1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
  24  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
  25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
  26  * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
  27  */
  28 
  29 /*
  30  * DVA-based Adjustable Replacement Cache
  31  *
  32  * While much of the theory of operation used here is
  33  * based on the self-tuning, low overhead replacement cache
  34  * presented by Megiddo and Modha at FAST 2003, there are some
  35  * significant differences:
  36  *
  37  * 1. The Megiddo and Modha model assumes any page is evictable.
  38  * Pages in its cache cannot be "locked" into memory.  This makes
  39  * the eviction algorithm simple: evict the last page in the list.
  40  * This also make the performance characteristics easy to reason
  41  * about.  Our cache is not so simple.  At any given moment, some
  42  * subset of the blocks in the cache are un-evictable because we
  43  * have handed out a reference to them.  Blocks are only evictable
  44  * when there are no external references active.  This makes
  45  * eviction far more problematic:  we choose to evict the evictable
  46  * blocks that are the "lowest" in the list.
  47  *
  48  * There are times when it is not possible to evict the requested
  49  * space.  In these circumstances we are unable to adjust the cache
  50  * size.  To prevent the cache growing unbounded at these times we
  51  * implement a "cache throttle" that slows the flow of new data
  52  * into the cache until we can make space available.
  53  *
  54  * 2. The Megiddo and Modha model assumes a fixed cache size.
  55  * Pages are evicted when the cache is full and there is a cache
  56  * miss.  Our model has a variable sized cache.  It grows with
  57  * high use, but also tries to react to memory pressure from the
  58  * operating system: decreasing its size when system memory is
  59  * tight.
  60  *
  61  * 3. The Megiddo and Modha model assumes a fixed page size. All
  62  * elements of the cache are therefore exactly the same size.  So
  63  * when adjusting the cache size following a cache miss, its simply
  64  * a matter of choosing a single page to evict.  In our model, we
  65  * have variable sized cache blocks (rangeing from 512 bytes to
  66  * 128K bytes).  We therefore choose a set of blocks to evict to make
  67  * space for a cache miss that approximates as closely as possible
  68  * the space used by the new block.
  69  *
  70  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
  71  * by N. Megiddo & D. Modha, FAST 2003
  72  */
  73 
  74 /*
  75  * The locking model:
  76  *
  77  * A new reference to a cache buffer can be obtained in two
  78  * ways: 1) via a hash table lookup using the DVA as a key,
  79  * or 2) via one of the ARC lists.  The arc_read() interface
  80  * uses method 1, while the internal ARC algorithms for
  81  * adjusting the cache use method 2.  We therefore provide two
  82  * types of locks: 1) the hash table lock array, and 2) the
  83  * ARC list locks.
  84  *
  85  * Buffers do not have their own mutexes, rather they rely on the
  86  * hash table mutexes for the bulk of their protection (i.e. most
  87  * fields in the arc_buf_hdr_t are protected by these mutexes).
  88  *
  89  * buf_hash_find() returns the appropriate mutex (held) when it
  90  * locates the requested buffer in the hash table.  It returns
  91  * NULL for the mutex if the buffer was not in the table.
  92  *
  93  * buf_hash_remove() expects the appropriate hash mutex to be
  94  * already held before it is invoked.
  95  *
  96  * Each ARC state also has a mutex which is used to protect the
  97  * buffer list associated with the state.  When attempting to
  98  * obtain a hash table lock while holding an ARC list lock you
  99  * must use: mutex_tryenter() to avoid deadlock.  Also note that
 100  * the active state mutex must be held before the ghost state mutex.
 101  *
 102  * Note that the majority of the performance stats are manipulated
 103  * with atomic operations.
 104  *
 105  * The L2ARC uses the l2ad_mtx on each vdev for the following:
 106  *
 107  *      - L2ARC buflist creation
 108  *      - L2ARC buflist eviction
 109  *      - L2ARC write completion, which walks L2ARC buflists
 110  *      - ARC header destruction, as it removes from L2ARC buflists
 111  *      - ARC header release, as it removes from L2ARC buflists
 112  */
 113 
 114 /*
 115  * ARC operation:
 116  *
 117  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
 118  * This structure can point either to a block that is still in the cache or to
 119  * one that is only accessible in an L2 ARC device, or it can provide
 120  * information about a block that was recently evicted. If a block is
 121  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
 122  * information to retrieve it from the L2ARC device. This information is
 123  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
 124  * that is in this state cannot access the data directly.
 125  *
 126  * Blocks that are actively being referenced or have not been evicted
 127  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
 128  * the arc_buf_hdr_t that will point to the data block in memory. A block can
 129  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
 130  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
 131  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
 132  *
 133  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
 134  * ability to store the physical data (b_pabd) associated with the DVA of the
 135  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
 136  * it will match its on-disk compression characteristics. This behavior can be
 137  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
 138  * compressed ARC functionality is disabled, the b_pabd will point to an
 139  * uncompressed version of the on-disk data.
 140  *
 141  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
 142  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
 143  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
 144  * consumer. The ARC will provide references to this data and will keep it
 145  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
 146  * data block and will evict any arc_buf_t that is no longer referenced. The
 147  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
 148  * "overhead_size" kstat.
 149  *
 150  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
 151  * compressed form. The typical case is that consumers will want uncompressed
 152  * data, and when that happens a new data buffer is allocated where the data is
 153  * decompressed for them to use. Currently the only consumer who wants
 154  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
 155  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
 156  * with the arc_buf_hdr_t.
 157  *
 158  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
 159  * first one is owned by a compressed send consumer (and therefore references
 160  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
 161  * used by any other consumer (and has its own uncompressed copy of the data
 162  * buffer).
 163  *
 164  *   arc_buf_hdr_t
 165  *   +-----------+
 166  *   | fields    |
 167  *   | common to |
 168  *   | L1- and   |
 169  *   | L2ARC     |
 170  *   +-----------+
 171  *   | l2arc_buf_hdr_t
 172  *   |           |
 173  *   +-----------+
 174  *   | l1arc_buf_hdr_t
 175  *   |           |              arc_buf_t
 176  *   | b_buf     +------------>+-----------+      arc_buf_t
 177  *   | b_pabd    +-+           |b_next     +---->+-----------+
 178  *   +-----------+ |           |-----------|     |b_next     +-->NULL
 179  *                 |           |b_comp = T |     +-----------+
 180  *                 |           |b_data     +-+   |b_comp = F |
 181  *                 |           +-----------+ |   |b_data     +-+
 182  *                 +->+------+               |   +-----------+ |
 183  *        compressed  |      |               |                 |
 184  *           data     |      |<--------------+                 | uncompressed
 185  *                    +------+          compressed,            |     data
 186  *                                        shared               +-->+------+
 187  *                                         data                    |      |
 188  *                                                                 |      |
 189  *                                                                 +------+
 190  *
 191  * When a consumer reads a block, the ARC must first look to see if the
 192  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
 193  * arc_buf_t and either copies uncompressed data into a new data buffer from an
 194  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
 195  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
 196  * hdr is compressed and the desired compression characteristics of the
 197  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
 198  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
 199  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
 200  * be anywhere in the hdr's list.
 201  *
 202  * The diagram below shows an example of an uncompressed ARC hdr that is
 203  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
 204  * the last element in the buf list):
 205  *
 206  *                arc_buf_hdr_t
 207  *                +-----------+
 208  *                |           |
 209  *                |           |
 210  *                |           |
 211  *                +-----------+
 212  * l2arc_buf_hdr_t|           |
 213  *                |           |
 214  *                +-----------+
 215  * l1arc_buf_hdr_t|           |
 216  *                |           |                 arc_buf_t    (shared)
 217  *                |    b_buf  +------------>+---------+      arc_buf_t
 218  *                |           |             |b_next   +---->+---------+
 219  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
 220  *                +-----------+ |           |         |     +---------+
 221  *                              |           |b_data   +-+   |         |
 222  *                              |           +---------+ |   |b_data   +-+
 223  *                              +->+------+             |   +---------+ |
 224  *                                 |      |             |               |
 225  *                   uncompressed  |      |             |               |
 226  *                        data     +------+             |               |
 227  *                                    ^                 +->+------+     |
 228  *                                    |       uncompressed |      |     |
 229  *                                    |           data     |      |     |
 230  *                                    |                    +------+     |
 231  *                                    +---------------------------------+
 232  *
 233  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
 234  * since the physical block is about to be rewritten. The new data contents
 235  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
 236  * it may compress the data before writing it to disk. The ARC will be called
 237  * with the transformed data and will bcopy the transformed on-disk block into
 238  * a newly allocated b_pabd. Writes are always done into buffers which have
 239  * either been loaned (and hence are new and don't have other readers) or
 240  * buffers which have been released (and hence have their own hdr, if there
 241  * were originally other readers of the buf's original hdr). This ensures that
 242  * the ARC only needs to update a single buf and its hdr after a write occurs.
 243  *
 244  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
 245  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
 246  * that when compressed ARC is enabled that the L2ARC blocks are identical
 247  * to the on-disk block in the main data pool. This provides a significant
 248  * advantage since the ARC can leverage the bp's checksum when reading from the
 249  * L2ARC to determine if the contents are valid. However, if the compressed
 250  * ARC is disabled, then the L2ARC's block must be transformed to look
 251  * like the physical block in the main data pool before comparing the
 252  * checksum and determining its validity.
 253  */
 254 
 255 #include <sys/spa.h>
 256 #include <sys/zio.h>
 257 #include <sys/spa_impl.h>
 258 #include <sys/zio_compress.h>
 259 #include <sys/zio_checksum.h>
 260 #include <sys/zfs_context.h>
 261 #include <sys/arc.h>
 262 #include <sys/refcount.h>
 263 #include <sys/vdev.h>
 264 #include <sys/vdev_impl.h>
 265 #include <sys/dsl_pool.h>
 266 #include <sys/zio_checksum.h>
 267 #include <sys/multilist.h>
 268 #include <sys/abd.h>
 269 #ifdef _KERNEL
 270 #include <sys/vmsystm.h>
 271 #include <vm/anon.h>
 272 #include <sys/fs/swapnode.h>
 273 #include <sys/dnlc.h>
 274 #endif
 275 #include <sys/callb.h>
 276 #include <sys/kstat.h>
 277 #include <zfs_fletcher.h>
 278 
 279 #ifndef _KERNEL
 280 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
 281 boolean_t arc_watch = B_FALSE;
 282 int arc_procfd;
 283 #endif
 284 
 285 static kmutex_t         arc_reclaim_lock;
 286 static kcondvar_t       arc_reclaim_thread_cv;
 287 static boolean_t        arc_reclaim_thread_exit;
 288 static kcondvar_t       arc_reclaim_waiters_cv;
 289 
 290 uint_t arc_reduce_dnlc_percent = 3;
 291 
 292 /*
 293  * The number of headers to evict in arc_evict_state_impl() before
 294  * dropping the sublist lock and evicting from another sublist. A lower
 295  * value means we're more likely to evict the "correct" header (i.e. the
 296  * oldest header in the arc state), but comes with higher overhead
 297  * (i.e. more invocations of arc_evict_state_impl()).
 298  */
 299 int zfs_arc_evict_batch_limit = 10;
 300 
 301 /* number of seconds before growing cache again */
 302 static int              arc_grow_retry = 60;
 303 
 304 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
 305 int             zfs_arc_overflow_shift = 8;
 306 
 307 /* shift of arc_c for calculating both min and max arc_p */
 308 static int              arc_p_min_shift = 4;
 309 
 310 /* log2(fraction of arc to reclaim) */
 311 static int              arc_shrink_shift = 7;
 312 
 313 /*
 314  * log2(fraction of ARC which must be free to allow growing).
 315  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
 316  * when reading a new block into the ARC, we will evict an equal-sized block
 317  * from the ARC.
 318  *
 319  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
 320  * we will still not allow it to grow.
 321  */
 322 int                     arc_no_grow_shift = 5;
 323 
 324 
 325 /*
 326  * minimum lifespan of a prefetch block in clock ticks
 327  * (initialized in arc_init())
 328  */
 329 static int              arc_min_prefetch_lifespan;
 330 
 331 /*
 332  * If this percent of memory is free, don't throttle.
 333  */
 334 int arc_lotsfree_percent = 10;
 335 
 336 static int arc_dead;
 337 
 338 /*
 339  * The arc has filled available memory and has now warmed up.
 340  */
 341 static boolean_t arc_warm;
 342 
 343 /*
 344  * log2 fraction of the zio arena to keep free.
 345  */
 346 int arc_zio_arena_free_shift = 2;
 347 
 348 /*
 349  * These tunables are for performance analysis.
 350  */
 351 uint64_t zfs_arc_max;
 352 uint64_t zfs_arc_min;
 353 uint64_t zfs_arc_meta_limit = 0;
 354 uint64_t zfs_arc_meta_min = 0;
 355 int zfs_arc_grow_retry = 0;
 356 int zfs_arc_shrink_shift = 0;
 357 int zfs_arc_p_min_shift = 0;
 358 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
 359 
 360 boolean_t zfs_compressed_arc_enabled = B_TRUE;
 361 
 362 /*
 363  * Note that buffers can be in one of 6 states:
 364  *      ARC_anon        - anonymous (discussed below)
 365  *      ARC_mru         - recently used, currently cached
 366  *      ARC_mru_ghost   - recentely used, no longer in cache
 367  *      ARC_mfu         - frequently used, currently cached
 368  *      ARC_mfu_ghost   - frequently used, no longer in cache
 369  *      ARC_l2c_only    - exists in L2ARC but not other states
 370  * When there are no active references to the buffer, they are
 371  * are linked onto a list in one of these arc states.  These are
 372  * the only buffers that can be evicted or deleted.  Within each
 373  * state there are multiple lists, one for meta-data and one for
 374  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
 375  * etc.) is tracked separately so that it can be managed more
 376  * explicitly: favored over data, limited explicitly.
 377  *
 378  * Anonymous buffers are buffers that are not associated with
 379  * a DVA.  These are buffers that hold dirty block copies
 380  * before they are written to stable storage.  By definition,
 381  * they are "ref'd" and are considered part of arc_mru
 382  * that cannot be freed.  Generally, they will aquire a DVA
 383  * as they are written and migrate onto the arc_mru list.
 384  *
 385  * The ARC_l2c_only state is for buffers that are in the second
 386  * level ARC but no longer in any of the ARC_m* lists.  The second
 387  * level ARC itself may also contain buffers that are in any of
 388  * the ARC_m* states - meaning that a buffer can exist in two
 389  * places.  The reason for the ARC_l2c_only state is to keep the
 390  * buffer header in the hash table, so that reads that hit the
 391  * second level ARC benefit from these fast lookups.
 392  */
 393 
 394 typedef struct arc_state {
 395         /*
 396          * list of evictable buffers
 397          */
 398         multilist_t *arcs_list[ARC_BUFC_NUMTYPES];
 399         /*
 400          * total amount of evictable data in this state
 401          */
 402         refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
 403         /*
 404          * total amount of data in this state; this includes: evictable,
 405          * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
 406          */
 407         refcount_t arcs_size;
 408 } arc_state_t;
 409 
 410 /* The 6 states: */
 411 static arc_state_t ARC_anon;
 412 static arc_state_t ARC_mru;
 413 static arc_state_t ARC_mru_ghost;
 414 static arc_state_t ARC_mfu;
 415 static arc_state_t ARC_mfu_ghost;
 416 static arc_state_t ARC_l2c_only;
 417 
 418 typedef struct arc_stats {
 419         kstat_named_t arcstat_hits;
 420         kstat_named_t arcstat_misses;
 421         kstat_named_t arcstat_demand_data_hits;
 422         kstat_named_t arcstat_demand_data_misses;
 423         kstat_named_t arcstat_demand_metadata_hits;
 424         kstat_named_t arcstat_demand_metadata_misses;
 425         kstat_named_t arcstat_prefetch_data_hits;
 426         kstat_named_t arcstat_prefetch_data_misses;
 427         kstat_named_t arcstat_prefetch_metadata_hits;
 428         kstat_named_t arcstat_prefetch_metadata_misses;
 429         kstat_named_t arcstat_mru_hits;
 430         kstat_named_t arcstat_mru_ghost_hits;
 431         kstat_named_t arcstat_mfu_hits;
 432         kstat_named_t arcstat_mfu_ghost_hits;
 433         kstat_named_t arcstat_deleted;
 434         /*
 435          * Number of buffers that could not be evicted because the hash lock
 436          * was held by another thread.  The lock may not necessarily be held
 437          * by something using the same buffer, since hash locks are shared
 438          * by multiple buffers.
 439          */
 440         kstat_named_t arcstat_mutex_miss;
 441         /*
 442          * Number of buffers skipped because they have I/O in progress, are
 443          * indrect prefetch buffers that have not lived long enough, or are
 444          * not from the spa we're trying to evict from.
 445          */
 446         kstat_named_t arcstat_evict_skip;
 447         /*
 448          * Number of times arc_evict_state() was unable to evict enough
 449          * buffers to reach it's target amount.
 450          */
 451         kstat_named_t arcstat_evict_not_enough;
 452         kstat_named_t arcstat_evict_l2_cached;
 453         kstat_named_t arcstat_evict_l2_eligible;
 454         kstat_named_t arcstat_evict_l2_ineligible;
 455         kstat_named_t arcstat_evict_l2_skip;
 456         kstat_named_t arcstat_hash_elements;
 457         kstat_named_t arcstat_hash_elements_max;
 458         kstat_named_t arcstat_hash_collisions;
 459         kstat_named_t arcstat_hash_chains;
 460         kstat_named_t arcstat_hash_chain_max;
 461         kstat_named_t arcstat_p;
 462         kstat_named_t arcstat_c;
 463         kstat_named_t arcstat_c_min;
 464         kstat_named_t arcstat_c_max;
 465         kstat_named_t arcstat_size;
 466         /*
 467          * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
 468          * Note that the compressed bytes may match the uncompressed bytes
 469          * if the block is either not compressed or compressed arc is disabled.
 470          */
 471         kstat_named_t arcstat_compressed_size;
 472         /*
 473          * Uncompressed size of the data stored in b_pabd. If compressed
 474          * arc is disabled then this value will be identical to the stat
 475          * above.
 476          */
 477         kstat_named_t arcstat_uncompressed_size;
 478         /*
 479          * Number of bytes stored in all the arc_buf_t's. This is classified
 480          * as "overhead" since this data is typically short-lived and will
 481          * be evicted from the arc when it becomes unreferenced unless the
 482          * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
 483          * values have been set (see comment in dbuf.c for more information).
 484          */
 485         kstat_named_t arcstat_overhead_size;
 486         /*
 487          * Number of bytes consumed by internal ARC structures necessary
 488          * for tracking purposes; these structures are not actually
 489          * backed by ARC buffers. This includes arc_buf_hdr_t structures
 490          * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
 491          * caches), and arc_buf_t structures (allocated via arc_buf_t
 492          * cache).
 493          */
 494         kstat_named_t arcstat_hdr_size;
 495         /*
 496          * Number of bytes consumed by ARC buffers of type equal to
 497          * ARC_BUFC_DATA. This is generally consumed by buffers backing
 498          * on disk user data (e.g. plain file contents).
 499          */
 500         kstat_named_t arcstat_data_size;
 501         /*
 502          * Number of bytes consumed by ARC buffers of type equal to
 503          * ARC_BUFC_METADATA. This is generally consumed by buffers
 504          * backing on disk data that is used for internal ZFS
 505          * structures (e.g. ZAP, dnode, indirect blocks, etc).
 506          */
 507         kstat_named_t arcstat_metadata_size;
 508         /*
 509          * Number of bytes consumed by various buffers and structures
 510          * not actually backed with ARC buffers. This includes bonus
 511          * buffers (allocated directly via zio_buf_* functions),
 512          * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
 513          * cache), and dnode_t structures (allocated via dnode_t cache).
 514          */
 515         kstat_named_t arcstat_other_size;
 516         /*
 517          * Total number of bytes consumed by ARC buffers residing in the
 518          * arc_anon state. This includes *all* buffers in the arc_anon
 519          * state; e.g. data, metadata, evictable, and unevictable buffers
 520          * are all included in this value.
 521          */
 522         kstat_named_t arcstat_anon_size;
 523         /*
 524          * Number of bytes consumed by ARC buffers that meet the
 525          * following criteria: backing buffers of type ARC_BUFC_DATA,
 526          * residing in the arc_anon state, and are eligible for eviction
 527          * (e.g. have no outstanding holds on the buffer).
 528          */
 529         kstat_named_t arcstat_anon_evictable_data;
 530         /*
 531          * Number of bytes consumed by ARC buffers that meet the
 532          * following criteria: backing buffers of type ARC_BUFC_METADATA,
 533          * residing in the arc_anon state, and are eligible for eviction
 534          * (e.g. have no outstanding holds on the buffer).
 535          */
 536         kstat_named_t arcstat_anon_evictable_metadata;
 537         /*
 538          * Total number of bytes consumed by ARC buffers residing in the
 539          * arc_mru state. This includes *all* buffers in the arc_mru
 540          * state; e.g. data, metadata, evictable, and unevictable buffers
 541          * are all included in this value.
 542          */
 543         kstat_named_t arcstat_mru_size;
 544         /*
 545          * Number of bytes consumed by ARC buffers that meet the
 546          * following criteria: backing buffers of type ARC_BUFC_DATA,
 547          * residing in the arc_mru state, and are eligible for eviction
 548          * (e.g. have no outstanding holds on the buffer).
 549          */
 550         kstat_named_t arcstat_mru_evictable_data;
 551         /*
 552          * Number of bytes consumed by ARC buffers that meet the
 553          * following criteria: backing buffers of type ARC_BUFC_METADATA,
 554          * residing in the arc_mru state, and are eligible for eviction
 555          * (e.g. have no outstanding holds on the buffer).
 556          */
 557         kstat_named_t arcstat_mru_evictable_metadata;
 558         /*
 559          * Total number of bytes that *would have been* consumed by ARC
 560          * buffers in the arc_mru_ghost state. The key thing to note
 561          * here, is the fact that this size doesn't actually indicate
 562          * RAM consumption. The ghost lists only consist of headers and
 563          * don't actually have ARC buffers linked off of these headers.
 564          * Thus, *if* the headers had associated ARC buffers, these
 565          * buffers *would have* consumed this number of bytes.
 566          */
 567         kstat_named_t arcstat_mru_ghost_size;
 568         /*
 569          * Number of bytes that *would have been* consumed by ARC
 570          * buffers that are eligible for eviction, of type
 571          * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
 572          */
 573         kstat_named_t arcstat_mru_ghost_evictable_data;
 574         /*
 575          * Number of bytes that *would have been* consumed by ARC
 576          * buffers that are eligible for eviction, of type
 577          * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
 578          */
 579         kstat_named_t arcstat_mru_ghost_evictable_metadata;
 580         /*
 581          * Total number of bytes consumed by ARC buffers residing in the
 582          * arc_mfu state. This includes *all* buffers in the arc_mfu
 583          * state; e.g. data, metadata, evictable, and unevictable buffers
 584          * are all included in this value.
 585          */
 586         kstat_named_t arcstat_mfu_size;
 587         /*
 588          * Number of bytes consumed by ARC buffers that are eligible for
 589          * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
 590          * state.
 591          */
 592         kstat_named_t arcstat_mfu_evictable_data;
 593         /*
 594          * Number of bytes consumed by ARC buffers that are eligible for
 595          * eviction, of type ARC_BUFC_METADATA, and reside in the
 596          * arc_mfu state.
 597          */
 598         kstat_named_t arcstat_mfu_evictable_metadata;
 599         /*
 600          * Total number of bytes that *would have been* consumed by ARC
 601          * buffers in the arc_mfu_ghost state. See the comment above
 602          * arcstat_mru_ghost_size for more details.
 603          */
 604         kstat_named_t arcstat_mfu_ghost_size;
 605         /*
 606          * Number of bytes that *would have been* consumed by ARC
 607          * buffers that are eligible for eviction, of type
 608          * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
 609          */
 610         kstat_named_t arcstat_mfu_ghost_evictable_data;
 611         /*
 612          * Number of bytes that *would have been* consumed by ARC
 613          * buffers that are eligible for eviction, of type
 614          * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
 615          */
 616         kstat_named_t arcstat_mfu_ghost_evictable_metadata;
 617         kstat_named_t arcstat_l2_hits;
 618         kstat_named_t arcstat_l2_misses;
 619         kstat_named_t arcstat_l2_feeds;
 620         kstat_named_t arcstat_l2_rw_clash;
 621         kstat_named_t arcstat_l2_read_bytes;
 622         kstat_named_t arcstat_l2_write_bytes;
 623         kstat_named_t arcstat_l2_writes_sent;
 624         kstat_named_t arcstat_l2_writes_done;
 625         kstat_named_t arcstat_l2_writes_error;
 626         kstat_named_t arcstat_l2_writes_lock_retry;
 627         kstat_named_t arcstat_l2_evict_lock_retry;
 628         kstat_named_t arcstat_l2_evict_reading;
 629         kstat_named_t arcstat_l2_evict_l1cached;
 630         kstat_named_t arcstat_l2_free_on_write;
 631         kstat_named_t arcstat_l2_abort_lowmem;
 632         kstat_named_t arcstat_l2_cksum_bad;
 633         kstat_named_t arcstat_l2_io_error;
 634         kstat_named_t arcstat_l2_lsize;
 635         kstat_named_t arcstat_l2_psize;
 636         kstat_named_t arcstat_l2_hdr_size;
 637         kstat_named_t arcstat_memory_throttle_count;
 638         kstat_named_t arcstat_meta_used;
 639         kstat_named_t arcstat_meta_limit;
 640         kstat_named_t arcstat_meta_max;
 641         kstat_named_t arcstat_meta_min;
 642         kstat_named_t arcstat_sync_wait_for_async;
 643         kstat_named_t arcstat_demand_hit_predictive_prefetch;
 644 } arc_stats_t;
 645 
 646 static arc_stats_t arc_stats = {
 647         { "hits",                       KSTAT_DATA_UINT64 },
 648         { "misses",                     KSTAT_DATA_UINT64 },
 649         { "demand_data_hits",           KSTAT_DATA_UINT64 },
 650         { "demand_data_misses",         KSTAT_DATA_UINT64 },
 651         { "demand_metadata_hits",       KSTAT_DATA_UINT64 },
 652         { "demand_metadata_misses",     KSTAT_DATA_UINT64 },
 653         { "prefetch_data_hits",         KSTAT_DATA_UINT64 },
 654         { "prefetch_data_misses",       KSTAT_DATA_UINT64 },
 655         { "prefetch_metadata_hits",     KSTAT_DATA_UINT64 },
 656         { "prefetch_metadata_misses",   KSTAT_DATA_UINT64 },
 657         { "mru_hits",                   KSTAT_DATA_UINT64 },
 658         { "mru_ghost_hits",             KSTAT_DATA_UINT64 },
 659         { "mfu_hits",                   KSTAT_DATA_UINT64 },
 660         { "mfu_ghost_hits",             KSTAT_DATA_UINT64 },
 661         { "deleted",                    KSTAT_DATA_UINT64 },
 662         { "mutex_miss",                 KSTAT_DATA_UINT64 },
 663         { "evict_skip",                 KSTAT_DATA_UINT64 },
 664         { "evict_not_enough",           KSTAT_DATA_UINT64 },
 665         { "evict_l2_cached",            KSTAT_DATA_UINT64 },
 666         { "evict_l2_eligible",          KSTAT_DATA_UINT64 },
 667         { "evict_l2_ineligible",        KSTAT_DATA_UINT64 },
 668         { "evict_l2_skip",              KSTAT_DATA_UINT64 },
 669         { "hash_elements",              KSTAT_DATA_UINT64 },
 670         { "hash_elements_max",          KSTAT_DATA_UINT64 },
 671         { "hash_collisions",            KSTAT_DATA_UINT64 },
 672         { "hash_chains",                KSTAT_DATA_UINT64 },
 673         { "hash_chain_max",             KSTAT_DATA_UINT64 },
 674         { "p",                          KSTAT_DATA_UINT64 },
 675         { "c",                          KSTAT_DATA_UINT64 },
 676         { "c_min",                      KSTAT_DATA_UINT64 },
 677         { "c_max",                      KSTAT_DATA_UINT64 },
 678         { "size",                       KSTAT_DATA_UINT64 },
 679         { "compressed_size",            KSTAT_DATA_UINT64 },
 680         { "uncompressed_size",          KSTAT_DATA_UINT64 },
 681         { "overhead_size",              KSTAT_DATA_UINT64 },
 682         { "hdr_size",                   KSTAT_DATA_UINT64 },
 683         { "data_size",                  KSTAT_DATA_UINT64 },
 684         { "metadata_size",              KSTAT_DATA_UINT64 },
 685         { "other_size",                 KSTAT_DATA_UINT64 },
 686         { "anon_size",                  KSTAT_DATA_UINT64 },
 687         { "anon_evictable_data",        KSTAT_DATA_UINT64 },
 688         { "anon_evictable_metadata",    KSTAT_DATA_UINT64 },
 689         { "mru_size",                   KSTAT_DATA_UINT64 },
 690         { "mru_evictable_data",         KSTAT_DATA_UINT64 },
 691         { "mru_evictable_metadata",     KSTAT_DATA_UINT64 },
 692         { "mru_ghost_size",             KSTAT_DATA_UINT64 },
 693         { "mru_ghost_evictable_data",   KSTAT_DATA_UINT64 },
 694         { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
 695         { "mfu_size",                   KSTAT_DATA_UINT64 },
 696         { "mfu_evictable_data",         KSTAT_DATA_UINT64 },
 697         { "mfu_evictable_metadata",     KSTAT_DATA_UINT64 },
 698         { "mfu_ghost_size",             KSTAT_DATA_UINT64 },
 699         { "mfu_ghost_evictable_data",   KSTAT_DATA_UINT64 },
 700         { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
 701         { "l2_hits",                    KSTAT_DATA_UINT64 },
 702         { "l2_misses",                  KSTAT_DATA_UINT64 },
 703         { "l2_feeds",                   KSTAT_DATA_UINT64 },
 704         { "l2_rw_clash",                KSTAT_DATA_UINT64 },
 705         { "l2_read_bytes",              KSTAT_DATA_UINT64 },
 706         { "l2_write_bytes",             KSTAT_DATA_UINT64 },
 707         { "l2_writes_sent",             KSTAT_DATA_UINT64 },
 708         { "l2_writes_done",             KSTAT_DATA_UINT64 },
 709         { "l2_writes_error",            KSTAT_DATA_UINT64 },
 710         { "l2_writes_lock_retry",       KSTAT_DATA_UINT64 },
 711         { "l2_evict_lock_retry",        KSTAT_DATA_UINT64 },
 712         { "l2_evict_reading",           KSTAT_DATA_UINT64 },
 713         { "l2_evict_l1cached",          KSTAT_DATA_UINT64 },
 714         { "l2_free_on_write",           KSTAT_DATA_UINT64 },
 715         { "l2_abort_lowmem",            KSTAT_DATA_UINT64 },
 716         { "l2_cksum_bad",               KSTAT_DATA_UINT64 },
 717         { "l2_io_error",                KSTAT_DATA_UINT64 },
 718         { "l2_size",                    KSTAT_DATA_UINT64 },
 719         { "l2_asize",                   KSTAT_DATA_UINT64 },
 720         { "l2_hdr_size",                KSTAT_DATA_UINT64 },
 721         { "memory_throttle_count",      KSTAT_DATA_UINT64 },
 722         { "arc_meta_used",              KSTAT_DATA_UINT64 },
 723         { "arc_meta_limit",             KSTAT_DATA_UINT64 },
 724         { "arc_meta_max",               KSTAT_DATA_UINT64 },
 725         { "arc_meta_min",               KSTAT_DATA_UINT64 },
 726         { "sync_wait_for_async",        KSTAT_DATA_UINT64 },
 727         { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
 728 };
 729 
 730 #define ARCSTAT(stat)   (arc_stats.stat.value.ui64)
 731 
 732 #define ARCSTAT_INCR(stat, val) \
 733         atomic_add_64(&arc_stats.stat.value.ui64, (val))
 734 
 735 #define ARCSTAT_BUMP(stat)      ARCSTAT_INCR(stat, 1)
 736 #define ARCSTAT_BUMPDOWN(stat)  ARCSTAT_INCR(stat, -1)
 737 
 738 #define ARCSTAT_MAX(stat, val) {                                        \
 739         uint64_t m;                                                     \
 740         while ((val) > (m = arc_stats.stat.value.ui64) &&            \
 741             (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))     \
 742                 continue;                                               \
 743 }
 744 
 745 #define ARCSTAT_MAXSTAT(stat) \
 746         ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
 747 
 748 /*
 749  * We define a macro to allow ARC hits/misses to be easily broken down by
 750  * two separate conditions, giving a total of four different subtypes for
 751  * each of hits and misses (so eight statistics total).
 752  */
 753 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
 754         if (cond1) {                                                    \
 755                 if (cond2) {                                            \
 756                         ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
 757                 } else {                                                \
 758                         ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
 759                 }                                                       \
 760         } else {                                                        \
 761                 if (cond2) {                                            \
 762                         ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
 763                 } else {                                                \
 764                         ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
 765                 }                                                       \
 766         }
 767 
 768 kstat_t                 *arc_ksp;
 769 static arc_state_t      *arc_anon;
 770 static arc_state_t      *arc_mru;
 771 static arc_state_t      *arc_mru_ghost;
 772 static arc_state_t      *arc_mfu;
 773 static arc_state_t      *arc_mfu_ghost;
 774 static arc_state_t      *arc_l2c_only;
 775 
 776 /*
 777  * There are several ARC variables that are critical to export as kstats --
 778  * but we don't want to have to grovel around in the kstat whenever we wish to
 779  * manipulate them.  For these variables, we therefore define them to be in
 780  * terms of the statistic variable.  This assures that we are not introducing
 781  * the possibility of inconsistency by having shadow copies of the variables,
 782  * while still allowing the code to be readable.
 783  */
 784 #define arc_size        ARCSTAT(arcstat_size)   /* actual total arc size */
 785 #define arc_p           ARCSTAT(arcstat_p)      /* target size of MRU */
 786 #define arc_c           ARCSTAT(arcstat_c)      /* target size of cache */
 787 #define arc_c_min       ARCSTAT(arcstat_c_min)  /* min target cache size */
 788 #define arc_c_max       ARCSTAT(arcstat_c_max)  /* max target cache size */
 789 #define arc_meta_limit  ARCSTAT(arcstat_meta_limit) /* max size for metadata */
 790 #define arc_meta_min    ARCSTAT(arcstat_meta_min) /* min size for metadata */
 791 #define arc_meta_used   ARCSTAT(arcstat_meta_used) /* size of metadata */
 792 #define arc_meta_max    ARCSTAT(arcstat_meta_max) /* max size of metadata */
 793 
 794 /* compressed size of entire arc */
 795 #define arc_compressed_size     ARCSTAT(arcstat_compressed_size)
 796 /* uncompressed size of entire arc */
 797 #define arc_uncompressed_size   ARCSTAT(arcstat_uncompressed_size)
 798 /* number of bytes in the arc from arc_buf_t's */
 799 #define arc_overhead_size       ARCSTAT(arcstat_overhead_size)
 800 
 801 static int              arc_no_grow;    /* Don't try to grow cache size */
 802 static uint64_t         arc_tempreserve;
 803 static uint64_t         arc_loaned_bytes;
 804 
 805 typedef struct arc_callback arc_callback_t;
 806 
 807 struct arc_callback {
 808         void                    *acb_private;
 809         arc_done_func_t         *acb_done;
 810         arc_buf_t               *acb_buf;
 811         boolean_t               acb_compressed;
 812         zio_t                   *acb_zio_dummy;
 813         arc_callback_t          *acb_next;
 814 };
 815 
 816 typedef struct arc_write_callback arc_write_callback_t;
 817 
 818 struct arc_write_callback {
 819         void            *awcb_private;
 820         arc_done_func_t *awcb_ready;
 821         arc_done_func_t *awcb_children_ready;
 822         arc_done_func_t *awcb_physdone;
 823         arc_done_func_t *awcb_done;
 824         arc_buf_t       *awcb_buf;
 825 };
 826 
 827 /*
 828  * ARC buffers are separated into multiple structs as a memory saving measure:
 829  *   - Common fields struct, always defined, and embedded within it:
 830  *       - L2-only fields, always allocated but undefined when not in L2ARC
 831  *       - L1-only fields, only allocated when in L1ARC
 832  *
 833  *           Buffer in L1                     Buffer only in L2
 834  *    +------------------------+          +------------------------+
 835  *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
 836  *    |                        |          |                        |
 837  *    |                        |          |                        |
 838  *    |                        |          |                        |
 839  *    +------------------------+          +------------------------+
 840  *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
 841  *    | (undefined if L1-only) |          |                        |
 842  *    +------------------------+          +------------------------+
 843  *    | l1arc_buf_hdr_t        |
 844  *    |                        |
 845  *    |                        |
 846  *    |                        |
 847  *    |                        |
 848  *    +------------------------+
 849  *
 850  * Because it's possible for the L2ARC to become extremely large, we can wind
 851  * up eating a lot of memory in L2ARC buffer headers, so the size of a header
 852  * is minimized by only allocating the fields necessary for an L1-cached buffer
 853  * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
 854  * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
 855  * words in pointers. arc_hdr_realloc() is used to switch a header between
 856  * these two allocation states.
 857  */
 858 typedef struct l1arc_buf_hdr {
 859         kmutex_t                b_freeze_lock;
 860         zio_cksum_t             *b_freeze_cksum;
 861 #ifdef ZFS_DEBUG
 862         /*
 863          * Used for debugging with kmem_flags - by allocating and freeing
 864          * b_thawed when the buffer is thawed, we get a record of the stack
 865          * trace that thawed it.
 866          */
 867         void                    *b_thawed;
 868 #endif
 869 
 870         arc_buf_t               *b_buf;
 871         uint32_t                b_bufcnt;
 872         /* for waiting on writes to complete */
 873         kcondvar_t              b_cv;
 874         uint8_t                 b_byteswap;
 875 
 876         /* protected by arc state mutex */
 877         arc_state_t             *b_state;
 878         multilist_node_t        b_arc_node;
 879 
 880         /* updated atomically */
 881         clock_t                 b_arc_access;
 882 
 883         /* self protecting */
 884         refcount_t              b_refcnt;
 885 
 886         arc_callback_t          *b_acb;
 887         abd_t                   *b_pabd;
 888 } l1arc_buf_hdr_t;
 889 
 890 typedef struct l2arc_dev l2arc_dev_t;
 891 
 892 typedef struct l2arc_buf_hdr {
 893         /* protected by arc_buf_hdr mutex */
 894         l2arc_dev_t             *b_dev;         /* L2ARC device */
 895         uint64_t                b_daddr;        /* disk address, offset byte */
 896 
 897         list_node_t             b_l2node;
 898 } l2arc_buf_hdr_t;
 899 
 900 struct arc_buf_hdr {
 901         /* protected by hash lock */
 902         dva_t                   b_dva;
 903         uint64_t                b_birth;
 904 
 905         arc_buf_contents_t      b_type;
 906         arc_buf_hdr_t           *b_hash_next;
 907         arc_flags_t             b_flags;
 908 
 909         /*
 910          * This field stores the size of the data buffer after
 911          * compression, and is set in the arc's zio completion handlers.
 912          * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
 913          *
 914          * While the block pointers can store up to 32MB in their psize
 915          * field, we can only store up to 32MB minus 512B. This is due
 916          * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
 917          * a field of zeros represents 512B in the bp). We can't use a
 918          * bias of 1 since we need to reserve a psize of zero, here, to
 919          * represent holes and embedded blocks.
 920          *
 921          * This isn't a problem in practice, since the maximum size of a
 922          * buffer is limited to 16MB, so we never need to store 32MB in
 923          * this field. Even in the upstream illumos code base, the
 924          * maximum size of a buffer is limited to 16MB.
 925          */
 926         uint16_t                b_psize;
 927 
 928         /*
 929          * This field stores the size of the data buffer before
 930          * compression, and cannot change once set. It is in units
 931          * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
 932          */
 933         uint16_t                b_lsize;        /* immutable */
 934         uint64_t                b_spa;          /* immutable */
 935 
 936         /* L2ARC fields. Undefined when not in L2ARC. */
 937         l2arc_buf_hdr_t         b_l2hdr;
 938         /* L1ARC fields. Undefined when in l2arc_only state */
 939         l1arc_buf_hdr_t         b_l1hdr;
 940 };
 941 
 942 #define GHOST_STATE(state)      \
 943         ((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||        \
 944         (state) == arc_l2c_only)
 945 
 946 #define HDR_IN_HASH_TABLE(hdr)  ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
 947 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
 948 #define HDR_IO_ERROR(hdr)       ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
 949 #define HDR_PREFETCH(hdr)       ((hdr)->b_flags & ARC_FLAG_PREFETCH)
 950 #define HDR_COMPRESSION_ENABLED(hdr)    \
 951         ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
 952 
 953 #define HDR_L2CACHE(hdr)        ((hdr)->b_flags & ARC_FLAG_L2CACHE)
 954 #define HDR_L2_READING(hdr)     \
 955         (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&   \
 956         ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
 957 #define HDR_L2_WRITING(hdr)     ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
 958 #define HDR_L2_EVICTED(hdr)     ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
 959 #define HDR_L2_WRITE_HEAD(hdr)  ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
 960 #define HDR_SHARED_DATA(hdr)    ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
 961 
 962 #define HDR_ISTYPE_METADATA(hdr)        \
 963         ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
 964 #define HDR_ISTYPE_DATA(hdr)    (!HDR_ISTYPE_METADATA(hdr))
 965 
 966 #define HDR_HAS_L1HDR(hdr)      ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
 967 #define HDR_HAS_L2HDR(hdr)      ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
 968 
 969 /* For storing compression mode in b_flags */
 970 #define HDR_COMPRESS_OFFSET     (highbit64(ARC_FLAG_COMPRESS_0) - 1)
 971 
 972 #define HDR_GET_COMPRESS(hdr)   ((enum zio_compress)BF32_GET((hdr)->b_flags, \
 973         HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
 974 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
 975         HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
 976 
 977 #define ARC_BUF_LAST(buf)       ((buf)->b_next == NULL)
 978 #define ARC_BUF_SHARED(buf)     ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
 979 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
 980 
 981 /*
 982  * Other sizes
 983  */
 984 
 985 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
 986 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
 987 
 988 /*
 989  * Hash table routines
 990  */
 991 
 992 #define HT_LOCK_PAD     64
 993 
 994 struct ht_lock {
 995         kmutex_t        ht_lock;
 996 #ifdef _KERNEL
 997         unsigned char   pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
 998 #endif
 999 };
1000 
1001 #define BUF_LOCKS 256
1002 typedef struct buf_hash_table {
1003         uint64_t ht_mask;
1004         arc_buf_hdr_t **ht_table;
1005         struct ht_lock ht_locks[BUF_LOCKS];
1006 } buf_hash_table_t;
1007 
1008 static buf_hash_table_t buf_hash_table;
1009 
1010 #define BUF_HASH_INDEX(spa, dva, birth) \
1011         (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1012 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1013 #define BUF_HASH_LOCK(idx)      (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1014 #define HDR_LOCK(hdr) \
1015         (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1016 
1017 uint64_t zfs_crc64_table[256];
1018 
1019 /*
1020  * Level 2 ARC
1021  */
1022 
1023 #define L2ARC_WRITE_SIZE        (8 * 1024 * 1024)       /* initial write max */
1024 #define L2ARC_HEADROOM          2                       /* num of writes */
1025 /*
1026  * If we discover during ARC scan any buffers to be compressed, we boost
1027  * our headroom for the next scanning cycle by this percentage multiple.
1028  */
1029 #define L2ARC_HEADROOM_BOOST    200
1030 #define L2ARC_FEED_SECS         1               /* caching interval secs */
1031 #define L2ARC_FEED_MIN_MS       200             /* min caching interval ms */
1032 
1033 #define l2arc_writes_sent       ARCSTAT(arcstat_l2_writes_sent)
1034 #define l2arc_writes_done       ARCSTAT(arcstat_l2_writes_done)
1035 
1036 /* L2ARC Performance Tunables */
1037 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;    /* default max write size */
1038 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;  /* extra write during warmup */
1039 uint64_t l2arc_headroom = L2ARC_HEADROOM;       /* number of dev writes */
1040 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1041 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;     /* interval seconds */
1042 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
1043 boolean_t l2arc_noprefetch = B_TRUE;            /* don't cache prefetch bufs */
1044 boolean_t l2arc_feed_again = B_TRUE;            /* turbo warmup */
1045 boolean_t l2arc_norw = B_TRUE;                  /* no reads during writes */
1046 
1047 /*
1048  * L2ARC Internals
1049  */
1050 struct l2arc_dev {
1051         vdev_t                  *l2ad_vdev;     /* vdev */
1052         spa_t                   *l2ad_spa;      /* spa */
1053         uint64_t                l2ad_hand;      /* next write location */
1054         uint64_t                l2ad_start;     /* first addr on device */
1055         uint64_t                l2ad_end;       /* last addr on device */
1056         boolean_t               l2ad_first;     /* first sweep through */
1057         boolean_t               l2ad_writing;   /* currently writing */
1058         kmutex_t                l2ad_mtx;       /* lock for buffer list */
1059         list_t                  l2ad_buflist;   /* buffer list */
1060         list_node_t             l2ad_node;      /* device list node */
1061         refcount_t              l2ad_alloc;     /* allocated bytes */
1062 };
1063 
1064 static list_t L2ARC_dev_list;                   /* device list */
1065 static list_t *l2arc_dev_list;                  /* device list pointer */
1066 static kmutex_t l2arc_dev_mtx;                  /* device list mutex */
1067 static l2arc_dev_t *l2arc_dev_last;             /* last device used */
1068 static list_t L2ARC_free_on_write;              /* free after write buf list */
1069 static list_t *l2arc_free_on_write;             /* free after write list ptr */
1070 static kmutex_t l2arc_free_on_write_mtx;        /* mutex for list */
1071 static uint64_t l2arc_ndev;                     /* number of devices */
1072 
1073 typedef struct l2arc_read_callback {
1074         arc_buf_hdr_t           *l2rcb_hdr;             /* read header */
1075         blkptr_t                l2rcb_bp;               /* original blkptr */
1076         zbookmark_phys_t        l2rcb_zb;               /* original bookmark */
1077         int                     l2rcb_flags;            /* original flags */
1078         abd_t                   *l2rcb_abd;             /* temporary buffer */
1079 } l2arc_read_callback_t;
1080 
1081 typedef struct l2arc_write_callback {
1082         l2arc_dev_t     *l2wcb_dev;             /* device info */
1083         arc_buf_hdr_t   *l2wcb_head;            /* head of write buflist */
1084 } l2arc_write_callback_t;
1085 
1086 typedef struct l2arc_data_free {
1087         /* protected by l2arc_free_on_write_mtx */
1088         abd_t           *l2df_abd;
1089         size_t          l2df_size;
1090         arc_buf_contents_t l2df_type;
1091         list_node_t     l2df_list_node;
1092 } l2arc_data_free_t;
1093 
1094 static kmutex_t l2arc_feed_thr_lock;
1095 static kcondvar_t l2arc_feed_thr_cv;
1096 static uint8_t l2arc_thread_exit;
1097 
1098 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
1099 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1100 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1101 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1102 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1103 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1104 static void arc_hdr_free_pabd(arc_buf_hdr_t *);
1105 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
1106 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1107 static boolean_t arc_is_overflowing();
1108 static void arc_buf_watch(arc_buf_t *);
1109 
1110 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1111 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1112 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1113 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1114 
1115 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1116 static void l2arc_read_done(zio_t *);
1117 
1118 static uint64_t
1119 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1120 {
1121         uint8_t *vdva = (uint8_t *)dva;
1122         uint64_t crc = -1ULL;
1123         int i;
1124 
1125         ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1126 
1127         for (i = 0; i < sizeof (dva_t); i++)
1128                 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1129 
1130         crc ^= (spa>>8) ^ birth;
1131 
1132         return (crc);
1133 }
1134 
1135 #define HDR_EMPTY(hdr)                                          \
1136         ((hdr)->b_dva.dva_word[0] == 0 &&                    \
1137         (hdr)->b_dva.dva_word[1] == 0)
1138 
1139 #define HDR_EQUAL(spa, dva, birth, hdr)                         \
1140         ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&       \
1141         ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&       \
1142         ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1143 
1144 static void
1145 buf_discard_identity(arc_buf_hdr_t *hdr)
1146 {
1147         hdr->b_dva.dva_word[0] = 0;
1148         hdr->b_dva.dva_word[1] = 0;
1149         hdr->b_birth = 0;
1150 }
1151 
1152 static arc_buf_hdr_t *
1153 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1154 {
1155         const dva_t *dva = BP_IDENTITY(bp);
1156         uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1157         uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1158         kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1159         arc_buf_hdr_t *hdr;
1160 
1161         mutex_enter(hash_lock);
1162         for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1163             hdr = hdr->b_hash_next) {
1164                 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1165                         *lockp = hash_lock;
1166                         return (hdr);
1167                 }
1168         }
1169         mutex_exit(hash_lock);
1170         *lockp = NULL;
1171         return (NULL);
1172 }
1173 
1174 /*
1175  * Insert an entry into the hash table.  If there is already an element
1176  * equal to elem in the hash table, then the already existing element
1177  * will be returned and the new element will not be inserted.
1178  * Otherwise returns NULL.
1179  * If lockp == NULL, the caller is assumed to already hold the hash lock.
1180  */
1181 static arc_buf_hdr_t *
1182 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1183 {
1184         uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1185         kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1186         arc_buf_hdr_t *fhdr;
1187         uint32_t i;
1188 
1189         ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1190         ASSERT(hdr->b_birth != 0);
1191         ASSERT(!HDR_IN_HASH_TABLE(hdr));
1192 
1193         if (lockp != NULL) {
1194                 *lockp = hash_lock;
1195                 mutex_enter(hash_lock);
1196         } else {
1197                 ASSERT(MUTEX_HELD(hash_lock));
1198         }
1199 
1200         for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1201             fhdr = fhdr->b_hash_next, i++) {
1202                 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1203                         return (fhdr);
1204         }
1205 
1206         hdr->b_hash_next = buf_hash_table.ht_table[idx];
1207         buf_hash_table.ht_table[idx] = hdr;
1208         arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1209 
1210         /* collect some hash table performance data */
1211         if (i > 0) {
1212                 ARCSTAT_BUMP(arcstat_hash_collisions);
1213                 if (i == 1)
1214                         ARCSTAT_BUMP(arcstat_hash_chains);
1215 
1216                 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1217         }
1218 
1219         ARCSTAT_BUMP(arcstat_hash_elements);
1220         ARCSTAT_MAXSTAT(arcstat_hash_elements);
1221 
1222         return (NULL);
1223 }
1224 
1225 static void
1226 buf_hash_remove(arc_buf_hdr_t *hdr)
1227 {
1228         arc_buf_hdr_t *fhdr, **hdrp;
1229         uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1230 
1231         ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1232         ASSERT(HDR_IN_HASH_TABLE(hdr));
1233 
1234         hdrp = &buf_hash_table.ht_table[idx];
1235         while ((fhdr = *hdrp) != hdr) {
1236                 ASSERT3P(fhdr, !=, NULL);
1237                 hdrp = &fhdr->b_hash_next;
1238         }
1239         *hdrp = hdr->b_hash_next;
1240         hdr->b_hash_next = NULL;
1241         arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1242 
1243         /* collect some hash table performance data */
1244         ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1245 
1246         if (buf_hash_table.ht_table[idx] &&
1247             buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1248                 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1249 }
1250 
1251 /*
1252  * Global data structures and functions for the buf kmem cache.
1253  */
1254 static kmem_cache_t *hdr_full_cache;
1255 static kmem_cache_t *hdr_l2only_cache;
1256 static kmem_cache_t *buf_cache;
1257 
1258 static void
1259 buf_fini(void)
1260 {
1261         int i;
1262 
1263         kmem_free(buf_hash_table.ht_table,
1264             (buf_hash_table.ht_mask + 1) * sizeof (void *));
1265         for (i = 0; i < BUF_LOCKS; i++)
1266                 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1267         kmem_cache_destroy(hdr_full_cache);
1268         kmem_cache_destroy(hdr_l2only_cache);
1269         kmem_cache_destroy(buf_cache);
1270 }
1271 
1272 /*
1273  * Constructor callback - called when the cache is empty
1274  * and a new buf is requested.
1275  */
1276 /* ARGSUSED */
1277 static int
1278 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1279 {
1280         arc_buf_hdr_t *hdr = vbuf;
1281 
1282         bzero(hdr, HDR_FULL_SIZE);
1283         cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1284         refcount_create(&hdr->b_l1hdr.b_refcnt);
1285         mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1286         multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1287         arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1288 
1289         return (0);
1290 }
1291 
1292 /* ARGSUSED */
1293 static int
1294 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1295 {
1296         arc_buf_hdr_t *hdr = vbuf;
1297 
1298         bzero(hdr, HDR_L2ONLY_SIZE);
1299         arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1300 
1301         return (0);
1302 }
1303 
1304 /* ARGSUSED */
1305 static int
1306 buf_cons(void *vbuf, void *unused, int kmflag)
1307 {
1308         arc_buf_t *buf = vbuf;
1309 
1310         bzero(buf, sizeof (arc_buf_t));
1311         mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1312         arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1313 
1314         return (0);
1315 }
1316 
1317 /*
1318  * Destructor callback - called when a cached buf is
1319  * no longer required.
1320  */
1321 /* ARGSUSED */
1322 static void
1323 hdr_full_dest(void *vbuf, void *unused)
1324 {
1325         arc_buf_hdr_t *hdr = vbuf;
1326 
1327         ASSERT(HDR_EMPTY(hdr));
1328         cv_destroy(&hdr->b_l1hdr.b_cv);
1329         refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1330         mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1331         ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1332         arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1333 }
1334 
1335 /* ARGSUSED */
1336 static void
1337 hdr_l2only_dest(void *vbuf, void *unused)
1338 {
1339         arc_buf_hdr_t *hdr = vbuf;
1340 
1341         ASSERT(HDR_EMPTY(hdr));
1342         arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1343 }
1344 
1345 /* ARGSUSED */
1346 static void
1347 buf_dest(void *vbuf, void *unused)
1348 {
1349         arc_buf_t *buf = vbuf;
1350 
1351         mutex_destroy(&buf->b_evict_lock);
1352         arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1353 }
1354 
1355 /*
1356  * Reclaim callback -- invoked when memory is low.
1357  */
1358 /* ARGSUSED */
1359 static void
1360 hdr_recl(void *unused)
1361 {
1362         dprintf("hdr_recl called\n");
1363         /*
1364          * umem calls the reclaim func when we destroy the buf cache,
1365          * which is after we do arc_fini().
1366          */
1367         if (!arc_dead)
1368                 cv_signal(&arc_reclaim_thread_cv);
1369 }
1370 
1371 static void
1372 buf_init(void)
1373 {
1374         uint64_t *ct;
1375         uint64_t hsize = 1ULL << 12;
1376         int i, j;
1377 
1378         /*
1379          * The hash table is big enough to fill all of physical memory
1380          * with an average block size of zfs_arc_average_blocksize (default 8K).
1381          * By default, the table will take up
1382          * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1383          */
1384         while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1385                 hsize <<= 1;
1386 retry:
1387         buf_hash_table.ht_mask = hsize - 1;
1388         buf_hash_table.ht_table =
1389             kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1390         if (buf_hash_table.ht_table == NULL) {
1391                 ASSERT(hsize > (1ULL << 8));
1392                 hsize >>= 1;
1393                 goto retry;
1394         }
1395 
1396         hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1397             0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1398         hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1399             HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1400             NULL, NULL, 0);
1401         buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1402             0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1403 
1404         for (i = 0; i < 256; i++)
1405                 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1406                         *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1407 
1408         for (i = 0; i < BUF_LOCKS; i++) {
1409                 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1410                     NULL, MUTEX_DEFAULT, NULL);
1411         }
1412 }
1413 
1414 /*
1415  * This is the size that the buf occupies in memory. If the buf is compressed,
1416  * it will correspond to the compressed size. You should use this method of
1417  * getting the buf size unless you explicitly need the logical size.
1418  */
1419 int32_t
1420 arc_buf_size(arc_buf_t *buf)
1421 {
1422         return (ARC_BUF_COMPRESSED(buf) ?
1423             HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1424 }
1425 
1426 int32_t
1427 arc_buf_lsize(arc_buf_t *buf)
1428 {
1429         return (HDR_GET_LSIZE(buf->b_hdr));
1430 }
1431 
1432 enum zio_compress
1433 arc_get_compression(arc_buf_t *buf)
1434 {
1435         return (ARC_BUF_COMPRESSED(buf) ?
1436             HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1437 }
1438 
1439 #define ARC_MINTIME     (hz>>4) /* 62 ms */
1440 
1441 static inline boolean_t
1442 arc_buf_is_shared(arc_buf_t *buf)
1443 {
1444         boolean_t shared = (buf->b_data != NULL &&
1445             buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1446             abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1447             buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1448         IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1449         IMPLY(shared, ARC_BUF_SHARED(buf));
1450         IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1451 
1452         /*
1453          * It would be nice to assert arc_can_share() too, but the "hdr isn't
1454          * already being shared" requirement prevents us from doing that.
1455          */
1456 
1457         return (shared);
1458 }
1459 
1460 /*
1461  * Free the checksum associated with this header. If there is no checksum, this
1462  * is a no-op.
1463  */
1464 static inline void
1465 arc_cksum_free(arc_buf_hdr_t *hdr)
1466 {
1467         ASSERT(HDR_HAS_L1HDR(hdr));
1468         mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1469         if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1470                 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1471                 hdr->b_l1hdr.b_freeze_cksum = NULL;
1472         }
1473         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1474 }
1475 
1476 /*
1477  * Return true iff at least one of the bufs on hdr is not compressed.
1478  */
1479 static boolean_t
1480 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1481 {
1482         for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1483                 if (!ARC_BUF_COMPRESSED(b)) {
1484                         return (B_TRUE);
1485                 }
1486         }
1487         return (B_FALSE);
1488 }
1489 
1490 /*
1491  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1492  * matches the checksum that is stored in the hdr. If there is no checksum,
1493  * or if the buf is compressed, this is a no-op.
1494  */
1495 static void
1496 arc_cksum_verify(arc_buf_t *buf)
1497 {
1498         arc_buf_hdr_t *hdr = buf->b_hdr;
1499         zio_cksum_t zc;
1500 
1501         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1502                 return;
1503 
1504         if (ARC_BUF_COMPRESSED(buf)) {
1505                 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1506                     arc_hdr_has_uncompressed_buf(hdr));
1507                 return;
1508         }
1509 
1510         ASSERT(HDR_HAS_L1HDR(hdr));
1511 
1512         mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1513         if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1514                 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1515                 return;
1516         }
1517 
1518         fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1519         if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1520                 panic("buffer modified while frozen!");
1521         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1522 }
1523 
1524 static boolean_t
1525 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1526 {
1527         enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1528         boolean_t valid_cksum;
1529 
1530         ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1531         VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1532 
1533         /*
1534          * We rely on the blkptr's checksum to determine if the block
1535          * is valid or not. When compressed arc is enabled, the l2arc
1536          * writes the block to the l2arc just as it appears in the pool.
1537          * This allows us to use the blkptr's checksum to validate the
1538          * data that we just read off of the l2arc without having to store
1539          * a separate checksum in the arc_buf_hdr_t. However, if compressed
1540          * arc is disabled, then the data written to the l2arc is always
1541          * uncompressed and won't match the block as it exists in the main
1542          * pool. When this is the case, we must first compress it if it is
1543          * compressed on the main pool before we can validate the checksum.
1544          */
1545         if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1546                 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1547                 uint64_t lsize = HDR_GET_LSIZE(hdr);
1548                 uint64_t csize;
1549 
1550                 abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
1551                 csize = zio_compress_data(compress, zio->io_abd,
1552                     abd_to_buf(cdata), lsize);
1553 
1554                 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1555                 if (csize < HDR_GET_PSIZE(hdr)) {
1556                         /*
1557                          * Compressed blocks are always a multiple of the
1558                          * smallest ashift in the pool. Ideally, we would
1559                          * like to round up the csize to the next
1560                          * spa_min_ashift but that value may have changed
1561                          * since the block was last written. Instead,
1562                          * we rely on the fact that the hdr's psize
1563                          * was set to the psize of the block when it was
1564                          * last written. We set the csize to that value
1565                          * and zero out any part that should not contain
1566                          * data.
1567                          */
1568                         abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
1569                         csize = HDR_GET_PSIZE(hdr);
1570                 }
1571                 zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
1572         }
1573 
1574         /*
1575          * Block pointers always store the checksum for the logical data.
1576          * If the block pointer has the gang bit set, then the checksum
1577          * it represents is for the reconstituted data and not for an
1578          * individual gang member. The zio pipeline, however, must be able to
1579          * determine the checksum of each of the gang constituents so it
1580          * treats the checksum comparison differently than what we need
1581          * for l2arc blocks. This prevents us from using the
1582          * zio_checksum_error() interface directly. Instead we must call the
1583          * zio_checksum_error_impl() so that we can ensure the checksum is
1584          * generated using the correct checksum algorithm and accounts for the
1585          * logical I/O size and not just a gang fragment.
1586          */
1587         valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1588             BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1589             zio->io_offset, NULL) == 0);
1590         zio_pop_transforms(zio);
1591         return (valid_cksum);
1592 }
1593 
1594 /*
1595  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1596  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1597  * isn't modified later on. If buf is compressed or there is already a checksum
1598  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1599  */
1600 static void
1601 arc_cksum_compute(arc_buf_t *buf)
1602 {
1603         arc_buf_hdr_t *hdr = buf->b_hdr;
1604 
1605         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1606                 return;
1607 
1608         ASSERT(HDR_HAS_L1HDR(hdr));
1609 
1610         mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1611         if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1612                 ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1613                 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1614                 return;
1615         } else if (ARC_BUF_COMPRESSED(buf)) {
1616                 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1617                 return;
1618         }
1619 
1620         ASSERT(!ARC_BUF_COMPRESSED(buf));
1621         hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1622             KM_SLEEP);
1623         fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1624             hdr->b_l1hdr.b_freeze_cksum);
1625         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1626         arc_buf_watch(buf);
1627 }
1628 
1629 #ifndef _KERNEL
1630 typedef struct procctl {
1631         long cmd;
1632         prwatch_t prwatch;
1633 } procctl_t;
1634 #endif
1635 
1636 /* ARGSUSED */
1637 static void
1638 arc_buf_unwatch(arc_buf_t *buf)
1639 {
1640 #ifndef _KERNEL
1641         if (arc_watch) {
1642                 int result;
1643                 procctl_t ctl;
1644                 ctl.cmd = PCWATCH;
1645                 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1646                 ctl.prwatch.pr_size = 0;
1647                 ctl.prwatch.pr_wflags = 0;
1648                 result = write(arc_procfd, &ctl, sizeof (ctl));
1649                 ASSERT3U(result, ==, sizeof (ctl));
1650         }
1651 #endif
1652 }
1653 
1654 /* ARGSUSED */
1655 static void
1656 arc_buf_watch(arc_buf_t *buf)
1657 {
1658 #ifndef _KERNEL
1659         if (arc_watch) {
1660                 int result;
1661                 procctl_t ctl;
1662                 ctl.cmd = PCWATCH;
1663                 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1664                 ctl.prwatch.pr_size = arc_buf_size(buf);
1665                 ctl.prwatch.pr_wflags = WA_WRITE;
1666                 result = write(arc_procfd, &ctl, sizeof (ctl));
1667                 ASSERT3U(result, ==, sizeof (ctl));
1668         }
1669 #endif
1670 }
1671 
1672 static arc_buf_contents_t
1673 arc_buf_type(arc_buf_hdr_t *hdr)
1674 {
1675         arc_buf_contents_t type;
1676         if (HDR_ISTYPE_METADATA(hdr)) {
1677                 type = ARC_BUFC_METADATA;
1678         } else {
1679                 type = ARC_BUFC_DATA;
1680         }
1681         VERIFY3U(hdr->b_type, ==, type);
1682         return (type);
1683 }
1684 
1685 boolean_t
1686 arc_is_metadata(arc_buf_t *buf)
1687 {
1688         return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1689 }
1690 
1691 static uint32_t
1692 arc_bufc_to_flags(arc_buf_contents_t type)
1693 {
1694         switch (type) {
1695         case ARC_BUFC_DATA:
1696                 /* metadata field is 0 if buffer contains normal data */
1697                 return (0);
1698         case ARC_BUFC_METADATA:
1699                 return (ARC_FLAG_BUFC_METADATA);
1700         default:
1701                 break;
1702         }
1703         panic("undefined ARC buffer type!");
1704         return ((uint32_t)-1);
1705 }
1706 
1707 void
1708 arc_buf_thaw(arc_buf_t *buf)
1709 {
1710         arc_buf_hdr_t *hdr = buf->b_hdr;
1711 
1712         ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1713         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1714 
1715         arc_cksum_verify(buf);
1716 
1717         /*
1718          * Compressed buffers do not manipulate the b_freeze_cksum or
1719          * allocate b_thawed.
1720          */
1721         if (ARC_BUF_COMPRESSED(buf)) {
1722                 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1723                     arc_hdr_has_uncompressed_buf(hdr));
1724                 return;
1725         }
1726 
1727         ASSERT(HDR_HAS_L1HDR(hdr));
1728         arc_cksum_free(hdr);
1729 
1730         mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1731 #ifdef ZFS_DEBUG
1732         if (zfs_flags & ZFS_DEBUG_MODIFY) {
1733                 if (hdr->b_l1hdr.b_thawed != NULL)
1734                         kmem_free(hdr->b_l1hdr.b_thawed, 1);
1735                 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1736         }
1737 #endif
1738 
1739         mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1740 
1741         arc_buf_unwatch(buf);
1742 }
1743 
1744 void
1745 arc_buf_freeze(arc_buf_t *buf)
1746 {
1747         arc_buf_hdr_t *hdr = buf->b_hdr;
1748         kmutex_t *hash_lock;
1749 
1750         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1751                 return;
1752 
1753         if (ARC_BUF_COMPRESSED(buf)) {
1754                 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1755                     arc_hdr_has_uncompressed_buf(hdr));
1756                 return;
1757         }
1758 
1759         hash_lock = HDR_LOCK(hdr);
1760         mutex_enter(hash_lock);
1761 
1762         ASSERT(HDR_HAS_L1HDR(hdr));
1763         ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1764             hdr->b_l1hdr.b_state == arc_anon);
1765         arc_cksum_compute(buf);
1766         mutex_exit(hash_lock);
1767 }
1768 
1769 /*
1770  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1771  * the following functions should be used to ensure that the flags are
1772  * updated in a thread-safe way. When manipulating the flags either
1773  * the hash_lock must be held or the hdr must be undiscoverable. This
1774  * ensures that we're not racing with any other threads when updating
1775  * the flags.
1776  */
1777 static inline void
1778 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1779 {
1780         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1781         hdr->b_flags |= flags;
1782 }
1783 
1784 static inline void
1785 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1786 {
1787         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1788         hdr->b_flags &= ~flags;
1789 }
1790 
1791 /*
1792  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1793  * done in a special way since we have to clear and set bits
1794  * at the same time. Consumers that wish to set the compression bits
1795  * must use this function to ensure that the flags are updated in
1796  * thread-safe manner.
1797  */
1798 static void
1799 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1800 {
1801         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1802 
1803         /*
1804          * Holes and embedded blocks will always have a psize = 0 so
1805          * we ignore the compression of the blkptr and set the
1806          * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1807          * Holes and embedded blocks remain anonymous so we don't
1808          * want to uncompress them. Mark them as uncompressed.
1809          */
1810         if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1811                 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1812                 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1813                 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1814                 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1815         } else {
1816                 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1817                 HDR_SET_COMPRESS(hdr, cmp);
1818                 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1819                 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1820         }
1821 }
1822 
1823 /*
1824  * Looks for another buf on the same hdr which has the data decompressed, copies
1825  * from it, and returns true. If no such buf exists, returns false.
1826  */
1827 static boolean_t
1828 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1829 {
1830         arc_buf_hdr_t *hdr = buf->b_hdr;
1831         boolean_t copied = B_FALSE;
1832 
1833         ASSERT(HDR_HAS_L1HDR(hdr));
1834         ASSERT3P(buf->b_data, !=, NULL);
1835         ASSERT(!ARC_BUF_COMPRESSED(buf));
1836 
1837         for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1838             from = from->b_next) {
1839                 /* can't use our own data buffer */
1840                 if (from == buf) {
1841                         continue;
1842                 }
1843 
1844                 if (!ARC_BUF_COMPRESSED(from)) {
1845                         bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1846                         copied = B_TRUE;
1847                         break;
1848                 }
1849         }
1850 
1851         /*
1852          * There were no decompressed bufs, so there should not be a
1853          * checksum on the hdr either.
1854          */
1855         EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1856 
1857         return (copied);
1858 }
1859 
1860 /*
1861  * Given a buf that has a data buffer attached to it, this function will
1862  * efficiently fill the buf with data of the specified compression setting from
1863  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1864  * are already sharing a data buf, no copy is performed.
1865  *
1866  * If the buf is marked as compressed but uncompressed data was requested, this
1867  * will allocate a new data buffer for the buf, remove that flag, and fill the
1868  * buf with uncompressed data. You can't request a compressed buf on a hdr with
1869  * uncompressed data, and (since we haven't added support for it yet) if you
1870  * want compressed data your buf must already be marked as compressed and have
1871  * the correct-sized data buffer.
1872  */
1873 static int
1874 arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
1875 {
1876         arc_buf_hdr_t *hdr = buf->b_hdr;
1877         boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
1878         dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1879 
1880         ASSERT3P(buf->b_data, !=, NULL);
1881         IMPLY(compressed, hdr_compressed);
1882         IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1883 
1884         if (hdr_compressed == compressed) {
1885                 if (!arc_buf_is_shared(buf)) {
1886                         abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1887                             arc_buf_size(buf));
1888                 }
1889         } else {
1890                 ASSERT(hdr_compressed);
1891                 ASSERT(!compressed);
1892                 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1893 
1894                 /*
1895                  * If the buf is sharing its data with the hdr, unlink it and
1896                  * allocate a new data buffer for the buf.
1897                  */
1898                 if (arc_buf_is_shared(buf)) {
1899                         ASSERT(ARC_BUF_COMPRESSED(buf));
1900 
1901                         /* We need to give the buf it's own b_data */
1902                         buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
1903                         buf->b_data =
1904                             arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1905                         arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1906 
1907                         /* Previously overhead was 0; just add new overhead */
1908                         ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
1909                 } else if (ARC_BUF_COMPRESSED(buf)) {
1910                         /* We need to reallocate the buf's b_data */
1911                         arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1912                             buf);
1913                         buf->b_data =
1914                             arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1915 
1916                         /* We increased the size of b_data; update overhead */
1917                         ARCSTAT_INCR(arcstat_overhead_size,
1918                             HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
1919                 }
1920 
1921                 /*
1922                  * Regardless of the buf's previous compression settings, it
1923                  * should not be compressed at the end of this function.
1924                  */
1925                 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1926 
1927                 /*
1928                  * Try copying the data from another buf which already has a
1929                  * decompressed version. If that's not possible, it's time to
1930                  * bite the bullet and decompress the data from the hdr.
1931                  */
1932                 if (arc_buf_try_copy_decompressed_data(buf)) {
1933                         /* Skip byteswapping and checksumming (already done) */
1934                         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
1935                         return (0);
1936                 } else {
1937                         int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1938                             hdr->b_l1hdr.b_pabd, buf->b_data,
1939                             HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1940 
1941                         /*
1942                          * Absent hardware errors or software bugs, this should
1943                          * be impossible, but log it anyway so we can debug it.
1944                          */
1945                         if (error != 0) {
1946                                 zfs_dbgmsg(
1947                                     "hdr %p, compress %d, psize %d, lsize %d",
1948                                     hdr, HDR_GET_COMPRESS(hdr),
1949                                     HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1950                                 return (SET_ERROR(EIO));
1951                         }
1952                 }
1953         }
1954 
1955         /* Byteswap the buf's data if necessary */
1956         if (bswap != DMU_BSWAP_NUMFUNCS) {
1957                 ASSERT(!HDR_SHARED_DATA(hdr));
1958                 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
1959                 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
1960         }
1961 
1962         /* Compute the hdr's checksum if necessary */
1963         arc_cksum_compute(buf);
1964 
1965         return (0);
1966 }
1967 
1968 int
1969 arc_decompress(arc_buf_t *buf)
1970 {
1971         return (arc_buf_fill(buf, B_FALSE));
1972 }
1973 
1974 /*
1975  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1976  */
1977 static uint64_t
1978 arc_hdr_size(arc_buf_hdr_t *hdr)
1979 {
1980         uint64_t size;
1981 
1982         if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1983             HDR_GET_PSIZE(hdr) > 0) {
1984                 size = HDR_GET_PSIZE(hdr);
1985         } else {
1986                 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1987                 size = HDR_GET_LSIZE(hdr);
1988         }
1989         return (size);
1990 }
1991 
1992 /*
1993  * Increment the amount of evictable space in the arc_state_t's refcount.
1994  * We account for the space used by the hdr and the arc buf individually
1995  * so that we can add and remove them from the refcount individually.
1996  */
1997 static void
1998 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
1999 {
2000         arc_buf_contents_t type = arc_buf_type(hdr);
2001 
2002         ASSERT(HDR_HAS_L1HDR(hdr));
2003 
2004         if (GHOST_STATE(state)) {
2005                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2006                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2007                 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2008                 (void) refcount_add_many(&state->arcs_esize[type],
2009                     HDR_GET_LSIZE(hdr), hdr);
2010                 return;
2011         }
2012 
2013         ASSERT(!GHOST_STATE(state));
2014         if (hdr->b_l1hdr.b_pabd != NULL) {
2015                 (void) refcount_add_many(&state->arcs_esize[type],
2016                     arc_hdr_size(hdr), hdr);
2017         }
2018         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2019             buf = buf->b_next) {
2020                 if (arc_buf_is_shared(buf))
2021                         continue;
2022                 (void) refcount_add_many(&state->arcs_esize[type],
2023                     arc_buf_size(buf), buf);
2024         }
2025 }
2026 
2027 /*
2028  * Decrement the amount of evictable space in the arc_state_t's refcount.
2029  * We account for the space used by the hdr and the arc buf individually
2030  * so that we can add and remove them from the refcount individually.
2031  */
2032 static void
2033 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2034 {
2035         arc_buf_contents_t type = arc_buf_type(hdr);
2036 
2037         ASSERT(HDR_HAS_L1HDR(hdr));
2038 
2039         if (GHOST_STATE(state)) {
2040                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2041                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2042                 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2043                 (void) refcount_remove_many(&state->arcs_esize[type],
2044                     HDR_GET_LSIZE(hdr), hdr);
2045                 return;
2046         }
2047 
2048         ASSERT(!GHOST_STATE(state));
2049         if (hdr->b_l1hdr.b_pabd != NULL) {
2050                 (void) refcount_remove_many(&state->arcs_esize[type],
2051                     arc_hdr_size(hdr), hdr);
2052         }
2053         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2054             buf = buf->b_next) {
2055                 if (arc_buf_is_shared(buf))
2056                         continue;
2057                 (void) refcount_remove_many(&state->arcs_esize[type],
2058                     arc_buf_size(buf), buf);
2059         }
2060 }
2061 
2062 /*
2063  * Add a reference to this hdr indicating that someone is actively
2064  * referencing that memory. When the refcount transitions from 0 to 1,
2065  * we remove it from the respective arc_state_t list to indicate that
2066  * it is not evictable.
2067  */
2068 static void
2069 add_reference(arc_buf_hdr_t *hdr, void *tag)
2070 {
2071         ASSERT(HDR_HAS_L1HDR(hdr));
2072         if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2073                 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2074                 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2075                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2076         }
2077 
2078         arc_state_t *state = hdr->b_l1hdr.b_state;
2079 
2080         if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2081             (state != arc_anon)) {
2082                 /* We don't use the L2-only state list. */
2083                 if (state != arc_l2c_only) {
2084                         multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2085                             hdr);
2086                         arc_evictable_space_decrement(hdr, state);
2087                 }
2088                 /* remove the prefetch flag if we get a reference */
2089                 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2090         }
2091 }
2092 
2093 /*
2094  * Remove a reference from this hdr. When the reference transitions from
2095  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2096  * list making it eligible for eviction.
2097  */
2098 static int
2099 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2100 {
2101         int cnt;
2102         arc_state_t *state = hdr->b_l1hdr.b_state;
2103 
2104         ASSERT(HDR_HAS_L1HDR(hdr));
2105         ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2106         ASSERT(!GHOST_STATE(state));
2107 
2108         /*
2109          * arc_l2c_only counts as a ghost state so we don't need to explicitly
2110          * check to prevent usage of the arc_l2c_only list.
2111          */
2112         if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2113             (state != arc_anon)) {
2114                 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2115                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2116                 arc_evictable_space_increment(hdr, state);
2117         }
2118         return (cnt);
2119 }
2120 
2121 /*
2122  * Move the supplied buffer to the indicated state. The hash lock
2123  * for the buffer must be held by the caller.
2124  */
2125 static void
2126 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2127     kmutex_t *hash_lock)
2128 {
2129         arc_state_t *old_state;
2130         int64_t refcnt;
2131         uint32_t bufcnt;
2132         boolean_t update_old, update_new;
2133         arc_buf_contents_t buftype = arc_buf_type(hdr);
2134 
2135         /*
2136          * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2137          * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2138          * L1 hdr doesn't always exist when we change state to arc_anon before
2139          * destroying a header, in which case reallocating to add the L1 hdr is
2140          * pointless.
2141          */
2142         if (HDR_HAS_L1HDR(hdr)) {
2143                 old_state = hdr->b_l1hdr.b_state;
2144                 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2145                 bufcnt = hdr->b_l1hdr.b_bufcnt;
2146                 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2147         } else {
2148                 old_state = arc_l2c_only;
2149                 refcnt = 0;
2150                 bufcnt = 0;
2151                 update_old = B_FALSE;
2152         }
2153         update_new = update_old;
2154 
2155         ASSERT(MUTEX_HELD(hash_lock));
2156         ASSERT3P(new_state, !=, old_state);
2157         ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2158         ASSERT(old_state != arc_anon || bufcnt <= 1);
2159 
2160         /*
2161          * If this buffer is evictable, transfer it from the
2162          * old state list to the new state list.
2163          */
2164         if (refcnt == 0) {
2165                 if (old_state != arc_anon && old_state != arc_l2c_only) {
2166                         ASSERT(HDR_HAS_L1HDR(hdr));
2167                         multilist_remove(old_state->arcs_list[buftype], hdr);
2168 
2169                         if (GHOST_STATE(old_state)) {
2170                                 ASSERT0(bufcnt);
2171                                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2172                                 update_old = B_TRUE;
2173                         }
2174                         arc_evictable_space_decrement(hdr, old_state);
2175                 }
2176                 if (new_state != arc_anon && new_state != arc_l2c_only) {
2177 
2178                         /*
2179                          * An L1 header always exists here, since if we're
2180                          * moving to some L1-cached state (i.e. not l2c_only or
2181                          * anonymous), we realloc the header to add an L1hdr
2182                          * beforehand.
2183                          */
2184                         ASSERT(HDR_HAS_L1HDR(hdr));
2185                         multilist_insert(new_state->arcs_list[buftype], hdr);
2186 
2187                         if (GHOST_STATE(new_state)) {
2188                                 ASSERT0(bufcnt);
2189                                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2190                                 update_new = B_TRUE;
2191                         }
2192                         arc_evictable_space_increment(hdr, new_state);
2193                 }
2194         }
2195 
2196         ASSERT(!HDR_EMPTY(hdr));
2197         if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2198                 buf_hash_remove(hdr);
2199 
2200         /* adjust state sizes (ignore arc_l2c_only) */
2201 
2202         if (update_new && new_state != arc_l2c_only) {
2203                 ASSERT(HDR_HAS_L1HDR(hdr));
2204                 if (GHOST_STATE(new_state)) {
2205                         ASSERT0(bufcnt);
2206 
2207                         /*
2208                          * When moving a header to a ghost state, we first
2209                          * remove all arc buffers. Thus, we'll have a
2210                          * bufcnt of zero, and no arc buffer to use for
2211                          * the reference. As a result, we use the arc
2212                          * header pointer for the reference.
2213                          */
2214                         (void) refcount_add_many(&new_state->arcs_size,
2215                             HDR_GET_LSIZE(hdr), hdr);
2216                         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2217                 } else {
2218                         uint32_t buffers = 0;
2219 
2220                         /*
2221                          * Each individual buffer holds a unique reference,
2222                          * thus we must remove each of these references one
2223                          * at a time.
2224                          */
2225                         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2226                             buf = buf->b_next) {
2227                                 ASSERT3U(bufcnt, !=, 0);
2228                                 buffers++;
2229 
2230                                 /*
2231                                  * When the arc_buf_t is sharing the data
2232                                  * block with the hdr, the owner of the
2233                                  * reference belongs to the hdr. Only
2234                                  * add to the refcount if the arc_buf_t is
2235                                  * not shared.
2236                                  */
2237                                 if (arc_buf_is_shared(buf))
2238                                         continue;
2239 
2240                                 (void) refcount_add_many(&new_state->arcs_size,
2241                                     arc_buf_size(buf), buf);
2242                         }
2243                         ASSERT3U(bufcnt, ==, buffers);
2244 
2245                         if (hdr->b_l1hdr.b_pabd != NULL) {
2246                                 (void) refcount_add_many(&new_state->arcs_size,
2247                                     arc_hdr_size(hdr), hdr);
2248                         } else {
2249                                 ASSERT(GHOST_STATE(old_state));
2250                         }
2251                 }
2252         }
2253 
2254         if (update_old && old_state != arc_l2c_only) {
2255                 ASSERT(HDR_HAS_L1HDR(hdr));
2256                 if (GHOST_STATE(old_state)) {
2257                         ASSERT0(bufcnt);
2258                         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2259 
2260                         /*
2261                          * When moving a header off of a ghost state,
2262                          * the header will not contain any arc buffers.
2263                          * We use the arc header pointer for the reference
2264                          * which is exactly what we did when we put the
2265                          * header on the ghost state.
2266                          */
2267 
2268                         (void) refcount_remove_many(&old_state->arcs_size,
2269                             HDR_GET_LSIZE(hdr), hdr);
2270                 } else {
2271                         uint32_t buffers = 0;
2272 
2273                         /*
2274                          * Each individual buffer holds a unique reference,
2275                          * thus we must remove each of these references one
2276                          * at a time.
2277                          */
2278                         for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2279                             buf = buf->b_next) {
2280                                 ASSERT3U(bufcnt, !=, 0);
2281                                 buffers++;
2282 
2283                                 /*
2284                                  * When the arc_buf_t is sharing the data
2285                                  * block with the hdr, the owner of the
2286                                  * reference belongs to the hdr. Only
2287                                  * add to the refcount if the arc_buf_t is
2288                                  * not shared.
2289                                  */
2290                                 if (arc_buf_is_shared(buf))
2291                                         continue;
2292 
2293                                 (void) refcount_remove_many(
2294                                     &old_state->arcs_size, arc_buf_size(buf),
2295                                     buf);
2296                         }
2297                         ASSERT3U(bufcnt, ==, buffers);
2298                         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2299                         (void) refcount_remove_many(
2300                             &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2301                 }
2302         }
2303 
2304         if (HDR_HAS_L1HDR(hdr))
2305                 hdr->b_l1hdr.b_state = new_state;
2306 
2307         /*
2308          * L2 headers should never be on the L2 state list since they don't
2309          * have L1 headers allocated.
2310          */
2311         ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2312             multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2313 }
2314 
2315 void
2316 arc_space_consume(uint64_t space, arc_space_type_t type)
2317 {
2318         ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2319 
2320         switch (type) {
2321         case ARC_SPACE_DATA:
2322                 ARCSTAT_INCR(arcstat_data_size, space);
2323                 break;
2324         case ARC_SPACE_META:
2325                 ARCSTAT_INCR(arcstat_metadata_size, space);
2326                 break;
2327         case ARC_SPACE_OTHER:
2328                 ARCSTAT_INCR(arcstat_other_size, space);
2329                 break;
2330         case ARC_SPACE_HDRS:
2331                 ARCSTAT_INCR(arcstat_hdr_size, space);
2332                 break;
2333         case ARC_SPACE_L2HDRS:
2334                 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2335                 break;
2336         }
2337 
2338         if (type != ARC_SPACE_DATA)
2339                 ARCSTAT_INCR(arcstat_meta_used, space);
2340 
2341         atomic_add_64(&arc_size, space);
2342 }
2343 
2344 void
2345 arc_space_return(uint64_t space, arc_space_type_t type)
2346 {
2347         ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2348 
2349         switch (type) {
2350         case ARC_SPACE_DATA:
2351                 ARCSTAT_INCR(arcstat_data_size, -space);
2352                 break;
2353         case ARC_SPACE_META:
2354                 ARCSTAT_INCR(arcstat_metadata_size, -space);
2355                 break;
2356         case ARC_SPACE_OTHER:
2357                 ARCSTAT_INCR(arcstat_other_size, -space);
2358                 break;
2359         case ARC_SPACE_HDRS:
2360                 ARCSTAT_INCR(arcstat_hdr_size, -space);
2361                 break;
2362         case ARC_SPACE_L2HDRS:
2363                 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2364                 break;
2365         }
2366 
2367         if (type != ARC_SPACE_DATA) {
2368                 ASSERT(arc_meta_used >= space);
2369                 if (arc_meta_max < arc_meta_used)
2370                         arc_meta_max = arc_meta_used;
2371                 ARCSTAT_INCR(arcstat_meta_used, -space);
2372         }
2373 
2374         ASSERT(arc_size >= space);
2375         atomic_add_64(&arc_size, -space);
2376 }
2377 
2378 /*
2379  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2380  * with the hdr's b_pabd.
2381  */
2382 static boolean_t
2383 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2384 {
2385         /*
2386          * The criteria for sharing a hdr's data are:
2387          * 1. the hdr's compression matches the buf's compression
2388          * 2. the hdr doesn't need to be byteswapped
2389          * 3. the hdr isn't already being shared
2390          * 4. the buf is either compressed or it is the last buf in the hdr list
2391          *
2392          * Criterion #4 maintains the invariant that shared uncompressed
2393          * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2394          * might ask, "if a compressed buf is allocated first, won't that be the
2395          * last thing in the list?", but in that case it's impossible to create
2396          * a shared uncompressed buf anyway (because the hdr must be compressed
2397          * to have the compressed buf). You might also think that #3 is
2398          * sufficient to make this guarantee, however it's possible
2399          * (specifically in the rare L2ARC write race mentioned in
2400          * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2401          * is sharable, but wasn't at the time of its allocation. Rather than
2402          * allow a new shared uncompressed buf to be created and then shuffle
2403          * the list around to make it the last element, this simply disallows
2404          * sharing if the new buf isn't the first to be added.
2405          */
2406         ASSERT3P(buf->b_hdr, ==, hdr);
2407         boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2408         boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2409         return (buf_compressed == hdr_compressed &&
2410             hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2411             !HDR_SHARED_DATA(hdr) &&
2412             (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2413 }
2414 
2415 /*
2416  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2417  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2418  * copy was made successfully, or an error code otherwise.
2419  */
2420 static int
2421 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2422     boolean_t fill, arc_buf_t **ret)
2423 {
2424         arc_buf_t *buf;
2425 
2426         ASSERT(HDR_HAS_L1HDR(hdr));
2427         ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2428         VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2429             hdr->b_type == ARC_BUFC_METADATA);
2430         ASSERT3P(ret, !=, NULL);
2431         ASSERT3P(*ret, ==, NULL);
2432 
2433         buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2434         buf->b_hdr = hdr;
2435         buf->b_data = NULL;
2436         buf->b_next = hdr->b_l1hdr.b_buf;
2437         buf->b_flags = 0;
2438 
2439         add_reference(hdr, tag);
2440 
2441         /*
2442          * We're about to change the hdr's b_flags. We must either
2443          * hold the hash_lock or be undiscoverable.
2444          */
2445         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2446 
2447         /*
2448          * Only honor requests for compressed bufs if the hdr is actually
2449          * compressed.
2450          */
2451         if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2452                 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2453 
2454         /*
2455          * If the hdr's data can be shared then we share the data buffer and
2456          * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2457          * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2458          * buffer to store the buf's data.
2459          *
2460          * There are two additional restrictions here because we're sharing
2461          * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2462          * actively involved in an L2ARC write, because if this buf is used by
2463          * an arc_write() then the hdr's data buffer will be released when the
2464          * write completes, even though the L2ARC write might still be using it.
2465          * Second, the hdr's ABD must be linear so that the buf's user doesn't
2466          * need to be ABD-aware.
2467          */
2468         boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2469             abd_is_linear(hdr->b_l1hdr.b_pabd);
2470 
2471         /* Set up b_data and sharing */
2472         if (can_share) {
2473                 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2474                 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2475                 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2476         } else {
2477                 buf->b_data =
2478                     arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2479                 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2480         }
2481         VERIFY3P(buf->b_data, !=, NULL);
2482 
2483         hdr->b_l1hdr.b_buf = buf;
2484         hdr->b_l1hdr.b_bufcnt += 1;
2485 
2486         /*
2487          * If the user wants the data from the hdr, we need to either copy or
2488          * decompress the data.
2489          */
2490         if (fill) {
2491                 return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2492         }
2493 
2494         return (0);
2495 }
2496 
2497 static char *arc_onloan_tag = "onloan";
2498 
2499 static inline void
2500 arc_loaned_bytes_update(int64_t delta)
2501 {
2502         atomic_add_64(&arc_loaned_bytes, delta);
2503 
2504         /* assert that it did not wrap around */
2505         ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2506 }
2507 
2508 /*
2509  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2510  * flight data by arc_tempreserve_space() until they are "returned". Loaned
2511  * buffers must be returned to the arc before they can be used by the DMU or
2512  * freed.
2513  */
2514 arc_buf_t *
2515 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2516 {
2517         arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2518             is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2519 
2520         arc_loaned_bytes_update(size);
2521 
2522         return (buf);
2523 }
2524 
2525 arc_buf_t *
2526 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2527     enum zio_compress compression_type)
2528 {
2529         arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2530             psize, lsize, compression_type);
2531 
2532         arc_loaned_bytes_update(psize);
2533 
2534         return (buf);
2535 }
2536 
2537 
2538 /*
2539  * Return a loaned arc buffer to the arc.
2540  */
2541 void
2542 arc_return_buf(arc_buf_t *buf, void *tag)
2543 {
2544         arc_buf_hdr_t *hdr = buf->b_hdr;
2545 
2546         ASSERT3P(buf->b_data, !=, NULL);
2547         ASSERT(HDR_HAS_L1HDR(hdr));
2548         (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2549         (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2550 
2551         arc_loaned_bytes_update(-arc_buf_size(buf));
2552 }
2553 
2554 /* Detach an arc_buf from a dbuf (tag) */
2555 void
2556 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2557 {
2558         arc_buf_hdr_t *hdr = buf->b_hdr;
2559 
2560         ASSERT3P(buf->b_data, !=, NULL);
2561         ASSERT(HDR_HAS_L1HDR(hdr));
2562         (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2563         (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2564 
2565         arc_loaned_bytes_update(arc_buf_size(buf));
2566 }
2567 
2568 static void
2569 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2570 {
2571         l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2572 
2573         df->l2df_abd = abd;
2574         df->l2df_size = size;
2575         df->l2df_type = type;
2576         mutex_enter(&l2arc_free_on_write_mtx);
2577         list_insert_head(l2arc_free_on_write, df);
2578         mutex_exit(&l2arc_free_on_write_mtx);
2579 }
2580 
2581 static void
2582 arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2583 {
2584         arc_state_t *state = hdr->b_l1hdr.b_state;
2585         arc_buf_contents_t type = arc_buf_type(hdr);
2586         uint64_t size = arc_hdr_size(hdr);
2587 
2588         /* protected by hash lock, if in the hash table */
2589         if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2590                 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2591                 ASSERT(state != arc_anon && state != arc_l2c_only);
2592 
2593                 (void) refcount_remove_many(&state->arcs_esize[type],
2594                     size, hdr);
2595         }
2596         (void) refcount_remove_many(&state->arcs_size, size, hdr);
2597         if (type == ARC_BUFC_METADATA) {
2598                 arc_space_return(size, ARC_SPACE_META);
2599         } else {
2600                 ASSERT(type == ARC_BUFC_DATA);
2601                 arc_space_return(size, ARC_SPACE_DATA);
2602         }
2603 
2604         l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2605 }
2606 
2607 /*
2608  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2609  * data buffer, we transfer the refcount ownership to the hdr and update
2610  * the appropriate kstats.
2611  */
2612 static void
2613 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2614 {
2615         arc_state_t *state = hdr->b_l1hdr.b_state;
2616 
2617         ASSERT(arc_can_share(hdr, buf));
2618         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2619         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2620 
2621         /*
2622          * Start sharing the data buffer. We transfer the
2623          * refcount ownership to the hdr since it always owns
2624          * the refcount whenever an arc_buf_t is shared.
2625          */
2626         refcount_transfer_ownership(&state->arcs_size, buf, hdr);
2627         hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2628         abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2629             HDR_ISTYPE_METADATA(hdr));
2630         arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2631         buf->b_flags |= ARC_BUF_FLAG_SHARED;
2632 
2633         /*
2634          * Since we've transferred ownership to the hdr we need
2635          * to increment its compressed and uncompressed kstats and
2636          * decrement the overhead size.
2637          */
2638         ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2639         ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2640         ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2641 }
2642 
2643 static void
2644 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2645 {
2646         arc_state_t *state = hdr->b_l1hdr.b_state;
2647 
2648         ASSERT(arc_buf_is_shared(buf));
2649         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2650         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2651 
2652         /*
2653          * We are no longer sharing this buffer so we need
2654          * to transfer its ownership to the rightful owner.
2655          */
2656         refcount_transfer_ownership(&state->arcs_size, hdr, buf);
2657         arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2658         abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2659         abd_put(hdr->b_l1hdr.b_pabd);
2660         hdr->b_l1hdr.b_pabd = NULL;
2661         buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2662 
2663         /*
2664          * Since the buffer is no longer shared between
2665          * the arc buf and the hdr, count it as overhead.
2666          */
2667         ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2668         ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2669         ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2670 }
2671 
2672 /*
2673  * Remove an arc_buf_t from the hdr's buf list and return the last
2674  * arc_buf_t on the list. If no buffers remain on the list then return
2675  * NULL.
2676  */
2677 static arc_buf_t *
2678 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2679 {
2680         ASSERT(HDR_HAS_L1HDR(hdr));
2681         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2682 
2683         arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2684         arc_buf_t *lastbuf = NULL;
2685 
2686         /*
2687          * Remove the buf from the hdr list and locate the last
2688          * remaining buffer on the list.
2689          */
2690         while (*bufp != NULL) {
2691                 if (*bufp == buf)
2692                         *bufp = buf->b_next;
2693 
2694                 /*
2695                  * If we've removed a buffer in the middle of
2696                  * the list then update the lastbuf and update
2697                  * bufp.
2698                  */
2699                 if (*bufp != NULL) {
2700                         lastbuf = *bufp;
2701                         bufp = &(*bufp)->b_next;
2702                 }
2703         }
2704         buf->b_next = NULL;
2705         ASSERT3P(lastbuf, !=, buf);
2706         IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2707         IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2708         IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2709 
2710         return (lastbuf);
2711 }
2712 
2713 /*
2714  * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2715  * list and free it.
2716  */
2717 static void
2718 arc_buf_destroy_impl(arc_buf_t *buf)
2719 {
2720         arc_buf_hdr_t *hdr = buf->b_hdr;
2721 
2722         /*
2723          * Free up the data associated with the buf but only if we're not
2724          * sharing this with the hdr. If we are sharing it with the hdr, the
2725          * hdr is responsible for doing the free.
2726          */
2727         if (buf->b_data != NULL) {
2728                 /*
2729                  * We're about to change the hdr's b_flags. We must either
2730                  * hold the hash_lock or be undiscoverable.
2731                  */
2732                 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2733 
2734                 arc_cksum_verify(buf);
2735                 arc_buf_unwatch(buf);
2736 
2737                 if (arc_buf_is_shared(buf)) {
2738                         arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2739                 } else {
2740                         uint64_t size = arc_buf_size(buf);
2741                         arc_free_data_buf(hdr, buf->b_data, size, buf);
2742                         ARCSTAT_INCR(arcstat_overhead_size, -size);
2743                 }
2744                 buf->b_data = NULL;
2745 
2746                 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2747                 hdr->b_l1hdr.b_bufcnt -= 1;
2748         }
2749 
2750         arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
2751 
2752         if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2753                 /*
2754                  * If the current arc_buf_t is sharing its data buffer with the
2755                  * hdr, then reassign the hdr's b_pabd to share it with the new
2756                  * buffer at the end of the list. The shared buffer is always
2757                  * the last one on the hdr's buffer list.
2758                  *
2759                  * There is an equivalent case for compressed bufs, but since
2760                  * they aren't guaranteed to be the last buf in the list and
2761                  * that is an exceedingly rare case, we just allow that space be
2762                  * wasted temporarily.
2763                  */
2764                 if (lastbuf != NULL) {
2765                         /* Only one buf can be shared at once */
2766                         VERIFY(!arc_buf_is_shared(lastbuf));
2767                         /* hdr is uncompressed so can't have compressed buf */
2768                         VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
2769 
2770                         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2771                         arc_hdr_free_pabd(hdr);
2772 
2773                         /*
2774                          * We must setup a new shared block between the
2775                          * last buffer and the hdr. The data would have
2776                          * been allocated by the arc buf so we need to transfer
2777                          * ownership to the hdr since it's now being shared.
2778                          */
2779                         arc_share_buf(hdr, lastbuf);
2780                 }
2781         } else if (HDR_SHARED_DATA(hdr)) {
2782                 /*
2783                  * Uncompressed shared buffers are always at the end
2784                  * of the list. Compressed buffers don't have the
2785                  * same requirements. This makes it hard to
2786                  * simply assert that the lastbuf is shared so
2787                  * we rely on the hdr's compression flags to determine
2788                  * if we have a compressed, shared buffer.
2789                  */
2790                 ASSERT3P(lastbuf, !=, NULL);
2791                 ASSERT(arc_buf_is_shared(lastbuf) ||
2792                     HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2793         }
2794 
2795         /*
2796          * Free the checksum if we're removing the last uncompressed buf from
2797          * this hdr.
2798          */
2799         if (!arc_hdr_has_uncompressed_buf(hdr)) {
2800                 arc_cksum_free(hdr);
2801         }
2802 
2803         /* clean up the buf */
2804         buf->b_hdr = NULL;
2805         kmem_cache_free(buf_cache, buf);
2806 }
2807 
2808 static void
2809 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
2810 {
2811         ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2812         ASSERT(HDR_HAS_L1HDR(hdr));
2813         ASSERT(!HDR_SHARED_DATA(hdr));
2814 
2815         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2816         hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
2817         hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2818         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2819 
2820         ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2821         ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2822 }
2823 
2824 static void
2825 arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
2826 {
2827         ASSERT(HDR_HAS_L1HDR(hdr));
2828         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2829 
2830         /*
2831          * If the hdr is currently being written to the l2arc then
2832          * we defer freeing the data by adding it to the l2arc_free_on_write
2833          * list. The l2arc will free the data once it's finished
2834          * writing it to the l2arc device.
2835          */
2836         if (HDR_L2_WRITING(hdr)) {
2837                 arc_hdr_free_on_write(hdr);
2838                 ARCSTAT_BUMP(arcstat_l2_free_on_write);
2839         } else {
2840                 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
2841                     arc_hdr_size(hdr), hdr);
2842         }
2843         hdr->b_l1hdr.b_pabd = NULL;
2844         hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2845 
2846         ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2847         ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2848 }
2849 
2850 static arc_buf_hdr_t *
2851 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2852     enum zio_compress compression_type, arc_buf_contents_t type)
2853 {
2854         arc_buf_hdr_t *hdr;
2855 
2856         VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2857 
2858         hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2859         ASSERT(HDR_EMPTY(hdr));
2860         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2861         ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
2862         HDR_SET_PSIZE(hdr, psize);
2863         HDR_SET_LSIZE(hdr, lsize);
2864         hdr->b_spa = spa;
2865         hdr->b_type = type;
2866         hdr->b_flags = 0;
2867         arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2868         arc_hdr_set_compress(hdr, compression_type);
2869 
2870         hdr->b_l1hdr.b_state = arc_anon;
2871         hdr->b_l1hdr.b_arc_access = 0;
2872         hdr->b_l1hdr.b_bufcnt = 0;
2873         hdr->b_l1hdr.b_buf = NULL;
2874 
2875         /*
2876          * Allocate the hdr's buffer. This will contain either
2877          * the compressed or uncompressed data depending on the block
2878          * it references and compressed arc enablement.
2879          */
2880         arc_hdr_alloc_pabd(hdr);
2881         ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2882 
2883         return (hdr);
2884 }
2885 
2886 /*
2887  * Transition between the two allocation states for the arc_buf_hdr struct.
2888  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2889  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2890  * version is used when a cache buffer is only in the L2ARC in order to reduce
2891  * memory usage.
2892  */
2893 static arc_buf_hdr_t *
2894 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2895 {
2896         ASSERT(HDR_HAS_L2HDR(hdr));
2897 
2898         arc_buf_hdr_t *nhdr;
2899         l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2900 
2901         ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2902             (old == hdr_l2only_cache && new == hdr_full_cache));
2903 
2904         nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2905 
2906         ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2907         buf_hash_remove(hdr);
2908 
2909         bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2910 
2911         if (new == hdr_full_cache) {
2912                 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2913                 /*
2914                  * arc_access and arc_change_state need to be aware that a
2915                  * header has just come out of L2ARC, so we set its state to
2916                  * l2c_only even though it's about to change.
2917                  */
2918                 nhdr->b_l1hdr.b_state = arc_l2c_only;
2919 
2920                 /* Verify previous threads set to NULL before freeing */
2921                 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
2922         } else {
2923                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2924                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2925                 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2926 
2927                 /*
2928                  * If we've reached here, We must have been called from
2929                  * arc_evict_hdr(), as such we should have already been
2930                  * removed from any ghost list we were previously on
2931                  * (which protects us from racing with arc_evict_state),
2932                  * thus no locking is needed during this check.
2933                  */
2934                 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2935 
2936                 /*
2937                  * A buffer must not be moved into the arc_l2c_only
2938                  * state if it's not finished being written out to the
2939                  * l2arc device. Otherwise, the b_l1hdr.b_pabd field
2940                  * might try to be accessed, even though it was removed.
2941                  */
2942                 VERIFY(!HDR_L2_WRITING(hdr));
2943                 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2944 
2945 #ifdef ZFS_DEBUG
2946                 if (hdr->b_l1hdr.b_thawed != NULL) {
2947                         kmem_free(hdr->b_l1hdr.b_thawed, 1);
2948                         hdr->b_l1hdr.b_thawed = NULL;
2949                 }
2950 #endif
2951 
2952                 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2953         }
2954         /*
2955          * The header has been reallocated so we need to re-insert it into any
2956          * lists it was on.
2957          */
2958         (void) buf_hash_insert(nhdr, NULL);
2959 
2960         ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
2961 
2962         mutex_enter(&dev->l2ad_mtx);
2963 
2964         /*
2965          * We must place the realloc'ed header back into the list at
2966          * the same spot. Otherwise, if it's placed earlier in the list,
2967          * l2arc_write_buffers() could find it during the function's
2968          * write phase, and try to write it out to the l2arc.
2969          */
2970         list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
2971         list_remove(&dev->l2ad_buflist, hdr);
2972 
2973         mutex_exit(&dev->l2ad_mtx);
2974 
2975         /*
2976          * Since we're using the pointer address as the tag when
2977          * incrementing and decrementing the l2ad_alloc refcount, we
2978          * must remove the old pointer (that we're about to destroy) and
2979          * add the new pointer to the refcount. Otherwise we'd remove
2980          * the wrong pointer address when calling arc_hdr_destroy() later.
2981          */
2982 
2983         (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
2984         (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
2985 
2986         buf_discard_identity(hdr);
2987         kmem_cache_free(old, hdr);
2988 
2989         return (nhdr);
2990 }
2991 
2992 /*
2993  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
2994  * The buf is returned thawed since we expect the consumer to modify it.
2995  */
2996 arc_buf_t *
2997 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
2998 {
2999         arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3000             ZIO_COMPRESS_OFF, type);
3001         ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3002 
3003         arc_buf_t *buf = NULL;
3004         VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
3005         arc_buf_thaw(buf);
3006 
3007         return (buf);
3008 }
3009 
3010 /*
3011  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3012  * for bufs containing metadata.
3013  */
3014 arc_buf_t *
3015 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3016     enum zio_compress compression_type)
3017 {
3018         ASSERT3U(lsize, >, 0);
3019         ASSERT3U(lsize, >=, psize);
3020         ASSERT(compression_type > ZIO_COMPRESS_OFF);
3021         ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
3022 
3023         arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3024             compression_type, ARC_BUFC_DATA);
3025         ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3026 
3027         arc_buf_t *buf = NULL;
3028         VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
3029         arc_buf_thaw(buf);
3030         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3031 
3032         if (!arc_buf_is_shared(buf)) {
3033                 /*
3034                  * To ensure that the hdr has the correct data in it if we call
3035                  * arc_decompress() on this buf before it's been written to
3036                  * disk, it's easiest if we just set up sharing between the
3037                  * buf and the hdr.
3038                  */
3039                 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3040                 arc_hdr_free_pabd(hdr);
3041                 arc_share_buf(hdr, buf);
3042         }
3043 
3044         return (buf);
3045 }
3046 
3047 static void
3048 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3049 {
3050         l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3051         l2arc_dev_t *dev = l2hdr->b_dev;
3052         uint64_t psize = arc_hdr_size(hdr);
3053 
3054         ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3055         ASSERT(HDR_HAS_L2HDR(hdr));
3056 
3057         list_remove(&dev->l2ad_buflist, hdr);
3058 
3059         ARCSTAT_INCR(arcstat_l2_psize, -psize);
3060         ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3061 
3062         vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3063 
3064         (void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3065         arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3066 }
3067 
3068 static void
3069 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3070 {
3071         if (HDR_HAS_L1HDR(hdr)) {
3072                 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3073                     hdr->b_l1hdr.b_bufcnt > 0);
3074                 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3075                 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3076         }
3077         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3078         ASSERT(!HDR_IN_HASH_TABLE(hdr));
3079 
3080         if (!HDR_EMPTY(hdr))
3081                 buf_discard_identity(hdr);
3082 
3083         if (HDR_HAS_L2HDR(hdr)) {
3084                 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3085                 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3086 
3087                 if (!buflist_held)
3088                         mutex_enter(&dev->l2ad_mtx);
3089 
3090                 /*
3091                  * Even though we checked this conditional above, we
3092                  * need to check this again now that we have the
3093                  * l2ad_mtx. This is because we could be racing with
3094                  * another thread calling l2arc_evict() which might have
3095                  * destroyed this header's L2 portion as we were waiting
3096                  * to acquire the l2ad_mtx. If that happens, we don't
3097                  * want to re-destroy the header's L2 portion.
3098                  */
3099                 if (HDR_HAS_L2HDR(hdr))
3100                         arc_hdr_l2hdr_destroy(hdr);
3101 
3102                 if (!buflist_held)
3103                         mutex_exit(&dev->l2ad_mtx);
3104         }
3105 
3106         if (HDR_HAS_L1HDR(hdr)) {
3107                 arc_cksum_free(hdr);
3108 
3109                 while (hdr->b_l1hdr.b_buf != NULL)
3110                         arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3111 
3112 #ifdef ZFS_DEBUG
3113                 if (hdr->b_l1hdr.b_thawed != NULL) {
3114                         kmem_free(hdr->b_l1hdr.b_thawed, 1);
3115                         hdr->b_l1hdr.b_thawed = NULL;
3116                 }
3117 #endif
3118 
3119                 if (hdr->b_l1hdr.b_pabd != NULL) {
3120                         arc_hdr_free_pabd(hdr);
3121                 }
3122         }
3123 
3124         ASSERT3P(hdr->b_hash_next, ==, NULL);
3125         if (HDR_HAS_L1HDR(hdr)) {
3126                 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3127                 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3128                 kmem_cache_free(hdr_full_cache, hdr);
3129         } else {
3130                 kmem_cache_free(hdr_l2only_cache, hdr);
3131         }
3132 }
3133 
3134 void
3135 arc_buf_destroy(arc_buf_t *buf, void* tag)
3136 {
3137         arc_buf_hdr_t *hdr = buf->b_hdr;
3138         kmutex_t *hash_lock = HDR_LOCK(hdr);
3139 
3140         if (hdr->b_l1hdr.b_state == arc_anon) {
3141                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3142                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3143                 VERIFY0(remove_reference(hdr, NULL, tag));
3144                 arc_hdr_destroy(hdr);
3145                 return;
3146         }
3147 
3148         mutex_enter(hash_lock);
3149         ASSERT3P(hdr, ==, buf->b_hdr);
3150         ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3151         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3152         ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3153         ASSERT3P(buf->b_data, !=, NULL);
3154 
3155         (void) remove_reference(hdr, hash_lock, tag);
3156         arc_buf_destroy_impl(buf);
3157         mutex_exit(hash_lock);
3158 }
3159 
3160 /*
3161  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3162  * state of the header is dependent on it's state prior to entering this
3163  * function. The following transitions are possible:
3164  *
3165  *    - arc_mru -> arc_mru_ghost
3166  *    - arc_mfu -> arc_mfu_ghost
3167  *    - arc_mru_ghost -> arc_l2c_only
3168  *    - arc_mru_ghost -> deleted
3169  *    - arc_mfu_ghost -> arc_l2c_only
3170  *    - arc_mfu_ghost -> deleted
3171  */
3172 static int64_t
3173 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3174 {
3175         arc_state_t *evicted_state, *state;
3176         int64_t bytes_evicted = 0;
3177 
3178         ASSERT(MUTEX_HELD(hash_lock));
3179         ASSERT(HDR_HAS_L1HDR(hdr));
3180 
3181         state = hdr->b_l1hdr.b_state;
3182         if (GHOST_STATE(state)) {
3183                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3184                 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3185 
3186                 /*
3187                  * l2arc_write_buffers() relies on a header's L1 portion
3188                  * (i.e. its b_pabd field) during it's write phase.
3189                  * Thus, we cannot push a header onto the arc_l2c_only
3190                  * state (removing it's L1 piece) until the header is
3191                  * done being written to the l2arc.
3192                  */
3193                 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3194                         ARCSTAT_BUMP(arcstat_evict_l2_skip);
3195                         return (bytes_evicted);
3196                 }
3197 
3198                 ARCSTAT_BUMP(arcstat_deleted);
3199                 bytes_evicted += HDR_GET_LSIZE(hdr);
3200 
3201                 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3202 
3203                 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3204                 if (HDR_HAS_L2HDR(hdr)) {
3205                         /*
3206                          * This buffer is cached on the 2nd Level ARC;
3207                          * don't destroy the header.
3208                          */
3209                         arc_change_state(arc_l2c_only, hdr, hash_lock);
3210                         /*
3211                          * dropping from L1+L2 cached to L2-only,
3212                          * realloc to remove the L1 header.
3213                          */
3214                         hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3215                             hdr_l2only_cache);
3216                 } else {
3217                         arc_change_state(arc_anon, hdr, hash_lock);
3218                         arc_hdr_destroy(hdr);
3219                 }
3220                 return (bytes_evicted);
3221         }
3222 
3223         ASSERT(state == arc_mru || state == arc_mfu);
3224         evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3225 
3226         /* prefetch buffers have a minimum lifespan */
3227         if (HDR_IO_IN_PROGRESS(hdr) ||
3228             ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3229             ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3230             arc_min_prefetch_lifespan)) {
3231                 ARCSTAT_BUMP(arcstat_evict_skip);
3232                 return (bytes_evicted);
3233         }
3234 
3235         ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3236         while (hdr->b_l1hdr.b_buf) {
3237                 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3238                 if (!mutex_tryenter(&buf->b_evict_lock)) {
3239                         ARCSTAT_BUMP(arcstat_mutex_miss);
3240                         break;
3241                 }
3242                 if (buf->b_data != NULL)
3243                         bytes_evicted += HDR_GET_LSIZE(hdr);
3244                 mutex_exit(&buf->b_evict_lock);
3245                 arc_buf_destroy_impl(buf);
3246         }
3247 
3248         if (HDR_HAS_L2HDR(hdr)) {
3249                 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3250         } else {
3251                 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3252                         ARCSTAT_INCR(arcstat_evict_l2_eligible,
3253                             HDR_GET_LSIZE(hdr));
3254                 } else {
3255                         ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3256                             HDR_GET_LSIZE(hdr));
3257                 }
3258         }
3259 
3260         if (hdr->b_l1hdr.b_bufcnt == 0) {
3261                 arc_cksum_free(hdr);
3262 
3263                 bytes_evicted += arc_hdr_size(hdr);
3264 
3265                 /*
3266                  * If this hdr is being evicted and has a compressed
3267                  * buffer then we discard it here before we change states.
3268                  * This ensures that the accounting is updated correctly
3269                  * in arc_free_data_impl().
3270                  */
3271                 arc_hdr_free_pabd(hdr);
3272 
3273                 arc_change_state(evicted_state, hdr, hash_lock);
3274                 ASSERT(HDR_IN_HASH_TABLE(hdr));
3275                 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3276                 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3277         }
3278 
3279         return (bytes_evicted);
3280 }
3281 
3282 static uint64_t
3283 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3284     uint64_t spa, int64_t bytes)
3285 {
3286         multilist_sublist_t *mls;
3287         uint64_t bytes_evicted = 0;
3288         arc_buf_hdr_t *hdr;
3289         kmutex_t *hash_lock;
3290         int evict_count = 0;
3291 
3292         ASSERT3P(marker, !=, NULL);
3293         IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3294 
3295         mls = multilist_sublist_lock(ml, idx);
3296 
3297         for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3298             hdr = multilist_sublist_prev(mls, marker)) {
3299                 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3300                     (evict_count >= zfs_arc_evict_batch_limit))
3301                         break;
3302 
3303                 /*
3304                  * To keep our iteration location, move the marker
3305                  * forward. Since we're not holding hdr's hash lock, we
3306                  * must be very careful and not remove 'hdr' from the
3307                  * sublist. Otherwise, other consumers might mistake the
3308                  * 'hdr' as not being on a sublist when they call the
3309                  * multilist_link_active() function (they all rely on
3310                  * the hash lock protecting concurrent insertions and
3311                  * removals). multilist_sublist_move_forward() was
3312                  * specifically implemented to ensure this is the case
3313                  * (only 'marker' will be removed and re-inserted).
3314                  */
3315                 multilist_sublist_move_forward(mls, marker);
3316 
3317                 /*
3318                  * The only case where the b_spa field should ever be
3319                  * zero, is the marker headers inserted by
3320                  * arc_evict_state(). It's possible for multiple threads
3321                  * to be calling arc_evict_state() concurrently (e.g.
3322                  * dsl_pool_close() and zio_inject_fault()), so we must
3323                  * skip any markers we see from these other threads.
3324                  */
3325                 if (hdr->b_spa == 0)
3326                         continue;
3327 
3328                 /* we're only interested in evicting buffers of a certain spa */
3329                 if (spa != 0 && hdr->b_spa != spa) {
3330                         ARCSTAT_BUMP(arcstat_evict_skip);
3331                         continue;
3332                 }
3333 
3334                 hash_lock = HDR_LOCK(hdr);
3335 
3336                 /*
3337                  * We aren't calling this function from any code path
3338                  * that would already be holding a hash lock, so we're
3339                  * asserting on this assumption to be defensive in case
3340                  * this ever changes. Without this check, it would be
3341                  * possible to incorrectly increment arcstat_mutex_miss
3342                  * below (e.g. if the code changed such that we called
3343                  * this function with a hash lock held).
3344                  */
3345                 ASSERT(!MUTEX_HELD(hash_lock));
3346 
3347                 if (mutex_tryenter(hash_lock)) {
3348                         uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3349                         mutex_exit(hash_lock);
3350 
3351                         bytes_evicted += evicted;
3352 
3353                         /*
3354                          * If evicted is zero, arc_evict_hdr() must have
3355                          * decided to skip this header, don't increment
3356                          * evict_count in this case.
3357                          */
3358                         if (evicted != 0)
3359                                 evict_count++;
3360 
3361                         /*
3362                          * If arc_size isn't overflowing, signal any
3363                          * threads that might happen to be waiting.
3364                          *
3365                          * For each header evicted, we wake up a single
3366                          * thread. If we used cv_broadcast, we could
3367                          * wake up "too many" threads causing arc_size
3368                          * to significantly overflow arc_c; since
3369                          * arc_get_data_impl() doesn't check for overflow
3370                          * when it's woken up (it doesn't because it's
3371                          * possible for the ARC to be overflowing while
3372                          * full of un-evictable buffers, and the
3373                          * function should proceed in this case).
3374                          *
3375                          * If threads are left sleeping, due to not
3376                          * using cv_broadcast, they will be woken up
3377                          * just before arc_reclaim_thread() sleeps.
3378                          */
3379                         mutex_enter(&arc_reclaim_lock);
3380                         if (!arc_is_overflowing())
3381                                 cv_signal(&arc_reclaim_waiters_cv);
3382                         mutex_exit(&arc_reclaim_lock);
3383                 } else {
3384                         ARCSTAT_BUMP(arcstat_mutex_miss);
3385                 }
3386         }
3387 
3388         multilist_sublist_unlock(mls);
3389 
3390         return (bytes_evicted);
3391 }
3392 
3393 /*
3394  * Evict buffers from the given arc state, until we've removed the
3395  * specified number of bytes. Move the removed buffers to the
3396  * appropriate evict state.
3397  *
3398  * This function makes a "best effort". It skips over any buffers
3399  * it can't get a hash_lock on, and so, may not catch all candidates.
3400  * It may also return without evicting as much space as requested.
3401  *
3402  * If bytes is specified using the special value ARC_EVICT_ALL, this
3403  * will evict all available (i.e. unlocked and evictable) buffers from
3404  * the given arc state; which is used by arc_flush().
3405  */
3406 static uint64_t
3407 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3408     arc_buf_contents_t type)
3409 {
3410         uint64_t total_evicted = 0;
3411         multilist_t *ml = state->arcs_list[type];
3412         int num_sublists;
3413         arc_buf_hdr_t **markers;
3414 
3415         IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3416 
3417         num_sublists = multilist_get_num_sublists(ml);
3418 
3419         /*
3420          * If we've tried to evict from each sublist, made some
3421          * progress, but still have not hit the target number of bytes
3422          * to evict, we want to keep trying. The markers allow us to
3423          * pick up where we left off for each individual sublist, rather
3424          * than starting from the tail each time.
3425          */
3426         markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3427         for (int i = 0; i < num_sublists; i++) {
3428                 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3429 
3430                 /*
3431                  * A b_spa of 0 is used to indicate that this header is
3432                  * a marker. This fact is used in arc_adjust_type() and
3433                  * arc_evict_state_impl().
3434                  */
3435                 markers[i]->b_spa = 0;
3436 
3437                 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3438                 multilist_sublist_insert_tail(mls, markers[i]);
3439                 multilist_sublist_unlock(mls);
3440         }
3441 
3442         /*
3443          * While we haven't hit our target number of bytes to evict, or
3444          * we're evicting all available buffers.
3445          */
3446         while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3447                 /*
3448                  * Start eviction using a randomly selected sublist,
3449                  * this is to try and evenly balance eviction across all
3450                  * sublists. Always starting at the same sublist
3451                  * (e.g. index 0) would cause evictions to favor certain
3452                  * sublists over others.
3453                  */
3454                 int sublist_idx = multilist_get_random_index(ml);
3455                 uint64_t scan_evicted = 0;
3456 
3457                 for (int i = 0; i < num_sublists; i++) {
3458                         uint64_t bytes_remaining;
3459                         uint64_t bytes_evicted;
3460 
3461                         if (bytes == ARC_EVICT_ALL)
3462                                 bytes_remaining = ARC_EVICT_ALL;
3463                         else if (total_evicted < bytes)
3464                                 bytes_remaining = bytes - total_evicted;
3465                         else
3466                                 break;
3467 
3468                         bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3469                             markers[sublist_idx], spa, bytes_remaining);
3470 
3471                         scan_evicted += bytes_evicted;
3472                         total_evicted += bytes_evicted;
3473 
3474                         /* we've reached the end, wrap to the beginning */
3475                         if (++sublist_idx >= num_sublists)
3476                                 sublist_idx = 0;
3477                 }
3478 
3479                 /*
3480                  * If we didn't evict anything during this scan, we have
3481                  * no reason to believe we'll evict more during another
3482                  * scan, so break the loop.
3483                  */
3484                 if (scan_evicted == 0) {
3485                         /* This isn't possible, let's make that obvious */
3486                         ASSERT3S(bytes, !=, 0);
3487 
3488                         /*
3489                          * When bytes is ARC_EVICT_ALL, the only way to
3490                          * break the loop is when scan_evicted is zero.
3491                          * In that case, we actually have evicted enough,
3492                          * so we don't want to increment the kstat.
3493                          */
3494                         if (bytes != ARC_EVICT_ALL) {
3495                                 ASSERT3S(total_evicted, <, bytes);
3496                                 ARCSTAT_BUMP(arcstat_evict_not_enough);
3497                         }
3498 
3499                         break;
3500                 }
3501         }
3502 
3503         for (int i = 0; i < num_sublists; i++) {
3504                 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3505                 multilist_sublist_remove(mls, markers[i]);
3506                 multilist_sublist_unlock(mls);
3507 
3508                 kmem_cache_free(hdr_full_cache, markers[i]);
3509         }
3510         kmem_free(markers, sizeof (*markers) * num_sublists);
3511 
3512         return (total_evicted);
3513 }
3514 
3515 /*
3516  * Flush all "evictable" data of the given type from the arc state
3517  * specified. This will not evict any "active" buffers (i.e. referenced).
3518  *
3519  * When 'retry' is set to B_FALSE, the function will make a single pass
3520  * over the state and evict any buffers that it can. Since it doesn't
3521  * continually retry the eviction, it might end up leaving some buffers
3522  * in the ARC due to lock misses.
3523  *
3524  * When 'retry' is set to B_TRUE, the function will continually retry the
3525  * eviction until *all* evictable buffers have been removed from the
3526  * state. As a result, if concurrent insertions into the state are
3527  * allowed (e.g. if the ARC isn't shutting down), this function might
3528  * wind up in an infinite loop, continually trying to evict buffers.
3529  */
3530 static uint64_t
3531 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3532     boolean_t retry)
3533 {
3534         uint64_t evicted = 0;
3535 
3536         while (refcount_count(&state->arcs_esize[type]) != 0) {
3537                 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3538 
3539                 if (!retry)
3540                         break;
3541         }
3542 
3543         return (evicted);
3544 }
3545 
3546 /*
3547  * Evict the specified number of bytes from the state specified,
3548  * restricting eviction to the spa and type given. This function
3549  * prevents us from trying to evict more from a state's list than
3550  * is "evictable", and to skip evicting altogether when passed a
3551  * negative value for "bytes". In contrast, arc_evict_state() will
3552  * evict everything it can, when passed a negative value for "bytes".
3553  */
3554 static uint64_t
3555 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3556     arc_buf_contents_t type)
3557 {
3558         int64_t delta;
3559 
3560         if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3561                 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3562                 return (arc_evict_state(state, spa, delta, type));
3563         }
3564 
3565         return (0);
3566 }
3567 
3568 /*
3569  * Evict metadata buffers from the cache, such that arc_meta_used is
3570  * capped by the arc_meta_limit tunable.
3571  */
3572 static uint64_t
3573 arc_adjust_meta(void)
3574 {
3575         uint64_t total_evicted = 0;
3576         int64_t target;
3577 
3578         /*
3579          * If we're over the meta limit, we want to evict enough
3580          * metadata to get back under the meta limit. We don't want to
3581          * evict so much that we drop the MRU below arc_p, though. If
3582          * we're over the meta limit more than we're over arc_p, we
3583          * evict some from the MRU here, and some from the MFU below.
3584          */
3585         target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3586             (int64_t)(refcount_count(&arc_anon->arcs_size) +
3587             refcount_count(&arc_mru->arcs_size) - arc_p));
3588 
3589         total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3590 
3591         /*
3592          * Similar to the above, we want to evict enough bytes to get us
3593          * below the meta limit, but not so much as to drop us below the
3594          * space allotted to the MFU (which is defined as arc_c - arc_p).
3595          */
3596         target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3597             (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3598 
3599         total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3600 
3601         return (total_evicted);
3602 }
3603 
3604 /*
3605  * Return the type of the oldest buffer in the given arc state
3606  *
3607  * This function will select a random sublist of type ARC_BUFC_DATA and
3608  * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3609  * is compared, and the type which contains the "older" buffer will be
3610  * returned.
3611  */
3612 static arc_buf_contents_t
3613 arc_adjust_type(arc_state_t *state)
3614 {
3615         multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
3616         multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
3617         int data_idx = multilist_get_random_index(data_ml);
3618         int meta_idx = multilist_get_random_index(meta_ml);
3619         multilist_sublist_t *data_mls;
3620         multilist_sublist_t *meta_mls;
3621         arc_buf_contents_t type;
3622         arc_buf_hdr_t *data_hdr;
3623         arc_buf_hdr_t *meta_hdr;
3624 
3625         /*
3626          * We keep the sublist lock until we're finished, to prevent
3627          * the headers from being destroyed via arc_evict_state().
3628          */
3629         data_mls = multilist_sublist_lock(data_ml, data_idx);
3630         meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3631 
3632         /*
3633          * These two loops are to ensure we skip any markers that
3634          * might be at the tail of the lists due to arc_evict_state().
3635          */
3636 
3637         for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3638             data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3639                 if (data_hdr->b_spa != 0)
3640                         break;
3641         }
3642 
3643         for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3644             meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3645                 if (meta_hdr->b_spa != 0)
3646                         break;
3647         }
3648 
3649         if (data_hdr == NULL && meta_hdr == NULL) {
3650                 type = ARC_BUFC_DATA;
3651         } else if (data_hdr == NULL) {
3652                 ASSERT3P(meta_hdr, !=, NULL);
3653                 type = ARC_BUFC_METADATA;
3654         } else if (meta_hdr == NULL) {
3655                 ASSERT3P(data_hdr, !=, NULL);
3656                 type = ARC_BUFC_DATA;
3657         } else {
3658                 ASSERT3P(data_hdr, !=, NULL);
3659                 ASSERT3P(meta_hdr, !=, NULL);
3660 
3661                 /* The headers can't be on the sublist without an L1 header */
3662                 ASSERT(HDR_HAS_L1HDR(data_hdr));
3663                 ASSERT(HDR_HAS_L1HDR(meta_hdr));
3664 
3665                 if (data_hdr->b_l1hdr.b_arc_access <
3666                     meta_hdr->b_l1hdr.b_arc_access) {
3667                         type = ARC_BUFC_DATA;
3668                 } else {
3669                         type = ARC_BUFC_METADATA;
3670                 }
3671         }
3672 
3673         multilist_sublist_unlock(meta_mls);
3674         multilist_sublist_unlock(data_mls);
3675 
3676         return (type);
3677 }
3678 
3679 /*
3680  * Evict buffers from the cache, such that arc_size is capped by arc_c.
3681  */
3682 static uint64_t
3683 arc_adjust(void)
3684 {
3685         uint64_t total_evicted = 0;
3686         uint64_t bytes;
3687         int64_t target;
3688 
3689         /*
3690          * If we're over arc_meta_limit, we want to correct that before
3691          * potentially evicting data buffers below.
3692          */
3693         total_evicted += arc_adjust_meta();
3694 
3695         /*
3696          * Adjust MRU size
3697          *
3698          * If we're over the target cache size, we want to evict enough
3699          * from the list to get back to our target size. We don't want
3700          * to evict too much from the MRU, such that it drops below
3701          * arc_p. So, if we're over our target cache size more than
3702          * the MRU is over arc_p, we'll evict enough to get back to
3703          * arc_p here, and then evict more from the MFU below.
3704          */
3705         target = MIN((int64_t)(arc_size - arc_c),
3706             (int64_t)(refcount_count(&arc_anon->arcs_size) +
3707             refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3708 
3709         /*
3710          * If we're below arc_meta_min, always prefer to evict data.
3711          * Otherwise, try to satisfy the requested number of bytes to
3712          * evict from the type which contains older buffers; in an
3713          * effort to keep newer buffers in the cache regardless of their
3714          * type. If we cannot satisfy the number of bytes from this
3715          * type, spill over into the next type.
3716          */
3717         if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3718             arc_meta_used > arc_meta_min) {
3719                 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3720                 total_evicted += bytes;
3721 
3722                 /*
3723                  * If we couldn't evict our target number of bytes from
3724                  * metadata, we try to get the rest from data.
3725                  */
3726                 target -= bytes;
3727 
3728                 total_evicted +=
3729                     arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3730         } else {
3731                 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3732                 total_evicted += bytes;
3733 
3734                 /*
3735                  * If we couldn't evict our target number of bytes from
3736                  * data, we try to get the rest from metadata.
3737                  */
3738                 target -= bytes;
3739 
3740                 total_evicted +=
3741                     arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3742         }
3743 
3744         /*
3745          * Adjust MFU size
3746          *
3747          * Now that we've tried to evict enough from the MRU to get its
3748          * size back to arc_p, if we're still above the target cache
3749          * size, we evict the rest from the MFU.
3750          */
3751         target = arc_size - arc_c;
3752 
3753         if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3754             arc_meta_used > arc_meta_min) {
3755                 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3756                 total_evicted += bytes;
3757 
3758                 /*
3759                  * If we couldn't evict our target number of bytes from
3760                  * metadata, we try to get the rest from data.
3761                  */
3762                 target -= bytes;
3763 
3764                 total_evicted +=
3765                     arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3766         } else {
3767                 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3768                 total_evicted += bytes;
3769 
3770                 /*
3771                  * If we couldn't evict our target number of bytes from
3772                  * data, we try to get the rest from data.
3773                  */
3774                 target -= bytes;
3775 
3776                 total_evicted +=
3777                     arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3778         }
3779 
3780         /*
3781          * Adjust ghost lists
3782          *
3783          * In addition to the above, the ARC also defines target values
3784          * for the ghost lists. The sum of the mru list and mru ghost
3785          * list should never exceed the target size of the cache, and
3786          * the sum of the mru list, mfu list, mru ghost list, and mfu
3787          * ghost list should never exceed twice the target size of the
3788          * cache. The following logic enforces these limits on the ghost
3789          * caches, and evicts from them as needed.
3790          */
3791         target = refcount_count(&arc_mru->arcs_size) +
3792             refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3793 
3794         bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3795         total_evicted += bytes;
3796 
3797         target -= bytes;
3798 
3799         total_evicted +=
3800             arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3801 
3802         /*
3803          * We assume the sum of the mru list and mfu list is less than
3804          * or equal to arc_c (we enforced this above), which means we
3805          * can use the simpler of the two equations below:
3806          *
3807          *      mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3808          *                  mru ghost + mfu ghost <= arc_c
3809          */
3810         target = refcount_count(&arc_mru_ghost->arcs_size) +
3811             refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3812 
3813         bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3814         total_evicted += bytes;
3815 
3816         target -= bytes;
3817 
3818         total_evicted +=
3819             arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3820 
3821         return (total_evicted);
3822 }
3823 
3824 void
3825 arc_flush(spa_t *spa, boolean_t retry)
3826 {
3827         uint64_t guid = 0;
3828 
3829         /*
3830          * If retry is B_TRUE, a spa must not be specified since we have
3831          * no good way to determine if all of a spa's buffers have been
3832          * evicted from an arc state.
3833          */
3834         ASSERT(!retry || spa == 0);
3835 
3836         if (spa != NULL)
3837                 guid = spa_load_guid(spa);
3838 
3839         (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3840         (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3841 
3842         (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3843         (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3844 
3845         (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3846         (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3847 
3848         (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3849         (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3850 }
3851 
3852 void
3853 arc_shrink(int64_t to_free)
3854 {
3855         if (arc_c > arc_c_min) {
3856 
3857                 if (arc_c > arc_c_min + to_free)
3858                         atomic_add_64(&arc_c, -to_free);
3859                 else
3860                         arc_c = arc_c_min;
3861 
3862                 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3863                 if (arc_c > arc_size)
3864                         arc_c = MAX(arc_size, arc_c_min);
3865                 if (arc_p > arc_c)
3866                         arc_p = (arc_c >> 1);
3867                 ASSERT(arc_c >= arc_c_min);
3868                 ASSERT((int64_t)arc_p >= 0);
3869         }
3870 
3871         if (arc_size > arc_c)
3872                 (void) arc_adjust();
3873 }
3874 
3875 typedef enum free_memory_reason_t {
3876         FMR_UNKNOWN,
3877         FMR_NEEDFREE,
3878         FMR_LOTSFREE,
3879         FMR_SWAPFS_MINFREE,
3880         FMR_PAGES_PP_MAXIMUM,
3881         FMR_HEAP_ARENA,
3882         FMR_ZIO_ARENA,
3883 } free_memory_reason_t;
3884 
3885 int64_t last_free_memory;
3886 free_memory_reason_t last_free_reason;
3887 
3888 /*
3889  * Additional reserve of pages for pp_reserve.
3890  */
3891 int64_t arc_pages_pp_reserve = 64;
3892 
3893 /*
3894  * Additional reserve of pages for swapfs.
3895  */
3896 int64_t arc_swapfs_reserve = 64;
3897 
3898 /*
3899  * Return the amount of memory that can be consumed before reclaim will be
3900  * needed.  Positive if there is sufficient free memory, negative indicates
3901  * the amount of memory that needs to be freed up.
3902  */
3903 static int64_t
3904 arc_available_memory(void)
3905 {
3906         int64_t lowest = INT64_MAX;
3907         int64_t n;
3908         free_memory_reason_t r = FMR_UNKNOWN;
3909 
3910 #ifdef _KERNEL
3911         if (needfree > 0) {
3912                 n = PAGESIZE * (-needfree);
3913                 if (n < lowest) {
3914                         lowest = n;
3915                         r = FMR_NEEDFREE;
3916                 }
3917         }
3918 
3919         /*
3920          * check that we're out of range of the pageout scanner.  It starts to
3921          * schedule paging if freemem is less than lotsfree and needfree.
3922          * lotsfree is the high-water mark for pageout, and needfree is the
3923          * number of needed free pages.  We add extra pages here to make sure
3924          * the scanner doesn't start up while we're freeing memory.
3925          */
3926         n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3927         if (n < lowest) {
3928                 lowest = n;
3929                 r = FMR_LOTSFREE;
3930         }
3931 
3932         /*
3933          * check to make sure that swapfs has enough space so that anon
3934          * reservations can still succeed. anon_resvmem() checks that the
3935          * availrmem is greater than swapfs_minfree, and the number of reserved
3936          * swap pages.  We also add a bit of extra here just to prevent
3937          * circumstances from getting really dire.
3938          */
3939         n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3940             desfree - arc_swapfs_reserve);
3941         if (n < lowest) {
3942                 lowest = n;
3943                 r = FMR_SWAPFS_MINFREE;
3944         }
3945 
3946 
3947         /*
3948          * Check that we have enough availrmem that memory locking (e.g., via
3949          * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3950          * stores the number of pages that cannot be locked; when availrmem
3951          * drops below pages_pp_maximum, page locking mechanisms such as
3952          * page_pp_lock() will fail.)
3953          */
3954         n = PAGESIZE * (availrmem - pages_pp_maximum -
3955             arc_pages_pp_reserve);
3956         if (n < lowest) {
3957                 lowest = n;
3958                 r = FMR_PAGES_PP_MAXIMUM;
3959         }
3960 
3961 #if defined(__i386)
3962         /*
3963          * If we're on an i386 platform, it's possible that we'll exhaust the
3964          * kernel heap space before we ever run out of available physical
3965          * memory.  Most checks of the size of the heap_area compare against
3966          * tune.t_minarmem, which is the minimum available real memory that we
3967          * can have in the system.  However, this is generally fixed at 25 pages
3968          * which is so low that it's useless.  In this comparison, we seek to
3969          * calculate the total heap-size, and reclaim if more than 3/4ths of the
3970          * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3971          * free)
3972          */
3973         n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3974             (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3975         if (n < lowest) {
3976                 lowest = n;
3977                 r = FMR_HEAP_ARENA;
3978         }
3979 #endif
3980 
3981         /*
3982          * If zio data pages are being allocated out of a separate heap segment,
3983          * then enforce that the size of available vmem for this arena remains
3984          * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
3985          *
3986          * Note that reducing the arc_zio_arena_free_shift keeps more virtual
3987          * memory (in the zio_arena) free, which can avoid memory
3988          * fragmentation issues.
3989          */
3990         if (zio_arena != NULL) {
3991                 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3992                     (vmem_size(zio_arena, VMEM_ALLOC) >>
3993                     arc_zio_arena_free_shift);
3994                 if (n < lowest) {
3995                         lowest = n;
3996                         r = FMR_ZIO_ARENA;
3997                 }
3998         }
3999 #else
4000         /* Every 100 calls, free a small amount */
4001         if (spa_get_random(100) == 0)
4002                 lowest = -1024;
4003 #endif
4004 
4005         last_free_memory = lowest;
4006         last_free_reason = r;
4007 
4008         return (lowest);
4009 }
4010 
4011 
4012 /*
4013  * Determine if the system is under memory pressure and is asking
4014  * to reclaim memory. A return value of B_TRUE indicates that the system
4015  * is under memory pressure and that the arc should adjust accordingly.
4016  */
4017 static boolean_t
4018 arc_reclaim_needed(void)
4019 {
4020         return (arc_available_memory() < 0);
4021 }
4022 
4023 static void
4024 arc_kmem_reap_now(void)
4025 {
4026         size_t                  i;
4027         kmem_cache_t            *prev_cache = NULL;
4028         kmem_cache_t            *prev_data_cache = NULL;
4029         extern kmem_cache_t     *zio_buf_cache[];
4030         extern kmem_cache_t     *zio_data_buf_cache[];
4031         extern kmem_cache_t     *range_seg_cache;
4032         extern kmem_cache_t     *abd_chunk_cache;
4033 
4034 #ifdef _KERNEL
4035         if (arc_meta_used >= arc_meta_limit) {
4036                 /*
4037                  * We are exceeding our meta-data cache limit.
4038                  * Purge some DNLC entries to release holds on meta-data.
4039                  */
4040                 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4041         }
4042 #if defined(__i386)
4043         /*
4044          * Reclaim unused memory from all kmem caches.
4045          */
4046         kmem_reap();
4047 #endif
4048 #endif
4049 
4050         for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4051                 if (zio_buf_cache[i] != prev_cache) {
4052                         prev_cache = zio_buf_cache[i];
4053                         kmem_cache_reap_now(zio_buf_cache[i]);
4054                 }
4055                 if (zio_data_buf_cache[i] != prev_data_cache) {
4056                         prev_data_cache = zio_data_buf_cache[i];
4057                         kmem_cache_reap_now(zio_data_buf_cache[i]);
4058                 }
4059         }
4060         kmem_cache_reap_now(abd_chunk_cache);
4061         kmem_cache_reap_now(buf_cache);
4062         kmem_cache_reap_now(hdr_full_cache);
4063         kmem_cache_reap_now(hdr_l2only_cache);
4064         kmem_cache_reap_now(range_seg_cache);
4065 
4066         if (zio_arena != NULL) {
4067                 /*
4068                  * Ask the vmem arena to reclaim unused memory from its
4069                  * quantum caches.
4070                  */
4071                 vmem_qcache_reap(zio_arena);
4072         }
4073 }
4074 
4075 /*
4076  * Threads can block in arc_get_data_impl() waiting for this thread to evict
4077  * enough data and signal them to proceed. When this happens, the threads in
4078  * arc_get_data_impl() are sleeping while holding the hash lock for their
4079  * particular arc header. Thus, we must be careful to never sleep on a
4080  * hash lock in this thread. This is to prevent the following deadlock:
4081  *
4082  *  - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4083  *    waiting for the reclaim thread to signal it.
4084  *
4085  *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4086  *    fails, and goes to sleep forever.
4087  *
4088  * This possible deadlock is avoided by always acquiring a hash lock
4089  * using mutex_tryenter() from arc_reclaim_thread().
4090  */
4091 /* ARGSUSED */
4092 static void
4093 arc_reclaim_thread(void *unused)
4094 {
4095         hrtime_t                growtime = 0;
4096         callb_cpr_t             cpr;
4097 
4098         CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4099 
4100         mutex_enter(&arc_reclaim_lock);
4101         while (!arc_reclaim_thread_exit) {
4102                 uint64_t evicted = 0;
4103 
4104                 /*
4105                  * This is necessary in order for the mdb ::arc dcmd to
4106                  * show up to date information. Since the ::arc command
4107                  * does not call the kstat's update function, without
4108                  * this call, the command may show stale stats for the
4109                  * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4110                  * with this change, the data might be up to 1 second
4111                  * out of date; but that should suffice. The arc_state_t
4112                  * structures can be queried directly if more accurate
4113                  * information is needed.
4114                  */
4115                 if (arc_ksp != NULL)
4116                         arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4117 
4118                 mutex_exit(&arc_reclaim_lock);
4119 
4120                 /*
4121                  * We call arc_adjust() before (possibly) calling
4122                  * arc_kmem_reap_now(), so that we can wake up
4123                  * arc_get_data_impl() sooner.
4124                  */
4125                 evicted = arc_adjust();
4126 
4127                 int64_t free_memory = arc_available_memory();
4128                 if (free_memory < 0) {
4129 
4130                         arc_no_grow = B_TRUE;
4131                         arc_warm = B_TRUE;
4132 
4133                         /*
4134                          * Wait at least zfs_grow_retry (default 60) seconds
4135                          * before considering growing.
4136                          */
4137                         growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4138 
4139                         arc_kmem_reap_now();
4140 
4141                         /*
4142                          * If we are still low on memory, shrink the ARC
4143                          * so that we have arc_shrink_min free space.
4144                          */
4145                         free_memory = arc_available_memory();
4146 
4147                         int64_t to_free =
4148                             (arc_c >> arc_shrink_shift) - free_memory;
4149                         if (to_free > 0) {
4150 #ifdef _KERNEL
4151                                 to_free = MAX(to_free, ptob(needfree));
4152 #endif
4153                                 arc_shrink(to_free);
4154                         }
4155                 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4156                         arc_no_grow = B_TRUE;
4157                 } else if (gethrtime() >= growtime) {
4158                         arc_no_grow = B_FALSE;
4159                 }
4160 
4161                 mutex_enter(&arc_reclaim_lock);
4162 
4163                 /*
4164                  * If evicted is zero, we couldn't evict anything via
4165                  * arc_adjust(). This could be due to hash lock
4166                  * collisions, but more likely due to the majority of
4167                  * arc buffers being unevictable. Therefore, even if
4168                  * arc_size is above arc_c, another pass is unlikely to
4169                  * be helpful and could potentially cause us to enter an
4170                  * infinite loop.
4171                  */
4172                 if (arc_size <= arc_c || evicted == 0) {
4173                         /*
4174                          * We're either no longer overflowing, or we
4175                          * can't evict anything more, so we should wake
4176                          * up any threads before we go to sleep.
4177                          */
4178                         cv_broadcast(&arc_reclaim_waiters_cv);
4179 
4180                         /*
4181                          * Block until signaled, or after one second (we
4182                          * might need to perform arc_kmem_reap_now()
4183                          * even if we aren't being signalled)
4184                          */
4185                         CALLB_CPR_SAFE_BEGIN(&cpr);
4186                         (void) cv_timedwait_hires(&arc_reclaim_thread_cv,
4187                             &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4188                         CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4189                 }
4190         }
4191 
4192         arc_reclaim_thread_exit = B_FALSE;
4193         cv_broadcast(&arc_reclaim_thread_cv);
4194         CALLB_CPR_EXIT(&cpr);               /* drops arc_reclaim_lock */
4195         thread_exit();
4196 }
4197 
4198 /*
4199  * Adapt arc info given the number of bytes we are trying to add and
4200  * the state that we are comming from.  This function is only called
4201  * when we are adding new content to the cache.
4202  */
4203 static void
4204 arc_adapt(int bytes, arc_state_t *state)
4205 {
4206         int mult;
4207         uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4208         int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4209         int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4210 
4211         if (state == arc_l2c_only)
4212                 return;
4213 
4214         ASSERT(bytes > 0);
4215         /*
4216          * Adapt the target size of the MRU list:
4217          *      - if we just hit in the MRU ghost list, then increase
4218          *        the target size of the MRU list.
4219          *      - if we just hit in the MFU ghost list, then increase
4220          *        the target size of the MFU list by decreasing the
4221          *        target size of the MRU list.
4222          */
4223         if (state == arc_mru_ghost) {
4224                 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4225                 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4226 
4227                 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4228         } else if (state == arc_mfu_ghost) {
4229                 uint64_t delta;
4230 
4231                 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4232                 mult = MIN(mult, 10);
4233 
4234                 delta = MIN(bytes * mult, arc_p);
4235                 arc_p = MAX(arc_p_min, arc_p - delta);
4236         }
4237         ASSERT((int64_t)arc_p >= 0);
4238 
4239         if (arc_reclaim_needed()) {
4240                 cv_signal(&arc_reclaim_thread_cv);
4241                 return;
4242         }
4243 
4244         if (arc_no_grow)
4245                 return;
4246 
4247         if (arc_c >= arc_c_max)
4248                 return;
4249 
4250         /*
4251          * If we're within (2 * maxblocksize) bytes of the target
4252          * cache size, increment the target cache size
4253          */
4254         if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
4255                 atomic_add_64(&arc_c, (int64_t)bytes);
4256                 if (arc_c > arc_c_max)
4257                         arc_c = arc_c_max;
4258                 else if (state == arc_anon)
4259                         atomic_add_64(&arc_p, (int64_t)bytes);
4260                 if (arc_p > arc_c)
4261                         arc_p = arc_c;
4262         }
4263         ASSERT((int64_t)arc_p >= 0);
4264 }
4265 
4266 /*
4267  * Check if arc_size has grown past our upper threshold, determined by
4268  * zfs_arc_overflow_shift.
4269  */
4270 static boolean_t
4271 arc_is_overflowing(void)
4272 {
4273         /* Always allow at least one block of overflow */
4274         uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4275             arc_c >> zfs_arc_overflow_shift);
4276 
4277         return (arc_size >= arc_c + overflow);
4278 }
4279 
4280 static abd_t *
4281 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4282 {
4283         arc_buf_contents_t type = arc_buf_type(hdr);
4284 
4285         arc_get_data_impl(hdr, size, tag);
4286         if (type == ARC_BUFC_METADATA) {
4287                 return (abd_alloc(size, B_TRUE));
4288         } else {
4289                 ASSERT(type == ARC_BUFC_DATA);
4290                 return (abd_alloc(size, B_FALSE));
4291         }
4292 }
4293 
4294 static void *
4295 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4296 {
4297         arc_buf_contents_t type = arc_buf_type(hdr);
4298 
4299         arc_get_data_impl(hdr, size, tag);
4300         if (type == ARC_BUFC_METADATA) {
4301                 return (zio_buf_alloc(size));
4302         } else {
4303                 ASSERT(type == ARC_BUFC_DATA);
4304                 return (zio_data_buf_alloc(size));
4305         }
4306 }
4307 
4308 /*
4309  * Allocate a block and return it to the caller. If we are hitting the
4310  * hard limit for the cache size, we must sleep, waiting for the eviction
4311  * thread to catch up. If we're past the target size but below the hard
4312  * limit, we'll only signal the reclaim thread and continue on.
4313  */
4314 static void
4315 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4316 {
4317         arc_state_t *state = hdr->b_l1hdr.b_state;
4318         arc_buf_contents_t type = arc_buf_type(hdr);
4319 
4320         arc_adapt(size, state);
4321 
4322         /*
4323          * If arc_size is currently overflowing, and has grown past our
4324          * upper limit, we must be adding data faster than the evict
4325          * thread can evict. Thus, to ensure we don't compound the
4326          * problem by adding more data and forcing arc_size to grow even
4327          * further past it's target size, we halt and wait for the
4328          * eviction thread to catch up.
4329          *
4330          * It's also possible that the reclaim thread is unable to evict
4331          * enough buffers to get arc_size below the overflow limit (e.g.
4332          * due to buffers being un-evictable, or hash lock collisions).
4333          * In this case, we want to proceed regardless if we're
4334          * overflowing; thus we don't use a while loop here.
4335          */
4336         if (arc_is_overflowing()) {
4337                 mutex_enter(&arc_reclaim_lock);
4338 
4339                 /*
4340                  * Now that we've acquired the lock, we may no longer be
4341                  * over the overflow limit, lets check.
4342                  *
4343                  * We're ignoring the case of spurious wake ups. If that
4344                  * were to happen, it'd let this thread consume an ARC
4345                  * buffer before it should have (i.e. before we're under
4346                  * the overflow limit and were signalled by the reclaim
4347                  * thread). As long as that is a rare occurrence, it
4348                  * shouldn't cause any harm.
4349                  */
4350                 if (arc_is_overflowing()) {
4351                         cv_signal(&arc_reclaim_thread_cv);
4352                         cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4353                 }
4354 
4355                 mutex_exit(&arc_reclaim_lock);
4356         }
4357 
4358         VERIFY3U(hdr->b_type, ==, type);
4359         if (type == ARC_BUFC_METADATA) {
4360                 arc_space_consume(size, ARC_SPACE_META);
4361         } else {
4362                 arc_space_consume(size, ARC_SPACE_DATA);
4363         }
4364 
4365         /*
4366          * Update the state size.  Note that ghost states have a
4367          * "ghost size" and so don't need to be updated.
4368          */
4369         if (!GHOST_STATE(state)) {
4370 
4371                 (void) refcount_add_many(&state->arcs_size, size, tag);
4372 
4373                 /*
4374                  * If this is reached via arc_read, the link is
4375                  * protected by the hash lock. If reached via
4376                  * arc_buf_alloc, the header should not be accessed by
4377                  * any other thread. And, if reached via arc_read_done,
4378                  * the hash lock will protect it if it's found in the
4379                  * hash table; otherwise no other thread should be
4380                  * trying to [add|remove]_reference it.
4381                  */
4382                 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4383                         ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4384                         (void) refcount_add_many(&state->arcs_esize[type],
4385                             size, tag);
4386                 }
4387 
4388                 /*
4389                  * If we are growing the cache, and we are adding anonymous
4390                  * data, and we have outgrown arc_p, update arc_p
4391                  */
4392                 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4393                     (refcount_count(&arc_anon->arcs_size) +
4394                     refcount_count(&arc_mru->arcs_size) > arc_p))
4395                         arc_p = MIN(arc_c, arc_p + size);
4396         }
4397 }
4398 
4399 static void
4400 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4401 {
4402         arc_free_data_impl(hdr, size, tag);
4403         abd_free(abd);
4404 }
4405 
4406 static void
4407 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4408 {
4409         arc_buf_contents_t type = arc_buf_type(hdr);
4410 
4411         arc_free_data_impl(hdr, size, tag);
4412         if (type == ARC_BUFC_METADATA) {
4413                 zio_buf_free(buf, size);
4414         } else {
4415                 ASSERT(type == ARC_BUFC_DATA);
4416                 zio_data_buf_free(buf, size);
4417         }
4418 }
4419 
4420 /*
4421  * Free the arc data buffer.
4422  */
4423 static void
4424 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4425 {
4426         arc_state_t *state = hdr->b_l1hdr.b_state;
4427         arc_buf_contents_t type = arc_buf_type(hdr);
4428 
4429         /* protected by hash lock, if in the hash table */
4430         if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4431                 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4432                 ASSERT(state != arc_anon && state != arc_l2c_only);
4433 
4434                 (void) refcount_remove_many(&state->arcs_esize[type],
4435                     size, tag);
4436         }
4437         (void) refcount_remove_many(&state->arcs_size, size, tag);
4438 
4439         VERIFY3U(hdr->b_type, ==, type);
4440         if (type == ARC_BUFC_METADATA) {
4441                 arc_space_return(size, ARC_SPACE_META);
4442         } else {
4443                 ASSERT(type == ARC_BUFC_DATA);
4444                 arc_space_return(size, ARC_SPACE_DATA);
4445         }
4446 }
4447 
4448 /*
4449  * This routine is called whenever a buffer is accessed.
4450  * NOTE: the hash lock is dropped in this function.
4451  */
4452 static void
4453 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4454 {
4455         clock_t now;
4456 
4457         ASSERT(MUTEX_HELD(hash_lock));
4458         ASSERT(HDR_HAS_L1HDR(hdr));
4459 
4460         if (hdr->b_l1hdr.b_state == arc_anon) {
4461                 /*
4462                  * This buffer is not in the cache, and does not
4463                  * appear in our "ghost" list.  Add the new buffer
4464                  * to the MRU state.
4465                  */
4466 
4467                 ASSERT0(hdr->b_l1hdr.b_arc_access);
4468                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4469                 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4470                 arc_change_state(arc_mru, hdr, hash_lock);
4471 
4472         } else if (hdr->b_l1hdr.b_state == arc_mru) {
4473                 now = ddi_get_lbolt();
4474 
4475                 /*
4476                  * If this buffer is here because of a prefetch, then either:
4477                  * - clear the flag if this is a "referencing" read
4478                  *   (any subsequent access will bump this into the MFU state).
4479                  * or
4480                  * - move the buffer to the head of the list if this is
4481                  *   another prefetch (to make it less likely to be evicted).
4482                  */
4483                 if (HDR_PREFETCH(hdr)) {
4484                         if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4485                                 /* link protected by hash lock */
4486                                 ASSERT(multilist_link_active(
4487                                     &hdr->b_l1hdr.b_arc_node));
4488                         } else {
4489                                 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4490                                 ARCSTAT_BUMP(arcstat_mru_hits);
4491                         }
4492                         hdr->b_l1hdr.b_arc_access = now;
4493                         return;
4494                 }
4495 
4496                 /*
4497                  * This buffer has been "accessed" only once so far,
4498                  * but it is still in the cache. Move it to the MFU
4499                  * state.
4500                  */
4501                 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4502                         /*
4503                          * More than 125ms have passed since we
4504                          * instantiated this buffer.  Move it to the
4505                          * most frequently used state.
4506                          */
4507                         hdr->b_l1hdr.b_arc_access = now;
4508                         DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4509                         arc_change_state(arc_mfu, hdr, hash_lock);
4510                 }
4511                 ARCSTAT_BUMP(arcstat_mru_hits);
4512         } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4513                 arc_state_t     *new_state;
4514                 /*
4515                  * This buffer has been "accessed" recently, but
4516                  * was evicted from the cache.  Move it to the
4517                  * MFU state.
4518                  */
4519 
4520                 if (HDR_PREFETCH(hdr)) {
4521                         new_state = arc_mru;
4522                         if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4523                                 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4524                         DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4525                 } else {
4526                         new_state = arc_mfu;
4527                         DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4528                 }
4529 
4530                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4531                 arc_change_state(new_state, hdr, hash_lock);
4532 
4533                 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4534         } else if (hdr->b_l1hdr.b_state == arc_mfu) {
4535                 /*
4536                  * This buffer has been accessed more than once and is
4537                  * still in the cache.  Keep it in the MFU state.
4538                  *
4539                  * NOTE: an add_reference() that occurred when we did
4540                  * the arc_read() will have kicked this off the list.
4541                  * If it was a prefetch, we will explicitly move it to
4542                  * the head of the list now.
4543                  */
4544                 if ((HDR_PREFETCH(hdr)) != 0) {
4545                         ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4546                         /* link protected by hash_lock */
4547                         ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4548                 }
4549                 ARCSTAT_BUMP(arcstat_mfu_hits);
4550                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4551         } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4552                 arc_state_t     *new_state = arc_mfu;
4553                 /*
4554                  * This buffer has been accessed more than once but has
4555                  * been evicted from the cache.  Move it back to the
4556                  * MFU state.
4557                  */
4558 
4559                 if (HDR_PREFETCH(hdr)) {
4560                         /*
4561                          * This is a prefetch access...
4562                          * move this block back to the MRU state.
4563                          */
4564                         ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4565                         new_state = arc_mru;
4566                 }
4567 
4568                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4569                 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4570                 arc_change_state(new_state, hdr, hash_lock);
4571 
4572                 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4573         } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4574                 /*
4575                  * This buffer is on the 2nd Level ARC.
4576                  */
4577 
4578                 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4579                 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4580                 arc_change_state(arc_mfu, hdr, hash_lock);
4581         } else {
4582                 ASSERT(!"invalid arc state");
4583         }
4584 }
4585 
4586 /* a generic arc_done_func_t which you can use */
4587 /* ARGSUSED */
4588 void
4589 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4590 {
4591         if (zio == NULL || zio->io_error == 0)
4592                 bcopy(buf->b_data, arg, arc_buf_size(buf));
4593         arc_buf_destroy(buf, arg);
4594 }
4595 
4596 /* a generic arc_done_func_t */
4597 void
4598 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4599 {
4600         arc_buf_t **bufp = arg;
4601         if (zio && zio->io_error) {
4602                 arc_buf_destroy(buf, arg);
4603                 *bufp = NULL;
4604         } else {
4605                 *bufp = buf;
4606                 ASSERT(buf->b_data);
4607         }
4608 }
4609 
4610 static void
4611 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4612 {
4613         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4614                 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4615                 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4616         } else {
4617                 if (HDR_COMPRESSION_ENABLED(hdr)) {
4618                         ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4619                             BP_GET_COMPRESS(bp));
4620                 }
4621                 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4622                 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4623         }
4624 }
4625 
4626 static void
4627 arc_read_done(zio_t *zio)
4628 {
4629         arc_buf_hdr_t   *hdr = zio->io_private;
4630         kmutex_t        *hash_lock = NULL;
4631         arc_callback_t  *callback_list;
4632         arc_callback_t  *acb;
4633         boolean_t       freeable = B_FALSE;
4634         boolean_t       no_zio_error = (zio->io_error == 0);
4635 
4636         /*
4637          * The hdr was inserted into hash-table and removed from lists
4638          * prior to starting I/O.  We should find this header, since
4639          * it's in the hash table, and it should be legit since it's
4640          * not possible to evict it during the I/O.  The only possible
4641          * reason for it not to be found is if we were freed during the
4642          * read.
4643          */
4644         if (HDR_IN_HASH_TABLE(hdr)) {
4645                 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4646                 ASSERT3U(hdr->b_dva.dva_word[0], ==,
4647                     BP_IDENTITY(zio->io_bp)->dva_word[0]);
4648                 ASSERT3U(hdr->b_dva.dva_word[1], ==,
4649                     BP_IDENTITY(zio->io_bp)->dva_word[1]);
4650 
4651                 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4652                     &hash_lock);
4653 
4654                 ASSERT((found == hdr &&
4655                     DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4656                     (found == hdr && HDR_L2_READING(hdr)));
4657                 ASSERT3P(hash_lock, !=, NULL);
4658         }
4659 
4660         if (no_zio_error) {
4661                 /* byteswap if necessary */
4662                 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4663                         if (BP_GET_LEVEL(zio->io_bp) > 0) {
4664                                 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4665                         } else {
4666                                 hdr->b_l1hdr.b_byteswap =
4667                                     DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4668                         }
4669                 } else {
4670                         hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4671                 }
4672         }
4673 
4674         arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4675         if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4676                 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4677 
4678         callback_list = hdr->b_l1hdr.b_acb;
4679         ASSERT3P(callback_list, !=, NULL);
4680 
4681         if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
4682                 /*
4683                  * Only call arc_access on anonymous buffers.  This is because
4684                  * if we've issued an I/O for an evicted buffer, we've already
4685                  * called arc_access (to prevent any simultaneous readers from
4686                  * getting confused).
4687                  */
4688                 arc_access(hdr, hash_lock);
4689         }
4690 
4691         /*
4692          * If a read request has a callback (i.e. acb_done is not NULL), then we
4693          * make a buf containing the data according to the parameters which were
4694          * passed in. The implementation of arc_buf_alloc_impl() ensures that we
4695          * aren't needlessly decompressing the data multiple times.
4696          */
4697         int callback_cnt = 0;
4698         for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
4699                 if (!acb->acb_done)
4700                         continue;
4701 
4702                 /* This is a demand read since prefetches don't use callbacks */
4703                 callback_cnt++;
4704 
4705                 int error = arc_buf_alloc_impl(hdr, acb->acb_private,
4706                     acb->acb_compressed, no_zio_error, &acb->acb_buf);
4707                 if (no_zio_error) {
4708                         zio->io_error = error;
4709                 }
4710         }
4711         hdr->b_l1hdr.b_acb = NULL;
4712         arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4713         if (callback_cnt == 0) {
4714                 ASSERT(HDR_PREFETCH(hdr));
4715                 ASSERT0(hdr->b_l1hdr.b_bufcnt);
4716                 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
4717         }
4718 
4719         ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4720             callback_list != NULL);
4721 
4722         if (no_zio_error) {
4723                 arc_hdr_verify(hdr, zio->io_bp);
4724         } else {
4725                 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
4726                 if (hdr->b_l1hdr.b_state != arc_anon)
4727                         arc_change_state(arc_anon, hdr, hash_lock);
4728                 if (HDR_IN_HASH_TABLE(hdr))
4729                         buf_hash_remove(hdr);
4730                 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4731         }
4732 
4733         /*
4734          * Broadcast before we drop the hash_lock to avoid the possibility
4735          * that the hdr (and hence the cv) might be freed before we get to
4736          * the cv_broadcast().
4737          */
4738         cv_broadcast(&hdr->b_l1hdr.b_cv);
4739 
4740         if (hash_lock != NULL) {
4741                 mutex_exit(hash_lock);
4742         } else {
4743                 /*
4744                  * This block was freed while we waited for the read to
4745                  * complete.  It has been removed from the hash table and
4746                  * moved to the anonymous state (so that it won't show up
4747                  * in the cache).
4748                  */
4749                 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4750                 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4751         }
4752 
4753         /* execute each callback and free its structure */
4754         while ((acb = callback_list) != NULL) {
4755                 if (acb->acb_done)
4756                         acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4757 
4758                 if (acb->acb_zio_dummy != NULL) {
4759                         acb->acb_zio_dummy->io_error = zio->io_error;
4760                         zio_nowait(acb->acb_zio_dummy);
4761                 }
4762 
4763                 callback_list = acb->acb_next;
4764                 kmem_free(acb, sizeof (arc_callback_t));
4765         }
4766 
4767         if (freeable)
4768                 arc_hdr_destroy(hdr);
4769 }
4770 
4771 /*
4772  * "Read" the block at the specified DVA (in bp) via the
4773  * cache.  If the block is found in the cache, invoke the provided
4774  * callback immediately and return.  Note that the `zio' parameter
4775  * in the callback will be NULL in this case, since no IO was
4776  * required.  If the block is not in the cache pass the read request
4777  * on to the spa with a substitute callback function, so that the
4778  * requested block will be added to the cache.
4779  *
4780  * If a read request arrives for a block that has a read in-progress,
4781  * either wait for the in-progress read to complete (and return the
4782  * results); or, if this is a read with a "done" func, add a record
4783  * to the read to invoke the "done" func when the read completes,
4784  * and return; or just return.
4785  *
4786  * arc_read_done() will invoke all the requested "done" functions
4787  * for readers of this block.
4788  */
4789 int
4790 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4791     void *private, zio_priority_t priority, int zio_flags,
4792     arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4793 {
4794         arc_buf_hdr_t *hdr = NULL;
4795         kmutex_t *hash_lock = NULL;
4796         zio_t *rzio;
4797         uint64_t guid = spa_load_guid(spa);
4798         boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
4799 
4800         ASSERT(!BP_IS_EMBEDDED(bp) ||
4801             BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4802 
4803 top:
4804         if (!BP_IS_EMBEDDED(bp)) {
4805                 /*
4806                  * Embedded BP's have no DVA and require no I/O to "read".
4807                  * Create an anonymous arc buf to back it.
4808                  */
4809                 hdr = buf_hash_find(guid, bp, &hash_lock);
4810         }
4811 
4812         if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
4813                 arc_buf_t *buf = NULL;
4814                 *arc_flags |= ARC_FLAG_CACHED;
4815 
4816                 if (HDR_IO_IN_PROGRESS(hdr)) {
4817 
4818                         if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4819                             priority == ZIO_PRIORITY_SYNC_READ) {
4820                                 /*
4821                                  * This sync read must wait for an
4822                                  * in-progress async read (e.g. a predictive
4823                                  * prefetch).  Async reads are queued
4824                                  * separately at the vdev_queue layer, so
4825                                  * this is a form of priority inversion.
4826                                  * Ideally, we would "inherit" the demand
4827                                  * i/o's priority by moving the i/o from
4828                                  * the async queue to the synchronous queue,
4829                                  * but there is currently no mechanism to do
4830                                  * so.  Track this so that we can evaluate
4831                                  * the magnitude of this potential performance
4832                                  * problem.
4833                                  *
4834                                  * Note that if the prefetch i/o is already
4835                                  * active (has been issued to the device),
4836                                  * the prefetch improved performance, because
4837                                  * we issued it sooner than we would have
4838                                  * without the prefetch.
4839                                  */
4840                                 DTRACE_PROBE1(arc__sync__wait__for__async,
4841                                     arc_buf_hdr_t *, hdr);
4842                                 ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4843                         }
4844                         if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4845                                 arc_hdr_clear_flags(hdr,
4846                                     ARC_FLAG_PREDICTIVE_PREFETCH);
4847                         }
4848 
4849                         if (*arc_flags & ARC_FLAG_WAIT) {
4850                                 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4851                                 mutex_exit(hash_lock);
4852                                 goto top;
4853                         }
4854                         ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4855 
4856                         if (done) {
4857                                 arc_callback_t *acb = NULL;
4858 
4859                                 acb = kmem_zalloc(sizeof (arc_callback_t),
4860                                     KM_SLEEP);
4861                                 acb->acb_done = done;
4862                                 acb->acb_private = private;
4863                                 acb->acb_compressed = compressed_read;
4864                                 if (pio != NULL)
4865                                         acb->acb_zio_dummy = zio_null(pio,
4866                                             spa, NULL, NULL, NULL, zio_flags);
4867 
4868                                 ASSERT3P(acb->acb_done, !=, NULL);
4869                                 acb->acb_next = hdr->b_l1hdr.b_acb;
4870                                 hdr->b_l1hdr.b_acb = acb;
4871                                 mutex_exit(hash_lock);
4872                                 return (0);
4873                         }
4874                         mutex_exit(hash_lock);
4875                         return (0);
4876                 }
4877 
4878                 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4879                     hdr->b_l1hdr.b_state == arc_mfu);
4880 
4881                 if (done) {
4882                         if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4883                                 /*
4884                                  * This is a demand read which does not have to
4885                                  * wait for i/o because we did a predictive
4886                                  * prefetch i/o for it, which has completed.
4887                                  */
4888                                 DTRACE_PROBE1(
4889                                     arc__demand__hit__predictive__prefetch,
4890                                     arc_buf_hdr_t *, hdr);
4891                                 ARCSTAT_BUMP(
4892                                     arcstat_demand_hit_predictive_prefetch);
4893                                 arc_hdr_clear_flags(hdr,
4894                                     ARC_FLAG_PREDICTIVE_PREFETCH);
4895                         }
4896                         ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
4897 
4898                         /* Get a buf with the desired data in it. */
4899                         VERIFY0(arc_buf_alloc_impl(hdr, private,
4900                             compressed_read, B_TRUE, &buf));
4901                 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
4902                     refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4903                         arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
4904                 }
4905                 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4906                 arc_access(hdr, hash_lock);
4907                 if (*arc_flags & ARC_FLAG_L2CACHE)
4908                         arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
4909                 mutex_exit(hash_lock);
4910                 ARCSTAT_BUMP(arcstat_hits);
4911                 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4912                     demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4913                     data, metadata, hits);
4914 
4915                 if (done)
4916                         done(NULL, buf, private);
4917         } else {
4918                 uint64_t lsize = BP_GET_LSIZE(bp);
4919                 uint64_t psize = BP_GET_PSIZE(bp);
4920                 arc_callback_t *acb;
4921                 vdev_t *vd = NULL;
4922                 uint64_t addr = 0;
4923                 boolean_t devw = B_FALSE;
4924                 uint64_t size;
4925 
4926                 if (hdr == NULL) {
4927                         /* this block is not in the cache */
4928                         arc_buf_hdr_t *exists = NULL;
4929                         arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4930                         hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
4931                             BP_GET_COMPRESS(bp), type);
4932 
4933                         if (!BP_IS_EMBEDDED(bp)) {
4934                                 hdr->b_dva = *BP_IDENTITY(bp);
4935                                 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4936                                 exists = buf_hash_insert(hdr, &hash_lock);
4937                         }
4938                         if (exists != NULL) {
4939                                 /* somebody beat us to the hash insert */
4940                                 mutex_exit(hash_lock);
4941                                 buf_discard_identity(hdr);
4942                                 arc_hdr_destroy(hdr);
4943                                 goto top; /* restart the IO request */
4944                         }
4945                 } else {
4946                         /*
4947                          * This block is in the ghost cache. If it was L2-only
4948                          * (and thus didn't have an L1 hdr), we realloc the
4949                          * header to add an L1 hdr.
4950                          */
4951                         if (!HDR_HAS_L1HDR(hdr)) {
4952                                 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4953                                     hdr_full_cache);
4954                         }
4955                         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
4956                         ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4957                         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4958                         ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4959                         ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4960                         ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
4961 
4962                         /*
4963                          * This is a delicate dance that we play here.
4964                          * This hdr is in the ghost list so we access it
4965                          * to move it out of the ghost list before we
4966                          * initiate the read. If it's a prefetch then
4967                          * it won't have a callback so we'll remove the
4968                          * reference that arc_buf_alloc_impl() created. We
4969                          * do this after we've called arc_access() to
4970                          * avoid hitting an assert in remove_reference().
4971                          */
4972                         arc_access(hdr, hash_lock);
4973                         arc_hdr_alloc_pabd(hdr);
4974                 }
4975                 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
4976                 size = arc_hdr_size(hdr);
4977 
4978                 /*
4979                  * If compression is enabled on the hdr, then will do
4980                  * RAW I/O and will store the compressed data in the hdr's
4981                  * data block. Otherwise, the hdr's data block will contain
4982                  * the uncompressed data.
4983                  */
4984                 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
4985                         zio_flags |= ZIO_FLAG_RAW;
4986                 }
4987 
4988                 if (*arc_flags & ARC_FLAG_PREFETCH)
4989                         arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
4990                 if (*arc_flags & ARC_FLAG_L2CACHE)
4991                         arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
4992                 if (BP_GET_LEVEL(bp) > 0)
4993                         arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
4994                 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
4995                         arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
4996                 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4997 
4998                 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4999                 acb->acb_done = done;
5000                 acb->acb_private = private;
5001                 acb->acb_compressed = compressed_read;
5002 
5003                 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5004                 hdr->b_l1hdr.b_acb = acb;
5005                 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5006 
5007                 if (HDR_HAS_L2HDR(hdr) &&
5008                     (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5009                         devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5010                         addr = hdr->b_l2hdr.b_daddr;
5011                         /*
5012                          * Lock out L2ARC device removal.
5013                          */
5014                         if (vdev_is_dead(vd) ||
5015                             !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5016                                 vd = NULL;
5017                 }
5018 
5019                 if (priority == ZIO_PRIORITY_ASYNC_READ)
5020                         arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5021                 else
5022                         arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5023 
5024                 if (hash_lock != NULL)
5025                         mutex_exit(hash_lock);
5026 
5027                 /*
5028                  * At this point, we have a level 1 cache miss.  Try again in
5029                  * L2ARC if possible.
5030                  */
5031                 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5032 
5033                 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5034                     uint64_t, lsize, zbookmark_phys_t *, zb);
5035                 ARCSTAT_BUMP(arcstat_misses);
5036                 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5037                     demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5038                     data, metadata, misses);
5039 
5040                 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5041                         /*
5042                          * Read from the L2ARC if the following are true:
5043                          * 1. The L2ARC vdev was previously cached.
5044                          * 2. This buffer still has L2ARC metadata.
5045                          * 3. This buffer isn't currently writing to the L2ARC.
5046                          * 4. The L2ARC entry wasn't evicted, which may
5047                          *    also have invalidated the vdev.
5048                          * 5. This isn't prefetch and l2arc_noprefetch is set.
5049                          */
5050                         if (HDR_HAS_L2HDR(hdr) &&
5051                             !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5052                             !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5053                                 l2arc_read_callback_t *cb;
5054                                 abd_t *abd;
5055                                 uint64_t asize;
5056 
5057                                 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5058                                 ARCSTAT_BUMP(arcstat_l2_hits);
5059 
5060                                 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5061                                     KM_SLEEP);
5062                                 cb->l2rcb_hdr = hdr;
5063                                 cb->l2rcb_bp = *bp;
5064                                 cb->l2rcb_zb = *zb;
5065                                 cb->l2rcb_flags = zio_flags;
5066 
5067                                 asize = vdev_psize_to_asize(vd, size);
5068                                 if (asize != size) {
5069                                         abd = abd_alloc_for_io(asize,
5070                                             HDR_ISTYPE_METADATA(hdr));
5071                                         cb->l2rcb_abd = abd;
5072                                 } else {
5073                                         abd = hdr->b_l1hdr.b_pabd;
5074                                 }
5075 
5076                                 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5077                                     addr + asize <= vd->vdev_psize -
5078                                     VDEV_LABEL_END_SIZE);
5079 
5080                                 /*
5081                                  * l2arc read.  The SCL_L2ARC lock will be
5082                                  * released by l2arc_read_done().
5083                                  * Issue a null zio if the underlying buffer
5084                                  * was squashed to zero size by compression.
5085                                  */
5086                                 ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5087                                     ZIO_COMPRESS_EMPTY);
5088                                 rzio = zio_read_phys(pio, vd, addr,
5089                                     asize, abd,
5090                                     ZIO_CHECKSUM_OFF,
5091                                     l2arc_read_done, cb, priority,
5092                                     zio_flags | ZIO_FLAG_DONT_CACHE |
5093                                     ZIO_FLAG_CANFAIL |
5094                                     ZIO_FLAG_DONT_PROPAGATE |
5095                                     ZIO_FLAG_DONT_RETRY, B_FALSE);
5096                                 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5097                                     zio_t *, rzio);
5098                                 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5099 
5100                                 if (*arc_flags & ARC_FLAG_NOWAIT) {
5101                                         zio_nowait(rzio);
5102                                         return (0);
5103                                 }
5104 
5105                                 ASSERT(*arc_flags & ARC_FLAG_WAIT);
5106                                 if (zio_wait(rzio) == 0)
5107                                         return (0);
5108 
5109                                 /* l2arc read error; goto zio_read() */
5110                         } else {
5111                                 DTRACE_PROBE1(l2arc__miss,
5112                                     arc_buf_hdr_t *, hdr);
5113                                 ARCSTAT_BUMP(arcstat_l2_misses);
5114                                 if (HDR_L2_WRITING(hdr))
5115                                         ARCSTAT_BUMP(arcstat_l2_rw_clash);
5116                                 spa_config_exit(spa, SCL_L2ARC, vd);
5117                         }
5118                 } else {
5119                         if (vd != NULL)
5120                                 spa_config_exit(spa, SCL_L2ARC, vd);
5121                         if (l2arc_ndev != 0) {
5122                                 DTRACE_PROBE1(l2arc__miss,
5123                                     arc_buf_hdr_t *, hdr);
5124                                 ARCSTAT_BUMP(arcstat_l2_misses);
5125                         }
5126                 }
5127 
5128                 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
5129                     arc_read_done, hdr, priority, zio_flags, zb);
5130 
5131                 if (*arc_flags & ARC_FLAG_WAIT)
5132                         return (zio_wait(rzio));
5133 
5134                 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5135                 zio_nowait(rzio);
5136         }
5137         return (0);
5138 }
5139 
5140 /*
5141  * Notify the arc that a block was freed, and thus will never be used again.
5142  */
5143 void
5144 arc_freed(spa_t *spa, const blkptr_t *bp)
5145 {
5146         arc_buf_hdr_t *hdr;
5147         kmutex_t *hash_lock;
5148         uint64_t guid = spa_load_guid(spa);
5149 
5150         ASSERT(!BP_IS_EMBEDDED(bp));
5151 
5152         hdr = buf_hash_find(guid, bp, &hash_lock);
5153         if (hdr == NULL)
5154                 return;
5155 
5156         /*
5157          * We might be trying to free a block that is still doing I/O
5158          * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5159          * dmu_sync-ed block). If this block is being prefetched, then it
5160          * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5161          * until the I/O completes. A block may also have a reference if it is
5162          * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5163          * have written the new block to its final resting place on disk but
5164          * without the dedup flag set. This would have left the hdr in the MRU
5165          * state and discoverable. When the txg finally syncs it detects that
5166          * the block was overridden in open context and issues an override I/O.
5167          * Since this is a dedup block, the override I/O will determine if the
5168          * block is already in the DDT. If so, then it will replace the io_bp
5169          * with the bp from the DDT and allow the I/O to finish. When the I/O
5170          * reaches the done callback, dbuf_write_override_done, it will
5171          * check to see if the io_bp and io_bp_override are identical.
5172          * If they are not, then it indicates that the bp was replaced with
5173          * the bp in the DDT and the override bp is freed. This allows
5174          * us to arrive here with a reference on a block that is being
5175          * freed. So if we have an I/O in progress, or a reference to
5176          * this hdr, then we don't destroy the hdr.
5177          */
5178         if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5179             refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5180                 arc_change_state(arc_anon, hdr, hash_lock);
5181                 arc_hdr_destroy(hdr);
5182                 mutex_exit(hash_lock);
5183         } else {
5184                 mutex_exit(hash_lock);
5185         }
5186 
5187 }
5188 
5189 /*
5190  * Release this buffer from the cache, making it an anonymous buffer.  This
5191  * must be done after a read and prior to modifying the buffer contents.
5192  * If the buffer has more than one reference, we must make
5193  * a new hdr for the buffer.
5194  */
5195 void
5196 arc_release(arc_buf_t *buf, void *tag)
5197 {
5198         arc_buf_hdr_t *hdr = buf->b_hdr;
5199 
5200         /*
5201          * It would be nice to assert that if it's DMU metadata (level >
5202          * 0 || it's the dnode file), then it must be syncing context.
5203          * But we don't know that information at this level.
5204          */
5205 
5206         mutex_enter(&buf->b_evict_lock);
5207 
5208         ASSERT(HDR_HAS_L1HDR(hdr));
5209 
5210         /*
5211          * We don't grab the hash lock prior to this check, because if
5212          * the buffer's header is in the arc_anon state, it won't be
5213          * linked into the hash table.
5214          */
5215         if (hdr->b_l1hdr.b_state == arc_anon) {
5216                 mutex_exit(&buf->b_evict_lock);
5217                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5218                 ASSERT(!HDR_IN_HASH_TABLE(hdr));
5219                 ASSERT(!HDR_HAS_L2HDR(hdr));
5220                 ASSERT(HDR_EMPTY(hdr));
5221 
5222                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5223                 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5224                 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5225 
5226                 hdr->b_l1hdr.b_arc_access = 0;
5227 
5228                 /*
5229                  * If the buf is being overridden then it may already
5230                  * have a hdr that is not empty.
5231                  */
5232                 buf_discard_identity(hdr);
5233                 arc_buf_thaw(buf);
5234 
5235                 return;
5236         }
5237 
5238         kmutex_t *hash_lock = HDR_LOCK(hdr);
5239         mutex_enter(hash_lock);
5240 
5241         /*
5242          * This assignment is only valid as long as the hash_lock is
5243          * held, we must be careful not to reference state or the
5244          * b_state field after dropping the lock.
5245          */
5246         arc_state_t *state = hdr->b_l1hdr.b_state;
5247         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5248         ASSERT3P(state, !=, arc_anon);
5249 
5250         /* this buffer is not on any list */
5251         ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5252 
5253         if (HDR_HAS_L2HDR(hdr)) {
5254                 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5255 
5256                 /*
5257                  * We have to recheck this conditional again now that
5258                  * we're holding the l2ad_mtx to prevent a race with
5259                  * another thread which might be concurrently calling
5260                  * l2arc_evict(). In that case, l2arc_evict() might have
5261                  * destroyed the header's L2 portion as we were waiting
5262                  * to acquire the l2ad_mtx.
5263                  */
5264                 if (HDR_HAS_L2HDR(hdr))
5265                         arc_hdr_l2hdr_destroy(hdr);
5266 
5267                 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5268         }
5269 
5270         /*
5271          * Do we have more than one buf?
5272          */
5273         if (hdr->b_l1hdr.b_bufcnt > 1) {
5274                 arc_buf_hdr_t *nhdr;
5275                 uint64_t spa = hdr->b_spa;
5276                 uint64_t psize = HDR_GET_PSIZE(hdr);
5277                 uint64_t lsize = HDR_GET_LSIZE(hdr);
5278                 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5279                 arc_buf_contents_t type = arc_buf_type(hdr);
5280                 VERIFY3U(hdr->b_type, ==, type);
5281 
5282                 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5283                 (void) remove_reference(hdr, hash_lock, tag);
5284 
5285                 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5286                         ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5287                         ASSERT(ARC_BUF_LAST(buf));
5288                 }
5289 
5290                 /*
5291                  * Pull the data off of this hdr and attach it to
5292                  * a new anonymous hdr. Also find the last buffer
5293                  * in the hdr's buffer list.
5294                  */
5295                 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
5296                 ASSERT3P(lastbuf, !=, NULL);
5297 
5298                 /*
5299                  * If the current arc_buf_t and the hdr are sharing their data
5300                  * buffer, then we must stop sharing that block.
5301                  */
5302                 if (arc_buf_is_shared(buf)) {
5303                         VERIFY(!arc_buf_is_shared(lastbuf));
5304 
5305                         /*
5306                          * First, sever the block sharing relationship between
5307                          * buf and the arc_buf_hdr_t.
5308                          */
5309                         arc_unshare_buf(hdr, buf);
5310 
5311                         /*
5312                          * Now we need to recreate the hdr's b_pabd. Since we
5313                          * have lastbuf handy, we try to share with it, but if
5314                          * we can't then we allocate a new b_pabd and copy the
5315                          * data from buf into it.
5316                          */
5317                         if (arc_can_share(hdr, lastbuf)) {
5318                                 arc_share_buf(hdr, lastbuf);
5319                         } else {
5320                                 arc_hdr_alloc_pabd(hdr);
5321                                 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5322                                     buf->b_data, psize);
5323                         }
5324                         VERIFY3P(lastbuf->b_data, !=, NULL);
5325                 } else if (HDR_SHARED_DATA(hdr)) {
5326                         /*
5327                          * Uncompressed shared buffers are always at the end
5328                          * of the list. Compressed buffers don't have the
5329                          * same requirements. This makes it hard to
5330                          * simply assert that the lastbuf is shared so
5331                          * we rely on the hdr's compression flags to determine
5332                          * if we have a compressed, shared buffer.
5333                          */
5334                         ASSERT(arc_buf_is_shared(lastbuf) ||
5335                             HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5336                         ASSERT(!ARC_BUF_SHARED(buf));
5337                 }
5338                 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5339                 ASSERT3P(state, !=, arc_l2c_only);
5340 
5341                 (void) refcount_remove_many(&state->arcs_size,
5342                     arc_buf_size(buf), buf);
5343 
5344                 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5345                         ASSERT3P(state, !=, arc_l2c_only);
5346                         (void) refcount_remove_many(&state->arcs_esize[type],
5347                             arc_buf_size(buf), buf);
5348                 }
5349 
5350                 hdr->b_l1hdr.b_bufcnt -= 1;
5351                 arc_cksum_verify(buf);
5352                 arc_buf_unwatch(buf);
5353 
5354                 mutex_exit(hash_lock);
5355 
5356                 /*
5357                  * Allocate a new hdr. The new hdr will contain a b_pabd
5358                  * buffer which will be freed in arc_write().
5359                  */
5360                 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5361                 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5362                 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5363                 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5364                 VERIFY3U(nhdr->b_type, ==, type);
5365                 ASSERT(!HDR_SHARED_DATA(nhdr));
5366 
5367                 nhdr->b_l1hdr.b_buf = buf;
5368                 nhdr->b_l1hdr.b_bufcnt = 1;
5369                 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5370                 buf->b_hdr = nhdr;
5371 
5372                 mutex_exit(&buf->b_evict_lock);
5373                 (void) refcount_add_many(&arc_anon->arcs_size,
5374                     arc_buf_size(buf), buf);
5375         } else {
5376                 mutex_exit(&buf->b_evict_lock);
5377                 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5378                 /* protected by hash lock, or hdr is on arc_anon */
5379                 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5380                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5381                 arc_change_state(arc_anon, hdr, hash_lock);
5382                 hdr->b_l1hdr.b_arc_access = 0;
5383                 mutex_exit(hash_lock);
5384 
5385                 buf_discard_identity(hdr);
5386                 arc_buf_thaw(buf);
5387         }
5388 }
5389 
5390 int
5391 arc_released(arc_buf_t *buf)
5392 {
5393         int released;
5394 
5395         mutex_enter(&buf->b_evict_lock);
5396         released = (buf->b_data != NULL &&
5397             buf->b_hdr->b_l1hdr.b_state == arc_anon);
5398         mutex_exit(&buf->b_evict_lock);
5399         return (released);
5400 }
5401 
5402 #ifdef ZFS_DEBUG
5403 int
5404 arc_referenced(arc_buf_t *buf)
5405 {
5406         int referenced;
5407 
5408         mutex_enter(&buf->b_evict_lock);
5409         referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5410         mutex_exit(&buf->b_evict_lock);
5411         return (referenced);
5412 }
5413 #endif
5414 
5415 static void
5416 arc_write_ready(zio_t *zio)
5417 {
5418         arc_write_callback_t *callback = zio->io_private;
5419         arc_buf_t *buf = callback->awcb_buf;
5420         arc_buf_hdr_t *hdr = buf->b_hdr;
5421         uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5422 
5423         ASSERT(HDR_HAS_L1HDR(hdr));
5424         ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5425         ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5426 
5427         /*
5428          * If we're reexecuting this zio because the pool suspended, then
5429          * cleanup any state that was previously set the first time the
5430          * callback was invoked.
5431          */
5432         if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5433                 arc_cksum_free(hdr);
5434                 arc_buf_unwatch(buf);
5435                 if (hdr->b_l1hdr.b_pabd != NULL) {
5436                         if (arc_buf_is_shared(buf)) {
5437                                 arc_unshare_buf(hdr, buf);
5438                         } else {
5439                                 arc_hdr_free_pabd(hdr);
5440                         }
5441                 }
5442         }
5443         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5444         ASSERT(!HDR_SHARED_DATA(hdr));
5445         ASSERT(!arc_buf_is_shared(buf));
5446 
5447         callback->awcb_ready(zio, buf, callback->awcb_private);
5448 
5449         if (HDR_IO_IN_PROGRESS(hdr))
5450                 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5451 
5452         arc_cksum_compute(buf);
5453         arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5454 
5455         enum zio_compress compress;
5456         if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5457                 compress = ZIO_COMPRESS_OFF;
5458         } else {
5459                 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5460                 compress = BP_GET_COMPRESS(zio->io_bp);
5461         }
5462         HDR_SET_PSIZE(hdr, psize);
5463         arc_hdr_set_compress(hdr, compress);
5464 
5465 
5466         /*
5467          * Fill the hdr with data. If the hdr is compressed, the data we want
5468          * is available from the zio, otherwise we can take it from the buf.
5469          *
5470          * We might be able to share the buf's data with the hdr here. However,
5471          * doing so would cause the ARC to be full of linear ABDs if we write a
5472          * lot of shareable data. As a compromise, we check whether scattered
5473          * ABDs are allowed, and assume that if they are then the user wants
5474          * the ARC to be primarily filled with them regardless of the data being
5475          * written. Therefore, if they're allowed then we allocate one and copy
5476          * the data into it; otherwise, we share the data directly if we can.
5477          */
5478         if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
5479                 arc_hdr_alloc_pabd(hdr);
5480 
5481                 /*
5482                  * Ideally, we would always copy the io_abd into b_pabd, but the
5483                  * user may have disabled compressed ARC, thus we must check the
5484                  * hdr's compression setting rather than the io_bp's.
5485                  */
5486                 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5487                         ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
5488                             ZIO_COMPRESS_OFF);
5489                         ASSERT3U(psize, >, 0);
5490 
5491                         abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
5492                 } else {
5493                         ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
5494 
5495                         abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
5496                             arc_buf_size(buf));
5497                 }
5498         } else {
5499                 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
5500                 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
5501                 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5502 
5503                 arc_share_buf(hdr, buf);
5504         }
5505 
5506         arc_hdr_verify(hdr, zio->io_bp);
5507 }
5508 
5509 static void
5510 arc_write_children_ready(zio_t *zio)
5511 {
5512         arc_write_callback_t *callback = zio->io_private;
5513         arc_buf_t *buf = callback->awcb_buf;
5514 
5515         callback->awcb_children_ready(zio, buf, callback->awcb_private);
5516 }
5517 
5518 /*
5519  * The SPA calls this callback for each physical write that happens on behalf
5520  * of a logical write.  See the comment in dbuf_write_physdone() for details.
5521  */
5522 static void
5523 arc_write_physdone(zio_t *zio)
5524 {
5525         arc_write_callback_t *cb = zio->io_private;
5526         if (cb->awcb_physdone != NULL)
5527                 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5528 }
5529 
5530 static void
5531 arc_write_done(zio_t *zio)
5532 {
5533         arc_write_callback_t *callback = zio->io_private;
5534         arc_buf_t *buf = callback->awcb_buf;
5535         arc_buf_hdr_t *hdr = buf->b_hdr;
5536 
5537         ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5538 
5539         if (zio->io_error == 0) {
5540                 arc_hdr_verify(hdr, zio->io_bp);
5541 
5542                 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5543                         buf_discard_identity(hdr);
5544                 } else {
5545                         hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5546                         hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5547                 }
5548         } else {
5549                 ASSERT(HDR_EMPTY(hdr));
5550         }
5551 
5552         /*
5553          * If the block to be written was all-zero or compressed enough to be
5554          * embedded in the BP, no write was performed so there will be no
5555          * dva/birth/checksum.  The buffer must therefore remain anonymous
5556          * (and uncached).
5557          */
5558         if (!HDR_EMPTY(hdr)) {
5559                 arc_buf_hdr_t *exists;
5560                 kmutex_t *hash_lock;
5561 
5562                 ASSERT3U(zio->io_error, ==, 0);
5563 
5564                 arc_cksum_verify(buf);
5565 
5566                 exists = buf_hash_insert(hdr, &hash_lock);
5567                 if (exists != NULL) {
5568                         /*
5569                          * This can only happen if we overwrite for
5570                          * sync-to-convergence, because we remove
5571                          * buffers from the hash table when we arc_free().
5572                          */
5573                         if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5574                                 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5575                                         panic("bad overwrite, hdr=%p exists=%p",
5576                                             (void *)hdr, (void *)exists);
5577                                 ASSERT(refcount_is_zero(
5578                                     &exists->b_l1hdr.b_refcnt));
5579                                 arc_change_state(arc_anon, exists, hash_lock);
5580                                 mutex_exit(hash_lock);
5581                                 arc_hdr_destroy(exists);
5582                                 exists = buf_hash_insert(hdr, &hash_lock);
5583                                 ASSERT3P(exists, ==, NULL);
5584                         } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5585                                 /* nopwrite */
5586                                 ASSERT(zio->io_prop.zp_nopwrite);
5587                                 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5588                                         panic("bad nopwrite, hdr=%p exists=%p",
5589                                             (void *)hdr, (void *)exists);
5590                         } else {
5591                                 /* Dedup */
5592                                 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5593                                 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5594                                 ASSERT(BP_GET_DEDUP(zio->io_bp));
5595                                 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5596                         }
5597                 }
5598                 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5599                 /* if it's not anon, we are doing a scrub */
5600                 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5601                         arc_access(hdr, hash_lock);
5602                 mutex_exit(hash_lock);
5603         } else {
5604                 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5605         }
5606 
5607         ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5608         callback->awcb_done(zio, buf, callback->awcb_private);
5609 
5610         abd_put(zio->io_abd);
5611         kmem_free(callback, sizeof (arc_write_callback_t));
5612 }
5613 
5614 zio_t *
5615 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
5616     boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready,
5617     arc_done_func_t *children_ready, arc_done_func_t *physdone,
5618     arc_done_func_t *done, void *private, zio_priority_t priority,
5619     int zio_flags, const zbookmark_phys_t *zb)
5620 {
5621         arc_buf_hdr_t *hdr = buf->b_hdr;
5622         arc_write_callback_t *callback;
5623         zio_t *zio;
5624         zio_prop_t localprop = *zp;
5625 
5626         ASSERT3P(ready, !=, NULL);
5627         ASSERT3P(done, !=, NULL);
5628         ASSERT(!HDR_IO_ERROR(hdr));
5629         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5630         ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5631         ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
5632         if (l2arc)
5633                 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5634         if (ARC_BUF_COMPRESSED(buf)) {
5635                 /*
5636                  * We're writing a pre-compressed buffer.  Make the
5637                  * compression algorithm requested by the zio_prop_t match
5638                  * the pre-compressed buffer's compression algorithm.
5639                  */
5640                 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
5641 
5642                 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
5643                 zio_flags |= ZIO_FLAG_RAW;
5644         }
5645         callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5646         callback->awcb_ready = ready;
5647         callback->awcb_children_ready = children_ready;
5648         callback->awcb_physdone = physdone;
5649         callback->awcb_done = done;
5650         callback->awcb_private = private;
5651         callback->awcb_buf = buf;
5652 
5653         /*
5654          * The hdr's b_pabd is now stale, free it now. A new data block
5655          * will be allocated when the zio pipeline calls arc_write_ready().
5656          */
5657         if (hdr->b_l1hdr.b_pabd != NULL) {
5658                 /*
5659                  * If the buf is currently sharing the data block with
5660                  * the hdr then we need to break that relationship here.
5661                  * The hdr will remain with a NULL data pointer and the
5662                  * buf will take sole ownership of the block.
5663                  */
5664                 if (arc_buf_is_shared(buf)) {
5665                         arc_unshare_buf(hdr, buf);
5666                 } else {
5667                         arc_hdr_free_pabd(hdr);
5668                 }
5669                 VERIFY3P(buf->b_data, !=, NULL);
5670                 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
5671         }
5672         ASSERT(!arc_buf_is_shared(buf));
5673         ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5674 
5675         zio = zio_write(pio, spa, txg, bp,
5676             abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
5677             HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
5678             (children_ready != NULL) ? arc_write_children_ready : NULL,
5679             arc_write_physdone, arc_write_done, callback,
5680             priority, zio_flags, zb);
5681 
5682         return (zio);
5683 }
5684 
5685 static int
5686 arc_memory_throttle(uint64_t reserve, uint64_t txg)
5687 {
5688 #ifdef _KERNEL
5689         uint64_t available_memory = ptob(freemem);
5690         static uint64_t page_load = 0;
5691         static uint64_t last_txg = 0;
5692 
5693 #if defined(__i386)
5694         available_memory =
5695             MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
5696 #endif
5697 
5698         if (freemem > physmem * arc_lotsfree_percent / 100)
5699                 return (0);
5700 
5701         if (txg > last_txg) {
5702                 last_txg = txg;
5703                 page_load = 0;
5704         }
5705         /*
5706          * If we are in pageout, we know that memory is already tight,
5707          * the arc is already going to be evicting, so we just want to
5708          * continue to let page writes occur as quickly as possible.
5709          */
5710         if (curproc == proc_pageout) {
5711                 if (page_load > MAX(ptob(minfree), available_memory) / 4)
5712                         return (SET_ERROR(ERESTART));
5713                 /* Note: reserve is inflated, so we deflate */
5714                 page_load += reserve / 8;
5715                 return (0);
5716         } else if (page_load > 0 && arc_reclaim_needed()) {
5717                 /* memory is low, delay before restarting */
5718                 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5719                 return (SET_ERROR(EAGAIN));
5720         }
5721         page_load = 0;
5722 #endif
5723         return (0);
5724 }
5725 
5726 void
5727 arc_tempreserve_clear(uint64_t reserve)
5728 {
5729         atomic_add_64(&arc_tempreserve, -reserve);
5730         ASSERT((int64_t)arc_tempreserve >= 0);
5731 }
5732 
5733 int
5734 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5735 {
5736         int error;
5737         uint64_t anon_size;
5738 
5739         if (reserve > arc_c/4 && !arc_no_grow)
5740                 arc_c = MIN(arc_c_max, reserve * 4);
5741         if (reserve > arc_c)
5742                 return (SET_ERROR(ENOMEM));
5743 
5744         /*
5745          * Don't count loaned bufs as in flight dirty data to prevent long
5746          * network delays from blocking transactions that are ready to be
5747          * assigned to a txg.
5748          */
5749 
5750         /* assert that it has not wrapped around */
5751         ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
5752 
5753         anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5754             arc_loaned_bytes), 0);
5755 
5756         /*
5757          * Writes will, almost always, require additional memory allocations
5758          * in order to compress/encrypt/etc the data.  We therefore need to
5759          * make sure that there is sufficient available memory for this.
5760          */
5761         error = arc_memory_throttle(reserve, txg);
5762         if (error != 0)
5763                 return (error);
5764 
5765         /*
5766          * Throttle writes when the amount of dirty data in the cache
5767          * gets too large.  We try to keep the cache less than half full
5768          * of dirty blocks so that our sync times don't grow too large.
5769          * Note: if two requests come in concurrently, we might let them
5770          * both succeed, when one of them should fail.  Not a huge deal.
5771          */
5772 
5773         if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5774             anon_size > arc_c / 4) {
5775                 uint64_t meta_esize =
5776                     refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5777                 uint64_t data_esize =
5778                     refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5779                 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5780                     "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5781                     arc_tempreserve >> 10, meta_esize >> 10,
5782                     data_esize >> 10, reserve >> 10, arc_c >> 10);
5783                 return (SET_ERROR(ERESTART));
5784         }
5785         atomic_add_64(&arc_tempreserve, reserve);
5786         return (0);
5787 }
5788 
5789 static void
5790 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5791     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5792 {
5793         size->value.ui64 = refcount_count(&state->arcs_size);
5794         evict_data->value.ui64 =
5795             refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
5796         evict_metadata->value.ui64 =
5797             refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
5798 }
5799 
5800 static int
5801 arc_kstat_update(kstat_t *ksp, int rw)
5802 {
5803         arc_stats_t *as = ksp->ks_data;
5804 
5805         if (rw == KSTAT_WRITE) {
5806                 return (EACCES);
5807         } else {
5808                 arc_kstat_update_state(arc_anon,
5809                     &as->arcstat_anon_size,
5810                     &as->arcstat_anon_evictable_data,
5811                     &as->arcstat_anon_evictable_metadata);
5812                 arc_kstat_update_state(arc_mru,
5813                     &as->arcstat_mru_size,
5814                     &as->arcstat_mru_evictable_data,
5815                     &as->arcstat_mru_evictable_metadata);
5816                 arc_kstat_update_state(arc_mru_ghost,
5817                     &as->arcstat_mru_ghost_size,
5818                     &as->arcstat_mru_ghost_evictable_data,
5819                     &as->arcstat_mru_ghost_evictable_metadata);
5820                 arc_kstat_update_state(arc_mfu,
5821                     &as->arcstat_mfu_size,
5822                     &as->arcstat_mfu_evictable_data,
5823                     &as->arcstat_mfu_evictable_metadata);
5824                 arc_kstat_update_state(arc_mfu_ghost,
5825                     &as->arcstat_mfu_ghost_size,
5826                     &as->arcstat_mfu_ghost_evictable_data,
5827                     &as->arcstat_mfu_ghost_evictable_metadata);
5828         }
5829 
5830         return (0);
5831 }
5832 
5833 /*
5834  * This function *must* return indices evenly distributed between all
5835  * sublists of the multilist. This is needed due to how the ARC eviction
5836  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5837  * distributed between all sublists and uses this assumption when
5838  * deciding which sublist to evict from and how much to evict from it.
5839  */
5840 unsigned int
5841 arc_state_multilist_index_func(multilist_t *ml, void *obj)
5842 {
5843         arc_buf_hdr_t *hdr = obj;
5844 
5845         /*
5846          * We rely on b_dva to generate evenly distributed index
5847          * numbers using buf_hash below. So, as an added precaution,
5848          * let's make sure we never add empty buffers to the arc lists.
5849          */
5850         ASSERT(!HDR_EMPTY(hdr));
5851 
5852         /*
5853          * The assumption here, is the hash value for a given
5854          * arc_buf_hdr_t will remain constant throughout it's lifetime
5855          * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5856          * Thus, we don't need to store the header's sublist index
5857          * on insertion, as this index can be recalculated on removal.
5858          *
5859          * Also, the low order bits of the hash value are thought to be
5860          * distributed evenly. Otherwise, in the case that the multilist
5861          * has a power of two number of sublists, each sublists' usage
5862          * would not be evenly distributed.
5863          */
5864         return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5865             multilist_get_num_sublists(ml));
5866 }
5867 
5868 static void
5869 arc_state_init(void)
5870 {
5871         arc_anon = &ARC_anon;
5872         arc_mru = &ARC_mru;
5873         arc_mru_ghost = &ARC_mru_ghost;
5874         arc_mfu = &ARC_mfu;
5875         arc_mfu_ghost = &ARC_mfu_ghost;
5876         arc_l2c_only = &ARC_l2c_only;
5877 
5878         arc_mru->arcs_list[ARC_BUFC_METADATA] =
5879             multilist_create(sizeof (arc_buf_hdr_t),
5880             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5881             arc_state_multilist_index_func);
5882         arc_mru->arcs_list[ARC_BUFC_DATA] =
5883             multilist_create(sizeof (arc_buf_hdr_t),
5884             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5885             arc_state_multilist_index_func);
5886         arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
5887             multilist_create(sizeof (arc_buf_hdr_t),
5888             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5889             arc_state_multilist_index_func);
5890         arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
5891             multilist_create(sizeof (arc_buf_hdr_t),
5892             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5893             arc_state_multilist_index_func);
5894         arc_mfu->arcs_list[ARC_BUFC_METADATA] =
5895             multilist_create(sizeof (arc_buf_hdr_t),
5896             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5897             arc_state_multilist_index_func);
5898         arc_mfu->arcs_list[ARC_BUFC_DATA] =
5899             multilist_create(sizeof (arc_buf_hdr_t),
5900             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5901             arc_state_multilist_index_func);
5902         arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
5903             multilist_create(sizeof (arc_buf_hdr_t),
5904             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5905             arc_state_multilist_index_func);
5906         arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
5907             multilist_create(sizeof (arc_buf_hdr_t),
5908             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5909             arc_state_multilist_index_func);
5910         arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
5911             multilist_create(sizeof (arc_buf_hdr_t),
5912             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5913             arc_state_multilist_index_func);
5914         arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
5915             multilist_create(sizeof (arc_buf_hdr_t),
5916             offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5917             arc_state_multilist_index_func);
5918 
5919         refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5920         refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5921         refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5922         refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5923         refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5924         refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5925         refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5926         refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5927         refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5928         refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5929         refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5930         refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5931 
5932         refcount_create(&arc_anon->arcs_size);
5933         refcount_create(&arc_mru->arcs_size);
5934         refcount_create(&arc_mru_ghost->arcs_size);
5935         refcount_create(&arc_mfu->arcs_size);
5936         refcount_create(&arc_mfu_ghost->arcs_size);
5937         refcount_create(&arc_l2c_only->arcs_size);
5938 }
5939 
5940 static void
5941 arc_state_fini(void)
5942 {
5943         refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5944         refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5945         refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5946         refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5947         refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5948         refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5949         refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5950         refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5951         refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5952         refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5953         refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5954         refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5955 
5956         refcount_destroy(&arc_anon->arcs_size);
5957         refcount_destroy(&arc_mru->arcs_size);
5958         refcount_destroy(&arc_mru_ghost->arcs_size);
5959         refcount_destroy(&arc_mfu->arcs_size);
5960         refcount_destroy(&arc_mfu_ghost->arcs_size);
5961         refcount_destroy(&arc_l2c_only->arcs_size);
5962 
5963         multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
5964         multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5965         multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5966         multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5967         multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
5968         multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5969         multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
5970         multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5971 }
5972 
5973 uint64_t
5974 arc_max_bytes(void)
5975 {
5976         return (arc_c_max);
5977 }
5978 
5979 void
5980 arc_init(void)
5981 {
5982         /*
5983          * allmem is "all memory that we could possibly use".
5984          */
5985 #ifdef _KERNEL
5986         uint64_t allmem = ptob(physmem - swapfs_minfree);
5987 #else
5988         uint64_t allmem = (physmem * PAGESIZE) / 2;
5989 #endif
5990 
5991         mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5992         cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5993         cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5994 
5995         /* Convert seconds to clock ticks */
5996         arc_min_prefetch_lifespan = 1 * hz;
5997 
5998         /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
5999         arc_c_min = MAX(allmem / 32, 64 << 20);
6000         /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
6001         if (allmem >= 1 << 30)
6002                 arc_c_max = allmem - (1 << 30);
6003         else
6004                 arc_c_max = arc_c_min;
6005         arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
6006 
6007         /*
6008          * In userland, there's only the memory pressure that we artificially
6009          * create (see arc_available_memory()).  Don't let arc_c get too
6010          * small, because it can cause transactions to be larger than
6011          * arc_c, causing arc_tempreserve_space() to fail.
6012          */
6013 #ifndef _KERNEL
6014         arc_c_min = arc_c_max / 2;
6015 #endif
6016 
6017         /*
6018          * Allow the tunables to override our calculations if they are
6019          * reasonable (ie. over 64MB)
6020          */
6021         if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) {
6022                 arc_c_max = zfs_arc_max;
6023                 arc_c_min = MIN(arc_c_min, arc_c_max);
6024         }
6025         if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
6026                 arc_c_min = zfs_arc_min;
6027 
6028         arc_c = arc_c_max;
6029         arc_p = (arc_c >> 1);
6030         arc_size = 0;
6031 
6032         /* limit meta-data to 1/4 of the arc capacity */
6033         arc_meta_limit = arc_c_max / 4;
6034 
6035 #ifdef _KERNEL
6036         /*
6037          * Metadata is stored in the kernel's heap.  Don't let us
6038          * use more than half the heap for the ARC.
6039          */
6040         arc_meta_limit = MIN(arc_meta_limit,
6041             vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
6042 #endif
6043 
6044         /* Allow the tunable to override if it is reasonable */
6045         if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6046                 arc_meta_limit = zfs_arc_meta_limit;
6047 
6048         if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6049                 arc_c_min = arc_meta_limit / 2;
6050 
6051         if (zfs_arc_meta_min > 0) {
6052                 arc_meta_min = zfs_arc_meta_min;
6053         } else {
6054                 arc_meta_min = arc_c_min / 2;
6055         }
6056 
6057         if (zfs_arc_grow_retry > 0)
6058                 arc_grow_retry = zfs_arc_grow_retry;
6059 
6060         if (zfs_arc_shrink_shift > 0)
6061                 arc_shrink_shift = zfs_arc_shrink_shift;
6062 
6063         /*
6064          * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6065          */
6066         if (arc_no_grow_shift >= arc_shrink_shift)
6067                 arc_no_grow_shift = arc_shrink_shift - 1;
6068 
6069         if (zfs_arc_p_min_shift > 0)
6070                 arc_p_min_shift = zfs_arc_p_min_shift;
6071 
6072         /* if kmem_flags are set, lets try to use less memory */
6073         if (kmem_debugging())
6074                 arc_c = arc_c / 2;
6075         if (arc_c < arc_c_min)
6076                 arc_c = arc_c_min;
6077 
6078         arc_state_init();
6079         buf_init();
6080 
6081         arc_reclaim_thread_exit = B_FALSE;
6082 
6083         arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6084             sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6085 
6086         if (arc_ksp != NULL) {
6087                 arc_ksp->ks_data = &arc_stats;
6088                 arc_ksp->ks_update = arc_kstat_update;
6089                 kstat_install(arc_ksp);
6090         }
6091 
6092         (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6093             TS_RUN, minclsyspri);
6094 
6095         arc_dead = B_FALSE;
6096         arc_warm = B_FALSE;
6097 
6098         /*
6099          * Calculate maximum amount of dirty data per pool.
6100          *
6101          * If it has been set by /etc/system, take that.
6102          * Otherwise, use a percentage of physical memory defined by
6103          * zfs_dirty_data_max_percent (default 10%) with a cap at
6104          * zfs_dirty_data_max_max (default 4GB).
6105          */
6106         if (zfs_dirty_data_max == 0) {
6107                 zfs_dirty_data_max = physmem * PAGESIZE *
6108                     zfs_dirty_data_max_percent / 100;
6109                 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6110                     zfs_dirty_data_max_max);
6111         }
6112 }
6113 
6114 void
6115 arc_fini(void)
6116 {
6117         mutex_enter(&arc_reclaim_lock);
6118         arc_reclaim_thread_exit = B_TRUE;
6119         /*
6120          * The reclaim thread will set arc_reclaim_thread_exit back to
6121          * B_FALSE when it is finished exiting; we're waiting for that.
6122          */
6123         while (arc_reclaim_thread_exit) {
6124                 cv_signal(&arc_reclaim_thread_cv);
6125                 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6126         }
6127         mutex_exit(&arc_reclaim_lock);
6128 
6129         /* Use B_TRUE to ensure *all* buffers are evicted */
6130         arc_flush(NULL, B_TRUE);
6131 
6132         arc_dead = B_TRUE;
6133 
6134         if (arc_ksp != NULL) {
6135                 kstat_delete(arc_ksp);
6136                 arc_ksp = NULL;
6137         }
6138 
6139         mutex_destroy(&arc_reclaim_lock);
6140         cv_destroy(&arc_reclaim_thread_cv);
6141         cv_destroy(&arc_reclaim_waiters_cv);
6142 
6143         arc_state_fini();
6144         buf_fini();
6145 
6146         ASSERT0(arc_loaned_bytes);
6147 }
6148 
6149 /*
6150  * Level 2 ARC
6151  *
6152  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6153  * It uses dedicated storage devices to hold cached data, which are populated
6154  * using large infrequent writes.  The main role of this cache is to boost
6155  * the performance of random read workloads.  The intended L2ARC devices
6156  * include short-stroked disks, solid state disks, and other media with
6157  * substantially faster read latency than disk.
6158  *
6159  *                 +-----------------------+
6160  *                 |         ARC           |
6161  *                 +-----------------------+
6162  *                    |         ^     ^
6163  *                    |         |     |
6164  *      l2arc_feed_thread()    arc_read()
6165  *                    |         |     |
6166  *                    |  l2arc read   |
6167  *                    V         |     |
6168  *               +---------------+    |
6169  *               |     L2ARC     |    |
6170  *               +---------------+    |
6171  *                   |    ^           |
6172  *          l2arc_write() |           |
6173  *                   |    |           |
6174  *                   V    |           |
6175  *                 +-------+      +-------+
6176  *                 | vdev  |      | vdev  |
6177  *                 | cache |      | cache |
6178  *                 +-------+      +-------+
6179  *                 +=========+     .-----.
6180  *                 :  L2ARC  :    |-_____-|
6181  *                 : devices :    | Disks |
6182  *                 +=========+    `-_____-'
6183  *
6184  * Read requests are satisfied from the following sources, in order:
6185  *
6186  *      1) ARC
6187  *      2) vdev cache of L2ARC devices
6188  *      3) L2ARC devices
6189  *      4) vdev cache of disks
6190  *      5) disks
6191  *
6192  * Some L2ARC device types exhibit extremely slow write performance.
6193  * To accommodate for this there are some significant differences between
6194  * the L2ARC and traditional cache design:
6195  *
6196  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
6197  * the ARC behave as usual, freeing buffers and placing headers on ghost
6198  * lists.  The ARC does not send buffers to the L2ARC during eviction as
6199  * this would add inflated write latencies for all ARC memory pressure.
6200  *
6201  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6202  * It does this by periodically scanning buffers from the eviction-end of
6203  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6204  * not already there. It scans until a headroom of buffers is satisfied,
6205  * which itself is a buffer for ARC eviction. If a compressible buffer is
6206  * found during scanning and selected for writing to an L2ARC device, we
6207  * temporarily boost scanning headroom during the next scan cycle to make
6208  * sure we adapt to compression effects (which might significantly reduce
6209  * the data volume we write to L2ARC). The thread that does this is
6210  * l2arc_feed_thread(), illustrated below; example sizes are included to
6211  * provide a better sense of ratio than this diagram:
6212  *
6213  *             head -->                        tail
6214  *              +---------------------+----------+
6215  *      ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
6216  *              +---------------------+----------+   |   o L2ARC eligible
6217  *      ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
6218  *              +---------------------+----------+   |
6219  *                   15.9 Gbytes      ^ 32 Mbytes    |
6220  *                                 headroom          |
6221  *                                            l2arc_feed_thread()
6222  *                                                   |
6223  *                       l2arc write hand <--[oooo]--'
6224  *                               |           8 Mbyte
6225  *                               |          write max
6226  *                               V
6227  *                +==============================+
6228  *      L2ARC dev |####|#|###|###|    |####| ... |
6229  *                +==============================+
6230  *                           32 Gbytes
6231  *
6232  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6233  * evicted, then the L2ARC has cached a buffer much sooner than it probably
6234  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
6235  * safe to say that this is an uncommon case, since buffers at the end of
6236  * the ARC lists have moved there due to inactivity.
6237  *
6238  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6239  * then the L2ARC simply misses copying some buffers.  This serves as a
6240  * pressure valve to prevent heavy read workloads from both stalling the ARC
6241  * with waits and clogging the L2ARC with writes.  This also helps prevent
6242  * the potential for the L2ARC to churn if it attempts to cache content too
6243  * quickly, such as during backups of the entire pool.
6244  *
6245  * 5. After system boot and before the ARC has filled main memory, there are
6246  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6247  * lists can remain mostly static.  Instead of searching from tail of these
6248  * lists as pictured, the l2arc_feed_thread() will search from the list heads
6249  * for eligible buffers, greatly increasing its chance of finding them.
6250  *
6251  * The L2ARC device write speed is also boosted during this time so that
6252  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
6253  * there are no L2ARC reads, and no fear of degrading read performance
6254  * through increased writes.
6255  *
6256  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6257  * the vdev queue can aggregate them into larger and fewer writes.  Each
6258  * device is written to in a rotor fashion, sweeping writes through
6259  * available space then repeating.
6260  *
6261  * 7. The L2ARC does not store dirty content.  It never needs to flush
6262  * write buffers back to disk based storage.
6263  *
6264  * 8. If an ARC buffer is written (and dirtied) which also exists in the
6265  * L2ARC, the now stale L2ARC buffer is immediately dropped.
6266  *
6267  * The performance of the L2ARC can be tweaked by a number of tunables, which
6268  * may be necessary for different workloads:
6269  *
6270  *      l2arc_write_max         max write bytes per interval
6271  *      l2arc_write_boost       extra write bytes during device warmup
6272  *      l2arc_noprefetch        skip caching prefetched buffers
6273  *      l2arc_headroom          number of max device writes to precache
6274  *      l2arc_headroom_boost    when we find compressed buffers during ARC
6275  *                              scanning, we multiply headroom by this
6276  *                              percentage factor for the next scan cycle,
6277  *                              since more compressed buffers are likely to
6278  *                              be present
6279  *      l2arc_feed_secs         seconds between L2ARC writing
6280  *
6281  * Tunables may be removed or added as future performance improvements are
6282  * integrated, and also may become zpool properties.
6283  *
6284  * There are three key functions that control how the L2ARC warms up:
6285  *
6286  *      l2arc_write_eligible()  check if a buffer is eligible to cache
6287  *      l2arc_write_size()      calculate how much to write
6288  *      l2arc_write_interval()  calculate sleep delay between writes
6289  *
6290  * These three functions determine what to write, how much, and how quickly
6291  * to send writes.
6292  */
6293 
6294 static boolean_t
6295 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6296 {
6297         /*
6298          * A buffer is *not* eligible for the L2ARC if it:
6299          * 1. belongs to a different spa.
6300          * 2. is already cached on the L2ARC.
6301          * 3. has an I/O in progress (it may be an incomplete read).
6302          * 4. is flagged not eligible (zfs property).
6303          */
6304         if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
6305             HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
6306                 return (B_FALSE);
6307 
6308         return (B_TRUE);
6309 }
6310 
6311 static uint64_t
6312 l2arc_write_size(void)
6313 {
6314         uint64_t size;
6315 
6316         /*
6317          * Make sure our globals have meaningful values in case the user
6318          * altered them.
6319          */
6320         size = l2arc_write_max;
6321         if (size == 0) {
6322                 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6323                     "be greater than zero, resetting it to the default (%d)",
6324                     L2ARC_WRITE_SIZE);
6325                 size = l2arc_write_max = L2ARC_WRITE_SIZE;
6326         }
6327 
6328         if (arc_warm == B_FALSE)
6329                 size += l2arc_write_boost;
6330 
6331         return (size);
6332 
6333 }
6334 
6335 static clock_t
6336 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6337 {
6338         clock_t interval, next, now;
6339 
6340         /*
6341          * If the ARC lists are busy, increase our write rate; if the
6342          * lists are stale, idle back.  This is achieved by checking
6343          * how much we previously wrote - if it was more than half of
6344          * what we wanted, schedule the next write much sooner.
6345          */
6346         if (l2arc_feed_again && wrote > (wanted / 2))
6347                 interval = (hz * l2arc_feed_min_ms) / 1000;
6348         else
6349                 interval = hz * l2arc_feed_secs;
6350 
6351         now = ddi_get_lbolt();
6352         next = MAX(now, MIN(now + interval, began + interval));
6353 
6354         return (next);
6355 }
6356 
6357 /*
6358  * Cycle through L2ARC devices.  This is how L2ARC load balances.
6359  * If a device is returned, this also returns holding the spa config lock.
6360  */
6361 static l2arc_dev_t *
6362 l2arc_dev_get_next(void)
6363 {
6364         l2arc_dev_t *first, *next = NULL;
6365 
6366         /*
6367          * Lock out the removal of spas (spa_namespace_lock), then removal
6368          * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
6369          * both locks will be dropped and a spa config lock held instead.
6370          */
6371         mutex_enter(&spa_namespace_lock);
6372         mutex_enter(&l2arc_dev_mtx);
6373 
6374         /* if there are no vdevs, there is nothing to do */
6375         if (l2arc_ndev == 0)
6376                 goto out;
6377 
6378         first = NULL;
6379         next = l2arc_dev_last;
6380         do {
6381                 /* loop around the list looking for a non-faulted vdev */
6382                 if (next == NULL) {
6383                         next = list_head(l2arc_dev_list);
6384                 } else {
6385                         next = list_next(l2arc_dev_list, next);
6386                         if (next == NULL)
6387                                 next = list_head(l2arc_dev_list);
6388                 }
6389 
6390                 /* if we have come back to the start, bail out */
6391                 if (first == NULL)
6392                         first = next;
6393                 else if (next == first)
6394                         break;
6395 
6396         } while (vdev_is_dead(next->l2ad_vdev));
6397 
6398         /* if we were unable to find any usable vdevs, return NULL */
6399         if (vdev_is_dead(next->l2ad_vdev))
6400                 next = NULL;
6401 
6402         l2arc_dev_last = next;
6403 
6404 out:
6405         mutex_exit(&l2arc_dev_mtx);
6406 
6407         /*
6408          * Grab the config lock to prevent the 'next' device from being
6409          * removed while we are writing to it.
6410          */
6411         if (next != NULL)
6412                 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6413         mutex_exit(&spa_namespace_lock);
6414 
6415         return (next);
6416 }
6417 
6418 /*
6419  * Free buffers that were tagged for destruction.
6420  */
6421 static void
6422 l2arc_do_free_on_write()
6423 {
6424         list_t *buflist;
6425         l2arc_data_free_t *df, *df_prev;
6426 
6427         mutex_enter(&l2arc_free_on_write_mtx);
6428         buflist = l2arc_free_on_write;
6429 
6430         for (df = list_tail(buflist); df; df = df_prev) {
6431                 df_prev = list_prev(buflist, df);
6432                 ASSERT3P(df->l2df_abd, !=, NULL);
6433                 abd_free(df->l2df_abd);
6434                 list_remove(buflist, df);
6435                 kmem_free(df, sizeof (l2arc_data_free_t));
6436         }
6437 
6438         mutex_exit(&l2arc_free_on_write_mtx);
6439 }
6440 
6441 /*
6442  * A write to a cache device has completed.  Update all headers to allow
6443  * reads from these buffers to begin.
6444  */
6445 static void
6446 l2arc_write_done(zio_t *zio)
6447 {
6448         l2arc_write_callback_t *cb;
6449         l2arc_dev_t *dev;
6450         list_t *buflist;
6451         arc_buf_hdr_t *head, *hdr, *hdr_prev;
6452         kmutex_t *hash_lock;
6453         int64_t bytes_dropped = 0;
6454 
6455         cb = zio->io_private;
6456         ASSERT3P(cb, !=, NULL);
6457         dev = cb->l2wcb_dev;
6458         ASSERT3P(dev, !=, NULL);
6459         head = cb->l2wcb_head;
6460         ASSERT3P(head, !=, NULL);
6461         buflist = &dev->l2ad_buflist;
6462         ASSERT3P(buflist, !=, NULL);
6463         DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6464             l2arc_write_callback_t *, cb);
6465 
6466         if (zio->io_error != 0)
6467                 ARCSTAT_BUMP(arcstat_l2_writes_error);
6468 
6469         /*
6470          * All writes completed, or an error was hit.
6471          */
6472 top:
6473         mutex_enter(&dev->l2ad_mtx);
6474         for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6475                 hdr_prev = list_prev(buflist, hdr);
6476 
6477                 hash_lock = HDR_LOCK(hdr);
6478 
6479                 /*
6480                  * We cannot use mutex_enter or else we can deadlock
6481                  * with l2arc_write_buffers (due to swapping the order
6482                  * the hash lock and l2ad_mtx are taken).
6483                  */
6484                 if (!mutex_tryenter(hash_lock)) {
6485                         /*
6486                          * Missed the hash lock. We must retry so we
6487                          * don't leave the ARC_FLAG_L2_WRITING bit set.
6488                          */
6489                         ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6490 
6491                         /*
6492                          * We don't want to rescan the headers we've
6493                          * already marked as having been written out, so
6494                          * we reinsert the head node so we can pick up
6495                          * where we left off.
6496                          */
6497                         list_remove(buflist, head);
6498                         list_insert_after(buflist, hdr, head);
6499 
6500                         mutex_exit(&dev->l2ad_mtx);
6501 
6502                         /*
6503                          * We wait for the hash lock to become available
6504                          * to try and prevent busy waiting, and increase
6505                          * the chance we'll be able to acquire the lock
6506                          * the next time around.
6507                          */
6508                         mutex_enter(hash_lock);
6509                         mutex_exit(hash_lock);
6510                         goto top;
6511                 }
6512 
6513                 /*
6514                  * We could not have been moved into the arc_l2c_only
6515                  * state while in-flight due to our ARC_FLAG_L2_WRITING
6516                  * bit being set. Let's just ensure that's being enforced.
6517                  */
6518                 ASSERT(HDR_HAS_L1HDR(hdr));
6519 
6520                 if (zio->io_error != 0) {
6521                         /*
6522                          * Error - drop L2ARC entry.
6523                          */
6524                         list_remove(buflist, hdr);
6525                         arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
6526 
6527                         ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
6528                         ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
6529 
6530                         bytes_dropped += arc_hdr_size(hdr);
6531                         (void) refcount_remove_many(&dev->l2ad_alloc,
6532                             arc_hdr_size(hdr), hdr);
6533                 }
6534 
6535                 /*
6536                  * Allow ARC to begin reads and ghost list evictions to
6537                  * this L2ARC entry.
6538                  */
6539                 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
6540 
6541                 mutex_exit(hash_lock);
6542         }
6543 
6544         atomic_inc_64(&l2arc_writes_done);
6545         list_remove(buflist, head);
6546         ASSERT(!HDR_HAS_L1HDR(head));
6547         kmem_cache_free(hdr_l2only_cache, head);
6548         mutex_exit(&dev->l2ad_mtx);
6549 
6550         vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6551 
6552         l2arc_do_free_on_write();
6553 
6554         kmem_free(cb, sizeof (l2arc_write_callback_t));
6555 }
6556 
6557 /*
6558  * A read to a cache device completed.  Validate buffer contents before
6559  * handing over to the regular ARC routines.
6560  */
6561 static void
6562 l2arc_read_done(zio_t *zio)
6563 {
6564         l2arc_read_callback_t *cb;
6565         arc_buf_hdr_t *hdr;
6566         kmutex_t *hash_lock;
6567         boolean_t valid_cksum;
6568 
6569         ASSERT3P(zio->io_vd, !=, NULL);
6570         ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6571 
6572         spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6573 
6574         cb = zio->io_private;
6575         ASSERT3P(cb, !=, NULL);
6576         hdr = cb->l2rcb_hdr;
6577         ASSERT3P(hdr, !=, NULL);
6578 
6579         hash_lock = HDR_LOCK(hdr);
6580         mutex_enter(hash_lock);
6581         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6582 
6583         /*
6584          * If the data was read into a temporary buffer,
6585          * move it and free the buffer.
6586          */
6587         if (cb->l2rcb_abd != NULL) {
6588                 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
6589                 if (zio->io_error == 0) {
6590                         abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
6591                             arc_hdr_size(hdr));
6592                 }
6593 
6594                 /*
6595                  * The following must be done regardless of whether
6596                  * there was an error:
6597                  * - free the temporary buffer
6598                  * - point zio to the real ARC buffer
6599                  * - set zio size accordingly
6600                  * These are required because zio is either re-used for
6601                  * an I/O of the block in the case of the error
6602                  * or the zio is passed to arc_read_done() and it
6603                  * needs real data.
6604                  */
6605                 abd_free(cb->l2rcb_abd);
6606                 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
6607                 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
6608         }
6609 
6610         ASSERT3P(zio->io_abd, !=, NULL);
6611 
6612         /*
6613          * Check this survived the L2ARC journey.
6614          */
6615         ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
6616         zio->io_bp_copy = cb->l2rcb_bp;   /* XXX fix in L2ARC 2.0 */
6617         zio->io_bp = &zio->io_bp_copy;        /* XXX fix in L2ARC 2.0 */
6618 
6619         valid_cksum = arc_cksum_is_equal(hdr, zio);
6620         if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6621                 mutex_exit(hash_lock);
6622                 zio->io_private = hdr;
6623                 arc_read_done(zio);
6624         } else {
6625                 mutex_exit(hash_lock);
6626                 /*
6627                  * Buffer didn't survive caching.  Increment stats and
6628                  * reissue to the original storage device.
6629                  */
6630                 if (zio->io_error != 0) {
6631                         ARCSTAT_BUMP(arcstat_l2_io_error);
6632                 } else {
6633                         zio->io_error = SET_ERROR(EIO);
6634                 }
6635                 if (!valid_cksum)
6636                         ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6637 
6638                 /*
6639                  * If there's no waiter, issue an async i/o to the primary
6640                  * storage now.  If there *is* a waiter, the caller must
6641                  * issue the i/o in a context where it's OK to block.
6642                  */
6643                 if (zio->io_waiter == NULL) {
6644                         zio_t *pio = zio_unique_parent(zio);
6645 
6646                         ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6647 
6648                         zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
6649                             hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
6650                             hdr, zio->io_priority, cb->l2rcb_flags,
6651                             &cb->l2rcb_zb));
6652                 }
6653         }
6654 
6655         kmem_free(cb, sizeof (l2arc_read_callback_t));
6656 }
6657 
6658 /*
6659  * This is the list priority from which the L2ARC will search for pages to
6660  * cache.  This is used within loops (0..3) to cycle through lists in the
6661  * desired order.  This order can have a significant effect on cache
6662  * performance.
6663  *
6664  * Currently the metadata lists are hit first, MFU then MRU, followed by
6665  * the data lists.  This function returns a locked list, and also returns
6666  * the lock pointer.
6667  */
6668 static multilist_sublist_t *
6669 l2arc_sublist_lock(int list_num)
6670 {
6671         multilist_t *ml = NULL;
6672         unsigned int idx;
6673 
6674         ASSERT(list_num >= 0 && list_num <= 3);
6675 
6676         switch (list_num) {
6677         case 0:
6678                 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
6679                 break;
6680         case 1:
6681                 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
6682                 break;
6683         case 2:
6684                 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
6685                 break;
6686         case 3:
6687                 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
6688                 break;
6689         }
6690 
6691         /*
6692          * Return a randomly-selected sublist. This is acceptable
6693          * because the caller feeds only a little bit of data for each
6694          * call (8MB). Subsequent calls will result in different
6695          * sublists being selected.
6696          */
6697         idx = multilist_get_random_index(ml);
6698         return (multilist_sublist_lock(ml, idx));
6699 }
6700 
6701 /*
6702  * Evict buffers from the device write hand to the distance specified in
6703  * bytes.  This distance may span populated buffers, it may span nothing.
6704  * This is clearing a region on the L2ARC device ready for writing.
6705  * If the 'all' boolean is set, every buffer is evicted.
6706  */
6707 static void
6708 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6709 {
6710         list_t *buflist;
6711         arc_buf_hdr_t *hdr, *hdr_prev;
6712         kmutex_t *hash_lock;
6713         uint64_t taddr;
6714 
6715         buflist = &dev->l2ad_buflist;
6716 
6717         if (!all && dev->l2ad_first) {
6718                 /*
6719                  * This is the first sweep through the device.  There is
6720                  * nothing to evict.
6721                  */
6722                 return;
6723         }
6724 
6725         if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6726                 /*
6727                  * When nearing the end of the device, evict to the end
6728                  * before the device write hand jumps to the start.
6729                  */
6730                 taddr = dev->l2ad_end;
6731         } else {
6732                 taddr = dev->l2ad_hand + distance;
6733         }
6734         DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6735             uint64_t, taddr, boolean_t, all);
6736 
6737 top:
6738         mutex_enter(&dev->l2ad_mtx);
6739         for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6740                 hdr_prev = list_prev(buflist, hdr);
6741 
6742                 hash_lock = HDR_LOCK(hdr);
6743 
6744                 /*
6745                  * We cannot use mutex_enter or else we can deadlock
6746                  * with l2arc_write_buffers (due to swapping the order
6747                  * the hash lock and l2ad_mtx are taken).
6748                  */
6749                 if (!mutex_tryenter(hash_lock)) {
6750                         /*
6751                          * Missed the hash lock.  Retry.
6752                          */
6753                         ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6754                         mutex_exit(&dev->l2ad_mtx);
6755                         mutex_enter(hash_lock);
6756                         mutex_exit(hash_lock);
6757                         goto top;
6758                 }
6759 
6760                 /*
6761                  * A header can't be on this list if it doesn't have L2 header.
6762                  */
6763                 ASSERT(HDR_HAS_L2HDR(hdr));
6764 
6765                 /* Ensure this header has finished being written. */
6766                 ASSERT(!HDR_L2_WRITING(hdr));
6767                 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
6768 
6769                 if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
6770                     hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6771                         /*
6772                          * We've evicted to the target address,
6773                          * or the end of the device.
6774                          */
6775                         mutex_exit(hash_lock);
6776                         break;
6777                 }
6778 
6779                 if (!HDR_HAS_L1HDR(hdr)) {
6780                         ASSERT(!HDR_L2_READING(hdr));
6781                         /*
6782                          * This doesn't exist in the ARC.  Destroy.
6783                          * arc_hdr_destroy() will call list_remove()
6784                          * and decrement arcstat_l2_lsize.
6785                          */
6786                         arc_change_state(arc_anon, hdr, hash_lock);
6787                         arc_hdr_destroy(hdr);
6788                 } else {
6789                         ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6790                         ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6791                         /*
6792                          * Invalidate issued or about to be issued
6793                          * reads, since we may be about to write
6794                          * over this location.
6795                          */
6796                         if (HDR_L2_READING(hdr)) {
6797                                 ARCSTAT_BUMP(arcstat_l2_evict_reading);
6798                                 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
6799                         }
6800 
6801                         arc_hdr_l2hdr_destroy(hdr);
6802                 }
6803                 mutex_exit(hash_lock);
6804         }
6805         mutex_exit(&dev->l2ad_mtx);
6806 }
6807 
6808 /*
6809  * Find and write ARC buffers to the L2ARC device.
6810  *
6811  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6812  * for reading until they have completed writing.
6813  * The headroom_boost is an in-out parameter used to maintain headroom boost
6814  * state between calls to this function.
6815  *
6816  * Returns the number of bytes actually written (which may be smaller than
6817  * the delta by which the device hand has changed due to alignment).
6818  */
6819 static uint64_t
6820 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
6821 {
6822         arc_buf_hdr_t *hdr, *hdr_prev, *head;
6823         uint64_t write_asize, write_psize, write_lsize, headroom;
6824         boolean_t full;
6825         l2arc_write_callback_t *cb;
6826         zio_t *pio, *wzio;
6827         uint64_t guid = spa_load_guid(spa);
6828 
6829         ASSERT3P(dev->l2ad_vdev, !=, NULL);
6830 
6831         pio = NULL;
6832         write_lsize = write_asize = write_psize = 0;
6833         full = B_FALSE;
6834         head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6835         arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
6836 
6837         /*
6838          * Copy buffers for L2ARC writing.
6839          */
6840         for (int try = 0; try <= 3; try++) {
6841                 multilist_sublist_t *mls = l2arc_sublist_lock(try);
6842                 uint64_t passed_sz = 0;
6843 
6844                 /*
6845                  * L2ARC fast warmup.
6846                  *
6847                  * Until the ARC is warm and starts to evict, read from the
6848                  * head of the ARC lists rather than the tail.
6849                  */
6850                 if (arc_warm == B_FALSE)
6851                         hdr = multilist_sublist_head(mls);
6852                 else
6853                         hdr = multilist_sublist_tail(mls);
6854 
6855                 headroom = target_sz * l2arc_headroom;
6856                 if (zfs_compressed_arc_enabled)
6857                         headroom = (headroom * l2arc_headroom_boost) / 100;
6858 
6859                 for (; hdr; hdr = hdr_prev) {
6860                         kmutex_t *hash_lock;
6861 
6862                         if (arc_warm == B_FALSE)
6863                                 hdr_prev = multilist_sublist_next(mls, hdr);
6864                         else
6865                                 hdr_prev = multilist_sublist_prev(mls, hdr);
6866 
6867                         hash_lock = HDR_LOCK(hdr);
6868                         if (!mutex_tryenter(hash_lock)) {
6869                                 /*
6870                                  * Skip this buffer rather than waiting.
6871                                  */
6872                                 continue;
6873                         }
6874 
6875                         passed_sz += HDR_GET_LSIZE(hdr);
6876                         if (passed_sz > headroom) {
6877                                 /*
6878                                  * Searched too far.
6879                                  */
6880                                 mutex_exit(hash_lock);
6881                                 break;
6882                         }
6883 
6884                         if (!l2arc_write_eligible(guid, hdr)) {
6885                                 mutex_exit(hash_lock);
6886                                 continue;
6887                         }
6888 
6889                         /*
6890                          * We rely on the L1 portion of the header below, so
6891                          * it's invalid for this header to have been evicted out
6892                          * of the ghost cache, prior to being written out. The
6893                          * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6894                          */
6895                         ASSERT(HDR_HAS_L1HDR(hdr));
6896 
6897                         ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
6898                         ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6899                         ASSERT3U(arc_hdr_size(hdr), >, 0);
6900                         uint64_t psize = arc_hdr_size(hdr);
6901                         uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
6902                             psize);
6903 
6904                         if ((write_asize + asize) > target_sz) {
6905                                 full = B_TRUE;
6906                                 mutex_exit(hash_lock);
6907                                 break;
6908                         }
6909 
6910                         if (pio == NULL) {
6911                                 /*
6912                                  * Insert a dummy header on the buflist so
6913                                  * l2arc_write_done() can find where the
6914                                  * write buffers begin without searching.
6915                                  */
6916                                 mutex_enter(&dev->l2ad_mtx);
6917                                 list_insert_head(&dev->l2ad_buflist, head);
6918                                 mutex_exit(&dev->l2ad_mtx);
6919 
6920                                 cb = kmem_alloc(
6921                                     sizeof (l2arc_write_callback_t), KM_SLEEP);
6922                                 cb->l2wcb_dev = dev;
6923                                 cb->l2wcb_head = head;
6924                                 pio = zio_root(spa, l2arc_write_done, cb,
6925                                     ZIO_FLAG_CANFAIL);
6926                         }
6927 
6928                         hdr->b_l2hdr.b_dev = dev;
6929                         hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6930                         arc_hdr_set_flags(hdr,
6931                             ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
6932 
6933                         mutex_enter(&dev->l2ad_mtx);
6934                         list_insert_head(&dev->l2ad_buflist, hdr);
6935                         mutex_exit(&dev->l2ad_mtx);
6936 
6937                         (void) refcount_add_many(&dev->l2ad_alloc, psize, hdr);
6938 
6939                         /*
6940                          * Normally the L2ARC can use the hdr's data, but if
6941                          * we're sharing data between the hdr and one of its
6942                          * bufs, L2ARC needs its own copy of the data so that
6943                          * the ZIO below can't race with the buf consumer.
6944                          * Another case where we need to create a copy of the
6945                          * data is when the buffer size is not device-aligned
6946                          * and we need to pad the block to make it such.
6947                          * That also keeps the clock hand suitably aligned.
6948                          *
6949                          * To ensure that the copy will be available for the
6950                          * lifetime of the ZIO and be cleaned up afterwards, we
6951                          * add it to the l2arc_free_on_write queue.
6952                          */
6953                         abd_t *to_write;
6954                         if (!HDR_SHARED_DATA(hdr) && psize == asize) {
6955                                 to_write = hdr->b_l1hdr.b_pabd;
6956                         } else {
6957                                 to_write = abd_alloc_for_io(asize,
6958                                     HDR_ISTYPE_METADATA(hdr));
6959                                 abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
6960                                 if (asize != psize) {
6961                                         abd_zero_off(to_write, psize,
6962                                             asize - psize);
6963                                 }
6964                                 l2arc_free_abd_on_write(to_write, asize,
6965                                     arc_buf_type(hdr));
6966                         }
6967                         wzio = zio_write_phys(pio, dev->l2ad_vdev,
6968                             hdr->b_l2hdr.b_daddr, asize, to_write,
6969                             ZIO_CHECKSUM_OFF, NULL, hdr,
6970                             ZIO_PRIORITY_ASYNC_WRITE,
6971                             ZIO_FLAG_CANFAIL, B_FALSE);
6972 
6973                         write_lsize += HDR_GET_LSIZE(hdr);
6974                         DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6975                             zio_t *, wzio);
6976 
6977                         write_psize += psize;
6978                         write_asize += asize;
6979                         dev->l2ad_hand += asize;
6980 
6981                         mutex_exit(hash_lock);
6982 
6983                         (void) zio_nowait(wzio);
6984                 }
6985 
6986                 multilist_sublist_unlock(mls);
6987 
6988                 if (full == B_TRUE)
6989                         break;
6990         }
6991 
6992         /* No buffers selected for writing? */
6993         if (pio == NULL) {
6994                 ASSERT0(write_lsize);
6995                 ASSERT(!HDR_HAS_L1HDR(head));
6996                 kmem_cache_free(hdr_l2only_cache, head);
6997                 return (0);
6998         }
6999 
7000         ASSERT3U(write_asize, <=, target_sz);
7001         ARCSTAT_BUMP(arcstat_l2_writes_sent);
7002         ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
7003         ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
7004         ARCSTAT_INCR(arcstat_l2_psize, write_psize);
7005         vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
7006 
7007         /*
7008          * Bump device hand to the device start if it is approaching the end.
7009          * l2arc_evict() will already have evicted ahead for this case.
7010          */
7011         if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7012                 dev->l2ad_hand = dev->l2ad_start;
7013                 dev->l2ad_first = B_FALSE;
7014         }
7015 
7016         dev->l2ad_writing = B_TRUE;
7017         (void) zio_wait(pio);
7018         dev->l2ad_writing = B_FALSE;
7019 
7020         return (write_asize);
7021 }
7022 
7023 /*
7024  * This thread feeds the L2ARC at regular intervals.  This is the beating
7025  * heart of the L2ARC.
7026  */
7027 /* ARGSUSED */
7028 static void
7029 l2arc_feed_thread(void *unused)
7030 {
7031         callb_cpr_t cpr;
7032         l2arc_dev_t *dev;
7033         spa_t *spa;
7034         uint64_t size, wrote;
7035         clock_t begin, next = ddi_get_lbolt();
7036 
7037         CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7038 
7039         mutex_enter(&l2arc_feed_thr_lock);
7040 
7041         while (l2arc_thread_exit == 0) {
7042                 CALLB_CPR_SAFE_BEGIN(&cpr);
7043                 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7044                     next);
7045                 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7046                 next = ddi_get_lbolt() + hz;
7047 
7048                 /*
7049                  * Quick check for L2ARC devices.
7050                  */
7051                 mutex_enter(&l2arc_dev_mtx);
7052                 if (l2arc_ndev == 0) {
7053                         mutex_exit(&l2arc_dev_mtx);
7054                         continue;
7055                 }
7056                 mutex_exit(&l2arc_dev_mtx);
7057                 begin = ddi_get_lbolt();
7058 
7059                 /*
7060                  * This selects the next l2arc device to write to, and in
7061                  * doing so the next spa to feed from: dev->l2ad_spa.   This
7062                  * will return NULL if there are now no l2arc devices or if
7063                  * they are all faulted.
7064                  *
7065                  * If a device is returned, its spa's config lock is also
7066                  * held to prevent device removal.  l2arc_dev_get_next()
7067                  * will grab and release l2arc_dev_mtx.
7068                  */
7069                 if ((dev = l2arc_dev_get_next()) == NULL)
7070                         continue;
7071 
7072                 spa = dev->l2ad_spa;
7073                 ASSERT3P(spa, !=, NULL);
7074 
7075                 /*
7076                  * If the pool is read-only then force the feed thread to
7077                  * sleep a little longer.
7078                  */
7079                 if (!spa_writeable(spa)) {
7080                         next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7081                         spa_config_exit(spa, SCL_L2ARC, dev);
7082                         continue;
7083                 }
7084 
7085                 /*
7086                  * Avoid contributing to memory pressure.
7087                  */
7088                 if (arc_reclaim_needed()) {
7089                         ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7090                         spa_config_exit(spa, SCL_L2ARC, dev);
7091                         continue;
7092                 }
7093 
7094                 ARCSTAT_BUMP(arcstat_l2_feeds);
7095 
7096                 size = l2arc_write_size();
7097 
7098                 /*
7099                  * Evict L2ARC buffers that will be overwritten.
7100                  */
7101                 l2arc_evict(dev, size, B_FALSE);
7102 
7103                 /*
7104                  * Write ARC buffers.
7105                  */
7106                 wrote = l2arc_write_buffers(spa, dev, size);
7107 
7108                 /*
7109                  * Calculate interval between writes.
7110                  */
7111                 next = l2arc_write_interval(begin, size, wrote);
7112                 spa_config_exit(spa, SCL_L2ARC, dev);
7113         }
7114 
7115         l2arc_thread_exit = 0;
7116         cv_broadcast(&l2arc_feed_thr_cv);
7117         CALLB_CPR_EXIT(&cpr);               /* drops l2arc_feed_thr_lock */
7118         thread_exit();
7119 }
7120 
7121 boolean_t
7122 l2arc_vdev_present(vdev_t *vd)
7123 {
7124         l2arc_dev_t *dev;
7125 
7126         mutex_enter(&l2arc_dev_mtx);
7127         for (dev = list_head(l2arc_dev_list); dev != NULL;
7128             dev = list_next(l2arc_dev_list, dev)) {
7129                 if (dev->l2ad_vdev == vd)
7130                         break;
7131         }
7132         mutex_exit(&l2arc_dev_mtx);
7133 
7134         return (dev != NULL);
7135 }
7136 
7137 /*
7138  * Add a vdev for use by the L2ARC.  By this point the spa has already
7139  * validated the vdev and opened it.
7140  */
7141 void
7142 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7143 {
7144         l2arc_dev_t *adddev;
7145 
7146         ASSERT(!l2arc_vdev_present(vd));
7147 
7148         /*
7149          * Create a new l2arc device entry.
7150          */
7151         adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7152         adddev->l2ad_spa = spa;
7153         adddev->l2ad_vdev = vd;
7154         adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7155         adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7156         adddev->l2ad_hand = adddev->l2ad_start;
7157         adddev->l2ad_first = B_TRUE;
7158         adddev->l2ad_writing = B_FALSE;
7159 
7160         mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7161         /*
7162          * This is a list of all ARC buffers that are still valid on the
7163          * device.
7164          */
7165         list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7166             offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7167 
7168         vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7169         refcount_create(&adddev->l2ad_alloc);
7170 
7171         /*
7172          * Add device to global list
7173          */
7174         mutex_enter(&l2arc_dev_mtx);
7175         list_insert_head(l2arc_dev_list, adddev);
7176         atomic_inc_64(&l2arc_ndev);
7177         mutex_exit(&l2arc_dev_mtx);
7178 }
7179 
7180 /*
7181  * Remove a vdev from the L2ARC.
7182  */
7183 void
7184 l2arc_remove_vdev(vdev_t *vd)
7185 {
7186         l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7187 
7188         /*
7189          * Find the device by vdev
7190          */
7191         mutex_enter(&l2arc_dev_mtx);
7192         for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7193                 nextdev = list_next(l2arc_dev_list, dev);
7194                 if (vd == dev->l2ad_vdev) {
7195                         remdev = dev;
7196                         break;
7197                 }
7198         }
7199         ASSERT3P(remdev, !=, NULL);
7200 
7201         /*
7202          * Remove device from global list
7203          */
7204         list_remove(l2arc_dev_list, remdev);
7205         l2arc_dev_last = NULL;          /* may have been invalidated */
7206         atomic_dec_64(&l2arc_ndev);
7207         mutex_exit(&l2arc_dev_mtx);
7208 
7209         /*
7210          * Clear all buflists and ARC references.  L2ARC device flush.
7211          */
7212         l2arc_evict(remdev, 0, B_TRUE);
7213         list_destroy(&remdev->l2ad_buflist);
7214         mutex_destroy(&remdev->l2ad_mtx);
7215         refcount_destroy(&remdev->l2ad_alloc);
7216         kmem_free(remdev, sizeof (l2arc_dev_t));
7217 }
7218 
7219 void
7220 l2arc_init(void)
7221 {
7222         l2arc_thread_exit = 0;
7223         l2arc_ndev = 0;
7224         l2arc_writes_sent = 0;
7225         l2arc_writes_done = 0;
7226 
7227         mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7228         cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7229         mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7230         mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7231 
7232         l2arc_dev_list = &L2ARC_dev_list;
7233         l2arc_free_on_write = &L2ARC_free_on_write;
7234         list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7235             offsetof(l2arc_dev_t, l2ad_node));
7236         list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7237             offsetof(l2arc_data_free_t, l2df_list_node));
7238 }
7239 
7240 void
7241 l2arc_fini(void)
7242 {
7243         /*
7244          * This is called from dmu_fini(), which is called from spa_fini();
7245          * Because of this, we can assume that all l2arc devices have
7246          * already been removed when the pools themselves were removed.
7247          */
7248 
7249         l2arc_do_free_on_write();
7250 
7251         mutex_destroy(&l2arc_feed_thr_lock);
7252         cv_destroy(&l2arc_feed_thr_cv);
7253         mutex_destroy(&l2arc_dev_mtx);
7254         mutex_destroy(&l2arc_free_on_write_mtx);
7255 
7256         list_destroy(l2arc_dev_list);
7257         list_destroy(l2arc_free_on_write);
7258 }
7259 
7260 void
7261 l2arc_start(void)
7262 {
7263         if (!(spa_mode_global & FWRITE))
7264                 return;
7265 
7266         (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7267             TS_RUN, minclsyspri);
7268 }
7269 
7270 void
7271 l2arc_stop(void)
7272 {
7273         if (!(spa_mode_global & FWRITE))
7274                 return;
7275 
7276         mutex_enter(&l2arc_feed_thr_lock);
7277         cv_signal(&l2arc_feed_thr_cv);      /* kick thread out of startup */
7278         l2arc_thread_exit = 1;
7279         while (l2arc_thread_exit != 0)
7280                 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7281         mutex_exit(&l2arc_feed_thr_lock);
7282 }