Print this page
    
8541 pfiles does not properly identify PF_KEY or PF_POLICY
Reviewed by: Mike Zeller <mike.zeller@joyent.com>
Reviewed by: Patrick Mooney <patrick.mooney@joyent.com>
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/inet/ipsec_impl.h
          +++ new/usr/src/uts/common/inet/ipsec_impl.h
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  
    | 
      ↓ open down ↓ | 
    14 lines elided | 
    
      ↑ open up ↑ | 
  
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  /*
  22   22   * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23   23   * Use is subject to license terms.
  24   24   * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
       25 + * Copyright 2017 Joyent, Inc.
  25   26   */
  26   27  
  27   28  #ifndef _INET_IPSEC_IMPL_H
  28   29  #define _INET_IPSEC_IMPL_H
  29   30  
  30   31  #include <inet/ip.h>
  31   32  #include <inet/ipdrop.h>
  32   33  
  33   34  #ifdef  __cplusplus
  34   35  extern "C" {
  35   36  #endif
  36   37  
  37   38  #define IPSEC_CONF_SRC_ADDRESS  0       /* Source Address */
  38   39  #define IPSEC_CONF_SRC_PORT             1       /* Source Port */
  39   40  #define IPSEC_CONF_DST_ADDRESS  2       /* Dest Address */
  40   41  #define IPSEC_CONF_DST_PORT             3       /* Dest Port */
  41   42  #define IPSEC_CONF_SRC_MASK             4       /* Source Address Mask */
  42   43  #define IPSEC_CONF_DST_MASK             5       /* Destination Address Mask */
  43   44  #define IPSEC_CONF_ULP                  6       /* Upper layer Port */
  44   45  #define IPSEC_CONF_IPSEC_PROT   7       /* AH or ESP or AH_ESP */
  45   46  #define IPSEC_CONF_IPSEC_AALGS  8       /* Auth Algorithms - MD5 etc. */
  46   47  #define IPSEC_CONF_IPSEC_EALGS  9       /* Encr Algorithms - DES etc. */
  47   48  #define IPSEC_CONF_IPSEC_EAALGS 10      /* Encr Algorithms - MD5 etc. */
  48   49  #define IPSEC_CONF_IPSEC_SA             11      /* Shared or unique SA */
  49   50  #define IPSEC_CONF_IPSEC_DIR            12      /* Direction of traffic */
  50   51  #define IPSEC_CONF_ICMP_TYPE            13      /* ICMP type */
  51   52  #define IPSEC_CONF_ICMP_CODE            14      /* ICMP code */
  52   53  #define IPSEC_CONF_NEGOTIATE            15      /* Negotiation */
  53   54  #define IPSEC_CONF_TUNNEL               16      /* Tunnel */
  54   55  
  55   56  /* Type of an entry */
  56   57  
  57   58  #define IPSEC_NTYPES                    0x02
  58   59  #define IPSEC_TYPE_OUTBOUND             0x00
  59   60  #define IPSEC_TYPE_INBOUND              0x01
  60   61  
  61   62  /* Policy */
  62   63  #define IPSEC_POLICY_APPLY      0x01
  63   64  #define IPSEC_POLICY_DISCARD    0x02
  64   65  #define IPSEC_POLICY_BYPASS     0x03
  65   66  
  66   67  /* Shared or unique SA */
  67   68  #define IPSEC_SHARED_SA         0x01
  68   69  #define IPSEC_UNIQUE_SA         0x02
  69   70  
  70   71  /* IPsec protocols and combinations */
  71   72  #define IPSEC_AH_ONLY           0x01
  72   73  #define IPSEC_ESP_ONLY          0x02
  73   74  #define IPSEC_AH_ESP            0x03
  74   75  
  75   76  /*
  76   77   * Internally defined "any" algorithm.
  77   78   * Move to PF_KEY v3 when that RFC is released.
  78   79   */
  79   80  #define SADB_AALG_ANY 255
  80   81  
  81   82  #ifdef _KERNEL
  82   83  
  83   84  #include <inet/common.h>
  84   85  #include <netinet/ip6.h>
  85   86  #include <netinet/icmp6.h>
  86   87  #include <net/pfkeyv2.h>
  87   88  #include <inet/ip.h>
  88   89  #include <inet/sadb.h>
  89   90  #include <inet/ipsecah.h>
  90   91  #include <inet/ipsecesp.h>
  91   92  #include <sys/crypto/common.h>
  92   93  #include <sys/crypto/api.h>
  93   94  #include <sys/avl.h>
  94   95  
  95   96  /*
  96   97   * Maximum number of authentication algorithms (can be indexed by one byte
  97   98   * per PF_KEY and the IKE IPsec DOI.
  98   99   */
  99  100  #define MAX_AALGS 256
 100  101  
 101  102  /*
 102  103   * IPsec task queue constants.
  
    | 
      ↓ open down ↓ | 
    68 lines elided | 
    
      ↑ open up ↑ | 
  
 103  104   */
 104  105  #define IPSEC_TASKQ_MIN 10
 105  106  #define IPSEC_TASKQ_MAX 20
 106  107  
 107  108  /*
 108  109   * So we can access IPsec global variables that live in keysock.c.
 109  110   */
 110  111  extern boolean_t keysock_extended_reg(netstack_t *);
 111  112  extern uint32_t keysock_next_seq(netstack_t *);
 112  113  
      114 +/* Common-code for spdsock and keysock. */
      115 +extern void keysock_spdsock_wput_iocdata(queue_t *, mblk_t *, sa_family_t);
      116 +
 113  117  /*
 114  118   * Locking for ipsec policy rules:
 115  119   *
 116  120   * policy heads: system policy is static; per-conn polheads are dynamic,
 117  121   * and refcounted (and inherited); use atomic refcounts and "don't let
 118  122   * go with both hands".
 119  123   *
 120  124   * policy: refcounted; references from polhead, ipsec_out
 121  125   *
 122  126   * actions: refcounted; referenced from: action hash table, policy, ipsec_out
 123  127   * selectors: refcounted; referenced from: selector hash table, policy.
 124  128   */
 125  129  
 126  130  /*
 127  131   * the following are inspired by, but not directly based on,
 128  132   * some of the sys/queue.h type-safe pseudo-polymorphic macros
 129  133   * found in BSD.
 130  134   *
 131  135   * XXX If we use these more generally, we'll have to make the names
 132  136   * less generic (HASH_* will probably clobber other namespaces).
 133  137   */
 134  138  
 135  139  #define HASH_LOCK(table, hash) \
 136  140          mutex_enter(&(table)[hash].hash_lock)
 137  141  #define HASH_UNLOCK(table, hash) \
 138  142          mutex_exit(&(table)[hash].hash_lock)
 139  143  
 140  144  #define HASH_LOCKED(table, hash) \
 141  145          MUTEX_HELD(&(table)[hash].hash_lock)
 142  146  
 143  147  #define HASH_ITERATE(var, field, table, hash)           \
 144  148          var = table[hash].hash_head; var != NULL; var = var->field.hash_next
 145  149  
 146  150  #define HASH_NEXT(var, field)           \
 147  151          (var)->field.hash_next
 148  152  
 149  153  #define HASH_INSERT(var, field, table, hash)                    \
 150  154  {                                                               \
 151  155          ASSERT(HASH_LOCKED(table, hash));                       \
 152  156          (var)->field.hash_next = (table)[hash].hash_head;       \
 153  157          (var)->field.hash_pp = &(table)[hash].hash_head;        \
 154  158          (table)[hash].hash_head = var;                          \
 155  159          if ((var)->field.hash_next != NULL)                     \
 156  160                  (var)->field.hash_next->field.hash_pp =         \
 157  161                          &((var)->field.hash_next);              \
 158  162  }
 159  163  
 160  164  
 161  165  #define HASH_UNCHAIN(var, field, table, hash)                   \
 162  166  {                                                               \
 163  167          ASSERT(MUTEX_HELD(&(table)[hash].hash_lock));           \
 164  168          HASHLIST_UNCHAIN(var, field);                           \
 165  169  }
 166  170  
 167  171  #define HASHLIST_INSERT(var, field, head)                       \
 168  172  {                                                               \
 169  173          (var)->field.hash_next = head;                          \
 170  174          (var)->field.hash_pp = &(head);                         \
 171  175          head = var;                                             \
 172  176          if ((var)->field.hash_next != NULL)                     \
 173  177                  (var)->field.hash_next->field.hash_pp =         \
 174  178                          &((var)->field.hash_next);              \
 175  179  }
 176  180  
 177  181  #define HASHLIST_UNCHAIN(var, field)                            \
 178  182  {                                                               \
 179  183          *var->field.hash_pp = var->field.hash_next;             \
 180  184          if (var->field.hash_next)                               \
 181  185                  var->field.hash_next->field.hash_pp =           \
 182  186                          var->field.hash_pp;                     \
 183  187          HASH_NULL(var, field);                                  \
 184  188  }
 185  189  
 186  190  
 187  191  #define HASH_NULL(var, field)                                   \
 188  192  {                                                               \
 189  193          var->field.hash_next = NULL;                            \
 190  194          var->field.hash_pp = NULL;                              \
 191  195  }
 192  196  
 193  197  #define HASH_LINK(fieldname, type)                              \
 194  198          struct {                                                \
 195  199                  type *hash_next;                                \
 196  200                  type **hash_pp;                                 \
 197  201          } fieldname
 198  202  
 199  203  
 200  204  #define HASH_HEAD(tag)                                          \
 201  205          struct {                                                \
 202  206                  struct tag *hash_head;                          \
 203  207                  kmutex_t hash_lock;                             \
 204  208          }
 205  209  
 206  210  
 207  211  typedef struct ipsec_policy_s ipsec_policy_t;
 208  212  
 209  213  typedef HASH_HEAD(ipsec_policy_s) ipsec_policy_hash_t;
 210  214  
 211  215  /*
 212  216   * When adding new fields to ipsec_prot_t, make sure to update
 213  217   * ipsec_in_to_out_action() as well as other code in spd.c
 214  218   */
 215  219  
 216  220  typedef struct ipsec_prot
 217  221  {
 218  222          unsigned int
 219  223                  ipp_use_ah : 1,
 220  224                  ipp_use_esp : 1,
 221  225                  ipp_use_se : 1,
 222  226                  ipp_use_unique : 1,
 223  227                  ipp_use_espa : 1,
 224  228                  ipp_pad : 27;
 225  229          uint8_t         ipp_auth_alg;            /* DOI number */
 226  230          uint8_t         ipp_encr_alg;            /* DOI number */
 227  231          uint8_t         ipp_esp_auth_alg;        /* DOI number */
 228  232          uint16_t        ipp_ah_minbits;          /* AH: min keylen */
 229  233          uint16_t        ipp_ah_maxbits;          /* AH: max keylen */
 230  234          uint16_t        ipp_espe_minbits;        /* ESP encr: min keylen */
 231  235          uint16_t        ipp_espe_maxbits;        /* ESP encr: max keylen */
 232  236          uint16_t        ipp_espa_minbits;        /* ESP auth: min keylen */
 233  237          uint16_t        ipp_espa_maxbits;        /* ESP auth: max keylen */
 234  238          uint32_t        ipp_km_proto;            /* key mgmt protocol */
 235  239          uint32_t        ipp_km_cookie;           /* key mgmt cookie */
 236  240          uint32_t        ipp_replay_depth;        /* replay window */
 237  241          /* XXX add lifetimes */
 238  242  } ipsec_prot_t;
 239  243  
 240  244  #define IPSEC_MAX_KEYBITS (0xffff)
 241  245  
 242  246  /*
 243  247   * An individual policy action, possibly a member of a chain.
 244  248   *
 245  249   * Action chains may be shared between multiple policy rules.
 246  250   *
 247  251   * With one exception (IPSEC_POLICY_LOG), a chain consists of an
 248  252   * ordered list of alternative ways to handle a packet.
 249  253   *
 250  254   * All actions are also "interned" into a hash table (to allow
 251  255   * multiple rules with the same action chain to share one copy in
 252  256   * memory).
 253  257   */
 254  258  
 255  259  typedef struct ipsec_act
 256  260  {
 257  261          uint8_t         ipa_type;
 258  262          uint8_t         ipa_log;
 259  263          union
 260  264          {
 261  265                  ipsec_prot_t    ipau_apply;
 262  266                  uint8_t         ipau_reject_type;
 263  267                  uint32_t        ipau_resolve_id; /* magic cookie */
 264  268                  uint8_t         ipau_log_type;
 265  269          } ipa_u;
 266  270  #define ipa_apply ipa_u.ipau_apply
 267  271  #define ipa_reject_type ipa_u.ipau_reject_type
 268  272  #define ipa_log_type ipa_u.ipau_log_type
 269  273  #define ipa_resolve_type ipa_u.ipau_resolve_type
 270  274  } ipsec_act_t;
 271  275  
 272  276  #define IPSEC_ACT_APPLY         0x01 /* match IPSEC_POLICY_APPLY */
 273  277  #define IPSEC_ACT_DISCARD       0x02 /* match IPSEC_POLICY_DISCARD */
 274  278  #define IPSEC_ACT_BYPASS        0x03 /* match IPSEC_POLICY_BYPASS */
 275  279  #define IPSEC_ACT_REJECT        0x04
 276  280  #define IPSEC_ACT_CLEAR         0x05
 277  281  
 278  282  typedef struct ipsec_action_s
 279  283  {
 280  284          HASH_LINK(ipa_hash, struct ipsec_action_s);
 281  285          struct ipsec_action_s   *ipa_next;      /* next alternative */
 282  286          uint32_t                ipa_refs;               /* refcount */
 283  287          ipsec_act_t             ipa_act;
 284  288          /*
 285  289           * The following bits are equivalent to an OR of bits included in the
 286  290           * ipau_apply fields of this and subsequent actions in an
 287  291           * action chain; this is an optimization for the sake of
 288  292           * ipsec_out_process() in ip.c and a few other places.
 289  293           */
 290  294          unsigned int
 291  295                  ipa_hval: 8,
 292  296                  ipa_allow_clear:1,              /* rule allows cleartext? */
 293  297                  ipa_want_ah:1,                  /* an action wants ah */
 294  298                  ipa_want_esp:1,                 /* an action wants esp */
 295  299                  ipa_want_se:1,                  /* an action wants se */
 296  300                  ipa_want_unique:1,              /* want unique sa's */
 297  301                  ipa_pad:19;
 298  302          uint32_t                ipa_ovhd;       /* per-packet encap ovhd */
 299  303  } ipsec_action_t;
 300  304  
 301  305  #define IPACT_REFHOLD(ipa) {                    \
 302  306          atomic_inc_32(&(ipa)->ipa_refs);        \
 303  307          ASSERT((ipa)->ipa_refs != 0);   \
 304  308  }
 305  309  #define IPACT_REFRELE(ipa) {                                    \
 306  310          ASSERT((ipa)->ipa_refs != 0);                           \
 307  311          membar_exit();                                          \
 308  312          if (atomic_dec_32_nv(&(ipa)->ipa_refs) == 0)    \
 309  313                  ipsec_action_free(ipa);                         \
 310  314          (ipa) = 0;                                              \
 311  315  }
 312  316  
 313  317  /*
 314  318   * For now, use a trivially sized hash table for actions.
 315  319   * In the future we can add the structure canonicalization necessary
 316  320   * to get the hash function to behave correctly..
 317  321   */
 318  322  #define IPSEC_ACTION_HASH_SIZE 1
 319  323  
 320  324  /*
 321  325   * Merged address structure, for cheezy address-family independent
 322  326   * matches in policy code.
 323  327   */
 324  328  
 325  329  typedef union ipsec_addr
 326  330  {
 327  331          in6_addr_t      ipsad_v6;
 328  332          in_addr_t       ipsad_v4;
 329  333  } ipsec_addr_t;
 330  334  
 331  335  /*
 332  336   * ipsec selector set, as used by the kernel policy structures.
 333  337   * Note that that we specify "local" and "remote"
 334  338   * rather than "source" and "destination", which allows the selectors
 335  339   * for symmetric policy rules to be shared between inbound and
 336  340   * outbound rules.
 337  341   *
 338  342   * "local" means "destination" on inbound, and "source" on outbound.
 339  343   * "remote" means "source" on inbound, and "destination" on outbound.
 340  344   * XXX if we add a fifth policy enforcement point for forwarded packets,
 341  345   * what do we do?
 342  346   *
 343  347   * The ipsl_valid mask is not done as a bitfield; this is so we
 344  348   * can use "ffs()" to find the "most interesting" valid tag.
 345  349   *
 346  350   * XXX should we have multiple types for space-conservation reasons?
 347  351   * (v4 vs v6?  prefix vs. range)?
 348  352   */
 349  353  
 350  354  typedef struct ipsec_selkey
 351  355  {
 352  356          uint32_t        ipsl_valid;             /* bitmask of valid entries */
 353  357  #define IPSL_REMOTE_ADDR                0x00000001
 354  358  #define IPSL_LOCAL_ADDR                 0x00000002
 355  359  #define IPSL_REMOTE_PORT                0x00000004
 356  360  #define IPSL_LOCAL_PORT                 0x00000008
 357  361  #define IPSL_PROTOCOL                   0x00000010
 358  362  #define IPSL_ICMP_TYPE                  0x00000020
 359  363  #define IPSL_ICMP_CODE                  0x00000040
 360  364  #define IPSL_IPV6                       0x00000080
 361  365  #define IPSL_IPV4                       0x00000100
 362  366  
 363  367  #define IPSL_WILDCARD                   0x0000007f
 364  368  
 365  369          ipsec_addr_t    ipsl_local;
 366  370          ipsec_addr_t    ipsl_remote;
 367  371          uint16_t        ipsl_lport;
 368  372          uint16_t        ipsl_rport;
 369  373          /*
 370  374           * ICMP type and code selectors. Both have an end value to
 371  375           * specify ranges, or * and *_end are equal for a single
 372  376           * value
 373  377           */
 374  378          uint8_t         ipsl_icmp_type;
 375  379          uint8_t         ipsl_icmp_type_end;
 376  380          uint8_t         ipsl_icmp_code;
 377  381          uint8_t         ipsl_icmp_code_end;
 378  382  
 379  383          uint8_t         ipsl_proto;             /* ip payload type */
 380  384          uint8_t         ipsl_local_pfxlen;      /* #bits of prefix */
 381  385          uint8_t         ipsl_remote_pfxlen;     /* #bits of prefix */
 382  386          uint8_t         ipsl_mbz;
 383  387  
 384  388          /* Insert new elements above this line */
 385  389          uint32_t        ipsl_pol_hval;
 386  390          uint32_t        ipsl_sel_hval;
 387  391  } ipsec_selkey_t;
 388  392  
 389  393  typedef struct ipsec_sel
 390  394  {
 391  395          HASH_LINK(ipsl_hash, struct ipsec_sel);
 392  396          uint32_t        ipsl_refs;              /* # refs to this sel */
 393  397          ipsec_selkey_t  ipsl_key;               /* actual selector guts */
 394  398  } ipsec_sel_t;
 395  399  
 396  400  /*
 397  401   * One policy rule.  This will be linked into a single hash chain bucket in
 398  402   * the parent rule structure.  If the selector is simple enough to
 399  403   * allow hashing, it gets filed under ipsec_policy_root_t->ipr_hash.
 400  404   * Otherwise it goes onto a linked list in ipsec_policy_root_t->ipr_nonhash[af]
 401  405   *
 402  406   * In addition, we file the rule into an avl tree keyed by the rule index.
 403  407   * (Duplicate rules are permitted; the comparison function breaks ties).
 404  408   */
 405  409  struct ipsec_policy_s
 406  410  {
 407  411          HASH_LINK(ipsp_hash, struct ipsec_policy_s);
 408  412          avl_node_t              ipsp_byid;
 409  413          uint64_t                ipsp_index;     /* unique id */
 410  414          uint32_t                ipsp_prio;      /* rule priority */
 411  415          uint32_t                ipsp_refs;
 412  416          ipsec_sel_t             *ipsp_sel;      /* selector set (shared) */
 413  417          ipsec_action_t          *ipsp_act;      /* action (may be shared) */
 414  418          netstack_t              *ipsp_netstack; /* No netstack_hold */
 415  419  };
 416  420  
 417  421  #define IPPOL_REFHOLD(ipp) {                    \
 418  422          atomic_inc_32(&(ipp)->ipsp_refs);       \
 419  423          ASSERT((ipp)->ipsp_refs != 0);          \
 420  424  }
 421  425  #define IPPOL_REFRELE(ipp) {                                    \
 422  426          ASSERT((ipp)->ipsp_refs != 0);                          \
 423  427          membar_exit();                                          \
 424  428          if (atomic_dec_32_nv(&(ipp)->ipsp_refs) == 0)   \
 425  429                  ipsec_policy_free(ipp);                         \
 426  430          (ipp) = 0;                                              \
 427  431  }
 428  432  
 429  433  #define IPPOL_UNCHAIN(php, ip)                                  \
 430  434          HASHLIST_UNCHAIN((ip), ipsp_hash);                      \
 431  435          avl_remove(&(php)->iph_rulebyid, (ip));                 \
 432  436          IPPOL_REFRELE(ip);
 433  437  
 434  438  /*
 435  439   * Policy ruleset.  One per (protocol * direction) for system policy.
 436  440   */
 437  441  
 438  442  #define IPSEC_AF_V4     0
 439  443  #define IPSEC_AF_V6     1
 440  444  #define IPSEC_NAF       2
 441  445  
 442  446  typedef struct ipsec_policy_root_s
 443  447  {
 444  448          ipsec_policy_t          *ipr_nonhash[IPSEC_NAF];
 445  449          int                     ipr_nchains;
 446  450          ipsec_policy_hash_t     *ipr_hash;
 447  451  } ipsec_policy_root_t;
 448  452  
 449  453  /*
 450  454   * Policy head.  One for system policy; there may also be one present
 451  455   * on ill_t's with interface-specific policy, as well as one present
 452  456   * for sockets with per-socket policy allocated.
 453  457   */
 454  458  
 455  459  typedef struct ipsec_policy_head_s
 456  460  {
 457  461          uint32_t        iph_refs;
 458  462          krwlock_t       iph_lock;
 459  463          uint64_t        iph_gen; /* generation number */
 460  464          ipsec_policy_root_t iph_root[IPSEC_NTYPES];
 461  465          avl_tree_t      iph_rulebyid;
 462  466  } ipsec_policy_head_t;
 463  467  
 464  468  #define IPPH_REFHOLD(iph) {                     \
 465  469          atomic_inc_32(&(iph)->iph_refs);        \
 466  470          ASSERT((iph)->iph_refs != 0);           \
 467  471  }
 468  472  #define IPPH_REFRELE(iph, ns) {                                 \
 469  473          ASSERT((iph)->iph_refs != 0);                           \
 470  474          membar_exit();                                          \
 471  475          if (atomic_dec_32_nv(&(iph)->iph_refs) == 0)    \
 472  476                  ipsec_polhead_free(iph, ns);                    \
 473  477          (iph) = 0;                                              \
 474  478  }
 475  479  
 476  480  /*
 477  481   * IPsec fragment related structures
 478  482   */
 479  483  
 480  484  typedef struct ipsec_fragcache_entry {
 481  485          struct ipsec_fragcache_entry *itpfe_next;       /* hash list chain */
 482  486          mblk_t *itpfe_fraglist;                 /* list of fragments */
 483  487          time_t itpfe_exp;                       /* time when entry is stale */
 484  488          int itpfe_depth;                        /* # of fragments in list */
 485  489          ipsec_addr_t itpfe_frag_src;
 486  490          ipsec_addr_t itpfe_frag_dst;
 487  491  #define itpfe_src itpfe_frag_src.ipsad_v4
 488  492  #define itpfe_src6 itpfe_frag_src.ipsad_v6
 489  493  #define itpfe_dst itpfe_frag_dst.ipsad_v4
 490  494  #define itpfe_dst6 itpfe_frag_dst.ipsad_v6
 491  495          uint32_t itpfe_id;                      /* IP datagram ID */
 492  496          uint8_t itpfe_proto;                    /* IP Protocol */
 493  497          uint8_t itpfe_last;                     /* Last packet */
 494  498  } ipsec_fragcache_entry_t;
 495  499  
 496  500  typedef struct ipsec_fragcache {
 497  501          kmutex_t itpf_lock;
 498  502          struct ipsec_fragcache_entry **itpf_ptr;
 499  503          struct ipsec_fragcache_entry *itpf_freelist;
 500  504          time_t itpf_expire_hint;        /* time when oldest entry is stale */
 501  505  } ipsec_fragcache_t;
 502  506  
 503  507  /*
 504  508   * Tunnel policies.  We keep a minature of the transport-mode/global policy
 505  509   * per each tunnel instance.
 506  510   *
 507  511   * People who need both an itp held down AND one of its polheads need to
 508  512   * first lock the itp, THEN the polhead, otherwise deadlock WILL occur.
 509  513   */
 510  514  typedef struct ipsec_tun_pol_s {
 511  515          avl_node_t itp_node;
 512  516          kmutex_t itp_lock;
 513  517          uint64_t itp_next_policy_index;
 514  518          ipsec_policy_head_t *itp_policy;
 515  519          ipsec_policy_head_t *itp_inactive;
 516  520          uint32_t itp_flags;
 517  521          uint32_t itp_refcnt;
 518  522          char itp_name[LIFNAMSIZ];
 519  523          ipsec_fragcache_t itp_fragcache;
 520  524  } ipsec_tun_pol_t;
 521  525  /* NOTE - Callers (tun code) synchronize their own instances for these flags. */
 522  526  #define ITPF_P_ACTIVE 0x1       /* Are we using IPsec right now? */
 523  527  #define ITPF_P_TUNNEL 0x2       /* Negotiate tunnel-mode */
 524  528  /* Optimization -> Do we have per-port security entries in this polhead? */
 525  529  #define ITPF_P_PER_PORT_SECURITY 0x4
 526  530  #define ITPF_PFLAGS 0x7
 527  531  #define ITPF_SHIFT 3
 528  532  
 529  533  #define ITPF_I_ACTIVE 0x8       /* Is the inactive using IPsec right now? */
 530  534  #define ITPF_I_TUNNEL 0x10      /* Negotiate tunnel-mode (on inactive) */
 531  535  /* Optimization -> Do we have per-port security entries in this polhead? */
 532  536  #define ITPF_I_PER_PORT_SECURITY 0x20
 533  537  #define ITPF_IFLAGS 0x38
 534  538  
 535  539  /* NOTE:  f cannot be an expression. */
 536  540  #define ITPF_CLONE(f) (f) = (((f) & ITPF_PFLAGS) | \
 537  541              (((f) & ITPF_PFLAGS) << ITPF_SHIFT));
 538  542  #define ITPF_SWAP(f) (f) = ((((f) & ITPF_PFLAGS) << ITPF_SHIFT) | \
 539  543              (((f) & ITPF_IFLAGS) >> ITPF_SHIFT))
 540  544  
 541  545  #define ITP_P_ISACTIVE(itp, iph) ((itp)->itp_flags & \
 542  546          (((itp)->itp_policy == (iph)) ? ITPF_P_ACTIVE : ITPF_I_ACTIVE))
 543  547  
 544  548  #define ITP_P_ISTUNNEL(itp, iph) ((itp)->itp_flags & \
 545  549          (((itp)->itp_policy == (iph)) ? ITPF_P_TUNNEL : ITPF_I_TUNNEL))
 546  550  
 547  551  #define ITP_P_ISPERPORT(itp, iph) ((itp)->itp_flags & \
 548  552          (((itp)->itp_policy == (iph)) ? ITPF_P_PER_PORT_SECURITY : \
 549  553          ITPF_I_PER_PORT_SECURITY))
 550  554  
 551  555  #define ITP_REFHOLD(itp) { \
 552  556          atomic_inc_32(&((itp)->itp_refcnt));    \
 553  557          ASSERT((itp)->itp_refcnt != 0); \
 554  558  }
 555  559  
 556  560  #define ITP_REFRELE(itp, ns) { \
 557  561          ASSERT((itp)->itp_refcnt != 0); \
 558  562          membar_exit(); \
 559  563          if (atomic_dec_32_nv(&((itp)->itp_refcnt)) == 0) \
 560  564                  itp_free(itp, ns); \
 561  565  }
 562  566  
 563  567  /*
 564  568   * Certificate identity.
 565  569   */
 566  570  
 567  571  typedef struct ipsid_s
 568  572  {
 569  573          struct ipsid_s *ipsid_next;
 570  574          struct ipsid_s **ipsid_ptpn;
 571  575          uint32_t        ipsid_refcnt;
 572  576          int             ipsid_type;     /* id type */
 573  577          char            *ipsid_cid;     /* certificate id string */
 574  578  } ipsid_t;
 575  579  
 576  580  /*
 577  581   * ipsid_t reference hold/release macros, just like ipsa versions.
 578  582   */
 579  583  
 580  584  #define IPSID_REFHOLD(ipsid) {                  \
 581  585          atomic_inc_32(&(ipsid)->ipsid_refcnt);  \
 582  586          ASSERT((ipsid)->ipsid_refcnt != 0);     \
 583  587  }
 584  588  
 585  589  /*
 586  590   * Decrement the reference count on the ID.  Someone else will clean up
 587  591   * after us later.
 588  592   */
 589  593  
 590  594  #define IPSID_REFRELE(ipsid) {                                  \
 591  595          membar_exit();                                          \
 592  596          atomic_dec_32(&(ipsid)->ipsid_refcnt);          \
 593  597  }
 594  598  
 595  599  /*
 596  600   * Following are the estimates of what the maximum AH and ESP header size
 597  601   * would be. This is used to tell the upper layer the right value of MSS
 598  602   * it should use without consulting AH/ESP. If the size is something
 599  603   * different from this, ULP will learn the right one through
 600  604   * ICMP_FRAGMENTATION_NEEDED messages generated locally.
 601  605   *
 602  606   * AH : 12 bytes of constant header + 32 bytes of ICV checksum (SHA-512).
 603  607   */
 604  608  #define IPSEC_MAX_AH_HDR_SIZE   (44)
 605  609  
 606  610  /*
 607  611   * ESP : Is a bit more complex...
 608  612   *
 609  613   * A system of one inequality and one equation MUST be solved for proper ESP
 610  614   * overhead.  The inequality is:
 611  615   *
 612  616   *    MTU - sizeof (IP header + options) >=
 613  617   *              sizeof (esph_t) + sizeof (IV or ctr) + data-size + 2 + ICV
 614  618   *
 615  619   * IV or counter is almost always the cipher's block size.  The equation is:
 616  620   *
 617  621   *    data-size % block-size = (block-size - 2)
 618  622   *
 619  623   * so we can put as much data into the datagram as possible.  If we are
 620  624   * pessimistic and include our largest overhead cipher (AES) and hash
 621  625   * (SHA-512), and assume 1500-byte MTU minus IPv4 overhead of 20 bytes, we get:
 622  626   *
 623  627   *    1480 >= 8 + 16 + data-size + 2 + 32
 624  628   *    1480 >= 58 + data-size
 625  629   *    1422 >= data-size,      1422 % 16 = 14, so 58 is the overhead!
 626  630   *
 627  631   * But, let's re-run the numbers with the same algorithms, but with an IPv6
 628  632   * header:
 629  633   *
 630  634   *    1460 >= 58 + data-size
 631  635   *    1402 >= data-size,     1402 % 16 = 10, meaning shrink to 1390 to get 14,
 632  636   *
 633  637   * which means the overhead is now 70.
 634  638   *
 635  639   * Hmmm... IPv4 headers can never be anything other than multiples of 4-bytes,
 636  640   * and IPv6 ones can never be anything other than multiples of 8-bytes.  We've
 637  641   * seen overheads of 58 and 70.  58 % 16 == 10, and 70 % 16 == 6.  IPv4 could
 638  642   * force us to have 62 ( % 16 == 14) or 66 ( % 16 == 2), or IPv6 could force us
 639  643   * to have 78 ( % 16 = 14).  Let's compute IPv6 + 8-bytes of options:
 640  644   *
 641  645   *    1452 >= 58 + data-size
 642  646   *    1394 >= data-size,     1394 % 16 = 2, meaning shrink to 1390 to get 14,
 643  647   *
 644  648   * Aha!  The "ESP overhead" shrinks to 62 (70 - 8).  This is good.  Let's try
 645  649   * IPv4 + 8 bytes of IPv4 options:
 646  650   *
 647  651   *    1472 >= 58 + data-size
 648  652   *    1414 >= data-size,      1414 % 16 = 6, meaning shrink to 1406,
 649  653   *
 650  654   * meaning 66 is the overhead.  Let's try 12 bytes:
 651  655   *
 652  656   *    1468 >= 58 + data-size
 653  657   *    1410 >= data-size,      1410 % 16 = 2, meaning also shrink to 1406,
 654  658   *
 655  659   * meaning 62 is the overhead.  How about 16 bytes?
 656  660   *
 657  661   *    1464 >= 58 + data-size
 658  662   *    1406 >= data-size,      1402 % 16 = 14, which is great!
 659  663   *
 660  664   * this means 58 is the overhead.  If I wrap and add 20 bytes, it looks just
 661  665   * like IPv6's 70 bytes.  If I add 24, we go back to 66 bytes.
 662  666   *
 663  667   * So picking 70 is a sensible, conservative default.  Optimal calculations
 664  668   * will depend on knowing pre-ESP header length (called "divpoint" in the ESP
 665  669   * code), which could be cached in the conn_t for connected endpoints, or
 666  670   * which must be computed on every datagram otherwise.
 667  671   */
 668  672  #define IPSEC_MAX_ESP_HDR_SIZE  (70)
 669  673  
 670  674  /*
 671  675   * Alternate, when we know the crypto block size via the SA.  Assume an ICV on
 672  676   * the SA.  Use:
 673  677   *
 674  678   * sizeof (esph_t) + 2 * (sizeof (IV/counter)) - 2 + sizeof (ICV).  The "-2"
 675  679   * discounts the overhead of the pad + padlen that gets swallowed up by the
 676  680   * second (theoretically all-pad) cipher-block.  If you use our examples of
 677  681   * AES and SHA512, you get:
 678  682   *
 679  683   *    8 + 32 - 2 + 32 == 70.
 680  684   *
 681  685   * Which is our pre-computed maximum above.
 682  686   */
 683  687  #include <inet/ipsecesp.h>
 684  688  #define IPSEC_BASE_ESP_HDR_SIZE(sa) \
 685  689          (sizeof (esph_t) + ((sa)->ipsa_iv_len << 1) - 2 + (sa)->ipsa_mac_len)
 686  690  
 687  691  /*
 688  692   * Identity hash table.
 689  693   *
 690  694   * Identities are refcounted and "interned" into the hash table.
 691  695   * Only references coming from other objects (SA's, latching state)
 692  696   * are counted in ipsid_refcnt.
 693  697   *
 694  698   * Locking: IPSID_REFHOLD is safe only when (a) the object's hash bucket
 695  699   * is locked, (b) we know that the refcount must be > 0.
 696  700   *
 697  701   * The ipsid_next and ipsid_ptpn fields are only to be referenced or
 698  702   * modified when the bucket lock is held; in particular, we only
 699  703   * delete objects while holding the bucket lock, and we only increase
 700  704   * the refcount from 0 to 1 while the bucket lock is held.
 701  705   */
 702  706  
 703  707  #define IPSID_HASHSIZE 64
 704  708  
 705  709  typedef struct ipsif_s
 706  710  {
 707  711          ipsid_t *ipsif_head;
 708  712          kmutex_t ipsif_lock;
 709  713  } ipsif_t;
 710  714  
 711  715  /*
 712  716   * For call to the kernel crypto framework. State needed during
 713  717   * the execution of a crypto request.
 714  718   */
 715  719  typedef struct ipsec_crypto_s {
 716  720          size_t          ic_skip_len;            /* len to skip for AH auth */
 717  721          crypto_data_t   ic_crypto_data;         /* single op crypto data */
 718  722          crypto_dual_data_t ic_crypto_dual_data; /* for dual ops */
 719  723          crypto_data_t   ic_crypto_mac;          /* to store the MAC */
 720  724          ipsa_cm_mech_t  ic_cmm;
 721  725  } ipsec_crypto_t;
 722  726  
 723  727  /*
 724  728   * IPsec stack instances
 725  729   */
 726  730  struct ipsec_stack {
 727  731          netstack_t              *ipsec_netstack;        /* Common netstack */
 728  732  
 729  733          /* Packet dropper for IP IPsec processing failures */
 730  734          ipdropper_t             ipsec_dropper;
 731  735  
 732  736  /* From spd.c */
 733  737          /*
 734  738           * Policy rule index generator.  We assume this won't wrap in the
 735  739           * lifetime of a system.  If we make 2^20 policy changes per second,
 736  740           * this will last 2^44 seconds, or roughly 500,000 years, so we don't
 737  741           * have to worry about reusing policy index values.
 738  742           */
 739  743          uint64_t                ipsec_next_policy_index;
 740  744  
 741  745          HASH_HEAD(ipsec_action_s) ipsec_action_hash[IPSEC_ACTION_HASH_SIZE];
 742  746          HASH_HEAD(ipsec_sel)      *ipsec_sel_hash;
 743  747          uint32_t                ipsec_spd_hashsize;
 744  748  
 745  749          ipsif_t                 ipsec_ipsid_buckets[IPSID_HASHSIZE];
 746  750  
 747  751          /*
 748  752           * Active & Inactive system policy roots
 749  753           */
 750  754          ipsec_policy_head_t     ipsec_system_policy;
 751  755          ipsec_policy_head_t     ipsec_inactive_policy;
 752  756  
 753  757          /* Packet dropper for generic SPD drops. */
 754  758          ipdropper_t             ipsec_spd_dropper;
 755  759  
 756  760  /* ipdrop.c */
 757  761          kstat_t                 *ipsec_ip_drop_kstat;
 758  762          struct ip_dropstats     *ipsec_ip_drop_types;
 759  763  
 760  764  /* spd.c */
 761  765          /*
 762  766           * Have a counter for every possible policy message in
 763  767           * ipsec_policy_failure_msgs
 764  768           */
 765  769          uint32_t                ipsec_policy_failure_count[IPSEC_POLICY_MAX];
 766  770          /* Time since last ipsec policy failure that printed a message. */
 767  771          hrtime_t                ipsec_policy_failure_last;
 768  772  
 769  773  /* ip_spd.c */
 770  774          /* stats */
 771  775          kstat_t                 *ipsec_ksp;
 772  776          struct ipsec_kstats_s   *ipsec_kstats;
 773  777  
 774  778  /* sadb.c */
 775  779          /* Packet dropper for generic SADB drops. */
 776  780          ipdropper_t             ipsec_sadb_dropper;
 777  781  
 778  782  /* spd.c */
 779  783          boolean_t               ipsec_inbound_v4_policy_present;
 780  784          boolean_t               ipsec_outbound_v4_policy_present;
 781  785          boolean_t               ipsec_inbound_v6_policy_present;
 782  786          boolean_t               ipsec_outbound_v6_policy_present;
 783  787  
 784  788  /* spd.c */
 785  789          /*
 786  790           * Because policy needs to know what algorithms are supported, keep the
 787  791           * lists of algorithms here.
 788  792           */
 789  793          krwlock_t               ipsec_alg_lock;
 790  794  
 791  795          uint8_t                 ipsec_nalgs[IPSEC_NALGTYPES];
 792  796          ipsec_alginfo_t *ipsec_alglists[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
 793  797  
 794  798          uint8_t         ipsec_sortlist[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
 795  799  
 796  800          int             ipsec_algs_exec_mode[IPSEC_NALGTYPES];
 797  801  
 798  802          uint32_t        ipsec_tun_spd_hashsize;
 799  803          /*
 800  804           * Tunnel policies - AVL tree indexed by tunnel name.
 801  805           */
 802  806          krwlock_t       ipsec_tunnel_policy_lock;
 803  807          uint64_t        ipsec_tunnel_policy_gen;
 804  808          avl_tree_t      ipsec_tunnel_policies;
 805  809  
 806  810  /* ipsec_loader.c */
 807  811          kmutex_t        ipsec_loader_lock;
 808  812          int             ipsec_loader_state;
 809  813          int             ipsec_loader_sig;
 810  814          kt_did_t        ipsec_loader_tid;
 811  815          kcondvar_t      ipsec_loader_sig_cv;    /* For loader_sig conditions. */
 812  816  
 813  817  };
 814  818  typedef struct ipsec_stack ipsec_stack_t;
 815  819  
 816  820  /* Handle the kstat_create in ip_drop_init() failing */
 817  821  #define DROPPER(_ipss, _dropper) \
 818  822          (((_ipss)->ipsec_ip_drop_types == NULL) ? NULL : \
 819  823          &((_ipss)->ipsec_ip_drop_types->_dropper))
 820  824  
 821  825  /*
 822  826   * Loader states..
 823  827   */
 824  828  #define IPSEC_LOADER_WAIT       0
 825  829  #define IPSEC_LOADER_FAILED     -1
 826  830  #define IPSEC_LOADER_SUCCEEDED  1
 827  831  
 828  832  /*
 829  833   * ipsec_loader entrypoints.
 830  834   */
 831  835  extern void ipsec_loader_init(ipsec_stack_t *);
 832  836  extern void ipsec_loader_start(ipsec_stack_t *);
 833  837  extern void ipsec_loader_destroy(ipsec_stack_t *);
 834  838  extern void ipsec_loader_loadnow(ipsec_stack_t *);
 835  839  extern boolean_t ipsec_loader_wait(queue_t *q, ipsec_stack_t *);
 836  840  extern boolean_t ipsec_loaded(ipsec_stack_t *);
 837  841  extern boolean_t ipsec_failed(ipsec_stack_t *);
 838  842  
 839  843  /*
 840  844   * ipsec policy entrypoints (spd.c)
 841  845   */
 842  846  
 843  847  extern void ipsec_policy_g_destroy(void);
 844  848  extern void ipsec_policy_g_init(void);
 845  849  
 846  850  extern mblk_t   *ipsec_add_crypto_data(mblk_t *, ipsec_crypto_t **);
 847  851  extern mblk_t   *ipsec_remove_crypto_data(mblk_t *, ipsec_crypto_t **);
 848  852  extern mblk_t   *ipsec_free_crypto_data(mblk_t *);
 849  853  extern int ipsec_alloc_table(ipsec_policy_head_t *, int, int, boolean_t,
 850  854      netstack_t *);
 851  855  extern void ipsec_polhead_init(ipsec_policy_head_t *, int);
 852  856  extern void ipsec_polhead_destroy(ipsec_policy_head_t *);
 853  857  extern void ipsec_polhead_free_table(ipsec_policy_head_t *);
 854  858  extern mblk_t *ipsec_check_global_policy(mblk_t *, conn_t *, ipha_t *,
 855  859      ip6_t *, ip_recv_attr_t *, netstack_t *ns);
 856  860  extern mblk_t *ipsec_check_inbound_policy(mblk_t *, conn_t *, ipha_t *, ip6_t *,
 857  861      ip_recv_attr_t *);
 858  862  
 859  863  extern boolean_t ipsec_in_to_out(ip_recv_attr_t *, ip_xmit_attr_t *,
 860  864      mblk_t *, ipha_t *, ip6_t *);
 861  865  extern void ipsec_in_release_refs(ip_recv_attr_t *);
 862  866  extern void ipsec_out_release_refs(ip_xmit_attr_t *);
 863  867  extern void ipsec_log_policy_failure(int, char *, ipha_t *, ip6_t *, boolean_t,
 864  868      netstack_t *);
 865  869  extern boolean_t ipsec_inbound_accept_clear(mblk_t *, ipha_t *, ip6_t *);
 866  870  extern int ipsec_conn_cache_policy(conn_t *, boolean_t);
 867  871  extern void ipsec_cache_outbound_policy(const conn_t *, const in6_addr_t *,
 868  872      const in6_addr_t *, in_port_t, ip_xmit_attr_t *);
 869  873  extern boolean_t ipsec_outbound_policy_current(ip_xmit_attr_t *);
 870  874  extern ipsec_action_t *ipsec_in_to_out_action(ip_recv_attr_t *);
 871  875  extern void ipsec_latch_inbound(conn_t *connp, ip_recv_attr_t *ira);
 872  876  
 873  877  extern void ipsec_policy_free(ipsec_policy_t *);
 874  878  extern void ipsec_action_free(ipsec_action_t *);
 875  879  extern void ipsec_polhead_free(ipsec_policy_head_t *, netstack_t *);
 876  880  extern ipsec_policy_head_t *ipsec_polhead_split(ipsec_policy_head_t *,
 877  881      netstack_t *);
 878  882  extern ipsec_policy_head_t *ipsec_polhead_create(void);
 879  883  extern ipsec_policy_head_t *ipsec_system_policy(netstack_t *);
 880  884  extern ipsec_policy_head_t *ipsec_inactive_policy(netstack_t *);
 881  885  extern void ipsec_swap_policy(ipsec_policy_head_t *, ipsec_policy_head_t *,
 882  886      netstack_t *);
 883  887  extern void ipsec_swap_global_policy(netstack_t *);
 884  888  
 885  889  extern int ipsec_clone_system_policy(netstack_t *);
 886  890  extern ipsec_policy_t *ipsec_policy_create(ipsec_selkey_t *,
 887  891      const ipsec_act_t *, int, int, uint64_t *, netstack_t *);
 888  892  extern boolean_t ipsec_policy_delete(ipsec_policy_head_t *,
 889  893      ipsec_selkey_t *, int, netstack_t *);
 890  894  extern int ipsec_policy_delete_index(ipsec_policy_head_t *, uint64_t,
 891  895      netstack_t *);
 892  896  extern boolean_t ipsec_polhead_insert(ipsec_policy_head_t *, ipsec_act_t *,
 893  897      uint_t, int, int, netstack_t *);
 894  898  extern void ipsec_polhead_flush(ipsec_policy_head_t *, netstack_t *);
 895  899  extern int ipsec_copy_polhead(ipsec_policy_head_t *, ipsec_policy_head_t *,
 896  900      netstack_t *);
 897  901  extern void ipsec_actvec_from_req(const ipsec_req_t *, ipsec_act_t **, uint_t *,
 898  902      netstack_t *);
 899  903  extern void ipsec_actvec_free(ipsec_act_t *, uint_t);
 900  904  extern int ipsec_req_from_head(ipsec_policy_head_t *, ipsec_req_t *, int);
 901  905  extern mblk_t *ipsec_construct_inverse_acquire(sadb_msg_t *, sadb_ext_t **,
 902  906      netstack_t *);
 903  907  extern ipsec_policy_t *ipsec_find_policy(int, const conn_t *,
 904  908      ipsec_selector_t *, netstack_t *);
 905  909  extern ipsid_t *ipsid_lookup(int, char *, netstack_t *);
 906  910  extern boolean_t ipsid_equal(ipsid_t *, ipsid_t *);
 907  911  extern void ipsid_gc(netstack_t *);
 908  912  extern void ipsec_latch_ids(ipsec_latch_t *, ipsid_t *, ipsid_t *);
 909  913  
 910  914  extern void ipsec_config_flush(netstack_t *);
 911  915  extern boolean_t ipsec_check_policy(ipsec_policy_head_t *, ipsec_policy_t *,
 912  916      int);
 913  917  extern void ipsec_enter_policy(ipsec_policy_head_t *, ipsec_policy_t *, int,
 914  918      netstack_t *);
 915  919  extern boolean_t ipsec_check_action(ipsec_act_t *, int *, netstack_t *);
 916  920  
 917  921  extern void iplatch_free(ipsec_latch_t *);
 918  922  extern ipsec_latch_t *iplatch_create(void);
 919  923  extern int ipsec_set_req(cred_t *, conn_t *, ipsec_req_t *);
 920  924  
 921  925  extern void ipsec_insert_always(avl_tree_t *tree, void *new_node);
 922  926  
 923  927  extern int32_t ipsec_act_ovhd(const ipsec_act_t *act);
 924  928  extern mblk_t *sadb_whack_label(mblk_t *, ipsa_t *, ip_xmit_attr_t *,
 925  929      kstat_named_t *, ipdropper_t *);
 926  930  extern mblk_t *sadb_whack_label_v4(mblk_t *, ipsa_t *, kstat_named_t *,
 927  931      ipdropper_t *);
 928  932  extern mblk_t *sadb_whack_label_v6(mblk_t *, ipsa_t *, kstat_named_t *,
 929  933      ipdropper_t *);
 930  934  extern boolean_t update_iv(uint8_t *, queue_t *, ipsa_t *, ipsecesp_stack_t *);
 931  935  
 932  936  /*
 933  937   * Tunnel-support SPD functions and variables.
 934  938   */
 935  939  struct iptun_s; /* Defined in inet/iptun/iptun_impl.h. */
 936  940  extern mblk_t *ipsec_tun_inbound(ip_recv_attr_t *, mblk_t *,  ipsec_tun_pol_t *,
 937  941      ipha_t *, ip6_t *, ipha_t *, ip6_t *, int, netstack_t *);
 938  942  extern mblk_t *ipsec_tun_outbound(mblk_t *, struct iptun_s *, ipha_t *,
 939  943      ip6_t *, ipha_t *, ip6_t *, int, ip_xmit_attr_t *);
 940  944  extern void itp_free(ipsec_tun_pol_t *, netstack_t *);
 941  945  extern ipsec_tun_pol_t *create_tunnel_policy(char *, int *, uint64_t *,
 942  946      netstack_t *);
 943  947  extern ipsec_tun_pol_t *get_tunnel_policy(char *, netstack_t *);
 944  948  extern void itp_unlink(ipsec_tun_pol_t *, netstack_t *);
 945  949  extern void itp_walk(void (*)(ipsec_tun_pol_t *, void *, netstack_t *),
 946  950      void *, netstack_t *);
 947  951  
 948  952  extern ipsec_tun_pol_t *itp_get_byaddr(uint32_t *, uint32_t *, int,
 949  953      ip_stack_t *);
 950  954  
 951  955  /*
 952  956   * IPsec AH/ESP functions called from IP or the common SADB code in AH.
 953  957   */
 954  958  
 955  959  extern void ipsecah_in_assocfailure(mblk_t *, char, ushort_t, char *,
 956  960      uint32_t, void *, int, ip_recv_attr_t *ira);
 957  961  extern void ipsecesp_in_assocfailure(mblk_t *, char, ushort_t, char *,
 958  962      uint32_t, void *, int, ip_recv_attr_t *ira);
 959  963  extern void ipsecesp_send_keepalive(ipsa_t *);
 960  964  
 961  965  /*
 962  966   * Algorithm management helper functions.
 963  967   */
 964  968  extern boolean_t ipsec_valid_key_size(uint16_t, ipsec_alginfo_t *);
 965  969  
 966  970  /*
 967  971   * Per-socket policy, for now, takes precedence... this priority value
 968  972   * insures it.
 969  973   */
 970  974  #define IPSEC_PRIO_SOCKET               0x1000000
 971  975  
 972  976  /* DDI initialization functions. */
 973  977  extern  boolean_t    ipsecesp_ddi_init(void);
 974  978  extern  boolean_t    ipsecah_ddi_init(void);
 975  979  extern  boolean_t    keysock_ddi_init(void);
 976  980  extern  boolean_t    spdsock_ddi_init(void);
 977  981  
 978  982  extern  void    ipsecesp_ddi_destroy(void);
 979  983  extern  void    ipsecah_ddi_destroy(void);
 980  984  extern  void    keysock_ddi_destroy(void);
 981  985  extern  void    spdsock_ddi_destroy(void);
 982  986  
 983  987  /*
 984  988   * AH- and ESP-specific functions that are called directly by other modules.
 985  989   */
 986  990  extern void ipsecah_fill_defs(struct sadb_x_ecomb *, netstack_t *);
 987  991  extern void ipsecesp_fill_defs(struct sadb_x_ecomb *, netstack_t *);
 988  992  extern void ipsecah_algs_changed(netstack_t *);
 989  993  extern void ipsecesp_algs_changed(netstack_t *);
 990  994  extern void ipsecesp_init_funcs(ipsa_t *);
 991  995  extern void ipsecah_init_funcs(ipsa_t *);
 992  996  extern mblk_t *ipsecah_icmp_error(mblk_t *, ip_recv_attr_t *);
 993  997  extern mblk_t *ipsecesp_icmp_error(mblk_t *, ip_recv_attr_t *);
 994  998  
 995  999  /*
 996 1000   * spdsock functions that are called directly by IP.
 997 1001   */
 998 1002  extern void spdsock_update_pending_algs(netstack_t *);
 999 1003  
1000 1004  /*
1001 1005   * IP functions that are called from AH and ESP.
1002 1006   */
1003 1007  extern boolean_t ipsec_outbound_sa(mblk_t *, ip_xmit_attr_t *, uint_t);
1004 1008  extern mblk_t *ipsec_inbound_esp_sa(mblk_t *, ip_recv_attr_t *, esph_t **);
1005 1009  extern mblk_t *ipsec_inbound_ah_sa(mblk_t *, ip_recv_attr_t *, ah_t **);
1006 1010  extern ipsec_policy_t *ipsec_find_policy_head(ipsec_policy_t *,
1007 1011      ipsec_policy_head_t *, int, ipsec_selector_t *);
1008 1012  
1009 1013  /*
1010 1014   * IP dropper init/destroy.
1011 1015   */
1012 1016  void ip_drop_init(ipsec_stack_t *);
1013 1017  void ip_drop_destroy(ipsec_stack_t *);
1014 1018  
1015 1019  /*
1016 1020   * Common functions
1017 1021   */
1018 1022  extern boolean_t ip_addr_match(uint8_t *, int, in6_addr_t *);
1019 1023  extern boolean_t ipsec_label_match(ts_label_t *, ts_label_t *);
1020 1024  
1021 1025  /*
1022 1026   * AH and ESP counters types.
1023 1027   */
1024 1028  typedef uint32_t ah_counter;
1025 1029  typedef uint32_t esp_counter;
1026 1030  
1027 1031  #endif /* _KERNEL */
1028 1032  
1029 1033  #ifdef  __cplusplus
1030 1034  }
1031 1035  #endif
1032 1036  
1033 1037  #endif  /* _INET_IPSEC_IMPL_H */
  
    | 
      ↓ open down ↓ | 
    911 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX