of register */
4719                         ivar = ivar & 0xFF00FFFF;
4720                         ivar |= ((vector | E1000_IVAR_VALID) << 16);
4721                 } else {
4722                         /* vector goes into low byte of register */
4723                         ivar = ivar & 0xFFFFFF00;
4724                         ivar |= (vector | E1000_IVAR_VALID);
4725                 }
4726                 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4727 
4728                 /* Accumulate interrupt-cause bits to enable */
4729                 igb->eims_mask |= (1 << vector);
4730 
4731                 vector ++;
4732         }
4733 
4734         for (i = 1; i < igb->num_tx_rings; i++) {
4735                 /*
4736                  * Set vector for each tx ring from 2nd tx ring.
4737                  * Note assumption that tx vectors numericall follow rx vectors.
4738                  */
4739                 index = (i >> 1);
4740                 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4741 
4742                 if (i & 1) {
4743                         /* vector goes into high byte of register */
4744                         ivar = ivar & 0x00FFFFFF;
4745                         ivar |= ((vector | E1000_IVAR_VALID) << 24);
4746                 } else {
4747                         /* vector goes into second byte of register */
4748                         ivar = ivar & 0xFFFF00FF;
4749                         ivar |= (vector | E1000_IVAR_VALID) << 8;
4750                 }
4751                 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4752 
4753                 /* Accumulate interrupt-cause bits to enable */
4754                 igb->eims_mask |= (1 << vector);
4755 
4756                 vector ++;
4757         }
4758         ASSERT(vector == igb->intr_cnt);
4759 }
4760 
4761 /*
4762  * igb_rem_intr_handlers - remove the interrupt handlers
4763  */
4764 static void
4765 igb_rem_intr_handlers(igb_t *igb)
4766 {
4767         int i;
4768         int rc;
4769 
4770         for (i = 0; i < igb->intr_cnt; i++) {
4771                 rc = ddi_intr_remove_handler(igb->htable[i]);
4772                 if (rc != DDI_SUCCESS) {
4773                         IGB_DEBUGLOG_1(igb,
4774                             "Remove intr handler failed: %d", rc);
4775                 }
4776         }
4777 }
4778 
4779 /*
4780  * igb_rem_intrs - remove the allocated interrupts
4781  */
4782 static void
4783 igb_rem_intrs(igb_t *igb)
4784 {
4785         int i;
4786         int rc;
4787 
4788         for (i = 0; i < igb->intr_cnt; i++) {
4789                 rc = ddi_intr_free(igb->htable[i]);
4790                 if (rc != DDI_SUCCESS) {
4791                         IGB_DEBUGLOG_1(igb,
4792                             "Free intr failed: %d", rc);
4793                 }
4794         }
4795 
4796         kmem_free(igb->htable, igb->intr_size);
4797         igb->htable = NULL;
4798 }
4799 
4800 /*
4801  * igb_enable_intrs - enable all the ddi interrupts
4802  */
4803 static int
4804 igb_enable_intrs(igb_t *igb)
4805 {
4806         int i;
4807         int rc;
4808 
4809         /* Enable interrupts */
4810         if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4811                 /* Call ddi_intr_block_enable() for MSI */
4812                 rc = ddi_intr_block_enable(igb->htable, igb->intr_cnt);
4813                 if (rc != DDI_SUCCESS) {
4814                         igb_log(igb,
4815                             "Enable block intr failed: %d", rc);
4816                         return (IGB_FAILURE);
4817                 }
4818         } else {
4819                 /* Call ddi_intr_enable() for Legacy/MSI non block enable */
4820                 for (i = 0; i < igb->intr_cnt; i++) {
4821                         rc = ddi_intr_enable(igb->htable[i]);
4822                         if (rc != DDI_SUCCESS) {
4823                                 igb_log(igb,
4824                                     "Enable intr failed: %d", rc);
4825                                 return (IGB_FAILURE);
4826                         }
4827                 }
4828         }
4829 
4830         return (IGB_SUCCESS);
4831 }
4832 
4833 /*
4834  * igb_disable_intrs - disable all the ddi interrupts
4835  */
4836 static int
4837 igb_disable_intrs(igb_t *igb)
4838 {
4839         int i;
4840         int rc;
4841 
4842         /* Disable all interrupts */
4843         if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4844                 rc = ddi_intr_block_disable(igb->htable, igb->intr_cnt);
4845                 if (rc != DDI_SUCCESS) {
4846                         igb_log(igb,
4847                             "Disable block intr failed: %d", rc);
4848                         return (IGB_FAILURE);
4849                 }
4850         } else {
4851                 for (i = 0; i < igb->intr_cnt; i++) {
4852                         rc = ddi_intr_disable(igb->htable[i]);
4853                         if (rc != DDI_SUCCESS) {
4854                                 igb_log(igb,
4855                                     "Disable intr failed: %d", rc);
4856                                 return (IGB_FAILURE);
4857                         }
4858                 }
4859         }
4860 
4861         return (IGB_SUCCESS);
4862 }
4863 
4864 /*
4865  * igb_get_phy_state - Get and save the parameters read from PHY registers
4866  */
4867 static void
4868 igb_get_phy_state(igb_t *igb)
4869 {
4870         struct e1000_hw *hw = &igb->hw;
4871         uint16_t phy_ctrl;
4872         uint16_t phy_status;
4873         uint16_t phy_an_adv;
4874         uint16_t phy_an_exp;
4875         uint16_t phy_ext_status;
4876         uint16_t phy_1000t_ctrl;
4877         uint16_t phy_1000t_status;
4878         uint16_t phy_lp_able;
4879 
4880         ASSERT(mutex_owned(&igb->gen_lock));
4881 
4882         if (hw->phy.media_type == e1000_media_type_copper) {
4883                 (void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4884                 (void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
4885                 (void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_an_adv);
4886                 (void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_an_exp);
4887                 (void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
4888                 (void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_1000t_ctrl);
4889                 (void) e1000_read_phy_reg(hw,
4890                     PHY_1000T_STATUS, &phy_1000t_status);
4891                 (void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_lp_able);
4892 
4893                 igb->param_autoneg_cap =
4894                     (phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
4895                 igb->param_pause_cap =
4896                     (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
4897                 igb->param_asym_pause_cap =
4898                     (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
4899                 igb->param_1000fdx_cap =
4900                     ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4901                     (phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
4902                 igb->param_1000hdx_cap =
4903                     ((phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
4904                     (phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
4905                 igb->param_100t4_cap =
4906                     (phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
4907                 igb->param_100fdx_cap = ((phy_status & MII_SR_100X_FD_CAPS) ||
4908                     (phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
4909                 igb->param_100hdx_cap = ((phy_status & MII_SR_100X_HD_CAPS) ||
4910                     (phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
4911                 igb->param_10fdx_cap =
4912                     (phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
4913                 igb->param_10hdx_cap =
4914                     (phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
4915                 igb->param_rem_fault =
4916                     (phy_status & MII_SR_REMOTE_FAULT) ? 1 : 0;
4917 
4918                 igb->param_adv_autoneg_cap = hw->mac.autoneg;
4919                 igb->param_adv_pause_cap =
4920                     (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
4921                 igb->param_adv_asym_pause_cap =
4922                     (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
4923                 igb->param_adv_1000hdx_cap =
4924                     (phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
4925                 igb->param_adv_100t4_cap =
4926                     (phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
4927                 igb->param_adv_rem_fault =
4928                     (phy_an_adv & NWAY_AR_REMOTE_FAULT) ? 1 : 0;
4929                 if (igb->param_adv_autoneg_cap == 1) {
4930                         igb->param_adv_1000fdx_cap =
4931                             (phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
4932                         igb->param_adv_100fdx_cap =
4933                             (phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
4934                         igb->param_adv_100hdx_cap =
4935                             (phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
4936                         igb->param_adv_10fdx_cap =
4937                             (phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
4938                         igb->param_adv_10hdx_cap =
4939                             (phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
4940                 }
4941 
4942                 igb->param_lp_autoneg_cap =
4943                     (phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
4944                 igb->param_lp_pause_cap =
4945                     (phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
4946                 igb->param_lp_asym_pause_cap =
4947                     (phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
4948                 igb->param_lp_1000fdx_cap =
4949                     (phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
4950                 igb->param_lp_1000hdx_cap =
4951                     (phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
4952                 igb->param_lp_100t4_cap =
4953                     (phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
4954                 igb->param_lp_100fdx_cap =
4955                     (phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
4956                 igb->param_lp_100hdx_cap =
4957                     (phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
4958                 igb->param_lp_10fdx_cap =
4959                     (phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
4960                 igb->param_lp_10hdx_cap =
4961                     (phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
4962                 igb->param_lp_rem_fault =
4963                     (phy_lp_able & NWAY_LPAR_REMOTE_FAULT) ? 1 : 0;
4964         } else {
4965                 /*
4966                  * 1Gig Fiber adapter only offers 1Gig Full Duplex.
4967                  */
4968                 igb->param_autoneg_cap = 0;
4969                 igb->param_pause_cap = 1;
4970                 igb->param_asym_pause_cap = 1;
4971                 igb->param_1000fdx_cap = 1;
4972                 igb->param_1000hdx_cap = 0;
4973                 igb->param_100t4_cap = 0;
4974                 igb->param_100fdx_cap = 0;
4975                 igb->param_100hdx_cap = 0;
4976                 igb->param_10fdx_cap = 0;
4977                 igb->param_10hdx_cap = 0;
4978 
4979                 igb->param_adv_autoneg_cap = 0;
4980                 igb->param_adv_pause_cap = 1;
4981                 igb->param_adv_asym_pause_cap = 1;
4982                 igb->param_adv_1000fdx_cap = 1;
4983                 igb->param_adv_1000hdx_cap = 0;
4984                 igb->param_adv_100t4_cap = 0;
4985                 igb->param_adv_100fdx_cap = 0;
4986                 igb->param_adv_100hdx_cap = 0;
4987                 igb->param_adv_10fdx_cap = 0;
4988                 igb->param_adv_10hdx_cap = 0;
4989 
4990                 igb->param_lp_autoneg_cap = 0;
4991                 igb->param_lp_pause_cap = 0;
4992                 igb->param_lp_asym_pause_cap = 0;
4993                 igb->param_lp_1000fdx_cap = 0;
4994                 igb->param_lp_1000hdx_cap = 0;
4995                 igb->param_lp_100t4_cap = 0;
4996                 igb->param_lp_100fdx_cap = 0;
4997                 igb->param_lp_100hdx_cap = 0;
4998                 igb->param_lp_10fdx_cap = 0;
4999                 igb->param_lp_10hdx_cap = 0;
5000                 igb->param_lp_rem_fault = 0;
5001         }
5002 }
5003 
5004 /*
5005  * synchronize the adv* and en* parameters.
5006  *
5007  * See comments in <sys/dld.h> for details of the *_en_*
5008  * parameters. The usage of ndd for setting adv parameters will
5009  * synchronize all the en parameters with the e1000g parameters,
5010  * implicitly disabling any settings made via dladm.
5011  */
5012 static void
5013 igb_param_sync(igb_t *igb)
5014 {
5015         igb->param_en_1000fdx_cap = igb->param_adv_1000fdx_cap;
5016         igb->param_en_1000hdx_cap = igb->param_adv_1000hdx_cap;
5017         igb->param_en_100t4_cap = igb->param_adv_100t4_cap;
5018         igb->param_en_100fdx_cap = igb->param_adv_100fdx_cap;
5019         igb->param_en_100hdx_cap = igb->param_adv_100hdx_cap;
5020         igb->param_en_10fdx_cap = igb->param_adv_10fdx_cap;
5021         igb->param_en_10hdx_cap = igb->param_adv_10hdx_cap;
5022 }
5023 
5024 /*
5025  * igb_get_driver_control
5026  */
5027 static void
5028 igb_get_driver_control(struct e1000_hw *hw)
5029 {
5030         uint32_t ctrl_ext;
5031 
5032         /* Notify firmware that driver is in control of device */
5033         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5034         ctrl_ext |= E1000_CTRL_EXT_DRV_LOAD;
5035         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5036 }
5037 
5038 /*
5039  * igb_release_driver_control
5040  */
5041 static void
5042 igb_release_driver_control(struct e1000_hw *hw)
5043 {
5044         uint32_t ctrl_ext;
5045 
5046         /* Notify firmware that driver is no longer in control of device */
5047         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5048         ctrl_ext &= ~E1000_CTRL_EXT_DRV_LOAD;
5049         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5050 }
5051 
5052 /*
5053  * igb_atomic_reserve - Atomic decrease operation
5054  */
5055 int
5056 igb_atomic_reserve(uint32_t *count_p, uint32_t n)
5057 {
5058         uint32_t oldval;
5059         uint32_t newval;
5060 
5061         /* ATOMICALLY */
5062         do {
5063                 oldval = *count_p;
5064                 if (oldval < n)
5065                         return (-1);
5066                 newval = oldval - n;
5067         } while (atomic_cas_32(count_p, oldval, newval) != oldval);
5068 
5069         return (newval);
5070 }
5071 
5072 /*
5073  * FMA support
5074  */
5075 
5076 int
5077 igb_check_acc_handle(ddi_acc_handle_t handle)
5078 {
5079         ddi_fm_error_t de;
5080 
5081         ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5082         ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5083         return (de.fme_status);
5084 }
5085 
5086 int
5087 igb_check_dma_handle(ddi_dma_handle_t handle)
5088 {
5089         ddi_fm_error_t de;
5090 
5091         ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5092         return (de.fme_status);
5093 }
5094 
5095 /*
5096  * The IO fault service error handling callback function
5097  */
5098 /*ARGSUSED*/
5099 static int
5100 igb_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5101 {
5102         /*
5103          * as the driver can always deal with an error in any dma or
5104          * access handle, we can just return the fme_status value.
5105          */
5106         pci_ereport_post(dip, err, NULL);
5107         return (err->fme_status);
5108 }
5109 
5110 static void
5111 igb_fm_init(igb_t *igb)
5112 {
5113         ddi_iblock_cookie_t iblk;
5114         int fma_dma_flag;
5115 
5116         /* Only register with IO Fault Services if we have some capability */
5117         if (igb->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5118                 igb_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5119         } else {
5120                 igb_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5121         }
5122 
5123         if (igb->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5124                 fma_dma_flag = 1;
5125         } else {
5126                 fma_dma_flag = 0;
5127         }
5128 
5129         (void) igb_set_fma_flags(fma_dma_flag);
5130 
5131         if (igb->fm_capabilities) {
5132 
5133                 /* Register capabilities with IO Fault Services */
5134                 ddi_fm_init(igb->dip, &igb->fm_capabilities, &iblk);
5135 
5136                 /*
5137                  * Initialize pci ereport capabilities if ereport capable
5138                  */
5139                 if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5140                     DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5141                         pci_ereport_setup(igb->dip);
5142 
5143                 /*
5144                  * Register error callback if error callback capable
5145                  */
5146                 if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5147                         ddi_fm_handler_register(igb->dip,
5148                             igb_fm_error_cb, (void*) igb);
5149         }
5150 }
5151 
5152 static void
5153 igb_fm_fini(igb_t *igb)
5154 {
5155         /* Only unregister FMA capabilities if we registered some */
5156         if (igb->fm_capabilities) {
5157 
5158                 /*
5159                  * Release any resources allocated by pci_ereport_setup()
5160                  */
5161                 if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5162                     DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5163                         pci_ereport_teardown(igb->dip);
5164 
5165                 /*
5166                  * Un-register error callback if error callback capable
5167                  */
5168                 if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5169                         ddi_fm_handler_unregister(igb->dip);
5170 
5171                 /* Unregister from IO Fault Services */
5172                 ddi_fm_fini(igb->dip);
5173         }
5174 }
5175 
5176 void
5177 igb_fm_ereport(igb_t *igb, char *detail)
5178 {
5179         uint64_t ena;
5180         char buf[FM_MAX_CLASS];
5181 
5182         (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5183         ena = fm_ena_generate(0, FM_ENA_FMT1);
5184         if (DDI_FM_EREPORT_CAP(igb->fm_capabilities)) {
5185                 ddi_fm_ereport_post(igb->dip, buf, ena, DDI_NOSLEEP,
5186                     FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5187         }
5188 }