1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 /*
  27  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
  28  * Copyright (c) 2017 by Delphix. All rights reserved.
  29  * Copyright 2018, Joyent, Inc.
  30  */
  31 
  32 /*
  33  * Kernel task queues: general-purpose asynchronous task scheduling.
  34  *
  35  * A common problem in kernel programming is the need to schedule tasks
  36  * to be performed later, by another thread. There are several reasons
  37  * you may want or need to do this:
  38  *
  39  * (1) The task isn't time-critical, but your current code path is.
  40  *
  41  * (2) The task may require grabbing locks that you already hold.
  42  *
  43  * (3) The task may need to block (e.g. to wait for memory), but you
  44  *     cannot block in your current context.
  45  *
  46  * (4) Your code path can't complete because of some condition, but you can't
  47  *     sleep or fail, so you queue the task for later execution when condition
  48  *     disappears.
  49  *
  50  * (5) You just want a simple way to launch multiple tasks in parallel.
  51  *
  52  * Task queues provide such a facility. In its simplest form (used when
  53  * performance is not a critical consideration) a task queue consists of a
  54  * single list of tasks, together with one or more threads to service the
  55  * list. There are some cases when this simple queue is not sufficient:
  56  *
  57  * (1) The task queues are very hot and there is a need to avoid data and lock
  58  *      contention over global resources.
  59  *
  60  * (2) Some tasks may depend on other tasks to complete, so they can't be put in
  61  *      the same list managed by the same thread.
  62  *
  63  * (3) Some tasks may block for a long time, and this should not block other
  64  *      tasks in the queue.
  65  *
  66  * To provide useful service in such cases we define a "dynamic task queue"
  67  * which has an individual thread for each of the tasks. These threads are
  68  * dynamically created as they are needed and destroyed when they are not in
  69  * use. The API for managing task pools is the same as for managing task queues
  70  * with the exception of a taskq creation flag TASKQ_DYNAMIC which tells that
  71  * dynamic task pool behavior is desired.
  72  *
  73  * Dynamic task queues may also place tasks in the normal queue (called "backing
  74  * queue") when task pool runs out of resources. Users of task queues may
  75  * disallow such queued scheduling by specifying TQ_NOQUEUE in the dispatch
  76  * flags.
  77  *
  78  * The backing task queue is also used for scheduling internal tasks needed for
  79  * dynamic task queue maintenance.
  80  *
  81  * INTERFACES ==================================================================
  82  *
  83  * taskq_t *taskq_create(name, nthreads, pri, minalloc, maxalloc, flags);
  84  *
  85  *      Create a taskq with specified properties.
  86  *      Possible 'flags':
  87  *
  88  *        TASKQ_DYNAMIC: Create task pool for task management. If this flag is
  89  *              specified, 'nthreads' specifies the maximum number of threads in
  90  *              the task queue. Task execution order for dynamic task queues is
  91  *              not predictable.
  92  *
  93  *              If this flag is not specified (default case) a
  94  *              single-list task queue is created with 'nthreads' threads
  95  *              servicing it. Entries in this queue are managed by
  96  *              taskq_ent_alloc() and taskq_ent_free() which try to keep the
  97  *              task population between 'minalloc' and 'maxalloc', but the
  98  *              latter limit is only advisory for TQ_SLEEP dispatches and the
  99  *              former limit is only advisory for TQ_NOALLOC dispatches. If
 100  *              TASKQ_PREPOPULATE is set in 'flags', the taskq will be
 101  *              prepopulated with 'minalloc' task structures.
 102  *
 103  *              Since non-DYNAMIC taskqs are queues, tasks are guaranteed to be
 104  *              executed in the order they are scheduled if nthreads == 1.
 105  *              If nthreads > 1, task execution order is not predictable.
 106  *
 107  *        TASKQ_PREPOPULATE: Prepopulate task queue with threads.
 108  *              Also prepopulate the task queue with 'minalloc' task structures.
 109  *
 110  *        TASKQ_THREADS_CPU_PCT: This flag specifies that 'nthreads' should be
 111  *              interpreted as a percentage of the # of online CPUs on the
 112  *              system.  The taskq subsystem will automatically adjust the
 113  *              number of threads in the taskq in response to CPU online
 114  *              and offline events, to keep the ratio.  nthreads must be in
 115  *              the range [0,100].
 116  *
 117  *              The calculation used is:
 118  *
 119  *                      MAX((ncpus_online * percentage)/100, 1)
 120  *
 121  *              This flag is not supported for DYNAMIC task queues.
 122  *              This flag is not compatible with TASKQ_CPR_SAFE.
 123  *
 124  *        TASKQ_CPR_SAFE: This flag specifies that users of the task queue will
 125  *              use their own protocol for handling CPR issues. This flag is not
 126  *              supported for DYNAMIC task queues.  This flag is not compatible
 127  *              with TASKQ_THREADS_CPU_PCT.
 128  *
 129  *      The 'pri' field specifies the default priority for the threads that
 130  *      service all scheduled tasks.
 131  *
 132  * taskq_t *taskq_create_instance(name, instance, nthreads, pri, minalloc,
 133  *    maxalloc, flags);
 134  *
 135  *      Like taskq_create(), but takes an instance number (or -1 to indicate
 136  *      no instance).
 137  *
 138  * taskq_t *taskq_create_proc(name, nthreads, pri, minalloc, maxalloc, proc,
 139  *    flags);
 140  *
 141  *      Like taskq_create(), but creates the taskq threads in the specified
 142  *      system process.  If proc != &p0, this must be called from a thread
 143  *      in that process.
 144  *
 145  * taskq_t *taskq_create_sysdc(name, nthreads, minalloc, maxalloc, proc,
 146  *    dc, flags);
 147  *
 148  *      Like taskq_create_proc(), but the taskq threads will use the
 149  *      System Duty Cycle (SDC) scheduling class with a duty cycle of dc.
 150  *
 151  * void taskq_destroy(tap):
 152  *
 153  *      Waits for any scheduled tasks to complete, then destroys the taskq.
 154  *      Caller should guarantee that no new tasks are scheduled in the closing
 155  *      taskq.
 156  *
 157  * taskqid_t taskq_dispatch(tq, func, arg, flags):
 158  *
 159  *      Dispatches the task "func(arg)" to taskq. The 'flags' indicates whether
 160  *      the caller is willing to block for memory.  The function returns an
 161  *      opaque value which is zero iff dispatch fails.  If flags is TQ_NOSLEEP
 162  *      or TQ_NOALLOC and the task can't be dispatched, taskq_dispatch() fails
 163  *      and returns (taskqid_t)0.
 164  *
 165  *      ASSUMES: func != NULL.
 166  *
 167  *      Possible flags:
 168  *        TQ_NOSLEEP: Do not wait for resources; may fail.
 169  *
 170  *        TQ_NOALLOC: Do not allocate memory; may fail.  May only be used with
 171  *              non-dynamic task queues.
 172  *
 173  *        TQ_NOQUEUE: Do not enqueue a task if it can't dispatch it due to
 174  *              lack of available resources and fail. If this flag is not
 175  *              set, and the task pool is exhausted, the task may be scheduled
 176  *              in the backing queue. This flag may ONLY be used with dynamic
 177  *              task queues.
 178  *
 179  *              NOTE: This flag should always be used when a task queue is used
 180  *              for tasks that may depend on each other for completion.
 181  *              Enqueueing dependent tasks may create deadlocks.
 182  *
 183  *        TQ_SLEEP:   May block waiting for resources. May still fail for
 184  *              dynamic task queues if TQ_NOQUEUE is also specified, otherwise
 185  *              always succeed.
 186  *
 187  *        TQ_FRONT:   Puts the new task at the front of the queue.  Be careful.
 188  *
 189  *      NOTE: Dynamic task queues are much more likely to fail in
 190  *              taskq_dispatch() (especially if TQ_NOQUEUE was specified), so it
 191  *              is important to have backup strategies handling such failures.
 192  *
 193  * void taskq_dispatch_ent(tq, func, arg, flags, tqent)
 194  *
 195  *      This is a light-weight form of taskq_dispatch(), that uses a
 196  *      preallocated taskq_ent_t structure for scheduling.  As a
 197  *      result, it does not perform allocations and cannot ever fail.
 198  *      Note especially that it cannot be used with TASKQ_DYNAMIC
 199  *      taskqs.  The memory for the tqent must not be modified or used
 200  *      until the function (func) is called.  (However, func itself
 201  *      may safely modify or free this memory, once it is called.)
 202  *      Note that the taskq framework will NOT free this memory.
 203  *
 204  * boolean_t taskq_empty(tq)
 205  *
 206  *      Queries if there are tasks pending on the queue.
 207  *
 208  * void taskq_wait(tq):
 209  *
 210  *      Waits for all previously scheduled tasks to complete.
 211  *
 212  *      NOTE: It does not stop any new task dispatches.
 213  *            Do NOT call taskq_wait() from a task: it will cause deadlock.
 214  *
 215  * void taskq_suspend(tq)
 216  *
 217  *      Suspend all task execution. Tasks already scheduled for a dynamic task
 218  *      queue will still be executed, but all new scheduled tasks will be
 219  *      suspended until taskq_resume() is called.
 220  *
 221  * int  taskq_suspended(tq)
 222  *
 223  *      Returns 1 if taskq is suspended and 0 otherwise. It is intended to
 224  *      ASSERT that the task queue is suspended.
 225  *
 226  * void taskq_resume(tq)
 227  *
 228  *      Resume task queue execution.
 229  *
 230  * int  taskq_member(tq, thread)
 231  *
 232  *      Returns 1 if 'thread' belongs to taskq 'tq' and 0 otherwise. The
 233  *      intended use is to ASSERT that a given function is called in taskq
 234  *      context only.
 235  *
 236  * system_taskq
 237  *
 238  *      Global system-wide dynamic task queue for common uses. It may be used by
 239  *      any subsystem that needs to schedule tasks and does not need to manage
 240  *      its own task queues. It is initialized quite early during system boot.
 241  *
 242  * IMPLEMENTATION ==============================================================
 243  *
 244  * This is schematic representation of the task queue structures.
 245  *
 246  *   taskq:
 247  *   +-------------+
 248  *   | tq_lock     | +---< taskq_ent_free()
 249  *   +-------------+ |
 250  *   |...          | | tqent:                  tqent:
 251  *   +-------------+ | +------------+          +------------+
 252  *   | tq_freelist |-->| tqent_next |--> ... ->| tqent_next |
 253  *   +-------------+   +------------+          +------------+
 254  *   |...          |   | ...        |          | ...        |
 255  *   +-------------+   +------------+          +------------+
 256  *   | tq_task     |    |
 257  *   |             |    +-------------->taskq_ent_alloc()
 258  * +--------------------------------------------------------------------------+
 259  * | |                     |            tqent                   tqent         |
 260  * | +---------------------+     +--> +------------+     +--> +------------+  |
 261  * | | ...                 |     |    | func, arg  |     |    | func, arg  |  |
 262  * +>+---------------------+ <---|-+  +------------+ <---|-+  +------------+  |
 263  *   | tq_taskq.tqent_next | ----+ |  | tqent_next | --->+ |  | tqent_next |--+
 264  *   +---------------------+       |  +------------+     ^ |  +------------+
 265  * +-| tq_task.tqent_prev  |       +--| tqent_prev |     | +--| tqent_prev |  ^
 266  * | +---------------------+          +------------+     |    +------------+  |
 267  * | |...                  |          | ...        |     |    | ...        |  |
 268  * | +---------------------+          +------------+     |    +------------+  |
 269  * |                                      ^              |                    |
 270  * |                                      |              |                    |
 271  * +--------------------------------------+--------------+       TQ_APPEND() -+
 272  *   |             |                      |
 273  *   |...          |   taskq_thread()-----+
 274  *   +-------------+
 275  *   | tq_buckets  |--+-------> [ NULL ] (for regular task queues)
 276  *   +-------------+  |
 277  *                    |   DYNAMIC TASK QUEUES:
 278  *                    |
 279  *                    +-> taskq_bucket[nCPU]         taskq_bucket_dispatch()
 280  *                        +-------------------+                    ^
 281  *                   +--->| tqbucket_lock     |                    |
 282  *                   |    +-------------------+   +--------+      +--------+
 283  *                   |    | tqbucket_freelist |-->| tqent  |-->...| tqent  | ^
 284  *                   |    +-------------------+<--+--------+<--...+--------+ |
 285  *                   |    | ...               |   | thread |      | thread | |
 286  *                   |    +-------------------+   +--------+      +--------+ |
 287  *                   |    +-------------------+                              |
 288  * taskq_dispatch()--+--->| tqbucket_lock     |             TQ_APPEND()------+
 289  *      TQ_HASH()    |    +-------------------+   +--------+      +--------+
 290  *                   |    | tqbucket_freelist |-->| tqent  |-->...| tqent  |
 291  *                   |    +-------------------+<--+--------+<--...+--------+
 292  *                   |    | ...               |   | thread |      | thread |
 293  *                   |    +-------------------+   +--------+      +--------+
 294  *                   +--->   ...
 295  *
 296  *
 297  * Task queues use tq_task field to link new entry in the queue. The queue is a
 298  * circular doubly-linked list. Entries are put in the end of the list with
 299  * TQ_APPEND() and processed from the front of the list by taskq_thread() in
 300  * FIFO order. Task queue entries are cached in the free list managed by
 301  * taskq_ent_alloc() and taskq_ent_free() functions.
 302  *
 303  *      All threads used by task queues mark t_taskq field of the thread to
 304  *      point to the task queue.
 305  *
 306  * Taskq Thread Management -----------------------------------------------------
 307  *
 308  * Taskq's non-dynamic threads are managed with several variables and flags:
 309  *
 310  *      * tq_nthreads   - The number of threads in taskq_thread() for the
 311  *                        taskq.
 312  *
 313  *      * tq_active     - The number of threads not waiting on a CV in
 314  *                        taskq_thread(); includes newly created threads
 315  *                        not yet counted in tq_nthreads.
 316  *
 317  *      * tq_nthreads_target
 318  *                      - The number of threads desired for the taskq.
 319  *
 320  *      * tq_flags & TASKQ_CHANGING
 321  *                      - Indicates that tq_nthreads != tq_nthreads_target.
 322  *
 323  *      * tq_flags & TASKQ_THREAD_CREATED
 324  *                      - Indicates that a thread is being created in the taskq.
 325  *
 326  * During creation, tq_nthreads and tq_active are set to 0, and
 327  * tq_nthreads_target is set to the number of threads desired.  The
 328  * TASKQ_CHANGING flag is set, and taskq_thread_create() is called to
 329  * create the first thread. taskq_thread_create() increments tq_active,
 330  * sets TASKQ_THREAD_CREATED, and creates the new thread.
 331  *
 332  * Each thread starts in taskq_thread(), clears the TASKQ_THREAD_CREATED
 333  * flag, and increments tq_nthreads.  It stores the new value of
 334  * tq_nthreads as its "thread_id", and stores its thread pointer in the
 335  * tq_threadlist at the (thread_id - 1).  We keep the thread_id space
 336  * densely packed by requiring that only the largest thread_id can exit during
 337  * normal adjustment.   The exception is during the destruction of the
 338  * taskq; once tq_nthreads_target is set to zero, no new threads will be created
 339  * for the taskq queue, so every thread can exit without any ordering being
 340  * necessary.
 341  *
 342  * Threads will only process work if their thread id is <= tq_nthreads_target.
 343  *
 344  * When TASKQ_CHANGING is set, threads will check the current thread target
 345  * whenever they wake up, and do whatever they can to apply its effects.
 346  *
 347  * TASKQ_THREAD_CPU_PCT --------------------------------------------------------
 348  *
 349  * When a taskq is created with TASKQ_THREAD_CPU_PCT, we store their requested
 350  * percentage in tq_threads_ncpus_pct, start them off with the correct thread
 351  * target, and add them to the taskq_cpupct_list for later adjustment.
 352  *
 353  * We register taskq_cpu_setup() to be called whenever a CPU changes state.  It
 354  * walks the list of TASKQ_THREAD_CPU_PCT taskqs, adjusts their nthread_target
 355  * if need be, and wakes up all of the threads to process the change.
 356  *
 357  * Dynamic Task Queues Implementation ------------------------------------------
 358  *
 359  * For a dynamic task queues there is a 1-to-1 mapping between a thread and
 360  * taskq_ent_structure. Each entry is serviced by its own thread and each thread
 361  * is controlled by a single entry.
 362  *
 363  * Entries are distributed over a set of buckets. To avoid using modulo
 364  * arithmetics the number of buckets is 2^n and is determined as the nearest
 365  * power of two roundown of the number of CPUs in the system. Tunable
 366  * variable 'taskq_maxbuckets' limits the maximum number of buckets. Each entry
 367  * is attached to a bucket for its lifetime and can't migrate to other buckets.
 368  *
 369  * Entries that have scheduled tasks are not placed in any list. The dispatch
 370  * function sets their "func" and "arg" fields and signals the corresponding
 371  * thread to execute the task. Once the thread executes the task it clears the
 372  * "func" field and places an entry on the bucket cache of free entries pointed
 373  * by "tqbucket_freelist" field. ALL entries on the free list should have "func"
 374  * field equal to NULL. The free list is a circular doubly-linked list identical
 375  * in structure to the tq_task list above, but entries are taken from it in LIFO
 376  * order - the last freed entry is the first to be allocated. The
 377  * taskq_bucket_dispatch() function gets the most recently used entry from the
 378  * free list, sets its "func" and "arg" fields and signals a worker thread.
 379  *
 380  * After executing each task a per-entry thread taskq_d_thread() places its
 381  * entry on the bucket free list and goes to a timed sleep. If it wakes up
 382  * without getting new task it removes the entry from the free list and destroys
 383  * itself. The thread sleep time is controlled by a tunable variable
 384  * `taskq_thread_timeout'.
 385  *
 386  * There are various statistics kept in the bucket which allows for later
 387  * analysis of taskq usage patterns. Also, a global copy of taskq creation and
 388  * death statistics is kept in the global taskq data structure. Since thread
 389  * creation and death happen rarely, updating such global data does not present
 390  * a performance problem.
 391  *
 392  * NOTE: Threads are not bound to any CPU and there is absolutely no association
 393  *       between the bucket and actual thread CPU, so buckets are used only to
 394  *       split resources and reduce resource contention. Having threads attached
 395  *       to the CPU denoted by a bucket may reduce number of times the job
 396  *       switches between CPUs.
 397  *
 398  *       Current algorithm creates a thread whenever a bucket has no free
 399  *       entries. It would be nice to know how many threads are in the running
 400  *       state and don't create threads if all CPUs are busy with existing
 401  *       tasks, but it is unclear how such strategy can be implemented.
 402  *
 403  *       Currently buckets are created statically as an array attached to task
 404  *       queue. On some system with nCPUs < max_ncpus it may waste system
 405  *       memory. One solution may be allocation of buckets when they are first
 406  *       touched, but it is not clear how useful it is.
 407  *
 408  * SUSPEND/RESUME implementation -----------------------------------------------
 409  *
 410  *      Before executing a task taskq_thread() (executing non-dynamic task
 411  *      queues) obtains taskq's thread lock as a reader. The taskq_suspend()
 412  *      function gets the same lock as a writer blocking all non-dynamic task
 413  *      execution. The taskq_resume() function releases the lock allowing
 414  *      taskq_thread to continue execution.
 415  *
 416  *      For dynamic task queues, each bucket is marked as TQBUCKET_SUSPEND by
 417  *      taskq_suspend() function. After that taskq_bucket_dispatch() always
 418  *      fails, so that taskq_dispatch() will either enqueue tasks for a
 419  *      suspended backing queue or fail if TQ_NOQUEUE is specified in dispatch
 420  *      flags.
 421  *
 422  *      NOTE: taskq_suspend() does not immediately block any tasks already
 423  *            scheduled for dynamic task queues. It only suspends new tasks
 424  *            scheduled after taskq_suspend() was called.
 425  *
 426  *      taskq_member() function works by comparing a thread t_taskq pointer with
 427  *      the passed thread pointer.
 428  *
 429  * LOCKS and LOCK Hierarchy ----------------------------------------------------
 430  *
 431  *   There are three locks used in task queues:
 432  *
 433  *   1) The taskq_t's tq_lock, protecting global task queue state.
 434  *
 435  *   2) Each per-CPU bucket has a lock for bucket management.
 436  *
 437  *   3) The global taskq_cpupct_lock, which protects the list of
 438  *      TASKQ_THREADS_CPU_PCT taskqs.
 439  *
 440  *   If both (1) and (2) are needed, tq_lock should be taken *after* the bucket
 441  *   lock.
 442  *
 443  *   If both (1) and (3) are needed, tq_lock should be taken *after*
 444  *   taskq_cpupct_lock.
 445  *
 446  * DEBUG FACILITIES ------------------------------------------------------------
 447  *
 448  * For DEBUG kernels it is possible to induce random failures to
 449  * taskq_dispatch() function when it is given TQ_NOSLEEP argument. The value of
 450  * taskq_dmtbf and taskq_smtbf tunables control the mean time between induced
 451  * failures for dynamic and static task queues respectively.
 452  *
 453  * Setting TASKQ_STATISTIC to 0 will disable per-bucket statistics.
 454  *
 455  * TUNABLES --------------------------------------------------------------------
 456  *
 457  *      system_taskq_size       - Size of the global system_taskq.
 458  *                                This value is multiplied by nCPUs to determine
 459  *                                actual size.
 460  *                                Default value: 64
 461  *
 462  *      taskq_minimum_nthreads_max
 463  *                              - Minimum size of the thread list for a taskq.
 464  *                                Useful for testing different thread pool
 465  *                                sizes by overwriting tq_nthreads_target.
 466  *
 467  *      taskq_thread_timeout    - Maximum idle time for taskq_d_thread()
 468  *                                Default value: 5 minutes
 469  *
 470  *      taskq_maxbuckets        - Maximum number of buckets in any task queue
 471  *                                Default value: 128
 472  *
 473  *      taskq_search_depth      - Maximum # of buckets searched for a free entry
 474  *                                Default value: 4
 475  *
 476  *      taskq_dmtbf             - Mean time between induced dispatch failures
 477  *                                for dynamic task queues.
 478  *                                Default value: UINT_MAX (no induced failures)
 479  *
 480  *      taskq_smtbf             - Mean time between induced dispatch failures
 481  *                                for static task queues.
 482  *                                Default value: UINT_MAX (no induced failures)
 483  *
 484  * CONDITIONAL compilation -----------------------------------------------------
 485  *
 486  *    TASKQ_STATISTIC   - If set will enable bucket statistic (default).
 487  *
 488  */
 489 
 490 #include <sys/taskq_impl.h>
 491 #include <sys/thread.h>
 492 #include <sys/proc.h>
 493 #include <sys/kmem.h>
 494 #include <sys/vmem.h>
 495 #include <sys/callb.h>
 496 #include <sys/class.h>
 497 #include <sys/systm.h>
 498 #include <sys/cmn_err.h>
 499 #include <sys/debug.h>
 500 #include <sys/vmsystm.h>  /* For throttlefree */
 501 #include <sys/sysmacros.h>
 502 #include <sys/cpuvar.h>
 503 #include <sys/cpupart.h>
 504 #include <sys/sdt.h>
 505 #include <sys/sysdc.h>
 506 #include <sys/note.h>
 507 
 508 static kmem_cache_t *taskq_ent_cache, *taskq_cache;
 509 
 510 /*
 511  * Pseudo instance numbers for taskqs without explicitly provided instance.
 512  */
 513 static vmem_t *taskq_id_arena;
 514 
 515 /* Global system task queue for common use */
 516 taskq_t *system_taskq;
 517 
 518 /*
 519  * Maximum number of entries in global system taskq is
 520  *      system_taskq_size * max_ncpus
 521  */
 522 #define SYSTEM_TASKQ_SIZE 64
 523 int system_taskq_size = SYSTEM_TASKQ_SIZE;
 524 
 525 /*
 526  * Minimum size for tq_nthreads_max; useful for those who want to play around
 527  * with increasing a taskq's tq_nthreads_target.
 528  */
 529 int taskq_minimum_nthreads_max = 1;
 530 
 531 /*
 532  * We want to ensure that when taskq_create() returns, there is at least
 533  * one thread ready to handle requests.  To guarantee this, we have to wait
 534  * for the second thread, since the first one cannot process requests until
 535  * the second thread has been created.
 536  */
 537 #define TASKQ_CREATE_ACTIVE_THREADS     2
 538 
 539 /* Maximum percentage allowed for TASKQ_THREADS_CPU_PCT */
 540 #define TASKQ_CPUPCT_MAX_PERCENT        1000
 541 int taskq_cpupct_max_percent = TASKQ_CPUPCT_MAX_PERCENT;
 542 
 543 /*
 544  * Dynamic task queue threads that don't get any work within
 545  * taskq_thread_timeout destroy themselves
 546  */
 547 #define TASKQ_THREAD_TIMEOUT (60 * 5)
 548 int taskq_thread_timeout = TASKQ_THREAD_TIMEOUT;
 549 
 550 #define TASKQ_MAXBUCKETS 128
 551 int taskq_maxbuckets = TASKQ_MAXBUCKETS;
 552 
 553 /*
 554  * When a bucket has no available entries another buckets are tried.
 555  * taskq_search_depth parameter limits the amount of buckets that we search
 556  * before failing. This is mostly useful in systems with many CPUs where we may
 557  * spend too much time scanning busy buckets.
 558  */
 559 #define TASKQ_SEARCH_DEPTH 4
 560 int taskq_search_depth = TASKQ_SEARCH_DEPTH;
 561 
 562 /*
 563  * Hashing function: mix various bits of x. May be pretty much anything.
 564  */
 565 #define TQ_HASH(x) ((x) ^ ((x) >> 11) ^ ((x) >> 17) ^ ((x) ^ 27))
 566 
 567 /*
 568  * We do not create any new threads when the system is low on memory and start
 569  * throttling memory allocations. The following macro tries to estimate such
 570  * condition.
 571  */
 572 #define ENOUGH_MEMORY() (freemem > throttlefree)
 573 
 574 /*
 575  * Static functions.
 576  */
 577 static taskq_t  *taskq_create_common(const char *, int, int, pri_t, int,
 578     int, proc_t *, uint_t, uint_t);
 579 static void taskq_thread(void *);
 580 static void taskq_d_thread(taskq_ent_t *);
 581 static void taskq_bucket_extend(void *);
 582 static int  taskq_constructor(void *, void *, int);
 583 static void taskq_destructor(void *, void *);
 584 static int  taskq_ent_constructor(void *, void *, int);
 585 static void taskq_ent_destructor(void *, void *);
 586 static taskq_ent_t *taskq_ent_alloc(taskq_t *, int);
 587 static void taskq_ent_free(taskq_t *, taskq_ent_t *);
 588 static int taskq_ent_exists(taskq_t *, task_func_t, void *);
 589 static taskq_ent_t *taskq_bucket_dispatch(taskq_bucket_t *, task_func_t,
 590     void *);
 591 
 592 /*
 593  * Task queues kstats.
 594  */
 595 struct taskq_kstat {
 596         kstat_named_t   tq_pid;
 597         kstat_named_t   tq_tasks;
 598         kstat_named_t   tq_executed;
 599         kstat_named_t   tq_maxtasks;
 600         kstat_named_t   tq_totaltime;
 601         kstat_named_t   tq_nalloc;
 602         kstat_named_t   tq_nactive;
 603         kstat_named_t   tq_pri;
 604         kstat_named_t   tq_nthreads;
 605         kstat_named_t   tq_nomem;
 606 } taskq_kstat = {
 607         { "pid",                KSTAT_DATA_UINT64 },
 608         { "tasks",              KSTAT_DATA_UINT64 },
 609         { "executed",           KSTAT_DATA_UINT64 },
 610         { "maxtasks",           KSTAT_DATA_UINT64 },
 611         { "totaltime",          KSTAT_DATA_UINT64 },
 612         { "nalloc",             KSTAT_DATA_UINT64 },
 613         { "nactive",            KSTAT_DATA_UINT64 },
 614         { "priority",           KSTAT_DATA_UINT64 },
 615         { "threads",            KSTAT_DATA_UINT64 },
 616         { "nomem",              KSTAT_DATA_UINT64 },
 617 };
 618 
 619 struct taskq_d_kstat {
 620         kstat_named_t   tqd_pri;
 621         kstat_named_t   tqd_btasks;
 622         kstat_named_t   tqd_bexecuted;
 623         kstat_named_t   tqd_bmaxtasks;
 624         kstat_named_t   tqd_bnalloc;
 625         kstat_named_t   tqd_bnactive;
 626         kstat_named_t   tqd_btotaltime;
 627         kstat_named_t   tqd_hits;
 628         kstat_named_t   tqd_misses;
 629         kstat_named_t   tqd_overflows;
 630         kstat_named_t   tqd_tcreates;
 631         kstat_named_t   tqd_tdeaths;
 632         kstat_named_t   tqd_maxthreads;
 633         kstat_named_t   tqd_nomem;
 634         kstat_named_t   tqd_disptcreates;
 635         kstat_named_t   tqd_totaltime;
 636         kstat_named_t   tqd_nalloc;
 637         kstat_named_t   tqd_nfree;
 638 } taskq_d_kstat = {
 639         { "priority",           KSTAT_DATA_UINT64 },
 640         { "btasks",             KSTAT_DATA_UINT64 },
 641         { "bexecuted",          KSTAT_DATA_UINT64 },
 642         { "bmaxtasks",          KSTAT_DATA_UINT64 },
 643         { "bnalloc",            KSTAT_DATA_UINT64 },
 644         { "bnactive",           KSTAT_DATA_UINT64 },
 645         { "btotaltime",         KSTAT_DATA_UINT64 },
 646         { "hits",               KSTAT_DATA_UINT64 },
 647         { "misses",             KSTAT_DATA_UINT64 },
 648         { "overflows",          KSTAT_DATA_UINT64 },
 649         { "tcreates",           KSTAT_DATA_UINT64 },
 650         { "tdeaths",            KSTAT_DATA_UINT64 },
 651         { "maxthreads",         KSTAT_DATA_UINT64 },
 652         { "nomem",              KSTAT_DATA_UINT64 },
 653         { "disptcreates",       KSTAT_DATA_UINT64 },
 654         { "totaltime",          KSTAT_DATA_UINT64 },
 655         { "nalloc",             KSTAT_DATA_UINT64 },
 656         { "nfree",              KSTAT_DATA_UINT64 },
 657 };
 658 
 659 static kmutex_t taskq_kstat_lock;
 660 static kmutex_t taskq_d_kstat_lock;
 661 static int taskq_kstat_update(kstat_t *, int);
 662 static int taskq_d_kstat_update(kstat_t *, int);
 663 
 664 /*
 665  * List of all TASKQ_THREADS_CPU_PCT taskqs.
 666  */
 667 static list_t taskq_cpupct_list;        /* protected by cpu_lock */
 668 
 669 /*
 670  * Collect per-bucket statistic when TASKQ_STATISTIC is defined.
 671  */
 672 #define TASKQ_STATISTIC 1
 673 
 674 #if TASKQ_STATISTIC
 675 #define TQ_STAT(b, x)   b->tqbucket_stat.x++
 676 #else
 677 #define TQ_STAT(b, x)
 678 #endif
 679 
 680 /*
 681  * Random fault injection.
 682  */
 683 uint_t taskq_random;
 684 uint_t taskq_dmtbf = UINT_MAX;    /* mean time between injected failures */
 685 uint_t taskq_smtbf = UINT_MAX;    /* mean time between injected failures */
 686 
 687 /*
 688  * TQ_NOSLEEP dispatches on dynamic task queues are always allowed to fail.
 689  *
 690  * TQ_NOSLEEP dispatches on static task queues can't arbitrarily fail because
 691  * they could prepopulate the cache and make sure that they do not use more
 692  * then minalloc entries.  So, fault injection in this case insures that
 693  * either TASKQ_PREPOPULATE is not set or there are more entries allocated
 694  * than is specified by minalloc.  TQ_NOALLOC dispatches are always allowed
 695  * to fail, but for simplicity we treat them identically to TQ_NOSLEEP
 696  * dispatches.
 697  */
 698 #ifdef DEBUG
 699 #define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)               \
 700         taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
 701         if ((flag & TQ_NOSLEEP) &&                          \
 702             taskq_random < 1771875 / taskq_dmtbf) {          \
 703                 return (NULL);                                  \
 704         }
 705 
 706 #define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)               \
 707         taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
 708         if ((flag & (TQ_NOSLEEP | TQ_NOALLOC)) &&           \
 709             (!(tq->tq_flags & TASKQ_PREPOPULATE) ||              \
 710             (tq->tq_nalloc > tq->tq_minalloc)) &&              \
 711             (taskq_random < (1771875 / taskq_smtbf))) {              \
 712                 mutex_exit(&tq->tq_lock);                        \
 713                 return (NULL);                                  \
 714         }
 715 #else
 716 #define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)
 717 #define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)
 718 #endif
 719 
 720 #define IS_EMPTY(l) (((l).tqent_prev == (l).tqent_next) &&      \
 721         ((l).tqent_prev == &(l)))
 722 
 723 /*
 724  * Append `tqe' in the end of the doubly-linked list denoted by l.
 725  */
 726 #define TQ_APPEND(l, tqe) {                                     \
 727         tqe->tqent_next = &l;                                    \
 728         tqe->tqent_prev = l.tqent_prev;                              \
 729         tqe->tqent_next->tqent_prev = tqe;                        \
 730         tqe->tqent_prev->tqent_next = tqe;                        \
 731 }
 732 /*
 733  * Prepend 'tqe' to the beginning of l
 734  */
 735 #define TQ_PREPEND(l, tqe) {                                    \
 736         tqe->tqent_next = l.tqent_next;                              \
 737         tqe->tqent_prev = &l;                                    \
 738         tqe->tqent_next->tqent_prev = tqe;                        \
 739         tqe->tqent_prev->tqent_next = tqe;                        \
 740 }
 741 
 742 /*
 743  * Schedule a task specified by func and arg into the task queue entry tqe.
 744  */
 745 #define TQ_DO_ENQUEUE(tq, tqe, func, arg, front) {                      \
 746         ASSERT(MUTEX_HELD(&tq->tq_lock));                                \
 747         _NOTE(CONSTCOND)                                                \
 748         if (front) {                                                    \
 749                 TQ_PREPEND(tq->tq_task, tqe);                                \
 750         } else {                                                        \
 751                 TQ_APPEND(tq->tq_task, tqe);                         \
 752         }                                                               \
 753         tqe->tqent_func = (func);                                    \
 754         tqe->tqent_arg = (arg);                                              \
 755         tq->tq_tasks++;                                                      \
 756         if (tq->tq_tasks - tq->tq_executed > tq->tq_maxtasks)               \
 757                 tq->tq_maxtasks = tq->tq_tasks - tq->tq_executed;      \
 758         cv_signal(&tq->tq_dispatch_cv);                                  \
 759         DTRACE_PROBE2(taskq__enqueue, taskq_t *, tq, taskq_ent_t *, tqe); \
 760 }
 761 
 762 #define TQ_ENQUEUE(tq, tqe, func, arg)                                  \
 763         TQ_DO_ENQUEUE(tq, tqe, func, arg, 0)
 764 
 765 #define TQ_ENQUEUE_FRONT(tq, tqe, func, arg)                            \
 766         TQ_DO_ENQUEUE(tq, tqe, func, arg, 1)
 767 
 768 /*
 769  * Do-nothing task which may be used to prepopulate thread caches.
 770  */
 771 /*ARGSUSED*/
 772 void
 773 nulltask(void *unused)
 774 {
 775 }
 776 
 777 /*ARGSUSED*/
 778 static int
 779 taskq_constructor(void *buf, void *cdrarg, int kmflags)
 780 {
 781         taskq_t *tq = buf;
 782 
 783         bzero(tq, sizeof (taskq_t));
 784 
 785         mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
 786         rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
 787         cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
 788         cv_init(&tq->tq_exit_cv, NULL, CV_DEFAULT, NULL);
 789         cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
 790         cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL);
 791 
 792         tq->tq_task.tqent_next = &tq->tq_task;
 793         tq->tq_task.tqent_prev = &tq->tq_task;
 794 
 795         return (0);
 796 }
 797 
 798 /*ARGSUSED*/
 799 static void
 800 taskq_destructor(void *buf, void *cdrarg)
 801 {
 802         taskq_t *tq = buf;
 803 
 804         ASSERT(tq->tq_nthreads == 0);
 805         ASSERT(tq->tq_buckets == NULL);
 806         ASSERT(tq->tq_tcreates == 0);
 807         ASSERT(tq->tq_tdeaths == 0);
 808 
 809         mutex_destroy(&tq->tq_lock);
 810         rw_destroy(&tq->tq_threadlock);
 811         cv_destroy(&tq->tq_dispatch_cv);
 812         cv_destroy(&tq->tq_exit_cv);
 813         cv_destroy(&tq->tq_wait_cv);
 814         cv_destroy(&tq->tq_maxalloc_cv);
 815 }
 816 
 817 /*ARGSUSED*/
 818 static int
 819 taskq_ent_constructor(void *buf, void *cdrarg, int kmflags)
 820 {
 821         taskq_ent_t *tqe = buf;
 822 
 823         tqe->tqent_thread = NULL;
 824         cv_init(&tqe->tqent_cv, NULL, CV_DEFAULT, NULL);
 825 
 826         return (0);
 827 }
 828 
 829 /*ARGSUSED*/
 830 static void
 831 taskq_ent_destructor(void *buf, void *cdrarg)
 832 {
 833         taskq_ent_t *tqe = buf;
 834 
 835         ASSERT(tqe->tqent_thread == NULL);
 836         cv_destroy(&tqe->tqent_cv);
 837 }
 838 
 839 void
 840 taskq_init(void)
 841 {
 842         taskq_ent_cache = kmem_cache_create("taskq_ent_cache",
 843             sizeof (taskq_ent_t), 0, taskq_ent_constructor,
 844             taskq_ent_destructor, NULL, NULL, NULL, 0);
 845         taskq_cache = kmem_cache_create("taskq_cache", sizeof (taskq_t),
 846             0, taskq_constructor, taskq_destructor, NULL, NULL, NULL, 0);
 847         taskq_id_arena = vmem_create("taskq_id_arena",
 848             (void *)1, INT32_MAX, 1, NULL, NULL, NULL, 0,
 849             VM_SLEEP | VMC_IDENTIFIER);
 850 
 851         list_create(&taskq_cpupct_list, sizeof (taskq_t),
 852             offsetof(taskq_t, tq_cpupct_link));
 853 }
 854 
 855 static void
 856 taskq_update_nthreads(taskq_t *tq, uint_t ncpus)
 857 {
 858         uint_t newtarget = TASKQ_THREADS_PCT(ncpus, tq->tq_threads_ncpus_pct);
 859 
 860         ASSERT(MUTEX_HELD(&cpu_lock));
 861         ASSERT(MUTEX_HELD(&tq->tq_lock));
 862 
 863         /* We must be going from non-zero to non-zero; no exiting. */
 864         ASSERT3U(tq->tq_nthreads_target, !=, 0);
 865         ASSERT3U(newtarget, !=, 0);
 866 
 867         ASSERT3U(newtarget, <=, tq->tq_nthreads_max);
 868         if (newtarget != tq->tq_nthreads_target) {
 869                 tq->tq_flags |= TASKQ_CHANGING;
 870                 tq->tq_nthreads_target = newtarget;
 871                 cv_broadcast(&tq->tq_dispatch_cv);
 872                 cv_broadcast(&tq->tq_exit_cv);
 873         }
 874 }
 875 
 876 /* called during task queue creation */
 877 static void
 878 taskq_cpupct_install(taskq_t *tq, cpupart_t *cpup)
 879 {
 880         ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
 881 
 882         mutex_enter(&cpu_lock);
 883         mutex_enter(&tq->tq_lock);
 884         tq->tq_cpupart = cpup->cp_id;
 885         taskq_update_nthreads(tq, cpup->cp_ncpus);
 886         mutex_exit(&tq->tq_lock);
 887 
 888         list_insert_tail(&taskq_cpupct_list, tq);
 889         mutex_exit(&cpu_lock);
 890 }
 891 
 892 static void
 893 taskq_cpupct_remove(taskq_t *tq)
 894 {
 895         ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
 896 
 897         mutex_enter(&cpu_lock);
 898         list_remove(&taskq_cpupct_list, tq);
 899         mutex_exit(&cpu_lock);
 900 }
 901 
 902 /*ARGSUSED*/
 903 static int
 904 taskq_cpu_setup(cpu_setup_t what, int id, void *arg)
 905 {
 906         taskq_t *tq;
 907         cpupart_t *cp = cpu[id]->cpu_part;
 908         uint_t ncpus = cp->cp_ncpus;
 909 
 910         ASSERT(MUTEX_HELD(&cpu_lock));
 911         ASSERT(ncpus > 0);
 912 
 913         switch (what) {
 914         case CPU_OFF:
 915         case CPU_CPUPART_OUT:
 916                 /* offlines are called *before* the cpu is offlined. */
 917                 if (ncpus > 1)
 918                         ncpus--;
 919                 break;
 920 
 921         case CPU_ON:
 922         case CPU_CPUPART_IN:
 923                 break;
 924 
 925         default:
 926                 return (0);             /* doesn't affect cpu count */
 927         }
 928 
 929         for (tq = list_head(&taskq_cpupct_list); tq != NULL;
 930             tq = list_next(&taskq_cpupct_list, tq)) {
 931 
 932                 mutex_enter(&tq->tq_lock);
 933                 /*
 934                  * If the taskq is part of the cpuset which is changing,
 935                  * update its nthreads_target.
 936                  */
 937                 if (tq->tq_cpupart == cp->cp_id) {
 938                         taskq_update_nthreads(tq, ncpus);
 939                 }
 940                 mutex_exit(&tq->tq_lock);
 941         }
 942         return (0);
 943 }
 944 
 945 void
 946 taskq_mp_init(void)
 947 {
 948         mutex_enter(&cpu_lock);
 949         register_cpu_setup_func(taskq_cpu_setup, NULL);
 950         /*
 951          * Make sure we're up to date.  At this point in boot, there is only
 952          * one processor set, so we only have to update the current CPU.
 953          */
 954         (void) taskq_cpu_setup(CPU_ON, CPU->cpu_id, NULL);
 955         mutex_exit(&cpu_lock);
 956 }
 957 
 958 /*
 959  * Create global system dynamic task queue.
 960  */
 961 void
 962 system_taskq_init(void)
 963 {
 964         system_taskq = taskq_create_common("system_taskq", 0,
 965             system_taskq_size * max_ncpus, minclsyspri, 4, 512, &p0, 0,
 966             TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
 967 }
 968 
 969 /*
 970  * taskq_ent_alloc()
 971  *
 972  * Allocates a new taskq_ent_t structure either from the free list or from the
 973  * cache. Returns NULL if it can't be allocated.
 974  *
 975  * Assumes: tq->tq_lock is held.
 976  */
 977 static taskq_ent_t *
 978 taskq_ent_alloc(taskq_t *tq, int flags)
 979 {
 980         int kmflags = (flags & TQ_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
 981         taskq_ent_t *tqe;
 982         clock_t wait_time;
 983         clock_t wait_rv;
 984 
 985         ASSERT(MUTEX_HELD(&tq->tq_lock));
 986 
 987         /*
 988          * TQ_NOALLOC allocations are allowed to use the freelist, even if
 989          * we are below tq_minalloc.
 990          */
 991 again:  if ((tqe = tq->tq_freelist) != NULL &&
 992             ((flags & TQ_NOALLOC) || tq->tq_nalloc >= tq->tq_minalloc)) {
 993                 tq->tq_freelist = tqe->tqent_next;
 994         } else {
 995                 if (flags & TQ_NOALLOC)
 996                         return (NULL);
 997 
 998                 if (tq->tq_nalloc >= tq->tq_maxalloc) {
 999                         if (kmflags & KM_NOSLEEP)
1000                                 return (NULL);
1001 
1002                         /*
1003                          * We don't want to exceed tq_maxalloc, but we can't
1004                          * wait for other tasks to complete (and thus free up
1005                          * task structures) without risking deadlock with
1006                          * the caller.  So, we just delay for one second
1007                          * to throttle the allocation rate. If we have tasks
1008                          * complete before one second timeout expires then
1009                          * taskq_ent_free will signal us and we will
1010                          * immediately retry the allocation (reap free).
1011                          */
1012                         wait_time = ddi_get_lbolt() + hz;
1013                         while (tq->tq_freelist == NULL) {
1014                                 tq->tq_maxalloc_wait++;
1015                                 wait_rv = cv_timedwait(&tq->tq_maxalloc_cv,
1016                                     &tq->tq_lock, wait_time);
1017                                 tq->tq_maxalloc_wait--;
1018                                 if (wait_rv == -1)
1019                                         break;
1020                         }
1021                         if (tq->tq_freelist)
1022                                 goto again;             /* reap freelist */
1023 
1024                 }
1025                 mutex_exit(&tq->tq_lock);
1026 
1027                 tqe = kmem_cache_alloc(taskq_ent_cache, kmflags);
1028 
1029                 mutex_enter(&tq->tq_lock);
1030                 if (tqe != NULL)
1031                         tq->tq_nalloc++;
1032         }
1033         return (tqe);
1034 }
1035 
1036 /*
1037  * taskq_ent_free()
1038  *
1039  * Free taskq_ent_t structure by either putting it on the free list or freeing
1040  * it to the cache.
1041  *
1042  * Assumes: tq->tq_lock is held.
1043  */
1044 static void
1045 taskq_ent_free(taskq_t *tq, taskq_ent_t *tqe)
1046 {
1047         ASSERT(MUTEX_HELD(&tq->tq_lock));
1048 
1049         if (tq->tq_nalloc <= tq->tq_minalloc) {
1050                 tqe->tqent_next = tq->tq_freelist;
1051                 tq->tq_freelist = tqe;
1052         } else {
1053                 tq->tq_nalloc--;
1054                 mutex_exit(&tq->tq_lock);
1055                 kmem_cache_free(taskq_ent_cache, tqe);
1056                 mutex_enter(&tq->tq_lock);
1057         }
1058 
1059         if (tq->tq_maxalloc_wait)
1060                 cv_signal(&tq->tq_maxalloc_cv);
1061 }
1062 
1063 /*
1064  * taskq_ent_exists()
1065  *
1066  * Return 1 if taskq already has entry for calling 'func(arg)'.
1067  *
1068  * Assumes: tq->tq_lock is held.
1069  */
1070 static int
1071 taskq_ent_exists(taskq_t *tq, task_func_t func, void *arg)
1072 {
1073         taskq_ent_t     *tqe;
1074 
1075         ASSERT(MUTEX_HELD(&tq->tq_lock));
1076 
1077         for (tqe = tq->tq_task.tqent_next; tqe != &tq->tq_task;
1078             tqe = tqe->tqent_next)
1079                 if ((tqe->tqent_func == func) && (tqe->tqent_arg == arg))
1080                         return (1);
1081         return (0);
1082 }
1083 
1084 /*
1085  * Dispatch a task "func(arg)" to a free entry of bucket b.
1086  *
1087  * Assumes: no bucket locks is held.
1088  *
1089  * Returns: a pointer to an entry if dispatch was successful.
1090  *          NULL if there are no free entries or if the bucket is suspended.
1091  */
1092 static taskq_ent_t *
1093 taskq_bucket_dispatch(taskq_bucket_t *b, task_func_t func, void *arg)
1094 {
1095         taskq_ent_t *tqe;
1096 
1097         ASSERT(MUTEX_NOT_HELD(&b->tqbucket_lock));
1098         ASSERT(func != NULL);
1099 
1100         mutex_enter(&b->tqbucket_lock);
1101 
1102         ASSERT(b->tqbucket_nfree != 0 || IS_EMPTY(b->tqbucket_freelist));
1103         ASSERT(b->tqbucket_nfree == 0 || !IS_EMPTY(b->tqbucket_freelist));
1104 
1105         /*
1106          * Get en entry from the freelist if there is one.
1107          * Schedule task into the entry.
1108          */
1109         if ((b->tqbucket_nfree != 0) &&
1110             !(b->tqbucket_flags & TQBUCKET_SUSPEND)) {
1111                 tqe = b->tqbucket_freelist.tqent_prev;
1112 
1113                 ASSERT(tqe != &b->tqbucket_freelist);
1114                 ASSERT(tqe->tqent_thread != NULL);
1115 
1116                 tqe->tqent_prev->tqent_next = tqe->tqent_next;
1117                 tqe->tqent_next->tqent_prev = tqe->tqent_prev;
1118                 b->tqbucket_nalloc++;
1119                 b->tqbucket_nfree--;
1120                 tqe->tqent_func = func;
1121                 tqe->tqent_arg = arg;
1122                 TQ_STAT(b, tqs_hits);
1123                 cv_signal(&tqe->tqent_cv);
1124                 DTRACE_PROBE2(taskq__d__enqueue, taskq_bucket_t *, b,
1125                     taskq_ent_t *, tqe);
1126         } else {
1127                 tqe = NULL;
1128                 TQ_STAT(b, tqs_misses);
1129         }
1130         mutex_exit(&b->tqbucket_lock);
1131         return (tqe);
1132 }
1133 
1134 /*
1135  * Dispatch a task.
1136  *
1137  * Assumes: func != NULL
1138  *
1139  * Returns: NULL if dispatch failed.
1140  *          non-NULL if task dispatched successfully.
1141  *          Actual return value is the pointer to taskq entry that was used to
1142  *          dispatch a task. This is useful for debugging.
1143  */
1144 taskqid_t
1145 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
1146 {
1147         taskq_bucket_t *bucket = NULL;  /* Which bucket needs extension */
1148         taskq_ent_t *tqe = NULL;
1149         taskq_ent_t *tqe1;
1150         uint_t bsize;
1151 
1152         ASSERT(tq != NULL);
1153         ASSERT(func != NULL);
1154 
1155         if (!(tq->tq_flags & TASKQ_DYNAMIC)) {
1156                 /*
1157                  * TQ_NOQUEUE flag can't be used with non-dynamic task queues.
1158                  */
1159                 ASSERT(!(flags & TQ_NOQUEUE));
1160                 /*
1161                  * Enqueue the task to the underlying queue.
1162                  */
1163                 mutex_enter(&tq->tq_lock);
1164 
1165                 TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flags);
1166 
1167                 if ((tqe = taskq_ent_alloc(tq, flags)) == NULL) {
1168                         tq->tq_nomem++;
1169                         mutex_exit(&tq->tq_lock);
1170                         return (NULL);
1171                 }
1172                 /* Make sure we start without any flags */
1173                 tqe->tqent_un.tqent_flags = 0;
1174 
1175                 if (flags & TQ_FRONT) {
1176                         TQ_ENQUEUE_FRONT(tq, tqe, func, arg);
1177                 } else {
1178                         TQ_ENQUEUE(tq, tqe, func, arg);
1179                 }
1180                 mutex_exit(&tq->tq_lock);
1181                 return ((taskqid_t)tqe);
1182         }
1183 
1184         /*
1185          * Dynamic taskq dispatching.
1186          */
1187         ASSERT(!(flags & (TQ_NOALLOC | TQ_FRONT)));
1188         TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flags);
1189 
1190         bsize = tq->tq_nbuckets;
1191 
1192         if (bsize == 1) {
1193                 /*
1194                  * In a single-CPU case there is only one bucket, so get
1195                  * entry directly from there.
1196                  */
1197                 if ((tqe = taskq_bucket_dispatch(tq->tq_buckets, func, arg))
1198                     != NULL)
1199                         return ((taskqid_t)tqe);        /* Fastpath */
1200                 bucket = tq->tq_buckets;
1201         } else {
1202                 int loopcount;
1203                 taskq_bucket_t *b;
1204                 uintptr_t h = ((uintptr_t)CPU + (uintptr_t)arg) >> 3;
1205 
1206                 h = TQ_HASH(h);
1207 
1208                 /*
1209                  * The 'bucket' points to the original bucket that we hit. If we
1210                  * can't allocate from it, we search other buckets, but only
1211                  * extend this one.
1212                  */
1213                 b = &tq->tq_buckets[h & (bsize - 1)];
1214                 ASSERT(b->tqbucket_taskq == tq);     /* Sanity check */
1215 
1216                 /*
1217                  * Do a quick check before grabbing the lock. If the bucket does
1218                  * not have free entries now, chances are very small that it
1219                  * will after we take the lock, so we just skip it.
1220                  */
1221                 if (b->tqbucket_nfree != 0) {
1222                         if ((tqe = taskq_bucket_dispatch(b, func, arg)) != NULL)
1223                                 return ((taskqid_t)tqe);        /* Fastpath */
1224                 } else {
1225                         TQ_STAT(b, tqs_misses);
1226                 }
1227 
1228                 bucket = b;
1229                 loopcount = MIN(taskq_search_depth, bsize);
1230                 /*
1231                  * If bucket dispatch failed, search loopcount number of buckets
1232                  * before we give up and fail.
1233                  */
1234                 do {
1235                         b = &tq->tq_buckets[++h & (bsize - 1)];
1236                         ASSERT(b->tqbucket_taskq == tq);  /* Sanity check */
1237                         loopcount--;
1238 
1239                         if (b->tqbucket_nfree != 0) {
1240                                 tqe = taskq_bucket_dispatch(b, func, arg);
1241                         } else {
1242                                 TQ_STAT(b, tqs_misses);
1243                         }
1244                 } while ((tqe == NULL) && (loopcount > 0));
1245         }
1246 
1247         /*
1248          * At this point we either scheduled a task and (tqe != NULL) or failed
1249          * (tqe == NULL). Try to recover from fails.
1250          */
1251 
1252         /*
1253          * For KM_SLEEP dispatches, try to extend the bucket and retry dispatch.
1254          */
1255         if ((tqe == NULL) && !(flags & TQ_NOSLEEP)) {
1256                 /*
1257                  * taskq_bucket_extend() may fail to do anything, but this is
1258                  * fine - we deal with it later. If the bucket was successfully
1259                  * extended, there is a good chance that taskq_bucket_dispatch()
1260                  * will get this new entry, unless someone is racing with us and
1261                  * stealing the new entry from under our nose.
1262                  * taskq_bucket_extend() may sleep.
1263                  */
1264                 taskq_bucket_extend(bucket);
1265                 TQ_STAT(bucket, tqs_disptcreates);
1266                 if ((tqe = taskq_bucket_dispatch(bucket, func, arg)) != NULL)
1267                         return ((taskqid_t)tqe);
1268         }
1269 
1270         ASSERT(bucket != NULL);
1271 
1272         /*
1273          * Since there are not enough free entries in the bucket, add a
1274          * taskq entry to extend it in the background using backing queue
1275          * (unless we already have a taskq entry to perform that extension).
1276          */
1277         mutex_enter(&tq->tq_lock);
1278         if (!taskq_ent_exists(tq, taskq_bucket_extend, bucket)) {
1279                 if ((tqe1 = taskq_ent_alloc(tq, TQ_NOSLEEP)) != NULL) {
1280                         TQ_ENQUEUE_FRONT(tq, tqe1, taskq_bucket_extend, bucket);
1281                 } else {
1282                         tq->tq_nomem++;
1283                 }
1284         }
1285 
1286         /*
1287          * Dispatch failed and we can't find an entry to schedule a task.
1288          * Revert to the backing queue unless TQ_NOQUEUE was asked.
1289          */
1290         if ((tqe == NULL) && !(flags & TQ_NOQUEUE)) {
1291                 if ((tqe = taskq_ent_alloc(tq, flags)) != NULL) {
1292                         TQ_ENQUEUE(tq, tqe, func, arg);
1293                 } else {
1294                         tq->tq_nomem++;
1295                 }
1296         }
1297         mutex_exit(&tq->tq_lock);
1298 
1299         return ((taskqid_t)tqe);
1300 }
1301 
1302 void
1303 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
1304     taskq_ent_t *tqe)
1305 {
1306         ASSERT(func != NULL);
1307         ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
1308 
1309         /*
1310          * Mark it as a prealloc'd task.  This is important
1311          * to ensure that we don't free it later.
1312          */
1313         tqe->tqent_un.tqent_flags |= TQENT_FLAG_PREALLOC;
1314         /*
1315          * Enqueue the task to the underlying queue.
1316          */
1317         mutex_enter(&tq->tq_lock);
1318 
1319         if (flags & TQ_FRONT) {
1320                 TQ_ENQUEUE_FRONT(tq, tqe, func, arg);
1321         } else {
1322                 TQ_ENQUEUE(tq, tqe, func, arg);
1323         }
1324         mutex_exit(&tq->tq_lock);
1325 }
1326 
1327 /*
1328  * Allow our caller to ask if there are tasks pending on the queue.
1329  */
1330 boolean_t
1331 taskq_empty(taskq_t *tq)
1332 {
1333         boolean_t rv;
1334 
1335         ASSERT3P(tq, !=, curthread->t_taskq);
1336         mutex_enter(&tq->tq_lock);
1337         rv = (tq->tq_task.tqent_next == &tq->tq_task) && (tq->tq_active == 0);
1338         mutex_exit(&tq->tq_lock);
1339 
1340         return (rv);
1341 }
1342 
1343 /*
1344  * Wait for all pending tasks to complete.
1345  * Calling taskq_wait from a task will cause deadlock.
1346  */
1347 void
1348 taskq_wait(taskq_t *tq)
1349 {
1350         ASSERT(tq != curthread->t_taskq);
1351 
1352         mutex_enter(&tq->tq_lock);
1353         while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
1354                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
1355         mutex_exit(&tq->tq_lock);
1356 
1357         if (tq->tq_flags & TASKQ_DYNAMIC) {
1358                 taskq_bucket_t *b = tq->tq_buckets;
1359                 int bid = 0;
1360                 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1361                         mutex_enter(&b->tqbucket_lock);
1362                         while (b->tqbucket_nalloc > 0)
1363                                 cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
1364                         mutex_exit(&b->tqbucket_lock);
1365                 }
1366         }
1367 }
1368 
1369 /*
1370  * Suspend execution of tasks.
1371  *
1372  * Tasks in the queue part will be suspended immediately upon return from this
1373  * function. Pending tasks in the dynamic part will continue to execute, but all
1374  * new tasks will  be suspended.
1375  */
1376 void
1377 taskq_suspend(taskq_t *tq)
1378 {
1379         rw_enter(&tq->tq_threadlock, RW_WRITER);
1380 
1381         if (tq->tq_flags & TASKQ_DYNAMIC) {
1382                 taskq_bucket_t *b = tq->tq_buckets;
1383                 int bid = 0;
1384                 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1385                         mutex_enter(&b->tqbucket_lock);
1386                         b->tqbucket_flags |= TQBUCKET_SUSPEND;
1387                         mutex_exit(&b->tqbucket_lock);
1388                 }
1389         }
1390         /*
1391          * Mark task queue as being suspended. Needed for taskq_suspended().
1392          */
1393         mutex_enter(&tq->tq_lock);
1394         ASSERT(!(tq->tq_flags & TASKQ_SUSPENDED));
1395         tq->tq_flags |= TASKQ_SUSPENDED;
1396         mutex_exit(&tq->tq_lock);
1397 }
1398 
1399 /*
1400  * returns: 1 if tq is suspended, 0 otherwise.
1401  */
1402 int
1403 taskq_suspended(taskq_t *tq)
1404 {
1405         return ((tq->tq_flags & TASKQ_SUSPENDED) != 0);
1406 }
1407 
1408 /*
1409  * Resume taskq execution.
1410  */
1411 void
1412 taskq_resume(taskq_t *tq)
1413 {
1414         ASSERT(RW_WRITE_HELD(&tq->tq_threadlock));
1415 
1416         if (tq->tq_flags & TASKQ_DYNAMIC) {
1417                 taskq_bucket_t *b = tq->tq_buckets;
1418                 int bid = 0;
1419                 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1420                         mutex_enter(&b->tqbucket_lock);
1421                         b->tqbucket_flags &= ~TQBUCKET_SUSPEND;
1422                         mutex_exit(&b->tqbucket_lock);
1423                 }
1424         }
1425         mutex_enter(&tq->tq_lock);
1426         ASSERT(tq->tq_flags & TASKQ_SUSPENDED);
1427         tq->tq_flags &= ~TASKQ_SUSPENDED;
1428         mutex_exit(&tq->tq_lock);
1429 
1430         rw_exit(&tq->tq_threadlock);
1431 }
1432 
1433 int
1434 taskq_member(taskq_t *tq, kthread_t *thread)
1435 {
1436         return (thread->t_taskq == tq);
1437 }
1438 
1439 /*
1440  * Creates a thread in the taskq.  We only allow one outstanding create at
1441  * a time.  We drop and reacquire the tq_lock in order to avoid blocking other
1442  * taskq activity while thread_create() or lwp_kernel_create() run.
1443  *
1444  * The first time we're called, we do some additional setup, and do not
1445  * return until there are enough threads to start servicing requests.
1446  */
1447 static void
1448 taskq_thread_create(taskq_t *tq)
1449 {
1450         kthread_t       *t;
1451         const boolean_t first = (tq->tq_nthreads == 0);
1452 
1453         ASSERT(MUTEX_HELD(&tq->tq_lock));
1454         ASSERT(tq->tq_flags & TASKQ_CHANGING);
1455         ASSERT(tq->tq_nthreads < tq->tq_nthreads_target);
1456         ASSERT(!(tq->tq_flags & TASKQ_THREAD_CREATED));
1457 
1458 
1459         tq->tq_flags |= TASKQ_THREAD_CREATED;
1460         tq->tq_active++;
1461         mutex_exit(&tq->tq_lock);
1462 
1463         /*
1464          * With TASKQ_DUTY_CYCLE the new thread must have an LWP
1465          * as explained in ../disp/sysdc.c (for the msacct data).
1466          * Otherwise simple kthreads are preferred.
1467          */
1468         if ((tq->tq_flags & TASKQ_DUTY_CYCLE) != 0) {
1469                 /* Enforced in taskq_create_common */
1470                 ASSERT3P(tq->tq_proc, !=, &p0);
1471                 t = lwp_kernel_create(tq->tq_proc, taskq_thread, tq, TS_RUN,
1472                     tq->tq_pri);
1473         } else {
1474                 t = thread_create(NULL, 0, taskq_thread, tq, 0, tq->tq_proc,
1475                     TS_RUN, tq->tq_pri);
1476         }
1477 
1478         if (!first) {
1479                 mutex_enter(&tq->tq_lock);
1480                 return;
1481         }
1482 
1483         /*
1484          * We know the thread cannot go away, since tq cannot be
1485          * destroyed until creation has completed.  We can therefore
1486          * safely dereference t.
1487          */
1488         if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) {
1489                 taskq_cpupct_install(tq, t->t_cpupart);
1490         }
1491         mutex_enter(&tq->tq_lock);
1492 
1493         /* Wait until we can service requests. */
1494         while (tq->tq_nthreads != tq->tq_nthreads_target &&
1495             tq->tq_nthreads < TASKQ_CREATE_ACTIVE_THREADS) {
1496                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
1497         }
1498 }
1499 
1500 /*
1501  * Common "sleep taskq thread" function, which handles CPR stuff, as well
1502  * as giving a nice common point for debuggers to find inactive threads.
1503  */
1504 static clock_t
1505 taskq_thread_wait(taskq_t *tq, kmutex_t *mx, kcondvar_t *cv,
1506     callb_cpr_t *cprinfo, clock_t timeout)
1507 {
1508         clock_t ret = 0;
1509 
1510         if (!(tq->tq_flags & TASKQ_CPR_SAFE)) {
1511                 CALLB_CPR_SAFE_BEGIN(cprinfo);
1512         }
1513         if (timeout < 0)
1514                 cv_wait(cv, mx);
1515         else
1516                 ret = cv_reltimedwait(cv, mx, timeout, TR_CLOCK_TICK);
1517 
1518         if (!(tq->tq_flags & TASKQ_CPR_SAFE)) {
1519                 CALLB_CPR_SAFE_END(cprinfo, mx);
1520         }
1521 
1522         return (ret);
1523 }
1524 
1525 /*
1526  * Worker thread for processing task queue.
1527  */
1528 static void
1529 taskq_thread(void *arg)
1530 {
1531         int thread_id;
1532 
1533         taskq_t *tq = arg;
1534         taskq_ent_t *tqe;
1535         callb_cpr_t cprinfo;
1536         hrtime_t start, end;
1537         boolean_t freeit;
1538 
1539         curthread->t_taskq = tq;     /* mark ourselves for taskq_member() */
1540 
1541         if (curproc != &p0 && (tq->tq_flags & TASKQ_DUTY_CYCLE)) {
1542                 sysdc_thread_enter(curthread, tq->tq_DC,
1543                     (tq->tq_flags & TASKQ_DC_BATCH) ? SYSDC_THREAD_BATCH : 0);
1544         }
1545 
1546         if (tq->tq_flags & TASKQ_CPR_SAFE) {
1547                 CALLB_CPR_INIT_SAFE(curthread, tq->tq_name);
1548         } else {
1549                 CALLB_CPR_INIT(&cprinfo, &tq->tq_lock, callb_generic_cpr,
1550                     tq->tq_name);
1551         }
1552         mutex_enter(&tq->tq_lock);
1553         thread_id = ++tq->tq_nthreads;
1554         ASSERT(tq->tq_flags & TASKQ_THREAD_CREATED);
1555         ASSERT(tq->tq_flags & TASKQ_CHANGING);
1556         tq->tq_flags &= ~TASKQ_THREAD_CREATED;
1557 
1558         VERIFY3S(thread_id, <=, tq->tq_nthreads_max);
1559 
1560         if (tq->tq_nthreads_max == 1)
1561                 tq->tq_thread = curthread;
1562         else
1563                 tq->tq_threadlist[thread_id - 1] = curthread;
1564 
1565         /* Allow taskq_create_common()'s taskq_thread_create() to return. */
1566         if (tq->tq_nthreads == TASKQ_CREATE_ACTIVE_THREADS)
1567                 cv_broadcast(&tq->tq_wait_cv);
1568 
1569         for (;;) {
1570                 if (tq->tq_flags & TASKQ_CHANGING) {
1571                         /* See if we're no longer needed */
1572                         if (thread_id > tq->tq_nthreads_target) {
1573                                 /*
1574                                  * To preserve the one-to-one mapping between
1575                                  * thread_id and thread, we must exit from
1576                                  * highest thread ID to least.
1577                                  *
1578                                  * However, if everyone is exiting, the order
1579                                  * doesn't matter, so just exit immediately.
1580                                  * (this is safe, since you must wait for
1581                                  * nthreads to reach 0 after setting
1582                                  * tq_nthreads_target to 0)
1583                                  */
1584                                 if (thread_id == tq->tq_nthreads ||
1585                                     tq->tq_nthreads_target == 0)
1586                                         break;
1587 
1588                                 /* Wait for higher thread_ids to exit */
1589                                 (void) taskq_thread_wait(tq, &tq->tq_lock,
1590                                     &tq->tq_exit_cv, &cprinfo, -1);
1591                                 continue;
1592                         }
1593 
1594                         /*
1595                          * If no thread is starting taskq_thread(), we can
1596                          * do some bookkeeping.
1597                          */
1598                         if (!(tq->tq_flags & TASKQ_THREAD_CREATED)) {
1599                                 /* Check if we've reached our target */
1600                                 if (tq->tq_nthreads == tq->tq_nthreads_target) {
1601                                         tq->tq_flags &= ~TASKQ_CHANGING;
1602                                         cv_broadcast(&tq->tq_wait_cv);
1603                                 }
1604                                 /* Check if we need to create a thread */
1605                                 if (tq->tq_nthreads < tq->tq_nthreads_target) {
1606                                         taskq_thread_create(tq);
1607                                         continue; /* tq_lock was dropped */
1608                                 }
1609                         }
1610                 }
1611                 if ((tqe = tq->tq_task.tqent_next) == &tq->tq_task) {
1612                         if (--tq->tq_active == 0)
1613                                 cv_broadcast(&tq->tq_wait_cv);
1614                         (void) taskq_thread_wait(tq, &tq->tq_lock,
1615                             &tq->tq_dispatch_cv, &cprinfo, -1);
1616                         tq->tq_active++;
1617                         continue;
1618                 }
1619 
1620                 tqe->tqent_prev->tqent_next = tqe->tqent_next;
1621                 tqe->tqent_next->tqent_prev = tqe->tqent_prev;
1622                 mutex_exit(&tq->tq_lock);
1623 
1624                 /*
1625                  * For prealloc'd tasks, we don't free anything.  We
1626                  * have to check this now, because once we call the
1627                  * function for a prealloc'd taskq, we can't touch the
1628                  * tqent any longer (calling the function returns the
1629                  * ownershp of the tqent back to caller of
1630                  * taskq_dispatch.)
1631                  */
1632                 if ((!(tq->tq_flags & TASKQ_DYNAMIC)) &&
1633                     (tqe->tqent_un.tqent_flags & TQENT_FLAG_PREALLOC)) {
1634                         /* clear pointers to assist assertion checks */
1635                         tqe->tqent_next = tqe->tqent_prev = NULL;
1636                         freeit = B_FALSE;
1637                 } else {
1638                         freeit = B_TRUE;
1639                 }
1640 
1641                 rw_enter(&tq->tq_threadlock, RW_READER);
1642                 start = gethrtime();
1643                 DTRACE_PROBE2(taskq__exec__start, taskq_t *, tq,
1644                     taskq_ent_t *, tqe);
1645                 tqe->tqent_func(tqe->tqent_arg);
1646                 DTRACE_PROBE2(taskq__exec__end, taskq_t *, tq,
1647                     taskq_ent_t *, tqe);
1648                 end = gethrtime();
1649                 rw_exit(&tq->tq_threadlock);
1650 
1651                 mutex_enter(&tq->tq_lock);
1652                 tq->tq_totaltime += end - start;
1653                 tq->tq_executed++;
1654 
1655                 if (freeit)
1656                         taskq_ent_free(tq, tqe);
1657         }
1658 
1659         if (tq->tq_nthreads_max == 1)
1660                 tq->tq_thread = NULL;
1661         else
1662                 tq->tq_threadlist[thread_id - 1] = NULL;
1663 
1664         /* We're exiting, and therefore no longer active */
1665         ASSERT(tq->tq_active > 0);
1666         tq->tq_active--;
1667 
1668         ASSERT(tq->tq_nthreads > 0);
1669         tq->tq_nthreads--;
1670 
1671         /* Wake up anyone waiting for us to exit */
1672         cv_broadcast(&tq->tq_exit_cv);
1673         if (tq->tq_nthreads == tq->tq_nthreads_target) {
1674                 if (!(tq->tq_flags & TASKQ_THREAD_CREATED))
1675                         tq->tq_flags &= ~TASKQ_CHANGING;
1676 
1677                 cv_broadcast(&tq->tq_wait_cv);
1678         }
1679 
1680         ASSERT(!(tq->tq_flags & TASKQ_CPR_SAFE));
1681         CALLB_CPR_EXIT(&cprinfo);           /* drops tq->tq_lock */
1682         if (curthread->t_lwp != NULL) {
1683                 mutex_enter(&curproc->p_lock);
1684                 lwp_exit();
1685         } else {
1686                 thread_exit();
1687         }
1688 }
1689 
1690 /*
1691  * Worker per-entry thread for dynamic dispatches.
1692  */
1693 static void
1694 taskq_d_thread(taskq_ent_t *tqe)
1695 {
1696         taskq_bucket_t  *bucket = tqe->tqent_un.tqent_bucket;
1697         taskq_t         *tq = bucket->tqbucket_taskq;
1698         kmutex_t        *lock = &bucket->tqbucket_lock;
1699         kcondvar_t      *cv = &tqe->tqent_cv;
1700         callb_cpr_t     cprinfo;
1701         clock_t         w;
1702 
1703         CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, tq->tq_name);
1704 
1705         mutex_enter(lock);
1706 
1707         for (;;) {
1708                 /*
1709                  * If a task is scheduled (func != NULL), execute it, otherwise
1710                  * sleep, waiting for a job.
1711                  */
1712                 if (tqe->tqent_func != NULL) {
1713                         hrtime_t        start;
1714                         hrtime_t        end;
1715 
1716                         ASSERT(bucket->tqbucket_nalloc > 0);
1717 
1718                         /*
1719                          * It is possible to free the entry right away before
1720                          * actually executing the task so that subsequent
1721                          * dispatches may immediately reuse it. But this,
1722                          * effectively, creates a two-length queue in the entry
1723                          * and may lead to a deadlock if the execution of the
1724                          * current task depends on the execution of the next
1725                          * scheduled task. So, we keep the entry busy until the
1726                          * task is processed.
1727                          */
1728 
1729                         mutex_exit(lock);
1730                         start = gethrtime();
1731                         DTRACE_PROBE3(taskq__d__exec__start, taskq_t *, tq,
1732                             taskq_bucket_t *, bucket, taskq_ent_t *, tqe);
1733                         tqe->tqent_func(tqe->tqent_arg);
1734                         DTRACE_PROBE3(taskq__d__exec__end, taskq_t *, tq,
1735                             taskq_bucket_t *, bucket, taskq_ent_t *, tqe);
1736                         end = gethrtime();
1737                         mutex_enter(lock);
1738                         bucket->tqbucket_totaltime += end - start;
1739 
1740                         /*
1741                          * Return the entry to the bucket free list.
1742                          */
1743                         tqe->tqent_func = NULL;
1744                         TQ_APPEND(bucket->tqbucket_freelist, tqe);
1745                         bucket->tqbucket_nalloc--;
1746                         bucket->tqbucket_nfree++;
1747                         ASSERT(!IS_EMPTY(bucket->tqbucket_freelist));
1748                         /*
1749                          * taskq_wait() waits for nalloc to drop to zero on
1750                          * tqbucket_cv.
1751                          */
1752                         cv_signal(&bucket->tqbucket_cv);
1753                 }
1754 
1755                 /*
1756                  * At this point the entry must be in the bucket free list -
1757                  * either because it was there initially or because it just
1758                  * finished executing a task and put itself on the free list.
1759                  */
1760                 ASSERT(bucket->tqbucket_nfree > 0);
1761                 /*
1762                  * Go to sleep unless we are closing.
1763                  * If a thread is sleeping too long, it dies.
1764                  */
1765                 if (! (bucket->tqbucket_flags & TQBUCKET_CLOSE)) {
1766                         w = taskq_thread_wait(tq, lock, cv,
1767                             &cprinfo, taskq_thread_timeout * hz);
1768                 }
1769 
1770                 /*
1771                  * At this point we may be in two different states:
1772                  *
1773                  * (1) tqent_func is set which means that a new task is
1774                  *      dispatched and we need to execute it.
1775                  *
1776                  * (2) Thread is sleeping for too long or we are closing. In
1777                  *      both cases destroy the thread and the entry.
1778                  */
1779 
1780                 /* If func is NULL we should be on the freelist. */
1781                 ASSERT((tqe->tqent_func != NULL) ||
1782                     (bucket->tqbucket_nfree > 0));
1783                 /* If func is non-NULL we should be allocated */
1784                 ASSERT((tqe->tqent_func == NULL) ||
1785                     (bucket->tqbucket_nalloc > 0));
1786 
1787                 /* Check freelist consistency */
1788                 ASSERT((bucket->tqbucket_nfree > 0) ||
1789                     IS_EMPTY(bucket->tqbucket_freelist));
1790                 ASSERT((bucket->tqbucket_nfree == 0) ||
1791                     !IS_EMPTY(bucket->tqbucket_freelist));
1792 
1793                 if ((tqe->tqent_func == NULL) &&
1794                     ((w == -1) || (bucket->tqbucket_flags & TQBUCKET_CLOSE))) {
1795                         /*
1796                          * This thread is sleeping for too long or we are
1797                          * closing - time to die.
1798                          * Thread creation/destruction happens rarely,
1799                          * so grabbing the lock is not a big performance issue.
1800                          * The bucket lock is dropped by CALLB_CPR_EXIT().
1801                          */
1802 
1803                         /* Remove the entry from the free list. */
1804                         tqe->tqent_prev->tqent_next = tqe->tqent_next;
1805                         tqe->tqent_next->tqent_prev = tqe->tqent_prev;
1806                         ASSERT(bucket->tqbucket_nfree > 0);
1807                         bucket->tqbucket_nfree--;
1808 
1809                         TQ_STAT(bucket, tqs_tdeaths);
1810                         cv_signal(&bucket->tqbucket_cv);
1811                         tqe->tqent_thread = NULL;
1812                         mutex_enter(&tq->tq_lock);
1813                         tq->tq_tdeaths++;
1814                         mutex_exit(&tq->tq_lock);
1815                         CALLB_CPR_EXIT(&cprinfo);
1816                         kmem_cache_free(taskq_ent_cache, tqe);
1817                         thread_exit();
1818                 }
1819         }
1820 }
1821 
1822 
1823 /*
1824  * Taskq creation. May sleep for memory.
1825  * Always use automatically generated instances to avoid kstat name space
1826  * collisions.
1827  */
1828 
1829 taskq_t *
1830 taskq_create(const char *name, int nthreads, pri_t pri, int minalloc,
1831     int maxalloc, uint_t flags)
1832 {
1833         ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
1834 
1835         return (taskq_create_common(name, 0, nthreads, pri, minalloc,
1836             maxalloc, &p0, 0, flags | TASKQ_NOINSTANCE));
1837 }
1838 
1839 /*
1840  * Create an instance of task queue. It is legal to create task queues with the
1841  * same name and different instances.
1842  *
1843  * taskq_create_instance is used by ddi_taskq_create() where it gets the
1844  * instance from ddi_get_instance(). In some cases the instance is not
1845  * initialized and is set to -1. This case is handled as if no instance was
1846  * passed at all.
1847  */
1848 taskq_t *
1849 taskq_create_instance(const char *name, int instance, int nthreads, pri_t pri,
1850     int minalloc, int maxalloc, uint_t flags)
1851 {
1852         ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
1853         ASSERT((instance >= 0) || (instance == -1));
1854 
1855         if (instance < 0) {
1856                 flags |= TASKQ_NOINSTANCE;
1857         }
1858 
1859         return (taskq_create_common(name, instance, nthreads,
1860             pri, minalloc, maxalloc, &p0, 0, flags));
1861 }
1862 
1863 taskq_t *
1864 taskq_create_proc(const char *name, int nthreads, pri_t pri, int minalloc,
1865     int maxalloc, proc_t *proc, uint_t flags)
1866 {
1867         ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
1868         ASSERT(proc->p_flag & SSYS);
1869 
1870         return (taskq_create_common(name, 0, nthreads, pri, minalloc,
1871             maxalloc, proc, 0, flags | TASKQ_NOINSTANCE));
1872 }
1873 
1874 taskq_t *
1875 taskq_create_sysdc(const char *name, int nthreads, int minalloc,
1876     int maxalloc, proc_t *proc, uint_t dc, uint_t flags)
1877 {
1878         ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
1879         ASSERT(proc->p_flag & SSYS);
1880 
1881         return (taskq_create_common(name, 0, nthreads, minclsyspri, minalloc,
1882             maxalloc, proc, dc, flags | TASKQ_NOINSTANCE | TASKQ_DUTY_CYCLE));
1883 }
1884 
1885 static taskq_t *
1886 taskq_create_common(const char *name, int instance, int nthreads, pri_t pri,
1887     int minalloc, int maxalloc, proc_t *proc, uint_t dc, uint_t flags)
1888 {
1889         taskq_t *tq = kmem_cache_alloc(taskq_cache, KM_SLEEP);
1890         uint_t ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
1891         uint_t bsize;   /* # of buckets - always power of 2 */
1892         int max_nthreads;
1893 
1894         /*
1895          * TASKQ_DYNAMIC, TASKQ_CPR_SAFE and TASKQ_THREADS_CPU_PCT are all
1896          * mutually incompatible.
1897          */
1898         IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_CPR_SAFE));
1899         IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_THREADS_CPU_PCT));
1900         IMPLY((flags & TASKQ_CPR_SAFE), !(flags & TASKQ_THREADS_CPU_PCT));
1901 
1902         /* Cannot have DYNAMIC with DUTY_CYCLE */
1903         IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_DUTY_CYCLE));
1904 
1905         /* Cannot have DUTY_CYCLE with a p0 kernel process */
1906         IMPLY((flags & TASKQ_DUTY_CYCLE), proc != &p0);
1907 
1908         /* Cannot have DC_BATCH without DUTY_CYCLE */
1909         ASSERT((flags & (TASKQ_DUTY_CYCLE|TASKQ_DC_BATCH)) != TASKQ_DC_BATCH);
1910 
1911         ASSERT(proc != NULL);
1912 
1913         bsize = 1 << (highbit(ncpus) - 1);
1914         ASSERT(bsize >= 1);
1915         bsize = MIN(bsize, taskq_maxbuckets);
1916 
1917         if (flags & TASKQ_DYNAMIC) {
1918                 ASSERT3S(nthreads, >=, 1);
1919                 tq->tq_maxsize = nthreads;
1920 
1921                 /* For dynamic task queues use just one backup thread */
1922                 nthreads = max_nthreads = 1;
1923 
1924         } else if (flags & TASKQ_THREADS_CPU_PCT) {
1925                 uint_t pct;
1926                 ASSERT3S(nthreads, >=, 0);
1927                 pct = nthreads;
1928 
1929                 if (pct > taskq_cpupct_max_percent)
1930                         pct = taskq_cpupct_max_percent;
1931 
1932                 /*
1933                  * If you're using THREADS_CPU_PCT, the process for the
1934                  * taskq threads must be curproc.  This allows any pset
1935                  * binding to be inherited correctly.  If proc is &p0,
1936                  * we won't be creating LWPs, so new threads will be assigned
1937                  * to the default processor set.
1938                  */
1939                 ASSERT(curproc == proc || proc == &p0);
1940                 tq->tq_threads_ncpus_pct = pct;
1941                 nthreads = 1;           /* corrected in taskq_thread_create() */
1942                 max_nthreads = TASKQ_THREADS_PCT(max_ncpus, pct);
1943 
1944         } else {
1945                 ASSERT3S(nthreads, >=, 1);
1946                 max_nthreads = nthreads;
1947         }
1948 
1949         if (max_nthreads < taskq_minimum_nthreads_max)
1950                 max_nthreads = taskq_minimum_nthreads_max;
1951 
1952         /*
1953          * Make sure the name is 0-terminated, and conforms to the rules for
1954          * C indentifiers
1955          */
1956         (void) strncpy(tq->tq_name, name, TASKQ_NAMELEN + 1);
1957         strident_canon(tq->tq_name, TASKQ_NAMELEN + 1);
1958 
1959         tq->tq_flags = flags | TASKQ_CHANGING;
1960         tq->tq_active = 0;
1961         tq->tq_instance = instance;
1962         tq->tq_nthreads_target = nthreads;
1963         tq->tq_nthreads_max = max_nthreads;
1964         tq->tq_minalloc = minalloc;
1965         tq->tq_maxalloc = maxalloc;
1966         tq->tq_nbuckets = bsize;
1967         tq->tq_proc = proc;
1968         tq->tq_pri = pri;
1969         tq->tq_DC = dc;
1970         list_link_init(&tq->tq_cpupct_link);
1971 
1972         if (max_nthreads > 1)
1973                 tq->tq_threadlist = kmem_alloc(
1974                     sizeof (kthread_t *) * max_nthreads, KM_SLEEP);
1975 
1976         mutex_enter(&tq->tq_lock);
1977         if (flags & TASKQ_PREPOPULATE) {
1978                 while (minalloc-- > 0)
1979                         taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
1980         }
1981 
1982         /*
1983          * Before we start creating threads for this taskq, take a
1984          * zone hold so the zone can't go away before taskq_destroy
1985          * makes sure all the taskq threads are gone.  This hold is
1986          * similar in purpose to those taken by zthread_create().
1987          */
1988         zone_hold(tq->tq_proc->p_zone);
1989 
1990         /*
1991          * Create the first thread, which will create any other threads
1992          * necessary.  taskq_thread_create will not return until we have
1993          * enough threads to be able to process requests.
1994          */
1995         taskq_thread_create(tq);
1996         mutex_exit(&tq->tq_lock);
1997 
1998         if (flags & TASKQ_DYNAMIC) {
1999                 taskq_bucket_t *bucket = kmem_zalloc(sizeof (taskq_bucket_t) *
2000                     bsize, KM_SLEEP);
2001                 int b_id;
2002 
2003                 tq->tq_buckets = bucket;
2004 
2005                 /* Initialize each bucket */
2006                 for (b_id = 0; b_id < bsize; b_id++, bucket++) {
2007                         mutex_init(&bucket->tqbucket_lock, NULL, MUTEX_DEFAULT,
2008                             NULL);
2009                         cv_init(&bucket->tqbucket_cv, NULL, CV_DEFAULT, NULL);
2010                         bucket->tqbucket_taskq = tq;
2011                         bucket->tqbucket_freelist.tqent_next =
2012                             bucket->tqbucket_freelist.tqent_prev =
2013                             &bucket->tqbucket_freelist;
2014                         if (flags & TASKQ_PREPOPULATE)
2015                                 taskq_bucket_extend(bucket);
2016                 }
2017         }
2018 
2019         /*
2020          * Install kstats.
2021          * We have two cases:
2022          *   1) Instance is provided to taskq_create_instance(). In this case it
2023          *      should be >= 0 and we use it.
2024          *
2025          *   2) Instance is not provided and is automatically generated
2026          */
2027         if (flags & TASKQ_NOINSTANCE) {
2028                 instance = tq->tq_instance =
2029                     (int)(uintptr_t)vmem_alloc(taskq_id_arena, 1, VM_SLEEP);
2030         }
2031 
2032         if (flags & TASKQ_DYNAMIC) {
2033                 if ((tq->tq_kstat = kstat_create("unix", instance,
2034                     tq->tq_name, "taskq_d", KSTAT_TYPE_NAMED,
2035                     sizeof (taskq_d_kstat) / sizeof (kstat_named_t),
2036                     KSTAT_FLAG_VIRTUAL)) != NULL) {
2037                         tq->tq_kstat->ks_lock = &taskq_d_kstat_lock;
2038                         tq->tq_kstat->ks_data = &taskq_d_kstat;
2039                         tq->tq_kstat->ks_update = taskq_d_kstat_update;
2040                         tq->tq_kstat->ks_private = tq;
2041                         kstat_install(tq->tq_kstat);
2042                 }
2043         } else {
2044                 if ((tq->tq_kstat = kstat_create("unix", instance, tq->tq_name,
2045                     "taskq", KSTAT_TYPE_NAMED,
2046                     sizeof (taskq_kstat) / sizeof (kstat_named_t),
2047                     KSTAT_FLAG_VIRTUAL)) != NULL) {
2048                         tq->tq_kstat->ks_lock = &taskq_kstat_lock;
2049                         tq->tq_kstat->ks_data = &taskq_kstat;
2050                         tq->tq_kstat->ks_update = taskq_kstat_update;
2051                         tq->tq_kstat->ks_private = tq;
2052                         kstat_install(tq->tq_kstat);
2053                 }
2054         }
2055 
2056         return (tq);
2057 }
2058 
2059 /*
2060  * taskq_destroy().
2061  *
2062  * Assumes: by the time taskq_destroy is called no one will use this task queue
2063  * in any way and no one will try to dispatch entries in it.
2064  */
2065 void
2066 taskq_destroy(taskq_t *tq)
2067 {
2068         taskq_bucket_t *b = tq->tq_buckets;
2069         int bid = 0;
2070 
2071         ASSERT(! (tq->tq_flags & TASKQ_CPR_SAFE));
2072 
2073         /*
2074          * Destroy kstats.
2075          */
2076         if (tq->tq_kstat != NULL) {
2077                 kstat_delete(tq->tq_kstat);
2078                 tq->tq_kstat = NULL;
2079         }
2080 
2081         /*
2082          * Destroy instance if needed.
2083          */
2084         if (tq->tq_flags & TASKQ_NOINSTANCE) {
2085                 vmem_free(taskq_id_arena, (void *)(uintptr_t)(tq->tq_instance),
2086                     1);
2087                 tq->tq_instance = 0;
2088         }
2089 
2090         /*
2091          * Unregister from the cpupct list.
2092          */
2093         if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) {
2094                 taskq_cpupct_remove(tq);
2095         }
2096 
2097         /*
2098          * Wait for any pending entries to complete.
2099          */
2100         taskq_wait(tq);
2101 
2102         mutex_enter(&tq->tq_lock);
2103         ASSERT((tq->tq_task.tqent_next == &tq->tq_task) &&
2104             (tq->tq_active == 0));
2105 
2106         /* notify all the threads that they need to exit */
2107         tq->tq_nthreads_target = 0;
2108 
2109         tq->tq_flags |= TASKQ_CHANGING;
2110         cv_broadcast(&tq->tq_dispatch_cv);
2111         cv_broadcast(&tq->tq_exit_cv);
2112 
2113         while (tq->tq_nthreads != 0)
2114                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
2115 
2116         if (tq->tq_nthreads_max != 1)
2117                 kmem_free(tq->tq_threadlist, sizeof (kthread_t *) *
2118                     tq->tq_nthreads_max);
2119 
2120         tq->tq_minalloc = 0;
2121         while (tq->tq_nalloc != 0)
2122                 taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
2123 
2124         mutex_exit(&tq->tq_lock);
2125 
2126         /*
2127          * Mark each bucket as closing and wakeup all sleeping threads.
2128          */
2129         for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
2130                 taskq_ent_t *tqe;
2131 
2132                 mutex_enter(&b->tqbucket_lock);
2133 
2134                 b->tqbucket_flags |= TQBUCKET_CLOSE;
2135                 /* Wakeup all sleeping threads */
2136 
2137                 for (tqe = b->tqbucket_freelist.tqent_next;
2138                     tqe != &b->tqbucket_freelist; tqe = tqe->tqent_next)
2139                         cv_signal(&tqe->tqent_cv);
2140 
2141                 ASSERT(b->tqbucket_nalloc == 0);
2142 
2143                 /*
2144                  * At this point we waited for all pending jobs to complete (in
2145                  * both the task queue and the bucket and no new jobs should
2146                  * arrive. Wait for all threads to die.
2147                  */
2148                 while (b->tqbucket_nfree > 0)
2149                         cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
2150                 mutex_exit(&b->tqbucket_lock);
2151                 mutex_destroy(&b->tqbucket_lock);
2152                 cv_destroy(&b->tqbucket_cv);
2153         }
2154 
2155         if (tq->tq_buckets != NULL) {
2156                 ASSERT(tq->tq_flags & TASKQ_DYNAMIC);
2157                 kmem_free(tq->tq_buckets,
2158                     sizeof (taskq_bucket_t) * tq->tq_nbuckets);
2159 
2160                 /* Cleanup fields before returning tq to the cache */
2161                 tq->tq_buckets = NULL;
2162                 tq->tq_tcreates = 0;
2163                 tq->tq_tdeaths = 0;
2164         } else {
2165                 ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
2166         }
2167 
2168         /*
2169          * Now that all the taskq threads are gone, we can
2170          * drop the zone hold taken in taskq_create_common
2171          */
2172         zone_rele(tq->tq_proc->p_zone);
2173 
2174         tq->tq_threads_ncpus_pct = 0;
2175         tq->tq_totaltime = 0;
2176         tq->tq_tasks = 0;
2177         tq->tq_maxtasks = 0;
2178         tq->tq_executed = 0;
2179         kmem_cache_free(taskq_cache, tq);
2180 }
2181 
2182 /*
2183  * Extend a bucket with a new entry on the free list and attach a worker thread
2184  * to it.
2185  *
2186  * Argument: pointer to the bucket.
2187  *
2188  * This function may quietly fail. It is only used by taskq_dispatch() which
2189  * handles such failures properly.
2190  */
2191 static void
2192 taskq_bucket_extend(void *arg)
2193 {
2194         taskq_ent_t *tqe;
2195         taskq_bucket_t *b = (taskq_bucket_t *)arg;
2196         taskq_t *tq = b->tqbucket_taskq;
2197         int nthreads;
2198 
2199         mutex_enter(&tq->tq_lock);
2200 
2201         if (! ENOUGH_MEMORY()) {
2202                 tq->tq_nomem++;
2203                 mutex_exit(&tq->tq_lock);
2204                 return;
2205         }
2206 
2207         /*
2208          * Observe global taskq limits on the number of threads.
2209          */
2210         if (tq->tq_tcreates++ - tq->tq_tdeaths > tq->tq_maxsize) {
2211                 tq->tq_tcreates--;
2212                 mutex_exit(&tq->tq_lock);
2213                 return;
2214         }
2215         mutex_exit(&tq->tq_lock);
2216 
2217         tqe = kmem_cache_alloc(taskq_ent_cache, KM_NOSLEEP);
2218 
2219         if (tqe == NULL) {
2220                 mutex_enter(&tq->tq_lock);
2221                 tq->tq_nomem++;
2222                 tq->tq_tcreates--;
2223                 mutex_exit(&tq->tq_lock);
2224                 return;
2225         }
2226 
2227         ASSERT(tqe->tqent_thread == NULL);
2228 
2229         tqe->tqent_un.tqent_bucket = b;
2230 
2231         /*
2232          * Create a thread in a TS_STOPPED state first. If it is successfully
2233          * created, place the entry on the free list and start the thread.
2234          */
2235         tqe->tqent_thread = thread_create(NULL, 0, taskq_d_thread, tqe,
2236             0, tq->tq_proc, TS_STOPPED, tq->tq_pri);
2237 
2238         /*
2239          * Once the entry is ready, link it to the the bucket free list.
2240          */
2241         mutex_enter(&b->tqbucket_lock);
2242         tqe->tqent_func = NULL;
2243         TQ_APPEND(b->tqbucket_freelist, tqe);
2244         b->tqbucket_nfree++;
2245         TQ_STAT(b, tqs_tcreates);
2246 
2247 #if TASKQ_STATISTIC
2248         nthreads = b->tqbucket_stat.tqs_tcreates -
2249             b->tqbucket_stat.tqs_tdeaths;
2250         b->tqbucket_stat.tqs_maxthreads = MAX(nthreads,
2251             b->tqbucket_stat.tqs_maxthreads);
2252 #endif
2253 
2254         mutex_exit(&b->tqbucket_lock);
2255         /*
2256          * Start the stopped thread.
2257          */
2258         thread_lock(tqe->tqent_thread);
2259         tqe->tqent_thread->t_taskq = tq;
2260         tqe->tqent_thread->t_schedflag |= TS_ALLSTART;
2261         setrun_locked(tqe->tqent_thread);
2262         thread_unlock(tqe->tqent_thread);
2263 }
2264 
2265 static int
2266 taskq_kstat_update(kstat_t *ksp, int rw)
2267 {
2268         struct taskq_kstat *tqsp = &taskq_kstat;
2269         taskq_t *tq = ksp->ks_private;
2270 
2271         if (rw == KSTAT_WRITE)
2272                 return (EACCES);
2273 
2274         tqsp->tq_pid.value.ui64 = tq->tq_proc->p_pid;
2275         tqsp->tq_tasks.value.ui64 = tq->tq_tasks;
2276         tqsp->tq_executed.value.ui64 = tq->tq_executed;
2277         tqsp->tq_maxtasks.value.ui64 = tq->tq_maxtasks;
2278         tqsp->tq_totaltime.value.ui64 = tq->tq_totaltime;
2279         tqsp->tq_nactive.value.ui64 = tq->tq_active;
2280         tqsp->tq_nalloc.value.ui64 = tq->tq_nalloc;
2281         tqsp->tq_pri.value.ui64 = tq->tq_pri;
2282         tqsp->tq_nthreads.value.ui64 = tq->tq_nthreads;
2283         tqsp->tq_nomem.value.ui64 = tq->tq_nomem;
2284         return (0);
2285 }
2286 
2287 static int
2288 taskq_d_kstat_update(kstat_t *ksp, int rw)
2289 {
2290         struct taskq_d_kstat *tqsp = &taskq_d_kstat;
2291         taskq_t *tq = ksp->ks_private;
2292         taskq_bucket_t *b = tq->tq_buckets;
2293         int bid = 0;
2294 
2295         if (rw == KSTAT_WRITE)
2296                 return (EACCES);
2297 
2298         ASSERT(tq->tq_flags & TASKQ_DYNAMIC);
2299 
2300         tqsp->tqd_btasks.value.ui64 = tq->tq_tasks;
2301         tqsp->tqd_bexecuted.value.ui64 = tq->tq_executed;
2302         tqsp->tqd_bmaxtasks.value.ui64 = tq->tq_maxtasks;
2303         tqsp->tqd_bnalloc.value.ui64 = tq->tq_nalloc;
2304         tqsp->tqd_bnactive.value.ui64 = tq->tq_active;
2305         tqsp->tqd_btotaltime.value.ui64 = tq->tq_totaltime;
2306         tqsp->tqd_pri.value.ui64 = tq->tq_pri;
2307         tqsp->tqd_nomem.value.ui64 = tq->tq_nomem;
2308 
2309         tqsp->tqd_hits.value.ui64 = 0;
2310         tqsp->tqd_misses.value.ui64 = 0;
2311         tqsp->tqd_overflows.value.ui64 = 0;
2312         tqsp->tqd_tcreates.value.ui64 = 0;
2313         tqsp->tqd_tdeaths.value.ui64 = 0;
2314         tqsp->tqd_maxthreads.value.ui64 = 0;
2315         tqsp->tqd_nomem.value.ui64 = 0;
2316         tqsp->tqd_disptcreates.value.ui64 = 0;
2317         tqsp->tqd_totaltime.value.ui64 = 0;
2318         tqsp->tqd_nalloc.value.ui64 = 0;
2319         tqsp->tqd_nfree.value.ui64 = 0;
2320 
2321         for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
2322                 tqsp->tqd_hits.value.ui64 += b->tqbucket_stat.tqs_hits;
2323                 tqsp->tqd_misses.value.ui64 += b->tqbucket_stat.tqs_misses;
2324                 tqsp->tqd_overflows.value.ui64 += b->tqbucket_stat.tqs_overflow;
2325                 tqsp->tqd_tcreates.value.ui64 += b->tqbucket_stat.tqs_tcreates;
2326                 tqsp->tqd_tdeaths.value.ui64 += b->tqbucket_stat.tqs_tdeaths;
2327                 tqsp->tqd_maxthreads.value.ui64 +=
2328                     b->tqbucket_stat.tqs_maxthreads;
2329                 tqsp->tqd_disptcreates.value.ui64 +=
2330                     b->tqbucket_stat.tqs_disptcreates;
2331                 tqsp->tqd_totaltime.value.ui64 += b->tqbucket_totaltime;
2332                 tqsp->tqd_nalloc.value.ui64 += b->tqbucket_nalloc;
2333                 tqsp->tqd_nfree.value.ui64 += b->tqbucket_nfree;
2334         }
2335         return (0);
2336 }