1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 /*
  27  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
  28  * Copyright (c) 2017 by Delphix. All rights reserved.
  29  */
  30 
  31 /*
  32  * Kernel task queues: general-purpose asynchronous task scheduling.
  33  *
  34  * A common problem in kernel programming is the need to schedule tasks
  35  * to be performed later, by another thread. There are several reasons
  36  * you may want or need to do this:
  37  *
  38  * (1) The task isn't time-critical, but your current code path is.
  39  *
  40  * (2) The task may require grabbing locks that you already hold.
  41  *
  42  * (3) The task may need to block (e.g. to wait for memory), but you
  43  *     cannot block in your current context.
  44  *
  45  * (4) Your code path can't complete because of some condition, but you can't
  46  *     sleep or fail, so you queue the task for later execution when condition
  47  *     disappears.
  48  *
  49  * (5) You just want a simple way to launch multiple tasks in parallel.
  50  *
  51  * Task queues provide such a facility. In its simplest form (used when
  52  * performance is not a critical consideration) a task queue consists of a
  53  * single list of tasks, together with one or more threads to service the
  54  * list. There are some cases when this simple queue is not sufficient:
  55  *
  56  * (1) The task queues are very hot and there is a need to avoid data and lock
  57  *      contention over global resources.
  58  *
  59  * (2) Some tasks may depend on other tasks to complete, so they can't be put in
  60  *      the same list managed by the same thread.
  61  *
  62  * (3) Some tasks may block for a long time, and this should not block other
  63  *      tasks in the queue.
  64  *
  65  * To provide useful service in such cases we define a "dynamic task queue"
  66  * which has an individual thread for each of the tasks. These threads are
  67  * dynamically created as they are needed and destroyed when they are not in
  68  * use. The API for managing task pools is the same as for managing task queues
  69  * with the exception of a taskq creation flag TASKQ_DYNAMIC which tells that
  70  * dynamic task pool behavior is desired.
  71  *
  72  * Dynamic task queues may also place tasks in the normal queue (called "backing
  73  * queue") when task pool runs out of resources. Users of task queues may
  74  * disallow such queued scheduling by specifying TQ_NOQUEUE in the dispatch
  75  * flags.
  76  *
  77  * The backing task queue is also used for scheduling internal tasks needed for
  78  * dynamic task queue maintenance.
  79  *
  80  * INTERFACES ==================================================================
  81  *
  82  * taskq_t *taskq_create(name, nthreads, pri, minalloc, maxalloc, flags);
  83  *
  84  *      Create a taskq with specified properties.
  85  *      Possible 'flags':
  86  *
  87  *        TASKQ_DYNAMIC: Create task pool for task management. If this flag is
  88  *              specified, 'nthreads' specifies the maximum number of threads in
  89  *              the task queue. Task execution order for dynamic task queues is
  90  *              not predictable.
  91  *
  92  *              If this flag is not specified (default case) a
  93  *              single-list task queue is created with 'nthreads' threads
  94  *              servicing it. Entries in this queue are managed by
  95  *              taskq_ent_alloc() and taskq_ent_free() which try to keep the
  96  *              task population between 'minalloc' and 'maxalloc', but the
  97  *              latter limit is only advisory for TQ_SLEEP dispatches and the
  98  *              former limit is only advisory for TQ_NOALLOC dispatches. If
  99  *              TASKQ_PREPOPULATE is set in 'flags', the taskq will be
 100  *              prepopulated with 'minalloc' task structures.
 101  *
 102  *              Since non-DYNAMIC taskqs are queues, tasks are guaranteed to be
 103  *              executed in the order they are scheduled if nthreads == 1.
 104  *              If nthreads > 1, task execution order is not predictable.
 105  *
 106  *        TASKQ_PREPOPULATE: Prepopulate task queue with threads.
 107  *              Also prepopulate the task queue with 'minalloc' task structures.
 108  *
 109  *        TASKQ_THREADS_CPU_PCT: This flag specifies that 'nthreads' should be
 110  *              interpreted as a percentage of the # of online CPUs on the
 111  *              system.  The taskq subsystem will automatically adjust the
 112  *              number of threads in the taskq in response to CPU online
 113  *              and offline events, to keep the ratio.  nthreads must be in
 114  *              the range [0,100].
 115  *
 116  *              The calculation used is:
 117  *
 118  *                      MAX((ncpus_online * percentage)/100, 1)
 119  *
 120  *              This flag is not supported for DYNAMIC task queues.
 121  *              This flag is not compatible with TASKQ_CPR_SAFE.
 122  *
 123  *        TASKQ_CPR_SAFE: This flag specifies that users of the task queue will
 124  *              use their own protocol for handling CPR issues. This flag is not
 125  *              supported for DYNAMIC task queues.  This flag is not compatible
 126  *              with TASKQ_THREADS_CPU_PCT.
 127  *
 128  *      The 'pri' field specifies the default priority for the threads that
 129  *      service all scheduled tasks.
 130  *
 131  * taskq_t *taskq_create_instance(name, instance, nthreads, pri, minalloc,
 132  *    maxalloc, flags);
 133  *
 134  *      Like taskq_create(), but takes an instance number (or -1 to indicate
 135  *      no instance).
 136  *
 137  * taskq_t *taskq_create_proc(name, nthreads, pri, minalloc, maxalloc, proc,
 138  *    flags);
 139  *
 140  *      Like taskq_create(), but creates the taskq threads in the specified
 141  *      system process.  If proc != &p0, this must be called from a thread
 142  *      in that process.
 143  *
 144  * taskq_t *taskq_create_sysdc(name, nthreads, minalloc, maxalloc, proc,
 145  *    dc, flags);
 146  *
 147  *      Like taskq_create_proc(), but the taskq threads will use the
 148  *      System Duty Cycle (SDC) scheduling class with a duty cycle of dc.
 149  *
 150  * void taskq_destroy(tap):
 151  *
 152  *      Waits for any scheduled tasks to complete, then destroys the taskq.
 153  *      Caller should guarantee that no new tasks are scheduled in the closing
 154  *      taskq.
 155  *
 156  * taskqid_t taskq_dispatch(tq, func, arg, flags):
 157  *
 158  *      Dispatches the task "func(arg)" to taskq. The 'flags' indicates whether
 159  *      the caller is willing to block for memory.  The function returns an
 160  *      opaque value which is zero iff dispatch fails.  If flags is TQ_NOSLEEP
 161  *      or TQ_NOALLOC and the task can't be dispatched, taskq_dispatch() fails
 162  *      and returns (taskqid_t)0.
 163  *
 164  *      ASSUMES: func != NULL.
 165  *
 166  *      Possible flags:
 167  *        TQ_NOSLEEP: Do not wait for resources; may fail.
 168  *
 169  *        TQ_NOALLOC: Do not allocate memory; may fail.  May only be used with
 170  *              non-dynamic task queues.
 171  *
 172  *        TQ_NOQUEUE: Do not enqueue a task if it can't dispatch it due to
 173  *              lack of available resources and fail. If this flag is not
 174  *              set, and the task pool is exhausted, the task may be scheduled
 175  *              in the backing queue. This flag may ONLY be used with dynamic
 176  *              task queues.
 177  *
 178  *              NOTE: This flag should always be used when a task queue is used
 179  *              for tasks that may depend on each other for completion.
 180  *              Enqueueing dependent tasks may create deadlocks.
 181  *
 182  *        TQ_SLEEP:   May block waiting for resources. May still fail for
 183  *              dynamic task queues if TQ_NOQUEUE is also specified, otherwise
 184  *              always succeed.
 185  *
 186  *        TQ_FRONT:   Puts the new task at the front of the queue.  Be careful.
 187  *
 188  *      NOTE: Dynamic task queues are much more likely to fail in
 189  *              taskq_dispatch() (especially if TQ_NOQUEUE was specified), so it
 190  *              is important to have backup strategies handling such failures.
 191  *
 192  * void taskq_dispatch_ent(tq, func, arg, flags, tqent)
 193  *
 194  *      This is a light-weight form of taskq_dispatch(), that uses a
 195  *      preallocated taskq_ent_t structure for scheduling.  As a
 196  *      result, it does not perform allocations and cannot ever fail.
 197  *      Note especially that it cannot be used with TASKQ_DYNAMIC
 198  *      taskqs.  The memory for the tqent must not be modified or used
 199  *      until the function (func) is called.  (However, func itself
 200  *      may safely modify or free this memory, once it is called.)
 201  *      Note that the taskq framework will NOT free this memory.
 202  *
 203  * void taskq_wait(tq):
 204  *
 205  *      Waits for all previously scheduled tasks to complete.
 206  *
 207  *      NOTE: It does not stop any new task dispatches.
 208  *            Do NOT call taskq_wait() from a task: it will cause deadlock.
 209  *
 210  * void taskq_suspend(tq)
 211  *
 212  *      Suspend all task execution. Tasks already scheduled for a dynamic task
 213  *      queue will still be executed, but all new scheduled tasks will be
 214  *      suspended until taskq_resume() is called.
 215  *
 216  * int  taskq_suspended(tq)
 217  *
 218  *      Returns 1 if taskq is suspended and 0 otherwise. It is intended to
 219  *      ASSERT that the task queue is suspended.
 220  *
 221  * void taskq_resume(tq)
 222  *
 223  *      Resume task queue execution.
 224  *
 225  * int  taskq_member(tq, thread)
 226  *
 227  *      Returns 1 if 'thread' belongs to taskq 'tq' and 0 otherwise. The
 228  *      intended use is to ASSERT that a given function is called in taskq
 229  *      context only.
 230  *
 231  * system_taskq
 232  *
 233  *      Global system-wide dynamic task queue for common uses. It may be used by
 234  *      any subsystem that needs to schedule tasks and does not need to manage
 235  *      its own task queues. It is initialized quite early during system boot.
 236  *
 237  * IMPLEMENTATION ==============================================================
 238  *
 239  * This is schematic representation of the task queue structures.
 240  *
 241  *   taskq:
 242  *   +-------------+
 243  *   | tq_lock     | +---< taskq_ent_free()
 244  *   +-------------+ |
 245  *   |...          | | tqent:                  tqent:
 246  *   +-------------+ | +------------+          +------------+
 247  *   | tq_freelist |-->| tqent_next |--> ... ->| tqent_next |
 248  *   +-------------+   +------------+          +------------+
 249  *   |...          |   | ...        |          | ...        |
 250  *   +-------------+   +------------+          +------------+
 251  *   | tq_task     |    |
 252  *   |             |    +-------------->taskq_ent_alloc()
 253  * +--------------------------------------------------------------------------+
 254  * | |                     |            tqent                   tqent         |
 255  * | +---------------------+     +--> +------------+     +--> +------------+  |
 256  * | | ...                 |     |    | func, arg  |     |    | func, arg  |  |
 257  * +>+---------------------+ <---|-+  +------------+ <---|-+  +------------+  |
 258  *   | tq_taskq.tqent_next | ----+ |  | tqent_next | --->+ |  | tqent_next |--+
 259  *   +---------------------+       |  +------------+     ^ |  +------------+
 260  * +-| tq_task.tqent_prev  |       +--| tqent_prev |     | +--| tqent_prev |  ^
 261  * | +---------------------+          +------------+     |    +------------+  |
 262  * | |...                  |          | ...        |     |    | ...        |  |
 263  * | +---------------------+          +------------+     |    +------------+  |
 264  * |                                      ^              |                    |
 265  * |                                      |              |                    |
 266  * +--------------------------------------+--------------+       TQ_APPEND() -+
 267  *   |             |                      |
 268  *   |...          |   taskq_thread()-----+
 269  *   +-------------+
 270  *   | tq_buckets  |--+-------> [ NULL ] (for regular task queues)
 271  *   +-------------+  |
 272  *                    |   DYNAMIC TASK QUEUES:
 273  *                    |
 274  *                    +-> taskq_bucket[nCPU]         taskq_bucket_dispatch()
 275  *                        +-------------------+                    ^
 276  *                   +--->| tqbucket_lock     |                    |
 277  *                   |    +-------------------+   +--------+      +--------+
 278  *                   |    | tqbucket_freelist |-->| tqent  |-->...| tqent  | ^
 279  *                   |    +-------------------+<--+--------+<--...+--------+ |
 280  *                   |    | ...               |   | thread |      | thread | |
 281  *                   |    +-------------------+   +--------+      +--------+ |
 282  *                   |    +-------------------+                              |
 283  * taskq_dispatch()--+--->| tqbucket_lock     |             TQ_APPEND()------+
 284  *      TQ_HASH()    |    +-------------------+   +--------+      +--------+
 285  *                   |    | tqbucket_freelist |-->| tqent  |-->...| tqent  |
 286  *                   |    +-------------------+<--+--------+<--...+--------+
 287  *                   |    | ...               |   | thread |      | thread |
 288  *                   |    +-------------------+   +--------+      +--------+
 289  *                   +--->   ...
 290  *
 291  *
 292  * Task queues use tq_task field to link new entry in the queue. The queue is a
 293  * circular doubly-linked list. Entries are put in the end of the list with
 294  * TQ_APPEND() and processed from the front of the list by taskq_thread() in
 295  * FIFO order. Task queue entries are cached in the free list managed by
 296  * taskq_ent_alloc() and taskq_ent_free() functions.
 297  *
 298  *      All threads used by task queues mark t_taskq field of the thread to
 299  *      point to the task queue.
 300  *
 301  * Taskq Thread Management -----------------------------------------------------
 302  *
 303  * Taskq's non-dynamic threads are managed with several variables and flags:
 304  *
 305  *      * tq_nthreads   - The number of threads in taskq_thread() for the
 306  *                        taskq.
 307  *
 308  *      * tq_active     - The number of threads not waiting on a CV in
 309  *                        taskq_thread(); includes newly created threads
 310  *                        not yet counted in tq_nthreads.
 311  *
 312  *      * tq_nthreads_target
 313  *                      - The number of threads desired for the taskq.
 314  *
 315  *      * tq_flags & TASKQ_CHANGING
 316  *                      - Indicates that tq_nthreads != tq_nthreads_target.
 317  *
 318  *      * tq_flags & TASKQ_THREAD_CREATED
 319  *                      - Indicates that a thread is being created in the taskq.
 320  *
 321  * During creation, tq_nthreads and tq_active are set to 0, and
 322  * tq_nthreads_target is set to the number of threads desired.  The
 323  * TASKQ_CHANGING flag is set, and taskq_thread_create() is called to
 324  * create the first thread. taskq_thread_create() increments tq_active,
 325  * sets TASKQ_THREAD_CREATED, and creates the new thread.
 326  *
 327  * Each thread starts in taskq_thread(), clears the TASKQ_THREAD_CREATED
 328  * flag, and increments tq_nthreads.  It stores the new value of
 329  * tq_nthreads as its "thread_id", and stores its thread pointer in the
 330  * tq_threadlist at the (thread_id - 1).  We keep the thread_id space
 331  * densely packed by requiring that only the largest thread_id can exit during
 332  * normal adjustment.   The exception is during the destruction of the
 333  * taskq; once tq_nthreads_target is set to zero, no new threads will be created
 334  * for the taskq queue, so every thread can exit without any ordering being
 335  * necessary.
 336  *
 337  * Threads will only process work if their thread id is <= tq_nthreads_target.
 338  *
 339  * When TASKQ_CHANGING is set, threads will check the current thread target
 340  * whenever they wake up, and do whatever they can to apply its effects.
 341  *
 342  * TASKQ_THREAD_CPU_PCT --------------------------------------------------------
 343  *
 344  * When a taskq is created with TASKQ_THREAD_CPU_PCT, we store their requested
 345  * percentage in tq_threads_ncpus_pct, start them off with the correct thread
 346  * target, and add them to the taskq_cpupct_list for later adjustment.
 347  *
 348  * We register taskq_cpu_setup() to be called whenever a CPU changes state.  It
 349  * walks the list of TASKQ_THREAD_CPU_PCT taskqs, adjusts their nthread_target
 350  * if need be, and wakes up all of the threads to process the change.
 351  *
 352  * Dynamic Task Queues Implementation ------------------------------------------
 353  *
 354  * For a dynamic task queues there is a 1-to-1 mapping between a thread and
 355  * taskq_ent_structure. Each entry is serviced by its own thread and each thread
 356  * is controlled by a single entry.
 357  *
 358  * Entries are distributed over a set of buckets. To avoid using modulo
 359  * arithmetics the number of buckets is 2^n and is determined as the nearest
 360  * power of two roundown of the number of CPUs in the system. Tunable
 361  * variable 'taskq_maxbuckets' limits the maximum number of buckets. Each entry
 362  * is attached to a bucket for its lifetime and can't migrate to other buckets.
 363  *
 364  * Entries that have scheduled tasks are not placed in any list. The dispatch
 365  * function sets their "func" and "arg" fields and signals the corresponding
 366  * thread to execute the task. Once the thread executes the task it clears the
 367  * "func" field and places an entry on the bucket cache of free entries pointed
 368  * by "tqbucket_freelist" field. ALL entries on the free list should have "func"
 369  * field equal to NULL. The free list is a circular doubly-linked list identical
 370  * in structure to the tq_task list above, but entries are taken from it in LIFO
 371  * order - the last freed entry is the first to be allocated. The
 372  * taskq_bucket_dispatch() function gets the most recently used entry from the
 373  * free list, sets its "func" and "arg" fields and signals a worker thread.
 374  *
 375  * After executing each task a per-entry thread taskq_d_thread() places its
 376  * entry on the bucket free list and goes to a timed sleep. If it wakes up
 377  * without getting new task it removes the entry from the free list and destroys
 378  * itself. The thread sleep time is controlled by a tunable variable
 379  * `taskq_thread_timeout'.
 380  *
 381  * There are various statistics kept in the bucket which allows for later
 382  * analysis of taskq usage patterns. Also, a global copy of taskq creation and
 383  * death statistics is kept in the global taskq data structure. Since thread
 384  * creation and death happen rarely, updating such global data does not present
 385  * a performance problem.
 386  *
 387  * NOTE: Threads are not bound to any CPU and there is absolutely no association
 388  *       between the bucket and actual thread CPU, so buckets are used only to
 389  *       split resources and reduce resource contention. Having threads attached
 390  *       to the CPU denoted by a bucket may reduce number of times the job
 391  *       switches between CPUs.
 392  *
 393  *       Current algorithm creates a thread whenever a bucket has no free
 394  *       entries. It would be nice to know how many threads are in the running
 395  *       state and don't create threads if all CPUs are busy with existing
 396  *       tasks, but it is unclear how such strategy can be implemented.
 397  *
 398  *       Currently buckets are created statically as an array attached to task
 399  *       queue. On some system with nCPUs < max_ncpus it may waste system
 400  *       memory. One solution may be allocation of buckets when they are first
 401  *       touched, but it is not clear how useful it is.
 402  *
 403  * SUSPEND/RESUME implementation -----------------------------------------------
 404  *
 405  *      Before executing a task taskq_thread() (executing non-dynamic task
 406  *      queues) obtains taskq's thread lock as a reader. The taskq_suspend()
 407  *      function gets the same lock as a writer blocking all non-dynamic task
 408  *      execution. The taskq_resume() function releases the lock allowing
 409  *      taskq_thread to continue execution.
 410  *
 411  *      For dynamic task queues, each bucket is marked as TQBUCKET_SUSPEND by
 412  *      taskq_suspend() function. After that taskq_bucket_dispatch() always
 413  *      fails, so that taskq_dispatch() will either enqueue tasks for a
 414  *      suspended backing queue or fail if TQ_NOQUEUE is specified in dispatch
 415  *      flags.
 416  *
 417  *      NOTE: taskq_suspend() does not immediately block any tasks already
 418  *            scheduled for dynamic task queues. It only suspends new tasks
 419  *            scheduled after taskq_suspend() was called.
 420  *
 421  *      taskq_member() function works by comparing a thread t_taskq pointer with
 422  *      the passed thread pointer.
 423  *
 424  * LOCKS and LOCK Hierarchy ----------------------------------------------------
 425  *
 426  *   There are three locks used in task queues:
 427  *
 428  *   1) The taskq_t's tq_lock, protecting global task queue state.
 429  *
 430  *   2) Each per-CPU bucket has a lock for bucket management.
 431  *
 432  *   3) The global taskq_cpupct_lock, which protects the list of
 433  *      TASKQ_THREADS_CPU_PCT taskqs.
 434  *
 435  *   If both (1) and (2) are needed, tq_lock should be taken *after* the bucket
 436  *   lock.
 437  *
 438  *   If both (1) and (3) are needed, tq_lock should be taken *after*
 439  *   taskq_cpupct_lock.
 440  *
 441  * DEBUG FACILITIES ------------------------------------------------------------
 442  *
 443  * For DEBUG kernels it is possible to induce random failures to
 444  * taskq_dispatch() function when it is given TQ_NOSLEEP argument. The value of
 445  * taskq_dmtbf and taskq_smtbf tunables control the mean time between induced
 446  * failures for dynamic and static task queues respectively.
 447  *
 448  * Setting TASKQ_STATISTIC to 0 will disable per-bucket statistics.
 449  *
 450  * TUNABLES --------------------------------------------------------------------
 451  *
 452  *      system_taskq_size       - Size of the global system_taskq.
 453  *                                This value is multiplied by nCPUs to determine
 454  *                                actual size.
 455  *                                Default value: 64
 456  *
 457  *      taskq_minimum_nthreads_max
 458  *                              - Minimum size of the thread list for a taskq.
 459  *                                Useful for testing different thread pool
 460  *                                sizes by overwriting tq_nthreads_target.
 461  *
 462  *      taskq_thread_timeout    - Maximum idle time for taskq_d_thread()
 463  *                                Default value: 5 minutes
 464  *
 465  *      taskq_maxbuckets        - Maximum number of buckets in any task queue
 466  *                                Default value: 128
 467  *
 468  *      taskq_search_depth      - Maximum # of buckets searched for a free entry
 469  *                                Default value: 4
 470  *
 471  *      taskq_dmtbf             - Mean time between induced dispatch failures
 472  *                                for dynamic task queues.
 473  *                                Default value: UINT_MAX (no induced failures)
 474  *
 475  *      taskq_smtbf             - Mean time between induced dispatch failures
 476  *                                for static task queues.
 477  *                                Default value: UINT_MAX (no induced failures)
 478  *
 479  * CONDITIONAL compilation -----------------------------------------------------
 480  *
 481  *    TASKQ_STATISTIC   - If set will enable bucket statistic (default).
 482  *
 483  */
 484 
 485 #include <sys/taskq_impl.h>
 486 #include <sys/thread.h>
 487 #include <sys/proc.h>
 488 #include <sys/kmem.h>
 489 #include <sys/vmem.h>
 490 #include <sys/callb.h>
 491 #include <sys/class.h>
 492 #include <sys/systm.h>
 493 #include <sys/cmn_err.h>
 494 #include <sys/debug.h>
 495 #include <sys/vmsystm.h>  /* For throttlefree */
 496 #include <sys/sysmacros.h>
 497 #include <sys/cpuvar.h>
 498 #include <sys/cpupart.h>
 499 #include <sys/sdt.h>
 500 #include <sys/sysdc.h>
 501 #include <sys/note.h>
 502 
 503 static kmem_cache_t *taskq_ent_cache, *taskq_cache;
 504 
 505 /*
 506  * Pseudo instance numbers for taskqs without explicitly provided instance.
 507  */
 508 static vmem_t *taskq_id_arena;
 509 
 510 /* Global system task queue for common use */
 511 taskq_t *system_taskq;
 512 
 513 /*
 514  * Maximum number of entries in global system taskq is
 515  *      system_taskq_size * max_ncpus
 516  */
 517 #define SYSTEM_TASKQ_SIZE 64
 518 int system_taskq_size = SYSTEM_TASKQ_SIZE;
 519 
 520 /*
 521  * Minimum size for tq_nthreads_max; useful for those who want to play around
 522  * with increasing a taskq's tq_nthreads_target.
 523  */
 524 int taskq_minimum_nthreads_max = 1;
 525 
 526 /*
 527  * We want to ensure that when taskq_create() returns, there is at least
 528  * one thread ready to handle requests.  To guarantee this, we have to wait
 529  * for the second thread, since the first one cannot process requests until
 530  * the second thread has been created.
 531  */
 532 #define TASKQ_CREATE_ACTIVE_THREADS     2
 533 
 534 /* Maximum percentage allowed for TASKQ_THREADS_CPU_PCT */
 535 #define TASKQ_CPUPCT_MAX_PERCENT        1000
 536 int taskq_cpupct_max_percent = TASKQ_CPUPCT_MAX_PERCENT;
 537 
 538 /*
 539  * Dynamic task queue threads that don't get any work within
 540  * taskq_thread_timeout destroy themselves
 541  */
 542 #define TASKQ_THREAD_TIMEOUT (60 * 5)
 543 int taskq_thread_timeout = TASKQ_THREAD_TIMEOUT;
 544 
 545 #define TASKQ_MAXBUCKETS 128
 546 int taskq_maxbuckets = TASKQ_MAXBUCKETS;
 547 
 548 /*
 549  * When a bucket has no available entries another buckets are tried.
 550  * taskq_search_depth parameter limits the amount of buckets that we search
 551  * before failing. This is mostly useful in systems with many CPUs where we may
 552  * spend too much time scanning busy buckets.
 553  */
 554 #define TASKQ_SEARCH_DEPTH 4
 555 int taskq_search_depth = TASKQ_SEARCH_DEPTH;
 556 
 557 /*
 558  * Hashing function: mix various bits of x. May be pretty much anything.
 559  */
 560 #define TQ_HASH(x) ((x) ^ ((x) >> 11) ^ ((x) >> 17) ^ ((x) ^ 27))
 561 
 562 /*
 563  * We do not create any new threads when the system is low on memory and start
 564  * throttling memory allocations. The following macro tries to estimate such
 565  * condition.
 566  */
 567 #define ENOUGH_MEMORY() (freemem > throttlefree)
 568 
 569 /*
 570  * Static functions.
 571  */
 572 static taskq_t  *taskq_create_common(const char *, int, int, pri_t, int,
 573     int, proc_t *, uint_t, uint_t);
 574 static void taskq_thread(void *);
 575 static void taskq_d_thread(taskq_ent_t *);
 576 static void taskq_bucket_extend(void *);
 577 static int  taskq_constructor(void *, void *, int);
 578 static void taskq_destructor(void *, void *);
 579 static int  taskq_ent_constructor(void *, void *, int);
 580 static void taskq_ent_destructor(void *, void *);
 581 static taskq_ent_t *taskq_ent_alloc(taskq_t *, int);
 582 static void taskq_ent_free(taskq_t *, taskq_ent_t *);
 583 static int taskq_ent_exists(taskq_t *, task_func_t, void *);
 584 static taskq_ent_t *taskq_bucket_dispatch(taskq_bucket_t *, task_func_t,
 585     void *);
 586 
 587 /*
 588  * Task queues kstats.
 589  */
 590 struct taskq_kstat {
 591         kstat_named_t   tq_pid;
 592         kstat_named_t   tq_tasks;
 593         kstat_named_t   tq_executed;
 594         kstat_named_t   tq_maxtasks;
 595         kstat_named_t   tq_totaltime;
 596         kstat_named_t   tq_nalloc;
 597         kstat_named_t   tq_nactive;
 598         kstat_named_t   tq_pri;
 599         kstat_named_t   tq_nthreads;
 600         kstat_named_t   tq_nomem;
 601 } taskq_kstat = {
 602         { "pid",                KSTAT_DATA_UINT64 },
 603         { "tasks",              KSTAT_DATA_UINT64 },
 604         { "executed",           KSTAT_DATA_UINT64 },
 605         { "maxtasks",           KSTAT_DATA_UINT64 },
 606         { "totaltime",          KSTAT_DATA_UINT64 },
 607         { "nalloc",             KSTAT_DATA_UINT64 },
 608         { "nactive",            KSTAT_DATA_UINT64 },
 609         { "priority",           KSTAT_DATA_UINT64 },
 610         { "threads",            KSTAT_DATA_UINT64 },
 611         { "nomem",              KSTAT_DATA_UINT64 },
 612 };
 613 
 614 struct taskq_d_kstat {
 615         kstat_named_t   tqd_pri;
 616         kstat_named_t   tqd_btasks;
 617         kstat_named_t   tqd_bexecuted;
 618         kstat_named_t   tqd_bmaxtasks;
 619         kstat_named_t   tqd_bnalloc;
 620         kstat_named_t   tqd_bnactive;
 621         kstat_named_t   tqd_btotaltime;
 622         kstat_named_t   tqd_hits;
 623         kstat_named_t   tqd_misses;
 624         kstat_named_t   tqd_overflows;
 625         kstat_named_t   tqd_tcreates;
 626         kstat_named_t   tqd_tdeaths;
 627         kstat_named_t   tqd_maxthreads;
 628         kstat_named_t   tqd_nomem;
 629         kstat_named_t   tqd_disptcreates;
 630         kstat_named_t   tqd_totaltime;
 631         kstat_named_t   tqd_nalloc;
 632         kstat_named_t   tqd_nfree;
 633 } taskq_d_kstat = {
 634         { "priority",           KSTAT_DATA_UINT64 },
 635         { "btasks",             KSTAT_DATA_UINT64 },
 636         { "bexecuted",          KSTAT_DATA_UINT64 },
 637         { "bmaxtasks",          KSTAT_DATA_UINT64 },
 638         { "bnalloc",            KSTAT_DATA_UINT64 },
 639         { "bnactive",           KSTAT_DATA_UINT64 },
 640         { "btotaltime",         KSTAT_DATA_UINT64 },
 641         { "hits",               KSTAT_DATA_UINT64 },
 642         { "misses",             KSTAT_DATA_UINT64 },
 643         { "overflows",          KSTAT_DATA_UINT64 },
 644         { "tcreates",           KSTAT_DATA_UINT64 },
 645         { "tdeaths",            KSTAT_DATA_UINT64 },
 646         { "maxthreads",         KSTAT_DATA_UINT64 },
 647         { "nomem",              KSTAT_DATA_UINT64 },
 648         { "disptcreates",       KSTAT_DATA_UINT64 },
 649         { "totaltime",          KSTAT_DATA_UINT64 },
 650         { "nalloc",             KSTAT_DATA_UINT64 },
 651         { "nfree",              KSTAT_DATA_UINT64 },
 652 };
 653 
 654 static kmutex_t taskq_kstat_lock;
 655 static kmutex_t taskq_d_kstat_lock;
 656 static int taskq_kstat_update(kstat_t *, int);
 657 static int taskq_d_kstat_update(kstat_t *, int);
 658 
 659 /*
 660  * List of all TASKQ_THREADS_CPU_PCT taskqs.
 661  */
 662 static list_t taskq_cpupct_list;        /* protected by cpu_lock */
 663 
 664 /*
 665  * Collect per-bucket statistic when TASKQ_STATISTIC is defined.
 666  */
 667 #define TASKQ_STATISTIC 1
 668 
 669 #if TASKQ_STATISTIC
 670 #define TQ_STAT(b, x)   b->tqbucket_stat.x++
 671 #else
 672 #define TQ_STAT(b, x)
 673 #endif
 674 
 675 /*
 676  * Random fault injection.
 677  */
 678 uint_t taskq_random;
 679 uint_t taskq_dmtbf = UINT_MAX;    /* mean time between injected failures */
 680 uint_t taskq_smtbf = UINT_MAX;    /* mean time between injected failures */
 681 
 682 /*
 683  * TQ_NOSLEEP dispatches on dynamic task queues are always allowed to fail.
 684  *
 685  * TQ_NOSLEEP dispatches on static task queues can't arbitrarily fail because
 686  * they could prepopulate the cache and make sure that they do not use more
 687  * then minalloc entries.  So, fault injection in this case insures that
 688  * either TASKQ_PREPOPULATE is not set or there are more entries allocated
 689  * than is specified by minalloc.  TQ_NOALLOC dispatches are always allowed
 690  * to fail, but for simplicity we treat them identically to TQ_NOSLEEP
 691  * dispatches.
 692  */
 693 #ifdef DEBUG
 694 #define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)               \
 695         taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
 696         if ((flag & TQ_NOSLEEP) &&                          \
 697             taskq_random < 1771875 / taskq_dmtbf) {          \
 698                 return (NULL);                                  \
 699         }
 700 
 701 #define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)               \
 702         taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
 703         if ((flag & (TQ_NOSLEEP | TQ_NOALLOC)) &&           \
 704             (!(tq->tq_flags & TASKQ_PREPOPULATE) ||              \
 705             (tq->tq_nalloc > tq->tq_minalloc)) &&              \
 706             (taskq_random < (1771875 / taskq_smtbf))) {              \
 707                 mutex_exit(&tq->tq_lock);                        \
 708                 return (NULL);                                  \
 709         }
 710 #else
 711 #define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)
 712 #define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)
 713 #endif
 714 
 715 #define IS_EMPTY(l) (((l).tqent_prev == (l).tqent_next) &&      \
 716         ((l).tqent_prev == &(l)))
 717 
 718 /*
 719  * Append `tqe' in the end of the doubly-linked list denoted by l.
 720  */
 721 #define TQ_APPEND(l, tqe) {                                     \
 722         tqe->tqent_next = &l;                                    \
 723         tqe->tqent_prev = l.tqent_prev;                              \
 724         tqe->tqent_next->tqent_prev = tqe;                        \
 725         tqe->tqent_prev->tqent_next = tqe;                        \
 726 }
 727 /*
 728  * Prepend 'tqe' to the beginning of l
 729  */
 730 #define TQ_PREPEND(l, tqe) {                                    \
 731         tqe->tqent_next = l.tqent_next;                              \
 732         tqe->tqent_prev = &l;                                    \
 733         tqe->tqent_next->tqent_prev = tqe;                        \
 734         tqe->tqent_prev->tqent_next = tqe;                        \
 735 }
 736 
 737 /*
 738  * Schedule a task specified by func and arg into the task queue entry tqe.
 739  */
 740 #define TQ_DO_ENQUEUE(tq, tqe, func, arg, front) {                      \
 741         ASSERT(MUTEX_HELD(&tq->tq_lock));                                \
 742         _NOTE(CONSTCOND)                                                \
 743         if (front) {                                                    \
 744                 TQ_PREPEND(tq->tq_task, tqe);                                \
 745         } else {                                                        \
 746                 TQ_APPEND(tq->tq_task, tqe);                         \
 747         }                                                               \
 748         tqe->tqent_func = (func);                                    \
 749         tqe->tqent_arg = (arg);                                              \
 750         tq->tq_tasks++;                                                      \
 751         if (tq->tq_tasks - tq->tq_executed > tq->tq_maxtasks)               \
 752                 tq->tq_maxtasks = tq->tq_tasks - tq->tq_executed;      \
 753         cv_signal(&tq->tq_dispatch_cv);                                  \
 754         DTRACE_PROBE2(taskq__enqueue, taskq_t *, tq, taskq_ent_t *, tqe); \
 755 }
 756 
 757 #define TQ_ENQUEUE(tq, tqe, func, arg)                                  \
 758         TQ_DO_ENQUEUE(tq, tqe, func, arg, 0)
 759 
 760 #define TQ_ENQUEUE_FRONT(tq, tqe, func, arg)                            \
 761         TQ_DO_ENQUEUE(tq, tqe, func, arg, 1)
 762 
 763 /*
 764  * Do-nothing task which may be used to prepopulate thread caches.
 765  */
 766 /*ARGSUSED*/
 767 void
 768 nulltask(void *unused)
 769 {
 770 }
 771 
 772 /*ARGSUSED*/
 773 static int
 774 taskq_constructor(void *buf, void *cdrarg, int kmflags)
 775 {
 776         taskq_t *tq = buf;
 777 
 778         bzero(tq, sizeof (taskq_t));
 779 
 780         mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
 781         rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
 782         cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
 783         cv_init(&tq->tq_exit_cv, NULL, CV_DEFAULT, NULL);
 784         cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
 785         cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL);
 786 
 787         tq->tq_task.tqent_next = &tq->tq_task;
 788         tq->tq_task.tqent_prev = &tq->tq_task;
 789 
 790         return (0);
 791 }
 792 
 793 /*ARGSUSED*/
 794 static void
 795 taskq_destructor(void *buf, void *cdrarg)
 796 {
 797         taskq_t *tq = buf;
 798 
 799         ASSERT(tq->tq_nthreads == 0);
 800         ASSERT(tq->tq_buckets == NULL);
 801         ASSERT(tq->tq_tcreates == 0);
 802         ASSERT(tq->tq_tdeaths == 0);
 803 
 804         mutex_destroy(&tq->tq_lock);
 805         rw_destroy(&tq->tq_threadlock);
 806         cv_destroy(&tq->tq_dispatch_cv);
 807         cv_destroy(&tq->tq_exit_cv);
 808         cv_destroy(&tq->tq_wait_cv);
 809         cv_destroy(&tq->tq_maxalloc_cv);
 810 }
 811 
 812 /*ARGSUSED*/
 813 static int
 814 taskq_ent_constructor(void *buf, void *cdrarg, int kmflags)
 815 {
 816         taskq_ent_t *tqe = buf;
 817 
 818         tqe->tqent_thread = NULL;
 819         cv_init(&tqe->tqent_cv, NULL, CV_DEFAULT, NULL);
 820 
 821         return (0);
 822 }
 823 
 824 /*ARGSUSED*/
 825 static void
 826 taskq_ent_destructor(void *buf, void *cdrarg)
 827 {
 828         taskq_ent_t *tqe = buf;
 829 
 830         ASSERT(tqe->tqent_thread == NULL);
 831         cv_destroy(&tqe->tqent_cv);
 832 }
 833 
 834 void
 835 taskq_init(void)
 836 {
 837         taskq_ent_cache = kmem_cache_create("taskq_ent_cache",
 838             sizeof (taskq_ent_t), 0, taskq_ent_constructor,
 839             taskq_ent_destructor, NULL, NULL, NULL, 0);
 840         taskq_cache = kmem_cache_create("taskq_cache", sizeof (taskq_t),
 841             0, taskq_constructor, taskq_destructor, NULL, NULL, NULL, 0);
 842         taskq_id_arena = vmem_create("taskq_id_arena",
 843             (void *)1, INT32_MAX, 1, NULL, NULL, NULL, 0,
 844             VM_SLEEP | VMC_IDENTIFIER);
 845 
 846         list_create(&taskq_cpupct_list, sizeof (taskq_t),
 847             offsetof(taskq_t, tq_cpupct_link));
 848 }
 849 
 850 static void
 851 taskq_update_nthreads(taskq_t *tq, uint_t ncpus)
 852 {
 853         uint_t newtarget = TASKQ_THREADS_PCT(ncpus, tq->tq_threads_ncpus_pct);
 854 
 855         ASSERT(MUTEX_HELD(&cpu_lock));
 856         ASSERT(MUTEX_HELD(&tq->tq_lock));
 857 
 858         /* We must be going from non-zero to non-zero; no exiting. */
 859         ASSERT3U(tq->tq_nthreads_target, !=, 0);
 860         ASSERT3U(newtarget, !=, 0);
 861 
 862         ASSERT3U(newtarget, <=, tq->tq_nthreads_max);
 863         if (newtarget != tq->tq_nthreads_target) {
 864                 tq->tq_flags |= TASKQ_CHANGING;
 865                 tq->tq_nthreads_target = newtarget;
 866                 cv_broadcast(&tq->tq_dispatch_cv);
 867                 cv_broadcast(&tq->tq_exit_cv);
 868         }
 869 }
 870 
 871 /* called during task queue creation */
 872 static void
 873 taskq_cpupct_install(taskq_t *tq, cpupart_t *cpup)
 874 {
 875         ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
 876 
 877         mutex_enter(&cpu_lock);
 878         mutex_enter(&tq->tq_lock);
 879         tq->tq_cpupart = cpup->cp_id;
 880         taskq_update_nthreads(tq, cpup->cp_ncpus);
 881         mutex_exit(&tq->tq_lock);
 882 
 883         list_insert_tail(&taskq_cpupct_list, tq);
 884         mutex_exit(&cpu_lock);
 885 }
 886 
 887 static void
 888 taskq_cpupct_remove(taskq_t *tq)
 889 {
 890         ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
 891 
 892         mutex_enter(&cpu_lock);
 893         list_remove(&taskq_cpupct_list, tq);
 894         mutex_exit(&cpu_lock);
 895 }
 896 
 897 /*ARGSUSED*/
 898 static int
 899 taskq_cpu_setup(cpu_setup_t what, int id, void *arg)
 900 {
 901         taskq_t *tq;
 902         cpupart_t *cp = cpu[id]->cpu_part;
 903         uint_t ncpus = cp->cp_ncpus;
 904 
 905         ASSERT(MUTEX_HELD(&cpu_lock));
 906         ASSERT(ncpus > 0);
 907 
 908         switch (what) {
 909         case CPU_OFF:
 910         case CPU_CPUPART_OUT:
 911                 /* offlines are called *before* the cpu is offlined. */
 912                 if (ncpus > 1)
 913                         ncpus--;
 914                 break;
 915 
 916         case CPU_ON:
 917         case CPU_CPUPART_IN:
 918                 break;
 919 
 920         default:
 921                 return (0);             /* doesn't affect cpu count */
 922         }
 923 
 924         for (tq = list_head(&taskq_cpupct_list); tq != NULL;
 925             tq = list_next(&taskq_cpupct_list, tq)) {
 926 
 927                 mutex_enter(&tq->tq_lock);
 928                 /*
 929                  * If the taskq is part of the cpuset which is changing,
 930                  * update its nthreads_target.
 931                  */
 932                 if (tq->tq_cpupart == cp->cp_id) {
 933                         taskq_update_nthreads(tq, ncpus);
 934                 }
 935                 mutex_exit(&tq->tq_lock);
 936         }
 937         return (0);
 938 }
 939 
 940 void
 941 taskq_mp_init(void)
 942 {
 943         mutex_enter(&cpu_lock);
 944         register_cpu_setup_func(taskq_cpu_setup, NULL);
 945         /*
 946          * Make sure we're up to date.  At this point in boot, there is only
 947          * one processor set, so we only have to update the current CPU.
 948          */
 949         (void) taskq_cpu_setup(CPU_ON, CPU->cpu_id, NULL);
 950         mutex_exit(&cpu_lock);
 951 }
 952 
 953 /*
 954  * Create global system dynamic task queue.
 955  */
 956 void
 957 system_taskq_init(void)
 958 {
 959         system_taskq = taskq_create_common("system_taskq", 0,
 960             system_taskq_size * max_ncpus, minclsyspri, 4, 512, &p0, 0,
 961             TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
 962 }
 963 
 964 /*
 965  * taskq_ent_alloc()
 966  *
 967  * Allocates a new taskq_ent_t structure either from the free list or from the
 968  * cache. Returns NULL if it can't be allocated.
 969  *
 970  * Assumes: tq->tq_lock is held.
 971  */
 972 static taskq_ent_t *
 973 taskq_ent_alloc(taskq_t *tq, int flags)
 974 {
 975         int kmflags = (flags & TQ_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
 976         taskq_ent_t *tqe;
 977         clock_t wait_time;
 978         clock_t wait_rv;
 979 
 980         ASSERT(MUTEX_HELD(&tq->tq_lock));
 981 
 982         /*
 983          * TQ_NOALLOC allocations are allowed to use the freelist, even if
 984          * we are below tq_minalloc.
 985          */
 986 again:  if ((tqe = tq->tq_freelist) != NULL &&
 987             ((flags & TQ_NOALLOC) || tq->tq_nalloc >= tq->tq_minalloc)) {
 988                 tq->tq_freelist = tqe->tqent_next;
 989         } else {
 990                 if (flags & TQ_NOALLOC)
 991                         return (NULL);
 992 
 993                 if (tq->tq_nalloc >= tq->tq_maxalloc) {
 994                         if (kmflags & KM_NOSLEEP)
 995                                 return (NULL);
 996 
 997                         /*
 998                          * We don't want to exceed tq_maxalloc, but we can't
 999                          * wait for other tasks to complete (and thus free up
1000                          * task structures) without risking deadlock with
1001                          * the caller.  So, we just delay for one second
1002                          * to throttle the allocation rate. If we have tasks
1003                          * complete before one second timeout expires then
1004                          * taskq_ent_free will signal us and we will
1005                          * immediately retry the allocation (reap free).
1006                          */
1007                         wait_time = ddi_get_lbolt() + hz;
1008                         while (tq->tq_freelist == NULL) {
1009                                 tq->tq_maxalloc_wait++;
1010                                 wait_rv = cv_timedwait(&tq->tq_maxalloc_cv,
1011                                     &tq->tq_lock, wait_time);
1012                                 tq->tq_maxalloc_wait--;
1013                                 if (wait_rv == -1)
1014                                         break;
1015                         }
1016                         if (tq->tq_freelist)
1017                                 goto again;             /* reap freelist */
1018 
1019                 }
1020                 mutex_exit(&tq->tq_lock);
1021 
1022                 tqe = kmem_cache_alloc(taskq_ent_cache, kmflags);
1023 
1024                 mutex_enter(&tq->tq_lock);
1025                 if (tqe != NULL)
1026                         tq->tq_nalloc++;
1027         }
1028         return (tqe);
1029 }
1030 
1031 /*
1032  * taskq_ent_free()
1033  *
1034  * Free taskq_ent_t structure by either putting it on the free list or freeing
1035  * it to the cache.
1036  *
1037  * Assumes: tq->tq_lock is held.
1038  */
1039 static void
1040 taskq_ent_free(taskq_t *tq, taskq_ent_t *tqe)
1041 {
1042         ASSERT(MUTEX_HELD(&tq->tq_lock));
1043 
1044         if (tq->tq_nalloc <= tq->tq_minalloc) {
1045                 tqe->tqent_next = tq->tq_freelist;
1046                 tq->tq_freelist = tqe;
1047         } else {
1048                 tq->tq_nalloc--;
1049                 mutex_exit(&tq->tq_lock);
1050                 kmem_cache_free(taskq_ent_cache, tqe);
1051                 mutex_enter(&tq->tq_lock);
1052         }
1053 
1054         if (tq->tq_maxalloc_wait)
1055                 cv_signal(&tq->tq_maxalloc_cv);
1056 }
1057 
1058 /*
1059  * taskq_ent_exists()
1060  *
1061  * Return 1 if taskq already has entry for calling 'func(arg)'.
1062  *
1063  * Assumes: tq->tq_lock is held.
1064  */
1065 static int
1066 taskq_ent_exists(taskq_t *tq, task_func_t func, void *arg)
1067 {
1068         taskq_ent_t     *tqe;
1069 
1070         ASSERT(MUTEX_HELD(&tq->tq_lock));
1071 
1072         for (tqe = tq->tq_task.tqent_next; tqe != &tq->tq_task;
1073             tqe = tqe->tqent_next)
1074                 if ((tqe->tqent_func == func) && (tqe->tqent_arg == arg))
1075                         return (1);
1076         return (0);
1077 }
1078 
1079 /*
1080  * Dispatch a task "func(arg)" to a free entry of bucket b.
1081  *
1082  * Assumes: no bucket locks is held.
1083  *
1084  * Returns: a pointer to an entry if dispatch was successful.
1085  *          NULL if there are no free entries or if the bucket is suspended.
1086  */
1087 static taskq_ent_t *
1088 taskq_bucket_dispatch(taskq_bucket_t *b, task_func_t func, void *arg)
1089 {
1090         taskq_ent_t *tqe;
1091 
1092         ASSERT(MUTEX_NOT_HELD(&b->tqbucket_lock));
1093         ASSERT(func != NULL);
1094 
1095         mutex_enter(&b->tqbucket_lock);
1096 
1097         ASSERT(b->tqbucket_nfree != 0 || IS_EMPTY(b->tqbucket_freelist));
1098         ASSERT(b->tqbucket_nfree == 0 || !IS_EMPTY(b->tqbucket_freelist));
1099 
1100         /*
1101          * Get en entry from the freelist if there is one.
1102          * Schedule task into the entry.
1103          */
1104         if ((b->tqbucket_nfree != 0) &&
1105             !(b->tqbucket_flags & TQBUCKET_SUSPEND)) {
1106                 tqe = b->tqbucket_freelist.tqent_prev;
1107 
1108                 ASSERT(tqe != &b->tqbucket_freelist);
1109                 ASSERT(tqe->tqent_thread != NULL);
1110 
1111                 tqe->tqent_prev->tqent_next = tqe->tqent_next;
1112                 tqe->tqent_next->tqent_prev = tqe->tqent_prev;
1113                 b->tqbucket_nalloc++;
1114                 b->tqbucket_nfree--;
1115                 tqe->tqent_func = func;
1116                 tqe->tqent_arg = arg;
1117                 TQ_STAT(b, tqs_hits);
1118                 cv_signal(&tqe->tqent_cv);
1119                 DTRACE_PROBE2(taskq__d__enqueue, taskq_bucket_t *, b,
1120                     taskq_ent_t *, tqe);
1121         } else {
1122                 tqe = NULL;
1123                 TQ_STAT(b, tqs_misses);
1124         }
1125         mutex_exit(&b->tqbucket_lock);
1126         return (tqe);
1127 }
1128 
1129 /*
1130  * Dispatch a task.
1131  *
1132  * Assumes: func != NULL
1133  *
1134  * Returns: NULL if dispatch failed.
1135  *          non-NULL if task dispatched successfully.
1136  *          Actual return value is the pointer to taskq entry that was used to
1137  *          dispatch a task. This is useful for debugging.
1138  */
1139 taskqid_t
1140 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
1141 {
1142         taskq_bucket_t *bucket = NULL;  /* Which bucket needs extension */
1143         taskq_ent_t *tqe = NULL;
1144         taskq_ent_t *tqe1;
1145         uint_t bsize;
1146 
1147         ASSERT(tq != NULL);
1148         ASSERT(func != NULL);
1149 
1150         if (!(tq->tq_flags & TASKQ_DYNAMIC)) {
1151                 /*
1152                  * TQ_NOQUEUE flag can't be used with non-dynamic task queues.
1153                  */
1154                 ASSERT(!(flags & TQ_NOQUEUE));
1155                 /*
1156                  * Enqueue the task to the underlying queue.
1157                  */
1158                 mutex_enter(&tq->tq_lock);
1159 
1160                 TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flags);
1161 
1162                 if ((tqe = taskq_ent_alloc(tq, flags)) == NULL) {
1163                         tq->tq_nomem++;
1164                         mutex_exit(&tq->tq_lock);
1165                         return (NULL);
1166                 }
1167                 /* Make sure we start without any flags */
1168                 tqe->tqent_un.tqent_flags = 0;
1169 
1170                 if (flags & TQ_FRONT) {
1171                         TQ_ENQUEUE_FRONT(tq, tqe, func, arg);
1172                 } else {
1173                         TQ_ENQUEUE(tq, tqe, func, arg);
1174                 }
1175                 mutex_exit(&tq->tq_lock);
1176                 return ((taskqid_t)tqe);
1177         }
1178 
1179         /*
1180          * Dynamic taskq dispatching.
1181          */
1182         ASSERT(!(flags & (TQ_NOALLOC | TQ_FRONT)));
1183         TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flags);
1184 
1185         bsize = tq->tq_nbuckets;
1186 
1187         if (bsize == 1) {
1188                 /*
1189                  * In a single-CPU case there is only one bucket, so get
1190                  * entry directly from there.
1191                  */
1192                 if ((tqe = taskq_bucket_dispatch(tq->tq_buckets, func, arg))
1193                     != NULL)
1194                         return ((taskqid_t)tqe);        /* Fastpath */
1195                 bucket = tq->tq_buckets;
1196         } else {
1197                 int loopcount;
1198                 taskq_bucket_t *b;
1199                 uintptr_t h = ((uintptr_t)CPU + (uintptr_t)arg) >> 3;
1200 
1201                 h = TQ_HASH(h);
1202 
1203                 /*
1204                  * The 'bucket' points to the original bucket that we hit. If we
1205                  * can't allocate from it, we search other buckets, but only
1206                  * extend this one.
1207                  */
1208                 b = &tq->tq_buckets[h & (bsize - 1)];
1209                 ASSERT(b->tqbucket_taskq == tq);     /* Sanity check */
1210 
1211                 /*
1212                  * Do a quick check before grabbing the lock. If the bucket does
1213                  * not have free entries now, chances are very small that it
1214                  * will after we take the lock, so we just skip it.
1215                  */
1216                 if (b->tqbucket_nfree != 0) {
1217                         if ((tqe = taskq_bucket_dispatch(b, func, arg)) != NULL)
1218                                 return ((taskqid_t)tqe);        /* Fastpath */
1219                 } else {
1220                         TQ_STAT(b, tqs_misses);
1221                 }
1222 
1223                 bucket = b;
1224                 loopcount = MIN(taskq_search_depth, bsize);
1225                 /*
1226                  * If bucket dispatch failed, search loopcount number of buckets
1227                  * before we give up and fail.
1228                  */
1229                 do {
1230                         b = &tq->tq_buckets[++h & (bsize - 1)];
1231                         ASSERT(b->tqbucket_taskq == tq);  /* Sanity check */
1232                         loopcount--;
1233 
1234                         if (b->tqbucket_nfree != 0) {
1235                                 tqe = taskq_bucket_dispatch(b, func, arg);
1236                         } else {
1237                                 TQ_STAT(b, tqs_misses);
1238                         }
1239                 } while ((tqe == NULL) && (loopcount > 0));
1240         }
1241 
1242         /*
1243          * At this point we either scheduled a task and (tqe != NULL) or failed
1244          * (tqe == NULL). Try to recover from fails.
1245          */
1246 
1247         /*
1248          * For KM_SLEEP dispatches, try to extend the bucket and retry dispatch.
1249          */
1250         if ((tqe == NULL) && !(flags & TQ_NOSLEEP)) {
1251                 /*
1252                  * taskq_bucket_extend() may fail to do anything, but this is
1253                  * fine - we deal with it later. If the bucket was successfully
1254                  * extended, there is a good chance that taskq_bucket_dispatch()
1255                  * will get this new entry, unless someone is racing with us and
1256                  * stealing the new entry from under our nose.
1257                  * taskq_bucket_extend() may sleep.
1258                  */
1259                 taskq_bucket_extend(bucket);
1260                 TQ_STAT(bucket, tqs_disptcreates);
1261                 if ((tqe = taskq_bucket_dispatch(bucket, func, arg)) != NULL)
1262                         return ((taskqid_t)tqe);
1263         }
1264 
1265         ASSERT(bucket != NULL);
1266 
1267         /*
1268          * Since there are not enough free entries in the bucket, add a
1269          * taskq entry to extend it in the background using backing queue
1270          * (unless we already have a taskq entry to perform that extension).
1271          */
1272         mutex_enter(&tq->tq_lock);
1273         if (!taskq_ent_exists(tq, taskq_bucket_extend, bucket)) {
1274                 if ((tqe1 = taskq_ent_alloc(tq, TQ_NOSLEEP)) != NULL) {
1275                         TQ_ENQUEUE_FRONT(tq, tqe1, taskq_bucket_extend, bucket);
1276                 } else {
1277                         tq->tq_nomem++;
1278                 }
1279         }
1280 
1281         /*
1282          * Dispatch failed and we can't find an entry to schedule a task.
1283          * Revert to the backing queue unless TQ_NOQUEUE was asked.
1284          */
1285         if ((tqe == NULL) && !(flags & TQ_NOQUEUE)) {
1286                 if ((tqe = taskq_ent_alloc(tq, flags)) != NULL) {
1287                         TQ_ENQUEUE(tq, tqe, func, arg);
1288                 } else {
1289                         tq->tq_nomem++;
1290                 }
1291         }
1292         mutex_exit(&tq->tq_lock);
1293 
1294         return ((taskqid_t)tqe);
1295 }
1296 
1297 void
1298 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
1299     taskq_ent_t *tqe)
1300 {
1301         ASSERT(func != NULL);
1302         ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
1303 
1304         /*
1305          * Mark it as a prealloc'd task.  This is important
1306          * to ensure that we don't free it later.
1307          */
1308         tqe->tqent_un.tqent_flags |= TQENT_FLAG_PREALLOC;
1309         /*
1310          * Enqueue the task to the underlying queue.
1311          */
1312         mutex_enter(&tq->tq_lock);
1313 
1314         if (flags & TQ_FRONT) {
1315                 TQ_ENQUEUE_FRONT(tq, tqe, func, arg);
1316         } else {
1317                 TQ_ENQUEUE(tq, tqe, func, arg);
1318         }
1319         mutex_exit(&tq->tq_lock);
1320 }
1321 
1322 /*
1323  * Wait for all pending tasks to complete.
1324  * Calling taskq_wait from a task will cause deadlock.
1325  */
1326 void
1327 taskq_wait(taskq_t *tq)
1328 {
1329         ASSERT(tq != curthread->t_taskq);
1330 
1331         mutex_enter(&tq->tq_lock);
1332         while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
1333                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
1334         mutex_exit(&tq->tq_lock);
1335 
1336         if (tq->tq_flags & TASKQ_DYNAMIC) {
1337                 taskq_bucket_t *b = tq->tq_buckets;
1338                 int bid = 0;
1339                 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1340                         mutex_enter(&b->tqbucket_lock);
1341                         while (b->tqbucket_nalloc > 0)
1342                                 cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
1343                         mutex_exit(&b->tqbucket_lock);
1344                 }
1345         }
1346 }
1347 
1348 /*
1349  * Suspend execution of tasks.
1350  *
1351  * Tasks in the queue part will be suspended immediately upon return from this
1352  * function. Pending tasks in the dynamic part will continue to execute, but all
1353  * new tasks will  be suspended.
1354  */
1355 void
1356 taskq_suspend(taskq_t *tq)
1357 {
1358         rw_enter(&tq->tq_threadlock, RW_WRITER);
1359 
1360         if (tq->tq_flags & TASKQ_DYNAMIC) {
1361                 taskq_bucket_t *b = tq->tq_buckets;
1362                 int bid = 0;
1363                 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1364                         mutex_enter(&b->tqbucket_lock);
1365                         b->tqbucket_flags |= TQBUCKET_SUSPEND;
1366                         mutex_exit(&b->tqbucket_lock);
1367                 }
1368         }
1369         /*
1370          * Mark task queue as being suspended. Needed for taskq_suspended().
1371          */
1372         mutex_enter(&tq->tq_lock);
1373         ASSERT(!(tq->tq_flags & TASKQ_SUSPENDED));
1374         tq->tq_flags |= TASKQ_SUSPENDED;
1375         mutex_exit(&tq->tq_lock);
1376 }
1377 
1378 /*
1379  * returns: 1 if tq is suspended, 0 otherwise.
1380  */
1381 int
1382 taskq_suspended(taskq_t *tq)
1383 {
1384         return ((tq->tq_flags & TASKQ_SUSPENDED) != 0);
1385 }
1386 
1387 /*
1388  * Resume taskq execution.
1389  */
1390 void
1391 taskq_resume(taskq_t *tq)
1392 {
1393         ASSERT(RW_WRITE_HELD(&tq->tq_threadlock));
1394 
1395         if (tq->tq_flags & TASKQ_DYNAMIC) {
1396                 taskq_bucket_t *b = tq->tq_buckets;
1397                 int bid = 0;
1398                 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1399                         mutex_enter(&b->tqbucket_lock);
1400                         b->tqbucket_flags &= ~TQBUCKET_SUSPEND;
1401                         mutex_exit(&b->tqbucket_lock);
1402                 }
1403         }
1404         mutex_enter(&tq->tq_lock);
1405         ASSERT(tq->tq_flags & TASKQ_SUSPENDED);
1406         tq->tq_flags &= ~TASKQ_SUSPENDED;
1407         mutex_exit(&tq->tq_lock);
1408 
1409         rw_exit(&tq->tq_threadlock);
1410 }
1411 
1412 int
1413 taskq_member(taskq_t *tq, kthread_t *thread)
1414 {
1415         return (thread->t_taskq == tq);
1416 }
1417 
1418 /*
1419  * Creates a thread in the taskq.  We only allow one outstanding create at
1420  * a time.  We drop and reacquire the tq_lock in order to avoid blocking other
1421  * taskq activity while thread_create() or lwp_kernel_create() run.
1422  *
1423  * The first time we're called, we do some additional setup, and do not
1424  * return until there are enough threads to start servicing requests.
1425  */
1426 static void
1427 taskq_thread_create(taskq_t *tq)
1428 {
1429         kthread_t       *t;
1430         const boolean_t first = (tq->tq_nthreads == 0);
1431 
1432         ASSERT(MUTEX_HELD(&tq->tq_lock));
1433         ASSERT(tq->tq_flags & TASKQ_CHANGING);
1434         ASSERT(tq->tq_nthreads < tq->tq_nthreads_target);
1435         ASSERT(!(tq->tq_flags & TASKQ_THREAD_CREATED));
1436 
1437 
1438         tq->tq_flags |= TASKQ_THREAD_CREATED;
1439         tq->tq_active++;
1440         mutex_exit(&tq->tq_lock);
1441 
1442         /*
1443          * With TASKQ_DUTY_CYCLE the new thread must have an LWP
1444          * as explained in ../disp/sysdc.c (for the msacct data).
1445          * Otherwise simple kthreads are preferred.
1446          */
1447         if ((tq->tq_flags & TASKQ_DUTY_CYCLE) != 0) {
1448                 /* Enforced in taskq_create_common */
1449                 ASSERT3P(tq->tq_proc, !=, &p0);
1450                 t = lwp_kernel_create(tq->tq_proc, taskq_thread, tq, TS_RUN,
1451                     tq->tq_pri);
1452         } else {
1453                 t = thread_create(NULL, 0, taskq_thread, tq, 0, tq->tq_proc,
1454                     TS_RUN, tq->tq_pri);
1455         }
1456 
1457         if (!first) {
1458                 mutex_enter(&tq->tq_lock);
1459                 return;
1460         }
1461 
1462         /*
1463          * We know the thread cannot go away, since tq cannot be
1464          * destroyed until creation has completed.  We can therefore
1465          * safely dereference t.
1466          */
1467         if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) {
1468                 taskq_cpupct_install(tq, t->t_cpupart);
1469         }
1470         mutex_enter(&tq->tq_lock);
1471 
1472         /* Wait until we can service requests. */
1473         while (tq->tq_nthreads != tq->tq_nthreads_target &&
1474             tq->tq_nthreads < TASKQ_CREATE_ACTIVE_THREADS) {
1475                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
1476         }
1477 }
1478 
1479 /*
1480  * Common "sleep taskq thread" function, which handles CPR stuff, as well
1481  * as giving a nice common point for debuggers to find inactive threads.
1482  */
1483 static clock_t
1484 taskq_thread_wait(taskq_t *tq, kmutex_t *mx, kcondvar_t *cv,
1485     callb_cpr_t *cprinfo, clock_t timeout)
1486 {
1487         clock_t ret = 0;
1488 
1489         if (!(tq->tq_flags & TASKQ_CPR_SAFE)) {
1490                 CALLB_CPR_SAFE_BEGIN(cprinfo);
1491         }
1492         if (timeout < 0)
1493                 cv_wait(cv, mx);
1494         else
1495                 ret = cv_reltimedwait(cv, mx, timeout, TR_CLOCK_TICK);
1496 
1497         if (!(tq->tq_flags & TASKQ_CPR_SAFE)) {
1498                 CALLB_CPR_SAFE_END(cprinfo, mx);
1499         }
1500 
1501         return (ret);
1502 }
1503 
1504 /*
1505  * Worker thread for processing task queue.
1506  */
1507 static void
1508 taskq_thread(void *arg)
1509 {
1510         int thread_id;
1511 
1512         taskq_t *tq = arg;
1513         taskq_ent_t *tqe;
1514         callb_cpr_t cprinfo;
1515         hrtime_t start, end;
1516         boolean_t freeit;
1517 
1518         curthread->t_taskq = tq;     /* mark ourselves for taskq_member() */
1519 
1520         if (curproc != &p0 && (tq->tq_flags & TASKQ_DUTY_CYCLE)) {
1521                 sysdc_thread_enter(curthread, tq->tq_DC,
1522                     (tq->tq_flags & TASKQ_DC_BATCH) ? SYSDC_THREAD_BATCH : 0);
1523         }
1524 
1525         if (tq->tq_flags & TASKQ_CPR_SAFE) {
1526                 CALLB_CPR_INIT_SAFE(curthread, tq->tq_name);
1527         } else {
1528                 CALLB_CPR_INIT(&cprinfo, &tq->tq_lock, callb_generic_cpr,
1529                     tq->tq_name);
1530         }
1531         mutex_enter(&tq->tq_lock);
1532         thread_id = ++tq->tq_nthreads;
1533         ASSERT(tq->tq_flags & TASKQ_THREAD_CREATED);
1534         ASSERT(tq->tq_flags & TASKQ_CHANGING);
1535         tq->tq_flags &= ~TASKQ_THREAD_CREATED;
1536 
1537         VERIFY3S(thread_id, <=, tq->tq_nthreads_max);
1538 
1539         if (tq->tq_nthreads_max == 1)
1540                 tq->tq_thread = curthread;
1541         else
1542                 tq->tq_threadlist[thread_id - 1] = curthread;
1543 
1544         /* Allow taskq_create_common()'s taskq_thread_create() to return. */
1545         if (tq->tq_nthreads == TASKQ_CREATE_ACTIVE_THREADS)
1546                 cv_broadcast(&tq->tq_wait_cv);
1547 
1548         for (;;) {
1549                 if (tq->tq_flags & TASKQ_CHANGING) {
1550                         /* See if we're no longer needed */
1551                         if (thread_id > tq->tq_nthreads_target) {
1552                                 /*
1553                                  * To preserve the one-to-one mapping between
1554                                  * thread_id and thread, we must exit from
1555                                  * highest thread ID to least.
1556                                  *
1557                                  * However, if everyone is exiting, the order
1558                                  * doesn't matter, so just exit immediately.
1559                                  * (this is safe, since you must wait for
1560                                  * nthreads to reach 0 after setting
1561                                  * tq_nthreads_target to 0)
1562                                  */
1563                                 if (thread_id == tq->tq_nthreads ||
1564                                     tq->tq_nthreads_target == 0)
1565                                         break;
1566 
1567                                 /* Wait for higher thread_ids to exit */
1568                                 (void) taskq_thread_wait(tq, &tq->tq_lock,
1569                                     &tq->tq_exit_cv, &cprinfo, -1);
1570                                 continue;
1571                         }
1572 
1573                         /*
1574                          * If no thread is starting taskq_thread(), we can
1575                          * do some bookkeeping.
1576                          */
1577                         if (!(tq->tq_flags & TASKQ_THREAD_CREATED)) {
1578                                 /* Check if we've reached our target */
1579                                 if (tq->tq_nthreads == tq->tq_nthreads_target) {
1580                                         tq->tq_flags &= ~TASKQ_CHANGING;
1581                                         cv_broadcast(&tq->tq_wait_cv);
1582                                 }
1583                                 /* Check if we need to create a thread */
1584                                 if (tq->tq_nthreads < tq->tq_nthreads_target) {
1585                                         taskq_thread_create(tq);
1586                                         continue; /* tq_lock was dropped */
1587                                 }
1588                         }
1589                 }
1590                 if ((tqe = tq->tq_task.tqent_next) == &tq->tq_task) {
1591                         if (--tq->tq_active == 0)
1592                                 cv_broadcast(&tq->tq_wait_cv);
1593                         (void) taskq_thread_wait(tq, &tq->tq_lock,
1594                             &tq->tq_dispatch_cv, &cprinfo, -1);
1595                         tq->tq_active++;
1596                         continue;
1597                 }
1598 
1599                 tqe->tqent_prev->tqent_next = tqe->tqent_next;
1600                 tqe->tqent_next->tqent_prev = tqe->tqent_prev;
1601                 mutex_exit(&tq->tq_lock);
1602 
1603                 /*
1604                  * For prealloc'd tasks, we don't free anything.  We
1605                  * have to check this now, because once we call the
1606                  * function for a prealloc'd taskq, we can't touch the
1607                  * tqent any longer (calling the function returns the
1608                  * ownershp of the tqent back to caller of
1609                  * taskq_dispatch.)
1610                  */
1611                 if ((!(tq->tq_flags & TASKQ_DYNAMIC)) &&
1612                     (tqe->tqent_un.tqent_flags & TQENT_FLAG_PREALLOC)) {
1613                         /* clear pointers to assist assertion checks */
1614                         tqe->tqent_next = tqe->tqent_prev = NULL;
1615                         freeit = B_FALSE;
1616                 } else {
1617                         freeit = B_TRUE;
1618                 }
1619 
1620                 rw_enter(&tq->tq_threadlock, RW_READER);
1621                 start = gethrtime();
1622                 DTRACE_PROBE2(taskq__exec__start, taskq_t *, tq,
1623                     taskq_ent_t *, tqe);
1624                 tqe->tqent_func(tqe->tqent_arg);
1625                 DTRACE_PROBE2(taskq__exec__end, taskq_t *, tq,
1626                     taskq_ent_t *, tqe);
1627                 end = gethrtime();
1628                 rw_exit(&tq->tq_threadlock);
1629 
1630                 mutex_enter(&tq->tq_lock);
1631                 tq->tq_totaltime += end - start;
1632                 tq->tq_executed++;
1633 
1634                 if (freeit)
1635                         taskq_ent_free(tq, tqe);
1636         }
1637 
1638         if (tq->tq_nthreads_max == 1)
1639                 tq->tq_thread = NULL;
1640         else
1641                 tq->tq_threadlist[thread_id - 1] = NULL;
1642 
1643         /* We're exiting, and therefore no longer active */
1644         ASSERT(tq->tq_active > 0);
1645         tq->tq_active--;
1646 
1647         ASSERT(tq->tq_nthreads > 0);
1648         tq->tq_nthreads--;
1649 
1650         /* Wake up anyone waiting for us to exit */
1651         cv_broadcast(&tq->tq_exit_cv);
1652         if (tq->tq_nthreads == tq->tq_nthreads_target) {
1653                 if (!(tq->tq_flags & TASKQ_THREAD_CREATED))
1654                         tq->tq_flags &= ~TASKQ_CHANGING;
1655 
1656                 cv_broadcast(&tq->tq_wait_cv);
1657         }
1658 
1659         ASSERT(!(tq->tq_flags & TASKQ_CPR_SAFE));
1660         CALLB_CPR_EXIT(&cprinfo);           /* drops tq->tq_lock */
1661         if (curthread->t_lwp != NULL) {
1662                 mutex_enter(&curproc->p_lock);
1663                 lwp_exit();
1664         } else {
1665                 thread_exit();
1666         }
1667 }
1668 
1669 /*
1670  * Worker per-entry thread for dynamic dispatches.
1671  */
1672 static void
1673 taskq_d_thread(taskq_ent_t *tqe)
1674 {
1675         taskq_bucket_t  *bucket = tqe->tqent_un.tqent_bucket;
1676         taskq_t         *tq = bucket->tqbucket_taskq;
1677         kmutex_t        *lock = &bucket->tqbucket_lock;
1678         kcondvar_t      *cv = &tqe->tqent_cv;
1679         callb_cpr_t     cprinfo;
1680         clock_t         w;
1681 
1682         CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, tq->tq_name);
1683 
1684         mutex_enter(lock);
1685 
1686         for (;;) {
1687                 /*
1688                  * If a task is scheduled (func != NULL), execute it, otherwise
1689                  * sleep, waiting for a job.
1690                  */
1691                 if (tqe->tqent_func != NULL) {
1692                         hrtime_t        start;
1693                         hrtime_t        end;
1694 
1695                         ASSERT(bucket->tqbucket_nalloc > 0);
1696 
1697                         /*
1698                          * It is possible to free the entry right away before
1699                          * actually executing the task so that subsequent
1700                          * dispatches may immediately reuse it. But this,
1701                          * effectively, creates a two-length queue in the entry
1702                          * and may lead to a deadlock if the execution of the
1703                          * current task depends on the execution of the next
1704                          * scheduled task. So, we keep the entry busy until the
1705                          * task is processed.
1706                          */
1707 
1708                         mutex_exit(lock);
1709                         start = gethrtime();
1710                         DTRACE_PROBE3(taskq__d__exec__start, taskq_t *, tq,
1711                             taskq_bucket_t *, bucket, taskq_ent_t *, tqe);
1712                         tqe->tqent_func(tqe->tqent_arg);
1713                         DTRACE_PROBE3(taskq__d__exec__end, taskq_t *, tq,
1714                             taskq_bucket_t *, bucket, taskq_ent_t *, tqe);
1715                         end = gethrtime();
1716                         mutex_enter(lock);
1717                         bucket->tqbucket_totaltime += end - start;
1718 
1719                         /*
1720                          * Return the entry to the bucket free list.
1721                          */
1722                         tqe->tqent_func = NULL;
1723                         TQ_APPEND(bucket->tqbucket_freelist, tqe);
1724                         bucket->tqbucket_nalloc--;
1725                         bucket->tqbucket_nfree++;
1726                         ASSERT(!IS_EMPTY(bucket->tqbucket_freelist));
1727                         /*
1728                          * taskq_wait() waits for nalloc to drop to zero on
1729                          * tqbucket_cv.
1730                          */
1731                         cv_signal(&bucket->tqbucket_cv);
1732                 }
1733 
1734                 /*
1735                  * At this point the entry must be in the bucket free list -
1736                  * either because it was there initially or because it just
1737                  * finished executing a task and put itself on the free list.
1738                  */
1739                 ASSERT(bucket->tqbucket_nfree > 0);
1740                 /*
1741                  * Go to sleep unless we are closing.
1742                  * If a thread is sleeping too long, it dies.
1743                  */
1744                 if (! (bucket->tqbucket_flags & TQBUCKET_CLOSE)) {
1745                         w = taskq_thread_wait(tq, lock, cv,
1746                             &cprinfo, taskq_thread_timeout * hz);
1747                 }
1748 
1749                 /*
1750                  * At this point we may be in two different states:
1751                  *
1752                  * (1) tqent_func is set which means that a new task is
1753                  *      dispatched and we need to execute it.
1754                  *
1755                  * (2) Thread is sleeping for too long or we are closing. In
1756                  *      both cases destroy the thread and the entry.
1757                  */
1758 
1759                 /* If func is NULL we should be on the freelist. */
1760                 ASSERT((tqe->tqent_func != NULL) ||
1761                     (bucket->tqbucket_nfree > 0));
1762                 /* If func is non-NULL we should be allocated */
1763                 ASSERT((tqe->tqent_func == NULL) ||
1764                     (bucket->tqbucket_nalloc > 0));
1765 
1766                 /* Check freelist consistency */
1767                 ASSERT((bucket->tqbucket_nfree > 0) ||
1768                     IS_EMPTY(bucket->tqbucket_freelist));
1769                 ASSERT((bucket->tqbucket_nfree == 0) ||
1770                     !IS_EMPTY(bucket->tqbucket_freelist));
1771 
1772                 if ((tqe->tqent_func == NULL) &&
1773                     ((w == -1) || (bucket->tqbucket_flags & TQBUCKET_CLOSE))) {
1774                         /*
1775                          * This thread is sleeping for too long or we are
1776                          * closing - time to die.
1777                          * Thread creation/destruction happens rarely,
1778                          * so grabbing the lock is not a big performance issue.
1779                          * The bucket lock is dropped by CALLB_CPR_EXIT().
1780                          */
1781 
1782                         /* Remove the entry from the free list. */
1783                         tqe->tqent_prev->tqent_next = tqe->tqent_next;
1784                         tqe->tqent_next->tqent_prev = tqe->tqent_prev;
1785                         ASSERT(bucket->tqbucket_nfree > 0);
1786                         bucket->tqbucket_nfree--;
1787 
1788                         TQ_STAT(bucket, tqs_tdeaths);
1789                         cv_signal(&bucket->tqbucket_cv);
1790                         tqe->tqent_thread = NULL;
1791                         mutex_enter(&tq->tq_lock);
1792                         tq->tq_tdeaths++;
1793                         mutex_exit(&tq->tq_lock);
1794                         CALLB_CPR_EXIT(&cprinfo);
1795                         kmem_cache_free(taskq_ent_cache, tqe);
1796                         thread_exit();
1797                 }
1798         }
1799 }
1800 
1801 
1802 /*
1803  * Taskq creation. May sleep for memory.
1804  * Always use automatically generated instances to avoid kstat name space
1805  * collisions.
1806  */
1807 
1808 taskq_t *
1809 taskq_create(const char *name, int nthreads, pri_t pri, int minalloc,
1810     int maxalloc, uint_t flags)
1811 {
1812         ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
1813 
1814         return (taskq_create_common(name, 0, nthreads, pri, minalloc,
1815             maxalloc, &p0, 0, flags | TASKQ_NOINSTANCE));
1816 }
1817 
1818 /*
1819  * Create an instance of task queue. It is legal to create task queues with the
1820  * same name and different instances.
1821  *
1822  * taskq_create_instance is used by ddi_taskq_create() where it gets the
1823  * instance from ddi_get_instance(). In some cases the instance is not
1824  * initialized and is set to -1. This case is handled as if no instance was
1825  * passed at all.
1826  */
1827 taskq_t *
1828 taskq_create_instance(const char *name, int instance, int nthreads, pri_t pri,
1829     int minalloc, int maxalloc, uint_t flags)
1830 {
1831         ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
1832         ASSERT((instance >= 0) || (instance == -1));
1833 
1834         if (instance < 0) {
1835                 flags |= TASKQ_NOINSTANCE;
1836         }
1837 
1838         return (taskq_create_common(name, instance, nthreads,
1839             pri, minalloc, maxalloc, &p0, 0, flags));
1840 }
1841 
1842 taskq_t *
1843 taskq_create_proc(const char *name, int nthreads, pri_t pri, int minalloc,
1844     int maxalloc, proc_t *proc, uint_t flags)
1845 {
1846         ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
1847         ASSERT(proc->p_flag & SSYS);
1848 
1849         return (taskq_create_common(name, 0, nthreads, pri, minalloc,
1850             maxalloc, proc, 0, flags | TASKQ_NOINSTANCE));
1851 }
1852 
1853 taskq_t *
1854 taskq_create_sysdc(const char *name, int nthreads, int minalloc,
1855     int maxalloc, proc_t *proc, uint_t dc, uint_t flags)
1856 {
1857         ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
1858         ASSERT(proc->p_flag & SSYS);
1859 
1860         return (taskq_create_common(name, 0, nthreads, minclsyspri, minalloc,
1861             maxalloc, proc, dc, flags | TASKQ_NOINSTANCE | TASKQ_DUTY_CYCLE));
1862 }
1863 
1864 static taskq_t *
1865 taskq_create_common(const char *name, int instance, int nthreads, pri_t pri,
1866     int minalloc, int maxalloc, proc_t *proc, uint_t dc, uint_t flags)
1867 {
1868         taskq_t *tq = kmem_cache_alloc(taskq_cache, KM_SLEEP);
1869         uint_t ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
1870         uint_t bsize;   /* # of buckets - always power of 2 */
1871         int max_nthreads;
1872 
1873         /*
1874          * TASKQ_DYNAMIC, TASKQ_CPR_SAFE and TASKQ_THREADS_CPU_PCT are all
1875          * mutually incompatible.
1876          */
1877         IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_CPR_SAFE));
1878         IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_THREADS_CPU_PCT));
1879         IMPLY((flags & TASKQ_CPR_SAFE), !(flags & TASKQ_THREADS_CPU_PCT));
1880 
1881         /* Cannot have DYNAMIC with DUTY_CYCLE */
1882         IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_DUTY_CYCLE));
1883 
1884         /* Cannot have DUTY_CYCLE with a p0 kernel process */
1885         IMPLY((flags & TASKQ_DUTY_CYCLE), proc != &p0);
1886 
1887         /* Cannot have DC_BATCH without DUTY_CYCLE */
1888         ASSERT((flags & (TASKQ_DUTY_CYCLE|TASKQ_DC_BATCH)) != TASKQ_DC_BATCH);
1889 
1890         ASSERT(proc != NULL);
1891 
1892         bsize = 1 << (highbit(ncpus) - 1);
1893         ASSERT(bsize >= 1);
1894         bsize = MIN(bsize, taskq_maxbuckets);
1895 
1896         if (flags & TASKQ_DYNAMIC) {
1897                 ASSERT3S(nthreads, >=, 1);
1898                 tq->tq_maxsize = nthreads;
1899 
1900                 /* For dynamic task queues use just one backup thread */
1901                 nthreads = max_nthreads = 1;
1902 
1903         } else if (flags & TASKQ_THREADS_CPU_PCT) {
1904                 uint_t pct;
1905                 ASSERT3S(nthreads, >=, 0);
1906                 pct = nthreads;
1907 
1908                 if (pct > taskq_cpupct_max_percent)
1909                         pct = taskq_cpupct_max_percent;
1910 
1911                 /*
1912                  * If you're using THREADS_CPU_PCT, the process for the
1913                  * taskq threads must be curproc.  This allows any pset
1914                  * binding to be inherited correctly.  If proc is &p0,
1915                  * we won't be creating LWPs, so new threads will be assigned
1916                  * to the default processor set.
1917                  */
1918                 ASSERT(curproc == proc || proc == &p0);
1919                 tq->tq_threads_ncpus_pct = pct;
1920                 nthreads = 1;           /* corrected in taskq_thread_create() */
1921                 max_nthreads = TASKQ_THREADS_PCT(max_ncpus, pct);
1922 
1923         } else {
1924                 ASSERT3S(nthreads, >=, 1);
1925                 max_nthreads = nthreads;
1926         }
1927 
1928         if (max_nthreads < taskq_minimum_nthreads_max)
1929                 max_nthreads = taskq_minimum_nthreads_max;
1930 
1931         /*
1932          * Make sure the name is 0-terminated, and conforms to the rules for
1933          * C indentifiers
1934          */
1935         (void) strncpy(tq->tq_name, name, TASKQ_NAMELEN + 1);
1936         strident_canon(tq->tq_name, TASKQ_NAMELEN + 1);
1937 
1938         tq->tq_flags = flags | TASKQ_CHANGING;
1939         tq->tq_active = 0;
1940         tq->tq_instance = instance;
1941         tq->tq_nthreads_target = nthreads;
1942         tq->tq_nthreads_max = max_nthreads;
1943         tq->tq_minalloc = minalloc;
1944         tq->tq_maxalloc = maxalloc;
1945         tq->tq_nbuckets = bsize;
1946         tq->tq_proc = proc;
1947         tq->tq_pri = pri;
1948         tq->tq_DC = dc;
1949         list_link_init(&tq->tq_cpupct_link);
1950 
1951         if (max_nthreads > 1)
1952                 tq->tq_threadlist = kmem_alloc(
1953                     sizeof (kthread_t *) * max_nthreads, KM_SLEEP);
1954 
1955         mutex_enter(&tq->tq_lock);
1956         if (flags & TASKQ_PREPOPULATE) {
1957                 while (minalloc-- > 0)
1958                         taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
1959         }
1960 
1961         /*
1962          * Before we start creating threads for this taskq, take a
1963          * zone hold so the zone can't go away before taskq_destroy
1964          * makes sure all the taskq threads are gone.  This hold is
1965          * similar in purpose to those taken by zthread_create().
1966          */
1967         zone_hold(tq->tq_proc->p_zone);
1968 
1969         /*
1970          * Create the first thread, which will create any other threads
1971          * necessary.  taskq_thread_create will not return until we have
1972          * enough threads to be able to process requests.
1973          */
1974         taskq_thread_create(tq);
1975         mutex_exit(&tq->tq_lock);
1976 
1977         if (flags & TASKQ_DYNAMIC) {
1978                 taskq_bucket_t *bucket = kmem_zalloc(sizeof (taskq_bucket_t) *
1979                     bsize, KM_SLEEP);
1980                 int b_id;
1981 
1982                 tq->tq_buckets = bucket;
1983 
1984                 /* Initialize each bucket */
1985                 for (b_id = 0; b_id < bsize; b_id++, bucket++) {
1986                         mutex_init(&bucket->tqbucket_lock, NULL, MUTEX_DEFAULT,
1987                             NULL);
1988                         cv_init(&bucket->tqbucket_cv, NULL, CV_DEFAULT, NULL);
1989                         bucket->tqbucket_taskq = tq;
1990                         bucket->tqbucket_freelist.tqent_next =
1991                             bucket->tqbucket_freelist.tqent_prev =
1992                             &bucket->tqbucket_freelist;
1993                         if (flags & TASKQ_PREPOPULATE)
1994                                 taskq_bucket_extend(bucket);
1995                 }
1996         }
1997 
1998         /*
1999          * Install kstats.
2000          * We have two cases:
2001          *   1) Instance is provided to taskq_create_instance(). In this case it
2002          *      should be >= 0 and we use it.
2003          *
2004          *   2) Instance is not provided and is automatically generated
2005          */
2006         if (flags & TASKQ_NOINSTANCE) {
2007                 instance = tq->tq_instance =
2008                     (int)(uintptr_t)vmem_alloc(taskq_id_arena, 1, VM_SLEEP);
2009         }
2010 
2011         if (flags & TASKQ_DYNAMIC) {
2012                 if ((tq->tq_kstat = kstat_create("unix", instance,
2013                     tq->tq_name, "taskq_d", KSTAT_TYPE_NAMED,
2014                     sizeof (taskq_d_kstat) / sizeof (kstat_named_t),
2015                     KSTAT_FLAG_VIRTUAL)) != NULL) {
2016                         tq->tq_kstat->ks_lock = &taskq_d_kstat_lock;
2017                         tq->tq_kstat->ks_data = &taskq_d_kstat;
2018                         tq->tq_kstat->ks_update = taskq_d_kstat_update;
2019                         tq->tq_kstat->ks_private = tq;
2020                         kstat_install(tq->tq_kstat);
2021                 }
2022         } else {
2023                 if ((tq->tq_kstat = kstat_create("unix", instance, tq->tq_name,
2024                     "taskq", KSTAT_TYPE_NAMED,
2025                     sizeof (taskq_kstat) / sizeof (kstat_named_t),
2026                     KSTAT_FLAG_VIRTUAL)) != NULL) {
2027                         tq->tq_kstat->ks_lock = &taskq_kstat_lock;
2028                         tq->tq_kstat->ks_data = &taskq_kstat;
2029                         tq->tq_kstat->ks_update = taskq_kstat_update;
2030                         tq->tq_kstat->ks_private = tq;
2031                         kstat_install(tq->tq_kstat);
2032                 }
2033         }
2034 
2035         return (tq);
2036 }
2037 
2038 /*
2039  * taskq_destroy().
2040  *
2041  * Assumes: by the time taskq_destroy is called no one will use this task queue
2042  * in any way and no one will try to dispatch entries in it.
2043  */
2044 void
2045 taskq_destroy(taskq_t *tq)
2046 {
2047         taskq_bucket_t *b = tq->tq_buckets;
2048         int bid = 0;
2049 
2050         ASSERT(! (tq->tq_flags & TASKQ_CPR_SAFE));
2051 
2052         /*
2053          * Destroy kstats.
2054          */
2055         if (tq->tq_kstat != NULL) {
2056                 kstat_delete(tq->tq_kstat);
2057                 tq->tq_kstat = NULL;
2058         }
2059 
2060         /*
2061          * Destroy instance if needed.
2062          */
2063         if (tq->tq_flags & TASKQ_NOINSTANCE) {
2064                 vmem_free(taskq_id_arena, (void *)(uintptr_t)(tq->tq_instance),
2065                     1);
2066                 tq->tq_instance = 0;
2067         }
2068 
2069         /*
2070          * Unregister from the cpupct list.
2071          */
2072         if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) {
2073                 taskq_cpupct_remove(tq);
2074         }
2075 
2076         /*
2077          * Wait for any pending entries to complete.
2078          */
2079         taskq_wait(tq);
2080 
2081         mutex_enter(&tq->tq_lock);
2082         ASSERT((tq->tq_task.tqent_next == &tq->tq_task) &&
2083             (tq->tq_active == 0));
2084 
2085         /* notify all the threads that they need to exit */
2086         tq->tq_nthreads_target = 0;
2087 
2088         tq->tq_flags |= TASKQ_CHANGING;
2089         cv_broadcast(&tq->tq_dispatch_cv);
2090         cv_broadcast(&tq->tq_exit_cv);
2091 
2092         while (tq->tq_nthreads != 0)
2093                 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
2094 
2095         if (tq->tq_nthreads_max != 1)
2096                 kmem_free(tq->tq_threadlist, sizeof (kthread_t *) *
2097                     tq->tq_nthreads_max);
2098 
2099         tq->tq_minalloc = 0;
2100         while (tq->tq_nalloc != 0)
2101                 taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
2102 
2103         mutex_exit(&tq->tq_lock);
2104 
2105         /*
2106          * Mark each bucket as closing and wakeup all sleeping threads.
2107          */
2108         for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
2109                 taskq_ent_t *tqe;
2110 
2111                 mutex_enter(&b->tqbucket_lock);
2112 
2113                 b->tqbucket_flags |= TQBUCKET_CLOSE;
2114                 /* Wakeup all sleeping threads */
2115 
2116                 for (tqe = b->tqbucket_freelist.tqent_next;
2117                     tqe != &b->tqbucket_freelist; tqe = tqe->tqent_next)
2118                         cv_signal(&tqe->tqent_cv);
2119 
2120                 ASSERT(b->tqbucket_nalloc == 0);
2121 
2122                 /*
2123                  * At this point we waited for all pending jobs to complete (in
2124                  * both the task queue and the bucket and no new jobs should
2125                  * arrive. Wait for all threads to die.
2126                  */
2127                 while (b->tqbucket_nfree > 0)
2128                         cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
2129                 mutex_exit(&b->tqbucket_lock);
2130                 mutex_destroy(&b->tqbucket_lock);
2131                 cv_destroy(&b->tqbucket_cv);
2132         }
2133 
2134         if (tq->tq_buckets != NULL) {
2135                 ASSERT(tq->tq_flags & TASKQ_DYNAMIC);
2136                 kmem_free(tq->tq_buckets,
2137                     sizeof (taskq_bucket_t) * tq->tq_nbuckets);
2138 
2139                 /* Cleanup fields before returning tq to the cache */
2140                 tq->tq_buckets = NULL;
2141                 tq->tq_tcreates = 0;
2142                 tq->tq_tdeaths = 0;
2143         } else {
2144                 ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
2145         }
2146 
2147         /*
2148          * Now that all the taskq threads are gone, we can
2149          * drop the zone hold taken in taskq_create_common
2150          */
2151         zone_rele(tq->tq_proc->p_zone);
2152 
2153         tq->tq_threads_ncpus_pct = 0;
2154         tq->tq_totaltime = 0;
2155         tq->tq_tasks = 0;
2156         tq->tq_maxtasks = 0;
2157         tq->tq_executed = 0;
2158         kmem_cache_free(taskq_cache, tq);
2159 }
2160 
2161 /*
2162  * Extend a bucket with a new entry on the free list and attach a worker thread
2163  * to it.
2164  *
2165  * Argument: pointer to the bucket.
2166  *
2167  * This function may quietly fail. It is only used by taskq_dispatch() which
2168  * handles such failures properly.
2169  */
2170 static void
2171 taskq_bucket_extend(void *arg)
2172 {
2173         taskq_ent_t *tqe;
2174         taskq_bucket_t *b = (taskq_bucket_t *)arg;
2175         taskq_t *tq = b->tqbucket_taskq;
2176         int nthreads;
2177 
2178         mutex_enter(&tq->tq_lock);
2179 
2180         if (! ENOUGH_MEMORY()) {
2181                 tq->tq_nomem++;
2182                 mutex_exit(&tq->tq_lock);
2183                 return;
2184         }
2185 
2186         /*
2187          * Observe global taskq limits on the number of threads.
2188          */
2189         if (tq->tq_tcreates++ - tq->tq_tdeaths > tq->tq_maxsize) {
2190                 tq->tq_tcreates--;
2191                 mutex_exit(&tq->tq_lock);
2192                 return;
2193         }
2194         mutex_exit(&tq->tq_lock);
2195 
2196         tqe = kmem_cache_alloc(taskq_ent_cache, KM_NOSLEEP);
2197 
2198         if (tqe == NULL) {
2199                 mutex_enter(&tq->tq_lock);
2200                 tq->tq_nomem++;
2201                 tq->tq_tcreates--;
2202                 mutex_exit(&tq->tq_lock);
2203                 return;
2204         }
2205 
2206         ASSERT(tqe->tqent_thread == NULL);
2207 
2208         tqe->tqent_un.tqent_bucket = b;
2209 
2210         /*
2211          * Create a thread in a TS_STOPPED state first. If it is successfully
2212          * created, place the entry on the free list and start the thread.
2213          */
2214         tqe->tqent_thread = thread_create(NULL, 0, taskq_d_thread, tqe,
2215             0, tq->tq_proc, TS_STOPPED, tq->tq_pri);
2216 
2217         /*
2218          * Once the entry is ready, link it to the the bucket free list.
2219          */
2220         mutex_enter(&b->tqbucket_lock);
2221         tqe->tqent_func = NULL;
2222         TQ_APPEND(b->tqbucket_freelist, tqe);
2223         b->tqbucket_nfree++;
2224         TQ_STAT(b, tqs_tcreates);
2225 
2226 #if TASKQ_STATISTIC
2227         nthreads = b->tqbucket_stat.tqs_tcreates -
2228             b->tqbucket_stat.tqs_tdeaths;
2229         b->tqbucket_stat.tqs_maxthreads = MAX(nthreads,
2230             b->tqbucket_stat.tqs_maxthreads);
2231 #endif
2232 
2233         mutex_exit(&b->tqbucket_lock);
2234         /*
2235          * Start the stopped thread.
2236          */
2237         thread_lock(tqe->tqent_thread);
2238         tqe->tqent_thread->t_taskq = tq;
2239         tqe->tqent_thread->t_schedflag |= TS_ALLSTART;
2240         setrun_locked(tqe->tqent_thread);
2241         thread_unlock(tqe->tqent_thread);
2242 }
2243 
2244 static int
2245 taskq_kstat_update(kstat_t *ksp, int rw)
2246 {
2247         struct taskq_kstat *tqsp = &taskq_kstat;
2248         taskq_t *tq = ksp->ks_private;
2249 
2250         if (rw == KSTAT_WRITE)
2251                 return (EACCES);
2252 
2253         tqsp->tq_pid.value.ui64 = tq->tq_proc->p_pid;
2254         tqsp->tq_tasks.value.ui64 = tq->tq_tasks;
2255         tqsp->tq_executed.value.ui64 = tq->tq_executed;
2256         tqsp->tq_maxtasks.value.ui64 = tq->tq_maxtasks;
2257         tqsp->tq_totaltime.value.ui64 = tq->tq_totaltime;
2258         tqsp->tq_nactive.value.ui64 = tq->tq_active;
2259         tqsp->tq_nalloc.value.ui64 = tq->tq_nalloc;
2260         tqsp->tq_pri.value.ui64 = tq->tq_pri;
2261         tqsp->tq_nthreads.value.ui64 = tq->tq_nthreads;
2262         tqsp->tq_nomem.value.ui64 = tq->tq_nomem;
2263         return (0);
2264 }
2265 
2266 static int
2267 taskq_d_kstat_update(kstat_t *ksp, int rw)
2268 {
2269         struct taskq_d_kstat *tqsp = &taskq_d_kstat;
2270         taskq_t *tq = ksp->ks_private;
2271         taskq_bucket_t *b = tq->tq_buckets;
2272         int bid = 0;
2273 
2274         if (rw == KSTAT_WRITE)
2275                 return (EACCES);
2276 
2277         ASSERT(tq->tq_flags & TASKQ_DYNAMIC);
2278 
2279         tqsp->tqd_btasks.value.ui64 = tq->tq_tasks;
2280         tqsp->tqd_bexecuted.value.ui64 = tq->tq_executed;
2281         tqsp->tqd_bmaxtasks.value.ui64 = tq->tq_maxtasks;
2282         tqsp->tqd_bnalloc.value.ui64 = tq->tq_nalloc;
2283         tqsp->tqd_bnactive.value.ui64 = tq->tq_active;
2284         tqsp->tqd_btotaltime.value.ui64 = tq->tq_totaltime;
2285         tqsp->tqd_pri.value.ui64 = tq->tq_pri;
2286         tqsp->tqd_nomem.value.ui64 = tq->tq_nomem;
2287 
2288         tqsp->tqd_hits.value.ui64 = 0;
2289         tqsp->tqd_misses.value.ui64 = 0;
2290         tqsp->tqd_overflows.value.ui64 = 0;
2291         tqsp->tqd_tcreates.value.ui64 = 0;
2292         tqsp->tqd_tdeaths.value.ui64 = 0;
2293         tqsp->tqd_maxthreads.value.ui64 = 0;
2294         tqsp->tqd_nomem.value.ui64 = 0;
2295         tqsp->tqd_disptcreates.value.ui64 = 0;
2296         tqsp->tqd_totaltime.value.ui64 = 0;
2297         tqsp->tqd_nalloc.value.ui64 = 0;
2298         tqsp->tqd_nfree.value.ui64 = 0;
2299 
2300         for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
2301                 tqsp->tqd_hits.value.ui64 += b->tqbucket_stat.tqs_hits;
2302                 tqsp->tqd_misses.value.ui64 += b->tqbucket_stat.tqs_misses;
2303                 tqsp->tqd_overflows.value.ui64 += b->tqbucket_stat.tqs_overflow;
2304                 tqsp->tqd_tcreates.value.ui64 += b->tqbucket_stat.tqs_tcreates;
2305                 tqsp->tqd_tdeaths.value.ui64 += b->tqbucket_stat.tqs_tdeaths;
2306                 tqsp->tqd_maxthreads.value.ui64 +=
2307                     b->tqbucket_stat.tqs_maxthreads;
2308                 tqsp->tqd_disptcreates.value.ui64 +=
2309                     b->tqbucket_stat.tqs_disptcreates;
2310                 tqsp->tqd_totaltime.value.ui64 += b->tqbucket_totaltime;
2311                 tqsp->tqd_nalloc.value.ui64 += b->tqbucket_nalloc;
2312                 tqsp->tqd_nfree.value.ui64 += b->tqbucket_nfree;
2313         }
2314         return (0);
2315 }