1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright(c) 2007-2010 Intel Corporation. All rights reserved.
  24  */
  25 
  26 /*
  27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
  28  */
  29 
  30 /* IntelVersion: 1.146.2.2 v3_3_14_3_BHSW1 */
  31 
  32 /*
  33  * 82575EB Gigabit Network Connection
  34  * 82575EB Gigabit Backplane Connection
  35  * 82575GB Gigabit Network Connection
  36  * 82576 Gigabit Network Connection
  37  * 82576 Quad Port Gigabit Mezzanine Adapter
  38  */
  39 
  40 #include "igb_api.h"
  41 
  42 static s32 e1000_init_phy_params_82575(struct e1000_hw *hw);
  43 static s32 e1000_init_nvm_params_82575(struct e1000_hw *hw);
  44 static s32 e1000_init_mac_params_82575(struct e1000_hw *hw);
  45 static s32 e1000_acquire_phy_82575(struct e1000_hw *hw);
  46 static void e1000_release_phy_82575(struct e1000_hw *hw);
  47 static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw);
  48 static void e1000_release_nvm_82575(struct e1000_hw *hw);
  49 static s32 e1000_check_for_link_82575(struct e1000_hw *hw);
  50 static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw);
  51 static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
  52     u16 *duplex);
  53 static s32 e1000_init_hw_82575(struct e1000_hw *hw);
  54 static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
  55 static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
  56     u16 *data);
  57 static s32 e1000_reset_hw_82575(struct e1000_hw *hw);
  58 static s32 e1000_reset_hw_82580(struct e1000_hw *hw);
  59 static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset,
  60     u16 *data);
  61 static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset,
  62     u16 data);
  63 static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
  64     bool active);
  65 static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw);
  66 static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw);
  67 static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
  68 static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
  69     u32 offset, u16 data);
  70 static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
  71 static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
  72 static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
  73     u16 *speed, u16 *duplex);
  74 static s32 e1000_get_phy_id_82575(struct e1000_hw *hw);
  75 static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
  76 static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
  77 static s32 e1000_reset_init_script_82575(struct e1000_hw *hw);
  78 static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw);
  79 static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
  80 static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
  81 static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
  82 
  83 static const u16 e1000_82580_rxpbs_table[] =
  84         {36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140};
  85 #define E1000_82580_RXPBS_TABLE_SIZE \
  86         (sizeof (e1000_82580_rxpbs_table)/sizeof (u16))
  87 
  88 /*
  89  * e1000_init_phy_params_82575 - Init PHY func ptrs.
  90  * @hw: pointer to the HW structure
  91  */
  92 static s32
  93 e1000_init_phy_params_82575(struct e1000_hw *hw)
  94 {
  95         struct e1000_phy_info *phy = &hw->phy;
  96         s32 ret_val = E1000_SUCCESS;
  97 
  98         DEBUGFUNC("e1000_init_phy_params_82575");
  99 
 100         if (hw->phy.media_type != e1000_media_type_copper) {
 101                 phy->type = e1000_phy_none;
 102                 goto out;
 103         }
 104 
 105         phy->ops.power_up = e1000_power_up_phy_copper;
 106         phy->ops.power_down = e1000_power_down_phy_copper_82575;
 107 
 108         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 109         phy->reset_delay_us = 100;
 110 
 111         phy->ops.acquire = e1000_acquire_phy_82575;
 112         phy->ops.check_reset_block = e1000_check_reset_block_generic;
 113         phy->ops.commit = e1000_phy_sw_reset_generic;
 114         phy->ops.get_cfg_done = e1000_get_cfg_done_82575;
 115         phy->ops.release = e1000_release_phy_82575;
 116 
 117         if (e1000_sgmii_active_82575(hw)) {
 118                 phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
 119                 phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
 120                 phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
 121         } else if (hw->mac.type == e1000_82580) {
 122                 phy->ops.reset = e1000_phy_hw_reset_generic;
 123                 phy->ops.read_reg = e1000_read_phy_reg_82580;
 124                 phy->ops.write_reg = e1000_write_phy_reg_82580;
 125         } else {
 126                 phy->ops.reset = e1000_phy_hw_reset_generic;
 127                 phy->ops.read_reg = e1000_read_phy_reg_igp;
 128                 phy->ops.write_reg = e1000_write_phy_reg_igp;
 129         }
 130 
 131         /* Set phy->phy_addr and phy->id. */
 132         ret_val = e1000_get_phy_id_82575(hw);
 133 
 134         /* Verify phy id and set remaining function pointers */
 135         switch (phy->id) {
 136         case M88E1111_I_PHY_ID:
 137                 phy->type = e1000_phy_m88;
 138                 phy->ops.check_polarity = e1000_check_polarity_m88;
 139                 phy->ops.get_info = e1000_get_phy_info_m88;
 140                 phy->ops.get_cable_length = e1000_get_cable_length_m88;
 141                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
 142                 break;
 143         case IGP03E1000_E_PHY_ID:
 144         case IGP04E1000_E_PHY_ID:
 145                 phy->type = e1000_phy_igp_3;
 146                 phy->ops.check_polarity = e1000_check_polarity_igp;
 147                 phy->ops.get_info = e1000_get_phy_info_igp;
 148                 phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
 149                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
 150                 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
 151                 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
 152                 break;
 153         case I82580_I_PHY_ID:
 154                 phy->type = e1000_phy_82580;
 155                 phy->ops.check_polarity = e1000_check_polarity_82577;
 156                 phy->ops.force_speed_duplex =
 157                     e1000_phy_force_speed_duplex_82577;
 158                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
 159                 phy->ops.get_info = e1000_get_phy_info_82577;
 160                 break;
 161         default:
 162                 ret_val = -E1000_ERR_PHY;
 163                 goto out;
 164         }
 165 
 166 out:
 167         return (ret_val);
 168 }
 169 
 170 /*
 171  * e1000_init_nvm_params_82575 - Init NVM func ptrs.
 172  * @hw: pointer to the HW structure
 173  */
 174 static s32
 175 e1000_init_nvm_params_82575(struct e1000_hw *hw)
 176 {
 177         struct e1000_nvm_info *nvm = &hw->nvm;
 178         u32 eecd = E1000_READ_REG(hw, E1000_EECD);
 179         u16 size;
 180 
 181         DEBUGFUNC("e1000_init_nvm_params_82575");
 182 
 183         nvm->opcode_bits = 8;
 184         nvm->delay_usec = 1;
 185         switch (nvm->override) {
 186         case e1000_nvm_override_spi_large:
 187                 nvm->page_size = 32;
 188                 nvm->address_bits = 16;
 189                 break;
 190         case e1000_nvm_override_spi_small:
 191                 nvm->page_size = 8;
 192                 nvm->address_bits = 8;
 193                 break;
 194         default:
 195                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 196                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
 197                 break;
 198         }
 199 
 200         nvm->type = e1000_nvm_eeprom_spi;
 201 
 202         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 203             E1000_EECD_SIZE_EX_SHIFT);
 204 
 205         /*
 206          * Added to a constant, "size" becomes the left-shift value
 207          * for setting word_size.
 208          */
 209         size += NVM_WORD_SIZE_BASE_SHIFT;
 210 
 211         /* EEPROM access above 16k is unsupported */
 212         if (size > 14)
 213                 size = 14;
 214         nvm->word_size = 1 << size;
 215 
 216         /* Function Pointers */
 217         nvm->ops.acquire = e1000_acquire_nvm_82575;
 218         nvm->ops.read = e1000_read_nvm_eerd;
 219         nvm->ops.release = e1000_release_nvm_82575;
 220         nvm->ops.update = e1000_update_nvm_checksum_generic;
 221         nvm->ops.valid_led_default = e1000_valid_led_default_82575;
 222         nvm->ops.validate = e1000_validate_nvm_checksum_generic;
 223         nvm->ops.write = e1000_write_nvm_spi;
 224 
 225         return (E1000_SUCCESS);
 226 }
 227 
 228 /*
 229  * e1000_init_mac_params_82575 - Init MAC func ptrs.
 230  * @hw: pointer to the HW structure
 231  */
 232 static s32
 233 e1000_init_mac_params_82575(struct e1000_hw *hw)
 234 {
 235         struct e1000_mac_info *mac = &hw->mac;
 236         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 237         u32 ctrl_ext = 0;
 238 
 239         DEBUGFUNC("e1000_init_mac_params_82575");
 240 
 241         /* Set media type */
 242         /*
 243          * The 82575 uses bits 22:23 for link mode. The mode can be changed
 244          * based on the EEPROM. We cannot rely upon device ID. There
 245          * is no distinguishable difference between fiber and internal
 246          * SerDes mode on the 82575. There can be an external PHY attached
 247          * on the SGMII interface. For this, we'll set sgmii_active to true.
 248          */
 249         hw->phy.media_type = e1000_media_type_copper;
 250         dev_spec->sgmii_active = false;
 251 
 252         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
 253         switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
 254         case E1000_CTRL_EXT_LINK_MODE_SGMII:
 255                 dev_spec->sgmii_active = true;
 256                 ctrl_ext |= E1000_CTRL_I2C_ENA;
 257                 break;
 258         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 259         case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 260                 hw->phy.media_type = e1000_media_type_internal_serdes;
 261                 ctrl_ext |= E1000_CTRL_I2C_ENA;
 262                 break;
 263         default:
 264                 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 265                 break;
 266         }
 267 
 268         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
 269 
 270         /*
 271          * if using i2c make certain the MDICNFG register is cleared to prevent
 272          * communications from being misrouted to the mdic registers
 273          */
 274         if ((ctrl_ext & E1000_CTRL_I2C_ENA) && (hw->mac.type == e1000_82580))
 275                 E1000_WRITE_REG(hw, E1000_MDICNFG, 0);
 276 
 277         /* Set mta register count */
 278         mac->mta_reg_count = 128;
 279         /* Set uta register count */
 280         mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
 281         /* Set rar entry count */
 282         mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 283         if (mac->type == e1000_82576)
 284                 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 285         if (mac->type == e1000_82580)
 286                 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 287         /* Set if part includes ASF firmware */
 288         mac->asf_firmware_present = true;
 289         /* Set if manageability features are enabled. */
 290         mac->arc_subsystem_valid =
 291             (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
 292             ? true : false;
 293 
 294         /* Function pointers */
 295 
 296         /* bus type/speed/width */
 297         mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
 298         /* reset */
 299         if (mac->type == e1000_82580)
 300                 mac->ops.reset_hw = e1000_reset_hw_82580;
 301         else
 302                 mac->ops.reset_hw = e1000_reset_hw_82575;
 303         /* hw initialization */
 304         mac->ops.init_hw = e1000_init_hw_82575;
 305         /* link setup */
 306         mac->ops.setup_link = e1000_setup_link_generic;
 307         /* physical interface link setup */
 308         mac->ops.setup_physical_interface =
 309             (hw->phy.media_type == e1000_media_type_copper)
 310             ? e1000_setup_copper_link_82575
 311             : e1000_setup_serdes_link_82575;
 312         /* physical interface shutdown */
 313         mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
 314         /* check for link */
 315         mac->ops.check_for_link = e1000_check_for_link_82575;
 316         /* receive address register setting */
 317         mac->ops.rar_set = e1000_rar_set_generic;
 318         /* read mac address */
 319         mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
 320         /* multicast address update */
 321         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
 322         /* writing VFTA */
 323         mac->ops.write_vfta = e1000_write_vfta_generic;
 324         /* clearing VFTA */
 325         mac->ops.clear_vfta = e1000_clear_vfta_generic;
 326         /* setting MTA */
 327         mac->ops.mta_set = e1000_mta_set_generic;
 328         /* ID LED init */
 329         mac->ops.id_led_init = e1000_id_led_init_generic;
 330         /* blink LED */
 331         mac->ops.blink_led = e1000_blink_led_generic;
 332         /* setup LED */
 333         mac->ops.setup_led = e1000_setup_led_generic;
 334         /* cleanup LED */
 335         mac->ops.cleanup_led = e1000_cleanup_led_generic;
 336         /* turn on/off LED */
 337         mac->ops.led_on = e1000_led_on_generic;
 338         mac->ops.led_off = e1000_led_off_generic;
 339         /* clear hardware counters */
 340         mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
 341         /* link info */
 342         mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
 343 
 344         /* set lan id for port to determine which phy lock to use */
 345         hw->mac.ops.set_lan_id(hw);
 346 
 347         return (E1000_SUCCESS);
 348 }
 349 
 350 /*
 351  * e1000_init_function_pointers_82575 - Init func ptrs.
 352  * @hw: pointer to the HW structure
 353  *
 354  * Called to initialize all function pointers and parameters.
 355  */
 356 void
 357 e1000_init_function_pointers_82575(struct e1000_hw *hw)
 358 {
 359         DEBUGFUNC("e1000_init_function_pointers_82575");
 360 
 361         hw->mac.ops.init_params = e1000_init_mac_params_82575;
 362         hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
 363         hw->phy.ops.init_params = e1000_init_phy_params_82575;
 364 }
 365 
 366 /*
 367  * e1000_acquire_phy_82575 - Acquire rights to access PHY
 368  * @hw: pointer to the HW structure
 369  *
 370  * Acquire access rights to the correct PHY.
 371  */
 372 static s32
 373 e1000_acquire_phy_82575(struct e1000_hw *hw)
 374 {
 375         u16 mask = E1000_SWFW_PHY0_SM;
 376 
 377         DEBUGFUNC("e1000_acquire_phy_82575");
 378 
 379         if (hw->bus.func == E1000_FUNC_1)
 380                 mask = E1000_SWFW_PHY1_SM;
 381         else if (hw->bus.func == E1000_FUNC_2)
 382                 mask = E1000_SWFW_PHY2_SM;
 383         else if (hw->bus.func == E1000_FUNC_3)
 384                 mask = E1000_SWFW_PHY3_SM;
 385 
 386         return (e1000_acquire_swfw_sync_82575(hw, mask));
 387 }
 388 
 389 /*
 390  * e1000_release_phy_82575 - Release rights to access PHY
 391  * @hw: pointer to the HW structure
 392  *
 393  * A wrapper to release access rights to the correct PHY.
 394  */
 395 static void
 396 e1000_release_phy_82575(struct e1000_hw *hw)
 397 {
 398         u16 mask = E1000_SWFW_PHY0_SM;
 399 
 400         DEBUGFUNC("e1000_release_phy_82575");
 401 
 402         if (hw->bus.func == E1000_FUNC_1)
 403                 mask = E1000_SWFW_PHY1_SM;
 404         else if (hw->bus.func == E1000_FUNC_2)
 405                 mask = E1000_SWFW_PHY2_SM;
 406         else if (hw->bus.func == E1000_FUNC_3)
 407                 mask = E1000_SWFW_PHY3_SM;
 408 
 409         e1000_release_swfw_sync_82575(hw, mask);
 410 }
 411 
 412 /*
 413  * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 414  * @hw: pointer to the HW structure
 415  * @offset: register offset to be read
 416  * @data: pointer to the read data
 417  *
 418  * Reads the PHY register at offset using the serial gigabit media independent
 419  * interface and stores the retrieved information in data.
 420  */
 421 static s32
 422 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 *data)
 423 {
 424         s32 ret_val = -E1000_ERR_PARAM;
 425 
 426         DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
 427 
 428         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 429                 DEBUGOUT1("PHY Address %u is out of range\n", offset);
 430                 goto out;
 431         }
 432 
 433         ret_val = hw->phy.ops.acquire(hw);
 434         if (ret_val)
 435                 goto out;
 436 
 437         ret_val = e1000_read_phy_reg_i2c(hw, offset, data);
 438 
 439         hw->phy.ops.release(hw);
 440 
 441 out:
 442         return (ret_val);
 443 }
 444 
 445 /*
 446  * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 447  * @hw: pointer to the HW structure
 448  * @offset: register offset to write to
 449  * @data: data to write at register offset
 450  *
 451  * Writes the data to PHY register at the offset using the serial gigabit
 452  * media independent interface.
 453  */
 454 static s32
 455 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 data)
 456 {
 457         s32 ret_val = -E1000_ERR_PARAM;
 458 
 459         DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
 460 
 461         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 462                 DEBUGOUT1("PHY Address %d is out of range\n", offset);
 463                 goto out;
 464         }
 465 
 466         ret_val = hw->phy.ops.acquire(hw);
 467         if (ret_val)
 468                 goto out;
 469 
 470         ret_val = e1000_write_phy_reg_i2c(hw, offset, data);
 471 
 472         hw->phy.ops.release(hw);
 473 
 474 out:
 475         return (ret_val);
 476 }
 477 
 478 /*
 479  * e1000_get_phy_id_82575 - Retrieve PHY addr and id
 480  * @hw: pointer to the HW structure
 481  *
 482  * Retrieves the PHY address and ID for both PHY's which do and do not use
 483  * sgmi interface.
 484  */
 485 static s32
 486 e1000_get_phy_id_82575(struct e1000_hw *hw)
 487 {
 488         struct e1000_phy_info *phy = &hw->phy;
 489         s32 ret_val = E1000_SUCCESS;
 490         u16 phy_id;
 491         u32 ctrl_ext;
 492 
 493         DEBUGFUNC("e1000_get_phy_id_82575");
 494 
 495         /*
 496          * For SGMII PHYs, we try the list of possible addresses until
 497          * we find one that works.  For non-SGMII PHYs
 498          * (e.g. integrated copper PHYs), an address of 1 should
 499          * work.  The result of this function should mean phy->phy_addr
 500          * and phy->id are set correctly.
 501          */
 502         if (!e1000_sgmii_active_82575(hw)) {
 503                 phy->addr = 1;
 504                 ret_val = e1000_get_phy_id(hw);
 505                 goto out;
 506         }
 507 
 508         /* Power on sgmii phy if it is disabled */
 509         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
 510         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
 511             ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 512         E1000_WRITE_FLUSH(hw);
 513         msec_delay(300);
 514 
 515         /*
 516          * The address field in the I2CCMD register is 3 bits and 0 is invalid.
 517          * Therefore, we need to test 1-7
 518          */
 519         for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 520                 ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 521                 if (ret_val == E1000_SUCCESS) {
 522                         DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
 523                             phy_id,
 524                             phy->addr);
 525                         /*
 526                          * At the time of this writing, The M88 part is
 527                          * the only supported SGMII PHY product.
 528                          */
 529                         if (phy_id == M88_VENDOR)
 530                                 break;
 531                 } else {
 532                         DEBUGOUT1("PHY address %u was unreadable\n",
 533                             phy->addr);
 534                 }
 535         }
 536 
 537         /* A valid PHY type couldn't be found. */
 538         if (phy->addr == 8) {
 539                 phy->addr = 0;
 540                 ret_val = -E1000_ERR_PHY;
 541         } else {
 542                 ret_val = e1000_get_phy_id(hw);
 543         }
 544 
 545         /* restore previous sfp cage power state */
 546         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
 547 
 548 out:
 549         return (ret_val);
 550 }
 551 
 552 /*
 553  * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 554  * @hw: pointer to the HW structure
 555  *
 556  * Resets the PHY using the serial gigabit media independent interface.
 557  */
 558 static s32
 559 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 560 {
 561         s32 ret_val = E1000_SUCCESS;
 562 
 563         DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
 564 
 565         /*
 566          * This isn't a true "hard" reset, but is the only reset
 567          * available to us at this time.
 568          */
 569 
 570         DEBUGOUT("Soft resetting SGMII attached PHY...\n");
 571 
 572         if (!(hw->phy.ops.write_reg))
 573                 goto out;
 574 
 575         /*
 576          * SFP documentation requires the following to configure the SPF module
 577          * to work on SGMII.  No further documentation is given.
 578          */
 579         ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 580         if (ret_val)
 581                 goto out;
 582 
 583         ret_val = hw->phy.ops.commit(hw);
 584 
 585 out:
 586         return (ret_val);
 587 }
 588 
 589 /*
 590  * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 591  * @hw: pointer to the HW structure
 592  * @active: true to enable LPLU, false to disable
 593  *
 594  * Sets the LPLU D0 state according to the active flag.  When
 595  * activating LPLU this function also disables smart speed
 596  * and vice versa.  LPLU will not be activated unless the
 597  * device autonegotiation advertisement meets standards of
 598  * either 10 or 10/100 or 10/100/1000 at all duplexes.
 599  * This is a function pointer entry point only called by
 600  * PHY setup routines.
 601  */
 602 static s32
 603 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 604 {
 605         struct e1000_phy_info *phy = &hw->phy;
 606         s32 ret_val = E1000_SUCCESS;
 607         u16 data;
 608 
 609         DEBUGFUNC("e1000_set_d0_lplu_state_82575");
 610 
 611         if (!(hw->phy.ops.read_reg))
 612                 goto out;
 613 
 614         ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 615         if (ret_val)
 616                 goto out;
 617 
 618         if (active) {
 619                 data |= IGP02E1000_PM_D0_LPLU;
 620                 ret_val = phy->ops.write_reg(hw,
 621                     IGP02E1000_PHY_POWER_MGMT,
 622                     data);
 623                 if (ret_val)
 624                         goto out;
 625 
 626                 /* When LPLU is enabled, we should disable SmartSpeed */
 627                 ret_val = phy->ops.read_reg(hw,
 628                     IGP01E1000_PHY_PORT_CONFIG,
 629                     &data);
 630                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 631                 ret_val = phy->ops.write_reg(hw,
 632                     IGP01E1000_PHY_PORT_CONFIG,
 633                     data);
 634                 if (ret_val)
 635                         goto out;
 636         } else {
 637                 data &= ~IGP02E1000_PM_D0_LPLU;
 638                 ret_val = phy->ops.write_reg(hw,
 639                     IGP02E1000_PHY_POWER_MGMT,
 640                     data);
 641                 /*
 642                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 643                  * during Dx states where the power conservation is most
 644                  * important.  During driver activity we should enable
 645                  * SmartSpeed, so performance is maintained.
 646                  */
 647                 if (phy->smart_speed == e1000_smart_speed_on) {
 648                         ret_val = phy->ops.read_reg(hw,
 649                             IGP01E1000_PHY_PORT_CONFIG,
 650                             &data);
 651                         if (ret_val)
 652                                 goto out;
 653 
 654                         data |= IGP01E1000_PSCFR_SMART_SPEED;
 655                         ret_val = phy->ops.write_reg(hw,
 656                             IGP01E1000_PHY_PORT_CONFIG,
 657                             data);
 658                         if (ret_val)
 659                                 goto out;
 660                 } else if (phy->smart_speed == e1000_smart_speed_off) {
 661                         ret_val = phy->ops.read_reg(hw,
 662                             IGP01E1000_PHY_PORT_CONFIG,
 663                             &data);
 664                         if (ret_val)
 665                                 goto out;
 666 
 667                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 668                         ret_val = phy->ops.write_reg(hw,
 669                             IGP01E1000_PHY_PORT_CONFIG,
 670                             data);
 671                         if (ret_val)
 672                                 goto out;
 673                 }
 674         }
 675 
 676 out:
 677         return (ret_val);
 678 }
 679 
 680 /*
 681  * e1000_acquire_nvm_82575 - Request for access to EEPROM
 682  * @hw: pointer to the HW structure
 683  *
 684  * Acquire the necessary semaphores for exclusive access to the EEPROM.
 685  * Set the EEPROM access request bit and wait for EEPROM access grant bit.
 686  * Return successful if access grant bit set, else clear the request for
 687  * EEPROM access and return -E1000_ERR_NVM (-1).
 688  */
 689 static s32
 690 e1000_acquire_nvm_82575(struct e1000_hw *hw)
 691 {
 692         s32 ret_val;
 693 
 694         DEBUGFUNC("e1000_acquire_nvm_82575");
 695 
 696         ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
 697         if (ret_val)
 698                 goto out;
 699 
 700         ret_val = e1000_acquire_nvm_generic(hw);
 701 
 702         if (ret_val)
 703                 e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
 704 
 705 out:
 706         return (ret_val);
 707 }
 708 
 709 /*
 710  * e1000_release_nvm_82575 - Release exclusive access to EEPROM
 711  * @hw: pointer to the HW structure
 712  *
 713  * Stop any current commands to the EEPROM and clear the EEPROM request bit,
 714  * then release the semaphores acquired.
 715  */
 716 static void
 717 e1000_release_nvm_82575(struct e1000_hw *hw)
 718 {
 719         DEBUGFUNC("e1000_release_nvm_82575");
 720 
 721         e1000_release_nvm_generic(hw);
 722         e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
 723 }
 724 
 725 /*
 726  * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
 727  * @hw: pointer to the HW structure
 728  * @mask: specifies which semaphore to acquire
 729  *
 730  * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 731  * will also specify which port we're acquiring the lock for.
 732  */
 733 static s32
 734 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
 735 {
 736         u32 swfw_sync;
 737         u32 swmask = mask;
 738         u32 fwmask = mask << 16;
 739         s32 ret_val = E1000_SUCCESS;
 740         s32 i = 0, timeout = 200;       /* FIXME: find real value to use here */
 741 
 742         DEBUGFUNC("e1000_acquire_swfw_sync_82575");
 743 
 744         while (i < timeout) {
 745                 if (e1000_get_hw_semaphore_generic(hw)) {
 746                         ret_val = -E1000_ERR_SWFW_SYNC;
 747                         goto out;
 748                 }
 749 
 750                 swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
 751                 if (!(swfw_sync & (fwmask | swmask)))
 752                         break;
 753 
 754                 /*
 755                  * Firmware currently using resource (fwmask)
 756                  * or other software thread using resource (swmask)
 757                  */
 758                 e1000_put_hw_semaphore_generic(hw);
 759                 msec_delay_irq(5);
 760                 i++;
 761         }
 762 
 763         if (i == timeout) {
 764                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
 765                 ret_val = -E1000_ERR_SWFW_SYNC;
 766                 goto out;
 767         }
 768 
 769         swfw_sync |= swmask;
 770         E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
 771 
 772         e1000_put_hw_semaphore_generic(hw);
 773 
 774 out:
 775         return (ret_val);
 776 }
 777 
 778 /*
 779  * e1000_release_swfw_sync_82575 - Release SW/FW semaphore
 780  * @hw: pointer to the HW structure
 781  * @mask: specifies which semaphore to acquire
 782  *
 783  * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 784  * will also specify which port we're releasing the lock for.
 785  */
 786 static void
 787 e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
 788 {
 789         u32 swfw_sync;
 790 
 791         DEBUGFUNC("e1000_release_swfw_sync_82575");
 792 
 793         while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) {
 794                 /* Empty */
 795         }
 796 
 797         swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
 798         swfw_sync &= ~mask;
 799         E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
 800 
 801         e1000_put_hw_semaphore_generic(hw);
 802 }
 803 
 804 /*
 805  * e1000_get_cfg_done_82575 - Read config done bit
 806  * @hw: pointer to the HW structure
 807  *
 808  * Read the management control register for the config done bit for
 809  * completion status.  NOTE: silicon which is EEPROM-less will fail trying
 810  * to read the config done bit, so an error is *ONLY* logged and returns
 811  * E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
 812  * would not be able to be reset or change link.
 813  */
 814 static s32
 815 e1000_get_cfg_done_82575(struct e1000_hw *hw)
 816 {
 817         s32 timeout = PHY_CFG_TIMEOUT;
 818         s32 ret_val = E1000_SUCCESS;
 819         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 820 
 821         DEBUGFUNC("e1000_get_cfg_done_82575");
 822 
 823         if (hw->bus.func == E1000_FUNC_1)
 824                 mask = E1000_NVM_CFG_DONE_PORT_1;
 825         else if (hw->bus.func == E1000_FUNC_2)
 826                 mask = E1000_NVM_CFG_DONE_PORT_2;
 827         else if (hw->bus.func == E1000_FUNC_3)
 828                 mask = E1000_NVM_CFG_DONE_PORT_3;
 829 
 830         while (timeout) {
 831                 if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
 832                         break;
 833                 msec_delay(1);
 834                 timeout--;
 835         }
 836         if (!timeout)
 837                 DEBUGOUT("MNG configuration cycle has not completed.\n");
 838 
 839         /* If EEPROM is not marked present, init the PHY manually */
 840         if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) &&
 841             (hw->phy.type == e1000_phy_igp_3))
 842                 (void) e1000_phy_init_script_igp3(hw);
 843 
 844         return (ret_val);
 845 }
 846 
 847 /*
 848  * e1000_get_link_up_info_82575 - Get link speed/duplex info
 849  * @hw: pointer to the HW structure
 850  * @speed: stores the current speed
 851  * @duplex: stores the current duplex
 852  *
 853  * This is a wrapper function, if using the serial gigabit media independent
 854  * interface, use PCS to retrieve the link speed and duplex information.
 855  * Otherwise, use the generic function to get the link speed and duplex info.
 856  */
 857 static s32
 858 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, u16 *duplex)
 859 {
 860         s32 ret_val;
 861 
 862         DEBUGFUNC("e1000_get_link_up_info_82575");
 863 
 864         if (hw->phy.media_type != e1000_media_type_copper)
 865                 ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
 866                     duplex);
 867         else
 868                 ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
 869                     duplex);
 870 
 871         return (ret_val);
 872 }
 873 
 874 /*
 875  * e1000_check_for_link_82575 - Check for link
 876  * @hw: pointer to the HW structure
 877  *
 878  * If sgmii is enabled, then use the pcs register to determine link, otherwise
 879  * use the generic interface for determining link.
 880  */
 881 static s32
 882 e1000_check_for_link_82575(struct e1000_hw *hw)
 883 {
 884         s32 ret_val;
 885         u16 speed, duplex;
 886 
 887         DEBUGFUNC("e1000_check_for_link_82575");
 888 
 889         /* SGMII link check is done through the PCS register. */
 890         if (hw->phy.media_type != e1000_media_type_copper) {
 891                 ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
 892                     &duplex);
 893                 /*
 894                  * Use this flag to determine if link needs to be checked or
 895                  * not.  If we have link clear the flag so that we do not
 896                  * continue to check for link.
 897                  */
 898                 hw->mac.get_link_status = !hw->mac.serdes_has_link;
 899         } else {
 900                 ret_val = e1000_check_for_copper_link_generic(hw);
 901         }
 902 
 903         return (ret_val);
 904 }
 905 
 906 /*
 907  * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
 908  * @hw: pointer to the HW structure
 909  * @speed: stores the current speed
 910  * @duplex: stores the current duplex
 911  *
 912  * Using the physical coding sub-layer (PCS), retrieve the current speed and
 913  * duplex, then store the values in the pointers provided.
 914  */
 915 static s32
 916 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
 917     u16 *speed, u16 *duplex)
 918 {
 919         struct e1000_mac_info *mac = &hw->mac;
 920         u32 pcs;
 921 
 922         DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
 923 
 924         /* Set up defaults for the return values of this function */
 925         mac->serdes_has_link = false;
 926         *speed = 0;
 927         *duplex = 0;
 928 
 929         /*
 930          * Read the PCS Status register for link state. For non-copper mode,
 931          * the status register is not accurate. The PCS status register is
 932          * used instead.
 933          */
 934         pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
 935 
 936         /*
 937          * The link up bit determines when link is up on autoneg. The sync ok
 938          * gets set once both sides sync up and agree upon link. Stable link
 939          * can be determined by checking for both link up and link sync ok
 940          */
 941         if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
 942                 mac->serdes_has_link = true;
 943 
 944                 /* Detect and store PCS speed */
 945                 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
 946                         *speed = SPEED_1000;
 947                 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
 948                         *speed = SPEED_100;
 949                 } else {
 950                         *speed = SPEED_10;
 951                 }
 952 
 953                 /* Detect and store PCS duplex */
 954                 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
 955                         *duplex = FULL_DUPLEX;
 956                 } else {
 957                         *duplex = HALF_DUPLEX;
 958                 }
 959         }
 960 
 961         return (E1000_SUCCESS);
 962 }
 963 
 964 /*
 965  * e1000_shutdown_serdes_link_82575 - Remove link during power down
 966  * @hw: pointer to the HW structure
 967  *
 968  * In the case of serdes shut down sfp and PCS on driver unload
 969  * when management pass thru is not enabled.
 970  */
 971 void
 972 e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
 973 {
 974         u32 reg;
 975         u16 eeprom_data = 0;
 976 
 977         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
 978             !e1000_sgmii_active_82575(hw))
 979                 return;
 980 
 981         if (hw->bus.func == E1000_FUNC_0)
 982                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
 983         else if (hw->mac.type == e1000_82580)
 984                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
 985                     NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
 986                     &eeprom_data);
 987         else if (hw->bus.func == E1000_FUNC_1)
 988                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
 989 
 990         /*
 991          * If APM is not enabled in the EEPROM and management interface is
 992          * not enabled, then power down.
 993          */
 994         if (!(eeprom_data & E1000_NVM_APME_82575) &&
 995             !e1000_enable_mng_pass_thru(hw)) {
 996                 /* Disable PCS to turn off link */
 997                 reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
 998                 reg &= ~E1000_PCS_CFG_PCS_EN;
 999                 E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
1000 
1001                 /* shutdown the laser */
1002                 reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1003                 reg |= E1000_CTRL_EXT_SDP3_DATA;
1004                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1005 
1006                 /* flush the write to verify completion */
1007                 E1000_WRITE_FLUSH(hw);
1008                 msec_delay(1);
1009         }
1010 }
1011 
1012 /*
1013  * e1000_reset_hw_82575 - Reset hardware
1014  * @hw: pointer to the HW structure
1015  *
1016  * This resets the hardware into a known state.
1017  */
1018 static s32
1019 e1000_reset_hw_82575(struct e1000_hw *hw)
1020 {
1021         u32 ctrl;
1022         s32 ret_val;
1023 
1024         DEBUGFUNC("e1000_reset_hw_82575");
1025 
1026         /*
1027          * Prevent the PCI-E bus from sticking if there is no TLP connection
1028          * on the last TLP read/write transaction when MAC is reset.
1029          */
1030         ret_val = e1000_disable_pcie_master_generic(hw);
1031         if (ret_val) {
1032                 DEBUGOUT("PCI-E Master disable polling has failed.\n");
1033         }
1034 
1035         /* set the completion timeout for interface */
1036         ret_val = e1000_set_pcie_completion_timeout(hw);
1037         if (ret_val) {
1038                 DEBUGOUT("PCI-E Set completion timeout has failed.\n");
1039         }
1040 
1041         DEBUGOUT("Masking off all interrupts\n");
1042         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1043 
1044         E1000_WRITE_REG(hw, E1000_RCTL, 0);
1045         E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
1046         E1000_WRITE_FLUSH(hw);
1047 
1048         msec_delay(10);
1049 
1050         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1051 
1052         DEBUGOUT("Issuing a global reset to MAC\n");
1053         E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
1054 
1055         ret_val = e1000_get_auto_rd_done_generic(hw);
1056         if (ret_val) {
1057                 /*
1058                  * When auto config read does not complete, do not
1059                  * return with an error. This can happen in situations
1060                  * where there is no eeprom and prevents getting link.
1061                  */
1062                 DEBUGOUT("Auto Read Done did not complete\n");
1063         }
1064 
1065         /* If EEPROM is not present, run manual init scripts */
1066         if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
1067                 (void) e1000_reset_init_script_82575(hw);
1068 
1069         /* Clear any pending interrupt events. */
1070         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1071         (void) E1000_READ_REG(hw, E1000_ICR);
1072 
1073         /* Install any alternate MAC address into RAR0 */
1074         ret_val = e1000_check_alt_mac_addr_generic(hw);
1075 
1076         return (ret_val);
1077 }
1078 
1079 /*
1080  * e1000_init_hw_82575 - Initialize hardware
1081  * @hw: pointer to the HW structure
1082  *
1083  * This inits the hardware readying it for operation.
1084  */
1085 static s32
1086 e1000_init_hw_82575(struct e1000_hw *hw)
1087 {
1088         struct e1000_mac_info *mac = &hw->mac;
1089         s32 ret_val;
1090         u16 i, rar_count = mac->rar_entry_count;
1091 
1092         DEBUGFUNC("e1000_init_hw_82575");
1093 
1094         /* Initialize identification LED */
1095         ret_val = mac->ops.id_led_init(hw);
1096         if (ret_val) {
1097                 DEBUGOUT("Error initializing identification LED\n");
1098                 /* This is not fatal and we should not stop init due to this */
1099         }
1100 
1101         /* Disabling VLAN filtering */
1102         DEBUGOUT("Initializing the IEEE VLAN\n");
1103         mac->ops.clear_vfta(hw);
1104 
1105         /* Setup the receive address */
1106         e1000_init_rx_addrs_generic(hw, rar_count);
1107         /* Zero out the Multicast HASH table */
1108         DEBUGOUT("Zeroing the MTA\n");
1109         for (i = 0; i < mac->mta_reg_count; i++)
1110                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1111 
1112         /* Zero out the Unicast HASH table */
1113         DEBUGOUT("Zeroing the UTA\n");
1114         for (i = 0; i < mac->uta_reg_count; i++)
1115                 E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0);
1116 
1117         /* Setup link and flow control */
1118         ret_val = mac->ops.setup_link(hw);
1119 
1120         /*
1121          * Clear all of the statistics registers (clear on read).  It is
1122          * important that we do this after we have tried to establish link
1123          * because the symbol error count will increment wildly if there
1124          * is no link.
1125          */
1126         e1000_clear_hw_cntrs_82575(hw);
1127 
1128         return (ret_val);
1129 }
1130 
1131 /*
1132  * e1000_setup_copper_link_82575 - Configure copper link settings
1133  * @hw: pointer to the HW structure
1134  *
1135  * Configures the link for auto-neg or forced speed and duplex.  Then we check
1136  * for link, once link is established calls to configure collision distance
1137  * and flow control are called.
1138  */
1139 static s32
1140 e1000_setup_copper_link_82575(struct e1000_hw *hw)
1141 {
1142         u32 ctrl;
1143         s32 ret_val;
1144 
1145         DEBUGFUNC("e1000_setup_copper_link_82575");
1146 
1147         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1148         ctrl |= E1000_CTRL_SLU;
1149         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1150         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1151 
1152         ret_val = e1000_setup_serdes_link_82575(hw);
1153         if (ret_val)
1154                 goto out;
1155 
1156         if (e1000_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1157                 /* allow time for SFP cage time to power up phy */
1158                 msec_delay(300);
1159 
1160                 ret_val = hw->phy.ops.reset(hw);
1161                 if (ret_val) {
1162                         DEBUGOUT("Error resetting the PHY.\n");
1163                         goto out;
1164                 }
1165         }
1166         switch (hw->phy.type) {
1167         case e1000_phy_m88:
1168                 ret_val = e1000_copper_link_setup_m88(hw);
1169                 break;
1170         case e1000_phy_igp_3:
1171                 ret_val = e1000_copper_link_setup_igp(hw);
1172                 break;
1173         case e1000_phy_82580:
1174                 ret_val = e1000_copper_link_setup_82577(hw);
1175                 break;
1176         default:
1177                 ret_val = -E1000_ERR_PHY;
1178                 break;
1179         }
1180 
1181         if (ret_val)
1182                 goto out;
1183 
1184         ret_val = e1000_setup_copper_link_generic(hw);
1185 out:
1186         return (ret_val);
1187 }
1188 
1189 /*
1190  * e1000_setup_serdes_link_82575 - Setup link for serdes
1191  * @hw: pointer to the HW structure
1192  *
1193  * Configure the physical coding sub-layer (PCS) link.  The PCS link is
1194  * used on copper connections where the serialized gigabit media independent
1195  * interface (sgmii), or serdes fiber is being used.  Configures the link
1196  * for auto-negotiation or forces speed/duplex.
1197  */
1198 static s32
1199 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
1200 {
1201         u32 ctrl_ext, ctrl_reg, reg;
1202         bool pcs_autoneg;
1203 
1204         DEBUGFUNC("e1000_setup_serdes_link_82575");
1205 
1206         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1207             !e1000_sgmii_active_82575(hw))
1208                 return (E1000_SUCCESS);
1209 
1210         /*
1211          * On the 82575, SerDes loopback mode persists until it is
1212          * explicitly turned off or a power cycle is performed.  A read to
1213          * the register does not indicate its status.  Therefore, we ensure
1214          * loopback mode is disabled during initialization.
1215          */
1216         E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1217 
1218         /* power on the sfp cage if present */
1219         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1220         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1221         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1222 
1223         ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
1224         ctrl_reg |= E1000_CTRL_SLU;
1225 
1226         if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1227                 /* set both sw defined pins */
1228                 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1229 
1230                 /* Set switch control to serdes energy detect */
1231                 reg = E1000_READ_REG(hw, E1000_CONNSW);
1232                 reg |= E1000_CONNSW_ENRGSRC;
1233                 E1000_WRITE_REG(hw, E1000_CONNSW, reg);
1234         }
1235 
1236         reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
1237 
1238         /* default pcs_autoneg to the same setting as mac autoneg */
1239         pcs_autoneg = hw->mac.autoneg;
1240 
1241         switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1242         case E1000_CTRL_EXT_LINK_MODE_SGMII:
1243                 /* sgmii mode lets the phy handle forcing speed/duplex */
1244                 pcs_autoneg = true;
1245                 /* autoneg time out should be disabled for SGMII mode */
1246                 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1247                 break;
1248         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1249                 /* disable PCS autoneg and support parallel detect only */
1250                 pcs_autoneg = false;
1251         default:
1252                 /*
1253                  * non-SGMII modes only supports a speed of 1000/Full for the
1254                  * link so it is best to just force the MAC and let the pcs
1255                  * link either autoneg or be forced to 1000/Full
1256                  */
1257                 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1258                     E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1259 
1260                 /* set speed of 1000/Full if speed/duplex is forced */
1261                 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1262                 break;
1263         }
1264 
1265         E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
1266 
1267         /*
1268          * New SerDes mode allows for forcing speed or autonegotiating speed
1269          * at 1gb. Autoneg should be default set by most drivers. This is the
1270          * mode that will be compatible with older link partners and switches.
1271          * However, both are supported by the hardware and some drivers/tools.
1272          */
1273 
1274         reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1275             E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1276 
1277         /*
1278          * We force flow control to prevent the CTRL register values from being
1279          * overwritten by the autonegotiated flow control values
1280          */
1281         reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1282 
1283         if (pcs_autoneg) {
1284                 /* Set PCS register for autoneg */
1285                 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1286                     E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1287                 DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1288         } else {
1289                 /* Set PCS register for forced link */
1290                 reg |= E1000_PCS_LCTL_FSD;      /* Force Speed */
1291                 DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1292         }
1293 
1294         E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
1295 
1296         if (!e1000_sgmii_active_82575(hw))
1297                 (void) e1000_force_mac_fc_generic(hw);
1298 
1299         return (E1000_SUCCESS);
1300 }
1301 
1302 /*
1303  * e1000_valid_led_default_82575 - Verify a valid default LED config
1304  * @hw: pointer to the HW structure
1305  * @data: pointer to the NVM (EEPROM)
1306  *
1307  * Read the EEPROM for the current default LED configuration.  If the
1308  * LED configuration is not valid, set to a valid LED configuration.
1309  */
1310 static s32
1311 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
1312 {
1313         s32 ret_val;
1314 
1315         DEBUGFUNC("e1000_valid_led_default_82575");
1316 
1317         ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1318         if (ret_val) {
1319                 DEBUGOUT("NVM Read Error\n");
1320                 goto out;
1321         }
1322 
1323         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1324                 switch (hw->phy.media_type) {
1325                 case e1000_media_type_internal_serdes:
1326                         *data = ID_LED_DEFAULT_82575_SERDES;
1327                         break;
1328                 case e1000_media_type_copper:
1329                 default:
1330                         *data = ID_LED_DEFAULT;
1331                         break;
1332                 }
1333         }
1334 out:
1335         return (ret_val);
1336 }
1337 
1338 /*
1339  * e1000_sgmii_active_82575 - Return sgmii state
1340  * @hw: pointer to the HW structure
1341  *
1342  * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1343  * which can be enabled for use in the embedded applications.  Simply
1344  * return the current state of the sgmii interface.
1345  */
1346 static bool
1347 e1000_sgmii_active_82575(struct e1000_hw *hw)
1348 {
1349         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1350         return (dev_spec->sgmii_active);
1351 }
1352 
1353 /*
1354  * e1000_reset_init_script_82575 - Inits HW defaults after reset
1355  * @hw: pointer to the HW structure
1356  *
1357  * Inits recommended HW defaults after a reset when there is no EEPROM
1358  * detected. This is only for the 82575.
1359  */
1360 static s32
1361 e1000_reset_init_script_82575(struct e1000_hw *hw)
1362 {
1363         DEBUGFUNC("e1000_reset_init_script_82575");
1364 
1365         if (hw->mac.type == e1000_82575) {
1366                 DEBUGOUT("Running reset init script for 82575\n");
1367                 /* SerDes configuration via SERDESCTRL */
1368                 (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL,
1369                     0x00, 0x0C);
1370                 (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL,
1371                     0x01, 0x78);
1372                 (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL,
1373                     0x1B, 0x23);
1374                 (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL,
1375                     0x23, 0x15);
1376 
1377                 /* CCM configuration via CCMCTL register */
1378                 (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL,
1379                     0x14, 0x00);
1380                 (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL,
1381                     0x10, 0x00);
1382 
1383                 /* PCIe lanes configuration */
1384                 (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL,
1385                     0x00, 0xEC);
1386                 (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL,
1387                     0x61, 0xDF);
1388                 (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL,
1389                     0x34, 0x05);
1390                 (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL,
1391                     0x2F, 0x81);
1392 
1393                 /* PCIe PLL Configuration */
1394                 (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL,
1395                     0x02, 0x47);
1396                 (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL,
1397                     0x14, 0x00);
1398                 (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL,
1399                     0x10, 0x00);
1400         }
1401 
1402         return (E1000_SUCCESS);
1403 }
1404 
1405 /*
1406  * e1000_read_mac_addr_82575 - Read device MAC address
1407  * @hw: pointer to the HW structure
1408  */
1409 static s32
1410 e1000_read_mac_addr_82575(struct e1000_hw *hw)
1411 {
1412         s32 ret_val = E1000_SUCCESS;
1413 
1414         DEBUGFUNC("e1000_read_mac_addr_82575");
1415 
1416         /*
1417          * If there's an alternate MAC address place it in RAR0
1418          * so that it will override the Si installed default perm
1419          * address.
1420          */
1421         ret_val = e1000_check_alt_mac_addr_generic(hw);
1422         if (ret_val)
1423                 goto out;
1424 
1425         ret_val = e1000_read_mac_addr_generic(hw);
1426 
1427 out:
1428         return (ret_val);
1429 }
1430 
1431 /*
1432  * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
1433  * @hw: pointer to the HW structure
1434  *
1435  * In the case of a PHY power down to save power, or to turn off link during a
1436  * driver unload, or wake on lan is not enabled, remove the link.
1437  */
1438 static void
1439 e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
1440 {
1441         struct e1000_phy_info *phy = &hw->phy;
1442         struct e1000_mac_info *mac = &hw->mac;
1443 
1444         if (!(phy->ops.check_reset_block))
1445                 return;
1446 
1447         /* If the management interface is not enabled, then power down */
1448         if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1449                 e1000_power_down_phy_copper(hw);
1450 }
1451 
1452 /*
1453  * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
1454  * @hw: pointer to the HW structure
1455  *
1456  * Clears the hardware counters by reading the counter registers.
1457  */
1458 static void
1459 e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
1460 {
1461         DEBUGFUNC("e1000_clear_hw_cntrs_82575");
1462 
1463         e1000_clear_hw_cntrs_base_generic(hw);
1464 
1465         (void) E1000_READ_REG(hw, E1000_PRC64);
1466         (void) E1000_READ_REG(hw, E1000_PRC127);
1467         (void) E1000_READ_REG(hw, E1000_PRC255);
1468         (void) E1000_READ_REG(hw, E1000_PRC511);
1469         (void) E1000_READ_REG(hw, E1000_PRC1023);
1470         (void) E1000_READ_REG(hw, E1000_PRC1522);
1471         (void) E1000_READ_REG(hw, E1000_PTC64);
1472         (void) E1000_READ_REG(hw, E1000_PTC127);
1473         (void) E1000_READ_REG(hw, E1000_PTC255);
1474         (void) E1000_READ_REG(hw, E1000_PTC511);
1475         (void) E1000_READ_REG(hw, E1000_PTC1023);
1476         (void) E1000_READ_REG(hw, E1000_PTC1522);
1477 
1478         (void) E1000_READ_REG(hw, E1000_ALGNERRC);
1479         (void) E1000_READ_REG(hw, E1000_RXERRC);
1480         (void) E1000_READ_REG(hw, E1000_TNCRS);
1481         (void) E1000_READ_REG(hw, E1000_CEXTERR);
1482         (void) E1000_READ_REG(hw, E1000_TSCTC);
1483         (void) E1000_READ_REG(hw, E1000_TSCTFC);
1484 
1485         (void) E1000_READ_REG(hw, E1000_MGTPRC);
1486         (void) E1000_READ_REG(hw, E1000_MGTPDC);
1487         (void) E1000_READ_REG(hw, E1000_MGTPTC);
1488 
1489         (void) E1000_READ_REG(hw, E1000_IAC);
1490         (void) E1000_READ_REG(hw, E1000_ICRXOC);
1491 
1492         (void) E1000_READ_REG(hw, E1000_ICRXPTC);
1493         (void) E1000_READ_REG(hw, E1000_ICRXATC);
1494         (void) E1000_READ_REG(hw, E1000_ICTXPTC);
1495         (void) E1000_READ_REG(hw, E1000_ICTXATC);
1496         (void) E1000_READ_REG(hw, E1000_ICTXQEC);
1497         (void) E1000_READ_REG(hw, E1000_ICTXQMTC);
1498         (void) E1000_READ_REG(hw, E1000_ICRXDMTC);
1499 
1500         (void) E1000_READ_REG(hw, E1000_CBTMPC);
1501         (void) E1000_READ_REG(hw, E1000_HTDPMC);
1502         (void) E1000_READ_REG(hw, E1000_CBRMPC);
1503         (void) E1000_READ_REG(hw, E1000_RPTHC);
1504         (void) E1000_READ_REG(hw, E1000_HGPTC);
1505         (void) E1000_READ_REG(hw, E1000_HTCBDPC);
1506         (void) E1000_READ_REG(hw, E1000_HGORCL);
1507         (void) E1000_READ_REG(hw, E1000_HGORCH);
1508         (void) E1000_READ_REG(hw, E1000_HGOTCL);
1509         (void) E1000_READ_REG(hw, E1000_HGOTCH);
1510         (void) E1000_READ_REG(hw, E1000_LENERRS);
1511 
1512         /* This register should not be read in copper configurations */
1513         if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
1514             e1000_sgmii_active_82575(hw))
1515                 (void) E1000_READ_REG(hw, E1000_SCVPC);
1516 }
1517 
1518 /*
1519  * e1000_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1520  * @hw: pointer to the HW structure
1521  *
1522  * After rx enable if managability is enabled then there is likely some
1523  * bad data at the start of the fifo and possibly in the DMA fifo.  This
1524  * function clears the fifos and flushes any packets that came in as rx was
1525  * being enabled.
1526  */
1527 void
1528 e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
1529 {
1530         u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1531         int i, ms_wait;
1532 
1533         DEBUGFUNC("e1000_rx_fifo_workaround_82575");
1534         if (hw->mac.type != e1000_82575 ||
1535             !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1536                 return;
1537 
1538         /* Disable all RX queues */
1539         for (i = 0; i < 4; i++) {
1540                 rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
1541                 E1000_WRITE_REG(hw, E1000_RXDCTL(i),
1542                     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1543         }
1544         /* Poll all queues to verify they have shut down */
1545         for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1546                 msec_delay(1);
1547                 rx_enabled = 0;
1548                 for (i = 0; i < 4; i++)
1549                         rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i));
1550                 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1551                         break;
1552         }
1553 
1554         if (ms_wait == 10)
1555                 DEBUGOUT("Queue disable timed out after 10ms\n");
1556 
1557         /*
1558          * Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1559          * incoming packets are rejected.  Set enable and wait 2ms so that
1560          * any packet that was coming in as RCTL.EN was set is flushed
1561          */
1562         rfctl = E1000_READ_REG(hw, E1000_RFCTL);
1563         E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1564 
1565         rlpml = E1000_READ_REG(hw, E1000_RLPML);
1566         E1000_WRITE_REG(hw, E1000_RLPML, 0);
1567 
1568         rctl = E1000_READ_REG(hw, E1000_RCTL);
1569         temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1570         temp_rctl |= E1000_RCTL_LPE;
1571 
1572         E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl);
1573         E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1574         E1000_WRITE_FLUSH(hw);
1575         msec_delay(2);
1576 
1577         /*
1578          * Enable RX queues that were previously enabled and restore our
1579          * previous state
1580          */
1581         for (i = 0; i < 4; i++)
1582                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]);
1583         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1584         E1000_WRITE_FLUSH(hw);
1585 
1586         E1000_WRITE_REG(hw, E1000_RLPML, rlpml);
1587         E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
1588 
1589         /* Flush receive errors generated by workaround */
1590         (void) E1000_READ_REG(hw, E1000_ROC);
1591         (void) E1000_READ_REG(hw, E1000_RNBC);
1592         (void) E1000_READ_REG(hw, E1000_MPC);
1593 }
1594 
1595 /*
1596  * e1000_set_pcie_completion_timeout - set pci-e completion timeout
1597  * @hw: pointer to the HW structure
1598  *
1599  * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1600  * however the hardware default for these parts is 500us to 1ms which is less
1601  * than the 10ms recommended by the pci-e spec.  To address this we need to
1602  * increase the value to either 10ms to 200ms for capability version 1 config,
1603  * or 16ms to 55ms for version 2.
1604  */
1605 static s32
1606 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
1607 {
1608         u32 gcr = E1000_READ_REG(hw, E1000_GCR);
1609         s32 ret_val = E1000_SUCCESS;
1610         u16 pcie_devctl2;
1611 
1612         /* only take action if timeout value is defaulted to 0 */
1613         if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1614                 goto out;
1615 
1616         /*
1617          * if capababilities version is type 1 we can write the
1618          * timeout of 10ms to 200ms through the GCR register
1619          */
1620         if (!(gcr & E1000_GCR_CAP_VER2)) {
1621                 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1622                 goto out;
1623         }
1624 
1625         /*
1626          * for version 2 capabilities we need to write the config space
1627          * directly in order to set the completion timeout value for
1628          * 16ms to 55ms
1629          */
1630         ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1631             &pcie_devctl2);
1632         if (ret_val)
1633                 goto out;
1634 
1635         pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1636 
1637         ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1638             &pcie_devctl2);
1639 out:
1640         /* disable completion timeout resend */
1641         gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1642 
1643         E1000_WRITE_REG(hw, E1000_GCR, gcr);
1644         return (ret_val);
1645 }
1646 
1647 /*
1648  * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
1649  * @hw: pointer to the hardware struct
1650  * @enable: state to enter, either enabled or disabled
1651  *
1652  * enables/disables L2 switch loopback functionality.
1653  */
1654 void
1655 e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1656 {
1657         u32 dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
1658 
1659         if (enable)
1660                 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1661         else
1662                 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1663 
1664         E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
1665 }
1666 
1667 /*
1668  * e1000_vmdq_set_replication_pf - enable or disable vmdq replication
1669  * @hw: pointer to the hardware struct
1670  * @enable: state to enter, either enabled or disabled
1671  *
1672  * enables/disables replication of packets across multiple pools.
1673  */
1674 void
1675 e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1676 {
1677         u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
1678 
1679         if (enable)
1680                 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1681         else
1682                 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1683 
1684         E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
1685 }
1686 
1687 /*
1688  * e1000_read_phy_reg_82580 - Read 82580 MDI control register
1689  * @hw: pointer to the HW structure
1690  * @offset: register offset to be read
1691  * @data: pointer to the read data
1692  *
1693  * Reads the MDI control register in the PHY at offset and stores the
1694  * information read to data.
1695  */
1696 static s32
1697 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1698 {
1699         u32 mdicnfg = 0;
1700         s32 ret_val;
1701 
1702         DEBUGFUNC("e1000_read_phy_reg_82580");
1703 
1704         ret_val = hw->phy.ops.acquire(hw);
1705         if (ret_val)
1706                 goto out;
1707 
1708         /*
1709          * We config the phy address in MDICNFG register now. Same bits
1710          * as before. The values in MDIC can be written but will be
1711          * ignored. This allows us to call the old function after
1712          * configuring the PHY address in the new register
1713          */
1714         mdicnfg = (hw->phy.addr << E1000_MDIC_PHY_SHIFT);
1715         E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
1716 
1717         ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
1718 
1719         hw->phy.ops.release(hw);
1720 
1721 out:
1722         return (ret_val);
1723 }
1724 
1725 /*
1726  * e1000_write_phy_reg_82580 - Write 82580 MDI control register
1727  * @hw: pointer to the HW structure
1728  * @offset: register offset to write to
1729  * @data: data to write to register at offset
1730  *
1731  * Writes data to MDI control register in the PHY at offset.
1732  */
1733 static s32
1734 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1735 {
1736         u32 mdicnfg = 0;
1737         s32 ret_val;
1738 
1739         DEBUGFUNC("e1000_write_phy_reg_82580");
1740 
1741         ret_val = hw->phy.ops.acquire(hw);
1742         if (ret_val)
1743                 goto out;
1744 
1745         /*
1746          * We config the phy address in MDICNFG register now. Same bits
1747          * as before. The values in MDIC can be written but will be
1748          * ignored. This allows us to call the old function after
1749          * configuring the PHY address in the new register
1750          */
1751         mdicnfg = (hw->phy.addr << E1000_MDIC_PHY_SHIFT);
1752         E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
1753 
1754         ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
1755 
1756         hw->phy.ops.release(hw);
1757 
1758 out:
1759         return (ret_val);
1760 }
1761 
1762 /*
1763  * e1000_reset_hw_82580 - Reset hardware
1764  * @hw: pointer to the HW structure
1765  *
1766  * This resets function or entire device (all ports, etc.)
1767  * to a known state.
1768  */
1769 static s32
1770 e1000_reset_hw_82580(struct e1000_hw *hw)
1771 {
1772         s32 ret_val = E1000_SUCCESS;
1773         /* BH SW mailbox bit in SW_FW_SYNC */
1774         u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1775         u32 ctrl;
1776         bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1777 
1778         DEBUGFUNC("e1000_reset_hw_82580");
1779 
1780         hw->dev_spec._82575.global_device_reset = false;
1781 
1782         /* Get current control state. */
1783         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1784 
1785         /*
1786          * Prevent the PCI-E bus from sticking if there is no TLP connection
1787          * on the last TLP read/write transaction when MAC is reset.
1788          */
1789         ret_val = e1000_disable_pcie_master_generic(hw);
1790         if (ret_val)
1791                 DEBUGOUT("PCI-E Master disable polling has failed.\n");
1792 
1793         DEBUGOUT("Masking off all interrupts\n");
1794         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1795         E1000_WRITE_REG(hw, E1000_RCTL, 0);
1796         E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
1797         E1000_WRITE_FLUSH(hw);
1798 
1799         msec_delay(10);
1800 
1801         /* Determine whether or not a global dev reset is requested */
1802         if (global_device_reset &&
1803             e1000_acquire_swfw_sync_82575(hw, swmbsw_mask))
1804                 global_device_reset = false;
1805 
1806         if (global_device_reset &&
1807             !(E1000_READ_REG(hw, E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1808                 ctrl |= E1000_CTRL_DEV_RST;
1809         else
1810                 ctrl |= E1000_CTRL_RST;
1811 
1812         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1813 
1814         /* Add delay to insure DEV_RST has time to complete */
1815         if (global_device_reset)
1816                 msec_delay(5);
1817 
1818         ret_val = e1000_get_auto_rd_done_generic(hw);
1819         if (ret_val) {
1820                 /*
1821                  * When auto config read does not complete, do not
1822                  * return with an error. This can happen in situations
1823                  * where there is no eeprom and prevents getting link.
1824                  */
1825                 DEBUGOUT("Auto Read Done did not complete\n");
1826         }
1827 
1828         /* If EEPROM is not present, run manual init scripts */
1829         if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
1830                 (void) e1000_reset_init_script_82575(hw);
1831 
1832         /* clear global device reset status bit */
1833         E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);
1834 
1835         /* Clear any pending interrupt events. */
1836         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1837         (void) E1000_READ_REG(hw, E1000_ICR);
1838 
1839         /* Install any alternate MAC address into RAR0 */
1840         ret_val = e1000_check_alt_mac_addr_generic(hw);
1841 
1842         /* Release semaphore */
1843         if (global_device_reset)
1844                 e1000_release_swfw_sync_82575(hw, swmbsw_mask);
1845 
1846         return (ret_val);
1847 }
1848 
1849 /*
1850  * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1851  * @data: data received by reading RXPBS register
1852  *
1853  * The 82580 uses a table based approach for packet buffer allocation sizes.
1854  * This function converts the retrieved value into the correct table value
1855  *    0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1856  * 0x0 36  72 144   1   2   4   8  16
1857  * 0x8 35  70 140 rsv rsv rsv rsv rsv
1858  */
1859 u16
1860 e1000_rxpbs_adjust_82580(u32 data)
1861 {
1862         u16 ret_val = 0;
1863 
1864         if (data < E1000_82580_RXPBS_TABLE_SIZE)
1865                 ret_val = e1000_82580_rxpbs_table[data];
1866 
1867         return (ret_val);
1868 }