1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 /*
28 * IPsec Security Policy Database.
29 *
30 * This module maintains the SPD and provides routines used by ip and ip6
31 * to apply IPsec policy to inbound and outbound datagrams.
32 */
33
34 #include <sys/types.h>
35 #include <sys/stream.h>
36 #include <sys/stropts.h>
37 #include <sys/sysmacros.h>
38 #include <sys/strsubr.h>
39 #include <sys/strsun.h>
40 #include <sys/strlog.h>
41 #include <sys/strsun.h>
42 #include <sys/cmn_err.h>
43 #include <sys/zone.h>
44
45 #include <sys/systm.h>
46 #include <sys/param.h>
47 #include <sys/kmem.h>
48 #include <sys/ddi.h>
49
50 #include <sys/crypto/api.h>
51
52 #include <inet/common.h>
53 #include <inet/mi.h>
54
55 #include <netinet/ip6.h>
56 #include <netinet/icmp6.h>
57 #include <netinet/udp.h>
58
59 #include <inet/ip.h>
60 #include <inet/ip6.h>
61
62 #include <net/pfkeyv2.h>
63 #include <net/pfpolicy.h>
64 #include <inet/sadb.h>
65 #include <inet/ipsec_impl.h>
66
67 #include <inet/ip_impl.h> /* For IP_MOD_ID */
68
69 #include <inet/ipsecah.h>
70 #include <inet/ipsecesp.h>
71 #include <inet/ipdrop.h>
72 #include <inet/ipclassifier.h>
73 #include <inet/iptun.h>
74 #include <inet/iptun/iptun_impl.h>
75
76 static void ipsec_update_present_flags(ipsec_stack_t *);
77 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *,
78 netstack_t *);
79 static mblk_t *ipsec_check_ipsecin_policy(mblk_t *, ipsec_policy_t *,
80 ipha_t *, ip6_t *, uint64_t, ip_recv_attr_t *, netstack_t *);
81 static void ipsec_action_free_table(ipsec_action_t *);
82 static void ipsec_action_reclaim(void *);
83 static void ipsec_action_reclaim_stack(ipsec_stack_t *);
84 static void ipsid_init(netstack_t *);
85 static void ipsid_fini(netstack_t *);
86
87 /* sel_flags values for ipsec_init_inbound_sel(). */
88 #define SEL_NONE 0x0000
89 #define SEL_PORT_POLICY 0x0001
90 #define SEL_IS_ICMP 0x0002
91 #define SEL_TUNNEL_MODE 0x0004
92 #define SEL_POST_FRAG 0x0008
93
94 /* Return values for ipsec_init_inbound_sel(). */
95 typedef enum { SELRET_NOMEM, SELRET_BADPKT, SELRET_SUCCESS, SELRET_TUNFRAG}
96 selret_t;
97
98 static selret_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *,
99 ipha_t *, ip6_t *, uint8_t);
100
101 static boolean_t ipsec_check_ipsecin_action(ip_recv_attr_t *, mblk_t *,
102 struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **,
103 kstat_named_t **, netstack_t *);
104 static void ipsec_unregister_prov_update(void);
105 static void ipsec_prov_update_callback_stack(uint32_t, void *, netstack_t *);
106 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *);
107 static uint32_t selector_hash(ipsec_selector_t *, ipsec_policy_root_t *);
108 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
109 static void ipsec_kstat_destroy(ipsec_stack_t *);
110 static int ipsec_free_tables(ipsec_stack_t *);
111 static int tunnel_compare(const void *, const void *);
112 static void ipsec_freemsg_chain(mblk_t *);
113 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *,
114 struct kstat_named *, ipdropper_t *);
115 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
116 static void ipsec_kstat_destroy(ipsec_stack_t *);
117 static int ipsec_free_tables(ipsec_stack_t *);
118 static int tunnel_compare(const void *, const void *);
119 static void ipsec_freemsg_chain(mblk_t *);
120
121 /*
122 * Selector hash table is statically sized at module load time.
123 * we default to 251 buckets, which is the largest prime number under 255
124 */
125
126 #define IPSEC_SPDHASH_DEFAULT 251
127
128 /* SPD hash-size tunable per tunnel. */
129 #define TUN_SPDHASH_DEFAULT 5
130
131 uint32_t ipsec_spd_hashsize;
132 uint32_t tun_spd_hashsize;
133
134 #define IPSEC_SEL_NOHASH ((uint32_t)(~0))
135
136 /*
137 * Handle global across all stack instances
138 */
139 static crypto_notify_handle_t prov_update_handle = NULL;
140
141 static kmem_cache_t *ipsec_action_cache;
142 static kmem_cache_t *ipsec_sel_cache;
143 static kmem_cache_t *ipsec_pol_cache;
144
145 /* Frag cache prototypes */
146 static void ipsec_fragcache_clean(ipsec_fragcache_t *, ipsec_stack_t *);
147 static ipsec_fragcache_entry_t *fragcache_delentry(int,
148 ipsec_fragcache_entry_t *, ipsec_fragcache_t *, ipsec_stack_t *);
149 boolean_t ipsec_fragcache_init(ipsec_fragcache_t *);
150 void ipsec_fragcache_uninit(ipsec_fragcache_t *, ipsec_stack_t *ipss);
151 mblk_t *ipsec_fragcache_add(ipsec_fragcache_t *, mblk_t *, mblk_t *,
152 int, ipsec_stack_t *);
153
154 int ipsec_hdr_pullup_needed = 0;
155 int ipsec_weird_null_inbound_policy = 0;
156
157 #define ALGBITS_ROUND_DOWN(x, align) (((x)/(align))*(align))
158 #define ALGBITS_ROUND_UP(x, align) ALGBITS_ROUND_DOWN((x)+(align)-1, align)
159
160 /*
161 * Inbound traffic should have matching identities for both SA's.
162 */
163
164 #define SA_IDS_MATCH(sa1, sa2) \
165 (((sa1) == NULL) || ((sa2) == NULL) || \
166 (((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) && \
167 (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid))))
168
169 /*
170 * IPv6 Fragments
171 */
172 #define IS_V6_FRAGMENT(ipp) (ipp.ipp_fields & IPPF_FRAGHDR)
173
174 /*
175 * Policy failure messages.
176 */
177 static char *ipsec_policy_failure_msgs[] = {
178
179 /* IPSEC_POLICY_NOT_NEEDED */
180 "%s: Dropping the datagram because the incoming packet "
181 "is %s, but the recipient expects clear; Source %s, "
182 "Destination %s.\n",
183
184 /* IPSEC_POLICY_MISMATCH */
185 "%s: Policy Failure for the incoming packet (%s); Source %s, "
186 "Destination %s.\n",
187
188 /* IPSEC_POLICY_AUTH_NOT_NEEDED */
189 "%s: Authentication present while not expected in the "
190 "incoming %s packet; Source %s, Destination %s.\n",
191
192 /* IPSEC_POLICY_ENCR_NOT_NEEDED */
193 "%s: Encryption present while not expected in the "
194 "incoming %s packet; Source %s, Destination %s.\n",
195
196 /* IPSEC_POLICY_SE_NOT_NEEDED */
197 "%s: Self-Encapsulation present while not expected in the "
198 "incoming %s packet; Source %s, Destination %s.\n",
199 };
200
201 /*
202 * General overviews:
203 *
204 * Locking:
205 *
206 * All of the system policy structures are protected by a single
207 * rwlock. These structures are threaded in a
208 * fairly complex fashion and are not expected to change on a
209 * regular basis, so this should not cause scaling/contention
210 * problems. As a result, policy checks should (hopefully) be MT-hot.
211 *
212 * Allocation policy:
213 *
214 * We use custom kmem cache types for the various
215 * bits & pieces of the policy data structures. All allocations
216 * use KM_NOSLEEP instead of KM_SLEEP for policy allocation. The
217 * policy table is of potentially unbounded size, so we don't
218 * want to provide a way to hog all system memory with policy
219 * entries..
220 */
221
222 /* Convenient functions for freeing or dropping a b_next linked mblk chain */
223
224 /* Free all messages in an mblk chain */
225 static void
226 ipsec_freemsg_chain(mblk_t *mp)
227 {
228 mblk_t *mpnext;
229 while (mp != NULL) {
230 ASSERT(mp->b_prev == NULL);
231 mpnext = mp->b_next;
232 mp->b_next = NULL;
233 freemsg(mp);
234 mp = mpnext;
235 }
236 }
237
238 /*
239 * ip_drop all messages in an mblk chain
240 * Can handle a b_next chain of ip_recv_attr_t mblks, or just a b_next chain
241 * of data.
242 */
243 static void
244 ip_drop_packet_chain(mblk_t *mp, boolean_t inbound, ill_t *ill,
245 struct kstat_named *counter, ipdropper_t *who_called)
246 {
247 mblk_t *mpnext;
248 while (mp != NULL) {
249 ASSERT(mp->b_prev == NULL);
250 mpnext = mp->b_next;
251 mp->b_next = NULL;
252 if (ip_recv_attr_is_mblk(mp))
253 mp = ip_recv_attr_free_mblk(mp);
254 ip_drop_packet(mp, inbound, ill, counter, who_called);
255 mp = mpnext;
256 }
257 }
258
259 /*
260 * AVL tree comparison function.
261 * the in-kernel avl assumes unique keys for all objects.
262 * Since sometimes policy will duplicate rules, we may insert
263 * multiple rules with the same rule id, so we need a tie-breaker.
264 */
265 static int
266 ipsec_policy_cmpbyid(const void *a, const void *b)
267 {
268 const ipsec_policy_t *ipa, *ipb;
269 uint64_t idxa, idxb;
270
271 ipa = (const ipsec_policy_t *)a;
272 ipb = (const ipsec_policy_t *)b;
273 idxa = ipa->ipsp_index;
274 idxb = ipb->ipsp_index;
275
276 if (idxa < idxb)
277 return (-1);
278 if (idxa > idxb)
279 return (1);
280 /*
281 * Tie-breaker #1: All installed policy rules have a non-NULL
282 * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not
283 * actually in-tree but rather a template node being used in
284 * an avl_find query; see ipsec_policy_delete(). This gives us
285 * a placeholder in the ordering just before the first entry with
286 * a key >= the one we're looking for, so we can walk forward from
287 * that point to get the remaining entries with the same id.
288 */
289 if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL))
290 return (-1);
291 if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL))
292 return (1);
293 /*
294 * At most one of the arguments to the comparison should have a
295 * NULL selector pointer; if not, the tree is broken.
296 */
297 ASSERT(ipa->ipsp_sel != NULL);
298 ASSERT(ipb->ipsp_sel != NULL);
299 /*
300 * Tie-breaker #2: use the virtual address of the policy node
301 * to arbitrarily break ties. Since we use the new tree node in
302 * the avl_find() in ipsec_insert_always, the new node will be
303 * inserted into the tree in the right place in the sequence.
304 */
305 if (ipa < ipb)
306 return (-1);
307 if (ipa > ipb)
308 return (1);
309 return (0);
310 }
311
312 /*
313 * Free what ipsec_alloc_table allocated.
314 */
315 void
316 ipsec_polhead_free_table(ipsec_policy_head_t *iph)
317 {
318 int dir;
319 int i;
320
321 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
322 ipsec_policy_root_t *ipr = &iph->iph_root[dir];
323
324 if (ipr->ipr_hash == NULL)
325 continue;
326
327 for (i = 0; i < ipr->ipr_nchains; i++) {
328 ASSERT(ipr->ipr_hash[i].hash_head == NULL);
329 }
330 kmem_free(ipr->ipr_hash, ipr->ipr_nchains *
331 sizeof (ipsec_policy_hash_t));
332 ipr->ipr_hash = NULL;
333 }
334 }
335
336 void
337 ipsec_polhead_destroy(ipsec_policy_head_t *iph)
338 {
339 int dir;
340
341 avl_destroy(&iph->iph_rulebyid);
342 rw_destroy(&iph->iph_lock);
343
344 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
345 ipsec_policy_root_t *ipr = &iph->iph_root[dir];
346 int chain;
347
348 for (chain = 0; chain < ipr->ipr_nchains; chain++)
349 mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
350
351 }
352 ipsec_polhead_free_table(iph);
353 }
354
355 /*
356 * Free the IPsec stack instance.
357 */
358 /* ARGSUSED */
359 static void
360 ipsec_stack_fini(netstackid_t stackid, void *arg)
361 {
362 ipsec_stack_t *ipss = (ipsec_stack_t *)arg;
363 void *cookie;
364 ipsec_tun_pol_t *node;
365 netstack_t *ns = ipss->ipsec_netstack;
366 int i;
367 ipsec_algtype_t algtype;
368
369 ipsec_loader_destroy(ipss);
370
371 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
372 /*
373 * It's possible we can just ASSERT() the tree is empty. After all,
374 * we aren't called until IP is ready to unload (and presumably all
375 * tunnels have been unplumbed). But we'll play it safe for now, the
376 * loop will just exit immediately if it's empty.
377 */
378 cookie = NULL;
379 while ((node = (ipsec_tun_pol_t *)
380 avl_destroy_nodes(&ipss->ipsec_tunnel_policies,
381 &cookie)) != NULL) {
382 ITP_REFRELE(node, ns);
383 }
384 avl_destroy(&ipss->ipsec_tunnel_policies);
385 rw_exit(&ipss->ipsec_tunnel_policy_lock);
386 rw_destroy(&ipss->ipsec_tunnel_policy_lock);
387
388 ipsec_config_flush(ns);
389
390 ipsec_kstat_destroy(ipss);
391
392 ip_drop_unregister(&ipss->ipsec_dropper);
393
394 ip_drop_unregister(&ipss->ipsec_spd_dropper);
395 ip_drop_destroy(ipss);
396 /*
397 * Globals start with ref == 1 to prevent IPPH_REFRELE() from
398 * attempting to free them, hence they should have 1 now.
399 */
400 ipsec_polhead_destroy(&ipss->ipsec_system_policy);
401 ASSERT(ipss->ipsec_system_policy.iph_refs == 1);
402 ipsec_polhead_destroy(&ipss->ipsec_inactive_policy);
403 ASSERT(ipss->ipsec_inactive_policy.iph_refs == 1);
404
405 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
406 ipsec_action_free_table(ipss->ipsec_action_hash[i].hash_head);
407 ipss->ipsec_action_hash[i].hash_head = NULL;
408 mutex_destroy(&(ipss->ipsec_action_hash[i].hash_lock));
409 }
410
411 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
412 ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
413 mutex_destroy(&(ipss->ipsec_sel_hash[i].hash_lock));
414 }
415
416 rw_enter(&ipss->ipsec_alg_lock, RW_WRITER);
417 for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype ++) {
418 int nalgs = ipss->ipsec_nalgs[algtype];
419
420 for (i = 0; i < nalgs; i++) {
421 if (ipss->ipsec_alglists[algtype][i] != NULL)
422 ipsec_alg_unreg(algtype, i, ns);
423 }
424 }
425 rw_exit(&ipss->ipsec_alg_lock);
426 rw_destroy(&ipss->ipsec_alg_lock);
427
428 ipsid_gc(ns);
429 ipsid_fini(ns);
430
431 (void) ipsec_free_tables(ipss);
432 kmem_free(ipss, sizeof (*ipss));
433 }
434
435 void
436 ipsec_policy_g_destroy(void)
437 {
438 kmem_cache_destroy(ipsec_action_cache);
439 kmem_cache_destroy(ipsec_sel_cache);
440 kmem_cache_destroy(ipsec_pol_cache);
441
442 ipsec_unregister_prov_update();
443
444 netstack_unregister(NS_IPSEC);
445 }
446
447
448 /*
449 * Free what ipsec_alloc_tables allocated.
450 * Called when table allocation fails to free the table.
451 */
452 static int
453 ipsec_free_tables(ipsec_stack_t *ipss)
454 {
455 int i;
456
457 if (ipss->ipsec_sel_hash != NULL) {
458 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
459 ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
460 }
461 kmem_free(ipss->ipsec_sel_hash, ipss->ipsec_spd_hashsize *
462 sizeof (*ipss->ipsec_sel_hash));
463 ipss->ipsec_sel_hash = NULL;
464 ipss->ipsec_spd_hashsize = 0;
465 }
466 ipsec_polhead_free_table(&ipss->ipsec_system_policy);
467 ipsec_polhead_free_table(&ipss->ipsec_inactive_policy);
468
469 return (ENOMEM);
470 }
471
472 /*
473 * Attempt to allocate the tables in a single policy head.
474 * Return nonzero on failure after cleaning up any work in progress.
475 */
476 int
477 ipsec_alloc_table(ipsec_policy_head_t *iph, int nchains, int kmflag,
478 boolean_t global_cleanup, netstack_t *ns)
479 {
480 int dir;
481
482 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
483 ipsec_policy_root_t *ipr = &iph->iph_root[dir];
484
485 ipr->ipr_nchains = nchains;
486 ipr->ipr_hash = kmem_zalloc(nchains *
487 sizeof (ipsec_policy_hash_t), kmflag);
488 if (ipr->ipr_hash == NULL)
489 return (global_cleanup ?
490 ipsec_free_tables(ns->netstack_ipsec) :
491 ENOMEM);
492 }
493 return (0);
494 }
495
496 /*
497 * Attempt to allocate the various tables. Return nonzero on failure
498 * after cleaning up any work in progress.
499 */
500 static int
501 ipsec_alloc_tables(int kmflag, netstack_t *ns)
502 {
503 int error;
504 ipsec_stack_t *ipss = ns->netstack_ipsec;
505
506 error = ipsec_alloc_table(&ipss->ipsec_system_policy,
507 ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
508 if (error != 0)
509 return (error);
510
511 error = ipsec_alloc_table(&ipss->ipsec_inactive_policy,
512 ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
513 if (error != 0)
514 return (error);
515
516 ipss->ipsec_sel_hash = kmem_zalloc(ipss->ipsec_spd_hashsize *
517 sizeof (*ipss->ipsec_sel_hash), kmflag);
518
519 if (ipss->ipsec_sel_hash == NULL)
520 return (ipsec_free_tables(ipss));
521
522 return (0);
523 }
524
525 /*
526 * After table allocation, initialize a policy head.
527 */
528 void
529 ipsec_polhead_init(ipsec_policy_head_t *iph, int nchains)
530 {
531 int dir, chain;
532
533 rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
534 avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid,
535 sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
536
537 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
538 ipsec_policy_root_t *ipr = &iph->iph_root[dir];
539 ipr->ipr_nchains = nchains;
540
541 for (chain = 0; chain < nchains; chain++) {
542 mutex_init(&(ipr->ipr_hash[chain].hash_lock),
543 NULL, MUTEX_DEFAULT, NULL);
544 }
545 }
546 }
547
548 static boolean_t
549 ipsec_kstat_init(ipsec_stack_t *ipss)
550 {
551 ipss->ipsec_ksp = kstat_create_netstack("ip", 0, "ipsec_stat", "net",
552 KSTAT_TYPE_NAMED, sizeof (ipsec_kstats_t) / sizeof (kstat_named_t),
553 KSTAT_FLAG_PERSISTENT, ipss->ipsec_netstack->netstack_stackid);
554
555 if (ipss->ipsec_ksp == NULL || ipss->ipsec_ksp->ks_data == NULL)
556 return (B_FALSE);
557
558 ipss->ipsec_kstats = ipss->ipsec_ksp->ks_data;
559
560 #define KI(x) kstat_named_init(&ipss->ipsec_kstats->x, #x, KSTAT_DATA_UINT64)
561 KI(esp_stat_in_requests);
562 KI(esp_stat_in_discards);
563 KI(esp_stat_lookup_failure);
564 KI(ah_stat_in_requests);
565 KI(ah_stat_in_discards);
566 KI(ah_stat_lookup_failure);
567 KI(sadb_acquire_maxpackets);
568 KI(sadb_acquire_qhiwater);
569 #undef KI
570
571 kstat_install(ipss->ipsec_ksp);
572 return (B_TRUE);
573 }
574
575 static void
576 ipsec_kstat_destroy(ipsec_stack_t *ipss)
577 {
578 kstat_delete_netstack(ipss->ipsec_ksp,
579 ipss->ipsec_netstack->netstack_stackid);
580 ipss->ipsec_kstats = NULL;
581
582 }
583
584 /*
585 * Initialize the IPsec stack instance.
586 */
587 /* ARGSUSED */
588 static void *
589 ipsec_stack_init(netstackid_t stackid, netstack_t *ns)
590 {
591 ipsec_stack_t *ipss;
592 int i;
593
594 ipss = (ipsec_stack_t *)kmem_zalloc(sizeof (*ipss), KM_SLEEP);
595 ipss->ipsec_netstack = ns;
596
597 /*
598 * FIXME: netstack_ipsec is used by some of the routines we call
599 * below, but it isn't set until this routine returns.
600 * Either we introduce optional xxx_stack_alloc() functions
601 * that will be called by the netstack framework before xxx_stack_init,
602 * or we switch spd.c and sadb.c to operate on ipsec_stack_t
603 * (latter has some include file order issues for sadb.h, but makes
604 * sense if we merge some of the ipsec related stack_t's together.
605 */
606 ns->netstack_ipsec = ipss;
607
608 /*
609 * Make two attempts to allocate policy hash tables; try it at
610 * the "preferred" size (may be set in /etc/system) first,
611 * then fall back to the default size.
612 */
613 ipss->ipsec_spd_hashsize = (ipsec_spd_hashsize == 0) ?
614 IPSEC_SPDHASH_DEFAULT : ipsec_spd_hashsize;
615
616 if (ipsec_alloc_tables(KM_NOSLEEP, ns) != 0) {
617 cmn_err(CE_WARN,
618 "Unable to allocate %d entry IPsec policy hash table",
619 ipss->ipsec_spd_hashsize);
620 ipss->ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
621 cmn_err(CE_WARN, "Falling back to %d entries",
622 ipss->ipsec_spd_hashsize);
623 (void) ipsec_alloc_tables(KM_SLEEP, ns);
624 }
625
626 /* Just set a default for tunnels. */
627 ipss->ipsec_tun_spd_hashsize = (tun_spd_hashsize == 0) ?
628 TUN_SPDHASH_DEFAULT : tun_spd_hashsize;
629
630 ipsid_init(ns);
631 /*
632 * Globals need ref == 1 to prevent IPPH_REFRELE() from attempting
633 * to free them.
634 */
635 ipss->ipsec_system_policy.iph_refs = 1;
636 ipss->ipsec_inactive_policy.iph_refs = 1;
637 ipsec_polhead_init(&ipss->ipsec_system_policy,
638 ipss->ipsec_spd_hashsize);
639 ipsec_polhead_init(&ipss->ipsec_inactive_policy,
640 ipss->ipsec_spd_hashsize);
641 rw_init(&ipss->ipsec_tunnel_policy_lock, NULL, RW_DEFAULT, NULL);
642 avl_create(&ipss->ipsec_tunnel_policies, tunnel_compare,
643 sizeof (ipsec_tun_pol_t), 0);
644
645 ipss->ipsec_next_policy_index = 1;
646
647 rw_init(&ipss->ipsec_system_policy.iph_lock, NULL, RW_DEFAULT, NULL);
648 rw_init(&ipss->ipsec_inactive_policy.iph_lock, NULL, RW_DEFAULT, NULL);
649
650 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
651 mutex_init(&(ipss->ipsec_action_hash[i].hash_lock),
652 NULL, MUTEX_DEFAULT, NULL);
653
654 for (i = 0; i < ipss->ipsec_spd_hashsize; i++)
655 mutex_init(&(ipss->ipsec_sel_hash[i].hash_lock),
656 NULL, MUTEX_DEFAULT, NULL);
657
658 rw_init(&ipss->ipsec_alg_lock, NULL, RW_DEFAULT, NULL);
659 for (i = 0; i < IPSEC_NALGTYPES; i++) {
660 ipss->ipsec_nalgs[i] = 0;
661 }
662
663 ip_drop_init(ipss);
664 ip_drop_register(&ipss->ipsec_spd_dropper, "IPsec SPD");
665
666 /* IP's IPsec code calls the packet dropper */
667 ip_drop_register(&ipss->ipsec_dropper, "IP IPsec processing");
668
669 (void) ipsec_kstat_init(ipss);
670
671 ipsec_loader_init(ipss);
672 ipsec_loader_start(ipss);
673
674 return (ipss);
675 }
676
677 /* Global across all stack instances */
678 void
679 ipsec_policy_g_init(void)
680 {
681 ipsec_action_cache = kmem_cache_create("ipsec_actions",
682 sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL,
683 ipsec_action_reclaim, NULL, NULL, 0);
684 ipsec_sel_cache = kmem_cache_create("ipsec_selectors",
685 sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL,
686 NULL, NULL, NULL, 0);
687 ipsec_pol_cache = kmem_cache_create("ipsec_policy",
688 sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL,
689 NULL, NULL, NULL, 0);
690
691 /*
692 * We want to be informed each time a stack is created or
693 * destroyed in the kernel, so we can maintain the
694 * set of ipsec_stack_t's.
695 */
696 netstack_register(NS_IPSEC, ipsec_stack_init, NULL, ipsec_stack_fini);
697 }
698
699 /*
700 * Sort algorithm lists.
701 *
702 * I may need to split this based on
703 * authentication/encryption, and I may wish to have an administrator
704 * configure this list. Hold on to some NDD variables...
705 *
706 * XXX For now, sort on minimum key size (GAG!). While minimum key size is
707 * not the ideal metric, it's the only quantifiable measure available.
708 * We need a better metric for sorting algorithms by preference.
709 */
710 static void
711 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
712 {
713 ipsec_stack_t *ipss = ns->netstack_ipsec;
714 ipsec_alginfo_t *ai = ipss->ipsec_alglists[at][algid];
715 uint8_t holder, swap;
716 uint_t i;
717 uint_t count = ipss->ipsec_nalgs[at];
718 ASSERT(ai != NULL);
719 ASSERT(algid == ai->alg_id);
720
721 ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
722
723 holder = algid;
724
725 for (i = 0; i < count - 1; i++) {
726 ipsec_alginfo_t *alt;
727
728 alt = ipss->ipsec_alglists[at][ipss->ipsec_sortlist[at][i]];
729 /*
730 * If you want to give precedence to newly added algs,
731 * add the = in the > comparison.
732 */
733 if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) {
734 /* Swap sortlist[i] and holder. */
735 swap = ipss->ipsec_sortlist[at][i];
736 ipss->ipsec_sortlist[at][i] = holder;
737 holder = swap;
738 ai = alt;
739 } /* Else just continue. */
740 }
741
742 /* Store holder in last slot. */
743 ipss->ipsec_sortlist[at][i] = holder;
744 }
745
746 /*
747 * Remove an algorithm from a sorted algorithm list.
748 * This should be considerably easier, even with complex sorting.
749 */
750 static void
751 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
752 {
753 boolean_t copyback = B_FALSE;
754 int i;
755 ipsec_stack_t *ipss = ns->netstack_ipsec;
756 int newcount = ipss->ipsec_nalgs[at];
757
758 ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
759
760 for (i = 0; i <= newcount; i++) {
761 if (copyback) {
762 ipss->ipsec_sortlist[at][i-1] =
763 ipss->ipsec_sortlist[at][i];
764 } else if (ipss->ipsec_sortlist[at][i] == algid) {
765 copyback = B_TRUE;
766 }
767 }
768 }
769
770 /*
771 * Add the specified algorithm to the algorithm tables.
772 * Must be called while holding the algorithm table writer lock.
773 */
774 void
775 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg, netstack_t *ns)
776 {
777 ipsec_stack_t *ipss = ns->netstack_ipsec;
778
779 ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
780
781 ASSERT(ipss->ipsec_alglists[algtype][alg->alg_id] == NULL);
782 ipsec_alg_fix_min_max(alg, algtype, ns);
783 ipss->ipsec_alglists[algtype][alg->alg_id] = alg;
784
785 ipss->ipsec_nalgs[algtype]++;
786 alg_insert_sortlist(algtype, alg->alg_id, ns);
787 }
788
789 /*
790 * Remove the specified algorithm from the algorithm tables.
791 * Must be called while holding the algorithm table writer lock.
792 */
793 void
794 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid, netstack_t *ns)
795 {
796 ipsec_stack_t *ipss = ns->netstack_ipsec;
797
798 ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
799
800 ASSERT(ipss->ipsec_alglists[algtype][algid] != NULL);
801 ipsec_alg_free(ipss->ipsec_alglists[algtype][algid]);
802 ipss->ipsec_alglists[algtype][algid] = NULL;
803
804 ipss->ipsec_nalgs[algtype]--;
805 alg_remove_sortlist(algtype, algid, ns);
806 }
807
808 /*
809 * Hooks for spdsock to get a grip on system policy.
810 */
811
812 ipsec_policy_head_t *
813 ipsec_system_policy(netstack_t *ns)
814 {
815 ipsec_stack_t *ipss = ns->netstack_ipsec;
816 ipsec_policy_head_t *h = &ipss->ipsec_system_policy;
817
818 IPPH_REFHOLD(h);
819 return (h);
820 }
821
822 ipsec_policy_head_t *
823 ipsec_inactive_policy(netstack_t *ns)
824 {
825 ipsec_stack_t *ipss = ns->netstack_ipsec;
826 ipsec_policy_head_t *h = &ipss->ipsec_inactive_policy;
827
828 IPPH_REFHOLD(h);
829 return (h);
830 }
831
832 /*
833 * Lock inactive policy, then active policy, then exchange policy root
834 * pointers.
835 */
836 void
837 ipsec_swap_policy(ipsec_policy_head_t *active, ipsec_policy_head_t *inactive,
838 netstack_t *ns)
839 {
840 int af, dir;
841 avl_tree_t r1, r2;
842
843 rw_enter(&inactive->iph_lock, RW_WRITER);
844 rw_enter(&active->iph_lock, RW_WRITER);
845
846 r1 = active->iph_rulebyid;
847 r2 = inactive->iph_rulebyid;
848 active->iph_rulebyid = r2;
849 inactive->iph_rulebyid = r1;
850
851 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
852 ipsec_policy_hash_t *h1, *h2;
853
854 h1 = active->iph_root[dir].ipr_hash;
855 h2 = inactive->iph_root[dir].ipr_hash;
856 active->iph_root[dir].ipr_hash = h2;
857 inactive->iph_root[dir].ipr_hash = h1;
858
859 for (af = 0; af < IPSEC_NAF; af++) {
860 ipsec_policy_t *t1, *t2;
861
862 t1 = active->iph_root[dir].ipr_nonhash[af];
863 t2 = inactive->iph_root[dir].ipr_nonhash[af];
864 active->iph_root[dir].ipr_nonhash[af] = t2;
865 inactive->iph_root[dir].ipr_nonhash[af] = t1;
866 if (t1 != NULL) {
867 t1->ipsp_hash.hash_pp =
868 &(inactive->iph_root[dir].ipr_nonhash[af]);
869 }
870 if (t2 != NULL) {
871 t2->ipsp_hash.hash_pp =
872 &(active->iph_root[dir].ipr_nonhash[af]);
873 }
874
875 }
876 }
877 active->iph_gen++;
878 inactive->iph_gen++;
879 ipsec_update_present_flags(ns->netstack_ipsec);
880 rw_exit(&active->iph_lock);
881 rw_exit(&inactive->iph_lock);
882 }
883
884 /*
885 * Swap global policy primary/secondary.
886 */
887 void
888 ipsec_swap_global_policy(netstack_t *ns)
889 {
890 ipsec_stack_t *ipss = ns->netstack_ipsec;
891
892 ipsec_swap_policy(&ipss->ipsec_system_policy,
893 &ipss->ipsec_inactive_policy, ns);
894 }
895
896 /*
897 * Clone one policy rule..
898 */
899 static ipsec_policy_t *
900 ipsec_copy_policy(const ipsec_policy_t *src)
901 {
902 ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
903
904 if (dst == NULL)
905 return (NULL);
906
907 /*
908 * Adjust refcounts of cloned state.
909 */
910 IPACT_REFHOLD(src->ipsp_act);
911 src->ipsp_sel->ipsl_refs++;
912
913 HASH_NULL(dst, ipsp_hash);
914 dst->ipsp_netstack = src->ipsp_netstack;
915 dst->ipsp_refs = 1;
916 dst->ipsp_sel = src->ipsp_sel;
917 dst->ipsp_act = src->ipsp_act;
918 dst->ipsp_prio = src->ipsp_prio;
919 dst->ipsp_index = src->ipsp_index;
920
921 return (dst);
922 }
923
924 void
925 ipsec_insert_always(avl_tree_t *tree, void *new_node)
926 {
927 void *node;
928 avl_index_t where;
929
930 node = avl_find(tree, new_node, &where);
931 ASSERT(node == NULL);
932 avl_insert(tree, new_node, where);
933 }
934
935
936 static int
937 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src,
938 ipsec_policy_t **dstp)
939 {
940 for (; src != NULL; src = src->ipsp_hash.hash_next) {
941 ipsec_policy_t *dst = ipsec_copy_policy(src);
942 if (dst == NULL)
943 return (ENOMEM);
944
945 HASHLIST_INSERT(dst, ipsp_hash, *dstp);
946 ipsec_insert_always(&dph->iph_rulebyid, dst);
947 }
948 return (0);
949 }
950
951
952
953 /*
954 * Make one policy head look exactly like another.
955 *
956 * As with ipsec_swap_policy, we lock the destination policy head first, then
957 * the source policy head. Note that we only need to read-lock the source
958 * policy head as we are not changing it.
959 */
960 int
961 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph,
962 netstack_t *ns)
963 {
964 int af, dir, chain, nchains;
965
966 rw_enter(&dph->iph_lock, RW_WRITER);
967
968 ipsec_polhead_flush(dph, ns);
969
970 rw_enter(&sph->iph_lock, RW_READER);
971
972 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
973 ipsec_policy_root_t *dpr = &dph->iph_root[dir];
974 ipsec_policy_root_t *spr = &sph->iph_root[dir];
975 nchains = dpr->ipr_nchains;
976
977 ASSERT(dpr->ipr_nchains == spr->ipr_nchains);
978
979 for (af = 0; af < IPSEC_NAF; af++) {
980 if (ipsec_copy_chain(dph, spr->ipr_nonhash[af],
981 &dpr->ipr_nonhash[af]))
982 goto abort_copy;
983 }
984
985 for (chain = 0; chain < nchains; chain++) {
986 if (ipsec_copy_chain(dph,
987 spr->ipr_hash[chain].hash_head,
988 &dpr->ipr_hash[chain].hash_head))
989 goto abort_copy;
990 }
991 }
992
993 dph->iph_gen++;
994
995 rw_exit(&sph->iph_lock);
996 rw_exit(&dph->iph_lock);
997 return (0);
998
999 abort_copy:
1000 ipsec_polhead_flush(dph, ns);
1001 rw_exit(&sph->iph_lock);
1002 rw_exit(&dph->iph_lock);
1003 return (ENOMEM);
1004 }
1005
1006 /*
1007 * Clone currently active policy to the inactive policy list.
1008 */
1009 int
1010 ipsec_clone_system_policy(netstack_t *ns)
1011 {
1012 ipsec_stack_t *ipss = ns->netstack_ipsec;
1013
1014 return (ipsec_copy_polhead(&ipss->ipsec_system_policy,
1015 &ipss->ipsec_inactive_policy, ns));
1016 }
1017
1018 /*
1019 * Extract the string from ipsec_policy_failure_msgs[type] and
1020 * log it.
1021 *
1022 */
1023 void
1024 ipsec_log_policy_failure(int type, char *func_name, ipha_t *ipha, ip6_t *ip6h,
1025 boolean_t secure, netstack_t *ns)
1026 {
1027 char sbuf[INET6_ADDRSTRLEN];
1028 char dbuf[INET6_ADDRSTRLEN];
1029 char *s;
1030 char *d;
1031 ipsec_stack_t *ipss = ns->netstack_ipsec;
1032
1033 ASSERT((ipha == NULL && ip6h != NULL) ||
1034 (ip6h == NULL && ipha != NULL));
1035
1036 if (ipha != NULL) {
1037 s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf));
1038 d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf));
1039 } else {
1040 s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf));
1041 d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf));
1042
1043 }
1044
1045 /* Always bump the policy failure counter. */
1046 ipss->ipsec_policy_failure_count[type]++;
1047
1048 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1049 ipsec_policy_failure_msgs[type], func_name,
1050 (secure ? "secure" : "not secure"), s, d);
1051 }
1052
1053 /*
1054 * Rate-limiting front-end to strlog() for AH and ESP. Uses the ndd variables
1055 * in /dev/ip and the same rate-limiting clock so that there's a single
1056 * knob to turn to throttle the rate of messages.
1057 */
1058 void
1059 ipsec_rl_strlog(netstack_t *ns, short mid, short sid, char level, ushort_t sl,
1060 char *fmt, ...)
1061 {
1062 va_list adx;
1063 hrtime_t current = gethrtime();
1064 ip_stack_t *ipst = ns->netstack_ip;
1065 ipsec_stack_t *ipss = ns->netstack_ipsec;
1066
1067 sl |= SL_CONSOLE;
1068 /*
1069 * Throttle logging to stop syslog from being swamped. If variable
1070 * 'ipsec_policy_log_interval' is zero, don't log any messages at
1071 * all, otherwise log only one message every 'ipsec_policy_log_interval'
1072 * msec. Convert interval (in msec) to hrtime (in nsec).
1073 */
1074
1075 if (ipst->ips_ipsec_policy_log_interval) {
1076 if (ipss->ipsec_policy_failure_last +
1077 MSEC2NSEC(ipst->ips_ipsec_policy_log_interval) <= current) {
1078 va_start(adx, fmt);
1079 (void) vstrlog(mid, sid, level, sl, fmt, adx);
1080 va_end(adx);
1081 ipss->ipsec_policy_failure_last = current;
1082 }
1083 }
1084 }
1085
1086 void
1087 ipsec_config_flush(netstack_t *ns)
1088 {
1089 ipsec_stack_t *ipss = ns->netstack_ipsec;
1090
1091 rw_enter(&ipss->ipsec_system_policy.iph_lock, RW_WRITER);
1092 ipsec_polhead_flush(&ipss->ipsec_system_policy, ns);
1093 ipss->ipsec_next_policy_index = 1;
1094 rw_exit(&ipss->ipsec_system_policy.iph_lock);
1095 ipsec_action_reclaim_stack(ipss);
1096 }
1097
1098 /*
1099 * Clip a policy's min/max keybits vs. the capabilities of the
1100 * algorithm.
1101 */
1102 static void
1103 act_alg_adjust(uint_t algtype, uint_t algid,
1104 uint16_t *minbits, uint16_t *maxbits, netstack_t *ns)
1105 {
1106 ipsec_stack_t *ipss = ns->netstack_ipsec;
1107 ipsec_alginfo_t *algp = ipss->ipsec_alglists[algtype][algid];
1108
1109 if (algp != NULL) {
1110 /*
1111 * If passed-in minbits is zero, we assume the caller trusts
1112 * us with setting the minimum key size. We pick the
1113 * algorithms DEFAULT key size for the minimum in this case.
1114 */
1115 if (*minbits == 0) {
1116 *minbits = algp->alg_default_bits;
1117 ASSERT(*minbits >= algp->alg_minbits);
1118 } else {
1119 *minbits = MAX(MIN(*minbits, algp->alg_maxbits),
1120 algp->alg_minbits);
1121 }
1122 if (*maxbits == 0)
1123 *maxbits = algp->alg_maxbits;
1124 else
1125 *maxbits = MIN(MAX(*maxbits, algp->alg_minbits),
1126 algp->alg_maxbits);
1127 ASSERT(*minbits <= *maxbits);
1128 } else {
1129 *minbits = 0;
1130 *maxbits = 0;
1131 }
1132 }
1133
1134 /*
1135 * Check an action's requested algorithms against the algorithms currently
1136 * loaded in the system.
1137 */
1138 boolean_t
1139 ipsec_check_action(ipsec_act_t *act, int *diag, netstack_t *ns)
1140 {
1141 ipsec_prot_t *ipp;
1142 ipsec_stack_t *ipss = ns->netstack_ipsec;
1143
1144 ipp = &act->ipa_apply;
1145
1146 if (ipp->ipp_use_ah &&
1147 ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) {
1148 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG;
1149 return (B_FALSE);
1150 }
1151 if (ipp->ipp_use_espa &&
1152 ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] ==
1153 NULL) {
1154 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG;
1155 return (B_FALSE);
1156 }
1157 if (ipp->ipp_use_esp &&
1158 ipss->ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) {
1159 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG;
1160 return (B_FALSE);
1161 }
1162
1163 act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg,
1164 &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1165 act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg,
1166 &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1167 act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg,
1168 &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1169
1170 if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) {
1171 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE;
1172 return (B_FALSE);
1173 }
1174 if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) {
1175 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE;
1176 return (B_FALSE);
1177 }
1178 if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) {
1179 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE;
1180 return (B_FALSE);
1181 }
1182 /* TODO: sanity check lifetimes */
1183 return (B_TRUE);
1184 }
1185
1186 /*
1187 * Set up a single action during wildcard expansion..
1188 */
1189 static void
1190 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act,
1191 uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg, netstack_t *ns)
1192 {
1193 ipsec_prot_t *ipp;
1194
1195 *outact = *act;
1196 ipp = &outact->ipa_apply;
1197 ipp->ipp_auth_alg = (uint8_t)auth_alg;
1198 ipp->ipp_encr_alg = (uint8_t)encr_alg;
1199 ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg;
1200
1201 act_alg_adjust(IPSEC_ALG_AUTH, auth_alg,
1202 &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1203 act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg,
1204 &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1205 act_alg_adjust(IPSEC_ALG_ENCR, encr_alg,
1206 &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1207 }
1208
1209 /*
1210 * combinatoric expansion time: expand a wildcarded action into an
1211 * array of wildcarded actions; we return the exploded action list,
1212 * and return a count in *nact (output only).
1213 */
1214 static ipsec_act_t *
1215 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact, netstack_t *ns)
1216 {
1217 boolean_t use_ah, use_esp, use_espa;
1218 boolean_t wild_auth, wild_encr, wild_eauth;
1219 uint_t auth_alg, auth_idx, auth_min, auth_max;
1220 uint_t eauth_alg, eauth_idx, eauth_min, eauth_max;
1221 uint_t encr_alg, encr_idx, encr_min, encr_max;
1222 uint_t action_count, ai;
1223 ipsec_act_t *outact;
1224 ipsec_stack_t *ipss = ns->netstack_ipsec;
1225
1226 if (act->ipa_type != IPSEC_ACT_APPLY) {
1227 outact = kmem_alloc(sizeof (*act), KM_NOSLEEP);
1228 *nact = 1;
1229 if (outact != NULL)
1230 bcopy(act, outact, sizeof (*act));
1231 return (outact);
1232 }
1233 /*
1234 * compute the combinatoric explosion..
1235 *
1236 * we assume a request for encr if esp_req is PREF_REQUIRED
1237 * we assume a request for ah auth if ah_req is PREF_REQUIRED.
1238 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED
1239 */
1240
1241 use_ah = act->ipa_apply.ipp_use_ah;
1242 use_esp = act->ipa_apply.ipp_use_esp;
1243 use_espa = act->ipa_apply.ipp_use_espa;
1244 auth_alg = act->ipa_apply.ipp_auth_alg;
1245 eauth_alg = act->ipa_apply.ipp_esp_auth_alg;
1246 encr_alg = act->ipa_apply.ipp_encr_alg;
1247
1248 wild_auth = use_ah && (auth_alg == 0);
1249 wild_eauth = use_espa && (eauth_alg == 0);
1250 wild_encr = use_esp && (encr_alg == 0);
1251
1252 action_count = 1;
1253 auth_min = auth_max = auth_alg;
1254 eauth_min = eauth_max = eauth_alg;
1255 encr_min = encr_max = encr_alg;
1256
1257 /*
1258 * set up for explosion.. for each dimension, expand output
1259 * size by the explosion factor.
1260 *
1261 * Don't include the "any" algorithms, if defined, as no
1262 * kernel policies should be set for these algorithms.
1263 */
1264
1265 #define SET_EXP_MINMAX(type, wild, alg, min, max, ipss) \
1266 if (wild) { \
1267 int nalgs = ipss->ipsec_nalgs[type]; \
1268 if (ipss->ipsec_alglists[type][alg] != NULL) \
1269 nalgs--; \
1270 action_count *= nalgs; \
1271 min = 0; \
1272 max = ipss->ipsec_nalgs[type] - 1; \
1273 }
1274
1275 SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE,
1276 auth_min, auth_max, ipss);
1277 SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE,
1278 eauth_min, eauth_max, ipss);
1279 SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE,
1280 encr_min, encr_max, ipss);
1281
1282 #undef SET_EXP_MINMAX
1283
1284 /*
1285 * ok, allocate the whole mess..
1286 */
1287
1288 outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP);
1289 if (outact == NULL)
1290 return (NULL);
1291
1292 /*
1293 * Now compute all combinations. Note that non-wildcarded
1294 * dimensions just get a single value from auth_min, while
1295 * wildcarded dimensions indirect through the sortlist.
1296 *
1297 * We do encryption outermost since, at this time, there's
1298 * greater difference in security and performance between
1299 * encryption algorithms vs. authentication algorithms.
1300 */
1301
1302 ai = 0;
1303
1304 #define WHICH_ALG(type, wild, idx, ipss) \
1305 ((wild)?(ipss->ipsec_sortlist[type][idx]):(idx))
1306
1307 for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) {
1308 encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx, ipss);
1309 if (wild_encr && encr_alg == SADB_EALG_NONE)
1310 continue;
1311 for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) {
1312 auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth,
1313 auth_idx, ipss);
1314 if (wild_auth && auth_alg == SADB_AALG_NONE)
1315 continue;
1316 for (eauth_idx = eauth_min; eauth_idx <= eauth_max;
1317 eauth_idx++) {
1318 eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH,
1319 wild_eauth, eauth_idx, ipss);
1320 if (wild_eauth && eauth_alg == SADB_AALG_NONE)
1321 continue;
1322
1323 ipsec_setup_act(&outact[ai], act,
1324 auth_alg, encr_alg, eauth_alg, ns);
1325 ai++;
1326 }
1327 }
1328 }
1329
1330 #undef WHICH_ALG
1331
1332 ASSERT(ai == action_count);
1333 *nact = action_count;
1334 return (outact);
1335 }
1336
1337 /*
1338 * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t.
1339 */
1340 static void
1341 ipsec_prot_from_req(const ipsec_req_t *req, ipsec_prot_t *ipp)
1342 {
1343 bzero(ipp, sizeof (*ipp));
1344 /*
1345 * ipp_use_* are bitfields. Look at "!!" in the following as a
1346 * "boolean canonicalization" operator.
1347 */
1348 ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED);
1349 ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED);
1350 ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg);
1351 ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED);
1352 ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) &
1353 IPSEC_PREF_UNIQUE);
1354 ipp->ipp_encr_alg = req->ipsr_esp_alg;
1355 /*
1356 * SADB_AALG_ANY is a placeholder to distinguish "any" from
1357 * "none" above. If auth is required, as determined above,
1358 * SADB_AALG_ANY becomes 0, which is the representation
1359 * of "any" and "none" in PF_KEY v2.
1360 */
1361 ipp->ipp_auth_alg = (req->ipsr_auth_alg != SADB_AALG_ANY) ?
1362 req->ipsr_auth_alg : 0;
1363 ipp->ipp_esp_auth_alg = (req->ipsr_esp_auth_alg != SADB_AALG_ANY) ?
1364 req->ipsr_esp_auth_alg : 0;
1365 }
1366
1367 /*
1368 * Extract a new-style action from a request.
1369 */
1370 void
1371 ipsec_actvec_from_req(const ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp,
1372 netstack_t *ns)
1373 {
1374 struct ipsec_act act;
1375
1376 bzero(&act, sizeof (act));
1377 if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) &&
1378 (req->ipsr_esp_req & IPSEC_PREF_NEVER)) {
1379 act.ipa_type = IPSEC_ACT_BYPASS;
1380 } else {
1381 act.ipa_type = IPSEC_ACT_APPLY;
1382 ipsec_prot_from_req(req, &act.ipa_apply);
1383 }
1384 *actp = ipsec_act_wildcard_expand(&act, nactp, ns);
1385 }
1386
1387 /*
1388 * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat).
1389 * We assume caller has already zero'ed *req for us.
1390 */
1391 static int
1392 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req)
1393 {
1394 req->ipsr_esp_alg = ipp->ipp_encr_alg;
1395 req->ipsr_auth_alg = ipp->ipp_auth_alg;
1396 req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg;
1397
1398 if (ipp->ipp_use_unique) {
1399 req->ipsr_ah_req |= IPSEC_PREF_UNIQUE;
1400 req->ipsr_esp_req |= IPSEC_PREF_UNIQUE;
1401 }
1402 if (ipp->ipp_use_se)
1403 req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED;
1404 if (ipp->ipp_use_ah)
1405 req->ipsr_ah_req |= IPSEC_PREF_REQUIRED;
1406 if (ipp->ipp_use_esp)
1407 req->ipsr_esp_req |= IPSEC_PREF_REQUIRED;
1408 return (sizeof (*req));
1409 }
1410
1411 /*
1412 * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1413 * We assume caller has already zero'ed *req for us.
1414 */
1415 static int
1416 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req)
1417 {
1418 switch (ap->ipa_act.ipa_type) {
1419 case IPSEC_ACT_BYPASS:
1420 req->ipsr_ah_req = IPSEC_PREF_NEVER;
1421 req->ipsr_esp_req = IPSEC_PREF_NEVER;
1422 return (sizeof (*req));
1423 case IPSEC_ACT_APPLY:
1424 return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req));
1425 }
1426 return (sizeof (*req));
1427 }
1428
1429 /*
1430 * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1431 * We assume caller has already zero'ed *req for us.
1432 */
1433 int
1434 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af)
1435 {
1436 ipsec_policy_t *p;
1437
1438 /*
1439 * FULL-PERSOCK: consult hash table, too?
1440 */
1441 for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af];
1442 p != NULL;
1443 p = p->ipsp_hash.hash_next) {
1444 if ((p->ipsp_sel->ipsl_key.ipsl_valid & IPSL_WILDCARD) == 0)
1445 return (ipsec_req_from_act(p->ipsp_act, req));
1446 }
1447 return (sizeof (*req));
1448 }
1449
1450 /*
1451 * Based on per-socket or latched policy, convert to an appropriate
1452 * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can
1453 * be tail-called from ip.
1454 */
1455 int
1456 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af)
1457 {
1458 ipsec_latch_t *ipl;
1459 int rv = sizeof (ipsec_req_t);
1460
1461 bzero(req, sizeof (*req));
1462
1463 ASSERT(MUTEX_HELD(&connp->conn_lock));
1464 ipl = connp->conn_latch;
1465
1466 /*
1467 * Find appropriate policy. First choice is latched action;
1468 * failing that, see latched policy; failing that,
1469 * look at configured policy.
1470 */
1471 if (ipl != NULL) {
1472 if (connp->conn_latch_in_action != NULL) {
1473 rv = ipsec_req_from_act(connp->conn_latch_in_action,
1474 req);
1475 goto done;
1476 }
1477 if (connp->conn_latch_in_policy != NULL) {
1478 rv = ipsec_req_from_act(
1479 connp->conn_latch_in_policy->ipsp_act, req);
1480 goto done;
1481 }
1482 }
1483 if (connp->conn_policy != NULL)
1484 rv = ipsec_req_from_head(connp->conn_policy, req, af);
1485 done:
1486 return (rv);
1487 }
1488
1489 void
1490 ipsec_actvec_free(ipsec_act_t *act, uint_t nact)
1491 {
1492 kmem_free(act, nact * sizeof (*act));
1493 }
1494
1495 /*
1496 * Consumes a reference to ipsp.
1497 */
1498 static mblk_t *
1499 ipsec_check_loopback_policy(mblk_t *data_mp, ip_recv_attr_t *ira,
1500 ipsec_policy_t *ipsp)
1501 {
1502 if (!(ira->ira_flags & IRAF_IPSEC_SECURE))
1503 return (data_mp);
1504
1505 ASSERT(ira->ira_flags & IRAF_LOOPBACK);
1506
1507 IPPOL_REFRELE(ipsp);
1508
1509 /*
1510 * We should do an actual policy check here. Revisit this
1511 * when we revisit the IPsec API. (And pass a conn_t in when we
1512 * get there.)
1513 */
1514
1515 return (data_mp);
1516 }
1517
1518 /*
1519 * Check that packet's inbound ports & proto match the selectors
1520 * expected by the SAs it traversed on the way in.
1521 */
1522 static boolean_t
1523 ipsec_check_ipsecin_unique(ip_recv_attr_t *ira, const char **reason,
1524 kstat_named_t **counter, uint64_t pkt_unique, netstack_t *ns)
1525 {
1526 uint64_t ah_mask, esp_mask;
1527 ipsa_t *ah_assoc;
1528 ipsa_t *esp_assoc;
1529 ipsec_stack_t *ipss = ns->netstack_ipsec;
1530
1531 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1532 ASSERT(!(ira->ira_flags & IRAF_LOOPBACK));
1533
1534 ah_assoc = ira->ira_ipsec_ah_sa;
1535 esp_assoc = ira->ira_ipsec_esp_sa;
1536 ASSERT((ah_assoc != NULL) || (esp_assoc != NULL));
1537
1538 ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0;
1539 esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0;
1540
1541 if ((ah_mask == 0) && (esp_mask == 0))
1542 return (B_TRUE);
1543
1544 /*
1545 * The pkt_unique check will also check for tunnel mode on the SA
1546 * vs. the tunneled_packet boolean. "Be liberal in what you receive"
1547 * should not apply in this case. ;)
1548 */
1549
1550 if (ah_mask != 0 &&
1551 ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) {
1552 *reason = "AH inner header mismatch";
1553 *counter = DROPPER(ipss, ipds_spd_ah_innermismatch);
1554 return (B_FALSE);
1555 }
1556 if (esp_mask != 0 &&
1557 esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) {
1558 *reason = "ESP inner header mismatch";
1559 *counter = DROPPER(ipss, ipds_spd_esp_innermismatch);
1560 return (B_FALSE);
1561 }
1562 return (B_TRUE);
1563 }
1564
1565 static boolean_t
1566 ipsec_check_ipsecin_action(ip_recv_attr_t *ira, mblk_t *mp, ipsec_action_t *ap,
1567 ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter,
1568 netstack_t *ns)
1569 {
1570 boolean_t ret = B_TRUE;
1571 ipsec_prot_t *ipp;
1572 ipsa_t *ah_assoc;
1573 ipsa_t *esp_assoc;
1574 boolean_t decaps;
1575 ipsec_stack_t *ipss = ns->netstack_ipsec;
1576
1577 ASSERT((ipha == NULL && ip6h != NULL) ||
1578 (ip6h == NULL && ipha != NULL));
1579
1580 if (ira->ira_flags & IRAF_LOOPBACK) {
1581 /*
1582 * Besides accepting pointer-equivalent actions, we also
1583 * accept any ICMP errors we generated for ourselves,
1584 * regardless of policy. If we do not wish to make this
1585 * assumption in the future, check here, and where
1586 * IXAF_TRUSTED_ICMP is initialized in ip.c and ip6.c.
1587 */
1588 if (ap == ira->ira_ipsec_action ||
1589 (ira->ira_flags & IRAF_TRUSTED_ICMP))
1590 return (B_TRUE);
1591
1592 /* Deep compare necessary here?? */
1593 *counter = DROPPER(ipss, ipds_spd_loopback_mismatch);
1594 *reason = "loopback policy mismatch";
1595 return (B_FALSE);
1596 }
1597 ASSERT(!(ira->ira_flags & IRAF_TRUSTED_ICMP));
1598 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1599
1600 ah_assoc = ira->ira_ipsec_ah_sa;
1601 esp_assoc = ira->ira_ipsec_esp_sa;
1602
1603 decaps = (ira->ira_flags & IRAF_IPSEC_DECAPS);
1604
1605 switch (ap->ipa_act.ipa_type) {
1606 case IPSEC_ACT_DISCARD:
1607 case IPSEC_ACT_REJECT:
1608 /* Should "fail hard" */
1609 *counter = DROPPER(ipss, ipds_spd_explicit);
1610 *reason = "blocked by policy";
1611 return (B_FALSE);
1612
1613 case IPSEC_ACT_BYPASS:
1614 case IPSEC_ACT_CLEAR:
1615 *counter = DROPPER(ipss, ipds_spd_got_secure);
1616 *reason = "expected clear, got protected";
1617 return (B_FALSE);
1618
1619 case IPSEC_ACT_APPLY:
1620 ipp = &ap->ipa_act.ipa_apply;
1621 /*
1622 * As of now we do the simple checks of whether
1623 * the datagram has gone through the required IPSEC
1624 * protocol constraints or not. We might have more
1625 * in the future like sensitive levels, key bits, etc.
1626 * If it fails the constraints, check whether we would
1627 * have accepted this if it had come in clear.
1628 */
1629 if (ipp->ipp_use_ah) {
1630 if (ah_assoc == NULL) {
1631 ret = ipsec_inbound_accept_clear(mp, ipha,
1632 ip6h);
1633 *counter = DROPPER(ipss, ipds_spd_got_clear);
1634 *reason = "unprotected not accepted";
1635 break;
1636 }
1637 ASSERT(ah_assoc != NULL);
1638 ASSERT(ipp->ipp_auth_alg != 0);
1639
1640 if (ah_assoc->ipsa_auth_alg !=
1641 ipp->ipp_auth_alg) {
1642 *counter = DROPPER(ipss, ipds_spd_bad_ahalg);
1643 *reason = "unacceptable ah alg";
1644 ret = B_FALSE;
1645 break;
1646 }
1647 } else if (ah_assoc != NULL) {
1648 /*
1649 * Don't allow this. Check IPSEC NOTE above
1650 * ip_fanout_proto().
1651 */
1652 *counter = DROPPER(ipss, ipds_spd_got_ah);
1653 *reason = "unexpected AH";
1654 ret = B_FALSE;
1655 break;
1656 }
1657 if (ipp->ipp_use_esp) {
1658 if (esp_assoc == NULL) {
1659 ret = ipsec_inbound_accept_clear(mp, ipha,
1660 ip6h);
1661 *counter = DROPPER(ipss, ipds_spd_got_clear);
1662 *reason = "unprotected not accepted";
1663 break;
1664 }
1665 ASSERT(esp_assoc != NULL);
1666 ASSERT(ipp->ipp_encr_alg != 0);
1667
1668 if (esp_assoc->ipsa_encr_alg !=
1669 ipp->ipp_encr_alg) {
1670 *counter = DROPPER(ipss, ipds_spd_bad_espealg);
1671 *reason = "unacceptable esp alg";
1672 ret = B_FALSE;
1673 break;
1674 }
1675 /*
1676 * If the client does not need authentication,
1677 * we don't verify the alogrithm.
1678 */
1679 if (ipp->ipp_use_espa) {
1680 if (esp_assoc->ipsa_auth_alg !=
1681 ipp->ipp_esp_auth_alg) {
1682 *counter = DROPPER(ipss,
1683 ipds_spd_bad_espaalg);
1684 *reason = "unacceptable esp auth alg";
1685 ret = B_FALSE;
1686 break;
1687 }
1688 }
1689 } else if (esp_assoc != NULL) {
1690 /*
1691 * Don't allow this. Check IPSEC NOTE above
1692 * ip_fanout_proto().
1693 */
1694 *counter = DROPPER(ipss, ipds_spd_got_esp);
1695 *reason = "unexpected ESP";
1696 ret = B_FALSE;
1697 break;
1698 }
1699 if (ipp->ipp_use_se) {
1700 if (!decaps) {
1701 ret = ipsec_inbound_accept_clear(mp, ipha,
1702 ip6h);
1703 if (!ret) {
1704 /* XXX mutant? */
1705 *counter = DROPPER(ipss,
1706 ipds_spd_bad_selfencap);
1707 *reason = "self encap not found";
1708 break;
1709 }
1710 }
1711 } else if (decaps) {
1712 /*
1713 * XXX If the packet comes in tunneled and the
1714 * recipient does not expect it to be tunneled, it
1715 * is okay. But we drop to be consistent with the
1716 * other cases.
1717 */
1718 *counter = DROPPER(ipss, ipds_spd_got_selfencap);
1719 *reason = "unexpected self encap";
1720 ret = B_FALSE;
1721 break;
1722 }
1723 if (ira->ira_ipsec_action != NULL) {
1724 /*
1725 * This can happen if we do a double policy-check on
1726 * a packet
1727 * XXX XXX should fix this case!
1728 */
1729 IPACT_REFRELE(ira->ira_ipsec_action);
1730 }
1731 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1732 ASSERT(ira->ira_ipsec_action == NULL);
1733 IPACT_REFHOLD(ap);
1734 ira->ira_ipsec_action = ap;
1735 break; /* from switch */
1736 }
1737 return (ret);
1738 }
1739
1740 static boolean_t
1741 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa)
1742 {
1743 ASSERT(ipl->ipl_ids_latched == B_TRUE);
1744 return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) &&
1745 ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid);
1746 }
1747
1748 /*
1749 * Takes a latched conn and an inbound packet and returns a unique_id suitable
1750 * for SA comparisons. Most of the time we will copy from the conn_t, but
1751 * there are cases when the conn_t is latched but it has wildcard selectors,
1752 * and then we need to fallback to scooping them out of the packet.
1753 *
1754 * Assume we'll never have 0 with a conn_t present, so use 0 as a failure. We
1755 * can get away with this because we only have non-zero ports/proto for
1756 * latched conn_ts.
1757 *
1758 * Ideal candidate for an "inline" keyword, as we're JUST convoluted enough
1759 * to not be a nice macro.
1760 */
1761 static uint64_t
1762 conn_to_unique(conn_t *connp, mblk_t *data_mp, ipha_t *ipha, ip6_t *ip6h)
1763 {
1764 ipsec_selector_t sel;
1765 uint8_t ulp = connp->conn_proto;
1766
1767 ASSERT(connp->conn_latch_in_policy != NULL);
1768
1769 if ((ulp == IPPROTO_TCP || ulp == IPPROTO_UDP || ulp == IPPROTO_SCTP) &&
1770 (connp->conn_fport == 0 || connp->conn_lport == 0)) {
1771 /* Slow path - we gotta grab from the packet. */
1772 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
1773 SEL_NONE) != SELRET_SUCCESS) {
1774 /* Failure -> have caller free packet with ENOMEM. */
1775 return (0);
1776 }
1777 return (SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port,
1778 sel.ips_protocol, 0));
1779 }
1780
1781 #ifdef DEBUG_NOT_UNTIL_6478464
1782 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, SEL_NONE) ==
1783 SELRET_SUCCESS) {
1784 ASSERT(sel.ips_local_port == connp->conn_lport);
1785 ASSERT(sel.ips_remote_port == connp->conn_fport);
1786 ASSERT(sel.ips_protocol == connp->conn_proto);
1787 }
1788 ASSERT(connp->conn_proto != 0);
1789 #endif
1790
1791 return (SA_UNIQUE_ID(connp->conn_fport, connp->conn_lport, ulp, 0));
1792 }
1793
1794 /*
1795 * Called to check policy on a latched connection.
1796 * Note that we don't dereference conn_latch or conn_ihere since the conn might
1797 * be closing. The caller passes a held ipsec_latch_t instead.
1798 */
1799 static boolean_t
1800 ipsec_check_ipsecin_latch(ip_recv_attr_t *ira, mblk_t *mp, ipsec_latch_t *ipl,
1801 ipsec_action_t *ap, ipha_t *ipha, ip6_t *ip6h, const char **reason,
1802 kstat_named_t **counter, conn_t *connp, netstack_t *ns)
1803 {
1804 ipsec_stack_t *ipss = ns->netstack_ipsec;
1805
1806 ASSERT(ipl->ipl_ids_latched == B_TRUE);
1807 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1808
1809 if (!(ira->ira_flags & IRAF_LOOPBACK)) {
1810 /*
1811 * Over loopback, there aren't real security associations,
1812 * so there are neither identities nor "unique" values
1813 * for us to check the packet against.
1814 */
1815 if (ira->ira_ipsec_ah_sa != NULL) {
1816 if (!spd_match_inbound_ids(ipl,
1817 ira->ira_ipsec_ah_sa)) {
1818 *counter = DROPPER(ipss, ipds_spd_ah_badid);
1819 *reason = "AH identity mismatch";
1820 return (B_FALSE);
1821 }
1822 }
1823
1824 if (ira->ira_ipsec_esp_sa != NULL) {
1825 if (!spd_match_inbound_ids(ipl,
1826 ira->ira_ipsec_esp_sa)) {
1827 *counter = DROPPER(ipss, ipds_spd_esp_badid);
1828 *reason = "ESP identity mismatch";
1829 return (B_FALSE);
1830 }
1831 }
1832
1833 /*
1834 * Can fudge pkt_unique from connp because we're latched.
1835 * In DEBUG kernels (see conn_to_unique()'s implementation),
1836 * verify this even if it REALLY slows things down.
1837 */
1838 if (!ipsec_check_ipsecin_unique(ira, reason, counter,
1839 conn_to_unique(connp, mp, ipha, ip6h), ns)) {
1840 return (B_FALSE);
1841 }
1842 }
1843 return (ipsec_check_ipsecin_action(ira, mp, ap, ipha, ip6h, reason,
1844 counter, ns));
1845 }
1846
1847 /*
1848 * Check to see whether this secured datagram meets the policy
1849 * constraints specified in ipsp.
1850 *
1851 * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy.
1852 *
1853 * Consumes a reference to ipsp.
1854 * Returns the mblk if ok.
1855 */
1856 static mblk_t *
1857 ipsec_check_ipsecin_policy(mblk_t *data_mp, ipsec_policy_t *ipsp,
1858 ipha_t *ipha, ip6_t *ip6h, uint64_t pkt_unique, ip_recv_attr_t *ira,
1859 netstack_t *ns)
1860 {
1861 ipsec_action_t *ap;
1862 const char *reason = "no policy actions found";
1863 ip_stack_t *ipst = ns->netstack_ip;
1864 ipsec_stack_t *ipss = ns->netstack_ipsec;
1865 kstat_named_t *counter;
1866
1867 counter = DROPPER(ipss, ipds_spd_got_secure);
1868
1869 ASSERT(ipsp != NULL);
1870
1871 ASSERT((ipha == NULL && ip6h != NULL) ||
1872 (ip6h == NULL && ipha != NULL));
1873
1874 if (ira->ira_flags & IRAF_LOOPBACK)
1875 return (ipsec_check_loopback_policy(data_mp, ira, ipsp));
1876
1877 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1878
1879 if (ira->ira_ipsec_action != NULL) {
1880 /*
1881 * this can happen if we do a double policy-check on a packet
1882 * Would be nice to be able to delete this test..
1883 */
1884 IPACT_REFRELE(ira->ira_ipsec_action);
1885 }
1886 ASSERT(ira->ira_ipsec_action == NULL);
1887
1888 if (!SA_IDS_MATCH(ira->ira_ipsec_ah_sa, ira->ira_ipsec_esp_sa)) {
1889 reason = "inbound AH and ESP identities differ";
1890 counter = DROPPER(ipss, ipds_spd_ahesp_diffid);
1891 goto drop;
1892 }
1893
1894 if (!ipsec_check_ipsecin_unique(ira, &reason, &counter, pkt_unique,
1895 ns))
1896 goto drop;
1897
1898 /*
1899 * Ok, now loop through the possible actions and see if any
1900 * of them work for us.
1901 */
1902
1903 for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) {
1904 if (ipsec_check_ipsecin_action(ira, data_mp, ap,
1905 ipha, ip6h, &reason, &counter, ns)) {
1906 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
1907 IPPOL_REFRELE(ipsp);
1908 return (data_mp);
1909 }
1910 }
1911 drop:
1912 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1913 "ipsec inbound policy mismatch: %s, packet dropped\n",
1914 reason);
1915 IPPOL_REFRELE(ipsp);
1916 ASSERT(ira->ira_ipsec_action == NULL);
1917 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
1918 ip_drop_packet(data_mp, B_TRUE, NULL, counter,
1919 &ipss->ipsec_spd_dropper);
1920 return (NULL);
1921 }
1922
1923 /*
1924 * sleazy prefix-length-based compare.
1925 * another inlining candidate..
1926 */
1927 boolean_t
1928 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p)
1929 {
1930 int offset = pfxlen>>3;
1931 int bitsleft = pfxlen & 7;
1932 uint8_t *addr2 = (uint8_t *)addr2p;
1933
1934 /*
1935 * and there was much evil..
1936 * XXX should inline-expand the bcmp here and do this 32 bits
1937 * or 64 bits at a time..
1938 */
1939 return ((bcmp(addr1, addr2, offset) == 0) &&
1940 ((bitsleft == 0) ||
1941 (((addr1[offset] ^ addr2[offset]) & (0xff<<(8-bitsleft))) == 0)));
1942 }
1943
1944 static ipsec_policy_t *
1945 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain,
1946 ipsec_selector_t *sel, boolean_t is_icmp_inv_acq)
1947 {
1948 ipsec_selkey_t *isel;
1949 ipsec_policy_t *p;
1950 int bpri = best ? best->ipsp_prio : 0;
1951
1952 for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) {
1953 uint32_t valid;
1954
1955 if (p->ipsp_prio <= bpri)
1956 continue;
1957 isel = &p->ipsp_sel->ipsl_key;
1958 valid = isel->ipsl_valid;
1959
1960 if ((valid & IPSL_PROTOCOL) &&
1961 (isel->ipsl_proto != sel->ips_protocol))
1962 continue;
1963
1964 if ((valid & IPSL_REMOTE_ADDR) &&
1965 !ip_addr_match((uint8_t *)&isel->ipsl_remote,
1966 isel->ipsl_remote_pfxlen, &sel->ips_remote_addr_v6))
1967 continue;
1968
1969 if ((valid & IPSL_LOCAL_ADDR) &&
1970 !ip_addr_match((uint8_t *)&isel->ipsl_local,
1971 isel->ipsl_local_pfxlen, &sel->ips_local_addr_v6))
1972 continue;
1973
1974 if ((valid & IPSL_REMOTE_PORT) &&
1975 isel->ipsl_rport != sel->ips_remote_port)
1976 continue;
1977
1978 if ((valid & IPSL_LOCAL_PORT) &&
1979 isel->ipsl_lport != sel->ips_local_port)
1980 continue;
1981
1982 if (!is_icmp_inv_acq) {
1983 if ((valid & IPSL_ICMP_TYPE) &&
1984 (isel->ipsl_icmp_type > sel->ips_icmp_type ||
1985 isel->ipsl_icmp_type_end < sel->ips_icmp_type)) {
1986 continue;
1987 }
1988
1989 if ((valid & IPSL_ICMP_CODE) &&
1990 (isel->ipsl_icmp_code > sel->ips_icmp_code ||
1991 isel->ipsl_icmp_code_end <
1992 sel->ips_icmp_code)) {
1993 continue;
1994 }
1995 } else {
1996 /*
1997 * special case for icmp inverse acquire
1998 * we only want policies that aren't drop/pass
1999 */
2000 if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY)
2001 continue;
2002 }
2003
2004 /* we matched all the packet-port-field selectors! */
2005 best = p;
2006 bpri = p->ipsp_prio;
2007 }
2008
2009 return (best);
2010 }
2011
2012 /*
2013 * Try to find and return the best policy entry under a given policy
2014 * root for a given set of selectors; the first parameter "best" is
2015 * the current best policy so far. If "best" is non-null, we have a
2016 * reference to it. We return a reference to a policy; if that policy
2017 * is not the original "best", we need to release that reference
2018 * before returning.
2019 */
2020 ipsec_policy_t *
2021 ipsec_find_policy_head(ipsec_policy_t *best, ipsec_policy_head_t *head,
2022 int direction, ipsec_selector_t *sel)
2023 {
2024 ipsec_policy_t *curbest;
2025 ipsec_policy_root_t *root;
2026 uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq;
2027 int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6;
2028
2029 curbest = best;
2030 root = &head->iph_root[direction];
2031
2032 #ifdef DEBUG
2033 if (is_icmp_inv_acq) {
2034 if (sel->ips_isv4) {
2035 if (sel->ips_protocol != IPPROTO_ICMP) {
2036 cmn_err(CE_WARN, "ipsec_find_policy_head:"
2037 " expecting icmp, got %d",
2038 sel->ips_protocol);
2039 }
2040 } else {
2041 if (sel->ips_protocol != IPPROTO_ICMPV6) {
2042 cmn_err(CE_WARN, "ipsec_find_policy_head:"
2043 " expecting icmpv6, got %d",
2044 sel->ips_protocol);
2045 }
2046 }
2047 }
2048 #endif
2049
2050 rw_enter(&head->iph_lock, RW_READER);
2051
2052 if (root->ipr_nchains > 0) {
2053 curbest = ipsec_find_policy_chain(curbest,
2054 root->ipr_hash[selector_hash(sel, root)].hash_head, sel,
2055 is_icmp_inv_acq);
2056 }
2057 curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel,
2058 is_icmp_inv_acq);
2059
2060 /*
2061 * Adjust reference counts if we found anything new.
2062 */
2063 if (curbest != best) {
2064 ASSERT(curbest != NULL);
2065 IPPOL_REFHOLD(curbest);
2066
2067 if (best != NULL) {
2068 IPPOL_REFRELE(best);
2069 }
2070 }
2071
2072 rw_exit(&head->iph_lock);
2073
2074 return (curbest);
2075 }
2076
2077 /*
2078 * Find the best system policy (either global or per-interface) which
2079 * applies to the given selector; look in all the relevant policy roots
2080 * to figure out which policy wins.
2081 *
2082 * Returns a reference to a policy; caller must release this
2083 * reference when done.
2084 */
2085 ipsec_policy_t *
2086 ipsec_find_policy(int direction, const conn_t *connp, ipsec_selector_t *sel,
2087 netstack_t *ns)
2088 {
2089 ipsec_policy_t *p;
2090 ipsec_stack_t *ipss = ns->netstack_ipsec;
2091
2092 p = ipsec_find_policy_head(NULL, &ipss->ipsec_system_policy,
2093 direction, sel);
2094 if ((connp != NULL) && (connp->conn_policy != NULL)) {
2095 p = ipsec_find_policy_head(p, connp->conn_policy,
2096 direction, sel);
2097 }
2098
2099 return (p);
2100 }
2101
2102 /*
2103 * Check with global policy and see whether this inbound
2104 * packet meets the policy constraints.
2105 *
2106 * Locate appropriate policy from global policy, supplemented by the
2107 * conn's configured and/or cached policy if the conn is supplied.
2108 *
2109 * Dispatch to ipsec_check_ipsecin_policy if we have policy and an
2110 * encrypted packet to see if they match.
2111 *
2112 * Otherwise, see if the policy allows cleartext; if not, drop it on the
2113 * floor.
2114 */
2115 mblk_t *
2116 ipsec_check_global_policy(mblk_t *data_mp, conn_t *connp,
2117 ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira, netstack_t *ns)
2118 {
2119 ipsec_policy_t *p;
2120 ipsec_selector_t sel;
2121 boolean_t policy_present;
2122 kstat_named_t *counter;
2123 uint64_t pkt_unique;
2124 ip_stack_t *ipst = ns->netstack_ip;
2125 ipsec_stack_t *ipss = ns->netstack_ipsec;
2126
2127 sel.ips_is_icmp_inv_acq = 0;
2128
2129 ASSERT((ipha == NULL && ip6h != NULL) ||
2130 (ip6h == NULL && ipha != NULL));
2131
2132 if (ipha != NULL)
2133 policy_present = ipss->ipsec_inbound_v4_policy_present;
2134 else
2135 policy_present = ipss->ipsec_inbound_v6_policy_present;
2136
2137 if (!policy_present && connp == NULL) {
2138 /*
2139 * No global policy and no per-socket policy;
2140 * just pass it back (but we shouldn't get here in that case)
2141 */
2142 return (data_mp);
2143 }
2144
2145 /*
2146 * If we have cached policy, use it.
2147 * Otherwise consult system policy.
2148 */
2149 if ((connp != NULL) && (connp->conn_latch != NULL)) {
2150 p = connp->conn_latch_in_policy;
2151 if (p != NULL) {
2152 IPPOL_REFHOLD(p);
2153 }
2154 /*
2155 * Fudge sel for UNIQUE_ID setting below.
2156 */
2157 pkt_unique = conn_to_unique(connp, data_mp, ipha, ip6h);
2158 } else {
2159 /* Initialize the ports in the selector */
2160 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
2161 SEL_NONE) == SELRET_NOMEM) {
2162 /*
2163 * Technically not a policy mismatch, but it is
2164 * an internal failure.
2165 */
2166 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2167 "ipsec_init_inbound_sel", ipha, ip6h, B_TRUE, ns);
2168 counter = DROPPER(ipss, ipds_spd_nomem);
2169 goto fail;
2170 }
2171
2172 /*
2173 * Find the policy which best applies.
2174 *
2175 * If we find global policy, we should look at both
2176 * local policy and global policy and see which is
2177 * stronger and match accordingly.
2178 *
2179 * If we don't find a global policy, check with
2180 * local policy alone.
2181 */
2182
2183 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns);
2184 pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
2185 sel.ips_local_port, sel.ips_protocol, 0);
2186 }
2187
2188 if (p == NULL) {
2189 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
2190 /*
2191 * We have no policy; default to succeeding.
2192 * XXX paranoid system design doesn't do this.
2193 */
2194 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2195 return (data_mp);
2196 } else {
2197 counter = DROPPER(ipss, ipds_spd_got_secure);
2198 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
2199 "ipsec_check_global_policy", ipha, ip6h, B_TRUE,
2200 ns);
2201 goto fail;
2202 }
2203 }
2204 if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2205 return (ipsec_check_ipsecin_policy(data_mp, p, ipha, ip6h,
2206 pkt_unique, ira, ns));
2207 }
2208 if (p->ipsp_act->ipa_allow_clear) {
2209 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2210 IPPOL_REFRELE(p);
2211 return (data_mp);
2212 }
2213 IPPOL_REFRELE(p);
2214 /*
2215 * If we reach here, we will drop the packet because it failed the
2216 * global policy check because the packet was cleartext, and it
2217 * should not have been.
2218 */
2219 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2220 "ipsec_check_global_policy", ipha, ip6h, B_FALSE, ns);
2221 counter = DROPPER(ipss, ipds_spd_got_clear);
2222
2223 fail:
2224 ip_drop_packet(data_mp, B_TRUE, NULL, counter,
2225 &ipss->ipsec_spd_dropper);
2226 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2227 return (NULL);
2228 }
2229
2230 /*
2231 * We check whether an inbound datagram is a valid one
2232 * to accept in clear. If it is secure, it is the job
2233 * of IPSEC to log information appropriately if it
2234 * suspects that it may not be the real one.
2235 *
2236 * It is called only while fanning out to the ULP
2237 * where ULP accepts only secure data and the incoming
2238 * is clear. Usually we never accept clear datagrams in
2239 * such cases. ICMP is the only exception.
2240 *
2241 * NOTE : We don't call this function if the client (ULP)
2242 * is willing to accept things in clear.
2243 */
2244 boolean_t
2245 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h)
2246 {
2247 ushort_t iph_hdr_length;
2248 icmph_t *icmph;
2249 icmp6_t *icmp6;
2250 uint8_t *nexthdrp;
2251
2252 ASSERT((ipha != NULL && ip6h == NULL) ||
2253 (ipha == NULL && ip6h != NULL));
2254
2255 if (ip6h != NULL) {
2256 iph_hdr_length = ip_hdr_length_v6(mp, ip6h);
2257 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
2258 &nexthdrp)) {
2259 return (B_FALSE);
2260 }
2261 if (*nexthdrp != IPPROTO_ICMPV6)
2262 return (B_FALSE);
2263 icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]);
2264 /* Match IPv6 ICMP policy as closely as IPv4 as possible. */
2265 switch (icmp6->icmp6_type) {
2266 case ICMP6_PARAM_PROB:
2267 /* Corresponds to port/proto unreach in IPv4. */
2268 case ICMP6_ECHO_REQUEST:
2269 /* Just like IPv4. */
2270 return (B_FALSE);
2271
2272 case MLD_LISTENER_QUERY:
2273 case MLD_LISTENER_REPORT:
2274 case MLD_LISTENER_REDUCTION:
2275 /*
2276 * XXX Seperate NDD in IPv4 what about here?
2277 * Plus, mcast is important to ND.
2278 */
2279 case ICMP6_DST_UNREACH:
2280 /* Corresponds to HOST/NET unreachable in IPv4. */
2281 case ICMP6_PACKET_TOO_BIG:
2282 case ICMP6_ECHO_REPLY:
2283 /* These are trusted in IPv4. */
2284 case ND_ROUTER_SOLICIT:
2285 case ND_ROUTER_ADVERT:
2286 case ND_NEIGHBOR_SOLICIT:
2287 case ND_NEIGHBOR_ADVERT:
2288 case ND_REDIRECT:
2289 /* Trust ND messages for now. */
2290 case ICMP6_TIME_EXCEEDED:
2291 default:
2292 return (B_TRUE);
2293 }
2294 } else {
2295 /*
2296 * If it is not ICMP, fail this request.
2297 */
2298 if (ipha->ipha_protocol != IPPROTO_ICMP) {
2299 #ifdef FRAGCACHE_DEBUG
2300 cmn_err(CE_WARN, "Dropping - ipha_proto = %d\n",
2301 ipha->ipha_protocol);
2302 #endif
2303 return (B_FALSE);
2304 }
2305 iph_hdr_length = IPH_HDR_LENGTH(ipha);
2306 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2307 /*
2308 * It is an insecure icmp message. Check to see whether we are
2309 * willing to accept this one.
2310 */
2311
2312 switch (icmph->icmph_type) {
2313 case ICMP_ECHO_REPLY:
2314 case ICMP_TIME_STAMP_REPLY:
2315 case ICMP_INFO_REPLY:
2316 case ICMP_ROUTER_ADVERTISEMENT:
2317 /*
2318 * We should not encourage clear replies if this
2319 * client expects secure. If somebody is replying
2320 * in clear some mailicious user watching both the
2321 * request and reply, can do chosen-plain-text attacks.
2322 * With global policy we might be just expecting secure
2323 * but sending out clear. We don't know what the right
2324 * thing is. We can't do much here as we can't control
2325 * the sender here. Till we are sure of what to do,
2326 * accept them.
2327 */
2328 return (B_TRUE);
2329 case ICMP_ECHO_REQUEST:
2330 case ICMP_TIME_STAMP_REQUEST:
2331 case ICMP_INFO_REQUEST:
2332 case ICMP_ADDRESS_MASK_REQUEST:
2333 case ICMP_ROUTER_SOLICITATION:
2334 case ICMP_ADDRESS_MASK_REPLY:
2335 /*
2336 * Don't accept this as somebody could be sending
2337 * us plain text to get encrypted data. If we reply,
2338 * it will lead to chosen plain text attack.
2339 */
2340 return (B_FALSE);
2341 case ICMP_DEST_UNREACHABLE:
2342 switch (icmph->icmph_code) {
2343 case ICMP_FRAGMENTATION_NEEDED:
2344 /*
2345 * Be in sync with icmp_inbound, where we have
2346 * already set dce_pmtu
2347 */
2348 #ifdef FRAGCACHE_DEBUG
2349 cmn_err(CE_WARN, "ICMP frag needed\n");
2350 #endif
2351 return (B_TRUE);
2352 case ICMP_HOST_UNREACHABLE:
2353 case ICMP_NET_UNREACHABLE:
2354 /*
2355 * By accepting, we could reset a connection.
2356 * How do we solve the problem of some
2357 * intermediate router sending in-secure ICMP
2358 * messages ?
2359 */
2360 return (B_TRUE);
2361 case ICMP_PORT_UNREACHABLE:
2362 case ICMP_PROTOCOL_UNREACHABLE:
2363 default :
2364 return (B_FALSE);
2365 }
2366 case ICMP_SOURCE_QUENCH:
2367 /*
2368 * If this is an attack, TCP will slow start
2369 * because of this. Is it very harmful ?
2370 */
2371 return (B_TRUE);
2372 case ICMP_PARAM_PROBLEM:
2373 return (B_FALSE);
2374 case ICMP_TIME_EXCEEDED:
2375 return (B_TRUE);
2376 case ICMP_REDIRECT:
2377 return (B_FALSE);
2378 default :
2379 return (B_FALSE);
2380 }
2381 }
2382 }
2383
2384 void
2385 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote)
2386 {
2387 mutex_enter(&ipl->ipl_lock);
2388
2389 if (ipl->ipl_ids_latched) {
2390 /* I lost, someone else got here before me */
2391 mutex_exit(&ipl->ipl_lock);
2392 return;
2393 }
2394
2395 if (local != NULL)
2396 IPSID_REFHOLD(local);
2397 if (remote != NULL)
2398 IPSID_REFHOLD(remote);
2399
2400 ipl->ipl_local_cid = local;
2401 ipl->ipl_remote_cid = remote;
2402 ipl->ipl_ids_latched = B_TRUE;
2403 mutex_exit(&ipl->ipl_lock);
2404 }
2405
2406 void
2407 ipsec_latch_inbound(conn_t *connp, ip_recv_attr_t *ira)
2408 {
2409 ipsa_t *sa;
2410 ipsec_latch_t *ipl = connp->conn_latch;
2411
2412 if (!ipl->ipl_ids_latched) {
2413 ipsid_t *local = NULL;
2414 ipsid_t *remote = NULL;
2415
2416 if (!(ira->ira_flags & IRAF_LOOPBACK)) {
2417 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
2418 if (ira->ira_ipsec_esp_sa != NULL)
2419 sa = ira->ira_ipsec_esp_sa;
2420 else
2421 sa = ira->ira_ipsec_ah_sa;
2422 ASSERT(sa != NULL);
2423 local = sa->ipsa_dst_cid;
2424 remote = sa->ipsa_src_cid;
2425 }
2426 ipsec_latch_ids(ipl, local, remote);
2427 }
2428 if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2429 if (connp->conn_latch_in_action != NULL) {
2430 /*
2431 * Previously cached action. This is probably
2432 * harmless, but in DEBUG kernels, check for
2433 * action equality.
2434 *
2435 * Preserve the existing action to preserve latch
2436 * invariance.
2437 */
2438 ASSERT(connp->conn_latch_in_action ==
2439 ira->ira_ipsec_action);
2440 return;
2441 }
2442 connp->conn_latch_in_action = ira->ira_ipsec_action;
2443 IPACT_REFHOLD(connp->conn_latch_in_action);
2444 }
2445 }
2446
2447 /*
2448 * Check whether the policy constraints are met either for an
2449 * inbound datagram; called from IP in numerous places.
2450 *
2451 * Note that this is not a chokepoint for inbound policy checks;
2452 * see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy()
2453 */
2454 mblk_t *
2455 ipsec_check_inbound_policy(mblk_t *mp, conn_t *connp,
2456 ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira)
2457 {
2458 boolean_t ret;
2459 ipsec_latch_t *ipl;
2460 ipsec_action_t *ap;
2461 uint64_t unique_id;
2462 ipsec_stack_t *ipss;
2463 ip_stack_t *ipst;
2464 netstack_t *ns;
2465 ipsec_policy_head_t *policy_head;
2466 ipsec_policy_t *p = NULL;
2467
2468 ASSERT(connp != NULL);
2469 ns = connp->conn_netstack;
2470 ipss = ns->netstack_ipsec;
2471 ipst = ns->netstack_ip;
2472
2473 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
2474 /*
2475 * This is the case where the incoming datagram is
2476 * cleartext and we need to see whether this client
2477 * would like to receive such untrustworthy things from
2478 * the wire.
2479 */
2480 ASSERT(mp != NULL);
2481
2482 mutex_enter(&connp->conn_lock);
2483 if (connp->conn_state_flags & CONN_CONDEMNED) {
2484 mutex_exit(&connp->conn_lock);
2485 ip_drop_packet(mp, B_TRUE, NULL,
2486 DROPPER(ipss, ipds_spd_got_clear),
2487 &ipss->ipsec_spd_dropper);
2488 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2489 return (NULL);
2490 }
2491 if (connp->conn_latch != NULL) {
2492 /* Hold a reference in case the conn is closing */
2493 p = connp->conn_latch_in_policy;
2494 if (p != NULL)
2495 IPPOL_REFHOLD(p);
2496 mutex_exit(&connp->conn_lock);
2497 /*
2498 * Policy is cached in the conn.
2499 */
2500 if (p != NULL && !p->ipsp_act->ipa_allow_clear) {
2501 ret = ipsec_inbound_accept_clear(mp,
2502 ipha, ip6h);
2503 if (ret) {
2504 BUMP_MIB(&ipst->ips_ip_mib,
2505 ipsecInSucceeded);
2506 IPPOL_REFRELE(p);
2507 return (mp);
2508 } else {
2509 ipsec_log_policy_failure(
2510 IPSEC_POLICY_MISMATCH,
2511 "ipsec_check_inbound_policy", ipha,
2512 ip6h, B_FALSE, ns);
2513 ip_drop_packet(mp, B_TRUE, NULL,
2514 DROPPER(ipss, ipds_spd_got_clear),
2515 &ipss->ipsec_spd_dropper);
2516 BUMP_MIB(&ipst->ips_ip_mib,
2517 ipsecInFailed);
2518 IPPOL_REFRELE(p);
2519 return (NULL);
2520 }
2521 } else {
2522 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2523 if (p != NULL)
2524 IPPOL_REFRELE(p);
2525 return (mp);
2526 }
2527 } else {
2528 policy_head = connp->conn_policy;
2529
2530 /* Hold a reference in case the conn is closing */
2531 if (policy_head != NULL)
2532 IPPH_REFHOLD(policy_head);
2533 mutex_exit(&connp->conn_lock);
2534 /*
2535 * As this is a non-hardbound connection we need
2536 * to look at both per-socket policy and global
2537 * policy.
2538 */
2539 mp = ipsec_check_global_policy(mp, connp,
2540 ipha, ip6h, ira, ns);
2541 if (policy_head != NULL)
2542 IPPH_REFRELE(policy_head, ns);
2543 return (mp);
2544 }
2545 }
2546
2547 mutex_enter(&connp->conn_lock);
2548 /* Connection is closing */
2549 if (connp->conn_state_flags & CONN_CONDEMNED) {
2550 mutex_exit(&connp->conn_lock);
2551 ip_drop_packet(mp, B_TRUE, NULL,
2552 DROPPER(ipss, ipds_spd_got_clear),
2553 &ipss->ipsec_spd_dropper);
2554 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2555 return (NULL);
2556 }
2557
2558 /*
2559 * Once a connection is latched it remains so for life, the conn_latch
2560 * pointer on the conn has not changed, simply initializing ipl here
2561 * as the earlier initialization was done only in the cleartext case.
2562 */
2563 if ((ipl = connp->conn_latch) == NULL) {
2564 mblk_t *retmp;
2565 policy_head = connp->conn_policy;
2566
2567 /* Hold a reference in case the conn is closing */
2568 if (policy_head != NULL)
2569 IPPH_REFHOLD(policy_head);
2570 mutex_exit(&connp->conn_lock);
2571 /*
2572 * We don't have policies cached in the conn
2573 * for this stream. So, look at the global
2574 * policy. It will check against conn or global
2575 * depending on whichever is stronger.
2576 */
2577 retmp = ipsec_check_global_policy(mp, connp,
2578 ipha, ip6h, ira, ns);
2579 if (policy_head != NULL)
2580 IPPH_REFRELE(policy_head, ns);
2581 return (retmp);
2582 }
2583
2584 IPLATCH_REFHOLD(ipl);
2585 /* Hold reference on conn_latch_in_action in case conn is closing */
2586 ap = connp->conn_latch_in_action;
2587 if (ap != NULL)
2588 IPACT_REFHOLD(ap);
2589 mutex_exit(&connp->conn_lock);
2590
2591 if (ap != NULL) {
2592 /* Policy is cached & latched; fast(er) path */
2593 const char *reason;
2594 kstat_named_t *counter;
2595
2596 if (ipsec_check_ipsecin_latch(ira, mp, ipl, ap,
2597 ipha, ip6h, &reason, &counter, connp, ns)) {
2598 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2599 IPLATCH_REFRELE(ipl);
2600 IPACT_REFRELE(ap);
2601 return (mp);
2602 }
2603 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0,
2604 SL_ERROR|SL_WARN|SL_CONSOLE,
2605 "ipsec inbound policy mismatch: %s, packet dropped\n",
2606 reason);
2607 ip_drop_packet(mp, B_TRUE, NULL, counter,
2608 &ipss->ipsec_spd_dropper);
2609 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2610 IPLATCH_REFRELE(ipl);
2611 IPACT_REFRELE(ap);
2612 return (NULL);
2613 }
2614 if ((p = connp->conn_latch_in_policy) == NULL) {
2615 ipsec_weird_null_inbound_policy++;
2616 IPLATCH_REFRELE(ipl);
2617 return (mp);
2618 }
2619
2620 unique_id = conn_to_unique(connp, mp, ipha, ip6h);
2621 IPPOL_REFHOLD(p);
2622 mp = ipsec_check_ipsecin_policy(mp, p, ipha, ip6h, unique_id, ira, ns);
2623 /*
2624 * NOTE: ipsecIn{Failed,Succeeeded} bumped by
2625 * ipsec_check_ipsecin_policy().
2626 */
2627 if (mp != NULL)
2628 ipsec_latch_inbound(connp, ira);
2629 IPLATCH_REFRELE(ipl);
2630 return (mp);
2631 }
2632
2633 /*
2634 * Handle all sorts of cases like tunnel-mode and ICMP.
2635 */
2636 static int
2637 prepended_length(mblk_t *mp, uintptr_t hptr)
2638 {
2639 int rc = 0;
2640
2641 while (mp != NULL) {
2642 if (hptr >= (uintptr_t)mp->b_rptr && hptr <
2643 (uintptr_t)mp->b_wptr) {
2644 rc += (int)(hptr - (uintptr_t)mp->b_rptr);
2645 break; /* out of while loop */
2646 }
2647 rc += (int)MBLKL(mp);
2648 mp = mp->b_cont;
2649 }
2650
2651 if (mp == NULL) {
2652 /*
2653 * IF (big IF) we make it here by naturally exiting the loop,
2654 * then ip6h isn't in the mblk chain "mp" at all.
2655 *
2656 * The only case where this happens is with a reversed IP
2657 * header that gets passed up by inbound ICMP processing.
2658 * This unfortunately triggers longstanding bug 6478464. For
2659 * now, just pass up 0 for the answer.
2660 */
2661 #ifdef DEBUG_NOT_UNTIL_6478464
2662 ASSERT(mp != NULL);
2663 #endif
2664 rc = 0;
2665 }
2666
2667 return (rc);
2668 }
2669
2670 /*
2671 * Returns:
2672 *
2673 * SELRET_NOMEM --> msgpullup() needed to gather things failed.
2674 * SELRET_BADPKT --> If we're being called after tunnel-mode fragment
2675 * gathering, the initial fragment is too short for
2676 * useful data. Only returned if SEL_TUNNEL_FIRSTFRAG is
2677 * set.
2678 * SELRET_SUCCESS --> "sel" now has initialized IPsec selector data.
2679 * SELRET_TUNFRAG --> This is a fragment in a tunnel-mode packet. Caller
2680 * should put this packet in a fragment-gathering queue.
2681 * Only returned if SEL_TUNNEL_MODE and SEL_PORT_POLICY
2682 * is set.
2683 *
2684 * Note that ipha/ip6h can be in a different mblk (mp->b_cont) in the case
2685 * of tunneled packets.
2686 * Also, mp->b_rptr can be an ICMP error where ipha/ip6h is the packet in
2687 * error past the ICMP error.
2688 */
2689 static selret_t
2690 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2691 ip6_t *ip6h, uint8_t sel_flags)
2692 {
2693 uint16_t *ports;
2694 int outer_hdr_len = 0; /* For ICMP or tunnel-mode cases... */
2695 ushort_t hdr_len;
2696 mblk_t *spare_mp = NULL;
2697 uint8_t *nexthdrp, *transportp;
2698 uint8_t nexthdr;
2699 uint8_t icmp_proto;
2700 ip_pkt_t ipp;
2701 boolean_t port_policy_present = (sel_flags & SEL_PORT_POLICY);
2702 boolean_t is_icmp = (sel_flags & SEL_IS_ICMP);
2703 boolean_t tunnel_mode = (sel_flags & SEL_TUNNEL_MODE);
2704 boolean_t post_frag = (sel_flags & SEL_POST_FRAG);
2705
2706 ASSERT((ipha == NULL && ip6h != NULL) ||
2707 (ipha != NULL && ip6h == NULL));
2708
2709 if (ip6h != NULL) {
2710 outer_hdr_len = prepended_length(mp, (uintptr_t)ip6h);
2711 nexthdr = ip6h->ip6_nxt;
2712 icmp_proto = IPPROTO_ICMPV6;
2713 sel->ips_isv4 = B_FALSE;
2714 sel->ips_local_addr_v6 = ip6h->ip6_dst;
2715 sel->ips_remote_addr_v6 = ip6h->ip6_src;
2716
2717 bzero(&ipp, sizeof (ipp));
2718
2719 switch (nexthdr) {
2720 case IPPROTO_HOPOPTS:
2721 case IPPROTO_ROUTING:
2722 case IPPROTO_DSTOPTS:
2723 case IPPROTO_FRAGMENT:
2724 /*
2725 * Use ip_hdr_length_nexthdr_v6(). And have a spare
2726 * mblk that's contiguous to feed it
2727 */
2728 if ((spare_mp = msgpullup(mp, -1)) == NULL)
2729 return (SELRET_NOMEM);
2730 if (!ip_hdr_length_nexthdr_v6(spare_mp,
2731 (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2732 &hdr_len, &nexthdrp)) {
2733 /* Malformed packet - caller frees. */
2734 ipsec_freemsg_chain(spare_mp);
2735 return (SELRET_BADPKT);
2736 }
2737 /* Repopulate now that we have the whole packet */
2738 ip6h = (ip6_t *)(spare_mp->b_rptr + outer_hdr_len);
2739 (void) ip_find_hdr_v6(spare_mp, ip6h, B_FALSE, &ipp,
2740 NULL);
2741 nexthdr = *nexthdrp;
2742 /* We can just extract based on hdr_len now. */
2743 break;
2744 default:
2745 (void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL);
2746 hdr_len = IPV6_HDR_LEN;
2747 break;
2748 }
2749 if (port_policy_present && IS_V6_FRAGMENT(ipp) && !is_icmp) {
2750 /* IPv6 Fragment */
2751 ipsec_freemsg_chain(spare_mp);
2752 return (SELRET_TUNFRAG);
2753 }
2754 transportp = (uint8_t *)ip6h + hdr_len;
2755 } else {
2756 outer_hdr_len = prepended_length(mp, (uintptr_t)ipha);
2757 icmp_proto = IPPROTO_ICMP;
2758 sel->ips_isv4 = B_TRUE;
2759 sel->ips_local_addr_v4 = ipha->ipha_dst;
2760 sel->ips_remote_addr_v4 = ipha->ipha_src;
2761 nexthdr = ipha->ipha_protocol;
2762 hdr_len = IPH_HDR_LENGTH(ipha);
2763
2764 if (port_policy_present &&
2765 IS_V4_FRAGMENT(ipha->ipha_fragment_offset_and_flags) &&
2766 !is_icmp) {
2767 /* IPv4 Fragment */
2768 ipsec_freemsg_chain(spare_mp);
2769 return (SELRET_TUNFRAG);
2770 }
2771 transportp = (uint8_t *)ipha + hdr_len;
2772 }
2773 sel->ips_protocol = nexthdr;
2774
2775 if ((nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2776 nexthdr != IPPROTO_SCTP && nexthdr != icmp_proto) ||
2777 (!port_policy_present && !post_frag && tunnel_mode)) {
2778 sel->ips_remote_port = sel->ips_local_port = 0;
2779 ipsec_freemsg_chain(spare_mp);
2780 return (SELRET_SUCCESS);
2781 }
2782
2783 if (transportp + 4 > mp->b_wptr) {
2784 /* If we didn't pullup a copy already, do so now. */
2785 /*
2786 * XXX performance, will upper-layers frequently split TCP/UDP
2787 * apart from IP or options? If so, perhaps we should revisit
2788 * the spare_mp strategy.
2789 */
2790 ipsec_hdr_pullup_needed++;
2791 if (spare_mp == NULL &&
2792 (spare_mp = msgpullup(mp, -1)) == NULL) {
2793 return (SELRET_NOMEM);
2794 }
2795 transportp = &spare_mp->b_rptr[hdr_len + outer_hdr_len];
2796 }
2797
2798 if (nexthdr == icmp_proto) {
2799 sel->ips_icmp_type = *transportp++;
2800 sel->ips_icmp_code = *transportp;
2801 sel->ips_remote_port = sel->ips_local_port = 0;
2802 } else {
2803 ports = (uint16_t *)transportp;
2804 sel->ips_remote_port = *ports++;
2805 sel->ips_local_port = *ports;
2806 }
2807 ipsec_freemsg_chain(spare_mp);
2808 return (SELRET_SUCCESS);
2809 }
2810
2811 /*
2812 * This is called with a b_next chain of messages from the fragcache code,
2813 * hence it needs to discard a chain on error.
2814 */
2815 static boolean_t
2816 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2817 ip6_t *ip6h, int outer_hdr_len, ipsec_stack_t *ipss)
2818 {
2819 /*
2820 * XXX cut&paste shared with ipsec_init_inbound_sel
2821 */
2822 uint16_t *ports;
2823 ushort_t hdr_len;
2824 mblk_t *spare_mp = NULL;
2825 uint8_t *nexthdrp;
2826 uint8_t nexthdr;
2827 uint8_t *typecode;
2828 uint8_t check_proto;
2829
2830 ASSERT((ipha == NULL && ip6h != NULL) ||
2831 (ipha != NULL && ip6h == NULL));
2832
2833 if (ip6h != NULL) {
2834 check_proto = IPPROTO_ICMPV6;
2835 nexthdr = ip6h->ip6_nxt;
2836 switch (nexthdr) {
2837 case IPPROTO_HOPOPTS:
2838 case IPPROTO_ROUTING:
2839 case IPPROTO_DSTOPTS:
2840 case IPPROTO_FRAGMENT:
2841 /*
2842 * Use ip_hdr_length_nexthdr_v6(). And have a spare
2843 * mblk that's contiguous to feed it
2844 */
2845 spare_mp = msgpullup(mp, -1);
2846 if (spare_mp == NULL ||
2847 !ip_hdr_length_nexthdr_v6(spare_mp,
2848 (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2849 &hdr_len, &nexthdrp)) {
2850 /* Always works, even if NULL. */
2851 ipsec_freemsg_chain(spare_mp);
2852 ip_drop_packet_chain(mp, B_FALSE, NULL,
2853 DROPPER(ipss, ipds_spd_nomem),
2854 &ipss->ipsec_spd_dropper);
2855 return (B_FALSE);
2856 } else {
2857 nexthdr = *nexthdrp;
2858 /* We can just extract based on hdr_len now. */
2859 }
2860 break;
2861 default:
2862 hdr_len = IPV6_HDR_LEN;
2863 break;
2864 }
2865 } else {
2866 check_proto = IPPROTO_ICMP;
2867 hdr_len = IPH_HDR_LENGTH(ipha);
2868 nexthdr = ipha->ipha_protocol;
2869 }
2870
2871 sel->ips_protocol = nexthdr;
2872 if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2873 nexthdr != IPPROTO_SCTP && nexthdr != check_proto) {
2874 sel->ips_local_port = sel->ips_remote_port = 0;
2875 ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */
2876 return (B_TRUE);
2877 }
2878
2879 if (&mp->b_rptr[hdr_len] + 4 + outer_hdr_len > mp->b_wptr) {
2880 /* If we didn't pullup a copy already, do so now. */
2881 /*
2882 * XXX performance, will upper-layers frequently split TCP/UDP
2883 * apart from IP or options? If so, perhaps we should revisit
2884 * the spare_mp strategy.
2885 *
2886 * XXX should this be msgpullup(mp, hdr_len+4) ???
2887 */
2888 if (spare_mp == NULL &&
2889 (spare_mp = msgpullup(mp, -1)) == NULL) {
2890 ip_drop_packet_chain(mp, B_FALSE, NULL,
2891 DROPPER(ipss, ipds_spd_nomem),
2892 &ipss->ipsec_spd_dropper);
2893 return (B_FALSE);
2894 }
2895 ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2896 } else {
2897 ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2898 }
2899
2900 if (nexthdr == check_proto) {
2901 typecode = (uint8_t *)ports;
2902 sel->ips_icmp_type = *typecode++;
2903 sel->ips_icmp_code = *typecode;
2904 sel->ips_remote_port = sel->ips_local_port = 0;
2905 } else {
2906 sel->ips_local_port = *ports++;
2907 sel->ips_remote_port = *ports;
2908 }
2909 ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */
2910 return (B_TRUE);
2911 }
2912
2913 /*
2914 * Prepend an mblk with a ipsec_crypto_t to the message chain.
2915 * Frees the argument and returns NULL should the allocation fail.
2916 * Returns the pointer to the crypto data part.
2917 */
2918 mblk_t *
2919 ipsec_add_crypto_data(mblk_t *data_mp, ipsec_crypto_t **icp)
2920 {
2921 mblk_t *mp;
2922
2923 mp = allocb(sizeof (ipsec_crypto_t), BPRI_MED);
2924 if (mp == NULL) {
2925 freemsg(data_mp);
2926 return (NULL);
2927 }
2928 bzero(mp->b_rptr, sizeof (ipsec_crypto_t));
2929 mp->b_wptr += sizeof (ipsec_crypto_t);
2930 mp->b_cont = data_mp;
2931 mp->b_datap->db_type = M_EVENT; /* For ASSERT */
2932 *icp = (ipsec_crypto_t *)mp->b_rptr;
2933 return (mp);
2934 }
2935
2936 /*
2937 * Remove what was prepended above. Return b_cont and a pointer to the
2938 * crypto data.
2939 * The caller must call ipsec_free_crypto_data for mblk once it is done
2940 * with the crypto data.
2941 */
2942 mblk_t *
2943 ipsec_remove_crypto_data(mblk_t *crypto_mp, ipsec_crypto_t **icp)
2944 {
2945 ASSERT(crypto_mp->b_datap->db_type == M_EVENT);
2946 ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t));
2947
2948 *icp = (ipsec_crypto_t *)crypto_mp->b_rptr;
2949 return (crypto_mp->b_cont);
2950 }
2951
2952 /*
2953 * Free what was prepended above. Return b_cont.
2954 */
2955 mblk_t *
2956 ipsec_free_crypto_data(mblk_t *crypto_mp)
2957 {
2958 mblk_t *mp;
2959
2960 ASSERT(crypto_mp->b_datap->db_type == M_EVENT);
2961 ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t));
2962
2963 mp = crypto_mp->b_cont;
2964 freeb(crypto_mp);
2965 return (mp);
2966 }
2967
2968 /*
2969 * Create an ipsec_action_t based on the way an inbound packet was protected.
2970 * Used to reflect traffic back to a sender.
2971 *
2972 * We don't bother interning the action into the hash table.
2973 */
2974 ipsec_action_t *
2975 ipsec_in_to_out_action(ip_recv_attr_t *ira)
2976 {
2977 ipsa_t *ah_assoc, *esp_assoc;
2978 uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0;
2979 ipsec_action_t *ap;
2980 boolean_t unique;
2981
2982 ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2983
2984 if (ap == NULL)
2985 return (NULL);
2986
2987 bzero(ap, sizeof (*ap));
2988 HASH_NULL(ap, ipa_hash);
2989 ap->ipa_next = NULL;
2990 ap->ipa_refs = 1;
2991
2992 /*
2993 * Get the algorithms that were used for this packet.
2994 */
2995 ap->ipa_act.ipa_type = IPSEC_ACT_APPLY;
2996 ap->ipa_act.ipa_log = 0;
2997 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
2998
2999 ah_assoc = ira->ira_ipsec_ah_sa;
3000 ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL);
3001
3002 esp_assoc = ira->ira_ipsec_esp_sa;
3003 ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL);
3004
3005 if (esp_assoc != NULL) {
3006 encr_alg = esp_assoc->ipsa_encr_alg;
3007 espa_alg = esp_assoc->ipsa_auth_alg;
3008 ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0);
3009 }
3010 if (ah_assoc != NULL)
3011 auth_alg = ah_assoc->ipsa_auth_alg;
3012
3013 ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg;
3014 ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg;
3015 ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg;
3016 ap->ipa_act.ipa_apply.ipp_use_se =
3017 !!(ira->ira_flags & IRAF_IPSEC_DECAPS);
3018 unique = B_FALSE;
3019
3020 if (esp_assoc != NULL) {
3021 ap->ipa_act.ipa_apply.ipp_espa_minbits =
3022 esp_assoc->ipsa_authkeybits;
3023 ap->ipa_act.ipa_apply.ipp_espa_maxbits =
3024 esp_assoc->ipsa_authkeybits;
3025 ap->ipa_act.ipa_apply.ipp_espe_minbits =
3026 esp_assoc->ipsa_encrkeybits;
3027 ap->ipa_act.ipa_apply.ipp_espe_maxbits =
3028 esp_assoc->ipsa_encrkeybits;
3029 ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp;
3030 ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc;
3031 if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE)
3032 unique = B_TRUE;
3033 }
3034 if (ah_assoc != NULL) {
3035 ap->ipa_act.ipa_apply.ipp_ah_minbits =
3036 ah_assoc->ipsa_authkeybits;
3037 ap->ipa_act.ipa_apply.ipp_ah_maxbits =
3038 ah_assoc->ipsa_authkeybits;
3039 ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp;
3040 ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc;
3041 if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE)
3042 unique = B_TRUE;
3043 }
3044 ap->ipa_act.ipa_apply.ipp_use_unique = unique;
3045 ap->ipa_want_unique = unique;
3046 ap->ipa_allow_clear = B_FALSE;
3047 ap->ipa_want_se = !!(ira->ira_flags & IRAF_IPSEC_DECAPS);
3048 ap->ipa_want_ah = (ah_assoc != NULL);
3049 ap->ipa_want_esp = (esp_assoc != NULL);
3050
3051 ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act);
3052
3053 ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */
3054
3055 return (ap);
3056 }
3057
3058
3059 /*
3060 * Compute the worst-case amount of extra space required by an action.
3061 * Note that, because of the ESP considerations listed below, this is
3062 * actually not the same as the best-case reduction in the MTU; in the
3063 * future, we should pass additional information to this function to
3064 * allow the actual MTU impact to be computed.
3065 *
3066 * AH: Revisit this if we implement algorithms with
3067 * a verifier size of more than 12 bytes.
3068 *
3069 * ESP: A more exact but more messy computation would take into
3070 * account the interaction between the cipher block size and the
3071 * effective MTU, yielding the inner payload size which reflects a
3072 * packet with *minimum* ESP padding..
3073 */
3074 int32_t
3075 ipsec_act_ovhd(const ipsec_act_t *act)
3076 {
3077 int32_t overhead = 0;
3078
3079 if (act->ipa_type == IPSEC_ACT_APPLY) {
3080 const ipsec_prot_t *ipp = &act->ipa_apply;
3081
3082 if (ipp->ipp_use_ah)
3083 overhead += IPSEC_MAX_AH_HDR_SIZE;
3084 if (ipp->ipp_use_esp) {
3085 overhead += IPSEC_MAX_ESP_HDR_SIZE;
3086 overhead += sizeof (struct udphdr);
3087 }
3088 if (ipp->ipp_use_se)
3089 overhead += IP_SIMPLE_HDR_LENGTH;
3090 }
3091 return (overhead);
3092 }
3093
3094 /*
3095 * This hash function is used only when creating policies and thus is not
3096 * performance-critical for packet flows.
3097 *
3098 * Future work: canonicalize the structures hashed with this (i.e.,
3099 * zeroize padding) so the hash works correctly.
3100 */
3101 /* ARGSUSED */
3102 static uint32_t
3103 policy_hash(int size, const void *start, const void *end)
3104 {
3105 return (0);
3106 }
3107
3108
3109 /*
3110 * Hash function macros for each address type.
3111 *
3112 * The IPV6 hash function assumes that the low order 32-bits of the
3113 * address (typically containing the low order 24 bits of the mac
3114 * address) are reasonably well-distributed. Revisit this if we run
3115 * into trouble from lots of collisions on ::1 addresses and the like
3116 * (seems unlikely).
3117 */
3118 #define IPSEC_IPV4_HASH(a, n) ((a) % (n))
3119 #define IPSEC_IPV6_HASH(a, n) (((a).s6_addr32[3]) % (n))
3120
3121 /*
3122 * These two hash functions should produce coordinated values
3123 * but have slightly different roles.
3124 */
3125 static uint32_t
3126 selkey_hash(const ipsec_selkey_t *selkey, netstack_t *ns)
3127 {
3128 uint32_t valid = selkey->ipsl_valid;
3129 ipsec_stack_t *ipss = ns->netstack_ipsec;
3130
3131 if (!(valid & IPSL_REMOTE_ADDR))
3132 return (IPSEC_SEL_NOHASH);
3133
3134 if (valid & IPSL_IPV4) {
3135 if (selkey->ipsl_remote_pfxlen == 32) {
3136 return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3137 ipss->ipsec_spd_hashsize));
3138 }
3139 }
3140 if (valid & IPSL_IPV6) {
3141 if (selkey->ipsl_remote_pfxlen == 128) {
3142 return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3143 ipss->ipsec_spd_hashsize));
3144 }
3145 }
3146 return (IPSEC_SEL_NOHASH);
3147 }
3148
3149 static uint32_t
3150 selector_hash(ipsec_selector_t *sel, ipsec_policy_root_t *root)
3151 {
3152 if (sel->ips_isv4) {
3153 return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4,
3154 root->ipr_nchains));
3155 }
3156 return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6, root->ipr_nchains));
3157 }
3158
3159 /*
3160 * Intern actions into the action hash table.
3161 */
3162 ipsec_action_t *
3163 ipsec_act_find(const ipsec_act_t *a, int n, netstack_t *ns)
3164 {
3165 int i;
3166 uint32_t hval;
3167 ipsec_action_t *ap;
3168 ipsec_action_t *prev = NULL;
3169 int32_t overhead, maxovhd = 0;
3170 boolean_t allow_clear = B_FALSE;
3171 boolean_t want_ah = B_FALSE;
3172 boolean_t want_esp = B_FALSE;
3173 boolean_t want_se = B_FALSE;
3174 boolean_t want_unique = B_FALSE;
3175 ipsec_stack_t *ipss = ns->netstack_ipsec;
3176
3177 /*
3178 * TODO: should canonicalize a[] (i.e., zeroize any padding)
3179 * so we can use a non-trivial policy_hash function.
3180 */
3181 for (i = n-1; i >= 0; i--) {
3182 hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]);
3183
3184 HASH_LOCK(ipss->ipsec_action_hash, hval);
3185
3186 for (HASH_ITERATE(ap, ipa_hash,
3187 ipss->ipsec_action_hash, hval)) {
3188 if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0)
3189 continue;
3190 if (ap->ipa_next != prev)
3191 continue;
3192 break;
3193 }
3194 if (ap != NULL) {
3195 HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3196 prev = ap;
3197 continue;
3198 }
3199 /*
3200 * need to allocate a new one..
3201 */
3202 ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
3203 if (ap == NULL) {
3204 HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3205 if (prev != NULL)
3206 ipsec_action_free(prev);
3207 return (NULL);
3208 }
3209 HASH_INSERT(ap, ipa_hash, ipss->ipsec_action_hash, hval);
3210
3211 ap->ipa_next = prev;
3212 ap->ipa_act = a[i];
3213
3214 overhead = ipsec_act_ovhd(&a[i]);
3215 if (maxovhd < overhead)
3216 maxovhd = overhead;
3217
3218 if ((a[i].ipa_type == IPSEC_ACT_BYPASS) ||
3219 (a[i].ipa_type == IPSEC_ACT_CLEAR))
3220 allow_clear = B_TRUE;
3221 if (a[i].ipa_type == IPSEC_ACT_APPLY) {
3222 const ipsec_prot_t *ipp = &a[i].ipa_apply;
3223
3224 ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp);
3225 want_ah |= ipp->ipp_use_ah;
3226 want_esp |= ipp->ipp_use_esp;
3227 want_se |= ipp->ipp_use_se;
3228 want_unique |= ipp->ipp_use_unique;
3229 }
3230 ap->ipa_allow_clear = allow_clear;
3231 ap->ipa_want_ah = want_ah;
3232 ap->ipa_want_esp = want_esp;
3233 ap->ipa_want_se = want_se;
3234 ap->ipa_want_unique = want_unique;
3235 ap->ipa_refs = 1; /* from the hash table */
3236 ap->ipa_ovhd = maxovhd;
3237 if (prev)
3238 prev->ipa_refs++;
3239 prev = ap;
3240 HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3241 }
3242
3243 ap->ipa_refs++; /* caller's reference */
3244
3245 return (ap);
3246 }
3247
3248 /*
3249 * Called when refcount goes to 0, indicating that all references to this
3250 * node are gone.
3251 *
3252 * This does not unchain the action from the hash table.
3253 */
3254 void
3255 ipsec_action_free(ipsec_action_t *ap)
3256 {
3257 for (;;) {
3258 ipsec_action_t *np = ap->ipa_next;
3259 ASSERT(ap->ipa_refs == 0);
3260 ASSERT(ap->ipa_hash.hash_pp == NULL);
3261 kmem_cache_free(ipsec_action_cache, ap);
3262 ap = np;
3263 /* Inlined IPACT_REFRELE -- avoid recursion */
3264 if (ap == NULL)
3265 break;
3266 membar_exit();
3267 if (atomic_add_32_nv(&(ap)->ipa_refs, -1) != 0)
3268 break;
3269 /* End inlined IPACT_REFRELE */
3270 }
3271 }
3272
3273 /*
3274 * Called when the action hash table goes away.
3275 *
3276 * The actions can be queued on an mblk with ipsec_in or
3277 * ipsec_out, hence the actions might still be around.
3278 * But we decrement ipa_refs here since we no longer have
3279 * a reference to the action from the hash table.
3280 */
3281 static void
3282 ipsec_action_free_table(ipsec_action_t *ap)
3283 {
3284 while (ap != NULL) {
3285 ipsec_action_t *np = ap->ipa_next;
3286
3287 /* FIXME: remove? */
3288 (void) printf("ipsec_action_free_table(%p) ref %d\n",
3289 (void *)ap, ap->ipa_refs);
3290 ASSERT(ap->ipa_refs > 0);
3291 IPACT_REFRELE(ap);
3292 ap = np;
3293 }
3294 }
3295
3296 /*
3297 * Need to walk all stack instances since the reclaim function
3298 * is global for all instances
3299 */
3300 /* ARGSUSED */
3301 static void
3302 ipsec_action_reclaim(void *arg)
3303 {
3304 netstack_handle_t nh;
3305 netstack_t *ns;
3306 ipsec_stack_t *ipss;
3307
3308 netstack_next_init(&nh);
3309 while ((ns = netstack_next(&nh)) != NULL) {
3310 /*
3311 * netstack_next() can return a netstack_t with a NULL
3312 * netstack_ipsec at boot time.
3313 */
3314 if ((ipss = ns->netstack_ipsec) == NULL) {
3315 netstack_rele(ns);
3316 continue;
3317 }
3318 ipsec_action_reclaim_stack(ipss);
3319 netstack_rele(ns);
3320 }
3321 netstack_next_fini(&nh);
3322 }
3323
3324 /*
3325 * Periodically sweep action hash table for actions with refcount==1, and
3326 * nuke them. We cannot do this "on demand" (i.e., from IPACT_REFRELE)
3327 * because we can't close the race between another thread finding the action
3328 * in the hash table without holding the bucket lock during IPACT_REFRELE.
3329 * Instead, we run this function sporadically to clean up after ourselves;
3330 * we also set it as the "reclaim" function for the action kmem_cache.
3331 *
3332 * Note that it may take several passes of ipsec_action_gc() to free all
3333 * "stale" actions.
3334 */
3335 static void
3336 ipsec_action_reclaim_stack(ipsec_stack_t *ipss)
3337 {
3338 int i;
3339
3340 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
3341 ipsec_action_t *ap, *np;
3342
3343 /* skip the lock if nobody home */
3344 if (ipss->ipsec_action_hash[i].hash_head == NULL)
3345 continue;
3346
3347 HASH_LOCK(ipss->ipsec_action_hash, i);
3348 for (ap = ipss->ipsec_action_hash[i].hash_head;
3349 ap != NULL; ap = np) {
3350 ASSERT(ap->ipa_refs > 0);
3351 np = ap->ipa_hash.hash_next;
3352 if (ap->ipa_refs > 1)
3353 continue;
3354 HASH_UNCHAIN(ap, ipa_hash,
3355 ipss->ipsec_action_hash, i);
3356 IPACT_REFRELE(ap);
3357 }
3358 HASH_UNLOCK(ipss->ipsec_action_hash, i);
3359 }
3360 }
3361
3362 /*
3363 * Intern a selector set into the selector set hash table.
3364 * This is simpler than the actions case..
3365 */
3366 static ipsec_sel_t *
3367 ipsec_find_sel(ipsec_selkey_t *selkey, netstack_t *ns)
3368 {
3369 ipsec_sel_t *sp;
3370 uint32_t hval, bucket;
3371 ipsec_stack_t *ipss = ns->netstack_ipsec;
3372
3373 /*
3374 * Exactly one AF bit should be set in selkey.
3375 */
3376 ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^
3377 !(selkey->ipsl_valid & IPSL_IPV6));
3378
3379 hval = selkey_hash(selkey, ns);
3380 /* Set pol_hval to uninitialized until we put it in a polhead. */
3381 selkey->ipsl_sel_hval = hval;
3382
3383 bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval;
3384
3385 ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, bucket));
3386 HASH_LOCK(ipss->ipsec_sel_hash, bucket);
3387
3388 for (HASH_ITERATE(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket)) {
3389 if (bcmp(&sp->ipsl_key, selkey,
3390 offsetof(ipsec_selkey_t, ipsl_pol_hval)) == 0)
3391 break;
3392 }
3393 if (sp != NULL) {
3394 sp->ipsl_refs++;
3395
3396 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3397 return (sp);
3398 }
3399
3400 sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP);
3401 if (sp == NULL) {
3402 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3403 return (NULL);
3404 }
3405
3406 HASH_INSERT(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket);
3407 sp->ipsl_refs = 2; /* one for hash table, one for caller */
3408 sp->ipsl_key = *selkey;
3409 /* Set to uninitalized and have insertion into polhead fix things. */
3410 if (selkey->ipsl_sel_hval != IPSEC_SEL_NOHASH)
3411 sp->ipsl_key.ipsl_pol_hval = 0;
3412 else
3413 sp->ipsl_key.ipsl_pol_hval = IPSEC_SEL_NOHASH;
3414
3415 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3416
3417 return (sp);
3418 }
3419
3420 static void
3421 ipsec_sel_rel(ipsec_sel_t **spp, netstack_t *ns)
3422 {
3423 ipsec_sel_t *sp = *spp;
3424 int hval = sp->ipsl_key.ipsl_sel_hval;
3425 ipsec_stack_t *ipss = ns->netstack_ipsec;
3426
3427 *spp = NULL;
3428
3429 if (hval == IPSEC_SEL_NOHASH)
3430 hval = 0;
3431
3432 ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, hval));
3433 HASH_LOCK(ipss->ipsec_sel_hash, hval);
3434 if (--sp->ipsl_refs == 1) {
3435 HASH_UNCHAIN(sp, ipsl_hash, ipss->ipsec_sel_hash, hval);
3436 sp->ipsl_refs--;
3437 HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3438 ASSERT(sp->ipsl_refs == 0);
3439 kmem_cache_free(ipsec_sel_cache, sp);
3440 /* Caller unlocks */
3441 return;
3442 }
3443
3444 HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3445 }
3446
3447 /*
3448 * Free a policy rule which we know is no longer being referenced.
3449 */
3450 void
3451 ipsec_policy_free(ipsec_policy_t *ipp)
3452 {
3453 ASSERT(ipp->ipsp_refs == 0);
3454 ASSERT(ipp->ipsp_sel != NULL);
3455 ASSERT(ipp->ipsp_act != NULL);
3456 ASSERT(ipp->ipsp_netstack != NULL);
3457
3458 ipsec_sel_rel(&ipp->ipsp_sel, ipp->ipsp_netstack);
3459 IPACT_REFRELE(ipp->ipsp_act);
3460 kmem_cache_free(ipsec_pol_cache, ipp);
3461 }
3462
3463 /*
3464 * Construction of new policy rules; construct a policy, and add it to
3465 * the appropriate tables.
3466 */
3467 ipsec_policy_t *
3468 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a,
3469 int nacts, int prio, uint64_t *index_ptr, netstack_t *ns)
3470 {
3471 ipsec_action_t *ap;
3472 ipsec_sel_t *sp;
3473 ipsec_policy_t *ipp;
3474 ipsec_stack_t *ipss = ns->netstack_ipsec;
3475
3476 if (index_ptr == NULL)
3477 index_ptr = &ipss->ipsec_next_policy_index;
3478
3479 ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
3480 ap = ipsec_act_find(a, nacts, ns);
3481 sp = ipsec_find_sel(keys, ns);
3482
3483 if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) {
3484 if (ap != NULL) {
3485 IPACT_REFRELE(ap);
3486 }
3487 if (sp != NULL)
3488 ipsec_sel_rel(&sp, ns);
3489 if (ipp != NULL)
3490 kmem_cache_free(ipsec_pol_cache, ipp);
3491 return (NULL);
3492 }
3493
3494 HASH_NULL(ipp, ipsp_hash);
3495
3496 ipp->ipsp_netstack = ns; /* Needed for ipsec_policy_free */
3497 ipp->ipsp_refs = 1; /* caller's reference */
3498 ipp->ipsp_sel = sp;
3499 ipp->ipsp_act = ap;
3500 ipp->ipsp_prio = prio; /* rule priority */
3501 ipp->ipsp_index = *index_ptr;
3502 (*index_ptr)++;
3503
3504 return (ipp);
3505 }
3506
3507 static void
3508 ipsec_update_present_flags(ipsec_stack_t *ipss)
3509 {
3510 boolean_t hashpol;
3511
3512 hashpol = (avl_numnodes(&ipss->ipsec_system_policy.iph_rulebyid) > 0);
3513
3514 if (hashpol) {
3515 ipss->ipsec_outbound_v4_policy_present = B_TRUE;
3516 ipss->ipsec_outbound_v6_policy_present = B_TRUE;
3517 ipss->ipsec_inbound_v4_policy_present = B_TRUE;
3518 ipss->ipsec_inbound_v6_policy_present = B_TRUE;
3519 return;
3520 }
3521
3522 ipss->ipsec_outbound_v4_policy_present = (NULL !=
3523 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3524 ipr_nonhash[IPSEC_AF_V4]);
3525 ipss->ipsec_outbound_v6_policy_present = (NULL !=
3526 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3527 ipr_nonhash[IPSEC_AF_V6]);
3528 ipss->ipsec_inbound_v4_policy_present = (NULL !=
3529 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3530 ipr_nonhash[IPSEC_AF_V4]);
3531 ipss->ipsec_inbound_v6_policy_present = (NULL !=
3532 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3533 ipr_nonhash[IPSEC_AF_V6]);
3534 }
3535
3536 boolean_t
3537 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir,
3538 netstack_t *ns)
3539 {
3540 ipsec_sel_t *sp;
3541 ipsec_policy_t *ip, *nip, *head;
3542 int af;
3543 ipsec_policy_root_t *pr = &php->iph_root[dir];
3544
3545 sp = ipsec_find_sel(keys, ns);
3546
3547 if (sp == NULL)
3548 return (B_FALSE);
3549
3550 af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6;
3551
3552 rw_enter(&php->iph_lock, RW_WRITER);
3553
3554 if (sp->ipsl_key.ipsl_pol_hval == IPSEC_SEL_NOHASH) {
3555 head = pr->ipr_nonhash[af];
3556 } else {
3557 head = pr->ipr_hash[sp->ipsl_key.ipsl_pol_hval].hash_head;
3558 }
3559
3560 for (ip = head; ip != NULL; ip = nip) {
3561 nip = ip->ipsp_hash.hash_next;
3562 if (ip->ipsp_sel != sp) {
3563 continue;
3564 }
3565
3566 IPPOL_UNCHAIN(php, ip);
3567
3568 php->iph_gen++;
3569 ipsec_update_present_flags(ns->netstack_ipsec);
3570
3571 rw_exit(&php->iph_lock);
3572
3573 ipsec_sel_rel(&sp, ns);
3574
3575 return (B_TRUE);
3576 }
3577
3578 rw_exit(&php->iph_lock);
3579 ipsec_sel_rel(&sp, ns);
3580 return (B_FALSE);
3581 }
3582
3583 int
3584 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index,
3585 netstack_t *ns)
3586 {
3587 boolean_t found = B_FALSE;
3588 ipsec_policy_t ipkey;
3589 ipsec_policy_t *ip;
3590 avl_index_t where;
3591
3592 bzero(&ipkey, sizeof (ipkey));
3593 ipkey.ipsp_index = policy_index;
3594
3595 rw_enter(&php->iph_lock, RW_WRITER);
3596
3597 /*
3598 * We could be cleverer here about the walk.
3599 * but well, (k+1)*log(N) will do for now (k==number of matches,
3600 * N==number of table entries
3601 */
3602 for (;;) {
3603 ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid,
3604 (void *)&ipkey, &where);
3605 ASSERT(ip == NULL);
3606
3607 ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER);
3608
3609 if (ip == NULL)
3610 break;
3611
3612 if (ip->ipsp_index != policy_index) {
3613 ASSERT(ip->ipsp_index > policy_index);
3614 break;
3615 }
3616
3617 IPPOL_UNCHAIN(php, ip);
3618 found = B_TRUE;
3619 }
3620
3621 if (found) {
3622 php->iph_gen++;
3623 ipsec_update_present_flags(ns->netstack_ipsec);
3624 }
3625
3626 rw_exit(&php->iph_lock);
3627
3628 return (found ? 0 : ENOENT);
3629 }
3630
3631 /*
3632 * Given a constructed ipsec_policy_t policy rule, see if it can be entered
3633 * into the correct policy ruleset. As a side-effect, it sets the hash
3634 * entries on "ipp"'s ipsp_pol_hval.
3635 *
3636 * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a
3637 * duplicate policy exists with exactly the same selectors), or an icmp
3638 * rule exists with a different encryption/authentication action.
3639 */
3640 boolean_t
3641 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
3642 {
3643 ipsec_policy_root_t *pr = &php->iph_root[direction];
3644 int af = -1;
3645 ipsec_policy_t *p2, *head;
3646 uint8_t check_proto;
3647 ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3648 uint32_t valid = selkey->ipsl_valid;
3649
3650 if (valid & IPSL_IPV6) {
3651 ASSERT(!(valid & IPSL_IPV4));
3652 af = IPSEC_AF_V6;
3653 check_proto = IPPROTO_ICMPV6;
3654 } else {
3655 ASSERT(valid & IPSL_IPV4);
3656 af = IPSEC_AF_V4;
3657 check_proto = IPPROTO_ICMP;
3658 }
3659
3660 ASSERT(RW_WRITE_HELD(&php->iph_lock));
3661
3662 /*
3663 * Double-check that we don't have any duplicate selectors here.
3664 * Because selectors are interned below, we need only compare pointers
3665 * for equality.
3666 */
3667 if (selkey->ipsl_sel_hval == IPSEC_SEL_NOHASH) {
3668 head = pr->ipr_nonhash[af];
3669 } else {
3670 selkey->ipsl_pol_hval =
3671 (selkey->ipsl_valid & IPSL_IPV4) ?
3672 IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3673 pr->ipr_nchains) :
3674 IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3675 pr->ipr_nchains);
3676
3677 head = pr->ipr_hash[selkey->ipsl_pol_hval].hash_head;
3678 }
3679
3680 for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3681 if (p2->ipsp_sel == ipp->ipsp_sel)
3682 return (B_FALSE);
3683 }
3684
3685 /*
3686 * If it's ICMP and not a drop or pass rule, run through the ICMP
3687 * rules and make sure the action is either new or the same as any
3688 * other actions. We don't have to check the full chain because
3689 * discard and bypass will override all other actions
3690 */
3691
3692 if (valid & IPSL_PROTOCOL &&
3693 selkey->ipsl_proto == check_proto &&
3694 (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) {
3695
3696 for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3697
3698 if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL &&
3699 p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto &&
3700 (p2->ipsp_act->ipa_act.ipa_type ==
3701 IPSEC_ACT_APPLY)) {
3702 return (ipsec_compare_action(p2, ipp));
3703 }
3704 }
3705 }
3706
3707 return (B_TRUE);
3708 }
3709
3710 /*
3711 * compare the action chains of two policies for equality
3712 * B_TRUE -> effective equality
3713 */
3714
3715 static boolean_t
3716 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2)
3717 {
3718
3719 ipsec_action_t *act1, *act2;
3720
3721 /* We have a valid rule. Let's compare the actions */
3722 if (p1->ipsp_act == p2->ipsp_act) {
3723 /* same action. We are good */
3724 return (B_TRUE);
3725 }
3726
3727 /* we have to walk the chain */
3728
3729 act1 = p1->ipsp_act;
3730 act2 = p2->ipsp_act;
3731
3732 while (act1 != NULL && act2 != NULL) {
3733
3734 /* otherwise, Are we close enough? */
3735 if (act1->ipa_allow_clear != act2->ipa_allow_clear ||
3736 act1->ipa_want_ah != act2->ipa_want_ah ||
3737 act1->ipa_want_esp != act2->ipa_want_esp ||
3738 act1->ipa_want_se != act2->ipa_want_se) {
3739 /* Nope, we aren't */
3740 return (B_FALSE);
3741 }
3742
3743 if (act1->ipa_want_ah) {
3744 if (act1->ipa_act.ipa_apply.ipp_auth_alg !=
3745 act2->ipa_act.ipa_apply.ipp_auth_alg) {
3746 return (B_FALSE);
3747 }
3748
3749 if (act1->ipa_act.ipa_apply.ipp_ah_minbits !=
3750 act2->ipa_act.ipa_apply.ipp_ah_minbits ||
3751 act1->ipa_act.ipa_apply.ipp_ah_maxbits !=
3752 act2->ipa_act.ipa_apply.ipp_ah_maxbits) {
3753 return (B_FALSE);
3754 }
3755 }
3756
3757 if (act1->ipa_want_esp) {
3758 if (act1->ipa_act.ipa_apply.ipp_use_esp !=
3759 act2->ipa_act.ipa_apply.ipp_use_esp ||
3760 act1->ipa_act.ipa_apply.ipp_use_espa !=
3761 act2->ipa_act.ipa_apply.ipp_use_espa) {
3762 return (B_FALSE);
3763 }
3764
3765 if (act1->ipa_act.ipa_apply.ipp_use_esp) {
3766 if (act1->ipa_act.ipa_apply.ipp_encr_alg !=
3767 act2->ipa_act.ipa_apply.ipp_encr_alg) {
3768 return (B_FALSE);
3769 }
3770
3771 if (act1->ipa_act.ipa_apply.ipp_espe_minbits !=
3772 act2->ipa_act.ipa_apply.ipp_espe_minbits ||
3773 act1->ipa_act.ipa_apply.ipp_espe_maxbits !=
3774 act2->ipa_act.ipa_apply.ipp_espe_maxbits) {
3775 return (B_FALSE);
3776 }
3777 }
3778
3779 if (act1->ipa_act.ipa_apply.ipp_use_espa) {
3780 if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg !=
3781 act2->ipa_act.ipa_apply.ipp_esp_auth_alg) {
3782 return (B_FALSE);
3783 }
3784
3785 if (act1->ipa_act.ipa_apply.ipp_espa_minbits !=
3786 act2->ipa_act.ipa_apply.ipp_espa_minbits ||
3787 act1->ipa_act.ipa_apply.ipp_espa_maxbits !=
3788 act2->ipa_act.ipa_apply.ipp_espa_maxbits) {
3789 return (B_FALSE);
3790 }
3791 }
3792
3793 }
3794
3795 act1 = act1->ipa_next;
3796 act2 = act2->ipa_next;
3797 }
3798
3799 if (act1 != NULL || act2 != NULL) {
3800 return (B_FALSE);
3801 }
3802
3803 return (B_TRUE);
3804 }
3805
3806
3807 /*
3808 * Given a constructed ipsec_policy_t policy rule, enter it into
3809 * the correct policy ruleset.
3810 *
3811 * ipsec_check_policy() is assumed to have succeeded first (to check for
3812 * duplicates).
3813 */
3814 void
3815 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction,
3816 netstack_t *ns)
3817 {
3818 ipsec_policy_root_t *pr = &php->iph_root[direction];
3819 ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3820 uint32_t valid = selkey->ipsl_valid;
3821 uint32_t hval = selkey->ipsl_pol_hval;
3822 int af = -1;
3823
3824 ASSERT(RW_WRITE_HELD(&php->iph_lock));
3825
3826 if (valid & IPSL_IPV6) {
3827 ASSERT(!(valid & IPSL_IPV4));
3828 af = IPSEC_AF_V6;
3829 } else {
3830 ASSERT(valid & IPSL_IPV4);
3831 af = IPSEC_AF_V4;
3832 }
3833
3834 php->iph_gen++;
3835
3836 if (hval == IPSEC_SEL_NOHASH) {
3837 HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]);
3838 } else {
3839 HASH_LOCK(pr->ipr_hash, hval);
3840 HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval);
3841 HASH_UNLOCK(pr->ipr_hash, hval);
3842 }
3843
3844 ipsec_insert_always(&php->iph_rulebyid, ipp);
3845
3846 ipsec_update_present_flags(ns->netstack_ipsec);
3847 }
3848
3849 static void
3850 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr)
3851 {
3852 ipsec_policy_t *ip, *nip;
3853 int af, chain, nchain;
3854
3855 for (af = 0; af < IPSEC_NAF; af++) {
3856 for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) {
3857 nip = ip->ipsp_hash.hash_next;
3858 IPPOL_UNCHAIN(php, ip);
3859 }
3860 ipr->ipr_nonhash[af] = NULL;
3861 }
3862 nchain = ipr->ipr_nchains;
3863
3864 for (chain = 0; chain < nchain; chain++) {
3865 for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL;
3866 ip = nip) {
3867 nip = ip->ipsp_hash.hash_next;
3868 IPPOL_UNCHAIN(php, ip);
3869 }
3870 ipr->ipr_hash[chain].hash_head = NULL;
3871 }
3872 }
3873
3874 /*
3875 * Create and insert inbound or outbound policy associated with actp for the
3876 * address family fam into the policy head ph. Returns B_TRUE if policy was
3877 * inserted, and B_FALSE otherwise.
3878 */
3879 boolean_t
3880 ipsec_polhead_insert(ipsec_policy_head_t *ph, ipsec_act_t *actp, uint_t nact,
3881 int fam, int ptype, netstack_t *ns)
3882 {
3883 ipsec_selkey_t sel;
3884 ipsec_policy_t *pol;
3885 ipsec_policy_root_t *pr;
3886
3887 bzero(&sel, sizeof (sel));
3888 sel.ipsl_valid = (fam == IPSEC_AF_V4 ? IPSL_IPV4 : IPSL_IPV6);
3889 if ((pol = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET,
3890 NULL, ns)) != NULL) {
3891 pr = &ph->iph_root[ptype];
3892 HASHLIST_INSERT(pol, ipsp_hash, pr->ipr_nonhash[fam]);
3893 ipsec_insert_always(&ph->iph_rulebyid, pol);
3894 }
3895 return (pol != NULL);
3896 }
3897
3898 void
3899 ipsec_polhead_flush(ipsec_policy_head_t *php, netstack_t *ns)
3900 {
3901 int dir;
3902
3903 ASSERT(RW_WRITE_HELD(&php->iph_lock));
3904
3905 for (dir = 0; dir < IPSEC_NTYPES; dir++)
3906 ipsec_ipr_flush(php, &php->iph_root[dir]);
3907
3908 php->iph_gen++;
3909 ipsec_update_present_flags(ns->netstack_ipsec);
3910 }
3911
3912 void
3913 ipsec_polhead_free(ipsec_policy_head_t *php, netstack_t *ns)
3914 {
3915 int dir;
3916
3917 ASSERT(php->iph_refs == 0);
3918
3919 rw_enter(&php->iph_lock, RW_WRITER);
3920 ipsec_polhead_flush(php, ns);
3921 rw_exit(&php->iph_lock);
3922 rw_destroy(&php->iph_lock);
3923 for (dir = 0; dir < IPSEC_NTYPES; dir++) {
3924 ipsec_policy_root_t *ipr = &php->iph_root[dir];
3925 int chain;
3926
3927 for (chain = 0; chain < ipr->ipr_nchains; chain++)
3928 mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
3929
3930 }
3931 ipsec_polhead_free_table(php);
3932 kmem_free(php, sizeof (*php));
3933 }
3934
3935 static void
3936 ipsec_ipr_init(ipsec_policy_root_t *ipr)
3937 {
3938 int af;
3939
3940 ipr->ipr_nchains = 0;
3941 ipr->ipr_hash = NULL;
3942
3943 for (af = 0; af < IPSEC_NAF; af++) {
3944 ipr->ipr_nonhash[af] = NULL;
3945 }
3946 }
3947
3948 ipsec_policy_head_t *
3949 ipsec_polhead_create(void)
3950 {
3951 ipsec_policy_head_t *php;
3952
3953 php = kmem_alloc(sizeof (*php), KM_NOSLEEP);
3954 if (php == NULL)
3955 return (php);
3956
3957 rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL);
3958 php->iph_refs = 1;
3959 php->iph_gen = 0;
3960
3961 ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]);
3962 ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]);
3963
3964 avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid,
3965 sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
3966
3967 return (php);
3968 }
3969
3970 /*
3971 * Clone the policy head into a new polhead; release one reference to the
3972 * old one and return the only reference to the new one.
3973 * If the old one had a refcount of 1, just return it.
3974 */
3975 ipsec_policy_head_t *
3976 ipsec_polhead_split(ipsec_policy_head_t *php, netstack_t *ns)
3977 {
3978 ipsec_policy_head_t *nphp;
3979
3980 if (php == NULL)
3981 return (ipsec_polhead_create());
3982 else if (php->iph_refs == 1)
3983 return (php);
3984
3985 nphp = ipsec_polhead_create();
3986 if (nphp == NULL)
3987 return (NULL);
3988
3989 if (ipsec_copy_polhead(php, nphp, ns) != 0) {
3990 ipsec_polhead_free(nphp, ns);
3991 return (NULL);
3992 }
3993 IPPH_REFRELE(php, ns);
3994 return (nphp);
3995 }
3996
3997 /*
3998 * When sending a response to a ICMP request or generating a RST
3999 * in the TCP case, the outbound packets need to go at the same level
4000 * of protection as the incoming ones i.e we associate our outbound
4001 * policy with how the packet came in. We call this after we have
4002 * accepted the incoming packet which may or may not have been in
4003 * clear and hence we are sending the reply back with the policy
4004 * matching the incoming datagram's policy.
4005 *
4006 * NOTE : This technology serves two purposes :
4007 *
4008 * 1) If we have multiple outbound policies, we send out a reply
4009 * matching with how it came in rather than matching the outbound
4010 * policy.
4011 *
4012 * 2) For assymetric policies, we want to make sure that incoming
4013 * and outgoing has the same level of protection. Assymetric
4014 * policies exist only with global policy where we may not have
4015 * both outbound and inbound at the same time.
4016 *
4017 * NOTE2: This function is called by cleartext cases, so it needs to be
4018 * in IP proper.
4019 *
4020 * Note: the caller has moved other parts of ira into ixa already.
4021 */
4022 boolean_t
4023 ipsec_in_to_out(ip_recv_attr_t *ira, ip_xmit_attr_t *ixa, mblk_t *data_mp,
4024 ipha_t *ipha, ip6_t *ip6h)
4025 {
4026 ipsec_selector_t sel;
4027 ipsec_action_t *reflect_action = NULL;
4028 netstack_t *ns = ixa->ixa_ipst->ips_netstack;
4029
4030 bzero((void*)&sel, sizeof (sel));
4031
4032 if (ira->ira_ipsec_action != NULL) {
4033 /* transfer reference.. */
4034 reflect_action = ira->ira_ipsec_action;
4035 ira->ira_ipsec_action = NULL;
4036 } else if (!(ira->ira_flags & IRAF_LOOPBACK))
4037 reflect_action = ipsec_in_to_out_action(ira);
4038
4039 /*
4040 * The caller is going to send the datagram out which might
4041 * go on the wire or delivered locally through ire_send_local.
4042 *
4043 * 1) If it goes out on the wire, new associations will be
4044 * obtained.
4045 * 2) If it is delivered locally, ire_send_local will convert
4046 * this ip_xmit_attr_t back to a ip_recv_attr_t looking at the
4047 * requests.
4048 */
4049 ixa->ixa_ipsec_action = reflect_action;
4050
4051 if (!ipsec_init_outbound_ports(&sel, data_mp, ipha, ip6h, 0,
4052 ns->netstack_ipsec)) {
4053 /* Note: data_mp already consumed and ip_drop_packet done */
4054 return (B_FALSE);
4055 }
4056 ixa->ixa_ipsec_src_port = sel.ips_local_port;
4057 ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4058 ixa->ixa_ipsec_proto = sel.ips_protocol;
4059 ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4060 ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4061
4062 /*
4063 * Don't use global policy for this, as we want
4064 * to use the same protection that was applied to the inbound packet.
4065 * Thus we set IXAF_NO_IPSEC is it arrived in the clear to make
4066 * it be sent in the clear.
4067 */
4068 if (ira->ira_flags & IRAF_IPSEC_SECURE)
4069 ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4070 else
4071 ixa->ixa_flags |= IXAF_NO_IPSEC;
4072
4073 return (B_TRUE);
4074 }
4075
4076 void
4077 ipsec_out_release_refs(ip_xmit_attr_t *ixa)
4078 {
4079 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
4080 return;
4081
4082 if (ixa->ixa_ipsec_ah_sa != NULL) {
4083 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
4084 ixa->ixa_ipsec_ah_sa = NULL;
4085 }
4086 if (ixa->ixa_ipsec_esp_sa != NULL) {
4087 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
4088 ixa->ixa_ipsec_esp_sa = NULL;
4089 }
4090 if (ixa->ixa_ipsec_policy != NULL) {
4091 IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4092 ixa->ixa_ipsec_policy = NULL;
4093 }
4094 if (ixa->ixa_ipsec_action != NULL) {
4095 IPACT_REFRELE(ixa->ixa_ipsec_action);
4096 ixa->ixa_ipsec_action = NULL;
4097 }
4098 if (ixa->ixa_ipsec_latch) {
4099 IPLATCH_REFRELE(ixa->ixa_ipsec_latch);
4100 ixa->ixa_ipsec_latch = NULL;
4101 }
4102 /* Clear the soft references to the SAs */
4103 ixa->ixa_ipsec_ref[0].ipsr_sa = NULL;
4104 ixa->ixa_ipsec_ref[0].ipsr_bucket = NULL;
4105 ixa->ixa_ipsec_ref[0].ipsr_gen = 0;
4106 ixa->ixa_ipsec_ref[1].ipsr_sa = NULL;
4107 ixa->ixa_ipsec_ref[1].ipsr_bucket = NULL;
4108 ixa->ixa_ipsec_ref[1].ipsr_gen = 0;
4109 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4110 }
4111
4112 void
4113 ipsec_in_release_refs(ip_recv_attr_t *ira)
4114 {
4115 if (!(ira->ira_flags & IRAF_IPSEC_SECURE))
4116 return;
4117
4118 if (ira->ira_ipsec_ah_sa != NULL) {
4119 IPSA_REFRELE(ira->ira_ipsec_ah_sa);
4120 ira->ira_ipsec_ah_sa = NULL;
4121 }
4122 if (ira->ira_ipsec_esp_sa != NULL) {
4123 IPSA_REFRELE(ira->ira_ipsec_esp_sa);
4124 ira->ira_ipsec_esp_sa = NULL;
4125 }
4126 ira->ira_flags &= ~IRAF_IPSEC_SECURE;
4127 }
4128
4129 /*
4130 * This is called from ire_send_local when a packet
4131 * is looped back. We setup the ip_recv_attr_t "borrowing" the references
4132 * held by the callers.
4133 * Note that we don't do any IPsec but we carry the actions and IPSEC flags
4134 * across so that the fanout policy checks see that IPsec was applied.
4135 *
4136 * The caller should do ipsec_in_release_refs() on the ira by calling
4137 * ira_cleanup().
4138 */
4139 void
4140 ipsec_out_to_in(ip_xmit_attr_t *ixa, ill_t *ill, ip_recv_attr_t *ira)
4141 {
4142 ipsec_policy_t *pol;
4143 ipsec_action_t *act;
4144
4145 /* Non-IPsec operations */
4146 ira->ira_free_flags = 0;
4147 ira->ira_zoneid = ixa->ixa_zoneid;
4148 ira->ira_cred = ixa->ixa_cred;
4149 ira->ira_cpid = ixa->ixa_cpid;
4150 ira->ira_tsl = ixa->ixa_tsl;
4151 ira->ira_ill = ira->ira_rill = ill;
4152 ira->ira_flags = ixa->ixa_flags & IAF_MASK;
4153 ira->ira_no_loop_zoneid = ixa->ixa_no_loop_zoneid;
4154 ira->ira_pktlen = ixa->ixa_pktlen;
4155 ira->ira_ip_hdr_length = ixa->ixa_ip_hdr_length;
4156 ira->ira_protocol = ixa->ixa_protocol;
4157 ira->ira_mhip = NULL;
4158
4159 ira->ira_flags |= IRAF_LOOPBACK | IRAF_L2SRC_LOOPBACK;
4160
4161 ira->ira_sqp = ixa->ixa_sqp;
4162 ira->ira_ring = NULL;
4163
4164 ira->ira_ruifindex = ill->ill_phyint->phyint_ifindex;
4165 ira->ira_rifindex = ira->ira_ruifindex;
4166
4167 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
4168 return;
4169
4170 ira->ira_flags |= IRAF_IPSEC_SECURE;
4171
4172 ira->ira_ipsec_ah_sa = NULL;
4173 ira->ira_ipsec_esp_sa = NULL;
4174
4175 act = ixa->ixa_ipsec_action;
4176 if (act == NULL) {
4177 pol = ixa->ixa_ipsec_policy;
4178 if (pol != NULL) {
4179 act = pol->ipsp_act;
4180 IPACT_REFHOLD(act);
4181 }
4182 }
4183 ixa->ixa_ipsec_action = NULL;
4184 ira->ira_ipsec_action = act;
4185 }
4186
4187 /*
4188 * Consults global policy and per-socket policy to see whether this datagram
4189 * should go out secure. If so it updates the ip_xmit_attr_t
4190 * Should not be used when connecting, since then we want to latch the policy.
4191 *
4192 * If connp is NULL we just look at the global policy.
4193 *
4194 * Returns NULL if the packet was dropped, in which case the MIB has
4195 * been incremented and ip_drop_packet done.
4196 */
4197 mblk_t *
4198 ip_output_attach_policy(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4199 const conn_t *connp, ip_xmit_attr_t *ixa)
4200 {
4201 ipsec_selector_t sel;
4202 boolean_t policy_present;
4203 ip_stack_t *ipst = ixa->ixa_ipst;
4204 netstack_t *ns = ipst->ips_netstack;
4205 ipsec_stack_t *ipss = ns->netstack_ipsec;
4206 ipsec_policy_t *p;
4207
4208 ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen;
4209 ASSERT((ipha != NULL && ip6h == NULL) ||
4210 (ip6h != NULL && ipha == NULL));
4211
4212 if (ipha != NULL)
4213 policy_present = ipss->ipsec_outbound_v4_policy_present;
4214 else
4215 policy_present = ipss->ipsec_outbound_v6_policy_present;
4216
4217 if (!policy_present && (connp == NULL || connp->conn_policy == NULL))
4218 return (mp);
4219
4220 bzero((void*)&sel, sizeof (sel));
4221
4222 if (ipha != NULL) {
4223 sel.ips_local_addr_v4 = ipha->ipha_src;
4224 sel.ips_remote_addr_v4 = ip_get_dst(ipha);
4225 sel.ips_isv4 = B_TRUE;
4226 } else {
4227 sel.ips_isv4 = B_FALSE;
4228 sel.ips_local_addr_v6 = ip6h->ip6_src;
4229 sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, mp, NULL);
4230 }
4231 sel.ips_protocol = ixa->ixa_protocol;
4232
4233 if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0, ipss)) {
4234 if (ipha != NULL) {
4235 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
4236 } else {
4237 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards);
4238 }
4239 /* Note: mp already consumed and ip_drop_packet done */
4240 return (NULL);
4241 }
4242
4243 ASSERT(ixa->ixa_ipsec_policy == NULL);
4244 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4245 ixa->ixa_ipsec_policy = p;
4246 if (p != NULL) {
4247 ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4248 if (connp == NULL || connp->conn_policy == NULL)
4249 ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY;
4250 } else {
4251 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4252 }
4253
4254 /*
4255 * Copy the right port information.
4256 */
4257 ixa->ixa_ipsec_src_port = sel.ips_local_port;
4258 ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4259 ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4260 ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4261 ixa->ixa_ipsec_proto = sel.ips_protocol;
4262 return (mp);
4263 }
4264
4265 /*
4266 * When appropriate, this function caches inbound and outbound policy
4267 * for this connection. The outbound policy is stored in conn_ixa.
4268 * Note that it can not be used for SCTP since conn_faddr isn't set for SCTP.
4269 *
4270 * XXX need to work out more details about per-interface policy and
4271 * caching here!
4272 *
4273 * XXX may want to split inbound and outbound caching for ill..
4274 */
4275 int
4276 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4)
4277 {
4278 boolean_t global_policy_present;
4279 netstack_t *ns = connp->conn_netstack;
4280 ipsec_stack_t *ipss = ns->netstack_ipsec;
4281
4282 connp->conn_ixa->ixa_ipsec_policy_gen =
4283 ipss->ipsec_system_policy.iph_gen;
4284 /*
4285 * There is no policy latching for ICMP sockets because we can't
4286 * decide on which policy to use until we see the packet and get
4287 * type/code selectors.
4288 */
4289 if (connp->conn_proto == IPPROTO_ICMP ||
4290 connp->conn_proto == IPPROTO_ICMPV6) {
4291 connp->conn_in_enforce_policy =
4292 connp->conn_out_enforce_policy = B_TRUE;
4293 if (connp->conn_latch != NULL) {
4294 IPLATCH_REFRELE(connp->conn_latch);
4295 connp->conn_latch = NULL;
4296 }
4297 if (connp->conn_latch_in_policy != NULL) {
4298 IPPOL_REFRELE(connp->conn_latch_in_policy);
4299 connp->conn_latch_in_policy = NULL;
4300 }
4301 if (connp->conn_latch_in_action != NULL) {
4302 IPACT_REFRELE(connp->conn_latch_in_action);
4303 connp->conn_latch_in_action = NULL;
4304 }
4305 if (connp->conn_ixa->ixa_ipsec_policy != NULL) {
4306 IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy);
4307 connp->conn_ixa->ixa_ipsec_policy = NULL;
4308 }
4309 if (connp->conn_ixa->ixa_ipsec_action != NULL) {
4310 IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action);
4311 connp->conn_ixa->ixa_ipsec_action = NULL;
4312 }
4313 connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4314 return (0);
4315 }
4316
4317 global_policy_present = isv4 ?
4318 (ipss->ipsec_outbound_v4_policy_present ||
4319 ipss->ipsec_inbound_v4_policy_present) :
4320 (ipss->ipsec_outbound_v6_policy_present ||
4321 ipss->ipsec_inbound_v6_policy_present);
4322
4323 if ((connp->conn_policy != NULL) || global_policy_present) {
4324 ipsec_selector_t sel;
4325 ipsec_policy_t *p;
4326
4327 if (connp->conn_latch == NULL &&
4328 (connp->conn_latch = iplatch_create()) == NULL) {
4329 return (ENOMEM);
4330 }
4331
4332 bzero((void*)&sel, sizeof (sel));
4333
4334 sel.ips_protocol = connp->conn_proto;
4335 sel.ips_local_port = connp->conn_lport;
4336 sel.ips_remote_port = connp->conn_fport;
4337 sel.ips_is_icmp_inv_acq = 0;
4338 sel.ips_isv4 = isv4;
4339 if (isv4) {
4340 sel.ips_local_addr_v4 = connp->conn_laddr_v4;
4341 sel.ips_remote_addr_v4 = connp->conn_faddr_v4;
4342 } else {
4343 sel.ips_local_addr_v6 = connp->conn_laddr_v6;
4344 sel.ips_remote_addr_v6 = connp->conn_faddr_v6;
4345 }
4346
4347 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns);
4348 if (connp->conn_latch_in_policy != NULL)
4349 IPPOL_REFRELE(connp->conn_latch_in_policy);
4350 connp->conn_latch_in_policy = p;
4351 connp->conn_in_enforce_policy = (p != NULL);
4352
4353 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4354 if (connp->conn_ixa->ixa_ipsec_policy != NULL)
4355 IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy);
4356 connp->conn_ixa->ixa_ipsec_policy = p;
4357 connp->conn_out_enforce_policy = (p != NULL);
4358 if (p != NULL) {
4359 connp->conn_ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4360 if (connp->conn_policy == NULL) {
4361 connp->conn_ixa->ixa_flags |=
4362 IXAF_IPSEC_GLOBAL_POLICY;
4363 }
4364 } else {
4365 connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4366 }
4367 /* Clear the latched actions too, in case we're recaching. */
4368 if (connp->conn_ixa->ixa_ipsec_action != NULL) {
4369 IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action);
4370 connp->conn_ixa->ixa_ipsec_action = NULL;
4371 }
4372 if (connp->conn_latch_in_action != NULL) {
4373 IPACT_REFRELE(connp->conn_latch_in_action);
4374 connp->conn_latch_in_action = NULL;
4375 }
4376 connp->conn_ixa->ixa_ipsec_src_port = sel.ips_local_port;
4377 connp->conn_ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4378 connp->conn_ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4379 connp->conn_ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4380 connp->conn_ixa->ixa_ipsec_proto = sel.ips_protocol;
4381 } else {
4382 connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4383 }
4384
4385 /*
4386 * We may or may not have policy for this endpoint. We still set
4387 * conn_policy_cached so that inbound datagrams don't have to look
4388 * at global policy as policy is considered latched for these
4389 * endpoints. We should not set conn_policy_cached until the conn
4390 * reflects the actual policy. If we *set* this before inheriting
4391 * the policy there is a window where the check
4392 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy
4393 * on the conn (because we have not yet copied the policy on to
4394 * conn and hence not set conn_in_enforce_policy) nor with the
4395 * global policy (because conn_policy_cached is already set).
4396 */
4397 connp->conn_policy_cached = B_TRUE;
4398 return (0);
4399 }
4400
4401 /*
4402 * When appropriate, this function caches outbound policy for faddr/fport.
4403 * It is used when we are not connected i.e., when we can not latch the
4404 * policy.
4405 */
4406 void
4407 ipsec_cache_outbound_policy(const conn_t *connp, const in6_addr_t *v6src,
4408 const in6_addr_t *v6dst, in_port_t dstport, ip_xmit_attr_t *ixa)
4409 {
4410 boolean_t isv4 = (ixa->ixa_flags & IXAF_IS_IPV4) != 0;
4411 boolean_t global_policy_present;
4412 netstack_t *ns = connp->conn_netstack;
4413 ipsec_stack_t *ipss = ns->netstack_ipsec;
4414
4415 ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen;
4416
4417 /*
4418 * There is no policy caching for ICMP sockets because we can't
4419 * decide on which policy to use until we see the packet and get
4420 * type/code selectors.
4421 */
4422 if (connp->conn_proto == IPPROTO_ICMP ||
4423 connp->conn_proto == IPPROTO_ICMPV6) {
4424 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4425 if (ixa->ixa_ipsec_policy != NULL) {
4426 IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4427 ixa->ixa_ipsec_policy = NULL;
4428 }
4429 if (ixa->ixa_ipsec_action != NULL) {
4430 IPACT_REFRELE(ixa->ixa_ipsec_action);
4431 ixa->ixa_ipsec_action = NULL;
4432 }
4433 return;
4434 }
4435
4436 global_policy_present = isv4 ?
4437 (ipss->ipsec_outbound_v4_policy_present ||
4438 ipss->ipsec_inbound_v4_policy_present) :
4439 (ipss->ipsec_outbound_v6_policy_present ||
4440 ipss->ipsec_inbound_v6_policy_present);
4441
4442 if ((connp->conn_policy != NULL) || global_policy_present) {
4443 ipsec_selector_t sel;
4444 ipsec_policy_t *p;
4445
4446 bzero((void*)&sel, sizeof (sel));
4447
4448 sel.ips_protocol = connp->conn_proto;
4449 sel.ips_local_port = connp->conn_lport;
4450 sel.ips_remote_port = dstport;
4451 sel.ips_is_icmp_inv_acq = 0;
4452 sel.ips_isv4 = isv4;
4453 if (isv4) {
4454 IN6_V4MAPPED_TO_IPADDR(v6src, sel.ips_local_addr_v4);
4455 IN6_V4MAPPED_TO_IPADDR(v6dst, sel.ips_remote_addr_v4);
4456 } else {
4457 sel.ips_local_addr_v6 = *v6src;
4458 sel.ips_remote_addr_v6 = *v6dst;
4459 }
4460
4461 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4462 if (ixa->ixa_ipsec_policy != NULL)
4463 IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4464 ixa->ixa_ipsec_policy = p;
4465 if (p != NULL) {
4466 ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4467 if (connp->conn_policy == NULL)
4468 ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY;
4469 } else {
4470 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4471 }
4472 /* Clear the latched actions too, in case we're recaching. */
4473 if (ixa->ixa_ipsec_action != NULL) {
4474 IPACT_REFRELE(ixa->ixa_ipsec_action);
4475 ixa->ixa_ipsec_action = NULL;
4476 }
4477
4478 ixa->ixa_ipsec_src_port = sel.ips_local_port;
4479 ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4480 ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4481 ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4482 ixa->ixa_ipsec_proto = sel.ips_protocol;
4483 } else {
4484 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4485 if (ixa->ixa_ipsec_policy != NULL) {
4486 IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4487 ixa->ixa_ipsec_policy = NULL;
4488 }
4489 if (ixa->ixa_ipsec_action != NULL) {
4490 IPACT_REFRELE(ixa->ixa_ipsec_action);
4491 ixa->ixa_ipsec_action = NULL;
4492 }
4493 }
4494 }
4495
4496 /*
4497 * Returns B_FALSE if the policy has gone stale.
4498 */
4499 boolean_t
4500 ipsec_outbound_policy_current(ip_xmit_attr_t *ixa)
4501 {
4502 ipsec_stack_t *ipss = ixa->ixa_ipst->ips_netstack->netstack_ipsec;
4503
4504 if (!(ixa->ixa_flags & IXAF_IPSEC_GLOBAL_POLICY))
4505 return (B_TRUE);
4506
4507 return (ixa->ixa_ipsec_policy_gen == ipss->ipsec_system_policy.iph_gen);
4508 }
4509
4510 void
4511 iplatch_free(ipsec_latch_t *ipl)
4512 {
4513 if (ipl->ipl_local_cid != NULL)
4514 IPSID_REFRELE(ipl->ipl_local_cid);
4515 if (ipl->ipl_remote_cid != NULL)
4516 IPSID_REFRELE(ipl->ipl_remote_cid);
4517 mutex_destroy(&ipl->ipl_lock);
4518 kmem_free(ipl, sizeof (*ipl));
4519 }
4520
4521 ipsec_latch_t *
4522 iplatch_create()
4523 {
4524 ipsec_latch_t *ipl = kmem_alloc(sizeof (*ipl), KM_NOSLEEP);
4525 if (ipl == NULL)
4526 return (ipl);
4527 bzero(ipl, sizeof (*ipl));
4528 mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL);
4529 ipl->ipl_refcnt = 1;
4530 return (ipl);
4531 }
4532
4533 /*
4534 * Hash function for ID hash table.
4535 */
4536 static uint32_t
4537 ipsid_hash(int idtype, char *idstring)
4538 {
4539 uint32_t hval = idtype;
4540 unsigned char c;
4541
4542 while ((c = *idstring++) != 0) {
4543 hval = (hval << 4) | (hval >> 28);
4544 hval ^= c;
4545 }
4546 hval = hval ^ (hval >> 16);
4547 return (hval & (IPSID_HASHSIZE-1));
4548 }
4549
4550 /*
4551 * Look up identity string in hash table. Return identity object
4552 * corresponding to the name -- either preexisting, or newly allocated.
4553 *
4554 * Return NULL if we need to allocate a new one and can't get memory.
4555 */
4556 ipsid_t *
4557 ipsid_lookup(int idtype, char *idstring, netstack_t *ns)
4558 {
4559 ipsid_t *retval;
4560 char *nstr;
4561 int idlen = strlen(idstring) + 1;
4562 ipsec_stack_t *ipss = ns->netstack_ipsec;
4563 ipsif_t *bucket;
4564
4565 bucket = &ipss->ipsec_ipsid_buckets[ipsid_hash(idtype, idstring)];
4566
4567 mutex_enter(&bucket->ipsif_lock);
4568
4569 for (retval = bucket->ipsif_head; retval != NULL;
4570 retval = retval->ipsid_next) {
4571 if (idtype != retval->ipsid_type)
4572 continue;
4573 if (bcmp(idstring, retval->ipsid_cid, idlen) != 0)
4574 continue;
4575
4576 IPSID_REFHOLD(retval);
4577 mutex_exit(&bucket->ipsif_lock);
4578 return (retval);
4579 }
4580
4581 retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP);
4582 if (!retval) {
4583 mutex_exit(&bucket->ipsif_lock);
4584 return (NULL);
4585 }
4586
4587 nstr = kmem_alloc(idlen, KM_NOSLEEP);
4588 if (!nstr) {
4589 mutex_exit(&bucket->ipsif_lock);
4590 kmem_free(retval, sizeof (*retval));
4591 return (NULL);
4592 }
4593
4594 retval->ipsid_refcnt = 1;
4595 retval->ipsid_next = bucket->ipsif_head;
4596 if (retval->ipsid_next != NULL)
4597 retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next;
4598 retval->ipsid_ptpn = &bucket->ipsif_head;
4599 retval->ipsid_type = idtype;
4600 retval->ipsid_cid = nstr;
4601 bucket->ipsif_head = retval;
4602 bcopy(idstring, nstr, idlen);
4603 mutex_exit(&bucket->ipsif_lock);
4604
4605 return (retval);
4606 }
4607
4608 /*
4609 * Garbage collect the identity hash table.
4610 */
4611 void
4612 ipsid_gc(netstack_t *ns)
4613 {
4614 int i, len;
4615 ipsid_t *id, *nid;
4616 ipsif_t *bucket;
4617 ipsec_stack_t *ipss = ns->netstack_ipsec;
4618
4619 for (i = 0; i < IPSID_HASHSIZE; i++) {
4620 bucket = &ipss->ipsec_ipsid_buckets[i];
4621 mutex_enter(&bucket->ipsif_lock);
4622 for (id = bucket->ipsif_head; id != NULL; id = nid) {
4623 nid = id->ipsid_next;
4624 if (id->ipsid_refcnt == 0) {
4625 *id->ipsid_ptpn = nid;
4626 if (nid != NULL)
4627 nid->ipsid_ptpn = id->ipsid_ptpn;
4628 len = strlen(id->ipsid_cid) + 1;
4629 kmem_free(id->ipsid_cid, len);
4630 kmem_free(id, sizeof (*id));
4631 }
4632 }
4633 mutex_exit(&bucket->ipsif_lock);
4634 }
4635 }
4636
4637 /*
4638 * Return true if two identities are the same.
4639 */
4640 boolean_t
4641 ipsid_equal(ipsid_t *id1, ipsid_t *id2)
4642 {
4643 if (id1 == id2)
4644 return (B_TRUE);
4645 #ifdef DEBUG
4646 if ((id1 == NULL) || (id2 == NULL))
4647 return (B_FALSE);
4648 /*
4649 * test that we're interning id's correctly..
4650 */
4651 ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) ||
4652 (id1->ipsid_type != id2->ipsid_type));
4653 #endif
4654 return (B_FALSE);
4655 }
4656
4657 /*
4658 * Initialize identity table; called during module initialization.
4659 */
4660 static void
4661 ipsid_init(netstack_t *ns)
4662 {
4663 ipsif_t *bucket;
4664 int i;
4665 ipsec_stack_t *ipss = ns->netstack_ipsec;
4666
4667 for (i = 0; i < IPSID_HASHSIZE; i++) {
4668 bucket = &ipss->ipsec_ipsid_buckets[i];
4669 mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL);
4670 }
4671 }
4672
4673 /*
4674 * Free identity table (preparatory to module unload)
4675 */
4676 static void
4677 ipsid_fini(netstack_t *ns)
4678 {
4679 ipsif_t *bucket;
4680 int i;
4681 ipsec_stack_t *ipss = ns->netstack_ipsec;
4682
4683 for (i = 0; i < IPSID_HASHSIZE; i++) {
4684 bucket = &ipss->ipsec_ipsid_buckets[i];
4685 ASSERT(bucket->ipsif_head == NULL);
4686 mutex_destroy(&bucket->ipsif_lock);
4687 }
4688 }
4689
4690 /*
4691 * Update the minimum and maximum supported key sizes for the specified
4692 * algorithm, which is either a member of a netstack alg array or about to be,
4693 * and therefore must be called holding ipsec_alg_lock for write.
4694 */
4695 void
4696 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type,
4697 netstack_t *ns)
4698 {
4699 size_t crypto_min = (size_t)-1, crypto_max = 0;
4700 size_t cur_crypto_min, cur_crypto_max;
4701 boolean_t is_valid;
4702 crypto_mechanism_info_t *mech_infos;
4703 uint_t nmech_infos;
4704 int crypto_rc, i;
4705 crypto_mech_usage_t mask;
4706 ipsec_stack_t *ipss = ns->netstack_ipsec;
4707
4708 ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
4709
4710 /*
4711 * Compute the min, max, and default key sizes (in number of
4712 * increments to the default key size in bits) as defined
4713 * by the algorithm mappings. This range of key sizes is used
4714 * for policy related operations. The effective key sizes
4715 * supported by the framework could be more limited than
4716 * those defined for an algorithm.
4717 */
4718 alg->alg_default_bits = alg->alg_key_sizes[0];
4719 alg->alg_default = 0;
4720 if (alg->alg_increment != 0) {
4721 /* key sizes are defined by range & increment */
4722 alg->alg_minbits = alg->alg_key_sizes[1];
4723 alg->alg_maxbits = alg->alg_key_sizes[2];
4724 } else if (alg->alg_nkey_sizes == 0) {
4725 /* no specified key size for algorithm */
4726 alg->alg_minbits = alg->alg_maxbits = 0;
4727 } else {
4728 /* key sizes are defined by enumeration */
4729 alg->alg_minbits = (uint16_t)-1;
4730 alg->alg_maxbits = 0;
4731
4732 for (i = 0; i < alg->alg_nkey_sizes; i++) {
4733 if (alg->alg_key_sizes[i] < alg->alg_minbits)
4734 alg->alg_minbits = alg->alg_key_sizes[i];
4735 if (alg->alg_key_sizes[i] > alg->alg_maxbits)
4736 alg->alg_maxbits = alg->alg_key_sizes[i];
4737 }
4738 }
4739
4740 if (!(alg->alg_flags & ALG_FLAG_VALID))
4741 return;
4742
4743 /*
4744 * Mechanisms do not apply to the NULL encryption
4745 * algorithm, so simply return for this case.
4746 */
4747 if (alg->alg_id == SADB_EALG_NULL)
4748 return;
4749
4750 /*
4751 * Find the min and max key sizes supported by the cryptographic
4752 * framework providers.
4753 */
4754
4755 /* get the key sizes supported by the framework */
4756 crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type,
4757 &mech_infos, &nmech_infos, KM_SLEEP);
4758 if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) {
4759 alg->alg_flags &= ~ALG_FLAG_VALID;
4760 return;
4761 }
4762
4763 /* min and max key sizes supported by framework */
4764 for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) {
4765 int unit_bits;
4766
4767 /*
4768 * Ignore entries that do not support the operations
4769 * needed for the algorithm type.
4770 */
4771 if (alg_type == IPSEC_ALG_AUTH) {
4772 mask = CRYPTO_MECH_USAGE_MAC;
4773 } else {
4774 mask = CRYPTO_MECH_USAGE_ENCRYPT |
4775 CRYPTO_MECH_USAGE_DECRYPT;
4776 }
4777 if ((mech_infos[i].mi_usage & mask) != mask)
4778 continue;
4779
4780 unit_bits = (mech_infos[i].mi_keysize_unit ==
4781 CRYPTO_KEYSIZE_UNIT_IN_BYTES) ? 8 : 1;
4782 /* adjust min/max supported by framework */
4783 cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits;
4784 cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits;
4785
4786 if (cur_crypto_min < crypto_min)
4787 crypto_min = cur_crypto_min;
4788
4789 /*
4790 * CRYPTO_EFFECTIVELY_INFINITE is a special value of
4791 * the crypto framework which means "no upper limit".
4792 */
4793 if (mech_infos[i].mi_max_key_size ==
4794 CRYPTO_EFFECTIVELY_INFINITE) {
4795 crypto_max = (size_t)-1;
4796 } else if (cur_crypto_max > crypto_max) {
4797 crypto_max = cur_crypto_max;
4798 }
4799
4800 is_valid = B_TRUE;
4801 }
4802
4803 kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) *
4804 nmech_infos);
4805
4806 if (!is_valid) {
4807 /* no key sizes supported by framework */
4808 alg->alg_flags &= ~ALG_FLAG_VALID;
4809 return;
4810 }
4811
4812 /*
4813 * Determine min and max key sizes from alg_key_sizes[].
4814 * defined for the algorithm entry. Adjust key sizes based on
4815 * those supported by the framework.
4816 */
4817 alg->alg_ef_default_bits = alg->alg_key_sizes[0];
4818
4819 /*
4820 * For backwards compatability, assume that the IV length
4821 * is the same as the data length.
4822 */
4823 alg->alg_ivlen = alg->alg_datalen;
4824
4825 /*
4826 * Copy any algorithm parameters (if provided) into dedicated
4827 * elements in the ipsec_alginfo_t structure.
4828 * There may be a better place to put this code.
4829 */
4830 for (i = 0; i < alg->alg_nparams; i++) {
4831 switch (i) {
4832 case 0:
4833 /* Initialisation Vector length (bytes) */
4834 alg->alg_ivlen = alg->alg_params[0];
4835 break;
4836 case 1:
4837 /* Integrity Check Vector length (bytes) */
4838 alg->alg_icvlen = alg->alg_params[1];
4839 break;
4840 case 2:
4841 /* Salt length (bytes) */
4842 alg->alg_saltlen = (uint8_t)alg->alg_params[2];
4843 break;
4844 default:
4845 break;
4846 }
4847 }
4848
4849 /* Default if the IV length is not specified. */
4850 if (alg_type == IPSEC_ALG_ENCR && alg->alg_ivlen == 0)
4851 alg->alg_ivlen = alg->alg_datalen;
4852
4853 alg_flag_check(alg);
4854
4855 if (alg->alg_increment != 0) {
4856 /* supported key sizes are defined by range & increment */
4857 crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment);
4858 crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment);
4859
4860 alg->alg_ef_minbits = MAX(alg->alg_minbits,
4861 (uint16_t)crypto_min);
4862 alg->alg_ef_maxbits = MIN(alg->alg_maxbits,
4863 (uint16_t)crypto_max);
4864
4865 /*
4866 * If the sizes supported by the framework are outside
4867 * the range of sizes defined by the algorithm mappings,
4868 * the algorithm cannot be used. Check for this
4869 * condition here.
4870 */
4871 if (alg->alg_ef_minbits > alg->alg_ef_maxbits) {
4872 alg->alg_flags &= ~ALG_FLAG_VALID;
4873 return;
4874 }
4875 if (alg->alg_ef_default_bits < alg->alg_ef_minbits)
4876 alg->alg_ef_default_bits = alg->alg_ef_minbits;
4877 if (alg->alg_ef_default_bits > alg->alg_ef_maxbits)
4878 alg->alg_ef_default_bits = alg->alg_ef_maxbits;
4879 } else if (alg->alg_nkey_sizes == 0) {
4880 /* no specified key size for algorithm */
4881 alg->alg_ef_minbits = alg->alg_ef_maxbits = 0;
4882 } else {
4883 /* supported key sizes are defined by enumeration */
4884 alg->alg_ef_minbits = (uint16_t)-1;
4885 alg->alg_ef_maxbits = 0;
4886
4887 for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) {
4888 /*
4889 * Ignore the current key size if it is not in the
4890 * range of sizes supported by the framework.
4891 */
4892 if (alg->alg_key_sizes[i] < crypto_min ||
4893 alg->alg_key_sizes[i] > crypto_max)
4894 continue;
4895 if (alg->alg_key_sizes[i] < alg->alg_ef_minbits)
4896 alg->alg_ef_minbits = alg->alg_key_sizes[i];
4897 if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits)
4898 alg->alg_ef_maxbits = alg->alg_key_sizes[i];
4899 is_valid = B_TRUE;
4900 }
4901
4902 if (!is_valid) {
4903 alg->alg_flags &= ~ALG_FLAG_VALID;
4904 return;
4905 }
4906 alg->alg_ef_default = 0;
4907 }
4908 }
4909
4910 /*
4911 * Sanity check parameters provided by ipsecalgs(1m). Assume that
4912 * the algoritm is marked as valid, there is a check at the top
4913 * of this function. If any of the checks below fail, the algorithm
4914 * entry is invalid.
4915 */
4916 void
4917 alg_flag_check(ipsec_alginfo_t *alg)
4918 {
4919 alg->alg_flags &= ~ALG_FLAG_VALID;
4920
4921 /*
4922 * Can't have the algorithm marked as CCM and GCM.
4923 * Check the ALG_FLAG_COMBINED and ALG_FLAG_COUNTERMODE
4924 * flags are set for CCM & GCM.
4925 */
4926 if ((alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) ==
4927 (ALG_FLAG_CCM|ALG_FLAG_GCM))
4928 return;
4929 if (alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) {
4930 if (!(alg->alg_flags & ALG_FLAG_COUNTERMODE))
4931 return;
4932 if (!(alg->alg_flags & ALG_FLAG_COMBINED))
4933 return;
4934 }
4935
4936 /*
4937 * For ALG_FLAG_COUNTERMODE, check the parameters
4938 * fit in the ipsec_nonce_t structure.
4939 */
4940 if (alg->alg_flags & ALG_FLAG_COUNTERMODE) {
4941 if (alg->alg_ivlen != sizeof (((ipsec_nonce_t *)NULL)->iv))
4942 return;
4943 if (alg->alg_saltlen > sizeof (((ipsec_nonce_t *)NULL)->salt))
4944 return;
4945 }
4946 if ((alg->alg_flags & ALG_FLAG_COMBINED) &&
4947 (alg->alg_icvlen == 0))
4948 return;
4949
4950 /* all is well. */
4951 alg->alg_flags |= ALG_FLAG_VALID;
4952 }
4953
4954 /*
4955 * Free the memory used by the specified algorithm.
4956 */
4957 void
4958 ipsec_alg_free(ipsec_alginfo_t *alg)
4959 {
4960 if (alg == NULL)
4961 return;
4962
4963 if (alg->alg_key_sizes != NULL) {
4964 kmem_free(alg->alg_key_sizes,
4965 (alg->alg_nkey_sizes + 1) * sizeof (uint16_t));
4966 alg->alg_key_sizes = NULL;
4967 }
4968 if (alg->alg_block_sizes != NULL) {
4969 kmem_free(alg->alg_block_sizes,
4970 (alg->alg_nblock_sizes + 1) * sizeof (uint16_t));
4971 alg->alg_block_sizes = NULL;
4972 }
4973 if (alg->alg_params != NULL) {
4974 kmem_free(alg->alg_params,
4975 (alg->alg_nparams + 1) * sizeof (uint16_t));
4976 alg->alg_params = NULL;
4977 }
4978 kmem_free(alg, sizeof (*alg));
4979 }
4980
4981 /*
4982 * Check the validity of the specified key size for an algorithm.
4983 * Returns B_TRUE if key size is valid, B_FALSE otherwise.
4984 */
4985 boolean_t
4986 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg)
4987 {
4988 if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits)
4989 return (B_FALSE);
4990
4991 if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) {
4992 /*
4993 * If the key sizes are defined by enumeration, the new
4994 * key size must be equal to one of the supported values.
4995 */
4996 int i;
4997
4998 for (i = 0; i < alg->alg_nkey_sizes; i++)
4999 if (key_size == alg->alg_key_sizes[i])
5000 break;
5001 if (i == alg->alg_nkey_sizes)
5002 return (B_FALSE);
5003 }
5004
5005 return (B_TRUE);
5006 }
5007
5008 /*
5009 * Callback function invoked by the crypto framework when a provider
5010 * registers or unregisters. This callback updates the algorithms
5011 * tables when a crypto algorithm is no longer available or becomes
5012 * available, and triggers the freeing/creation of context templates
5013 * associated with existing SAs, if needed.
5014 *
5015 * Need to walk all stack instances since the callback is global
5016 * for all instances
5017 */
5018 void
5019 ipsec_prov_update_callback(uint32_t event, void *event_arg)
5020 {
5021 netstack_handle_t nh;
5022 netstack_t *ns;
5023
5024 netstack_next_init(&nh);
5025 while ((ns = netstack_next(&nh)) != NULL) {
5026 ipsec_prov_update_callback_stack(event, event_arg, ns);
5027 netstack_rele(ns);
5028 }
5029 netstack_next_fini(&nh);
5030 }
5031
5032 static void
5033 ipsec_prov_update_callback_stack(uint32_t event, void *event_arg,
5034 netstack_t *ns)
5035 {
5036 crypto_notify_event_change_t *prov_change =
5037 (crypto_notify_event_change_t *)event_arg;
5038 uint_t algidx, algid, algtype, mech_count, mech_idx;
5039 ipsec_alginfo_t *alg;
5040 ipsec_alginfo_t oalg;
5041 crypto_mech_name_t *mechs;
5042 boolean_t alg_changed = B_FALSE;
5043 ipsec_stack_t *ipss = ns->netstack_ipsec;
5044
5045 /* ignore events for which we didn't register */
5046 if (event != CRYPTO_EVENT_MECHS_CHANGED) {
5047 ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x "
5048 " received from crypto framework\n", event));
5049 return;
5050 }
5051
5052 mechs = crypto_get_mech_list(&mech_count, KM_SLEEP);
5053 if (mechs == NULL)
5054 return;
5055
5056 /*
5057 * Walk the list of currently defined IPsec algorithm. Update
5058 * the algorithm valid flag and trigger an update of the
5059 * SAs that depend on that algorithm.
5060 */
5061 rw_enter(&ipss->ipsec_alg_lock, RW_WRITER);
5062 for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
5063 for (algidx = 0; algidx < ipss->ipsec_nalgs[algtype];
5064 algidx++) {
5065
5066 algid = ipss->ipsec_sortlist[algtype][algidx];
5067 alg = ipss->ipsec_alglists[algtype][algid];
5068 ASSERT(alg != NULL);
5069
5070 /*
5071 * Skip the algorithms which do not map to the
5072 * crypto framework provider being added or removed.
5073 */
5074 if (strncmp(alg->alg_mech_name,
5075 prov_change->ec_mech_name,
5076 CRYPTO_MAX_MECH_NAME) != 0)
5077 continue;
5078
5079 /*
5080 * Determine if the mechanism is valid. If it
5081 * is not, mark the algorithm as being invalid. If
5082 * it is, mark the algorithm as being valid.
5083 */
5084 for (mech_idx = 0; mech_idx < mech_count; mech_idx++)
5085 if (strncmp(alg->alg_mech_name,
5086 mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0)
5087 break;
5088 if (mech_idx == mech_count &&
5089 alg->alg_flags & ALG_FLAG_VALID) {
5090 alg->alg_flags &= ~ALG_FLAG_VALID;
5091 alg_changed = B_TRUE;
5092 } else if (mech_idx < mech_count &&
5093 !(alg->alg_flags & ALG_FLAG_VALID)) {
5094 alg->alg_flags |= ALG_FLAG_VALID;
5095 alg_changed = B_TRUE;
5096 }
5097
5098 /*
5099 * Update the supported key sizes, regardless
5100 * of whether a crypto provider was added or
5101 * removed.
5102 */
5103 oalg = *alg;
5104 ipsec_alg_fix_min_max(alg, algtype, ns);
5105 if (!alg_changed &&
5106 alg->alg_ef_minbits != oalg.alg_ef_minbits ||
5107 alg->alg_ef_maxbits != oalg.alg_ef_maxbits ||
5108 alg->alg_ef_default != oalg.alg_ef_default ||
5109 alg->alg_ef_default_bits !=
5110 oalg.alg_ef_default_bits)
5111 alg_changed = B_TRUE;
5112
5113 /*
5114 * Update the affected SAs if a software provider is
5115 * being added or removed.
5116 */
5117 if (prov_change->ec_provider_type ==
5118 CRYPTO_SW_PROVIDER)
5119 sadb_alg_update(algtype, alg->alg_id,
5120 prov_change->ec_change ==
5121 CRYPTO_MECH_ADDED, ns);
5122 }
5123 }
5124 rw_exit(&ipss->ipsec_alg_lock);
5125 crypto_free_mech_list(mechs, mech_count);
5126
5127 if (alg_changed) {
5128 /*
5129 * An algorithm has changed, i.e. it became valid or
5130 * invalid, or its support key sizes have changed.
5131 * Notify ipsecah and ipsecesp of this change so
5132 * that they can send a SADB_REGISTER to their consumers.
5133 */
5134 ipsecah_algs_changed(ns);
5135 ipsecesp_algs_changed(ns);
5136 }
5137 }
5138
5139 /*
5140 * Registers with the crypto framework to be notified of crypto
5141 * providers changes. Used to update the algorithm tables and
5142 * to free or create context templates if needed. Invoked after IPsec
5143 * is loaded successfully.
5144 *
5145 * This is called separately for each IP instance, so we ensure we only
5146 * register once.
5147 */
5148 void
5149 ipsec_register_prov_update(void)
5150 {
5151 if (prov_update_handle != NULL)
5152 return;
5153
5154 prov_update_handle = crypto_notify_events(
5155 ipsec_prov_update_callback, CRYPTO_EVENT_MECHS_CHANGED);
5156 }
5157
5158 /*
5159 * Unregisters from the framework to be notified of crypto providers
5160 * changes. Called from ipsec_policy_g_destroy().
5161 */
5162 static void
5163 ipsec_unregister_prov_update(void)
5164 {
5165 if (prov_update_handle != NULL)
5166 crypto_unnotify_events(prov_update_handle);
5167 }
5168
5169 /*
5170 * Tunnel-mode support routines.
5171 */
5172
5173 /*
5174 * Returns an mblk chain suitable for putnext() if policies match and IPsec
5175 * SAs are available. If there's no per-tunnel policy, or a match comes back
5176 * with no match, then still return the packet and have global policy take
5177 * a crack at it in IP.
5178 * This updates the ip_xmit_attr with the IPsec policy.
5179 *
5180 * Remember -> we can be forwarding packets. Keep that in mind w.r.t.
5181 * inner-packet contents.
5182 */
5183 mblk_t *
5184 ipsec_tun_outbound(mblk_t *mp, iptun_t *iptun, ipha_t *inner_ipv4,
5185 ip6_t *inner_ipv6, ipha_t *outer_ipv4, ip6_t *outer_ipv6, int outer_hdr_len,
5186 ip_xmit_attr_t *ixa)
5187 {
5188 ipsec_policy_head_t *polhead;
5189 ipsec_selector_t sel;
5190 mblk_t *nmp;
5191 boolean_t is_fragment;
5192 ipsec_policy_t *pol;
5193 ipsec_tun_pol_t *itp = iptun->iptun_itp;
5194 netstack_t *ns = iptun->iptun_ns;
5195 ipsec_stack_t *ipss = ns->netstack_ipsec;
5196
5197 ASSERT(outer_ipv6 != NULL && outer_ipv4 == NULL ||
5198 outer_ipv4 != NULL && outer_ipv6 == NULL);
5199 /* We take care of inners in a bit. */
5200
5201 /* Are the IPsec fields initialized at all? */
5202 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) {
5203 ASSERT(ixa->ixa_ipsec_policy == NULL);
5204 ASSERT(ixa->ixa_ipsec_latch == NULL);
5205 ASSERT(ixa->ixa_ipsec_action == NULL);
5206 ASSERT(ixa->ixa_ipsec_ah_sa == NULL);
5207 ASSERT(ixa->ixa_ipsec_esp_sa == NULL);
5208 }
5209
5210 ASSERT(itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE));
5211 polhead = itp->itp_policy;
5212
5213 bzero(&sel, sizeof (sel));
5214 if (inner_ipv4 != NULL) {
5215 ASSERT(inner_ipv6 == NULL);
5216 sel.ips_isv4 = B_TRUE;
5217 sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5218 sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5219 sel.ips_protocol = (uint8_t)inner_ipv4->ipha_protocol;
5220 } else {
5221 ASSERT(inner_ipv6 != NULL);
5222 sel.ips_isv4 = B_FALSE;
5223 sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5224 /*
5225 * We don't care about routing-header dests in the
5226 * forwarding/tunnel path, so just grab ip6_dst.
5227 */
5228 sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5229 }
5230
5231 if (itp->itp_flags & ITPF_P_PER_PORT_SECURITY) {
5232 /*
5233 * Caller can prepend the outer header, which means
5234 * inner_ipv[46] may be stuck in the middle. Pullup the whole
5235 * mess now if need-be, for easier processing later. Don't
5236 * forget to rewire the outer header too.
5237 */
5238 if (mp->b_cont != NULL) {
5239 nmp = msgpullup(mp, -1);
5240 if (nmp == NULL) {
5241 ip_drop_packet(mp, B_FALSE, NULL,
5242 DROPPER(ipss, ipds_spd_nomem),
5243 &ipss->ipsec_spd_dropper);
5244 return (NULL);
5245 }
5246 freemsg(mp);
5247 mp = nmp;
5248 if (outer_ipv4 != NULL)
5249 outer_ipv4 = (ipha_t *)mp->b_rptr;
5250 else
5251 outer_ipv6 = (ip6_t *)mp->b_rptr;
5252 if (inner_ipv4 != NULL) {
5253 inner_ipv4 =
5254 (ipha_t *)(mp->b_rptr + outer_hdr_len);
5255 } else {
5256 inner_ipv6 =
5257 (ip6_t *)(mp->b_rptr + outer_hdr_len);
5258 }
5259 }
5260 if (inner_ipv4 != NULL) {
5261 is_fragment = IS_V4_FRAGMENT(
5262 inner_ipv4->ipha_fragment_offset_and_flags);
5263 } else {
5264 sel.ips_remote_addr_v6 = ip_get_dst_v6(inner_ipv6, mp,
5265 &is_fragment);
5266 }
5267
5268 if (is_fragment) {
5269 ipha_t *oiph;
5270 ipha_t *iph = NULL;
5271 ip6_t *ip6h = NULL;
5272 int hdr_len;
5273 uint16_t ip6_hdr_length;
5274 uint8_t v6_proto;
5275 uint8_t *v6_proto_p;
5276
5277 /*
5278 * We have a fragment we need to track!
5279 */
5280 mp = ipsec_fragcache_add(&itp->itp_fragcache, NULL, mp,
5281 outer_hdr_len, ipss);
5282 if (mp == NULL)
5283 return (NULL);
5284 ASSERT(mp->b_cont == NULL);
5285
5286 /*
5287 * If we get here, we have a full fragment chain
5288 */
5289
5290 oiph = (ipha_t *)mp->b_rptr;
5291 if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
5292 hdr_len = ((outer_hdr_len != 0) ?
5293 IPH_HDR_LENGTH(oiph) : 0);
5294 iph = (ipha_t *)(mp->b_rptr + hdr_len);
5295 } else {
5296 ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
5297 ip6h = (ip6_t *)mp->b_rptr;
5298 if (!ip_hdr_length_nexthdr_v6(mp, ip6h,
5299 &ip6_hdr_length, &v6_proto_p)) {
5300 ip_drop_packet_chain(mp, B_FALSE, NULL,
5301 DROPPER(ipss,
5302 ipds_spd_malformed_packet),
5303 &ipss->ipsec_spd_dropper);
5304 return (NULL);
5305 }
5306 hdr_len = ip6_hdr_length;
5307 }
5308 outer_hdr_len = hdr_len;
5309
5310 if (sel.ips_isv4) {
5311 if (iph == NULL) {
5312 /* Was v6 outer */
5313 iph = (ipha_t *)(mp->b_rptr + hdr_len);
5314 }
5315 inner_ipv4 = iph;
5316 sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5317 sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5318 sel.ips_protocol =
5319 (uint8_t)inner_ipv4->ipha_protocol;
5320 } else {
5321 inner_ipv6 = (ip6_t *)(mp->b_rptr +
5322 hdr_len);
5323 sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5324 sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5325 if (!ip_hdr_length_nexthdr_v6(mp,
5326 inner_ipv6, &ip6_hdr_length, &v6_proto_p)) {
5327 ip_drop_packet_chain(mp, B_FALSE, NULL,
5328 DROPPER(ipss,
5329 ipds_spd_malformed_frag),
5330 &ipss->ipsec_spd_dropper);
5331 return (NULL);
5332 }
5333 v6_proto = *v6_proto_p;
5334 sel.ips_protocol = v6_proto;
5335 #ifdef FRAGCACHE_DEBUG
5336 cmn_err(CE_WARN, "v6_sel.ips_protocol = %d\n",
5337 sel.ips_protocol);
5338 #endif
5339 }
5340 /* Ports are extracted below */
5341 }
5342
5343 /* Get ports... */
5344 if (!ipsec_init_outbound_ports(&sel, mp,
5345 inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) {
5346 /* callee did ip_drop_packet_chain() on mp. */
5347 return (NULL);
5348 }
5349 #ifdef FRAGCACHE_DEBUG
5350 if (inner_ipv4 != NULL)
5351 cmn_err(CE_WARN,
5352 "(v4) sel.ips_protocol = %d, "
5353 "sel.ips_local_port = %d, "
5354 "sel.ips_remote_port = %d\n",
5355 sel.ips_protocol, ntohs(sel.ips_local_port),
5356 ntohs(sel.ips_remote_port));
5357 if (inner_ipv6 != NULL)
5358 cmn_err(CE_WARN,
5359 "(v6) sel.ips_protocol = %d, "
5360 "sel.ips_local_port = %d, "
5361 "sel.ips_remote_port = %d\n",
5362 sel.ips_protocol, ntohs(sel.ips_local_port),
5363 ntohs(sel.ips_remote_port));
5364 #endif
5365 /* Success so far! */
5366 }
5367 rw_enter(&polhead->iph_lock, RW_READER);
5368 pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_OUTBOUND, &sel);
5369 rw_exit(&polhead->iph_lock);
5370 if (pol == NULL) {
5371 /*
5372 * No matching policy on this tunnel, drop the packet.
5373 *
5374 * NOTE: Tunnel-mode tunnels are different from the
5375 * IP global transport mode policy head. For a tunnel-mode
5376 * tunnel, we drop the packet in lieu of passing it
5377 * along accepted the way a global-policy miss would.
5378 *
5379 * NOTE2: "negotiate transport" tunnels should match ALL
5380 * inbound packets, but we do not uncomment the ASSERT()
5381 * below because if/when we open PF_POLICY, a user can
5382 * shoot him/her-self in the foot with a 0 priority.
5383 */
5384
5385 /* ASSERT(itp->itp_flags & ITPF_P_TUNNEL); */
5386 #ifdef FRAGCACHE_DEBUG
5387 cmn_err(CE_WARN, "ipsec_tun_outbound(): No matching tunnel "
5388 "per-port policy\n");
5389 #endif
5390 ip_drop_packet_chain(mp, B_FALSE, NULL,
5391 DROPPER(ipss, ipds_spd_explicit),
5392 &ipss->ipsec_spd_dropper);
5393 return (NULL);
5394 }
5395
5396 #ifdef FRAGCACHE_DEBUG
5397 cmn_err(CE_WARN, "Having matching tunnel per-port policy\n");
5398 #endif
5399
5400 /*
5401 * NOTE: ixa_cleanup() function will release pol references.
5402 */
5403 ixa->ixa_ipsec_policy = pol;
5404 /*
5405 * NOTE: There is a subtle difference between iptun_zoneid and
5406 * iptun_connp->conn_zoneid explained in iptun_conn_create(). When
5407 * interacting with the ip module, we must use conn_zoneid.
5408 */
5409 ixa->ixa_zoneid = iptun->iptun_connp->conn_zoneid;
5410
5411 ASSERT((outer_ipv4 != NULL) ? (ixa->ixa_flags & IXAF_IS_IPV4) :
5412 !(ixa->ixa_flags & IXAF_IS_IPV4));
5413 ASSERT(ixa->ixa_ipsec_policy != NULL);
5414 ixa->ixa_flags |= IXAF_IPSEC_SECURE;
5415
5416 if (!(itp->itp_flags & ITPF_P_TUNNEL)) {
5417 /* Set up transport mode for tunnelled packets. */
5418 ixa->ixa_ipsec_proto = (inner_ipv4 != NULL) ? IPPROTO_ENCAP :
5419 IPPROTO_IPV6;
5420 return (mp);
5421 }
5422
5423 /* Fill in tunnel-mode goodies here. */
5424 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
5425 /* XXX Do I need to fill in all of the goodies here? */
5426 if (inner_ipv4) {
5427 ixa->ixa_ipsec_inaf = AF_INET;
5428 ixa->ixa_ipsec_insrc[0] =
5429 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v4;
5430 ixa->ixa_ipsec_indst[0] =
5431 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v4;
5432 } else {
5433 ixa->ixa_ipsec_inaf = AF_INET6;
5434 ixa->ixa_ipsec_insrc[0] =
5435 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[0];
5436 ixa->ixa_ipsec_insrc[1] =
5437 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[1];
5438 ixa->ixa_ipsec_insrc[2] =
5439 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[2];
5440 ixa->ixa_ipsec_insrc[3] =
5441 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[3];
5442 ixa->ixa_ipsec_indst[0] =
5443 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[0];
5444 ixa->ixa_ipsec_indst[1] =
5445 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[1];
5446 ixa->ixa_ipsec_indst[2] =
5447 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[2];
5448 ixa->ixa_ipsec_indst[3] =
5449 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[3];
5450 }
5451 ixa->ixa_ipsec_insrcpfx = pol->ipsp_sel->ipsl_key.ipsl_local_pfxlen;
5452 ixa->ixa_ipsec_indstpfx = pol->ipsp_sel->ipsl_key.ipsl_remote_pfxlen;
5453 /* NOTE: These are used for transport mode too. */
5454 ixa->ixa_ipsec_src_port = pol->ipsp_sel->ipsl_key.ipsl_lport;
5455 ixa->ixa_ipsec_dst_port = pol->ipsp_sel->ipsl_key.ipsl_rport;
5456 ixa->ixa_ipsec_proto = pol->ipsp_sel->ipsl_key.ipsl_proto;
5457
5458 return (mp);
5459 }
5460
5461 /*
5462 * NOTE: The following releases pol's reference and
5463 * calls ip_drop_packet() for me on NULL returns.
5464 */
5465 mblk_t *
5466 ipsec_check_ipsecin_policy_reasm(mblk_t *attr_mp, ipsec_policy_t *pol,
5467 ipha_t *inner_ipv4, ip6_t *inner_ipv6, uint64_t pkt_unique, netstack_t *ns)
5468 {
5469 /* Assume attr_mp is a chain of b_next-linked ip_recv_attr mblk. */
5470 mblk_t *data_chain = NULL, *data_tail = NULL;
5471 mblk_t *next;
5472 mblk_t *data_mp;
5473 ip_recv_attr_t iras;
5474
5475 while (attr_mp != NULL) {
5476 ASSERT(ip_recv_attr_is_mblk(attr_mp));
5477 next = attr_mp->b_next;
5478 attr_mp->b_next = NULL; /* No tripping asserts. */
5479
5480 data_mp = attr_mp->b_cont;
5481 attr_mp->b_cont = NULL;
5482 if (!ip_recv_attr_from_mblk(attr_mp, &iras)) {
5483 /* The ill or ip_stack_t disappeared on us */
5484 freemsg(data_mp); /* ip_drop_packet?? */
5485 ira_cleanup(&iras, B_TRUE);
5486 goto fail;
5487 }
5488
5489 /*
5490 * Need IPPOL_REFHOLD(pol) for extras because
5491 * ipsecin_policy does the refrele.
5492 */
5493 IPPOL_REFHOLD(pol);
5494
5495 data_mp = ipsec_check_ipsecin_policy(data_mp, pol, inner_ipv4,
5496 inner_ipv6, pkt_unique, &iras, ns);
5497 ira_cleanup(&iras, B_TRUE);
5498
5499 if (data_mp == NULL)
5500 goto fail;
5501
5502 if (data_tail == NULL) {
5503 /* First one */
5504 data_chain = data_tail = data_mp;
5505 } else {
5506 data_tail->b_next = data_mp;
5507 data_tail = data_mp;
5508 }
5509 attr_mp = next;
5510 }
5511 /*
5512 * One last release because either the loop bumped it up, or we never
5513 * called ipsec_check_ipsecin_policy().
5514 */
5515 IPPOL_REFRELE(pol);
5516
5517 /* data_chain is ready for return to tun module. */
5518 return (data_chain);
5519
5520 fail:
5521 /*
5522 * Need to get rid of any extra pol
5523 * references, and any remaining bits as well.
5524 */
5525 IPPOL_REFRELE(pol);
5526 ipsec_freemsg_chain(data_chain);
5527 ipsec_freemsg_chain(next); /* ipdrop stats? */
5528 return (NULL);
5529 }
5530
5531 /*
5532 * Return a message if the inbound packet passed an IPsec policy check. Returns
5533 * NULL if it failed or if it is a fragment needing its friends before a
5534 * policy check can be performed.
5535 *
5536 * Expects a non-NULL data_mp, and a non-NULL polhead.
5537 * The returned mblk may be a b_next chain of packets if fragments
5538 * neeeded to be collected for a proper policy check.
5539 *
5540 * This function calls ip_drop_packet() on data_mp if need be.
5541 *
5542 * NOTE: outer_hdr_len is signed. If it's a negative value, the caller
5543 * is inspecting an ICMP packet.
5544 */
5545 mblk_t *
5546 ipsec_tun_inbound(ip_recv_attr_t *ira, mblk_t *data_mp, ipsec_tun_pol_t *itp,
5547 ipha_t *inner_ipv4, ip6_t *inner_ipv6, ipha_t *outer_ipv4,
5548 ip6_t *outer_ipv6, int outer_hdr_len, netstack_t *ns)
5549 {
5550 ipsec_policy_head_t *polhead;
5551 ipsec_selector_t sel;
5552 ipsec_policy_t *pol;
5553 uint16_t tmpport;
5554 selret_t rc;
5555 boolean_t port_policy_present, is_icmp, global_present;
5556 in6_addr_t tmpaddr;
5557 ipaddr_t tmp4;
5558 uint8_t flags, *inner_hdr;
5559 ipsec_stack_t *ipss = ns->netstack_ipsec;
5560
5561 sel.ips_is_icmp_inv_acq = 0;
5562
5563 if (outer_ipv4 != NULL) {
5564 ASSERT(outer_ipv6 == NULL);
5565 global_present = ipss->ipsec_inbound_v4_policy_present;
5566 } else {
5567 ASSERT(outer_ipv6 != NULL);
5568 global_present = ipss->ipsec_inbound_v6_policy_present;
5569 }
5570
5571 ASSERT(inner_ipv4 != NULL && inner_ipv6 == NULL ||
5572 inner_ipv4 == NULL && inner_ipv6 != NULL);
5573
5574 if (outer_hdr_len < 0) {
5575 outer_hdr_len = (-outer_hdr_len);
5576 is_icmp = B_TRUE;
5577 } else {
5578 is_icmp = B_FALSE;
5579 }
5580
5581 if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) {
5582 mblk_t *mp = data_mp;
5583
5584 polhead = itp->itp_policy;
5585 /*
5586 * We need to perform full Tunnel-Mode enforcement,
5587 * and we need to have inner-header data for such enforcement.
5588 *
5589 * See ipsec_init_inbound_sel() for the 0x80000000 on inbound
5590 * and on return.
5591 */
5592
5593 port_policy_present = ((itp->itp_flags &
5594 ITPF_P_PER_PORT_SECURITY) ? B_TRUE : B_FALSE);
5595 /*
5596 * NOTE: Even if our policy is transport mode, set the
5597 * SEL_TUNNEL_MODE flag so ipsec_init_inbound_sel() can
5598 * do the right thing w.r.t. outer headers.
5599 */
5600 flags = ((port_policy_present ? SEL_PORT_POLICY : SEL_NONE) |
5601 (is_icmp ? SEL_IS_ICMP : SEL_NONE) | SEL_TUNNEL_MODE);
5602
5603 rc = ipsec_init_inbound_sel(&sel, data_mp, inner_ipv4,
5604 inner_ipv6, flags);
5605
5606 switch (rc) {
5607 case SELRET_NOMEM:
5608 ip_drop_packet(data_mp, B_TRUE, NULL,
5609 DROPPER(ipss, ipds_spd_nomem),
5610 &ipss->ipsec_spd_dropper);
5611 return (NULL);
5612 case SELRET_TUNFRAG:
5613 /*
5614 * At this point, if we're cleartext, we don't want
5615 * to go there.
5616 */
5617 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
5618 ip_drop_packet(data_mp, B_TRUE, NULL,
5619 DROPPER(ipss, ipds_spd_got_clear),
5620 &ipss->ipsec_spd_dropper);
5621 return (NULL);
5622 }
5623
5624 /*
5625 * Inner and outer headers may not be contiguous.
5626 * Pullup the data_mp now to satisfy assumptions of
5627 * ipsec_fragcache_add()
5628 */
5629 if (data_mp->b_cont != NULL) {
5630 mblk_t *nmp;
5631
5632 nmp = msgpullup(data_mp, -1);
5633 if (nmp == NULL) {
5634 ip_drop_packet(data_mp, B_TRUE, NULL,
5635 DROPPER(ipss, ipds_spd_nomem),
5636 &ipss->ipsec_spd_dropper);
5637 return (NULL);
5638 }
5639 freemsg(data_mp);
5640 data_mp = nmp;
5641 if (outer_ipv4 != NULL)
5642 outer_ipv4 =
5643 (ipha_t *)data_mp->b_rptr;
5644 else
5645 outer_ipv6 =
5646 (ip6_t *)data_mp->b_rptr;
5647 if (inner_ipv4 != NULL) {
5648 inner_ipv4 =
5649 (ipha_t *)(data_mp->b_rptr +
5650 outer_hdr_len);
5651 } else {
5652 inner_ipv6 =
5653 (ip6_t *)(data_mp->b_rptr +
5654 outer_hdr_len);
5655 }
5656 }
5657
5658 /*
5659 * If we need to queue the packet. First we
5660 * get an mblk with the attributes. ipsec_fragcache_add
5661 * will prepend that to the queued data and return
5662 * a list of b_next messages each of which starts with
5663 * the attribute mblk.
5664 */
5665 mp = ip_recv_attr_to_mblk(ira);
5666 if (mp == NULL) {
5667 ip_drop_packet(data_mp, B_TRUE, NULL,
5668 DROPPER(ipss, ipds_spd_nomem),
5669 &ipss->ipsec_spd_dropper);
5670 return (NULL);
5671 }
5672
5673 mp = ipsec_fragcache_add(&itp->itp_fragcache,
5674 mp, data_mp, outer_hdr_len, ipss);
5675
5676 if (mp == NULL) {
5677 /*
5678 * Data is cached, fragment chain is not
5679 * complete.
5680 */
5681 return (NULL);
5682 }
5683
5684 /*
5685 * If we get here, we have a full fragment chain.
5686 * Reacquire headers and selectors from first fragment.
5687 */
5688 ASSERT(ip_recv_attr_is_mblk(mp));
5689 data_mp = mp->b_cont;
5690 inner_hdr = data_mp->b_rptr;
5691 if (outer_ipv4 != NULL) {
5692 inner_hdr += IPH_HDR_LENGTH(
5693 (ipha_t *)data_mp->b_rptr);
5694 } else {
5695 inner_hdr += ip_hdr_length_v6(data_mp,
5696 (ip6_t *)data_mp->b_rptr);
5697 }
5698 ASSERT(inner_hdr <= data_mp->b_wptr);
5699
5700 if (inner_ipv4 != NULL) {
5701 inner_ipv4 = (ipha_t *)inner_hdr;
5702 inner_ipv6 = NULL;
5703 } else {
5704 inner_ipv6 = (ip6_t *)inner_hdr;
5705 inner_ipv4 = NULL;
5706 }
5707
5708 /*
5709 * Use SEL_TUNNEL_MODE to take into account the outer
5710 * header. Use SEL_POST_FRAG so we always get ports.
5711 */
5712 rc = ipsec_init_inbound_sel(&sel, data_mp,
5713 inner_ipv4, inner_ipv6,
5714 SEL_TUNNEL_MODE | SEL_POST_FRAG);
5715 switch (rc) {
5716 case SELRET_SUCCESS:
5717 /*
5718 * Get to same place as first caller's
5719 * SELRET_SUCCESS case.
5720 */
5721 break;
5722 case SELRET_NOMEM:
5723 ip_drop_packet_chain(mp, B_TRUE, NULL,
5724 DROPPER(ipss, ipds_spd_nomem),
5725 &ipss->ipsec_spd_dropper);
5726 return (NULL);
5727 case SELRET_BADPKT:
5728 ip_drop_packet_chain(mp, B_TRUE, NULL,
5729 DROPPER(ipss, ipds_spd_malformed_frag),
5730 &ipss->ipsec_spd_dropper);
5731 return (NULL);
5732 case SELRET_TUNFRAG:
5733 cmn_err(CE_WARN, "(TUNFRAG on 2nd call...)");
5734 /* FALLTHRU */
5735 default:
5736 cmn_err(CE_WARN, "ipsec_init_inbound_sel(mark2)"
5737 " returns bizarro 0x%x", rc);
5738 /* Guaranteed panic! */
5739 ASSERT(rc == SELRET_NOMEM);
5740 return (NULL);
5741 }
5742 /* FALLTHRU */
5743 case SELRET_SUCCESS:
5744 /*
5745 * Common case:
5746 * No per-port policy or a non-fragment. Keep going.
5747 */
5748 break;
5749 case SELRET_BADPKT:
5750 /*
5751 * We may receive ICMP (with IPv6 inner) packets that
5752 * trigger this return value. Send 'em in for
5753 * enforcement checking.
5754 */
5755 cmn_err(CE_NOTE, "ipsec_tun_inbound(): "
5756 "sending 'bad packet' in for enforcement");
5757 break;
5758 default:
5759 cmn_err(CE_WARN,
5760 "ipsec_init_inbound_sel() returns bizarro 0x%x",
5761 rc);
5762 ASSERT(rc == SELRET_NOMEM); /* Guaranteed panic! */
5763 return (NULL);
5764 }
5765
5766 if (is_icmp) {
5767 /*
5768 * Swap local/remote because this is an ICMP packet.
5769 */
5770 tmpaddr = sel.ips_local_addr_v6;
5771 sel.ips_local_addr_v6 = sel.ips_remote_addr_v6;
5772 sel.ips_remote_addr_v6 = tmpaddr;
5773 tmpport = sel.ips_local_port;
5774 sel.ips_local_port = sel.ips_remote_port;
5775 sel.ips_remote_port = tmpport;
5776 }
5777
5778 /* find_policy_head() */
5779 rw_enter(&polhead->iph_lock, RW_READER);
5780 pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND,
5781 &sel);
5782 rw_exit(&polhead->iph_lock);
5783 if (pol != NULL) {
5784 uint64_t pkt_unique;
5785
5786 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
5787 if (!pol->ipsp_act->ipa_allow_clear) {
5788 /*
5789 * XXX should never get here with
5790 * tunnel reassembled fragments?
5791 */
5792 ASSERT(mp == data_mp);
5793 ip_drop_packet(data_mp, B_TRUE, NULL,
5794 DROPPER(ipss, ipds_spd_got_clear),
5795 &ipss->ipsec_spd_dropper);
5796 IPPOL_REFRELE(pol);
5797 return (NULL);
5798 } else {
5799 IPPOL_REFRELE(pol);
5800 return (mp);
5801 }
5802 }
5803 pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
5804 sel.ips_local_port,
5805 (inner_ipv4 == NULL) ? IPPROTO_IPV6 :
5806 IPPROTO_ENCAP, sel.ips_protocol);
5807
5808 /*
5809 * NOTE: The following releases pol's reference and
5810 * calls ip_drop_packet() for me on NULL returns.
5811 *
5812 * "sel" is still good here, so let's use it!
5813 */
5814 if (data_mp == mp) {
5815 /* A single packet without attributes */
5816 data_mp = ipsec_check_ipsecin_policy(data_mp,
5817 pol, inner_ipv4, inner_ipv6, pkt_unique,
5818 ira, ns);
5819 } else {
5820 /*
5821 * We pass in the b_next chain of attr_mp's
5822 * and get back a b_next chain of data_mp's.
5823 */
5824 data_mp = ipsec_check_ipsecin_policy_reasm(mp,
5825 pol, inner_ipv4, inner_ipv6, pkt_unique,
5826 ns);
5827 }
5828 return (data_mp);
5829 }
5830
5831 /*
5832 * Else fallthru and check the global policy on the outer
5833 * header(s) if this tunnel is an old-style transport-mode
5834 * one. Drop the packet explicitly (no policy entry) for
5835 * a new-style tunnel-mode tunnel.
5836 */
5837 if ((itp->itp_flags & ITPF_P_TUNNEL) && !is_icmp) {
5838 ip_drop_packet_chain(data_mp, B_TRUE, NULL,
5839 DROPPER(ipss, ipds_spd_explicit),
5840 &ipss->ipsec_spd_dropper);
5841 return (NULL);
5842 }
5843 }
5844
5845 /*
5846 * NOTE: If we reach here, we will not have packet chains from
5847 * fragcache_add(), because the only way I get chains is on a
5848 * tunnel-mode tunnel, which either returns with a pass, or gets
5849 * hit by the ip_drop_packet_chain() call right above here.
5850 */
5851 ASSERT(data_mp->b_next == NULL);
5852
5853 /* If no per-tunnel security, check global policy now. */
5854 if ((ira->ira_flags & IRAF_IPSEC_SECURE) && !global_present) {
5855 if (ira->ira_flags & IRAF_TRUSTED_ICMP) {
5856 /*
5857 * This is an ICMP message that was geenrated locally.
5858 * We should accept it.
5859 */
5860 return (data_mp);
5861 }
5862
5863 ip_drop_packet(data_mp, B_TRUE, NULL,
5864 DROPPER(ipss, ipds_spd_got_secure),
5865 &ipss->ipsec_spd_dropper);
5866 return (NULL);
5867 }
5868
5869 if (is_icmp) {
5870 /*
5871 * For ICMP packets, "outer_ipvN" is set to the outer header
5872 * that is *INSIDE* the ICMP payload. For global policy
5873 * checking, we need to reverse src/dst on the payload in
5874 * order to construct selectors appropriately. See "ripha"
5875 * constructions in ip.c. To avoid a bug like 6478464 (see
5876 * earlier in this file), we will actually exchange src/dst
5877 * in the packet, and reverse if after the call to
5878 * ipsec_check_global_policy().
5879 */
5880 if (outer_ipv4 != NULL) {
5881 tmp4 = outer_ipv4->ipha_src;
5882 outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
5883 outer_ipv4->ipha_dst = tmp4;
5884 } else {
5885 ASSERT(outer_ipv6 != NULL);
5886 tmpaddr = outer_ipv6->ip6_src;
5887 outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
5888 outer_ipv6->ip6_dst = tmpaddr;
5889 }
5890 }
5891
5892 data_mp = ipsec_check_global_policy(data_mp, NULL, outer_ipv4,
5893 outer_ipv6, ira, ns);
5894 if (data_mp == NULL)
5895 return (NULL);
5896
5897 if (is_icmp) {
5898 /* Set things back to normal. */
5899 if (outer_ipv4 != NULL) {
5900 tmp4 = outer_ipv4->ipha_src;
5901 outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
5902 outer_ipv4->ipha_dst = tmp4;
5903 } else {
5904 /* No need for ASSERT()s now. */
5905 tmpaddr = outer_ipv6->ip6_src;
5906 outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
5907 outer_ipv6->ip6_dst = tmpaddr;
5908 }
5909 }
5910
5911 /*
5912 * At this point, we pretend it's a cleartext accepted
5913 * packet.
5914 */
5915 return (data_mp);
5916 }
5917
5918 /*
5919 * AVL comparison routine for our list of tunnel polheads.
5920 */
5921 static int
5922 tunnel_compare(const void *arg1, const void *arg2)
5923 {
5924 ipsec_tun_pol_t *left, *right;
5925 int rc;
5926
5927 left = (ipsec_tun_pol_t *)arg1;
5928 right = (ipsec_tun_pol_t *)arg2;
5929
5930 rc = strncmp(left->itp_name, right->itp_name, LIFNAMSIZ);
5931 return (rc == 0 ? rc : (rc > 0 ? 1 : -1));
5932 }
5933
5934 /*
5935 * Free a tunnel policy node.
5936 */
5937 void
5938 itp_free(ipsec_tun_pol_t *node, netstack_t *ns)
5939 {
5940 if (node->itp_policy != NULL) {
5941 IPPH_REFRELE(node->itp_policy, ns);
5942 node->itp_policy = NULL;
5943 }
5944 if (node->itp_inactive != NULL) {
5945 IPPH_REFRELE(node->itp_inactive, ns);
5946 node->itp_inactive = NULL;
5947 }
5948 mutex_destroy(&node->itp_lock);
5949 kmem_free(node, sizeof (*node));
5950 }
5951
5952 void
5953 itp_unlink(ipsec_tun_pol_t *node, netstack_t *ns)
5954 {
5955 ipsec_stack_t *ipss = ns->netstack_ipsec;
5956
5957 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
5958 ipss->ipsec_tunnel_policy_gen++;
5959 ipsec_fragcache_uninit(&node->itp_fragcache, ipss);
5960 avl_remove(&ipss->ipsec_tunnel_policies, node);
5961 rw_exit(&ipss->ipsec_tunnel_policy_lock);
5962 ITP_REFRELE(node, ns);
5963 }
5964
5965 /*
5966 * Public interface to look up a tunnel security policy by name. Used by
5967 * spdsock mostly. Returns "node" with a bumped refcnt.
5968 */
5969 ipsec_tun_pol_t *
5970 get_tunnel_policy(char *name, netstack_t *ns)
5971 {
5972 ipsec_tun_pol_t *node, lookup;
5973 ipsec_stack_t *ipss = ns->netstack_ipsec;
5974
5975 (void) strncpy(lookup.itp_name, name, LIFNAMSIZ);
5976
5977 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
5978 node = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
5979 &lookup, NULL);
5980 if (node != NULL) {
5981 ITP_REFHOLD(node);
5982 }
5983 rw_exit(&ipss->ipsec_tunnel_policy_lock);
5984
5985 return (node);
5986 }
5987
5988 /*
5989 * Public interface to walk all tunnel security polcies. Useful for spdsock
5990 * DUMP operations. iterator() will not consume a reference.
5991 */
5992 void
5993 itp_walk(void (*iterator)(ipsec_tun_pol_t *, void *, netstack_t *),
5994 void *arg, netstack_t *ns)
5995 {
5996 ipsec_tun_pol_t *node;
5997 ipsec_stack_t *ipss = ns->netstack_ipsec;
5998
5999 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
6000 for (node = avl_first(&ipss->ipsec_tunnel_policies); node != NULL;
6001 node = AVL_NEXT(&ipss->ipsec_tunnel_policies, node)) {
6002 iterator(node, arg, ns);
6003 }
6004 rw_exit(&ipss->ipsec_tunnel_policy_lock);
6005 }
6006
6007 /*
6008 * Initialize policy head. This can only fail if there's a memory problem.
6009 */
6010 static boolean_t
6011 tunnel_polhead_init(ipsec_policy_head_t *iph, netstack_t *ns)
6012 {
6013 ipsec_stack_t *ipss = ns->netstack_ipsec;
6014
6015 rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
6016 iph->iph_refs = 1;
6017 iph->iph_gen = 0;
6018 if (ipsec_alloc_table(iph, ipss->ipsec_tun_spd_hashsize,
6019 KM_SLEEP, B_FALSE, ns) != 0) {
6020 ipsec_polhead_free_table(iph);
6021 return (B_FALSE);
6022 }
6023 ipsec_polhead_init(iph, ipss->ipsec_tun_spd_hashsize);
6024 return (B_TRUE);
6025 }
6026
6027 /*
6028 * Create a tunnel policy node with "name". Set errno with
6029 * ENOMEM if there's a memory problem, and EEXIST if there's an existing
6030 * node.
6031 */
6032 ipsec_tun_pol_t *
6033 create_tunnel_policy(char *name, int *errno, uint64_t *gen, netstack_t *ns)
6034 {
6035 ipsec_tun_pol_t *newbie, *existing;
6036 avl_index_t where;
6037 ipsec_stack_t *ipss = ns->netstack_ipsec;
6038
6039 newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP);
6040 if (newbie == NULL) {
6041 *errno = ENOMEM;
6042 return (NULL);
6043 }
6044 if (!ipsec_fragcache_init(&newbie->itp_fragcache)) {
6045 kmem_free(newbie, sizeof (*newbie));
6046 *errno = ENOMEM;
6047 return (NULL);
6048 }
6049
6050 (void) strncpy(newbie->itp_name, name, LIFNAMSIZ);
6051
6052 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
6053 existing = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
6054 newbie, &where);
6055 if (existing != NULL) {
6056 itp_free(newbie, ns);
6057 *errno = EEXIST;
6058 rw_exit(&ipss->ipsec_tunnel_policy_lock);
6059 return (NULL);
6060 }
6061 ipss->ipsec_tunnel_policy_gen++;
6062 *gen = ipss->ipsec_tunnel_policy_gen;
6063 newbie->itp_refcnt = 2; /* One for the caller, one for the tree. */
6064 newbie->itp_next_policy_index = 1;
6065 avl_insert(&ipss->ipsec_tunnel_policies, newbie, where);
6066 mutex_init(&newbie->itp_lock, NULL, MUTEX_DEFAULT, NULL);
6067 newbie->itp_policy = kmem_zalloc(sizeof (ipsec_policy_head_t),
6068 KM_NOSLEEP);
6069 if (newbie->itp_policy == NULL)
6070 goto nomem;
6071 newbie->itp_inactive = kmem_zalloc(sizeof (ipsec_policy_head_t),
6072 KM_NOSLEEP);
6073 if (newbie->itp_inactive == NULL) {
6074 kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6075 goto nomem;
6076 }
6077
6078 if (!tunnel_polhead_init(newbie->itp_policy, ns)) {
6079 kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6080 kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6081 goto nomem;
6082 } else if (!tunnel_polhead_init(newbie->itp_inactive, ns)) {
6083 IPPH_REFRELE(newbie->itp_policy, ns);
6084 kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6085 goto nomem;
6086 }
6087 rw_exit(&ipss->ipsec_tunnel_policy_lock);
6088
6089 return (newbie);
6090 nomem:
6091 *errno = ENOMEM;
6092 kmem_free(newbie, sizeof (*newbie));
6093 return (NULL);
6094 }
6095
6096 /*
6097 * Given two addresses, find a tunnel instance's IPsec policy heads.
6098 * Returns NULL on failure.
6099 */
6100 ipsec_tun_pol_t *
6101 itp_get_byaddr(uint32_t *laddr, uint32_t *faddr, int af, ip_stack_t *ipst)
6102 {
6103 conn_t *connp;
6104 iptun_t *iptun;
6105 ipsec_tun_pol_t *itp = NULL;
6106
6107 /* Classifiers are used to "src" being foreign. */
6108 if (af == AF_INET) {
6109 connp = ipcl_iptun_classify_v4((ipaddr_t *)faddr,
6110 (ipaddr_t *)laddr, ipst);
6111 } else {
6112 ASSERT(af == AF_INET6);
6113 ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)laddr));
6114 ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)faddr));
6115 connp = ipcl_iptun_classify_v6((in6_addr_t *)faddr,
6116 (in6_addr_t *)laddr, ipst);
6117 }
6118
6119 if (connp == NULL)
6120 return (NULL);
6121
6122 if (IPCL_IS_IPTUN(connp)) {
6123 iptun = connp->conn_iptun;
6124 if (iptun != NULL) {
6125 itp = iptun->iptun_itp;
6126 if (itp != NULL) {
6127 /* Braces due to the macro's nature... */
6128 ITP_REFHOLD(itp);
6129 }
6130 } /* Else itp is already NULL. */
6131 }
6132
6133 CONN_DEC_REF(connp);
6134 return (itp);
6135 }
6136
6137 /*
6138 * Frag cache code, based on SunScreen 3.2 source
6139 * screen/kernel/common/screen_fragcache.c
6140 */
6141
6142 #define IPSEC_FRAG_TTL_MAX 5
6143 /*
6144 * Note that the following parameters create 256 hash buckets
6145 * with 1024 free entries to be distributed. Things are cleaned
6146 * periodically and are attempted to be cleaned when there is no
6147 * free space, but this system errs on the side of dropping packets
6148 * over creating memory exhaustion. We may decide to make hash
6149 * factor a tunable if this proves to be a bad decision.
6150 */
6151 #define IPSEC_FRAG_HASH_SLOTS (1<<8)
6152 #define IPSEC_FRAG_HASH_FACTOR 4
6153 #define IPSEC_FRAG_HASH_SIZE (IPSEC_FRAG_HASH_SLOTS * IPSEC_FRAG_HASH_FACTOR)
6154
6155 #define IPSEC_FRAG_HASH_MASK (IPSEC_FRAG_HASH_SLOTS - 1)
6156 #define IPSEC_FRAG_HASH_FUNC(id) (((id) & IPSEC_FRAG_HASH_MASK) ^ \
6157 (((id) / \
6158 (ushort_t)IPSEC_FRAG_HASH_SLOTS) & \
6159 IPSEC_FRAG_HASH_MASK))
6160
6161 /* Maximum fragments per packet. 48 bytes payload x 1366 packets > 64KB */
6162 #define IPSEC_MAX_FRAGS 1366
6163
6164 #define V4_FRAG_OFFSET(ipha) ((ntohs(ipha->ipha_fragment_offset_and_flags) & \
6165 IPH_OFFSET) << 3)
6166 #define V4_MORE_FRAGS(ipha) (ntohs(ipha->ipha_fragment_offset_and_flags) & \
6167 IPH_MF)
6168
6169 /*
6170 * Initialize an ipsec fragcache instance.
6171 * Returns B_FALSE if memory allocation fails.
6172 */
6173 boolean_t
6174 ipsec_fragcache_init(ipsec_fragcache_t *frag)
6175 {
6176 ipsec_fragcache_entry_t *ftemp;
6177 int i;
6178
6179 mutex_init(&frag->itpf_lock, NULL, MUTEX_DEFAULT, NULL);
6180 frag->itpf_ptr = (ipsec_fragcache_entry_t **)
6181 kmem_zalloc(sizeof (ipsec_fragcache_entry_t *) *
6182 IPSEC_FRAG_HASH_SLOTS, KM_NOSLEEP);
6183 if (frag->itpf_ptr == NULL)
6184 return (B_FALSE);
6185
6186 ftemp = (ipsec_fragcache_entry_t *)
6187 kmem_zalloc(sizeof (ipsec_fragcache_entry_t) *
6188 IPSEC_FRAG_HASH_SIZE, KM_NOSLEEP);
6189 if (ftemp == NULL) {
6190 kmem_free(frag->itpf_ptr, sizeof (ipsec_fragcache_entry_t *) *
6191 IPSEC_FRAG_HASH_SLOTS);
6192 return (B_FALSE);
6193 }
6194
6195 frag->itpf_freelist = NULL;
6196
6197 for (i = 0; i < IPSEC_FRAG_HASH_SIZE; i++) {
6198 ftemp->itpfe_next = frag->itpf_freelist;
6199 frag->itpf_freelist = ftemp;
6200 ftemp++;
6201 }
6202
6203 frag->itpf_expire_hint = 0;
6204
6205 return (B_TRUE);
6206 }
6207
6208 void
6209 ipsec_fragcache_uninit(ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6210 {
6211 ipsec_fragcache_entry_t *fep;
6212 int i;
6213
6214 mutex_enter(&frag->itpf_lock);
6215 if (frag->itpf_ptr) {
6216 /* Delete any existing fragcache entry chains */
6217 for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6218 fep = (frag->itpf_ptr)[i];
6219 while (fep != NULL) {
6220 /* Returned fep is next in chain or NULL */
6221 fep = fragcache_delentry(i, fep, frag, ipss);
6222 }
6223 }
6224 /*
6225 * Chase the pointers back to the beginning
6226 * of the memory allocation and then
6227 * get rid of the allocated freelist
6228 */
6229 while (frag->itpf_freelist->itpfe_next != NULL)
6230 frag->itpf_freelist = frag->itpf_freelist->itpfe_next;
6231 /*
6232 * XXX - If we ever dynamically grow the freelist
6233 * then we'll have to free entries individually
6234 * or determine how many entries or chunks we have
6235 * grown since the initial allocation.
6236 */
6237 kmem_free(frag->itpf_freelist,
6238 sizeof (ipsec_fragcache_entry_t) *
6239 IPSEC_FRAG_HASH_SIZE);
6240 /* Free the fragcache structure */
6241 kmem_free(frag->itpf_ptr,
6242 sizeof (ipsec_fragcache_entry_t *) *
6243 IPSEC_FRAG_HASH_SLOTS);
6244 }
6245 mutex_exit(&frag->itpf_lock);
6246 mutex_destroy(&frag->itpf_lock);
6247 }
6248
6249 /*
6250 * Add a fragment to the fragment cache. Consumes mp if NULL is returned.
6251 * Returns mp if a whole fragment has been assembled, NULL otherwise
6252 * The returned mp could be a b_next chain of fragments.
6253 *
6254 * The iramp argument is set on inbound; NULL if outbound.
6255 */
6256 mblk_t *
6257 ipsec_fragcache_add(ipsec_fragcache_t *frag, mblk_t *iramp, mblk_t *mp,
6258 int outer_hdr_len, ipsec_stack_t *ipss)
6259 {
6260 boolean_t is_v4;
6261 time_t itpf_time;
6262 ipha_t *iph;
6263 ipha_t *oiph;
6264 ip6_t *ip6h = NULL;
6265 uint8_t v6_proto;
6266 uint8_t *v6_proto_p;
6267 uint16_t ip6_hdr_length;
6268 ip_pkt_t ipp;
6269 ip6_frag_t *fraghdr;
6270 ipsec_fragcache_entry_t *fep;
6271 int i;
6272 mblk_t *nmp, *prevmp;
6273 int firstbyte, lastbyte;
6274 int offset;
6275 int last;
6276 boolean_t inbound = (iramp != NULL);
6277
6278 #ifdef FRAGCACHE_DEBUG
6279 cmn_err(CE_WARN, "Fragcache: %s\n", inbound ? "INBOUND" : "OUTBOUND");
6280 #endif
6281 /*
6282 * You're on the slow path, so insure that every packet in the
6283 * cache is a single-mblk one.
6284 */
6285 if (mp->b_cont != NULL) {
6286 nmp = msgpullup(mp, -1);
6287 if (nmp == NULL) {
6288 ip_drop_packet(mp, inbound, NULL,
6289 DROPPER(ipss, ipds_spd_nomem),
6290 &ipss->ipsec_spd_dropper);
6291 if (inbound)
6292 (void) ip_recv_attr_free_mblk(iramp);
6293 return (NULL);
6294 }
6295 freemsg(mp);
6296 mp = nmp;
6297 }
6298
6299 mutex_enter(&frag->itpf_lock);
6300
6301 oiph = (ipha_t *)mp->b_rptr;
6302 iph = (ipha_t *)(mp->b_rptr + outer_hdr_len);
6303
6304 if (IPH_HDR_VERSION(iph) == IPV4_VERSION) {
6305 is_v4 = B_TRUE;
6306 } else {
6307 ASSERT(IPH_HDR_VERSION(iph) == IPV6_VERSION);
6308 ip6h = (ip6_t *)(mp->b_rptr + outer_hdr_len);
6309
6310 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip6_hdr_length,
6311 &v6_proto_p)) {
6312 /*
6313 * Find upper layer protocol.
6314 * If it fails we have a malformed packet
6315 */
6316 mutex_exit(&frag->itpf_lock);
6317 ip_drop_packet(mp, inbound, NULL,
6318 DROPPER(ipss, ipds_spd_malformed_packet),
6319 &ipss->ipsec_spd_dropper);
6320 if (inbound)
6321 (void) ip_recv_attr_free_mblk(iramp);
6322 return (NULL);
6323 } else {
6324 v6_proto = *v6_proto_p;
6325 }
6326
6327
6328 bzero(&ipp, sizeof (ipp));
6329 (void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL);
6330 if (!(ipp.ipp_fields & IPPF_FRAGHDR)) {
6331 /*
6332 * We think this is a fragment, but didn't find
6333 * a fragment header. Something is wrong.
6334 */
6335 mutex_exit(&frag->itpf_lock);
6336 ip_drop_packet(mp, inbound, NULL,
6337 DROPPER(ipss, ipds_spd_malformed_frag),
6338 &ipss->ipsec_spd_dropper);
6339 if (inbound)
6340 (void) ip_recv_attr_free_mblk(iramp);
6341 return (NULL);
6342 }
6343 fraghdr = ipp.ipp_fraghdr;
6344 is_v4 = B_FALSE;
6345 }
6346
6347 /* Anything to cleanup? */
6348
6349 /*
6350 * This cleanup call could be put in a timer loop
6351 * but it may actually be just as reasonable a decision to
6352 * leave it here. The disadvantage is this only gets called when
6353 * frags are added. The advantage is that it is not
6354 * susceptible to race conditions like a time-based cleanup
6355 * may be.
6356 */
6357 itpf_time = gethrestime_sec();
6358 if (itpf_time >= frag->itpf_expire_hint)
6359 ipsec_fragcache_clean(frag, ipss);
6360
6361 /* Lookup to see if there is an existing entry */
6362
6363 if (is_v4)
6364 i = IPSEC_FRAG_HASH_FUNC(iph->ipha_ident);
6365 else
6366 i = IPSEC_FRAG_HASH_FUNC(fraghdr->ip6f_ident);
6367
6368 for (fep = (frag->itpf_ptr)[i]; fep; fep = fep->itpfe_next) {
6369 if (is_v4) {
6370 ASSERT(iph != NULL);
6371 if ((fep->itpfe_id == iph->ipha_ident) &&
6372 (fep->itpfe_src == iph->ipha_src) &&
6373 (fep->itpfe_dst == iph->ipha_dst) &&
6374 (fep->itpfe_proto == iph->ipha_protocol))
6375 break;
6376 } else {
6377 ASSERT(fraghdr != NULL);
6378 ASSERT(fep != NULL);
6379 if ((fep->itpfe_id == fraghdr->ip6f_ident) &&
6380 IN6_ARE_ADDR_EQUAL(&fep->itpfe_src6,
6381 &ip6h->ip6_src) &&
6382 IN6_ARE_ADDR_EQUAL(&fep->itpfe_dst6,
6383 &ip6h->ip6_dst) && (fep->itpfe_proto == v6_proto))
6384 break;
6385 }
6386 }
6387
6388 if (is_v4) {
6389 firstbyte = V4_FRAG_OFFSET(iph);
6390 lastbyte = firstbyte + ntohs(iph->ipha_length) -
6391 IPH_HDR_LENGTH(iph);
6392 last = (V4_MORE_FRAGS(iph) == 0);
6393 #ifdef FRAGCACHE_DEBUG
6394 cmn_err(CE_WARN, "V4 fragcache: firstbyte = %d, lastbyte = %d, "
6395 "is_last_frag = %d, id = %d, mp = %p\n", firstbyte,
6396 lastbyte, last, iph->ipha_ident, mp);
6397 #endif
6398 } else {
6399 firstbyte = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
6400 lastbyte = firstbyte + ntohs(ip6h->ip6_plen) +
6401 sizeof (ip6_t) - ip6_hdr_length;
6402 last = (fraghdr->ip6f_offlg & IP6F_MORE_FRAG) == 0;
6403 #ifdef FRAGCACHE_DEBUG
6404 cmn_err(CE_WARN, "V6 fragcache: firstbyte = %d, lastbyte = %d, "
6405 "is_last_frag = %d, id = %d, fraghdr = %p, mp = %p\n",
6406 firstbyte, lastbyte, last, fraghdr->ip6f_ident, fraghdr,
6407 mp);
6408 #endif
6409 }
6410
6411 /* check for bogus fragments and delete the entry */
6412 if (firstbyte > 0 && firstbyte <= 8) {
6413 if (fep != NULL)
6414 (void) fragcache_delentry(i, fep, frag, ipss);
6415 mutex_exit(&frag->itpf_lock);
6416 ip_drop_packet(mp, inbound, NULL,
6417 DROPPER(ipss, ipds_spd_malformed_frag),
6418 &ipss->ipsec_spd_dropper);
6419 if (inbound)
6420 (void) ip_recv_attr_free_mblk(iramp);
6421 return (NULL);
6422 }
6423
6424 /* Not found, allocate a new entry */
6425 if (fep == NULL) {
6426 if (frag->itpf_freelist == NULL) {
6427 /* see if there is some space */
6428 ipsec_fragcache_clean(frag, ipss);
6429 if (frag->itpf_freelist == NULL) {
6430 mutex_exit(&frag->itpf_lock);
6431 ip_drop_packet(mp, inbound, NULL,
6432 DROPPER(ipss, ipds_spd_nomem),
6433 &ipss->ipsec_spd_dropper);
6434 if (inbound)
6435 (void) ip_recv_attr_free_mblk(iramp);
6436 return (NULL);
6437 }
6438 }
6439
6440 fep = frag->itpf_freelist;
6441 frag->itpf_freelist = fep->itpfe_next;
6442
6443 if (is_v4) {
6444 bcopy((caddr_t)&iph->ipha_src, (caddr_t)&fep->itpfe_src,
6445 sizeof (struct in_addr));
6446 bcopy((caddr_t)&iph->ipha_dst, (caddr_t)&fep->itpfe_dst,
6447 sizeof (struct in_addr));
6448 fep->itpfe_id = iph->ipha_ident;
6449 fep->itpfe_proto = iph->ipha_protocol;
6450 i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6451 } else {
6452 bcopy((in6_addr_t *)&ip6h->ip6_src,
6453 (in6_addr_t *)&fep->itpfe_src6,
6454 sizeof (struct in6_addr));
6455 bcopy((in6_addr_t *)&ip6h->ip6_dst,
6456 (in6_addr_t *)&fep->itpfe_dst6,
6457 sizeof (struct in6_addr));
6458 fep->itpfe_id = fraghdr->ip6f_ident;
6459 fep->itpfe_proto = v6_proto;
6460 i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6461 }
6462 itpf_time = gethrestime_sec();
6463 fep->itpfe_exp = itpf_time + IPSEC_FRAG_TTL_MAX + 1;
6464 fep->itpfe_last = 0;
6465 fep->itpfe_fraglist = NULL;
6466 fep->itpfe_depth = 0;
6467 fep->itpfe_next = (frag->itpf_ptr)[i];
6468 (frag->itpf_ptr)[i] = fep;
6469
6470 if (frag->itpf_expire_hint > fep->itpfe_exp)
6471 frag->itpf_expire_hint = fep->itpfe_exp;
6472
6473 }
6474
6475 /* Insert it in the frag list */
6476 /* List is in order by starting offset of fragments */
6477
6478 prevmp = NULL;
6479 for (nmp = fep->itpfe_fraglist; nmp; nmp = nmp->b_next) {
6480 ipha_t *niph;
6481 ipha_t *oniph;
6482 ip6_t *nip6h;
6483 ip_pkt_t nipp;
6484 ip6_frag_t *nfraghdr;
6485 uint16_t nip6_hdr_length;
6486 uint8_t *nv6_proto_p;
6487 int nfirstbyte, nlastbyte;
6488 char *data, *ndata;
6489 mblk_t *ndata_mp = (inbound ? nmp->b_cont : nmp);
6490 int hdr_len;
6491
6492 oniph = (ipha_t *)mp->b_rptr;
6493 nip6h = NULL;
6494 niph = NULL;
6495
6496 /*
6497 * Determine outer header type and length and set
6498 * pointers appropriately
6499 */
6500
6501 if (IPH_HDR_VERSION(oniph) == IPV4_VERSION) {
6502 hdr_len = ((outer_hdr_len != 0) ?
6503 IPH_HDR_LENGTH(oiph) : 0);
6504 niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6505 } else {
6506 ASSERT(IPH_HDR_VERSION(oniph) == IPV6_VERSION);
6507 ASSERT(ndata_mp->b_cont == NULL);
6508 nip6h = (ip6_t *)ndata_mp->b_rptr;
6509 (void) ip_hdr_length_nexthdr_v6(ndata_mp, nip6h,
6510 &nip6_hdr_length, &v6_proto_p);
6511 hdr_len = ((outer_hdr_len != 0) ? nip6_hdr_length : 0);
6512 }
6513
6514 /*
6515 * Determine inner header type and length and set
6516 * pointers appropriately
6517 */
6518
6519 if (is_v4) {
6520 if (niph == NULL) {
6521 /* Was v6 outer */
6522 niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6523 }
6524 nfirstbyte = V4_FRAG_OFFSET(niph);
6525 nlastbyte = nfirstbyte + ntohs(niph->ipha_length) -
6526 IPH_HDR_LENGTH(niph);
6527 } else {
6528 ASSERT(ndata_mp->b_cont == NULL);
6529 nip6h = (ip6_t *)(ndata_mp->b_rptr + hdr_len);
6530 if (!ip_hdr_length_nexthdr_v6(ndata_mp, nip6h,
6531 &nip6_hdr_length, &nv6_proto_p)) {
6532 mutex_exit(&frag->itpf_lock);
6533 ip_drop_packet_chain(nmp, inbound, NULL,
6534 DROPPER(ipss, ipds_spd_malformed_frag),
6535 &ipss->ipsec_spd_dropper);
6536 ipsec_freemsg_chain(ndata_mp);
6537 if (inbound)
6538 (void) ip_recv_attr_free_mblk(iramp);
6539 return (NULL);
6540 }
6541 bzero(&nipp, sizeof (nipp));
6542 (void) ip_find_hdr_v6(ndata_mp, nip6h, B_FALSE, &nipp,
6543 NULL);
6544 nfraghdr = nipp.ipp_fraghdr;
6545 nfirstbyte = ntohs(nfraghdr->ip6f_offlg &
6546 IP6F_OFF_MASK);
6547 nlastbyte = nfirstbyte + ntohs(nip6h->ip6_plen) +
6548 sizeof (ip6_t) - nip6_hdr_length;
6549 }
6550
6551 /* Check for overlapping fragments */
6552 if (firstbyte >= nfirstbyte && firstbyte < nlastbyte) {
6553 /*
6554 * Overlap Check:
6555 * ~~~~--------- # Check if the newly
6556 * ~ ndata_mp| # received fragment
6557 * ~~~~--------- # overlaps with the
6558 * ---------~~~~~~ # current fragment.
6559 * | mp ~
6560 * ---------~~~~~~
6561 */
6562 if (is_v4) {
6563 data = (char *)iph + IPH_HDR_LENGTH(iph) +
6564 firstbyte - nfirstbyte;
6565 ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6566 } else {
6567 data = (char *)ip6h +
6568 nip6_hdr_length + firstbyte -
6569 nfirstbyte;
6570 ndata = (char *)nip6h + nip6_hdr_length;
6571 }
6572 if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) -
6573 firstbyte)) {
6574 /* Overlapping data does not match */
6575 (void) fragcache_delentry(i, fep, frag, ipss);
6576 mutex_exit(&frag->itpf_lock);
6577 ip_drop_packet(mp, inbound, NULL,
6578 DROPPER(ipss, ipds_spd_overlap_frag),
6579 &ipss->ipsec_spd_dropper);
6580 if (inbound)
6581 (void) ip_recv_attr_free_mblk(iramp);
6582 return (NULL);
6583 }
6584 /* Part of defense for jolt2.c fragmentation attack */
6585 if (firstbyte >= nfirstbyte && lastbyte <= nlastbyte) {
6586 /*
6587 * Check for identical or subset fragments:
6588 * ---------- ~~~~--------~~~~~
6589 * | nmp | or ~ nmp ~
6590 * ---------- ~~~~--------~~~~~
6591 * ---------- ------
6592 * | mp | | mp |
6593 * ---------- ------
6594 */
6595 mutex_exit(&frag->itpf_lock);
6596 ip_drop_packet(mp, inbound, NULL,
6597 DROPPER(ipss, ipds_spd_evil_frag),
6598 &ipss->ipsec_spd_dropper);
6599 if (inbound)
6600 (void) ip_recv_attr_free_mblk(iramp);
6601 return (NULL);
6602 }
6603
6604 }
6605
6606 /* Correct location for this fragment? */
6607 if (firstbyte <= nfirstbyte) {
6608 /*
6609 * Check if the tail end of the new fragment overlaps
6610 * with the head of the current fragment.
6611 * --------~~~~~~~
6612 * | nmp ~
6613 * --------~~~~~~~
6614 * ~~~~~--------
6615 * ~ mp |
6616 * ~~~~~--------
6617 */
6618 if (lastbyte > nfirstbyte) {
6619 /* Fragments overlap */
6620 data = (char *)iph + IPH_HDR_LENGTH(iph) +
6621 firstbyte - nfirstbyte;
6622 ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6623 if (is_v4) {
6624 data = (char *)iph +
6625 IPH_HDR_LENGTH(iph) + firstbyte -
6626 nfirstbyte;
6627 ndata = (char *)niph +
6628 IPH_HDR_LENGTH(niph);
6629 } else {
6630 data = (char *)ip6h +
6631 nip6_hdr_length + firstbyte -
6632 nfirstbyte;
6633 ndata = (char *)nip6h + nip6_hdr_length;
6634 }
6635 if (bcmp(data, ndata, MIN(lastbyte, nlastbyte)
6636 - nfirstbyte)) {
6637 /* Overlap mismatch */
6638 (void) fragcache_delentry(i, fep, frag,
6639 ipss);
6640 mutex_exit(&frag->itpf_lock);
6641 ip_drop_packet(mp, inbound, NULL,
6642 DROPPER(ipss,
6643 ipds_spd_overlap_frag),
6644 &ipss->ipsec_spd_dropper);
6645 if (inbound) {
6646 (void) ip_recv_attr_free_mblk(
6647 iramp);
6648 }
6649 return (NULL);
6650 }
6651 }
6652
6653 /*
6654 * Fragment does not illegally overlap and can now
6655 * be inserted into the chain
6656 */
6657 break;
6658 }
6659
6660 prevmp = nmp;
6661 }
6662 /* Prepend the attributes before we link it in */
6663 if (iramp != NULL) {
6664 ASSERT(iramp->b_cont == NULL);
6665 iramp->b_cont = mp;
6666 mp = iramp;
6667 iramp = NULL;
6668 }
6669 mp->b_next = nmp;
6670
6671 if (prevmp == NULL) {
6672 fep->itpfe_fraglist = mp;
6673 } else {
6674 prevmp->b_next = mp;
6675 }
6676 if (last)
6677 fep->itpfe_last = 1;
6678
6679 /* Part of defense for jolt2.c fragmentation attack */
6680 if (++(fep->itpfe_depth) > IPSEC_MAX_FRAGS) {
6681 (void) fragcache_delentry(i, fep, frag, ipss);
6682 mutex_exit(&frag->itpf_lock);
6683 if (inbound)
6684 mp = ip_recv_attr_free_mblk(mp);
6685
6686 ip_drop_packet(mp, inbound, NULL,
6687 DROPPER(ipss, ipds_spd_max_frags),
6688 &ipss->ipsec_spd_dropper);
6689 return (NULL);
6690 }
6691
6692 /* Check for complete packet */
6693
6694 if (!fep->itpfe_last) {
6695 mutex_exit(&frag->itpf_lock);
6696 #ifdef FRAGCACHE_DEBUG
6697 cmn_err(CE_WARN, "Fragment cached, last not yet seen.\n");
6698 #endif
6699 return (NULL);
6700 }
6701
6702 offset = 0;
6703 for (mp = fep->itpfe_fraglist; mp; mp = mp->b_next) {
6704 mblk_t *data_mp = (inbound ? mp->b_cont : mp);
6705 int hdr_len;
6706
6707 oiph = (ipha_t *)data_mp->b_rptr;
6708 ip6h = NULL;
6709 iph = NULL;
6710
6711 if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
6712 hdr_len = ((outer_hdr_len != 0) ?
6713 IPH_HDR_LENGTH(oiph) : 0);
6714 iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6715 } else {
6716 ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
6717 ASSERT(data_mp->b_cont == NULL);
6718 ip6h = (ip6_t *)data_mp->b_rptr;
6719 (void) ip_hdr_length_nexthdr_v6(data_mp, ip6h,
6720 &ip6_hdr_length, &v6_proto_p);
6721 hdr_len = ((outer_hdr_len != 0) ? ip6_hdr_length : 0);
6722 }
6723
6724 /* Calculate current fragment start/end */
6725 if (is_v4) {
6726 if (iph == NULL) {
6727 /* Was v6 outer */
6728 iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6729 }
6730 firstbyte = V4_FRAG_OFFSET(iph);
6731 lastbyte = firstbyte + ntohs(iph->ipha_length) -
6732 IPH_HDR_LENGTH(iph);
6733 } else {
6734 ASSERT(data_mp->b_cont == NULL);
6735 ip6h = (ip6_t *)(data_mp->b_rptr + hdr_len);
6736 if (!ip_hdr_length_nexthdr_v6(data_mp, ip6h,
6737 &ip6_hdr_length, &v6_proto_p)) {
6738 mutex_exit(&frag->itpf_lock);
6739 ip_drop_packet_chain(mp, inbound, NULL,
6740 DROPPER(ipss, ipds_spd_malformed_frag),
6741 &ipss->ipsec_spd_dropper);
6742 return (NULL);
6743 }
6744 v6_proto = *v6_proto_p;
6745 bzero(&ipp, sizeof (ipp));
6746 (void) ip_find_hdr_v6(data_mp, ip6h, B_FALSE, &ipp,
6747 NULL);
6748 fraghdr = ipp.ipp_fraghdr;
6749 firstbyte = ntohs(fraghdr->ip6f_offlg &
6750 IP6F_OFF_MASK);
6751 lastbyte = firstbyte + ntohs(ip6h->ip6_plen) +
6752 sizeof (ip6_t) - ip6_hdr_length;
6753 }
6754
6755 /*
6756 * If this fragment is greater than current offset,
6757 * we have a missing fragment so return NULL
6758 */
6759 if (firstbyte > offset) {
6760 mutex_exit(&frag->itpf_lock);
6761 #ifdef FRAGCACHE_DEBUG
6762 /*
6763 * Note, this can happen when the last frag
6764 * gets sent through because it is smaller
6765 * than the MTU. It is not necessarily an
6766 * error condition.
6767 */
6768 cmn_err(CE_WARN, "Frag greater than offset! : "
6769 "missing fragment: firstbyte = %d, offset = %d, "
6770 "mp = %p\n", firstbyte, offset, mp);
6771 #endif
6772 return (NULL);
6773 }
6774 #ifdef FRAGCACHE_DEBUG
6775 cmn_err(CE_WARN, "Frag offsets : "
6776 "firstbyte = %d, offset = %d, mp = %p\n",
6777 firstbyte, offset, mp);
6778 #endif
6779
6780 /*
6781 * If we are at the last fragment, we have the complete
6782 * packet, so rechain things and return it to caller
6783 * for processing
6784 */
6785
6786 if ((is_v4 && !V4_MORE_FRAGS(iph)) ||
6787 (!is_v4 && !(fraghdr->ip6f_offlg & IP6F_MORE_FRAG))) {
6788 mp = fep->itpfe_fraglist;
6789 fep->itpfe_fraglist = NULL;
6790 (void) fragcache_delentry(i, fep, frag, ipss);
6791 mutex_exit(&frag->itpf_lock);
6792
6793 if ((is_v4 && (firstbyte + ntohs(iph->ipha_length) >
6794 65535)) || (!is_v4 && (firstbyte +
6795 ntohs(ip6h->ip6_plen) > 65535))) {
6796 /* It is an invalid "ping-o-death" packet */
6797 /* Discard it */
6798 ip_drop_packet_chain(mp, inbound, NULL,
6799 DROPPER(ipss, ipds_spd_evil_frag),
6800 &ipss->ipsec_spd_dropper);
6801 return (NULL);
6802 }
6803 #ifdef FRAGCACHE_DEBUG
6804 cmn_err(CE_WARN, "Fragcache returning mp = %p, "
6805 "mp->b_next = %p", mp, mp->b_next);
6806 #endif
6807 /*
6808 * For inbound case, mp has attrmp b_next'd chain
6809 * For outbound case, it is just data mp chain
6810 */
6811 return (mp);
6812 }
6813
6814 /*
6815 * Update new ending offset if this
6816 * fragment extends the packet
6817 */
6818 if (offset < lastbyte)
6819 offset = lastbyte;
6820 }
6821
6822 mutex_exit(&frag->itpf_lock);
6823
6824 /* Didn't find last fragment, so return NULL */
6825 return (NULL);
6826 }
6827
6828 static void
6829 ipsec_fragcache_clean(ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6830 {
6831 ipsec_fragcache_entry_t *fep;
6832 int i;
6833 ipsec_fragcache_entry_t *earlyfep = NULL;
6834 time_t itpf_time;
6835 int earlyexp;
6836 int earlyi = 0;
6837
6838 ASSERT(MUTEX_HELD(&frag->itpf_lock));
6839
6840 itpf_time = gethrestime_sec();
6841 earlyexp = itpf_time + 10000;
6842
6843 for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6844 fep = (frag->itpf_ptr)[i];
6845 while (fep) {
6846 if (fep->itpfe_exp < itpf_time) {
6847 /* found */
6848 fep = fragcache_delentry(i, fep, frag, ipss);
6849 } else {
6850 if (fep->itpfe_exp < earlyexp) {
6851 earlyfep = fep;
6852 earlyexp = fep->itpfe_exp;
6853 earlyi = i;
6854 }
6855 fep = fep->itpfe_next;
6856 }
6857 }
6858 }
6859
6860 frag->itpf_expire_hint = earlyexp;
6861
6862 /* if (!found) */
6863 if (frag->itpf_freelist == NULL)
6864 (void) fragcache_delentry(earlyi, earlyfep, frag, ipss);
6865 }
6866
6867 static ipsec_fragcache_entry_t *
6868 fragcache_delentry(int slot, ipsec_fragcache_entry_t *fep,
6869 ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6870 {
6871 ipsec_fragcache_entry_t *targp;
6872 ipsec_fragcache_entry_t *nextp = fep->itpfe_next;
6873
6874 ASSERT(MUTEX_HELD(&frag->itpf_lock));
6875
6876 /* Free up any fragment list still in cache entry */
6877 if (fep->itpfe_fraglist != NULL) {
6878 ip_drop_packet_chain(fep->itpfe_fraglist,
6879 ip_recv_attr_is_mblk(fep->itpfe_fraglist), NULL,
6880 DROPPER(ipss, ipds_spd_expired_frags),
6881 &ipss->ipsec_spd_dropper);
6882 }
6883 fep->itpfe_fraglist = NULL;
6884
6885 targp = (frag->itpf_ptr)[slot];
6886 ASSERT(targp != 0);
6887
6888 if (targp == fep) {
6889 /* unlink from head of hash chain */
6890 (frag->itpf_ptr)[slot] = nextp;
6891 /* link into free list */
6892 fep->itpfe_next = frag->itpf_freelist;
6893 frag->itpf_freelist = fep;
6894 return (nextp);
6895 }
6896
6897 /* maybe should use double linked list to make update faster */
6898 /* must be past front of chain */
6899 while (targp) {
6900 if (targp->itpfe_next == fep) {
6901 /* unlink from hash chain */
6902 targp->itpfe_next = nextp;
6903 /* link into free list */
6904 fep->itpfe_next = frag->itpf_freelist;
6905 frag->itpf_freelist = fep;
6906 return (nextp);
6907 }
6908 targp = targp->itpfe_next;
6909 ASSERT(targp != 0);
6910 }
6911 /* NOTREACHED */
6912 return (NULL);
6913 }