Print this page
    
9018 Replace kmem_cache_reap_now() with kmem_cache_reap_soon()
Reviewed by: Bryan Cantrill <bryan@joyent.com>
Reviewed by: Dan McDonald <danmcd@joyent.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Yuri Pankov <yuripv@yuripv.net>
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/os/kmem.c
          +++ new/usr/src/uts/common/os/kmem.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  
    | 
      ↓ open down ↓ | 
    14 lines elided | 
    
      ↑ open up ↑ | 
  
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  /*
  22   22   * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
  23   23   * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
  24   24   * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
       25 + * Copyright 2018, Joyent, Inc.
  25   26   */
  26   27  
  27   28  /*
  28   29   * Kernel memory allocator, as described in the following two papers and a
  29   30   * statement about the consolidator:
  30   31   *
  31   32   * Jeff Bonwick,
  32   33   * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
  33   34   * Proceedings of the Summer 1994 Usenix Conference.
  34   35   * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
  35   36   *
  36   37   * Jeff Bonwick and Jonathan Adams,
  37   38   * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
  38   39   * Arbitrary Resources.
  39   40   * Proceedings of the 2001 Usenix Conference.
  40   41   * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
  41   42   *
  42   43   * kmem Slab Consolidator Big Theory Statement:
  43   44   *
  44   45   * 1. Motivation
  45   46   *
  46   47   * As stated in Bonwick94, slabs provide the following advantages over other
  47   48   * allocation structures in terms of memory fragmentation:
  48   49   *
  49   50   *  - Internal fragmentation (per-buffer wasted space) is minimal.
  50   51   *  - Severe external fragmentation (unused buffers on the free list) is
  51   52   *    unlikely.
  52   53   *
  53   54   * Segregating objects by size eliminates one source of external fragmentation,
  54   55   * and according to Bonwick:
  55   56   *
  56   57   *   The other reason that slabs reduce external fragmentation is that all
  57   58   *   objects in a slab are of the same type, so they have the same lifetime
  58   59   *   distribution. The resulting segregation of short-lived and long-lived
  59   60   *   objects at slab granularity reduces the likelihood of an entire page being
  60   61   *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
  61   62   *
  62   63   * While unlikely, severe external fragmentation remains possible. Clients that
  63   64   * allocate both short- and long-lived objects from the same cache cannot
  64   65   * anticipate the distribution of long-lived objects within the allocator's slab
  65   66   * implementation. Even a small percentage of long-lived objects distributed
  66   67   * randomly across many slabs can lead to a worst case scenario where the client
  67   68   * frees the majority of its objects and the system gets back almost none of the
  68   69   * slabs. Despite the client doing what it reasonably can to help the system
  69   70   * reclaim memory, the allocator cannot shake free enough slabs because of
  70   71   * lonely allocations stubbornly hanging on. Although the allocator is in a
  71   72   * position to diagnose the fragmentation, there is nothing that the allocator
  72   73   * by itself can do about it. It only takes a single allocated object to prevent
  73   74   * an entire slab from being reclaimed, and any object handed out by
  74   75   * kmem_cache_alloc() is by definition in the client's control. Conversely,
  75   76   * although the client is in a position to move a long-lived object, it has no
  76   77   * way of knowing if the object is causing fragmentation, and if so, where to
  77   78   * move it. A solution necessarily requires further cooperation between the
  78   79   * allocator and the client.
  79   80   *
  80   81   * 2. Move Callback
  81   82   *
  82   83   * The kmem slab consolidator therefore adds a move callback to the
  83   84   * allocator/client interface, improving worst-case external fragmentation in
  84   85   * kmem caches that supply a function to move objects from one memory location
  85   86   * to another. In a situation of low memory kmem attempts to consolidate all of
  86   87   * a cache's slabs at once; otherwise it works slowly to bring external
  87   88   * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
  88   89   * thereby helping to avoid a low memory situation in the future.
  89   90   *
  90   91   * The callback has the following signature:
  91   92   *
  92   93   *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
  93   94   *
  94   95   * It supplies the kmem client with two addresses: the allocated object that
  95   96   * kmem wants to move and a buffer selected by kmem for the client to use as the
  96   97   * copy destination. The callback is kmem's way of saying "Please get off of
  97   98   * this buffer and use this one instead." kmem knows where it wants to move the
  98   99   * object in order to best reduce fragmentation. All the client needs to know
  99  100   * about the second argument (void *new) is that it is an allocated, constructed
 100  101   * object ready to take the contents of the old object. When the move function
 101  102   * is called, the system is likely to be low on memory, and the new object
 102  103   * spares the client from having to worry about allocating memory for the
 103  104   * requested move. The third argument supplies the size of the object, in case a
 104  105   * single move function handles multiple caches whose objects differ only in
 105  106   * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
 106  107   * user argument passed to the constructor, destructor, and reclaim functions is
 107  108   * also passed to the move callback.
 108  109   *
 109  110   * 2.1 Setting the Move Callback
 110  111   *
 111  112   * The client sets the move callback after creating the cache and before
 112  113   * allocating from it:
 113  114   *
 114  115   *      object_cache = kmem_cache_create(...);
 115  116   *      kmem_cache_set_move(object_cache, object_move);
 116  117   *
 117  118   * 2.2 Move Callback Return Values
 118  119   *
 119  120   * Only the client knows about its own data and when is a good time to move it.
 120  121   * The client is cooperating with kmem to return unused memory to the system,
 121  122   * and kmem respectfully accepts this help at the client's convenience. When
 122  123   * asked to move an object, the client can respond with any of the following:
 123  124   *
 124  125   *   typedef enum kmem_cbrc {
 125  126   *           KMEM_CBRC_YES,
 126  127   *           KMEM_CBRC_NO,
 127  128   *           KMEM_CBRC_LATER,
 128  129   *           KMEM_CBRC_DONT_NEED,
 129  130   *           KMEM_CBRC_DONT_KNOW
 130  131   *   } kmem_cbrc_t;
 131  132   *
 132  133   * The client must not explicitly kmem_cache_free() either of the objects passed
 133  134   * to the callback, since kmem wants to free them directly to the slab layer
 134  135   * (bypassing the per-CPU magazine layer). The response tells kmem which of the
 135  136   * objects to free:
 136  137   *
 137  138   *       YES: (Did it) The client moved the object, so kmem frees the old one.
 138  139   *        NO: (Never) The client refused, so kmem frees the new object (the
 139  140   *            unused copy destination). kmem also marks the slab of the old
 140  141   *            object so as not to bother the client with further callbacks for
 141  142   *            that object as long as the slab remains on the partial slab list.
 142  143   *            (The system won't be getting the slab back as long as the
 143  144   *            immovable object holds it hostage, so there's no point in moving
 144  145   *            any of its objects.)
 145  146   *     LATER: The client is using the object and cannot move it now, so kmem
 146  147   *            frees the new object (the unused copy destination). kmem still
 147  148   *            attempts to move other objects off the slab, since it expects to
 148  149   *            succeed in clearing the slab in a later callback. The client
 149  150   *            should use LATER instead of NO if the object is likely to become
 150  151   *            movable very soon.
 151  152   * DONT_NEED: The client no longer needs the object, so kmem frees the old along
 152  153   *            with the new object (the unused copy destination). This response
 153  154   *            is the client's opportunity to be a model citizen and give back as
 154  155   *            much as it can.
 155  156   * DONT_KNOW: The client does not know about the object because
 156  157   *            a) the client has just allocated the object and not yet put it
 157  158   *               wherever it expects to find known objects
 158  159   *            b) the client has removed the object from wherever it expects to
 159  160   *               find known objects and is about to free it, or
 160  161   *            c) the client has freed the object.
 161  162   *            In all these cases (a, b, and c) kmem frees the new object (the
 162  163   *            unused copy destination).  In the first case, the object is in
 163  164   *            use and the correct action is that for LATER; in the latter two
 164  165   *            cases, we know that the object is either freed or about to be
 165  166   *            freed, in which case it is either already in a magazine or about
 166  167   *            to be in one.  In these cases, we know that the object will either
 167  168   *            be reallocated and reused, or it will end up in a full magazine
 168  169   *            that will be reaped (thereby liberating the slab).  Because it
 169  170   *            is prohibitively expensive to differentiate these cases, and
 170  171   *            because the defrag code is executed when we're low on memory
 171  172   *            (thereby biasing the system to reclaim full magazines) we treat
 172  173   *            all DONT_KNOW cases as LATER and rely on cache reaping to
 173  174   *            generally clean up full magazines.  While we take the same action
 174  175   *            for these cases, we maintain their semantic distinction:  if
 175  176   *            defragmentation is not occurring, it is useful to know if this
 176  177   *            is due to objects in use (LATER) or objects in an unknown state
 177  178   *            of transition (DONT_KNOW).
 178  179   *
 179  180   * 2.3 Object States
 180  181   *
 181  182   * Neither kmem nor the client can be assumed to know the object's whereabouts
 182  183   * at the time of the callback. An object belonging to a kmem cache may be in
 183  184   * any of the following states:
 184  185   *
 185  186   * 1. Uninitialized on the slab
 186  187   * 2. Allocated from the slab but not constructed (still uninitialized)
 187  188   * 3. Allocated from the slab, constructed, but not yet ready for business
 188  189   *    (not in a valid state for the move callback)
 189  190   * 4. In use (valid and known to the client)
 190  191   * 5. About to be freed (no longer in a valid state for the move callback)
 191  192   * 6. Freed to a magazine (still constructed)
 192  193   * 7. Allocated from a magazine, not yet ready for business (not in a valid
 193  194   *    state for the move callback), and about to return to state #4
 194  195   * 8. Deconstructed on a magazine that is about to be freed
 195  196   * 9. Freed to the slab
 196  197   *
 197  198   * Since the move callback may be called at any time while the object is in any
 198  199   * of the above states (except state #1), the client needs a safe way to
 199  200   * determine whether or not it knows about the object. Specifically, the client
 200  201   * needs to know whether or not the object is in state #4, the only state in
 201  202   * which a move is valid. If the object is in any other state, the client should
 202  203   * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
 203  204   * the object's fields.
 204  205   *
 205  206   * Note that although an object may be in state #4 when kmem initiates the move
 206  207   * request, the object may no longer be in that state by the time kmem actually
 207  208   * calls the move function. Not only does the client free objects
 208  209   * asynchronously, kmem itself puts move requests on a queue where thay are
 209  210   * pending until kmem processes them from another context. Also, objects freed
 210  211   * to a magazine appear allocated from the point of view of the slab layer, so
 211  212   * kmem may even initiate requests for objects in a state other than state #4.
 212  213   *
 213  214   * 2.3.1 Magazine Layer
 214  215   *
 215  216   * An important insight revealed by the states listed above is that the magazine
 216  217   * layer is populated only by kmem_cache_free(). Magazines of constructed
 217  218   * objects are never populated directly from the slab layer (which contains raw,
 218  219   * unconstructed objects). Whenever an allocation request cannot be satisfied
 219  220   * from the magazine layer, the magazines are bypassed and the request is
 220  221   * satisfied from the slab layer (creating a new slab if necessary). kmem calls
 221  222   * the object constructor only when allocating from the slab layer, and only in
 222  223   * response to kmem_cache_alloc() or to prepare the destination buffer passed in
 223  224   * the move callback. kmem does not preconstruct objects in anticipation of
 224  225   * kmem_cache_alloc().
 225  226   *
 226  227   * 2.3.2 Object Constructor and Destructor
 227  228   *
 228  229   * If the client supplies a destructor, it must be valid to call the destructor
 229  230   * on a newly created object (immediately after the constructor).
 230  231   *
 231  232   * 2.4 Recognizing Known Objects
 232  233   *
 233  234   * There is a simple test to determine safely whether or not the client knows
 234  235   * about a given object in the move callback. It relies on the fact that kmem
 235  236   * guarantees that the object of the move callback has only been touched by the
 236  237   * client itself or else by kmem. kmem does this by ensuring that none of the
 237  238   * cache's slabs are freed to the virtual memory (VM) subsystem while a move
 238  239   * callback is pending. When the last object on a slab is freed, if there is a
 239  240   * pending move, kmem puts the slab on a per-cache dead list and defers freeing
 240  241   * slabs on that list until all pending callbacks are completed. That way,
 241  242   * clients can be certain that the object of a move callback is in one of the
 242  243   * states listed above, making it possible to distinguish known objects (in
 243  244   * state #4) using the two low order bits of any pointer member (with the
 244  245   * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
 245  246   * platforms).
 246  247   *
 247  248   * The test works as long as the client always transitions objects from state #4
 248  249   * (known, in use) to state #5 (about to be freed, invalid) by setting the low
 249  250   * order bit of the client-designated pointer member. Since kmem only writes
 250  251   * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
 251  252   * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
 252  253   * guaranteed to set at least one of the two low order bits. Therefore, given an
 253  254   * object with a back pointer to a 'container_t *o_container', the client can
 254  255   * test
 255  256   *
 256  257   *      container_t *container = object->o_container;
 257  258   *      if ((uintptr_t)container & 0x3) {
 258  259   *              return (KMEM_CBRC_DONT_KNOW);
 259  260   *      }
 260  261   *
 261  262   * Typically, an object will have a pointer to some structure with a list or
 262  263   * hash where objects from the cache are kept while in use. Assuming that the
 263  264   * client has some way of knowing that the container structure is valid and will
 264  265   * not go away during the move, and assuming that the structure includes a lock
 265  266   * to protect whatever collection is used, then the client would continue as
 266  267   * follows:
 267  268   *
 268  269   *      // Ensure that the container structure does not go away.
 269  270   *      if (container_hold(container) == 0) {
 270  271   *              return (KMEM_CBRC_DONT_KNOW);
 271  272   *      }
 272  273   *      mutex_enter(&container->c_objects_lock);
 273  274   *      if (container != object->o_container) {
 274  275   *              mutex_exit(&container->c_objects_lock);
 275  276   *              container_rele(container);
 276  277   *              return (KMEM_CBRC_DONT_KNOW);
 277  278   *      }
 278  279   *
 279  280   * At this point the client knows that the object cannot be freed as long as
 280  281   * c_objects_lock is held. Note that after acquiring the lock, the client must
 281  282   * recheck the o_container pointer in case the object was removed just before
 282  283   * acquiring the lock.
 283  284   *
 284  285   * When the client is about to free an object, it must first remove that object
 285  286   * from the list, hash, or other structure where it is kept. At that time, to
 286  287   * mark the object so it can be distinguished from the remaining, known objects,
 287  288   * the client sets the designated low order bit:
 288  289   *
 289  290   *      mutex_enter(&container->c_objects_lock);
 290  291   *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
 291  292   *      list_remove(&container->c_objects, object);
 292  293   *      mutex_exit(&container->c_objects_lock);
 293  294   *
 294  295   * In the common case, the object is freed to the magazine layer, where it may
 295  296   * be reused on a subsequent allocation without the overhead of calling the
 296  297   * constructor. While in the magazine it appears allocated from the point of
 297  298   * view of the slab layer, making it a candidate for the move callback. Most
 298  299   * objects unrecognized by the client in the move callback fall into this
 299  300   * category and are cheaply distinguished from known objects by the test
 300  301   * described earlier. Because searching magazines is prohibitively expensive
 301  302   * for kmem, clients that do not mark freed objects (and therefore return
 302  303   * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation
 303  304   * efficacy reduced.
 304  305   *
 305  306   * Invalidating the designated pointer member before freeing the object marks
 306  307   * the object to be avoided in the callback, and conversely, assigning a valid
 307  308   * value to the designated pointer member after allocating the object makes the
 308  309   * object fair game for the callback:
 309  310   *
 310  311   *      ... allocate object ...
 311  312   *      ... set any initial state not set by the constructor ...
 312  313   *
 313  314   *      mutex_enter(&container->c_objects_lock);
 314  315   *      list_insert_tail(&container->c_objects, object);
 315  316   *      membar_producer();
 316  317   *      object->o_container = container;
 317  318   *      mutex_exit(&container->c_objects_lock);
 318  319   *
 319  320   * Note that everything else must be valid before setting o_container makes the
 320  321   * object fair game for the move callback. The membar_producer() call ensures
 321  322   * that all the object's state is written to memory before setting the pointer
 322  323   * that transitions the object from state #3 or #7 (allocated, constructed, not
 323  324   * yet in use) to state #4 (in use, valid). That's important because the move
 324  325   * function has to check the validity of the pointer before it can safely
 325  326   * acquire the lock protecting the collection where it expects to find known
 326  327   * objects.
 327  328   *
 328  329   * This method of distinguishing known objects observes the usual symmetry:
 329  330   * invalidating the designated pointer is the first thing the client does before
 330  331   * freeing the object, and setting the designated pointer is the last thing the
 331  332   * client does after allocating the object. Of course, the client is not
 332  333   * required to use this method. Fundamentally, how the client recognizes known
 333  334   * objects is completely up to the client, but this method is recommended as an
 334  335   * efficient and safe way to take advantage of the guarantees made by kmem. If
 335  336   * the entire object is arbitrary data without any markable bits from a suitable
 336  337   * pointer member, then the client must find some other method, such as
 337  338   * searching a hash table of known objects.
 338  339   *
 339  340   * 2.5 Preventing Objects From Moving
 340  341   *
 341  342   * Besides a way to distinguish known objects, the other thing that the client
 342  343   * needs is a strategy to ensure that an object will not move while the client
 343  344   * is actively using it. The details of satisfying this requirement tend to be
 344  345   * highly cache-specific. It might seem that the same rules that let a client
 345  346   * remove an object safely should also decide when an object can be moved
 346  347   * safely. However, any object state that makes a removal attempt invalid is
 347  348   * likely to be long-lasting for objects that the client does not expect to
 348  349   * remove. kmem knows nothing about the object state and is equally likely (from
 349  350   * the client's point of view) to request a move for any object in the cache,
 350  351   * whether prepared for removal or not. Even a low percentage of objects stuck
 351  352   * in place by unremovability will defeat the consolidator if the stuck objects
 352  353   * are the same long-lived allocations likely to hold slabs hostage.
 353  354   * Fundamentally, the consolidator is not aimed at common cases. Severe external
 354  355   * fragmentation is a worst case scenario manifested as sparsely allocated
 355  356   * slabs, by definition a low percentage of the cache's objects. When deciding
 356  357   * what makes an object movable, keep in mind the goal of the consolidator: to
 357  358   * bring worst-case external fragmentation within the limits guaranteed for
 358  359   * internal fragmentation. Removability is a poor criterion if it is likely to
 359  360   * exclude more than an insignificant percentage of objects for long periods of
 360  361   * time.
 361  362   *
 362  363   * A tricky general solution exists, and it has the advantage of letting you
 363  364   * move any object at almost any moment, practically eliminating the likelihood
 364  365   * that an object can hold a slab hostage. However, if there is a cache-specific
 365  366   * way to ensure that an object is not actively in use in the vast majority of
 366  367   * cases, a simpler solution that leverages this cache-specific knowledge is
 367  368   * preferred.
 368  369   *
 369  370   * 2.5.1 Cache-Specific Solution
 370  371   *
 371  372   * As an example of a cache-specific solution, the ZFS znode cache takes
 372  373   * advantage of the fact that the vast majority of znodes are only being
 373  374   * referenced from the DNLC. (A typical case might be a few hundred in active
 374  375   * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
 375  376   * client has established that it recognizes the znode and can access its fields
 376  377   * safely (using the method described earlier), it then tests whether the znode
 377  378   * is referenced by anything other than the DNLC. If so, it assumes that the
 378  379   * znode may be in active use and is unsafe to move, so it drops its locks and
 379  380   * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
 380  381   * else znodes are used, no change is needed to protect against the possibility
 381  382   * of the znode moving. The disadvantage is that it remains possible for an
 382  383   * application to hold a znode slab hostage with an open file descriptor.
 383  384   * However, this case ought to be rare and the consolidator has a way to deal
 384  385   * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
 385  386   * object, kmem eventually stops believing it and treats the slab as if the
 386  387   * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
 387  388   * then focus on getting it off of the partial slab list by allocating rather
 388  389   * than freeing all of its objects. (Either way of getting a slab off the
 389  390   * free list reduces fragmentation.)
 390  391   *
 391  392   * 2.5.2 General Solution
 392  393   *
 393  394   * The general solution, on the other hand, requires an explicit hold everywhere
 394  395   * the object is used to prevent it from moving. To keep the client locking
 395  396   * strategy as uncomplicated as possible, kmem guarantees the simplifying
 396  397   * assumption that move callbacks are sequential, even across multiple caches.
 397  398   * Internally, a global queue processed by a single thread supports all caches
 398  399   * implementing the callback function. No matter how many caches supply a move
 399  400   * function, the consolidator never moves more than one object at a time, so the
 400  401   * client does not have to worry about tricky lock ordering involving several
 401  402   * related objects from different kmem caches.
 402  403   *
 403  404   * The general solution implements the explicit hold as a read-write lock, which
 404  405   * allows multiple readers to access an object from the cache simultaneously
 405  406   * while a single writer is excluded from moving it. A single rwlock for the
 406  407   * entire cache would lock out all threads from using any of the cache's objects
 407  408   * even though only a single object is being moved, so to reduce contention,
 408  409   * the client can fan out the single rwlock into an array of rwlocks hashed by
 409  410   * the object address, making it probable that moving one object will not
 410  411   * prevent other threads from using a different object. The rwlock cannot be a
 411  412   * member of the object itself, because the possibility of the object moving
 412  413   * makes it unsafe to access any of the object's fields until the lock is
 413  414   * acquired.
 414  415   *
 415  416   * Assuming a small, fixed number of locks, it's possible that multiple objects
 416  417   * will hash to the same lock. A thread that needs to use multiple objects in
 417  418   * the same function may acquire the same lock multiple times. Since rwlocks are
 418  419   * reentrant for readers, and since there is never more than a single writer at
 419  420   * a time (assuming that the client acquires the lock as a writer only when
 420  421   * moving an object inside the callback), there would seem to be no problem.
 421  422   * However, a client locking multiple objects in the same function must handle
 422  423   * one case of potential deadlock: Assume that thread A needs to prevent both
 423  424   * object 1 and object 2 from moving, and thread B, the callback, meanwhile
 424  425   * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
 425  426   * same lock, that thread A will acquire the lock for object 1 as a reader
 426  427   * before thread B sets the lock's write-wanted bit, preventing thread A from
 427  428   * reacquiring the lock for object 2 as a reader. Unable to make forward
 428  429   * progress, thread A will never release the lock for object 1, resulting in
 429  430   * deadlock.
 430  431   *
 431  432   * There are two ways of avoiding the deadlock just described. The first is to
 432  433   * use rw_tryenter() rather than rw_enter() in the callback function when
 433  434   * attempting to acquire the lock as a writer. If tryenter discovers that the
 434  435   * same object (or another object hashed to the same lock) is already in use, it
 435  436   * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
 436  437   * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
 437  438   * since it allows a thread to acquire the lock as a reader in spite of a
 438  439   * waiting writer. This second approach insists on moving the object now, no
 439  440   * matter how many readers the move function must wait for in order to do so,
 440  441   * and could delay the completion of the callback indefinitely (blocking
 441  442   * callbacks to other clients). In practice, a less insistent callback using
 442  443   * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
 443  444   * little reason to use anything else.
 444  445   *
 445  446   * Avoiding deadlock is not the only problem that an implementation using an
 446  447   * explicit hold needs to solve. Locking the object in the first place (to
 447  448   * prevent it from moving) remains a problem, since the object could move
 448  449   * between the time you obtain a pointer to the object and the time you acquire
 449  450   * the rwlock hashed to that pointer value. Therefore the client needs to
 450  451   * recheck the value of the pointer after acquiring the lock, drop the lock if
 451  452   * the value has changed, and try again. This requires a level of indirection:
 452  453   * something that points to the object rather than the object itself, that the
 453  454   * client can access safely while attempting to acquire the lock. (The object
 454  455   * itself cannot be referenced safely because it can move at any time.)
 455  456   * The following lock-acquisition function takes whatever is safe to reference
 456  457   * (arg), follows its pointer to the object (using function f), and tries as
 457  458   * often as necessary to acquire the hashed lock and verify that the object
 458  459   * still has not moved:
 459  460   *
 460  461   *      object_t *
 461  462   *      object_hold(object_f f, void *arg)
 462  463   *      {
 463  464   *              object_t *op;
 464  465   *
 465  466   *              op = f(arg);
 466  467   *              if (op == NULL) {
 467  468   *                      return (NULL);
 468  469   *              }
 469  470   *
 470  471   *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
 471  472   *              while (op != f(arg)) {
 472  473   *                      rw_exit(OBJECT_RWLOCK(op));
 473  474   *                      op = f(arg);
 474  475   *                      if (op == NULL) {
 475  476   *                              break;
 476  477   *                      }
 477  478   *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
 478  479   *              }
 479  480   *
 480  481   *              return (op);
 481  482   *      }
 482  483   *
 483  484   * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
 484  485   * lock reacquisition loop, while necessary, almost never executes. The function
 485  486   * pointer f (used to obtain the object pointer from arg) has the following type
 486  487   * definition:
 487  488   *
 488  489   *      typedef object_t *(*object_f)(void *arg);
 489  490   *
 490  491   * An object_f implementation is likely to be as simple as accessing a structure
 491  492   * member:
 492  493   *
 493  494   *      object_t *
 494  495   *      s_object(void *arg)
 495  496   *      {
 496  497   *              something_t *sp = arg;
 497  498   *              return (sp->s_object);
 498  499   *      }
 499  500   *
 500  501   * The flexibility of a function pointer allows the path to the object to be
 501  502   * arbitrarily complex and also supports the notion that depending on where you
 502  503   * are using the object, you may need to get it from someplace different.
 503  504   *
 504  505   * The function that releases the explicit hold is simpler because it does not
 505  506   * have to worry about the object moving:
 506  507   *
 507  508   *      void
 508  509   *      object_rele(object_t *op)
 509  510   *      {
 510  511   *              rw_exit(OBJECT_RWLOCK(op));
 511  512   *      }
 512  513   *
 513  514   * The caller is spared these details so that obtaining and releasing an
 514  515   * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
 515  516   * of object_hold() only needs to know that the returned object pointer is valid
 516  517   * if not NULL and that the object will not move until released.
 517  518   *
 518  519   * Although object_hold() prevents an object from moving, it does not prevent it
 519  520   * from being freed. The caller must take measures before calling object_hold()
 520  521   * (afterwards is too late) to ensure that the held object cannot be freed. The
 521  522   * caller must do so without accessing the unsafe object reference, so any lock
 522  523   * or reference count used to ensure the continued existence of the object must
 523  524   * live outside the object itself.
 524  525   *
 525  526   * Obtaining a new object is a special case where an explicit hold is impossible
 526  527   * for the caller. Any function that returns a newly allocated object (either as
 527  528   * a return value, or as an in-out paramter) must return it already held; after
 528  529   * the caller gets it is too late, since the object cannot be safely accessed
 529  530   * without the level of indirection described earlier. The following
 530  531   * object_alloc() example uses the same code shown earlier to transition a new
 531  532   * object into the state of being recognized (by the client) as a known object.
 532  533   * The function must acquire the hold (rw_enter) before that state transition
 533  534   * makes the object movable:
 534  535   *
 535  536   *      static object_t *
 536  537   *      object_alloc(container_t *container)
 537  538   *      {
 538  539   *              object_t *object = kmem_cache_alloc(object_cache, 0);
 539  540   *              ... set any initial state not set by the constructor ...
 540  541   *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
 541  542   *              mutex_enter(&container->c_objects_lock);
 542  543   *              list_insert_tail(&container->c_objects, object);
 543  544   *              membar_producer();
 544  545   *              object->o_container = container;
 545  546   *              mutex_exit(&container->c_objects_lock);
 546  547   *              return (object);
 547  548   *      }
 548  549   *
 549  550   * Functions that implicitly acquire an object hold (any function that calls
 550  551   * object_alloc() to supply an object for the caller) need to be carefully noted
 551  552   * so that the matching object_rele() is not neglected. Otherwise, leaked holds
 552  553   * prevent all objects hashed to the affected rwlocks from ever being moved.
 553  554   *
 554  555   * The pointer to a held object can be hashed to the holding rwlock even after
 555  556   * the object has been freed. Although it is possible to release the hold
 556  557   * after freeing the object, you may decide to release the hold implicitly in
 557  558   * whatever function frees the object, so as to release the hold as soon as
 558  559   * possible, and for the sake of symmetry with the function that implicitly
 559  560   * acquires the hold when it allocates the object. Here, object_free() releases
 560  561   * the hold acquired by object_alloc(). Its implicit object_rele() forms a
 561  562   * matching pair with object_hold():
 562  563   *
 563  564   *      void
 564  565   *      object_free(object_t *object)
 565  566   *      {
 566  567   *              container_t *container;
 567  568   *
 568  569   *              ASSERT(object_held(object));
 569  570   *              container = object->o_container;
 570  571   *              mutex_enter(&container->c_objects_lock);
 571  572   *              object->o_container =
 572  573   *                  (void *)((uintptr_t)object->o_container | 0x1);
 573  574   *              list_remove(&container->c_objects, object);
 574  575   *              mutex_exit(&container->c_objects_lock);
 575  576   *              object_rele(object);
 576  577   *              kmem_cache_free(object_cache, object);
 577  578   *      }
 578  579   *
 579  580   * Note that object_free() cannot safely accept an object pointer as an argument
 580  581   * unless the object is already held. Any function that calls object_free()
 581  582   * needs to be carefully noted since it similarly forms a matching pair with
 582  583   * object_hold().
 583  584   *
 584  585   * To complete the picture, the following callback function implements the
 585  586   * general solution by moving objects only if they are currently unheld:
 586  587   *
 587  588   *      static kmem_cbrc_t
 588  589   *      object_move(void *buf, void *newbuf, size_t size, void *arg)
 589  590   *      {
 590  591   *              object_t *op = buf, *np = newbuf;
 591  592   *              container_t *container;
 592  593   *
 593  594   *              container = op->o_container;
 594  595   *              if ((uintptr_t)container & 0x3) {
 595  596   *                      return (KMEM_CBRC_DONT_KNOW);
 596  597   *              }
 597  598   *
 598  599   *              // Ensure that the container structure does not go away.
 599  600   *              if (container_hold(container) == 0) {
 600  601   *                      return (KMEM_CBRC_DONT_KNOW);
 601  602   *              }
 602  603   *
 603  604   *              mutex_enter(&container->c_objects_lock);
 604  605   *              if (container != op->o_container) {
 605  606   *                      mutex_exit(&container->c_objects_lock);
 606  607   *                      container_rele(container);
 607  608   *                      return (KMEM_CBRC_DONT_KNOW);
 608  609   *              }
 609  610   *
 610  611   *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
 611  612   *                      mutex_exit(&container->c_objects_lock);
 612  613   *                      container_rele(container);
 613  614   *                      return (KMEM_CBRC_LATER);
 614  615   *              }
 615  616   *
 616  617   *              object_move_impl(op, np); // critical section
 617  618   *              rw_exit(OBJECT_RWLOCK(op));
 618  619   *
 619  620   *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
 620  621   *              list_link_replace(&op->o_link_node, &np->o_link_node);
 621  622   *              mutex_exit(&container->c_objects_lock);
 622  623   *              container_rele(container);
 623  624   *              return (KMEM_CBRC_YES);
 624  625   *      }
 625  626   *
 626  627   * Note that object_move() must invalidate the designated o_container pointer of
 627  628   * the old object in the same way that object_free() does, since kmem will free
 628  629   * the object in response to the KMEM_CBRC_YES return value.
 629  630   *
 630  631   * The lock order in object_move() differs from object_alloc(), which locks
 631  632   * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
 632  633   * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
 633  634   * not a problem. Holding the lock on the object list in the example above
 634  635   * through the entire callback not only prevents the object from going away, it
 635  636   * also allows you to lock the list elsewhere and know that none of its elements
 636  637   * will move during iteration.
 637  638   *
 638  639   * Adding an explicit hold everywhere an object from the cache is used is tricky
 639  640   * and involves much more change to client code than a cache-specific solution
 640  641   * that leverages existing state to decide whether or not an object is
 641  642   * movable. However, this approach has the advantage that no object remains
 642  643   * immovable for any significant length of time, making it extremely unlikely
 643  644   * that long-lived allocations can continue holding slabs hostage; and it works
 644  645   * for any cache.
 645  646   *
 646  647   * 3. Consolidator Implementation
 647  648   *
 648  649   * Once the client supplies a move function that a) recognizes known objects and
 649  650   * b) avoids moving objects that are actively in use, the remaining work is up
 650  651   * to the consolidator to decide which objects to move and when to issue
 651  652   * callbacks.
 652  653   *
 653  654   * The consolidator relies on the fact that a cache's slabs are ordered by
 654  655   * usage. Each slab has a fixed number of objects. Depending on the slab's
 655  656   * "color" (the offset of the first object from the beginning of the slab;
 656  657   * offsets are staggered to mitigate false sharing of cache lines) it is either
 657  658   * the maximum number of objects per slab determined at cache creation time or
 658  659   * else the number closest to the maximum that fits within the space remaining
 659  660   * after the initial offset. A completely allocated slab may contribute some
 660  661   * internal fragmentation (per-slab overhead) but no external fragmentation, so
 661  662   * it is of no interest to the consolidator. At the other extreme, slabs whose
 662  663   * objects have all been freed to the slab are released to the virtual memory
 663  664   * (VM) subsystem (objects freed to magazines are still allocated as far as the
 664  665   * slab is concerned). External fragmentation exists when there are slabs
 665  666   * somewhere between these extremes. A partial slab has at least one but not all
 666  667   * of its objects allocated. The more partial slabs, and the fewer allocated
 667  668   * objects on each of them, the higher the fragmentation. Hence the
 668  669   * consolidator's overall strategy is to reduce the number of partial slabs by
 669  670   * moving allocated objects from the least allocated slabs to the most allocated
 670  671   * slabs.
 671  672   *
 672  673   * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
 673  674   * slabs are kept separately in an unordered list. Since the majority of slabs
 674  675   * tend to be completely allocated (a typical unfragmented cache may have
 675  676   * thousands of complete slabs and only a single partial slab), separating
 676  677   * complete slabs improves the efficiency of partial slab ordering, since the
 677  678   * complete slabs do not affect the depth or balance of the AVL tree. This
 678  679   * ordered sequence of partial slabs acts as a "free list" supplying objects for
 679  680   * allocation requests.
 680  681   *
 681  682   * Objects are always allocated from the first partial slab in the free list,
 682  683   * where the allocation is most likely to eliminate a partial slab (by
 683  684   * completely allocating it). Conversely, when a single object from a completely
 684  685   * allocated slab is freed to the slab, that slab is added to the front of the
 685  686   * free list. Since most free list activity involves highly allocated slabs
 686  687   * coming and going at the front of the list, slabs tend naturally toward the
 687  688   * ideal order: highly allocated at the front, sparsely allocated at the back.
 688  689   * Slabs with few allocated objects are likely to become completely free if they
 689  690   * keep a safe distance away from the front of the free list. Slab misorders
 690  691   * interfere with the natural tendency of slabs to become completely free or
 691  692   * completely allocated. For example, a slab with a single allocated object
 692  693   * needs only a single free to escape the cache; its natural desire is
 693  694   * frustrated when it finds itself at the front of the list where a second
 694  695   * allocation happens just before the free could have released it. Another slab
 695  696   * with all but one object allocated might have supplied the buffer instead, so
 696  697   * that both (as opposed to neither) of the slabs would have been taken off the
 697  698   * free list.
 698  699   *
 699  700   * Although slabs tend naturally toward the ideal order, misorders allowed by a
 700  701   * simple list implementation defeat the consolidator's strategy of merging
 701  702   * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
 702  703   * needs another way to fix misorders to optimize its callback strategy. One
 703  704   * approach is to periodically scan a limited number of slabs, advancing a
 704  705   * marker to hold the current scan position, and to move extreme misorders to
 705  706   * the front or back of the free list and to the front or back of the current
 706  707   * scan range. By making consecutive scan ranges overlap by one slab, the least
 707  708   * allocated slab in the current range can be carried along from the end of one
 708  709   * scan to the start of the next.
 709  710   *
 710  711   * Maintaining partial slabs in an AVL tree relieves kmem of this additional
 711  712   * task, however. Since most of the cache's activity is in the magazine layer,
 712  713   * and allocations from the slab layer represent only a startup cost, the
 713  714   * overhead of maintaining a balanced tree is not a significant concern compared
 714  715   * to the opportunity of reducing complexity by eliminating the partial slab
 715  716   * scanner just described. The overhead of an AVL tree is minimized by
 716  717   * maintaining only partial slabs in the tree and keeping completely allocated
 717  718   * slabs separately in a list. To avoid increasing the size of the slab
 718  719   * structure the AVL linkage pointers are reused for the slab's list linkage,
 719  720   * since the slab will always be either partial or complete, never stored both
 720  721   * ways at the same time. To further minimize the overhead of the AVL tree the
 721  722   * compare function that orders partial slabs by usage divides the range of
 722  723   * allocated object counts into bins such that counts within the same bin are
 723  724   * considered equal. Binning partial slabs makes it less likely that allocating
 724  725   * or freeing a single object will change the slab's order, requiring a tree
 725  726   * reinsertion (an avl_remove() followed by an avl_add(), both potentially
 726  727   * requiring some rebalancing of the tree). Allocation counts closest to
 727  728   * completely free and completely allocated are left unbinned (finely sorted) to
 728  729   * better support the consolidator's strategy of merging slabs at either
 729  730   * extreme.
 730  731   *
 731  732   * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
 732  733   *
 733  734   * The consolidator piggybacks on the kmem maintenance thread and is called on
 734  735   * the same interval as kmem_cache_update(), once per cache every fifteen
 735  736   * seconds. kmem maintains a running count of unallocated objects in the slab
 736  737   * layer (cache_bufslab). The consolidator checks whether that number exceeds
 737  738   * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
 738  739   * there is a significant number of slabs in the cache (arbitrarily a minimum
 739  740   * 101 total slabs). Unused objects that have fallen out of the magazine layer's
 740  741   * working set are included in the assessment, and magazines in the depot are
 741  742   * reaped if those objects would lift cache_bufslab above the fragmentation
 742  743   * threshold. Once the consolidator decides that a cache is fragmented, it looks
 743  744   * for a candidate slab to reclaim, starting at the end of the partial slab free
 744  745   * list and scanning backwards. At first the consolidator is choosy: only a slab
 745  746   * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
 746  747   * single allocated object, regardless of percentage). If there is difficulty
 747  748   * finding a candidate slab, kmem raises the allocation threshold incrementally,
 748  749   * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
 749  750   * external fragmentation (unused objects on the free list) below 12.5% (1/8),
 750  751   * even in the worst case of every slab in the cache being almost 7/8 allocated.
 751  752   * The threshold can also be lowered incrementally when candidate slabs are easy
 752  753   * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
 753  754   * is no longer fragmented.
 754  755   *
 755  756   * 3.2 Generating Callbacks
 756  757   *
 757  758   * Once an eligible slab is chosen, a callback is generated for every allocated
 758  759   * object on the slab, in the hope that the client will move everything off the
 759  760   * slab and make it reclaimable. Objects selected as move destinations are
 760  761   * chosen from slabs at the front of the free list. Assuming slabs in the ideal
 761  762   * order (most allocated at the front, least allocated at the back) and a
 762  763   * cooperative client, the consolidator will succeed in removing slabs from both
 763  764   * ends of the free list, completely allocating on the one hand and completely
 764  765   * freeing on the other. Objects selected as move destinations are allocated in
 765  766   * the kmem maintenance thread where move requests are enqueued. A separate
 766  767   * callback thread removes pending callbacks from the queue and calls the
 767  768   * client. The separate thread ensures that client code (the move function) does
 768  769   * not interfere with internal kmem maintenance tasks. A map of pending
 769  770   * callbacks keyed by object address (the object to be moved) is checked to
 770  771   * ensure that duplicate callbacks are not generated for the same object.
 771  772   * Allocating the move destination (the object to move to) prevents subsequent
 772  773   * callbacks from selecting the same destination as an earlier pending callback.
 773  774   *
 774  775   * Move requests can also be generated by kmem_cache_reap() when the system is
 775  776   * desperate for memory and by kmem_cache_move_notify(), called by the client to
 776  777   * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
 777  778   * The map of pending callbacks is protected by the same lock that protects the
 778  779   * slab layer.
 779  780   *
 780  781   * When the system is desperate for memory, kmem does not bother to determine
 781  782   * whether or not the cache exceeds the fragmentation threshold, but tries to
 782  783   * consolidate as many slabs as possible. Normally, the consolidator chews
 783  784   * slowly, one sparsely allocated slab at a time during each maintenance
 784  785   * interval that the cache is fragmented. When desperate, the consolidator
 785  786   * starts at the last partial slab and enqueues callbacks for every allocated
 786  787   * object on every partial slab, working backwards until it reaches the first
 787  788   * partial slab. The first partial slab, meanwhile, advances in pace with the
 788  789   * consolidator as allocations to supply move destinations for the enqueued
 789  790   * callbacks use up the highly allocated slabs at the front of the free list.
 790  791   * Ideally, the overgrown free list collapses like an accordion, starting at
 791  792   * both ends and ending at the center with a single partial slab.
 792  793   *
 793  794   * 3.3 Client Responses
 794  795   *
 795  796   * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
 796  797   * marks the slab that supplied the stuck object non-reclaimable and moves it to
 797  798   * front of the free list. The slab remains marked as long as it remains on the
 798  799   * free list, and it appears more allocated to the partial slab compare function
 799  800   * than any unmarked slab, no matter how many of its objects are allocated.
 800  801   * Since even one immovable object ties up the entire slab, the goal is to
 801  802   * completely allocate any slab that cannot be completely freed. kmem does not
 802  803   * bother generating callbacks to move objects from a marked slab unless the
 803  804   * system is desperate.
 804  805   *
 805  806   * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
 806  807   * slab. If the client responds LATER too many times, kmem disbelieves and
 807  808   * treats the response as a NO. The count is cleared when the slab is taken off
 808  809   * the partial slab list or when the client moves one of the slab's objects.
 809  810   *
 810  811   * 4. Observability
 811  812   *
 812  813   * A kmem cache's external fragmentation is best observed with 'mdb -k' using
 813  814   * the ::kmem_slabs dcmd. For a complete description of the command, enter
 814  815   * '::help kmem_slabs' at the mdb prompt.
 815  816   */
 816  817  
 817  818  #include <sys/kmem_impl.h>
 818  819  #include <sys/vmem_impl.h>
 819  820  #include <sys/param.h>
 820  821  #include <sys/sysmacros.h>
 821  822  #include <sys/vm.h>
 822  823  #include <sys/proc.h>
 823  824  #include <sys/tuneable.h>
 824  825  #include <sys/systm.h>
 825  826  #include <sys/cmn_err.h>
 826  827  #include <sys/debug.h>
 827  828  #include <sys/sdt.h>
 828  829  #include <sys/mutex.h>
 829  830  #include <sys/bitmap.h>
 830  831  #include <sys/atomic.h>
 831  832  #include <sys/kobj.h>
 832  833  #include <sys/disp.h>
 833  834  #include <vm/seg_kmem.h>
 834  835  #include <sys/log.h>
 835  836  #include <sys/callb.h>
 836  837  #include <sys/taskq.h>
 837  838  #include <sys/modctl.h>
 838  839  #include <sys/reboot.h>
 839  840  #include <sys/id32.h>
 840  841  #include <sys/zone.h>
 841  842  #include <sys/netstack.h>
 842  843  #ifdef  DEBUG
 843  844  #include <sys/random.h>
 844  845  #endif
 845  846  
 846  847  extern void streams_msg_init(void);
 847  848  extern int segkp_fromheap;
 848  849  extern void segkp_cache_free(void);
 849  850  extern int callout_init_done;
 850  851  
 851  852  struct kmem_cache_kstat {
 852  853          kstat_named_t   kmc_buf_size;
 853  854          kstat_named_t   kmc_align;
 854  855          kstat_named_t   kmc_chunk_size;
 855  856          kstat_named_t   kmc_slab_size;
 856  857          kstat_named_t   kmc_alloc;
 857  858          kstat_named_t   kmc_alloc_fail;
 858  859          kstat_named_t   kmc_free;
 859  860          kstat_named_t   kmc_depot_alloc;
 860  861          kstat_named_t   kmc_depot_free;
 861  862          kstat_named_t   kmc_depot_contention;
 862  863          kstat_named_t   kmc_slab_alloc;
 863  864          kstat_named_t   kmc_slab_free;
 864  865          kstat_named_t   kmc_buf_constructed;
 865  866          kstat_named_t   kmc_buf_avail;
 866  867          kstat_named_t   kmc_buf_inuse;
 867  868          kstat_named_t   kmc_buf_total;
 868  869          kstat_named_t   kmc_buf_max;
 869  870          kstat_named_t   kmc_slab_create;
 870  871          kstat_named_t   kmc_slab_destroy;
 871  872          kstat_named_t   kmc_vmem_source;
 872  873          kstat_named_t   kmc_hash_size;
 873  874          kstat_named_t   kmc_hash_lookup_depth;
 874  875          kstat_named_t   kmc_hash_rescale;
 875  876          kstat_named_t   kmc_full_magazines;
 876  877          kstat_named_t   kmc_empty_magazines;
 877  878          kstat_named_t   kmc_magazine_size;
 878  879          kstat_named_t   kmc_reap; /* number of kmem_cache_reap() calls */
 879  880          kstat_named_t   kmc_defrag; /* attempts to defrag all partial slabs */
 880  881          kstat_named_t   kmc_scan; /* attempts to defrag one partial slab */
 881  882          kstat_named_t   kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
 882  883          kstat_named_t   kmc_move_yes;
 883  884          kstat_named_t   kmc_move_no;
 884  885          kstat_named_t   kmc_move_later;
 885  886          kstat_named_t   kmc_move_dont_need;
 886  887          kstat_named_t   kmc_move_dont_know; /* obj unrecognized by client ... */
 887  888          kstat_named_t   kmc_move_hunt_found; /* ... but found in mag layer */
 888  889          kstat_named_t   kmc_move_slabs_freed; /* slabs freed by consolidator */
 889  890          kstat_named_t   kmc_move_reclaimable; /* buffers, if consolidator ran */
 890  891  } kmem_cache_kstat = {
 891  892          { "buf_size",           KSTAT_DATA_UINT64 },
 892  893          { "align",              KSTAT_DATA_UINT64 },
 893  894          { "chunk_size",         KSTAT_DATA_UINT64 },
 894  895          { "slab_size",          KSTAT_DATA_UINT64 },
 895  896          { "alloc",              KSTAT_DATA_UINT64 },
 896  897          { "alloc_fail",         KSTAT_DATA_UINT64 },
 897  898          { "free",               KSTAT_DATA_UINT64 },
 898  899          { "depot_alloc",        KSTAT_DATA_UINT64 },
 899  900          { "depot_free",         KSTAT_DATA_UINT64 },
 900  901          { "depot_contention",   KSTAT_DATA_UINT64 },
 901  902          { "slab_alloc",         KSTAT_DATA_UINT64 },
 902  903          { "slab_free",          KSTAT_DATA_UINT64 },
 903  904          { "buf_constructed",    KSTAT_DATA_UINT64 },
 904  905          { "buf_avail",          KSTAT_DATA_UINT64 },
 905  906          { "buf_inuse",          KSTAT_DATA_UINT64 },
 906  907          { "buf_total",          KSTAT_DATA_UINT64 },
 907  908          { "buf_max",            KSTAT_DATA_UINT64 },
 908  909          { "slab_create",        KSTAT_DATA_UINT64 },
 909  910          { "slab_destroy",       KSTAT_DATA_UINT64 },
 910  911          { "vmem_source",        KSTAT_DATA_UINT64 },
 911  912          { "hash_size",          KSTAT_DATA_UINT64 },
 912  913          { "hash_lookup_depth",  KSTAT_DATA_UINT64 },
 913  914          { "hash_rescale",       KSTAT_DATA_UINT64 },
 914  915          { "full_magazines",     KSTAT_DATA_UINT64 },
 915  916          { "empty_magazines",    KSTAT_DATA_UINT64 },
 916  917          { "magazine_size",      KSTAT_DATA_UINT64 },
 917  918          { "reap",               KSTAT_DATA_UINT64 },
 918  919          { "defrag",             KSTAT_DATA_UINT64 },
 919  920          { "scan",               KSTAT_DATA_UINT64 },
 920  921          { "move_callbacks",     KSTAT_DATA_UINT64 },
 921  922          { "move_yes",           KSTAT_DATA_UINT64 },
 922  923          { "move_no",            KSTAT_DATA_UINT64 },
 923  924          { "move_later",         KSTAT_DATA_UINT64 },
 924  925          { "move_dont_need",     KSTAT_DATA_UINT64 },
 925  926          { "move_dont_know",     KSTAT_DATA_UINT64 },
 926  927          { "move_hunt_found",    KSTAT_DATA_UINT64 },
 927  928          { "move_slabs_freed",   KSTAT_DATA_UINT64 },
 928  929          { "move_reclaimable",   KSTAT_DATA_UINT64 },
 929  930  };
 930  931  
 931  932  static kmutex_t kmem_cache_kstat_lock;
 932  933  
 933  934  /*
 934  935   * The default set of caches to back kmem_alloc().
 935  936   * These sizes should be reevaluated periodically.
 936  937   *
 937  938   * We want allocations that are multiples of the coherency granularity
 938  939   * (64 bytes) to be satisfied from a cache which is a multiple of 64
 939  940   * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
 940  941   * the next kmem_cache_size greater than or equal to it must be a
 941  942   * multiple of 64.
 942  943   *
 943  944   * We split the table into two sections:  size <= 4k and size > 4k.  This
 944  945   * saves a lot of space and cache footprint in our cache tables.
 945  946   */
 946  947  static const int kmem_alloc_sizes[] = {
 947  948          1 * 8,
 948  949          2 * 8,
 949  950          3 * 8,
 950  951          4 * 8,          5 * 8,          6 * 8,          7 * 8,
 951  952          4 * 16,         5 * 16,         6 * 16,         7 * 16,
 952  953          4 * 32,         5 * 32,         6 * 32,         7 * 32,
 953  954          4 * 64,         5 * 64,         6 * 64,         7 * 64,
 954  955          4 * 128,        5 * 128,        6 * 128,        7 * 128,
 955  956          P2ALIGN(8192 / 7, 64),
 956  957          P2ALIGN(8192 / 6, 64),
 957  958          P2ALIGN(8192 / 5, 64),
 958  959          P2ALIGN(8192 / 4, 64),
 959  960          P2ALIGN(8192 / 3, 64),
 960  961          P2ALIGN(8192 / 2, 64),
 961  962  };
 962  963  
 963  964  static const int kmem_big_alloc_sizes[] = {
 964  965          2 * 4096,       3 * 4096,
 965  966          2 * 8192,       3 * 8192,
 966  967          4 * 8192,       5 * 8192,       6 * 8192,       7 * 8192,
 967  968          8 * 8192,       9 * 8192,       10 * 8192,      11 * 8192,
 968  969          12 * 8192,      13 * 8192,      14 * 8192,      15 * 8192,
 969  970          16 * 8192
 970  971  };
 971  972  
 972  973  #define KMEM_MAXBUF             4096
 973  974  #define KMEM_BIG_MAXBUF_32BIT   32768
 974  975  #define KMEM_BIG_MAXBUF         131072
 975  976  
 976  977  #define KMEM_BIG_MULTIPLE       4096    /* big_alloc_sizes must be a multiple */
 977  978  #define KMEM_BIG_SHIFT          12      /* lg(KMEM_BIG_MULTIPLE) */
 978  979  
 979  980  static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
 980  981  static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
 981  982  
 982  983  #define KMEM_ALLOC_TABLE_MAX    (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
 983  984  static size_t kmem_big_alloc_table_max = 0;     /* # of filled elements */
 984  985  
 985  986  static kmem_magtype_t kmem_magtype[] = {
 986  987          { 1,    8,      3200,   65536   },
 987  988          { 3,    16,     256,    32768   },
 988  989          { 7,    32,     64,     16384   },
 989  990          { 15,   64,     0,      8192    },
 990  991          { 31,   64,     0,      4096    },
 991  992          { 47,   64,     0,      2048    },
 992  993          { 63,   64,     0,      1024    },
 993  994          { 95,   64,     0,      512     },
 994  995          { 143,  64,     0,      0       },
 995  996  };
 996  997  
 997  998  static uint32_t kmem_reaping;
 998  999  static uint32_t kmem_reaping_idspace;
 999 1000  
1000 1001  /*
1001 1002   * kmem tunables
1002 1003   */
1003 1004  clock_t kmem_reap_interval;     /* cache reaping rate [15 * HZ ticks] */
1004 1005  int kmem_depot_contention = 3;  /* max failed tryenters per real interval */
1005 1006  pgcnt_t kmem_reapahead = 0;     /* start reaping N pages before pageout */
1006 1007  int kmem_panic = 1;             /* whether to panic on error */
1007 1008  int kmem_logging = 1;           /* kmem_log_enter() override */
1008 1009  uint32_t kmem_mtbf = 0;         /* mean time between failures [default: off] */
1009 1010  size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
1010 1011  size_t kmem_content_log_size;   /* content log size [2% of memory] */
1011 1012  size_t kmem_failure_log_size;   /* failure log [4 pages per CPU] */
1012 1013  size_t kmem_slab_log_size;      /* slab create log [4 pages per CPU] */
1013 1014  size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
1014 1015  size_t kmem_lite_minsize = 0;   /* minimum buffer size for KMF_LITE */
1015 1016  size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
1016 1017  int kmem_lite_pcs = 4;          /* number of PCs to store in KMF_LITE mode */
1017 1018  size_t kmem_maxverify;          /* maximum bytes to inspect in debug routines */
1018 1019  size_t kmem_minfirewall;        /* hardware-enforced redzone threshold */
1019 1020  
1020 1021  #ifdef _LP64
1021 1022  size_t  kmem_max_cached = KMEM_BIG_MAXBUF;      /* maximum kmem_alloc cache */
1022 1023  #else
1023 1024  size_t  kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1024 1025  #endif
1025 1026  
1026 1027  #ifdef DEBUG
1027 1028  int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
1028 1029  #else
1029 1030  int kmem_flags = 0;
1030 1031  #endif
1031 1032  int kmem_ready;
1032 1033  
1033 1034  static kmem_cache_t     *kmem_slab_cache;
1034 1035  static kmem_cache_t     *kmem_bufctl_cache;
1035 1036  static kmem_cache_t     *kmem_bufctl_audit_cache;
1036 1037  
1037 1038  static kmutex_t         kmem_cache_lock;        /* inter-cache linkage only */
1038 1039  static list_t           kmem_caches;
1039 1040  
1040 1041  static taskq_t          *kmem_taskq;
1041 1042  static kmutex_t         kmem_flags_lock;
1042 1043  static vmem_t           *kmem_metadata_arena;
1043 1044  static vmem_t           *kmem_msb_arena;        /* arena for metadata caches */
1044 1045  static vmem_t           *kmem_cache_arena;
1045 1046  static vmem_t           *kmem_hash_arena;
1046 1047  static vmem_t           *kmem_log_arena;
1047 1048  static vmem_t           *kmem_oversize_arena;
1048 1049  static vmem_t           *kmem_va_arena;
1049 1050  static vmem_t           *kmem_default_arena;
1050 1051  static vmem_t           *kmem_firewall_va_arena;
1051 1052  static vmem_t           *kmem_firewall_arena;
1052 1053  
1053 1054  /*
1054 1055   * kmem slab consolidator thresholds (tunables)
1055 1056   */
1056 1057  size_t kmem_frag_minslabs = 101;        /* minimum total slabs */
1057 1058  size_t kmem_frag_numer = 1;             /* free buffers (numerator) */
1058 1059  size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1059 1060  /*
1060 1061   * Maximum number of slabs from which to move buffers during a single
1061 1062   * maintenance interval while the system is not low on memory.
1062 1063   */
1063 1064  size_t kmem_reclaim_max_slabs = 1;
1064 1065  /*
1065 1066   * Number of slabs to scan backwards from the end of the partial slab list
1066 1067   * when searching for buffers to relocate.
1067 1068   */
1068 1069  size_t kmem_reclaim_scan_range = 12;
1069 1070  
1070 1071  /* consolidator knobs */
1071 1072  boolean_t kmem_move_noreap;
1072 1073  boolean_t kmem_move_blocked;
1073 1074  boolean_t kmem_move_fulltilt;
1074 1075  boolean_t kmem_move_any_partial;
1075 1076  
1076 1077  #ifdef  DEBUG
1077 1078  /*
1078 1079   * kmem consolidator debug tunables:
1079 1080   * Ensure code coverage by occasionally running the consolidator even when the
1080 1081   * caches are not fragmented (they may never be). These intervals are mean time
1081 1082   * in cache maintenance intervals (kmem_cache_update).
1082 1083   */
1083 1084  uint32_t kmem_mtb_move = 60;    /* defrag 1 slab (~15min) */
1084 1085  uint32_t kmem_mtb_reap = 1800;  /* defrag all slabs (~7.5hrs) */
1085 1086  #endif  /* DEBUG */
1086 1087  
1087 1088  static kmem_cache_t     *kmem_defrag_cache;
1088 1089  static kmem_cache_t     *kmem_move_cache;
1089 1090  static taskq_t          *kmem_move_taskq;
1090 1091  
1091 1092  static void kmem_cache_scan(kmem_cache_t *);
1092 1093  static void kmem_cache_defrag(kmem_cache_t *);
1093 1094  static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1094 1095  
1095 1096  
1096 1097  kmem_log_header_t       *kmem_transaction_log;
1097 1098  kmem_log_header_t       *kmem_content_log;
1098 1099  kmem_log_header_t       *kmem_failure_log;
1099 1100  kmem_log_header_t       *kmem_slab_log;
1100 1101  
1101 1102  static int              kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1102 1103  
1103 1104  #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller)                       \
1104 1105          if ((count) > 0) {                                              \
1105 1106                  pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history;    \
1106 1107                  pc_t *_e;                                               \
1107 1108                  /* memmove() the old entries down one notch */          \
1108 1109                  for (_e = &_s[(count) - 1]; _e > _s; _e--)              \
1109 1110                          *_e = *(_e - 1);                                \
1110 1111                  *_s = (uintptr_t)(caller);                              \
1111 1112          }
1112 1113  
1113 1114  #define KMERR_MODIFIED  0       /* buffer modified while on freelist */
1114 1115  #define KMERR_REDZONE   1       /* redzone violation (write past end of buf) */
1115 1116  #define KMERR_DUPFREE   2       /* freed a buffer twice */
1116 1117  #define KMERR_BADADDR   3       /* freed a bad (unallocated) address */
1117 1118  #define KMERR_BADBUFTAG 4       /* buftag corrupted */
1118 1119  #define KMERR_BADBUFCTL 5       /* bufctl corrupted */
1119 1120  #define KMERR_BADCACHE  6       /* freed a buffer to the wrong cache */
1120 1121  #define KMERR_BADSIZE   7       /* alloc size != free size */
1121 1122  #define KMERR_BADBASE   8       /* buffer base address wrong */
1122 1123  
1123 1124  struct {
1124 1125          hrtime_t        kmp_timestamp;  /* timestamp of panic */
1125 1126          int             kmp_error;      /* type of kmem error */
1126 1127          void            *kmp_buffer;    /* buffer that induced panic */
1127 1128          void            *kmp_realbuf;   /* real start address for buffer */
1128 1129          kmem_cache_t    *kmp_cache;     /* buffer's cache according to client */
1129 1130          kmem_cache_t    *kmp_realcache; /* actual cache containing buffer */
1130 1131          kmem_slab_t     *kmp_slab;      /* slab accoring to kmem_findslab() */
1131 1132          kmem_bufctl_t   *kmp_bufctl;    /* bufctl */
1132 1133  } kmem_panic_info;
1133 1134  
1134 1135  
1135 1136  static void
1136 1137  copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1137 1138  {
1138 1139          uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1139 1140          uint64_t *buf = buf_arg;
1140 1141  
1141 1142          while (buf < bufend)
1142 1143                  *buf++ = pattern;
1143 1144  }
1144 1145  
1145 1146  static void *
1146 1147  verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1147 1148  {
1148 1149          uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1149 1150          uint64_t *buf;
1150 1151  
1151 1152          for (buf = buf_arg; buf < bufend; buf++)
1152 1153                  if (*buf != pattern)
1153 1154                          return (buf);
1154 1155          return (NULL);
1155 1156  }
1156 1157  
1157 1158  static void *
1158 1159  verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1159 1160  {
1160 1161          uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1161 1162          uint64_t *buf;
1162 1163  
1163 1164          for (buf = buf_arg; buf < bufend; buf++) {
1164 1165                  if (*buf != old) {
1165 1166                          copy_pattern(old, buf_arg,
1166 1167                              (char *)buf - (char *)buf_arg);
1167 1168                          return (buf);
1168 1169                  }
1169 1170                  *buf = new;
1170 1171          }
1171 1172  
1172 1173          return (NULL);
1173 1174  }
1174 1175  
1175 1176  static void
1176 1177  kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1177 1178  {
1178 1179          kmem_cache_t *cp;
1179 1180  
1180 1181          mutex_enter(&kmem_cache_lock);
1181 1182          for (cp = list_head(&kmem_caches); cp != NULL;
1182 1183              cp = list_next(&kmem_caches, cp))
1183 1184                  if (tq != NULL)
1184 1185                          (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1185 1186                              tqflag);
1186 1187                  else
1187 1188                          func(cp);
1188 1189          mutex_exit(&kmem_cache_lock);
1189 1190  }
1190 1191  
1191 1192  static void
1192 1193  kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1193 1194  {
1194 1195          kmem_cache_t *cp;
1195 1196  
1196 1197          mutex_enter(&kmem_cache_lock);
1197 1198          for (cp = list_head(&kmem_caches); cp != NULL;
1198 1199              cp = list_next(&kmem_caches, cp)) {
1199 1200                  if (!(cp->cache_cflags & KMC_IDENTIFIER))
1200 1201                          continue;
1201 1202                  if (tq != NULL)
1202 1203                          (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1203 1204                              tqflag);
1204 1205                  else
1205 1206                          func(cp);
1206 1207          }
1207 1208          mutex_exit(&kmem_cache_lock);
1208 1209  }
1209 1210  
1210 1211  /*
1211 1212   * Debugging support.  Given a buffer address, find its slab.
1212 1213   */
1213 1214  static kmem_slab_t *
1214 1215  kmem_findslab(kmem_cache_t *cp, void *buf)
1215 1216  {
1216 1217          kmem_slab_t *sp;
1217 1218  
1218 1219          mutex_enter(&cp->cache_lock);
1219 1220          for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1220 1221              sp = list_next(&cp->cache_complete_slabs, sp)) {
1221 1222                  if (KMEM_SLAB_MEMBER(sp, buf)) {
1222 1223                          mutex_exit(&cp->cache_lock);
1223 1224                          return (sp);
1224 1225                  }
1225 1226          }
1226 1227          for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1227 1228              sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1228 1229                  if (KMEM_SLAB_MEMBER(sp, buf)) {
1229 1230                          mutex_exit(&cp->cache_lock);
1230 1231                          return (sp);
1231 1232                  }
1232 1233          }
1233 1234          mutex_exit(&cp->cache_lock);
1234 1235  
1235 1236          return (NULL);
1236 1237  }
1237 1238  
1238 1239  static void
1239 1240  kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1240 1241  {
1241 1242          kmem_buftag_t *btp = NULL;
1242 1243          kmem_bufctl_t *bcp = NULL;
1243 1244          kmem_cache_t *cp = cparg;
1244 1245          kmem_slab_t *sp;
1245 1246          uint64_t *off;
1246 1247          void *buf = bufarg;
1247 1248  
1248 1249          kmem_logging = 0;       /* stop logging when a bad thing happens */
1249 1250  
1250 1251          kmem_panic_info.kmp_timestamp = gethrtime();
1251 1252  
1252 1253          sp = kmem_findslab(cp, buf);
1253 1254          if (sp == NULL) {
1254 1255                  for (cp = list_tail(&kmem_caches); cp != NULL;
1255 1256                      cp = list_prev(&kmem_caches, cp)) {
1256 1257                          if ((sp = kmem_findslab(cp, buf)) != NULL)
1257 1258                                  break;
1258 1259                  }
1259 1260          }
1260 1261  
1261 1262          if (sp == NULL) {
1262 1263                  cp = NULL;
1263 1264                  error = KMERR_BADADDR;
1264 1265          } else {
1265 1266                  if (cp != cparg)
1266 1267                          error = KMERR_BADCACHE;
1267 1268                  else
1268 1269                          buf = (char *)bufarg - ((uintptr_t)bufarg -
1269 1270                              (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1270 1271                  if (buf != bufarg)
1271 1272                          error = KMERR_BADBASE;
1272 1273                  if (cp->cache_flags & KMF_BUFTAG)
1273 1274                          btp = KMEM_BUFTAG(cp, buf);
1274 1275                  if (cp->cache_flags & KMF_HASH) {
1275 1276                          mutex_enter(&cp->cache_lock);
1276 1277                          for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1277 1278                                  if (bcp->bc_addr == buf)
1278 1279                                          break;
1279 1280                          mutex_exit(&cp->cache_lock);
1280 1281                          if (bcp == NULL && btp != NULL)
1281 1282                                  bcp = btp->bt_bufctl;
1282 1283                          if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1283 1284                              NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1284 1285                              bcp->bc_addr != buf) {
1285 1286                                  error = KMERR_BADBUFCTL;
1286 1287                                  bcp = NULL;
1287 1288                          }
1288 1289                  }
1289 1290          }
1290 1291  
1291 1292          kmem_panic_info.kmp_error = error;
1292 1293          kmem_panic_info.kmp_buffer = bufarg;
1293 1294          kmem_panic_info.kmp_realbuf = buf;
1294 1295          kmem_panic_info.kmp_cache = cparg;
1295 1296          kmem_panic_info.kmp_realcache = cp;
1296 1297          kmem_panic_info.kmp_slab = sp;
1297 1298          kmem_panic_info.kmp_bufctl = bcp;
1298 1299  
1299 1300          printf("kernel memory allocator: ");
1300 1301  
1301 1302          switch (error) {
1302 1303  
1303 1304          case KMERR_MODIFIED:
1304 1305                  printf("buffer modified after being freed\n");
1305 1306                  off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1306 1307                  if (off == NULL)        /* shouldn't happen */
1307 1308                          off = buf;
1308 1309                  printf("modification occurred at offset 0x%lx "
1309 1310                      "(0x%llx replaced by 0x%llx)\n",
1310 1311                      (uintptr_t)off - (uintptr_t)buf,
1311 1312                      (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1312 1313                  break;
1313 1314  
1314 1315          case KMERR_REDZONE:
1315 1316                  printf("redzone violation: write past end of buffer\n");
1316 1317                  break;
1317 1318  
1318 1319          case KMERR_BADADDR:
1319 1320                  printf("invalid free: buffer not in cache\n");
1320 1321                  break;
1321 1322  
1322 1323          case KMERR_DUPFREE:
1323 1324                  printf("duplicate free: buffer freed twice\n");
1324 1325                  break;
1325 1326  
1326 1327          case KMERR_BADBUFTAG:
1327 1328                  printf("boundary tag corrupted\n");
1328 1329                  printf("bcp ^ bxstat = %lx, should be %lx\n",
1329 1330                      (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1330 1331                      KMEM_BUFTAG_FREE);
1331 1332                  break;
1332 1333  
1333 1334          case KMERR_BADBUFCTL:
1334 1335                  printf("bufctl corrupted\n");
1335 1336                  break;
1336 1337  
1337 1338          case KMERR_BADCACHE:
1338 1339                  printf("buffer freed to wrong cache\n");
1339 1340                  printf("buffer was allocated from %s,\n", cp->cache_name);
1340 1341                  printf("caller attempting free to %s.\n", cparg->cache_name);
1341 1342                  break;
1342 1343  
1343 1344          case KMERR_BADSIZE:
1344 1345                  printf("bad free: free size (%u) != alloc size (%u)\n",
1345 1346                      KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1346 1347                      KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1347 1348                  break;
1348 1349  
1349 1350          case KMERR_BADBASE:
1350 1351                  printf("bad free: free address (%p) != alloc address (%p)\n",
1351 1352                      bufarg, buf);
1352 1353                  break;
1353 1354          }
1354 1355  
1355 1356          printf("buffer=%p  bufctl=%p  cache: %s\n",
1356 1357              bufarg, (void *)bcp, cparg->cache_name);
1357 1358  
1358 1359          if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1359 1360              error != KMERR_BADBUFCTL) {
1360 1361                  int d;
1361 1362                  timestruc_t ts;
1362 1363                  kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1363 1364  
1364 1365                  hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1365 1366                  printf("previous transaction on buffer %p:\n", buf);
1366 1367                  printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
1367 1368                      (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1368 1369                      (void *)sp, cp->cache_name);
1369 1370                  for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1370 1371                          ulong_t off;
1371 1372                          char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1372 1373                          printf("%s+%lx\n", sym ? sym : "?", off);
1373 1374                  }
1374 1375          }
1375 1376          if (kmem_panic > 0)
1376 1377                  panic("kernel heap corruption detected");
1377 1378          if (kmem_panic == 0)
1378 1379                  debug_enter(NULL);
1379 1380          kmem_logging = 1;       /* resume logging */
1380 1381  }
1381 1382  
1382 1383  static kmem_log_header_t *
1383 1384  kmem_log_init(size_t logsize)
1384 1385  {
1385 1386          kmem_log_header_t *lhp;
1386 1387          int nchunks = 4 * max_ncpus;
1387 1388          size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1388 1389          int i;
1389 1390  
1390 1391          /*
1391 1392           * Make sure that lhp->lh_cpu[] is nicely aligned
1392 1393           * to prevent false sharing of cache lines.
1393 1394           */
1394 1395          lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1395 1396          lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1396 1397              NULL, NULL, VM_SLEEP);
1397 1398          bzero(lhp, lhsize);
1398 1399  
1399 1400          mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1400 1401          lhp->lh_nchunks = nchunks;
1401 1402          lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1402 1403          lhp->lh_base = vmem_alloc(kmem_log_arena,
1403 1404              lhp->lh_chunksize * nchunks, VM_SLEEP);
1404 1405          lhp->lh_free = vmem_alloc(kmem_log_arena,
1405 1406              nchunks * sizeof (int), VM_SLEEP);
1406 1407          bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1407 1408  
1408 1409          for (i = 0; i < max_ncpus; i++) {
1409 1410                  kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1410 1411                  mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1411 1412                  clhp->clh_chunk = i;
1412 1413          }
1413 1414  
1414 1415          for (i = max_ncpus; i < nchunks; i++)
1415 1416                  lhp->lh_free[i] = i;
1416 1417  
1417 1418          lhp->lh_head = max_ncpus;
1418 1419          lhp->lh_tail = 0;
1419 1420  
1420 1421          return (lhp);
1421 1422  }
1422 1423  
1423 1424  static void *
1424 1425  kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1425 1426  {
1426 1427          void *logspace;
1427 1428          kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid];
1428 1429  
1429 1430          if (lhp == NULL || kmem_logging == 0 || panicstr)
1430 1431                  return (NULL);
1431 1432  
1432 1433          mutex_enter(&clhp->clh_lock);
1433 1434          clhp->clh_hits++;
1434 1435          if (size > clhp->clh_avail) {
1435 1436                  mutex_enter(&lhp->lh_lock);
1436 1437                  lhp->lh_hits++;
1437 1438                  lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1438 1439                  lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1439 1440                  clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1440 1441                  lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1441 1442                  clhp->clh_current = lhp->lh_base +
1442 1443                      clhp->clh_chunk * lhp->lh_chunksize;
1443 1444                  clhp->clh_avail = lhp->lh_chunksize;
1444 1445                  if (size > lhp->lh_chunksize)
1445 1446                          size = lhp->lh_chunksize;
1446 1447                  mutex_exit(&lhp->lh_lock);
1447 1448          }
1448 1449          logspace = clhp->clh_current;
1449 1450          clhp->clh_current += size;
1450 1451          clhp->clh_avail -= size;
1451 1452          bcopy(data, logspace, size);
1452 1453          mutex_exit(&clhp->clh_lock);
1453 1454          return (logspace);
1454 1455  }
1455 1456  
1456 1457  #define KMEM_AUDIT(lp, cp, bcp)                                         \
1457 1458  {                                                                       \
1458 1459          kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);       \
1459 1460          _bcp->bc_timestamp = gethrtime();                               \
1460 1461          _bcp->bc_thread = curthread;                                    \
1461 1462          _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);  \
1462 1463          _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));  \
1463 1464  }
1464 1465  
1465 1466  static void
1466 1467  kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1467 1468      kmem_slab_t *sp, void *addr)
1468 1469  {
1469 1470          kmem_bufctl_audit_t bca;
1470 1471  
1471 1472          bzero(&bca, sizeof (kmem_bufctl_audit_t));
1472 1473          bca.bc_addr = addr;
1473 1474          bca.bc_slab = sp;
1474 1475          bca.bc_cache = cp;
1475 1476          KMEM_AUDIT(lp, cp, &bca);
1476 1477  }
1477 1478  
1478 1479  /*
1479 1480   * Create a new slab for cache cp.
1480 1481   */
1481 1482  static kmem_slab_t *
1482 1483  kmem_slab_create(kmem_cache_t *cp, int kmflag)
1483 1484  {
1484 1485          size_t slabsize = cp->cache_slabsize;
1485 1486          size_t chunksize = cp->cache_chunksize;
1486 1487          int cache_flags = cp->cache_flags;
1487 1488          size_t color, chunks;
1488 1489          char *buf, *slab;
1489 1490          kmem_slab_t *sp;
1490 1491          kmem_bufctl_t *bcp;
1491 1492          vmem_t *vmp = cp->cache_arena;
1492 1493  
1493 1494          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1494 1495  
1495 1496          color = cp->cache_color + cp->cache_align;
1496 1497          if (color > cp->cache_maxcolor)
1497 1498                  color = cp->cache_mincolor;
1498 1499          cp->cache_color = color;
1499 1500  
1500 1501          slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1501 1502  
1502 1503          if (slab == NULL)
1503 1504                  goto vmem_alloc_failure;
1504 1505  
1505 1506          ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1506 1507  
1507 1508          /*
1508 1509           * Reverify what was already checked in kmem_cache_set_move(), since the
1509 1510           * consolidator depends (for correctness) on slabs being initialized
1510 1511           * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1511 1512           * clients to distinguish uninitialized memory from known objects).
1512 1513           */
1513 1514          ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1514 1515          if (!(cp->cache_cflags & KMC_NOTOUCH))
1515 1516                  copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1516 1517  
1517 1518          if (cache_flags & KMF_HASH) {
1518 1519                  if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1519 1520                          goto slab_alloc_failure;
1520 1521                  chunks = (slabsize - color) / chunksize;
1521 1522          } else {
1522 1523                  sp = KMEM_SLAB(cp, slab);
1523 1524                  chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1524 1525          }
1525 1526  
1526 1527          sp->slab_cache  = cp;
1527 1528          sp->slab_head   = NULL;
1528 1529          sp->slab_refcnt = 0;
1529 1530          sp->slab_base   = buf = slab + color;
1530 1531          sp->slab_chunks = chunks;
1531 1532          sp->slab_stuck_offset = (uint32_t)-1;
1532 1533          sp->slab_later_count = 0;
1533 1534          sp->slab_flags = 0;
1534 1535  
1535 1536          ASSERT(chunks > 0);
1536 1537          while (chunks-- != 0) {
1537 1538                  if (cache_flags & KMF_HASH) {
1538 1539                          bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1539 1540                          if (bcp == NULL)
1540 1541                                  goto bufctl_alloc_failure;
1541 1542                          if (cache_flags & KMF_AUDIT) {
1542 1543                                  kmem_bufctl_audit_t *bcap =
1543 1544                                      (kmem_bufctl_audit_t *)bcp;
1544 1545                                  bzero(bcap, sizeof (kmem_bufctl_audit_t));
1545 1546                                  bcap->bc_cache = cp;
1546 1547                          }
1547 1548                          bcp->bc_addr = buf;
1548 1549                          bcp->bc_slab = sp;
1549 1550                  } else {
1550 1551                          bcp = KMEM_BUFCTL(cp, buf);
1551 1552                  }
1552 1553                  if (cache_flags & KMF_BUFTAG) {
1553 1554                          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1554 1555                          btp->bt_redzone = KMEM_REDZONE_PATTERN;
1555 1556                          btp->bt_bufctl = bcp;
1556 1557                          btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1557 1558                          if (cache_flags & KMF_DEADBEEF) {
1558 1559                                  copy_pattern(KMEM_FREE_PATTERN, buf,
1559 1560                                      cp->cache_verify);
1560 1561                          }
1561 1562                  }
1562 1563                  bcp->bc_next = sp->slab_head;
1563 1564                  sp->slab_head = bcp;
1564 1565                  buf += chunksize;
1565 1566          }
1566 1567  
1567 1568          kmem_log_event(kmem_slab_log, cp, sp, slab);
1568 1569  
1569 1570          return (sp);
1570 1571  
1571 1572  bufctl_alloc_failure:
1572 1573  
1573 1574          while ((bcp = sp->slab_head) != NULL) {
1574 1575                  sp->slab_head = bcp->bc_next;
1575 1576                  kmem_cache_free(cp->cache_bufctl_cache, bcp);
1576 1577          }
1577 1578          kmem_cache_free(kmem_slab_cache, sp);
1578 1579  
1579 1580  slab_alloc_failure:
1580 1581  
1581 1582          vmem_free(vmp, slab, slabsize);
1582 1583  
1583 1584  vmem_alloc_failure:
1584 1585  
1585 1586          kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1586 1587          atomic_inc_64(&cp->cache_alloc_fail);
1587 1588  
1588 1589          return (NULL);
1589 1590  }
1590 1591  
1591 1592  /*
1592 1593   * Destroy a slab.
1593 1594   */
1594 1595  static void
1595 1596  kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1596 1597  {
1597 1598          vmem_t *vmp = cp->cache_arena;
1598 1599          void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1599 1600  
1600 1601          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1601 1602          ASSERT(sp->slab_refcnt == 0);
1602 1603  
1603 1604          if (cp->cache_flags & KMF_HASH) {
1604 1605                  kmem_bufctl_t *bcp;
1605 1606                  while ((bcp = sp->slab_head) != NULL) {
1606 1607                          sp->slab_head = bcp->bc_next;
1607 1608                          kmem_cache_free(cp->cache_bufctl_cache, bcp);
1608 1609                  }
1609 1610                  kmem_cache_free(kmem_slab_cache, sp);
1610 1611          }
1611 1612          vmem_free(vmp, slab, cp->cache_slabsize);
1612 1613  }
1613 1614  
1614 1615  static void *
1615 1616  kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
1616 1617  {
1617 1618          kmem_bufctl_t *bcp, **hash_bucket;
1618 1619          void *buf;
1619 1620          boolean_t new_slab = (sp->slab_refcnt == 0);
1620 1621  
1621 1622          ASSERT(MUTEX_HELD(&cp->cache_lock));
1622 1623          /*
1623 1624           * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1624 1625           * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1625 1626           * slab is newly created.
1626 1627           */
1627 1628          ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1628 1629              (sp == avl_first(&cp->cache_partial_slabs))));
1629 1630          ASSERT(sp->slab_cache == cp);
1630 1631  
1631 1632          cp->cache_slab_alloc++;
1632 1633          cp->cache_bufslab--;
1633 1634          sp->slab_refcnt++;
1634 1635  
1635 1636          bcp = sp->slab_head;
1636 1637          sp->slab_head = bcp->bc_next;
1637 1638  
1638 1639          if (cp->cache_flags & KMF_HASH) {
1639 1640                  /*
1640 1641                   * Add buffer to allocated-address hash table.
1641 1642                   */
1642 1643                  buf = bcp->bc_addr;
1643 1644                  hash_bucket = KMEM_HASH(cp, buf);
1644 1645                  bcp->bc_next = *hash_bucket;
1645 1646                  *hash_bucket = bcp;
1646 1647                  if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1647 1648                          KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1648 1649                  }
1649 1650          } else {
1650 1651                  buf = KMEM_BUF(cp, bcp);
1651 1652          }
1652 1653  
1653 1654          ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1654 1655  
1655 1656          if (sp->slab_head == NULL) {
1656 1657                  ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1657 1658                  if (new_slab) {
1658 1659                          ASSERT(sp->slab_chunks == 1);
1659 1660                  } else {
1660 1661                          ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1661 1662                          avl_remove(&cp->cache_partial_slabs, sp);
1662 1663                          sp->slab_later_count = 0; /* clear history */
1663 1664                          sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1664 1665                          sp->slab_stuck_offset = (uint32_t)-1;
1665 1666                  }
1666 1667                  list_insert_head(&cp->cache_complete_slabs, sp);
1667 1668                  cp->cache_complete_slab_count++;
1668 1669                  return (buf);
1669 1670          }
1670 1671  
1671 1672          ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1672 1673          /*
1673 1674           * Peek to see if the magazine layer is enabled before
1674 1675           * we prefill.  We're not holding the cpu cache lock,
1675 1676           * so the peek could be wrong, but there's no harm in it.
1676 1677           */
1677 1678          if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1678 1679              (KMEM_CPU_CACHE(cp)->cc_magsize != 0))  {
1679 1680                  kmem_slab_prefill(cp, sp);
1680 1681                  return (buf);
1681 1682          }
1682 1683  
1683 1684          if (new_slab) {
1684 1685                  avl_add(&cp->cache_partial_slabs, sp);
1685 1686                  return (buf);
1686 1687          }
1687 1688  
1688 1689          /*
1689 1690           * The slab is now more allocated than it was, so the
1690 1691           * order remains unchanged.
1691 1692           */
1692 1693          ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1693 1694          return (buf);
1694 1695  }
1695 1696  
1696 1697  /*
1697 1698   * Allocate a raw (unconstructed) buffer from cp's slab layer.
1698 1699   */
1699 1700  static void *
1700 1701  kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1701 1702  {
1702 1703          kmem_slab_t *sp;
1703 1704          void *buf;
1704 1705          boolean_t test_destructor;
1705 1706  
1706 1707          mutex_enter(&cp->cache_lock);
1707 1708          test_destructor = (cp->cache_slab_alloc == 0);
1708 1709          sp = avl_first(&cp->cache_partial_slabs);
1709 1710          if (sp == NULL) {
1710 1711                  ASSERT(cp->cache_bufslab == 0);
1711 1712  
1712 1713                  /*
1713 1714                   * The freelist is empty.  Create a new slab.
1714 1715                   */
1715 1716                  mutex_exit(&cp->cache_lock);
1716 1717                  if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1717 1718                          return (NULL);
1718 1719                  }
1719 1720                  mutex_enter(&cp->cache_lock);
1720 1721                  cp->cache_slab_create++;
1721 1722                  if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1722 1723                          cp->cache_bufmax = cp->cache_buftotal;
1723 1724                  cp->cache_bufslab += sp->slab_chunks;
1724 1725          }
1725 1726  
1726 1727          buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1727 1728          ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1728 1729              (cp->cache_complete_slab_count +
1729 1730              avl_numnodes(&cp->cache_partial_slabs) +
1730 1731              (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1731 1732          mutex_exit(&cp->cache_lock);
1732 1733  
1733 1734          if (test_destructor && cp->cache_destructor != NULL) {
1734 1735                  /*
1735 1736                   * On the first kmem_slab_alloc(), assert that it is valid to
1736 1737                   * call the destructor on a newly constructed object without any
1737 1738                   * client involvement.
1738 1739                   */
1739 1740                  if ((cp->cache_constructor == NULL) ||
1740 1741                      cp->cache_constructor(buf, cp->cache_private,
1741 1742                      kmflag) == 0) {
1742 1743                          cp->cache_destructor(buf, cp->cache_private);
1743 1744                  }
1744 1745                  copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
1745 1746                      cp->cache_bufsize);
1746 1747                  if (cp->cache_flags & KMF_DEADBEEF) {
1747 1748                          copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1748 1749                  }
1749 1750          }
1750 1751  
1751 1752          return (buf);
1752 1753  }
1753 1754  
1754 1755  static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1755 1756  
1756 1757  /*
1757 1758   * Free a raw (unconstructed) buffer to cp's slab layer.
1758 1759   */
1759 1760  static void
1760 1761  kmem_slab_free(kmem_cache_t *cp, void *buf)
1761 1762  {
1762 1763          kmem_slab_t *sp;
1763 1764          kmem_bufctl_t *bcp, **prev_bcpp;
1764 1765  
1765 1766          ASSERT(buf != NULL);
1766 1767  
1767 1768          mutex_enter(&cp->cache_lock);
1768 1769          cp->cache_slab_free++;
1769 1770  
1770 1771          if (cp->cache_flags & KMF_HASH) {
1771 1772                  /*
1772 1773                   * Look up buffer in allocated-address hash table.
1773 1774                   */
1774 1775                  prev_bcpp = KMEM_HASH(cp, buf);
1775 1776                  while ((bcp = *prev_bcpp) != NULL) {
1776 1777                          if (bcp->bc_addr == buf) {
1777 1778                                  *prev_bcpp = bcp->bc_next;
1778 1779                                  sp = bcp->bc_slab;
1779 1780                                  break;
1780 1781                          }
1781 1782                          cp->cache_lookup_depth++;
1782 1783                          prev_bcpp = &bcp->bc_next;
1783 1784                  }
1784 1785          } else {
1785 1786                  bcp = KMEM_BUFCTL(cp, buf);
1786 1787                  sp = KMEM_SLAB(cp, buf);
1787 1788          }
1788 1789  
1789 1790          if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1790 1791                  mutex_exit(&cp->cache_lock);
1791 1792                  kmem_error(KMERR_BADADDR, cp, buf);
1792 1793                  return;
1793 1794          }
1794 1795  
1795 1796          if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1796 1797                  /*
1797 1798                   * If this is the buffer that prevented the consolidator from
1798 1799                   * clearing the slab, we can reset the slab flags now that the
1799 1800                   * buffer is freed. (It makes sense to do this in
1800 1801                   * kmem_cache_free(), where the client gives up ownership of the
1801 1802                   * buffer, but on the hot path the test is too expensive.)
1802 1803                   */
1803 1804                  kmem_slab_move_yes(cp, sp, buf);
1804 1805          }
1805 1806  
1806 1807          if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1807 1808                  if (cp->cache_flags & KMF_CONTENTS)
1808 1809                          ((kmem_bufctl_audit_t *)bcp)->bc_contents =
1809 1810                              kmem_log_enter(kmem_content_log, buf,
1810 1811                              cp->cache_contents);
1811 1812                  KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1812 1813          }
1813 1814  
1814 1815          bcp->bc_next = sp->slab_head;
1815 1816          sp->slab_head = bcp;
1816 1817  
1817 1818          cp->cache_bufslab++;
1818 1819          ASSERT(sp->slab_refcnt >= 1);
1819 1820  
1820 1821          if (--sp->slab_refcnt == 0) {
1821 1822                  /*
1822 1823                   * There are no outstanding allocations from this slab,
1823 1824                   * so we can reclaim the memory.
1824 1825                   */
1825 1826                  if (sp->slab_chunks == 1) {
1826 1827                          list_remove(&cp->cache_complete_slabs, sp);
1827 1828                          cp->cache_complete_slab_count--;
1828 1829                  } else {
1829 1830                          avl_remove(&cp->cache_partial_slabs, sp);
1830 1831                  }
1831 1832  
1832 1833                  cp->cache_buftotal -= sp->slab_chunks;
1833 1834                  cp->cache_bufslab -= sp->slab_chunks;
1834 1835                  /*
1835 1836                   * Defer releasing the slab to the virtual memory subsystem
1836 1837                   * while there is a pending move callback, since we guarantee
1837 1838                   * that buffers passed to the move callback have only been
1838 1839                   * touched by kmem or by the client itself. Since the memory
1839 1840                   * patterns baddcafe (uninitialized) and deadbeef (freed) both
1840 1841                   * set at least one of the two lowest order bits, the client can
1841 1842                   * test those bits in the move callback to determine whether or
1842 1843                   * not it knows about the buffer (assuming that the client also
1843 1844                   * sets one of those low order bits whenever it frees a buffer).
1844 1845                   */
1845 1846                  if (cp->cache_defrag == NULL ||
1846 1847                      (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1847 1848                      !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1848 1849                          cp->cache_slab_destroy++;
1849 1850                          mutex_exit(&cp->cache_lock);
1850 1851                          kmem_slab_destroy(cp, sp);
1851 1852                  } else {
1852 1853                          list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1853 1854                          /*
1854 1855                           * Slabs are inserted at both ends of the deadlist to
1855 1856                           * distinguish between slabs freed while move callbacks
1856 1857                           * are pending (list head) and a slab freed while the
1857 1858                           * lock is dropped in kmem_move_buffers() (list tail) so
1858 1859                           * that in both cases slab_destroy() is called from the
1859 1860                           * right context.
1860 1861                           */
1861 1862                          if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1862 1863                                  list_insert_tail(deadlist, sp);
1863 1864                          } else {
1864 1865                                  list_insert_head(deadlist, sp);
1865 1866                          }
1866 1867                          cp->cache_defrag->kmd_deadcount++;
1867 1868                          mutex_exit(&cp->cache_lock);
1868 1869                  }
1869 1870                  return;
1870 1871          }
1871 1872  
1872 1873          if (bcp->bc_next == NULL) {
1873 1874                  /* Transition the slab from completely allocated to partial. */
1874 1875                  ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1875 1876                  ASSERT(sp->slab_chunks > 1);
1876 1877                  list_remove(&cp->cache_complete_slabs, sp);
1877 1878                  cp->cache_complete_slab_count--;
1878 1879                  avl_add(&cp->cache_partial_slabs, sp);
1879 1880          } else {
1880 1881                  (void) avl_update_gt(&cp->cache_partial_slabs, sp);
1881 1882          }
1882 1883  
1883 1884          ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1884 1885              (cp->cache_complete_slab_count +
1885 1886              avl_numnodes(&cp->cache_partial_slabs) +
1886 1887              (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1887 1888          mutex_exit(&cp->cache_lock);
1888 1889  }
1889 1890  
1890 1891  /*
1891 1892   * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1892 1893   */
1893 1894  static int
1894 1895  kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1895 1896      caddr_t caller)
1896 1897  {
1897 1898          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1898 1899          kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1899 1900          uint32_t mtbf;
1900 1901  
1901 1902          if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1902 1903                  kmem_error(KMERR_BADBUFTAG, cp, buf);
1903 1904                  return (-1);
1904 1905          }
1905 1906  
1906 1907          btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1907 1908  
1908 1909          if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1909 1910                  kmem_error(KMERR_BADBUFCTL, cp, buf);
1910 1911                  return (-1);
1911 1912          }
1912 1913  
1913 1914          if (cp->cache_flags & KMF_DEADBEEF) {
1914 1915                  if (!construct && (cp->cache_flags & KMF_LITE)) {
1915 1916                          if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1916 1917                                  kmem_error(KMERR_MODIFIED, cp, buf);
1917 1918                                  return (-1);
1918 1919                          }
1919 1920                          if (cp->cache_constructor != NULL)
1920 1921                                  *(uint64_t *)buf = btp->bt_redzone;
1921 1922                          else
1922 1923                                  *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1923 1924                  } else {
1924 1925                          construct = 1;
1925 1926                          if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1926 1927                              KMEM_UNINITIALIZED_PATTERN, buf,
1927 1928                              cp->cache_verify)) {
1928 1929                                  kmem_error(KMERR_MODIFIED, cp, buf);
1929 1930                                  return (-1);
1930 1931                          }
1931 1932                  }
1932 1933          }
1933 1934          btp->bt_redzone = KMEM_REDZONE_PATTERN;
1934 1935  
1935 1936          if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1936 1937              gethrtime() % mtbf == 0 &&
1937 1938              (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1938 1939                  kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1939 1940                  if (!construct && cp->cache_destructor != NULL)
1940 1941                          cp->cache_destructor(buf, cp->cache_private);
1941 1942          } else {
1942 1943                  mtbf = 0;
1943 1944          }
1944 1945  
1945 1946          if (mtbf || (construct && cp->cache_constructor != NULL &&
1946 1947              cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
1947 1948                  atomic_inc_64(&cp->cache_alloc_fail);
1948 1949                  btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1949 1950                  if (cp->cache_flags & KMF_DEADBEEF)
1950 1951                          copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1951 1952                  kmem_slab_free(cp, buf);
1952 1953                  return (1);
1953 1954          }
1954 1955  
1955 1956          if (cp->cache_flags & KMF_AUDIT) {
1956 1957                  KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1957 1958          }
1958 1959  
1959 1960          if ((cp->cache_flags & KMF_LITE) &&
1960 1961              !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
1961 1962                  KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
1962 1963          }
1963 1964  
1964 1965          return (0);
1965 1966  }
1966 1967  
1967 1968  static int
1968 1969  kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
1969 1970  {
1970 1971          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1971 1972          kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1972 1973          kmem_slab_t *sp;
1973 1974  
1974 1975          if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
1975 1976                  if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1976 1977                          kmem_error(KMERR_DUPFREE, cp, buf);
1977 1978                          return (-1);
1978 1979                  }
1979 1980                  sp = kmem_findslab(cp, buf);
1980 1981                  if (sp == NULL || sp->slab_cache != cp)
1981 1982                          kmem_error(KMERR_BADADDR, cp, buf);
1982 1983                  else
1983 1984                          kmem_error(KMERR_REDZONE, cp, buf);
1984 1985                  return (-1);
1985 1986          }
1986 1987  
1987 1988          btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1988 1989  
1989 1990          if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1990 1991                  kmem_error(KMERR_BADBUFCTL, cp, buf);
1991 1992                  return (-1);
1992 1993          }
1993 1994  
1994 1995          if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
1995 1996                  kmem_error(KMERR_REDZONE, cp, buf);
1996 1997                  return (-1);
1997 1998          }
1998 1999  
1999 2000          if (cp->cache_flags & KMF_AUDIT) {
2000 2001                  if (cp->cache_flags & KMF_CONTENTS)
2001 2002                          bcp->bc_contents = kmem_log_enter(kmem_content_log,
2002 2003                              buf, cp->cache_contents);
2003 2004                  KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2004 2005          }
2005 2006  
2006 2007          if ((cp->cache_flags & KMF_LITE) &&
2007 2008              !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2008 2009                  KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2009 2010          }
2010 2011  
2011 2012          if (cp->cache_flags & KMF_DEADBEEF) {
2012 2013                  if (cp->cache_flags & KMF_LITE)
2013 2014                          btp->bt_redzone = *(uint64_t *)buf;
2014 2015                  else if (cp->cache_destructor != NULL)
2015 2016                          cp->cache_destructor(buf, cp->cache_private);
2016 2017  
2017 2018                  copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2018 2019          }
2019 2020  
2020 2021          return (0);
2021 2022  }
2022 2023  
2023 2024  /*
2024 2025   * Free each object in magazine mp to cp's slab layer, and free mp itself.
2025 2026   */
2026 2027  static void
2027 2028  kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2028 2029  {
2029 2030          int round;
2030 2031  
2031 2032          ASSERT(!list_link_active(&cp->cache_link) ||
2032 2033              taskq_member(kmem_taskq, curthread));
2033 2034  
2034 2035          for (round = 0; round < nrounds; round++) {
2035 2036                  void *buf = mp->mag_round[round];
2036 2037  
2037 2038                  if (cp->cache_flags & KMF_DEADBEEF) {
2038 2039                          if (verify_pattern(KMEM_FREE_PATTERN, buf,
2039 2040                              cp->cache_verify) != NULL) {
2040 2041                                  kmem_error(KMERR_MODIFIED, cp, buf);
2041 2042                                  continue;
2042 2043                          }
2043 2044                          if ((cp->cache_flags & KMF_LITE) &&
2044 2045                              cp->cache_destructor != NULL) {
2045 2046                                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2046 2047                                  *(uint64_t *)buf = btp->bt_redzone;
2047 2048                                  cp->cache_destructor(buf, cp->cache_private);
2048 2049                                  *(uint64_t *)buf = KMEM_FREE_PATTERN;
2049 2050                          }
2050 2051                  } else if (cp->cache_destructor != NULL) {
2051 2052                          cp->cache_destructor(buf, cp->cache_private);
2052 2053                  }
2053 2054  
2054 2055                  kmem_slab_free(cp, buf);
2055 2056          }
2056 2057          ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2057 2058          kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2058 2059  }
2059 2060  
2060 2061  /*
2061 2062   * Allocate a magazine from the depot.
2062 2063   */
2063 2064  static kmem_magazine_t *
2064 2065  kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2065 2066  {
2066 2067          kmem_magazine_t *mp;
2067 2068  
2068 2069          /*
2069 2070           * If we can't get the depot lock without contention,
2070 2071           * update our contention count.  We use the depot
2071 2072           * contention rate to determine whether we need to
2072 2073           * increase the magazine size for better scalability.
2073 2074           */
2074 2075          if (!mutex_tryenter(&cp->cache_depot_lock)) {
2075 2076                  mutex_enter(&cp->cache_depot_lock);
2076 2077                  cp->cache_depot_contention++;
2077 2078          }
2078 2079  
2079 2080          if ((mp = mlp->ml_list) != NULL) {
2080 2081                  ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2081 2082                  mlp->ml_list = mp->mag_next;
2082 2083                  if (--mlp->ml_total < mlp->ml_min)
2083 2084                          mlp->ml_min = mlp->ml_total;
2084 2085                  mlp->ml_alloc++;
2085 2086          }
2086 2087  
2087 2088          mutex_exit(&cp->cache_depot_lock);
2088 2089  
2089 2090          return (mp);
2090 2091  }
2091 2092  
2092 2093  /*
2093 2094   * Free a magazine to the depot.
2094 2095   */
2095 2096  static void
2096 2097  kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2097 2098  {
2098 2099          mutex_enter(&cp->cache_depot_lock);
2099 2100          ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2100 2101          mp->mag_next = mlp->ml_list;
2101 2102          mlp->ml_list = mp;
2102 2103          mlp->ml_total++;
2103 2104          mutex_exit(&cp->cache_depot_lock);
2104 2105  }
2105 2106  
2106 2107  /*
2107 2108   * Update the working set statistics for cp's depot.
2108 2109   */
2109 2110  static void
2110 2111  kmem_depot_ws_update(kmem_cache_t *cp)
2111 2112  {
2112 2113          mutex_enter(&cp->cache_depot_lock);
2113 2114          cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2114 2115          cp->cache_full.ml_min = cp->cache_full.ml_total;
2115 2116          cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2116 2117          cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2117 2118          mutex_exit(&cp->cache_depot_lock);
2118 2119  }
2119 2120  
2120 2121  /*
2121 2122   * Set the working set statistics for cp's depot to zero.  (Everything is
2122 2123   * eligible for reaping.)
2123 2124   */
2124 2125  static void
2125 2126  kmem_depot_ws_zero(kmem_cache_t *cp)
2126 2127  {
2127 2128          mutex_enter(&cp->cache_depot_lock);
2128 2129          cp->cache_full.ml_reaplimit = cp->cache_full.ml_total;
2129 2130          cp->cache_full.ml_min = cp->cache_full.ml_total;
2130 2131          cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total;
2131 2132          cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2132 2133          mutex_exit(&cp->cache_depot_lock);
2133 2134  }
2134 2135  
2135 2136  /*
2136 2137   * The number of bytes to reap before we call kpreempt(). The default (1MB)
2137 2138   * causes us to preempt reaping up to hundreds of times per second. Using a
2138 2139   * larger value (1GB) causes this to have virtually no effect.
2139 2140   */
2140 2141  size_t kmem_reap_preempt_bytes = 1024 * 1024;
2141 2142  
2142 2143  /*
2143 2144   * Reap all magazines that have fallen out of the depot's working set.
2144 2145   */
2145 2146  static void
2146 2147  kmem_depot_ws_reap(kmem_cache_t *cp)
2147 2148  {
2148 2149          size_t bytes = 0;
2149 2150          long reap;
2150 2151          kmem_magazine_t *mp;
2151 2152  
2152 2153          ASSERT(!list_link_active(&cp->cache_link) ||
2153 2154              taskq_member(kmem_taskq, curthread));
2154 2155  
2155 2156          reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2156 2157          while (reap-- &&
2157 2158              (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) {
2158 2159                  kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2159 2160                  bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2160 2161                  if (bytes > kmem_reap_preempt_bytes) {
2161 2162                          kpreempt(KPREEMPT_SYNC);
2162 2163                          bytes = 0;
2163 2164                  }
2164 2165          }
2165 2166  
2166 2167          reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2167 2168          while (reap-- &&
2168 2169              (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) {
2169 2170                  kmem_magazine_destroy(cp, mp, 0);
2170 2171                  bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2171 2172                  if (bytes > kmem_reap_preempt_bytes) {
2172 2173                          kpreempt(KPREEMPT_SYNC);
2173 2174                          bytes = 0;
2174 2175                  }
2175 2176          }
2176 2177  }
2177 2178  
2178 2179  static void
2179 2180  kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2180 2181  {
2181 2182          ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2182 2183              (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2183 2184          ASSERT(ccp->cc_magsize > 0);
2184 2185  
2185 2186          ccp->cc_ploaded = ccp->cc_loaded;
2186 2187          ccp->cc_prounds = ccp->cc_rounds;
2187 2188          ccp->cc_loaded = mp;
2188 2189          ccp->cc_rounds = rounds;
2189 2190  }
2190 2191  
2191 2192  /*
2192 2193   * Intercept kmem alloc/free calls during crash dump in order to avoid
2193 2194   * changing kmem state while memory is being saved to the dump device.
2194 2195   * Otherwise, ::kmem_verify will report "corrupt buffers".  Note that
2195 2196   * there are no locks because only one CPU calls kmem during a crash
2196 2197   * dump. To enable this feature, first create the associated vmem
2197 2198   * arena with VMC_DUMPSAFE.
2198 2199   */
2199 2200  static void *kmem_dump_start;   /* start of pre-reserved heap */
2200 2201  static void *kmem_dump_end;     /* end of heap area */
2201 2202  static void *kmem_dump_curr;    /* current free heap pointer */
2202 2203  static size_t kmem_dump_size;   /* size of heap area */
2203 2204  
2204 2205  /* append to each buf created in the pre-reserved heap */
2205 2206  typedef struct kmem_dumpctl {
2206 2207          void    *kdc_next;      /* cache dump free list linkage */
2207 2208  } kmem_dumpctl_t;
2208 2209  
2209 2210  #define KMEM_DUMPCTL(cp, buf)   \
2210 2211          ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
2211 2212              sizeof (void *)))
2212 2213  
2213 2214  /* Keep some simple stats. */
2214 2215  #define KMEM_DUMP_LOGS  (100)
2215 2216  
2216 2217  typedef struct kmem_dump_log {
2217 2218          kmem_cache_t    *kdl_cache;
2218 2219          uint_t          kdl_allocs;             /* # of dump allocations */
2219 2220          uint_t          kdl_frees;              /* # of dump frees */
2220 2221          uint_t          kdl_alloc_fails;        /* # of allocation failures */
2221 2222          uint_t          kdl_free_nondump;       /* # of non-dump frees */
2222 2223          uint_t          kdl_unsafe;             /* cache was used, but unsafe */
2223 2224  } kmem_dump_log_t;
2224 2225  
2225 2226  static kmem_dump_log_t *kmem_dump_log;
2226 2227  static int kmem_dump_log_idx;
2227 2228  
2228 2229  #define KDI_LOG(cp, stat) {                                             \
2229 2230          kmem_dump_log_t *kdl;                                           \
2230 2231          if ((kdl = (kmem_dump_log_t *)((cp)->cache_dumplog)) != NULL) { \
2231 2232                  kdl->stat++;                                            \
2232 2233          } else if (kmem_dump_log_idx < KMEM_DUMP_LOGS) {                \
2233 2234                  kdl = &kmem_dump_log[kmem_dump_log_idx++];              \
2234 2235                  kdl->stat++;                                            \
2235 2236                  kdl->kdl_cache = (cp);                                  \
2236 2237                  (cp)->cache_dumplog = kdl;                              \
2237 2238          }                                                               \
2238 2239  }
2239 2240  
2240 2241  /* set non zero for full report */
2241 2242  uint_t kmem_dump_verbose = 0;
2242 2243  
2243 2244  /* stats for overize heap */
2244 2245  uint_t kmem_dump_oversize_allocs = 0;
2245 2246  uint_t kmem_dump_oversize_max = 0;
2246 2247  
2247 2248  static void
2248 2249  kmem_dumppr(char **pp, char *e, const char *format, ...)
2249 2250  {
2250 2251          char *p = *pp;
2251 2252  
2252 2253          if (p < e) {
2253 2254                  int n;
2254 2255                  va_list ap;
2255 2256  
2256 2257                  va_start(ap, format);
2257 2258                  n = vsnprintf(p, e - p, format, ap);
2258 2259                  va_end(ap);
2259 2260                  *pp = p + n;
2260 2261          }
2261 2262  }
2262 2263  
2263 2264  /*
2264 2265   * Called when dumpadm(1M) configures dump parameters.
2265 2266   */
2266 2267  void
2267 2268  kmem_dump_init(size_t size)
2268 2269  {
2269 2270          if (kmem_dump_start != NULL)
2270 2271                  kmem_free(kmem_dump_start, kmem_dump_size);
2271 2272  
2272 2273          if (kmem_dump_log == NULL)
2273 2274                  kmem_dump_log = (kmem_dump_log_t *)kmem_zalloc(KMEM_DUMP_LOGS *
2274 2275                      sizeof (kmem_dump_log_t), KM_SLEEP);
2275 2276  
2276 2277          kmem_dump_start = kmem_alloc(size, KM_SLEEP);
2277 2278  
2278 2279          if (kmem_dump_start != NULL) {
2279 2280                  kmem_dump_size = size;
2280 2281                  kmem_dump_curr = kmem_dump_start;
2281 2282                  kmem_dump_end = (void *)((char *)kmem_dump_start + size);
2282 2283                  copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
2283 2284          } else {
2284 2285                  kmem_dump_size = 0;
2285 2286                  kmem_dump_curr = NULL;
2286 2287                  kmem_dump_end = NULL;
2287 2288          }
2288 2289  }
2289 2290  
2290 2291  /*
2291 2292   * Set flag for each kmem_cache_t if is safe to use alternate dump
2292 2293   * memory. Called just before panic crash dump starts. Set the flag
2293 2294   * for the calling CPU.
2294 2295   */
2295 2296  void
2296 2297  kmem_dump_begin(void)
2297 2298  {
2298 2299          ASSERT(panicstr != NULL);
2299 2300          if (kmem_dump_start != NULL) {
2300 2301                  kmem_cache_t *cp;
2301 2302  
2302 2303                  for (cp = list_head(&kmem_caches); cp != NULL;
2303 2304                      cp = list_next(&kmem_caches, cp)) {
2304 2305                          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2305 2306  
2306 2307                          if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
2307 2308                                  cp->cache_flags |= KMF_DUMPDIVERT;
2308 2309                                  ccp->cc_flags |= KMF_DUMPDIVERT;
2309 2310                                  ccp->cc_dump_rounds = ccp->cc_rounds;
2310 2311                                  ccp->cc_dump_prounds = ccp->cc_prounds;
2311 2312                                  ccp->cc_rounds = ccp->cc_prounds = -1;
2312 2313                          } else {
2313 2314                                  cp->cache_flags |= KMF_DUMPUNSAFE;
2314 2315                                  ccp->cc_flags |= KMF_DUMPUNSAFE;
2315 2316                          }
2316 2317                  }
2317 2318          }
2318 2319  }
2319 2320  
2320 2321  /*
2321 2322   * finished dump intercept
2322 2323   * print any warnings on the console
2323 2324   * return verbose information to dumpsys() in the given buffer
2324 2325   */
2325 2326  size_t
2326 2327  kmem_dump_finish(char *buf, size_t size)
2327 2328  {
2328 2329          int kdi_idx;
2329 2330          int kdi_end = kmem_dump_log_idx;
2330 2331          int percent = 0;
2331 2332          int header = 0;
2332 2333          int warn = 0;
2333 2334          size_t used;
2334 2335          kmem_cache_t *cp;
2335 2336          kmem_dump_log_t *kdl;
2336 2337          char *e = buf + size;
2337 2338          char *p = buf;
2338 2339  
2339 2340          if (kmem_dump_size == 0 || kmem_dump_verbose == 0)
2340 2341                  return (0);
2341 2342  
2342 2343          used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
2343 2344          percent = (used * 100) / kmem_dump_size;
2344 2345  
2345 2346          kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
2346 2347          kmem_dumppr(&p, e, "used bytes,%ld\n", used);
2347 2348          kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
2348 2349          kmem_dumppr(&p, e, "Oversize allocs,%d\n",
2349 2350              kmem_dump_oversize_allocs);
2350 2351          kmem_dumppr(&p, e, "Oversize max size,%ld\n",
2351 2352              kmem_dump_oversize_max);
2352 2353  
2353 2354          for (kdi_idx = 0; kdi_idx < kdi_end; kdi_idx++) {
2354 2355                  kdl = &kmem_dump_log[kdi_idx];
2355 2356                  cp = kdl->kdl_cache;
2356 2357                  if (cp == NULL)
2357 2358                          break;
2358 2359                  if (kdl->kdl_alloc_fails)
2359 2360                          ++warn;
2360 2361                  if (header == 0) {
2361 2362                          kmem_dumppr(&p, e,
2362 2363                              "Cache Name,Allocs,Frees,Alloc Fails,"
2363 2364                              "Nondump Frees,Unsafe Allocs/Frees\n");
2364 2365                          header = 1;
2365 2366                  }
2366 2367                  kmem_dumppr(&p, e, "%s,%d,%d,%d,%d,%d\n",
2367 2368                      cp->cache_name, kdl->kdl_allocs, kdl->kdl_frees,
2368 2369                      kdl->kdl_alloc_fails, kdl->kdl_free_nondump,
2369 2370                      kdl->kdl_unsafe);
2370 2371          }
2371 2372  
2372 2373          /* return buffer size used */
2373 2374          if (p < e)
2374 2375                  bzero(p, e - p);
2375 2376          return (p - buf);
2376 2377  }
2377 2378  
2378 2379  /*
2379 2380   * Allocate a constructed object from alternate dump memory.
2380 2381   */
2381 2382  void *
2382 2383  kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
2383 2384  {
2384 2385          void *buf;
2385 2386          void *curr;
2386 2387          char *bufend;
2387 2388  
2388 2389          /* return a constructed object */
2389 2390          if ((buf = cp->cache_dumpfreelist) != NULL) {
2390 2391                  cp->cache_dumpfreelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
2391 2392                  KDI_LOG(cp, kdl_allocs);
2392 2393                  return (buf);
2393 2394          }
2394 2395  
2395 2396          /* create a new constructed object */
2396 2397          curr = kmem_dump_curr;
2397 2398          buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
2398 2399          bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
2399 2400  
2400 2401          /* hat layer objects cannot cross a page boundary */
2401 2402          if (cp->cache_align < PAGESIZE) {
2402 2403                  char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
2403 2404                  if (bufend > page) {
2404 2405                          bufend += page - (char *)buf;
2405 2406                          buf = (void *)page;
2406 2407                  }
2407 2408          }
2408 2409  
2409 2410          /* fall back to normal alloc if reserved area is used up */
2410 2411          if (bufend > (char *)kmem_dump_end) {
2411 2412                  kmem_dump_curr = kmem_dump_end;
2412 2413                  KDI_LOG(cp, kdl_alloc_fails);
2413 2414                  return (NULL);
2414 2415          }
2415 2416  
2416 2417          /*
2417 2418           * Must advance curr pointer before calling a constructor that
2418 2419           * may also allocate memory.
2419 2420           */
2420 2421          kmem_dump_curr = bufend;
2421 2422  
2422 2423          /* run constructor */
2423 2424          if (cp->cache_constructor != NULL &&
2424 2425              cp->cache_constructor(buf, cp->cache_private, kmflag)
2425 2426              != 0) {
2426 2427  #ifdef DEBUG
2427 2428                  printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
2428 2429                      cp->cache_name, (void *)cp);
2429 2430  #endif
2430 2431                  /* reset curr pointer iff no allocs were done */
2431 2432                  if (kmem_dump_curr == bufend)
2432 2433                          kmem_dump_curr = curr;
2433 2434  
2434 2435                  /* fall back to normal alloc if the constructor fails */
2435 2436                  KDI_LOG(cp, kdl_alloc_fails);
2436 2437                  return (NULL);
2437 2438          }
2438 2439  
2439 2440          KDI_LOG(cp, kdl_allocs);
2440 2441          return (buf);
2441 2442  }
2442 2443  
2443 2444  /*
2444 2445   * Free a constructed object in alternate dump memory.
2445 2446   */
2446 2447  int
2447 2448  kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
2448 2449  {
2449 2450          /* save constructed buffers for next time */
2450 2451          if ((char *)buf >= (char *)kmem_dump_start &&
2451 2452              (char *)buf < (char *)kmem_dump_end) {
2452 2453                  KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dumpfreelist;
2453 2454                  cp->cache_dumpfreelist = buf;
2454 2455                  KDI_LOG(cp, kdl_frees);
2455 2456                  return (0);
2456 2457          }
2457 2458  
2458 2459          /* count all non-dump buf frees */
2459 2460          KDI_LOG(cp, kdl_free_nondump);
2460 2461  
2461 2462          /* just drop buffers that were allocated before dump started */
2462 2463          if (kmem_dump_curr < kmem_dump_end)
2463 2464                  return (0);
2464 2465  
2465 2466          /* fall back to normal free if reserved area is used up */
2466 2467          return (1);
2467 2468  }
2468 2469  
2469 2470  /*
2470 2471   * Allocate a constructed object from cache cp.
2471 2472   */
2472 2473  void *
2473 2474  kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2474 2475  {
2475 2476          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2476 2477          kmem_magazine_t *fmp;
2477 2478          void *buf;
2478 2479  
2479 2480          mutex_enter(&ccp->cc_lock);
2480 2481          for (;;) {
2481 2482                  /*
2482 2483                   * If there's an object available in the current CPU's
2483 2484                   * loaded magazine, just take it and return.
2484 2485                   */
2485 2486                  if (ccp->cc_rounds > 0) {
2486 2487                          buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2487 2488                          ccp->cc_alloc++;
2488 2489                          mutex_exit(&ccp->cc_lock);
2489 2490                          if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
2490 2491                                  if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2491 2492                                          ASSERT(!(ccp->cc_flags &
2492 2493                                              KMF_DUMPDIVERT));
2493 2494                                          KDI_LOG(cp, kdl_unsafe);
2494 2495                                  }
2495 2496                                  if ((ccp->cc_flags & KMF_BUFTAG) &&
2496 2497                                      kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2497 2498                                      caller()) != 0) {
2498 2499                                          if (kmflag & KM_NOSLEEP)
2499 2500                                                  return (NULL);
2500 2501                                          mutex_enter(&ccp->cc_lock);
2501 2502                                          continue;
2502 2503                                  }
2503 2504                          }
2504 2505                          return (buf);
2505 2506                  }
2506 2507  
2507 2508                  /*
2508 2509                   * The loaded magazine is empty.  If the previously loaded
2509 2510                   * magazine was full, exchange them and try again.
2510 2511                   */
2511 2512                  if (ccp->cc_prounds > 0) {
2512 2513                          kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2513 2514                          continue;
2514 2515                  }
2515 2516  
2516 2517                  /*
2517 2518                   * Return an alternate buffer at dump time to preserve
2518 2519                   * the heap.
2519 2520                   */
2520 2521                  if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2521 2522                          if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2522 2523                                  ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2523 2524                                  /* log it so that we can warn about it */
2524 2525                                  KDI_LOG(cp, kdl_unsafe);
2525 2526                          } else {
2526 2527                                  if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
2527 2528                                      NULL) {
2528 2529                                          mutex_exit(&ccp->cc_lock);
2529 2530                                          return (buf);
2530 2531                                  }
2531 2532                                  break;          /* fall back to slab layer */
2532 2533                          }
2533 2534                  }
2534 2535  
2535 2536                  /*
2536 2537                   * If the magazine layer is disabled, break out now.
2537 2538                   */
2538 2539                  if (ccp->cc_magsize == 0)
2539 2540                          break;
2540 2541  
2541 2542                  /*
2542 2543                   * Try to get a full magazine from the depot.
2543 2544                   */
2544 2545                  fmp = kmem_depot_alloc(cp, &cp->cache_full);
2545 2546                  if (fmp != NULL) {
2546 2547                          if (ccp->cc_ploaded != NULL)
2547 2548                                  kmem_depot_free(cp, &cp->cache_empty,
2548 2549                                      ccp->cc_ploaded);
2549 2550                          kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2550 2551                          continue;
2551 2552                  }
2552 2553  
2553 2554                  /*
2554 2555                   * There are no full magazines in the depot,
2555 2556                   * so fall through to the slab layer.
2556 2557                   */
2557 2558                  break;
2558 2559          }
2559 2560          mutex_exit(&ccp->cc_lock);
2560 2561  
2561 2562          /*
2562 2563           * We couldn't allocate a constructed object from the magazine layer,
2563 2564           * so get a raw buffer from the slab layer and apply its constructor.
2564 2565           */
2565 2566          buf = kmem_slab_alloc(cp, kmflag);
2566 2567  
2567 2568          if (buf == NULL)
2568 2569                  return (NULL);
2569 2570  
2570 2571          if (cp->cache_flags & KMF_BUFTAG) {
2571 2572                  /*
2572 2573                   * Make kmem_cache_alloc_debug() apply the constructor for us.
2573 2574                   */
2574 2575                  int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2575 2576                  if (rc != 0) {
2576 2577                          if (kmflag & KM_NOSLEEP)
2577 2578                                  return (NULL);
2578 2579                          /*
2579 2580                           * kmem_cache_alloc_debug() detected corruption
2580 2581                           * but didn't panic (kmem_panic <= 0). We should not be
2581 2582                           * here because the constructor failed (indicated by a
2582 2583                           * return code of 1). Try again.
2583 2584                           */
2584 2585                          ASSERT(rc == -1);
2585 2586                          return (kmem_cache_alloc(cp, kmflag));
2586 2587                  }
2587 2588                  return (buf);
2588 2589          }
2589 2590  
2590 2591          if (cp->cache_constructor != NULL &&
2591 2592              cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2592 2593                  atomic_inc_64(&cp->cache_alloc_fail);
2593 2594                  kmem_slab_free(cp, buf);
2594 2595                  return (NULL);
2595 2596          }
2596 2597  
2597 2598          return (buf);
2598 2599  }
2599 2600  
2600 2601  /*
2601 2602   * The freed argument tells whether or not kmem_cache_free_debug() has already
2602 2603   * been called so that we can avoid the duplicate free error. For example, a
2603 2604   * buffer on a magazine has already been freed by the client but is still
2604 2605   * constructed.
2605 2606   */
2606 2607  static void
2607 2608  kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2608 2609  {
2609 2610          if (!freed && (cp->cache_flags & KMF_BUFTAG))
2610 2611                  if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2611 2612                          return;
2612 2613  
2613 2614          /*
2614 2615           * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2615 2616           * kmem_cache_free_debug() will have already applied the destructor.
2616 2617           */
2617 2618          if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2618 2619              cp->cache_destructor != NULL) {
2619 2620                  if (cp->cache_flags & KMF_DEADBEEF) {   /* KMF_LITE implied */
2620 2621                          kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2621 2622                          *(uint64_t *)buf = btp->bt_redzone;
2622 2623                          cp->cache_destructor(buf, cp->cache_private);
2623 2624                          *(uint64_t *)buf = KMEM_FREE_PATTERN;
2624 2625                  } else {
2625 2626                          cp->cache_destructor(buf, cp->cache_private);
2626 2627                  }
2627 2628          }
2628 2629  
2629 2630          kmem_slab_free(cp, buf);
2630 2631  }
2631 2632  
2632 2633  /*
2633 2634   * Used when there's no room to free a buffer to the per-CPU cache.
2634 2635   * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2635 2636   * caller should try freeing to the per-CPU cache again.
2636 2637   * Note that we don't directly install the magazine in the cpu cache,
2637 2638   * since its state may have changed wildly while the lock was dropped.
2638 2639   */
2639 2640  static int
2640 2641  kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2641 2642  {
2642 2643          kmem_magazine_t *emp;
2643 2644          kmem_magtype_t *mtp;
2644 2645  
2645 2646          ASSERT(MUTEX_HELD(&ccp->cc_lock));
2646 2647          ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2647 2648              ((uint_t)ccp->cc_rounds == -1)) &&
2648 2649              ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2649 2650              ((uint_t)ccp->cc_prounds == -1)));
2650 2651  
2651 2652          emp = kmem_depot_alloc(cp, &cp->cache_empty);
2652 2653          if (emp != NULL) {
2653 2654                  if (ccp->cc_ploaded != NULL)
2654 2655                          kmem_depot_free(cp, &cp->cache_full,
2655 2656                              ccp->cc_ploaded);
2656 2657                  kmem_cpu_reload(ccp, emp, 0);
2657 2658                  return (1);
2658 2659          }
2659 2660          /*
2660 2661           * There are no empty magazines in the depot,
2661 2662           * so try to allocate a new one.  We must drop all locks
2662 2663           * across kmem_cache_alloc() because lower layers may
2663 2664           * attempt to allocate from this cache.
2664 2665           */
2665 2666          mtp = cp->cache_magtype;
2666 2667          mutex_exit(&ccp->cc_lock);
2667 2668          emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2668 2669          mutex_enter(&ccp->cc_lock);
2669 2670  
2670 2671          if (emp != NULL) {
2671 2672                  /*
2672 2673                   * We successfully allocated an empty magazine.
2673 2674                   * However, we had to drop ccp->cc_lock to do it,
2674 2675                   * so the cache's magazine size may have changed.
2675 2676                   * If so, free the magazine and try again.
2676 2677                   */
2677 2678                  if (ccp->cc_magsize != mtp->mt_magsize) {
2678 2679                          mutex_exit(&ccp->cc_lock);
2679 2680                          kmem_cache_free(mtp->mt_cache, emp);
2680 2681                          mutex_enter(&ccp->cc_lock);
2681 2682                          return (1);
2682 2683                  }
2683 2684  
2684 2685                  /*
2685 2686                   * We got a magazine of the right size.  Add it to
2686 2687                   * the depot and try the whole dance again.
2687 2688                   */
2688 2689                  kmem_depot_free(cp, &cp->cache_empty, emp);
2689 2690                  return (1);
2690 2691          }
2691 2692  
2692 2693          /*
2693 2694           * We couldn't allocate an empty magazine,
2694 2695           * so fall through to the slab layer.
2695 2696           */
2696 2697          return (0);
2697 2698  }
2698 2699  
2699 2700  /*
2700 2701   * Free a constructed object to cache cp.
2701 2702   */
2702 2703  void
2703 2704  kmem_cache_free(kmem_cache_t *cp, void *buf)
2704 2705  {
2705 2706          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2706 2707  
2707 2708          /*
2708 2709           * The client must not free either of the buffers passed to the move
2709 2710           * callback function.
2710 2711           */
2711 2712          ASSERT(cp->cache_defrag == NULL ||
2712 2713              cp->cache_defrag->kmd_thread != curthread ||
2713 2714              (buf != cp->cache_defrag->kmd_from_buf &&
2714 2715              buf != cp->cache_defrag->kmd_to_buf));
2715 2716  
2716 2717          if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2717 2718                  if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2718 2719                          ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2719 2720                          /* log it so that we can warn about it */
2720 2721                          KDI_LOG(cp, kdl_unsafe);
2721 2722                  } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2722 2723                          return;
2723 2724                  }
2724 2725                  if (ccp->cc_flags & KMF_BUFTAG) {
2725 2726                          if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2726 2727                                  return;
2727 2728                  }
2728 2729          }
2729 2730  
2730 2731          mutex_enter(&ccp->cc_lock);
2731 2732          /*
2732 2733           * Any changes to this logic should be reflected in kmem_slab_prefill()
2733 2734           */
2734 2735          for (;;) {
2735 2736                  /*
2736 2737                   * If there's a slot available in the current CPU's
2737 2738                   * loaded magazine, just put the object there and return.
2738 2739                   */
2739 2740                  if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2740 2741                          ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2741 2742                          ccp->cc_free++;
2742 2743                          mutex_exit(&ccp->cc_lock);
2743 2744                          return;
2744 2745                  }
2745 2746  
2746 2747                  /*
2747 2748                   * The loaded magazine is full.  If the previously loaded
2748 2749                   * magazine was empty, exchange them and try again.
2749 2750                   */
2750 2751                  if (ccp->cc_prounds == 0) {
2751 2752                          kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2752 2753                          continue;
2753 2754                  }
2754 2755  
2755 2756                  /*
2756 2757                   * If the magazine layer is disabled, break out now.
2757 2758                   */
2758 2759                  if (ccp->cc_magsize == 0)
2759 2760                          break;
2760 2761  
2761 2762                  if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2762 2763                          /*
2763 2764                           * We couldn't free our constructed object to the
2764 2765                           * magazine layer, so apply its destructor and free it
2765 2766                           * to the slab layer.
2766 2767                           */
2767 2768                          break;
2768 2769                  }
2769 2770          }
2770 2771          mutex_exit(&ccp->cc_lock);
2771 2772          kmem_slab_free_constructed(cp, buf, B_TRUE);
2772 2773  }
2773 2774  
2774 2775  static void
2775 2776  kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2776 2777  {
2777 2778          kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2778 2779          int cache_flags = cp->cache_flags;
2779 2780  
2780 2781          kmem_bufctl_t *next, *head;
2781 2782          size_t nbufs;
2782 2783  
2783 2784          /*
2784 2785           * Completely allocate the newly created slab and put the pre-allocated
2785 2786           * buffers in magazines. Any of the buffers that cannot be put in
2786 2787           * magazines must be returned to the slab.
2787 2788           */
2788 2789          ASSERT(MUTEX_HELD(&cp->cache_lock));
2789 2790          ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2790 2791          ASSERT(cp->cache_constructor == NULL);
2791 2792          ASSERT(sp->slab_cache == cp);
2792 2793          ASSERT(sp->slab_refcnt == 1);
2793 2794          ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2794 2795          ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2795 2796  
2796 2797          head = sp->slab_head;
2797 2798          nbufs = (sp->slab_chunks - sp->slab_refcnt);
2798 2799          sp->slab_head = NULL;
2799 2800          sp->slab_refcnt += nbufs;
2800 2801          cp->cache_bufslab -= nbufs;
2801 2802          cp->cache_slab_alloc += nbufs;
2802 2803          list_insert_head(&cp->cache_complete_slabs, sp);
2803 2804          cp->cache_complete_slab_count++;
2804 2805          mutex_exit(&cp->cache_lock);
2805 2806          mutex_enter(&ccp->cc_lock);
2806 2807  
2807 2808          while (head != NULL) {
2808 2809                  void *buf = KMEM_BUF(cp, head);
2809 2810                  /*
2810 2811                   * If there's a slot available in the current CPU's
2811 2812                   * loaded magazine, just put the object there and
2812 2813                   * continue.
2813 2814                   */
2814 2815                  if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2815 2816                          ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2816 2817                              buf;
2817 2818                          ccp->cc_free++;
2818 2819                          nbufs--;
2819 2820                          head = head->bc_next;
2820 2821                          continue;
2821 2822                  }
2822 2823  
2823 2824                  /*
2824 2825                   * The loaded magazine is full.  If the previously
2825 2826                   * loaded magazine was empty, exchange them and try
2826 2827                   * again.
2827 2828                   */
2828 2829                  if (ccp->cc_prounds == 0) {
2829 2830                          kmem_cpu_reload(ccp, ccp->cc_ploaded,
2830 2831                              ccp->cc_prounds);
2831 2832                          continue;
2832 2833                  }
2833 2834  
2834 2835                  /*
2835 2836                   * If the magazine layer is disabled, break out now.
2836 2837                   */
2837 2838  
2838 2839                  if (ccp->cc_magsize == 0) {
2839 2840                          break;
2840 2841                  }
2841 2842  
2842 2843                  if (!kmem_cpucache_magazine_alloc(ccp, cp))
2843 2844                          break;
2844 2845          }
2845 2846          mutex_exit(&ccp->cc_lock);
2846 2847          if (nbufs != 0) {
2847 2848                  ASSERT(head != NULL);
2848 2849  
2849 2850                  /*
2850 2851                   * If there was a failure, return remaining objects to
2851 2852                   * the slab
2852 2853                   */
2853 2854                  while (head != NULL) {
2854 2855                          ASSERT(nbufs != 0);
2855 2856                          next = head->bc_next;
2856 2857                          head->bc_next = NULL;
2857 2858                          kmem_slab_free(cp, KMEM_BUF(cp, head));
2858 2859                          head = next;
2859 2860                          nbufs--;
2860 2861                  }
2861 2862          }
2862 2863          ASSERT(head == NULL);
2863 2864          ASSERT(nbufs == 0);
2864 2865          mutex_enter(&cp->cache_lock);
2865 2866  }
2866 2867  
2867 2868  void *
2868 2869  kmem_zalloc(size_t size, int kmflag)
2869 2870  {
2870 2871          size_t index;
2871 2872          void *buf;
2872 2873  
2873 2874          if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2874 2875                  kmem_cache_t *cp = kmem_alloc_table[index];
2875 2876                  buf = kmem_cache_alloc(cp, kmflag);
2876 2877                  if (buf != NULL) {
2877 2878                          if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2878 2879                                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2879 2880                                  ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2880 2881                                  ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2881 2882  
2882 2883                                  if (cp->cache_flags & KMF_LITE) {
2883 2884                                          KMEM_BUFTAG_LITE_ENTER(btp,
2884 2885                                              kmem_lite_count, caller());
2885 2886                                  }
2886 2887                          }
2887 2888                          bzero(buf, size);
2888 2889                  }
2889 2890          } else {
2890 2891                  buf = kmem_alloc(size, kmflag);
2891 2892                  if (buf != NULL)
2892 2893                          bzero(buf, size);
2893 2894          }
2894 2895          return (buf);
2895 2896  }
2896 2897  
2897 2898  void *
2898 2899  kmem_alloc(size_t size, int kmflag)
2899 2900  {
2900 2901          size_t index;
2901 2902          kmem_cache_t *cp;
2902 2903          void *buf;
2903 2904  
2904 2905          if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2905 2906                  cp = kmem_alloc_table[index];
2906 2907                  /* fall through to kmem_cache_alloc() */
2907 2908  
2908 2909          } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2909 2910              kmem_big_alloc_table_max) {
2910 2911                  cp = kmem_big_alloc_table[index];
2911 2912                  /* fall through to kmem_cache_alloc() */
2912 2913  
2913 2914          } else {
2914 2915                  if (size == 0)
2915 2916                          return (NULL);
2916 2917  
2917 2918                  buf = vmem_alloc(kmem_oversize_arena, size,
2918 2919                      kmflag & KM_VMFLAGS);
2919 2920                  if (buf == NULL)
2920 2921                          kmem_log_event(kmem_failure_log, NULL, NULL,
2921 2922                              (void *)size);
2922 2923                  else if (KMEM_DUMP(kmem_slab_cache)) {
2923 2924                          /* stats for dump intercept */
2924 2925                          kmem_dump_oversize_allocs++;
2925 2926                          if (size > kmem_dump_oversize_max)
2926 2927                                  kmem_dump_oversize_max = size;
2927 2928                  }
2928 2929                  return (buf);
2929 2930          }
2930 2931  
2931 2932          buf = kmem_cache_alloc(cp, kmflag);
2932 2933          if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2933 2934                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2934 2935                  ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2935 2936                  ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2936 2937  
2937 2938                  if (cp->cache_flags & KMF_LITE) {
2938 2939                          KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2939 2940                  }
2940 2941          }
2941 2942          return (buf);
2942 2943  }
2943 2944  
2944 2945  void
2945 2946  kmem_free(void *buf, size_t size)
2946 2947  {
2947 2948          size_t index;
2948 2949          kmem_cache_t *cp;
2949 2950  
2950 2951          if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
2951 2952                  cp = kmem_alloc_table[index];
2952 2953                  /* fall through to kmem_cache_free() */
2953 2954  
2954 2955          } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2955 2956              kmem_big_alloc_table_max) {
2956 2957                  cp = kmem_big_alloc_table[index];
2957 2958                  /* fall through to kmem_cache_free() */
2958 2959  
2959 2960          } else {
2960 2961                  EQUIV(buf == NULL, size == 0);
2961 2962                  if (buf == NULL && size == 0)
2962 2963                          return;
2963 2964                  vmem_free(kmem_oversize_arena, buf, size);
2964 2965                  return;
2965 2966          }
2966 2967  
2967 2968          if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2968 2969                  kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2969 2970                  uint32_t *ip = (uint32_t *)btp;
2970 2971                  if (ip[1] != KMEM_SIZE_ENCODE(size)) {
2971 2972                          if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
2972 2973                                  kmem_error(KMERR_DUPFREE, cp, buf);
2973 2974                                  return;
2974 2975                          }
2975 2976                          if (KMEM_SIZE_VALID(ip[1])) {
2976 2977                                  ip[0] = KMEM_SIZE_ENCODE(size);
2977 2978                                  kmem_error(KMERR_BADSIZE, cp, buf);
2978 2979                          } else {
2979 2980                                  kmem_error(KMERR_REDZONE, cp, buf);
2980 2981                          }
2981 2982                          return;
2982 2983                  }
2983 2984                  if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
2984 2985                          kmem_error(KMERR_REDZONE, cp, buf);
2985 2986                          return;
2986 2987                  }
2987 2988                  btp->bt_redzone = KMEM_REDZONE_PATTERN;
2988 2989                  if (cp->cache_flags & KMF_LITE) {
2989 2990                          KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
2990 2991                              caller());
2991 2992                  }
2992 2993          }
2993 2994          kmem_cache_free(cp, buf);
2994 2995  }
2995 2996  
2996 2997  void *
2997 2998  kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
2998 2999  {
2999 3000          size_t realsize = size + vmp->vm_quantum;
3000 3001          void *addr;
3001 3002  
3002 3003          /*
3003 3004           * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
3004 3005           * vm_quantum will cause integer wraparound.  Check for this, and
3005 3006           * blow off the firewall page in this case.  Note that such a
3006 3007           * giant allocation (the entire kernel address space) can never
3007 3008           * be satisfied, so it will either fail immediately (VM_NOSLEEP)
3008 3009           * or sleep forever (VM_SLEEP).  Thus, there is no need for a
3009 3010           * corresponding check in kmem_firewall_va_free().
3010 3011           */
3011 3012          if (realsize < size)
3012 3013                  realsize = size;
3013 3014  
3014 3015          /*
3015 3016           * While boot still owns resource management, make sure that this
3016 3017           * redzone virtual address allocation is properly accounted for in
3017 3018           * OBPs "virtual-memory" "available" lists because we're
3018 3019           * effectively claiming them for a red zone.  If we don't do this,
3019 3020           * the available lists become too fragmented and too large for the
3020 3021           * current boot/kernel memory list interface.
3021 3022           */
3022 3023          addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
3023 3024  
3024 3025          if (addr != NULL && kvseg.s_base == NULL && realsize != size)
3025 3026                  (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
3026 3027  
3027 3028          return (addr);
3028 3029  }
3029 3030  
3030 3031  void
3031 3032  kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
3032 3033  {
3033 3034          ASSERT((kvseg.s_base == NULL ?
3034 3035              va_to_pfn((char *)addr + size) :
3035 3036              hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
3036 3037  
3037 3038          vmem_free(vmp, addr, size + vmp->vm_quantum);
3038 3039  }
3039 3040  
3040 3041  /*
3041 3042   * Try to allocate at least `size' bytes of memory without sleeping or
3042 3043   * panicking. Return actual allocated size in `asize'. If allocation failed,
3043 3044   * try final allocation with sleep or panic allowed.
3044 3045   */
3045 3046  void *
3046 3047  kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
3047 3048  {
3048 3049          void *p;
3049 3050  
3050 3051          *asize = P2ROUNDUP(size, KMEM_ALIGN);
3051 3052          do {
3052 3053                  p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
3053 3054                  if (p != NULL)
3054 3055                          return (p);
3055 3056                  *asize += KMEM_ALIGN;
3056 3057          } while (*asize <= PAGESIZE);
3057 3058  
3058 3059          *asize = P2ROUNDUP(size, KMEM_ALIGN);
3059 3060          return (kmem_alloc(*asize, kmflag));
3060 3061  }
3061 3062  
3062 3063  /*
3063 3064   * Reclaim all unused memory from a cache.
3064 3065   */
3065 3066  static void
3066 3067  kmem_cache_reap(kmem_cache_t *cp)
3067 3068  {
3068 3069          ASSERT(taskq_member(kmem_taskq, curthread));
3069 3070          cp->cache_reap++;
3070 3071  
3071 3072          /*
3072 3073           * Ask the cache's owner to free some memory if possible.
3073 3074           * The idea is to handle things like the inode cache, which
3074 3075           * typically sits on a bunch of memory that it doesn't truly
3075 3076           * *need*.  Reclaim policy is entirely up to the owner; this
3076 3077           * callback is just an advisory plea for help.
3077 3078           */
3078 3079          if (cp->cache_reclaim != NULL) {
3079 3080                  long delta;
3080 3081  
3081 3082                  /*
3082 3083                   * Reclaimed memory should be reapable (not included in the
3083 3084                   * depot's working set).
3084 3085                   */
3085 3086                  delta = cp->cache_full.ml_total;
3086 3087                  cp->cache_reclaim(cp->cache_private);
3087 3088                  delta = cp->cache_full.ml_total - delta;
3088 3089                  if (delta > 0) {
3089 3090                          mutex_enter(&cp->cache_depot_lock);
3090 3091                          cp->cache_full.ml_reaplimit += delta;
3091 3092                          cp->cache_full.ml_min += delta;
3092 3093                          mutex_exit(&cp->cache_depot_lock);
3093 3094                  }
3094 3095          }
3095 3096  
3096 3097          kmem_depot_ws_reap(cp);
3097 3098  
3098 3099          if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3099 3100                  kmem_cache_defrag(cp);
3100 3101          }
3101 3102  }
3102 3103  
3103 3104  static void
3104 3105  kmem_reap_timeout(void *flag_arg)
3105 3106  {
3106 3107          uint32_t *flag = (uint32_t *)flag_arg;
3107 3108  
3108 3109          ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3109 3110          *flag = 0;
3110 3111  }
3111 3112  
3112 3113  static void
3113 3114  kmem_reap_done(void *flag)
3114 3115  {
3115 3116          if (!callout_init_done) {
3116 3117                  /* can't schedule a timeout at this point */
3117 3118                  kmem_reap_timeout(flag);
3118 3119          } else {
3119 3120                  (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
3120 3121          }
3121 3122  }
3122 3123  
3123 3124  static void
3124 3125  kmem_reap_start(void *flag)
3125 3126  {
3126 3127          ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3127 3128  
3128 3129          if (flag == &kmem_reaping) {
3129 3130                  kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3130 3131                  /*
3131 3132                   * if we have segkp under heap, reap segkp cache.
3132 3133                   */
3133 3134                  if (segkp_fromheap)
3134 3135                          segkp_cache_free();
3135 3136          }
3136 3137          else
3137 3138                  kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3138 3139  
3139 3140          /*
3140 3141           * We use taskq_dispatch() to schedule a timeout to clear
3141 3142           * the flag so that kmem_reap() becomes self-throttling:
3142 3143           * we won't reap again until the current reap completes *and*
3143 3144           * at least kmem_reap_interval ticks have elapsed.
3144 3145           */
3145 3146          if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
3146 3147                  kmem_reap_done(flag);
3147 3148  }
3148 3149  
3149 3150  static void
3150 3151  kmem_reap_common(void *flag_arg)
3151 3152  {
3152 3153          uint32_t *flag = (uint32_t *)flag_arg;
3153 3154  
3154 3155          if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
3155 3156              atomic_cas_32(flag, 0, 1) != 0)
3156 3157                  return;
3157 3158  
3158 3159          /*
3159 3160           * It may not be kosher to do memory allocation when a reap is called
3160 3161           * (for example, if vmem_populate() is in the call chain).  So we
3161 3162           * start the reap going with a TQ_NOALLOC dispatch.  If the dispatch
3162 3163           * fails, we reset the flag, and the next reap will try again.
3163 3164           */
3164 3165          if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
3165 3166                  *flag = 0;
3166 3167  }
3167 3168  
3168 3169  /*
3169 3170   * Reclaim all unused memory from all caches.  Called from the VM system
3170 3171   * when memory gets tight.
3171 3172   */
3172 3173  void
3173 3174  kmem_reap(void)
3174 3175  {
3175 3176          kmem_reap_common(&kmem_reaping);
3176 3177  }
3177 3178  
3178 3179  /*
3179 3180   * Reclaim all unused memory from identifier arenas, called when a vmem
3180 3181   * arena not back by memory is exhausted.  Since reaping memory-backed caches
3181 3182   * cannot help with identifier exhaustion, we avoid both a large amount of
3182 3183   * work and unwanted side-effects from reclaim callbacks.
3183 3184   */
3184 3185  void
3185 3186  kmem_reap_idspace(void)
3186 3187  {
3187 3188          kmem_reap_common(&kmem_reaping_idspace);
3188 3189  }
3189 3190  
3190 3191  /*
3191 3192   * Purge all magazines from a cache and set its magazine limit to zero.
3192 3193   * All calls are serialized by the kmem_taskq lock, except for the final
3193 3194   * call from kmem_cache_destroy().
3194 3195   */
3195 3196  static void
3196 3197  kmem_cache_magazine_purge(kmem_cache_t *cp)
3197 3198  {
3198 3199          kmem_cpu_cache_t *ccp;
3199 3200          kmem_magazine_t *mp, *pmp;
3200 3201          int rounds, prounds, cpu_seqid;
3201 3202  
3202 3203          ASSERT(!list_link_active(&cp->cache_link) ||
3203 3204              taskq_member(kmem_taskq, curthread));
3204 3205          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
3205 3206  
3206 3207          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3207 3208                  ccp = &cp->cache_cpu[cpu_seqid];
3208 3209  
3209 3210                  mutex_enter(&ccp->cc_lock);
3210 3211                  mp = ccp->cc_loaded;
3211 3212                  pmp = ccp->cc_ploaded;
3212 3213                  rounds = ccp->cc_rounds;
3213 3214                  prounds = ccp->cc_prounds;
3214 3215                  ccp->cc_loaded = NULL;
3215 3216                  ccp->cc_ploaded = NULL;
3216 3217                  ccp->cc_rounds = -1;
3217 3218                  ccp->cc_prounds = -1;
3218 3219                  ccp->cc_magsize = 0;
3219 3220                  mutex_exit(&ccp->cc_lock);
3220 3221  
3221 3222                  if (mp)
3222 3223                          kmem_magazine_destroy(cp, mp, rounds);
3223 3224                  if (pmp)
3224 3225                          kmem_magazine_destroy(cp, pmp, prounds);
3225 3226          }
3226 3227  
3227 3228          kmem_depot_ws_zero(cp);
3228 3229          kmem_depot_ws_reap(cp);
3229 3230  }
3230 3231  
3231 3232  /*
3232 3233   * Enable per-cpu magazines on a cache.
3233 3234   */
3234 3235  static void
3235 3236  kmem_cache_magazine_enable(kmem_cache_t *cp)
3236 3237  {
3237 3238          int cpu_seqid;
3238 3239  
3239 3240          if (cp->cache_flags & KMF_NOMAGAZINE)
3240 3241                  return;
3241 3242  
  
    | 
      ↓ open down ↓ | 
    3207 lines elided | 
    
      ↑ open up ↑ | 
  
3242 3243          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3243 3244                  kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3244 3245                  mutex_enter(&ccp->cc_lock);
3245 3246                  ccp->cc_magsize = cp->cache_magtype->mt_magsize;
3246 3247                  mutex_exit(&ccp->cc_lock);
3247 3248          }
3248 3249  
3249 3250  }
3250 3251  
3251 3252  /*
3252      - * Reap (almost) everything right now.
     3253 + * Allow our caller to determine if there are running reaps.
     3254 + *
     3255 + * This call is very conservative and may return B_TRUE even when
     3256 + * reaping activity isn't active. If it returns B_FALSE, then reaping
     3257 + * activity is definitely inactive.
3253 3258   */
     3259 +boolean_t
     3260 +kmem_cache_reap_active(void)
     3261 +{
     3262 +        return (!taskq_empty(kmem_taskq));
     3263 +}
     3264 +
     3265 +/*
     3266 + * Reap (almost) everything soon.
     3267 + *
     3268 + * Note: this does not wait for the reap-tasks to complete. Caller
     3269 + * should use kmem_cache_reap_active() (above) and/or moderation to
     3270 + * avoid scheduling too many reap-tasks.
     3271 + */
3254 3272  void
3255      -kmem_cache_reap_now(kmem_cache_t *cp)
     3273 +kmem_cache_reap_soon(kmem_cache_t *cp)
3256 3274  {
3257 3275          ASSERT(list_link_active(&cp->cache_link));
3258 3276  
3259 3277          kmem_depot_ws_zero(cp);
3260 3278  
3261 3279          (void) taskq_dispatch(kmem_taskq,
3262 3280              (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3263      -        taskq_wait(kmem_taskq);
3264 3281  }
3265 3282  
3266 3283  /*
3267 3284   * Recompute a cache's magazine size.  The trade-off is that larger magazines
3268 3285   * provide a higher transfer rate with the depot, while smaller magazines
3269 3286   * reduce memory consumption.  Magazine resizing is an expensive operation;
3270 3287   * it should not be done frequently.
3271 3288   *
3272 3289   * Changes to the magazine size are serialized by the kmem_taskq lock.
3273 3290   *
3274 3291   * Note: at present this only grows the magazine size.  It might be useful
3275 3292   * to allow shrinkage too.
3276 3293   */
3277 3294  static void
3278 3295  kmem_cache_magazine_resize(kmem_cache_t *cp)
3279 3296  {
3280 3297          kmem_magtype_t *mtp = cp->cache_magtype;
3281 3298  
3282 3299          ASSERT(taskq_member(kmem_taskq, curthread));
3283 3300  
3284 3301          if (cp->cache_chunksize < mtp->mt_maxbuf) {
3285 3302                  kmem_cache_magazine_purge(cp);
3286 3303                  mutex_enter(&cp->cache_depot_lock);
3287 3304                  cp->cache_magtype = ++mtp;
3288 3305                  cp->cache_depot_contention_prev =
3289 3306                      cp->cache_depot_contention + INT_MAX;
3290 3307                  mutex_exit(&cp->cache_depot_lock);
3291 3308                  kmem_cache_magazine_enable(cp);
3292 3309          }
3293 3310  }
3294 3311  
3295 3312  /*
3296 3313   * Rescale a cache's hash table, so that the table size is roughly the
3297 3314   * cache size.  We want the average lookup time to be extremely small.
3298 3315   */
3299 3316  static void
3300 3317  kmem_hash_rescale(kmem_cache_t *cp)
3301 3318  {
3302 3319          kmem_bufctl_t **old_table, **new_table, *bcp;
3303 3320          size_t old_size, new_size, h;
3304 3321  
3305 3322          ASSERT(taskq_member(kmem_taskq, curthread));
3306 3323  
3307 3324          new_size = MAX(KMEM_HASH_INITIAL,
3308 3325              1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
3309 3326          old_size = cp->cache_hash_mask + 1;
3310 3327  
3311 3328          if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
3312 3329                  return;
3313 3330  
3314 3331          new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
3315 3332              VM_NOSLEEP);
3316 3333          if (new_table == NULL)
3317 3334                  return;
3318 3335          bzero(new_table, new_size * sizeof (void *));
3319 3336  
3320 3337          mutex_enter(&cp->cache_lock);
3321 3338  
3322 3339          old_size = cp->cache_hash_mask + 1;
3323 3340          old_table = cp->cache_hash_table;
3324 3341  
3325 3342          cp->cache_hash_mask = new_size - 1;
3326 3343          cp->cache_hash_table = new_table;
3327 3344          cp->cache_rescale++;
3328 3345  
3329 3346          for (h = 0; h < old_size; h++) {
3330 3347                  bcp = old_table[h];
3331 3348                  while (bcp != NULL) {
3332 3349                          void *addr = bcp->bc_addr;
3333 3350                          kmem_bufctl_t *next_bcp = bcp->bc_next;
3334 3351                          kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
3335 3352                          bcp->bc_next = *hash_bucket;
3336 3353                          *hash_bucket = bcp;
3337 3354                          bcp = next_bcp;
3338 3355                  }
3339 3356          }
3340 3357  
3341 3358          mutex_exit(&cp->cache_lock);
3342 3359  
3343 3360          vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
3344 3361  }
3345 3362  
3346 3363  /*
3347 3364   * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3348 3365   * update, magazine resizing, and slab consolidation.
3349 3366   */
3350 3367  static void
3351 3368  kmem_cache_update(kmem_cache_t *cp)
3352 3369  {
3353 3370          int need_hash_rescale = 0;
3354 3371          int need_magazine_resize = 0;
3355 3372  
3356 3373          ASSERT(MUTEX_HELD(&kmem_cache_lock));
3357 3374  
3358 3375          /*
3359 3376           * If the cache has become much larger or smaller than its hash table,
3360 3377           * fire off a request to rescale the hash table.
3361 3378           */
3362 3379          mutex_enter(&cp->cache_lock);
3363 3380  
3364 3381          if ((cp->cache_flags & KMF_HASH) &&
3365 3382              (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
3366 3383              (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
3367 3384              cp->cache_hash_mask > KMEM_HASH_INITIAL)))
3368 3385                  need_hash_rescale = 1;
3369 3386  
3370 3387          mutex_exit(&cp->cache_lock);
3371 3388  
3372 3389          /*
3373 3390           * Update the depot working set statistics.
3374 3391           */
3375 3392          kmem_depot_ws_update(cp);
3376 3393  
3377 3394          /*
3378 3395           * If there's a lot of contention in the depot,
3379 3396           * increase the magazine size.
3380 3397           */
3381 3398          mutex_enter(&cp->cache_depot_lock);
3382 3399  
3383 3400          if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
3384 3401              (int)(cp->cache_depot_contention -
3385 3402              cp->cache_depot_contention_prev) > kmem_depot_contention)
3386 3403                  need_magazine_resize = 1;
3387 3404  
3388 3405          cp->cache_depot_contention_prev = cp->cache_depot_contention;
3389 3406  
3390 3407          mutex_exit(&cp->cache_depot_lock);
3391 3408  
3392 3409          if (need_hash_rescale)
3393 3410                  (void) taskq_dispatch(kmem_taskq,
3394 3411                      (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
3395 3412  
3396 3413          if (need_magazine_resize)
3397 3414                  (void) taskq_dispatch(kmem_taskq,
3398 3415                      (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3399 3416  
3400 3417          if (cp->cache_defrag != NULL)
3401 3418                  (void) taskq_dispatch(kmem_taskq,
3402 3419                      (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
3403 3420  }
3404 3421  
3405 3422  static void kmem_update(void *);
3406 3423  
3407 3424  static void
3408 3425  kmem_update_timeout(void *dummy)
3409 3426  {
3410 3427          (void) timeout(kmem_update, dummy, kmem_reap_interval);
3411 3428  }
3412 3429  
3413 3430  static void
3414 3431  kmem_update(void *dummy)
3415 3432  {
3416 3433          kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
3417 3434  
3418 3435          /*
3419 3436           * We use taskq_dispatch() to reschedule the timeout so that
3420 3437           * kmem_update() becomes self-throttling: it won't schedule
3421 3438           * new tasks until all previous tasks have completed.
3422 3439           */
3423 3440          if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
3424 3441                  kmem_update_timeout(NULL);
3425 3442  }
3426 3443  
3427 3444  static int
3428 3445  kmem_cache_kstat_update(kstat_t *ksp, int rw)
3429 3446  {
3430 3447          struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
3431 3448          kmem_cache_t *cp = ksp->ks_private;
3432 3449          uint64_t cpu_buf_avail;
3433 3450          uint64_t buf_avail = 0;
3434 3451          int cpu_seqid;
3435 3452          long reap;
3436 3453  
3437 3454          ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
3438 3455  
3439 3456          if (rw == KSTAT_WRITE)
3440 3457                  return (EACCES);
3441 3458  
3442 3459          mutex_enter(&cp->cache_lock);
3443 3460  
3444 3461          kmcp->kmc_alloc_fail.value.ui64         = cp->cache_alloc_fail;
3445 3462          kmcp->kmc_alloc.value.ui64              = cp->cache_slab_alloc;
3446 3463          kmcp->kmc_free.value.ui64               = cp->cache_slab_free;
3447 3464          kmcp->kmc_slab_alloc.value.ui64         = cp->cache_slab_alloc;
3448 3465          kmcp->kmc_slab_free.value.ui64          = cp->cache_slab_free;
3449 3466  
3450 3467          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3451 3468                  kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3452 3469  
3453 3470                  mutex_enter(&ccp->cc_lock);
3454 3471  
3455 3472                  cpu_buf_avail = 0;
3456 3473                  if (ccp->cc_rounds > 0)
3457 3474                          cpu_buf_avail += ccp->cc_rounds;
3458 3475                  if (ccp->cc_prounds > 0)
3459 3476                          cpu_buf_avail += ccp->cc_prounds;
3460 3477  
3461 3478                  kmcp->kmc_alloc.value.ui64      += ccp->cc_alloc;
3462 3479                  kmcp->kmc_free.value.ui64       += ccp->cc_free;
3463 3480                  buf_avail                       += cpu_buf_avail;
3464 3481  
3465 3482                  mutex_exit(&ccp->cc_lock);
3466 3483          }
3467 3484  
3468 3485          mutex_enter(&cp->cache_depot_lock);
3469 3486  
3470 3487          kmcp->kmc_depot_alloc.value.ui64        = cp->cache_full.ml_alloc;
3471 3488          kmcp->kmc_depot_free.value.ui64         = cp->cache_empty.ml_alloc;
3472 3489          kmcp->kmc_depot_contention.value.ui64   = cp->cache_depot_contention;
3473 3490          kmcp->kmc_full_magazines.value.ui64     = cp->cache_full.ml_total;
3474 3491          kmcp->kmc_empty_magazines.value.ui64    = cp->cache_empty.ml_total;
3475 3492          kmcp->kmc_magazine_size.value.ui64      =
3476 3493              (cp->cache_flags & KMF_NOMAGAZINE) ?
3477 3494              0 : cp->cache_magtype->mt_magsize;
3478 3495  
3479 3496          kmcp->kmc_alloc.value.ui64              += cp->cache_full.ml_alloc;
3480 3497          kmcp->kmc_free.value.ui64               += cp->cache_empty.ml_alloc;
3481 3498          buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
3482 3499  
3483 3500          reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3484 3501          reap = MIN(reap, cp->cache_full.ml_total);
3485 3502  
3486 3503          mutex_exit(&cp->cache_depot_lock);
3487 3504  
3488 3505          kmcp->kmc_buf_size.value.ui64   = cp->cache_bufsize;
3489 3506          kmcp->kmc_align.value.ui64      = cp->cache_align;
3490 3507          kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize;
3491 3508          kmcp->kmc_slab_size.value.ui64  = cp->cache_slabsize;
3492 3509          kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
3493 3510          buf_avail += cp->cache_bufslab;
3494 3511          kmcp->kmc_buf_avail.value.ui64  = buf_avail;
3495 3512          kmcp->kmc_buf_inuse.value.ui64  = cp->cache_buftotal - buf_avail;
3496 3513          kmcp->kmc_buf_total.value.ui64  = cp->cache_buftotal;
3497 3514          kmcp->kmc_buf_max.value.ui64    = cp->cache_bufmax;
3498 3515          kmcp->kmc_slab_create.value.ui64        = cp->cache_slab_create;
3499 3516          kmcp->kmc_slab_destroy.value.ui64       = cp->cache_slab_destroy;
3500 3517          kmcp->kmc_hash_size.value.ui64  = (cp->cache_flags & KMF_HASH) ?
3501 3518              cp->cache_hash_mask + 1 : 0;
3502 3519          kmcp->kmc_hash_lookup_depth.value.ui64  = cp->cache_lookup_depth;
3503 3520          kmcp->kmc_hash_rescale.value.ui64       = cp->cache_rescale;
3504 3521          kmcp->kmc_vmem_source.value.ui64        = cp->cache_arena->vm_id;
3505 3522          kmcp->kmc_reap.value.ui64       = cp->cache_reap;
3506 3523  
3507 3524          if (cp->cache_defrag == NULL) {
3508 3525                  kmcp->kmc_move_callbacks.value.ui64     = 0;
3509 3526                  kmcp->kmc_move_yes.value.ui64           = 0;
3510 3527                  kmcp->kmc_move_no.value.ui64            = 0;
3511 3528                  kmcp->kmc_move_later.value.ui64         = 0;
3512 3529                  kmcp->kmc_move_dont_need.value.ui64     = 0;
3513 3530                  kmcp->kmc_move_dont_know.value.ui64     = 0;
3514 3531                  kmcp->kmc_move_hunt_found.value.ui64    = 0;
3515 3532                  kmcp->kmc_move_slabs_freed.value.ui64   = 0;
3516 3533                  kmcp->kmc_defrag.value.ui64             = 0;
3517 3534                  kmcp->kmc_scan.value.ui64               = 0;
3518 3535                  kmcp->kmc_move_reclaimable.value.ui64   = 0;
3519 3536          } else {
3520 3537                  int64_t reclaimable;
3521 3538  
3522 3539                  kmem_defrag_t *kd = cp->cache_defrag;
3523 3540                  kmcp->kmc_move_callbacks.value.ui64     = kd->kmd_callbacks;
3524 3541                  kmcp->kmc_move_yes.value.ui64           = kd->kmd_yes;
3525 3542                  kmcp->kmc_move_no.value.ui64            = kd->kmd_no;
3526 3543                  kmcp->kmc_move_later.value.ui64         = kd->kmd_later;
3527 3544                  kmcp->kmc_move_dont_need.value.ui64     = kd->kmd_dont_need;
3528 3545                  kmcp->kmc_move_dont_know.value.ui64     = kd->kmd_dont_know;
3529 3546                  kmcp->kmc_move_hunt_found.value.ui64    = 0;
3530 3547                  kmcp->kmc_move_slabs_freed.value.ui64   = kd->kmd_slabs_freed;
3531 3548                  kmcp->kmc_defrag.value.ui64             = kd->kmd_defrags;
3532 3549                  kmcp->kmc_scan.value.ui64               = kd->kmd_scans;
3533 3550  
3534 3551                  reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3535 3552                  reclaimable = MAX(reclaimable, 0);
3536 3553                  reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3537 3554                  kmcp->kmc_move_reclaimable.value.ui64   = reclaimable;
3538 3555          }
3539 3556  
3540 3557          mutex_exit(&cp->cache_lock);
3541 3558          return (0);
3542 3559  }
3543 3560  
3544 3561  /*
3545 3562   * Return a named statistic about a particular cache.
3546 3563   * This shouldn't be called very often, so it's currently designed for
3547 3564   * simplicity (leverages existing kstat support) rather than efficiency.
3548 3565   */
3549 3566  uint64_t
3550 3567  kmem_cache_stat(kmem_cache_t *cp, char *name)
3551 3568  {
3552 3569          int i;
3553 3570          kstat_t *ksp = cp->cache_kstat;
3554 3571          kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3555 3572          uint64_t value = 0;
3556 3573  
3557 3574          if (ksp != NULL) {
3558 3575                  mutex_enter(&kmem_cache_kstat_lock);
3559 3576                  (void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3560 3577                  for (i = 0; i < ksp->ks_ndata; i++) {
3561 3578                          if (strcmp(knp[i].name, name) == 0) {
3562 3579                                  value = knp[i].value.ui64;
3563 3580                                  break;
3564 3581                          }
3565 3582                  }
3566 3583                  mutex_exit(&kmem_cache_kstat_lock);
3567 3584          }
3568 3585          return (value);
3569 3586  }
3570 3587  
3571 3588  /*
3572 3589   * Return an estimate of currently available kernel heap memory.
3573 3590   * On 32-bit systems, physical memory may exceed virtual memory,
3574 3591   * we just truncate the result at 1GB.
3575 3592   */
3576 3593  size_t
3577 3594  kmem_avail(void)
3578 3595  {
3579 3596          spgcnt_t rmem = availrmem - tune.t_minarmem;
3580 3597          spgcnt_t fmem = freemem - minfree;
3581 3598  
3582 3599          return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3583 3600              1 << (30 - PAGESHIFT))));
3584 3601  }
3585 3602  
3586 3603  /*
3587 3604   * Return the maximum amount of memory that is (in theory) allocatable
3588 3605   * from the heap. This may be used as an estimate only since there
3589 3606   * is no guarentee this space will still be available when an allocation
3590 3607   * request is made, nor that the space may be allocated in one big request
3591 3608   * due to kernel heap fragmentation.
3592 3609   */
3593 3610  size_t
3594 3611  kmem_maxavail(void)
3595 3612  {
3596 3613          spgcnt_t pmem = availrmem - tune.t_minarmem;
3597 3614          spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3598 3615  
3599 3616          return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3600 3617  }
3601 3618  
3602 3619  /*
3603 3620   * Indicate whether memory-intensive kmem debugging is enabled.
3604 3621   */
3605 3622  int
3606 3623  kmem_debugging(void)
3607 3624  {
3608 3625          return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3609 3626  }
3610 3627  
3611 3628  /* binning function, sorts finely at the two extremes */
3612 3629  #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)                          \
3613 3630          ((((sp)->slab_refcnt <= (binshift)) ||                          \
3614 3631              (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))    \
3615 3632              ? -(sp)->slab_refcnt                                        \
3616 3633              : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3617 3634  
3618 3635  /*
3619 3636   * Minimizing the number of partial slabs on the freelist minimizes
3620 3637   * fragmentation (the ratio of unused buffers held by the slab layer). There are
3621 3638   * two ways to get a slab off of the freelist: 1) free all the buffers on the
3622 3639   * slab, and 2) allocate all the buffers on the slab. It follows that we want
3623 3640   * the most-used slabs at the front of the list where they have the best chance
3624 3641   * of being completely allocated, and the least-used slabs at a safe distance
3625 3642   * from the front to improve the odds that the few remaining buffers will all be
3626 3643   * freed before another allocation can tie up the slab. For that reason a slab
3627 3644   * with a higher slab_refcnt sorts less than than a slab with a lower
3628 3645   * slab_refcnt.
3629 3646   *
3630 3647   * However, if a slab has at least one buffer that is deemed unfreeable, we
3631 3648   * would rather have that slab at the front of the list regardless of
3632 3649   * slab_refcnt, since even one unfreeable buffer makes the entire slab
3633 3650   * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3634 3651   * callback, the slab is marked unfreeable for as long as it remains on the
3635 3652   * freelist.
3636 3653   */
3637 3654  static int
3638 3655  kmem_partial_slab_cmp(const void *p0, const void *p1)
3639 3656  {
3640 3657          const kmem_cache_t *cp;
3641 3658          const kmem_slab_t *s0 = p0;
3642 3659          const kmem_slab_t *s1 = p1;
3643 3660          int w0, w1;
3644 3661          size_t binshift;
3645 3662  
3646 3663          ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3647 3664          ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3648 3665          ASSERT(s0->slab_cache == s1->slab_cache);
3649 3666          cp = s1->slab_cache;
3650 3667          ASSERT(MUTEX_HELD(&cp->cache_lock));
3651 3668          binshift = cp->cache_partial_binshift;
3652 3669  
3653 3670          /* weight of first slab */
3654 3671          w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3655 3672          if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3656 3673                  w0 -= cp->cache_maxchunks;
3657 3674          }
3658 3675  
3659 3676          /* weight of second slab */
3660 3677          w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3661 3678          if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3662 3679                  w1 -= cp->cache_maxchunks;
3663 3680          }
3664 3681  
3665 3682          if (w0 < w1)
3666 3683                  return (-1);
3667 3684          if (w0 > w1)
3668 3685                  return (1);
3669 3686  
3670 3687          /* compare pointer values */
3671 3688          if ((uintptr_t)s0 < (uintptr_t)s1)
3672 3689                  return (-1);
3673 3690          if ((uintptr_t)s0 > (uintptr_t)s1)
3674 3691                  return (1);
3675 3692  
3676 3693          return (0);
3677 3694  }
3678 3695  
3679 3696  /*
3680 3697   * It must be valid to call the destructor (if any) on a newly created object.
3681 3698   * That is, the constructor (if any) must leave the object in a valid state for
3682 3699   * the destructor.
3683 3700   */
3684 3701  kmem_cache_t *
3685 3702  kmem_cache_create(
3686 3703          char *name,             /* descriptive name for this cache */
3687 3704          size_t bufsize,         /* size of the objects it manages */
3688 3705          size_t align,           /* required object alignment */
3689 3706          int (*constructor)(void *, void *, int), /* object constructor */
3690 3707          void (*destructor)(void *, void *),     /* object destructor */
3691 3708          void (*reclaim)(void *), /* memory reclaim callback */
3692 3709          void *private,          /* pass-thru arg for constr/destr/reclaim */
3693 3710          vmem_t *vmp,            /* vmem source for slab allocation */
3694 3711          int cflags)             /* cache creation flags */
3695 3712  {
3696 3713          int cpu_seqid;
3697 3714          size_t chunksize;
3698 3715          kmem_cache_t *cp;
3699 3716          kmem_magtype_t *mtp;
3700 3717          size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3701 3718  
3702 3719  #ifdef  DEBUG
3703 3720          /*
3704 3721           * Cache names should conform to the rules for valid C identifiers
3705 3722           */
3706 3723          if (!strident_valid(name)) {
3707 3724                  cmn_err(CE_CONT,
3708 3725                      "kmem_cache_create: '%s' is an invalid cache name\n"
3709 3726                      "cache names must conform to the rules for "
3710 3727                      "C identifiers\n", name);
3711 3728          }
3712 3729  #endif  /* DEBUG */
3713 3730  
3714 3731          if (vmp == NULL)
3715 3732                  vmp = kmem_default_arena;
3716 3733  
3717 3734          /*
3718 3735           * If this kmem cache has an identifier vmem arena as its source, mark
3719 3736           * it such to allow kmem_reap_idspace().
3720 3737           */
3721 3738          ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
3722 3739          if (vmp->vm_cflags & VMC_IDENTIFIER)
3723 3740                  cflags |= KMC_IDENTIFIER;
3724 3741  
3725 3742          /*
3726 3743           * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
3727 3744           * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3728 3745           * false sharing of per-CPU data.
3729 3746           */
3730 3747          cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3731 3748              P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3732 3749          bzero(cp, csize);
3733 3750          list_link_init(&cp->cache_link);
3734 3751  
3735 3752          if (align == 0)
3736 3753                  align = KMEM_ALIGN;
3737 3754  
3738 3755          /*
3739 3756           * If we're not at least KMEM_ALIGN aligned, we can't use free
3740 3757           * memory to hold bufctl information (because we can't safely
3741 3758           * perform word loads and stores on it).
3742 3759           */
3743 3760          if (align < KMEM_ALIGN)
3744 3761                  cflags |= KMC_NOTOUCH;
3745 3762  
3746 3763          if (!ISP2(align) || align > vmp->vm_quantum)
3747 3764                  panic("kmem_cache_create: bad alignment %lu", align);
3748 3765  
3749 3766          mutex_enter(&kmem_flags_lock);
3750 3767          if (kmem_flags & KMF_RANDOMIZE)
3751 3768                  kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3752 3769                      KMF_RANDOMIZE;
3753 3770          cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3754 3771          mutex_exit(&kmem_flags_lock);
3755 3772  
3756 3773          /*
3757 3774           * Make sure all the various flags are reasonable.
3758 3775           */
3759 3776          ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3760 3777  
3761 3778          if (cp->cache_flags & KMF_LITE) {
3762 3779                  if (bufsize >= kmem_lite_minsize &&
3763 3780                      align <= kmem_lite_maxalign &&
3764 3781                      P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3765 3782                          cp->cache_flags |= KMF_BUFTAG;
3766 3783                          cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3767 3784                  } else {
3768 3785                          cp->cache_flags &= ~KMF_DEBUG;
3769 3786                  }
3770 3787          }
3771 3788  
3772 3789          if (cp->cache_flags & KMF_DEADBEEF)
3773 3790                  cp->cache_flags |= KMF_REDZONE;
3774 3791  
3775 3792          if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3776 3793                  cp->cache_flags |= KMF_NOMAGAZINE;
3777 3794  
3778 3795          if (cflags & KMC_NODEBUG)
3779 3796                  cp->cache_flags &= ~KMF_DEBUG;
3780 3797  
3781 3798          if (cflags & KMC_NOTOUCH)
3782 3799                  cp->cache_flags &= ~KMF_TOUCH;
3783 3800  
3784 3801          if (cflags & KMC_PREFILL)
3785 3802                  cp->cache_flags |= KMF_PREFILL;
3786 3803  
3787 3804          if (cflags & KMC_NOHASH)
3788 3805                  cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3789 3806  
3790 3807          if (cflags & KMC_NOMAGAZINE)
3791 3808                  cp->cache_flags |= KMF_NOMAGAZINE;
3792 3809  
3793 3810          if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3794 3811                  cp->cache_flags |= KMF_REDZONE;
3795 3812  
3796 3813          if (!(cp->cache_flags & KMF_AUDIT))
3797 3814                  cp->cache_flags &= ~KMF_CONTENTS;
3798 3815  
3799 3816          if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3800 3817              !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3801 3818                  cp->cache_flags |= KMF_FIREWALL;
3802 3819  
3803 3820          if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3804 3821                  cp->cache_flags &= ~KMF_FIREWALL;
3805 3822  
3806 3823          if (cp->cache_flags & KMF_FIREWALL) {
3807 3824                  cp->cache_flags &= ~KMF_BUFTAG;
3808 3825                  cp->cache_flags |= KMF_NOMAGAZINE;
3809 3826                  ASSERT(vmp == kmem_default_arena);
3810 3827                  vmp = kmem_firewall_arena;
3811 3828          }
3812 3829  
3813 3830          /*
3814 3831           * Set cache properties.
3815 3832           */
3816 3833          (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3817 3834          strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3818 3835          cp->cache_bufsize = bufsize;
3819 3836          cp->cache_align = align;
3820 3837          cp->cache_constructor = constructor;
3821 3838          cp->cache_destructor = destructor;
3822 3839          cp->cache_reclaim = reclaim;
3823 3840          cp->cache_private = private;
3824 3841          cp->cache_arena = vmp;
3825 3842          cp->cache_cflags = cflags;
3826 3843  
3827 3844          /*
3828 3845           * Determine the chunk size.
3829 3846           */
3830 3847          chunksize = bufsize;
3831 3848  
3832 3849          if (align >= KMEM_ALIGN) {
3833 3850                  chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3834 3851                  cp->cache_bufctl = chunksize - KMEM_ALIGN;
3835 3852          }
3836 3853  
3837 3854          if (cp->cache_flags & KMF_BUFTAG) {
3838 3855                  cp->cache_bufctl = chunksize;
3839 3856                  cp->cache_buftag = chunksize;
3840 3857                  if (cp->cache_flags & KMF_LITE)
3841 3858                          chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3842 3859                  else
3843 3860                          chunksize += sizeof (kmem_buftag_t);
3844 3861          }
3845 3862  
3846 3863          if (cp->cache_flags & KMF_DEADBEEF) {
3847 3864                  cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3848 3865                  if (cp->cache_flags & KMF_LITE)
3849 3866                          cp->cache_verify = sizeof (uint64_t);
3850 3867          }
3851 3868  
3852 3869          cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3853 3870  
3854 3871          cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3855 3872  
3856 3873          /*
3857 3874           * Now that we know the chunk size, determine the optimal slab size.
3858 3875           */
3859 3876          if (vmp == kmem_firewall_arena) {
3860 3877                  cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3861 3878                  cp->cache_mincolor = cp->cache_slabsize - chunksize;
3862 3879                  cp->cache_maxcolor = cp->cache_mincolor;
3863 3880                  cp->cache_flags |= KMF_HASH;
3864 3881                  ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3865 3882          } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3866 3883              !(cp->cache_flags & KMF_AUDIT) &&
3867 3884              chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3868 3885                  cp->cache_slabsize = vmp->vm_quantum;
3869 3886                  cp->cache_mincolor = 0;
3870 3887                  cp->cache_maxcolor =
3871 3888                      (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3872 3889                  ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3873 3890                  ASSERT(!(cp->cache_flags & KMF_AUDIT));
3874 3891          } else {
3875 3892                  size_t chunks, bestfit, waste, slabsize;
3876 3893                  size_t minwaste = LONG_MAX;
3877 3894  
3878 3895                  for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3879 3896                          slabsize = P2ROUNDUP(chunksize * chunks,
3880 3897                              vmp->vm_quantum);
3881 3898                          chunks = slabsize / chunksize;
3882 3899                          waste = (slabsize % chunksize) / chunks;
3883 3900                          if (waste < minwaste) {
3884 3901                                  minwaste = waste;
3885 3902                                  bestfit = slabsize;
3886 3903                          }
3887 3904                  }
3888 3905                  if (cflags & KMC_QCACHE)
3889 3906                          bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3890 3907                  cp->cache_slabsize = bestfit;
3891 3908                  cp->cache_mincolor = 0;
3892 3909                  cp->cache_maxcolor = bestfit % chunksize;
3893 3910                  cp->cache_flags |= KMF_HASH;
3894 3911          }
3895 3912  
3896 3913          cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3897 3914          cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3898 3915  
3899 3916          /*
3900 3917           * Disallowing prefill when either the DEBUG or HASH flag is set or when
3901 3918           * there is a constructor avoids some tricky issues with debug setup
3902 3919           * that may be revisited later. We cannot allow prefill in a
3903 3920           * metadata cache because of potential recursion.
3904 3921           */
3905 3922          if (vmp == kmem_msb_arena ||
3906 3923              cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3907 3924              cp->cache_constructor != NULL)
3908 3925                  cp->cache_flags &= ~KMF_PREFILL;
3909 3926  
3910 3927          if (cp->cache_flags & KMF_HASH) {
3911 3928                  ASSERT(!(cflags & KMC_NOHASH));
3912 3929                  cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3913 3930                      kmem_bufctl_audit_cache : kmem_bufctl_cache;
3914 3931          }
3915 3932  
3916 3933          if (cp->cache_maxcolor >= vmp->vm_quantum)
3917 3934                  cp->cache_maxcolor = vmp->vm_quantum - 1;
3918 3935  
3919 3936          cp->cache_color = cp->cache_mincolor;
3920 3937  
3921 3938          /*
3922 3939           * Initialize the rest of the slab layer.
3923 3940           */
3924 3941          mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3925 3942  
3926 3943          avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3927 3944              sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3928 3945          /* LINTED: E_TRUE_LOGICAL_EXPR */
3929 3946          ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3930 3947          /* reuse partial slab AVL linkage for complete slab list linkage */
3931 3948          list_create(&cp->cache_complete_slabs,
3932 3949              sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3933 3950  
3934 3951          if (cp->cache_flags & KMF_HASH) {
3935 3952                  cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3936 3953                      KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3937 3954                  bzero(cp->cache_hash_table,
3938 3955                      KMEM_HASH_INITIAL * sizeof (void *));
3939 3956                  cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3940 3957                  cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3941 3958          }
3942 3959  
3943 3960          /*
3944 3961           * Initialize the depot.
3945 3962           */
3946 3963          mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
3947 3964  
3948 3965          for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
3949 3966                  continue;
3950 3967  
3951 3968          cp->cache_magtype = mtp;
3952 3969  
3953 3970          /*
3954 3971           * Initialize the CPU layer.
3955 3972           */
3956 3973          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3957 3974                  kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3958 3975                  mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
3959 3976                  ccp->cc_flags = cp->cache_flags;
3960 3977                  ccp->cc_rounds = -1;
3961 3978                  ccp->cc_prounds = -1;
3962 3979          }
3963 3980  
3964 3981          /*
3965 3982           * Create the cache's kstats.
3966 3983           */
3967 3984          if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
3968 3985              "kmem_cache", KSTAT_TYPE_NAMED,
3969 3986              sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
3970 3987              KSTAT_FLAG_VIRTUAL)) != NULL) {
3971 3988                  cp->cache_kstat->ks_data = &kmem_cache_kstat;
3972 3989                  cp->cache_kstat->ks_update = kmem_cache_kstat_update;
3973 3990                  cp->cache_kstat->ks_private = cp;
3974 3991                  cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
3975 3992                  kstat_install(cp->cache_kstat);
3976 3993          }
3977 3994  
3978 3995          /*
3979 3996           * Add the cache to the global list.  This makes it visible
3980 3997           * to kmem_update(), so the cache must be ready for business.
3981 3998           */
3982 3999          mutex_enter(&kmem_cache_lock);
3983 4000          list_insert_tail(&kmem_caches, cp);
3984 4001          mutex_exit(&kmem_cache_lock);
3985 4002  
3986 4003          if (kmem_ready)
3987 4004                  kmem_cache_magazine_enable(cp);
3988 4005  
3989 4006          return (cp);
3990 4007  }
3991 4008  
3992 4009  static int
3993 4010  kmem_move_cmp(const void *buf, const void *p)
3994 4011  {
3995 4012          const kmem_move_t *kmm = p;
3996 4013          uintptr_t v1 = (uintptr_t)buf;
3997 4014          uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
3998 4015          return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
3999 4016  }
4000 4017  
4001 4018  static void
4002 4019  kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
4003 4020  {
4004 4021          kmd->kmd_reclaim_numer = 1;
4005 4022  }
4006 4023  
4007 4024  /*
4008 4025   * Initially, when choosing candidate slabs for buffers to move, we want to be
4009 4026   * very selective and take only slabs that are less than
4010 4027   * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
4011 4028   * slabs, then we raise the allocation ceiling incrementally. The reclaim
4012 4029   * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
4013 4030   * longer fragmented.
4014 4031   */
4015 4032  static void
4016 4033  kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
4017 4034  {
4018 4035          if (direction > 0) {
4019 4036                  /* make it easier to find a candidate slab */
4020 4037                  if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
4021 4038                          kmd->kmd_reclaim_numer++;
4022 4039                  }
4023 4040          } else {
4024 4041                  /* be more selective */
4025 4042                  if (kmd->kmd_reclaim_numer > 1) {
4026 4043                          kmd->kmd_reclaim_numer--;
4027 4044                  }
4028 4045          }
4029 4046  }
4030 4047  
4031 4048  void
4032 4049  kmem_cache_set_move(kmem_cache_t *cp,
4033 4050      kmem_cbrc_t (*move)(void *, void *, size_t, void *))
4034 4051  {
4035 4052          kmem_defrag_t *defrag;
4036 4053  
4037 4054          ASSERT(move != NULL);
4038 4055          /*
4039 4056           * The consolidator does not support NOTOUCH caches because kmem cannot
4040 4057           * initialize their slabs with the 0xbaddcafe memory pattern, which sets
4041 4058           * a low order bit usable by clients to distinguish uninitialized memory
4042 4059           * from known objects (see kmem_slab_create).
4043 4060           */
4044 4061          ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
4045 4062          ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
4046 4063  
4047 4064          /*
4048 4065           * We should not be holding anyone's cache lock when calling
4049 4066           * kmem_cache_alloc(), so allocate in all cases before acquiring the
4050 4067           * lock.
4051 4068           */
4052 4069          defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
4053 4070  
4054 4071          mutex_enter(&cp->cache_lock);
4055 4072  
4056 4073          if (KMEM_IS_MOVABLE(cp)) {
4057 4074                  if (cp->cache_move == NULL) {
4058 4075                          ASSERT(cp->cache_slab_alloc == 0);
4059 4076  
4060 4077                          cp->cache_defrag = defrag;
4061 4078                          defrag = NULL; /* nothing to free */
4062 4079                          bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4063 4080                          avl_create(&cp->cache_defrag->kmd_moves_pending,
4064 4081                              kmem_move_cmp, sizeof (kmem_move_t),
4065 4082                              offsetof(kmem_move_t, kmm_entry));
4066 4083                          /* LINTED: E_TRUE_LOGICAL_EXPR */
4067 4084                          ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4068 4085                          /* reuse the slab's AVL linkage for deadlist linkage */
4069 4086                          list_create(&cp->cache_defrag->kmd_deadlist,
4070 4087                              sizeof (kmem_slab_t),
4071 4088                              offsetof(kmem_slab_t, slab_link));
4072 4089                          kmem_reset_reclaim_threshold(cp->cache_defrag);
4073 4090                  }
4074 4091                  cp->cache_move = move;
4075 4092          }
4076 4093  
4077 4094          mutex_exit(&cp->cache_lock);
4078 4095  
4079 4096          if (defrag != NULL) {
4080 4097                  kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4081 4098          }
4082 4099  }
4083 4100  
4084 4101  void
4085 4102  kmem_cache_destroy(kmem_cache_t *cp)
4086 4103  {
4087 4104          int cpu_seqid;
4088 4105  
4089 4106          /*
4090 4107           * Remove the cache from the global cache list so that no one else
4091 4108           * can schedule tasks on its behalf, wait for any pending tasks to
4092 4109           * complete, purge the cache, and then destroy it.
4093 4110           */
4094 4111          mutex_enter(&kmem_cache_lock);
4095 4112          list_remove(&kmem_caches, cp);
4096 4113          mutex_exit(&kmem_cache_lock);
4097 4114  
4098 4115          if (kmem_taskq != NULL)
4099 4116                  taskq_wait(kmem_taskq);
4100 4117  
4101 4118          if (kmem_move_taskq != NULL && cp->cache_defrag != NULL)
4102 4119                  taskq_wait(kmem_move_taskq);
4103 4120  
4104 4121          kmem_cache_magazine_purge(cp);
4105 4122  
4106 4123          mutex_enter(&cp->cache_lock);
4107 4124          if (cp->cache_buftotal != 0)
4108 4125                  cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
4109 4126                      cp->cache_name, (void *)cp);
4110 4127          if (cp->cache_defrag != NULL) {
4111 4128                  avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4112 4129                  list_destroy(&cp->cache_defrag->kmd_deadlist);
4113 4130                  kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4114 4131                  cp->cache_defrag = NULL;
4115 4132          }
4116 4133          /*
4117 4134           * The cache is now dead.  There should be no further activity.  We
4118 4135           * enforce this by setting land mines in the constructor, destructor,
4119 4136           * reclaim, and move routines that induce a kernel text fault if
4120 4137           * invoked.
4121 4138           */
4122 4139          cp->cache_constructor = (int (*)(void *, void *, int))1;
4123 4140          cp->cache_destructor = (void (*)(void *, void *))2;
4124 4141          cp->cache_reclaim = (void (*)(void *))3;
4125 4142          cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
4126 4143          mutex_exit(&cp->cache_lock);
4127 4144  
4128 4145          kstat_delete(cp->cache_kstat);
4129 4146  
4130 4147          if (cp->cache_hash_table != NULL)
4131 4148                  vmem_free(kmem_hash_arena, cp->cache_hash_table,
4132 4149                      (cp->cache_hash_mask + 1) * sizeof (void *));
4133 4150  
4134 4151          for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
4135 4152                  mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
4136 4153  
4137 4154          mutex_destroy(&cp->cache_depot_lock);
4138 4155          mutex_destroy(&cp->cache_lock);
4139 4156  
4140 4157          vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
4141 4158  }
4142 4159  
4143 4160  /*ARGSUSED*/
4144 4161  static int
4145 4162  kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
4146 4163  {
4147 4164          ASSERT(MUTEX_HELD(&cpu_lock));
4148 4165          if (what == CPU_UNCONFIG) {
4149 4166                  kmem_cache_applyall(kmem_cache_magazine_purge,
4150 4167                      kmem_taskq, TQ_SLEEP);
4151 4168                  kmem_cache_applyall(kmem_cache_magazine_enable,
4152 4169                      kmem_taskq, TQ_SLEEP);
4153 4170          }
4154 4171          return (0);
4155 4172  }
4156 4173  
4157 4174  static void
4158 4175  kmem_alloc_caches_create(const int *array, size_t count,
4159 4176      kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4160 4177  {
4161 4178          char name[KMEM_CACHE_NAMELEN + 1];
4162 4179          size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4163 4180          size_t size = table_unit;
4164 4181          int i;
4165 4182  
4166 4183          for (i = 0; i < count; i++) {
4167 4184                  size_t cache_size = array[i];
4168 4185                  size_t align = KMEM_ALIGN;
4169 4186                  kmem_cache_t *cp;
4170 4187  
4171 4188                  /* if the table has an entry for maxbuf, we're done */
4172 4189                  if (size > maxbuf)
4173 4190                          break;
4174 4191  
4175 4192                  /* cache size must be a multiple of the table unit */
4176 4193                  ASSERT(P2PHASE(cache_size, table_unit) == 0);
4177 4194  
4178 4195                  /*
4179 4196                   * If they allocate a multiple of the coherency granularity,
4180 4197                   * they get a coherency-granularity-aligned address.
4181 4198                   */
4182 4199                  if (IS_P2ALIGNED(cache_size, 64))
4183 4200                          align = 64;
4184 4201                  if (IS_P2ALIGNED(cache_size, PAGESIZE))
4185 4202                          align = PAGESIZE;
4186 4203                  (void) snprintf(name, sizeof (name),
4187 4204                      "kmem_alloc_%lu", cache_size);
4188 4205                  cp = kmem_cache_create(name, cache_size, align,
4189 4206                      NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4190 4207  
4191 4208                  while (size <= cache_size) {
4192 4209                          alloc_table[(size - 1) >> shift] = cp;
4193 4210                          size += table_unit;
4194 4211                  }
4195 4212          }
4196 4213  
4197 4214          ASSERT(size > maxbuf);          /* i.e. maxbuf <= max(cache_size) */
4198 4215  }
4199 4216  
4200 4217  static void
4201 4218  kmem_cache_init(int pass, int use_large_pages)
4202 4219  {
4203 4220          int i;
4204 4221          size_t maxbuf;
4205 4222          kmem_magtype_t *mtp;
4206 4223  
4207 4224          for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4208 4225                  char name[KMEM_CACHE_NAMELEN + 1];
4209 4226  
4210 4227                  mtp = &kmem_magtype[i];
4211 4228                  (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
4212 4229                  mtp->mt_cache = kmem_cache_create(name,
4213 4230                      (mtp->mt_magsize + 1) * sizeof (void *),
4214 4231                      mtp->mt_align, NULL, NULL, NULL, NULL,
4215 4232                      kmem_msb_arena, KMC_NOHASH);
4216 4233          }
4217 4234  
4218 4235          kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
4219 4236              sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
4220 4237              kmem_msb_arena, KMC_NOHASH);
4221 4238  
4222 4239          kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
4223 4240              sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
4224 4241              kmem_msb_arena, KMC_NOHASH);
4225 4242  
4226 4243          kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
4227 4244              sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
4228 4245              kmem_msb_arena, KMC_NOHASH);
4229 4246  
4230 4247          if (pass == 2) {
4231 4248                  kmem_va_arena = vmem_create("kmem_va",
4232 4249                      NULL, 0, PAGESIZE,
4233 4250                      vmem_alloc, vmem_free, heap_arena,
4234 4251                      8 * PAGESIZE, VM_SLEEP);
4235 4252  
4236 4253                  if (use_large_pages) {
4237 4254                          kmem_default_arena = vmem_xcreate("kmem_default",
4238 4255                              NULL, 0, PAGESIZE,
4239 4256                              segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
4240 4257                              0, VMC_DUMPSAFE | VM_SLEEP);
4241 4258                  } else {
4242 4259                          kmem_default_arena = vmem_create("kmem_default",
4243 4260                              NULL, 0, PAGESIZE,
4244 4261                              segkmem_alloc, segkmem_free, kmem_va_arena,
4245 4262                              0, VMC_DUMPSAFE | VM_SLEEP);
4246 4263                  }
4247 4264  
4248 4265                  /* Figure out what our maximum cache size is */
4249 4266                  maxbuf = kmem_max_cached;
4250 4267                  if (maxbuf <= KMEM_MAXBUF) {
4251 4268                          maxbuf = 0;
4252 4269                          kmem_max_cached = KMEM_MAXBUF;
4253 4270                  } else {
4254 4271                          size_t size = 0;
4255 4272                          size_t max =
4256 4273                              sizeof (kmem_big_alloc_sizes) / sizeof (int);
4257 4274                          /*
4258 4275                           * Round maxbuf up to an existing cache size.  If maxbuf
4259 4276                           * is larger than the largest cache, we truncate it to
4260 4277                           * the largest cache's size.
4261 4278                           */
4262 4279                          for (i = 0; i < max; i++) {
4263 4280                                  size = kmem_big_alloc_sizes[i];
4264 4281                                  if (maxbuf <= size)
4265 4282                                          break;
4266 4283                          }
4267 4284                          kmem_max_cached = maxbuf = size;
4268 4285                  }
4269 4286  
4270 4287                  /*
4271 4288                   * The big alloc table may not be completely overwritten, so
4272 4289                   * we clear out any stale cache pointers from the first pass.
4273 4290                   */
4274 4291                  bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
4275 4292          } else {
4276 4293                  /*
4277 4294                   * During the first pass, the kmem_alloc_* caches
4278 4295                   * are treated as metadata.
4279 4296                   */
4280 4297                  kmem_default_arena = kmem_msb_arena;
4281 4298                  maxbuf = KMEM_BIG_MAXBUF_32BIT;
4282 4299          }
4283 4300  
4284 4301          /*
4285 4302           * Set up the default caches to back kmem_alloc()
4286 4303           */
4287 4304          kmem_alloc_caches_create(
4288 4305              kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4289 4306              kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4290 4307  
4291 4308          kmem_alloc_caches_create(
4292 4309              kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4293 4310              kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4294 4311  
4295 4312          kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
4296 4313  }
4297 4314  
4298 4315  void
4299 4316  kmem_init(void)
4300 4317  {
4301 4318          kmem_cache_t *cp;
4302 4319          int old_kmem_flags = kmem_flags;
4303 4320          int use_large_pages = 0;
4304 4321          size_t maxverify, minfirewall;
4305 4322  
4306 4323          kstat_init();
4307 4324  
4308 4325          /*
4309 4326           * Don't do firewalled allocations if the heap is less than 1TB
4310 4327           * (i.e. on a 32-bit kernel)
4311 4328           * The resulting VM_NEXTFIT allocations would create too much
4312 4329           * fragmentation in a small heap.
4313 4330           */
4314 4331  #if defined(_LP64)
4315 4332          maxverify = minfirewall = PAGESIZE / 2;
4316 4333  #else
4317 4334          maxverify = minfirewall = ULONG_MAX;
4318 4335  #endif
4319 4336  
4320 4337          /* LINTED */
4321 4338          ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
4322 4339  
4323 4340          list_create(&kmem_caches, sizeof (kmem_cache_t),
4324 4341              offsetof(kmem_cache_t, cache_link));
4325 4342  
4326 4343          kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
4327 4344              vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
4328 4345              VM_SLEEP | VMC_NO_QCACHE);
4329 4346  
4330 4347          kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
4331 4348              PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
4332 4349              VMC_DUMPSAFE | VM_SLEEP);
4333 4350  
4334 4351          kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
4335 4352              segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4336 4353  
4337 4354          kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
4338 4355              segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4339 4356  
4340 4357          kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
4341 4358              segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4342 4359  
4343 4360          kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
4344 4361              NULL, 0, PAGESIZE,
4345 4362              kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
4346 4363              0, VM_SLEEP);
4347 4364  
4348 4365          kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
4349 4366              segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
4350 4367              VMC_DUMPSAFE | VM_SLEEP);
4351 4368  
4352 4369          /* temporary oversize arena for mod_read_system_file */
4353 4370          kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
4354 4371              segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4355 4372  
4356 4373          kmem_reap_interval = 15 * hz;
4357 4374  
4358 4375          /*
4359 4376           * Read /etc/system.  This is a chicken-and-egg problem because
4360 4377           * kmem_flags may be set in /etc/system, but mod_read_system_file()
4361 4378           * needs to use the allocator.  The simplest solution is to create
4362 4379           * all the standard kmem caches, read /etc/system, destroy all the
4363 4380           * caches we just created, and then create them all again in light
4364 4381           * of the (possibly) new kmem_flags and other kmem tunables.
4365 4382           */
4366 4383          kmem_cache_init(1, 0);
4367 4384  
4368 4385          mod_read_system_file(boothowto & RB_ASKNAME);
4369 4386  
4370 4387          while ((cp = list_tail(&kmem_caches)) != NULL)
4371 4388                  kmem_cache_destroy(cp);
4372 4389  
4373 4390          vmem_destroy(kmem_oversize_arena);
4374 4391  
4375 4392          if (old_kmem_flags & KMF_STICKY)
4376 4393                  kmem_flags = old_kmem_flags;
4377 4394  
4378 4395          if (!(kmem_flags & KMF_AUDIT))
4379 4396                  vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
4380 4397  
4381 4398          if (kmem_maxverify == 0)
4382 4399                  kmem_maxverify = maxverify;
4383 4400  
4384 4401          if (kmem_minfirewall == 0)
4385 4402                  kmem_minfirewall = minfirewall;
4386 4403  
4387 4404          /*
4388 4405           * give segkmem a chance to figure out if we are using large pages
4389 4406           * for the kernel heap
4390 4407           */
4391 4408          use_large_pages = segkmem_lpsetup();
4392 4409  
4393 4410          /*
4394 4411           * To protect against corruption, we keep the actual number of callers
4395 4412           * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
4396 4413           * to 16, since the overhead for small buffers quickly gets out of
4397 4414           * hand.
4398 4415           *
4399 4416           * The real limit would depend on the needs of the largest KMC_NOHASH
4400 4417           * cache.
4401 4418           */
4402 4419          kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
4403 4420          kmem_lite_pcs = kmem_lite_count;
4404 4421  
4405 4422          /*
4406 4423           * Normally, we firewall oversized allocations when possible, but
4407 4424           * if we are using large pages for kernel memory, and we don't have
4408 4425           * any non-LITE debugging flags set, we want to allocate oversized
4409 4426           * buffers from large pages, and so skip the firewalling.
4410 4427           */
4411 4428          if (use_large_pages &&
4412 4429              ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
4413 4430                  kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
4414 4431                      PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
4415 4432                      0, VMC_DUMPSAFE | VM_SLEEP);
4416 4433          } else {
4417 4434                  kmem_oversize_arena = vmem_create("kmem_oversize",
4418 4435                      NULL, 0, PAGESIZE,
4419 4436                      segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
4420 4437                      kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
4421 4438                      VM_SLEEP);
4422 4439          }
4423 4440  
4424 4441          kmem_cache_init(2, use_large_pages);
4425 4442  
4426 4443          if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
4427 4444                  if (kmem_transaction_log_size == 0)
4428 4445                          kmem_transaction_log_size = kmem_maxavail() / 50;
4429 4446                  kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
4430 4447          }
4431 4448  
4432 4449          if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
4433 4450                  if (kmem_content_log_size == 0)
4434 4451                          kmem_content_log_size = kmem_maxavail() / 50;
4435 4452                  kmem_content_log = kmem_log_init(kmem_content_log_size);
4436 4453          }
4437 4454  
4438 4455          kmem_failure_log = kmem_log_init(kmem_failure_log_size);
4439 4456  
4440 4457          kmem_slab_log = kmem_log_init(kmem_slab_log_size);
4441 4458  
4442 4459          /*
4443 4460           * Initialize STREAMS message caches so allocb() is available.
4444 4461           * This allows us to initialize the logging framework (cmn_err(9F),
4445 4462           * strlog(9F), etc) so we can start recording messages.
4446 4463           */
4447 4464          streams_msg_init();
4448 4465  
4449 4466          /*
4450 4467           * Initialize the ZSD framework in Zones so modules loaded henceforth
4451 4468           * can register their callbacks.
4452 4469           */
4453 4470          zone_zsd_init();
4454 4471  
4455 4472          log_init();
4456 4473          taskq_init();
4457 4474  
4458 4475          /*
4459 4476           * Warn about invalid or dangerous values of kmem_flags.
4460 4477           * Always warn about unsupported values.
4461 4478           */
4462 4479          if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
4463 4480              KMF_CONTENTS | KMF_LITE)) != 0) ||
4464 4481              ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
4465 4482                  cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
4466 4483                      "See the Solaris Tunable Parameters Reference Manual.",
4467 4484                      kmem_flags);
4468 4485  
4469 4486  #ifdef DEBUG
4470 4487          if ((kmem_flags & KMF_DEBUG) == 0)
4471 4488                  cmn_err(CE_NOTE, "kmem debugging disabled.");
4472 4489  #else
4473 4490          /*
4474 4491           * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
4475 4492           * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
4476 4493           * if KMF_AUDIT is set). We should warn the user about the performance
4477 4494           * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
4478 4495           * isn't set (since that disables AUDIT).
4479 4496           */
4480 4497          if (!(kmem_flags & KMF_LITE) &&
4481 4498              (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
4482 4499                  cmn_err(CE_WARN, "High-overhead kmem debugging features "
4483 4500                      "enabled (kmem_flags = 0x%x).  Performance degradation "
4484 4501                      "and large memory overhead possible. See the Solaris "
4485 4502                      "Tunable Parameters Reference Manual.", kmem_flags);
4486 4503  #endif /* not DEBUG */
4487 4504  
4488 4505          kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
4489 4506  
4490 4507          kmem_ready = 1;
4491 4508  
4492 4509          /*
4493 4510           * Initialize the platform-specific aligned/DMA memory allocator.
4494 4511           */
4495 4512          ka_init();
4496 4513  
4497 4514          /*
4498 4515           * Initialize 32-bit ID cache.
4499 4516           */
4500 4517          id32_init();
4501 4518  
4502 4519          /*
4503 4520           * Initialize the networking stack so modules loaded can
4504 4521           * register their callbacks.
4505 4522           */
4506 4523          netstack_init();
4507 4524  }
4508 4525  
4509 4526  static void
4510 4527  kmem_move_init(void)
4511 4528  {
4512 4529          kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4513 4530              sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4514 4531              kmem_msb_arena, KMC_NOHASH);
4515 4532          kmem_move_cache = kmem_cache_create("kmem_move_cache",
4516 4533              sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4517 4534              kmem_msb_arena, KMC_NOHASH);
4518 4535  
4519 4536          /*
4520 4537           * kmem guarantees that move callbacks are sequential and that even
4521 4538           * across multiple caches no two moves ever execute simultaneously.
4522 4539           * Move callbacks are processed on a separate taskq so that client code
4523 4540           * does not interfere with internal maintenance tasks.
4524 4541           */
4525 4542          kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4526 4543              minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4527 4544  }
4528 4545  
4529 4546  void
4530 4547  kmem_thread_init(void)
4531 4548  {
4532 4549          kmem_move_init();
4533 4550          kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
4534 4551              300, INT_MAX, TASKQ_PREPOPULATE);
4535 4552  }
4536 4553  
4537 4554  void
4538 4555  kmem_mp_init(void)
4539 4556  {
4540 4557          mutex_enter(&cpu_lock);
4541 4558          register_cpu_setup_func(kmem_cpu_setup, NULL);
4542 4559          mutex_exit(&cpu_lock);
4543 4560  
4544 4561          kmem_update_timeout(NULL);
4545 4562  
4546 4563          taskq_mp_init();
4547 4564  }
4548 4565  
4549 4566  /*
4550 4567   * Return the slab of the allocated buffer, or NULL if the buffer is not
4551 4568   * allocated. This function may be called with a known slab address to determine
4552 4569   * whether or not the buffer is allocated, or with a NULL slab address to obtain
4553 4570   * an allocated buffer's slab.
4554 4571   */
4555 4572  static kmem_slab_t *
4556 4573  kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4557 4574  {
4558 4575          kmem_bufctl_t *bcp, *bufbcp;
4559 4576  
4560 4577          ASSERT(MUTEX_HELD(&cp->cache_lock));
4561 4578          ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4562 4579  
4563 4580          if (cp->cache_flags & KMF_HASH) {
4564 4581                  for (bcp = *KMEM_HASH(cp, buf);
4565 4582                      (bcp != NULL) && (bcp->bc_addr != buf);
4566 4583                      bcp = bcp->bc_next) {
4567 4584                          continue;
4568 4585                  }
4569 4586                  ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4570 4587                  return (bcp == NULL ? NULL : bcp->bc_slab);
4571 4588          }
4572 4589  
4573 4590          if (sp == NULL) {
4574 4591                  sp = KMEM_SLAB(cp, buf);
4575 4592          }
4576 4593          bufbcp = KMEM_BUFCTL(cp, buf);
4577 4594          for (bcp = sp->slab_head;
4578 4595              (bcp != NULL) && (bcp != bufbcp);
4579 4596              bcp = bcp->bc_next) {
4580 4597                  continue;
4581 4598          }
4582 4599          return (bcp == NULL ? sp : NULL);
4583 4600  }
4584 4601  
4585 4602  static boolean_t
4586 4603  kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4587 4604  {
4588 4605          long refcnt = sp->slab_refcnt;
4589 4606  
4590 4607          ASSERT(cp->cache_defrag != NULL);
4591 4608  
4592 4609          /*
4593 4610           * For code coverage we want to be able to move an object within the
4594 4611           * same slab (the only partial slab) even if allocating the destination
4595 4612           * buffer resulted in a completely allocated slab.
4596 4613           */
4597 4614          if (flags & KMM_DEBUG) {
4598 4615                  return ((flags & KMM_DESPERATE) ||
4599 4616                      ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4600 4617          }
4601 4618  
4602 4619          /* If we're desperate, we don't care if the client said NO. */
4603 4620          if (flags & KMM_DESPERATE) {
4604 4621                  return (refcnt < sp->slab_chunks); /* any partial */
4605 4622          }
4606 4623  
4607 4624          if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4608 4625                  return (B_FALSE);
4609 4626          }
4610 4627  
4611 4628          if ((refcnt == 1) || kmem_move_any_partial) {
4612 4629                  return (refcnt < sp->slab_chunks);
4613 4630          }
4614 4631  
4615 4632          /*
4616 4633           * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4617 4634           * slabs with a progressively higher percentage of used buffers can be
4618 4635           * reclaimed until the cache as a whole is no longer fragmented.
4619 4636           *
4620 4637           *      sp->slab_refcnt   kmd_reclaim_numer
4621 4638           *      --------------- < ------------------
4622 4639           *      sp->slab_chunks   KMEM_VOID_FRACTION
4623 4640           */
4624 4641          return ((refcnt * KMEM_VOID_FRACTION) <
4625 4642              (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4626 4643  }
4627 4644  
4628 4645  /*
4629 4646   * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4630 4647   * or when the buffer is freed.
4631 4648   */
4632 4649  static void
4633 4650  kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4634 4651  {
4635 4652          ASSERT(MUTEX_HELD(&cp->cache_lock));
4636 4653          ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4637 4654  
4638 4655          if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4639 4656                  return;
4640 4657          }
4641 4658  
4642 4659          if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4643 4660                  if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4644 4661                          avl_remove(&cp->cache_partial_slabs, sp);
4645 4662                          sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4646 4663                          sp->slab_stuck_offset = (uint32_t)-1;
4647 4664                          avl_add(&cp->cache_partial_slabs, sp);
4648 4665                  }
4649 4666          } else {
4650 4667                  sp->slab_later_count = 0;
4651 4668                  sp->slab_stuck_offset = (uint32_t)-1;
4652 4669          }
4653 4670  }
4654 4671  
4655 4672  static void
4656 4673  kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4657 4674  {
4658 4675          ASSERT(taskq_member(kmem_move_taskq, curthread));
4659 4676          ASSERT(MUTEX_HELD(&cp->cache_lock));
4660 4677          ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4661 4678  
4662 4679          if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4663 4680                  return;
4664 4681          }
4665 4682  
4666 4683          avl_remove(&cp->cache_partial_slabs, sp);
4667 4684          sp->slab_later_count = 0;
4668 4685          sp->slab_flags |= KMEM_SLAB_NOMOVE;
4669 4686          sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4670 4687          avl_add(&cp->cache_partial_slabs, sp);
4671 4688  }
4672 4689  
4673 4690  static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4674 4691  
4675 4692  /*
4676 4693   * The move callback takes two buffer addresses, the buffer to be moved, and a
4677 4694   * newly allocated and constructed buffer selected by kmem as the destination.
4678 4695   * It also takes the size of the buffer and an optional user argument specified
4679 4696   * at cache creation time. kmem guarantees that the buffer to be moved has not
4680 4697   * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4681 4698   * guarantee the present whereabouts of the buffer to be moved, so it is up to
4682 4699   * the client to safely determine whether or not it is still using the buffer.
4683 4700   * The client must not free either of the buffers passed to the move callback,
4684 4701   * since kmem wants to free them directly to the slab layer. The client response
4685 4702   * tells kmem which of the two buffers to free:
4686 4703   *
4687 4704   * YES          kmem frees the old buffer (the move was successful)
4688 4705   * NO           kmem frees the new buffer, marks the slab of the old buffer
4689 4706   *              non-reclaimable to avoid bothering the client again
4690 4707   * LATER        kmem frees the new buffer, increments slab_later_count
4691 4708   * DONT_KNOW    kmem frees the new buffer
4692 4709   * DONT_NEED    kmem frees both the old buffer and the new buffer
4693 4710   *
4694 4711   * The pending callback argument now being processed contains both of the
4695 4712   * buffers (old and new) passed to the move callback function, the slab of the
4696 4713   * old buffer, and flags related to the move request, such as whether or not the
4697 4714   * system was desperate for memory.
4698 4715   *
4699 4716   * Slabs are not freed while there is a pending callback, but instead are kept
4700 4717   * on a deadlist, which is drained after the last callback completes. This means
4701 4718   * that slabs are safe to access until kmem_move_end(), no matter how many of
4702 4719   * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4703 4720   * zero for as long as the slab remains on the deadlist and until the slab is
4704 4721   * freed.
4705 4722   */
4706 4723  static void
4707 4724  kmem_move_buffer(kmem_move_t *callback)
4708 4725  {
4709 4726          kmem_cbrc_t response;
4710 4727          kmem_slab_t *sp = callback->kmm_from_slab;
4711 4728          kmem_cache_t *cp = sp->slab_cache;
4712 4729          boolean_t free_on_slab;
4713 4730  
4714 4731          ASSERT(taskq_member(kmem_move_taskq, curthread));
4715 4732          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4716 4733          ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4717 4734  
4718 4735          /*
4719 4736           * The number of allocated buffers on the slab may have changed since we
4720 4737           * last checked the slab's reclaimability (when the pending move was
4721 4738           * enqueued), or the client may have responded NO when asked to move
4722 4739           * another buffer on the same slab.
4723 4740           */
4724 4741          if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4725 4742                  kmem_slab_free(cp, callback->kmm_to_buf);
4726 4743                  kmem_move_end(cp, callback);
4727 4744                  return;
4728 4745          }
4729 4746  
4730 4747          /*
4731 4748           * Checking the slab layer is easy, so we might as well do that here
4732 4749           * in case we can avoid bothering the client.
4733 4750           */
4734 4751          mutex_enter(&cp->cache_lock);
4735 4752          free_on_slab = (kmem_slab_allocated(cp, sp,
4736 4753              callback->kmm_from_buf) == NULL);
4737 4754          mutex_exit(&cp->cache_lock);
4738 4755  
4739 4756          if (free_on_slab) {
4740 4757                  kmem_slab_free(cp, callback->kmm_to_buf);
4741 4758                  kmem_move_end(cp, callback);
4742 4759                  return;
4743 4760          }
4744 4761  
4745 4762          if (cp->cache_flags & KMF_BUFTAG) {
4746 4763                  /*
4747 4764                   * Make kmem_cache_alloc_debug() apply the constructor for us.
4748 4765                   */
4749 4766                  if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4750 4767                      KM_NOSLEEP, 1, caller()) != 0) {
4751 4768                          kmem_move_end(cp, callback);
4752 4769                          return;
4753 4770                  }
4754 4771          } else if (cp->cache_constructor != NULL &&
4755 4772              cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4756 4773              KM_NOSLEEP) != 0) {
4757 4774                  atomic_inc_64(&cp->cache_alloc_fail);
4758 4775                  kmem_slab_free(cp, callback->kmm_to_buf);
4759 4776                  kmem_move_end(cp, callback);
4760 4777                  return;
4761 4778          }
4762 4779  
4763 4780          cp->cache_defrag->kmd_callbacks++;
4764 4781          cp->cache_defrag->kmd_thread = curthread;
4765 4782          cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4766 4783          cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4767 4784          DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4768 4785              callback);
4769 4786  
4770 4787          response = cp->cache_move(callback->kmm_from_buf,
4771 4788              callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4772 4789  
4773 4790          DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4774 4791              callback, kmem_cbrc_t, response);
4775 4792          cp->cache_defrag->kmd_thread = NULL;
4776 4793          cp->cache_defrag->kmd_from_buf = NULL;
4777 4794          cp->cache_defrag->kmd_to_buf = NULL;
4778 4795  
4779 4796          if (response == KMEM_CBRC_YES) {
4780 4797                  cp->cache_defrag->kmd_yes++;
4781 4798                  kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4782 4799                  /* slab safe to access until kmem_move_end() */
4783 4800                  if (sp->slab_refcnt == 0)
4784 4801                          cp->cache_defrag->kmd_slabs_freed++;
4785 4802                  mutex_enter(&cp->cache_lock);
4786 4803                  kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4787 4804                  mutex_exit(&cp->cache_lock);
4788 4805                  kmem_move_end(cp, callback);
4789 4806                  return;
4790 4807          }
4791 4808  
4792 4809          switch (response) {
4793 4810          case KMEM_CBRC_NO:
4794 4811                  cp->cache_defrag->kmd_no++;
4795 4812                  mutex_enter(&cp->cache_lock);
4796 4813                  kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4797 4814                  mutex_exit(&cp->cache_lock);
4798 4815                  break;
4799 4816          case KMEM_CBRC_LATER:
4800 4817                  cp->cache_defrag->kmd_later++;
4801 4818                  mutex_enter(&cp->cache_lock);
4802 4819                  if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4803 4820                          mutex_exit(&cp->cache_lock);
4804 4821                          break;
4805 4822                  }
4806 4823  
4807 4824                  if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4808 4825                          kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4809 4826                  } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4810 4827                          sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4811 4828                              callback->kmm_from_buf);
4812 4829                  }
4813 4830                  mutex_exit(&cp->cache_lock);
4814 4831                  break;
4815 4832          case KMEM_CBRC_DONT_NEED:
4816 4833                  cp->cache_defrag->kmd_dont_need++;
4817 4834                  kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4818 4835                  if (sp->slab_refcnt == 0)
4819 4836                          cp->cache_defrag->kmd_slabs_freed++;
4820 4837                  mutex_enter(&cp->cache_lock);
4821 4838                  kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4822 4839                  mutex_exit(&cp->cache_lock);
4823 4840                  break;
4824 4841          case KMEM_CBRC_DONT_KNOW:
4825 4842                  /*
4826 4843                   * If we don't know if we can move this buffer or not, we'll
4827 4844                   * just assume that we can't:  if the buffer is in fact free,
4828 4845                   * then it is sitting in one of the per-CPU magazines or in
4829 4846                   * a full magazine in the depot layer.  Either way, because
4830 4847                   * defrag is induced in the same logic that reaps a cache,
4831 4848                   * it's likely that full magazines will be returned to the
4832 4849                   * system soon (thereby accomplishing what we're trying to
4833 4850                   * accomplish here: return those magazines to their slabs).
4834 4851                   * Given this, any work that we might do now to locate a buffer
4835 4852                   * in a magazine is wasted (and expensive!) work; we bump
4836 4853                   * a counter in this case and otherwise assume that we can't
4837 4854                   * move it.
4838 4855                   */
4839 4856                  cp->cache_defrag->kmd_dont_know++;
4840 4857                  break;
4841 4858          default:
4842 4859                  panic("'%s' (%p) unexpected move callback response %d\n",
4843 4860                      cp->cache_name, (void *)cp, response);
4844 4861          }
4845 4862  
4846 4863          kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4847 4864          kmem_move_end(cp, callback);
4848 4865  }
4849 4866  
4850 4867  /* Return B_FALSE if there is insufficient memory for the move request. */
4851 4868  static boolean_t
4852 4869  kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4853 4870  {
4854 4871          void *to_buf;
4855 4872          avl_index_t index;
4856 4873          kmem_move_t *callback, *pending;
4857 4874          ulong_t n;
4858 4875  
4859 4876          ASSERT(taskq_member(kmem_taskq, curthread));
4860 4877          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4861 4878          ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4862 4879  
4863 4880          callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4864 4881  
4865 4882          if (callback == NULL)
4866 4883                  return (B_FALSE);
4867 4884  
4868 4885          callback->kmm_from_slab = sp;
4869 4886          callback->kmm_from_buf = buf;
4870 4887          callback->kmm_flags = flags;
4871 4888  
4872 4889          mutex_enter(&cp->cache_lock);
4873 4890  
4874 4891          n = avl_numnodes(&cp->cache_partial_slabs);
4875 4892          if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
4876 4893                  mutex_exit(&cp->cache_lock);
4877 4894                  kmem_cache_free(kmem_move_cache, callback);
4878 4895                  return (B_TRUE); /* there is no need for the move request */
4879 4896          }
4880 4897  
4881 4898          pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
4882 4899          if (pending != NULL) {
4883 4900                  /*
4884 4901                   * If the move is already pending and we're desperate now,
4885 4902                   * update the move flags.
4886 4903                   */
4887 4904                  if (flags & KMM_DESPERATE) {
4888 4905                          pending->kmm_flags |= KMM_DESPERATE;
4889 4906                  }
4890 4907                  mutex_exit(&cp->cache_lock);
4891 4908                  kmem_cache_free(kmem_move_cache, callback);
4892 4909                  return (B_TRUE);
4893 4910          }
4894 4911  
4895 4912          to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
4896 4913              B_FALSE);
4897 4914          callback->kmm_to_buf = to_buf;
4898 4915          avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
4899 4916  
4900 4917          mutex_exit(&cp->cache_lock);
4901 4918  
4902 4919          if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
4903 4920              callback, TQ_NOSLEEP)) {
4904 4921                  mutex_enter(&cp->cache_lock);
4905 4922                  avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4906 4923                  mutex_exit(&cp->cache_lock);
4907 4924                  kmem_slab_free(cp, to_buf);
4908 4925                  kmem_cache_free(kmem_move_cache, callback);
4909 4926                  return (B_FALSE);
4910 4927          }
4911 4928  
4912 4929          return (B_TRUE);
4913 4930  }
4914 4931  
4915 4932  static void
4916 4933  kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
4917 4934  {
4918 4935          avl_index_t index;
4919 4936  
4920 4937          ASSERT(cp->cache_defrag != NULL);
4921 4938          ASSERT(taskq_member(kmem_move_taskq, curthread));
4922 4939          ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4923 4940  
4924 4941          mutex_enter(&cp->cache_lock);
4925 4942          VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
4926 4943              callback->kmm_from_buf, &index) != NULL);
4927 4944          avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4928 4945          if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
4929 4946                  list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4930 4947                  kmem_slab_t *sp;
4931 4948  
4932 4949                  /*
4933 4950                   * The last pending move completed. Release all slabs from the
4934 4951                   * front of the dead list except for any slab at the tail that
4935 4952                   * needs to be released from the context of kmem_move_buffers().
4936 4953                   * kmem deferred unmapping the buffers on these slabs in order
4937 4954                   * to guarantee that buffers passed to the move callback have
4938 4955                   * been touched only by kmem or by the client itself.
4939 4956                   */
4940 4957                  while ((sp = list_remove_head(deadlist)) != NULL) {
4941 4958                          if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
4942 4959                                  list_insert_tail(deadlist, sp);
4943 4960                                  break;
4944 4961                          }
4945 4962                          cp->cache_defrag->kmd_deadcount--;
4946 4963                          cp->cache_slab_destroy++;
4947 4964                          mutex_exit(&cp->cache_lock);
4948 4965                          kmem_slab_destroy(cp, sp);
4949 4966                          mutex_enter(&cp->cache_lock);
4950 4967                  }
4951 4968          }
4952 4969          mutex_exit(&cp->cache_lock);
4953 4970          kmem_cache_free(kmem_move_cache, callback);
4954 4971  }
4955 4972  
4956 4973  /*
4957 4974   * Move buffers from least used slabs first by scanning backwards from the end
4958 4975   * of the partial slab list. Scan at most max_scan candidate slabs and move
4959 4976   * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
4960 4977   * If desperate to reclaim memory, move buffers from any partial slab, otherwise
4961 4978   * skip slabs with a ratio of allocated buffers at or above the current
4962 4979   * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
4963 4980   * scan is aborted) so that the caller can adjust the reclaimability threshold
4964 4981   * depending on how many reclaimable slabs it finds.
4965 4982   *
4966 4983   * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
4967 4984   * move request, since it is not valid for kmem_move_begin() to call
4968 4985   * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
4969 4986   */
4970 4987  static int
4971 4988  kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
4972 4989      int flags)
4973 4990  {
4974 4991          kmem_slab_t *sp;
4975 4992          void *buf;
4976 4993          int i, j; /* slab index, buffer index */
4977 4994          int s; /* reclaimable slabs */
4978 4995          int b; /* allocated (movable) buffers on reclaimable slab */
4979 4996          boolean_t success;
4980 4997          int refcnt;
4981 4998          int nomove;
4982 4999  
4983 5000          ASSERT(taskq_member(kmem_taskq, curthread));
4984 5001          ASSERT(MUTEX_HELD(&cp->cache_lock));
4985 5002          ASSERT(kmem_move_cache != NULL);
4986 5003          ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
4987 5004          ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
4988 5005              avl_numnodes(&cp->cache_partial_slabs) > 1);
4989 5006  
4990 5007          if (kmem_move_blocked) {
4991 5008                  return (0);
4992 5009          }
4993 5010  
4994 5011          if (kmem_move_fulltilt) {
4995 5012                  flags |= KMM_DESPERATE;
4996 5013          }
4997 5014  
4998 5015          if (max_scan == 0 || (flags & KMM_DESPERATE)) {
4999 5016                  /*
5000 5017                   * Scan as many slabs as needed to find the desired number of
5001 5018                   * candidate slabs.
5002 5019                   */
5003 5020                  max_scan = (size_t)-1;
5004 5021          }
5005 5022  
5006 5023          if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
5007 5024                  /* Find as many candidate slabs as possible. */
5008 5025                  max_slabs = (size_t)-1;
5009 5026          }
5010 5027  
5011 5028          sp = avl_last(&cp->cache_partial_slabs);
5012 5029          ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
5013 5030          for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
5014 5031              ((sp != avl_first(&cp->cache_partial_slabs)) ||
5015 5032              (flags & KMM_DEBUG));
5016 5033              sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
5017 5034  
5018 5035                  if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
5019 5036                          continue;
5020 5037                  }
5021 5038                  s++;
5022 5039  
5023 5040                  /* Look for allocated buffers to move. */
5024 5041                  for (j = 0, b = 0, buf = sp->slab_base;
5025 5042                      (j < sp->slab_chunks) && (b < sp->slab_refcnt);
5026 5043                      buf = (((char *)buf) + cp->cache_chunksize), j++) {
5027 5044  
5028 5045                          if (kmem_slab_allocated(cp, sp, buf) == NULL) {
5029 5046                                  continue;
5030 5047                          }
5031 5048  
5032 5049                          b++;
5033 5050  
5034 5051                          /*
5035 5052                           * Prevent the slab from being destroyed while we drop
5036 5053                           * cache_lock and while the pending move is not yet
5037 5054                           * registered. Flag the pending move while
5038 5055                           * kmd_moves_pending may still be empty, since we can't
5039 5056                           * yet rely on a non-zero pending move count to prevent
5040 5057                           * the slab from being destroyed.
5041 5058                           */
5042 5059                          ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5043 5060                          sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5044 5061                          /*
5045 5062                           * Recheck refcnt and nomove after reacquiring the lock,
5046 5063                           * since these control the order of partial slabs, and
5047 5064                           * we want to know if we can pick up the scan where we
5048 5065                           * left off.
5049 5066                           */
5050 5067                          refcnt = sp->slab_refcnt;
5051 5068                          nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
5052 5069                          mutex_exit(&cp->cache_lock);
5053 5070  
5054 5071                          success = kmem_move_begin(cp, sp, buf, flags);
5055 5072  
5056 5073                          /*
5057 5074                           * Now, before the lock is reacquired, kmem could
5058 5075                           * process all pending move requests and purge the
5059 5076                           * deadlist, so that upon reacquiring the lock, sp has
5060 5077                           * been remapped. Or, the client may free all the
5061 5078                           * objects on the slab while the pending moves are still
5062 5079                           * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5063 5080                           * flag causes the slab to be put at the end of the
5064 5081                           * deadlist and prevents it from being destroyed, since
5065 5082                           * we plan to destroy it here after reacquiring the
5066 5083                           * lock.
5067 5084                           */
5068 5085                          mutex_enter(&cp->cache_lock);
5069 5086                          ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5070 5087                          sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5071 5088  
5072 5089                          if (sp->slab_refcnt == 0) {
5073 5090                                  list_t *deadlist =
5074 5091                                      &cp->cache_defrag->kmd_deadlist;
5075 5092                                  list_remove(deadlist, sp);
5076 5093  
5077 5094                                  if (!avl_is_empty(
5078 5095                                      &cp->cache_defrag->kmd_moves_pending)) {
5079 5096                                          /*
5080 5097                                           * A pending move makes it unsafe to
5081 5098                                           * destroy the slab, because even though
5082 5099                                           * the move is no longer needed, the
5083 5100                                           * context where that is determined
5084 5101                                           * requires the slab to exist.
5085 5102                                           * Fortunately, a pending move also
5086 5103                                           * means we don't need to destroy the
5087 5104                                           * slab here, since it will get
5088 5105                                           * destroyed along with any other slabs
5089 5106                                           * on the deadlist after the last
5090 5107                                           * pending move completes.
5091 5108                                           */
5092 5109                                          list_insert_head(deadlist, sp);
5093 5110                                          return (-1);
5094 5111                                  }
5095 5112  
5096 5113                                  /*
5097 5114                                   * Destroy the slab now if it was completely
5098 5115                                   * freed while we dropped cache_lock and there
5099 5116                                   * are no pending moves. Since slab_refcnt
5100 5117                                   * cannot change once it reaches zero, no new
5101 5118                                   * pending moves from that slab are possible.
5102 5119                                   */
5103 5120                                  cp->cache_defrag->kmd_deadcount--;
5104 5121                                  cp->cache_slab_destroy++;
5105 5122                                  mutex_exit(&cp->cache_lock);
5106 5123                                  kmem_slab_destroy(cp, sp);
5107 5124                                  mutex_enter(&cp->cache_lock);
5108 5125                                  /*
5109 5126                                   * Since we can't pick up the scan where we left
5110 5127                                   * off, abort the scan and say nothing about the
5111 5128                                   * number of reclaimable slabs.
5112 5129                                   */
5113 5130                                  return (-1);
5114 5131                          }
5115 5132  
5116 5133                          if (!success) {
5117 5134                                  /*
5118 5135                                   * Abort the scan if there is not enough memory
5119 5136                                   * for the request and say nothing about the
5120 5137                                   * number of reclaimable slabs.
5121 5138                                   */
5122 5139                                  return (-1);
5123 5140                          }
5124 5141  
5125 5142                          /*
5126 5143                           * The slab's position changed while the lock was
5127 5144                           * dropped, so we don't know where we are in the
5128 5145                           * sequence any more.
5129 5146                           */
5130 5147                          if (sp->slab_refcnt != refcnt) {
5131 5148                                  /*
5132 5149                                   * If this is a KMM_DEBUG move, the slab_refcnt
5133 5150                                   * may have changed because we allocated a
5134 5151                                   * destination buffer on the same slab. In that
5135 5152                                   * case, we're not interested in counting it.
5136 5153                                   */
5137 5154                                  return (-1);
5138 5155                          }
5139 5156                          if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove)
5140 5157                                  return (-1);
5141 5158  
5142 5159                          /*
5143 5160                           * Generating a move request allocates a destination
5144 5161                           * buffer from the slab layer, bumping the first partial
5145 5162                           * slab if it is completely allocated. If the current
5146 5163                           * slab becomes the first partial slab as a result, we
5147 5164                           * can't continue to scan backwards.
5148 5165                           *
5149 5166                           * If this is a KMM_DEBUG move and we allocated the
5150 5167                           * destination buffer from the last partial slab, then
5151 5168                           * the buffer we're moving is on the same slab and our
5152 5169                           * slab_refcnt has changed, causing us to return before
5153 5170                           * reaching here if there are no partial slabs left.
5154 5171                           */
5155 5172                          ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5156 5173                          if (sp == avl_first(&cp->cache_partial_slabs)) {
5157 5174                                  /*
5158 5175                                   * We're not interested in a second KMM_DEBUG
5159 5176                                   * move.
5160 5177                                   */
5161 5178                                  goto end_scan;
5162 5179                          }
5163 5180                  }
5164 5181          }
5165 5182  end_scan:
5166 5183  
5167 5184          return (s);
5168 5185  }
5169 5186  
5170 5187  typedef struct kmem_move_notify_args {
5171 5188          kmem_cache_t *kmna_cache;
5172 5189          void *kmna_buf;
5173 5190  } kmem_move_notify_args_t;
5174 5191  
5175 5192  static void
5176 5193  kmem_cache_move_notify_task(void *arg)
5177 5194  {
5178 5195          kmem_move_notify_args_t *args = arg;
5179 5196          kmem_cache_t *cp = args->kmna_cache;
5180 5197          void *buf = args->kmna_buf;
5181 5198          kmem_slab_t *sp;
5182 5199  
5183 5200          ASSERT(taskq_member(kmem_taskq, curthread));
5184 5201          ASSERT(list_link_active(&cp->cache_link));
5185 5202  
5186 5203          kmem_free(args, sizeof (kmem_move_notify_args_t));
5187 5204          mutex_enter(&cp->cache_lock);
5188 5205          sp = kmem_slab_allocated(cp, NULL, buf);
5189 5206  
5190 5207          /* Ignore the notification if the buffer is no longer allocated. */
5191 5208          if (sp == NULL) {
5192 5209                  mutex_exit(&cp->cache_lock);
5193 5210                  return;
5194 5211          }
5195 5212  
5196 5213          /* Ignore the notification if there's no reason to move the buffer. */
5197 5214          if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5198 5215                  /*
5199 5216                   * So far the notification is not ignored. Ignore the
5200 5217                   * notification if the slab is not marked by an earlier refusal
5201 5218                   * to move a buffer.
5202 5219                   */
5203 5220                  if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5204 5221                      (sp->slab_later_count == 0)) {
5205 5222                          mutex_exit(&cp->cache_lock);
5206 5223                          return;
5207 5224                  }
5208 5225  
5209 5226                  kmem_slab_move_yes(cp, sp, buf);
5210 5227                  ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5211 5228                  sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5212 5229                  mutex_exit(&cp->cache_lock);
5213 5230                  /* see kmem_move_buffers() about dropping the lock */
5214 5231                  (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5215 5232                  mutex_enter(&cp->cache_lock);
5216 5233                  ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5217 5234                  sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5218 5235                  if (sp->slab_refcnt == 0) {
5219 5236                          list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5220 5237                          list_remove(deadlist, sp);
5221 5238  
5222 5239                          if (!avl_is_empty(
5223 5240                              &cp->cache_defrag->kmd_moves_pending)) {
5224 5241                                  list_insert_head(deadlist, sp);
5225 5242                                  mutex_exit(&cp->cache_lock);
5226 5243                                  return;
5227 5244                          }
5228 5245  
5229 5246                          cp->cache_defrag->kmd_deadcount--;
5230 5247                          cp->cache_slab_destroy++;
5231 5248                          mutex_exit(&cp->cache_lock);
5232 5249                          kmem_slab_destroy(cp, sp);
5233 5250                          return;
5234 5251                  }
5235 5252          } else {
5236 5253                  kmem_slab_move_yes(cp, sp, buf);
5237 5254          }
5238 5255          mutex_exit(&cp->cache_lock);
5239 5256  }
5240 5257  
5241 5258  void
5242 5259  kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5243 5260  {
5244 5261          kmem_move_notify_args_t *args;
5245 5262  
5246 5263          args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5247 5264          if (args != NULL) {
5248 5265                  args->kmna_cache = cp;
5249 5266                  args->kmna_buf = buf;
5250 5267                  if (!taskq_dispatch(kmem_taskq,
5251 5268                      (task_func_t *)kmem_cache_move_notify_task, args,
5252 5269                      TQ_NOSLEEP))
5253 5270                          kmem_free(args, sizeof (kmem_move_notify_args_t));
5254 5271          }
5255 5272  }
5256 5273  
5257 5274  static void
5258 5275  kmem_cache_defrag(kmem_cache_t *cp)
5259 5276  {
5260 5277          size_t n;
5261 5278  
5262 5279          ASSERT(cp->cache_defrag != NULL);
5263 5280  
5264 5281          mutex_enter(&cp->cache_lock);
5265 5282          n = avl_numnodes(&cp->cache_partial_slabs);
5266 5283          if (n > 1) {
5267 5284                  /* kmem_move_buffers() drops and reacquires cache_lock */
5268 5285                  cp->cache_defrag->kmd_defrags++;
5269 5286                  (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5270 5287          }
5271 5288          mutex_exit(&cp->cache_lock);
5272 5289  }
5273 5290  
5274 5291  /* Is this cache above the fragmentation threshold? */
5275 5292  static boolean_t
5276 5293  kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5277 5294  {
5278 5295          /*
5279 5296           *      nfree           kmem_frag_numer
5280 5297           * ------------------ > ---------------
5281 5298           * cp->cache_buftotal   kmem_frag_denom
5282 5299           */
5283 5300          return ((nfree * kmem_frag_denom) >
5284 5301              (cp->cache_buftotal * kmem_frag_numer));
5285 5302  }
5286 5303  
5287 5304  static boolean_t
5288 5305  kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5289 5306  {
5290 5307          boolean_t fragmented;
5291 5308          uint64_t nfree;
5292 5309  
5293 5310          ASSERT(MUTEX_HELD(&cp->cache_lock));
5294 5311          *doreap = B_FALSE;
5295 5312  
5296 5313          if (kmem_move_fulltilt) {
5297 5314                  if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5298 5315                          return (B_TRUE);
5299 5316                  }
5300 5317          } else {
5301 5318                  if ((cp->cache_complete_slab_count + avl_numnodes(
5302 5319                      &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5303 5320                          return (B_FALSE);
5304 5321                  }
5305 5322          }
5306 5323  
5307 5324          nfree = cp->cache_bufslab;
5308 5325          fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5309 5326              kmem_cache_frag_threshold(cp, nfree));
5310 5327  
5311 5328          /*
5312 5329           * Free buffers in the magazine layer appear allocated from the point of
5313 5330           * view of the slab layer. We want to know if the slab layer would
5314 5331           * appear fragmented if we included free buffers from magazines that
5315 5332           * have fallen out of the working set.
5316 5333           */
5317 5334          if (!fragmented) {
5318 5335                  long reap;
5319 5336  
5320 5337                  mutex_enter(&cp->cache_depot_lock);
5321 5338                  reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5322 5339                  reap = MIN(reap, cp->cache_full.ml_total);
5323 5340                  mutex_exit(&cp->cache_depot_lock);
5324 5341  
5325 5342                  nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5326 5343                  if (kmem_cache_frag_threshold(cp, nfree)) {
5327 5344                          *doreap = B_TRUE;
5328 5345                  }
5329 5346          }
5330 5347  
5331 5348          return (fragmented);
5332 5349  }
5333 5350  
5334 5351  /* Called periodically from kmem_taskq */
5335 5352  static void
5336 5353  kmem_cache_scan(kmem_cache_t *cp)
5337 5354  {
5338 5355          boolean_t reap = B_FALSE;
5339 5356          kmem_defrag_t *kmd;
5340 5357  
5341 5358          ASSERT(taskq_member(kmem_taskq, curthread));
5342 5359  
5343 5360          mutex_enter(&cp->cache_lock);
5344 5361  
5345 5362          kmd = cp->cache_defrag;
5346 5363          if (kmd->kmd_consolidate > 0) {
5347 5364                  kmd->kmd_consolidate--;
5348 5365                  mutex_exit(&cp->cache_lock);
5349 5366                  kmem_cache_reap(cp);
5350 5367                  return;
5351 5368          }
5352 5369  
5353 5370          if (kmem_cache_is_fragmented(cp, &reap)) {
5354 5371                  size_t slabs_found;
5355 5372  
5356 5373                  /*
5357 5374                   * Consolidate reclaimable slabs from the end of the partial
5358 5375                   * slab list (scan at most kmem_reclaim_scan_range slabs to find
5359 5376                   * reclaimable slabs). Keep track of how many candidate slabs we
5360 5377                   * looked for and how many we actually found so we can adjust
5361 5378                   * the definition of a candidate slab if we're having trouble
5362 5379                   * finding them.
5363 5380                   *
5364 5381                   * kmem_move_buffers() drops and reacquires cache_lock.
5365 5382                   */
5366 5383                  kmd->kmd_scans++;
5367 5384                  slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5368 5385                      kmem_reclaim_max_slabs, 0);
5369 5386                  if (slabs_found >= 0) {
5370 5387                          kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5371 5388                          kmd->kmd_slabs_found += slabs_found;
5372 5389                  }
5373 5390  
5374 5391                  if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5375 5392                          kmd->kmd_tries = 0;
5376 5393  
5377 5394                          /*
5378 5395                           * If we had difficulty finding candidate slabs in
5379 5396                           * previous scans, adjust the threshold so that
5380 5397                           * candidates are easier to find.
5381 5398                           */
5382 5399                          if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5383 5400                                  kmem_adjust_reclaim_threshold(kmd, -1);
5384 5401                          } else if ((kmd->kmd_slabs_found * 2) <
5385 5402                              kmd->kmd_slabs_sought) {
5386 5403                                  kmem_adjust_reclaim_threshold(kmd, 1);
5387 5404                          }
5388 5405                          kmd->kmd_slabs_sought = 0;
5389 5406                          kmd->kmd_slabs_found = 0;
5390 5407                  }
5391 5408          } else {
5392 5409                  kmem_reset_reclaim_threshold(cp->cache_defrag);
5393 5410  #ifdef  DEBUG
5394 5411                  if (!avl_is_empty(&cp->cache_partial_slabs)) {
5395 5412                          /*
5396 5413                           * In a debug kernel we want the consolidator to
5397 5414                           * run occasionally even when there is plenty of
5398 5415                           * memory.
5399 5416                           */
5400 5417                          uint16_t debug_rand;
5401 5418  
5402 5419                          (void) random_get_bytes((uint8_t *)&debug_rand, 2);
5403 5420                          if (!kmem_move_noreap &&
5404 5421                              ((debug_rand % kmem_mtb_reap) == 0)) {
5405 5422                                  mutex_exit(&cp->cache_lock);
5406 5423                                  kmem_cache_reap(cp);
5407 5424                                  return;
5408 5425                          } else if ((debug_rand % kmem_mtb_move) == 0) {
5409 5426                                  kmd->kmd_scans++;
5410 5427                                  (void) kmem_move_buffers(cp,
5411 5428                                      kmem_reclaim_scan_range, 1, KMM_DEBUG);
5412 5429                          }
5413 5430                  }
5414 5431  #endif  /* DEBUG */
5415 5432          }
5416 5433  
5417 5434          mutex_exit(&cp->cache_lock);
5418 5435  
5419 5436          if (reap)
5420 5437                  kmem_depot_ws_reap(cp);
5421 5438  }
  
    | 
      ↓ open down ↓ | 
    2148 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX