Print this page
9560 IPv4 packets in IPv6 ethernet frames panic debug builds
Reviewed by: Jorge Schrauwen <jorge@blackdot.be>
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/io/mac/mac_sched.c
+++ new/usr/src/uts/common/io/mac/mac_sched.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 23 * Use is subject to license terms.
24 24 * Copyright 2017 Joyent, Inc.
25 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 26 */
27 27
28 28 /*
29 29 * MAC data path
30 30 *
31 31 * The MAC data path is concerned with the flow of traffic from mac clients --
32 32 * DLS, IP, etc. -- to various GLDv3 device drivers -- e1000g, vnic, aggr,
33 33 * ixgbe, etc. -- and from the GLDv3 device drivers back to clients.
34 34 *
35 35 * -----------
36 36 * Terminology
37 37 * -----------
38 38 *
39 39 * MAC uses a lot of different, but related terms that are associated with the
40 40 * design and structure of the data path. Before we cover other aspects, first
41 41 * let's review the terminology that MAC uses.
42 42 *
43 43 * MAC
44 44 *
45 45 * This driver. It interfaces with device drivers and provides abstractions
46 46 * that the rest of the system consumes. All data links -- things managed
47 47 * with dladm(1M), are accessed through MAC.
48 48 *
49 49 * GLDv3 DEVICE DRIVER
50 50 *
51 51 * A GLDv3 device driver refers to a driver, both for pseudo-devices and
52 52 * real devices, which implement the GLDv3 driver API. Common examples of
53 53 * these are igb and ixgbe, which are drivers for various Intel networking
54 54 * cards. These devices may or may not have various features, such as
55 55 * hardware rings and checksum offloading. For MAC, a GLDv3 device is the
56 56 * final point for the transmission of a packet and the starting point for
57 57 * the receipt of a packet.
58 58 *
59 59 * FLOWS
60 60 *
61 61 * At a high level, a flow refers to a series of packets that are related.
62 62 * Often times the term is used in the context of TCP to indicate a unique
63 63 * TCP connection and the traffic over it. However, a flow can exist at
64 64 * other levels of the system as well. MAC has a notion of a default flow
65 65 * which is used for all unicast traffic addressed to the address of a MAC
66 66 * device. For example, when a VNIC is created, a default flow is created
67 67 * for the VNIC's MAC address. In addition, flows are created for broadcast
68 68 * groups and a user may create a flow with flowadm(1M).
69 69 *
70 70 * CLASSIFICATION
71 71 *
72 72 * Classification refers to the notion of identifying an incoming frame
73 73 * based on its destination address and optionally its source addresses and
74 74 * doing different processing based on that information. Classification can
75 75 * be done in both hardware and software. In general, we usually only
76 76 * classify based on the layer two destination, eg. for Ethernet, the
77 77 * destination MAC address.
78 78 *
79 79 * The system also will do classification based on layer three and layer
80 80 * four properties. This is used to support things like flowadm(1M), which
81 81 * allows setting QoS and other properties on a per-flow basis.
82 82 *
83 83 * RING
84 84 *
85 85 * Conceptually, a ring represents a series of framed messages, often in a
86 86 * contiguous chunk of memory that acts as a circular buffer. Rings come in
87 87 * a couple of forms. Generally they are either a hardware construct (hw
88 88 * ring) or they are a software construct (sw ring) maintained by MAC.
89 89 *
90 90 * HW RING
91 91 *
92 92 * A hardware ring is a set of resources provided by a GLDv3 device driver
93 93 * (even if it is a pseudo-device). A hardware ring comes in two different
94 94 * forms: receive (rx) rings and transmit (tx) rings. An rx hw ring is
95 95 * something that has a unique DMA (direct memory access) region and
96 96 * generally supports some form of classification (though it isn't always
97 97 * used), as well as a means of generating an interrupt specific to that
98 98 * ring. For example, the device may generate a specific MSI-X for a PCI
99 99 * express device. A tx ring is similar, except that it is dedicated to
100 100 * transmission. It may also be a vector for enabling features such as VLAN
101 101 * tagging and large transmit offloading. It usually has its own dedicated
102 102 * interrupts for transmit being completed.
103 103 *
104 104 * SW RING
105 105 *
106 106 * A software ring is a construction of MAC. It represents the same thing
107 107 * that a hardware ring generally does, a collection of frames. However,
108 108 * instead of being in a contiguous ring of memory, they're instead linked
109 109 * by using the mblk_t's b_next pointer. Each frame may itself be multiple
110 110 * mblk_t's linked together by the b_cont pointer. A software ring always
111 111 * represents a collection of classified packets; however, it varies as to
112 112 * whether it uses only layer two information, or a combination of that and
113 113 * additional layer three and layer four data.
114 114 *
115 115 * FANOUT
116 116 *
117 117 * Fanout is the idea of spreading out the load of processing frames based
118 118 * on the source and destination information contained in the layer two,
119 119 * three, and four headers, such that the data can then be processed in
120 120 * parallel using multiple hardware threads.
121 121 *
122 122 * A fanout algorithm hashes the headers and uses that to place different
123 123 * flows into a bucket. The most important thing is that packets that are
124 124 * in the same flow end up in the same bucket. If they do not, performance
125 125 * can be adversely affected. Consider the case of TCP. TCP severely
126 126 * penalizes a connection if the data arrives out of order. If a given flow
127 127 * is processed on different CPUs, then the data will appear out of order,
128 128 * hence the invariant that fanout always hash a given flow to the same
129 129 * bucket and thus get processed on the same CPU.
130 130 *
131 131 * RECEIVE SIDE SCALING (RSS)
132 132 *
133 133 *
134 134 * Receive side scaling is a term that isn't common in illumos, but is used
135 135 * by vendors and was popularized by Microsoft. It refers to the idea of
136 136 * spreading the incoming receive load out across multiple interrupts which
137 137 * can be directed to different CPUs. This allows a device to leverage
138 138 * hardware rings even when it doesn't support hardware classification. The
139 139 * hardware uses an algorithm to perform fanout that ensures the flow
140 140 * invariant is maintained.
141 141 *
142 142 * SOFT RING SET
143 143 *
144 144 * A soft ring set, commonly abbreviated SRS, is a collection of rings and
145 145 * is used for both transmitting and receiving. It is maintained in the
146 146 * structure mac_soft_ring_set_t. A soft ring set is usually associated
147 147 * with flows, and coordinates both the use of hardware and software rings.
148 148 * Because the use of hardware rings can change as devices such as VNICs
149 149 * come and go, we always ensure that the set has software classification
150 150 * rules that correspond to the hardware classification rules from rings.
151 151 *
152 152 * Soft ring sets are also used for the enforcement of various QoS
153 153 * properties. For example, if a bandwidth limit has been placed on a
154 154 * specific flow or device, then that will be enforced by the soft ring
155 155 * set.
156 156 *
157 157 * SERVICE ATTACHMENT POINT (SAP)
158 158 *
159 159 * The service attachment point is a DLPI (Data Link Provider Interface)
160 160 * concept; however, it comes up quite often in MAC. Most MAC devices speak
161 161 * a protocol that has some notion of different channels or message type
162 162 * identifiers. For example, Ethernet defines an EtherType which is a part
163 163 * of the Ethernet header and defines the particular protocol of the data
164 164 * payload. If the EtherType is set to 0x0800, then it defines that the
165 165 * contents of that Ethernet frame is IPv4 traffic. For Ethernet, the
166 166 * EtherType is the SAP.
167 167 *
168 168 * In DLPI, a given consumer attaches to a specific SAP. In illumos, the ip
169 169 * and arp drivers attach to the EtherTypes for IPv4, IPv6, and ARP. Using
170 170 * libdlpi(3LIB) user software can attach to arbitrary SAPs. With the
171 171 * exception of 802.1Q VLAN tagged traffic, MAC itself does not directly
172 172 * consume the SAP; however, it uses that information as part of hashing
173 173 * and it may be used as part of the construction of flows.
174 174 *
175 175 * PRIMARY MAC CLIENT
176 176 *
177 177 * The primary mac client refers to a mac client whose unicast address
178 178 * matches the address of the device itself. For example, if the system has
179 179 * instance of the e1000g driver such as e1000g0, e1000g1, etc., the
180 180 * primary mac client is the one named after the device itself. VNICs that
181 181 * are created on top of such devices are not the primary client.
182 182 *
183 183 * TRANSMIT DESCRIPTORS
184 184 *
185 185 * Transmit descriptors are a resource that most GLDv3 device drivers have.
186 186 * Generally, a GLDv3 device driver takes a frame that's meant to be output
187 187 * and puts a copy of it into a region of memory. Each region of memory
188 188 * usually has an associated descriptor that the device uses to manage
189 189 * properties of the frames. Devices have a limited number of such
190 190 * descriptors. They get reclaimed once the device finishes putting the
191 191 * frame on the wire.
192 192 *
193 193 * If the driver runs out of transmit descriptors, for example, the OS is
194 194 * generating more frames than it can put on the wire, then it will return
195 195 * them back to the MAC layer.
196 196 *
197 197 * ---------------------------------
198 198 * Rings, Classification, and Fanout
199 199 * ---------------------------------
200 200 *
201 201 * The heart of MAC is made up of rings, and not those that Elven-kings wear.
202 202 * When receiving a packet, MAC breaks the work into two different, though
203 203 * interrelated phases. The first phase is generally classification and then the
204 204 * second phase is generally fanout. When a frame comes in from a GLDv3 Device,
205 205 * MAC needs to determine where that frame should be delivered. If it's a
206 206 * unicast frame (say a normal TCP/IP packet), then it will be delivered to a
207 207 * single MAC client; however, if it's a broadcast or multicast frame, then MAC
208 208 * may need to deliver it to multiple MAC clients.
209 209 *
210 210 * On transmit, classification isn't quite as important, but may still be used.
211 211 * Unlike with the receive path, the classification is not used to determine
212 212 * devices that should transmit something, but rather is used for special
213 213 * properties of a flow, eg. bandwidth limits for a given IP address, device, or
214 214 * connection.
215 215 *
216 216 * MAC employs a software classifier and leverages hardware classification as
217 217 * well. The software classifier can leverage the full layer two information,
218 218 * source, destination, VLAN, and SAP. If the SAP indicates that IP traffic is
219 219 * being sent, it can classify based on the IP header, and finally, it also
220 220 * knows how to classify based on the local and remote ports of TCP, UDP, and
221 221 * SCTP.
222 222 *
223 223 * Hardware classifiers vary in capability. Generally all hardware classifiers
224 224 * provide the capability to classify based on the destination MAC address. Some
225 225 * hardware has additional filters built in for performing more in-depth
226 226 * classification; however, it often has much more limited resources for these
227 227 * activities as compared to the layer two destination address classification.
228 228 *
229 229 * The modus operandi in MAC is to always ensure that we have software-based
230 230 * capabilities and rules in place and then to supplement that with hardware
231 231 * resources when available. In general, simple layer two classification is
232 232 * sufficient and nothing else is used, unless a specific flow is created with
233 233 * tools such as flowadm(1M) or bandwidth limits are set on a device with
234 234 * dladm(1M).
235 235 *
236 236 * RINGS AND GROUPS
237 237 *
238 238 * To get into how rings and classification play together, it's first important
239 239 * to understand how hardware devices commonly associate rings and allow them to
240 240 * be programmed. Recall that a hardware ring should be thought of as a DMA
241 241 * buffer and an interrupt resource. Rings are then collected into groups. A
242 242 * group itself has a series of classification rules. One or more MAC addresses
243 243 * are assigned to a group.
244 244 *
245 245 * Hardware devices vary in terms of what capabilities they provide. Sometimes
246 246 * they allow for a dynamic assignment of rings to a group and sometimes they
247 247 * have a static assignment of rings to a group. For example, the ixgbe driver
248 248 * has a static assignment of rings to groups such that every group has exactly
249 249 * one ring and the number of groups is equal to the number of rings.
250 250 *
251 251 * Classification and receive side scaling both come into play with how a device
252 252 * advertises itself to MAC and how MAC uses it. If a device supports layer two
253 253 * classification of frames, then MAC will assign MAC addresses to a group as a
254 254 * form of primary classification. If a single MAC address is assigned to a
255 255 * group, a common case, then MAC will consider packets that come in from rings
256 256 * on that group to be fully classified and will not need to do any software
257 257 * classification unless a specific flow has been created.
258 258 *
259 259 * If a device supports receive side scaling, then it may advertise or support
260 260 * groups with multiple rings. In those cases, then receive side scaling will
261 261 * come into play and MAC will use that as a means of fanning out received
262 262 * frames across multiple CPUs. This can also be combined with groups that
263 263 * support layer two classification.
264 264 *
265 265 * If a device supports dynamic assignments of rings to groups, then MAC will
266 266 * change around the way that rings are assigned to various groups as devices
267 267 * come and go from the system. For example, when a VNIC is created, a new flow
268 268 * will be created for the VNIC's MAC address. If a hardware ring is available,
269 269 * MAC may opt to reassign it from one group to another.
270 270 *
271 271 * ASSIGNMENT OF HARDWARE RINGS
272 272 *
273 273 * This is a bit of a complicated subject that varies depending on the device,
274 274 * the use of aggregations, the special nature of the primary mac client. This
275 275 * section deserves being fleshed out.
276 276 *
277 277 * FANOUT
278 278 *
279 279 * illumos uses fanout to help spread out the incoming processing load of chains
280 280 * of frames away from a single CPU. If a device supports receive side scaling,
281 281 * then that provides an initial form of fanout; however, what we're concerned
282 282 * with all happens after the context of a given set of frames being classified
283 283 * to a soft ring set.
284 284 *
285 285 * After frames reach a soft ring set and account for any potential bandwidth
286 286 * related accounting, they may be fanned out based on one of the following
287 287 * three modes:
288 288 *
289 289 * o No Fanout
290 290 * o Protocol level fanout
291 291 * o Full software ring protocol fanout
292 292 *
293 293 * MAC makes the determination as to which of these modes a given soft ring set
294 294 * obtains based on parameters such as whether or not it's the primary mac
295 295 * client, whether it's on a 10 GbE or faster device, user controlled dladm(1M)
296 296 * properties, and the nature of the hardware and the resources that it has.
297 297 *
298 298 * When there is no fanout, MAC does not create any soft rings for a device and
299 299 * the device has frames delivered directly to the MAC client.
300 300 *
301 301 * Otherwise, all fanout is performed by software. MAC divides incoming frames
302 302 * into one of three buckets -- IPv4 TCP traffic, IPv4 UDP traffic, and
303 303 * everything else. Note, VLAN tagged traffic is considered other, regardless of
304 304 * the interior EtherType. Regardless of the type of fanout, these three
305 305 * categories or buckets are always used.
306 306 *
307 307 * The difference between protocol level fanout and full software ring protocol
308 308 * fanout is the number of software rings that end up getting created. The
309 309 * system always uses the same number of software rings per protocol bucket. So
310 310 * in the first case when we're just doing protocol level fanout, we just create
311 311 * one software ring each for IPv4 TCP traffic, IPv4 UDP traffic, and everything
312 312 * else.
313 313 *
314 314 * In the case where we do full software ring protocol fanout, we generally use
315 315 * mac_compute_soft_ring_count() to determine the number of rings. There are
316 316 * other combinations of properties and devices that may send us down other
317 317 * paths, but this is a common starting point. If it's a non-bandwidth enforced
318 318 * device and we're on at least a 10 GbE link, then we'll use eight soft rings
319 319 * per protocol bucket as a starting point. See mac_compute_soft_ring_count()
320 320 * for more information on the total number.
321 321 *
322 322 * For each of these rings, we create a mac_soft_ring_t and an associated worker
323 323 * thread. Particularly when doing full software ring protocol fanout, we bind
324 324 * each of the worker threads to individual CPUs.
325 325 *
326 326 * The other advantage of these software rings is that it allows upper layers to
327 327 * optionally poll on them. For example, TCP can leverage an squeue to poll on
328 328 * the software ring, see squeue.c for more information.
329 329 *
330 330 * DLS BYPASS
331 331 *
332 332 * DLS is the data link services module. It interfaces with DLPI, which is the
333 333 * primary way that other parts of the system such as IP interface with the MAC
334 334 * layer. While DLS is traditionally a STREAMS-based interface, it allows for
335 335 * certain modules such as IP to negotiate various more modern interfaces to be
336 336 * used, which are useful for higher performance and allow it to use direct
337 337 * function calls to DLS instead of using STREAMS.
338 338 *
339 339 * When we have IPv4 TCP or UDP software rings, then traffic on those rings is
340 340 * eligible for what we call the dls bypass. In those cases, rather than going
341 341 * out mac_rx_deliver() to DLS, DLS instead registers them to go directly via
342 342 * the direct callback registered with DLS, generally ip_input().
343 343 *
344 344 * HARDWARE RING POLLING
345 345 *
346 346 * GLDv3 devices with hardware rings generally deliver chains of messages
347 347 * (mblk_t chain) during the context of a single interrupt. However, interrupts
348 348 * are not the only way that these devices may be used. As part of implementing
349 349 * ring support, a GLDv3 device driver must have a way to disable the generation
350 350 * of that interrupt and allow for the operating system to poll on that ring.
351 351 *
352 352 * To implement this, every soft ring set has a worker thread and a polling
353 353 * thread. If a sufficient packet rate comes into the system, MAC will 'blank'
354 354 * (disable) interrupts on that specific ring and the polling thread will start
355 355 * consuming packets from the hardware device and deliver them to the soft ring
356 356 * set, where the worker thread will take over.
357 357 *
358 358 * Once the rate of packet intake drops down below a certain threshold, then
359 359 * polling on the hardware ring will be quiesced and interrupts will be
360 360 * re-enabled for the given ring. This effectively allows the system to shift
361 361 * how it handles a ring based on its load. At high packet rates, polling on the
362 362 * device as opposed to relying on interrupts can actually reduce overall system
363 363 * load due to the minimization of interrupt activity.
364 364 *
365 365 * Note the importance of each ring having its own interrupt source. The whole
366 366 * idea here is that we do not disable interrupts on the device as a whole, but
367 367 * rather each ring can be independently toggled.
368 368 *
369 369 * USE OF WORKER THREADS
370 370 *
371 371 * Both the soft ring set and individual soft rings have a worker thread
372 372 * associated with them that may be bound to a specific CPU in the system. Any
373 373 * such assignment will get reassessed as part of dynamic reconfiguration events
374 374 * in the system such as the onlining and offlining of CPUs and the creation of
375 375 * CPU partitions.
376 376 *
377 377 * In many cases, while in an interrupt, we try to deliver a frame all the way
378 378 * through the stack in the context of the interrupt itself. However, if the
379 379 * amount of queued frames has exceeded a threshold, then we instead defer to
380 380 * the worker thread to do this work and signal it. This is particularly useful
381 381 * when you have the soft ring set delivering frames into multiple software
382 382 * rings. If it was only delivering frames into a single software ring then
383 383 * there'd be no need to have another thread take over. However, if it's
384 384 * delivering chains of frames to multiple rings, then it's worthwhile to have
385 385 * the worker for the software ring take over so that the different software
386 386 * rings can be processed in parallel.
387 387 *
388 388 * In a similar fashion to the hardware polling thread, if we don't have a
389 389 * backlog or there's nothing to do, then the worker thread will go back to
390 390 * sleep and frames can be delivered all the way from an interrupt. This
391 391 * behavior is useful as it's designed to minimize latency and the default
392 392 * disposition of MAC is to optimize for latency.
393 393 *
394 394 * MAINTAINING CHAINS
395 395 *
396 396 * Another useful idea that MAC uses is to try and maintain frames in chains for
397 397 * as long as possible. The idea is that all of MAC can handle chains of frames
398 398 * structured as a series of mblk_t structures linked with the b_next pointer.
399 399 * When performing software classification and software fanout, MAC does not
400 400 * simply determine the destination and send the frame along. Instead, in the
401 401 * case of classification, it tries to maintain a chain for as long as possible
402 402 * before passing it along and performing additional processing.
403 403 *
404 404 * In the case of fanout, MAC first determines what the target software ring is
405 405 * for every frame in the original chain and constructs a new chain for each
406 406 * target. MAC then delivers the new chain to each software ring in succession.
407 407 *
408 408 * The whole rationale for doing this is that we want to try and maintain the
409 409 * pipe as much as possible and deliver as many frames through the stack at once
410 410 * that we can, rather than just pushing a single frame through. This can often
411 411 * help bring down latency and allows MAC to get a better sense of the overall
412 412 * activity in the system and properly engage worker threads.
413 413 *
414 414 * --------------------
415 415 * Bandwidth Management
416 416 * --------------------
417 417 *
418 418 * Bandwidth management is something that's built into the soft ring set itself.
419 419 * When bandwidth limits are placed on a flow, a corresponding soft ring set is
420 420 * toggled into bandwidth mode. This changes how we transmit and receive the
421 421 * frames in question.
422 422 *
423 423 * Bandwidth management is done on a per-tick basis. We translate the user's
424 424 * requested bandwidth from a quantity per-second into a quantity per-tick. MAC
425 425 * cannot process a frame across more than one tick, thus it sets a lower bound
426 426 * for the bandwidth cap to be a single MTU. This also means that when
427 427 * hires ticks are enabled (hz is set to 1000), that the minimum amount of
428 428 * bandwidth is higher, because the number of ticks has increased and MAC has to
429 429 * go from accepting 100 packets / sec to 1000 / sec.
430 430 *
431 431 * The bandwidth counter is reset by either the soft ring set's worker thread or
432 432 * a thread that is doing an inline transmit or receive if they discover that
433 433 * the current tick is in the future from the recorded tick.
434 434 *
435 435 * Whenever we're receiving or transmitting data, we end up leaving most of the
436 436 * work to the soft ring set's worker thread. This forces data inserted into the
437 437 * soft ring set to be effectively serialized and allows us to exhume bandwidth
438 438 * at a reasonable rate. If there is nothing in the soft ring set at the moment
439 439 * and the set has available bandwidth, then it may processed inline.
440 440 * Otherwise, the worker is responsible for taking care of the soft ring set.
441 441 *
442 442 * ---------------------
443 443 * The Receive Data Path
444 444 * ---------------------
445 445 *
446 446 * The following series of ASCII art images breaks apart the way that a frame
447 447 * comes in and is processed in MAC.
448 448 *
449 449 * Part 1 -- Initial frame receipt, SRS classification
450 450 *
451 451 * Here, a frame is received by a GLDv3 driver, generally in the context of an
452 452 * interrupt, and it ends up in mac_rx_common(). A driver calls either mac_rx or
453 453 * mac_rx_ring, depending on whether or not it supports rings and can identify
454 454 * the interrupt as having come from a specific ring. Here we determine whether
455 455 * or not it's fully classified and perform software classification as
456 456 * appropriate. From here, everything always ends up going to either entry [A]
457 457 * or entry [B] based on whether or not they have subflow processing needed. We
458 458 * leave via fanout or delivery.
459 459 *
460 460 * +===========+
461 461 * v hardware v
462 462 * v interrupt v
463 463 * +===========+
464 464 * |
465 465 * * . . appropriate
466 466 * | upcall made
467 467 * | by GLDv3 driver . . always
468 468 * | .
469 469 * +--------+ | +----------+ . +---------------+
470 470 * | GLDv3 | +---->| mac_rx |-----*--->| mac_rx_common |
471 471 * | Driver |-->--+ +----------+ +---------------+
472 472 * +--------+ | ^ |
473 473 * | | ^ v
474 474 * ^ | * . . always +----------------------+
475 475 * | | | | mac_promisc_dispatch |
476 476 * | | +-------------+ +----------------------+
477 477 * | +--->| mac_rx_ring | |
478 478 * | +-------------+ * . . hw classified
479 479 * | v or single flow?
480 480 * | |
481 481 * | +--------++--------------+
482 482 * | | | * hw class,
483 483 * | | * hw classified | subflows
484 484 * | no hw class and . * | or single | exist
485 485 * | subflows | | flow |
486 486 * | | v v
487 487 * | | +-----------+ +-----------+
488 488 * | | | goto | | goto |
489 489 * | | | entry [A] | | entry [B] |
490 490 * | | +-----------+ +-----------+
491 491 * | v ^
492 492 * | +-------------+ |
493 493 * | | mac_rx_flow | * SRS and flow found,
494 494 * | +-------------+ | call flow cb
495 495 * | | +------+
496 496 * | v |
497 497 * v +==========+ +-----------------+
498 498 * | v For each v--->| mac_rx_classify |
499 499 * +----------+ v mblk_t v +-----------------+
500 500 * | srs | +==========+
501 501 * | pollling |
502 502 * | thread |->------------------------------------------+
503 503 * +----------+ |
504 504 * v . inline
505 505 * +--------------------+ +----------+ +---------+ .
506 506 * [A]---->| mac_rx_srs_process |-->| check bw |-->| enqueue |--*---------+
507 507 * +--------------------+ | limits | | frames | |
508 508 * ^ +----------+ | to SRS | |
509 509 * | +---------+ |
510 510 * | send chain +--------+ | |
511 511 * * when clasified | signal | * BW limits, |
512 512 * | flow changes | srs |<---+ loopback, |
513 513 * | | worker | stack too |
514 514 * | +--------+ deep |
515 515 * +-----------------+ +--------+ |
516 516 * | mac_flow_lookup | | srs | +---------------------+ |
517 517 * +-----------------+ | worker |---->| mac_rx_srs_drain |<---+
518 518 * ^ | thread | | mac_rx_srs_drain_bw |
519 519 * | +--------+ +---------------------+
520 520 * | |
521 521 * +----------------------------+ * software rings
522 522 * [B]-->| mac_rx_srs_subflow_process | | for fanout?
523 523 * +----------------------------+ |
524 524 * +----------+-----------+
525 525 * | |
526 526 * v v
527 527 * +--------+ +--------+
528 528 * | goto | | goto |
529 529 * | Part 2 | | Part 3 |
530 530 * +--------+ +--------+
531 531 *
532 532 * Part 2 -- Fanout
533 533 *
534 534 * This part is concerned with using software fanout to assign frames to
535 535 * software rings and then deliver them to MAC clients or allow those rings to
536 536 * be polled upon. While there are two different primary fanout entry points,
537 537 * mac_rx_fanout and mac_rx_proto_fanout, they behave in similar ways, and aside
538 538 * from some of the individual hashing techniques used, most of the general
539 539 * flow is the same.
540 540 *
541 541 * +--------+ +-------------------+
542 542 * | From |---+--------->| mac_rx_srs_fanout |----+
543 543 * | Part 1 | | +-------------------+ | +=================+
544 544 * +--------+ | | v for each mblk_t v
545 545 * * . . protocol only +--->v assign to new v
546 546 * | fanout | v chain based on v
547 547 * | | v hash % nrings v
548 548 * | +-------------------------+ | +=================+
549 549 * +--->| mac_rx_srs_proto_fanout |----+ |
550 550 * +-------------------------+ |
551 551 * v
552 552 * +------------+ +--------------------------+ +================+
553 553 * | enqueue in |<---| mac_rx_soft_ring_process |<------v for each chain v
554 554 * | soft ring | +--------------------------+ +================+
555 555 * +------------+
556 556 * | +-----------+
557 557 * * soft ring set | soft ring |
558 558 * | empty and no | worker |
559 559 * | worker? | thread |
560 560 * | +-----------+
561 561 * +------*----------------+ |
562 562 * | . | v
563 563 * No . * . Yes | +------------------------+
564 564 * | +----<--| mac_rx_soft_ring_drain |
565 565 * | | +------------------------+
566 566 * v |
567 567 * +-----------+ v
568 568 * | signal | +---------------+
569 569 * | soft ring | | Deliver chain |
570 570 * | worker | | goto Part 3 |
571 571 * +-----------+ +---------------+
572 572 *
573 573 *
574 574 * Part 3 -- Packet Delivery
575 575 *
576 576 * Here, we go through and deliver the mblk_t chain directly to a given
577 577 * processing function. In a lot of cases this is mac_rx_deliver(). In the case
578 578 * of DLS bypass being used, then instead we end up going ahead and deliver it
579 579 * to the direct callback registered with DLS, generally ip_input.
580 580 *
581 581 *
582 582 * +---------+ +----------------+ +------------------+
583 583 * | From |---+------->| mac_rx_deliver |--->| Off to DLS, or |
584 584 * | Parts 1 | | +----------------+ | other MAC client |
585 585 * | and 2 | * DLS bypass +------------------+
586 586 * +---------+ | enabled +----------+ +-------------+
587 587 * +---------->| ip_input |--->| To IP |
588 588 * +----------+ | and beyond! |
589 589 * +-------------+
590 590 *
591 591 * ----------------------
592 592 * The Transmit Data Path
593 593 * ----------------------
594 594 *
595 595 * Before we go into the images, it's worth talking about a problem that is a
596 596 * bit different from the receive data path. GLDv3 device drivers have a finite
597 597 * amount of transmit descriptors. When they run out, they return unused frames
598 598 * back to MAC. MAC, at this point has several options about what it will do,
599 599 * which vary based upon the settings that the client uses.
600 600 *
601 601 * When a device runs out of descriptors, the next thing that MAC does is
602 602 * enqueue them off of the soft ring set or a software ring, depending on the
603 603 * configuration of the soft ring set. MAC will enqueue up to a high watermark
604 604 * of mblk_t chains, at which point it will indicate flow control back to the
605 605 * client. Once this condition is reached, any mblk_t chains that were not
606 606 * enqueued will be returned to the caller and they will have to decide what to
607 607 * do with them. There are various flags that control this behavior that a
608 608 * client may pass, which are discussed below.
609 609 *
610 610 * When this condition is hit, MAC also returns a cookie to the client in
611 611 * addition to unconsumed frames. Clients can poll on that cookie and register a
612 612 * callback with MAC to be notified when they are no longer subject to flow
613 613 * control, at which point they may continue to call mac_tx(). This flow control
614 614 * actually manages to work itself all the way up the stack, back through dls,
615 615 * to ip, through the various protocols, and to sockfs.
616 616 *
617 617 * While the behavior described above is the default, this behavior can be
618 618 * modified. There are two alternate modes, described below, which are
619 619 * controlled with flags.
620 620 *
621 621 * DROP MODE
622 622 *
623 623 * This mode is controlled by having the client pass the MAC_DROP_ON_NO_DESC
624 624 * flag. When this is passed, if a device driver runs out of transmit
625 625 * descriptors, then the MAC layer will drop any unsent traffic. The client in
626 626 * this case will never have any frames returned to it.
627 627 *
628 628 * DON'T ENQUEUE
629 629 *
630 630 * This mode is controlled by having the client pass the MAC_TX_NO_ENQUEUE flag.
631 631 * If the MAC_DROP_ON_NO_DESC flag is also passed, it takes precedence. In this
632 632 * mode, when we hit a case where a driver runs out of transmit descriptors,
633 633 * then instead of enqueuing packets in a soft ring set or software ring, we
634 634 * instead return the mblk_t chain back to the caller and immediately put the
635 635 * soft ring set into flow control mode.
636 636 *
637 637 * The following series of ASCII art images describe the transmit data path that
638 638 * MAC clients enter into based on calling into mac_tx(). A soft ring set has a
639 639 * transmission function associated with it. There are seven possible
640 640 * transmission modes, some of which share function entry points. The one that a
641 641 * soft ring set gets depends on properties such as whether there are
642 642 * transmission rings for fanout, whether the device involves aggregations,
643 643 * whether any bandwidth limits exist, etc.
644 644 *
645 645 *
646 646 * Part 1 -- Initial checks
647 647 *
648 648 * * . called by
649 649 * | MAC clients
650 650 * v . . No
651 651 * +--------+ +-----------+ . +-------------------+ +====================+
652 652 * | mac_tx |->| device |-*-->| mac_protect_check |->v Is this the simple v
653 653 * +--------+ | quiesced? | +-------------------+ v case? See [1] v
654 654 * +-----------+ | +====================+
655 655 * * . Yes * failed |
656 656 * v | frames |
657 657 * +--------------+ | +-------+---------+
658 658 * | freemsgchain |<---------+ Yes . * No . *
659 659 * +--------------+ v v
660 660 * +-----------+ +--------+
661 661 * | goto | | goto |
662 662 * | Part 2 | | SRS TX |
663 663 * | Entry [A] | | func |
664 664 * +-----------+ +--------+
665 665 * | |
666 666 * | v
667 667 * | +--------+
668 668 * +---------->| return |
669 669 * | cookie |
670 670 * +--------+
671 671 *
672 672 * [1] The simple case refers to the SRS being configured with the
673 673 * SRS_TX_DEFAULT transmission mode, having a single mblk_t (not a chain), their
674 674 * being only a single active client, and not having a backlog in the srs.
675 675 *
676 676 *
677 677 * Part 2 -- The SRS transmission functions
678 678 *
679 679 * This part is a bit more complicated. The different transmission paths often
680 680 * leverage one another. In this case, we'll draw out the more common ones
681 681 * before the parts that depend upon them. Here, we're going to start with the
682 682 * workings of mac_tx_send() a common function that most of the others end up
683 683 * calling.
684 684 *
685 685 * +-------------+
686 686 * | mac_tx_send |
687 687 * +-------------+
688 688 * |
689 689 * v
690 690 * +=============+ +==============+
691 691 * v more than v--->v check v
692 692 * v one client? v v VLAN and add v
693 693 * +=============+ v VLAN tags v
694 694 * | +==============+
695 695 * | |
696 696 * +------------------+
697 697 * |
698 698 * | [A]
699 699 * v |
700 700 * +============+ . No v
701 701 * v more than v . +==========+ +--------------------------+
702 702 * v one active v-*---->v for each v---->| mac_promisc_dispatch_one |---+
703 703 * v client? v v mblk_t v +--------------------------+ |
704 704 * +============+ +==========+ ^ |
705 705 * | | +==========+ |
706 706 * * . Yes | v hardware v<-------+
707 707 * v +------------+ v rings? v
708 708 * +==========+ | +==========+
709 709 * v for each v No . . . * |
710 710 * v mblk_t v specific | |
711 711 * +==========+ flow | +-----+-----+
712 712 * | | | |
713 713 * v | v v
714 714 * +-----------------+ | +-------+ +---------+
715 715 * | mac_tx_classify |------------+ | GLDv3 | | GLDv3 |
716 716 * +-----------------+ |TX func| | ring tx |
717 717 * | +-------+ | func |
718 718 * * Specific flow, generally | +---------+
719 719 * | bcast, mcast, loopback | |
720 720 * v +-----+-----+
721 721 * +==========+ +---------+ |
722 722 * v valid L2 v--*--->| freemsg | v
723 723 * v header v . No +---------+ +-------------------+
724 724 * +==========+ | return unconsumed |
725 725 * * . Yes | frames to the |
726 726 * v | caller |
727 727 * +===========+ +-------------------+
728 728 * v braodcast v +----------------+ ^
729 729 * v flow? v--*-->| mac_bcast_send |------------------+
730 730 * +===========+ . +----------------+ |
731 731 * | . . Yes |
732 732 * No . * v
733 733 * | +---------------------+ +---------------+ +----------+
734 734 * +->|mac_promisc_dispatch |->| mac_fix_cksum |->| flow |
735 735 * +---------------------+ +---------------+ | callback |
736 736 * +----------+
737 737 *
738 738 *
739 739 * In addition, many but not all of the routines, all rely on
740 740 * mac_tx_softring_process as an entry point.
741 741 *
742 742 *
743 743 * . No . No
744 744 * +--------------------------+ +========+ . +===========+ . +-------------+
745 745 * | mac_tx_soft_ring_process |-->v worker v-*->v out of tx v-*->| goto |
746 746 * +--------------------------+ v only? v v descr.? v | mac_tx_send |
747 747 * +========+ +===========+ +-------------+
748 748 * Yes . * * . Yes |
749 749 * . No v | v
750 750 * v=========+ . +===========+ . Yes | Yes . +==========+
751 751 * v apppend v<--*----------v out of tx v-*-------+---------*--v returned v
752 752 * v mblk_t v v descr.? v | v frames? v
753 753 * v chain v +===========+ | +==========+
754 754 * +=========+ | *. No
755 755 * | | v
756 756 * v v +------------+
757 757 * +===================+ +----------------------+ | done |
758 758 * v worker scheduled? v | mac_tx_sring_enqueue | | processing |
759 759 * v Out of tx descr? v +----------------------+ +------------+
760 760 * +===================+ |
761 761 * | | . Yes v
762 762 * * Yes * No . +============+
763 763 * | v +-*---------v drop on no v
764 764 * | +========+ v v TX desc? v
765 765 * | v wake v +----------+ +============+
766 766 * | v worker v | mac_pkt_ | * . No
767 767 * | +========+ | drop | | . Yes . No
768 768 * | | +----------+ v . .
769 769 * | | v ^ +===============+ . +========+ .
770 770 * +--+--------+---------+ | v Don't enqueue v-*->v ring v-*----+
771 771 * | | v Set? v v empty? v |
772 772 * | +---------------+ +===============+ +========+ |
773 773 * | | | | |
774 774 * | | +-------------------+ | |
775 775 * | *. Yes | +---------+ |
776 776 * | | v v v
777 777 * | | +===========+ +========+ +--------------+
778 778 * | +<-v At hiwat? v v append v | return |
779 779 * | +===========+ v mblk_t v | mblk_t chain |
780 780 * | * No v chain v | and flow |
781 781 * | v +========+ | control |
782 782 * | +=========+ | | cookie |
783 783 * | v append v v +--------------+
784 784 * | v mblk_t v +========+
785 785 * | v chain v v wake v +------------+
786 786 * | +=========+ v worker v-->| done |
787 787 * | | +========+ | processing |
788 788 * | v .. Yes +------------+
789 789 * | +=========+ . +========+
790 790 * | v first v--*-->v wake v
791 791 * | v append? v v worker v
792 792 * | +=========+ +========+
793 793 * | | |
794 794 * | No . * |
795 795 * | v |
796 796 * | +--------------+ |
797 797 * +------>| Return | |
798 798 * | flow control |<------------+
799 799 * | cookie |
800 800 * +--------------+
801 801 *
802 802 *
803 803 * The remaining images are all specific to each of the different transmission
804 804 * modes.
805 805 *
806 806 * SRS TX DEFAULT
807 807 *
808 808 * [ From Part 1 ]
809 809 * |
810 810 * v
811 811 * +-------------------------+
812 812 * | mac_tx_single_ring_mode |
813 813 * +-------------------------+
814 814 * |
815 815 * | . Yes
816 816 * v .
817 817 * +==========+ . +============+
818 818 * v SRS v-*->v Try to v---->---------------------+
819 819 * v backlog? v v enqueue in v |
820 820 * +==========+ v SRS v-->------+ * . . Queue too
821 821 * | +============+ * don't enqueue | deep or
822 822 * * . No ^ | | flag or at | drop flag
823 823 * | | v | hiwat, |
824 824 * v | | | return +---------+
825 825 * +-------------+ | | | cookie | freemsg |
826 826 * | goto |-*-----+ | | +---------+
827 827 * | mac_tx_send | . returned | | |
828 828 * +-------------+ mblk_t | | |
829 829 * | | | |
830 830 * | | | |
831 831 * * . . all mblk_t * queued, | |
832 832 * v consumed | may return | |
833 833 * +-------------+ | tx cookie | |
834 834 * | SRS TX func |<------------+------------+----------------+
835 835 * | completed |
836 836 * +-------------+
837 837 *
838 838 * SRS_TX_SERIALIZE
839 839 *
840 840 * +------------------------+
841 841 * | mac_tx_serializer_mode |
842 842 * +------------------------+
843 843 * |
844 844 * | . No
845 845 * v .
846 846 * +============+ . +============+ +-------------+ +============+
847 847 * v srs being v-*->v set SRS v--->| goto |-->v remove SRS v
848 848 * v processed? v v proc flags v | mac_tx_send | v proc flag v
849 849 * +============+ +============+ +-------------+ +============+
850 850 * | |
851 851 * * Yes |
852 852 * v . No v
853 853 * +--------------------+ . +==========+
854 854 * | mac_tx_srs_enqueue | +------------------------*-----<--v returned v
855 855 * +--------------------+ | v frames? v
856 856 * | | . Yes +==========+
857 857 * | | . |
858 858 * | | . +=========+ v
859 859 * v +-<-*-v queued v +--------------------+
860 860 * +-------------+ | v frames? v<----| mac_tx_srs_enqueue |
861 861 * | SRS TX func | | +=========+ +--------------------+
862 862 * | completed, |<------+ * . Yes
863 863 * | may return | | v
864 864 * | cookie | | +========+
865 865 * +-------------+ +-<---v wake v
866 866 * v worker v
867 867 * +========+
868 868 *
869 869 *
870 870 * SRS_TX_FANOUT
871 871 *
872 872 * . Yes
873 873 * +--------------------+ +=============+ . +--------------------------+
874 874 * | mac_tx_fanout_mode |--->v Have fanout v-*-->| goto |
875 875 * +--------------------+ v hint? v | mac_rx_soft_ring_process |
876 876 * +=============+ +--------------------------+
877 877 * * . No |
878 878 * v ^
879 879 * +===========+ |
880 880 * +--->v for each v +===============+
881 881 * | v mblk_t v v pick softring v
882 882 * same * +===========+ v from hash v
883 883 * hash | | +===============+
884 884 * | v |
885 885 * | +--------------+ |
886 886 * +---| mac_pkt_hash |--->*------------+
887 887 * +--------------+ . different
888 888 * hash or
889 889 * done proc.
890 890 * SRS_TX_AGGR chain
891 891 *
892 892 * +------------------+ +================================+
893 893 * | mac_tx_aggr_mode |--->v Use aggr capab function to v
894 894 * +------------------+ v find appropriate tx ring. v
895 895 * v Applies hash based on aggr v
896 896 * v policy, see mac_tx_aggr_mode() v
897 897 * +================================+
898 898 * |
899 899 * v
900 900 * +-------------------------------+
901 901 * | goto |
902 902 * | mac_rx_srs_soft_ring_process |
903 903 * +-------------------------------+
904 904 *
905 905 *
906 906 * SRS_TX_BW, SRS_TX_BW_FANOUT, SRS_TX_BW_AGGR
907 907 *
908 908 * Note, all three of these tx functions start from the same place --
909 909 * mac_tx_bw_mode().
910 910 *
911 911 * +----------------+
912 912 * | mac_tx_bw_mode |
913 913 * +----------------+
914 914 * |
915 915 * v . No . No . Yes
916 916 * +==============+ . +============+ . +=============+ . +=========+
917 917 * v Out of BW? v--*->v SRS empty? v--*->v reset BW v-*->v Bump BW v
918 918 * +==============+ +============+ v tick count? v v Usage v
919 919 * | | +=============+ +=========+
920 920 * | +---------+ | |
921 921 * | | +--------------------+ |
922 922 * | | | +----------------------+
923 923 * v | v v
924 924 * +===============+ | +==========+ +==========+ +------------------+
925 925 * v Don't enqueue v | v set bw v v Is aggr? v--*-->| goto |
926 926 * v flag set? v | v enforced v +==========+ . | mac_tx_aggr_mode |-+
927 927 * +===============+ | +==========+ | . +------------------+ |
928 928 * | Yes .* | | No . * . |
929 929 * | | | | | . Yes |
930 930 * * . No | | v | |
931 931 * | +---------+ | +========+ v +======+ |
932 932 * | | freemsg | | v append v +============+ . Yes v pick v |
933 933 * | +---------+ | v mblk_t v v Is fanout? v--*---->v ring v |
934 934 * | | | v chain v +============+ +======+ |
935 935 * +------+ | +========+ | | |
936 936 * v | | v v |
937 937 * +---------+ | v +-------------+ +--------------------+ |
938 938 * | return | | +========+ | goto | | goto | |
939 939 * | flow | | v wakeup v | mac_tx_send | | mac_tx_fanout_mode | |
940 940 * | control | | v worker v +-------------+ +--------------------+ |
941 941 * | cookie | | +========+ | | |
942 942 * +---------+ | | | +------+------+
943 943 * | v | |
944 944 * | +---------+ | v
945 945 * | | return | +============+ +------------+
946 946 * | | flow | v unconsumed v-------+ | done |
947 947 * | | control | v frames? v | | processing |
948 948 * | | cookie | +============+ | +------------+
949 949 * | +---------+ | |
950 950 * | Yes * |
951 951 * | | |
952 952 * | +===========+ |
953 953 * | v subtract v |
954 954 * | v unused bw v |
955 955 * | +===========+ |
956 956 * | | |
957 957 * | v |
958 958 * | +--------------------+ |
959 959 * +------------->| mac_tx_srs_enqueue | |
960 960 * +--------------------+ |
961 961 * | |
962 962 * | |
963 963 * +------------+ |
964 964 * | return fc | |
965 965 * | cookie and |<------+
966 966 * | mblk_t |
967 967 * +------------+
968 968 */
969 969
970 970 #include <sys/types.h>
971 971 #include <sys/callb.h>
972 972 #include <sys/sdt.h>
973 973 #include <sys/strsubr.h>
974 974 #include <sys/strsun.h>
975 975 #include <sys/vlan.h>
976 976 #include <sys/stack.h>
977 977 #include <sys/archsystm.h>
978 978 #include <inet/ipsec_impl.h>
979 979 #include <inet/ip_impl.h>
980 980 #include <inet/sadb.h>
981 981 #include <inet/ipsecesp.h>
982 982 #include <inet/ipsecah.h>
983 983 #include <inet/ip6.h>
984 984
985 985 #include <sys/mac_impl.h>
986 986 #include <sys/mac_client_impl.h>
987 987 #include <sys/mac_client_priv.h>
988 988 #include <sys/mac_soft_ring.h>
989 989 #include <sys/mac_flow_impl.h>
990 990
991 991 static mac_tx_cookie_t mac_tx_single_ring_mode(mac_soft_ring_set_t *, mblk_t *,
992 992 uintptr_t, uint16_t, mblk_t **);
993 993 static mac_tx_cookie_t mac_tx_serializer_mode(mac_soft_ring_set_t *, mblk_t *,
994 994 uintptr_t, uint16_t, mblk_t **);
995 995 static mac_tx_cookie_t mac_tx_fanout_mode(mac_soft_ring_set_t *, mblk_t *,
996 996 uintptr_t, uint16_t, mblk_t **);
997 997 static mac_tx_cookie_t mac_tx_bw_mode(mac_soft_ring_set_t *, mblk_t *,
998 998 uintptr_t, uint16_t, mblk_t **);
999 999 static mac_tx_cookie_t mac_tx_aggr_mode(mac_soft_ring_set_t *, mblk_t *,
1000 1000 uintptr_t, uint16_t, mblk_t **);
1001 1001
1002 1002 typedef struct mac_tx_mode_s {
1003 1003 mac_tx_srs_mode_t mac_tx_mode;
1004 1004 mac_tx_func_t mac_tx_func;
1005 1005 } mac_tx_mode_t;
1006 1006
1007 1007 /*
1008 1008 * There are seven modes of operation on the Tx side. These modes get set
1009 1009 * in mac_tx_srs_setup(). Except for the experimental TX_SERIALIZE mode,
1010 1010 * none of the other modes are user configurable. They get selected by
1011 1011 * the system depending upon whether the link (or flow) has multiple Tx
1012 1012 * rings or a bandwidth configured, or if the link is an aggr, etc.
1013 1013 *
1014 1014 * When the Tx SRS is operating in aggr mode (st_mode) or if there are
1015 1015 * multiple Tx rings owned by Tx SRS, then each Tx ring (pseudo or
1016 1016 * otherwise) will have a soft ring associated with it. These soft rings
1017 1017 * are stored in srs_tx_soft_rings[] array.
1018 1018 *
1019 1019 * Additionally in the case of aggr, there is the st_soft_rings[] array
1020 1020 * in the mac_srs_tx_t structure. This array is used to store the same
1021 1021 * set of soft rings that are present in srs_tx_soft_rings[] array but
1022 1022 * in a different manner. The soft ring associated with the pseudo Tx
1023 1023 * ring is saved at mr_index (of the pseudo ring) in st_soft_rings[]
1024 1024 * array. This helps in quickly getting the soft ring associated with the
1025 1025 * Tx ring when aggr_find_tx_ring() returns the pseudo Tx ring that is to
1026 1026 * be used for transmit.
1027 1027 */
1028 1028 mac_tx_mode_t mac_tx_mode_list[] = {
1029 1029 {SRS_TX_DEFAULT, mac_tx_single_ring_mode},
1030 1030 {SRS_TX_SERIALIZE, mac_tx_serializer_mode},
1031 1031 {SRS_TX_FANOUT, mac_tx_fanout_mode},
1032 1032 {SRS_TX_BW, mac_tx_bw_mode},
1033 1033 {SRS_TX_BW_FANOUT, mac_tx_bw_mode},
1034 1034 {SRS_TX_AGGR, mac_tx_aggr_mode},
1035 1035 {SRS_TX_BW_AGGR, mac_tx_bw_mode}
1036 1036 };
1037 1037
1038 1038 /*
1039 1039 * Soft Ring Set (SRS) - The Run time code that deals with
1040 1040 * dynamic polling from the hardware, bandwidth enforcement,
1041 1041 * fanout etc.
1042 1042 *
1043 1043 * We try to use H/W classification on NIC and assign traffic for
1044 1044 * a MAC address to a particular Rx ring or ring group. There is a
1045 1045 * 1-1 mapping between a SRS and a Rx ring. The SRS dynamically
1046 1046 * switches the underlying Rx ring between interrupt and
1047 1047 * polling mode and enforces any specified B/W control.
1048 1048 *
1049 1049 * There is always a SRS created and tied to each H/W and S/W rule.
1050 1050 * Whenever we create a H/W rule, we always add the the same rule to
1051 1051 * S/W classifier and tie a SRS to it.
1052 1052 *
1053 1053 * In case a B/W control is specified, it is broken into bytes
1054 1054 * per ticks and as soon as the quota for a tick is exhausted,
1055 1055 * the underlying Rx ring is forced into poll mode for remainder of
1056 1056 * the tick. The SRS poll thread only polls for bytes that are
1057 1057 * allowed to come in the SRS. We typically let 4x the configured
1058 1058 * B/W worth of packets to come in the SRS (to prevent unnecessary
1059 1059 * drops due to bursts) but only process the specified amount.
1060 1060 *
1061 1061 * A MAC client (e.g. a VNIC or aggr) can have 1 or more
1062 1062 * Rx rings (and corresponding SRSs) assigned to it. The SRS
1063 1063 * in turn can have softrings to do protocol level fanout or
1064 1064 * softrings to do S/W based fanout or both. In case the NIC
1065 1065 * has no Rx rings, we do S/W classification to respective SRS.
1066 1066 * The S/W classification rule is always setup and ready. This
1067 1067 * allows the MAC layer to reassign Rx rings whenever needed
1068 1068 * but packets still continue to flow via the default path and
1069 1069 * getting S/W classified to correct SRS.
1070 1070 *
1071 1071 * The SRS's are used on both Tx and Rx side. They use the same
1072 1072 * data structure but the processing routines have slightly different
1073 1073 * semantics due to the fact that Rx side needs to do dynamic
1074 1074 * polling etc.
1075 1075 *
1076 1076 * Dynamic Polling Notes
1077 1077 * =====================
1078 1078 *
1079 1079 * Each Soft ring set is capable of switching its Rx ring between
1080 1080 * interrupt and poll mode and actively 'polls' for packets in
1081 1081 * poll mode. If the SRS is implementing a B/W limit, it makes
1082 1082 * sure that only Max allowed packets are pulled in poll mode
1083 1083 * and goes to poll mode as soon as B/W limit is exceeded. As
1084 1084 * such, there are no overheads to implement B/W limits.
1085 1085 *
1086 1086 * In poll mode, its better to keep the pipeline going where the
1087 1087 * SRS worker thread keeps processing packets and poll thread
1088 1088 * keeps bringing more packets (specially if they get to run
1089 1089 * on different CPUs). This also prevents the overheads associated
1090 1090 * by excessive signalling (on NUMA machines, this can be
1091 1091 * pretty devastating). The exception is latency optimized case
1092 1092 * where worker thread does no work and interrupt and poll thread
1093 1093 * are allowed to do their own drain.
1094 1094 *
1095 1095 * We use the following policy to control Dynamic Polling:
1096 1096 * 1) We switch to poll mode anytime the processing
1097 1097 * thread causes a backlog to build up in SRS and
1098 1098 * its associated Soft Rings (sr_poll_pkt_cnt > 0).
1099 1099 * 2) As long as the backlog stays under the low water
1100 1100 * mark (sr_lowat), we poll the H/W for more packets.
1101 1101 * 3) If the backlog (sr_poll_pkt_cnt) exceeds low
1102 1102 * water mark, we stay in poll mode but don't poll
1103 1103 * the H/W for more packets.
1104 1104 * 4) Anytime in polling mode, if we poll the H/W for
1105 1105 * packets and find nothing plus we have an existing
1106 1106 * backlog (sr_poll_pkt_cnt > 0), we stay in polling
1107 1107 * mode but don't poll the H/W for packets anymore
1108 1108 * (let the polling thread go to sleep).
1109 1109 * 5) Once the backlog is relived (packets are processed)
1110 1110 * we reenable polling (by signalling the poll thread)
1111 1111 * only when the backlog dips below sr_poll_thres.
1112 1112 * 6) sr_hiwat is used exclusively when we are not
1113 1113 * polling capable and is used to decide when to
1114 1114 * drop packets so the SRS queue length doesn't grow
1115 1115 * infinitely.
1116 1116 *
1117 1117 * NOTE: Also see the block level comment on top of mac_soft_ring.c
1118 1118 */
1119 1119
1120 1120 /*
1121 1121 * mac_latency_optimize
1122 1122 *
1123 1123 * Controls whether the poll thread can process the packets inline
1124 1124 * or let the SRS worker thread do the processing. This applies if
1125 1125 * the SRS was not being processed. For latency sensitive traffic,
1126 1126 * this needs to be true to allow inline processing. For throughput
1127 1127 * under load, this should be false.
1128 1128 *
1129 1129 * This (and other similar) tunable should be rolled into a link
1130 1130 * or flow specific workload hint that can be set using dladm
1131 1131 * linkprop (instead of multiple such tunables).
1132 1132 */
1133 1133 boolean_t mac_latency_optimize = B_TRUE;
1134 1134
1135 1135 /*
1136 1136 * MAC_RX_SRS_ENQUEUE_CHAIN and MAC_TX_SRS_ENQUEUE_CHAIN
1137 1137 *
1138 1138 * queue a mp or chain in soft ring set and increment the
1139 1139 * local count (srs_count) for the SRS and the shared counter
1140 1140 * (srs_poll_pkt_cnt - shared between SRS and its soft rings
1141 1141 * to track the total unprocessed packets for polling to work
1142 1142 * correctly).
1143 1143 *
1144 1144 * The size (total bytes queued) counters are incremented only
1145 1145 * if we are doing B/W control.
1146 1146 */
1147 1147 #define MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \
1148 1148 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
1149 1149 if ((mac_srs)->srs_last != NULL) \
1150 1150 (mac_srs)->srs_last->b_next = (head); \
1151 1151 else \
1152 1152 (mac_srs)->srs_first = (head); \
1153 1153 (mac_srs)->srs_last = (tail); \
1154 1154 (mac_srs)->srs_count += count; \
1155 1155 }
1156 1156
1157 1157 #define MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \
1158 1158 mac_srs_rx_t *srs_rx = &(mac_srs)->srs_rx; \
1159 1159 \
1160 1160 MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz); \
1161 1161 srs_rx->sr_poll_pkt_cnt += count; \
1162 1162 ASSERT(srs_rx->sr_poll_pkt_cnt > 0); \
1163 1163 if ((mac_srs)->srs_type & SRST_BW_CONTROL) { \
1164 1164 (mac_srs)->srs_size += (sz); \
1165 1165 mutex_enter(&(mac_srs)->srs_bw->mac_bw_lock); \
1166 1166 (mac_srs)->srs_bw->mac_bw_sz += (sz); \
1167 1167 mutex_exit(&(mac_srs)->srs_bw->mac_bw_lock); \
1168 1168 } \
1169 1169 }
1170 1170
1171 1171 #define MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \
1172 1172 mac_srs->srs_state |= SRS_ENQUEUED; \
1173 1173 MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz); \
1174 1174 if ((mac_srs)->srs_type & SRST_BW_CONTROL) { \
1175 1175 (mac_srs)->srs_size += (sz); \
1176 1176 (mac_srs)->srs_bw->mac_bw_sz += (sz); \
1177 1177 } \
1178 1178 }
1179 1179
1180 1180 /*
1181 1181 * Turn polling on routines
1182 1182 */
1183 1183 #define MAC_SRS_POLLING_ON(mac_srs) { \
1184 1184 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
1185 1185 if (((mac_srs)->srs_state & \
1186 1186 (SRS_POLLING_CAPAB|SRS_POLLING)) == SRS_POLLING_CAPAB) { \
1187 1187 (mac_srs)->srs_state |= SRS_POLLING; \
1188 1188 (void) mac_hwring_disable_intr((mac_ring_handle_t) \
1189 1189 (mac_srs)->srs_ring); \
1190 1190 (mac_srs)->srs_rx.sr_poll_on++; \
1191 1191 } \
1192 1192 }
1193 1193
1194 1194 #define MAC_SRS_WORKER_POLLING_ON(mac_srs) { \
1195 1195 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
1196 1196 if (((mac_srs)->srs_state & \
1197 1197 (SRS_POLLING_CAPAB|SRS_WORKER|SRS_POLLING)) == \
1198 1198 (SRS_POLLING_CAPAB|SRS_WORKER)) { \
1199 1199 (mac_srs)->srs_state |= SRS_POLLING; \
1200 1200 (void) mac_hwring_disable_intr((mac_ring_handle_t) \
1201 1201 (mac_srs)->srs_ring); \
1202 1202 (mac_srs)->srs_rx.sr_worker_poll_on++; \
1203 1203 } \
1204 1204 }
1205 1205
1206 1206 /*
1207 1207 * MAC_SRS_POLL_RING
1208 1208 *
1209 1209 * Signal the SRS poll thread to poll the underlying H/W ring
1210 1210 * provided it wasn't already polling (SRS_GET_PKTS was set).
1211 1211 *
1212 1212 * Poll thread gets to run only from mac_rx_srs_drain() and only
1213 1213 * if the drain was being done by the worker thread.
1214 1214 */
1215 1215 #define MAC_SRS_POLL_RING(mac_srs) { \
1216 1216 mac_srs_rx_t *srs_rx = &(mac_srs)->srs_rx; \
1217 1217 \
1218 1218 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
1219 1219 srs_rx->sr_poll_thr_sig++; \
1220 1220 if (((mac_srs)->srs_state & \
1221 1221 (SRS_POLLING_CAPAB|SRS_WORKER|SRS_GET_PKTS)) == \
1222 1222 (SRS_WORKER|SRS_POLLING_CAPAB)) { \
1223 1223 (mac_srs)->srs_state |= SRS_GET_PKTS; \
1224 1224 cv_signal(&(mac_srs)->srs_cv); \
1225 1225 } else { \
1226 1226 srs_rx->sr_poll_thr_busy++; \
1227 1227 } \
1228 1228 }
1229 1229
1230 1230 /*
1231 1231 * MAC_SRS_CHECK_BW_CONTROL
1232 1232 *
1233 1233 * Check to see if next tick has started so we can reset the
1234 1234 * SRS_BW_ENFORCED flag and allow more packets to come in the
1235 1235 * system.
1236 1236 */
1237 1237 #define MAC_SRS_CHECK_BW_CONTROL(mac_srs) { \
1238 1238 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
1239 1239 ASSERT(((mac_srs)->srs_type & SRST_TX) || \
1240 1240 MUTEX_HELD(&(mac_srs)->srs_bw->mac_bw_lock)); \
1241 1241 clock_t now = ddi_get_lbolt(); \
1242 1242 if ((mac_srs)->srs_bw->mac_bw_curr_time != now) { \
1243 1243 (mac_srs)->srs_bw->mac_bw_curr_time = now; \
1244 1244 (mac_srs)->srs_bw->mac_bw_used = 0; \
1245 1245 if ((mac_srs)->srs_bw->mac_bw_state & SRS_BW_ENFORCED) \
1246 1246 (mac_srs)->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED; \
1247 1247 } \
1248 1248 }
1249 1249
1250 1250 /*
1251 1251 * MAC_SRS_WORKER_WAKEUP
1252 1252 *
1253 1253 * Wake up the SRS worker thread to process the queue as long as
1254 1254 * no one else is processing the queue. If we are optimizing for
1255 1255 * latency, we wake up the worker thread immediately or else we
1256 1256 * wait mac_srs_worker_wakeup_ticks before worker thread gets
1257 1257 * woken up.
1258 1258 */
1259 1259 int mac_srs_worker_wakeup_ticks = 0;
1260 1260 #define MAC_SRS_WORKER_WAKEUP(mac_srs) { \
1261 1261 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
1262 1262 if (!((mac_srs)->srs_state & SRS_PROC) && \
1263 1263 (mac_srs)->srs_tid == NULL) { \
1264 1264 if (((mac_srs)->srs_state & SRS_LATENCY_OPT) || \
1265 1265 (mac_srs_worker_wakeup_ticks == 0)) \
1266 1266 cv_signal(&(mac_srs)->srs_async); \
1267 1267 else \
1268 1268 (mac_srs)->srs_tid = \
1269 1269 timeout(mac_srs_fire, (mac_srs), \
1270 1270 mac_srs_worker_wakeup_ticks); \
1271 1271 } \
1272 1272 }
1273 1273
1274 1274 #define TX_BANDWIDTH_MODE(mac_srs) \
1275 1275 ((mac_srs)->srs_tx.st_mode == SRS_TX_BW || \
1276 1276 (mac_srs)->srs_tx.st_mode == SRS_TX_BW_FANOUT || \
1277 1277 (mac_srs)->srs_tx.st_mode == SRS_TX_BW_AGGR)
1278 1278
1279 1279 #define TX_SRS_TO_SOFT_RING(mac_srs, head, hint) { \
1280 1280 if (tx_mode == SRS_TX_BW_FANOUT) \
1281 1281 (void) mac_tx_fanout_mode(mac_srs, head, hint, 0, NULL);\
1282 1282 else \
1283 1283 (void) mac_tx_aggr_mode(mac_srs, head, hint, 0, NULL); \
1284 1284 }
1285 1285
1286 1286 /*
1287 1287 * MAC_TX_SRS_BLOCK
1288 1288 *
1289 1289 * Always called from mac_tx_srs_drain() function. SRS_TX_BLOCKED
1290 1290 * will be set only if srs_tx_woken_up is FALSE. If
1291 1291 * srs_tx_woken_up is TRUE, it indicates that the wakeup arrived
1292 1292 * before we grabbed srs_lock to set SRS_TX_BLOCKED. We need to
1293 1293 * attempt to transmit again and not setting SRS_TX_BLOCKED does
1294 1294 * that.
1295 1295 */
1296 1296 #define MAC_TX_SRS_BLOCK(srs, mp) { \
1297 1297 ASSERT(MUTEX_HELD(&(srs)->srs_lock)); \
1298 1298 if ((srs)->srs_tx.st_woken_up) { \
1299 1299 (srs)->srs_tx.st_woken_up = B_FALSE; \
1300 1300 } else { \
1301 1301 ASSERT(!((srs)->srs_state & SRS_TX_BLOCKED)); \
1302 1302 (srs)->srs_state |= SRS_TX_BLOCKED; \
1303 1303 (srs)->srs_tx.st_stat.mts_blockcnt++; \
1304 1304 } \
1305 1305 }
1306 1306
1307 1307 /*
1308 1308 * MAC_TX_SRS_TEST_HIWAT
1309 1309 *
1310 1310 * Called before queueing a packet onto Tx SRS to test and set
1311 1311 * SRS_TX_HIWAT if srs_count exceeds srs_tx_hiwat.
1312 1312 */
1313 1313 #define MAC_TX_SRS_TEST_HIWAT(srs, mp, tail, cnt, sz, cookie) { \
1314 1314 boolean_t enqueue = 1; \
1315 1315 \
1316 1316 if ((srs)->srs_count > (srs)->srs_tx.st_hiwat) { \
1317 1317 /* \
1318 1318 * flow-controlled. Store srs in cookie so that it \
1319 1319 * can be returned as mac_tx_cookie_t to client \
1320 1320 */ \
1321 1321 (srs)->srs_state |= SRS_TX_HIWAT; \
1322 1322 cookie = (mac_tx_cookie_t)srs; \
1323 1323 (srs)->srs_tx.st_hiwat_cnt++; \
1324 1324 if ((srs)->srs_count > (srs)->srs_tx.st_max_q_cnt) { \
1325 1325 /* increment freed stats */ \
1326 1326 (srs)->srs_tx.st_stat.mts_sdrops += cnt; \
1327 1327 /* \
1328 1328 * b_prev may be set to the fanout hint \
1329 1329 * hence can't use freemsg directly \
1330 1330 */ \
1331 1331 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE); \
1332 1332 DTRACE_PROBE1(tx_queued_hiwat, \
1333 1333 mac_soft_ring_set_t *, srs); \
1334 1334 enqueue = 0; \
1335 1335 } \
1336 1336 } \
1337 1337 if (enqueue) \
1338 1338 MAC_TX_SRS_ENQUEUE_CHAIN(srs, mp, tail, cnt, sz); \
1339 1339 }
1340 1340
1341 1341 /* Some utility macros */
1342 1342 #define MAC_SRS_BW_LOCK(srs) \
1343 1343 if (!(srs->srs_type & SRST_TX)) \
1344 1344 mutex_enter(&srs->srs_bw->mac_bw_lock);
1345 1345
1346 1346 #define MAC_SRS_BW_UNLOCK(srs) \
1347 1347 if (!(srs->srs_type & SRST_TX)) \
1348 1348 mutex_exit(&srs->srs_bw->mac_bw_lock);
1349 1349
1350 1350 #define MAC_TX_SRS_DROP_MESSAGE(srs, mp, cookie) { \
1351 1351 mac_pkt_drop(NULL, NULL, mp, B_FALSE); \
1352 1352 /* increment freed stats */ \
1353 1353 mac_srs->srs_tx.st_stat.mts_sdrops++; \
1354 1354 cookie = (mac_tx_cookie_t)srs; \
1355 1355 }
1356 1356
1357 1357 #define MAC_TX_SET_NO_ENQUEUE(srs, mp_chain, ret_mp, cookie) { \
1358 1358 mac_srs->srs_state |= SRS_TX_WAKEUP_CLIENT; \
1359 1359 cookie = (mac_tx_cookie_t)srs; \
1360 1360 *ret_mp = mp_chain; \
1361 1361 }
1362 1362
1363 1363 /*
1364 1364 * MAC_RX_SRS_TOODEEP
1365 1365 *
1366 1366 * Macro called as part of receive-side processing to determine if handling
1367 1367 * can occur in situ (in the interrupt thread) or if it should be left to a
1368 1368 * worker thread. Note that the constant used to make this determination is
1369 1369 * not entirely made-up, and is a result of some emprical validation. That
1370 1370 * said, the constant is left as a static variable to allow it to be
1371 1371 * dynamically tuned in the field if and as needed.
1372 1372 */
1373 1373 static uintptr_t mac_rx_srs_stack_needed = 10240;
1374 1374 static uint_t mac_rx_srs_stack_toodeep;
1375 1375
1376 1376 #ifndef STACK_GROWTH_DOWN
1377 1377 #error Downward stack growth assumed.
1378 1378 #endif
1379 1379
1380 1380 #define MAC_RX_SRS_TOODEEP() (STACK_BIAS + (uintptr_t)getfp() - \
1381 1381 (uintptr_t)curthread->t_stkbase < mac_rx_srs_stack_needed && \
1382 1382 ++mac_rx_srs_stack_toodeep)
1383 1383
1384 1384
1385 1385 /*
1386 1386 * Drop the rx packet and advance to the next one in the chain.
1387 1387 */
1388 1388 static void
1389 1389 mac_rx_drop_pkt(mac_soft_ring_set_t *srs, mblk_t *mp)
1390 1390 {
1391 1391 mac_srs_rx_t *srs_rx = &srs->srs_rx;
1392 1392
1393 1393 ASSERT(mp->b_next == NULL);
1394 1394 mutex_enter(&srs->srs_lock);
1395 1395 MAC_UPDATE_SRS_COUNT_LOCKED(srs, 1);
1396 1396 MAC_UPDATE_SRS_SIZE_LOCKED(srs, msgdsize(mp));
1397 1397 mutex_exit(&srs->srs_lock);
1398 1398
1399 1399 srs_rx->sr_stat.mrs_sdrops++;
1400 1400 freemsg(mp);
1401 1401 }
1402 1402
1403 1403 /* DATAPATH RUNTIME ROUTINES */
1404 1404
1405 1405 /*
1406 1406 * mac_srs_fire
1407 1407 *
1408 1408 * Timer callback routine for waking up the SRS worker thread.
1409 1409 */
1410 1410 static void
1411 1411 mac_srs_fire(void *arg)
1412 1412 {
1413 1413 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)arg;
1414 1414
1415 1415 mutex_enter(&mac_srs->srs_lock);
1416 1416 if (mac_srs->srs_tid == NULL) {
1417 1417 mutex_exit(&mac_srs->srs_lock);
1418 1418 return;
1419 1419 }
1420 1420
1421 1421 mac_srs->srs_tid = NULL;
1422 1422 if (!(mac_srs->srs_state & SRS_PROC))
1423 1423 cv_signal(&mac_srs->srs_async);
1424 1424
1425 1425 mutex_exit(&mac_srs->srs_lock);
1426 1426 }
1427 1427
1428 1428 /*
1429 1429 * 'hint' is fanout_hint (type of uint64_t) which is given by the TCP/IP stack,
1430 1430 * and it is used on the TX path.
1431 1431 */
1432 1432 #define HASH_HINT(hint) \
1433 1433 ((hint) ^ ((hint) >> 24) ^ ((hint) >> 16) ^ ((hint) >> 8))
1434 1434
1435 1435
1436 1436 /*
1437 1437 * hash based on the src address, dst address and the port information.
1438 1438 */
1439 1439 #define HASH_ADDR(src, dst, ports) \
1440 1440 (ntohl((src) + (dst)) ^ ((ports) >> 24) ^ ((ports) >> 16) ^ \
1441 1441 ((ports) >> 8) ^ (ports))
1442 1442
1443 1443 #define COMPUTE_INDEX(key, sz) (key % sz)
1444 1444
1445 1445 #define FANOUT_ENQUEUE_MP(head, tail, cnt, bw_ctl, sz, sz0, mp) { \
1446 1446 if ((tail) != NULL) { \
1447 1447 ASSERT((tail)->b_next == NULL); \
1448 1448 (tail)->b_next = (mp); \
1449 1449 } else { \
1450 1450 ASSERT((head) == NULL); \
1451 1451 (head) = (mp); \
1452 1452 } \
1453 1453 (tail) = (mp); \
1454 1454 (cnt)++; \
1455 1455 if ((bw_ctl)) \
1456 1456 (sz) += (sz0); \
1457 1457 }
1458 1458
1459 1459 #define MAC_FANOUT_DEFAULT 0
1460 1460 #define MAC_FANOUT_RND_ROBIN 1
1461 1461 int mac_fanout_type = MAC_FANOUT_DEFAULT;
1462 1462
1463 1463 #define MAX_SR_TYPES 3
1464 1464 /* fanout types for port based hashing */
1465 1465 enum pkt_type {
1466 1466 V4_TCP = 0,
1467 1467 V4_UDP,
1468 1468 OTH,
1469 1469 UNDEF
1470 1470 };
1471 1471
1472 1472 /*
1473 1473 * Pair of local and remote ports in the transport header
1474 1474 */
1475 1475 #define PORTS_SIZE 4
1476 1476
1477 1477 /*
1478 1478 * mac_rx_srs_proto_fanout
1479 1479 *
1480 1480 * This routine delivers packets destined to an SRS into one of the
1481 1481 * protocol soft rings.
1482 1482 *
1483 1483 * Given a chain of packets we need to split it up into multiple sub chains
1484 1484 * destined into TCP, UDP or OTH soft ring. Instead of entering
1485 1485 * the soft ring one packet at a time, we want to enter it in the form of a
1486 1486 * chain otherwise we get this start/stop behaviour where the worker thread
1487 1487 * goes to sleep and then next packets comes in forcing it to wake up etc.
1488 1488 */
1489 1489 static void
1490 1490 mac_rx_srs_proto_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head)
1491 1491 {
1492 1492 struct ether_header *ehp;
1493 1493 struct ether_vlan_header *evhp;
1494 1494 uint32_t sap;
1495 1495 ipha_t *ipha;
1496 1496 uint8_t *dstaddr;
1497 1497 size_t hdrsize;
1498 1498 mblk_t *mp;
1499 1499 mblk_t *headmp[MAX_SR_TYPES];
1500 1500 mblk_t *tailmp[MAX_SR_TYPES];
1501 1501 int cnt[MAX_SR_TYPES];
1502 1502 size_t sz[MAX_SR_TYPES];
1503 1503 size_t sz1;
1504 1504 boolean_t bw_ctl;
1505 1505 boolean_t hw_classified;
1506 1506 boolean_t dls_bypass;
1507 1507 boolean_t is_ether;
1508 1508 boolean_t is_unicast;
1509 1509 enum pkt_type type;
1510 1510 mac_client_impl_t *mcip = mac_srs->srs_mcip;
1511 1511
1512 1512 is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER);
1513 1513 bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0);
1514 1514
1515 1515 /*
1516 1516 * If we don't have a Rx ring, S/W classification would have done
1517 1517 * its job and its a packet meant for us. If we were polling on
1518 1518 * the default ring (i.e. there was a ring assigned to this SRS),
1519 1519 * then we need to make sure that the mac address really belongs
1520 1520 * to us.
1521 1521 */
1522 1522 hw_classified = mac_srs->srs_ring != NULL &&
1523 1523 mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER;
1524 1524
1525 1525 /*
1526 1526 * Special clients (eg. VLAN, non ether, etc) need DLS
1527 1527 * processing in the Rx path. SRST_DLS_BYPASS will be clear for
1528 1528 * such SRSs. Another way of disabling bypass is to set the
1529 1529 * MCIS_RX_BYPASS_DISABLE flag.
1530 1530 */
1531 1531 dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) &&
1532 1532 ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0);
1533 1533
1534 1534 bzero(headmp, MAX_SR_TYPES * sizeof (mblk_t *));
1535 1535 bzero(tailmp, MAX_SR_TYPES * sizeof (mblk_t *));
1536 1536 bzero(cnt, MAX_SR_TYPES * sizeof (int));
1537 1537 bzero(sz, MAX_SR_TYPES * sizeof (size_t));
1538 1538
1539 1539 /*
1540 1540 * We got a chain from SRS that we need to send to the soft rings.
1541 1541 * Since squeues for TCP & IPv4 sap poll their soft rings (for
1542 1542 * performance reasons), we need to separate out v4_tcp, v4_udp
1543 1543 * and the rest goes in other.
1544 1544 */
1545 1545 while (head != NULL) {
1546 1546 mp = head;
1547 1547 head = head->b_next;
1548 1548 mp->b_next = NULL;
1549 1549
1550 1550 type = OTH;
1551 1551 sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
1552 1552
1553 1553 if (is_ether) {
1554 1554 /*
1555 1555 * At this point we can be sure the packet at least
1556 1556 * has an ether header.
1557 1557 */
1558 1558 if (sz1 < sizeof (struct ether_header)) {
1559 1559 mac_rx_drop_pkt(mac_srs, mp);
1560 1560 continue;
1561 1561 }
1562 1562 ehp = (struct ether_header *)mp->b_rptr;
1563 1563
1564 1564 /*
1565 1565 * Determine if this is a VLAN or non-VLAN packet.
1566 1566 */
1567 1567 if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) {
1568 1568 evhp = (struct ether_vlan_header *)mp->b_rptr;
1569 1569 sap = ntohs(evhp->ether_type);
1570 1570 hdrsize = sizeof (struct ether_vlan_header);
1571 1571 /*
1572 1572 * Check if the VID of the packet, if any,
1573 1573 * belongs to this client.
1574 1574 */
1575 1575 if (!mac_client_check_flow_vid(mcip,
1576 1576 VLAN_ID(ntohs(evhp->ether_tci)))) {
1577 1577 mac_rx_drop_pkt(mac_srs, mp);
1578 1578 continue;
1579 1579 }
1580 1580 } else {
1581 1581 hdrsize = sizeof (struct ether_header);
1582 1582 }
1583 1583 is_unicast =
1584 1584 ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0);
1585 1585 dstaddr = (uint8_t *)&ehp->ether_dhost;
1586 1586 } else {
1587 1587 mac_header_info_t mhi;
1588 1588
1589 1589 if (mac_header_info((mac_handle_t)mcip->mci_mip,
1590 1590 mp, &mhi) != 0) {
1591 1591 mac_rx_drop_pkt(mac_srs, mp);
1592 1592 continue;
1593 1593 }
1594 1594 hdrsize = mhi.mhi_hdrsize;
1595 1595 sap = mhi.mhi_bindsap;
1596 1596 is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST);
1597 1597 dstaddr = (uint8_t *)mhi.mhi_daddr;
1598 1598 }
1599 1599
1600 1600 if (!dls_bypass) {
1601 1601 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type],
1602 1602 cnt[type], bw_ctl, sz[type], sz1, mp);
1603 1603 continue;
1604 1604 }
1605 1605
1606 1606 if (sap == ETHERTYPE_IP) {
1607 1607 /*
1608 1608 * If we are H/W classified, but we have promisc
1609 1609 * on, then we need to check for the unicast address.
1610 1610 */
1611 1611 if (hw_classified && mcip->mci_promisc_list != NULL) {
1612 1612 mac_address_t *map;
1613 1613
1614 1614 rw_enter(&mcip->mci_rw_lock, RW_READER);
1615 1615 map = mcip->mci_unicast;
1616 1616 if (bcmp(dstaddr, map->ma_addr,
1617 1617 map->ma_len) == 0)
1618 1618 type = UNDEF;
1619 1619 rw_exit(&mcip->mci_rw_lock);
1620 1620 } else if (is_unicast) {
1621 1621 type = UNDEF;
1622 1622 }
1623 1623 }
1624 1624
1625 1625 /*
1626 1626 * This needs to become a contract with the driver for
1627 1627 * the fast path.
1628 1628 *
1629 1629 * In the normal case the packet will have at least the L2
1630 1630 * header and the IP + Transport header in the same mblk.
1631 1631 * This is usually the case when the NIC driver sends up
1632 1632 * the packet. This is also true when the stack generates
1633 1633 * a packet that is looped back and when the stack uses the
1634 1634 * fastpath mechanism. The normal case is optimized for
1635 1635 * performance and may bypass DLS. All other cases go through
1636 1636 * the 'OTH' type path without DLS bypass.
1637 1637 */
1638 1638
1639 1639 ipha = (ipha_t *)(mp->b_rptr + hdrsize);
1640 1640 if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha))
1641 1641 type = OTH;
1642 1642
1643 1643 if (type == OTH) {
1644 1644 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type],
1645 1645 cnt[type], bw_ctl, sz[type], sz1, mp);
1646 1646 continue;
1647 1647 }
1648 1648
1649 1649 ASSERT(type == UNDEF);
1650 1650 /*
1651 1651 * We look for at least 4 bytes past the IP header to get
1652 1652 * the port information. If we get an IP fragment, we don't
1653 1653 * have the port information, and we use just the protocol
1654 1654 * information.
1655 1655 */
1656 1656 switch (ipha->ipha_protocol) {
1657 1657 case IPPROTO_TCP:
1658 1658 type = V4_TCP;
1659 1659 mp->b_rptr += hdrsize;
1660 1660 break;
1661 1661 case IPPROTO_UDP:
1662 1662 type = V4_UDP;
1663 1663 mp->b_rptr += hdrsize;
1664 1664 break;
1665 1665 default:
1666 1666 type = OTH;
1667 1667 break;
1668 1668 }
1669 1669
1670 1670 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], cnt[type],
1671 1671 bw_ctl, sz[type], sz1, mp);
1672 1672 }
1673 1673
1674 1674 for (type = V4_TCP; type < UNDEF; type++) {
1675 1675 if (headmp[type] != NULL) {
1676 1676 mac_soft_ring_t *softring;
1677 1677
1678 1678 ASSERT(tailmp[type]->b_next == NULL);
1679 1679 switch (type) {
1680 1680 case V4_TCP:
1681 1681 softring = mac_srs->srs_tcp_soft_rings[0];
1682 1682 break;
1683 1683 case V4_UDP:
1684 1684 softring = mac_srs->srs_udp_soft_rings[0];
1685 1685 break;
1686 1686 case OTH:
1687 1687 softring = mac_srs->srs_oth_soft_rings[0];
1688 1688 }
1689 1689 mac_rx_soft_ring_process(mcip, softring,
1690 1690 headmp[type], tailmp[type], cnt[type], sz[type]);
1691 1691 }
1692 1692 }
1693 1693 }
1694 1694
1695 1695 int fanout_unaligned = 0;
1696 1696
1697 1697 /*
1698 1698 * mac_rx_srs_long_fanout
1699 1699 *
1700 1700 * The fanout routine for VLANs, and for anything else that isn't performing
1701 1701 * explicit dls bypass. Returns -1 on an error (drop the packet due to a
1702 1702 * malformed packet), 0 on success, with values written in *indx and *type.
1703 1703 */
1704 1704 static int
1705 1705 mac_rx_srs_long_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *mp,
1706 1706 uint32_t sap, size_t hdrsize, enum pkt_type *type, uint_t *indx)
1707 1707 {
1708 1708 ip6_t *ip6h;
1709 1709 ipha_t *ipha;
1710 1710 uint8_t *whereptr;
1711 1711 uint_t hash;
1712 1712 uint16_t remlen;
1713 1713 uint8_t nexthdr;
1714 1714 uint16_t hdr_len;
1715 1715 uint32_t src_val, dst_val;
1716 1716 boolean_t modifiable = B_TRUE;
1717 1717 boolean_t v6;
1718 1718
1719 1719 ASSERT(MBLKL(mp) >= hdrsize);
1720 1720
1721 1721 if (sap == ETHERTYPE_IPV6) {
1722 1722 v6 = B_TRUE;
1723 1723 hdr_len = IPV6_HDR_LEN;
1724 1724 } else if (sap == ETHERTYPE_IP) {
1725 1725 v6 = B_FALSE;
1726 1726 hdr_len = IP_SIMPLE_HDR_LENGTH;
1727 1727 } else {
1728 1728 *indx = 0;
1729 1729 *type = OTH;
1730 1730 return (0);
1731 1731 }
1732 1732
1733 1733 ip6h = (ip6_t *)(mp->b_rptr + hdrsize);
1734 1734 ipha = (ipha_t *)ip6h;
1735 1735
1736 1736 if ((uint8_t *)ip6h == mp->b_wptr) {
1737 1737 /*
1738 1738 * The first mblk_t only includes the mac header.
1739 1739 * Note that it is safe to change the mp pointer here,
1740 1740 * as the subsequent operation does not assume mp
1741 1741 * points to the start of the mac header.
1742 1742 */
1743 1743 mp = mp->b_cont;
1744 1744
1745 1745 /*
1746 1746 * Make sure the IP header points to an entire one.
1747 1747 */
1748 1748 if (mp == NULL)
1749 1749 return (-1);
1750 1750
1751 1751 if (MBLKL(mp) < hdr_len) {
1752 1752 modifiable = (DB_REF(mp) == 1);
1753 1753
1754 1754 if (modifiable && !pullupmsg(mp, hdr_len))
1755 1755 return (-1);
1756 1756 }
1757 1757
1758 1758 ip6h = (ip6_t *)mp->b_rptr;
1759 1759 ipha = (ipha_t *)ip6h;
1760 1760 }
1761 1761
1762 1762 if (!modifiable || !(OK_32PTR((char *)ip6h)) ||
1763 1763 ((uint8_t *)ip6h + hdr_len > mp->b_wptr)) {
1764 1764 /*
1765 1765 * If either the IP header is not aligned, or it does not hold
1766 1766 * the complete simple structure (a pullupmsg() is not an
1767 1767 * option since it would result in an unaligned IP header),
1768 1768 * fanout to the default ring.
1769 1769 *
1770 1770 * Note that this may cause packet reordering.
1771 1771 */
1772 1772 *indx = 0;
1773 1773 *type = OTH;
1774 1774 fanout_unaligned++;
1775 1775 return (0);
1776 1776 }
1777 1777
1778 1778 /*
1779 1779 * Extract next-header, full header length, and source-hash value
1780 1780 * using v4/v6 specific fields.
1781 1781 */
|
↓ open down ↓ |
1781 lines elided |
↑ open up ↑ |
1782 1782 if (v6) {
1783 1783 remlen = ntohs(ip6h->ip6_plen);
1784 1784 nexthdr = ip6h->ip6_nxt;
1785 1785 src_val = V4_PART_OF_V6(ip6h->ip6_src);
1786 1786 dst_val = V4_PART_OF_V6(ip6h->ip6_dst);
1787 1787 /*
1788 1788 * Do src based fanout if below tunable is set to B_TRUE or
1789 1789 * when mac_ip_hdr_length_v6() fails because of malformed
1790 1790 * packets or because mblks need to be concatenated using
1791 1791 * pullupmsg().
1792 + *
1793 + * Perform a version check to prevent parsing weirdness...
1792 1794 */
1793 - if (!mac_ip_hdr_length_v6(ip6h, mp->b_wptr, &hdr_len, &nexthdr,
1795 + if (IPH_HDR_VERSION(ip6h) != IPV6_VERSION ||
1796 + !mac_ip_hdr_length_v6(ip6h, mp->b_wptr, &hdr_len, &nexthdr,
1794 1797 NULL)) {
1795 1798 goto src_dst_based_fanout;
1796 1799 }
1797 1800 } else {
1798 1801 hdr_len = IPH_HDR_LENGTH(ipha);
1799 1802 remlen = ntohs(ipha->ipha_length) - hdr_len;
1800 1803 nexthdr = ipha->ipha_protocol;
1801 1804 src_val = (uint32_t)ipha->ipha_src;
1802 1805 dst_val = (uint32_t)ipha->ipha_dst;
1803 1806 /*
1804 1807 * Catch IPv4 fragment case here. IPv6 has nexthdr == FRAG
1805 1808 * for its equivalent case.
1806 1809 */
1807 1810 if ((ntohs(ipha->ipha_fragment_offset_and_flags) &
1808 1811 (IPH_MF | IPH_OFFSET)) != 0) {
1809 1812 goto src_dst_based_fanout;
1810 1813 }
1811 1814 }
1812 1815 if (remlen < MIN_EHDR_LEN)
1813 1816 return (-1);
1814 1817 whereptr = (uint8_t *)ip6h + hdr_len;
1815 1818
1816 1819 /* If the transport is one of below, we do port/SPI based fanout */
1817 1820 switch (nexthdr) {
1818 1821 case IPPROTO_TCP:
1819 1822 case IPPROTO_UDP:
1820 1823 case IPPROTO_SCTP:
1821 1824 case IPPROTO_ESP:
1822 1825 /*
1823 1826 * If the ports or SPI in the transport header is not part of
1824 1827 * the mblk, do src_based_fanout, instead of calling
1825 1828 * pullupmsg().
1826 1829 */
1827 1830 if (mp->b_cont == NULL || whereptr + PORTS_SIZE <= mp->b_wptr)
1828 1831 break; /* out of switch... */
1829 1832 /* FALLTHRU */
1830 1833 default:
1831 1834 goto src_dst_based_fanout;
1832 1835 }
1833 1836
1834 1837 switch (nexthdr) {
1835 1838 case IPPROTO_TCP:
1836 1839 hash = HASH_ADDR(src_val, dst_val, *(uint32_t *)whereptr);
1837 1840 *indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count);
1838 1841 *type = OTH;
1839 1842 break;
1840 1843 case IPPROTO_UDP:
1841 1844 case IPPROTO_SCTP:
1842 1845 case IPPROTO_ESP:
1843 1846 if (mac_fanout_type == MAC_FANOUT_DEFAULT) {
1844 1847 hash = HASH_ADDR(src_val, dst_val,
1845 1848 *(uint32_t *)whereptr);
1846 1849 *indx = COMPUTE_INDEX(hash,
1847 1850 mac_srs->srs_udp_ring_count);
1848 1851 } else {
1849 1852 *indx = mac_srs->srs_ind % mac_srs->srs_udp_ring_count;
1850 1853 mac_srs->srs_ind++;
1851 1854 }
1852 1855 *type = OTH;
1853 1856 break;
1854 1857 }
1855 1858 return (0);
1856 1859
1857 1860 src_dst_based_fanout:
1858 1861 hash = HASH_ADDR(src_val, dst_val, (uint32_t)0);
1859 1862 *indx = COMPUTE_INDEX(hash, mac_srs->srs_oth_ring_count);
1860 1863 *type = OTH;
1861 1864 return (0);
1862 1865 }
1863 1866
1864 1867 /*
1865 1868 * mac_rx_srs_fanout
1866 1869 *
1867 1870 * This routine delivers packets destined to an SRS into a soft ring member
1868 1871 * of the set.
1869 1872 *
1870 1873 * Given a chain of packets we need to split it up into multiple sub chains
1871 1874 * destined for one of the TCP, UDP or OTH soft rings. Instead of entering
1872 1875 * the soft ring one packet at a time, we want to enter it in the form of a
1873 1876 * chain otherwise we get this start/stop behaviour where the worker thread
1874 1877 * goes to sleep and then next packets comes in forcing it to wake up etc.
1875 1878 *
1876 1879 * Note:
1877 1880 * Since we know what is the maximum fanout possible, we create a 2D array
1878 1881 * of 'softring types * MAX_SR_FANOUT' for the head, tail, cnt and sz
1879 1882 * variables so that we can enter the softrings with chain. We need the
1880 1883 * MAX_SR_FANOUT so we can allocate the arrays on the stack (a kmem_alloc
1881 1884 * for each packet would be expensive). If we ever want to have the
1882 1885 * ability to have unlimited fanout, we should probably declare a head,
1883 1886 * tail, cnt, sz with each soft ring (a data struct which contains a softring
1884 1887 * along with these members) and create an array of this uber struct so we
1885 1888 * don't have to do kmem_alloc.
1886 1889 */
1887 1890 int fanout_oth1 = 0;
1888 1891 int fanout_oth2 = 0;
1889 1892 int fanout_oth3 = 0;
1890 1893 int fanout_oth4 = 0;
1891 1894 int fanout_oth5 = 0;
1892 1895
1893 1896 static void
1894 1897 mac_rx_srs_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head)
1895 1898 {
1896 1899 struct ether_header *ehp;
1897 1900 struct ether_vlan_header *evhp;
1898 1901 uint32_t sap;
1899 1902 ipha_t *ipha;
1900 1903 uint8_t *dstaddr;
1901 1904 uint_t indx;
1902 1905 size_t ports_offset;
1903 1906 size_t ipha_len;
1904 1907 size_t hdrsize;
1905 1908 uint_t hash;
1906 1909 mblk_t *mp;
1907 1910 mblk_t *headmp[MAX_SR_TYPES][MAX_SR_FANOUT];
1908 1911 mblk_t *tailmp[MAX_SR_TYPES][MAX_SR_FANOUT];
1909 1912 int cnt[MAX_SR_TYPES][MAX_SR_FANOUT];
1910 1913 size_t sz[MAX_SR_TYPES][MAX_SR_FANOUT];
1911 1914 size_t sz1;
1912 1915 boolean_t bw_ctl;
1913 1916 boolean_t hw_classified;
1914 1917 boolean_t dls_bypass;
1915 1918 boolean_t is_ether;
1916 1919 boolean_t is_unicast;
1917 1920 int fanout_cnt;
1918 1921 enum pkt_type type;
1919 1922 mac_client_impl_t *mcip = mac_srs->srs_mcip;
1920 1923
1921 1924 is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER);
1922 1925 bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0);
1923 1926
1924 1927 /*
1925 1928 * If we don't have a Rx ring, S/W classification would have done
1926 1929 * its job and its a packet meant for us. If we were polling on
1927 1930 * the default ring (i.e. there was a ring assigned to this SRS),
1928 1931 * then we need to make sure that the mac address really belongs
1929 1932 * to us.
1930 1933 */
1931 1934 hw_classified = mac_srs->srs_ring != NULL &&
1932 1935 mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER;
1933 1936
1934 1937 /*
1935 1938 * Special clients (eg. VLAN, non ether, etc) need DLS
1936 1939 * processing in the Rx path. SRST_DLS_BYPASS will be clear for
1937 1940 * such SRSs. Another way of disabling bypass is to set the
1938 1941 * MCIS_RX_BYPASS_DISABLE flag.
1939 1942 */
1940 1943 dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) &&
1941 1944 ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0);
1942 1945
1943 1946 /*
1944 1947 * Since the softrings are never destroyed and we always
1945 1948 * create equal number of softrings for TCP, UDP and rest,
1946 1949 * its OK to check one of them for count and use it without
1947 1950 * any lock. In future, if soft rings get destroyed because
1948 1951 * of reduction in fanout, we will need to ensure that happens
1949 1952 * behind the SRS_PROC.
1950 1953 */
1951 1954 fanout_cnt = mac_srs->srs_tcp_ring_count;
1952 1955
1953 1956 bzero(headmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *));
1954 1957 bzero(tailmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *));
1955 1958 bzero(cnt, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (int));
1956 1959 bzero(sz, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (size_t));
1957 1960
1958 1961 /*
1959 1962 * We got a chain from SRS that we need to send to the soft rings.
1960 1963 * Since squeues for TCP & IPv4 sap poll their soft rings (for
1961 1964 * performance reasons), we need to separate out v4_tcp, v4_udp
1962 1965 * and the rest goes in other.
1963 1966 */
1964 1967 while (head != NULL) {
1965 1968 mp = head;
1966 1969 head = head->b_next;
1967 1970 mp->b_next = NULL;
1968 1971
1969 1972 type = OTH;
1970 1973 sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
1971 1974
1972 1975 if (is_ether) {
1973 1976 /*
1974 1977 * At this point we can be sure the packet at least
1975 1978 * has an ether header.
1976 1979 */
1977 1980 if (sz1 < sizeof (struct ether_header)) {
1978 1981 mac_rx_drop_pkt(mac_srs, mp);
1979 1982 continue;
1980 1983 }
1981 1984 ehp = (struct ether_header *)mp->b_rptr;
1982 1985
1983 1986 /*
1984 1987 * Determine if this is a VLAN or non-VLAN packet.
1985 1988 */
1986 1989 if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) {
1987 1990 evhp = (struct ether_vlan_header *)mp->b_rptr;
1988 1991 sap = ntohs(evhp->ether_type);
1989 1992 hdrsize = sizeof (struct ether_vlan_header);
1990 1993 /*
1991 1994 * Check if the VID of the packet, if any,
1992 1995 * belongs to this client.
1993 1996 */
1994 1997 if (!mac_client_check_flow_vid(mcip,
1995 1998 VLAN_ID(ntohs(evhp->ether_tci)))) {
1996 1999 mac_rx_drop_pkt(mac_srs, mp);
1997 2000 continue;
1998 2001 }
1999 2002 } else {
2000 2003 hdrsize = sizeof (struct ether_header);
2001 2004 }
2002 2005 is_unicast =
2003 2006 ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0);
2004 2007 dstaddr = (uint8_t *)&ehp->ether_dhost;
2005 2008 } else {
2006 2009 mac_header_info_t mhi;
2007 2010
2008 2011 if (mac_header_info((mac_handle_t)mcip->mci_mip,
2009 2012 mp, &mhi) != 0) {
2010 2013 mac_rx_drop_pkt(mac_srs, mp);
2011 2014 continue;
2012 2015 }
2013 2016 hdrsize = mhi.mhi_hdrsize;
2014 2017 sap = mhi.mhi_bindsap;
2015 2018 is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST);
2016 2019 dstaddr = (uint8_t *)mhi.mhi_daddr;
2017 2020 }
2018 2021
2019 2022 if (!dls_bypass) {
2020 2023 if (mac_rx_srs_long_fanout(mac_srs, mp, sap,
2021 2024 hdrsize, &type, &indx) == -1) {
2022 2025 mac_rx_drop_pkt(mac_srs, mp);
2023 2026 continue;
2024 2027 }
2025 2028
2026 2029 FANOUT_ENQUEUE_MP(headmp[type][indx],
2027 2030 tailmp[type][indx], cnt[type][indx], bw_ctl,
2028 2031 sz[type][indx], sz1, mp);
2029 2032 continue;
2030 2033 }
2031 2034
2032 2035
2033 2036 /*
2034 2037 * If we are using the default Rx ring where H/W or S/W
2035 2038 * classification has not happened, we need to verify if
2036 2039 * this unicast packet really belongs to us.
2037 2040 */
2038 2041 if (sap == ETHERTYPE_IP) {
2039 2042 /*
2040 2043 * If we are H/W classified, but we have promisc
2041 2044 * on, then we need to check for the unicast address.
2042 2045 */
2043 2046 if (hw_classified && mcip->mci_promisc_list != NULL) {
2044 2047 mac_address_t *map;
2045 2048
2046 2049 rw_enter(&mcip->mci_rw_lock, RW_READER);
2047 2050 map = mcip->mci_unicast;
2048 2051 if (bcmp(dstaddr, map->ma_addr,
2049 2052 map->ma_len) == 0)
2050 2053 type = UNDEF;
2051 2054 rw_exit(&mcip->mci_rw_lock);
2052 2055 } else if (is_unicast) {
2053 2056 type = UNDEF;
2054 2057 }
2055 2058 }
2056 2059
2057 2060 /*
2058 2061 * This needs to become a contract with the driver for
2059 2062 * the fast path.
2060 2063 */
2061 2064
2062 2065 ipha = (ipha_t *)(mp->b_rptr + hdrsize);
2063 2066 if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha)) {
2064 2067 type = OTH;
2065 2068 fanout_oth1++;
2066 2069 }
2067 2070
2068 2071 if (type != OTH) {
2069 2072 uint16_t frag_offset_flags;
2070 2073
2071 2074 switch (ipha->ipha_protocol) {
2072 2075 case IPPROTO_TCP:
2073 2076 case IPPROTO_UDP:
2074 2077 case IPPROTO_SCTP:
2075 2078 case IPPROTO_ESP:
2076 2079 ipha_len = IPH_HDR_LENGTH(ipha);
2077 2080 if ((uchar_t *)ipha + ipha_len + PORTS_SIZE >
2078 2081 mp->b_wptr) {
2079 2082 type = OTH;
2080 2083 break;
2081 2084 }
2082 2085 frag_offset_flags =
2083 2086 ntohs(ipha->ipha_fragment_offset_and_flags);
2084 2087 if ((frag_offset_flags &
2085 2088 (IPH_MF | IPH_OFFSET)) != 0) {
2086 2089 type = OTH;
2087 2090 fanout_oth3++;
2088 2091 break;
2089 2092 }
2090 2093 ports_offset = hdrsize + ipha_len;
2091 2094 break;
2092 2095 default:
2093 2096 type = OTH;
2094 2097 fanout_oth4++;
2095 2098 break;
2096 2099 }
2097 2100 }
2098 2101
2099 2102 if (type == OTH) {
2100 2103 if (mac_rx_srs_long_fanout(mac_srs, mp, sap,
2101 2104 hdrsize, &type, &indx) == -1) {
2102 2105 mac_rx_drop_pkt(mac_srs, mp);
2103 2106 continue;
2104 2107 }
2105 2108
2106 2109 FANOUT_ENQUEUE_MP(headmp[type][indx],
2107 2110 tailmp[type][indx], cnt[type][indx], bw_ctl,
2108 2111 sz[type][indx], sz1, mp);
2109 2112 continue;
2110 2113 }
2111 2114
2112 2115 ASSERT(type == UNDEF);
2113 2116
2114 2117 /*
2115 2118 * XXX-Sunay: We should hold srs_lock since ring_count
2116 2119 * below can change. But if we are always called from
2117 2120 * mac_rx_srs_drain and SRS_PROC is set, then we can
2118 2121 * enforce that ring_count can't be changed i.e.
2119 2122 * to change fanout type or ring count, the calling
2120 2123 * thread needs to be behind SRS_PROC.
2121 2124 */
2122 2125 switch (ipha->ipha_protocol) {
2123 2126 case IPPROTO_TCP:
2124 2127 /*
2125 2128 * Note that for ESP, we fanout on SPI and it is at the
2126 2129 * same offset as the 2x16-bit ports. So it is clumped
2127 2130 * along with TCP, UDP and SCTP.
2128 2131 */
2129 2132 hash = HASH_ADDR(ipha->ipha_src, ipha->ipha_dst,
2130 2133 *(uint32_t *)(mp->b_rptr + ports_offset));
2131 2134 indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count);
2132 2135 type = V4_TCP;
2133 2136 mp->b_rptr += hdrsize;
2134 2137 break;
2135 2138 case IPPROTO_UDP:
2136 2139 case IPPROTO_SCTP:
2137 2140 case IPPROTO_ESP:
2138 2141 if (mac_fanout_type == MAC_FANOUT_DEFAULT) {
2139 2142 hash = HASH_ADDR(ipha->ipha_src, ipha->ipha_dst,
2140 2143 *(uint32_t *)(mp->b_rptr + ports_offset));
2141 2144 indx = COMPUTE_INDEX(hash,
2142 2145 mac_srs->srs_udp_ring_count);
2143 2146 } else {
2144 2147 indx = mac_srs->srs_ind %
2145 2148 mac_srs->srs_udp_ring_count;
2146 2149 mac_srs->srs_ind++;
2147 2150 }
2148 2151 type = V4_UDP;
2149 2152 mp->b_rptr += hdrsize;
2150 2153 break;
2151 2154 default:
2152 2155 indx = 0;
2153 2156 type = OTH;
2154 2157 }
2155 2158
2156 2159 FANOUT_ENQUEUE_MP(headmp[type][indx], tailmp[type][indx],
2157 2160 cnt[type][indx], bw_ctl, sz[type][indx], sz1, mp);
2158 2161 }
2159 2162
2160 2163 for (type = V4_TCP; type < UNDEF; type++) {
2161 2164 int i;
2162 2165
2163 2166 for (i = 0; i < fanout_cnt; i++) {
2164 2167 if (headmp[type][i] != NULL) {
2165 2168 mac_soft_ring_t *softring;
2166 2169
2167 2170 ASSERT(tailmp[type][i]->b_next == NULL);
2168 2171 switch (type) {
2169 2172 case V4_TCP:
2170 2173 softring =
2171 2174 mac_srs->srs_tcp_soft_rings[i];
2172 2175 break;
2173 2176 case V4_UDP:
2174 2177 softring =
2175 2178 mac_srs->srs_udp_soft_rings[i];
2176 2179 break;
2177 2180 case OTH:
2178 2181 softring =
2179 2182 mac_srs->srs_oth_soft_rings[i];
2180 2183 break;
2181 2184 }
2182 2185 mac_rx_soft_ring_process(mcip,
2183 2186 softring, headmp[type][i], tailmp[type][i],
2184 2187 cnt[type][i], sz[type][i]);
2185 2188 }
2186 2189 }
2187 2190 }
2188 2191 }
2189 2192
2190 2193 #define SRS_BYTES_TO_PICKUP 150000
2191 2194 ssize_t max_bytes_to_pickup = SRS_BYTES_TO_PICKUP;
2192 2195
2193 2196 /*
2194 2197 * mac_rx_srs_poll_ring
2195 2198 *
2196 2199 * This SRS Poll thread uses this routine to poll the underlying hardware
2197 2200 * Rx ring to get a chain of packets. It can inline process that chain
2198 2201 * if mac_latency_optimize is set (default) or signal the SRS worker thread
2199 2202 * to do the remaining processing.
2200 2203 *
2201 2204 * Since packets come in the system via interrupt or poll path, we also
2202 2205 * update the stats and deal with promiscous clients here.
2203 2206 */
2204 2207 void
2205 2208 mac_rx_srs_poll_ring(mac_soft_ring_set_t *mac_srs)
2206 2209 {
2207 2210 kmutex_t *lock = &mac_srs->srs_lock;
2208 2211 kcondvar_t *async = &mac_srs->srs_cv;
2209 2212 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx;
2210 2213 mblk_t *head, *tail, *mp;
2211 2214 callb_cpr_t cprinfo;
2212 2215 ssize_t bytes_to_pickup;
2213 2216 size_t sz;
2214 2217 int count;
2215 2218 mac_client_impl_t *smcip;
2216 2219
2217 2220 CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "mac_srs_poll");
2218 2221 mutex_enter(lock);
2219 2222
2220 2223 start:
2221 2224 for (;;) {
2222 2225 if (mac_srs->srs_state & SRS_PAUSE)
2223 2226 goto done;
2224 2227
2225 2228 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2226 2229 cv_wait(async, lock);
2227 2230 CALLB_CPR_SAFE_END(&cprinfo, lock);
2228 2231
2229 2232 if (mac_srs->srs_state & SRS_PAUSE)
2230 2233 goto done;
2231 2234
2232 2235 check_again:
2233 2236 if (mac_srs->srs_type & SRST_BW_CONTROL) {
2234 2237 /*
2235 2238 * We pick as many bytes as we are allowed to queue.
2236 2239 * Its possible that we will exceed the total
2237 2240 * packets queued in case this SRS is part of the
2238 2241 * Rx ring group since > 1 poll thread can be pulling
2239 2242 * upto the max allowed packets at the same time
2240 2243 * but that should be OK.
2241 2244 */
2242 2245 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2243 2246 bytes_to_pickup =
2244 2247 mac_srs->srs_bw->mac_bw_drop_threshold -
2245 2248 mac_srs->srs_bw->mac_bw_sz;
2246 2249 /*
2247 2250 * We shouldn't have been signalled if we
2248 2251 * have 0 or less bytes to pick but since
2249 2252 * some of the bytes accounting is driver
2250 2253 * dependant, we do the safety check.
2251 2254 */
2252 2255 if (bytes_to_pickup < 0)
2253 2256 bytes_to_pickup = 0;
2254 2257 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2255 2258 } else {
2256 2259 /*
2257 2260 * ToDO: Need to change the polling API
2258 2261 * to add a packet count and a flag which
2259 2262 * tells the driver whether we want packets
2260 2263 * based on a count, or bytes, or all the
2261 2264 * packets queued in the driver/HW. This
2262 2265 * way, we never have to check the limits
2263 2266 * on poll path. We truly let only as many
2264 2267 * packets enter the system as we are willing
2265 2268 * to process or queue.
2266 2269 *
2267 2270 * Something along the lines of
2268 2271 * pkts_to_pickup = mac_soft_ring_max_q_cnt -
2269 2272 * mac_srs->srs_poll_pkt_cnt
2270 2273 */
2271 2274
2272 2275 /*
2273 2276 * Since we are not doing B/W control, pick
2274 2277 * as many packets as allowed.
2275 2278 */
2276 2279 bytes_to_pickup = max_bytes_to_pickup;
2277 2280 }
2278 2281
2279 2282 /* Poll the underlying Hardware */
2280 2283 mutex_exit(lock);
2281 2284 head = MAC_HWRING_POLL(mac_srs->srs_ring, (int)bytes_to_pickup);
2282 2285 mutex_enter(lock);
2283 2286
2284 2287 ASSERT((mac_srs->srs_state & SRS_POLL_THR_OWNER) ==
2285 2288 SRS_POLL_THR_OWNER);
2286 2289
2287 2290 mp = tail = head;
2288 2291 count = 0;
2289 2292 sz = 0;
2290 2293 while (mp != NULL) {
2291 2294 tail = mp;
2292 2295 sz += msgdsize(mp);
2293 2296 mp = mp->b_next;
2294 2297 count++;
2295 2298 }
2296 2299
2297 2300 if (head != NULL) {
2298 2301 tail->b_next = NULL;
2299 2302 smcip = mac_srs->srs_mcip;
2300 2303
2301 2304 SRS_RX_STAT_UPDATE(mac_srs, pollbytes, sz);
2302 2305 SRS_RX_STAT_UPDATE(mac_srs, pollcnt, count);
2303 2306
2304 2307 /*
2305 2308 * If there are any promiscuous mode callbacks
2306 2309 * defined for this MAC client, pass them a copy
2307 2310 * if appropriate and also update the counters.
2308 2311 */
2309 2312 if (smcip != NULL) {
2310 2313 if (smcip->mci_mip->mi_promisc_list != NULL) {
2311 2314 mutex_exit(lock);
2312 2315 mac_promisc_dispatch(smcip->mci_mip,
2313 2316 head, NULL);
2314 2317 mutex_enter(lock);
2315 2318 }
2316 2319 }
2317 2320 if (mac_srs->srs_type & SRST_BW_CONTROL) {
2318 2321 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2319 2322 mac_srs->srs_bw->mac_bw_polled += sz;
2320 2323 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2321 2324 }
2322 2325 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail,
2323 2326 count, sz);
2324 2327 if (count <= 10)
2325 2328 srs_rx->sr_stat.mrs_chaincntundr10++;
2326 2329 else if (count > 10 && count <= 50)
2327 2330 srs_rx->sr_stat.mrs_chaincnt10to50++;
2328 2331 else
2329 2332 srs_rx->sr_stat.mrs_chaincntover50++;
2330 2333 }
2331 2334
2332 2335 /*
2333 2336 * We are guaranteed that SRS_PROC will be set if we
2334 2337 * are here. Also, poll thread gets to run only if
2335 2338 * the drain was being done by a worker thread although
2336 2339 * its possible that worker thread is still running
2337 2340 * and poll thread was sent down to keep the pipeline
2338 2341 * going instead of doing a complete drain and then
2339 2342 * trying to poll the NIC.
2340 2343 *
2341 2344 * So we need to check SRS_WORKER flag to make sure
2342 2345 * that the worker thread is not processing the queue
2343 2346 * in parallel to us. The flags and conditions are
2344 2347 * protected by the srs_lock to prevent any race. We
2345 2348 * ensure that we don't drop the srs_lock from now
2346 2349 * till the end and similarly we don't drop the srs_lock
2347 2350 * in mac_rx_srs_drain() till similar condition check
2348 2351 * are complete. The mac_rx_srs_drain() needs to ensure
2349 2352 * that SRS_WORKER flag remains set as long as its
2350 2353 * processing the queue.
2351 2354 */
2352 2355 if (!(mac_srs->srs_state & SRS_WORKER) &&
2353 2356 (mac_srs->srs_first != NULL)) {
2354 2357 /*
2355 2358 * We have packets to process and worker thread
2356 2359 * is not running. Check to see if poll thread is
2357 2360 * allowed to process.
2358 2361 */
2359 2362 if (mac_srs->srs_state & SRS_LATENCY_OPT) {
2360 2363 mac_srs->srs_drain_func(mac_srs, SRS_POLL_PROC);
2361 2364 if (!(mac_srs->srs_state & SRS_PAUSE) &&
2362 2365 srs_rx->sr_poll_pkt_cnt <=
2363 2366 srs_rx->sr_lowat) {
2364 2367 srs_rx->sr_poll_again++;
2365 2368 goto check_again;
2366 2369 }
2367 2370 /*
2368 2371 * We are already above low water mark
2369 2372 * so stay in the polling mode but no
2370 2373 * need to poll. Once we dip below
2371 2374 * the polling threshold, the processing
2372 2375 * thread (soft ring) will signal us
2373 2376 * to poll again (MAC_UPDATE_SRS_COUNT)
2374 2377 */
2375 2378 srs_rx->sr_poll_drain_no_poll++;
2376 2379 mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS);
2377 2380 /*
2378 2381 * In B/W control case, its possible
2379 2382 * that the backlog built up due to
2380 2383 * B/W limit being reached and packets
2381 2384 * are queued only in SRS. In this case,
2382 2385 * we should schedule worker thread
2383 2386 * since no one else will wake us up.
2384 2387 */
2385 2388 if ((mac_srs->srs_type & SRST_BW_CONTROL) &&
2386 2389 (mac_srs->srs_tid == NULL)) {
2387 2390 mac_srs->srs_tid =
2388 2391 timeout(mac_srs_fire, mac_srs, 1);
2389 2392 srs_rx->sr_poll_worker_wakeup++;
2390 2393 }
2391 2394 } else {
2392 2395 /*
2393 2396 * Wakeup the worker thread for more processing.
2394 2397 * We optimize for throughput in this case.
2395 2398 */
2396 2399 mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS);
2397 2400 MAC_SRS_WORKER_WAKEUP(mac_srs);
2398 2401 srs_rx->sr_poll_sig_worker++;
2399 2402 }
2400 2403 } else if ((mac_srs->srs_first == NULL) &&
2401 2404 !(mac_srs->srs_state & SRS_WORKER)) {
2402 2405 /*
2403 2406 * There is nothing queued in SRS and
2404 2407 * no worker thread running. Plus we
2405 2408 * didn't get anything from the H/W
2406 2409 * as well (head == NULL);
2407 2410 */
2408 2411 ASSERT(head == NULL);
2409 2412 mac_srs->srs_state &=
2410 2413 ~(SRS_PROC|SRS_GET_PKTS);
2411 2414
2412 2415 /*
2413 2416 * If we have a packets in soft ring, don't allow
2414 2417 * more packets to come into this SRS by keeping the
2415 2418 * interrupts off but not polling the H/W. The
2416 2419 * poll thread will get signaled as soon as
2417 2420 * srs_poll_pkt_cnt dips below poll threshold.
2418 2421 */
2419 2422 if (srs_rx->sr_poll_pkt_cnt == 0) {
2420 2423 srs_rx->sr_poll_intr_enable++;
2421 2424 MAC_SRS_POLLING_OFF(mac_srs);
2422 2425 } else {
2423 2426 /*
2424 2427 * We know nothing is queued in SRS
2425 2428 * since we are here after checking
2426 2429 * srs_first is NULL. The backlog
2427 2430 * is entirely due to packets queued
2428 2431 * in Soft ring which will wake us up
2429 2432 * and get the interface out of polling
2430 2433 * mode once the backlog dips below
2431 2434 * sr_poll_thres.
2432 2435 */
2433 2436 srs_rx->sr_poll_no_poll++;
2434 2437 }
2435 2438 } else {
2436 2439 /*
2437 2440 * Worker thread is already running.
2438 2441 * Nothing much to do. If the polling
2439 2442 * was enabled, worker thread will deal
2440 2443 * with that.
2441 2444 */
2442 2445 mac_srs->srs_state &= ~SRS_GET_PKTS;
2443 2446 srs_rx->sr_poll_goto_sleep++;
2444 2447 }
2445 2448 }
2446 2449 done:
2447 2450 mac_srs->srs_state |= SRS_POLL_THR_QUIESCED;
2448 2451 cv_signal(&mac_srs->srs_async);
2449 2452 /*
2450 2453 * If this is a temporary quiesce then wait for the restart signal
2451 2454 * from the srs worker. Then clear the flags and signal the srs worker
2452 2455 * to ensure a positive handshake and go back to start.
2453 2456 */
2454 2457 while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_POLL_THR_RESTART)))
2455 2458 cv_wait(async, lock);
2456 2459 if (mac_srs->srs_state & SRS_POLL_THR_RESTART) {
2457 2460 ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED));
2458 2461 mac_srs->srs_state &=
2459 2462 ~(SRS_POLL_THR_QUIESCED | SRS_POLL_THR_RESTART);
2460 2463 cv_signal(&mac_srs->srs_async);
2461 2464 goto start;
2462 2465 } else {
2463 2466 mac_srs->srs_state |= SRS_POLL_THR_EXITED;
2464 2467 cv_signal(&mac_srs->srs_async);
2465 2468 CALLB_CPR_EXIT(&cprinfo);
2466 2469 thread_exit();
2467 2470 }
2468 2471 }
2469 2472
2470 2473 /*
2471 2474 * mac_srs_pick_chain
2472 2475 *
2473 2476 * In Bandwidth control case, checks how many packets can be processed
2474 2477 * and return them in a sub chain.
2475 2478 */
2476 2479 static mblk_t *
2477 2480 mac_srs_pick_chain(mac_soft_ring_set_t *mac_srs, mblk_t **chain_tail,
2478 2481 size_t *chain_sz, int *chain_cnt)
2479 2482 {
2480 2483 mblk_t *head = NULL;
2481 2484 mblk_t *tail = NULL;
2482 2485 size_t sz;
2483 2486 size_t tsz = 0;
2484 2487 int cnt = 0;
2485 2488 mblk_t *mp;
2486 2489
2487 2490 ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
2488 2491 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2489 2492 if (((mac_srs->srs_bw->mac_bw_used + mac_srs->srs_size) <=
2490 2493 mac_srs->srs_bw->mac_bw_limit) ||
2491 2494 (mac_srs->srs_bw->mac_bw_limit == 0)) {
2492 2495 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2493 2496 head = mac_srs->srs_first;
2494 2497 mac_srs->srs_first = NULL;
2495 2498 *chain_tail = mac_srs->srs_last;
2496 2499 mac_srs->srs_last = NULL;
2497 2500 *chain_sz = mac_srs->srs_size;
2498 2501 *chain_cnt = mac_srs->srs_count;
2499 2502 mac_srs->srs_count = 0;
2500 2503 mac_srs->srs_size = 0;
2501 2504 return (head);
2502 2505 }
2503 2506
2504 2507 /*
2505 2508 * Can't clear the entire backlog.
2506 2509 * Need to find how many packets to pick
2507 2510 */
2508 2511 ASSERT(MUTEX_HELD(&mac_srs->srs_bw->mac_bw_lock));
2509 2512 while ((mp = mac_srs->srs_first) != NULL) {
2510 2513 sz = msgdsize(mp);
2511 2514 if ((tsz + sz + mac_srs->srs_bw->mac_bw_used) >
2512 2515 mac_srs->srs_bw->mac_bw_limit) {
2513 2516 if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED))
2514 2517 mac_srs->srs_bw->mac_bw_state |=
2515 2518 SRS_BW_ENFORCED;
2516 2519 break;
2517 2520 }
2518 2521
2519 2522 /*
2520 2523 * The _size & cnt is decremented from the softrings
2521 2524 * when they send up the packet for polling to work
2522 2525 * properly.
2523 2526 */
2524 2527 tsz += sz;
2525 2528 cnt++;
2526 2529 mac_srs->srs_count--;
2527 2530 mac_srs->srs_size -= sz;
2528 2531 if (tail != NULL)
2529 2532 tail->b_next = mp;
2530 2533 else
2531 2534 head = mp;
2532 2535 tail = mp;
2533 2536 mac_srs->srs_first = mac_srs->srs_first->b_next;
2534 2537 }
2535 2538 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2536 2539 if (mac_srs->srs_first == NULL)
2537 2540 mac_srs->srs_last = NULL;
2538 2541
2539 2542 if (tail != NULL)
2540 2543 tail->b_next = NULL;
2541 2544 *chain_tail = tail;
2542 2545 *chain_cnt = cnt;
2543 2546 *chain_sz = tsz;
2544 2547
2545 2548 return (head);
2546 2549 }
2547 2550
2548 2551 /*
2549 2552 * mac_rx_srs_drain
2550 2553 *
2551 2554 * The SRS drain routine. Gets to run to clear the queue. Any thread
2552 2555 * (worker, interrupt, poll) can call this based on processing model.
2553 2556 * The first thing we do is disable interrupts if possible and then
2554 2557 * drain the queue. we also try to poll the underlying hardware if
2555 2558 * there is a dedicated hardware Rx ring assigned to this SRS.
2556 2559 *
2557 2560 * There is a equivalent drain routine in bandwidth control mode
2558 2561 * mac_rx_srs_drain_bw. There is some code duplication between the two
2559 2562 * routines but they are highly performance sensitive and are easier
2560 2563 * to read/debug if they stay separate. Any code changes here might
2561 2564 * also apply to mac_rx_srs_drain_bw as well.
2562 2565 */
2563 2566 void
2564 2567 mac_rx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
2565 2568 {
2566 2569 mblk_t *head;
2567 2570 mblk_t *tail;
2568 2571 timeout_id_t tid;
2569 2572 int cnt = 0;
2570 2573 mac_client_impl_t *mcip = mac_srs->srs_mcip;
2571 2574 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx;
2572 2575
2573 2576 ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
2574 2577 ASSERT(!(mac_srs->srs_type & SRST_BW_CONTROL));
2575 2578
2576 2579 /* If we are blanked i.e. can't do upcalls, then we are done */
2577 2580 if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) {
2578 2581 ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) ||
2579 2582 (mac_srs->srs_state & SRS_PAUSE));
2580 2583 goto out;
2581 2584 }
2582 2585
2583 2586 if (mac_srs->srs_first == NULL)
2584 2587 goto out;
2585 2588
2586 2589 if (!(mac_srs->srs_state & SRS_LATENCY_OPT) &&
2587 2590 (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat)) {
2588 2591 /*
2589 2592 * In the normal case, the SRS worker thread does no
2590 2593 * work and we wait for a backlog to build up before
2591 2594 * we switch into polling mode. In case we are
2592 2595 * optimizing for throughput, we use the worker thread
2593 2596 * as well. The goal is to let worker thread process
2594 2597 * the queue and poll thread to feed packets into
2595 2598 * the queue. As such, we should signal the poll
2596 2599 * thread to try and get more packets.
2597 2600 *
2598 2601 * We could have pulled this check in the POLL_RING
2599 2602 * macro itself but keeping it explicit here makes
2600 2603 * the architecture more human understandable.
2601 2604 */
2602 2605 MAC_SRS_POLL_RING(mac_srs);
2603 2606 }
2604 2607
2605 2608 again:
2606 2609 head = mac_srs->srs_first;
2607 2610 mac_srs->srs_first = NULL;
2608 2611 tail = mac_srs->srs_last;
2609 2612 mac_srs->srs_last = NULL;
2610 2613 cnt = mac_srs->srs_count;
2611 2614 mac_srs->srs_count = 0;
2612 2615
2613 2616 ASSERT(head != NULL);
2614 2617 ASSERT(tail != NULL);
2615 2618
2616 2619 if ((tid = mac_srs->srs_tid) != NULL)
2617 2620 mac_srs->srs_tid = NULL;
2618 2621
2619 2622 mac_srs->srs_state |= (SRS_PROC|proc_type);
2620 2623
2621 2624
2622 2625 /*
2623 2626 * mcip is NULL for broadcast and multicast flows. The promisc
2624 2627 * callbacks for broadcast and multicast packets are delivered from
2625 2628 * mac_rx() and we don't need to worry about that case in this path
2626 2629 */
2627 2630 if (mcip != NULL) {
2628 2631 if (mcip->mci_promisc_list != NULL) {
2629 2632 mutex_exit(&mac_srs->srs_lock);
2630 2633 mac_promisc_client_dispatch(mcip, head);
2631 2634 mutex_enter(&mac_srs->srs_lock);
2632 2635 }
2633 2636 if (MAC_PROTECT_ENABLED(mcip, MPT_IPNOSPOOF)) {
2634 2637 mutex_exit(&mac_srs->srs_lock);
2635 2638 mac_protect_intercept_dynamic(mcip, head);
2636 2639 mutex_enter(&mac_srs->srs_lock);
2637 2640 }
2638 2641 }
2639 2642
2640 2643 /*
2641 2644 * Check if SRS itself is doing the processing
2642 2645 * This direct path does not apply when subflows are present. In this
2643 2646 * case, packets need to be dispatched to a soft ring according to the
2644 2647 * flow's bandwidth and other resources contraints.
2645 2648 */
2646 2649 if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) {
2647 2650 mac_direct_rx_t proc;
2648 2651 void *arg1;
2649 2652 mac_resource_handle_t arg2;
2650 2653
2651 2654 /*
2652 2655 * This is the case when a Rx is directly
2653 2656 * assigned and we have a fully classified
2654 2657 * protocol chain. We can deal with it in
2655 2658 * one shot.
2656 2659 */
2657 2660 proc = srs_rx->sr_func;
2658 2661 arg1 = srs_rx->sr_arg1;
2659 2662 arg2 = srs_rx->sr_arg2;
2660 2663
2661 2664 mac_srs->srs_state |= SRS_CLIENT_PROC;
2662 2665 mutex_exit(&mac_srs->srs_lock);
2663 2666 if (tid != NULL) {
2664 2667 (void) untimeout(tid);
2665 2668 tid = NULL;
2666 2669 }
2667 2670
2668 2671 proc(arg1, arg2, head, NULL);
2669 2672 /*
2670 2673 * Decrement the size and count here itelf
2671 2674 * since the packet has been processed.
2672 2675 */
2673 2676 mutex_enter(&mac_srs->srs_lock);
2674 2677 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
2675 2678 if (mac_srs->srs_state & SRS_CLIENT_WAIT)
2676 2679 cv_signal(&mac_srs->srs_client_cv);
2677 2680 mac_srs->srs_state &= ~SRS_CLIENT_PROC;
2678 2681 } else {
2679 2682 /* Some kind of softrings based fanout is required */
2680 2683 mutex_exit(&mac_srs->srs_lock);
2681 2684 if (tid != NULL) {
2682 2685 (void) untimeout(tid);
2683 2686 tid = NULL;
2684 2687 }
2685 2688
2686 2689 /*
2687 2690 * Since the fanout routines can deal with chains,
2688 2691 * shoot the entire chain up.
2689 2692 */
2690 2693 if (mac_srs->srs_type & SRST_FANOUT_SRC_IP)
2691 2694 mac_rx_srs_fanout(mac_srs, head);
2692 2695 else
2693 2696 mac_rx_srs_proto_fanout(mac_srs, head);
2694 2697 mutex_enter(&mac_srs->srs_lock);
2695 2698 }
2696 2699
2697 2700 if (!(mac_srs->srs_state & (SRS_BLANK|SRS_PAUSE)) &&
2698 2701 (mac_srs->srs_first != NULL)) {
2699 2702 /*
2700 2703 * More packets arrived while we were clearing the
2701 2704 * SRS. This can be possible because of one of
2702 2705 * three conditions below:
2703 2706 * 1) The driver is using multiple worker threads
2704 2707 * to send the packets to us.
2705 2708 * 2) The driver has a race in switching
2706 2709 * between interrupt and polling mode or
2707 2710 * 3) Packets are arriving in this SRS via the
2708 2711 * S/W classification as well.
2709 2712 *
2710 2713 * We should switch to polling mode and see if we
2711 2714 * need to send the poll thread down. Also, signal
2712 2715 * the worker thread to process whats just arrived.
2713 2716 */
2714 2717 MAC_SRS_POLLING_ON(mac_srs);
2715 2718 if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat) {
2716 2719 srs_rx->sr_drain_poll_sig++;
2717 2720 MAC_SRS_POLL_RING(mac_srs);
2718 2721 }
2719 2722
2720 2723 /*
2721 2724 * If we didn't signal the poll thread, we need
2722 2725 * to deal with the pending packets ourselves.
2723 2726 */
2724 2727 if (proc_type == SRS_WORKER) {
2725 2728 srs_rx->sr_drain_again++;
2726 2729 goto again;
2727 2730 } else {
2728 2731 srs_rx->sr_drain_worker_sig++;
2729 2732 cv_signal(&mac_srs->srs_async);
2730 2733 }
2731 2734 }
2732 2735
2733 2736 out:
2734 2737 if (mac_srs->srs_state & SRS_GET_PKTS) {
2735 2738 /*
2736 2739 * Poll thread is already running. Leave the
2737 2740 * SRS_RPOC set and hand over the control to
2738 2741 * poll thread.
2739 2742 */
2740 2743 mac_srs->srs_state &= ~proc_type;
2741 2744 srs_rx->sr_drain_poll_running++;
2742 2745 return;
2743 2746 }
2744 2747
2745 2748 /*
2746 2749 * Even if there are no packets queued in SRS, we
2747 2750 * need to make sure that the shared counter is
2748 2751 * clear and any associated softrings have cleared
2749 2752 * all the backlog. Otherwise, leave the interface
2750 2753 * in polling mode and the poll thread will get
2751 2754 * signalled once the count goes down to zero.
2752 2755 *
2753 2756 * If someone is already draining the queue (SRS_PROC is
2754 2757 * set) when the srs_poll_pkt_cnt goes down to zero,
2755 2758 * then it means that drain is already running and we
2756 2759 * will turn off polling at that time if there is
2757 2760 * no backlog.
2758 2761 *
2759 2762 * As long as there are packets queued either
2760 2763 * in soft ring set or its soft rings, we will leave
2761 2764 * the interface in polling mode (even if the drain
2762 2765 * was done being the interrupt thread). We signal
2763 2766 * the poll thread as well if we have dipped below
2764 2767 * low water mark.
2765 2768 *
2766 2769 * NOTE: We can't use the MAC_SRS_POLLING_ON macro
2767 2770 * since that turn polling on only for worker thread.
2768 2771 * Its not worth turning polling on for interrupt
2769 2772 * thread (since NIC will not issue another interrupt)
2770 2773 * unless a backlog builds up.
2771 2774 */
2772 2775 if ((srs_rx->sr_poll_pkt_cnt > 0) &&
2773 2776 (mac_srs->srs_state & SRS_POLLING_CAPAB)) {
2774 2777 mac_srs->srs_state &= ~(SRS_PROC|proc_type);
2775 2778 srs_rx->sr_drain_keep_polling++;
2776 2779 MAC_SRS_POLLING_ON(mac_srs);
2777 2780 if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat)
2778 2781 MAC_SRS_POLL_RING(mac_srs);
2779 2782 return;
2780 2783 }
2781 2784
2782 2785 /* Nothing else to do. Get out of poll mode */
2783 2786 MAC_SRS_POLLING_OFF(mac_srs);
2784 2787 mac_srs->srs_state &= ~(SRS_PROC|proc_type);
2785 2788 srs_rx->sr_drain_finish_intr++;
2786 2789 }
2787 2790
2788 2791 /*
2789 2792 * mac_rx_srs_drain_bw
2790 2793 *
2791 2794 * The SRS BW drain routine. Gets to run to clear the queue. Any thread
2792 2795 * (worker, interrupt, poll) can call this based on processing model.
2793 2796 * The first thing we do is disable interrupts if possible and then
2794 2797 * drain the queue. we also try to poll the underlying hardware if
2795 2798 * there is a dedicated hardware Rx ring assigned to this SRS.
2796 2799 *
2797 2800 * There is a equivalent drain routine in non bandwidth control mode
2798 2801 * mac_rx_srs_drain. There is some code duplication between the two
2799 2802 * routines but they are highly performance sensitive and are easier
2800 2803 * to read/debug if they stay separate. Any code changes here might
2801 2804 * also apply to mac_rx_srs_drain as well.
2802 2805 */
2803 2806 void
2804 2807 mac_rx_srs_drain_bw(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
2805 2808 {
2806 2809 mblk_t *head;
2807 2810 mblk_t *tail;
2808 2811 timeout_id_t tid;
2809 2812 size_t sz = 0;
2810 2813 int cnt = 0;
2811 2814 mac_client_impl_t *mcip = mac_srs->srs_mcip;
2812 2815 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx;
2813 2816 clock_t now;
2814 2817
2815 2818 ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
2816 2819 ASSERT(mac_srs->srs_type & SRST_BW_CONTROL);
2817 2820 again:
2818 2821 /* Check if we are doing B/W control */
2819 2822 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2820 2823 now = ddi_get_lbolt();
2821 2824 if (mac_srs->srs_bw->mac_bw_curr_time != now) {
2822 2825 mac_srs->srs_bw->mac_bw_curr_time = now;
2823 2826 mac_srs->srs_bw->mac_bw_used = 0;
2824 2827 if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)
2825 2828 mac_srs->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED;
2826 2829 } else if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) {
2827 2830 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2828 2831 goto done;
2829 2832 } else if (mac_srs->srs_bw->mac_bw_used >
2830 2833 mac_srs->srs_bw->mac_bw_limit) {
2831 2834 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
2832 2835 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2833 2836 goto done;
2834 2837 }
2835 2838 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2836 2839
2837 2840 /* If we are blanked i.e. can't do upcalls, then we are done */
2838 2841 if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) {
2839 2842 ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) ||
2840 2843 (mac_srs->srs_state & SRS_PAUSE));
2841 2844 goto done;
2842 2845 }
2843 2846
2844 2847 sz = 0;
2845 2848 cnt = 0;
2846 2849 if ((head = mac_srs_pick_chain(mac_srs, &tail, &sz, &cnt)) == NULL) {
2847 2850 /*
2848 2851 * We couldn't pick up a single packet.
2849 2852 */
2850 2853 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2851 2854 if ((mac_srs->srs_bw->mac_bw_used == 0) &&
2852 2855 (mac_srs->srs_size != 0) &&
2853 2856 !(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
2854 2857 /*
2855 2858 * Seems like configured B/W doesn't
2856 2859 * even allow processing of 1 packet
2857 2860 * per tick.
2858 2861 *
2859 2862 * XXX: raise the limit to processing
2860 2863 * at least 1 packet per tick.
2861 2864 */
2862 2865 mac_srs->srs_bw->mac_bw_limit +=
2863 2866 mac_srs->srs_bw->mac_bw_limit;
2864 2867 mac_srs->srs_bw->mac_bw_drop_threshold +=
2865 2868 mac_srs->srs_bw->mac_bw_drop_threshold;
2866 2869 cmn_err(CE_NOTE, "mac_rx_srs_drain: srs(%p) "
2867 2870 "raised B/W limit to %d since not even a "
2868 2871 "single packet can be processed per "
2869 2872 "tick %d\n", (void *)mac_srs,
2870 2873 (int)mac_srs->srs_bw->mac_bw_limit,
2871 2874 (int)msgdsize(mac_srs->srs_first));
2872 2875 }
2873 2876 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2874 2877 goto done;
2875 2878 }
2876 2879
2877 2880 ASSERT(head != NULL);
2878 2881 ASSERT(tail != NULL);
2879 2882
2880 2883 /* zero bandwidth: drop all and return to interrupt mode */
2881 2884 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2882 2885 if (mac_srs->srs_bw->mac_bw_limit == 0) {
2883 2886 srs_rx->sr_stat.mrs_sdrops += cnt;
2884 2887 ASSERT(mac_srs->srs_bw->mac_bw_sz >= sz);
2885 2888 mac_srs->srs_bw->mac_bw_sz -= sz;
2886 2889 mac_srs->srs_bw->mac_bw_drop_bytes += sz;
2887 2890 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2888 2891 mac_pkt_drop(NULL, NULL, head, B_FALSE);
2889 2892 goto leave_poll;
2890 2893 } else {
2891 2894 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2892 2895 }
2893 2896
2894 2897 if ((tid = mac_srs->srs_tid) != NULL)
2895 2898 mac_srs->srs_tid = NULL;
2896 2899
2897 2900 mac_srs->srs_state |= (SRS_PROC|proc_type);
2898 2901 MAC_SRS_WORKER_POLLING_ON(mac_srs);
2899 2902
2900 2903 /*
2901 2904 * mcip is NULL for broadcast and multicast flows. The promisc
2902 2905 * callbacks for broadcast and multicast packets are delivered from
2903 2906 * mac_rx() and we don't need to worry about that case in this path
2904 2907 */
2905 2908 if (mcip != NULL) {
2906 2909 if (mcip->mci_promisc_list != NULL) {
2907 2910 mutex_exit(&mac_srs->srs_lock);
2908 2911 mac_promisc_client_dispatch(mcip, head);
2909 2912 mutex_enter(&mac_srs->srs_lock);
2910 2913 }
2911 2914 if (MAC_PROTECT_ENABLED(mcip, MPT_IPNOSPOOF)) {
2912 2915 mutex_exit(&mac_srs->srs_lock);
2913 2916 mac_protect_intercept_dynamic(mcip, head);
2914 2917 mutex_enter(&mac_srs->srs_lock);
2915 2918 }
2916 2919 }
2917 2920
2918 2921 /*
2919 2922 * Check if SRS itself is doing the processing
2920 2923 * This direct path does not apply when subflows are present. In this
2921 2924 * case, packets need to be dispatched to a soft ring according to the
2922 2925 * flow's bandwidth and other resources contraints.
2923 2926 */
2924 2927 if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) {
2925 2928 mac_direct_rx_t proc;
2926 2929 void *arg1;
2927 2930 mac_resource_handle_t arg2;
2928 2931
2929 2932 /*
2930 2933 * This is the case when a Rx is directly
2931 2934 * assigned and we have a fully classified
2932 2935 * protocol chain. We can deal with it in
2933 2936 * one shot.
2934 2937 */
2935 2938 proc = srs_rx->sr_func;
2936 2939 arg1 = srs_rx->sr_arg1;
2937 2940 arg2 = srs_rx->sr_arg2;
2938 2941
2939 2942 mac_srs->srs_state |= SRS_CLIENT_PROC;
2940 2943 mutex_exit(&mac_srs->srs_lock);
2941 2944 if (tid != NULL) {
2942 2945 (void) untimeout(tid);
2943 2946 tid = NULL;
2944 2947 }
2945 2948
2946 2949 proc(arg1, arg2, head, NULL);
2947 2950 /*
2948 2951 * Decrement the size and count here itelf
2949 2952 * since the packet has been processed.
2950 2953 */
2951 2954 mutex_enter(&mac_srs->srs_lock);
2952 2955 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
2953 2956 MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz);
2954 2957
2955 2958 if (mac_srs->srs_state & SRS_CLIENT_WAIT)
2956 2959 cv_signal(&mac_srs->srs_client_cv);
2957 2960 mac_srs->srs_state &= ~SRS_CLIENT_PROC;
2958 2961 } else {
2959 2962 /* Some kind of softrings based fanout is required */
2960 2963 mutex_exit(&mac_srs->srs_lock);
2961 2964 if (tid != NULL) {
2962 2965 (void) untimeout(tid);
2963 2966 tid = NULL;
2964 2967 }
2965 2968
2966 2969 /*
2967 2970 * Since the fanout routines can deal with chains,
2968 2971 * shoot the entire chain up.
2969 2972 */
2970 2973 if (mac_srs->srs_type & SRST_FANOUT_SRC_IP)
2971 2974 mac_rx_srs_fanout(mac_srs, head);
2972 2975 else
2973 2976 mac_rx_srs_proto_fanout(mac_srs, head);
2974 2977 mutex_enter(&mac_srs->srs_lock);
2975 2978 }
2976 2979
2977 2980 /*
2978 2981 * Send the poll thread to pick up any packets arrived
2979 2982 * so far. This also serves as the last check in case
2980 2983 * nothing else is queued in the SRS. The poll thread
2981 2984 * is signalled only in the case the drain was done
2982 2985 * by the worker thread and SRS_WORKER is set. The
2983 2986 * worker thread can run in parallel as long as the
2984 2987 * SRS_WORKER flag is set. We we have nothing else to
2985 2988 * process, we can exit while leaving SRS_PROC set
2986 2989 * which gives the poll thread control to process and
2987 2990 * cleanup once it returns from the NIC.
2988 2991 *
2989 2992 * If we have nothing else to process, we need to
2990 2993 * ensure that we keep holding the srs_lock till
2991 2994 * all the checks below are done and control is
2992 2995 * handed to the poll thread if it was running.
2993 2996 */
2994 2997 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2995 2998 if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
2996 2999 if (mac_srs->srs_first != NULL) {
2997 3000 if (proc_type == SRS_WORKER) {
2998 3001 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2999 3002 if (srs_rx->sr_poll_pkt_cnt <=
3000 3003 srs_rx->sr_lowat)
3001 3004 MAC_SRS_POLL_RING(mac_srs);
3002 3005 goto again;
3003 3006 } else {
3004 3007 cv_signal(&mac_srs->srs_async);
3005 3008 }
3006 3009 }
3007 3010 }
3008 3011 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
3009 3012
3010 3013 done:
3011 3014
3012 3015 if (mac_srs->srs_state & SRS_GET_PKTS) {
3013 3016 /*
3014 3017 * Poll thread is already running. Leave the
3015 3018 * SRS_RPOC set and hand over the control to
3016 3019 * poll thread.
3017 3020 */
3018 3021 mac_srs->srs_state &= ~proc_type;
3019 3022 return;
3020 3023 }
3021 3024
3022 3025 /*
3023 3026 * If we can't process packets because we have exceeded
3024 3027 * B/W limit for this tick, just set the timeout
3025 3028 * and leave.
3026 3029 *
3027 3030 * Even if there are no packets queued in SRS, we
3028 3031 * need to make sure that the shared counter is
3029 3032 * clear and any associated softrings have cleared
3030 3033 * all the backlog. Otherwise, leave the interface
3031 3034 * in polling mode and the poll thread will get
3032 3035 * signalled once the count goes down to zero.
3033 3036 *
3034 3037 * If someone is already draining the queue (SRS_PROC is
3035 3038 * set) when the srs_poll_pkt_cnt goes down to zero,
3036 3039 * then it means that drain is already running and we
3037 3040 * will turn off polling at that time if there is
3038 3041 * no backlog. As long as there are packets queued either
3039 3042 * is soft ring set or its soft rings, we will leave
3040 3043 * the interface in polling mode.
3041 3044 */
3042 3045 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
3043 3046 if ((mac_srs->srs_state & SRS_POLLING_CAPAB) &&
3044 3047 ((mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) ||
3045 3048 (srs_rx->sr_poll_pkt_cnt > 0))) {
3046 3049 MAC_SRS_POLLING_ON(mac_srs);
3047 3050 mac_srs->srs_state &= ~(SRS_PROC|proc_type);
3048 3051 if ((mac_srs->srs_first != NULL) &&
3049 3052 (mac_srs->srs_tid == NULL))
3050 3053 mac_srs->srs_tid = timeout(mac_srs_fire,
3051 3054 mac_srs, 1);
3052 3055 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
3053 3056 return;
3054 3057 }
3055 3058 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
3056 3059
3057 3060 leave_poll:
3058 3061
3059 3062 /* Nothing else to do. Get out of poll mode */
3060 3063 MAC_SRS_POLLING_OFF(mac_srs);
3061 3064 mac_srs->srs_state &= ~(SRS_PROC|proc_type);
3062 3065 }
3063 3066
3064 3067 /*
3065 3068 * mac_srs_worker
3066 3069 *
3067 3070 * The SRS worker routine. Drains the queue when no one else is
3068 3071 * processing it.
3069 3072 */
3070 3073 void
3071 3074 mac_srs_worker(mac_soft_ring_set_t *mac_srs)
3072 3075 {
3073 3076 kmutex_t *lock = &mac_srs->srs_lock;
3074 3077 kcondvar_t *async = &mac_srs->srs_async;
3075 3078 callb_cpr_t cprinfo;
3076 3079 boolean_t bw_ctl_flag;
3077 3080
3078 3081 CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "srs_worker");
3079 3082 mutex_enter(lock);
3080 3083
3081 3084 start:
3082 3085 for (;;) {
3083 3086 bw_ctl_flag = B_FALSE;
3084 3087 if (mac_srs->srs_type & SRST_BW_CONTROL) {
3085 3088 MAC_SRS_BW_LOCK(mac_srs);
3086 3089 MAC_SRS_CHECK_BW_CONTROL(mac_srs);
3087 3090 if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)
3088 3091 bw_ctl_flag = B_TRUE;
3089 3092 MAC_SRS_BW_UNLOCK(mac_srs);
3090 3093 }
3091 3094 /*
3092 3095 * The SRS_BW_ENFORCED flag may change since we have dropped
3093 3096 * the mac_bw_lock. However the drain function can handle both
3094 3097 * a drainable SRS or a bandwidth controlled SRS, and the
3095 3098 * effect of scheduling a timeout is to wakeup the worker
3096 3099 * thread which in turn will call the drain function. Since
3097 3100 * we release the srs_lock atomically only in the cv_wait there
3098 3101 * isn't a fear of waiting for ever.
3099 3102 */
3100 3103 while (((mac_srs->srs_state & SRS_PROC) ||
3101 3104 (mac_srs->srs_first == NULL) || bw_ctl_flag ||
3102 3105 (mac_srs->srs_state & SRS_TX_BLOCKED)) &&
3103 3106 !(mac_srs->srs_state & SRS_PAUSE)) {
3104 3107 /*
3105 3108 * If we have packets queued and we are here
3106 3109 * because B/W control is in place, we better
3107 3110 * schedule the worker wakeup after 1 tick
3108 3111 * to see if bandwidth control can be relaxed.
3109 3112 */
3110 3113 if (bw_ctl_flag && mac_srs->srs_tid == NULL) {
3111 3114 /*
3112 3115 * We need to ensure that a timer is already
3113 3116 * scheduled or we force schedule one for
3114 3117 * later so that we can continue processing
3115 3118 * after this quanta is over.
3116 3119 */
3117 3120 mac_srs->srs_tid = timeout(mac_srs_fire,
3118 3121 mac_srs, 1);
3119 3122 }
3120 3123 wait:
3121 3124 CALLB_CPR_SAFE_BEGIN(&cprinfo);
3122 3125 cv_wait(async, lock);
3123 3126 CALLB_CPR_SAFE_END(&cprinfo, lock);
3124 3127
3125 3128 if (mac_srs->srs_state & SRS_PAUSE)
3126 3129 goto done;
3127 3130 if (mac_srs->srs_state & SRS_PROC)
3128 3131 goto wait;
3129 3132
3130 3133 if (mac_srs->srs_first != NULL &&
3131 3134 mac_srs->srs_type & SRST_BW_CONTROL) {
3132 3135 MAC_SRS_BW_LOCK(mac_srs);
3133 3136 if (mac_srs->srs_bw->mac_bw_state &
3134 3137 SRS_BW_ENFORCED) {
3135 3138 MAC_SRS_CHECK_BW_CONTROL(mac_srs);
3136 3139 }
3137 3140 bw_ctl_flag = mac_srs->srs_bw->mac_bw_state &
3138 3141 SRS_BW_ENFORCED;
3139 3142 MAC_SRS_BW_UNLOCK(mac_srs);
3140 3143 }
3141 3144 }
3142 3145
3143 3146 if (mac_srs->srs_state & SRS_PAUSE)
3144 3147 goto done;
3145 3148 mac_srs->srs_drain_func(mac_srs, SRS_WORKER);
3146 3149 }
3147 3150 done:
3148 3151 /*
3149 3152 * The Rx SRS quiesce logic first cuts off packet supply to the SRS
3150 3153 * from both hard and soft classifications and waits for such threads
3151 3154 * to finish before signaling the worker. So at this point the only
3152 3155 * thread left that could be competing with the worker is the poll
3153 3156 * thread. In the case of Tx, there shouldn't be any thread holding
3154 3157 * SRS_PROC at this point.
3155 3158 */
3156 3159 if (!(mac_srs->srs_state & SRS_PROC)) {
3157 3160 mac_srs->srs_state |= SRS_PROC;
3158 3161 } else {
3159 3162 ASSERT((mac_srs->srs_type & SRST_TX) == 0);
3160 3163 /*
3161 3164 * Poll thread still owns the SRS and is still running
3162 3165 */
3163 3166 ASSERT((mac_srs->srs_poll_thr == NULL) ||
3164 3167 ((mac_srs->srs_state & SRS_POLL_THR_OWNER) ==
3165 3168 SRS_POLL_THR_OWNER));
3166 3169 }
3167 3170 mac_srs_worker_quiesce(mac_srs);
3168 3171 /*
3169 3172 * Wait for the SRS_RESTART or SRS_CONDEMNED signal from the initiator
3170 3173 * of the quiesce operation
3171 3174 */
3172 3175 while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_RESTART)))
3173 3176 cv_wait(&mac_srs->srs_async, &mac_srs->srs_lock);
3174 3177
3175 3178 if (mac_srs->srs_state & SRS_RESTART) {
3176 3179 ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED));
3177 3180 mac_srs_worker_restart(mac_srs);
3178 3181 mac_srs->srs_state &= ~SRS_PROC;
3179 3182 goto start;
3180 3183 }
3181 3184
3182 3185 if (!(mac_srs->srs_state & SRS_CONDEMNED_DONE))
3183 3186 mac_srs_worker_quiesce(mac_srs);
3184 3187
3185 3188 mac_srs->srs_state &= ~SRS_PROC;
3186 3189 /* The macro drops the srs_lock */
3187 3190 CALLB_CPR_EXIT(&cprinfo);
3188 3191 thread_exit();
3189 3192 }
3190 3193
3191 3194 /*
3192 3195 * mac_rx_srs_subflow_process
3193 3196 *
3194 3197 * Receive side routine called from interrupt path when there are
3195 3198 * sub flows present on this SRS.
3196 3199 */
3197 3200 /* ARGSUSED */
3198 3201 void
3199 3202 mac_rx_srs_subflow_process(void *arg, mac_resource_handle_t srs,
3200 3203 mblk_t *mp_chain, boolean_t loopback)
3201 3204 {
3202 3205 flow_entry_t *flent = NULL;
3203 3206 flow_entry_t *prev_flent = NULL;
3204 3207 mblk_t *mp = NULL;
3205 3208 mblk_t *tail = NULL;
3206 3209 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs;
3207 3210 mac_client_impl_t *mcip;
3208 3211
3209 3212 mcip = mac_srs->srs_mcip;
3210 3213 ASSERT(mcip != NULL);
3211 3214
3212 3215 /*
3213 3216 * We need to determine the SRS for every packet
3214 3217 * by walking the flow table, if we don't get any,
3215 3218 * then we proceed using the SRS we came with.
3216 3219 */
3217 3220 mp = tail = mp_chain;
3218 3221 while (mp != NULL) {
3219 3222
3220 3223 /*
3221 3224 * We will increment the stats for the mactching subflow.
3222 3225 * when we get the bytes/pkt count for the classified packets
3223 3226 * later in mac_rx_srs_process.
3224 3227 */
3225 3228 (void) mac_flow_lookup(mcip->mci_subflow_tab, mp,
3226 3229 FLOW_INBOUND, &flent);
3227 3230
3228 3231 if (mp == mp_chain || flent == prev_flent) {
3229 3232 if (prev_flent != NULL)
3230 3233 FLOW_REFRELE(prev_flent);
3231 3234 prev_flent = flent;
3232 3235 flent = NULL;
3233 3236 tail = mp;
3234 3237 mp = mp->b_next;
3235 3238 continue;
3236 3239 }
3237 3240 tail->b_next = NULL;
3238 3241 /*
3239 3242 * A null indicates, this is for the mac_srs itself.
3240 3243 * XXX-venu : probably assert for fe_rx_srs_cnt == 0.
3241 3244 */
3242 3245 if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) {
3243 3246 mac_rx_srs_process(arg,
3244 3247 (mac_resource_handle_t)mac_srs, mp_chain,
3245 3248 loopback);
3246 3249 } else {
3247 3250 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1,
3248 3251 prev_flent->fe_cb_arg2, mp_chain, loopback);
3249 3252 FLOW_REFRELE(prev_flent);
3250 3253 }
3251 3254 prev_flent = flent;
3252 3255 flent = NULL;
3253 3256 mp_chain = mp;
3254 3257 tail = mp;
3255 3258 mp = mp->b_next;
3256 3259 }
3257 3260 /* Last chain */
3258 3261 ASSERT(mp_chain != NULL);
3259 3262 if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) {
3260 3263 mac_rx_srs_process(arg,
3261 3264 (mac_resource_handle_t)mac_srs, mp_chain, loopback);
3262 3265 } else {
3263 3266 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1,
3264 3267 prev_flent->fe_cb_arg2, mp_chain, loopback);
3265 3268 FLOW_REFRELE(prev_flent);
3266 3269 }
3267 3270 }
3268 3271
3269 3272 /*
3270 3273 * mac_rx_srs_process
3271 3274 *
3272 3275 * Receive side routine called from the interrupt path.
3273 3276 *
3274 3277 * loopback is set to force a context switch on the loopback
3275 3278 * path between MAC clients.
3276 3279 */
3277 3280 /* ARGSUSED */
3278 3281 void
3279 3282 mac_rx_srs_process(void *arg, mac_resource_handle_t srs, mblk_t *mp_chain,
3280 3283 boolean_t loopback)
3281 3284 {
3282 3285 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs;
3283 3286 mblk_t *mp, *tail, *head;
3284 3287 int count = 0;
3285 3288 int count1;
3286 3289 size_t sz = 0;
3287 3290 size_t chain_sz, sz1;
3288 3291 mac_bw_ctl_t *mac_bw;
3289 3292 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx;
3290 3293
3291 3294 /*
3292 3295 * Set the tail, count and sz. We set the sz irrespective
3293 3296 * of whether we are doing B/W control or not for the
3294 3297 * purpose of updating the stats.
3295 3298 */
3296 3299 mp = tail = mp_chain;
3297 3300 while (mp != NULL) {
3298 3301 tail = mp;
3299 3302 count++;
3300 3303 sz += msgdsize(mp);
3301 3304 mp = mp->b_next;
3302 3305 }
3303 3306
3304 3307 mutex_enter(&mac_srs->srs_lock);
3305 3308
3306 3309 if (loopback) {
3307 3310 SRS_RX_STAT_UPDATE(mac_srs, lclbytes, sz);
3308 3311 SRS_RX_STAT_UPDATE(mac_srs, lclcnt, count);
3309 3312
3310 3313 } else {
3311 3314 SRS_RX_STAT_UPDATE(mac_srs, intrbytes, sz);
3312 3315 SRS_RX_STAT_UPDATE(mac_srs, intrcnt, count);
3313 3316 }
3314 3317
3315 3318 /*
3316 3319 * If the SRS in already being processed; has been blanked;
3317 3320 * can be processed by worker thread only; or the B/W limit
3318 3321 * has been reached, then queue the chain and check if
3319 3322 * worker thread needs to be awakend.
3320 3323 */
3321 3324 if (mac_srs->srs_type & SRST_BW_CONTROL) {
3322 3325 mac_bw = mac_srs->srs_bw;
3323 3326 ASSERT(mac_bw != NULL);
3324 3327 mutex_enter(&mac_bw->mac_bw_lock);
3325 3328 mac_bw->mac_bw_intr += sz;
3326 3329 if (mac_bw->mac_bw_limit == 0) {
3327 3330 /* zero bandwidth: drop all */
3328 3331 srs_rx->sr_stat.mrs_sdrops += count;
3329 3332 mac_bw->mac_bw_drop_bytes += sz;
3330 3333 mutex_exit(&mac_bw->mac_bw_lock);
3331 3334 mutex_exit(&mac_srs->srs_lock);
3332 3335 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE);
3333 3336 return;
3334 3337 } else {
3335 3338 if ((mac_bw->mac_bw_sz + sz) <=
3336 3339 mac_bw->mac_bw_drop_threshold) {
3337 3340 mutex_exit(&mac_bw->mac_bw_lock);
3338 3341 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain,
3339 3342 tail, count, sz);
3340 3343 } else {
3341 3344 mp = mp_chain;
3342 3345 chain_sz = 0;
3343 3346 count1 = 0;
3344 3347 tail = NULL;
3345 3348 head = NULL;
3346 3349 while (mp != NULL) {
3347 3350 sz1 = msgdsize(mp);
3348 3351 if (mac_bw->mac_bw_sz + chain_sz + sz1 >
3349 3352 mac_bw->mac_bw_drop_threshold)
3350 3353 break;
3351 3354 chain_sz += sz1;
3352 3355 count1++;
3353 3356 tail = mp;
3354 3357 mp = mp->b_next;
3355 3358 }
3356 3359 mutex_exit(&mac_bw->mac_bw_lock);
3357 3360 if (tail != NULL) {
3358 3361 head = tail->b_next;
3359 3362 tail->b_next = NULL;
3360 3363 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs,
3361 3364 mp_chain, tail, count1, chain_sz);
3362 3365 sz -= chain_sz;
3363 3366 count -= count1;
3364 3367 } else {
3365 3368 /* Can't pick up any */
3366 3369 head = mp_chain;
3367 3370 }
3368 3371 if (head != NULL) {
3369 3372 /* Drop any packet over the threshold */
3370 3373 srs_rx->sr_stat.mrs_sdrops += count;
3371 3374 mutex_enter(&mac_bw->mac_bw_lock);
3372 3375 mac_bw->mac_bw_drop_bytes += sz;
3373 3376 mutex_exit(&mac_bw->mac_bw_lock);
3374 3377 freemsgchain(head);
3375 3378 }
3376 3379 }
3377 3380 MAC_SRS_WORKER_WAKEUP(mac_srs);
3378 3381 mutex_exit(&mac_srs->srs_lock);
3379 3382 return;
3380 3383 }
3381 3384 }
3382 3385
3383 3386 /*
3384 3387 * If the total number of packets queued in the SRS and
3385 3388 * its associated soft rings exceeds the max allowed,
3386 3389 * then drop the chain. If we are polling capable, this
3387 3390 * shouldn't be happening.
3388 3391 */
3389 3392 if (!(mac_srs->srs_type & SRST_BW_CONTROL) &&
3390 3393 (srs_rx->sr_poll_pkt_cnt > srs_rx->sr_hiwat)) {
3391 3394 mac_bw = mac_srs->srs_bw;
3392 3395 srs_rx->sr_stat.mrs_sdrops += count;
3393 3396 mutex_enter(&mac_bw->mac_bw_lock);
3394 3397 mac_bw->mac_bw_drop_bytes += sz;
3395 3398 mutex_exit(&mac_bw->mac_bw_lock);
3396 3399 freemsgchain(mp_chain);
3397 3400 mutex_exit(&mac_srs->srs_lock);
3398 3401 return;
3399 3402 }
3400 3403
3401 3404 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, tail, count, sz);
3402 3405
3403 3406 if (!(mac_srs->srs_state & SRS_PROC)) {
3404 3407 /*
3405 3408 * If we are coming via loopback, if we are not optimizing for
3406 3409 * latency, or if our stack is running deep, we should signal
3407 3410 * the worker thread.
3408 3411 */
3409 3412 if (loopback || !(mac_srs->srs_state & SRS_LATENCY_OPT) ||
3410 3413 MAC_RX_SRS_TOODEEP()) {
3411 3414 /*
3412 3415 * For loopback, We need to let the worker take
3413 3416 * over as we don't want to continue in the same
3414 3417 * thread even if we can. This could lead to stack
3415 3418 * overflows and may also end up using
3416 3419 * resources (cpu) incorrectly.
3417 3420 */
3418 3421 cv_signal(&mac_srs->srs_async);
3419 3422 } else {
3420 3423 /*
3421 3424 * Seems like no one is processing the SRS and
3422 3425 * there is no backlog. We also inline process
3423 3426 * our packet if its a single packet in non
3424 3427 * latency optimized case (in latency optimized
3425 3428 * case, we inline process chains of any size).
3426 3429 */
3427 3430 mac_srs->srs_drain_func(mac_srs, SRS_PROC_FAST);
3428 3431 }
3429 3432 }
3430 3433 mutex_exit(&mac_srs->srs_lock);
3431 3434 }
3432 3435
3433 3436 /* TX SIDE ROUTINES (RUNTIME) */
3434 3437
3435 3438 /*
3436 3439 * mac_tx_srs_no_desc
3437 3440 *
3438 3441 * This routine is called by Tx single ring default mode
3439 3442 * when Tx ring runs out of descs.
3440 3443 */
3441 3444 mac_tx_cookie_t
3442 3445 mac_tx_srs_no_desc(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3443 3446 uint16_t flag, mblk_t **ret_mp)
3444 3447 {
3445 3448 mac_tx_cookie_t cookie = NULL;
3446 3449 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
3447 3450 boolean_t wakeup_worker = B_TRUE;
3448 3451 uint32_t tx_mode = srs_tx->st_mode;
3449 3452 int cnt, sz;
3450 3453 mblk_t *tail;
3451 3454
3452 3455 ASSERT(tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_BW);
3453 3456 if (flag & MAC_DROP_ON_NO_DESC) {
3454 3457 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
3455 3458 } else {
3456 3459 if (mac_srs->srs_first != NULL)
3457 3460 wakeup_worker = B_FALSE;
3458 3461 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3459 3462 if (flag & MAC_TX_NO_ENQUEUE) {
3460 3463 /*
3461 3464 * If TX_QUEUED is not set, queue the
3462 3465 * packet and let mac_tx_srs_drain()
3463 3466 * set the TX_BLOCKED bit for the
3464 3467 * reasons explained above. Otherwise,
3465 3468 * return the mblks.
3466 3469 */
3467 3470 if (wakeup_worker) {
3468 3471 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
3469 3472 mp_chain, tail, cnt, sz);
3470 3473 } else {
3471 3474 MAC_TX_SET_NO_ENQUEUE(mac_srs,
3472 3475 mp_chain, ret_mp, cookie);
3473 3476 }
3474 3477 } else {
3475 3478 MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain,
3476 3479 tail, cnt, sz, cookie);
3477 3480 }
3478 3481 if (wakeup_worker)
3479 3482 cv_signal(&mac_srs->srs_async);
3480 3483 }
3481 3484 return (cookie);
3482 3485 }
3483 3486
3484 3487 /*
3485 3488 * mac_tx_srs_enqueue
3486 3489 *
3487 3490 * This routine is called when Tx SRS is operating in either serializer
3488 3491 * or bandwidth mode. In serializer mode, a packet will get enqueued
3489 3492 * when a thread cannot enter SRS exclusively. In bandwidth mode,
3490 3493 * packets gets queued if allowed byte-count limit for a tick is
3491 3494 * exceeded. The action that gets taken when MAC_DROP_ON_NO_DESC and
3492 3495 * MAC_TX_NO_ENQUEUE is set is different than when operaing in either
3493 3496 * the default mode or fanout mode. Here packets get dropped or
3494 3497 * returned back to the caller only after hi-watermark worth of data
3495 3498 * is queued.
3496 3499 */
3497 3500 static mac_tx_cookie_t
3498 3501 mac_tx_srs_enqueue(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3499 3502 uint16_t flag, uintptr_t fanout_hint, mblk_t **ret_mp)
3500 3503 {
3501 3504 mac_tx_cookie_t cookie = NULL;
3502 3505 int cnt, sz;
3503 3506 mblk_t *tail;
3504 3507 boolean_t wakeup_worker = B_TRUE;
3505 3508
3506 3509 /*
3507 3510 * Ignore fanout hint if we don't have multiple tx rings.
3508 3511 */
3509 3512 if (!MAC_TX_SOFT_RINGS(mac_srs))
3510 3513 fanout_hint = 0;
3511 3514
3512 3515 if (mac_srs->srs_first != NULL)
3513 3516 wakeup_worker = B_FALSE;
3514 3517 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3515 3518 if (flag & MAC_DROP_ON_NO_DESC) {
3516 3519 if (mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) {
3517 3520 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
3518 3521 } else {
3519 3522 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
3520 3523 mp_chain, tail, cnt, sz);
3521 3524 }
3522 3525 } else if (flag & MAC_TX_NO_ENQUEUE) {
3523 3526 if ((mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) ||
3524 3527 (mac_srs->srs_state & SRS_TX_WAKEUP_CLIENT)) {
3525 3528 MAC_TX_SET_NO_ENQUEUE(mac_srs, mp_chain,
3526 3529 ret_mp, cookie);
3527 3530 } else {
3528 3531 mp_chain->b_prev = (mblk_t *)fanout_hint;
3529 3532 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
3530 3533 mp_chain, tail, cnt, sz);
3531 3534 }
3532 3535 } else {
3533 3536 /*
3534 3537 * If you are BW_ENFORCED, just enqueue the
3535 3538 * packet. srs_worker will drain it at the
3536 3539 * prescribed rate. Before enqueueing, save
3537 3540 * the fanout hint.
3538 3541 */
3539 3542 mp_chain->b_prev = (mblk_t *)fanout_hint;
3540 3543 MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain,
3541 3544 tail, cnt, sz, cookie);
3542 3545 }
3543 3546 if (wakeup_worker)
3544 3547 cv_signal(&mac_srs->srs_async);
3545 3548 return (cookie);
3546 3549 }
3547 3550
3548 3551 /*
3549 3552 * There are seven tx modes:
3550 3553 *
3551 3554 * 1) Default mode (SRS_TX_DEFAULT)
3552 3555 * 2) Serialization mode (SRS_TX_SERIALIZE)
3553 3556 * 3) Fanout mode (SRS_TX_FANOUT)
3554 3557 * 4) Bandwdith mode (SRS_TX_BW)
3555 3558 * 5) Fanout and Bandwidth mode (SRS_TX_BW_FANOUT)
3556 3559 * 6) aggr Tx mode (SRS_TX_AGGR)
3557 3560 * 7) aggr Tx bw mode (SRS_TX_BW_AGGR)
3558 3561 *
3559 3562 * The tx mode in which an SRS operates is decided in mac_tx_srs_setup()
3560 3563 * based on the number of Tx rings requested for an SRS and whether
3561 3564 * bandwidth control is requested or not.
3562 3565 *
3563 3566 * The default mode (i.e., no fanout/no bandwidth) is used when the
3564 3567 * underlying NIC does not have Tx rings or just one Tx ring. In this mode,
3565 3568 * the SRS acts as a pass-thru. Packets will go directly to mac_tx_send().
3566 3569 * When the underlying Tx ring runs out of Tx descs, it starts queueing up
3567 3570 * packets in SRS. When flow-control is relieved, the srs_worker drains
3568 3571 * the queued packets and informs blocked clients to restart sending
3569 3572 * packets.
3570 3573 *
3571 3574 * In the SRS_TX_SERIALIZE mode, all calls to mac_tx() are serialized. This
3572 3575 * mode is used when the link has no Tx rings or only one Tx ring.
3573 3576 *
3574 3577 * In the SRS_TX_FANOUT mode, packets will be fanned out to multiple
3575 3578 * Tx rings. Each Tx ring will have a soft ring associated with it.
3576 3579 * These soft rings will be hung off the Tx SRS. Queueing if it happens
3577 3580 * due to lack of Tx desc will be in individual soft ring (and not srs)
3578 3581 * associated with Tx ring.
3579 3582 *
3580 3583 * In the TX_BW mode, tx srs will allow packets to go down to Tx ring
3581 3584 * only if bw is available. Otherwise the packets will be queued in
3582 3585 * SRS. If fanout to multiple Tx rings is configured, the packets will
3583 3586 * be fanned out among the soft rings associated with the Tx rings.
3584 3587 *
3585 3588 * In SRS_TX_AGGR mode, mac_tx_aggr_mode() routine is called. This routine
3586 3589 * invokes an aggr function, aggr_find_tx_ring(), to find a pseudo Tx ring
3587 3590 * belonging to a port on which the packet has to be sent. Aggr will
3588 3591 * always have a pseudo Tx ring associated with it even when it is an
3589 3592 * aggregation over a single NIC that has no Tx rings. Even in such a
3590 3593 * case, the single pseudo Tx ring will have a soft ring associated with
3591 3594 * it and the soft ring will hang off the SRS.
3592 3595 *
3593 3596 * If a bandwidth is specified for an aggr, SRS_TX_BW_AGGR mode is used.
3594 3597 * In this mode, the bandwidth is first applied on the outgoing packets
3595 3598 * and later mac_tx_addr_mode() function is called to send the packet out
3596 3599 * of one of the pseudo Tx rings.
3597 3600 *
3598 3601 * Four flags are used in srs_state for indicating flow control
3599 3602 * conditions : SRS_TX_BLOCKED, SRS_TX_HIWAT, SRS_TX_WAKEUP_CLIENT.
3600 3603 * SRS_TX_BLOCKED indicates out of Tx descs. SRS expects a wakeup from the
3601 3604 * driver below.
3602 3605 * SRS_TX_HIWAT indicates packet count enqueued in Tx SRS exceeded Tx hiwat
3603 3606 * and flow-control pressure is applied back to clients. The clients expect
3604 3607 * wakeup when flow-control is relieved.
3605 3608 * SRS_TX_WAKEUP_CLIENT get set when (flag == MAC_TX_NO_ENQUEUE) and mblk
3606 3609 * got returned back to client either due to lack of Tx descs or due to bw
3607 3610 * control reasons. The clients expect a wakeup when condition is relieved.
3608 3611 *
3609 3612 * The fourth argument to mac_tx() is the flag. Normally it will be 0 but
3610 3613 * some clients set the following values too: MAC_DROP_ON_NO_DESC,
3611 3614 * MAC_TX_NO_ENQUEUE
3612 3615 * Mac clients that do not want packets to be enqueued in the mac layer set
3613 3616 * MAC_DROP_ON_NO_DESC value. The packets won't be queued in the Tx SRS or
3614 3617 * Tx soft rings but instead get dropped when the NIC runs out of desc. The
3615 3618 * behaviour of this flag is different when the Tx is running in serializer
3616 3619 * or bandwidth mode. Under these (Serializer, bandwidth) modes, the packet
3617 3620 * get dropped when Tx high watermark is reached.
3618 3621 * There are some mac clients like vsw, aggr that want the mblks to be
3619 3622 * returned back to clients instead of being queued in Tx SRS (or Tx soft
3620 3623 * rings) under flow-control (i.e., out of desc or exceeding bw limits)
3621 3624 * conditions. These clients call mac_tx() with MAC_TX_NO_ENQUEUE flag set.
3622 3625 * In the default and Tx fanout mode, the un-transmitted mblks will be
3623 3626 * returned back to the clients when the driver runs out of Tx descs.
3624 3627 * SRS_TX_WAKEUP_CLIENT (or S_RING_WAKEUP_CLIENT) will be set in SRS (or
3625 3628 * soft ring) so that the clients can be woken up when Tx desc become
3626 3629 * available. When running in serializer or bandwidth mode mode,
3627 3630 * SRS_TX_WAKEUP_CLIENT will be set when tx hi-watermark is reached.
3628 3631 */
3629 3632
3630 3633 mac_tx_func_t
3631 3634 mac_tx_get_func(uint32_t mode)
3632 3635 {
3633 3636 return (mac_tx_mode_list[mode].mac_tx_func);
3634 3637 }
3635 3638
3636 3639 /* ARGSUSED */
3637 3640 static mac_tx_cookie_t
3638 3641 mac_tx_single_ring_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3639 3642 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3640 3643 {
3641 3644 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
3642 3645 mac_tx_stats_t stats;
3643 3646 mac_tx_cookie_t cookie = NULL;
3644 3647
3645 3648 ASSERT(srs_tx->st_mode == SRS_TX_DEFAULT);
3646 3649
3647 3650 /* Regular case with a single Tx ring */
3648 3651 /*
3649 3652 * SRS_TX_BLOCKED is set when underlying NIC runs
3650 3653 * out of Tx descs and messages start getting
3651 3654 * queued. It won't get reset until
3652 3655 * tx_srs_drain() completely drains out the
3653 3656 * messages.
3654 3657 */
3655 3658 if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) {
3656 3659 /* Tx descs/resources not available */
3657 3660 mutex_enter(&mac_srs->srs_lock);
3658 3661 if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) {
3659 3662 cookie = mac_tx_srs_no_desc(mac_srs, mp_chain,
3660 3663 flag, ret_mp);
3661 3664 mutex_exit(&mac_srs->srs_lock);
3662 3665 return (cookie);
3663 3666 }
3664 3667 /*
3665 3668 * While we were computing mblk count, the
3666 3669 * flow control condition got relieved.
3667 3670 * Continue with the transmission.
3668 3671 */
3669 3672 mutex_exit(&mac_srs->srs_lock);
3670 3673 }
3671 3674
3672 3675 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
3673 3676 mp_chain, &stats);
3674 3677
3675 3678 /*
3676 3679 * Multiple threads could be here sending packets.
3677 3680 * Under such conditions, it is not possible to
3678 3681 * automically set SRS_TX_BLOCKED bit to indicate
3679 3682 * out of tx desc condition. To atomically set
3680 3683 * this, we queue the returned packet and do
3681 3684 * the setting of SRS_TX_BLOCKED in
3682 3685 * mac_tx_srs_drain().
3683 3686 */
3684 3687 if (mp_chain != NULL) {
3685 3688 mutex_enter(&mac_srs->srs_lock);
3686 3689 cookie = mac_tx_srs_no_desc(mac_srs, mp_chain, flag, ret_mp);
3687 3690 mutex_exit(&mac_srs->srs_lock);
3688 3691 return (cookie);
3689 3692 }
3690 3693 SRS_TX_STATS_UPDATE(mac_srs, &stats);
3691 3694
3692 3695 return (NULL);
3693 3696 }
3694 3697
3695 3698 /*
3696 3699 * mac_tx_serialize_mode
3697 3700 *
3698 3701 * This is an experimental mode implemented as per the request of PAE.
3699 3702 * In this mode, all callers attempting to send a packet to the NIC
3700 3703 * will get serialized. Only one thread at any time will access the
3701 3704 * NIC to send the packet out.
3702 3705 */
3703 3706 /* ARGSUSED */
3704 3707 static mac_tx_cookie_t
3705 3708 mac_tx_serializer_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3706 3709 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3707 3710 {
3708 3711 mac_tx_stats_t stats;
3709 3712 mac_tx_cookie_t cookie = NULL;
3710 3713 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
3711 3714
3712 3715 /* Single ring, serialize below */
3713 3716 ASSERT(srs_tx->st_mode == SRS_TX_SERIALIZE);
3714 3717 mutex_enter(&mac_srs->srs_lock);
3715 3718 if ((mac_srs->srs_first != NULL) ||
3716 3719 (mac_srs->srs_state & SRS_PROC)) {
3717 3720 /*
3718 3721 * In serialization mode, queue all packets until
3719 3722 * TX_HIWAT is set.
3720 3723 * If drop bit is set, drop if TX_HIWAT is set.
3721 3724 * If no_enqueue is set, still enqueue until hiwat
3722 3725 * is set and return mblks after TX_HIWAT is set.
3723 3726 */
3724 3727 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain,
3725 3728 flag, NULL, ret_mp);
3726 3729 mutex_exit(&mac_srs->srs_lock);
3727 3730 return (cookie);
3728 3731 }
3729 3732 /*
3730 3733 * No packets queued, nothing on proc and no flow
3731 3734 * control condition. Fast-path, ok. Do inline
3732 3735 * processing.
3733 3736 */
3734 3737 mac_srs->srs_state |= SRS_PROC;
3735 3738 mutex_exit(&mac_srs->srs_lock);
3736 3739
3737 3740 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
3738 3741 mp_chain, &stats);
3739 3742
3740 3743 mutex_enter(&mac_srs->srs_lock);
3741 3744 mac_srs->srs_state &= ~SRS_PROC;
3742 3745 if (mp_chain != NULL) {
3743 3746 cookie = mac_tx_srs_enqueue(mac_srs,
3744 3747 mp_chain, flag, NULL, ret_mp);
3745 3748 }
3746 3749 if (mac_srs->srs_first != NULL) {
3747 3750 /*
3748 3751 * We processed inline our packet and a new
3749 3752 * packet/s got queued while we were
3750 3753 * processing. Wakeup srs worker
3751 3754 */
3752 3755 cv_signal(&mac_srs->srs_async);
3753 3756 }
3754 3757 mutex_exit(&mac_srs->srs_lock);
3755 3758
3756 3759 if (cookie == NULL)
3757 3760 SRS_TX_STATS_UPDATE(mac_srs, &stats);
3758 3761
3759 3762 return (cookie);
3760 3763 }
3761 3764
3762 3765 /*
3763 3766 * mac_tx_fanout_mode
3764 3767 *
3765 3768 * In this mode, the SRS will have access to multiple Tx rings to send
3766 3769 * the packet out. The fanout hint that is passed as an argument is
3767 3770 * used to find an appropriate ring to fanout the traffic. Each Tx
3768 3771 * ring, in turn, will have a soft ring associated with it. If a Tx
3769 3772 * ring runs out of Tx desc's the returned packet will be queued in
3770 3773 * the soft ring associated with that Tx ring. The srs itself will not
3771 3774 * queue any packets.
3772 3775 */
3773 3776
3774 3777 #define MAC_TX_SOFT_RING_PROCESS(chain) { \
3775 3778 index = COMPUTE_INDEX(hash, mac_srs->srs_tx_ring_count), \
3776 3779 softring = mac_srs->srs_tx_soft_rings[index]; \
3777 3780 cookie = mac_tx_soft_ring_process(softring, chain, flag, ret_mp); \
3778 3781 DTRACE_PROBE2(tx__fanout, uint64_t, hash, uint_t, index); \
3779 3782 }
3780 3783
3781 3784 static mac_tx_cookie_t
3782 3785 mac_tx_fanout_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3783 3786 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3784 3787 {
3785 3788 mac_soft_ring_t *softring;
3786 3789 uint64_t hash;
3787 3790 uint_t index;
3788 3791 mac_tx_cookie_t cookie = NULL;
3789 3792
3790 3793 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
3791 3794 mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT);
3792 3795 if (fanout_hint != 0) {
3793 3796 /*
3794 3797 * The hint is specified by the caller, simply pass the
3795 3798 * whole chain to the soft ring.
3796 3799 */
3797 3800 hash = HASH_HINT(fanout_hint);
3798 3801 MAC_TX_SOFT_RING_PROCESS(mp_chain);
3799 3802 } else {
3800 3803 mblk_t *last_mp, *cur_mp, *sub_chain;
3801 3804 uint64_t last_hash = 0;
3802 3805 uint_t media = mac_srs->srs_mcip->mci_mip->mi_info.mi_media;
3803 3806
3804 3807 /*
3805 3808 * Compute the hash from the contents (headers) of the
3806 3809 * packets of the mblk chain. Split the chains into
3807 3810 * subchains of the same conversation.
3808 3811 *
3809 3812 * Since there may be more than one ring used for
3810 3813 * sub-chains of the same call, and since the caller
3811 3814 * does not maintain per conversation state since it
3812 3815 * passed a zero hint, unsent subchains will be
3813 3816 * dropped.
3814 3817 */
3815 3818
3816 3819 flag |= MAC_DROP_ON_NO_DESC;
3817 3820 ret_mp = NULL;
3818 3821
3819 3822 ASSERT(ret_mp == NULL);
3820 3823
3821 3824 sub_chain = NULL;
3822 3825 last_mp = NULL;
3823 3826
3824 3827 for (cur_mp = mp_chain; cur_mp != NULL;
3825 3828 cur_mp = cur_mp->b_next) {
3826 3829 hash = mac_pkt_hash(media, cur_mp, MAC_PKT_HASH_L4,
3827 3830 B_TRUE);
3828 3831 if (last_hash != 0 && hash != last_hash) {
3829 3832 /*
3830 3833 * Starting a different subchain, send current
3831 3834 * chain out.
3832 3835 */
3833 3836 ASSERT(last_mp != NULL);
3834 3837 last_mp->b_next = NULL;
3835 3838 MAC_TX_SOFT_RING_PROCESS(sub_chain);
3836 3839 sub_chain = NULL;
3837 3840 }
3838 3841
3839 3842 /* add packet to subchain */
3840 3843 if (sub_chain == NULL)
3841 3844 sub_chain = cur_mp;
3842 3845 last_mp = cur_mp;
3843 3846 last_hash = hash;
3844 3847 }
3845 3848
3846 3849 if (sub_chain != NULL) {
3847 3850 /* send last subchain */
3848 3851 ASSERT(last_mp != NULL);
3849 3852 last_mp->b_next = NULL;
3850 3853 MAC_TX_SOFT_RING_PROCESS(sub_chain);
3851 3854 }
3852 3855
3853 3856 cookie = NULL;
3854 3857 }
3855 3858
3856 3859 return (cookie);
3857 3860 }
3858 3861
3859 3862 /*
3860 3863 * mac_tx_bw_mode
3861 3864 *
3862 3865 * In the bandwidth mode, Tx srs will allow packets to go down to Tx ring
3863 3866 * only if bw is available. Otherwise the packets will be queued in
3864 3867 * SRS. If the SRS has multiple Tx rings, then packets will get fanned
3865 3868 * out to a Tx rings.
3866 3869 */
3867 3870 static mac_tx_cookie_t
3868 3871 mac_tx_bw_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3869 3872 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3870 3873 {
3871 3874 int cnt, sz;
3872 3875 mblk_t *tail;
3873 3876 mac_tx_cookie_t cookie = NULL;
3874 3877 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
3875 3878 clock_t now;
3876 3879
3877 3880 ASSERT(TX_BANDWIDTH_MODE(mac_srs));
3878 3881 ASSERT(mac_srs->srs_type & SRST_BW_CONTROL);
3879 3882 mutex_enter(&mac_srs->srs_lock);
3880 3883 if (mac_srs->srs_bw->mac_bw_limit == 0) {
3881 3884 /*
3882 3885 * zero bandwidth, no traffic is sent: drop the packets,
3883 3886 * or return the whole chain if the caller requests all
3884 3887 * unsent packets back.
3885 3888 */
3886 3889 if (flag & MAC_TX_NO_ENQUEUE) {
3887 3890 cookie = (mac_tx_cookie_t)mac_srs;
3888 3891 *ret_mp = mp_chain;
3889 3892 } else {
3890 3893 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
3891 3894 }
3892 3895 mutex_exit(&mac_srs->srs_lock);
3893 3896 return (cookie);
3894 3897 } else if ((mac_srs->srs_first != NULL) ||
3895 3898 (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
3896 3899 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag,
3897 3900 fanout_hint, ret_mp);
3898 3901 mutex_exit(&mac_srs->srs_lock);
3899 3902 return (cookie);
3900 3903 }
3901 3904 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3902 3905 now = ddi_get_lbolt();
3903 3906 if (mac_srs->srs_bw->mac_bw_curr_time != now) {
3904 3907 mac_srs->srs_bw->mac_bw_curr_time = now;
3905 3908 mac_srs->srs_bw->mac_bw_used = 0;
3906 3909 } else if (mac_srs->srs_bw->mac_bw_used >
3907 3910 mac_srs->srs_bw->mac_bw_limit) {
3908 3911 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
3909 3912 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
3910 3913 mp_chain, tail, cnt, sz);
3911 3914 /*
3912 3915 * Wakeup worker thread. Note that worker
3913 3916 * thread has to be woken up so that it
3914 3917 * can fire up the timer to be woken up
3915 3918 * on the next tick. Also once
3916 3919 * BW_ENFORCED is set, it can only be
3917 3920 * reset by srs_worker thread. Until then
3918 3921 * all packets will get queued up in SRS
3919 3922 * and hence this this code path won't be
3920 3923 * entered until BW_ENFORCED is reset.
3921 3924 */
3922 3925 cv_signal(&mac_srs->srs_async);
3923 3926 mutex_exit(&mac_srs->srs_lock);
3924 3927 return (cookie);
3925 3928 }
3926 3929
3927 3930 mac_srs->srs_bw->mac_bw_used += sz;
3928 3931 mutex_exit(&mac_srs->srs_lock);
3929 3932
3930 3933 if (srs_tx->st_mode == SRS_TX_BW_FANOUT) {
3931 3934 mac_soft_ring_t *softring;
3932 3935 uint_t indx, hash;
3933 3936
3934 3937 hash = HASH_HINT(fanout_hint);
3935 3938 indx = COMPUTE_INDEX(hash,
3936 3939 mac_srs->srs_tx_ring_count);
3937 3940 softring = mac_srs->srs_tx_soft_rings[indx];
3938 3941 return (mac_tx_soft_ring_process(softring, mp_chain, flag,
3939 3942 ret_mp));
3940 3943 } else if (srs_tx->st_mode == SRS_TX_BW_AGGR) {
3941 3944 return (mac_tx_aggr_mode(mac_srs, mp_chain,
3942 3945 fanout_hint, flag, ret_mp));
3943 3946 } else {
3944 3947 mac_tx_stats_t stats;
3945 3948
3946 3949 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
3947 3950 mp_chain, &stats);
3948 3951
3949 3952 if (mp_chain != NULL) {
3950 3953 mutex_enter(&mac_srs->srs_lock);
3951 3954 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3952 3955 if (mac_srs->srs_bw->mac_bw_used > sz)
3953 3956 mac_srs->srs_bw->mac_bw_used -= sz;
3954 3957 else
3955 3958 mac_srs->srs_bw->mac_bw_used = 0;
3956 3959 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag,
3957 3960 fanout_hint, ret_mp);
3958 3961 mutex_exit(&mac_srs->srs_lock);
3959 3962 return (cookie);
3960 3963 }
3961 3964 SRS_TX_STATS_UPDATE(mac_srs, &stats);
3962 3965
3963 3966 return (NULL);
3964 3967 }
3965 3968 }
3966 3969
3967 3970 /*
3968 3971 * mac_tx_aggr_mode
3969 3972 *
3970 3973 * This routine invokes an aggr function, aggr_find_tx_ring(), to find
3971 3974 * a (pseudo) Tx ring belonging to a port on which the packet has to
3972 3975 * be sent. aggr_find_tx_ring() first finds the outgoing port based on
3973 3976 * L2/L3/L4 policy and then uses the fanout_hint passed to it to pick
3974 3977 * a Tx ring from the selected port.
3975 3978 *
3976 3979 * Note that a port can be deleted from the aggregation. In such a case,
3977 3980 * the aggregation layer first separates the port from the rest of the
3978 3981 * ports making sure that port (and thus any Tx rings associated with
3979 3982 * it) won't get selected in the call to aggr_find_tx_ring() function.
3980 3983 * Later calls are made to mac_group_rem_ring() passing pseudo Tx ring
3981 3984 * handles one by one which in turn will quiesce the Tx SRS and remove
3982 3985 * the soft ring associated with the pseudo Tx ring. Unlike Rx side
3983 3986 * where a cookie is used to protect against mac_rx_ring() calls on
3984 3987 * rings that have been removed, no such cookie is needed on the Tx
3985 3988 * side as the pseudo Tx ring won't be available anymore to
3986 3989 * aggr_find_tx_ring() once the port has been removed.
3987 3990 */
3988 3991 static mac_tx_cookie_t
3989 3992 mac_tx_aggr_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3990 3993 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3991 3994 {
3992 3995 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
3993 3996 mac_tx_ring_fn_t find_tx_ring_fn;
3994 3997 mac_ring_handle_t ring = NULL;
3995 3998 void *arg;
3996 3999 mac_soft_ring_t *sringp;
3997 4000
3998 4001 find_tx_ring_fn = srs_tx->st_capab_aggr.mca_find_tx_ring_fn;
3999 4002 arg = srs_tx->st_capab_aggr.mca_arg;
4000 4003 if (find_tx_ring_fn(arg, mp_chain, fanout_hint, &ring) == NULL)
4001 4004 return (NULL);
4002 4005 sringp = srs_tx->st_soft_rings[((mac_ring_t *)ring)->mr_index];
4003 4006 return (mac_tx_soft_ring_process(sringp, mp_chain, flag, ret_mp));
4004 4007 }
4005 4008
4006 4009 void
4007 4010 mac_tx_invoke_callbacks(mac_client_impl_t *mcip, mac_tx_cookie_t cookie)
4008 4011 {
4009 4012 mac_cb_t *mcb;
4010 4013 mac_tx_notify_cb_t *mtnfp;
4011 4014
4012 4015 /* Wakeup callback registered clients */
4013 4016 MAC_CALLBACK_WALKER_INC(&mcip->mci_tx_notify_cb_info);
4014 4017 for (mcb = mcip->mci_tx_notify_cb_list; mcb != NULL;
4015 4018 mcb = mcb->mcb_nextp) {
4016 4019 mtnfp = (mac_tx_notify_cb_t *)mcb->mcb_objp;
4017 4020 mtnfp->mtnf_fn(mtnfp->mtnf_arg, cookie);
4018 4021 }
4019 4022 MAC_CALLBACK_WALKER_DCR(&mcip->mci_tx_notify_cb_info,
4020 4023 &mcip->mci_tx_notify_cb_list);
4021 4024 }
4022 4025
4023 4026 /* ARGSUSED */
4024 4027 void
4025 4028 mac_tx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
4026 4029 {
4027 4030 mblk_t *head, *tail;
4028 4031 size_t sz;
4029 4032 uint32_t tx_mode;
4030 4033 uint_t saved_pkt_count;
4031 4034 mac_tx_stats_t stats;
4032 4035 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
4033 4036 clock_t now;
4034 4037
4035 4038 saved_pkt_count = 0;
4036 4039 ASSERT(mutex_owned(&mac_srs->srs_lock));
4037 4040 ASSERT(!(mac_srs->srs_state & SRS_PROC));
4038 4041
4039 4042 mac_srs->srs_state |= SRS_PROC;
4040 4043
4041 4044 tx_mode = srs_tx->st_mode;
4042 4045 if (tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_SERIALIZE) {
4043 4046 if (mac_srs->srs_first != NULL) {
4044 4047 head = mac_srs->srs_first;
4045 4048 tail = mac_srs->srs_last;
4046 4049 saved_pkt_count = mac_srs->srs_count;
4047 4050 mac_srs->srs_first = NULL;
4048 4051 mac_srs->srs_last = NULL;
4049 4052 mac_srs->srs_count = 0;
4050 4053 mutex_exit(&mac_srs->srs_lock);
4051 4054
4052 4055 head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
4053 4056 head, &stats);
4054 4057
4055 4058 mutex_enter(&mac_srs->srs_lock);
4056 4059 if (head != NULL) {
4057 4060 /* Device out of tx desc, set block */
4058 4061 if (head->b_next == NULL)
4059 4062 VERIFY(head == tail);
4060 4063 tail->b_next = mac_srs->srs_first;
4061 4064 mac_srs->srs_first = head;
4062 4065 mac_srs->srs_count +=
4063 4066 (saved_pkt_count - stats.mts_opackets);
4064 4067 if (mac_srs->srs_last == NULL)
4065 4068 mac_srs->srs_last = tail;
4066 4069 MAC_TX_SRS_BLOCK(mac_srs, head);
4067 4070 } else {
4068 4071 srs_tx->st_woken_up = B_FALSE;
4069 4072 SRS_TX_STATS_UPDATE(mac_srs, &stats);
4070 4073 }
4071 4074 }
4072 4075 } else if (tx_mode == SRS_TX_BW) {
4073 4076 /*
4074 4077 * We are here because the timer fired and we have some data
4075 4078 * to tranmit. Also mac_tx_srs_worker should have reset
4076 4079 * SRS_BW_ENFORCED flag
4077 4080 */
4078 4081 ASSERT(!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED));
4079 4082 head = tail = mac_srs->srs_first;
4080 4083 while (mac_srs->srs_first != NULL) {
4081 4084 tail = mac_srs->srs_first;
4082 4085 tail->b_prev = NULL;
4083 4086 mac_srs->srs_first = tail->b_next;
4084 4087 if (mac_srs->srs_first == NULL)
4085 4088 mac_srs->srs_last = NULL;
4086 4089 mac_srs->srs_count--;
4087 4090 sz = msgdsize(tail);
4088 4091 mac_srs->srs_size -= sz;
4089 4092 saved_pkt_count++;
4090 4093 MAC_TX_UPDATE_BW_INFO(mac_srs, sz);
4091 4094
4092 4095 if (mac_srs->srs_bw->mac_bw_used <
4093 4096 mac_srs->srs_bw->mac_bw_limit)
4094 4097 continue;
4095 4098
4096 4099 now = ddi_get_lbolt();
4097 4100 if (mac_srs->srs_bw->mac_bw_curr_time != now) {
4098 4101 mac_srs->srs_bw->mac_bw_curr_time = now;
4099 4102 mac_srs->srs_bw->mac_bw_used = sz;
4100 4103 continue;
4101 4104 }
4102 4105 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
4103 4106 break;
4104 4107 }
4105 4108
4106 4109 ASSERT((head == NULL && tail == NULL) ||
4107 4110 (head != NULL && tail != NULL));
4108 4111 if (tail != NULL) {
4109 4112 tail->b_next = NULL;
4110 4113 mutex_exit(&mac_srs->srs_lock);
4111 4114
4112 4115 head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
4113 4116 head, &stats);
4114 4117
4115 4118 mutex_enter(&mac_srs->srs_lock);
4116 4119 if (head != NULL) {
4117 4120 uint_t size_sent;
4118 4121
4119 4122 /* Device out of tx desc, set block */
4120 4123 if (head->b_next == NULL)
4121 4124 VERIFY(head == tail);
4122 4125 tail->b_next = mac_srs->srs_first;
4123 4126 mac_srs->srs_first = head;
4124 4127 mac_srs->srs_count +=
4125 4128 (saved_pkt_count - stats.mts_opackets);
4126 4129 if (mac_srs->srs_last == NULL)
4127 4130 mac_srs->srs_last = tail;
4128 4131 size_sent = sz - stats.mts_obytes;
4129 4132 mac_srs->srs_size += size_sent;
4130 4133 mac_srs->srs_bw->mac_bw_sz += size_sent;
4131 4134 if (mac_srs->srs_bw->mac_bw_used > size_sent) {
4132 4135 mac_srs->srs_bw->mac_bw_used -=
4133 4136 size_sent;
4134 4137 } else {
4135 4138 mac_srs->srs_bw->mac_bw_used = 0;
4136 4139 }
4137 4140 MAC_TX_SRS_BLOCK(mac_srs, head);
4138 4141 } else {
4139 4142 srs_tx->st_woken_up = B_FALSE;
4140 4143 SRS_TX_STATS_UPDATE(mac_srs, &stats);
4141 4144 }
4142 4145 }
4143 4146 } else if (tx_mode == SRS_TX_BW_FANOUT || tx_mode == SRS_TX_BW_AGGR) {
4144 4147 mblk_t *prev;
4145 4148 uint64_t hint;
4146 4149
4147 4150 /*
4148 4151 * We are here because the timer fired and we
4149 4152 * have some quota to tranmit.
4150 4153 */
4151 4154 prev = NULL;
4152 4155 head = tail = mac_srs->srs_first;
4153 4156 while (mac_srs->srs_first != NULL) {
4154 4157 tail = mac_srs->srs_first;
4155 4158 mac_srs->srs_first = tail->b_next;
4156 4159 if (mac_srs->srs_first == NULL)
4157 4160 mac_srs->srs_last = NULL;
4158 4161 mac_srs->srs_count--;
4159 4162 sz = msgdsize(tail);
4160 4163 mac_srs->srs_size -= sz;
4161 4164 mac_srs->srs_bw->mac_bw_used += sz;
4162 4165 if (prev == NULL)
4163 4166 hint = (ulong_t)tail->b_prev;
4164 4167 if (hint != (ulong_t)tail->b_prev) {
4165 4168 prev->b_next = NULL;
4166 4169 mutex_exit(&mac_srs->srs_lock);
4167 4170 TX_SRS_TO_SOFT_RING(mac_srs, head, hint);
4168 4171 head = tail;
4169 4172 hint = (ulong_t)tail->b_prev;
4170 4173 mutex_enter(&mac_srs->srs_lock);
4171 4174 }
4172 4175
4173 4176 prev = tail;
4174 4177 tail->b_prev = NULL;
4175 4178 if (mac_srs->srs_bw->mac_bw_used <
4176 4179 mac_srs->srs_bw->mac_bw_limit)
4177 4180 continue;
4178 4181
4179 4182 now = ddi_get_lbolt();
4180 4183 if (mac_srs->srs_bw->mac_bw_curr_time != now) {
4181 4184 mac_srs->srs_bw->mac_bw_curr_time = now;
4182 4185 mac_srs->srs_bw->mac_bw_used = 0;
4183 4186 continue;
4184 4187 }
4185 4188 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
4186 4189 break;
4187 4190 }
4188 4191 ASSERT((head == NULL && tail == NULL) ||
4189 4192 (head != NULL && tail != NULL));
4190 4193 if (tail != NULL) {
4191 4194 tail->b_next = NULL;
4192 4195 mutex_exit(&mac_srs->srs_lock);
4193 4196 TX_SRS_TO_SOFT_RING(mac_srs, head, hint);
4194 4197 mutex_enter(&mac_srs->srs_lock);
4195 4198 }
4196 4199 }
4197 4200 /*
4198 4201 * SRS_TX_FANOUT case not considered here because packets
4199 4202 * won't be queued in the SRS for this case. Packets will
4200 4203 * be sent directly to soft rings underneath and if there
4201 4204 * is any queueing at all, it would be in Tx side soft
4202 4205 * rings.
4203 4206 */
4204 4207
4205 4208 /*
4206 4209 * When srs_count becomes 0, reset SRS_TX_HIWAT and
4207 4210 * SRS_TX_WAKEUP_CLIENT and wakeup registered clients.
4208 4211 */
4209 4212 if (mac_srs->srs_count == 0 && (mac_srs->srs_state &
4210 4213 (SRS_TX_HIWAT | SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED))) {
4211 4214 mac_client_impl_t *mcip = mac_srs->srs_mcip;
4212 4215 boolean_t wakeup_required = B_FALSE;
4213 4216
4214 4217 if (mac_srs->srs_state &
4215 4218 (SRS_TX_HIWAT|SRS_TX_WAKEUP_CLIENT)) {
4216 4219 wakeup_required = B_TRUE;
4217 4220 }
4218 4221 mac_srs->srs_state &= ~(SRS_TX_HIWAT |
4219 4222 SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED);
4220 4223 mutex_exit(&mac_srs->srs_lock);
4221 4224 if (wakeup_required) {
4222 4225 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)mac_srs);
4223 4226 /*
4224 4227 * If the client is not the primary MAC client, then we
4225 4228 * need to send the notification to the clients upper
4226 4229 * MAC, i.e. mci_upper_mip.
4227 4230 */
4228 4231 mac_tx_notify(mcip->mci_upper_mip != NULL ?
4229 4232 mcip->mci_upper_mip : mcip->mci_mip);
4230 4233 }
4231 4234 mutex_enter(&mac_srs->srs_lock);
4232 4235 }
4233 4236 mac_srs->srs_state &= ~SRS_PROC;
4234 4237 }
4235 4238
4236 4239 /*
4237 4240 * Given a packet, get the flow_entry that identifies the flow
4238 4241 * to which that packet belongs. The flow_entry will contain
4239 4242 * the transmit function to be used to send the packet. If the
4240 4243 * function returns NULL, the packet should be sent using the
4241 4244 * underlying NIC.
4242 4245 */
4243 4246 static flow_entry_t *
4244 4247 mac_tx_classify(mac_impl_t *mip, mblk_t *mp)
4245 4248 {
4246 4249 flow_entry_t *flent = NULL;
4247 4250 mac_client_impl_t *mcip;
4248 4251 int err;
4249 4252
4250 4253 /*
4251 4254 * Do classification on the packet.
4252 4255 */
4253 4256 err = mac_flow_lookup(mip->mi_flow_tab, mp, FLOW_OUTBOUND, &flent);
4254 4257 if (err != 0)
4255 4258 return (NULL);
4256 4259
4257 4260 /*
4258 4261 * This flent might just be an additional one on the MAC client,
4259 4262 * i.e. for classification purposes (different fdesc), however
4260 4263 * the resources, SRS et. al., are in the mci_flent, so if
4261 4264 * this isn't the mci_flent, we need to get it.
4262 4265 */
4263 4266 if ((mcip = flent->fe_mcip) != NULL && mcip->mci_flent != flent) {
4264 4267 FLOW_REFRELE(flent);
4265 4268 flent = mcip->mci_flent;
4266 4269 FLOW_TRY_REFHOLD(flent, err);
4267 4270 if (err != 0)
4268 4271 return (NULL);
4269 4272 }
4270 4273
4271 4274 return (flent);
4272 4275 }
4273 4276
4274 4277 /*
4275 4278 * This macro is only meant to be used by mac_tx_send().
4276 4279 */
4277 4280 #define CHECK_VID_AND_ADD_TAG(mp) { \
4278 4281 if (vid_check) { \
4279 4282 int err = 0; \
4280 4283 \
4281 4284 MAC_VID_CHECK(src_mcip, (mp), err); \
4282 4285 if (err != 0) { \
4283 4286 freemsg((mp)); \
4284 4287 (mp) = next; \
4285 4288 oerrors++; \
4286 4289 continue; \
4287 4290 } \
4288 4291 } \
4289 4292 if (add_tag) { \
4290 4293 (mp) = mac_add_vlan_tag((mp), 0, vid); \
4291 4294 if ((mp) == NULL) { \
4292 4295 (mp) = next; \
4293 4296 oerrors++; \
4294 4297 continue; \
4295 4298 } \
4296 4299 } \
4297 4300 }
4298 4301
4299 4302 mblk_t *
4300 4303 mac_tx_send(mac_client_handle_t mch, mac_ring_handle_t ring, mblk_t *mp_chain,
4301 4304 mac_tx_stats_t *stats)
4302 4305 {
4303 4306 mac_client_impl_t *src_mcip = (mac_client_impl_t *)mch;
4304 4307 mac_impl_t *mip = src_mcip->mci_mip;
4305 4308 uint_t obytes = 0, opackets = 0, oerrors = 0;
4306 4309 mblk_t *mp = NULL, *next;
4307 4310 boolean_t vid_check, add_tag;
4308 4311 uint16_t vid = 0;
4309 4312
4310 4313 if (mip->mi_nclients > 1) {
4311 4314 vid_check = MAC_VID_CHECK_NEEDED(src_mcip);
4312 4315 add_tag = MAC_TAG_NEEDED(src_mcip);
4313 4316 if (add_tag)
4314 4317 vid = mac_client_vid(mch);
4315 4318 } else {
4316 4319 ASSERT(mip->mi_nclients == 1);
4317 4320 vid_check = add_tag = B_FALSE;
4318 4321 }
4319 4322
4320 4323 /*
4321 4324 * Fastpath: if there's only one client, we simply send
4322 4325 * the packet down to the underlying NIC.
4323 4326 */
4324 4327 if (mip->mi_nactiveclients == 1) {
4325 4328 DTRACE_PROBE2(fastpath,
4326 4329 mac_client_impl_t *, src_mcip, mblk_t *, mp_chain);
4327 4330
4328 4331 mp = mp_chain;
4329 4332 while (mp != NULL) {
4330 4333 next = mp->b_next;
4331 4334 mp->b_next = NULL;
4332 4335 opackets++;
4333 4336 obytes += (mp->b_cont == NULL ? MBLKL(mp) :
4334 4337 msgdsize(mp));
4335 4338
4336 4339 CHECK_VID_AND_ADD_TAG(mp);
4337 4340 MAC_TX(mip, ring, mp, src_mcip);
4338 4341
4339 4342 /*
4340 4343 * If the driver is out of descriptors and does a
4341 4344 * partial send it will return a chain of unsent
4342 4345 * mblks. Adjust the accounting stats.
4343 4346 */
4344 4347 if (mp != NULL) {
4345 4348 opackets--;
4346 4349 obytes -= msgdsize(mp);
4347 4350 mp->b_next = next;
4348 4351 break;
4349 4352 }
4350 4353 mp = next;
4351 4354 }
4352 4355 goto done;
4353 4356 }
4354 4357
4355 4358 /*
4356 4359 * No fastpath, we either have more than one MAC client
4357 4360 * defined on top of the same MAC, or one or more MAC
4358 4361 * client promiscuous callbacks.
4359 4362 */
4360 4363 DTRACE_PROBE3(slowpath, mac_client_impl_t *,
4361 4364 src_mcip, int, mip->mi_nclients, mblk_t *, mp_chain);
4362 4365
4363 4366 mp = mp_chain;
4364 4367 while (mp != NULL) {
4365 4368 flow_entry_t *dst_flow_ent;
4366 4369 void *flow_cookie;
4367 4370 size_t pkt_size;
4368 4371 mblk_t *mp1;
4369 4372
4370 4373 next = mp->b_next;
4371 4374 mp->b_next = NULL;
4372 4375 opackets++;
4373 4376 pkt_size = (mp->b_cont == NULL ? MBLKL(mp) : msgdsize(mp));
4374 4377 obytes += pkt_size;
4375 4378 CHECK_VID_AND_ADD_TAG(mp);
4376 4379
4377 4380 /*
4378 4381 * Find the destination.
4379 4382 */
4380 4383 dst_flow_ent = mac_tx_classify(mip, mp);
4381 4384
4382 4385 if (dst_flow_ent != NULL) {
4383 4386 size_t hdrsize;
4384 4387 int err = 0;
4385 4388
4386 4389 if (mip->mi_info.mi_nativemedia == DL_ETHER) {
4387 4390 struct ether_vlan_header *evhp =
4388 4391 (struct ether_vlan_header *)mp->b_rptr;
4389 4392
4390 4393 if (ntohs(evhp->ether_tpid) == ETHERTYPE_VLAN)
4391 4394 hdrsize = sizeof (*evhp);
4392 4395 else
4393 4396 hdrsize = sizeof (struct ether_header);
4394 4397 } else {
4395 4398 mac_header_info_t mhi;
4396 4399
4397 4400 err = mac_header_info((mac_handle_t)mip,
4398 4401 mp, &mhi);
4399 4402 if (err == 0)
4400 4403 hdrsize = mhi.mhi_hdrsize;
4401 4404 }
4402 4405
4403 4406 /*
4404 4407 * Got a matching flow. It's either another
4405 4408 * MAC client, or a broadcast/multicast flow.
4406 4409 * Make sure the packet size is within the
4407 4410 * allowed size. If not drop the packet and
4408 4411 * move to next packet.
4409 4412 */
4410 4413 if (err != 0 ||
4411 4414 (pkt_size - hdrsize) > mip->mi_sdu_max) {
4412 4415 oerrors++;
4413 4416 DTRACE_PROBE2(loopback__drop, size_t, pkt_size,
4414 4417 mblk_t *, mp);
4415 4418 freemsg(mp);
4416 4419 mp = next;
4417 4420 FLOW_REFRELE(dst_flow_ent);
4418 4421 continue;
4419 4422 }
4420 4423 flow_cookie = mac_flow_get_client_cookie(dst_flow_ent);
4421 4424 if (flow_cookie != NULL) {
4422 4425 /*
4423 4426 * The vnic_bcast_send function expects
4424 4427 * to receive the sender MAC client
4425 4428 * as value for arg2.
4426 4429 */
4427 4430 mac_bcast_send(flow_cookie, src_mcip, mp,
4428 4431 B_TRUE);
4429 4432 } else {
4430 4433 /*
4431 4434 * loopback the packet to a local MAC
4432 4435 * client. We force a context switch
4433 4436 * if both source and destination MAC
4434 4437 * clients are used by IP, i.e.
4435 4438 * bypass is set.
4436 4439 */
4437 4440 boolean_t do_switch;
4438 4441 mac_client_impl_t *dst_mcip =
4439 4442 dst_flow_ent->fe_mcip;
4440 4443
4441 4444 /*
4442 4445 * Check if there are promiscuous mode
4443 4446 * callbacks defined. This check is
4444 4447 * done here in the 'else' case and
4445 4448 * not in other cases because this
4446 4449 * path is for local loopback
4447 4450 * communication which does not go
4448 4451 * through MAC_TX(). For paths that go
4449 4452 * through MAC_TX(), the promisc_list
4450 4453 * check is done inside the MAC_TX()
4451 4454 * macro.
4452 4455 */
4453 4456 if (mip->mi_promisc_list != NULL)
4454 4457 mac_promisc_dispatch(mip, mp, src_mcip);
4455 4458
4456 4459 do_switch = ((src_mcip->mci_state_flags &
4457 4460 dst_mcip->mci_state_flags &
4458 4461 MCIS_CLIENT_POLL_CAPABLE) != 0);
4459 4462
4460 4463 if ((mp1 = mac_fix_cksum(mp)) != NULL) {
4461 4464 (dst_flow_ent->fe_cb_fn)(
4462 4465 dst_flow_ent->fe_cb_arg1,
4463 4466 dst_flow_ent->fe_cb_arg2,
4464 4467 mp1, do_switch);
4465 4468 }
4466 4469 }
4467 4470 FLOW_REFRELE(dst_flow_ent);
4468 4471 } else {
4469 4472 /*
4470 4473 * Unknown destination, send via the underlying
4471 4474 * NIC.
4472 4475 */
4473 4476 MAC_TX(mip, ring, mp, src_mcip);
4474 4477 if (mp != NULL) {
4475 4478 /*
4476 4479 * Adjust for the last packet that
4477 4480 * could not be transmitted
4478 4481 */
4479 4482 opackets--;
4480 4483 obytes -= pkt_size;
4481 4484 mp->b_next = next;
4482 4485 break;
4483 4486 }
4484 4487 }
4485 4488 mp = next;
4486 4489 }
4487 4490
4488 4491 done:
4489 4492 stats->mts_obytes = obytes;
4490 4493 stats->mts_opackets = opackets;
4491 4494 stats->mts_oerrors = oerrors;
4492 4495 return (mp);
4493 4496 }
4494 4497
4495 4498 /*
4496 4499 * mac_tx_srs_ring_present
4497 4500 *
4498 4501 * Returns whether the specified ring is part of the specified SRS.
4499 4502 */
4500 4503 boolean_t
4501 4504 mac_tx_srs_ring_present(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring)
4502 4505 {
4503 4506 int i;
4504 4507 mac_soft_ring_t *soft_ring;
4505 4508
4506 4509 if (srs->srs_tx.st_arg2 == tx_ring)
4507 4510 return (B_TRUE);
4508 4511
4509 4512 for (i = 0; i < srs->srs_tx_ring_count; i++) {
4510 4513 soft_ring = srs->srs_tx_soft_rings[i];
4511 4514 if (soft_ring->s_ring_tx_arg2 == tx_ring)
4512 4515 return (B_TRUE);
4513 4516 }
4514 4517
4515 4518 return (B_FALSE);
4516 4519 }
4517 4520
4518 4521 /*
4519 4522 * mac_tx_srs_get_soft_ring
4520 4523 *
4521 4524 * Returns the TX soft ring associated with the given ring, if present.
4522 4525 */
4523 4526 mac_soft_ring_t *
4524 4527 mac_tx_srs_get_soft_ring(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring)
4525 4528 {
4526 4529 int i;
4527 4530 mac_soft_ring_t *soft_ring;
4528 4531
4529 4532 if (srs->srs_tx.st_arg2 == tx_ring)
4530 4533 return (NULL);
4531 4534
4532 4535 for (i = 0; i < srs->srs_tx_ring_count; i++) {
4533 4536 soft_ring = srs->srs_tx_soft_rings[i];
4534 4537 if (soft_ring->s_ring_tx_arg2 == tx_ring)
4535 4538 return (soft_ring);
4536 4539 }
4537 4540
4538 4541 return (NULL);
4539 4542 }
4540 4543
4541 4544 /*
4542 4545 * mac_tx_srs_wakeup
4543 4546 *
4544 4547 * Called when Tx desc become available. Wakeup the appropriate worker
4545 4548 * thread after resetting the SRS_TX_BLOCKED/S_RING_BLOCK bit in the
4546 4549 * state field.
4547 4550 */
4548 4551 void
4549 4552 mac_tx_srs_wakeup(mac_soft_ring_set_t *mac_srs, mac_ring_handle_t ring)
4550 4553 {
4551 4554 int i;
4552 4555 mac_soft_ring_t *sringp;
4553 4556 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
4554 4557
4555 4558 mutex_enter(&mac_srs->srs_lock);
4556 4559 /*
4557 4560 * srs_tx_ring_count == 0 is the single ring mode case. In
4558 4561 * this mode, there will not be Tx soft rings associated
4559 4562 * with the SRS.
4560 4563 */
4561 4564 if (!MAC_TX_SOFT_RINGS(mac_srs)) {
4562 4565 if (srs_tx->st_arg2 == ring &&
4563 4566 mac_srs->srs_state & SRS_TX_BLOCKED) {
4564 4567 mac_srs->srs_state &= ~SRS_TX_BLOCKED;
4565 4568 srs_tx->st_stat.mts_unblockcnt++;
4566 4569 cv_signal(&mac_srs->srs_async);
4567 4570 }
4568 4571 /*
4569 4572 * A wakeup can come before tx_srs_drain() could
4570 4573 * grab srs lock and set SRS_TX_BLOCKED. So
4571 4574 * always set woken_up flag when we come here.
4572 4575 */
4573 4576 srs_tx->st_woken_up = B_TRUE;
4574 4577 mutex_exit(&mac_srs->srs_lock);
4575 4578 return;
4576 4579 }
4577 4580
4578 4581 /*
4579 4582 * If you are here, it is for FANOUT, BW_FANOUT,
4580 4583 * AGGR_MODE or AGGR_BW_MODE case
4581 4584 */
4582 4585 for (i = 0; i < mac_srs->srs_tx_ring_count; i++) {
4583 4586 sringp = mac_srs->srs_tx_soft_rings[i];
4584 4587 mutex_enter(&sringp->s_ring_lock);
4585 4588 if (sringp->s_ring_tx_arg2 == ring) {
4586 4589 if (sringp->s_ring_state & S_RING_BLOCK) {
4587 4590 sringp->s_ring_state &= ~S_RING_BLOCK;
4588 4591 sringp->s_st_stat.mts_unblockcnt++;
4589 4592 cv_signal(&sringp->s_ring_async);
4590 4593 }
4591 4594 sringp->s_ring_tx_woken_up = B_TRUE;
4592 4595 }
4593 4596 mutex_exit(&sringp->s_ring_lock);
4594 4597 }
4595 4598 mutex_exit(&mac_srs->srs_lock);
4596 4599 }
4597 4600
4598 4601 /*
4599 4602 * Once the driver is done draining, send a MAC_NOTE_TX notification to unleash
4600 4603 * the blocked clients again.
4601 4604 */
4602 4605 void
4603 4606 mac_tx_notify(mac_impl_t *mip)
4604 4607 {
4605 4608 i_mac_notify(mip, MAC_NOTE_TX);
4606 4609 }
4607 4610
4608 4611 /*
4609 4612 * RX SOFTRING RELATED FUNCTIONS
4610 4613 *
4611 4614 * These functions really belong in mac_soft_ring.c and here for
4612 4615 * a short period.
4613 4616 */
4614 4617
4615 4618 #define SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \
4616 4619 /* \
4617 4620 * Enqueue our mblk chain. \
4618 4621 */ \
4619 4622 ASSERT(MUTEX_HELD(&(ringp)->s_ring_lock)); \
4620 4623 \
4621 4624 if ((ringp)->s_ring_last != NULL) \
4622 4625 (ringp)->s_ring_last->b_next = (mp); \
4623 4626 else \
4624 4627 (ringp)->s_ring_first = (mp); \
4625 4628 (ringp)->s_ring_last = (tail); \
4626 4629 (ringp)->s_ring_count += (cnt); \
4627 4630 ASSERT((ringp)->s_ring_count > 0); \
4628 4631 if ((ringp)->s_ring_type & ST_RING_BW_CTL) { \
4629 4632 (ringp)->s_ring_size += sz; \
4630 4633 } \
4631 4634 }
4632 4635
4633 4636 /*
4634 4637 * Default entry point to deliver a packet chain to a MAC client.
4635 4638 * If the MAC client has flows, do the classification with these
4636 4639 * flows as well.
4637 4640 */
4638 4641 /* ARGSUSED */
4639 4642 void
4640 4643 mac_rx_deliver(void *arg1, mac_resource_handle_t mrh, mblk_t *mp_chain,
4641 4644 mac_header_info_t *arg3)
4642 4645 {
4643 4646 mac_client_impl_t *mcip = arg1;
4644 4647
4645 4648 if (mcip->mci_nvids == 1 &&
4646 4649 !(mcip->mci_state_flags & MCIS_STRIP_DISABLE)) {
4647 4650 /*
4648 4651 * If the client has exactly one VID associated with it
4649 4652 * and striping of VLAN header is not disabled,
4650 4653 * remove the VLAN tag from the packet before
4651 4654 * passing it on to the client's receive callback.
4652 4655 * Note that this needs to be done after we dispatch
4653 4656 * the packet to the promiscuous listeners of the
4654 4657 * client, since they expect to see the whole
4655 4658 * frame including the VLAN headers.
4656 4659 */
4657 4660 mp_chain = mac_strip_vlan_tag_chain(mp_chain);
4658 4661 }
4659 4662
4660 4663 mcip->mci_rx_fn(mcip->mci_rx_arg, mrh, mp_chain, B_FALSE);
4661 4664 }
4662 4665
4663 4666 /*
4664 4667 * mac_rx_soft_ring_process
4665 4668 *
4666 4669 * process a chain for a given soft ring. The number of packets queued
4667 4670 * in the SRS and its associated soft rings (including this one) is
4668 4671 * very small (tracked by srs_poll_pkt_cnt), then allow the entering
4669 4672 * thread (interrupt or poll thread) to do inline processing. This
4670 4673 * helps keep the latency down under low load.
4671 4674 *
4672 4675 * The proc and arg for each mblk is already stored in the mblk in
4673 4676 * appropriate places.
4674 4677 */
4675 4678 /* ARGSUSED */
4676 4679 void
4677 4680 mac_rx_soft_ring_process(mac_client_impl_t *mcip, mac_soft_ring_t *ringp,
4678 4681 mblk_t *mp_chain, mblk_t *tail, int cnt, size_t sz)
4679 4682 {
4680 4683 mac_direct_rx_t proc;
4681 4684 void *arg1;
4682 4685 mac_resource_handle_t arg2;
4683 4686 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set;
4684 4687
4685 4688 ASSERT(ringp != NULL);
4686 4689 ASSERT(mp_chain != NULL);
4687 4690 ASSERT(tail != NULL);
4688 4691 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
4689 4692
4690 4693 mutex_enter(&ringp->s_ring_lock);
4691 4694 ringp->s_ring_total_inpkt += cnt;
4692 4695 ringp->s_ring_total_rbytes += sz;
4693 4696 if ((mac_srs->srs_rx.sr_poll_pkt_cnt <= 1) &&
4694 4697 !(ringp->s_ring_type & ST_RING_WORKER_ONLY)) {
4695 4698 /* If on processor or blanking on, then enqueue and return */
4696 4699 if (ringp->s_ring_state & S_RING_BLANK ||
4697 4700 ringp->s_ring_state & S_RING_PROC) {
4698 4701 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
4699 4702 mutex_exit(&ringp->s_ring_lock);
4700 4703 return;
4701 4704 }
4702 4705 proc = ringp->s_ring_rx_func;
4703 4706 arg1 = ringp->s_ring_rx_arg1;
4704 4707 arg2 = ringp->s_ring_rx_arg2;
4705 4708 /*
4706 4709 * See if anything is already queued. If we are the
4707 4710 * first packet, do inline processing else queue the
4708 4711 * packet and do the drain.
4709 4712 */
4710 4713 if (ringp->s_ring_first == NULL) {
4711 4714 /*
4712 4715 * Fast-path, ok to process and nothing queued.
4713 4716 */
4714 4717 ringp->s_ring_run = curthread;
4715 4718 ringp->s_ring_state |= (S_RING_PROC);
4716 4719
4717 4720 mutex_exit(&ringp->s_ring_lock);
4718 4721
4719 4722 /*
4720 4723 * We are the chain of 1 packet so
4721 4724 * go through this fast path.
4722 4725 */
4723 4726 ASSERT(mp_chain->b_next == NULL);
4724 4727
4725 4728 (*proc)(arg1, arg2, mp_chain, NULL);
4726 4729
4727 4730 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
4728 4731 /*
4729 4732 * If we have a soft ring set which is doing
4730 4733 * bandwidth control, we need to decrement
4731 4734 * srs_size and count so it the SRS can have a
4732 4735 * accurate idea of what is the real data
4733 4736 * queued between SRS and its soft rings. We
4734 4737 * decrement the counters only when the packet
4735 4738 * gets processed by both SRS and the soft ring.
4736 4739 */
4737 4740 mutex_enter(&mac_srs->srs_lock);
4738 4741 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
4739 4742 MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz);
4740 4743 mutex_exit(&mac_srs->srs_lock);
4741 4744
4742 4745 mutex_enter(&ringp->s_ring_lock);
4743 4746 ringp->s_ring_run = NULL;
4744 4747 ringp->s_ring_state &= ~S_RING_PROC;
4745 4748 if (ringp->s_ring_state & S_RING_CLIENT_WAIT)
4746 4749 cv_signal(&ringp->s_ring_client_cv);
4747 4750
4748 4751 if ((ringp->s_ring_first == NULL) ||
4749 4752 (ringp->s_ring_state & S_RING_BLANK)) {
4750 4753 /*
4751 4754 * We processed inline our packet and
4752 4755 * nothing new has arrived or our
4753 4756 * receiver doesn't want to receive
4754 4757 * any packets. We are done.
4755 4758 */
4756 4759 mutex_exit(&ringp->s_ring_lock);
4757 4760 return;
4758 4761 }
4759 4762 } else {
4760 4763 SOFT_RING_ENQUEUE_CHAIN(ringp,
4761 4764 mp_chain, tail, cnt, sz);
4762 4765 }
4763 4766
4764 4767 /*
4765 4768 * We are here because either we couldn't do inline
4766 4769 * processing (because something was already
4767 4770 * queued), or we had a chain of more than one
4768 4771 * packet, or something else arrived after we were
4769 4772 * done with inline processing.
4770 4773 */
4771 4774 ASSERT(MUTEX_HELD(&ringp->s_ring_lock));
4772 4775 ASSERT(ringp->s_ring_first != NULL);
4773 4776
4774 4777 ringp->s_ring_drain_func(ringp);
4775 4778 mutex_exit(&ringp->s_ring_lock);
4776 4779 return;
4777 4780 } else {
4778 4781 /* ST_RING_WORKER_ONLY case */
4779 4782 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
4780 4783 mac_soft_ring_worker_wakeup(ringp);
4781 4784 mutex_exit(&ringp->s_ring_lock);
4782 4785 }
4783 4786 }
4784 4787
4785 4788 /*
4786 4789 * TX SOFTRING RELATED FUNCTIONS
4787 4790 *
4788 4791 * These functions really belong in mac_soft_ring.c and here for
4789 4792 * a short period.
4790 4793 */
4791 4794
4792 4795 #define TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \
4793 4796 ASSERT(MUTEX_HELD(&ringp->s_ring_lock)); \
4794 4797 ringp->s_ring_state |= S_RING_ENQUEUED; \
4795 4798 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); \
4796 4799 }
4797 4800
4798 4801 /*
4799 4802 * mac_tx_sring_queued
4800 4803 *
4801 4804 * When we are out of transmit descriptors and we already have a
4802 4805 * queue that exceeds hiwat (or the client called us with
4803 4806 * MAC_TX_NO_ENQUEUE or MAC_DROP_ON_NO_DESC flag), return the
4804 4807 * soft ring pointer as the opaque cookie for the client enable
4805 4808 * flow control.
4806 4809 */
4807 4810 static mac_tx_cookie_t
4808 4811 mac_tx_sring_enqueue(mac_soft_ring_t *ringp, mblk_t *mp_chain, uint16_t flag,
4809 4812 mblk_t **ret_mp)
4810 4813 {
4811 4814 int cnt;
4812 4815 size_t sz;
4813 4816 mblk_t *tail;
4814 4817 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set;
4815 4818 mac_tx_cookie_t cookie = NULL;
4816 4819 boolean_t wakeup_worker = B_TRUE;
4817 4820
4818 4821 ASSERT(MUTEX_HELD(&ringp->s_ring_lock));
4819 4822 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
4820 4823 if (flag & MAC_DROP_ON_NO_DESC) {
4821 4824 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE);
4822 4825 /* increment freed stats */
4823 4826 ringp->s_ring_drops += cnt;
4824 4827 cookie = (mac_tx_cookie_t)ringp;
4825 4828 } else {
4826 4829 if (ringp->s_ring_first != NULL)
4827 4830 wakeup_worker = B_FALSE;
4828 4831
4829 4832 if (flag & MAC_TX_NO_ENQUEUE) {
4830 4833 /*
4831 4834 * If QUEUED is not set, queue the packet
4832 4835 * and let mac_tx_soft_ring_drain() set
4833 4836 * the TX_BLOCKED bit for the reasons
4834 4837 * explained above. Otherwise, return the
4835 4838 * mblks.
4836 4839 */
4837 4840 if (wakeup_worker) {
4838 4841 TX_SOFT_RING_ENQUEUE_CHAIN(ringp,
4839 4842 mp_chain, tail, cnt, sz);
4840 4843 } else {
4841 4844 ringp->s_ring_state |= S_RING_WAKEUP_CLIENT;
4842 4845 cookie = (mac_tx_cookie_t)ringp;
4843 4846 *ret_mp = mp_chain;
4844 4847 }
4845 4848 } else {
4846 4849 boolean_t enqueue = B_TRUE;
4847 4850
4848 4851 if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) {
4849 4852 /*
4850 4853 * flow-controlled. Store ringp in cookie
4851 4854 * so that it can be returned as
4852 4855 * mac_tx_cookie_t to client
4853 4856 */
4854 4857 ringp->s_ring_state |= S_RING_TX_HIWAT;
4855 4858 cookie = (mac_tx_cookie_t)ringp;
4856 4859 ringp->s_ring_hiwat_cnt++;
4857 4860 if (ringp->s_ring_count >
4858 4861 ringp->s_ring_tx_max_q_cnt) {
4859 4862 /* increment freed stats */
4860 4863 ringp->s_ring_drops += cnt;
4861 4864 /*
4862 4865 * b_prev may be set to the fanout hint
4863 4866 * hence can't use freemsg directly
4864 4867 */
4865 4868 mac_pkt_drop(NULL, NULL,
4866 4869 mp_chain, B_FALSE);
4867 4870 DTRACE_PROBE1(tx_queued_hiwat,
4868 4871 mac_soft_ring_t *, ringp);
4869 4872 enqueue = B_FALSE;
4870 4873 }
4871 4874 }
4872 4875 if (enqueue) {
4873 4876 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain,
4874 4877 tail, cnt, sz);
4875 4878 }
4876 4879 }
4877 4880 if (wakeup_worker)
4878 4881 cv_signal(&ringp->s_ring_async);
4879 4882 }
4880 4883 return (cookie);
4881 4884 }
4882 4885
4883 4886
4884 4887 /*
4885 4888 * mac_tx_soft_ring_process
4886 4889 *
4887 4890 * This routine is called when fanning out outgoing traffic among
4888 4891 * multipe Tx rings.
4889 4892 * Note that a soft ring is associated with a h/w Tx ring.
4890 4893 */
4891 4894 mac_tx_cookie_t
4892 4895 mac_tx_soft_ring_process(mac_soft_ring_t *ringp, mblk_t *mp_chain,
4893 4896 uint16_t flag, mblk_t **ret_mp)
4894 4897 {
4895 4898 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set;
4896 4899 int cnt;
4897 4900 size_t sz;
4898 4901 mblk_t *tail;
4899 4902 mac_tx_cookie_t cookie = NULL;
4900 4903
4901 4904 ASSERT(ringp != NULL);
4902 4905 ASSERT(mp_chain != NULL);
4903 4906 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
4904 4907 /*
4905 4908 * The following modes can come here: SRS_TX_BW_FANOUT,
4906 4909 * SRS_TX_FANOUT, SRS_TX_AGGR, SRS_TX_BW_AGGR.
4907 4910 */
4908 4911 ASSERT(MAC_TX_SOFT_RINGS(mac_srs));
4909 4912 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
4910 4913 mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT ||
4911 4914 mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
4912 4915 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
4913 4916
4914 4917 if (ringp->s_ring_type & ST_RING_WORKER_ONLY) {
4915 4918 /* Serialization mode */
4916 4919
4917 4920 mutex_enter(&ringp->s_ring_lock);
4918 4921 if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) {
4919 4922 cookie = mac_tx_sring_enqueue(ringp, mp_chain,
4920 4923 flag, ret_mp);
4921 4924 mutex_exit(&ringp->s_ring_lock);
4922 4925 return (cookie);
4923 4926 }
4924 4927 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
4925 4928 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
4926 4929 if (ringp->s_ring_state & (S_RING_BLOCK | S_RING_PROC)) {
4927 4930 /*
4928 4931 * If ring is blocked due to lack of Tx
4929 4932 * descs, just return. Worker thread
4930 4933 * will get scheduled when Tx desc's
4931 4934 * become available.
4932 4935 */
4933 4936 mutex_exit(&ringp->s_ring_lock);
4934 4937 return (cookie);
4935 4938 }
4936 4939 mac_soft_ring_worker_wakeup(ringp);
4937 4940 mutex_exit(&ringp->s_ring_lock);
4938 4941 return (cookie);
4939 4942 } else {
4940 4943 /* Default fanout mode */
4941 4944 /*
4942 4945 * S_RING_BLOCKED is set when underlying NIC runs
4943 4946 * out of Tx descs and messages start getting
4944 4947 * queued. It won't get reset until
4945 4948 * tx_srs_drain() completely drains out the
4946 4949 * messages.
4947 4950 */
4948 4951 mac_tx_stats_t stats;
4949 4952
4950 4953 if (ringp->s_ring_state & S_RING_ENQUEUED) {
4951 4954 /* Tx descs/resources not available */
4952 4955 mutex_enter(&ringp->s_ring_lock);
4953 4956 if (ringp->s_ring_state & S_RING_ENQUEUED) {
4954 4957 cookie = mac_tx_sring_enqueue(ringp, mp_chain,
4955 4958 flag, ret_mp);
4956 4959 mutex_exit(&ringp->s_ring_lock);
4957 4960 return (cookie);
4958 4961 }
4959 4962 /*
4960 4963 * While we were computing mblk count, the
4961 4964 * flow control condition got relieved.
4962 4965 * Continue with the transmission.
4963 4966 */
4964 4967 mutex_exit(&ringp->s_ring_lock);
4965 4968 }
4966 4969
4967 4970 mp_chain = mac_tx_send(ringp->s_ring_tx_arg1,
4968 4971 ringp->s_ring_tx_arg2, mp_chain, &stats);
4969 4972
4970 4973 /*
4971 4974 * Multiple threads could be here sending packets.
4972 4975 * Under such conditions, it is not possible to
4973 4976 * automically set S_RING_BLOCKED bit to indicate
4974 4977 * out of tx desc condition. To atomically set
4975 4978 * this, we queue the returned packet and do
4976 4979 * the setting of S_RING_BLOCKED in
4977 4980 * mac_tx_soft_ring_drain().
4978 4981 */
4979 4982 if (mp_chain != NULL) {
4980 4983 mutex_enter(&ringp->s_ring_lock);
4981 4984 cookie =
4982 4985 mac_tx_sring_enqueue(ringp, mp_chain, flag, ret_mp);
4983 4986 mutex_exit(&ringp->s_ring_lock);
4984 4987 return (cookie);
4985 4988 }
4986 4989 SRS_TX_STATS_UPDATE(mac_srs, &stats);
4987 4990 SOFTRING_TX_STATS_UPDATE(ringp, &stats);
4988 4991
4989 4992 return (NULL);
4990 4993 }
4991 4994 }
|
↓ open down ↓ |
3188 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX