1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
  25  * Copyright 2017 Joyent, Inc.
  26  */
  27 
  28 #ifndef _INET_IPSEC_IMPL_H
  29 #define _INET_IPSEC_IMPL_H
  30 
  31 #include <inet/ip.h>
  32 #include <inet/ipdrop.h>
  33 
  34 #ifdef  __cplusplus
  35 extern "C" {
  36 #endif
  37 
  38 #define IPSEC_CONF_SRC_ADDRESS  0       /* Source Address */
  39 #define IPSEC_CONF_SRC_PORT             1       /* Source Port */
  40 #define IPSEC_CONF_DST_ADDRESS  2       /* Dest Address */
  41 #define IPSEC_CONF_DST_PORT             3       /* Dest Port */
  42 #define IPSEC_CONF_SRC_MASK             4       /* Source Address Mask */
  43 #define IPSEC_CONF_DST_MASK             5       /* Destination Address Mask */
  44 #define IPSEC_CONF_ULP                  6       /* Upper layer Port */
  45 #define IPSEC_CONF_IPSEC_PROT   7       /* AH or ESP or AH_ESP */
  46 #define IPSEC_CONF_IPSEC_AALGS  8       /* Auth Algorithms - MD5 etc. */
  47 #define IPSEC_CONF_IPSEC_EALGS  9       /* Encr Algorithms - DES etc. */
  48 #define IPSEC_CONF_IPSEC_EAALGS 10      /* Encr Algorithms - MD5 etc. */
  49 #define IPSEC_CONF_IPSEC_SA             11      /* Shared or unique SA */
  50 #define IPSEC_CONF_IPSEC_DIR            12      /* Direction of traffic */
  51 #define IPSEC_CONF_ICMP_TYPE            13      /* ICMP type */
  52 #define IPSEC_CONF_ICMP_CODE            14      /* ICMP code */
  53 #define IPSEC_CONF_NEGOTIATE            15      /* Negotiation */
  54 #define IPSEC_CONF_TUNNEL               16      /* Tunnel */
  55 
  56 /* Type of an entry */
  57 
  58 #define IPSEC_NTYPES                    0x02
  59 #define IPSEC_TYPE_OUTBOUND             0x00
  60 #define IPSEC_TYPE_INBOUND              0x01
  61 
  62 /* Policy */
  63 #define IPSEC_POLICY_APPLY      0x01
  64 #define IPSEC_POLICY_DISCARD    0x02
  65 #define IPSEC_POLICY_BYPASS     0x03
  66 
  67 /* Shared or unique SA */
  68 #define IPSEC_SHARED_SA         0x01
  69 #define IPSEC_UNIQUE_SA         0x02
  70 
  71 /* IPsec protocols and combinations */
  72 #define IPSEC_AH_ONLY           0x01
  73 #define IPSEC_ESP_ONLY          0x02
  74 #define IPSEC_AH_ESP            0x03
  75 
  76 /*
  77  * Internally defined "any" algorithm.
  78  * Move to PF_KEY v3 when that RFC is released.
  79  */
  80 #define SADB_AALG_ANY 255
  81 
  82 #ifdef _KERNEL
  83 
  84 #include <inet/common.h>
  85 #include <netinet/ip6.h>
  86 #include <netinet/icmp6.h>
  87 #include <net/pfkeyv2.h>
  88 #include <inet/ip.h>
  89 #include <inet/sadb.h>
  90 #include <inet/ipsecah.h>
  91 #include <inet/ipsecesp.h>
  92 #include <sys/crypto/common.h>
  93 #include <sys/crypto/api.h>
  94 #include <sys/avl.h>
  95 
  96 /*
  97  * Maximum number of authentication algorithms (can be indexed by one byte
  98  * per PF_KEY and the IKE IPsec DOI.
  99  */
 100 #define MAX_AALGS 256
 101 
 102 /*
 103  * IPsec task queue constants.
 104  */
 105 #define IPSEC_TASKQ_MIN 10
 106 #define IPSEC_TASKQ_MAX 20
 107 
 108 /*
 109  * So we can access IPsec global variables that live in keysock.c.
 110  */
 111 extern boolean_t keysock_extended_reg(netstack_t *);
 112 extern uint32_t keysock_next_seq(netstack_t *);
 113 
 114 /* Common-code for spdsock and keysock. */
 115 extern void keysock_spdsock_wput_iocdata(queue_t *, mblk_t *, sa_family_t);
 116 
 117 /*
 118  * Locking for ipsec policy rules:
 119  *
 120  * policy heads: system policy is static; per-conn polheads are dynamic,
 121  * and refcounted (and inherited); use atomic refcounts and "don't let
 122  * go with both hands".
 123  *
 124  * policy: refcounted; references from polhead, ipsec_out
 125  *
 126  * actions: refcounted; referenced from: action hash table, policy, ipsec_out
 127  * selectors: refcounted; referenced from: selector hash table, policy.
 128  */
 129 
 130 /*
 131  * the following are inspired by, but not directly based on,
 132  * some of the sys/queue.h type-safe pseudo-polymorphic macros
 133  * found in BSD.
 134  *
 135  * XXX If we use these more generally, we'll have to make the names
 136  * less generic (HASH_* will probably clobber other namespaces).
 137  */
 138 
 139 #define HASH_LOCK(table, hash) \
 140         mutex_enter(&(table)[hash].hash_lock)
 141 #define HASH_UNLOCK(table, hash) \
 142         mutex_exit(&(table)[hash].hash_lock)
 143 
 144 #define HASH_LOCKED(table, hash) \
 145         MUTEX_HELD(&(table)[hash].hash_lock)
 146 
 147 #define HASH_ITERATE(var, field, table, hash)           \
 148         var = table[hash].hash_head; var != NULL; var = var->field.hash_next
 149 
 150 #define HASH_NEXT(var, field)           \
 151         (var)->field.hash_next
 152 
 153 #define HASH_INSERT(var, field, table, hash)                    \
 154 {                                                               \
 155         ASSERT(HASH_LOCKED(table, hash));                       \
 156         (var)->field.hash_next = (table)[hash].hash_head;    \
 157         (var)->field.hash_pp = &(table)[hash].hash_head; \
 158         (table)[hash].hash_head = var;                          \
 159         if ((var)->field.hash_next != NULL)                  \
 160                 (var)->field.hash_next->field.hash_pp =   \
 161                         &((var)->field.hash_next);               \
 162 }
 163 
 164 
 165 #define HASH_UNCHAIN(var, field, table, hash)                   \
 166 {                                                               \
 167         ASSERT(MUTEX_HELD(&(table)[hash].hash_lock));               \
 168         HASHLIST_UNCHAIN(var, field);                           \
 169 }
 170 
 171 #define HASHLIST_INSERT(var, field, head)                       \
 172 {                                                               \
 173         (var)->field.hash_next = head;                               \
 174         (var)->field.hash_pp = &(head);                          \
 175         head = var;                                             \
 176         if ((var)->field.hash_next != NULL)                  \
 177                 (var)->field.hash_next->field.hash_pp =   \
 178                         &((var)->field.hash_next);               \
 179 }
 180 
 181 #define HASHLIST_UNCHAIN(var, field)                            \
 182 {                                                               \
 183         *var->field.hash_pp = var->field.hash_next;               \
 184         if (var->field.hash_next)                            \
 185                 var->field.hash_next->field.hash_pp =             \
 186                         var->field.hash_pp;                  \
 187         HASH_NULL(var, field);                                  \
 188 }
 189 
 190 
 191 #define HASH_NULL(var, field)                                   \
 192 {                                                               \
 193         var->field.hash_next = NULL;                         \
 194         var->field.hash_pp = NULL;                           \
 195 }
 196 
 197 #define HASH_LINK(fieldname, type)                              \
 198         struct {                                                \
 199                 type *hash_next;                                \
 200                 type **hash_pp;                                 \
 201         } fieldname
 202 
 203 
 204 #define HASH_HEAD(tag)                                          \
 205         struct {                                                \
 206                 struct tag *hash_head;                          \
 207                 kmutex_t hash_lock;                             \
 208         }
 209 
 210 
 211 typedef struct ipsec_policy_s ipsec_policy_t;
 212 
 213 typedef HASH_HEAD(ipsec_policy_s) ipsec_policy_hash_t;
 214 
 215 /*
 216  * When adding new fields to ipsec_prot_t, make sure to update
 217  * ipsec_in_to_out_action() as well as other code in spd.c
 218  */
 219 
 220 typedef struct ipsec_prot
 221 {
 222         unsigned int
 223                 ipp_use_ah : 1,
 224                 ipp_use_esp : 1,
 225                 ipp_use_se : 1,
 226                 ipp_use_unique : 1,
 227                 ipp_use_espa : 1,
 228                 ipp_pad : 27;
 229         uint8_t         ipp_auth_alg;            /* DOI number */
 230         uint8_t         ipp_encr_alg;            /* DOI number */
 231         uint8_t         ipp_esp_auth_alg;        /* DOI number */
 232         uint16_t        ipp_ah_minbits;          /* AH: min keylen */
 233         uint16_t        ipp_ah_maxbits;          /* AH: max keylen */
 234         uint16_t        ipp_espe_minbits;        /* ESP encr: min keylen */
 235         uint16_t        ipp_espe_maxbits;        /* ESP encr: max keylen */
 236         uint16_t        ipp_espa_minbits;        /* ESP auth: min keylen */
 237         uint16_t        ipp_espa_maxbits;        /* ESP auth: max keylen */
 238         uint32_t        ipp_km_proto;            /* key mgmt protocol */
 239         uint32_t        ipp_km_cookie;           /* key mgmt cookie */
 240         uint32_t        ipp_replay_depth;        /* replay window */
 241         /* XXX add lifetimes */
 242 } ipsec_prot_t;
 243 
 244 #define IPSEC_MAX_KEYBITS (0xffff)
 245 
 246 /*
 247  * An individual policy action, possibly a member of a chain.
 248  *
 249  * Action chains may be shared between multiple policy rules.
 250  *
 251  * With one exception (IPSEC_POLICY_LOG), a chain consists of an
 252  * ordered list of alternative ways to handle a packet.
 253  *
 254  * All actions are also "interned" into a hash table (to allow
 255  * multiple rules with the same action chain to share one copy in
 256  * memory).
 257  */
 258 
 259 typedef struct ipsec_act
 260 {
 261         uint8_t         ipa_type;
 262         uint8_t         ipa_log;
 263         union
 264         {
 265                 ipsec_prot_t    ipau_apply;
 266                 uint8_t         ipau_reject_type;
 267                 uint32_t        ipau_resolve_id; /* magic cookie */
 268                 uint8_t         ipau_log_type;
 269         } ipa_u;
 270 #define ipa_apply ipa_u.ipau_apply
 271 #define ipa_reject_type ipa_u.ipau_reject_type
 272 #define ipa_log_type ipa_u.ipau_log_type
 273 #define ipa_resolve_type ipa_u.ipau_resolve_type
 274 } ipsec_act_t;
 275 
 276 #define IPSEC_ACT_APPLY         0x01 /* match IPSEC_POLICY_APPLY */
 277 #define IPSEC_ACT_DISCARD       0x02 /* match IPSEC_POLICY_DISCARD */
 278 #define IPSEC_ACT_BYPASS        0x03 /* match IPSEC_POLICY_BYPASS */
 279 #define IPSEC_ACT_REJECT        0x04
 280 #define IPSEC_ACT_CLEAR         0x05
 281 
 282 typedef struct ipsec_action_s
 283 {
 284         HASH_LINK(ipa_hash, struct ipsec_action_s);
 285         struct ipsec_action_s   *ipa_next;      /* next alternative */
 286         uint32_t                ipa_refs;               /* refcount */
 287         ipsec_act_t             ipa_act;
 288         /*
 289          * The following bits are equivalent to an OR of bits included in the
 290          * ipau_apply fields of this and subsequent actions in an
 291          * action chain; this is an optimization for the sake of
 292          * ipsec_out_process() in ip.c and a few other places.
 293          */
 294         unsigned int
 295                 ipa_hval: 8,
 296                 ipa_allow_clear:1,              /* rule allows cleartext? */
 297                 ipa_want_ah:1,                  /* an action wants ah */
 298                 ipa_want_esp:1,                 /* an action wants esp */
 299                 ipa_want_se:1,                  /* an action wants se */
 300                 ipa_want_unique:1,              /* want unique sa's */
 301                 ipa_pad:19;
 302         uint32_t                ipa_ovhd;       /* per-packet encap ovhd */
 303 } ipsec_action_t;
 304 
 305 #define IPACT_REFHOLD(ipa) {                    \
 306         atomic_inc_32(&(ipa)->ipa_refs); \
 307         ASSERT((ipa)->ipa_refs != 0);        \
 308 }
 309 #define IPACT_REFRELE(ipa) {                                    \
 310         ASSERT((ipa)->ipa_refs != 0);                                \
 311         membar_exit();                                          \
 312         if (atomic_dec_32_nv(&(ipa)->ipa_refs) == 0)     \
 313                 ipsec_action_free(ipa);                         \
 314         (ipa) = 0;                                              \
 315 }
 316 
 317 /*
 318  * For now, use a trivially sized hash table for actions.
 319  * In the future we can add the structure canonicalization necessary
 320  * to get the hash function to behave correctly..
 321  */
 322 #define IPSEC_ACTION_HASH_SIZE 1
 323 
 324 /*
 325  * Merged address structure, for cheezy address-family independent
 326  * matches in policy code.
 327  */
 328 
 329 typedef union ipsec_addr
 330 {
 331         in6_addr_t      ipsad_v6;
 332         in_addr_t       ipsad_v4;
 333 } ipsec_addr_t;
 334 
 335 /*
 336  * ipsec selector set, as used by the kernel policy structures.
 337  * Note that that we specify "local" and "remote"
 338  * rather than "source" and "destination", which allows the selectors
 339  * for symmetric policy rules to be shared between inbound and
 340  * outbound rules.
 341  *
 342  * "local" means "destination" on inbound, and "source" on outbound.
 343  * "remote" means "source" on inbound, and "destination" on outbound.
 344  * XXX if we add a fifth policy enforcement point for forwarded packets,
 345  * what do we do?
 346  *
 347  * The ipsl_valid mask is not done as a bitfield; this is so we
 348  * can use "ffs()" to find the "most interesting" valid tag.
 349  *
 350  * XXX should we have multiple types for space-conservation reasons?
 351  * (v4 vs v6?  prefix vs. range)?
 352  */
 353 
 354 typedef struct ipsec_selkey
 355 {
 356         uint32_t        ipsl_valid;             /* bitmask of valid entries */
 357 #define IPSL_REMOTE_ADDR                0x00000001
 358 #define IPSL_LOCAL_ADDR                 0x00000002
 359 #define IPSL_REMOTE_PORT                0x00000004
 360 #define IPSL_LOCAL_PORT                 0x00000008
 361 #define IPSL_PROTOCOL                   0x00000010
 362 #define IPSL_ICMP_TYPE                  0x00000020
 363 #define IPSL_ICMP_CODE                  0x00000040
 364 #define IPSL_IPV6                       0x00000080
 365 #define IPSL_IPV4                       0x00000100
 366 
 367 #define IPSL_WILDCARD                   0x0000007f
 368 
 369         ipsec_addr_t    ipsl_local;
 370         ipsec_addr_t    ipsl_remote;
 371         uint16_t        ipsl_lport;
 372         uint16_t        ipsl_rport;
 373         /*
 374          * ICMP type and code selectors. Both have an end value to
 375          * specify ranges, or * and *_end are equal for a single
 376          * value
 377          */
 378         uint8_t         ipsl_icmp_type;
 379         uint8_t         ipsl_icmp_type_end;
 380         uint8_t         ipsl_icmp_code;
 381         uint8_t         ipsl_icmp_code_end;
 382 
 383         uint8_t         ipsl_proto;             /* ip payload type */
 384         uint8_t         ipsl_local_pfxlen;      /* #bits of prefix */
 385         uint8_t         ipsl_remote_pfxlen;     /* #bits of prefix */
 386         uint8_t         ipsl_mbz;
 387 
 388         /* Insert new elements above this line */
 389         uint32_t        ipsl_pol_hval;
 390         uint32_t        ipsl_sel_hval;
 391 } ipsec_selkey_t;
 392 
 393 typedef struct ipsec_sel
 394 {
 395         HASH_LINK(ipsl_hash, struct ipsec_sel);
 396         uint32_t        ipsl_refs;              /* # refs to this sel */
 397         ipsec_selkey_t  ipsl_key;               /* actual selector guts */
 398 } ipsec_sel_t;
 399 
 400 /*
 401  * One policy rule.  This will be linked into a single hash chain bucket in
 402  * the parent rule structure.  If the selector is simple enough to
 403  * allow hashing, it gets filed under ipsec_policy_root_t->ipr_hash.
 404  * Otherwise it goes onto a linked list in ipsec_policy_root_t->ipr_nonhash[af]
 405  *
 406  * In addition, we file the rule into an avl tree keyed by the rule index.
 407  * (Duplicate rules are permitted; the comparison function breaks ties).
 408  */
 409 struct ipsec_policy_s
 410 {
 411         HASH_LINK(ipsp_hash, struct ipsec_policy_s);
 412         avl_node_t              ipsp_byid;
 413         uint64_t                ipsp_index;     /* unique id */
 414         uint32_t                ipsp_prio;      /* rule priority */
 415         uint32_t                ipsp_refs;
 416         ipsec_sel_t             *ipsp_sel;      /* selector set (shared) */
 417         ipsec_action_t          *ipsp_act;      /* action (may be shared) */
 418         netstack_t              *ipsp_netstack; /* No netstack_hold */
 419 };
 420 
 421 #define IPPOL_REFHOLD(ipp) {                    \
 422         atomic_inc_32(&(ipp)->ipsp_refs);        \
 423         ASSERT((ipp)->ipsp_refs != 0);               \
 424 }
 425 #define IPPOL_REFRELE(ipp) {                                    \
 426         ASSERT((ipp)->ipsp_refs != 0);                               \
 427         membar_exit();                                          \
 428         if (atomic_dec_32_nv(&(ipp)->ipsp_refs) == 0)    \
 429                 ipsec_policy_free(ipp);                         \
 430         (ipp) = 0;                                              \
 431 }
 432 
 433 #define IPPOL_UNCHAIN(php, ip)                                  \
 434         HASHLIST_UNCHAIN((ip), ipsp_hash);                      \
 435         avl_remove(&(php)->iph_rulebyid, (ip));                  \
 436         IPPOL_REFRELE(ip);
 437 
 438 /*
 439  * Policy ruleset.  One per (protocol * direction) for system policy.
 440  */
 441 
 442 #define IPSEC_AF_V4     0
 443 #define IPSEC_AF_V6     1
 444 #define IPSEC_NAF       2
 445 
 446 typedef struct ipsec_policy_root_s
 447 {
 448         ipsec_policy_t          *ipr_nonhash[IPSEC_NAF];
 449         int                     ipr_nchains;
 450         ipsec_policy_hash_t     *ipr_hash;
 451 } ipsec_policy_root_t;
 452 
 453 /*
 454  * Policy head.  One for system policy; there may also be one present
 455  * on ill_t's with interface-specific policy, as well as one present
 456  * for sockets with per-socket policy allocated.
 457  */
 458 
 459 typedef struct ipsec_policy_head_s
 460 {
 461         uint32_t        iph_refs;
 462         krwlock_t       iph_lock;
 463         uint64_t        iph_gen; /* generation number */
 464         ipsec_policy_root_t iph_root[IPSEC_NTYPES];
 465         avl_tree_t      iph_rulebyid;
 466 } ipsec_policy_head_t;
 467 
 468 #define IPPH_REFHOLD(iph) {                     \
 469         atomic_inc_32(&(iph)->iph_refs); \
 470         ASSERT((iph)->iph_refs != 0);                \
 471 }
 472 #define IPPH_REFRELE(iph, ns) {                                 \
 473         ASSERT((iph)->iph_refs != 0);                                \
 474         membar_exit();                                          \
 475         if (atomic_dec_32_nv(&(iph)->iph_refs) == 0)     \
 476                 ipsec_polhead_free(iph, ns);                    \
 477         (iph) = 0;                                              \
 478 }
 479 
 480 /*
 481  * IPsec fragment related structures
 482  */
 483 
 484 typedef struct ipsec_fragcache_entry {
 485         struct ipsec_fragcache_entry *itpfe_next;       /* hash list chain */
 486         mblk_t *itpfe_fraglist;                 /* list of fragments */
 487         time_t itpfe_exp;                       /* time when entry is stale */
 488         int itpfe_depth;                        /* # of fragments in list */
 489         ipsec_addr_t itpfe_frag_src;
 490         ipsec_addr_t itpfe_frag_dst;
 491 #define itpfe_src itpfe_frag_src.ipsad_v4
 492 #define itpfe_src6 itpfe_frag_src.ipsad_v6
 493 #define itpfe_dst itpfe_frag_dst.ipsad_v4
 494 #define itpfe_dst6 itpfe_frag_dst.ipsad_v6
 495         uint32_t itpfe_id;                      /* IP datagram ID */
 496         uint8_t itpfe_proto;                    /* IP Protocol */
 497         uint8_t itpfe_last;                     /* Last packet */
 498 } ipsec_fragcache_entry_t;
 499 
 500 typedef struct ipsec_fragcache {
 501         kmutex_t itpf_lock;
 502         struct ipsec_fragcache_entry **itpf_ptr;
 503         struct ipsec_fragcache_entry *itpf_freelist;
 504         time_t itpf_expire_hint;        /* time when oldest entry is stale */
 505 } ipsec_fragcache_t;
 506 
 507 /*
 508  * Tunnel policies.  We keep a minature of the transport-mode/global policy
 509  * per each tunnel instance.
 510  *
 511  * People who need both an itp held down AND one of its polheads need to
 512  * first lock the itp, THEN the polhead, otherwise deadlock WILL occur.
 513  */
 514 typedef struct ipsec_tun_pol_s {
 515         avl_node_t itp_node;
 516         kmutex_t itp_lock;
 517         uint64_t itp_next_policy_index;
 518         ipsec_policy_head_t *itp_policy;
 519         ipsec_policy_head_t *itp_inactive;
 520         uint32_t itp_flags;
 521         uint32_t itp_refcnt;
 522         char itp_name[LIFNAMSIZ];
 523         ipsec_fragcache_t itp_fragcache;
 524 } ipsec_tun_pol_t;
 525 /* NOTE - Callers (tun code) synchronize their own instances for these flags. */
 526 #define ITPF_P_ACTIVE 0x1       /* Are we using IPsec right now? */
 527 #define ITPF_P_TUNNEL 0x2       /* Negotiate tunnel-mode */
 528 /* Optimization -> Do we have per-port security entries in this polhead? */
 529 #define ITPF_P_PER_PORT_SECURITY 0x4
 530 #define ITPF_PFLAGS 0x7
 531 #define ITPF_SHIFT 3
 532 
 533 #define ITPF_I_ACTIVE 0x8       /* Is the inactive using IPsec right now? */
 534 #define ITPF_I_TUNNEL 0x10      /* Negotiate tunnel-mode (on inactive) */
 535 /* Optimization -> Do we have per-port security entries in this polhead? */
 536 #define ITPF_I_PER_PORT_SECURITY 0x20
 537 #define ITPF_IFLAGS 0x38
 538 
 539 /* NOTE:  f cannot be an expression. */
 540 #define ITPF_CLONE(f) (f) = (((f) & ITPF_PFLAGS) | \
 541             (((f) & ITPF_PFLAGS) << ITPF_SHIFT));
 542 #define ITPF_SWAP(f) (f) = ((((f) & ITPF_PFLAGS) << ITPF_SHIFT) | \
 543             (((f) & ITPF_IFLAGS) >> ITPF_SHIFT))
 544 
 545 #define ITP_P_ISACTIVE(itp, iph) ((itp)->itp_flags & \
 546         (((itp)->itp_policy == (iph)) ? ITPF_P_ACTIVE : ITPF_I_ACTIVE))
 547 
 548 #define ITP_P_ISTUNNEL(itp, iph) ((itp)->itp_flags & \
 549         (((itp)->itp_policy == (iph)) ? ITPF_P_TUNNEL : ITPF_I_TUNNEL))
 550 
 551 #define ITP_P_ISPERPORT(itp, iph) ((itp)->itp_flags & \
 552         (((itp)->itp_policy == (iph)) ? ITPF_P_PER_PORT_SECURITY : \
 553         ITPF_I_PER_PORT_SECURITY))
 554 
 555 #define ITP_REFHOLD(itp) { \
 556         atomic_inc_32(&((itp)->itp_refcnt));     \
 557         ASSERT((itp)->itp_refcnt != 0); \
 558 }
 559 
 560 #define ITP_REFRELE(itp, ns) { \
 561         ASSERT((itp)->itp_refcnt != 0); \
 562         membar_exit(); \
 563         if (atomic_dec_32_nv(&((itp)->itp_refcnt)) == 0) \
 564                 itp_free(itp, ns); \
 565 }
 566 
 567 /*
 568  * Certificate identity.
 569  */
 570 
 571 typedef struct ipsid_s
 572 {
 573         struct ipsid_s *ipsid_next;
 574         struct ipsid_s **ipsid_ptpn;
 575         uint32_t        ipsid_refcnt;
 576         int             ipsid_type;     /* id type */
 577         char            *ipsid_cid;     /* certificate id string */
 578 } ipsid_t;
 579 
 580 /*
 581  * ipsid_t reference hold/release macros, just like ipsa versions.
 582  */
 583 
 584 #define IPSID_REFHOLD(ipsid) {                  \
 585         atomic_inc_32(&(ipsid)->ipsid_refcnt);   \
 586         ASSERT((ipsid)->ipsid_refcnt != 0);  \
 587 }
 588 
 589 /*
 590  * Decrement the reference count on the ID.  Someone else will clean up
 591  * after us later.
 592  */
 593 
 594 #define IPSID_REFRELE(ipsid) {                                  \
 595         membar_exit();                                          \
 596         atomic_dec_32(&(ipsid)->ipsid_refcnt);           \
 597 }
 598 
 599 /*
 600  * Following are the estimates of what the maximum AH and ESP header size
 601  * would be. This is used to tell the upper layer the right value of MSS
 602  * it should use without consulting AH/ESP. If the size is something
 603  * different from this, ULP will learn the right one through
 604  * ICMP_FRAGMENTATION_NEEDED messages generated locally.
 605  *
 606  * AH : 12 bytes of constant header + 32 bytes of ICV checksum (SHA-512).
 607  */
 608 #define IPSEC_MAX_AH_HDR_SIZE   (44)
 609 
 610 /*
 611  * ESP : Is a bit more complex...
 612  *
 613  * A system of one inequality and one equation MUST be solved for proper ESP
 614  * overhead.  The inequality is:
 615  *
 616  *    MTU - sizeof (IP header + options) >=
 617  *              sizeof (esph_t) + sizeof (IV or ctr) + data-size + 2 + ICV
 618  *
 619  * IV or counter is almost always the cipher's block size.  The equation is:
 620  *
 621  *    data-size % block-size = (block-size - 2)
 622  *
 623  * so we can put as much data into the datagram as possible.  If we are
 624  * pessimistic and include our largest overhead cipher (AES) and hash
 625  * (SHA-512), and assume 1500-byte MTU minus IPv4 overhead of 20 bytes, we get:
 626  *
 627  *    1480 >= 8 + 16 + data-size + 2 + 32
 628  *    1480 >= 58 + data-size
 629  *    1422 >= data-size,      1422 % 16 = 14, so 58 is the overhead!
 630  *
 631  * But, let's re-run the numbers with the same algorithms, but with an IPv6
 632  * header:
 633  *
 634  *    1460 >= 58 + data-size
 635  *    1402 >= data-size,     1402 % 16 = 10, meaning shrink to 1390 to get 14,
 636  *
 637  * which means the overhead is now 70.
 638  *
 639  * Hmmm... IPv4 headers can never be anything other than multiples of 4-bytes,
 640  * and IPv6 ones can never be anything other than multiples of 8-bytes.  We've
 641  * seen overheads of 58 and 70.  58 % 16 == 10, and 70 % 16 == 6.  IPv4 could
 642  * force us to have 62 ( % 16 == 14) or 66 ( % 16 == 2), or IPv6 could force us
 643  * to have 78 ( % 16 = 14).  Let's compute IPv6 + 8-bytes of options:
 644  *
 645  *    1452 >= 58 + data-size
 646  *    1394 >= data-size,     1394 % 16 = 2, meaning shrink to 1390 to get 14,
 647  *
 648  * Aha!  The "ESP overhead" shrinks to 62 (70 - 8).  This is good.  Let's try
 649  * IPv4 + 8 bytes of IPv4 options:
 650  *
 651  *    1472 >= 58 + data-size
 652  *    1414 >= data-size,      1414 % 16 = 6, meaning shrink to 1406,
 653  *
 654  * meaning 66 is the overhead.  Let's try 12 bytes:
 655  *
 656  *    1468 >= 58 + data-size
 657  *    1410 >= data-size,      1410 % 16 = 2, meaning also shrink to 1406,
 658  *
 659  * meaning 62 is the overhead.  How about 16 bytes?
 660  *
 661  *    1464 >= 58 + data-size
 662  *    1406 >= data-size,      1402 % 16 = 14, which is great!
 663  *
 664  * this means 58 is the overhead.  If I wrap and add 20 bytes, it looks just
 665  * like IPv6's 70 bytes.  If I add 24, we go back to 66 bytes.
 666  *
 667  * So picking 70 is a sensible, conservative default.  Optimal calculations
 668  * will depend on knowing pre-ESP header length (called "divpoint" in the ESP
 669  * code), which could be cached in the conn_t for connected endpoints, or
 670  * which must be computed on every datagram otherwise.
 671  */
 672 #define IPSEC_MAX_ESP_HDR_SIZE  (70)
 673 
 674 /*
 675  * Alternate, when we know the crypto block size via the SA.  Assume an ICV on
 676  * the SA.  Use:
 677  *
 678  * sizeof (esph_t) + 2 * (sizeof (IV/counter)) - 2 + sizeof (ICV).  The "-2"
 679  * discounts the overhead of the pad + padlen that gets swallowed up by the
 680  * second (theoretically all-pad) cipher-block.  If you use our examples of
 681  * AES and SHA512, you get:
 682  *
 683  *    8 + 32 - 2 + 32 == 70.
 684  *
 685  * Which is our pre-computed maximum above.
 686  */
 687 #include <inet/ipsecesp.h>
 688 #define IPSEC_BASE_ESP_HDR_SIZE(sa) \
 689         (sizeof (esph_t) + ((sa)->ipsa_iv_len << 1) - 2 + (sa)->ipsa_mac_len)
 690 
 691 /*
 692  * Identity hash table.
 693  *
 694  * Identities are refcounted and "interned" into the hash table.
 695  * Only references coming from other objects (SA's, latching state)
 696  * are counted in ipsid_refcnt.
 697  *
 698  * Locking: IPSID_REFHOLD is safe only when (a) the object's hash bucket
 699  * is locked, (b) we know that the refcount must be > 0.
 700  *
 701  * The ipsid_next and ipsid_ptpn fields are only to be referenced or
 702  * modified when the bucket lock is held; in particular, we only
 703  * delete objects while holding the bucket lock, and we only increase
 704  * the refcount from 0 to 1 while the bucket lock is held.
 705  */
 706 
 707 #define IPSID_HASHSIZE 64
 708 
 709 typedef struct ipsif_s
 710 {
 711         ipsid_t *ipsif_head;
 712         kmutex_t ipsif_lock;
 713 } ipsif_t;
 714 
 715 /*
 716  * For call to the kernel crypto framework. State needed during
 717  * the execution of a crypto request.
 718  */
 719 typedef struct ipsec_crypto_s {
 720         size_t          ic_skip_len;            /* len to skip for AH auth */
 721         crypto_data_t   ic_crypto_data;         /* single op crypto data */
 722         crypto_dual_data_t ic_crypto_dual_data; /* for dual ops */
 723         crypto_data_t   ic_crypto_mac;          /* to store the MAC */
 724         ipsa_cm_mech_t  ic_cmm;
 725 } ipsec_crypto_t;
 726 
 727 /*
 728  * IPsec stack instances
 729  */
 730 struct ipsec_stack {
 731         netstack_t              *ipsec_netstack;        /* Common netstack */
 732 
 733         /* Packet dropper for IP IPsec processing failures */
 734         ipdropper_t             ipsec_dropper;
 735 
 736 /* From spd.c */
 737         /*
 738          * Policy rule index generator.  We assume this won't wrap in the
 739          * lifetime of a system.  If we make 2^20 policy changes per second,
 740          * this will last 2^44 seconds, or roughly 500,000 years, so we don't
 741          * have to worry about reusing policy index values.
 742          */
 743         uint64_t                ipsec_next_policy_index;
 744 
 745         HASH_HEAD(ipsec_action_s) ipsec_action_hash[IPSEC_ACTION_HASH_SIZE];
 746         HASH_HEAD(ipsec_sel)      *ipsec_sel_hash;
 747         uint32_t                ipsec_spd_hashsize;
 748 
 749         ipsif_t                 ipsec_ipsid_buckets[IPSID_HASHSIZE];
 750 
 751         /*
 752          * Active & Inactive system policy roots
 753          */
 754         ipsec_policy_head_t     ipsec_system_policy;
 755         ipsec_policy_head_t     ipsec_inactive_policy;
 756 
 757         /* Packet dropper for generic SPD drops. */
 758         ipdropper_t             ipsec_spd_dropper;
 759 
 760 /* ipdrop.c */
 761         kstat_t                 *ipsec_ip_drop_kstat;
 762         struct ip_dropstats     *ipsec_ip_drop_types;
 763 
 764 /* spd.c */
 765         /*
 766          * Have a counter for every possible policy message in
 767          * ipsec_policy_failure_msgs
 768          */
 769         uint32_t                ipsec_policy_failure_count[IPSEC_POLICY_MAX];
 770         /* Time since last ipsec policy failure that printed a message. */
 771         hrtime_t                ipsec_policy_failure_last;
 772 
 773 /* ip_spd.c */
 774         /* stats */
 775         kstat_t                 *ipsec_ksp;
 776         struct ipsec_kstats_s   *ipsec_kstats;
 777 
 778 /* sadb.c */
 779         /* Packet dropper for generic SADB drops. */
 780         ipdropper_t             ipsec_sadb_dropper;
 781 
 782 /* spd.c */
 783         boolean_t               ipsec_inbound_v4_policy_present;
 784         boolean_t               ipsec_outbound_v4_policy_present;
 785         boolean_t               ipsec_inbound_v6_policy_present;
 786         boolean_t               ipsec_outbound_v6_policy_present;
 787 
 788 /* spd.c */
 789         /*
 790          * Because policy needs to know what algorithms are supported, keep the
 791          * lists of algorithms here.
 792          */
 793         krwlock_t               ipsec_alg_lock;
 794 
 795         uint8_t                 ipsec_nalgs[IPSEC_NALGTYPES];
 796         ipsec_alginfo_t *ipsec_alglists[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
 797 
 798         uint8_t         ipsec_sortlist[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
 799 
 800         int             ipsec_algs_exec_mode[IPSEC_NALGTYPES];
 801 
 802         uint32_t        ipsec_tun_spd_hashsize;
 803         /*
 804          * Tunnel policies - AVL tree indexed by tunnel name.
 805          */
 806         krwlock_t       ipsec_tunnel_policy_lock;
 807         uint64_t        ipsec_tunnel_policy_gen;
 808         avl_tree_t      ipsec_tunnel_policies;
 809 
 810 /* ipsec_loader.c */
 811         kmutex_t        ipsec_loader_lock;
 812         int             ipsec_loader_state;
 813         int             ipsec_loader_sig;
 814         kt_did_t        ipsec_loader_tid;
 815         kcondvar_t      ipsec_loader_sig_cv;    /* For loader_sig conditions. */
 816 
 817 };
 818 typedef struct ipsec_stack ipsec_stack_t;
 819 
 820 /* Handle the kstat_create in ip_drop_init() failing */
 821 #define DROPPER(_ipss, _dropper) \
 822         (((_ipss)->ipsec_ip_drop_types == NULL) ? NULL : \
 823         &((_ipss)->ipsec_ip_drop_types->_dropper))
 824 
 825 /*
 826  * Loader states..
 827  */
 828 #define IPSEC_LOADER_WAIT       0
 829 #define IPSEC_LOADER_FAILED     -1
 830 #define IPSEC_LOADER_SUCCEEDED  1
 831 
 832 /*
 833  * ipsec_loader entrypoints.
 834  */
 835 extern void ipsec_loader_init(ipsec_stack_t *);
 836 extern void ipsec_loader_start(ipsec_stack_t *);
 837 extern void ipsec_loader_destroy(ipsec_stack_t *);
 838 extern void ipsec_loader_loadnow(ipsec_stack_t *);
 839 extern boolean_t ipsec_loader_wait(queue_t *q, ipsec_stack_t *);
 840 extern boolean_t ipsec_loaded(ipsec_stack_t *);
 841 extern boolean_t ipsec_failed(ipsec_stack_t *);
 842 
 843 /*
 844  * ipsec policy entrypoints (spd.c)
 845  */
 846 
 847 extern void ipsec_policy_g_destroy(void);
 848 extern void ipsec_policy_g_init(void);
 849 
 850 extern mblk_t   *ipsec_add_crypto_data(mblk_t *, ipsec_crypto_t **);
 851 extern mblk_t   *ipsec_remove_crypto_data(mblk_t *, ipsec_crypto_t **);
 852 extern mblk_t   *ipsec_free_crypto_data(mblk_t *);
 853 extern int ipsec_alloc_table(ipsec_policy_head_t *, int, int, boolean_t,
 854     netstack_t *);
 855 extern void ipsec_polhead_init(ipsec_policy_head_t *, int);
 856 extern void ipsec_polhead_destroy(ipsec_policy_head_t *);
 857 extern void ipsec_polhead_free_table(ipsec_policy_head_t *);
 858 extern mblk_t *ipsec_check_global_policy(mblk_t *, conn_t *, ipha_t *,
 859     ip6_t *, ip_recv_attr_t *, netstack_t *ns);
 860 extern mblk_t *ipsec_check_inbound_policy(mblk_t *, conn_t *, ipha_t *, ip6_t *,
 861     ip_recv_attr_t *);
 862 
 863 extern boolean_t ipsec_in_to_out(ip_recv_attr_t *, ip_xmit_attr_t *,
 864     mblk_t *, ipha_t *, ip6_t *);
 865 extern void ipsec_in_release_refs(ip_recv_attr_t *);
 866 extern void ipsec_out_release_refs(ip_xmit_attr_t *);
 867 extern void ipsec_log_policy_failure(int, char *, ipha_t *, ip6_t *, boolean_t,
 868     netstack_t *);
 869 extern boolean_t ipsec_inbound_accept_clear(mblk_t *, ipha_t *, ip6_t *);
 870 extern int ipsec_conn_cache_policy(conn_t *, boolean_t);
 871 extern void ipsec_cache_outbound_policy(const conn_t *, const in6_addr_t *,
 872     const in6_addr_t *, in_port_t, ip_xmit_attr_t *);
 873 extern boolean_t ipsec_outbound_policy_current(ip_xmit_attr_t *);
 874 extern ipsec_action_t *ipsec_in_to_out_action(ip_recv_attr_t *);
 875 extern void ipsec_latch_inbound(conn_t *connp, ip_recv_attr_t *ira);
 876 
 877 extern void ipsec_policy_free(ipsec_policy_t *);
 878 extern void ipsec_action_free(ipsec_action_t *);
 879 extern void ipsec_polhead_free(ipsec_policy_head_t *, netstack_t *);
 880 extern ipsec_policy_head_t *ipsec_polhead_split(ipsec_policy_head_t *,
 881     netstack_t *);
 882 extern ipsec_policy_head_t *ipsec_polhead_create(void);
 883 extern ipsec_policy_head_t *ipsec_system_policy(netstack_t *);
 884 extern ipsec_policy_head_t *ipsec_inactive_policy(netstack_t *);
 885 extern void ipsec_swap_policy(ipsec_policy_head_t *, ipsec_policy_head_t *,
 886     netstack_t *);
 887 extern void ipsec_swap_global_policy(netstack_t *);
 888 
 889 extern int ipsec_clone_system_policy(netstack_t *);
 890 extern ipsec_policy_t *ipsec_policy_create(ipsec_selkey_t *,
 891     const ipsec_act_t *, int, int, uint64_t *, netstack_t *);
 892 extern boolean_t ipsec_policy_delete(ipsec_policy_head_t *,
 893     ipsec_selkey_t *, int, netstack_t *);
 894 extern int ipsec_policy_delete_index(ipsec_policy_head_t *, uint64_t,
 895     netstack_t *);
 896 extern boolean_t ipsec_polhead_insert(ipsec_policy_head_t *, ipsec_act_t *,
 897     uint_t, int, int, netstack_t *);
 898 extern void ipsec_polhead_flush(ipsec_policy_head_t *, netstack_t *);
 899 extern int ipsec_copy_polhead(ipsec_policy_head_t *, ipsec_policy_head_t *,
 900     netstack_t *);
 901 extern void ipsec_actvec_from_req(const ipsec_req_t *, ipsec_act_t **, uint_t *,
 902     netstack_t *);
 903 extern void ipsec_actvec_free(ipsec_act_t *, uint_t);
 904 extern int ipsec_req_from_head(ipsec_policy_head_t *, ipsec_req_t *, int);
 905 extern mblk_t *ipsec_construct_inverse_acquire(sadb_msg_t *, sadb_ext_t **,
 906     netstack_t *);
 907 extern ipsec_policy_t *ipsec_find_policy(int, const conn_t *,
 908     ipsec_selector_t *, netstack_t *);
 909 extern ipsid_t *ipsid_lookup(int, char *, netstack_t *);
 910 extern boolean_t ipsid_equal(ipsid_t *, ipsid_t *);
 911 extern void ipsid_gc(netstack_t *);
 912 extern void ipsec_latch_ids(ipsec_latch_t *, ipsid_t *, ipsid_t *);
 913 
 914 extern void ipsec_config_flush(netstack_t *);
 915 extern boolean_t ipsec_check_policy(ipsec_policy_head_t *, ipsec_policy_t *,
 916     int);
 917 extern void ipsec_enter_policy(ipsec_policy_head_t *, ipsec_policy_t *, int,
 918     netstack_t *);
 919 extern boolean_t ipsec_check_action(ipsec_act_t *, int *, netstack_t *);
 920 
 921 extern void iplatch_free(ipsec_latch_t *);
 922 extern ipsec_latch_t *iplatch_create(void);
 923 extern int ipsec_set_req(cred_t *, conn_t *, ipsec_req_t *);
 924 
 925 extern void ipsec_insert_always(avl_tree_t *tree, void *new_node);
 926 
 927 extern int32_t ipsec_act_ovhd(const ipsec_act_t *act);
 928 extern mblk_t *sadb_whack_label(mblk_t *, ipsa_t *, ip_xmit_attr_t *,
 929     kstat_named_t *, ipdropper_t *);
 930 extern mblk_t *sadb_whack_label_v4(mblk_t *, ipsa_t *, kstat_named_t *,
 931     ipdropper_t *);
 932 extern mblk_t *sadb_whack_label_v6(mblk_t *, ipsa_t *, kstat_named_t *,
 933     ipdropper_t *);
 934 extern boolean_t update_iv(uint8_t *, queue_t *, ipsa_t *, ipsecesp_stack_t *);
 935 
 936 /*
 937  * Tunnel-support SPD functions and variables.
 938  */
 939 struct iptun_s; /* Defined in inet/iptun/iptun_impl.h. */
 940 extern mblk_t *ipsec_tun_inbound(ip_recv_attr_t *, mblk_t *,  ipsec_tun_pol_t *,
 941     ipha_t *, ip6_t *, ipha_t *, ip6_t *, int, netstack_t *);
 942 extern mblk_t *ipsec_tun_outbound(mblk_t *, struct iptun_s *, ipha_t *,
 943     ip6_t *, ipha_t *, ip6_t *, int, ip_xmit_attr_t *);
 944 extern void itp_free(ipsec_tun_pol_t *, netstack_t *);
 945 extern ipsec_tun_pol_t *create_tunnel_policy(char *, int *, uint64_t *,
 946     netstack_t *);
 947 extern ipsec_tun_pol_t *get_tunnel_policy(char *, netstack_t *);
 948 extern void itp_unlink(ipsec_tun_pol_t *, netstack_t *);
 949 extern void itp_walk(void (*)(ipsec_tun_pol_t *, void *, netstack_t *),
 950     void *, netstack_t *);
 951 
 952 extern ipsec_tun_pol_t *itp_get_byaddr(uint32_t *, uint32_t *, int,
 953     ip_stack_t *);
 954 
 955 /*
 956  * IPsec AH/ESP functions called from IP or the common SADB code in AH.
 957  */
 958 
 959 extern void ipsecah_in_assocfailure(mblk_t *, char, ushort_t, char *,
 960     uint32_t, void *, int, ip_recv_attr_t *ira);
 961 extern void ipsecesp_in_assocfailure(mblk_t *, char, ushort_t, char *,
 962     uint32_t, void *, int, ip_recv_attr_t *ira);
 963 extern void ipsecesp_send_keepalive(ipsa_t *);
 964 
 965 /*
 966  * Algorithm management helper functions.
 967  */
 968 extern boolean_t ipsec_valid_key_size(uint16_t, ipsec_alginfo_t *);
 969 
 970 /*
 971  * Per-socket policy, for now, takes precedence... this priority value
 972  * insures it.
 973  */
 974 #define IPSEC_PRIO_SOCKET               0x1000000
 975 
 976 /* DDI initialization functions. */
 977 extern  boolean_t    ipsecesp_ddi_init(void);
 978 extern  boolean_t    ipsecah_ddi_init(void);
 979 extern  boolean_t    keysock_ddi_init(void);
 980 extern  boolean_t    spdsock_ddi_init(void);
 981 
 982 extern  void    ipsecesp_ddi_destroy(void);
 983 extern  void    ipsecah_ddi_destroy(void);
 984 extern  void    keysock_ddi_destroy(void);
 985 extern  void    spdsock_ddi_destroy(void);
 986 
 987 /*
 988  * AH- and ESP-specific functions that are called directly by other modules.
 989  */
 990 extern void ipsecah_fill_defs(struct sadb_x_ecomb *, netstack_t *);
 991 extern void ipsecesp_fill_defs(struct sadb_x_ecomb *, netstack_t *);
 992 extern void ipsecah_algs_changed(netstack_t *);
 993 extern void ipsecesp_algs_changed(netstack_t *);
 994 extern void ipsecesp_init_funcs(ipsa_t *);
 995 extern void ipsecah_init_funcs(ipsa_t *);
 996 extern mblk_t *ipsecah_icmp_error(mblk_t *, ip_recv_attr_t *);
 997 extern mblk_t *ipsecesp_icmp_error(mblk_t *, ip_recv_attr_t *);
 998 
 999 /*
1000  * spdsock functions that are called directly by IP.
1001  */
1002 extern void spdsock_update_pending_algs(netstack_t *);
1003 
1004 /*
1005  * IP functions that are called from AH and ESP.
1006  */
1007 extern boolean_t ipsec_outbound_sa(mblk_t *, ip_xmit_attr_t *, uint_t);
1008 extern mblk_t *ipsec_inbound_esp_sa(mblk_t *, ip_recv_attr_t *, esph_t **);
1009 extern mblk_t *ipsec_inbound_ah_sa(mblk_t *, ip_recv_attr_t *, ah_t **);
1010 extern ipsec_policy_t *ipsec_find_policy_head(ipsec_policy_t *,
1011     ipsec_policy_head_t *, int, ipsec_selector_t *);
1012 
1013 /*
1014  * IP dropper init/destroy.
1015  */
1016 void ip_drop_init(ipsec_stack_t *);
1017 void ip_drop_destroy(ipsec_stack_t *);
1018 
1019 /*
1020  * Common functions
1021  */
1022 extern boolean_t ip_addr_match(uint8_t *, int, in6_addr_t *);
1023 extern boolean_t ipsec_label_match(ts_label_t *, ts_label_t *);
1024 
1025 /*
1026  * AH and ESP counters types.
1027  */
1028 typedef uint32_t ah_counter;
1029 typedef uint32_t esp_counter;
1030 
1031 #endif /* _KERNEL */
1032 
1033 #ifdef  __cplusplus
1034 }
1035 #endif
1036 
1037 #endif  /* _INET_IPSEC_IMPL_H */