1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2018, Joyent, Inc.
  24  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
  25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
  26  * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
  27  */
  28 
  29 /*
  30  * DVA-based Adjustable Replacement Cache
  31  *
  32  * While much of the theory of operation used here is
  33  * based on the self-tuning, low overhead replacement cache
  34  * presented by Megiddo and Modha at FAST 2003, there are some
  35  * significant differences:
  36  *
  37  * 1. The Megiddo and Modha model assumes any page is evictable.
  38  * Pages in its cache cannot be "locked" into memory.  This makes
  39  * the eviction algorithm simple: evict the last page in the list.
  40  * This also make the performance characteristics easy to reason
  41  * about.  Our cache is not so simple.  At any given moment, some
  42  * subset of the blocks in the cache are un-evictable because we
  43  * have handed out a reference to them.  Blocks are only evictable
  44  * when there are no external references active.  This makes
  45  * eviction far more problematic:  we choose to evict the evictable
  46  * blocks that are the "lowest" in the list.
  47  *
  48  * There are times when it is not possible to evict the requested
  49  * space.  In these circumstances we are unable to adjust the cache
  50  * size.  To prevent the cache growing unbounded at these times we
  51  * implement a "cache throttle" that slows the flow of new data
  52  * into the cache until we can make space available.
  53  *
  54  * 2. The Megiddo and Modha model assumes a fixed cache size.
  55  * Pages are evicted when the cache is full and there is a cache
  56  * miss.  Our model has a variable sized cache.  It grows with
  57  * high use, but also tries to react to memory pressure from the
  58  * operating system: decreasing its size when system memory is
  59  * tight.
  60  *
  61  * 3. The Megiddo and Modha model assumes a fixed page size. All
  62  * elements of the cache are therefore exactly the same size.  So
  63  * when adjusting the cache size following a cache miss, its simply
  64  * a matter of choosing a single page to evict.  In our model, we
  65  * have variable sized cache blocks (rangeing from 512 bytes to
  66  * 128K bytes).  We therefore choose a set of blocks to evict to make
  67  * space for a cache miss that approximates as closely as possible
  68  * the space used by the new block.
  69  *
  70  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
  71  * by N. Megiddo & D. Modha, FAST 2003
  72  */
  73 
  74 /*
  75  * The locking model:
  76  *
  77  * A new reference to a cache buffer can be obtained in two
  78  * ways: 1) via a hash table lookup using the DVA as a key,
  79  * or 2) via one of the ARC lists.  The arc_read() interface
  80  * uses method 1, while the internal ARC algorithms for
  81  * adjusting the cache use method 2.  We therefore provide two
  82  * types of locks: 1) the hash table lock array, and 2) the
  83  * ARC list locks.
  84  *
  85  * Buffers do not have their own mutexes, rather they rely on the
  86  * hash table mutexes for the bulk of their protection (i.e. most
  87  * fields in the arc_buf_hdr_t are protected by these mutexes).
  88  *
  89  * buf_hash_find() returns the appropriate mutex (held) when it
  90  * locates the requested buffer in the hash table.  It returns
  91  * NULL for the mutex if the buffer was not in the table.
  92  *
  93  * buf_hash_remove() expects the appropriate hash mutex to be
  94  * already held before it is invoked.
  95  *
  96  * Each ARC state also has a mutex which is used to protect the
  97  * buffer list associated with the state.  When attempting to
  98  * obtain a hash table lock while holding an ARC list lock you
  99  * must use: mutex_tryenter() to avoid deadlock.  Also note that
 100  * the active state mutex must be held before the ghost state mutex.
 101  *
 102  * Note that the majority of the performance stats are manipulated
 103  * with atomic operations.
 104  *
 105  * The L2ARC uses the l2ad_mtx on each vdev for the following:
 106  *
 107  *      - L2ARC buflist creation
 108  *      - L2ARC buflist eviction
 109  *      - L2ARC write completion, which walks L2ARC buflists
 110  *      - ARC header destruction, as it removes from L2ARC buflists
 111  *      - ARC header release, as it removes from L2ARC buflists
 112  */
 113 
 114 /*
 115  * ARC operation:
 116  *
 117  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
 118  * This structure can point either to a block that is still in the cache or to
 119  * one that is only accessible in an L2 ARC device, or it can provide
 120  * information about a block that was recently evicted. If a block is
 121  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
 122  * information to retrieve it from the L2ARC device. This information is
 123  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
 124  * that is in this state cannot access the data directly.
 125  *
 126  * Blocks that are actively being referenced or have not been evicted
 127  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
 128  * the arc_buf_hdr_t that will point to the data block in memory. A block can
 129  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
 130  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
 131  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
 132  *
 133  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
 134  * ability to store the physical data (b_pabd) associated with the DVA of the
 135  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
 136  * it will match its on-disk compression characteristics. This behavior can be
 137  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
 138  * compressed ARC functionality is disabled, the b_pabd will point to an
 139  * uncompressed version of the on-disk data.
 140  *
 141  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
 142  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
 143  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
 144  * consumer. The ARC will provide references to this data and will keep it
 145  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
 146  * data block and will evict any arc_buf_t that is no longer referenced. The
 147  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
 148  * "overhead_size" kstat.
 149  *
 150  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
 151  * compressed form. The typical case is that consumers will want uncompressed
 152  * data, and when that happens a new data buffer is allocated where the data is
 153  * decompressed for them to use. Currently the only consumer who wants
 154  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
 155  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
 156  * with the arc_buf_hdr_t.
 157  *
 158  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
 159  * first one is owned by a compressed send consumer (and therefore references
 160  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
 161  * used by any other consumer (and has its own uncompressed copy of the data
 162  * buffer).
 163  *
 164  *   arc_buf_hdr_t
 165  *   +-----------+
 166  *   | fields    |
 167  *   | common to |
 168  *   | L1- and   |
 169  *   | L2ARC     |
 170  *   +-----------+
 171  *   | l2arc_buf_hdr_t
 172  *   |           |
 173  *   +-----------+
 174  *   | l1arc_buf_hdr_t
 175  *   |           |              arc_buf_t
 176  *   | b_buf     +------------>+-----------+      arc_buf_t
 177  *   | b_pabd    +-+           |b_next     +---->+-----------+
 178  *   +-----------+ |           |-----------|     |b_next     +-->NULL
 179  *                 |           |b_comp = T |     +-----------+
 180  *                 |           |b_data     +-+   |b_comp = F |
 181  *                 |           +-----------+ |   |b_data     +-+
 182  *                 +->+------+               |   +-----------+ |
 183  *        compressed  |      |               |                 |
 184  *           data     |      |<--------------+                 | uncompressed
 185  *                    +------+          compressed,            |     data
 186  *                                        shared               +-->+------+
 187  *                                         data                    |      |
 188  *                                                                 |      |
 189  *                                                                 +------+
 190  *
 191  * When a consumer reads a block, the ARC must first look to see if the
 192  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
 193  * arc_buf_t and either copies uncompressed data into a new data buffer from an
 194  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
 195  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
 196  * hdr is compressed and the desired compression characteristics of the
 197  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
 198  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
 199  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
 200  * be anywhere in the hdr's list.
 201  *
 202  * The diagram below shows an example of an uncompressed ARC hdr that is
 203  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
 204  * the last element in the buf list):
 205  *
 206  *                arc_buf_hdr_t
 207  *                +-----------+
 208  *                |           |
 209  *                |           |
 210  *                |           |
 211  *                +-----------+
 212  * l2arc_buf_hdr_t|           |
 213  *                |           |
 214  *                +-----------+
 215  * l1arc_buf_hdr_t|           |
 216  *                |           |                 arc_buf_t    (shared)
 217  *                |    b_buf  +------------>+---------+      arc_buf_t
 218  *                |           |             |b_next   +---->+---------+
 219  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
 220  *                +-----------+ |           |         |     +---------+
 221  *                              |           |b_data   +-+   |         |
 222  *                              |           +---------+ |   |b_data   +-+
 223  *                              +->+------+             |   +---------+ |
 224  *                                 |      |             |               |
 225  *                   uncompressed  |      |             |               |
 226  *                        data     +------+             |               |
 227  *                                    ^                 +->+------+     |
 228  *                                    |       uncompressed |      |     |
 229  *                                    |           data     |      |     |
 230  *                                    |                    +------+     |
 231  *                                    +---------------------------------+
 232  *
 233  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
 234  * since the physical block is about to be rewritten. The new data contents
 235  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
 236  * it may compress the data before writing it to disk. The ARC will be called
 237  * with the transformed data and will bcopy the transformed on-disk block into
 238  * a newly allocated b_pabd. Writes are always done into buffers which have
 239  * either been loaned (and hence are new and don't have other readers) or
 240  * buffers which have been released (and hence have their own hdr, if there
 241  * were originally other readers of the buf's original hdr). This ensures that
 242  * the ARC only needs to update a single buf and its hdr after a write occurs.
 243  *
 244  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
 245  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
 246  * that when compressed ARC is enabled that the L2ARC blocks are identical
 247  * to the on-disk block in the main data pool. This provides a significant
 248  * advantage since the ARC can leverage the bp's checksum when reading from the
 249  * L2ARC to determine if the contents are valid. However, if the compressed
 250  * ARC is disabled, then the L2ARC's block must be transformed to look
 251  * like the physical block in the main data pool before comparing the
 252  * checksum and determining its validity.
 253  */
 254 
 255 #include <sys/spa.h>
 256 #include <sys/zio.h>
 257 #include <sys/spa_impl.h>
 258 #include <sys/zio_compress.h>
 259 #include <sys/zio_checksum.h>
 260 #include <sys/zfs_context.h>
 261 #include <sys/arc.h>
 262 #include <sys/refcount.h>
 263 #include <sys/vdev.h>
 264 #include <sys/vdev_impl.h>
 265 #include <sys/dsl_pool.h>
 266 #include <sys/zio_checksum.h>
 267 #include <sys/multilist.h>
 268 #include <sys/abd.h>
 269 #ifdef _KERNEL
 270 #include <sys/vmsystm.h>
 271 #include <vm/anon.h>
 272 #include <sys/fs/swapnode.h>
 273 #include <sys/dnlc.h>
 274 #endif
 275 #include <sys/callb.h>
 276 #include <sys/kstat.h>
 277 #include <zfs_fletcher.h>
 278 
 279 #ifndef _KERNEL
 280 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
 281 boolean_t arc_watch = B_FALSE;
 282 int arc_procfd;
 283 #endif
 284 
 285 static kmutex_t         arc_reclaim_lock;
 286 static kcondvar_t       arc_reclaim_thread_cv;
 287 static boolean_t        arc_reclaim_thread_exit;
 288 static kcondvar_t       arc_reclaim_waiters_cv;
 289 
 290 uint_t arc_reduce_dnlc_percent = 3;
 291 
 292 /*
 293  * The number of headers to evict in arc_evict_state_impl() before
 294  * dropping the sublist lock and evicting from another sublist. A lower
 295  * value means we're more likely to evict the "correct" header (i.e. the
 296  * oldest header in the arc state), but comes with higher overhead
 297  * (i.e. more invocations of arc_evict_state_impl()).
 298  */
 299 int zfs_arc_evict_batch_limit = 10;
 300 
 301 /* number of seconds before growing cache again */
 302 static int              arc_grow_retry = 60;
 303 
 304 /* number of milliseconds before attempting a kmem-cache-reap */
 305 static int              arc_kmem_cache_reap_retry_ms = 1000;
 306 
 307 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
 308 int             zfs_arc_overflow_shift = 8;
 309 
 310 /* shift of arc_c for calculating both min and max arc_p */
 311 static int              arc_p_min_shift = 4;
 312 
 313 /* log2(fraction of arc to reclaim) */
 314 static int              arc_shrink_shift = 7;
 315 
 316 /*
 317  * log2(fraction of ARC which must be free to allow growing).
 318  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
 319  * when reading a new block into the ARC, we will evict an equal-sized block
 320  * from the ARC.
 321  *
 322  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
 323  * we will still not allow it to grow.
 324  */
 325 int                     arc_no_grow_shift = 5;
 326 
 327 
 328 /*
 329  * minimum lifespan of a prefetch block in clock ticks
 330  * (initialized in arc_init())
 331  */
 332 static int              arc_min_prefetch_lifespan;
 333 
 334 /*
 335  * If this percent of memory is free, don't throttle.
 336  */
 337 int arc_lotsfree_percent = 10;
 338 
 339 static int arc_dead;
 340 
 341 /*
 342  * The arc has filled available memory and has now warmed up.
 343  */
 344 static boolean_t arc_warm;
 345 
 346 /*
 347  * log2 fraction of the zio arena to keep free.
 348  */
 349 int arc_zio_arena_free_shift = 2;
 350 
 351 /*
 352  * These tunables are for performance analysis.
 353  */
 354 uint64_t zfs_arc_max;
 355 uint64_t zfs_arc_min;
 356 uint64_t zfs_arc_meta_limit = 0;
 357 uint64_t zfs_arc_meta_min = 0;
 358 int zfs_arc_grow_retry = 0;
 359 int zfs_arc_shrink_shift = 0;
 360 int zfs_arc_p_min_shift = 0;
 361 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
 362 
 363 boolean_t zfs_compressed_arc_enabled = B_TRUE;
 364 
 365 /*
 366  * Note that buffers can be in one of 6 states:
 367  *      ARC_anon        - anonymous (discussed below)
 368  *      ARC_mru         - recently used, currently cached
 369  *      ARC_mru_ghost   - recentely used, no longer in cache
 370  *      ARC_mfu         - frequently used, currently cached
 371  *      ARC_mfu_ghost   - frequently used, no longer in cache
 372  *      ARC_l2c_only    - exists in L2ARC but not other states
 373  * When there are no active references to the buffer, they are
 374  * are linked onto a list in one of these arc states.  These are
 375  * the only buffers that can be evicted or deleted.  Within each
 376  * state there are multiple lists, one for meta-data and one for
 377  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
 378  * etc.) is tracked separately so that it can be managed more
 379  * explicitly: favored over data, limited explicitly.
 380  *
 381  * Anonymous buffers are buffers that are not associated with
 382  * a DVA.  These are buffers that hold dirty block copies
 383  * before they are written to stable storage.  By definition,
 384  * they are "ref'd" and are considered part of arc_mru
 385  * that cannot be freed.  Generally, they will aquire a DVA
 386  * as they are written and migrate onto the arc_mru list.
 387  *
 388  * The ARC_l2c_only state is for buffers that are in the second
 389  * level ARC but no longer in any of the ARC_m* lists.  The second
 390  * level ARC itself may also contain buffers that are in any of
 391  * the ARC_m* states - meaning that a buffer can exist in two
 392  * places.  The reason for the ARC_l2c_only state is to keep the
 393  * buffer header in the hash table, so that reads that hit the
 394  * second level ARC benefit from these fast lookups.
 395  */
 396 
 397 typedef struct arc_state {
 398         /*
 399          * list of evictable buffers
 400          */
 401         multilist_t *arcs_list[ARC_BUFC_NUMTYPES];
 402         /*
 403          * total amount of evictable data in this state
 404          */
 405         refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
 406         /*
 407          * total amount of data in this state; this includes: evictable,
 408          * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
 409          */
 410         refcount_t arcs_size;
 411 } arc_state_t;
 412 
 413 /* The 6 states: */
 414 static arc_state_t ARC_anon;
 415 static arc_state_t ARC_mru;
 416 static arc_state_t ARC_mru_ghost;
 417 static arc_state_t ARC_mfu;
 418 static arc_state_t ARC_mfu_ghost;
 419 static arc_state_t ARC_l2c_only;
 420 
 421 typedef struct arc_stats {
 422         kstat_named_t arcstat_hits;
 423         kstat_named_t arcstat_misses;
 424         kstat_named_t arcstat_demand_data_hits;
 425         kstat_named_t arcstat_demand_data_misses;
 426         kstat_named_t arcstat_demand_metadata_hits;
 427         kstat_named_t arcstat_demand_metadata_misses;
 428         kstat_named_t arcstat_prefetch_data_hits;
 429         kstat_named_t arcstat_prefetch_data_misses;
 430         kstat_named_t arcstat_prefetch_metadata_hits;
 431         kstat_named_t arcstat_prefetch_metadata_misses;
 432         kstat_named_t arcstat_mru_hits;
 433         kstat_named_t arcstat_mru_ghost_hits;
 434         kstat_named_t arcstat_mfu_hits;
 435         kstat_named_t arcstat_mfu_ghost_hits;
 436         kstat_named_t arcstat_deleted;
 437         /*
 438          * Number of buffers that could not be evicted because the hash lock
 439          * was held by another thread.  The lock may not necessarily be held
 440          * by something using the same buffer, since hash locks are shared
 441          * by multiple buffers.
 442          */
 443         kstat_named_t arcstat_mutex_miss;
 444         /*
 445          * Number of buffers skipped because they have I/O in progress, are
 446          * indrect prefetch buffers that have not lived long enough, or are
 447          * not from the spa we're trying to evict from.
 448          */
 449         kstat_named_t arcstat_evict_skip;
 450         /*
 451          * Number of times arc_evict_state() was unable to evict enough
 452          * buffers to reach it's target amount.
 453          */
 454         kstat_named_t arcstat_evict_not_enough;
 455         kstat_named_t arcstat_evict_l2_cached;
 456         kstat_named_t arcstat_evict_l2_eligible;
 457         kstat_named_t arcstat_evict_l2_ineligible;
 458         kstat_named_t arcstat_evict_l2_skip;
 459         kstat_named_t arcstat_hash_elements;
 460         kstat_named_t arcstat_hash_elements_max;
 461         kstat_named_t arcstat_hash_collisions;
 462         kstat_named_t arcstat_hash_chains;
 463         kstat_named_t arcstat_hash_chain_max;
 464         kstat_named_t arcstat_p;
 465         kstat_named_t arcstat_c;
 466         kstat_named_t arcstat_c_min;
 467         kstat_named_t arcstat_c_max;
 468         kstat_named_t arcstat_size;
 469         /*
 470          * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
 471          * Note that the compressed bytes may match the uncompressed bytes
 472          * if the block is either not compressed or compressed arc is disabled.
 473          */
 474         kstat_named_t arcstat_compressed_size;
 475         /*
 476          * Uncompressed size of the data stored in b_pabd. If compressed
 477          * arc is disabled then this value will be identical to the stat
 478          * above.
 479          */
 480         kstat_named_t arcstat_uncompressed_size;
 481         /*
 482          * Number of bytes stored in all the arc_buf_t's. This is classified
 483          * as "overhead" since this data is typically short-lived and will
 484          * be evicted from the arc when it becomes unreferenced unless the
 485          * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
 486          * values have been set (see comment in dbuf.c for more information).
 487          */
 488         kstat_named_t arcstat_overhead_size;
 489         /*
 490          * Number of bytes consumed by internal ARC structures necessary
 491          * for tracking purposes; these structures are not actually
 492          * backed by ARC buffers. This includes arc_buf_hdr_t structures
 493          * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
 494          * caches), and arc_buf_t structures (allocated via arc_buf_t
 495          * cache).
 496          */
 497         kstat_named_t arcstat_hdr_size;
 498         /*
 499          * Number of bytes consumed by ARC buffers of type equal to
 500          * ARC_BUFC_DATA. This is generally consumed by buffers backing
 501          * on disk user data (e.g. plain file contents).
 502          */
 503         kstat_named_t arcstat_data_size;
 504         /*
 505          * Number of bytes consumed by ARC buffers of type equal to
 506          * ARC_BUFC_METADATA. This is generally consumed by buffers
 507          * backing on disk data that is used for internal ZFS
 508          * structures (e.g. ZAP, dnode, indirect blocks, etc).
 509          */
 510         kstat_named_t arcstat_metadata_size;
 511         /*
 512          * Number of bytes consumed by various buffers and structures
 513          * not actually backed with ARC buffers. This includes bonus
 514          * buffers (allocated directly via zio_buf_* functions),
 515          * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
 516          * cache), and dnode_t structures (allocated via dnode_t cache).
 517          */
 518         kstat_named_t arcstat_other_size;
 519         /*
 520          * Total number of bytes consumed by ARC buffers residing in the
 521          * arc_anon state. This includes *all* buffers in the arc_anon
 522          * state; e.g. data, metadata, evictable, and unevictable buffers
 523          * are all included in this value.
 524          */
 525         kstat_named_t arcstat_anon_size;
 526         /*
 527          * Number of bytes consumed by ARC buffers that meet the
 528          * following criteria: backing buffers of type ARC_BUFC_DATA,
 529          * residing in the arc_anon state, and are eligible for eviction
 530          * (e.g. have no outstanding holds on the buffer).
 531          */
 532         kstat_named_t arcstat_anon_evictable_data;
 533         /*
 534          * Number of bytes consumed by ARC buffers that meet the
 535          * following criteria: backing buffers of type ARC_BUFC_METADATA,
 536          * residing in the arc_anon state, and are eligible for eviction
 537          * (e.g. have no outstanding holds on the buffer).
 538          */
 539         kstat_named_t arcstat_anon_evictable_metadata;
 540         /*
 541          * Total number of bytes consumed by ARC buffers residing in the
 542          * arc_mru state. This includes *all* buffers in the arc_mru
 543          * state; e.g. data, metadata, evictable, and unevictable buffers
 544          * are all included in this value.
 545          */
 546         kstat_named_t arcstat_mru_size;
 547         /*
 548          * Number of bytes consumed by ARC buffers that meet the
 549          * following criteria: backing buffers of type ARC_BUFC_DATA,
 550          * residing in the arc_mru state, and are eligible for eviction
 551          * (e.g. have no outstanding holds on the buffer).
 552          */
 553         kstat_named_t arcstat_mru_evictable_data;
 554         /*
 555          * Number of bytes consumed by ARC buffers that meet the
 556          * following criteria: backing buffers of type ARC_BUFC_METADATA,
 557          * residing in the arc_mru state, and are eligible for eviction
 558          * (e.g. have no outstanding holds on the buffer).
 559          */
 560         kstat_named_t arcstat_mru_evictable_metadata;
 561         /*
 562          * Total number of bytes that *would have been* consumed by ARC
 563          * buffers in the arc_mru_ghost state. The key thing to note
 564          * here, is the fact that this size doesn't actually indicate
 565          * RAM consumption. The ghost lists only consist of headers and
 566          * don't actually have ARC buffers linked off of these headers.
 567          * Thus, *if* the headers had associated ARC buffers, these
 568          * buffers *would have* consumed this number of bytes.
 569          */
 570         kstat_named_t arcstat_mru_ghost_size;
 571         /*
 572          * Number of bytes that *would have been* consumed by ARC
 573          * buffers that are eligible for eviction, of type
 574          * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
 575          */
 576         kstat_named_t arcstat_mru_ghost_evictable_data;
 577         /*
 578          * Number of bytes that *would have been* consumed by ARC
 579          * buffers that are eligible for eviction, of type
 580          * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
 581          */
 582         kstat_named_t arcstat_mru_ghost_evictable_metadata;
 583         /*
 584          * Total number of bytes consumed by ARC buffers residing in the
 585          * arc_mfu state. This includes *all* buffers in the arc_mfu
 586          * state; e.g. data, metadata, evictable, and unevictable buffers
 587          * are all included in this value.
 588          */
 589         kstat_named_t arcstat_mfu_size;
 590         /*
 591          * Number of bytes consumed by ARC buffers that are eligible for
 592          * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
 593          * state.
 594          */
 595         kstat_named_t arcstat_mfu_evictable_data;
 596         /*
 597          * Number of bytes consumed by ARC buffers that are eligible for
 598          * eviction, of type ARC_BUFC_METADATA, and reside in the
 599          * arc_mfu state.
 600          */
 601         kstat_named_t arcstat_mfu_evictable_metadata;
 602         /*
 603          * Total number of bytes that *would have been* consumed by ARC
 604          * buffers in the arc_mfu_ghost state. See the comment above
 605          * arcstat_mru_ghost_size for more details.
 606          */
 607         kstat_named_t arcstat_mfu_ghost_size;
 608         /*
 609          * Number of bytes that *would have been* consumed by ARC
 610          * buffers that are eligible for eviction, of type
 611          * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
 612          */
 613         kstat_named_t arcstat_mfu_ghost_evictable_data;
 614         /*
 615          * Number of bytes that *would have been* consumed by ARC
 616          * buffers that are eligible for eviction, of type
 617          * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
 618          */
 619         kstat_named_t arcstat_mfu_ghost_evictable_metadata;
 620         kstat_named_t arcstat_l2_hits;
 621         kstat_named_t arcstat_l2_misses;
 622         kstat_named_t arcstat_l2_feeds;
 623         kstat_named_t arcstat_l2_rw_clash;
 624         kstat_named_t arcstat_l2_read_bytes;
 625         kstat_named_t arcstat_l2_write_bytes;
 626         kstat_named_t arcstat_l2_writes_sent;
 627         kstat_named_t arcstat_l2_writes_done;
 628         kstat_named_t arcstat_l2_writes_error;
 629         kstat_named_t arcstat_l2_writes_lock_retry;
 630         kstat_named_t arcstat_l2_evict_lock_retry;
 631         kstat_named_t arcstat_l2_evict_reading;
 632         kstat_named_t arcstat_l2_evict_l1cached;
 633         kstat_named_t arcstat_l2_free_on_write;
 634         kstat_named_t arcstat_l2_abort_lowmem;
 635         kstat_named_t arcstat_l2_cksum_bad;
 636         kstat_named_t arcstat_l2_io_error;
 637         kstat_named_t arcstat_l2_lsize;
 638         kstat_named_t arcstat_l2_psize;
 639         kstat_named_t arcstat_l2_hdr_size;
 640         kstat_named_t arcstat_memory_throttle_count;
 641         kstat_named_t arcstat_meta_used;
 642         kstat_named_t arcstat_meta_limit;
 643         kstat_named_t arcstat_meta_max;
 644         kstat_named_t arcstat_meta_min;
 645         kstat_named_t arcstat_sync_wait_for_async;
 646         kstat_named_t arcstat_demand_hit_predictive_prefetch;
 647 } arc_stats_t;
 648 
 649 static arc_stats_t arc_stats = {
 650         { "hits",                       KSTAT_DATA_UINT64 },
 651         { "misses",                     KSTAT_DATA_UINT64 },
 652         { "demand_data_hits",           KSTAT_DATA_UINT64 },
 653         { "demand_data_misses",         KSTAT_DATA_UINT64 },
 654         { "demand_metadata_hits",       KSTAT_DATA_UINT64 },
 655         { "demand_metadata_misses",     KSTAT_DATA_UINT64 },
 656         { "prefetch_data_hits",         KSTAT_DATA_UINT64 },
 657         { "prefetch_data_misses",       KSTAT_DATA_UINT64 },
 658         { "prefetch_metadata_hits",     KSTAT_DATA_UINT64 },
 659         { "prefetch_metadata_misses",   KSTAT_DATA_UINT64 },
 660         { "mru_hits",                   KSTAT_DATA_UINT64 },
 661         { "mru_ghost_hits",             KSTAT_DATA_UINT64 },
 662         { "mfu_hits",                   KSTAT_DATA_UINT64 },
 663         { "mfu_ghost_hits",             KSTAT_DATA_UINT64 },
 664         { "deleted",                    KSTAT_DATA_UINT64 },
 665         { "mutex_miss",                 KSTAT_DATA_UINT64 },
 666         { "evict_skip",                 KSTAT_DATA_UINT64 },
 667         { "evict_not_enough",           KSTAT_DATA_UINT64 },
 668         { "evict_l2_cached",            KSTAT_DATA_UINT64 },
 669         { "evict_l2_eligible",          KSTAT_DATA_UINT64 },
 670         { "evict_l2_ineligible",        KSTAT_DATA_UINT64 },
 671         { "evict_l2_skip",              KSTAT_DATA_UINT64 },
 672         { "hash_elements",              KSTAT_DATA_UINT64 },
 673         { "hash_elements_max",          KSTAT_DATA_UINT64 },
 674         { "hash_collisions",            KSTAT_DATA_UINT64 },
 675         { "hash_chains",                KSTAT_DATA_UINT64 },
 676         { "hash_chain_max",             KSTAT_DATA_UINT64 },
 677         { "p",                          KSTAT_DATA_UINT64 },
 678         { "c",                          KSTAT_DATA_UINT64 },
 679         { "c_min",                      KSTAT_DATA_UINT64 },
 680         { "c_max",                      KSTAT_DATA_UINT64 },
 681         { "size",                       KSTAT_DATA_UINT64 },
 682         { "compressed_size",            KSTAT_DATA_UINT64 },
 683         { "uncompressed_size",          KSTAT_DATA_UINT64 },
 684         { "overhead_size",              KSTAT_DATA_UINT64 },
 685         { "hdr_size",                   KSTAT_DATA_UINT64 },
 686         { "data_size",                  KSTAT_DATA_UINT64 },
 687         { "metadata_size",              KSTAT_DATA_UINT64 },
 688         { "other_size",                 KSTAT_DATA_UINT64 },
 689         { "anon_size",                  KSTAT_DATA_UINT64 },
 690         { "anon_evictable_data",        KSTAT_DATA_UINT64 },
 691         { "anon_evictable_metadata",    KSTAT_DATA_UINT64 },
 692         { "mru_size",                   KSTAT_DATA_UINT64 },
 693         { "mru_evictable_data",         KSTAT_DATA_UINT64 },
 694         { "mru_evictable_metadata",     KSTAT_DATA_UINT64 },
 695         { "mru_ghost_size",             KSTAT_DATA_UINT64 },
 696         { "mru_ghost_evictable_data",   KSTAT_DATA_UINT64 },
 697         { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
 698         { "mfu_size",                   KSTAT_DATA_UINT64 },
 699         { "mfu_evictable_data",         KSTAT_DATA_UINT64 },
 700         { "mfu_evictable_metadata",     KSTAT_DATA_UINT64 },
 701         { "mfu_ghost_size",             KSTAT_DATA_UINT64 },
 702         { "mfu_ghost_evictable_data",   KSTAT_DATA_UINT64 },
 703         { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
 704         { "l2_hits",                    KSTAT_DATA_UINT64 },
 705         { "l2_misses",                  KSTAT_DATA_UINT64 },
 706         { "l2_feeds",                   KSTAT_DATA_UINT64 },
 707         { "l2_rw_clash",                KSTAT_DATA_UINT64 },
 708         { "l2_read_bytes",              KSTAT_DATA_UINT64 },
 709         { "l2_write_bytes",             KSTAT_DATA_UINT64 },
 710         { "l2_writes_sent",             KSTAT_DATA_UINT64 },
 711         { "l2_writes_done",             KSTAT_DATA_UINT64 },
 712         { "l2_writes_error",            KSTAT_DATA_UINT64 },
 713         { "l2_writes_lock_retry",       KSTAT_DATA_UINT64 },
 714         { "l2_evict_lock_retry",        KSTAT_DATA_UINT64 },
 715         { "l2_evict_reading",           KSTAT_DATA_UINT64 },
 716         { "l2_evict_l1cached",          KSTAT_DATA_UINT64 },
 717         { "l2_free_on_write",           KSTAT_DATA_UINT64 },
 718         { "l2_abort_lowmem",            KSTAT_DATA_UINT64 },
 719         { "l2_cksum_bad",               KSTAT_DATA_UINT64 },
 720         { "l2_io_error",                KSTAT_DATA_UINT64 },
 721         { "l2_size",                    KSTAT_DATA_UINT64 },
 722         { "l2_asize",                   KSTAT_DATA_UINT64 },
 723         { "l2_hdr_size",                KSTAT_DATA_UINT64 },
 724         { "memory_throttle_count",      KSTAT_DATA_UINT64 },
 725         { "arc_meta_used",              KSTAT_DATA_UINT64 },
 726         { "arc_meta_limit",             KSTAT_DATA_UINT64 },
 727         { "arc_meta_max",               KSTAT_DATA_UINT64 },
 728         { "arc_meta_min",               KSTAT_DATA_UINT64 },
 729         { "sync_wait_for_async",        KSTAT_DATA_UINT64 },
 730         { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
 731 };
 732 
 733 #define ARCSTAT(stat)   (arc_stats.stat.value.ui64)
 734 
 735 #define ARCSTAT_INCR(stat, val) \
 736         atomic_add_64(&arc_stats.stat.value.ui64, (val))
 737 
 738 #define ARCSTAT_BUMP(stat)      ARCSTAT_INCR(stat, 1)
 739 #define ARCSTAT_BUMPDOWN(stat)  ARCSTAT_INCR(stat, -1)
 740 
 741 #define ARCSTAT_MAX(stat, val) {                                        \
 742         uint64_t m;                                                     \
 743         while ((val) > (m = arc_stats.stat.value.ui64) &&            \
 744             (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))     \
 745                 continue;                                               \
 746 }
 747 
 748 #define ARCSTAT_MAXSTAT(stat) \
 749         ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
 750 
 751 /*
 752  * We define a macro to allow ARC hits/misses to be easily broken down by
 753  * two separate conditions, giving a total of four different subtypes for
 754  * each of hits and misses (so eight statistics total).
 755  */
 756 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
 757         if (cond1) {                                                    \
 758                 if (cond2) {                                            \
 759                         ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
 760                 } else {                                                \
 761                         ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
 762                 }                                                       \
 763         } else {                                                        \
 764                 if (cond2) {                                            \
 765                         ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
 766                 } else {                                                \
 767                         ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
 768                 }                                                       \
 769         }
 770 
 771 kstat_t                 *arc_ksp;
 772 static arc_state_t      *arc_anon;
 773 static arc_state_t      *arc_mru;
 774 static arc_state_t      *arc_mru_ghost;
 775 static arc_state_t      *arc_mfu;
 776 static arc_state_t      *arc_mfu_ghost;
 777 static arc_state_t      *arc_l2c_only;
 778 
 779 /*
 780  * There are several ARC variables that are critical to export as kstats --
 781  * but we don't want to have to grovel around in the kstat whenever we wish to
 782  * manipulate them.  For these variables, we therefore define them to be in
 783  * terms of the statistic variable.  This assures that we are not introducing
 784  * the possibility of inconsistency by having shadow copies of the variables,
 785  * while still allowing the code to be readable.
 786  */
 787 #define arc_size        ARCSTAT(arcstat_size)   /* actual total arc size */
 788 #define arc_p           ARCSTAT(arcstat_p)      /* target size of MRU */
 789 #define arc_c           ARCSTAT(arcstat_c)      /* target size of cache */
 790 #define arc_c_min       ARCSTAT(arcstat_c_min)  /* min target cache size */
 791 #define arc_c_max       ARCSTAT(arcstat_c_max)  /* max target cache size */
 792 #define arc_meta_limit  ARCSTAT(arcstat_meta_limit) /* max size for metadata */
 793 #define arc_meta_min    ARCSTAT(arcstat_meta_min) /* min size for metadata */
 794 #define arc_meta_used   ARCSTAT(arcstat_meta_used) /* size of metadata */
 795 #define arc_meta_max    ARCSTAT(arcstat_meta_max) /* max size of metadata */
 796 
 797 /* compressed size of entire arc */
 798 #define arc_compressed_size     ARCSTAT(arcstat_compressed_size)
 799 /* uncompressed size of entire arc */
 800 #define arc_uncompressed_size   ARCSTAT(arcstat_uncompressed_size)
 801 /* number of bytes in the arc from arc_buf_t's */
 802 #define arc_overhead_size       ARCSTAT(arcstat_overhead_size)
 803 
 804 static int              arc_no_grow;    /* Don't try to grow cache size */
 805 static uint64_t         arc_tempreserve;
 806 static uint64_t         arc_loaned_bytes;
 807 
 808 typedef struct arc_callback arc_callback_t;
 809 
 810 struct arc_callback {
 811         void                    *acb_private;
 812         arc_done_func_t         *acb_done;
 813         arc_buf_t               *acb_buf;
 814         boolean_t               acb_compressed;
 815         zio_t                   *acb_zio_dummy;
 816         arc_callback_t          *acb_next;
 817 };
 818 
 819 typedef struct arc_write_callback arc_write_callback_t;
 820 
 821 struct arc_write_callback {
 822         void            *awcb_private;
 823         arc_done_func_t *awcb_ready;
 824         arc_done_func_t *awcb_children_ready;
 825         arc_done_func_t *awcb_physdone;
 826         arc_done_func_t *awcb_done;
 827         arc_buf_t       *awcb_buf;
 828 };
 829 
 830 /*
 831  * ARC buffers are separated into multiple structs as a memory saving measure:
 832  *   - Common fields struct, always defined, and embedded within it:
 833  *       - L2-only fields, always allocated but undefined when not in L2ARC
 834  *       - L1-only fields, only allocated when in L1ARC
 835  *
 836  *           Buffer in L1                     Buffer only in L2
 837  *    +------------------------+          +------------------------+
 838  *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
 839  *    |                        |          |                        |
 840  *    |                        |          |                        |
 841  *    |                        |          |                        |
 842  *    +------------------------+          +------------------------+
 843  *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
 844  *    | (undefined if L1-only) |          |                        |
 845  *    +------------------------+          +------------------------+
 846  *    | l1arc_buf_hdr_t        |
 847  *    |                        |
 848  *    |                        |
 849  *    |                        |
 850  *    |                        |
 851  *    +------------------------+
 852  *
 853  * Because it's possible for the L2ARC to become extremely large, we can wind
 854  * up eating a lot of memory in L2ARC buffer headers, so the size of a header
 855  * is minimized by only allocating the fields necessary for an L1-cached buffer
 856  * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
 857  * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
 858  * words in pointers. arc_hdr_realloc() is used to switch a header between
 859  * these two allocation states.
 860  */
 861 typedef struct l1arc_buf_hdr {
 862         kmutex_t                b_freeze_lock;
 863         zio_cksum_t             *b_freeze_cksum;
 864 #ifdef ZFS_DEBUG
 865         /*
 866          * Used for debugging with kmem_flags - by allocating and freeing
 867          * b_thawed when the buffer is thawed, we get a record of the stack
 868          * trace that thawed it.
 869          */
 870         void                    *b_thawed;
 871 #endif
 872 
 873         arc_buf_t               *b_buf;
 874         uint32_t                b_bufcnt;
 875         /* for waiting on writes to complete */
 876         kcondvar_t              b_cv;
 877         uint8_t                 b_byteswap;
 878 
 879         /* protected by arc state mutex */
 880         arc_state_t             *b_state;
 881         multilist_node_t        b_arc_node;
 882 
 883         /* updated atomically */
 884         clock_t                 b_arc_access;
 885 
 886         /* self protecting */
 887         refcount_t              b_refcnt;
 888 
 889         arc_callback_t          *b_acb;
 890         abd_t                   *b_pabd;
 891 } l1arc_buf_hdr_t;
 892 
 893 typedef struct l2arc_dev l2arc_dev_t;
 894 
 895 typedef struct l2arc_buf_hdr {
 896         /* protected by arc_buf_hdr mutex */
 897         l2arc_dev_t             *b_dev;         /* L2ARC device */
 898         uint64_t                b_daddr;        /* disk address, offset byte */
 899 
 900         list_node_t             b_l2node;
 901 } l2arc_buf_hdr_t;
 902 
 903 struct arc_buf_hdr {
 904         /* protected by hash lock */
 905         dva_t                   b_dva;
 906         uint64_t                b_birth;
 907 
 908         arc_buf_contents_t      b_type;
 909         arc_buf_hdr_t           *b_hash_next;
 910         arc_flags_t             b_flags;
 911 
 912         /*
 913          * This field stores the size of the data buffer after
 914          * compression, and is set in the arc's zio completion handlers.
 915          * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
 916          *
 917          * While the block pointers can store up to 32MB in their psize
 918          * field, we can only store up to 32MB minus 512B. This is due
 919          * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
 920          * a field of zeros represents 512B in the bp). We can't use a
 921          * bias of 1 since we need to reserve a psize of zero, here, to
 922          * represent holes and embedded blocks.
 923          *
 924          * This isn't a problem in practice, since the maximum size of a
 925          * buffer is limited to 16MB, so we never need to store 32MB in
 926          * this field. Even in the upstream illumos code base, the
 927          * maximum size of a buffer is limited to 16MB.
 928          */
 929         uint16_t                b_psize;
 930 
 931         /*
 932          * This field stores the size of the data buffer before
 933          * compression, and cannot change once set. It is in units
 934          * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
 935          */
 936         uint16_t                b_lsize;        /* immutable */
 937         uint64_t                b_spa;          /* immutable */
 938 
 939         /* L2ARC fields. Undefined when not in L2ARC. */
 940         l2arc_buf_hdr_t         b_l2hdr;
 941         /* L1ARC fields. Undefined when in l2arc_only state */
 942         l1arc_buf_hdr_t         b_l1hdr;
 943 };
 944 
 945 #define GHOST_STATE(state)      \
 946         ((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||        \
 947         (state) == arc_l2c_only)
 948 
 949 #define HDR_IN_HASH_TABLE(hdr)  ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
 950 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
 951 #define HDR_IO_ERROR(hdr)       ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
 952 #define HDR_PREFETCH(hdr)       ((hdr)->b_flags & ARC_FLAG_PREFETCH)
 953 #define HDR_COMPRESSION_ENABLED(hdr)    \
 954         ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
 955 
 956 #define HDR_L2CACHE(hdr)        ((hdr)->b_flags & ARC_FLAG_L2CACHE)
 957 #define HDR_L2_READING(hdr)     \
 958         (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&   \
 959         ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
 960 #define HDR_L2_WRITING(hdr)     ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
 961 #define HDR_L2_EVICTED(hdr)     ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
 962 #define HDR_L2_WRITE_HEAD(hdr)  ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
 963 #define HDR_SHARED_DATA(hdr)    ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
 964 
 965 #define HDR_ISTYPE_METADATA(hdr)        \
 966         ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
 967 #define HDR_ISTYPE_DATA(hdr)    (!HDR_ISTYPE_METADATA(hdr))
 968 
 969 #define HDR_HAS_L1HDR(hdr)      ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
 970 #define HDR_HAS_L2HDR(hdr)      ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
 971 
 972 /* For storing compression mode in b_flags */
 973 #define HDR_COMPRESS_OFFSET     (highbit64(ARC_FLAG_COMPRESS_0) - 1)
 974 
 975 #define HDR_GET_COMPRESS(hdr)   ((enum zio_compress)BF32_GET((hdr)->b_flags, \
 976         HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
 977 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
 978         HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
 979 
 980 #define ARC_BUF_LAST(buf)       ((buf)->b_next == NULL)
 981 #define ARC_BUF_SHARED(buf)     ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
 982 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
 983 
 984 /*
 985  * Other sizes
 986  */
 987 
 988 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
 989 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
 990 
 991 /*
 992  * Hash table routines
 993  */
 994 
 995 #define HT_LOCK_PAD     64
 996 
 997 struct ht_lock {
 998         kmutex_t        ht_lock;
 999 #ifdef _KERNEL
1000         unsigned char   pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1001 #endif
1002 };
1003 
1004 #define BUF_LOCKS 256
1005 typedef struct buf_hash_table {
1006         uint64_t ht_mask;
1007         arc_buf_hdr_t **ht_table;
1008         struct ht_lock ht_locks[BUF_LOCKS];
1009 } buf_hash_table_t;
1010 
1011 static buf_hash_table_t buf_hash_table;
1012 
1013 #define BUF_HASH_INDEX(spa, dva, birth) \
1014         (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1015 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1016 #define BUF_HASH_LOCK(idx)      (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1017 #define HDR_LOCK(hdr) \
1018         (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1019 
1020 uint64_t zfs_crc64_table[256];
1021 
1022 /*
1023  * Level 2 ARC
1024  */
1025 
1026 #define L2ARC_WRITE_SIZE        (8 * 1024 * 1024)       /* initial write max */
1027 #define L2ARC_HEADROOM          2                       /* num of writes */
1028 /*
1029  * If we discover during ARC scan any buffers to be compressed, we boost
1030  * our headroom for the next scanning cycle by this percentage multiple.
1031  */
1032 #define L2ARC_HEADROOM_BOOST    200
1033 #define L2ARC_FEED_SECS         1               /* caching interval secs */
1034 #define L2ARC_FEED_MIN_MS       200             /* min caching interval ms */
1035 
1036 #define l2arc_writes_sent       ARCSTAT(arcstat_l2_writes_sent)
1037 #define l2arc_writes_done       ARCSTAT(arcstat_l2_writes_done)
1038 
1039 /* L2ARC Performance Tunables */
1040 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;    /* default max write size */
1041 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;  /* extra write during warmup */
1042 uint64_t l2arc_headroom = L2ARC_HEADROOM;       /* number of dev writes */
1043 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1044 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;     /* interval seconds */
1045 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
1046 boolean_t l2arc_noprefetch = B_TRUE;            /* don't cache prefetch bufs */
1047 boolean_t l2arc_feed_again = B_TRUE;            /* turbo warmup */
1048 boolean_t l2arc_norw = B_TRUE;                  /* no reads during writes */
1049 
1050 /*
1051  * L2ARC Internals
1052  */
1053 struct l2arc_dev {
1054         vdev_t                  *l2ad_vdev;     /* vdev */
1055         spa_t                   *l2ad_spa;      /* spa */
1056         uint64_t                l2ad_hand;      /* next write location */
1057         uint64_t                l2ad_start;     /* first addr on device */
1058         uint64_t                l2ad_end;       /* last addr on device */
1059         boolean_t               l2ad_first;     /* first sweep through */
1060         boolean_t               l2ad_writing;   /* currently writing */
1061         kmutex_t                l2ad_mtx;       /* lock for buffer list */
1062         list_t                  l2ad_buflist;   /* buffer list */
1063         list_node_t             l2ad_node;      /* device list node */
1064         refcount_t              l2ad_alloc;     /* allocated bytes */
1065 };
1066 
1067 static list_t L2ARC_dev_list;                   /* device list */
1068 static list_t *l2arc_dev_list;                  /* device list pointer */
1069 static kmutex_t l2arc_dev_mtx;                  /* device list mutex */
1070 static l2arc_dev_t *l2arc_dev_last;             /* last device used */
1071 static list_t L2ARC_free_on_write;              /* free after write buf list */
1072 static list_t *l2arc_free_on_write;             /* free after write list ptr */
1073 static kmutex_t l2arc_free_on_write_mtx;        /* mutex for list */
1074 static uint64_t l2arc_ndev;                     /* number of devices */
1075 
1076 typedef struct l2arc_read_callback {
1077         arc_buf_hdr_t           *l2rcb_hdr;             /* read header */
1078         blkptr_t                l2rcb_bp;               /* original blkptr */
1079         zbookmark_phys_t        l2rcb_zb;               /* original bookmark */
1080         int                     l2rcb_flags;            /* original flags */
1081         abd_t                   *l2rcb_abd;             /* temporary buffer */
1082 } l2arc_read_callback_t;
1083 
1084 typedef struct l2arc_write_callback {
1085         l2arc_dev_t     *l2wcb_dev;             /* device info */
1086         arc_buf_hdr_t   *l2wcb_head;            /* head of write buflist */
1087 } l2arc_write_callback_t;
1088 
1089 typedef struct l2arc_data_free {
1090         /* protected by l2arc_free_on_write_mtx */
1091         abd_t           *l2df_abd;
1092         size_t          l2df_size;
1093         arc_buf_contents_t l2df_type;
1094         list_node_t     l2df_list_node;
1095 } l2arc_data_free_t;
1096 
1097 static kmutex_t l2arc_feed_thr_lock;
1098 static kcondvar_t l2arc_feed_thr_cv;
1099 static uint8_t l2arc_thread_exit;
1100 
1101 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
1102 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1103 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1104 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1105 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1106 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1107 static void arc_hdr_free_pabd(arc_buf_hdr_t *);
1108 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
1109 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1110 static boolean_t arc_is_overflowing();
1111 static void arc_buf_watch(arc_buf_t *);
1112 
1113 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1114 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1115 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1116 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1117 
1118 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1119 static void l2arc_read_done(zio_t *);
1120 
1121 static uint64_t
1122 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1123 {
1124         uint8_t *vdva = (uint8_t *)dva;
1125         uint64_t crc = -1ULL;
1126         int i;
1127 
1128         ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1129 
1130         for (i = 0; i < sizeof (dva_t); i++)
1131                 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1132 
1133         crc ^= (spa>>8) ^ birth;
1134 
1135         return (crc);
1136 }
1137 
1138 #define HDR_EMPTY(hdr)                                          \
1139         ((hdr)->b_dva.dva_word[0] == 0 &&                    \
1140         (hdr)->b_dva.dva_word[1] == 0)
1141 
1142 #define HDR_EQUAL(spa, dva, birth, hdr)                         \
1143         ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&       \
1144         ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&       \
1145         ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1146 
1147 static void
1148 buf_discard_identity(arc_buf_hdr_t *hdr)
1149 {
1150         hdr->b_dva.dva_word[0] = 0;
1151         hdr->b_dva.dva_word[1] = 0;
1152         hdr->b_birth = 0;
1153 }
1154 
1155 static arc_buf_hdr_t *
1156 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1157 {
1158         const dva_t *dva = BP_IDENTITY(bp);
1159         uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1160         uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1161         kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1162         arc_buf_hdr_t *hdr;
1163 
1164         mutex_enter(hash_lock);
1165         for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1166             hdr = hdr->b_hash_next) {
1167                 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1168                         *lockp = hash_lock;
1169                         return (hdr);
1170                 }
1171         }
1172         mutex_exit(hash_lock);
1173         *lockp = NULL;
1174         return (NULL);
1175 }
1176 
1177 /*
1178  * Insert an entry into the hash table.  If there is already an element
1179  * equal to elem in the hash table, then the already existing element
1180  * will be returned and the new element will not be inserted.
1181  * Otherwise returns NULL.
1182  * If lockp == NULL, the caller is assumed to already hold the hash lock.
1183  */
1184 static arc_buf_hdr_t *
1185 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1186 {
1187         uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1188         kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1189         arc_buf_hdr_t *fhdr;
1190         uint32_t i;
1191 
1192         ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1193         ASSERT(hdr->b_birth != 0);
1194         ASSERT(!HDR_IN_HASH_TABLE(hdr));
1195 
1196         if (lockp != NULL) {
1197                 *lockp = hash_lock;
1198                 mutex_enter(hash_lock);
1199         } else {
1200                 ASSERT(MUTEX_HELD(hash_lock));
1201         }
1202 
1203         for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1204             fhdr = fhdr->b_hash_next, i++) {
1205                 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1206                         return (fhdr);
1207         }
1208 
1209         hdr->b_hash_next = buf_hash_table.ht_table[idx];
1210         buf_hash_table.ht_table[idx] = hdr;
1211         arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1212 
1213         /* collect some hash table performance data */
1214         if (i > 0) {
1215                 ARCSTAT_BUMP(arcstat_hash_collisions);
1216                 if (i == 1)
1217                         ARCSTAT_BUMP(arcstat_hash_chains);
1218 
1219                 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1220         }
1221 
1222         ARCSTAT_BUMP(arcstat_hash_elements);
1223         ARCSTAT_MAXSTAT(arcstat_hash_elements);
1224 
1225         return (NULL);
1226 }
1227 
1228 static void
1229 buf_hash_remove(arc_buf_hdr_t *hdr)
1230 {
1231         arc_buf_hdr_t *fhdr, **hdrp;
1232         uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1233 
1234         ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1235         ASSERT(HDR_IN_HASH_TABLE(hdr));
1236 
1237         hdrp = &buf_hash_table.ht_table[idx];
1238         while ((fhdr = *hdrp) != hdr) {
1239                 ASSERT3P(fhdr, !=, NULL);
1240                 hdrp = &fhdr->b_hash_next;
1241         }
1242         *hdrp = hdr->b_hash_next;
1243         hdr->b_hash_next = NULL;
1244         arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1245 
1246         /* collect some hash table performance data */
1247         ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1248 
1249         if (buf_hash_table.ht_table[idx] &&
1250             buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1251                 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1252 }
1253 
1254 /*
1255  * Global data structures and functions for the buf kmem cache.
1256  */
1257 static kmem_cache_t *hdr_full_cache;
1258 static kmem_cache_t *hdr_l2only_cache;
1259 static kmem_cache_t *buf_cache;
1260 
1261 static void
1262 buf_fini(void)
1263 {
1264         int i;
1265 
1266         kmem_free(buf_hash_table.ht_table,
1267             (buf_hash_table.ht_mask + 1) * sizeof (void *));
1268         for (i = 0; i < BUF_LOCKS; i++)
1269                 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1270         kmem_cache_destroy(hdr_full_cache);
1271         kmem_cache_destroy(hdr_l2only_cache);
1272         kmem_cache_destroy(buf_cache);
1273 }
1274 
1275 /*
1276  * Constructor callback - called when the cache is empty
1277  * and a new buf is requested.
1278  */
1279 /* ARGSUSED */
1280 static int
1281 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1282 {
1283         arc_buf_hdr_t *hdr = vbuf;
1284 
1285         bzero(hdr, HDR_FULL_SIZE);
1286         cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1287         refcount_create(&hdr->b_l1hdr.b_refcnt);
1288         mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1289         multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1290         arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1291 
1292         return (0);
1293 }
1294 
1295 /* ARGSUSED */
1296 static int
1297 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1298 {
1299         arc_buf_hdr_t *hdr = vbuf;
1300 
1301         bzero(hdr, HDR_L2ONLY_SIZE);
1302         arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1303 
1304         return (0);
1305 }
1306 
1307 /* ARGSUSED */
1308 static int
1309 buf_cons(void *vbuf, void *unused, int kmflag)
1310 {
1311         arc_buf_t *buf = vbuf;
1312 
1313         bzero(buf, sizeof (arc_buf_t));
1314         mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1315         arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1316 
1317         return (0);
1318 }
1319 
1320 /*
1321  * Destructor callback - called when a cached buf is
1322  * no longer required.
1323  */
1324 /* ARGSUSED */
1325 static void
1326 hdr_full_dest(void *vbuf, void *unused)
1327 {
1328         arc_buf_hdr_t *hdr = vbuf;
1329 
1330         ASSERT(HDR_EMPTY(hdr));
1331         cv_destroy(&hdr->b_l1hdr.b_cv);
1332         refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1333         mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1334         ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1335         arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1336 }
1337 
1338 /* ARGSUSED */
1339 static void
1340 hdr_l2only_dest(void *vbuf, void *unused)
1341 {
1342         arc_buf_hdr_t *hdr = vbuf;
1343 
1344         ASSERT(HDR_EMPTY(hdr));
1345         arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1346 }
1347 
1348 /* ARGSUSED */
1349 static void
1350 buf_dest(void *vbuf, void *unused)
1351 {
1352         arc_buf_t *buf = vbuf;
1353 
1354         mutex_destroy(&buf->b_evict_lock);
1355         arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1356 }
1357 
1358 /*
1359  * Reclaim callback -- invoked when memory is low.
1360  */
1361 /* ARGSUSED */
1362 static void
1363 hdr_recl(void *unused)
1364 {
1365         dprintf("hdr_recl called\n");
1366         /*
1367          * umem calls the reclaim func when we destroy the buf cache,
1368          * which is after we do arc_fini().
1369          */
1370         if (!arc_dead)
1371                 cv_signal(&arc_reclaim_thread_cv);
1372 }
1373 
1374 static void
1375 buf_init(void)
1376 {
1377         uint64_t *ct;
1378         uint64_t hsize = 1ULL << 12;
1379         int i, j;
1380 
1381         /*
1382          * The hash table is big enough to fill all of physical memory
1383          * with an average block size of zfs_arc_average_blocksize (default 8K).
1384          * By default, the table will take up
1385          * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1386          */
1387         while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1388                 hsize <<= 1;
1389 retry:
1390         buf_hash_table.ht_mask = hsize - 1;
1391         buf_hash_table.ht_table =
1392             kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1393         if (buf_hash_table.ht_table == NULL) {
1394                 ASSERT(hsize > (1ULL << 8));
1395                 hsize >>= 1;
1396                 goto retry;
1397         }
1398 
1399         hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1400             0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1401         hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1402             HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1403             NULL, NULL, 0);
1404         buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1405             0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1406 
1407         for (i = 0; i < 256; i++)
1408                 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1409                         *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1410 
1411         for (i = 0; i < BUF_LOCKS; i++) {
1412                 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1413                     NULL, MUTEX_DEFAULT, NULL);
1414         }
1415 }
1416 
1417 /*
1418  * This is the size that the buf occupies in memory. If the buf is compressed,
1419  * it will correspond to the compressed size. You should use this method of
1420  * getting the buf size unless you explicitly need the logical size.
1421  */
1422 int32_t
1423 arc_buf_size(arc_buf_t *buf)
1424 {
1425         return (ARC_BUF_COMPRESSED(buf) ?
1426             HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1427 }
1428 
1429 int32_t
1430 arc_buf_lsize(arc_buf_t *buf)
1431 {
1432         return (HDR_GET_LSIZE(buf->b_hdr));
1433 }
1434 
1435 enum zio_compress
1436 arc_get_compression(arc_buf_t *buf)
1437 {
1438         return (ARC_BUF_COMPRESSED(buf) ?
1439             HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1440 }
1441 
1442 #define ARC_MINTIME     (hz>>4) /* 62 ms */
1443 
1444 static inline boolean_t
1445 arc_buf_is_shared(arc_buf_t *buf)
1446 {
1447         boolean_t shared = (buf->b_data != NULL &&
1448             buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1449             abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1450             buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1451         IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1452         IMPLY(shared, ARC_BUF_SHARED(buf));
1453         IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1454 
1455         /*
1456          * It would be nice to assert arc_can_share() too, but the "hdr isn't
1457          * already being shared" requirement prevents us from doing that.
1458          */
1459 
1460         return (shared);
1461 }
1462 
1463 /*
1464  * Free the checksum associated with this header. If there is no checksum, this
1465  * is a no-op.
1466  */
1467 static inline void
1468 arc_cksum_free(arc_buf_hdr_t *hdr)
1469 {
1470         ASSERT(HDR_HAS_L1HDR(hdr));
1471         mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1472         if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1473                 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1474                 hdr->b_l1hdr.b_freeze_cksum = NULL;
1475         }
1476         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1477 }
1478 
1479 /*
1480  * Return true iff at least one of the bufs on hdr is not compressed.
1481  */
1482 static boolean_t
1483 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1484 {
1485         for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1486                 if (!ARC_BUF_COMPRESSED(b)) {
1487                         return (B_TRUE);
1488                 }
1489         }
1490         return (B_FALSE);
1491 }
1492 
1493 /*
1494  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1495  * matches the checksum that is stored in the hdr. If there is no checksum,
1496  * or if the buf is compressed, this is a no-op.
1497  */
1498 static void
1499 arc_cksum_verify(arc_buf_t *buf)
1500 {
1501         arc_buf_hdr_t *hdr = buf->b_hdr;
1502         zio_cksum_t zc;
1503 
1504         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1505                 return;
1506 
1507         if (ARC_BUF_COMPRESSED(buf)) {
1508                 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1509                     arc_hdr_has_uncompressed_buf(hdr));
1510                 return;
1511         }
1512 
1513         ASSERT(HDR_HAS_L1HDR(hdr));
1514 
1515         mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1516         if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1517                 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1518                 return;
1519         }
1520 
1521         fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1522         if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1523                 panic("buffer modified while frozen!");
1524         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1525 }
1526 
1527 static boolean_t
1528 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1529 {
1530         enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1531         boolean_t valid_cksum;
1532 
1533         ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1534         VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1535 
1536         /*
1537          * We rely on the blkptr's checksum to determine if the block
1538          * is valid or not. When compressed arc is enabled, the l2arc
1539          * writes the block to the l2arc just as it appears in the pool.
1540          * This allows us to use the blkptr's checksum to validate the
1541          * data that we just read off of the l2arc without having to store
1542          * a separate checksum in the arc_buf_hdr_t. However, if compressed
1543          * arc is disabled, then the data written to the l2arc is always
1544          * uncompressed and won't match the block as it exists in the main
1545          * pool. When this is the case, we must first compress it if it is
1546          * compressed on the main pool before we can validate the checksum.
1547          */
1548         if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1549                 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1550                 uint64_t lsize = HDR_GET_LSIZE(hdr);
1551                 uint64_t csize;
1552 
1553                 abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
1554                 csize = zio_compress_data(compress, zio->io_abd,
1555                     abd_to_buf(cdata), lsize);
1556 
1557                 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1558                 if (csize < HDR_GET_PSIZE(hdr)) {
1559                         /*
1560                          * Compressed blocks are always a multiple of the
1561                          * smallest ashift in the pool. Ideally, we would
1562                          * like to round up the csize to the next
1563                          * spa_min_ashift but that value may have changed
1564                          * since the block was last written. Instead,
1565                          * we rely on the fact that the hdr's psize
1566                          * was set to the psize of the block when it was
1567                          * last written. We set the csize to that value
1568                          * and zero out any part that should not contain
1569                          * data.
1570                          */
1571                         abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
1572                         csize = HDR_GET_PSIZE(hdr);
1573                 }
1574                 zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
1575         }
1576 
1577         /*
1578          * Block pointers always store the checksum for the logical data.
1579          * If the block pointer has the gang bit set, then the checksum
1580          * it represents is for the reconstituted data and not for an
1581          * individual gang member. The zio pipeline, however, must be able to
1582          * determine the checksum of each of the gang constituents so it
1583          * treats the checksum comparison differently than what we need
1584          * for l2arc blocks. This prevents us from using the
1585          * zio_checksum_error() interface directly. Instead we must call the
1586          * zio_checksum_error_impl() so that we can ensure the checksum is
1587          * generated using the correct checksum algorithm and accounts for the
1588          * logical I/O size and not just a gang fragment.
1589          */
1590         valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1591             BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1592             zio->io_offset, NULL) == 0);
1593         zio_pop_transforms(zio);
1594         return (valid_cksum);
1595 }
1596 
1597 /*
1598  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1599  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1600  * isn't modified later on. If buf is compressed or there is already a checksum
1601  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1602  */
1603 static void
1604 arc_cksum_compute(arc_buf_t *buf)
1605 {
1606         arc_buf_hdr_t *hdr = buf->b_hdr;
1607 
1608         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1609                 return;
1610 
1611         ASSERT(HDR_HAS_L1HDR(hdr));
1612 
1613         mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1614         if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1615                 ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1616                 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1617                 return;
1618         } else if (ARC_BUF_COMPRESSED(buf)) {
1619                 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1620                 return;
1621         }
1622 
1623         ASSERT(!ARC_BUF_COMPRESSED(buf));
1624         hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1625             KM_SLEEP);
1626         fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1627             hdr->b_l1hdr.b_freeze_cksum);
1628         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1629         arc_buf_watch(buf);
1630 }
1631 
1632 #ifndef _KERNEL
1633 typedef struct procctl {
1634         long cmd;
1635         prwatch_t prwatch;
1636 } procctl_t;
1637 #endif
1638 
1639 /* ARGSUSED */
1640 static void
1641 arc_buf_unwatch(arc_buf_t *buf)
1642 {
1643 #ifndef _KERNEL
1644         if (arc_watch) {
1645                 int result;
1646                 procctl_t ctl;
1647                 ctl.cmd = PCWATCH;
1648                 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1649                 ctl.prwatch.pr_size = 0;
1650                 ctl.prwatch.pr_wflags = 0;
1651                 result = write(arc_procfd, &ctl, sizeof (ctl));
1652                 ASSERT3U(result, ==, sizeof (ctl));
1653         }
1654 #endif
1655 }
1656 
1657 /* ARGSUSED */
1658 static void
1659 arc_buf_watch(arc_buf_t *buf)
1660 {
1661 #ifndef _KERNEL
1662         if (arc_watch) {
1663                 int result;
1664                 procctl_t ctl;
1665                 ctl.cmd = PCWATCH;
1666                 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1667                 ctl.prwatch.pr_size = arc_buf_size(buf);
1668                 ctl.prwatch.pr_wflags = WA_WRITE;
1669                 result = write(arc_procfd, &ctl, sizeof (ctl));
1670                 ASSERT3U(result, ==, sizeof (ctl));
1671         }
1672 #endif
1673 }
1674 
1675 static arc_buf_contents_t
1676 arc_buf_type(arc_buf_hdr_t *hdr)
1677 {
1678         arc_buf_contents_t type;
1679         if (HDR_ISTYPE_METADATA(hdr)) {
1680                 type = ARC_BUFC_METADATA;
1681         } else {
1682                 type = ARC_BUFC_DATA;
1683         }
1684         VERIFY3U(hdr->b_type, ==, type);
1685         return (type);
1686 }
1687 
1688 boolean_t
1689 arc_is_metadata(arc_buf_t *buf)
1690 {
1691         return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1692 }
1693 
1694 static uint32_t
1695 arc_bufc_to_flags(arc_buf_contents_t type)
1696 {
1697         switch (type) {
1698         case ARC_BUFC_DATA:
1699                 /* metadata field is 0 if buffer contains normal data */
1700                 return (0);
1701         case ARC_BUFC_METADATA:
1702                 return (ARC_FLAG_BUFC_METADATA);
1703         default:
1704                 break;
1705         }
1706         panic("undefined ARC buffer type!");
1707         return ((uint32_t)-1);
1708 }
1709 
1710 void
1711 arc_buf_thaw(arc_buf_t *buf)
1712 {
1713         arc_buf_hdr_t *hdr = buf->b_hdr;
1714 
1715         ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1716         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1717 
1718         arc_cksum_verify(buf);
1719 
1720         /*
1721          * Compressed buffers do not manipulate the b_freeze_cksum or
1722          * allocate b_thawed.
1723          */
1724         if (ARC_BUF_COMPRESSED(buf)) {
1725                 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1726                     arc_hdr_has_uncompressed_buf(hdr));
1727                 return;
1728         }
1729 
1730         ASSERT(HDR_HAS_L1HDR(hdr));
1731         arc_cksum_free(hdr);
1732 
1733         mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1734 #ifdef ZFS_DEBUG
1735         if (zfs_flags & ZFS_DEBUG_MODIFY) {
1736                 if (hdr->b_l1hdr.b_thawed != NULL)
1737                         kmem_free(hdr->b_l1hdr.b_thawed, 1);
1738                 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1739         }
1740 #endif
1741 
1742         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1743 
1744         arc_buf_unwatch(buf);
1745 }
1746 
1747 void
1748 arc_buf_freeze(arc_buf_t *buf)
1749 {
1750         arc_buf_hdr_t *hdr = buf->b_hdr;
1751         kmutex_t *hash_lock;
1752 
1753         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1754                 return;
1755 
1756         if (ARC_BUF_COMPRESSED(buf)) {
1757                 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1758                     arc_hdr_has_uncompressed_buf(hdr));
1759                 return;
1760         }
1761 
1762         hash_lock = HDR_LOCK(hdr);
1763         mutex_enter(hash_lock);
1764 
1765         ASSERT(HDR_HAS_L1HDR(hdr));
1766         ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1767             hdr->b_l1hdr.b_state == arc_anon);
1768         arc_cksum_compute(buf);
1769         mutex_exit(hash_lock);
1770 }
1771 
1772 /*
1773  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1774  * the following functions should be used to ensure that the flags are
1775  * updated in a thread-safe way. When manipulating the flags either
1776  * the hash_lock must be held or the hdr must be undiscoverable. This
1777  * ensures that we're not racing with any other threads when updating
1778  * the flags.
1779  */
1780 static inline void
1781 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1782 {
1783         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1784         hdr->b_flags |= flags;
1785 }
1786 
1787 static inline void
1788 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1789 {
1790         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1791         hdr->b_flags &= ~flags;
1792 }
1793 
1794 /*
1795  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1796  * done in a special way since we have to clear and set bits
1797  * at the same time. Consumers that wish to set the compression bits
1798  * must use this function to ensure that the flags are updated in
1799  * thread-safe manner.
1800  */
1801 static void
1802 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1803 {
1804         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1805 
1806         /*
1807          * Holes and embedded blocks will always have a psize = 0 so
1808          * we ignore the compression of the blkptr and set the
1809          * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1810          * Holes and embedded blocks remain anonymous so we don't
1811          * want to uncompress them. Mark them as uncompressed.
1812          */
1813         if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1814                 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1815                 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1816                 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1817                 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1818         } else {
1819                 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1820                 HDR_SET_COMPRESS(hdr, cmp);
1821                 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1822                 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1823         }
1824 }
1825 
1826 /*
1827  * Looks for another buf on the same hdr which has the data decompressed, copies
1828  * from it, and returns true. If no such buf exists, returns false.
1829  */
1830 static boolean_t
1831 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1832 {
1833         arc_buf_hdr_t *hdr = buf->b_hdr;
1834         boolean_t copied = B_FALSE;
1835 
1836         ASSERT(HDR_HAS_L1HDR(hdr));
1837         ASSERT3P(buf->b_data, !=, NULL);
1838         ASSERT(!ARC_BUF_COMPRESSED(buf));
1839 
1840         for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1841             from = from->b_next) {
1842                 /* can't use our own data buffer */
1843                 if (from == buf) {
1844                         continue;
1845                 }
1846 
1847                 if (!ARC_BUF_COMPRESSED(from)) {
1848                         bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1849                         copied = B_TRUE;
1850                         break;
1851                 }
1852         }
1853 
1854         /*
1855          * There were no decompressed bufs, so there should not be a
1856          * checksum on the hdr either.
1857          */
1858         EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1859 
1860         return (copied);
1861 }
1862 
1863 /*
1864  * Given a buf that has a data buffer attached to it, this function will
1865  * efficiently fill the buf with data of the specified compression setting from
1866  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1867  * are already sharing a data buf, no copy is performed.
1868  *
1869  * If the buf is marked as compressed but uncompressed data was requested, this
1870  * will allocate a new data buffer for the buf, remove that flag, and fill the
1871  * buf with uncompressed data. You can't request a compressed buf on a hdr with
1872  * uncompressed data, and (since we haven't added support for it yet) if you
1873  * want compressed data your buf must already be marked as compressed and have
1874  * the correct-sized data buffer.
1875  */
1876 static int
1877 arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
1878 {
1879         arc_buf_hdr_t *hdr = buf->b_hdr;
1880         boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
1881         dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1882 
1883         ASSERT3P(buf->b_data, !=, NULL);
1884         IMPLY(compressed, hdr_compressed);
1885         IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1886 
1887         if (hdr_compressed == compressed) {
1888                 if (!arc_buf_is_shared(buf)) {
1889                         abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1890                             arc_buf_size(buf));
1891                 }
1892         } else {
1893                 ASSERT(hdr_compressed);
1894                 ASSERT(!compressed);
1895                 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1896 
1897                 /*
1898                  * If the buf is sharing its data with the hdr, unlink it and
1899                  * allocate a new data buffer for the buf.
1900                  */
1901                 if (arc_buf_is_shared(buf)) {
1902                         ASSERT(ARC_BUF_COMPRESSED(buf));
1903 
1904                         /* We need to give the buf it's own b_data */
1905                         buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
1906                         buf->b_data =
1907                             arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1908                         arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1909 
1910                         /* Previously overhead was 0; just add new overhead */
1911                         ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
1912                 } else if (ARC_BUF_COMPRESSED(buf)) {
1913                         /* We need to reallocate the buf's b_data */
1914                         arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1915                             buf);
1916                         buf->b_data =
1917                             arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1918 
1919                         /* We increased the size of b_data; update overhead */
1920                         ARCSTAT_INCR(arcstat_overhead_size,
1921                             HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
1922                 }
1923 
1924                 /*
1925                  * Regardless of the buf's previous compression settings, it
1926                  * should not be compressed at the end of this function.
1927                  */
1928                 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1929 
1930                 /*
1931                  * Try copying the data from another buf which already has a
1932                  * decompressed version. If that's not possible, it's time to
1933                  * bite the bullet and decompress the data from the hdr.
1934                  */
1935                 if (arc_buf_try_copy_decompressed_data(buf)) {
1936                         /* Skip byteswapping and checksumming (already done) */
1937                         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
1938                         return (0);
1939                 } else {
1940                         int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1941                             hdr->b_l1hdr.b_pabd, buf->b_data,
1942                             HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1943 
1944                         /*
1945                          * Absent hardware errors or software bugs, this should
1946                          * be impossible, but log it anyway so we can debug it.
1947                          */
1948                         if (error != 0) {
1949                                 zfs_dbgmsg(
1950                                     "hdr %p, compress %d, psize %d, lsize %d",
1951                                     hdr, HDR_GET_COMPRESS(hdr),
1952                                     HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1953                                 return (SET_ERROR(EIO));
1954                         }
1955                 }
1956         }
1957 
1958         /* Byteswap the buf's data if necessary */
1959         if (bswap != DMU_BSWAP_NUMFUNCS) {
1960                 ASSERT(!HDR_SHARED_DATA(hdr));
1961                 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
1962                 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
1963         }
1964 
1965         /* Compute the hdr's checksum if necessary */
1966         arc_cksum_compute(buf);
1967 
1968         return (0);
1969 }
1970 
1971 int
1972 arc_decompress(arc_buf_t *buf)
1973 {
1974         return (arc_buf_fill(buf, B_FALSE));
1975 }
1976 
1977 /*
1978  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1979  */
1980 static uint64_t
1981 arc_hdr_size(arc_buf_hdr_t *hdr)
1982 {
1983         uint64_t size;
1984 
1985         if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1986             HDR_GET_PSIZE(hdr) > 0) {
1987                 size = HDR_GET_PSIZE(hdr);
1988         } else {
1989                 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1990                 size = HDR_GET_LSIZE(hdr);
1991         }
1992         return (size);
1993 }
1994 
1995 /*
1996  * Increment the amount of evictable space in the arc_state_t's refcount.
1997  * We account for the space used by the hdr and the arc buf individually
1998  * so that we can add and remove them from the refcount individually.
1999  */
2000 static void
2001 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2002 {
2003         arc_buf_contents_t type = arc_buf_type(hdr);
2004 
2005         ASSERT(HDR_HAS_L1HDR(hdr));
2006 
2007         if (GHOST_STATE(state)) {
2008                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2009                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2010                 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2011                 (void) refcount_add_many(&state->arcs_esize[type],
2012                     HDR_GET_LSIZE(hdr), hdr);
2013                 return;
2014         }
2015 
2016         ASSERT(!GHOST_STATE(state));
2017         if (hdr->b_l1hdr.b_pabd != NULL) {
2018                 (void) refcount_add_many(&state->arcs_esize[type],
2019                     arc_hdr_size(hdr), hdr);
2020         }
2021         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2022             buf = buf->b_next) {
2023                 if (arc_buf_is_shared(buf))
2024                         continue;
2025                 (void) refcount_add_many(&state->arcs_esize[type],
2026                     arc_buf_size(buf), buf);
2027         }
2028 }
2029 
2030 /*
2031  * Decrement the amount of evictable space in the arc_state_t's refcount.
2032  * We account for the space used by the hdr and the arc buf individually
2033  * so that we can add and remove them from the refcount individually.
2034  */
2035 static void
2036 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2037 {
2038         arc_buf_contents_t type = arc_buf_type(hdr);
2039 
2040         ASSERT(HDR_HAS_L1HDR(hdr));
2041 
2042         if (GHOST_STATE(state)) {
2043                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2044                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2045                 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2046                 (void) refcount_remove_many(&state->arcs_esize[type],
2047                     HDR_GET_LSIZE(hdr), hdr);
2048                 return;
2049         }
2050 
2051         ASSERT(!GHOST_STATE(state));
2052         if (hdr->b_l1hdr.b_pabd != NULL) {
2053                 (void) refcount_remove_many(&state->arcs_esize[type],
2054                     arc_hdr_size(hdr), hdr);
2055         }
2056         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2057             buf = buf->b_next) {
2058                 if (arc_buf_is_shared(buf))
2059                         continue;
2060                 (void) refcount_remove_many(&state->arcs_esize[type],
2061                     arc_buf_size(buf), buf);
2062         }
2063 }
2064 
2065 /*
2066  * Add a reference to this hdr indicating that someone is actively
2067  * referencing that memory. When the refcount transitions from 0 to 1,
2068  * we remove it from the respective arc_state_t list to indicate that
2069  * it is not evictable.
2070  */
2071 static void
2072 add_reference(arc_buf_hdr_t *hdr, void *tag)
2073 {
2074         ASSERT(HDR_HAS_L1HDR(hdr));
2075         if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2076                 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2077                 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2078                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2079         }
2080 
2081         arc_state_t *state = hdr->b_l1hdr.b_state;
2082 
2083         if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2084             (state != arc_anon)) {
2085                 /* We don't use the L2-only state list. */
2086                 if (state != arc_l2c_only) {
2087                         multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2088                             hdr);
2089                         arc_evictable_space_decrement(hdr, state);
2090                 }
2091                 /* remove the prefetch flag if we get a reference */
2092                 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2093         }
2094 }
2095 
2096 /*
2097  * Remove a reference from this hdr. When the reference transitions from
2098  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2099  * list making it eligible for eviction.
2100  */
2101 static int
2102 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2103 {
2104         int cnt;
2105         arc_state_t *state = hdr->b_l1hdr.b_state;
2106 
2107         ASSERT(HDR_HAS_L1HDR(hdr));
2108         ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2109         ASSERT(!GHOST_STATE(state));
2110 
2111         /*
2112          * arc_l2c_only counts as a ghost state so we don't need to explicitly
2113          * check to prevent usage of the arc_l2c_only list.
2114          */
2115         if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2116             (state != arc_anon)) {
2117                 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2118                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2119                 arc_evictable_space_increment(hdr, state);
2120         }
2121         return (cnt);
2122 }
2123 
2124 /*
2125  * Move the supplied buffer to the indicated state. The hash lock
2126  * for the buffer must be held by the caller.
2127  */
2128 static void
2129 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2130     kmutex_t *hash_lock)
2131 {
2132         arc_state_t *old_state;
2133         int64_t refcnt;
2134         uint32_t bufcnt;
2135         boolean_t update_old, update_new;
2136         arc_buf_contents_t buftype = arc_buf_type(hdr);
2137 
2138         /*
2139          * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2140          * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2141          * L1 hdr doesn't always exist when we change state to arc_anon before
2142          * destroying a header, in which case reallocating to add the L1 hdr is
2143          * pointless.
2144          */
2145         if (HDR_HAS_L1HDR(hdr)) {
2146                 old_state = hdr->b_l1hdr.b_state;
2147                 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2148                 bufcnt = hdr->b_l1hdr.b_bufcnt;
2149                 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2150         } else {
2151                 old_state = arc_l2c_only;
2152                 refcnt = 0;
2153                 bufcnt = 0;
2154                 update_old = B_FALSE;
2155         }
2156         update_new = update_old;
2157 
2158         ASSERT(MUTEX_HELD(hash_lock));
2159         ASSERT3P(new_state, !=, old_state);
2160         ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2161         ASSERT(old_state != arc_anon || bufcnt <= 1);
2162 
2163         /*
2164          * If this buffer is evictable, transfer it from the
2165          * old state list to the new state list.
2166          */
2167         if (refcnt == 0) {
2168                 if (old_state != arc_anon && old_state != arc_l2c_only) {
2169                         ASSERT(HDR_HAS_L1HDR(hdr));
2170                         multilist_remove(old_state->arcs_list[buftype], hdr);
2171 
2172                         if (GHOST_STATE(old_state)) {
2173                                 ASSERT0(bufcnt);
2174                                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2175                                 update_old = B_TRUE;
2176                         }
2177                         arc_evictable_space_decrement(hdr, old_state);
2178                 }
2179                 if (new_state != arc_anon && new_state != arc_l2c_only) {
2180 
2181                         /*
2182                          * An L1 header always exists here, since if we're
2183                          * moving to some L1-cached state (i.e. not l2c_only or
2184                          * anonymous), we realloc the header to add an L1hdr
2185                          * beforehand.
2186                          */
2187                         ASSERT(HDR_HAS_L1HDR(hdr));
2188                         multilist_insert(new_state->arcs_list[buftype], hdr);
2189 
2190                         if (GHOST_STATE(new_state)) {
2191                                 ASSERT0(bufcnt);
2192                                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2193                                 update_new = B_TRUE;
2194                         }
2195                         arc_evictable_space_increment(hdr, new_state);
2196                 }
2197         }
2198 
2199         ASSERT(!HDR_EMPTY(hdr));
2200         if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2201                 buf_hash_remove(hdr);
2202 
2203         /* adjust state sizes (ignore arc_l2c_only) */
2204 
2205         if (update_new && new_state != arc_l2c_only) {
2206                 ASSERT(HDR_HAS_L1HDR(hdr));
2207                 if (GHOST_STATE(new_state)) {
2208                         ASSERT0(bufcnt);
2209 
2210                         /*
2211                          * When moving a header to a ghost state, we first
2212                          * remove all arc buffers. Thus, we'll have a
2213                          * bufcnt of zero, and no arc buffer to use for
2214                          * the reference. As a result, we use the arc
2215                          * header pointer for the reference.
2216                          */
2217                         (void) refcount_add_many(&new_state->arcs_size,
2218                             HDR_GET_LSIZE(hdr), hdr);
2219                         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2220                 } else {
2221                         uint32_t buffers = 0;
2222 
2223                         /*
2224                          * Each individual buffer holds a unique reference,
2225                          * thus we must remove each of these references one
2226                          * at a time.
2227                          */
2228                         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2229                             buf = buf->b_next) {
2230                                 ASSERT3U(bufcnt, !=, 0);
2231                                 buffers++;
2232 
2233                                 /*
2234                                  * When the arc_buf_t is sharing the data
2235                                  * block with the hdr, the owner of the
2236                                  * reference belongs to the hdr. Only
2237                                  * add to the refcount if the arc_buf_t is
2238                                  * not shared.
2239                                  */
2240                                 if (arc_buf_is_shared(buf))
2241                                         continue;
2242 
2243                                 (void) refcount_add_many(&new_state->arcs_size,
2244                                     arc_buf_size(buf), buf);
2245                         }
2246                         ASSERT3U(bufcnt, ==, buffers);
2247 
2248                         if (hdr->b_l1hdr.b_pabd != NULL) {
2249                                 (void) refcount_add_many(&new_state->arcs_size,
2250                                     arc_hdr_size(hdr), hdr);
2251                         } else {
2252                                 ASSERT(GHOST_STATE(old_state));
2253                         }
2254                 }
2255         }
2256 
2257         if (update_old && old_state != arc_l2c_only) {
2258                 ASSERT(HDR_HAS_L1HDR(hdr));
2259                 if (GHOST_STATE(old_state)) {
2260                         ASSERT0(bufcnt);
2261                         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2262 
2263                         /*
2264                          * When moving a header off of a ghost state,
2265                          * the header will not contain any arc buffers.
2266                          * We use the arc header pointer for the reference
2267                          * which is exactly what we did when we put the
2268                          * header on the ghost state.
2269                          */
2270 
2271                         (void) refcount_remove_many(&old_state->arcs_size,
2272                             HDR_GET_LSIZE(hdr), hdr);
2273                 } else {
2274                         uint32_t buffers = 0;
2275 
2276                         /*
2277                          * Each individual buffer holds a unique reference,
2278                          * thus we must remove each of these references one
2279                          * at a time.
2280                          */
2281                         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2282                             buf = buf->b_next) {
2283                                 ASSERT3U(bufcnt, !=, 0);
2284                                 buffers++;
2285 
2286                                 /*
2287                                  * When the arc_buf_t is sharing the data
2288                                  * block with the hdr, the owner of the
2289                                  * reference belongs to the hdr. Only
2290                                  * add to the refcount if the arc_buf_t is
2291                                  * not shared.
2292                                  */
2293                                 if (arc_buf_is_shared(buf))
2294                                         continue;
2295 
2296                                 (void) refcount_remove_many(
2297                                     &old_state->arcs_size, arc_buf_size(buf),
2298                                     buf);
2299                         }
2300                         ASSERT3U(bufcnt, ==, buffers);
2301                         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2302                         (void) refcount_remove_many(
2303                             &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2304                 }
2305         }
2306 
2307         if (HDR_HAS_L1HDR(hdr))
2308                 hdr->b_l1hdr.b_state = new_state;
2309 
2310         /*
2311          * L2 headers should never be on the L2 state list since they don't
2312          * have L1 headers allocated.
2313          */
2314         ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2315             multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2316 }
2317 
2318 void
2319 arc_space_consume(uint64_t space, arc_space_type_t type)
2320 {
2321         ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2322 
2323         switch (type) {
2324         case ARC_SPACE_DATA:
2325                 ARCSTAT_INCR(arcstat_data_size, space);
2326                 break;
2327         case ARC_SPACE_META:
2328                 ARCSTAT_INCR(arcstat_metadata_size, space);
2329                 break;
2330         case ARC_SPACE_OTHER:
2331                 ARCSTAT_INCR(arcstat_other_size, space);
2332                 break;
2333         case ARC_SPACE_HDRS:
2334                 ARCSTAT_INCR(arcstat_hdr_size, space);
2335                 break;
2336         case ARC_SPACE_L2HDRS:
2337                 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2338                 break;
2339         }
2340 
2341         if (type != ARC_SPACE_DATA)
2342                 ARCSTAT_INCR(arcstat_meta_used, space);
2343 
2344         atomic_add_64(&arc_size, space);
2345 }
2346 
2347 void
2348 arc_space_return(uint64_t space, arc_space_type_t type)
2349 {
2350         ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2351 
2352         switch (type) {
2353         case ARC_SPACE_DATA:
2354                 ARCSTAT_INCR(arcstat_data_size, -space);
2355                 break;
2356         case ARC_SPACE_META:
2357                 ARCSTAT_INCR(arcstat_metadata_size, -space);
2358                 break;
2359         case ARC_SPACE_OTHER:
2360                 ARCSTAT_INCR(arcstat_other_size, -space);
2361                 break;
2362         case ARC_SPACE_HDRS:
2363                 ARCSTAT_INCR(arcstat_hdr_size, -space);
2364                 break;
2365         case ARC_SPACE_L2HDRS:
2366                 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2367                 break;
2368         }
2369 
2370         if (type != ARC_SPACE_DATA) {
2371                 ASSERT(arc_meta_used >= space);
2372                 if (arc_meta_max < arc_meta_used)
2373                         arc_meta_max = arc_meta_used;
2374                 ARCSTAT_INCR(arcstat_meta_used, -space);
2375         }
2376 
2377         ASSERT(arc_size >= space);
2378         atomic_add_64(&arc_size, -space);
2379 }
2380 
2381 /*
2382  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2383  * with the hdr's b_pabd.
2384  */
2385 static boolean_t
2386 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2387 {
2388         /*
2389          * The criteria for sharing a hdr's data are:
2390          * 1. the hdr's compression matches the buf's compression
2391          * 2. the hdr doesn't need to be byteswapped
2392          * 3. the hdr isn't already being shared
2393          * 4. the buf is either compressed or it is the last buf in the hdr list
2394          *
2395          * Criterion #4 maintains the invariant that shared uncompressed
2396          * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2397          * might ask, "if a compressed buf is allocated first, won't that be the
2398          * last thing in the list?", but in that case it's impossible to create
2399          * a shared uncompressed buf anyway (because the hdr must be compressed
2400          * to have the compressed buf). You might also think that #3 is
2401          * sufficient to make this guarantee, however it's possible
2402          * (specifically in the rare L2ARC write race mentioned in
2403          * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2404          * is sharable, but wasn't at the time of its allocation. Rather than
2405          * allow a new shared uncompressed buf to be created and then shuffle
2406          * the list around to make it the last element, this simply disallows
2407          * sharing if the new buf isn't the first to be added.
2408          */
2409         ASSERT3P(buf->b_hdr, ==, hdr);
2410         boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2411         boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2412         return (buf_compressed == hdr_compressed &&
2413             hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2414             !HDR_SHARED_DATA(hdr) &&
2415             (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2416 }
2417 
2418 /*
2419  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2420  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2421  * copy was made successfully, or an error code otherwise.
2422  */
2423 static int
2424 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2425     boolean_t fill, arc_buf_t **ret)
2426 {
2427         arc_buf_t *buf;
2428 
2429         ASSERT(HDR_HAS_L1HDR(hdr));
2430         ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2431         VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2432             hdr->b_type == ARC_BUFC_METADATA);
2433         ASSERT3P(ret, !=, NULL);
2434         ASSERT3P(*ret, ==, NULL);
2435 
2436         buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2437         buf->b_hdr = hdr;
2438         buf->b_data = NULL;
2439         buf->b_next = hdr->b_l1hdr.b_buf;
2440         buf->b_flags = 0;
2441 
2442         add_reference(hdr, tag);
2443 
2444         /*
2445          * We're about to change the hdr's b_flags. We must either
2446          * hold the hash_lock or be undiscoverable.
2447          */
2448         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2449 
2450         /*
2451          * Only honor requests for compressed bufs if the hdr is actually
2452          * compressed.
2453          */
2454         if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2455                 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2456 
2457         /*
2458          * If the hdr's data can be shared then we share the data buffer and
2459          * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2460          * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2461          * buffer to store the buf's data.
2462          *
2463          * There are two additional restrictions here because we're sharing
2464          * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2465          * actively involved in an L2ARC write, because if this buf is used by
2466          * an arc_write() then the hdr's data buffer will be released when the
2467          * write completes, even though the L2ARC write might still be using it.
2468          * Second, the hdr's ABD must be linear so that the buf's user doesn't
2469          * need to be ABD-aware.
2470          */
2471         boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2472             abd_is_linear(hdr->b_l1hdr.b_pabd);
2473 
2474         /* Set up b_data and sharing */
2475         if (can_share) {
2476                 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2477                 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2478                 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2479         } else {
2480                 buf->b_data =
2481                     arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2482                 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2483         }
2484         VERIFY3P(buf->b_data, !=, NULL);
2485 
2486         hdr->b_l1hdr.b_buf = buf;
2487         hdr->b_l1hdr.b_bufcnt += 1;
2488 
2489         /*
2490          * If the user wants the data from the hdr, we need to either copy or
2491          * decompress the data.
2492          */
2493         if (fill) {
2494                 return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2495         }
2496 
2497         return (0);
2498 }
2499 
2500 static char *arc_onloan_tag = "onloan";
2501 
2502 static inline void
2503 arc_loaned_bytes_update(int64_t delta)
2504 {
2505         atomic_add_64(&arc_loaned_bytes, delta);
2506 
2507         /* assert that it did not wrap around */
2508         ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2509 }
2510 
2511 /*
2512  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2513  * flight data by arc_tempreserve_space() until they are "returned". Loaned
2514  * buffers must be returned to the arc before they can be used by the DMU or
2515  * freed.
2516  */
2517 arc_buf_t *
2518 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2519 {
2520         arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2521             is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2522 
2523         arc_loaned_bytes_update(size);
2524 
2525         return (buf);
2526 }
2527 
2528 arc_buf_t *
2529 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2530     enum zio_compress compression_type)
2531 {
2532         arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2533             psize, lsize, compression_type);
2534 
2535         arc_loaned_bytes_update(psize);
2536 
2537         return (buf);
2538 }
2539 
2540 
2541 /*
2542  * Return a loaned arc buffer to the arc.
2543  */
2544 void
2545 arc_return_buf(arc_buf_t *buf, void *tag)
2546 {
2547         arc_buf_hdr_t *hdr = buf->b_hdr;
2548 
2549         ASSERT3P(buf->b_data, !=, NULL);
2550         ASSERT(HDR_HAS_L1HDR(hdr));
2551         (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2552         (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2553 
2554         arc_loaned_bytes_update(-arc_buf_size(buf));
2555 }
2556 
2557 /* Detach an arc_buf from a dbuf (tag) */
2558 void
2559 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2560 {
2561         arc_buf_hdr_t *hdr = buf->b_hdr;
2562 
2563         ASSERT3P(buf->b_data, !=, NULL);
2564         ASSERT(HDR_HAS_L1HDR(hdr));
2565         (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2566         (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2567 
2568         arc_loaned_bytes_update(arc_buf_size(buf));
2569 }
2570 
2571 static void
2572 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2573 {
2574         l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2575 
2576         df->l2df_abd = abd;
2577         df->l2df_size = size;
2578         df->l2df_type = type;
2579         mutex_enter(&l2arc_free_on_write_mtx);
2580         list_insert_head(l2arc_free_on_write, df);
2581         mutex_exit(&l2arc_free_on_write_mtx);
2582 }
2583 
2584 static void
2585 arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2586 {
2587         arc_state_t *state = hdr->b_l1hdr.b_state;
2588         arc_buf_contents_t type = arc_buf_type(hdr);
2589         uint64_t size = arc_hdr_size(hdr);
2590 
2591         /* protected by hash lock, if in the hash table */
2592         if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2593                 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2594                 ASSERT(state != arc_anon && state != arc_l2c_only);
2595 
2596                 (void) refcount_remove_many(&state->arcs_esize[type],
2597                     size, hdr);
2598         }
2599         (void) refcount_remove_many(&state->arcs_size, size, hdr);
2600         if (type == ARC_BUFC_METADATA) {
2601                 arc_space_return(size, ARC_SPACE_META);
2602         } else {
2603                 ASSERT(type == ARC_BUFC_DATA);
2604                 arc_space_return(size, ARC_SPACE_DATA);
2605         }
2606 
2607         l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2608 }
2609 
2610 /*
2611  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2612  * data buffer, we transfer the refcount ownership to the hdr and update
2613  * the appropriate kstats.
2614  */
2615 static void
2616 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2617 {
2618         arc_state_t *state = hdr->b_l1hdr.b_state;
2619 
2620         ASSERT(arc_can_share(hdr, buf));
2621         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2622         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2623 
2624         /*
2625          * Start sharing the data buffer. We transfer the
2626          * refcount ownership to the hdr since it always owns
2627          * the refcount whenever an arc_buf_t is shared.
2628          */
2629         refcount_transfer_ownership(&state->arcs_size, buf, hdr);
2630         hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2631         abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2632             HDR_ISTYPE_METADATA(hdr));
2633         arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2634         buf->b_flags |= ARC_BUF_FLAG_SHARED;
2635 
2636         /*
2637          * Since we've transferred ownership to the hdr we need
2638          * to increment its compressed and uncompressed kstats and
2639          * decrement the overhead size.
2640          */
2641         ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2642         ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2643         ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2644 }
2645 
2646 static void
2647 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2648 {
2649         arc_state_t *state = hdr->b_l1hdr.b_state;
2650 
2651         ASSERT(arc_buf_is_shared(buf));
2652         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2653         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2654 
2655         /*
2656          * We are no longer sharing this buffer so we need
2657          * to transfer its ownership to the rightful owner.
2658          */
2659         refcount_transfer_ownership(&state->arcs_size, hdr, buf);
2660         arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2661         abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2662         abd_put(hdr->b_l1hdr.b_pabd);
2663         hdr->b_l1hdr.b_pabd = NULL;
2664         buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2665 
2666         /*
2667          * Since the buffer is no longer shared between
2668          * the arc buf and the hdr, count it as overhead.
2669          */
2670         ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2671         ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2672         ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2673 }
2674 
2675 /*
2676  * Remove an arc_buf_t from the hdr's buf list and return the last
2677  * arc_buf_t on the list. If no buffers remain on the list then return
2678  * NULL.
2679  */
2680 static arc_buf_t *
2681 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2682 {
2683         ASSERT(HDR_HAS_L1HDR(hdr));
2684         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2685 
2686         arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2687         arc_buf_t *lastbuf = NULL;
2688 
2689         /*
2690          * Remove the buf from the hdr list and locate the last
2691          * remaining buffer on the list.
2692          */
2693         while (*bufp != NULL) {
2694                 if (*bufp == buf)
2695                         *bufp = buf->b_next;
2696 
2697                 /*
2698                  * If we've removed a buffer in the middle of
2699                  * the list then update the lastbuf and update
2700                  * bufp.
2701                  */
2702                 if (*bufp != NULL) {
2703                         lastbuf = *bufp;
2704                         bufp = &(*bufp)->b_next;
2705                 }
2706         }
2707         buf->b_next = NULL;
2708         ASSERT3P(lastbuf, !=, buf);
2709         IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2710         IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2711         IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2712 
2713         return (lastbuf);
2714 }
2715 
2716 /*
2717  * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2718  * list and free it.
2719  */
2720 static void
2721 arc_buf_destroy_impl(arc_buf_t *buf)
2722 {
2723         arc_buf_hdr_t *hdr = buf->b_hdr;
2724 
2725         /*
2726          * Free up the data associated with the buf but only if we're not
2727          * sharing this with the hdr. If we are sharing it with the hdr, the
2728          * hdr is responsible for doing the free.
2729          */
2730         if (buf->b_data != NULL) {
2731                 /*
2732                  * We're about to change the hdr's b_flags. We must either
2733                  * hold the hash_lock or be undiscoverable.
2734                  */
2735                 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2736 
2737                 arc_cksum_verify(buf);
2738                 arc_buf_unwatch(buf);
2739 
2740                 if (arc_buf_is_shared(buf)) {
2741                         arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2742                 } else {
2743                         uint64_t size = arc_buf_size(buf);
2744                         arc_free_data_buf(hdr, buf->b_data, size, buf);
2745                         ARCSTAT_INCR(arcstat_overhead_size, -size);
2746                 }
2747                 buf->b_data = NULL;
2748 
2749                 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2750                 hdr->b_l1hdr.b_bufcnt -= 1;
2751         }
2752 
2753         arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
2754 
2755         if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2756                 /*
2757                  * If the current arc_buf_t is sharing its data buffer with the
2758                  * hdr, then reassign the hdr's b_pabd to share it with the new
2759                  * buffer at the end of the list. The shared buffer is always
2760                  * the last one on the hdr's buffer list.
2761                  *
2762                  * There is an equivalent case for compressed bufs, but since
2763                  * they aren't guaranteed to be the last buf in the list and
2764                  * that is an exceedingly rare case, we just allow that space be
2765                  * wasted temporarily.
2766                  */
2767                 if (lastbuf != NULL) {
2768                         /* Only one buf can be shared at once */
2769                         VERIFY(!arc_buf_is_shared(lastbuf));
2770                         /* hdr is uncompressed so can't have compressed buf */
2771                         VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
2772 
2773                         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2774                         arc_hdr_free_pabd(hdr);
2775 
2776                         /*
2777                          * We must setup a new shared block between the
2778                          * last buffer and the hdr. The data would have
2779                          * been allocated by the arc buf so we need to transfer
2780                          * ownership to the hdr since it's now being shared.
2781                          */
2782                         arc_share_buf(hdr, lastbuf);
2783                 }
2784         } else if (HDR_SHARED_DATA(hdr)) {
2785                 /*
2786                  * Uncompressed shared buffers are always at the end
2787                  * of the list. Compressed buffers don't have the
2788                  * same requirements. This makes it hard to
2789                  * simply assert that the lastbuf is shared so
2790                  * we rely on the hdr's compression flags to determine
2791                  * if we have a compressed, shared buffer.
2792                  */
2793                 ASSERT3P(lastbuf, !=, NULL);
2794                 ASSERT(arc_buf_is_shared(lastbuf) ||
2795                     HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2796         }
2797 
2798         /*
2799          * Free the checksum if we're removing the last uncompressed buf from
2800          * this hdr.
2801          */
2802         if (!arc_hdr_has_uncompressed_buf(hdr)) {
2803                 arc_cksum_free(hdr);
2804         }
2805 
2806         /* clean up the buf */
2807         buf->b_hdr = NULL;
2808         kmem_cache_free(buf_cache, buf);
2809 }
2810 
2811 static void
2812 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
2813 {
2814         ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2815         ASSERT(HDR_HAS_L1HDR(hdr));
2816         ASSERT(!HDR_SHARED_DATA(hdr));
2817 
2818         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2819         hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
2820         hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2821         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2822 
2823         ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2824         ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2825 }
2826 
2827 static void
2828 arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
2829 {
2830         ASSERT(HDR_HAS_L1HDR(hdr));
2831         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2832 
2833         /*
2834          * If the hdr is currently being written to the l2arc then
2835          * we defer freeing the data by adding it to the l2arc_free_on_write
2836          * list. The l2arc will free the data once it's finished
2837          * writing it to the l2arc device.
2838          */
2839         if (HDR_L2_WRITING(hdr)) {
2840                 arc_hdr_free_on_write(hdr);
2841                 ARCSTAT_BUMP(arcstat_l2_free_on_write);
2842         } else {
2843                 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
2844                     arc_hdr_size(hdr), hdr);
2845         }
2846         hdr->b_l1hdr.b_pabd = NULL;
2847         hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2848 
2849         ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2850         ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2851 }
2852 
2853 static arc_buf_hdr_t *
2854 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2855     enum zio_compress compression_type, arc_buf_contents_t type)
2856 {
2857         arc_buf_hdr_t *hdr;
2858 
2859         VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2860 
2861         hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2862         ASSERT(HDR_EMPTY(hdr));
2863         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2864         ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
2865         HDR_SET_PSIZE(hdr, psize);
2866         HDR_SET_LSIZE(hdr, lsize);
2867         hdr->b_spa = spa;
2868         hdr->b_type = type;
2869         hdr->b_flags = 0;
2870         arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2871         arc_hdr_set_compress(hdr, compression_type);
2872 
2873         hdr->b_l1hdr.b_state = arc_anon;
2874         hdr->b_l1hdr.b_arc_access = 0;
2875         hdr->b_l1hdr.b_bufcnt = 0;
2876         hdr->b_l1hdr.b_buf = NULL;
2877 
2878         /*
2879          * Allocate the hdr's buffer. This will contain either
2880          * the compressed or uncompressed data depending on the block
2881          * it references and compressed arc enablement.
2882          */
2883         arc_hdr_alloc_pabd(hdr);
2884         ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2885 
2886         return (hdr);
2887 }
2888 
2889 /*
2890  * Transition between the two allocation states for the arc_buf_hdr struct.
2891  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2892  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2893  * version is used when a cache buffer is only in the L2ARC in order to reduce
2894  * memory usage.
2895  */
2896 static arc_buf_hdr_t *
2897 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2898 {
2899         ASSERT(HDR_HAS_L2HDR(hdr));
2900 
2901         arc_buf_hdr_t *nhdr;
2902         l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2903 
2904         ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2905             (old == hdr_l2only_cache && new == hdr_full_cache));
2906 
2907         nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2908 
2909         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2910         buf_hash_remove(hdr);
2911 
2912         bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2913 
2914         if (new == hdr_full_cache) {
2915                 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2916                 /*
2917                  * arc_access and arc_change_state need to be aware that a
2918                  * header has just come out of L2ARC, so we set its state to
2919                  * l2c_only even though it's about to change.
2920                  */
2921                 nhdr->b_l1hdr.b_state = arc_l2c_only;
2922 
2923                 /* Verify previous threads set to NULL before freeing */
2924                 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
2925         } else {
2926                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2927                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2928                 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2929 
2930                 /*
2931                  * If we've reached here, We must have been called from
2932                  * arc_evict_hdr(), as such we should have already been
2933                  * removed from any ghost list we were previously on
2934                  * (which protects us from racing with arc_evict_state),
2935                  * thus no locking is needed during this check.
2936                  */
2937                 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2938 
2939                 /*
2940                  * A buffer must not be moved into the arc_l2c_only
2941                  * state if it's not finished being written out to the
2942                  * l2arc device. Otherwise, the b_l1hdr.b_pabd field
2943                  * might try to be accessed, even though it was removed.
2944                  */
2945                 VERIFY(!HDR_L2_WRITING(hdr));
2946                 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2947 
2948 #ifdef ZFS_DEBUG
2949                 if (hdr->b_l1hdr.b_thawed != NULL) {
2950                         kmem_free(hdr->b_l1hdr.b_thawed, 1);
2951                         hdr->b_l1hdr.b_thawed = NULL;
2952                 }
2953 #endif
2954 
2955                 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2956         }
2957         /*
2958          * The header has been reallocated so we need to re-insert it into any
2959          * lists it was on.
2960          */
2961         (void) buf_hash_insert(nhdr, NULL);
2962 
2963         ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
2964 
2965         mutex_enter(&dev->l2ad_mtx);
2966 
2967         /*
2968          * We must place the realloc'ed header back into the list at
2969          * the same spot. Otherwise, if it's placed earlier in the list,
2970          * l2arc_write_buffers() could find it during the function's
2971          * write phase, and try to write it out to the l2arc.
2972          */
2973         list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
2974         list_remove(&dev->l2ad_buflist, hdr);
2975 
2976         mutex_exit(&dev->l2ad_mtx);
2977 
2978         /*
2979          * Since we're using the pointer address as the tag when
2980          * incrementing and decrementing the l2ad_alloc refcount, we
2981          * must remove the old pointer (that we're about to destroy) and
2982          * add the new pointer to the refcount. Otherwise we'd remove
2983          * the wrong pointer address when calling arc_hdr_destroy() later.
2984          */
2985 
2986         (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
2987         (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
2988 
2989         buf_discard_identity(hdr);
2990         kmem_cache_free(old, hdr);
2991 
2992         return (nhdr);
2993 }
2994 
2995 /*
2996  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
2997  * The buf is returned thawed since we expect the consumer to modify it.
2998  */
2999 arc_buf_t *
3000 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3001 {
3002         arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3003             ZIO_COMPRESS_OFF, type);
3004         ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3005 
3006         arc_buf_t *buf = NULL;
3007         VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
3008         arc_buf_thaw(buf);
3009 
3010         return (buf);
3011 }
3012 
3013 /*
3014  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3015  * for bufs containing metadata.
3016  */
3017 arc_buf_t *
3018 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3019     enum zio_compress compression_type)
3020 {
3021         ASSERT3U(lsize, >, 0);
3022         ASSERT3U(lsize, >=, psize);
3023         ASSERT(compression_type > ZIO_COMPRESS_OFF);
3024         ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
3025 
3026         arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3027             compression_type, ARC_BUFC_DATA);
3028         ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3029 
3030         arc_buf_t *buf = NULL;
3031         VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
3032         arc_buf_thaw(buf);
3033         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3034 
3035         if (!arc_buf_is_shared(buf)) {
3036                 /*
3037                  * To ensure that the hdr has the correct data in it if we call
3038                  * arc_decompress() on this buf before it's been written to
3039                  * disk, it's easiest if we just set up sharing between the
3040                  * buf and the hdr.
3041                  */
3042                 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3043                 arc_hdr_free_pabd(hdr);
3044                 arc_share_buf(hdr, buf);
3045         }
3046 
3047         return (buf);
3048 }
3049 
3050 static void
3051 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3052 {
3053         l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3054         l2arc_dev_t *dev = l2hdr->b_dev;
3055         uint64_t psize = arc_hdr_size(hdr);
3056 
3057         ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3058         ASSERT(HDR_HAS_L2HDR(hdr));
3059 
3060         list_remove(&dev->l2ad_buflist, hdr);
3061 
3062         ARCSTAT_INCR(arcstat_l2_psize, -psize);
3063         ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3064 
3065         vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3066 
3067         (void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3068         arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3069 }
3070 
3071 static void
3072 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3073 {
3074         if (HDR_HAS_L1HDR(hdr)) {
3075                 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3076                     hdr->b_l1hdr.b_bufcnt > 0);
3077                 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3078                 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3079         }
3080         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3081         ASSERT(!HDR_IN_HASH_TABLE(hdr));
3082 
3083         if (!HDR_EMPTY(hdr))
3084                 buf_discard_identity(hdr);
3085 
3086         if (HDR_HAS_L2HDR(hdr)) {
3087                 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3088                 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3089 
3090                 if (!buflist_held)
3091                         mutex_enter(&dev->l2ad_mtx);
3092 
3093                 /*
3094                  * Even though we checked this conditional above, we
3095                  * need to check this again now that we have the
3096                  * l2ad_mtx. This is because we could be racing with
3097                  * another thread calling l2arc_evict() which might have
3098                  * destroyed this header's L2 portion as we were waiting
3099                  * to acquire the l2ad_mtx. If that happens, we don't
3100                  * want to re-destroy the header's L2 portion.
3101                  */
3102                 if (HDR_HAS_L2HDR(hdr))
3103                         arc_hdr_l2hdr_destroy(hdr);
3104 
3105                 if (!buflist_held)
3106                         mutex_exit(&dev->l2ad_mtx);
3107         }
3108 
3109         if (HDR_HAS_L1HDR(hdr)) {
3110                 arc_cksum_free(hdr);
3111 
3112                 while (hdr->b_l1hdr.b_buf != NULL)
3113                         arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3114 
3115 #ifdef ZFS_DEBUG
3116                 if (hdr->b_l1hdr.b_thawed != NULL) {
3117                         kmem_free(hdr->b_l1hdr.b_thawed, 1);
3118                         hdr->b_l1hdr.b_thawed = NULL;
3119                 }
3120 #endif
3121 
3122                 if (hdr->b_l1hdr.b_pabd != NULL) {
3123                         arc_hdr_free_pabd(hdr);
3124                 }
3125         }
3126 
3127         ASSERT3P(hdr->b_hash_next, ==, NULL);
3128         if (HDR_HAS_L1HDR(hdr)) {
3129                 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3130                 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3131                 kmem_cache_free(hdr_full_cache, hdr);
3132         } else {
3133                 kmem_cache_free(hdr_l2only_cache, hdr);
3134         }
3135 }
3136 
3137 void
3138 arc_buf_destroy(arc_buf_t *buf, void* tag)
3139 {
3140         arc_buf_hdr_t *hdr = buf->b_hdr;
3141         kmutex_t *hash_lock = HDR_LOCK(hdr);
3142 
3143         if (hdr->b_l1hdr.b_state == arc_anon) {
3144                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3145                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3146                 VERIFY0(remove_reference(hdr, NULL, tag));
3147                 arc_hdr_destroy(hdr);
3148                 return;
3149         }
3150 
3151         mutex_enter(hash_lock);
3152         ASSERT3P(hdr, ==, buf->b_hdr);
3153         ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3154         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3155         ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3156         ASSERT3P(buf->b_data, !=, NULL);
3157 
3158         (void) remove_reference(hdr, hash_lock, tag);
3159         arc_buf_destroy_impl(buf);
3160         mutex_exit(hash_lock);
3161 }
3162 
3163 /*
3164  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3165  * state of the header is dependent on it's state prior to entering this
3166  * function. The following transitions are possible:
3167  *
3168  *    - arc_mru -> arc_mru_ghost
3169  *    - arc_mfu -> arc_mfu_ghost
3170  *    - arc_mru_ghost -> arc_l2c_only
3171  *    - arc_mru_ghost -> deleted
3172  *    - arc_mfu_ghost -> arc_l2c_only
3173  *    - arc_mfu_ghost -> deleted
3174  */
3175 static int64_t
3176 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3177 {
3178         arc_state_t *evicted_state, *state;
3179         int64_t bytes_evicted = 0;
3180 
3181         ASSERT(MUTEX_HELD(hash_lock));
3182         ASSERT(HDR_HAS_L1HDR(hdr));
3183 
3184         state = hdr->b_l1hdr.b_state;
3185         if (GHOST_STATE(state)) {
3186                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3187                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3188 
3189                 /*
3190                  * l2arc_write_buffers() relies on a header's L1 portion
3191                  * (i.e. its b_pabd field) during it's write phase.
3192                  * Thus, we cannot push a header onto the arc_l2c_only
3193                  * state (removing it's L1 piece) until the header is
3194                  * done being written to the l2arc.
3195                  */
3196                 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3197                         ARCSTAT_BUMP(arcstat_evict_l2_skip);
3198                         return (bytes_evicted);
3199                 }
3200 
3201                 ARCSTAT_BUMP(arcstat_deleted);
3202                 bytes_evicted += HDR_GET_LSIZE(hdr);
3203 
3204                 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3205 
3206                 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3207                 if (HDR_HAS_L2HDR(hdr)) {
3208                         /*
3209                          * This buffer is cached on the 2nd Level ARC;
3210                          * don't destroy the header.
3211                          */
3212                         arc_change_state(arc_l2c_only, hdr, hash_lock);
3213                         /*
3214                          * dropping from L1+L2 cached to L2-only,
3215                          * realloc to remove the L1 header.
3216                          */
3217                         hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3218                             hdr_l2only_cache);
3219                 } else {
3220                         arc_change_state(arc_anon, hdr, hash_lock);
3221                         arc_hdr_destroy(hdr);
3222                 }
3223                 return (bytes_evicted);
3224         }
3225 
3226         ASSERT(state == arc_mru || state == arc_mfu);
3227         evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3228 
3229         /* prefetch buffers have a minimum lifespan */
3230         if (HDR_IO_IN_PROGRESS(hdr) ||
3231             ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3232             ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3233             arc_min_prefetch_lifespan)) {
3234                 ARCSTAT_BUMP(arcstat_evict_skip);
3235                 return (bytes_evicted);
3236         }
3237 
3238         ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3239         while (hdr->b_l1hdr.b_buf) {
3240                 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3241                 if (!mutex_tryenter(&buf->b_evict_lock)) {
3242                         ARCSTAT_BUMP(arcstat_mutex_miss);
3243                         break;
3244                 }
3245                 if (buf->b_data != NULL)
3246                         bytes_evicted += HDR_GET_LSIZE(hdr);
3247                 mutex_exit(&buf->b_evict_lock);
3248                 arc_buf_destroy_impl(buf);
3249         }
3250 
3251         if (HDR_HAS_L2HDR(hdr)) {
3252                 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3253         } else {
3254                 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3255                         ARCSTAT_INCR(arcstat_evict_l2_eligible,
3256                             HDR_GET_LSIZE(hdr));
3257                 } else {
3258                         ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3259                             HDR_GET_LSIZE(hdr));
3260                 }
3261         }
3262 
3263         if (hdr->b_l1hdr.b_bufcnt == 0) {
3264                 arc_cksum_free(hdr);
3265 
3266                 bytes_evicted += arc_hdr_size(hdr);
3267 
3268                 /*
3269                  * If this hdr is being evicted and has a compressed
3270                  * buffer then we discard it here before we change states.
3271                  * This ensures that the accounting is updated correctly
3272                  * in arc_free_data_impl().
3273                  */
3274                 arc_hdr_free_pabd(hdr);
3275 
3276                 arc_change_state(evicted_state, hdr, hash_lock);
3277                 ASSERT(HDR_IN_HASH_TABLE(hdr));
3278                 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3279                 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3280         }
3281 
3282         return (bytes_evicted);
3283 }
3284 
3285 static uint64_t
3286 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3287     uint64_t spa, int64_t bytes)
3288 {
3289         multilist_sublist_t *mls;
3290         uint64_t bytes_evicted = 0;
3291         arc_buf_hdr_t *hdr;
3292         kmutex_t *hash_lock;
3293         int evict_count = 0;
3294 
3295         ASSERT3P(marker, !=, NULL);
3296         IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3297 
3298         mls = multilist_sublist_lock(ml, idx);
3299 
3300         for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3301             hdr = multilist_sublist_prev(mls, marker)) {
3302                 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3303                     (evict_count >= zfs_arc_evict_batch_limit))
3304                         break;
3305 
3306                 /*
3307                  * To keep our iteration location, move the marker
3308                  * forward. Since we're not holding hdr's hash lock, we
3309                  * must be very careful and not remove 'hdr' from the
3310                  * sublist. Otherwise, other consumers might mistake the
3311                  * 'hdr' as not being on a sublist when they call the
3312                  * multilist_link_active() function (they all rely on
3313                  * the hash lock protecting concurrent insertions and
3314                  * removals). multilist_sublist_move_forward() was
3315                  * specifically implemented to ensure this is the case
3316                  * (only 'marker' will be removed and re-inserted).
3317                  */
3318                 multilist_sublist_move_forward(mls, marker);
3319 
3320                 /*
3321                  * The only case where the b_spa field should ever be
3322                  * zero, is the marker headers inserted by
3323                  * arc_evict_state(). It's possible for multiple threads
3324                  * to be calling arc_evict_state() concurrently (e.g.
3325                  * dsl_pool_close() and zio_inject_fault()), so we must
3326                  * skip any markers we see from these other threads.
3327                  */
3328                 if (hdr->b_spa == 0)
3329                         continue;
3330 
3331                 /* we're only interested in evicting buffers of a certain spa */
3332                 if (spa != 0 && hdr->b_spa != spa) {
3333                         ARCSTAT_BUMP(arcstat_evict_skip);
3334                         continue;
3335                 }
3336 
3337                 hash_lock = HDR_LOCK(hdr);
3338 
3339                 /*
3340                  * We aren't calling this function from any code path
3341                  * that would already be holding a hash lock, so we're
3342                  * asserting on this assumption to be defensive in case
3343                  * this ever changes. Without this check, it would be
3344                  * possible to incorrectly increment arcstat_mutex_miss
3345                  * below (e.g. if the code changed such that we called
3346                  * this function with a hash lock held).
3347                  */
3348                 ASSERT(!MUTEX_HELD(hash_lock));
3349 
3350                 if (mutex_tryenter(hash_lock)) {
3351                         uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3352                         mutex_exit(hash_lock);
3353 
3354                         bytes_evicted += evicted;
3355 
3356                         /*
3357                          * If evicted is zero, arc_evict_hdr() must have
3358                          * decided to skip this header, don't increment
3359                          * evict_count in this case.
3360                          */
3361                         if (evicted != 0)
3362                                 evict_count++;
3363 
3364                         /*
3365                          * If arc_size isn't overflowing, signal any
3366                          * threads that might happen to be waiting.
3367                          *
3368                          * For each header evicted, we wake up a single
3369                          * thread. If we used cv_broadcast, we could
3370                          * wake up "too many" threads causing arc_size
3371                          * to significantly overflow arc_c; since
3372                          * arc_get_data_impl() doesn't check for overflow
3373                          * when it's woken up (it doesn't because it's
3374                          * possible for the ARC to be overflowing while
3375                          * full of un-evictable buffers, and the
3376                          * function should proceed in this case).
3377                          *
3378                          * If threads are left sleeping, due to not
3379                          * using cv_broadcast, they will be woken up
3380                          * just before arc_reclaim_thread() sleeps.
3381                          */
3382                         mutex_enter(&arc_reclaim_lock);
3383                         if (!arc_is_overflowing())
3384                                 cv_signal(&arc_reclaim_waiters_cv);
3385                         mutex_exit(&arc_reclaim_lock);
3386                 } else {
3387                         ARCSTAT_BUMP(arcstat_mutex_miss);
3388                 }
3389         }
3390 
3391         multilist_sublist_unlock(mls);
3392 
3393         return (bytes_evicted);
3394 }
3395 
3396 /*
3397  * Evict buffers from the given arc state, until we've removed the
3398  * specified number of bytes. Move the removed buffers to the
3399  * appropriate evict state.
3400  *
3401  * This function makes a "best effort". It skips over any buffers
3402  * it can't get a hash_lock on, and so, may not catch all candidates.
3403  * It may also return without evicting as much space as requested.
3404  *
3405  * If bytes is specified using the special value ARC_EVICT_ALL, this
3406  * will evict all available (i.e. unlocked and evictable) buffers from
3407  * the given arc state; which is used by arc_flush().
3408  */
3409 static uint64_t
3410 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3411     arc_buf_contents_t type)
3412 {
3413         uint64_t total_evicted = 0;
3414         multilist_t *ml = state->arcs_list[type];
3415         int num_sublists;
3416         arc_buf_hdr_t **markers;
3417 
3418         IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3419 
3420         num_sublists = multilist_get_num_sublists(ml);
3421 
3422         /*
3423          * If we've tried to evict from each sublist, made some
3424          * progress, but still have not hit the target number of bytes
3425          * to evict, we want to keep trying. The markers allow us to
3426          * pick up where we left off for each individual sublist, rather
3427          * than starting from the tail each time.
3428          */
3429         markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3430         for (int i = 0; i < num_sublists; i++) {
3431                 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3432 
3433                 /*
3434                  * A b_spa of 0 is used to indicate that this header is
3435                  * a marker. This fact is used in arc_adjust_type() and
3436                  * arc_evict_state_impl().
3437                  */
3438                 markers[i]->b_spa = 0;
3439 
3440                 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3441                 multilist_sublist_insert_tail(mls, markers[i]);
3442                 multilist_sublist_unlock(mls);
3443         }
3444 
3445         /*
3446          * While we haven't hit our target number of bytes to evict, or
3447          * we're evicting all available buffers.
3448          */
3449         while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3450                 /*
3451                  * Start eviction using a randomly selected sublist,
3452                  * this is to try and evenly balance eviction across all
3453                  * sublists. Always starting at the same sublist
3454                  * (e.g. index 0) would cause evictions to favor certain
3455                  * sublists over others.
3456                  */
3457                 int sublist_idx = multilist_get_random_index(ml);
3458                 uint64_t scan_evicted = 0;
3459 
3460                 for (int i = 0; i < num_sublists; i++) {
3461                         uint64_t bytes_remaining;
3462                         uint64_t bytes_evicted;
3463 
3464                         if (bytes == ARC_EVICT_ALL)
3465                                 bytes_remaining = ARC_EVICT_ALL;
3466                         else if (total_evicted < bytes)
3467                                 bytes_remaining = bytes - total_evicted;
3468                         else
3469                                 break;
3470 
3471                         bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3472                             markers[sublist_idx], spa, bytes_remaining);
3473 
3474                         scan_evicted += bytes_evicted;
3475                         total_evicted += bytes_evicted;
3476 
3477                         /* we've reached the end, wrap to the beginning */
3478                         if (++sublist_idx >= num_sublists)
3479                                 sublist_idx = 0;
3480                 }
3481 
3482                 /*
3483                  * If we didn't evict anything during this scan, we have
3484                  * no reason to believe we'll evict more during another
3485                  * scan, so break the loop.
3486                  */
3487                 if (scan_evicted == 0) {
3488                         /* This isn't possible, let's make that obvious */
3489                         ASSERT3S(bytes, !=, 0);
3490 
3491                         /*
3492                          * When bytes is ARC_EVICT_ALL, the only way to
3493                          * break the loop is when scan_evicted is zero.
3494                          * In that case, we actually have evicted enough,
3495                          * so we don't want to increment the kstat.
3496                          */
3497                         if (bytes != ARC_EVICT_ALL) {
3498                                 ASSERT3S(total_evicted, <, bytes);
3499                                 ARCSTAT_BUMP(arcstat_evict_not_enough);
3500                         }
3501 
3502                         break;
3503                 }
3504         }
3505 
3506         for (int i = 0; i < num_sublists; i++) {
3507                 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3508                 multilist_sublist_remove(mls, markers[i]);
3509                 multilist_sublist_unlock(mls);
3510 
3511                 kmem_cache_free(hdr_full_cache, markers[i]);
3512         }
3513         kmem_free(markers, sizeof (*markers) * num_sublists);
3514 
3515         return (total_evicted);
3516 }
3517 
3518 /*
3519  * Flush all "evictable" data of the given type from the arc state
3520  * specified. This will not evict any "active" buffers (i.e. referenced).
3521  *
3522  * When 'retry' is set to B_FALSE, the function will make a single pass
3523  * over the state and evict any buffers that it can. Since it doesn't
3524  * continually retry the eviction, it might end up leaving some buffers
3525  * in the ARC due to lock misses.
3526  *
3527  * When 'retry' is set to B_TRUE, the function will continually retry the
3528  * eviction until *all* evictable buffers have been removed from the
3529  * state. As a result, if concurrent insertions into the state are
3530  * allowed (e.g. if the ARC isn't shutting down), this function might
3531  * wind up in an infinite loop, continually trying to evict buffers.
3532  */
3533 static uint64_t
3534 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3535     boolean_t retry)
3536 {
3537         uint64_t evicted = 0;
3538 
3539         while (refcount_count(&state->arcs_esize[type]) != 0) {
3540                 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3541 
3542                 if (!retry)
3543                         break;
3544         }
3545 
3546         return (evicted);
3547 }
3548 
3549 /*
3550  * Evict the specified number of bytes from the state specified,
3551  * restricting eviction to the spa and type given. This function
3552  * prevents us from trying to evict more from a state's list than
3553  * is "evictable", and to skip evicting altogether when passed a
3554  * negative value for "bytes". In contrast, arc_evict_state() will
3555  * evict everything it can, when passed a negative value for "bytes".
3556  */
3557 static uint64_t
3558 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3559     arc_buf_contents_t type)
3560 {
3561         int64_t delta;
3562 
3563         if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3564                 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3565                 return (arc_evict_state(state, spa, delta, type));
3566         }
3567 
3568         return (0);
3569 }
3570 
3571 /*
3572  * Evict metadata buffers from the cache, such that arc_meta_used is
3573  * capped by the arc_meta_limit tunable.
3574  */
3575 static uint64_t
3576 arc_adjust_meta(void)
3577 {
3578         uint64_t total_evicted = 0;
3579         int64_t target;
3580 
3581         /*
3582          * If we're over the meta limit, we want to evict enough
3583          * metadata to get back under the meta limit. We don't want to
3584          * evict so much that we drop the MRU below arc_p, though. If
3585          * we're over the meta limit more than we're over arc_p, we
3586          * evict some from the MRU here, and some from the MFU below.
3587          */
3588         target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3589             (int64_t)(refcount_count(&arc_anon->arcs_size) +
3590             refcount_count(&arc_mru->arcs_size) - arc_p));
3591 
3592         total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3593 
3594         /*
3595          * Similar to the above, we want to evict enough bytes to get us
3596          * below the meta limit, but not so much as to drop us below the
3597          * space allotted to the MFU (which is defined as arc_c - arc_p).
3598          */
3599         target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3600             (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3601 
3602         total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3603 
3604         return (total_evicted);
3605 }
3606 
3607 /*
3608  * Return the type of the oldest buffer in the given arc state
3609  *
3610  * This function will select a random sublist of type ARC_BUFC_DATA and
3611  * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3612  * is compared, and the type which contains the "older" buffer will be
3613  * returned.
3614  */
3615 static arc_buf_contents_t
3616 arc_adjust_type(arc_state_t *state)
3617 {
3618         multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
3619         multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
3620         int data_idx = multilist_get_random_index(data_ml);
3621         int meta_idx = multilist_get_random_index(meta_ml);
3622         multilist_sublist_t *data_mls;
3623         multilist_sublist_t *meta_mls;
3624         arc_buf_contents_t type;
3625         arc_buf_hdr_t *data_hdr;
3626         arc_buf_hdr_t *meta_hdr;
3627 
3628         /*
3629          * We keep the sublist lock until we're finished, to prevent
3630          * the headers from being destroyed via arc_evict_state().
3631          */
3632         data_mls = multilist_sublist_lock(data_ml, data_idx);
3633         meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3634 
3635         /*
3636          * These two loops are to ensure we skip any markers that
3637          * might be at the tail of the lists due to arc_evict_state().
3638          */
3639 
3640         for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3641             data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3642                 if (data_hdr->b_spa != 0)
3643                         break;
3644         }
3645 
3646         for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3647             meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3648                 if (meta_hdr->b_spa != 0)
3649                         break;
3650         }
3651 
3652         if (data_hdr == NULL && meta_hdr == NULL) {
3653                 type = ARC_BUFC_DATA;
3654         } else if (data_hdr == NULL) {
3655                 ASSERT3P(meta_hdr, !=, NULL);
3656                 type = ARC_BUFC_METADATA;
3657         } else if (meta_hdr == NULL) {
3658                 ASSERT3P(data_hdr, !=, NULL);
3659                 type = ARC_BUFC_DATA;
3660         } else {
3661                 ASSERT3P(data_hdr, !=, NULL);
3662                 ASSERT3P(meta_hdr, !=, NULL);
3663 
3664                 /* The headers can't be on the sublist without an L1 header */
3665                 ASSERT(HDR_HAS_L1HDR(data_hdr));
3666                 ASSERT(HDR_HAS_L1HDR(meta_hdr));
3667 
3668                 if (data_hdr->b_l1hdr.b_arc_access <
3669                     meta_hdr->b_l1hdr.b_arc_access) {
3670                         type = ARC_BUFC_DATA;
3671                 } else {
3672                         type = ARC_BUFC_METADATA;
3673                 }
3674         }
3675 
3676         multilist_sublist_unlock(meta_mls);
3677         multilist_sublist_unlock(data_mls);
3678 
3679         return (type);
3680 }
3681 
3682 /*
3683  * Evict buffers from the cache, such that arc_size is capped by arc_c.
3684  */
3685 static uint64_t
3686 arc_adjust(void)
3687 {
3688         uint64_t total_evicted = 0;
3689         uint64_t bytes;
3690         int64_t target;
3691 
3692         /*
3693          * If we're over arc_meta_limit, we want to correct that before
3694          * potentially evicting data buffers below.
3695          */
3696         total_evicted += arc_adjust_meta();
3697 
3698         /*
3699          * Adjust MRU size
3700          *
3701          * If we're over the target cache size, we want to evict enough
3702          * from the list to get back to our target size. We don't want
3703          * to evict too much from the MRU, such that it drops below
3704          * arc_p. So, if we're over our target cache size more than
3705          * the MRU is over arc_p, we'll evict enough to get back to
3706          * arc_p here, and then evict more from the MFU below.
3707          */
3708         target = MIN((int64_t)(arc_size - arc_c),
3709             (int64_t)(refcount_count(&arc_anon->arcs_size) +
3710             refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3711 
3712         /*
3713          * If we're below arc_meta_min, always prefer to evict data.
3714          * Otherwise, try to satisfy the requested number of bytes to
3715          * evict from the type which contains older buffers; in an
3716          * effort to keep newer buffers in the cache regardless of their
3717          * type. If we cannot satisfy the number of bytes from this
3718          * type, spill over into the next type.
3719          */
3720         if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3721             arc_meta_used > arc_meta_min) {
3722                 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3723                 total_evicted += bytes;
3724 
3725                 /*
3726                  * If we couldn't evict our target number of bytes from
3727                  * metadata, we try to get the rest from data.
3728                  */
3729                 target -= bytes;
3730 
3731                 total_evicted +=
3732                     arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3733         } else {
3734                 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3735                 total_evicted += bytes;
3736 
3737                 /*
3738                  * If we couldn't evict our target number of bytes from
3739                  * data, we try to get the rest from metadata.
3740                  */
3741                 target -= bytes;
3742 
3743                 total_evicted +=
3744                     arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3745         }
3746 
3747         /*
3748          * Adjust MFU size
3749          *
3750          * Now that we've tried to evict enough from the MRU to get its
3751          * size back to arc_p, if we're still above the target cache
3752          * size, we evict the rest from the MFU.
3753          */
3754         target = arc_size - arc_c;
3755 
3756         if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3757             arc_meta_used > arc_meta_min) {
3758                 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3759                 total_evicted += bytes;
3760 
3761                 /*
3762                  * If we couldn't evict our target number of bytes from
3763                  * metadata, we try to get the rest from data.
3764                  */
3765                 target -= bytes;
3766 
3767                 total_evicted +=
3768                     arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3769         } else {
3770                 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3771                 total_evicted += bytes;
3772 
3773                 /*
3774                  * If we couldn't evict our target number of bytes from
3775                  * data, we try to get the rest from data.
3776                  */
3777                 target -= bytes;
3778 
3779                 total_evicted +=
3780                     arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3781         }
3782 
3783         /*
3784          * Adjust ghost lists
3785          *
3786          * In addition to the above, the ARC also defines target values
3787          * for the ghost lists. The sum of the mru list and mru ghost
3788          * list should never exceed the target size of the cache, and
3789          * the sum of the mru list, mfu list, mru ghost list, and mfu
3790          * ghost list should never exceed twice the target size of the
3791          * cache. The following logic enforces these limits on the ghost
3792          * caches, and evicts from them as needed.
3793          */
3794         target = refcount_count(&arc_mru->arcs_size) +
3795             refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3796 
3797         bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3798         total_evicted += bytes;
3799 
3800         target -= bytes;
3801 
3802         total_evicted +=
3803             arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3804 
3805         /*
3806          * We assume the sum of the mru list and mfu list is less than
3807          * or equal to arc_c (we enforced this above), which means we
3808          * can use the simpler of the two equations below:
3809          *
3810          *      mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3811          *                  mru ghost + mfu ghost <= arc_c
3812          */
3813         target = refcount_count(&arc_mru_ghost->arcs_size) +
3814             refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3815 
3816         bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3817         total_evicted += bytes;
3818 
3819         target -= bytes;
3820 
3821         total_evicted +=
3822             arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3823 
3824         return (total_evicted);
3825 }
3826 
3827 void
3828 arc_flush(spa_t *spa, boolean_t retry)
3829 {
3830         uint64_t guid = 0;
3831 
3832         /*
3833          * If retry is B_TRUE, a spa must not be specified since we have
3834          * no good way to determine if all of a spa's buffers have been
3835          * evicted from an arc state.
3836          */
3837         ASSERT(!retry || spa == 0);
3838 
3839         if (spa != NULL)
3840                 guid = spa_load_guid(spa);
3841 
3842         (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3843         (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3844 
3845         (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3846         (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3847 
3848         (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3849         (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3850 
3851         (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3852         (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3853 }
3854 
3855 void
3856 arc_shrink(int64_t to_free)
3857 {
3858         if (arc_c > arc_c_min) {
3859 
3860                 if (arc_c > arc_c_min + to_free)
3861                         atomic_add_64(&arc_c, -to_free);
3862                 else
3863                         arc_c = arc_c_min;
3864 
3865                 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3866                 if (arc_c > arc_size)
3867                         arc_c = MAX(arc_size, arc_c_min);
3868                 if (arc_p > arc_c)
3869                         arc_p = (arc_c >> 1);
3870                 ASSERT(arc_c >= arc_c_min);
3871                 ASSERT((int64_t)arc_p >= 0);
3872         }
3873 
3874         if (arc_size > arc_c)
3875                 (void) arc_adjust();
3876 }
3877 
3878 typedef enum free_memory_reason_t {
3879         FMR_UNKNOWN,
3880         FMR_NEEDFREE,
3881         FMR_LOTSFREE,
3882         FMR_SWAPFS_MINFREE,
3883         FMR_PAGES_PP_MAXIMUM,
3884         FMR_HEAP_ARENA,
3885         FMR_ZIO_ARENA,
3886 } free_memory_reason_t;
3887 
3888 int64_t last_free_memory;
3889 free_memory_reason_t last_free_reason;
3890 
3891 /*
3892  * Additional reserve of pages for pp_reserve.
3893  */
3894 int64_t arc_pages_pp_reserve = 64;
3895 
3896 /*
3897  * Additional reserve of pages for swapfs.
3898  */
3899 int64_t arc_swapfs_reserve = 64;
3900 
3901 /*
3902  * Return the amount of memory that can be consumed before reclaim will be
3903  * needed.  Positive if there is sufficient free memory, negative indicates
3904  * the amount of memory that needs to be freed up.
3905  */
3906 static int64_t
3907 arc_available_memory(void)
3908 {
3909         int64_t lowest = INT64_MAX;
3910         int64_t n;
3911         free_memory_reason_t r = FMR_UNKNOWN;
3912 
3913 #ifdef _KERNEL
3914         if (needfree > 0) {
3915                 n = PAGESIZE * (-needfree);
3916                 if (n < lowest) {
3917                         lowest = n;
3918                         r = FMR_NEEDFREE;
3919                 }
3920         }
3921 
3922         /*
3923          * check that we're out of range of the pageout scanner.  It starts to
3924          * schedule paging if freemem is less than lotsfree and needfree.
3925          * lotsfree is the high-water mark for pageout, and needfree is the
3926          * number of needed free pages.  We add extra pages here to make sure
3927          * the scanner doesn't start up while we're freeing memory.
3928          */
3929         n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3930         if (n < lowest) {
3931                 lowest = n;
3932                 r = FMR_LOTSFREE;
3933         }
3934 
3935         /*
3936          * check to make sure that swapfs has enough space so that anon
3937          * reservations can still succeed. anon_resvmem() checks that the
3938          * availrmem is greater than swapfs_minfree, and the number of reserved
3939          * swap pages.  We also add a bit of extra here just to prevent
3940          * circumstances from getting really dire.
3941          */
3942         n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3943             desfree - arc_swapfs_reserve);
3944         if (n < lowest) {
3945                 lowest = n;
3946                 r = FMR_SWAPFS_MINFREE;
3947         }
3948 
3949 
3950         /*
3951          * Check that we have enough availrmem that memory locking (e.g., via
3952          * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3953          * stores the number of pages that cannot be locked; when availrmem
3954          * drops below pages_pp_maximum, page locking mechanisms such as
3955          * page_pp_lock() will fail.)
3956          */
3957         n = PAGESIZE * (availrmem - pages_pp_maximum -
3958             arc_pages_pp_reserve);
3959         if (n < lowest) {
3960                 lowest = n;
3961                 r = FMR_PAGES_PP_MAXIMUM;
3962         }
3963 
3964 #if defined(__i386)
3965         /*
3966          * If we're on an i386 platform, it's possible that we'll exhaust the
3967          * kernel heap space before we ever run out of available physical
3968          * memory.  Most checks of the size of the heap_area compare against
3969          * tune.t_minarmem, which is the minimum available real memory that we
3970          * can have in the system.  However, this is generally fixed at 25 pages
3971          * which is so low that it's useless.  In this comparison, we seek to
3972          * calculate the total heap-size, and reclaim if more than 3/4ths of the
3973          * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3974          * free)
3975          */
3976         n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3977             (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3978         if (n < lowest) {
3979                 lowest = n;
3980                 r = FMR_HEAP_ARENA;
3981         }
3982 #endif
3983 
3984         /*
3985          * If zio data pages are being allocated out of a separate heap segment,
3986          * then enforce that the size of available vmem for this arena remains
3987          * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
3988          *
3989          * Note that reducing the arc_zio_arena_free_shift keeps more virtual
3990          * memory (in the zio_arena) free, which can avoid memory
3991          * fragmentation issues.
3992          */
3993         if (zio_arena != NULL) {
3994                 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3995                     (vmem_size(zio_arena, VMEM_ALLOC) >>
3996                     arc_zio_arena_free_shift);
3997                 if (n < lowest) {
3998                         lowest = n;
3999                         r = FMR_ZIO_ARENA;
4000                 }
4001         }
4002 #else
4003         /* Every 100 calls, free a small amount */
4004         if (spa_get_random(100) == 0)
4005                 lowest = -1024;
4006 #endif
4007 
4008         last_free_memory = lowest;
4009         last_free_reason = r;
4010 
4011         return (lowest);
4012 }
4013 
4014 
4015 /*
4016  * Determine if the system is under memory pressure and is asking
4017  * to reclaim memory. A return value of B_TRUE indicates that the system
4018  * is under memory pressure and that the arc should adjust accordingly.
4019  */
4020 static boolean_t
4021 arc_reclaim_needed(void)
4022 {
4023         return (arc_available_memory() < 0);
4024 }
4025 
4026 static void
4027 arc_kmem_reap_now(void)
4028 {
4029         size_t                  i;
4030         kmem_cache_t            *prev_cache = NULL;
4031         kmem_cache_t            *prev_data_cache = NULL;
4032         extern kmem_cache_t     *zio_buf_cache[];
4033         extern kmem_cache_t     *zio_data_buf_cache[];
4034         extern kmem_cache_t     *range_seg_cache;
4035         extern kmem_cache_t     *abd_chunk_cache;
4036 
4037 #ifdef _KERNEL
4038         if (arc_meta_used >= arc_meta_limit) {
4039                 /*
4040                  * We are exceeding our meta-data cache limit.
4041                  * Purge some DNLC entries to release holds on meta-data.
4042                  */
4043                 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4044         }
4045 #if defined(__i386)
4046         /*
4047          * Reclaim unused memory from all kmem caches.
4048          */
4049         kmem_reap();
4050 #endif
4051 #endif
4052 
4053         /*
4054          * If a kmem reap is already active, don't schedule more.  We must
4055          * check for this because kmem_cache_reap_soon() won't actually
4056          * block on the cache being reaped (this is to prevent callers from
4057          * becoming implicitly blocked by a system-wide kmem reap -- which,
4058          * on a system with many, many full magazines, can take minutes).
4059          */
4060         if (kmem_cache_reap_active())
4061                 return;
4062 
4063         for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4064                 if (zio_buf_cache[i] != prev_cache) {
4065                         prev_cache = zio_buf_cache[i];
4066                         kmem_cache_reap_soon(zio_buf_cache[i]);
4067                 }
4068                 if (zio_data_buf_cache[i] != prev_data_cache) {
4069                         prev_data_cache = zio_data_buf_cache[i];
4070                         kmem_cache_reap_soon(zio_data_buf_cache[i]);
4071                 }
4072         }
4073         kmem_cache_reap_soon(abd_chunk_cache);
4074         kmem_cache_reap_soon(buf_cache);
4075         kmem_cache_reap_soon(hdr_full_cache);
4076         kmem_cache_reap_soon(hdr_l2only_cache);
4077         kmem_cache_reap_soon(range_seg_cache);
4078 
4079         if (zio_arena != NULL) {
4080                 /*
4081                  * Ask the vmem arena to reclaim unused memory from its
4082                  * quantum caches.
4083                  */
4084                 vmem_qcache_reap(zio_arena);
4085         }
4086 }
4087 
4088 /*
4089  * Threads can block in arc_get_data_impl() waiting for this thread to evict
4090  * enough data and signal them to proceed. When this happens, the threads in
4091  * arc_get_data_impl() are sleeping while holding the hash lock for their
4092  * particular arc header. Thus, we must be careful to never sleep on a
4093  * hash lock in this thread. This is to prevent the following deadlock:
4094  *
4095  *  - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4096  *    waiting for the reclaim thread to signal it.
4097  *
4098  *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4099  *    fails, and goes to sleep forever.
4100  *
4101  * This possible deadlock is avoided by always acquiring a hash lock
4102  * using mutex_tryenter() from arc_reclaim_thread().
4103  */
4104 /* ARGSUSED */
4105 static void
4106 arc_reclaim_thread(void *unused)
4107 {
4108         hrtime_t                growtime = 0;
4109         hrtime_t                kmem_reap_time = 0;
4110         callb_cpr_t             cpr;
4111 
4112         CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4113 
4114         mutex_enter(&arc_reclaim_lock);
4115         while (!arc_reclaim_thread_exit) {
4116                 uint64_t evicted = 0;
4117 
4118                 /*
4119                  * This is necessary in order for the mdb ::arc dcmd to
4120                  * show up to date information. Since the ::arc command
4121                  * does not call the kstat's update function, without
4122                  * this call, the command may show stale stats for the
4123                  * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4124                  * with this change, the data might be up to 1 second
4125                  * out of date; but that should suffice. The arc_state_t
4126                  * structures can be queried directly if more accurate
4127                  * information is needed.
4128                  */
4129                 if (arc_ksp != NULL)
4130                         arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4131 
4132                 mutex_exit(&arc_reclaim_lock);
4133 
4134                 /*
4135                  * We call arc_adjust() before (possibly) calling
4136                  * arc_kmem_reap_now(), so that we can wake up
4137                  * arc_get_data_impl() sooner.
4138                  */
4139                 evicted = arc_adjust();
4140 
4141                 int64_t free_memory = arc_available_memory();
4142                 if (free_memory < 0) {
4143                         hrtime_t curtime = gethrtime();
4144                         arc_no_grow = B_TRUE;
4145                         arc_warm = B_TRUE;
4146 
4147                         /*
4148                          * Wait at least zfs_grow_retry (default 60) seconds
4149                          * before considering growing.
4150                          */
4151                         growtime = curtime + SEC2NSEC(arc_grow_retry);
4152 
4153                         /*
4154                          * Wait at least arc_kmem_cache_reap_retry_ms
4155                          * between arc_kmem_reap_now() calls. Without
4156                          * this check it is possible to end up in a
4157                          * situation where we spend lots of time
4158                          * reaping caches, while we're near arc_c_min.
4159                          */
4160                         if (curtime >= kmem_reap_time) {
4161                                 arc_kmem_reap_now();
4162                                 kmem_reap_time = gethrtime() +
4163                                     MSEC2NSEC(arc_kmem_cache_reap_retry_ms);
4164                         }
4165 
4166                         /*
4167                          * If we are still low on memory, shrink the ARC
4168                          * so that we have arc_shrink_min free space.
4169                          */
4170                         free_memory = arc_available_memory();
4171 
4172                         int64_t to_free =
4173                             (arc_c >> arc_shrink_shift) - free_memory;
4174                         if (to_free > 0) {
4175 #ifdef _KERNEL
4176                                 to_free = MAX(to_free, ptob(needfree));
4177 #endif
4178                                 arc_shrink(to_free);
4179                         }
4180                 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4181                         arc_no_grow = B_TRUE;
4182                 } else if (gethrtime() >= growtime) {
4183                         arc_no_grow = B_FALSE;
4184                 }
4185 
4186                 mutex_enter(&arc_reclaim_lock);
4187 
4188                 /*
4189                  * If evicted is zero, we couldn't evict anything via
4190                  * arc_adjust(). This could be due to hash lock
4191                  * collisions, but more likely due to the majority of
4192                  * arc buffers being unevictable. Therefore, even if
4193                  * arc_size is above arc_c, another pass is unlikely to
4194                  * be helpful and could potentially cause us to enter an
4195                  * infinite loop.
4196                  */
4197                 if (arc_size <= arc_c || evicted == 0) {
4198                         /*
4199                          * We're either no longer overflowing, or we
4200                          * can't evict anything more, so we should wake
4201                          * up any threads before we go to sleep.
4202                          */
4203                         cv_broadcast(&arc_reclaim_waiters_cv);
4204 
4205                         /*
4206                          * Block until signaled, or after one second (we
4207                          * might need to perform arc_kmem_reap_now()
4208                          * even if we aren't being signalled)
4209                          */
4210                         CALLB_CPR_SAFE_BEGIN(&cpr);
4211                         (void) cv_timedwait_hires(&arc_reclaim_thread_cv,
4212                             &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4213                         CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4214                 }
4215         }
4216 
4217         arc_reclaim_thread_exit = B_FALSE;
4218         cv_broadcast(&arc_reclaim_thread_cv);
4219         CALLB_CPR_EXIT(&cpr);               /* drops arc_reclaim_lock */
4220         thread_exit();
4221 }
4222 
4223 /*
4224  * Adapt arc info given the number of bytes we are trying to add and
4225  * the state that we are comming from.  This function is only called
4226  * when we are adding new content to the cache.
4227  */
4228 static void
4229 arc_adapt(int bytes, arc_state_t *state)
4230 {
4231         int mult;
4232         uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4233         int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4234         int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4235 
4236         if (state == arc_l2c_only)
4237                 return;
4238 
4239         ASSERT(bytes > 0);
4240         /*
4241          * Adapt the target size of the MRU list:
4242          *      - if we just hit in the MRU ghost list, then increase
4243          *        the target size of the MRU list.
4244          *      - if we just hit in the MFU ghost list, then increase
4245          *        the target size of the MFU list by decreasing the
4246          *        target size of the MRU list.
4247          */
4248         if (state == arc_mru_ghost) {
4249                 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4250                 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4251 
4252                 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4253         } else if (state == arc_mfu_ghost) {
4254                 uint64_t delta;
4255 
4256                 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4257                 mult = MIN(mult, 10);
4258 
4259                 delta = MIN(bytes * mult, arc_p);
4260                 arc_p = MAX(arc_p_min, arc_p - delta);
4261         }
4262         ASSERT((int64_t)arc_p >= 0);
4263 
4264         if (arc_reclaim_needed()) {
4265                 cv_signal(&arc_reclaim_thread_cv);
4266                 return;
4267         }
4268 
4269         if (arc_no_grow)
4270                 return;
4271 
4272         if (arc_c >= arc_c_max)
4273                 return;
4274 
4275         /*
4276          * If we're within (2 * maxblocksize) bytes of the target
4277          * cache size, increment the target cache size
4278          */
4279         if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
4280                 atomic_add_64(&arc_c, (int64_t)bytes);
4281                 if (arc_c > arc_c_max)
4282                         arc_c = arc_c_max;
4283                 else if (state == arc_anon)
4284                         atomic_add_64(&arc_p, (int64_t)bytes);
4285                 if (arc_p > arc_c)
4286                         arc_p = arc_c;
4287         }
4288         ASSERT((int64_t)arc_p >= 0);
4289 }
4290 
4291 /*
4292  * Check if arc_size has grown past our upper threshold, determined by
4293  * zfs_arc_overflow_shift.
4294  */
4295 static boolean_t
4296 arc_is_overflowing(void)
4297 {
4298         /* Always allow at least one block of overflow */
4299         uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4300             arc_c >> zfs_arc_overflow_shift);
4301 
4302         return (arc_size >= arc_c + overflow);
4303 }
4304 
4305 static abd_t *
4306 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4307 {
4308         arc_buf_contents_t type = arc_buf_type(hdr);
4309 
4310         arc_get_data_impl(hdr, size, tag);
4311         if (type == ARC_BUFC_METADATA) {
4312                 return (abd_alloc(size, B_TRUE));
4313         } else {
4314                 ASSERT(type == ARC_BUFC_DATA);
4315                 return (abd_alloc(size, B_FALSE));
4316         }
4317 }
4318 
4319 static void *
4320 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4321 {
4322         arc_buf_contents_t type = arc_buf_type(hdr);
4323 
4324         arc_get_data_impl(hdr, size, tag);
4325         if (type == ARC_BUFC_METADATA) {
4326                 return (zio_buf_alloc(size));
4327         } else {
4328                 ASSERT(type == ARC_BUFC_DATA);
4329                 return (zio_data_buf_alloc(size));
4330         }
4331 }
4332 
4333 /*
4334  * Allocate a block and return it to the caller. If we are hitting the
4335  * hard limit for the cache size, we must sleep, waiting for the eviction
4336  * thread to catch up. If we're past the target size but below the hard
4337  * limit, we'll only signal the reclaim thread and continue on.
4338  */
4339 static void
4340 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4341 {
4342         arc_state_t *state = hdr->b_l1hdr.b_state;
4343         arc_buf_contents_t type = arc_buf_type(hdr);
4344 
4345         arc_adapt(size, state);
4346 
4347         /*
4348          * If arc_size is currently overflowing, and has grown past our
4349          * upper limit, we must be adding data faster than the evict
4350          * thread can evict. Thus, to ensure we don't compound the
4351          * problem by adding more data and forcing arc_size to grow even
4352          * further past it's target size, we halt and wait for the
4353          * eviction thread to catch up.
4354          *
4355          * It's also possible that the reclaim thread is unable to evict
4356          * enough buffers to get arc_size below the overflow limit (e.g.
4357          * due to buffers being un-evictable, or hash lock collisions).
4358          * In this case, we want to proceed regardless if we're
4359          * overflowing; thus we don't use a while loop here.
4360          */
4361         if (arc_is_overflowing()) {
4362                 mutex_enter(&arc_reclaim_lock);
4363 
4364                 /*
4365                  * Now that we've acquired the lock, we may no longer be
4366                  * over the overflow limit, lets check.
4367                  *
4368                  * We're ignoring the case of spurious wake ups. If that
4369                  * were to happen, it'd let this thread consume an ARC
4370                  * buffer before it should have (i.e. before we're under
4371                  * the overflow limit and were signalled by the reclaim
4372                  * thread). As long as that is a rare occurrence, it
4373                  * shouldn't cause any harm.
4374                  */
4375                 if (arc_is_overflowing()) {
4376                         cv_signal(&arc_reclaim_thread_cv);
4377                         cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4378                 }
4379 
4380                 mutex_exit(&arc_reclaim_lock);
4381         }
4382 
4383         VERIFY3U(hdr->b_type, ==, type);
4384         if (type == ARC_BUFC_METADATA) {
4385                 arc_space_consume(size, ARC_SPACE_META);
4386         } else {
4387                 arc_space_consume(size, ARC_SPACE_DATA);
4388         }
4389 
4390         /*
4391          * Update the state size.  Note that ghost states have a
4392          * "ghost size" and so don't need to be updated.
4393          */
4394         if (!GHOST_STATE(state)) {
4395 
4396                 (void) refcount_add_many(&state->arcs_size, size, tag);
4397 
4398                 /*
4399                  * If this is reached via arc_read, the link is
4400                  * protected by the hash lock. If reached via
4401                  * arc_buf_alloc, the header should not be accessed by
4402                  * any other thread. And, if reached via arc_read_done,
4403                  * the hash lock will protect it if it's found in the
4404                  * hash table; otherwise no other thread should be
4405                  * trying to [add|remove]_reference it.
4406                  */
4407                 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4408                         ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4409                         (void) refcount_add_many(&state->arcs_esize[type],
4410                             size, tag);
4411                 }
4412 
4413                 /*
4414                  * If we are growing the cache, and we are adding anonymous
4415                  * data, and we have outgrown arc_p, update arc_p
4416                  */
4417                 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4418                     (refcount_count(&arc_anon->arcs_size) +
4419                     refcount_count(&arc_mru->arcs_size) > arc_p))
4420                         arc_p = MIN(arc_c, arc_p + size);
4421         }
4422 }
4423 
4424 static void
4425 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4426 {
4427         arc_free_data_impl(hdr, size, tag);
4428         abd_free(abd);
4429 }
4430 
4431 static void
4432 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4433 {
4434         arc_buf_contents_t type = arc_buf_type(hdr);
4435 
4436         arc_free_data_impl(hdr, size, tag);
4437         if (type == ARC_BUFC_METADATA) {
4438                 zio_buf_free(buf, size);
4439         } else {
4440                 ASSERT(type == ARC_BUFC_DATA);
4441                 zio_data_buf_free(buf, size);
4442         }
4443 }
4444 
4445 /*
4446  * Free the arc data buffer.
4447  */
4448 static void
4449 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4450 {
4451         arc_state_t *state = hdr->b_l1hdr.b_state;
4452         arc_buf_contents_t type = arc_buf_type(hdr);
4453 
4454         /* protected by hash lock, if in the hash table */
4455         if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4456                 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4457                 ASSERT(state != arc_anon && state != arc_l2c_only);
4458 
4459                 (void) refcount_remove_many(&state->arcs_esize[type],
4460                     size, tag);
4461         }
4462         (void) refcount_remove_many(&state->arcs_size, size, tag);
4463 
4464         VERIFY3U(hdr->b_type, ==, type);
4465         if (type == ARC_BUFC_METADATA) {
4466                 arc_space_return(size, ARC_SPACE_META);
4467         } else {
4468                 ASSERT(type == ARC_BUFC_DATA);
4469                 arc_space_return(size, ARC_SPACE_DATA);
4470         }
4471 }
4472 
4473 /*
4474  * This routine is called whenever a buffer is accessed.
4475  * NOTE: the hash lock is dropped in this function.
4476  */
4477 static void
4478 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4479 {
4480         clock_t now;
4481 
4482         ASSERT(MUTEX_HELD(hash_lock));
4483         ASSERT(HDR_HAS_L1HDR(hdr));
4484 
4485         if (hdr->b_l1hdr.b_state == arc_anon) {
4486                 /*
4487                  * This buffer is not in the cache, and does not
4488                  * appear in our "ghost" list.  Add the new buffer
4489                  * to the MRU state.
4490                  */
4491 
4492                 ASSERT0(hdr->b_l1hdr.b_arc_access);
4493                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4494                 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4495                 arc_change_state(arc_mru, hdr, hash_lock);
4496 
4497         } else if (hdr->b_l1hdr.b_state == arc_mru) {
4498                 now = ddi_get_lbolt();
4499 
4500                 /*
4501                  * If this buffer is here because of a prefetch, then either:
4502                  * - clear the flag if this is a "referencing" read
4503                  *   (any subsequent access will bump this into the MFU state).
4504                  * or
4505                  * - move the buffer to the head of the list if this is
4506                  *   another prefetch (to make it less likely to be evicted).
4507                  */
4508                 if (HDR_PREFETCH(hdr)) {
4509                         if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4510                                 /* link protected by hash lock */
4511                                 ASSERT(multilist_link_active(
4512                                     &hdr->b_l1hdr.b_arc_node));
4513                         } else {
4514                                 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4515                                 ARCSTAT_BUMP(arcstat_mru_hits);
4516                         }
4517                         hdr->b_l1hdr.b_arc_access = now;
4518                         return;
4519                 }
4520 
4521                 /*
4522                  * This buffer has been "accessed" only once so far,
4523                  * but it is still in the cache. Move it to the MFU
4524                  * state.
4525                  */
4526                 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4527                         /*
4528                          * More than 125ms have passed since we
4529                          * instantiated this buffer.  Move it to the
4530                          * most frequently used state.
4531                          */
4532                         hdr->b_l1hdr.b_arc_access = now;
4533                         DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4534                         arc_change_state(arc_mfu, hdr, hash_lock);
4535                 }
4536                 ARCSTAT_BUMP(arcstat_mru_hits);
4537         } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4538                 arc_state_t     *new_state;
4539                 /*
4540                  * This buffer has been "accessed" recently, but
4541                  * was evicted from the cache.  Move it to the
4542                  * MFU state.
4543                  */
4544 
4545                 if (HDR_PREFETCH(hdr)) {
4546                         new_state = arc_mru;
4547                         if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4548                                 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4549                         DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4550                 } else {
4551                         new_state = arc_mfu;
4552                         DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4553                 }
4554 
4555                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4556                 arc_change_state(new_state, hdr, hash_lock);
4557 
4558                 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4559         } else if (hdr->b_l1hdr.b_state == arc_mfu) {
4560                 /*
4561                  * This buffer has been accessed more than once and is
4562                  * still in the cache.  Keep it in the MFU state.
4563                  *
4564                  * NOTE: an add_reference() that occurred when we did
4565                  * the arc_read() will have kicked this off the list.
4566                  * If it was a prefetch, we will explicitly move it to
4567                  * the head of the list now.
4568                  */
4569                 if ((HDR_PREFETCH(hdr)) != 0) {
4570                         ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4571                         /* link protected by hash_lock */
4572                         ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4573                 }
4574                 ARCSTAT_BUMP(arcstat_mfu_hits);
4575                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4576         } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4577                 arc_state_t     *new_state = arc_mfu;
4578                 /*
4579                  * This buffer has been accessed more than once but has
4580                  * been evicted from the cache.  Move it back to the
4581                  * MFU state.
4582                  */
4583 
4584                 if (HDR_PREFETCH(hdr)) {
4585                         /*
4586                          * This is a prefetch access...
4587                          * move this block back to the MRU state.
4588                          */
4589                         ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4590                         new_state = arc_mru;
4591                 }
4592 
4593                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4594                 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4595                 arc_change_state(new_state, hdr, hash_lock);
4596 
4597                 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4598         } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4599                 /*
4600                  * This buffer is on the 2nd Level ARC.
4601                  */
4602 
4603                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4604                 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4605                 arc_change_state(arc_mfu, hdr, hash_lock);
4606         } else {
4607                 ASSERT(!"invalid arc state");
4608         }
4609 }
4610 
4611 /* a generic arc_done_func_t which you can use */
4612 /* ARGSUSED */
4613 void
4614 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4615 {
4616         if (zio == NULL || zio->io_error == 0)
4617                 bcopy(buf->b_data, arg, arc_buf_size(buf));
4618         arc_buf_destroy(buf, arg);
4619 }
4620 
4621 /* a generic arc_done_func_t */
4622 void
4623 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4624 {
4625         arc_buf_t **bufp = arg;
4626         if (zio && zio->io_error) {
4627                 arc_buf_destroy(buf, arg);
4628                 *bufp = NULL;
4629         } else {
4630                 *bufp = buf;
4631                 ASSERT(buf->b_data);
4632         }
4633 }
4634 
4635 static void
4636 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4637 {
4638         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4639                 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4640                 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4641         } else {
4642                 if (HDR_COMPRESSION_ENABLED(hdr)) {
4643                         ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4644                             BP_GET_COMPRESS(bp));
4645                 }
4646                 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4647                 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4648         }
4649 }
4650 
4651 static void
4652 arc_read_done(zio_t *zio)
4653 {
4654         arc_buf_hdr_t   *hdr = zio->io_private;
4655         kmutex_t        *hash_lock = NULL;
4656         arc_callback_t  *callback_list;
4657         arc_callback_t  *acb;
4658         boolean_t       freeable = B_FALSE;
4659         boolean_t       no_zio_error = (zio->io_error == 0);
4660 
4661         /*
4662          * The hdr was inserted into hash-table and removed from lists
4663          * prior to starting I/O.  We should find this header, since
4664          * it's in the hash table, and it should be legit since it's
4665          * not possible to evict it during the I/O.  The only possible
4666          * reason for it not to be found is if we were freed during the
4667          * read.
4668          */
4669         if (HDR_IN_HASH_TABLE(hdr)) {
4670                 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4671                 ASSERT3U(hdr->b_dva.dva_word[0], ==,
4672                     BP_IDENTITY(zio->io_bp)->dva_word[0]);
4673                 ASSERT3U(hdr->b_dva.dva_word[1], ==,
4674                     BP_IDENTITY(zio->io_bp)->dva_word[1]);
4675 
4676                 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4677                     &hash_lock);
4678 
4679                 ASSERT((found == hdr &&
4680                     DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4681                     (found == hdr && HDR_L2_READING(hdr)));
4682                 ASSERT3P(hash_lock, !=, NULL);
4683         }
4684 
4685         if (no_zio_error) {
4686                 /* byteswap if necessary */
4687                 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4688                         if (BP_GET_LEVEL(zio->io_bp) > 0) {
4689                                 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4690                         } else {
4691                                 hdr->b_l1hdr.b_byteswap =
4692                                     DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4693                         }
4694                 } else {
4695                         hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4696                 }
4697         }
4698 
4699         arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4700         if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4701                 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4702 
4703         callback_list = hdr->b_l1hdr.b_acb;
4704         ASSERT3P(callback_list, !=, NULL);
4705 
4706         if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
4707                 /*
4708                  * Only call arc_access on anonymous buffers.  This is because
4709                  * if we've issued an I/O for an evicted buffer, we've already
4710                  * called arc_access (to prevent any simultaneous readers from
4711                  * getting confused).
4712                  */
4713                 arc_access(hdr, hash_lock);
4714         }
4715 
4716         /*
4717          * If a read request has a callback (i.e. acb_done is not NULL), then we
4718          * make a buf containing the data according to the parameters which were
4719          * passed in. The implementation of arc_buf_alloc_impl() ensures that we
4720          * aren't needlessly decompressing the data multiple times.
4721          */
4722         int callback_cnt = 0;
4723         for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
4724                 if (!acb->acb_done)
4725                         continue;
4726 
4727                 /* This is a demand read since prefetches don't use callbacks */
4728                 callback_cnt++;
4729 
4730                 int error = arc_buf_alloc_impl(hdr, acb->acb_private,
4731                     acb->acb_compressed, no_zio_error, &acb->acb_buf);
4732                 if (no_zio_error) {
4733                         zio->io_error = error;
4734                 }
4735         }
4736         hdr->b_l1hdr.b_acb = NULL;
4737         arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4738         if (callback_cnt == 0) {
4739                 ASSERT(HDR_PREFETCH(hdr));
4740                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
4741                 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
4742         }
4743 
4744         ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4745             callback_list != NULL);
4746 
4747         if (no_zio_error) {
4748                 arc_hdr_verify(hdr, zio->io_bp);
4749         } else {
4750                 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
4751                 if (hdr->b_l1hdr.b_state != arc_anon)
4752                         arc_change_state(arc_anon, hdr, hash_lock);
4753                 if (HDR_IN_HASH_TABLE(hdr))
4754                         buf_hash_remove(hdr);
4755                 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4756         }
4757 
4758         /*
4759          * Broadcast before we drop the hash_lock to avoid the possibility
4760          * that the hdr (and hence the cv) might be freed before we get to
4761          * the cv_broadcast().
4762          */
4763         cv_broadcast(&hdr->b_l1hdr.b_cv);
4764 
4765         if (hash_lock != NULL) {
4766                 mutex_exit(hash_lock);
4767         } else {
4768                 /*
4769                  * This block was freed while we waited for the read to
4770                  * complete.  It has been removed from the hash table and
4771                  * moved to the anonymous state (so that it won't show up
4772                  * in the cache).
4773                  */
4774                 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4775                 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4776         }
4777 
4778         /* execute each callback and free its structure */
4779         while ((acb = callback_list) != NULL) {
4780                 if (acb->acb_done)
4781                         acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4782 
4783                 if (acb->acb_zio_dummy != NULL) {
4784                         acb->acb_zio_dummy->io_error = zio->io_error;
4785                         zio_nowait(acb->acb_zio_dummy);
4786                 }
4787 
4788                 callback_list = acb->acb_next;
4789                 kmem_free(acb, sizeof (arc_callback_t));
4790         }
4791 
4792         if (freeable)
4793                 arc_hdr_destroy(hdr);
4794 }
4795 
4796 /*
4797  * "Read" the block at the specified DVA (in bp) via the
4798  * cache.  If the block is found in the cache, invoke the provided
4799  * callback immediately and return.  Note that the `zio' parameter
4800  * in the callback will be NULL in this case, since no IO was
4801  * required.  If the block is not in the cache pass the read request
4802  * on to the spa with a substitute callback function, so that the
4803  * requested block will be added to the cache.
4804  *
4805  * If a read request arrives for a block that has a read in-progress,
4806  * either wait for the in-progress read to complete (and return the
4807  * results); or, if this is a read with a "done" func, add a record
4808  * to the read to invoke the "done" func when the read completes,
4809  * and return; or just return.
4810  *
4811  * arc_read_done() will invoke all the requested "done" functions
4812  * for readers of this block.
4813  */
4814 int
4815 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4816     void *private, zio_priority_t priority, int zio_flags,
4817     arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4818 {
4819         arc_buf_hdr_t *hdr = NULL;
4820         kmutex_t *hash_lock = NULL;
4821         zio_t *rzio;
4822         uint64_t guid = spa_load_guid(spa);
4823         boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
4824 
4825         ASSERT(!BP_IS_EMBEDDED(bp) ||
4826             BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4827 
4828 top:
4829         if (!BP_IS_EMBEDDED(bp)) {
4830                 /*
4831                  * Embedded BP's have no DVA and require no I/O to "read".
4832                  * Create an anonymous arc buf to back it.
4833                  */
4834                 hdr = buf_hash_find(guid, bp, &hash_lock);
4835         }
4836 
4837         if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
4838                 arc_buf_t *buf = NULL;
4839                 *arc_flags |= ARC_FLAG_CACHED;
4840 
4841                 if (HDR_IO_IN_PROGRESS(hdr)) {
4842 
4843                         if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4844                             priority == ZIO_PRIORITY_SYNC_READ) {
4845                                 /*
4846                                  * This sync read must wait for an
4847                                  * in-progress async read (e.g. a predictive
4848                                  * prefetch).  Async reads are queued
4849                                  * separately at the vdev_queue layer, so
4850                                  * this is a form of priority inversion.
4851                                  * Ideally, we would "inherit" the demand
4852                                  * i/o's priority by moving the i/o from
4853                                  * the async queue to the synchronous queue,
4854                                  * but there is currently no mechanism to do
4855                                  * so.  Track this so that we can evaluate
4856                                  * the magnitude of this potential performance
4857                                  * problem.
4858                                  *
4859                                  * Note that if the prefetch i/o is already
4860                                  * active (has been issued to the device),
4861                                  * the prefetch improved performance, because
4862                                  * we issued it sooner than we would have
4863                                  * without the prefetch.
4864                                  */
4865                                 DTRACE_PROBE1(arc__sync__wait__for__async,
4866                                     arc_buf_hdr_t *, hdr);
4867                                 ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4868                         }
4869                         if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4870                                 arc_hdr_clear_flags(hdr,
4871                                     ARC_FLAG_PREDICTIVE_PREFETCH);
4872                         }
4873 
4874                         if (*arc_flags & ARC_FLAG_WAIT) {
4875                                 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4876                                 mutex_exit(hash_lock);
4877                                 goto top;
4878                         }
4879                         ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4880 
4881                         if (done) {
4882                                 arc_callback_t *acb = NULL;
4883 
4884                                 acb = kmem_zalloc(sizeof (arc_callback_t),
4885                                     KM_SLEEP);
4886                                 acb->acb_done = done;
4887                                 acb->acb_private = private;
4888                                 acb->acb_compressed = compressed_read;
4889                                 if (pio != NULL)
4890                                         acb->acb_zio_dummy = zio_null(pio,
4891                                             spa, NULL, NULL, NULL, zio_flags);
4892 
4893                                 ASSERT3P(acb->acb_done, !=, NULL);
4894                                 acb->acb_next = hdr->b_l1hdr.b_acb;
4895                                 hdr->b_l1hdr.b_acb = acb;
4896                                 mutex_exit(hash_lock);
4897                                 return (0);
4898                         }
4899                         mutex_exit(hash_lock);
4900                         return (0);
4901                 }
4902 
4903                 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4904                     hdr->b_l1hdr.b_state == arc_mfu);
4905 
4906                 if (done) {
4907                         if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4908                                 /*
4909                                  * This is a demand read which does not have to
4910                                  * wait for i/o because we did a predictive
4911                                  * prefetch i/o for it, which has completed.
4912                                  */
4913                                 DTRACE_PROBE1(
4914                                     arc__demand__hit__predictive__prefetch,
4915                                     arc_buf_hdr_t *, hdr);
4916                                 ARCSTAT_BUMP(
4917                                     arcstat_demand_hit_predictive_prefetch);
4918                                 arc_hdr_clear_flags(hdr,
4919                                     ARC_FLAG_PREDICTIVE_PREFETCH);
4920                         }
4921                         ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
4922 
4923                         /* Get a buf with the desired data in it. */
4924                         VERIFY0(arc_buf_alloc_impl(hdr, private,
4925                             compressed_read, B_TRUE, &buf));
4926                 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
4927                     refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4928                         arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
4929                 }
4930                 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4931                 arc_access(hdr, hash_lock);
4932                 if (*arc_flags & ARC_FLAG_L2CACHE)
4933                         arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
4934                 mutex_exit(hash_lock);
4935                 ARCSTAT_BUMP(arcstat_hits);
4936                 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4937                     demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4938                     data, metadata, hits);
4939 
4940                 if (done)
4941                         done(NULL, buf, private);
4942         } else {
4943                 uint64_t lsize = BP_GET_LSIZE(bp);
4944                 uint64_t psize = BP_GET_PSIZE(bp);
4945                 arc_callback_t *acb;
4946                 vdev_t *vd = NULL;
4947                 uint64_t addr = 0;
4948                 boolean_t devw = B_FALSE;
4949                 uint64_t size;
4950 
4951                 if (hdr == NULL) {
4952                         /* this block is not in the cache */
4953                         arc_buf_hdr_t *exists = NULL;
4954                         arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4955                         hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
4956                             BP_GET_COMPRESS(bp), type);
4957 
4958                         if (!BP_IS_EMBEDDED(bp)) {
4959                                 hdr->b_dva = *BP_IDENTITY(bp);
4960                                 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4961                                 exists = buf_hash_insert(hdr, &hash_lock);
4962                         }
4963                         if (exists != NULL) {
4964                                 /* somebody beat us to the hash insert */
4965                                 mutex_exit(hash_lock);
4966                                 buf_discard_identity(hdr);
4967                                 arc_hdr_destroy(hdr);
4968                                 goto top; /* restart the IO request */
4969                         }
4970                 } else {
4971                         /*
4972                          * This block is in the ghost cache. If it was L2-only
4973                          * (and thus didn't have an L1 hdr), we realloc the
4974                          * header to add an L1 hdr.
4975                          */
4976                         if (!HDR_HAS_L1HDR(hdr)) {
4977                                 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4978                                     hdr_full_cache);
4979                         }
4980                         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
4981                         ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4982                         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4983                         ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4984                         ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4985                         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
4986 
4987                         /*
4988                          * This is a delicate dance that we play here.
4989                          * This hdr is in the ghost list so we access it
4990                          * to move it out of the ghost list before we
4991                          * initiate the read. If it's a prefetch then
4992                          * it won't have a callback so we'll remove the
4993                          * reference that arc_buf_alloc_impl() created. We
4994                          * do this after we've called arc_access() to
4995                          * avoid hitting an assert in remove_reference().
4996                          */
4997                         arc_access(hdr, hash_lock);
4998                         arc_hdr_alloc_pabd(hdr);
4999                 }
5000                 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5001                 size = arc_hdr_size(hdr);
5002 
5003                 /*
5004                  * If compression is enabled on the hdr, then will do
5005                  * RAW I/O and will store the compressed data in the hdr's
5006                  * data block. Otherwise, the hdr's data block will contain
5007                  * the uncompressed data.
5008                  */
5009                 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5010                         zio_flags |= ZIO_FLAG_RAW;
5011                 }
5012 
5013                 if (*arc_flags & ARC_FLAG_PREFETCH)
5014                         arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5015                 if (*arc_flags & ARC_FLAG_L2CACHE)
5016                         arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5017                 if (BP_GET_LEVEL(bp) > 0)
5018                         arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5019                 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5020                         arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5021                 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5022 
5023                 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5024                 acb->acb_done = done;
5025                 acb->acb_private = private;
5026                 acb->acb_compressed = compressed_read;
5027 
5028                 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5029                 hdr->b_l1hdr.b_acb = acb;
5030                 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5031 
5032                 if (HDR_HAS_L2HDR(hdr) &&
5033                     (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5034                         devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5035                         addr = hdr->b_l2hdr.b_daddr;
5036                         /*
5037                          * Lock out L2ARC device removal.
5038                          */
5039                         if (vdev_is_dead(vd) ||
5040                             !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5041                                 vd = NULL;
5042                 }
5043 
5044                 if (priority == ZIO_PRIORITY_ASYNC_READ)
5045                         arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5046                 else
5047                         arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5048 
5049                 if (hash_lock != NULL)
5050                         mutex_exit(hash_lock);
5051 
5052                 /*
5053                  * At this point, we have a level 1 cache miss.  Try again in
5054                  * L2ARC if possible.
5055                  */
5056                 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5057 
5058                 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5059                     uint64_t, lsize, zbookmark_phys_t *, zb);
5060                 ARCSTAT_BUMP(arcstat_misses);
5061                 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5062                     demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5063                     data, metadata, misses);
5064 
5065                 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5066                         /*
5067                          * Read from the L2ARC if the following are true:
5068                          * 1. The L2ARC vdev was previously cached.
5069                          * 2. This buffer still has L2ARC metadata.
5070                          * 3. This buffer isn't currently writing to the L2ARC.
5071                          * 4. The L2ARC entry wasn't evicted, which may
5072                          *    also have invalidated the vdev.
5073                          * 5. This isn't prefetch and l2arc_noprefetch is set.
5074                          */
5075                         if (HDR_HAS_L2HDR(hdr) &&
5076                             !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5077                             !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5078                                 l2arc_read_callback_t *cb;
5079                                 abd_t *abd;
5080                                 uint64_t asize;
5081 
5082                                 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5083                                 ARCSTAT_BUMP(arcstat_l2_hits);
5084 
5085                                 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5086                                     KM_SLEEP);
5087                                 cb->l2rcb_hdr = hdr;
5088                                 cb->l2rcb_bp = *bp;
5089                                 cb->l2rcb_zb = *zb;
5090                                 cb->l2rcb_flags = zio_flags;
5091 
5092                                 asize = vdev_psize_to_asize(vd, size);
5093                                 if (asize != size) {
5094                                         abd = abd_alloc_for_io(asize,
5095                                             HDR_ISTYPE_METADATA(hdr));
5096                                         cb->l2rcb_abd = abd;
5097                                 } else {
5098                                         abd = hdr->b_l1hdr.b_pabd;
5099                                 }
5100 
5101                                 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5102                                     addr + asize <= vd->vdev_psize -
5103                                     VDEV_LABEL_END_SIZE);
5104 
5105                                 /*
5106                                  * l2arc read.  The SCL_L2ARC lock will be
5107                                  * released by l2arc_read_done().
5108                                  * Issue a null zio if the underlying buffer
5109                                  * was squashed to zero size by compression.
5110                                  */
5111                                 ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5112                                     ZIO_COMPRESS_EMPTY);
5113                                 rzio = zio_read_phys(pio, vd, addr,
5114                                     asize, abd,
5115                                     ZIO_CHECKSUM_OFF,
5116                                     l2arc_read_done, cb, priority,
5117                                     zio_flags | ZIO_FLAG_DONT_CACHE |
5118                                     ZIO_FLAG_CANFAIL |
5119                                     ZIO_FLAG_DONT_PROPAGATE |
5120                                     ZIO_FLAG_DONT_RETRY, B_FALSE);
5121                                 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5122                                     zio_t *, rzio);
5123                                 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5124 
5125                                 if (*arc_flags & ARC_FLAG_NOWAIT) {
5126                                         zio_nowait(rzio);
5127                                         return (0);
5128                                 }
5129 
5130                                 ASSERT(*arc_flags & ARC_FLAG_WAIT);
5131                                 if (zio_wait(rzio) == 0)
5132                                         return (0);
5133 
5134                                 /* l2arc read error; goto zio_read() */
5135                         } else {
5136                                 DTRACE_PROBE1(l2arc__miss,
5137                                     arc_buf_hdr_t *, hdr);
5138                                 ARCSTAT_BUMP(arcstat_l2_misses);
5139                                 if (HDR_L2_WRITING(hdr))
5140                                         ARCSTAT_BUMP(arcstat_l2_rw_clash);
5141                                 spa_config_exit(spa, SCL_L2ARC, vd);
5142                         }
5143                 } else {
5144                         if (vd != NULL)
5145                                 spa_config_exit(spa, SCL_L2ARC, vd);
5146                         if (l2arc_ndev != 0) {
5147                                 DTRACE_PROBE1(l2arc__miss,
5148                                     arc_buf_hdr_t *, hdr);
5149                                 ARCSTAT_BUMP(arcstat_l2_misses);
5150                         }
5151                 }
5152 
5153                 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
5154                     arc_read_done, hdr, priority, zio_flags, zb);
5155 
5156                 if (*arc_flags & ARC_FLAG_WAIT)
5157                         return (zio_wait(rzio));
5158 
5159                 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5160                 zio_nowait(rzio);
5161         }
5162         return (0);
5163 }
5164 
5165 /*
5166  * Notify the arc that a block was freed, and thus will never be used again.
5167  */
5168 void
5169 arc_freed(spa_t *spa, const blkptr_t *bp)
5170 {
5171         arc_buf_hdr_t *hdr;
5172         kmutex_t *hash_lock;
5173         uint64_t guid = spa_load_guid(spa);
5174 
5175         ASSERT(!BP_IS_EMBEDDED(bp));
5176 
5177         hdr = buf_hash_find(guid, bp, &hash_lock);
5178         if (hdr == NULL)
5179                 return;
5180 
5181         /*
5182          * We might be trying to free a block that is still doing I/O
5183          * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5184          * dmu_sync-ed block). If this block is being prefetched, then it
5185          * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5186          * until the I/O completes. A block may also have a reference if it is
5187          * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5188          * have written the new block to its final resting place on disk but
5189          * without the dedup flag set. This would have left the hdr in the MRU
5190          * state and discoverable. When the txg finally syncs it detects that
5191          * the block was overridden in open context and issues an override I/O.
5192          * Since this is a dedup block, the override I/O will determine if the
5193          * block is already in the DDT. If so, then it will replace the io_bp
5194          * with the bp from the DDT and allow the I/O to finish. When the I/O
5195          * reaches the done callback, dbuf_write_override_done, it will
5196          * check to see if the io_bp and io_bp_override are identical.
5197          * If they are not, then it indicates that the bp was replaced with
5198          * the bp in the DDT and the override bp is freed. This allows
5199          * us to arrive here with a reference on a block that is being
5200          * freed. So if we have an I/O in progress, or a reference to
5201          * this hdr, then we don't destroy the hdr.
5202          */
5203         if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5204             refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5205                 arc_change_state(arc_anon, hdr, hash_lock);
5206                 arc_hdr_destroy(hdr);
5207                 mutex_exit(hash_lock);
5208         } else {
5209                 mutex_exit(hash_lock);
5210         }
5211 
5212 }
5213 
5214 /*
5215  * Release this buffer from the cache, making it an anonymous buffer.  This
5216  * must be done after a read and prior to modifying the buffer contents.
5217  * If the buffer has more than one reference, we must make
5218  * a new hdr for the buffer.
5219  */
5220 void
5221 arc_release(arc_buf_t *buf, void *tag)
5222 {
5223         arc_buf_hdr_t *hdr = buf->b_hdr;
5224 
5225         /*
5226          * It would be nice to assert that if it's DMU metadata (level >
5227          * 0 || it's the dnode file), then it must be syncing context.
5228          * But we don't know that information at this level.
5229          */
5230 
5231         mutex_enter(&buf->b_evict_lock);
5232 
5233         ASSERT(HDR_HAS_L1HDR(hdr));
5234 
5235         /*
5236          * We don't grab the hash lock prior to this check, because if
5237          * the buffer's header is in the arc_anon state, it won't be
5238          * linked into the hash table.
5239          */
5240         if (hdr->b_l1hdr.b_state == arc_anon) {
5241                 mutex_exit(&buf->b_evict_lock);
5242                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5243                 ASSERT(!HDR_IN_HASH_TABLE(hdr));
5244                 ASSERT(!HDR_HAS_L2HDR(hdr));
5245                 ASSERT(HDR_EMPTY(hdr));
5246 
5247                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5248                 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5249                 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5250 
5251                 hdr->b_l1hdr.b_arc_access = 0;
5252 
5253                 /*
5254                  * If the buf is being overridden then it may already
5255                  * have a hdr that is not empty.
5256                  */
5257                 buf_discard_identity(hdr);
5258                 arc_buf_thaw(buf);
5259 
5260                 return;
5261         }
5262 
5263         kmutex_t *hash_lock = HDR_LOCK(hdr);
5264         mutex_enter(hash_lock);
5265 
5266         /*
5267          * This assignment is only valid as long as the hash_lock is
5268          * held, we must be careful not to reference state or the
5269          * b_state field after dropping the lock.
5270          */
5271         arc_state_t *state = hdr->b_l1hdr.b_state;
5272         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5273         ASSERT3P(state, !=, arc_anon);
5274 
5275         /* this buffer is not on any list */
5276         ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5277 
5278         if (HDR_HAS_L2HDR(hdr)) {
5279                 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5280 
5281                 /*
5282                  * We have to recheck this conditional again now that
5283                  * we're holding the l2ad_mtx to prevent a race with
5284                  * another thread which might be concurrently calling
5285                  * l2arc_evict(). In that case, l2arc_evict() might have
5286                  * destroyed the header's L2 portion as we were waiting
5287                  * to acquire the l2ad_mtx.
5288                  */
5289                 if (HDR_HAS_L2HDR(hdr))
5290                         arc_hdr_l2hdr_destroy(hdr);
5291 
5292                 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5293         }
5294 
5295         /*
5296          * Do we have more than one buf?
5297          */
5298         if (hdr->b_l1hdr.b_bufcnt > 1) {
5299                 arc_buf_hdr_t *nhdr;
5300                 uint64_t spa = hdr->b_spa;
5301                 uint64_t psize = HDR_GET_PSIZE(hdr);
5302                 uint64_t lsize = HDR_GET_LSIZE(hdr);
5303                 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5304                 arc_buf_contents_t type = arc_buf_type(hdr);
5305                 VERIFY3U(hdr->b_type, ==, type);
5306 
5307                 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5308                 (void) remove_reference(hdr, hash_lock, tag);
5309 
5310                 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5311                         ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5312                         ASSERT(ARC_BUF_LAST(buf));
5313                 }
5314 
5315                 /*
5316                  * Pull the data off of this hdr and attach it to
5317                  * a new anonymous hdr. Also find the last buffer
5318                  * in the hdr's buffer list.
5319                  */
5320                 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
5321                 ASSERT3P(lastbuf, !=, NULL);
5322 
5323                 /*
5324                  * If the current arc_buf_t and the hdr are sharing their data
5325                  * buffer, then we must stop sharing that block.
5326                  */
5327                 if (arc_buf_is_shared(buf)) {
5328                         VERIFY(!arc_buf_is_shared(lastbuf));
5329 
5330                         /*
5331                          * First, sever the block sharing relationship between
5332                          * buf and the arc_buf_hdr_t.
5333                          */
5334                         arc_unshare_buf(hdr, buf);
5335 
5336                         /*
5337                          * Now we need to recreate the hdr's b_pabd. Since we
5338                          * have lastbuf handy, we try to share with it, but if
5339                          * we can't then we allocate a new b_pabd and copy the
5340                          * data from buf into it.
5341                          */
5342                         if (arc_can_share(hdr, lastbuf)) {
5343                                 arc_share_buf(hdr, lastbuf);
5344                         } else {
5345                                 arc_hdr_alloc_pabd(hdr);
5346                                 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5347                                     buf->b_data, psize);
5348                         }
5349                         VERIFY3P(lastbuf->b_data, !=, NULL);
5350                 } else if (HDR_SHARED_DATA(hdr)) {
5351                         /*
5352                          * Uncompressed shared buffers are always at the end
5353                          * of the list. Compressed buffers don't have the
5354                          * same requirements. This makes it hard to
5355                          * simply assert that the lastbuf is shared so
5356                          * we rely on the hdr's compression flags to determine
5357                          * if we have a compressed, shared buffer.
5358                          */
5359                         ASSERT(arc_buf_is_shared(lastbuf) ||
5360                             HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5361                         ASSERT(!ARC_BUF_SHARED(buf));
5362                 }
5363                 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5364                 ASSERT3P(state, !=, arc_l2c_only);
5365 
5366                 (void) refcount_remove_many(&state->arcs_size,
5367                     arc_buf_size(buf), buf);
5368 
5369                 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5370                         ASSERT3P(state, !=, arc_l2c_only);
5371                         (void) refcount_remove_many(&state->arcs_esize[type],
5372                             arc_buf_size(buf), buf);
5373                 }
5374 
5375                 hdr->b_l1hdr.b_bufcnt -= 1;
5376                 arc_cksum_verify(buf);
5377                 arc_buf_unwatch(buf);
5378 
5379                 mutex_exit(hash_lock);
5380 
5381                 /*
5382                  * Allocate a new hdr. The new hdr will contain a b_pabd
5383                  * buffer which will be freed in arc_write().
5384                  */
5385                 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5386                 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5387                 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5388                 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5389                 VERIFY3U(nhdr->b_type, ==, type);
5390                 ASSERT(!HDR_SHARED_DATA(nhdr));
5391 
5392                 nhdr->b_l1hdr.b_buf = buf;
5393                 nhdr->b_l1hdr.b_bufcnt = 1;
5394                 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5395                 buf->b_hdr = nhdr;
5396 
5397                 mutex_exit(&buf->b_evict_lock);
5398                 (void) refcount_add_many(&arc_anon->arcs_size,
5399                     arc_buf_size(buf), buf);
5400         } else {
5401                 mutex_exit(&buf->b_evict_lock);
5402                 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5403                 /* protected by hash lock, or hdr is on arc_anon */
5404                 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5405                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5406                 arc_change_state(arc_anon, hdr, hash_lock);
5407                 hdr->b_l1hdr.b_arc_access = 0;
5408                 mutex_exit(hash_lock);
5409 
5410                 buf_discard_identity(hdr);
5411                 arc_buf_thaw(buf);
5412         }
5413 }
5414 
5415 int
5416 arc_released(arc_buf_t *buf)
5417 {
5418         int released;
5419 
5420         mutex_enter(&buf->b_evict_lock);
5421         released = (buf->b_data != NULL &&
5422             buf->b_hdr->b_l1hdr.b_state == arc_anon);
5423         mutex_exit(&buf->b_evict_lock);
5424         return (released);
5425 }
5426 
5427 #ifdef ZFS_DEBUG
5428 int
5429 arc_referenced(arc_buf_t *buf)
5430 {
5431         int referenced;
5432 
5433         mutex_enter(&buf->b_evict_lock);
5434         referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5435         mutex_exit(&buf->b_evict_lock);
5436         return (referenced);
5437 }
5438 #endif
5439 
5440 static void
5441 arc_write_ready(zio_t *zio)
5442 {
5443         arc_write_callback_t *callback = zio->io_private;
5444         arc_buf_t *buf = callback->awcb_buf;
5445         arc_buf_hdr_t *hdr = buf->b_hdr;
5446         uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5447 
5448         ASSERT(HDR_HAS_L1HDR(hdr));
5449         ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5450         ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5451 
5452         /*
5453          * If we're reexecuting this zio because the pool suspended, then
5454          * cleanup any state that was previously set the first time the
5455          * callback was invoked.
5456          */
5457         if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5458                 arc_cksum_free(hdr);
5459                 arc_buf_unwatch(buf);
5460                 if (hdr->b_l1hdr.b_pabd != NULL) {
5461                         if (arc_buf_is_shared(buf)) {
5462                                 arc_unshare_buf(hdr, buf);
5463                         } else {
5464                                 arc_hdr_free_pabd(hdr);
5465                         }
5466                 }
5467         }
5468         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5469         ASSERT(!HDR_SHARED_DATA(hdr));
5470         ASSERT(!arc_buf_is_shared(buf));
5471 
5472         callback->awcb_ready(zio, buf, callback->awcb_private);
5473 
5474         if (HDR_IO_IN_PROGRESS(hdr))
5475                 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5476 
5477         arc_cksum_compute(buf);
5478         arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5479 
5480         enum zio_compress compress;
5481         if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5482                 compress = ZIO_COMPRESS_OFF;
5483         } else {
5484                 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5485                 compress = BP_GET_COMPRESS(zio->io_bp);
5486         }
5487         HDR_SET_PSIZE(hdr, psize);
5488         arc_hdr_set_compress(hdr, compress);
5489 
5490 
5491         /*
5492          * Fill the hdr with data. If the hdr is compressed, the data we want
5493          * is available from the zio, otherwise we can take it from the buf.
5494          *
5495          * We might be able to share the buf's data with the hdr here. However,
5496          * doing so would cause the ARC to be full of linear ABDs if we write a
5497          * lot of shareable data. As a compromise, we check whether scattered
5498          * ABDs are allowed, and assume that if they are then the user wants
5499          * the ARC to be primarily filled with them regardless of the data being
5500          * written. Therefore, if they're allowed then we allocate one and copy
5501          * the data into it; otherwise, we share the data directly if we can.
5502          */
5503         if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
5504                 arc_hdr_alloc_pabd(hdr);
5505 
5506                 /*
5507                  * Ideally, we would always copy the io_abd into b_pabd, but the
5508                  * user may have disabled compressed ARC, thus we must check the
5509                  * hdr's compression setting rather than the io_bp's.
5510                  */
5511                 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5512                         ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
5513                             ZIO_COMPRESS_OFF);
5514                         ASSERT3U(psize, >, 0);
5515 
5516                         abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
5517                 } else {
5518                         ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
5519 
5520                         abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
5521                             arc_buf_size(buf));
5522                 }
5523         } else {
5524                 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
5525                 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
5526                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5527 
5528                 arc_share_buf(hdr, buf);
5529         }
5530 
5531         arc_hdr_verify(hdr, zio->io_bp);
5532 }
5533 
5534 static void
5535 arc_write_children_ready(zio_t *zio)
5536 {
5537         arc_write_callback_t *callback = zio->io_private;
5538         arc_buf_t *buf = callback->awcb_buf;
5539 
5540         callback->awcb_children_ready(zio, buf, callback->awcb_private);
5541 }
5542 
5543 /*
5544  * The SPA calls this callback for each physical write that happens on behalf
5545  * of a logical write.  See the comment in dbuf_write_physdone() for details.
5546  */
5547 static void
5548 arc_write_physdone(zio_t *zio)
5549 {
5550         arc_write_callback_t *cb = zio->io_private;
5551         if (cb->awcb_physdone != NULL)
5552                 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5553 }
5554 
5555 static void
5556 arc_write_done(zio_t *zio)
5557 {
5558         arc_write_callback_t *callback = zio->io_private;
5559         arc_buf_t *buf = callback->awcb_buf;
5560         arc_buf_hdr_t *hdr = buf->b_hdr;
5561 
5562         ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5563 
5564         if (zio->io_error == 0) {
5565                 arc_hdr_verify(hdr, zio->io_bp);
5566 
5567                 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5568                         buf_discard_identity(hdr);
5569                 } else {
5570                         hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5571                         hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5572                 }
5573         } else {
5574                 ASSERT(HDR_EMPTY(hdr));
5575         }
5576 
5577         /*
5578          * If the block to be written was all-zero or compressed enough to be
5579          * embedded in the BP, no write was performed so there will be no
5580          * dva/birth/checksum.  The buffer must therefore remain anonymous
5581          * (and uncached).
5582          */
5583         if (!HDR_EMPTY(hdr)) {
5584                 arc_buf_hdr_t *exists;
5585                 kmutex_t *hash_lock;
5586 
5587                 ASSERT3U(zio->io_error, ==, 0);
5588 
5589                 arc_cksum_verify(buf);
5590 
5591                 exists = buf_hash_insert(hdr, &hash_lock);
5592                 if (exists != NULL) {
5593                         /*
5594                          * This can only happen if we overwrite for
5595                          * sync-to-convergence, because we remove
5596                          * buffers from the hash table when we arc_free().
5597                          */
5598                         if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5599                                 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5600                                         panic("bad overwrite, hdr=%p exists=%p",
5601                                             (void *)hdr, (void *)exists);
5602                                 ASSERT(refcount_is_zero(
5603                                     &exists->b_l1hdr.b_refcnt));
5604                                 arc_change_state(arc_anon, exists, hash_lock);
5605                                 mutex_exit(hash_lock);
5606                                 arc_hdr_destroy(exists);
5607                                 exists = buf_hash_insert(hdr, &hash_lock);
5608                                 ASSERT3P(exists, ==, NULL);
5609                         } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5610                                 /* nopwrite */
5611                                 ASSERT(zio->io_prop.zp_nopwrite);
5612                                 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5613                                         panic("bad nopwrite, hdr=%p exists=%p",
5614                                             (void *)hdr, (void *)exists);
5615                         } else {
5616                                 /* Dedup */
5617                                 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5618                                 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5619                                 ASSERT(BP_GET_DEDUP(zio->io_bp));
5620                                 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5621                         }
5622                 }
5623                 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5624                 /* if it's not anon, we are doing a scrub */
5625                 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5626                         arc_access(hdr, hash_lock);
5627                 mutex_exit(hash_lock);
5628         } else {
5629                 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5630         }
5631 
5632         ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5633         callback->awcb_done(zio, buf, callback->awcb_private);
5634 
5635         abd_put(zio->io_abd);
5636         kmem_free(callback, sizeof (arc_write_callback_t));
5637 }
5638 
5639 zio_t *
5640 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
5641     boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready,
5642     arc_done_func_t *children_ready, arc_done_func_t *physdone,
5643     arc_done_func_t *done, void *private, zio_priority_t priority,
5644     int zio_flags, const zbookmark_phys_t *zb)
5645 {
5646         arc_buf_hdr_t *hdr = buf->b_hdr;
5647         arc_write_callback_t *callback;
5648         zio_t *zio;
5649         zio_prop_t localprop = *zp;
5650 
5651         ASSERT3P(ready, !=, NULL);
5652         ASSERT3P(done, !=, NULL);
5653         ASSERT(!HDR_IO_ERROR(hdr));
5654         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5655         ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5656         ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
5657         if (l2arc)
5658                 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5659         if (ARC_BUF_COMPRESSED(buf)) {
5660                 /*
5661                  * We're writing a pre-compressed buffer.  Make the
5662                  * compression algorithm requested by the zio_prop_t match
5663                  * the pre-compressed buffer's compression algorithm.
5664                  */
5665                 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
5666 
5667                 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
5668                 zio_flags |= ZIO_FLAG_RAW;
5669         }
5670         callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5671         callback->awcb_ready = ready;
5672         callback->awcb_children_ready = children_ready;
5673         callback->awcb_physdone = physdone;
5674         callback->awcb_done = done;
5675         callback->awcb_private = private;
5676         callback->awcb_buf = buf;
5677 
5678         /*
5679          * The hdr's b_pabd is now stale, free it now. A new data block
5680          * will be allocated when the zio pipeline calls arc_write_ready().
5681          */
5682         if (hdr->b_l1hdr.b_pabd != NULL) {
5683                 /*
5684                  * If the buf is currently sharing the data block with
5685                  * the hdr then we need to break that relationship here.
5686                  * The hdr will remain with a NULL data pointer and the
5687                  * buf will take sole ownership of the block.
5688                  */
5689                 if (arc_buf_is_shared(buf)) {
5690                         arc_unshare_buf(hdr, buf);
5691                 } else {
5692                         arc_hdr_free_pabd(hdr);
5693                 }
5694                 VERIFY3P(buf->b_data, !=, NULL);
5695                 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
5696         }
5697         ASSERT(!arc_buf_is_shared(buf));
5698         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5699 
5700         zio = zio_write(pio, spa, txg, bp,
5701             abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
5702             HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
5703             (children_ready != NULL) ? arc_write_children_ready : NULL,
5704             arc_write_physdone, arc_write_done, callback,
5705             priority, zio_flags, zb);
5706 
5707         return (zio);
5708 }
5709 
5710 static int
5711 arc_memory_throttle(uint64_t reserve, uint64_t txg)
5712 {
5713 #ifdef _KERNEL
5714         uint64_t available_memory = ptob(freemem);
5715         static uint64_t page_load = 0;
5716         static uint64_t last_txg = 0;
5717 
5718 #if defined(__i386)
5719         available_memory =
5720             MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
5721 #endif
5722 
5723         if (freemem > physmem * arc_lotsfree_percent / 100)
5724                 return (0);
5725 
5726         if (txg > last_txg) {
5727                 last_txg = txg;
5728                 page_load = 0;
5729         }
5730         /*
5731          * If we are in pageout, we know that memory is already tight,
5732          * the arc is already going to be evicting, so we just want to
5733          * continue to let page writes occur as quickly as possible.
5734          */
5735         if (curproc == proc_pageout) {
5736                 if (page_load > MAX(ptob(minfree), available_memory) / 4)
5737                         return (SET_ERROR(ERESTART));
5738                 /* Note: reserve is inflated, so we deflate */
5739                 page_load += reserve / 8;
5740                 return (0);
5741         } else if (page_load > 0 && arc_reclaim_needed()) {
5742                 /* memory is low, delay before restarting */
5743                 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5744                 return (SET_ERROR(EAGAIN));
5745         }
5746         page_load = 0;
5747 #endif
5748         return (0);
5749 }
5750 
5751 void
5752 arc_tempreserve_clear(uint64_t reserve)
5753 {
5754         atomic_add_64(&arc_tempreserve, -reserve);
5755         ASSERT((int64_t)arc_tempreserve >= 0);
5756 }
5757 
5758 int
5759 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5760 {
5761         int error;
5762         uint64_t anon_size;
5763 
5764         if (reserve > arc_c/4 && !arc_no_grow)
5765                 arc_c = MIN(arc_c_max, reserve * 4);
5766         if (reserve > arc_c)
5767                 return (SET_ERROR(ENOMEM));
5768 
5769         /*
5770          * Don't count loaned bufs as in flight dirty data to prevent long
5771          * network delays from blocking transactions that are ready to be
5772          * assigned to a txg.
5773          */
5774 
5775         /* assert that it has not wrapped around */
5776         ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
5777 
5778         anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5779             arc_loaned_bytes), 0);
5780 
5781         /*
5782          * Writes will, almost always, require additional memory allocations
5783          * in order to compress/encrypt/etc the data.  We therefore need to
5784          * make sure that there is sufficient available memory for this.
5785          */
5786         error = arc_memory_throttle(reserve, txg);
5787         if (error != 0)
5788                 return (error);
5789 
5790         /*
5791          * Throttle writes when the amount of dirty data in the cache
5792          * gets too large.  We try to keep the cache less than half full
5793          * of dirty blocks so that our sync times don't grow too large.
5794          * Note: if two requests come in concurrently, we might let them
5795          * both succeed, when one of them should fail.  Not a huge deal.
5796          */
5797 
5798         if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5799             anon_size > arc_c / 4) {
5800                 uint64_t meta_esize =
5801                     refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5802                 uint64_t data_esize =
5803                     refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5804                 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5805                     "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5806                     arc_tempreserve >> 10, meta_esize >> 10,
5807                     data_esize >> 10, reserve >> 10, arc_c >> 10);
5808                 return (SET_ERROR(ERESTART));
5809         }
5810         atomic_add_64(&arc_tempreserve, reserve);
5811         return (0);
5812 }
5813 
5814 static void
5815 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5816     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5817 {
5818         size->value.ui64 = refcount_count(&state->arcs_size);
5819         evict_data->value.ui64 =
5820             refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
5821         evict_metadata->value.ui64 =
5822             refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
5823 }
5824 
5825 static int
5826 arc_kstat_update(kstat_t *ksp, int rw)
5827 {
5828         arc_stats_t *as = ksp->ks_data;
5829 
5830         if (rw == KSTAT_WRITE) {
5831                 return (EACCES);
5832         } else {
5833                 arc_kstat_update_state(arc_anon,
5834                     &as->arcstat_anon_size,
5835                     &as->arcstat_anon_evictable_data,
5836                     &as->arcstat_anon_evictable_metadata);
5837                 arc_kstat_update_state(arc_mru,
5838                     &as->arcstat_mru_size,
5839                     &as->arcstat_mru_evictable_data,
5840                     &as->arcstat_mru_evictable_metadata);
5841                 arc_kstat_update_state(arc_mru_ghost,
5842                     &as->arcstat_mru_ghost_size,
5843                     &as->arcstat_mru_ghost_evictable_data,
5844                     &as->arcstat_mru_ghost_evictable_metadata);
5845                 arc_kstat_update_state(arc_mfu,
5846                     &as->arcstat_mfu_size,
5847                     &as->arcstat_mfu_evictable_data,
5848                     &as->arcstat_mfu_evictable_metadata);
5849                 arc_kstat_update_state(arc_mfu_ghost,
5850                     &as->arcstat_mfu_ghost_size,
5851                     &as->arcstat_mfu_ghost_evictable_data,
5852                     &as->arcstat_mfu_ghost_evictable_metadata);
5853         }
5854 
5855         return (0);
5856 }
5857 
5858 /*
5859  * This function *must* return indices evenly distributed between all
5860  * sublists of the multilist. This is needed due to how the ARC eviction
5861  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5862  * distributed between all sublists and uses this assumption when
5863  * deciding which sublist to evict from and how much to evict from it.
5864  */
5865 unsigned int
5866 arc_state_multilist_index_func(multilist_t *ml, void *obj)
5867 {
5868         arc_buf_hdr_t *hdr = obj;
5869 
5870         /*
5871          * We rely on b_dva to generate evenly distributed index
5872          * numbers using buf_hash below. So, as an added precaution,
5873          * let's make sure we never add empty buffers to the arc lists.
5874          */
5875         ASSERT(!HDR_EMPTY(hdr));
5876 
5877         /*
5878          * The assumption here, is the hash value for a given
5879          * arc_buf_hdr_t will remain constant throughout it's lifetime
5880          * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5881          * Thus, we don't need to store the header's sublist index
5882          * on insertion, as this index can be recalculated on removal.
5883          *
5884          * Also, the low order bits of the hash value are thought to be
5885          * distributed evenly. Otherwise, in the case that the multilist
5886          * has a power of two number of sublists, each sublists' usage
5887          * would not be evenly distributed.
5888          */
5889         return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5890             multilist_get_num_sublists(ml));
5891 }
5892 
5893 static void
5894 arc_state_init(void)
5895 {
5896         arc_anon = &ARC_anon;
5897         arc_mru = &ARC_mru;
5898         arc_mru_ghost = &ARC_mru_ghost;
5899         arc_mfu = &ARC_mfu;
5900         arc_mfu_ghost = &ARC_mfu_ghost;
5901         arc_l2c_only = &ARC_l2c_only;
5902 
5903         arc_mru->arcs_list[ARC_BUFC_METADATA] =
5904             multilist_create(sizeof (arc_buf_hdr_t),
5905             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5906             arc_state_multilist_index_func);
5907         arc_mru->arcs_list[ARC_BUFC_DATA] =
5908             multilist_create(sizeof (arc_buf_hdr_t),
5909             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5910             arc_state_multilist_index_func);
5911         arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
5912             multilist_create(sizeof (arc_buf_hdr_t),
5913             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5914             arc_state_multilist_index_func);
5915         arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
5916             multilist_create(sizeof (arc_buf_hdr_t),
5917             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5918             arc_state_multilist_index_func);
5919         arc_mfu->arcs_list[ARC_BUFC_METADATA] =
5920             multilist_create(sizeof (arc_buf_hdr_t),
5921             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5922             arc_state_multilist_index_func);
5923         arc_mfu->arcs_list[ARC_BUFC_DATA] =
5924             multilist_create(sizeof (arc_buf_hdr_t),
5925             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5926             arc_state_multilist_index_func);
5927         arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
5928             multilist_create(sizeof (arc_buf_hdr_t),
5929             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5930             arc_state_multilist_index_func);
5931         arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
5932             multilist_create(sizeof (arc_buf_hdr_t),
5933             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5934             arc_state_multilist_index_func);
5935         arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
5936             multilist_create(sizeof (arc_buf_hdr_t),
5937             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5938             arc_state_multilist_index_func);
5939         arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
5940             multilist_create(sizeof (arc_buf_hdr_t),
5941             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5942             arc_state_multilist_index_func);
5943 
5944         refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5945         refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5946         refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5947         refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5948         refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5949         refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5950         refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5951         refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5952         refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5953         refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5954         refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5955         refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5956 
5957         refcount_create(&arc_anon->arcs_size);
5958         refcount_create(&arc_mru->arcs_size);
5959         refcount_create(&arc_mru_ghost->arcs_size);
5960         refcount_create(&arc_mfu->arcs_size);
5961         refcount_create(&arc_mfu_ghost->arcs_size);
5962         refcount_create(&arc_l2c_only->arcs_size);
5963 }
5964 
5965 static void
5966 arc_state_fini(void)
5967 {
5968         refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5969         refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5970         refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5971         refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5972         refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5973         refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5974         refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5975         refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5976         refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5977         refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5978         refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5979         refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5980 
5981         refcount_destroy(&arc_anon->arcs_size);
5982         refcount_destroy(&arc_mru->arcs_size);
5983         refcount_destroy(&arc_mru_ghost->arcs_size);
5984         refcount_destroy(&arc_mfu->arcs_size);
5985         refcount_destroy(&arc_mfu_ghost->arcs_size);
5986         refcount_destroy(&arc_l2c_only->arcs_size);
5987 
5988         multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
5989         multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5990         multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5991         multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5992         multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
5993         multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5994         multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
5995         multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5996 }
5997 
5998 uint64_t
5999 arc_max_bytes(void)
6000 {
6001         return (arc_c_max);
6002 }
6003 
6004 void
6005 arc_init(void)
6006 {
6007         /*
6008          * allmem is "all memory that we could possibly use".
6009          */
6010 #ifdef _KERNEL
6011         uint64_t allmem = ptob(physmem - swapfs_minfree);
6012 #else
6013         uint64_t allmem = (physmem * PAGESIZE) / 2;
6014 #endif
6015 
6016         mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
6017         cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
6018         cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
6019 
6020         /* Convert seconds to clock ticks */
6021         arc_min_prefetch_lifespan = 1 * hz;
6022 
6023         /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
6024         arc_c_min = MAX(allmem / 32, 64 << 20);
6025         /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
6026         if (allmem >= 1 << 30)
6027                 arc_c_max = allmem - (1 << 30);
6028         else
6029                 arc_c_max = arc_c_min;
6030         arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
6031 
6032         /*
6033          * In userland, there's only the memory pressure that we artificially
6034          * create (see arc_available_memory()).  Don't let arc_c get too
6035          * small, because it can cause transactions to be larger than
6036          * arc_c, causing arc_tempreserve_space() to fail.
6037          */
6038 #ifndef _KERNEL
6039         arc_c_min = arc_c_max / 2;
6040 #endif
6041 
6042         /*
6043          * Allow the tunables to override our calculations if they are
6044          * reasonable (ie. over 64MB)
6045          */
6046         if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) {
6047                 arc_c_max = zfs_arc_max;
6048                 arc_c_min = MIN(arc_c_min, arc_c_max);
6049         }
6050         if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
6051                 arc_c_min = zfs_arc_min;
6052 
6053         arc_c = arc_c_max;
6054         arc_p = (arc_c >> 1);
6055         arc_size = 0;
6056 
6057         /* limit meta-data to 1/4 of the arc capacity */
6058         arc_meta_limit = arc_c_max / 4;
6059 
6060 #ifdef _KERNEL
6061         /*
6062          * Metadata is stored in the kernel's heap.  Don't let us
6063          * use more than half the heap for the ARC.
6064          */
6065         arc_meta_limit = MIN(arc_meta_limit,
6066             vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
6067 #endif
6068 
6069         /* Allow the tunable to override if it is reasonable */
6070         if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6071                 arc_meta_limit = zfs_arc_meta_limit;
6072 
6073         if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6074                 arc_c_min = arc_meta_limit / 2;
6075 
6076         if (zfs_arc_meta_min > 0) {
6077                 arc_meta_min = zfs_arc_meta_min;
6078         } else {
6079                 arc_meta_min = arc_c_min / 2;
6080         }
6081 
6082         if (zfs_arc_grow_retry > 0)
6083                 arc_grow_retry = zfs_arc_grow_retry;
6084 
6085         if (zfs_arc_shrink_shift > 0)
6086                 arc_shrink_shift = zfs_arc_shrink_shift;
6087 
6088         /*
6089          * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6090          */
6091         if (arc_no_grow_shift >= arc_shrink_shift)
6092                 arc_no_grow_shift = arc_shrink_shift - 1;
6093 
6094         if (zfs_arc_p_min_shift > 0)
6095                 arc_p_min_shift = zfs_arc_p_min_shift;
6096 
6097         /* if kmem_flags are set, lets try to use less memory */
6098         if (kmem_debugging())
6099                 arc_c = arc_c / 2;
6100         if (arc_c < arc_c_min)
6101                 arc_c = arc_c_min;
6102 
6103         arc_state_init();
6104         buf_init();
6105 
6106         arc_reclaim_thread_exit = B_FALSE;
6107 
6108         arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6109             sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6110 
6111         if (arc_ksp != NULL) {
6112                 arc_ksp->ks_data = &arc_stats;
6113                 arc_ksp->ks_update = arc_kstat_update;
6114                 kstat_install(arc_ksp);
6115         }
6116 
6117         (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6118             TS_RUN, minclsyspri);
6119 
6120         arc_dead = B_FALSE;
6121         arc_warm = B_FALSE;
6122 
6123         /*
6124          * Calculate maximum amount of dirty data per pool.
6125          *
6126          * If it has been set by /etc/system, take that.
6127          * Otherwise, use a percentage of physical memory defined by
6128          * zfs_dirty_data_max_percent (default 10%) with a cap at
6129          * zfs_dirty_data_max_max (default 4GB).
6130          */
6131         if (zfs_dirty_data_max == 0) {
6132                 zfs_dirty_data_max = physmem * PAGESIZE *
6133                     zfs_dirty_data_max_percent / 100;
6134                 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6135                     zfs_dirty_data_max_max);
6136         }
6137 }
6138 
6139 void
6140 arc_fini(void)
6141 {
6142         mutex_enter(&arc_reclaim_lock);
6143         arc_reclaim_thread_exit = B_TRUE;
6144         /*
6145          * The reclaim thread will set arc_reclaim_thread_exit back to
6146          * B_FALSE when it is finished exiting; we're waiting for that.
6147          */
6148         while (arc_reclaim_thread_exit) {
6149                 cv_signal(&arc_reclaim_thread_cv);
6150                 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6151         }
6152         mutex_exit(&arc_reclaim_lock);
6153 
6154         /* Use B_TRUE to ensure *all* buffers are evicted */
6155         arc_flush(NULL, B_TRUE);
6156 
6157         arc_dead = B_TRUE;
6158 
6159         if (arc_ksp != NULL) {
6160                 kstat_delete(arc_ksp);
6161                 arc_ksp = NULL;
6162         }
6163 
6164         mutex_destroy(&arc_reclaim_lock);
6165         cv_destroy(&arc_reclaim_thread_cv);
6166         cv_destroy(&arc_reclaim_waiters_cv);
6167 
6168         arc_state_fini();
6169         buf_fini();
6170 
6171         ASSERT0(arc_loaned_bytes);
6172 }
6173 
6174 /*
6175  * Level 2 ARC
6176  *
6177  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6178  * It uses dedicated storage devices to hold cached data, which are populated
6179  * using large infrequent writes.  The main role of this cache is to boost
6180  * the performance of random read workloads.  The intended L2ARC devices
6181  * include short-stroked disks, solid state disks, and other media with
6182  * substantially faster read latency than disk.
6183  *
6184  *                 +-----------------------+
6185  *                 |         ARC           |
6186  *                 +-----------------------+
6187  *                    |         ^     ^
6188  *                    |         |     |
6189  *      l2arc_feed_thread()    arc_read()
6190  *                    |         |     |
6191  *                    |  l2arc read   |
6192  *                    V         |     |
6193  *               +---------------+    |
6194  *               |     L2ARC     |    |
6195  *               +---------------+    |
6196  *                   |    ^           |
6197  *          l2arc_write() |           |
6198  *                   |    |           |
6199  *                   V    |           |
6200  *                 +-------+      +-------+
6201  *                 | vdev  |      | vdev  |
6202  *                 | cache |      | cache |
6203  *                 +-------+      +-------+
6204  *                 +=========+     .-----.
6205  *                 :  L2ARC  :    |-_____-|
6206  *                 : devices :    | Disks |
6207  *                 +=========+    `-_____-'
6208  *
6209  * Read requests are satisfied from the following sources, in order:
6210  *
6211  *      1) ARC
6212  *      2) vdev cache of L2ARC devices
6213  *      3) L2ARC devices
6214  *      4) vdev cache of disks
6215  *      5) disks
6216  *
6217  * Some L2ARC device types exhibit extremely slow write performance.
6218  * To accommodate for this there are some significant differences between
6219  * the L2ARC and traditional cache design:
6220  *
6221  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
6222  * the ARC behave as usual, freeing buffers and placing headers on ghost
6223  * lists.  The ARC does not send buffers to the L2ARC during eviction as
6224  * this would add inflated write latencies for all ARC memory pressure.
6225  *
6226  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6227  * It does this by periodically scanning buffers from the eviction-end of
6228  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6229  * not already there. It scans until a headroom of buffers is satisfied,
6230  * which itself is a buffer for ARC eviction. If a compressible buffer is
6231  * found during scanning and selected for writing to an L2ARC device, we
6232  * temporarily boost scanning headroom during the next scan cycle to make
6233  * sure we adapt to compression effects (which might significantly reduce
6234  * the data volume we write to L2ARC). The thread that does this is
6235  * l2arc_feed_thread(), illustrated below; example sizes are included to
6236  * provide a better sense of ratio than this diagram:
6237  *
6238  *             head -->                        tail
6239  *              +---------------------+----------+
6240  *      ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
6241  *              +---------------------+----------+   |   o L2ARC eligible
6242  *      ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
6243  *              +---------------------+----------+   |
6244  *                   15.9 Gbytes      ^ 32 Mbytes    |
6245  *                                 headroom          |
6246  *                                            l2arc_feed_thread()
6247  *                                                   |
6248  *                       l2arc write hand <--[oooo]--'
6249  *                               |           8 Mbyte
6250  *                               |          write max
6251  *                               V
6252  *                +==============================+
6253  *      L2ARC dev |####|#|###|###|    |####| ... |
6254  *                +==============================+
6255  *                           32 Gbytes
6256  *
6257  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6258  * evicted, then the L2ARC has cached a buffer much sooner than it probably
6259  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
6260  * safe to say that this is an uncommon case, since buffers at the end of
6261  * the ARC lists have moved there due to inactivity.
6262  *
6263  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6264  * then the L2ARC simply misses copying some buffers.  This serves as a
6265  * pressure valve to prevent heavy read workloads from both stalling the ARC
6266  * with waits and clogging the L2ARC with writes.  This also helps prevent
6267  * the potential for the L2ARC to churn if it attempts to cache content too
6268  * quickly, such as during backups of the entire pool.
6269  *
6270  * 5. After system boot and before the ARC has filled main memory, there are
6271  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6272  * lists can remain mostly static.  Instead of searching from tail of these
6273  * lists as pictured, the l2arc_feed_thread() will search from the list heads
6274  * for eligible buffers, greatly increasing its chance of finding them.
6275  *
6276  * The L2ARC device write speed is also boosted during this time so that
6277  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
6278  * there are no L2ARC reads, and no fear of degrading read performance
6279  * through increased writes.
6280  *
6281  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6282  * the vdev queue can aggregate them into larger and fewer writes.  Each
6283  * device is written to in a rotor fashion, sweeping writes through
6284  * available space then repeating.
6285  *
6286  * 7. The L2ARC does not store dirty content.  It never needs to flush
6287  * write buffers back to disk based storage.
6288  *
6289  * 8. If an ARC buffer is written (and dirtied) which also exists in the
6290  * L2ARC, the now stale L2ARC buffer is immediately dropped.
6291  *
6292  * The performance of the L2ARC can be tweaked by a number of tunables, which
6293  * may be necessary for different workloads:
6294  *
6295  *      l2arc_write_max         max write bytes per interval
6296  *      l2arc_write_boost       extra write bytes during device warmup
6297  *      l2arc_noprefetch        skip caching prefetched buffers
6298  *      l2arc_headroom          number of max device writes to precache
6299  *      l2arc_headroom_boost    when we find compressed buffers during ARC
6300  *                              scanning, we multiply headroom by this
6301  *                              percentage factor for the next scan cycle,
6302  *                              since more compressed buffers are likely to
6303  *                              be present
6304  *      l2arc_feed_secs         seconds between L2ARC writing
6305  *
6306  * Tunables may be removed or added as future performance improvements are
6307  * integrated, and also may become zpool properties.
6308  *
6309  * There are three key functions that control how the L2ARC warms up:
6310  *
6311  *      l2arc_write_eligible()  check if a buffer is eligible to cache
6312  *      l2arc_write_size()      calculate how much to write
6313  *      l2arc_write_interval()  calculate sleep delay between writes
6314  *
6315  * These three functions determine what to write, how much, and how quickly
6316  * to send writes.
6317  */
6318 
6319 static boolean_t
6320 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6321 {
6322         /*
6323          * A buffer is *not* eligible for the L2ARC if it:
6324          * 1. belongs to a different spa.
6325          * 2. is already cached on the L2ARC.
6326          * 3. has an I/O in progress (it may be an incomplete read).
6327          * 4. is flagged not eligible (zfs property).
6328          */
6329         if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
6330             HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
6331                 return (B_FALSE);
6332 
6333         return (B_TRUE);
6334 }
6335 
6336 static uint64_t
6337 l2arc_write_size(void)
6338 {
6339         uint64_t size;
6340 
6341         /*
6342          * Make sure our globals have meaningful values in case the user
6343          * altered them.
6344          */
6345         size = l2arc_write_max;
6346         if (size == 0) {
6347                 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6348                     "be greater than zero, resetting it to the default (%d)",
6349                     L2ARC_WRITE_SIZE);
6350                 size = l2arc_write_max = L2ARC_WRITE_SIZE;
6351         }
6352 
6353         if (arc_warm == B_FALSE)
6354                 size += l2arc_write_boost;
6355 
6356         return (size);
6357 
6358 }
6359 
6360 static clock_t
6361 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6362 {
6363         clock_t interval, next, now;
6364 
6365         /*
6366          * If the ARC lists are busy, increase our write rate; if the
6367          * lists are stale, idle back.  This is achieved by checking
6368          * how much we previously wrote - if it was more than half of
6369          * what we wanted, schedule the next write much sooner.
6370          */
6371         if (l2arc_feed_again && wrote > (wanted / 2))
6372                 interval = (hz * l2arc_feed_min_ms) / 1000;
6373         else
6374                 interval = hz * l2arc_feed_secs;
6375 
6376         now = ddi_get_lbolt();
6377         next = MAX(now, MIN(now + interval, began + interval));
6378 
6379         return (next);
6380 }
6381 
6382 /*
6383  * Cycle through L2ARC devices.  This is how L2ARC load balances.
6384  * If a device is returned, this also returns holding the spa config lock.
6385  */
6386 static l2arc_dev_t *
6387 l2arc_dev_get_next(void)
6388 {
6389         l2arc_dev_t *first, *next = NULL;
6390 
6391         /*
6392          * Lock out the removal of spas (spa_namespace_lock), then removal
6393          * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
6394          * both locks will be dropped and a spa config lock held instead.
6395          */
6396         mutex_enter(&spa_namespace_lock);
6397         mutex_enter(&l2arc_dev_mtx);
6398 
6399         /* if there are no vdevs, there is nothing to do */
6400         if (l2arc_ndev == 0)
6401                 goto out;
6402 
6403         first = NULL;
6404         next = l2arc_dev_last;
6405         do {
6406                 /* loop around the list looking for a non-faulted vdev */
6407                 if (next == NULL) {
6408                         next = list_head(l2arc_dev_list);
6409                 } else {
6410                         next = list_next(l2arc_dev_list, next);
6411                         if (next == NULL)
6412                                 next = list_head(l2arc_dev_list);
6413                 }
6414 
6415                 /* if we have come back to the start, bail out */
6416                 if (first == NULL)
6417                         first = next;
6418                 else if (next == first)
6419                         break;
6420 
6421         } while (vdev_is_dead(next->l2ad_vdev));
6422 
6423         /* if we were unable to find any usable vdevs, return NULL */
6424         if (vdev_is_dead(next->l2ad_vdev))
6425                 next = NULL;
6426 
6427         l2arc_dev_last = next;
6428 
6429 out:
6430         mutex_exit(&l2arc_dev_mtx);
6431 
6432         /*
6433          * Grab the config lock to prevent the 'next' device from being
6434          * removed while we are writing to it.
6435          */
6436         if (next != NULL)
6437                 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6438         mutex_exit(&spa_namespace_lock);
6439 
6440         return (next);
6441 }
6442 
6443 /*
6444  * Free buffers that were tagged for destruction.
6445  */
6446 static void
6447 l2arc_do_free_on_write()
6448 {
6449         list_t *buflist;
6450         l2arc_data_free_t *df, *df_prev;
6451 
6452         mutex_enter(&l2arc_free_on_write_mtx);
6453         buflist = l2arc_free_on_write;
6454 
6455         for (df = list_tail(buflist); df; df = df_prev) {
6456                 df_prev = list_prev(buflist, df);
6457                 ASSERT3P(df->l2df_abd, !=, NULL);
6458                 abd_free(df->l2df_abd);
6459                 list_remove(buflist, df);
6460                 kmem_free(df, sizeof (l2arc_data_free_t));
6461         }
6462 
6463         mutex_exit(&l2arc_free_on_write_mtx);
6464 }
6465 
6466 /*
6467  * A write to a cache device has completed.  Update all headers to allow
6468  * reads from these buffers to begin.
6469  */
6470 static void
6471 l2arc_write_done(zio_t *zio)
6472 {
6473         l2arc_write_callback_t *cb;
6474         l2arc_dev_t *dev;
6475         list_t *buflist;
6476         arc_buf_hdr_t *head, *hdr, *hdr_prev;
6477         kmutex_t *hash_lock;
6478         int64_t bytes_dropped = 0;
6479 
6480         cb = zio->io_private;
6481         ASSERT3P(cb, !=, NULL);
6482         dev = cb->l2wcb_dev;
6483         ASSERT3P(dev, !=, NULL);
6484         head = cb->l2wcb_head;
6485         ASSERT3P(head, !=, NULL);
6486         buflist = &dev->l2ad_buflist;
6487         ASSERT3P(buflist, !=, NULL);
6488         DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6489             l2arc_write_callback_t *, cb);
6490 
6491         if (zio->io_error != 0)
6492                 ARCSTAT_BUMP(arcstat_l2_writes_error);
6493 
6494         /*
6495          * All writes completed, or an error was hit.
6496          */
6497 top:
6498         mutex_enter(&dev->l2ad_mtx);
6499         for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6500                 hdr_prev = list_prev(buflist, hdr);
6501 
6502                 hash_lock = HDR_LOCK(hdr);
6503 
6504                 /*
6505                  * We cannot use mutex_enter or else we can deadlock
6506                  * with l2arc_write_buffers (due to swapping the order
6507                  * the hash lock and l2ad_mtx are taken).
6508                  */
6509                 if (!mutex_tryenter(hash_lock)) {
6510                         /*
6511                          * Missed the hash lock. We must retry so we
6512                          * don't leave the ARC_FLAG_L2_WRITING bit set.
6513                          */
6514                         ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6515 
6516                         /*
6517                          * We don't want to rescan the headers we've
6518                          * already marked as having been written out, so
6519                          * we reinsert the head node so we can pick up
6520                          * where we left off.
6521                          */
6522                         list_remove(buflist, head);
6523                         list_insert_after(buflist, hdr, head);
6524 
6525                         mutex_exit(&dev->l2ad_mtx);
6526 
6527                         /*
6528                          * We wait for the hash lock to become available
6529                          * to try and prevent busy waiting, and increase
6530                          * the chance we'll be able to acquire the lock
6531                          * the next time around.
6532                          */
6533                         mutex_enter(hash_lock);
6534                         mutex_exit(hash_lock);
6535                         goto top;
6536                 }
6537 
6538                 /*
6539                  * We could not have been moved into the arc_l2c_only
6540                  * state while in-flight due to our ARC_FLAG_L2_WRITING
6541                  * bit being set. Let's just ensure that's being enforced.
6542                  */
6543                 ASSERT(HDR_HAS_L1HDR(hdr));
6544 
6545                 if (zio->io_error != 0) {
6546                         /*
6547                          * Error - drop L2ARC entry.
6548                          */
6549                         list_remove(buflist, hdr);
6550                         arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
6551 
6552                         ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
6553                         ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
6554 
6555                         bytes_dropped += arc_hdr_size(hdr);
6556                         (void) refcount_remove_many(&dev->l2ad_alloc,
6557                             arc_hdr_size(hdr), hdr);
6558                 }
6559 
6560                 /*
6561                  * Allow ARC to begin reads and ghost list evictions to
6562                  * this L2ARC entry.
6563                  */
6564                 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
6565 
6566                 mutex_exit(hash_lock);
6567         }
6568 
6569         atomic_inc_64(&l2arc_writes_done);
6570         list_remove(buflist, head);
6571         ASSERT(!HDR_HAS_L1HDR(head));
6572         kmem_cache_free(hdr_l2only_cache, head);
6573         mutex_exit(&dev->l2ad_mtx);
6574 
6575         vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6576 
6577         l2arc_do_free_on_write();
6578 
6579         kmem_free(cb, sizeof (l2arc_write_callback_t));
6580 }
6581 
6582 /*
6583  * A read to a cache device completed.  Validate buffer contents before
6584  * handing over to the regular ARC routines.
6585  */
6586 static void
6587 l2arc_read_done(zio_t *zio)
6588 {
6589         l2arc_read_callback_t *cb;
6590         arc_buf_hdr_t *hdr;
6591         kmutex_t *hash_lock;
6592         boolean_t valid_cksum;
6593 
6594         ASSERT3P(zio->io_vd, !=, NULL);
6595         ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6596 
6597         spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6598 
6599         cb = zio->io_private;
6600         ASSERT3P(cb, !=, NULL);
6601         hdr = cb->l2rcb_hdr;
6602         ASSERT3P(hdr, !=, NULL);
6603 
6604         hash_lock = HDR_LOCK(hdr);
6605         mutex_enter(hash_lock);
6606         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6607 
6608         /*
6609          * If the data was read into a temporary buffer,
6610          * move it and free the buffer.
6611          */
6612         if (cb->l2rcb_abd != NULL) {
6613                 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
6614                 if (zio->io_error == 0) {
6615                         abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
6616                             arc_hdr_size(hdr));
6617                 }
6618 
6619                 /*
6620                  * The following must be done regardless of whether
6621                  * there was an error:
6622                  * - free the temporary buffer
6623                  * - point zio to the real ARC buffer
6624                  * - set zio size accordingly
6625                  * These are required because zio is either re-used for
6626                  * an I/O of the block in the case of the error
6627                  * or the zio is passed to arc_read_done() and it
6628                  * needs real data.
6629                  */
6630                 abd_free(cb->l2rcb_abd);
6631                 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
6632                 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
6633         }
6634 
6635         ASSERT3P(zio->io_abd, !=, NULL);
6636 
6637         /*
6638          * Check this survived the L2ARC journey.
6639          */
6640         ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
6641         zio->io_bp_copy = cb->l2rcb_bp;   /* XXX fix in L2ARC 2.0 */
6642         zio->io_bp = &zio->io_bp_copy;        /* XXX fix in L2ARC 2.0 */
6643 
6644         valid_cksum = arc_cksum_is_equal(hdr, zio);
6645         if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6646                 mutex_exit(hash_lock);
6647                 zio->io_private = hdr;
6648                 arc_read_done(zio);
6649         } else {
6650                 mutex_exit(hash_lock);
6651                 /*
6652                  * Buffer didn't survive caching.  Increment stats and
6653                  * reissue to the original storage device.
6654                  */
6655                 if (zio->io_error != 0) {
6656                         ARCSTAT_BUMP(arcstat_l2_io_error);
6657                 } else {
6658                         zio->io_error = SET_ERROR(EIO);
6659                 }
6660                 if (!valid_cksum)
6661                         ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6662 
6663                 /*
6664                  * If there's no waiter, issue an async i/o to the primary
6665                  * storage now.  If there *is* a waiter, the caller must
6666                  * issue the i/o in a context where it's OK to block.
6667                  */
6668                 if (zio->io_waiter == NULL) {
6669                         zio_t *pio = zio_unique_parent(zio);
6670 
6671                         ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6672 
6673                         zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
6674                             hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
6675                             hdr, zio->io_priority, cb->l2rcb_flags,
6676                             &cb->l2rcb_zb));
6677                 }
6678         }
6679 
6680         kmem_free(cb, sizeof (l2arc_read_callback_t));
6681 }
6682 
6683 /*
6684  * This is the list priority from which the L2ARC will search for pages to
6685  * cache.  This is used within loops (0..3) to cycle through lists in the
6686  * desired order.  This order can have a significant effect on cache
6687  * performance.
6688  *
6689  * Currently the metadata lists are hit first, MFU then MRU, followed by
6690  * the data lists.  This function returns a locked list, and also returns
6691  * the lock pointer.
6692  */
6693 static multilist_sublist_t *
6694 l2arc_sublist_lock(int list_num)
6695 {
6696         multilist_t *ml = NULL;
6697         unsigned int idx;
6698 
6699         ASSERT(list_num >= 0 && list_num <= 3);
6700 
6701         switch (list_num) {
6702         case 0:
6703                 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
6704                 break;
6705         case 1:
6706                 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
6707                 break;
6708         case 2:
6709                 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
6710                 break;
6711         case 3:
6712                 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
6713                 break;
6714         }
6715 
6716         /*
6717          * Return a randomly-selected sublist. This is acceptable
6718          * because the caller feeds only a little bit of data for each
6719          * call (8MB). Subsequent calls will result in different
6720          * sublists being selected.
6721          */
6722         idx = multilist_get_random_index(ml);
6723         return (multilist_sublist_lock(ml, idx));
6724 }
6725 
6726 /*
6727  * Evict buffers from the device write hand to the distance specified in
6728  * bytes.  This distance may span populated buffers, it may span nothing.
6729  * This is clearing a region on the L2ARC device ready for writing.
6730  * If the 'all' boolean is set, every buffer is evicted.
6731  */
6732 static void
6733 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6734 {
6735         list_t *buflist;
6736         arc_buf_hdr_t *hdr, *hdr_prev;
6737         kmutex_t *hash_lock;
6738         uint64_t taddr;
6739 
6740         buflist = &dev->l2ad_buflist;
6741 
6742         if (!all && dev->l2ad_first) {
6743                 /*
6744                  * This is the first sweep through the device.  There is
6745                  * nothing to evict.
6746                  */
6747                 return;
6748         }
6749 
6750         if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6751                 /*
6752                  * When nearing the end of the device, evict to the end
6753                  * before the device write hand jumps to the start.
6754                  */
6755                 taddr = dev->l2ad_end;
6756         } else {
6757                 taddr = dev->l2ad_hand + distance;
6758         }
6759         DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6760             uint64_t, taddr, boolean_t, all);
6761 
6762 top:
6763         mutex_enter(&dev->l2ad_mtx);
6764         for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6765                 hdr_prev = list_prev(buflist, hdr);
6766 
6767                 hash_lock = HDR_LOCK(hdr);
6768 
6769                 /*
6770                  * We cannot use mutex_enter or else we can deadlock
6771                  * with l2arc_write_buffers (due to swapping the order
6772                  * the hash lock and l2ad_mtx are taken).
6773                  */
6774                 if (!mutex_tryenter(hash_lock)) {
6775                         /*
6776                          * Missed the hash lock.  Retry.
6777                          */
6778                         ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6779                         mutex_exit(&dev->l2ad_mtx);
6780                         mutex_enter(hash_lock);
6781                         mutex_exit(hash_lock);
6782                         goto top;
6783                 }
6784 
6785                 /*
6786                  * A header can't be on this list if it doesn't have L2 header.
6787                  */
6788                 ASSERT(HDR_HAS_L2HDR(hdr));
6789 
6790                 /* Ensure this header has finished being written. */
6791                 ASSERT(!HDR_L2_WRITING(hdr));
6792                 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
6793 
6794                 if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
6795                     hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6796                         /*
6797                          * We've evicted to the target address,
6798                          * or the end of the device.
6799                          */
6800                         mutex_exit(hash_lock);
6801                         break;
6802                 }
6803 
6804                 if (!HDR_HAS_L1HDR(hdr)) {
6805                         ASSERT(!HDR_L2_READING(hdr));
6806                         /*
6807                          * This doesn't exist in the ARC.  Destroy.
6808                          * arc_hdr_destroy() will call list_remove()
6809                          * and decrement arcstat_l2_lsize.
6810                          */
6811                         arc_change_state(arc_anon, hdr, hash_lock);
6812                         arc_hdr_destroy(hdr);
6813                 } else {
6814                         ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6815                         ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6816                         /*
6817                          * Invalidate issued or about to be issued
6818                          * reads, since we may be about to write
6819                          * over this location.
6820                          */
6821                         if (HDR_L2_READING(hdr)) {
6822                                 ARCSTAT_BUMP(arcstat_l2_evict_reading);
6823                                 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
6824                         }
6825 
6826                         arc_hdr_l2hdr_destroy(hdr);
6827                 }
6828                 mutex_exit(hash_lock);
6829         }
6830         mutex_exit(&dev->l2ad_mtx);
6831 }
6832 
6833 /*
6834  * Find and write ARC buffers to the L2ARC device.
6835  *
6836  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6837  * for reading until they have completed writing.
6838  * The headroom_boost is an in-out parameter used to maintain headroom boost
6839  * state between calls to this function.
6840  *
6841  * Returns the number of bytes actually written (which may be smaller than
6842  * the delta by which the device hand has changed due to alignment).
6843  */
6844 static uint64_t
6845 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
6846 {
6847         arc_buf_hdr_t *hdr, *hdr_prev, *head;
6848         uint64_t write_asize, write_psize, write_lsize, headroom;
6849         boolean_t full;
6850         l2arc_write_callback_t *cb;
6851         zio_t *pio, *wzio;
6852         uint64_t guid = spa_load_guid(spa);
6853 
6854         ASSERT3P(dev->l2ad_vdev, !=, NULL);
6855 
6856         pio = NULL;
6857         write_lsize = write_asize = write_psize = 0;
6858         full = B_FALSE;
6859         head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6860         arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
6861 
6862         /*
6863          * Copy buffers for L2ARC writing.
6864          */
6865         for (int try = 0; try <= 3; try++) {
6866                 multilist_sublist_t *mls = l2arc_sublist_lock(try);
6867                 uint64_t passed_sz = 0;
6868 
6869                 /*
6870                  * L2ARC fast warmup.
6871                  *
6872                  * Until the ARC is warm and starts to evict, read from the
6873                  * head of the ARC lists rather than the tail.
6874                  */
6875                 if (arc_warm == B_FALSE)
6876                         hdr = multilist_sublist_head(mls);
6877                 else
6878                         hdr = multilist_sublist_tail(mls);
6879 
6880                 headroom = target_sz * l2arc_headroom;
6881                 if (zfs_compressed_arc_enabled)
6882                         headroom = (headroom * l2arc_headroom_boost) / 100;
6883 
6884                 for (; hdr; hdr = hdr_prev) {
6885                         kmutex_t *hash_lock;
6886 
6887                         if (arc_warm == B_FALSE)
6888                                 hdr_prev = multilist_sublist_next(mls, hdr);
6889                         else
6890                                 hdr_prev = multilist_sublist_prev(mls, hdr);
6891 
6892                         hash_lock = HDR_LOCK(hdr);
6893                         if (!mutex_tryenter(hash_lock)) {
6894                                 /*
6895                                  * Skip this buffer rather than waiting.
6896                                  */
6897                                 continue;
6898                         }
6899 
6900                         passed_sz += HDR_GET_LSIZE(hdr);
6901                         if (passed_sz > headroom) {
6902                                 /*
6903                                  * Searched too far.
6904                                  */
6905                                 mutex_exit(hash_lock);
6906                                 break;
6907                         }
6908 
6909                         if (!l2arc_write_eligible(guid, hdr)) {
6910                                 mutex_exit(hash_lock);
6911                                 continue;
6912                         }
6913 
6914                         /*
6915                          * We rely on the L1 portion of the header below, so
6916                          * it's invalid for this header to have been evicted out
6917                          * of the ghost cache, prior to being written out. The
6918                          * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6919                          */
6920                         ASSERT(HDR_HAS_L1HDR(hdr));
6921 
6922                         ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
6923                         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6924                         ASSERT3U(arc_hdr_size(hdr), >, 0);
6925                         uint64_t psize = arc_hdr_size(hdr);
6926                         uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
6927                             psize);
6928 
6929                         if ((write_asize + asize) > target_sz) {
6930                                 full = B_TRUE;
6931                                 mutex_exit(hash_lock);
6932                                 break;
6933                         }
6934 
6935                         if (pio == NULL) {
6936                                 /*
6937                                  * Insert a dummy header on the buflist so
6938                                  * l2arc_write_done() can find where the
6939                                  * write buffers begin without searching.
6940                                  */
6941                                 mutex_enter(&dev->l2ad_mtx);
6942                                 list_insert_head(&dev->l2ad_buflist, head);
6943                                 mutex_exit(&dev->l2ad_mtx);
6944 
6945                                 cb = kmem_alloc(
6946                                     sizeof (l2arc_write_callback_t), KM_SLEEP);
6947                                 cb->l2wcb_dev = dev;
6948                                 cb->l2wcb_head = head;
6949                                 pio = zio_root(spa, l2arc_write_done, cb,
6950                                     ZIO_FLAG_CANFAIL);
6951                         }
6952 
6953                         hdr->b_l2hdr.b_dev = dev;
6954                         hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6955                         arc_hdr_set_flags(hdr,
6956                             ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
6957 
6958                         mutex_enter(&dev->l2ad_mtx);
6959                         list_insert_head(&dev->l2ad_buflist, hdr);
6960                         mutex_exit(&dev->l2ad_mtx);
6961 
6962                         (void) refcount_add_many(&dev->l2ad_alloc, psize, hdr);
6963 
6964                         /*
6965                          * Normally the L2ARC can use the hdr's data, but if
6966                          * we're sharing data between the hdr and one of its
6967                          * bufs, L2ARC needs its own copy of the data so that
6968                          * the ZIO below can't race with the buf consumer.
6969                          * Another case where we need to create a copy of the
6970                          * data is when the buffer size is not device-aligned
6971                          * and we need to pad the block to make it such.
6972                          * That also keeps the clock hand suitably aligned.
6973                          *
6974                          * To ensure that the copy will be available for the
6975                          * lifetime of the ZIO and be cleaned up afterwards, we
6976                          * add it to the l2arc_free_on_write queue.
6977                          */
6978                         abd_t *to_write;
6979                         if (!HDR_SHARED_DATA(hdr) && psize == asize) {
6980                                 to_write = hdr->b_l1hdr.b_pabd;
6981                         } else {
6982                                 to_write = abd_alloc_for_io(asize,
6983                                     HDR_ISTYPE_METADATA(hdr));
6984                                 abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
6985                                 if (asize != psize) {
6986                                         abd_zero_off(to_write, psize,
6987                                             asize - psize);
6988                                 }
6989                                 l2arc_free_abd_on_write(to_write, asize,
6990                                     arc_buf_type(hdr));
6991                         }
6992                         wzio = zio_write_phys(pio, dev->l2ad_vdev,
6993                             hdr->b_l2hdr.b_daddr, asize, to_write,
6994                             ZIO_CHECKSUM_OFF, NULL, hdr,
6995                             ZIO_PRIORITY_ASYNC_WRITE,
6996                             ZIO_FLAG_CANFAIL, B_FALSE);
6997 
6998                         write_lsize += HDR_GET_LSIZE(hdr);
6999                         DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7000                             zio_t *, wzio);
7001 
7002                         write_psize += psize;
7003                         write_asize += asize;
7004                         dev->l2ad_hand += asize;
7005 
7006                         mutex_exit(hash_lock);
7007 
7008                         (void) zio_nowait(wzio);
7009                 }
7010 
7011                 multilist_sublist_unlock(mls);
7012 
7013                 if (full == B_TRUE)
7014                         break;
7015         }
7016 
7017         /* No buffers selected for writing? */
7018         if (pio == NULL) {
7019                 ASSERT0(write_lsize);
7020                 ASSERT(!HDR_HAS_L1HDR(head));
7021                 kmem_cache_free(hdr_l2only_cache, head);
7022                 return (0);
7023         }
7024 
7025         ASSERT3U(write_asize, <=, target_sz);
7026         ARCSTAT_BUMP(arcstat_l2_writes_sent);
7027         ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
7028         ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
7029         ARCSTAT_INCR(arcstat_l2_psize, write_psize);
7030         vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
7031 
7032         /*
7033          * Bump device hand to the device start if it is approaching the end.
7034          * l2arc_evict() will already have evicted ahead for this case.
7035          */
7036         if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7037                 dev->l2ad_hand = dev->l2ad_start;
7038                 dev->l2ad_first = B_FALSE;
7039         }
7040 
7041         dev->l2ad_writing = B_TRUE;
7042         (void) zio_wait(pio);
7043         dev->l2ad_writing = B_FALSE;
7044 
7045         return (write_asize);
7046 }
7047 
7048 /*
7049  * This thread feeds the L2ARC at regular intervals.  This is the beating
7050  * heart of the L2ARC.
7051  */
7052 /* ARGSUSED */
7053 static void
7054 l2arc_feed_thread(void *unused)
7055 {
7056         callb_cpr_t cpr;
7057         l2arc_dev_t *dev;
7058         spa_t *spa;
7059         uint64_t size, wrote;
7060         clock_t begin, next = ddi_get_lbolt();
7061 
7062         CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7063 
7064         mutex_enter(&l2arc_feed_thr_lock);
7065 
7066         while (l2arc_thread_exit == 0) {
7067                 CALLB_CPR_SAFE_BEGIN(&cpr);
7068                 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7069                     next);
7070                 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7071                 next = ddi_get_lbolt() + hz;
7072 
7073                 /*
7074                  * Quick check for L2ARC devices.
7075                  */
7076                 mutex_enter(&l2arc_dev_mtx);
7077                 if (l2arc_ndev == 0) {
7078                         mutex_exit(&l2arc_dev_mtx);
7079                         continue;
7080                 }
7081                 mutex_exit(&l2arc_dev_mtx);
7082                 begin = ddi_get_lbolt();
7083 
7084                 /*
7085                  * This selects the next l2arc device to write to, and in
7086                  * doing so the next spa to feed from: dev->l2ad_spa.   This
7087                  * will return NULL if there are now no l2arc devices or if
7088                  * they are all faulted.
7089                  *
7090                  * If a device is returned, its spa's config lock is also
7091                  * held to prevent device removal.  l2arc_dev_get_next()
7092                  * will grab and release l2arc_dev_mtx.
7093                  */
7094                 if ((dev = l2arc_dev_get_next()) == NULL)
7095                         continue;
7096 
7097                 spa = dev->l2ad_spa;
7098                 ASSERT3P(spa, !=, NULL);
7099 
7100                 /*
7101                  * If the pool is read-only then force the feed thread to
7102                  * sleep a little longer.
7103                  */
7104                 if (!spa_writeable(spa)) {
7105                         next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7106                         spa_config_exit(spa, SCL_L2ARC, dev);
7107                         continue;
7108                 }
7109 
7110                 /*
7111                  * Avoid contributing to memory pressure.
7112                  */
7113                 if (arc_reclaim_needed()) {
7114                         ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7115                         spa_config_exit(spa, SCL_L2ARC, dev);
7116                         continue;
7117                 }
7118 
7119                 ARCSTAT_BUMP(arcstat_l2_feeds);
7120 
7121                 size = l2arc_write_size();
7122 
7123                 /*
7124                  * Evict L2ARC buffers that will be overwritten.
7125                  */
7126                 l2arc_evict(dev, size, B_FALSE);
7127 
7128                 /*
7129                  * Write ARC buffers.
7130                  */
7131                 wrote = l2arc_write_buffers(spa, dev, size);
7132 
7133                 /*
7134                  * Calculate interval between writes.
7135                  */
7136                 next = l2arc_write_interval(begin, size, wrote);
7137                 spa_config_exit(spa, SCL_L2ARC, dev);
7138         }
7139 
7140         l2arc_thread_exit = 0;
7141         cv_broadcast(&l2arc_feed_thr_cv);
7142         CALLB_CPR_EXIT(&cpr);               /* drops l2arc_feed_thr_lock */
7143         thread_exit();
7144 }
7145 
7146 boolean_t
7147 l2arc_vdev_present(vdev_t *vd)
7148 {
7149         l2arc_dev_t *dev;
7150 
7151         mutex_enter(&l2arc_dev_mtx);
7152         for (dev = list_head(l2arc_dev_list); dev != NULL;
7153             dev = list_next(l2arc_dev_list, dev)) {
7154                 if (dev->l2ad_vdev == vd)
7155                         break;
7156         }
7157         mutex_exit(&l2arc_dev_mtx);
7158 
7159         return (dev != NULL);
7160 }
7161 
7162 /*
7163  * Add a vdev for use by the L2ARC.  By this point the spa has already
7164  * validated the vdev and opened it.
7165  */
7166 void
7167 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7168 {
7169         l2arc_dev_t *adddev;
7170 
7171         ASSERT(!l2arc_vdev_present(vd));
7172 
7173         /*
7174          * Create a new l2arc device entry.
7175          */
7176         adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7177         adddev->l2ad_spa = spa;
7178         adddev->l2ad_vdev = vd;
7179         adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7180         adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7181         adddev->l2ad_hand = adddev->l2ad_start;
7182         adddev->l2ad_first = B_TRUE;
7183         adddev->l2ad_writing = B_FALSE;
7184 
7185         mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7186         /*
7187          * This is a list of all ARC buffers that are still valid on the
7188          * device.
7189          */
7190         list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7191             offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7192 
7193         vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7194         refcount_create(&adddev->l2ad_alloc);
7195 
7196         /*
7197          * Add device to global list
7198          */
7199         mutex_enter(&l2arc_dev_mtx);
7200         list_insert_head(l2arc_dev_list, adddev);
7201         atomic_inc_64(&l2arc_ndev);
7202         mutex_exit(&l2arc_dev_mtx);
7203 }
7204 
7205 /*
7206  * Remove a vdev from the L2ARC.
7207  */
7208 void
7209 l2arc_remove_vdev(vdev_t *vd)
7210 {
7211         l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7212 
7213         /*
7214          * Find the device by vdev
7215          */
7216         mutex_enter(&l2arc_dev_mtx);
7217         for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7218                 nextdev = list_next(l2arc_dev_list, dev);
7219                 if (vd == dev->l2ad_vdev) {
7220                         remdev = dev;
7221                         break;
7222                 }
7223         }
7224         ASSERT3P(remdev, !=, NULL);
7225 
7226         /*
7227          * Remove device from global list
7228          */
7229         list_remove(l2arc_dev_list, remdev);
7230         l2arc_dev_last = NULL;          /* may have been invalidated */
7231         atomic_dec_64(&l2arc_ndev);
7232         mutex_exit(&l2arc_dev_mtx);
7233 
7234         /*
7235          * Clear all buflists and ARC references.  L2ARC device flush.
7236          */
7237         l2arc_evict(remdev, 0, B_TRUE);
7238         list_destroy(&remdev->l2ad_buflist);
7239         mutex_destroy(&remdev->l2ad_mtx);
7240         refcount_destroy(&remdev->l2ad_alloc);
7241         kmem_free(remdev, sizeof (l2arc_dev_t));
7242 }
7243 
7244 void
7245 l2arc_init(void)
7246 {
7247         l2arc_thread_exit = 0;
7248         l2arc_ndev = 0;
7249         l2arc_writes_sent = 0;
7250         l2arc_writes_done = 0;
7251 
7252         mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7253         cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7254         mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7255         mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7256 
7257         l2arc_dev_list = &L2ARC_dev_list;
7258         l2arc_free_on_write = &L2ARC_free_on_write;
7259         list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7260             offsetof(l2arc_dev_t, l2ad_node));
7261         list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7262             offsetof(l2arc_data_free_t, l2df_list_node));
7263 }
7264 
7265 void
7266 l2arc_fini(void)
7267 {
7268         /*
7269          * This is called from dmu_fini(), which is called from spa_fini();
7270          * Because of this, we can assume that all l2arc devices have
7271          * already been removed when the pools themselves were removed.
7272          */
7273 
7274         l2arc_do_free_on_write();
7275 
7276         mutex_destroy(&l2arc_feed_thr_lock);
7277         cv_destroy(&l2arc_feed_thr_cv);
7278         mutex_destroy(&l2arc_dev_mtx);
7279         mutex_destroy(&l2arc_free_on_write_mtx);
7280 
7281         list_destroy(l2arc_dev_list);
7282         list_destroy(l2arc_free_on_write);
7283 }
7284 
7285 void
7286 l2arc_start(void)
7287 {
7288         if (!(spa_mode_global & FWRITE))
7289                 return;
7290 
7291         (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7292             TS_RUN, minclsyspri);
7293 }
7294 
7295 void
7296 l2arc_stop(void)
7297 {
7298         if (!(spa_mode_global & FWRITE))
7299                 return;
7300 
7301         mutex_enter(&l2arc_feed_thr_lock);
7302         cv_signal(&l2arc_feed_thr_cv);      /* kick thread out of startup */
7303         l2arc_thread_exit = 1;
7304         while (l2arc_thread_exit != 0)
7305                 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7306         mutex_exit(&l2arc_feed_thr_lock);
7307 }