1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 1990 Mentat Inc.
  25  * Copyright (c) 2012 Joyent, Inc. All rights reserved.
  26  * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved.
  27  */
  28 
  29 #include <sys/types.h>
  30 #include <sys/stream.h>
  31 #include <sys/dlpi.h>
  32 #include <sys/stropts.h>
  33 #include <sys/sysmacros.h>
  34 #include <sys/strsubr.h>
  35 #include <sys/strlog.h>
  36 #include <sys/strsun.h>
  37 #include <sys/zone.h>
  38 #define _SUN_TPI_VERSION 2
  39 #include <sys/tihdr.h>
  40 #include <sys/xti_inet.h>
  41 #include <sys/ddi.h>
  42 #include <sys/suntpi.h>
  43 #include <sys/cmn_err.h>
  44 #include <sys/debug.h>
  45 #include <sys/kobj.h>
  46 #include <sys/modctl.h>
  47 #include <sys/atomic.h>
  48 #include <sys/policy.h>
  49 #include <sys/priv.h>
  50 #include <sys/taskq.h>
  51 
  52 #include <sys/systm.h>
  53 #include <sys/param.h>
  54 #include <sys/kmem.h>
  55 #include <sys/sdt.h>
  56 #include <sys/socket.h>
  57 #include <sys/vtrace.h>
  58 #include <sys/isa_defs.h>
  59 #include <sys/mac.h>
  60 #include <net/if.h>
  61 #include <net/if_arp.h>
  62 #include <net/route.h>
  63 #include <sys/sockio.h>
  64 #include <netinet/in.h>
  65 #include <net/if_dl.h>
  66 
  67 #include <inet/common.h>
  68 #include <inet/mi.h>
  69 #include <inet/mib2.h>
  70 #include <inet/nd.h>
  71 #include <inet/arp.h>
  72 #include <inet/snmpcom.h>
  73 #include <inet/optcom.h>
  74 #include <inet/kstatcom.h>
  75 
  76 #include <netinet/igmp_var.h>
  77 #include <netinet/ip6.h>
  78 #include <netinet/icmp6.h>
  79 #include <netinet/sctp.h>
  80 
  81 #include <inet/ip.h>
  82 #include <inet/ip_impl.h>
  83 #include <inet/ip6.h>
  84 #include <inet/ip6_asp.h>
  85 #include <inet/tcp.h>
  86 #include <inet/tcp_impl.h>
  87 #include <inet/ip_multi.h>
  88 #include <inet/ip_if.h>
  89 #include <inet/ip_ire.h>
  90 #include <inet/ip_ftable.h>
  91 #include <inet/ip_rts.h>
  92 #include <inet/ip_ndp.h>
  93 #include <inet/ip_listutils.h>
  94 #include <netinet/igmp.h>
  95 #include <netinet/ip_mroute.h>
  96 #include <inet/ipp_common.h>
  97 
  98 #include <net/pfkeyv2.h>
  99 #include <inet/sadb.h>
 100 #include <inet/ipsec_impl.h>
 101 #include <inet/iptun/iptun_impl.h>
 102 #include <inet/ipdrop.h>
 103 #include <inet/ip_netinfo.h>
 104 #include <inet/ilb_ip.h>
 105 
 106 #include <sys/ethernet.h>
 107 #include <net/if_types.h>
 108 #include <sys/cpuvar.h>
 109 
 110 #include <ipp/ipp.h>
 111 #include <ipp/ipp_impl.h>
 112 #include <ipp/ipgpc/ipgpc.h>
 113 
 114 #include <sys/pattr.h>
 115 #include <inet/ipclassifier.h>
 116 #include <inet/sctp_ip.h>
 117 #include <inet/sctp/sctp_impl.h>
 118 #include <inet/udp_impl.h>
 119 #include <inet/rawip_impl.h>
 120 #include <inet/rts_impl.h>
 121 
 122 #include <sys/tsol/label.h>
 123 #include <sys/tsol/tnet.h>
 124 
 125 #include <sys/squeue_impl.h>
 126 #include <inet/ip_arp.h>
 127 
 128 #include <sys/clock_impl.h>       /* For LBOLT_FASTPATH{,64} */
 129 
 130 /*
 131  * Values for squeue switch:
 132  * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
 133  * IP_SQUEUE_ENTER: SQ_PROCESS
 134  * IP_SQUEUE_FILL: SQ_FILL
 135  */
 136 int ip_squeue_enter = IP_SQUEUE_ENTER;  /* Setable in /etc/system */
 137 
 138 int ip_squeue_flag;
 139 
 140 /*
 141  * Setable in /etc/system
 142  */
 143 int ip_poll_normal_ms = 100;
 144 int ip_poll_normal_ticks = 0;
 145 int ip_modclose_ackwait_ms = 3000;
 146 
 147 /*
 148  * It would be nice to have these present only in DEBUG systems, but the
 149  * current design of the global symbol checking logic requires them to be
 150  * unconditionally present.
 151  */
 152 uint_t ip_thread_data;                  /* TSD key for debug support */
 153 krwlock_t ip_thread_rwlock;
 154 list_t  ip_thread_list;
 155 
 156 /*
 157  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
 158  */
 159 
 160 struct listptr_s {
 161         mblk_t  *lp_head;       /* pointer to the head of the list */
 162         mblk_t  *lp_tail;       /* pointer to the tail of the list */
 163 };
 164 
 165 typedef struct listptr_s listptr_t;
 166 
 167 /*
 168  * This is used by ip_snmp_get_mib2_ip_route_media and
 169  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
 170  */
 171 typedef struct iproutedata_s {
 172         uint_t          ird_idx;
 173         uint_t          ird_flags;      /* see below */
 174         listptr_t       ird_route;      /* ipRouteEntryTable */
 175         listptr_t       ird_netmedia;   /* ipNetToMediaEntryTable */
 176         listptr_t       ird_attrs;      /* ipRouteAttributeTable */
 177 } iproutedata_t;
 178 
 179 /* Include ire_testhidden and IRE_IF_CLONE routes */
 180 #define IRD_REPORT_ALL  0x01
 181 
 182 /*
 183  * Cluster specific hooks. These should be NULL when booted as a non-cluster
 184  */
 185 
 186 /*
 187  * Hook functions to enable cluster networking
 188  * On non-clustered systems these vectors must always be NULL.
 189  *
 190  * Hook function to Check ip specified ip address is a shared ip address
 191  * in the cluster
 192  *
 193  */
 194 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
 195     sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
 196 
 197 /*
 198  * Hook function to generate cluster wide ip fragment identifier
 199  */
 200 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
 201     sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
 202     void *args) = NULL;
 203 
 204 /*
 205  * Hook function to generate cluster wide SPI.
 206  */
 207 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
 208     void *) = NULL;
 209 
 210 /*
 211  * Hook function to verify if the SPI is already utlized.
 212  */
 213 
 214 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
 215 
 216 /*
 217  * Hook function to delete the SPI from the cluster wide repository.
 218  */
 219 
 220 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
 221 
 222 /*
 223  * Hook function to inform the cluster when packet received on an IDLE SA
 224  */
 225 
 226 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
 227     in6_addr_t, in6_addr_t, void *) = NULL;
 228 
 229 /*
 230  * Synchronization notes:
 231  *
 232  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
 233  * MT level protection given by STREAMS. IP uses a combination of its own
 234  * internal serialization mechanism and standard Solaris locking techniques.
 235  * The internal serialization is per phyint.  This is used to serialize
 236  * plumbing operations, IPMP operations, most set ioctls, etc.
 237  *
 238  * Plumbing is a long sequence of operations involving message
 239  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
 240  * involved in plumbing operations. A natural model is to serialize these
 241  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
 242  * parallel without any interference. But various set ioctls on hme0 are best
 243  * serialized, along with IPMP operations and processing of DLPI control
 244  * messages received from drivers on a per phyint basis. This serialization is
 245  * provided by the ipsq_t and primitives operating on this. Details can
 246  * be found in ip_if.c above the core primitives operating on ipsq_t.
 247  *
 248  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
 249  * Simiarly lookup of an ire by a thread also returns a refheld ire.
 250  * In addition ipif's and ill's referenced by the ire are also indirectly
 251  * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
 252  * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
 253  * address of an ipif has to go through the ipsq_t. This ensures that only
 254  * one such exclusive operation proceeds at any time on the ipif. It then
 255  * waits for all refcnts
 256  * associated with this ipif to come down to zero. The address is changed
 257  * only after the ipif has been quiesced. Then the ipif is brought up again.
 258  * More details are described above the comment in ip_sioctl_flags.
 259  *
 260  * Packet processing is based mostly on IREs and are fully multi-threaded
 261  * using standard Solaris MT techniques.
 262  *
 263  * There are explicit locks in IP to handle:
 264  * - The ip_g_head list maintained by mi_open_link() and friends.
 265  *
 266  * - The reassembly data structures (one lock per hash bucket)
 267  *
 268  * - conn_lock is meant to protect conn_t fields. The fields actually
 269  *   protected by conn_lock are documented in the conn_t definition.
 270  *
 271  * - ire_lock to protect some of the fields of the ire, IRE tables
 272  *   (one lock per hash bucket). Refer to ip_ire.c for details.
 273  *
 274  * - ndp_g_lock and ncec_lock for protecting NCEs.
 275  *
 276  * - ill_lock protects fields of the ill and ipif. Details in ip.h
 277  *
 278  * - ill_g_lock: This is a global reader/writer lock. Protects the following
 279  *      * The AVL tree based global multi list of all ills.
 280  *      * The linked list of all ipifs of an ill
 281  *      * The <ipsq-xop> mapping
 282  *      * <ill-phyint> association
 283  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
 284  *   into an ill, changing the <ipsq-xop> mapping of an ill, changing the
 285  *   <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
 286  *   writer for the actual duration of the insertion/deletion/change.
 287  *
 288  * - ill_lock:  This is a per ill mutex.
 289  *   It protects some members of the ill_t struct; see ip.h for details.
 290  *   It also protects the <ill-phyint> assoc.
 291  *   It also protects the list of ipifs hanging off the ill.
 292  *
 293  * - ipsq_lock: This is a per ipsq_t mutex lock.
 294  *   This protects some members of the ipsq_t struct; see ip.h for details.
 295  *   It also protects the <ipsq-ipxop> mapping
 296  *
 297  * - ipx_lock: This is a per ipxop_t mutex lock.
 298  *   This protects some members of the ipxop_t struct; see ip.h for details.
 299  *
 300  * - phyint_lock: This is a per phyint mutex lock. Protects just the
 301  *   phyint_flags
 302  *
 303  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
 304  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
 305  *   uniqueness check also done atomically.
 306  *
 307  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
 308  *   group list linked by ill_usesrc_grp_next. It also protects the
 309  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
 310  *   group is being added or deleted.  This lock is taken as a reader when
 311  *   walking the list/group(eg: to get the number of members in a usesrc group).
 312  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
 313  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
 314  *   example, it is not necessary to take this lock in the initial portion
 315  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
 316  *   operations are executed exclusively and that ensures that the "usesrc
 317  *   group state" cannot change. The "usesrc group state" change can happen
 318  *   only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
 319  *
 320  * Changing <ill-phyint>, <ipsq-xop> assocications:
 321  *
 322  * To change the <ill-phyint> association, the ill_g_lock must be held
 323  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
 324  * must be held.
 325  *
 326  * To change the <ipsq-xop> association, the ill_g_lock must be held as
 327  * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
 328  * This is only done when ills are added or removed from IPMP groups.
 329  *
 330  * To add or delete an ipif from the list of ipifs hanging off the ill,
 331  * ill_g_lock (writer) and ill_lock must be held and the thread must be
 332  * a writer on the associated ipsq.
 333  *
 334  * To add or delete an ill to the system, the ill_g_lock must be held as
 335  * writer and the thread must be a writer on the associated ipsq.
 336  *
 337  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
 338  * must be a writer on the associated ipsq.
 339  *
 340  * Lock hierarchy
 341  *
 342  * Some lock hierarchy scenarios are listed below.
 343  *
 344  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
 345  * ill_g_lock -> ill_lock(s) -> phyint_lock
 346  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
 347  * ill_g_lock -> ip_addr_avail_lock
 348  * conn_lock -> irb_lock -> ill_lock -> ire_lock
 349  * ill_g_lock -> ip_g_nd_lock
 350  * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
 351  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
 352  * arl_lock -> ill_lock
 353  * ips_ire_dep_lock -> irb_lock
 354  *
 355  * When more than 1 ill lock is needed to be held, all ill lock addresses
 356  * are sorted on address and locked starting from highest addressed lock
 357  * downward.
 358  *
 359  * Multicast scenarios
 360  * ips_ill_g_lock -> ill_mcast_lock
 361  * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
 362  * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
 363  * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
 364  * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
 365  * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
 366  *
 367  * IPsec scenarios
 368  *
 369  * ipsa_lock -> ill_g_lock -> ill_lock
 370  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
 371  *
 372  * Trusted Solaris scenarios
 373  *
 374  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
 375  * igsa_lock -> gcdb_lock
 376  * gcgrp_rwlock -> ire_lock
 377  * gcgrp_rwlock -> gcdb_lock
 378  *
 379  * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
 380  *
 381  * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
 382  * sq_lock -> conn_lock -> QLOCK(q)
 383  * ill_lock -> ft_lock -> fe_lock
 384  *
 385  * Routing/forwarding table locking notes:
 386  *
 387  * Lock acquisition order: Radix tree lock, irb_lock.
 388  * Requirements:
 389  * i.  Walker must not hold any locks during the walker callback.
 390  * ii  Walker must not see a truncated tree during the walk because of any node
 391  *     deletion.
 392  * iii Existing code assumes ire_bucket is valid if it is non-null and is used
 393  *     in many places in the code to walk the irb list. Thus even if all the
 394  *     ires in a bucket have been deleted, we still can't free the radix node
 395  *     until the ires have actually been inactive'd (freed).
 396  *
 397  * Tree traversal - Need to hold the global tree lock in read mode.
 398  * Before dropping the global tree lock, need to either increment the ire_refcnt
 399  * to ensure that the radix node can't be deleted.
 400  *
 401  * Tree add - Need to hold the global tree lock in write mode to add a
 402  * radix node. To prevent the node from being deleted, increment the
 403  * irb_refcnt, after the node is added to the tree. The ire itself is
 404  * added later while holding the irb_lock, but not the tree lock.
 405  *
 406  * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
 407  * All associated ires must be inactive (i.e. freed), and irb_refcnt
 408  * must be zero.
 409  *
 410  * Walker - Increment irb_refcnt before calling the walker callback. Hold the
 411  * global tree lock (read mode) for traversal.
 412  *
 413  * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
 414  * hence we will acquire irb_lock while holding ips_ire_dep_lock.
 415  *
 416  * IPsec notes :
 417  *
 418  * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
 419  * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
 420  * ip_xmit_attr_t has the
 421  * information used by the IPsec code for applying the right level of
 422  * protection. The information initialized by IP in the ip_xmit_attr_t
 423  * is determined by the per-socket policy or global policy in the system.
 424  * For inbound datagrams, the ip_recv_attr_t
 425  * starts out with nothing in it. It gets filled
 426  * with the right information if it goes through the AH/ESP code, which
 427  * happens if the incoming packet is secure. The information initialized
 428  * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
 429  * the policy requirements needed by per-socket policy or global policy
 430  * is met or not.
 431  *
 432  * For fully connected sockets i.e dst, src [addr, port] is known,
 433  * conn_policy_cached is set indicating that policy has been cached.
 434  * conn_in_enforce_policy may or may not be set depending on whether
 435  * there is a global policy match or per-socket policy match.
 436  * Policy inheriting happpens in ip_policy_set once the destination is known.
 437  * Once the right policy is set on the conn_t, policy cannot change for
 438  * this socket. This makes life simpler for TCP (UDP ?) where
 439  * re-transmissions go out with the same policy. For symmetry, policy
 440  * is cached for fully connected UDP sockets also. Thus if policy is cached,
 441  * it also implies that policy is latched i.e policy cannot change
 442  * on these sockets. As we have the right policy on the conn, we don't
 443  * have to lookup global policy for every outbound and inbound datagram
 444  * and thus serving as an optimization. Note that a global policy change
 445  * does not affect fully connected sockets if they have policy. If fully
 446  * connected sockets did not have any policy associated with it, global
 447  * policy change may affect them.
 448  *
 449  * IP Flow control notes:
 450  * ---------------------
 451  * Non-TCP streams are flow controlled by IP. The way this is accomplished
 452  * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
 453  * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
 454  * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
 455  * functions.
 456  *
 457  * Per Tx ring udp flow control:
 458  * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
 459  * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
 460  *
 461  * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
 462  * To achieve best performance, outgoing traffic need to be fanned out among
 463  * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
 464  * traffic out of the NIC and it takes a fanout hint. UDP connections pass
 465  * the address of connp as fanout hint to mac_tx(). Under flow controlled
 466  * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
 467  * cookie points to a specific Tx ring that is blocked. The cookie is used to
 468  * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
 469  * point to drain_lists (idl_t's). These drain list will store the blocked UDP
 470  * connp's. The drain list is not a single list but a configurable number of
 471  * lists.
 472  *
 473  * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
 474  * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
 475  * which is equal to 128. This array in turn contains a pointer to idl_t[],
 476  * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
 477  * list will point to the list of connp's that are flow controlled.
 478  *
 479  *                      ---------------   -------   -------   -------
 480  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
 481  *                   |  ---------------   -------   -------   -------
 482  *                   |  ---------------   -------   -------   -------
 483  *                   |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
 484  * ----------------  |  ---------------   -------   -------   -------
 485  * |idl_tx_list[0]|->|  ---------------   -------   -------   -------
 486  * ----------------  |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
 487  *                   |  ---------------   -------   -------   -------
 488  *                   .        .              .         .         .
 489  *                   |  ---------------   -------   -------   -------
 490  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
 491  *                      ---------------   -------   -------   -------
 492  *                      ---------------   -------   -------   -------
 493  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
 494  *                   |  ---------------   -------   -------   -------
 495  *                   |  ---------------   -------   -------   -------
 496  * ----------------  |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
 497  * |idl_tx_list[1]|->|  ---------------   -------   -------   -------
 498  * ----------------  |        .              .         .         .
 499  *                   |  ---------------   -------   -------   -------
 500  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
 501  *                      ---------------   -------   -------   -------
 502  *     .....
 503  * ----------------
 504  * |idl_tx_list[n]|-> ...
 505  * ----------------
 506  *
 507  * When mac_tx() returns a cookie, the cookie is hashed into an index into
 508  * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
 509  * to insert the conn onto.  conn_drain_insert() asserts flow control for the
 510  * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
 511  * Further, conn_blocked is set to indicate that the conn is blocked.
 512  *
 513  * GLDv3 calls ill_flow_enable() when flow control is relieved.  The cookie
 514  * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
 515  * is again hashed to locate the appropriate idl_tx_list, which is then
 516  * drained via conn_walk_drain().  conn_walk_drain() goes through each conn in
 517  * the drain list and calls conn_drain_remove() to clear flow control (via
 518  * calling su_txq_full() or clearing QFULL), and remove the conn from the
 519  * drain list.
 520  *
 521  * Note that the drain list is not a single list but a (configurable) array of
 522  * lists (8 elements by default).  Synchronization between drain insertion and
 523  * flow control wakeup is handled by using idl_txl->txl_lock, and only
 524  * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
 525  *
 526  * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
 527  * On the send side, if the packet cannot be sent down to the driver by IP
 528  * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
 529  * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
 530  * the 0'th drain list.  When ip_wsrv() runs on the ill_wq because flow
 531  * control has been relieved, the blocked conns in the 0'th drain list are
 532  * drained as in the non-STREAMS case.
 533  *
 534  * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
 535  * is done when the conn is inserted into the drain list (conn_drain_insert())
 536  * and cleared when the conn is removed from the it (conn_drain_remove()).
 537  *
 538  * IPQOS notes:
 539  *
 540  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
 541  * and IPQoS modules. IPPF includes hooks in IP at different control points
 542  * (callout positions) which direct packets to IPQoS modules for policy
 543  * processing. Policies, if present, are global.
 544  *
 545  * The callout positions are located in the following paths:
 546  *              o local_in (packets destined for this host)
 547  *              o local_out (packets orginating from this host )
 548  *              o fwd_in  (packets forwarded by this m/c - inbound)
 549  *              o fwd_out (packets forwarded by this m/c - outbound)
 550  * Hooks at these callout points can be enabled/disabled using the ndd variable
 551  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
 552  * By default all the callout positions are enabled.
 553  *
 554  * Outbound (local_out)
 555  * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
 556  *
 557  * Inbound (local_in)
 558  * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
 559  *
 560  * Forwarding (in and out)
 561  * Hooks are placed in ire_recv_forward_v4/v6.
 562  *
 563  * IP Policy Framework processing (IPPF processing)
 564  * Policy processing for a packet is initiated by ip_process, which ascertains
 565  * that the classifier (ipgpc) is loaded and configured, failing which the
 566  * packet resumes normal processing in IP. If the clasifier is present, the
 567  * packet is acted upon by one or more IPQoS modules (action instances), per
 568  * filters configured in ipgpc and resumes normal IP processing thereafter.
 569  * An action instance can drop a packet in course of its processing.
 570  *
 571  * Zones notes:
 572  *
 573  * The partitioning rules for networking are as follows:
 574  * 1) Packets coming from a zone must have a source address belonging to that
 575  * zone.
 576  * 2) Packets coming from a zone can only be sent on a physical interface on
 577  * which the zone has an IP address.
 578  * 3) Between two zones on the same machine, packet delivery is only allowed if
 579  * there's a matching route for the destination and zone in the forwarding
 580  * table.
 581  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
 582  * different zones can bind to the same port with the wildcard address
 583  * (INADDR_ANY).
 584  *
 585  * The granularity of interface partitioning is at the logical interface level.
 586  * Therefore, every zone has its own IP addresses, and incoming packets can be
 587  * attributed to a zone unambiguously. A logical interface is placed into a zone
 588  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
 589  * structure. Rule (1) is implemented by modifying the source address selection
 590  * algorithm so that the list of eligible addresses is filtered based on the
 591  * sending process zone.
 592  *
 593  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
 594  * across all zones, depending on their type. Here is the break-up:
 595  *
 596  * IRE type                             Shared/exclusive
 597  * --------                             ----------------
 598  * IRE_BROADCAST                        Exclusive
 599  * IRE_DEFAULT (default routes)         Shared (*)
 600  * IRE_LOCAL                            Exclusive (x)
 601  * IRE_LOOPBACK                         Exclusive
 602  * IRE_PREFIX (net routes)              Shared (*)
 603  * IRE_IF_NORESOLVER (interface routes) Exclusive
 604  * IRE_IF_RESOLVER (interface routes)   Exclusive
 605  * IRE_IF_CLONE (interface routes)      Exclusive
 606  * IRE_HOST (host routes)               Shared (*)
 607  *
 608  * (*) A zone can only use a default or off-subnet route if the gateway is
 609  * directly reachable from the zone, that is, if the gateway's address matches
 610  * one of the zone's logical interfaces.
 611  *
 612  * (x) IRE_LOCAL are handled a bit differently.
 613  * When ip_restrict_interzone_loopback is set (the default),
 614  * ire_route_recursive restricts loopback using an IRE_LOCAL
 615  * between zone to the case when L2 would have conceptually looped the packet
 616  * back, i.e. the loopback which is required since neither Ethernet drivers
 617  * nor Ethernet hardware loops them back. This is the case when the normal
 618  * routes (ignoring IREs with different zoneids) would send out the packet on
 619  * the same ill as the ill with which is IRE_LOCAL is associated.
 620  *
 621  * Multiple zones can share a common broadcast address; typically all zones
 622  * share the 255.255.255.255 address. Incoming as well as locally originated
 623  * broadcast packets must be dispatched to all the zones on the broadcast
 624  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
 625  * since some zones may not be on the 10.16.72/24 network. To handle this, each
 626  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
 627  * sent to every zone that has an IRE_BROADCAST entry for the destination
 628  * address on the input ill, see ip_input_broadcast().
 629  *
 630  * Applications in different zones can join the same multicast group address.
 631  * The same logic applies for multicast as for broadcast. ip_input_multicast
 632  * dispatches packets to all zones that have members on the physical interface.
 633  */
 634 
 635 /*
 636  * Squeue Fanout flags:
 637  *      0: No fanout.
 638  *      1: Fanout across all squeues
 639  */
 640 boolean_t       ip_squeue_fanout = 0;
 641 
 642 /*
 643  * Maximum dups allowed per packet.
 644  */
 645 uint_t ip_max_frag_dups = 10;
 646 
 647 static int      ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
 648                     cred_t *credp, boolean_t isv6);
 649 static mblk_t   *ip_xmit_attach_llhdr(mblk_t *, nce_t *);
 650 
 651 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
 652 static void     icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
 653 static void     icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
 654     ip_recv_attr_t *);
 655 static void     icmp_options_update(ipha_t *);
 656 static void     icmp_param_problem(mblk_t *, uint8_t,  ip_recv_attr_t *);
 657 static void     icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
 658 static mblk_t   *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
 659 static void     icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
 660     ip_recv_attr_t *);
 661 static void     icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
 662 static void     icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
 663     ip_recv_attr_t *);
 664 
 665 mblk_t          *ip_dlpi_alloc(size_t, t_uscalar_t);
 666 char            *ip_dot_addr(ipaddr_t, char *);
 667 mblk_t          *ip_carve_mp(mblk_t **, ssize_t);
 668 int             ip_close(queue_t *, int);
 669 static char     *ip_dot_saddr(uchar_t *, char *);
 670 static void     ip_lrput(queue_t *, mblk_t *);
 671 ipaddr_t        ip_net_mask(ipaddr_t);
 672 char            *ip_nv_lookup(nv_t *, int);
 673 void    ip_rput(queue_t *, mblk_t *);
 674 static void     ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
 675                     void *dummy_arg);
 676 int             ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
 677 static mblk_t   *ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
 678                     mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
 679 static mblk_t   *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
 680                     ip_stack_t *, boolean_t);
 681 static mblk_t   *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
 682                     boolean_t);
 683 static mblk_t   *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
 684 static mblk_t   *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
 685 static mblk_t   *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
 686 static mblk_t   *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
 687 static mblk_t   *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
 688                     ip_stack_t *ipst, boolean_t);
 689 static mblk_t   *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
 690                     ip_stack_t *ipst, boolean_t);
 691 static mblk_t   *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
 692                     ip_stack_t *ipst);
 693 static mblk_t   *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
 694                     ip_stack_t *ipst);
 695 static mblk_t   *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
 696                     ip_stack_t *ipst);
 697 static mblk_t   *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
 698                     ip_stack_t *ipst);
 699 static mblk_t   *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
 700                     ip_stack_t *ipst);
 701 static mblk_t   *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
 702                     ip_stack_t *ipst);
 703 static mblk_t   *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
 704                     ip_stack_t *ipst);
 705 static mblk_t   *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
 706                     ip_stack_t *ipst);
 707 static void     ip_snmp_get2_v4(ire_t *, iproutedata_t *);
 708 static void     ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
 709 static int      ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *);
 710 static int      ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *);
 711 int             ip_snmp_set(queue_t *, int, int, uchar_t *, int);
 712 
 713 static mblk_t   *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
 714                     mblk_t *);
 715 
 716 static void     conn_drain_init(ip_stack_t *);
 717 static void     conn_drain_fini(ip_stack_t *);
 718 static void     conn_drain(conn_t *connp, boolean_t closing);
 719 
 720 static void     conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
 721 static void     conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
 722 
 723 static void     *ip_stack_init(netstackid_t stackid, netstack_t *ns);
 724 static void     ip_stack_shutdown(netstackid_t stackid, void *arg);
 725 static void     ip_stack_fini(netstackid_t stackid, void *arg);
 726 
 727 static int      ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
 728     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
 729     ire_t *, conn_t *, boolean_t, const in6_addr_t *,  mcast_record_t,
 730     const in6_addr_t *);
 731 
 732 static int      ip_squeue_switch(int);
 733 
 734 static void     *ip_kstat_init(netstackid_t, ip_stack_t *);
 735 static void     ip_kstat_fini(netstackid_t, kstat_t *);
 736 static int      ip_kstat_update(kstat_t *kp, int rw);
 737 static void     *icmp_kstat_init(netstackid_t);
 738 static void     icmp_kstat_fini(netstackid_t, kstat_t *);
 739 static int      icmp_kstat_update(kstat_t *kp, int rw);
 740 static void     *ip_kstat2_init(netstackid_t, ip_stat_t *);
 741 static void     ip_kstat2_fini(netstackid_t, kstat_t *);
 742 
 743 static void     ipobs_init(ip_stack_t *);
 744 static void     ipobs_fini(ip_stack_t *);
 745 
 746 static int      ip_tp_cpu_update(cpu_setup_t, int, void *);
 747 
 748 ipaddr_t        ip_g_all_ones = IP_HOST_MASK;
 749 
 750 static long ip_rput_pullups;
 751 int     dohwcksum = 1;  /* use h/w cksum if supported by the hardware */
 752 
 753 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
 754 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
 755 
 756 int     ip_debug;
 757 
 758 /*
 759  * Multirouting/CGTP stuff
 760  */
 761 int     ip_cgtp_filter_rev = CGTP_FILTER_REV;   /* CGTP hooks version */
 762 
 763 /*
 764  * IP tunables related declarations. Definitions are in ip_tunables.c
 765  */
 766 extern mod_prop_info_t ip_propinfo_tbl[];
 767 extern int ip_propinfo_count;
 768 
 769 /*
 770  * Table of IP ioctls encoding the various properties of the ioctl and
 771  * indexed based on the last byte of the ioctl command. Occasionally there
 772  * is a clash, and there is more than 1 ioctl with the same last byte.
 773  * In such a case 1 ioctl is encoded in the ndx table and the remaining
 774  * ioctls are encoded in the misc table. An entry in the ndx table is
 775  * retrieved by indexing on the last byte of the ioctl command and comparing
 776  * the ioctl command with the value in the ndx table. In the event of a
 777  * mismatch the misc table is then searched sequentially for the desired
 778  * ioctl command.
 779  *
 780  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
 781  */
 782 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
 783         /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 784         /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 785         /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 786         /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 787         /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 788         /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 789         /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 790         /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 791         /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 792         /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 793 
 794         /* 010 */ { SIOCADDRT,  sizeof (struct rtentry), IPI_PRIV,
 795                         MISC_CMD, ip_siocaddrt, NULL },
 796         /* 011 */ { SIOCDELRT,  sizeof (struct rtentry), IPI_PRIV,
 797                         MISC_CMD, ip_siocdelrt, NULL },
 798 
 799         /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 800                         IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
 801         /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
 802                         IF_CMD, ip_sioctl_get_addr, NULL },
 803 
 804         /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 805                         IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
 806         /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
 807                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
 808 
 809         /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
 810                         IPI_PRIV | IPI_WR,
 811                         IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
 812         /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
 813                         IPI_MODOK | IPI_GET_CMD,
 814                         IF_CMD, ip_sioctl_get_flags, NULL },
 815 
 816         /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 817         /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 818 
 819         /* copyin size cannot be coded for SIOCGIFCONF */
 820         /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
 821                         MISC_CMD, ip_sioctl_get_ifconf, NULL },
 822 
 823         /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 824                         IF_CMD, ip_sioctl_mtu, NULL },
 825         /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD,
 826                         IF_CMD, ip_sioctl_get_mtu, NULL },
 827         /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
 828                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
 829         /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 830                         IF_CMD, ip_sioctl_brdaddr, NULL },
 831         /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
 832                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
 833         /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 834                         IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
 835         /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
 836                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
 837         /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
 838                         IF_CMD, ip_sioctl_metric, NULL },
 839         /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 840 
 841         /* See 166-168 below for extended SIOC*XARP ioctls */
 842         /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
 843                         ARP_CMD, ip_sioctl_arp, NULL },
 844         /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
 845                         ARP_CMD, ip_sioctl_arp, NULL },
 846         /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
 847                         ARP_CMD, ip_sioctl_arp, NULL },
 848 
 849         /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 850         /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 851         /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 852         /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 853         /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 854         /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 855         /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 856         /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 857         /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 858         /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 859         /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 860         /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 861         /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 862         /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 863         /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 864         /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 865         /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 866         /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 867         /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 868         /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 869         /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 870 
 871         /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
 872                         MISC_CMD, if_unitsel, if_unitsel_restart },
 873 
 874         /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 875         /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 876         /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 877         /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 878         /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 879         /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 880         /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 881         /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 882         /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 883         /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 884         /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 885         /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 886         /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 887         /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 888         /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 889         /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 890         /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 891         /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 892 
 893         /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
 894                         IPI_PRIV | IPI_WR | IPI_MODOK,
 895                         IF_CMD, ip_sioctl_sifname, NULL },
 896 
 897         /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 898         /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 899         /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 900         /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 901         /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 902         /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 903         /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 904         /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 905         /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 906         /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 907         /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 908         /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 909         /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 910 
 911         /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
 912                         MISC_CMD, ip_sioctl_get_ifnum, NULL },
 913         /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
 914                         IF_CMD, ip_sioctl_get_muxid, NULL },
 915         /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
 916                         IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
 917 
 918         /* Both if and lif variants share same func */
 919         /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
 920                         IF_CMD, ip_sioctl_get_lifindex, NULL },
 921         /* Both if and lif variants share same func */
 922         /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
 923                         IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
 924 
 925         /* copyin size cannot be coded for SIOCGIFCONF */
 926         /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
 927                         MISC_CMD, ip_sioctl_get_ifconf, NULL },
 928         /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 929         /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 930         /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 931         /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 932         /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 933         /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 934         /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 935         /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 936         /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 937         /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 938         /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 939         /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 940         /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 941         /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 942         /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 943         /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 944         /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 945 
 946         /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
 947                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
 948                         ip_sioctl_removeif_restart },
 949         /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
 950                         IPI_GET_CMD | IPI_PRIV | IPI_WR,
 951                         LIF_CMD, ip_sioctl_addif, NULL },
 952 #define SIOCLIFADDR_NDX 112
 953         /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 954                         LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
 955         /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
 956                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
 957         /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 958                         LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
 959         /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
 960                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
 961         /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
 962                         IPI_PRIV | IPI_WR,
 963                         LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
 964         /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
 965                         IPI_GET_CMD | IPI_MODOK,
 966                         LIF_CMD, ip_sioctl_get_flags, NULL },
 967 
 968         /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 969         /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 970 
 971         /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
 972                         ip_sioctl_get_lifconf, NULL },
 973         /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 974                         LIF_CMD, ip_sioctl_mtu, NULL },
 975         /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
 976                         LIF_CMD, ip_sioctl_get_mtu, NULL },
 977         /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
 978                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
 979         /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 980                         LIF_CMD, ip_sioctl_brdaddr, NULL },
 981         /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
 982                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
 983         /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 984                         LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
 985         /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
 986                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
 987         /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 988                         LIF_CMD, ip_sioctl_metric, NULL },
 989         /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
 990                         IPI_PRIV | IPI_WR | IPI_MODOK,
 991                         LIF_CMD, ip_sioctl_slifname,
 992                         ip_sioctl_slifname_restart },
 993 
 994         /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
 995                         MISC_CMD, ip_sioctl_get_lifnum, NULL },
 996         /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
 997                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
 998         /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
 999                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
1000         /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1001                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1002         /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1003                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1004         /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1005                         LIF_CMD, ip_sioctl_token, NULL },
1006         /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1007                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1008         /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1009                         LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1010         /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1011                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1012         /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1013                         LIF_CMD, ip_sioctl_lnkinfo, NULL },
1014 
1015         /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1016                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1017         /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1018                         LIF_CMD, ip_siocdelndp_v6, NULL },
1019         /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1020                         LIF_CMD, ip_siocqueryndp_v6, NULL },
1021         /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1022                         LIF_CMD, ip_siocsetndp_v6, NULL },
1023         /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1024                         MISC_CMD, ip_sioctl_tmyaddr, NULL },
1025         /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1026                         MISC_CMD, ip_sioctl_tonlink, NULL },
1027         /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1028                         MISC_CMD, ip_sioctl_tmysite, NULL },
1029         /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1030         /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1031 
1032         /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */
1033         /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1034         /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1035         /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1036         /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1037 
1038         /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1039 
1040         /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1041                         LIF_CMD, ip_sioctl_get_binding, NULL },
1042         /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1043                         IPI_PRIV | IPI_WR,
1044                         LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1045         /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1046                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1047         /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1048                         IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1049 
1050         /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1051         /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1052         /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1053         /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054 
1055         /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1056 
1057         /* These are handled in ip_sioctl_copyin_setup itself */
1058         /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1059                         MISC_CMD, NULL, NULL },
1060         /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1061                         MISC_CMD, NULL, NULL },
1062         /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1063 
1064         /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1065                         ip_sioctl_get_lifconf, NULL },
1066 
1067         /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1068                         XARP_CMD, ip_sioctl_arp, NULL },
1069         /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1070                         XARP_CMD, ip_sioctl_arp, NULL },
1071         /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1072                         XARP_CMD, ip_sioctl_arp, NULL },
1073 
1074         /* SIOCPOPSOCKFS is not handled by IP */
1075         /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1076 
1077         /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1078                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1079         /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1080                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1081                         ip_sioctl_slifzone_restart },
1082         /* 172-174 are SCTP ioctls and not handled by IP */
1083         /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1084         /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1085         /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1086         /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1087                         IPI_GET_CMD, LIF_CMD,
1088                         ip_sioctl_get_lifusesrc, 0 },
1089         /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1090                         IPI_PRIV | IPI_WR,
1091                         LIF_CMD, ip_sioctl_slifusesrc,
1092                         NULL },
1093         /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1094                         ip_sioctl_get_lifsrcof, NULL },
1095         /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1096                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1097         /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1098                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1099         /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1100                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1101         /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1102                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1103         /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1104         /* SIOCSENABLESDP is handled by SDP */
1105         /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1106         /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1107         /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1108                         IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1109         /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1110         /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1111                         ip_sioctl_ilb_cmd, NULL },
1112         /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1113         /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1114         /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1115                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1116         /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1117                         LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1118         /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1119                         LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1120 };
1121 
1122 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1123 
1124 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1125         { I_LINK,       0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1126         { I_UNLINK,     0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1127         { I_PLINK,      0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1128         { I_PUNLINK,    0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1129         { ND_GET,       0, 0, 0, NULL, NULL },
1130         { ND_SET,       0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1131         { IP_IOCTL,     0, 0, 0, NULL, NULL },
1132         { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1133                 MISC_CMD, mrt_ioctl},
1134         { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD,
1135                 MISC_CMD, mrt_ioctl},
1136         { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1137                 MISC_CMD, mrt_ioctl}
1138 };
1139 
1140 int ip_misc_ioctl_count =
1141     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1142 
1143 int     conn_drain_nthreads;            /* Number of drainers reqd. */
1144                                         /* Settable in /etc/system */
1145 /* Defined in ip_ire.c */
1146 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1147 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1148 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1149 
1150 static nv_t     ire_nv_arr[] = {
1151         { IRE_BROADCAST, "BROADCAST" },
1152         { IRE_LOCAL, "LOCAL" },
1153         { IRE_LOOPBACK, "LOOPBACK" },
1154         { IRE_DEFAULT, "DEFAULT" },
1155         { IRE_PREFIX, "PREFIX" },
1156         { IRE_IF_NORESOLVER, "IF_NORESOL" },
1157         { IRE_IF_RESOLVER, "IF_RESOLV" },
1158         { IRE_IF_CLONE, "IF_CLONE" },
1159         { IRE_HOST, "HOST" },
1160         { IRE_MULTICAST, "MULTICAST" },
1161         { IRE_NOROUTE, "NOROUTE" },
1162         { 0 }
1163 };
1164 
1165 nv_t    *ire_nv_tbl = ire_nv_arr;
1166 
1167 /* Simple ICMP IP Header Template */
1168 static ipha_t icmp_ipha = {
1169         IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1170 };
1171 
1172 struct module_info ip_mod_info = {
1173         IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1174         IP_MOD_LOWAT
1175 };
1176 
1177 /*
1178  * Duplicate static symbols within a module confuses mdb; so we avoid the
1179  * problem by making the symbols here distinct from those in udp.c.
1180  */
1181 
1182 /*
1183  * Entry points for IP as a device and as a module.
1184  * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1185  */
1186 static struct qinit iprinitv4 = {
1187         (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL,
1188         &ip_mod_info
1189 };
1190 
1191 struct qinit iprinitv6 = {
1192         (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL,
1193         &ip_mod_info
1194 };
1195 
1196 static struct qinit ipwinit = {
1197         (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL,
1198         &ip_mod_info
1199 };
1200 
1201 static struct qinit iplrinit = {
1202         (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL,
1203         &ip_mod_info
1204 };
1205 
1206 static struct qinit iplwinit = {
1207         (pfi_t)ip_lwput, NULL, NULL, NULL, NULL,
1208         &ip_mod_info
1209 };
1210 
1211 /* For AF_INET aka /dev/ip */
1212 struct streamtab ipinfov4 = {
1213         &iprinitv4, &ipwinit, &iplrinit, &iplwinit
1214 };
1215 
1216 /* For AF_INET6 aka /dev/ip6 */
1217 struct streamtab ipinfov6 = {
1218         &iprinitv6, &ipwinit, &iplrinit, &iplwinit
1219 };
1220 
1221 #ifdef  DEBUG
1222 boolean_t skip_sctp_cksum = B_FALSE;
1223 #endif
1224 
1225 /*
1226  * Generate an ICMP fragmentation needed message.
1227  * When called from ip_output side a minimal ip_recv_attr_t needs to be
1228  * constructed by the caller.
1229  */
1230 void
1231 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1232 {
1233         icmph_t icmph;
1234         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
1235 
1236         mp = icmp_pkt_err_ok(mp, ira);
1237         if (mp == NULL)
1238                 return;
1239 
1240         bzero(&icmph, sizeof (icmph_t));
1241         icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1242         icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1243         icmph.icmph_du_mtu = htons((uint16_t)mtu);
1244         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1245         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1246 
1247         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1248 }
1249 
1250 /*
1251  * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1252  * If the ICMP message is consumed by IP, i.e., it should not be delivered
1253  * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1254  * Likewise, if the ICMP error is misformed (too short, etc), then it
1255  * returns NULL. The caller uses this to determine whether or not to send
1256  * to raw sockets.
1257  *
1258  * All error messages are passed to the matching transport stream.
1259  *
1260  * The following cases are handled by icmp_inbound:
1261  * 1) It needs to send a reply back and possibly delivering it
1262  *    to the "interested" upper clients.
1263  * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1264  * 3) It needs to change some values in IP only.
1265  * 4) It needs to change some values in IP and upper layers e.g TCP
1266  *    by delivering an error to the upper layers.
1267  *
1268  * We handle the above three cases in the context of IPsec in the
1269  * following way :
1270  *
1271  * 1) Send the reply back in the same way as the request came in.
1272  *    If it came in encrypted, it goes out encrypted. If it came in
1273  *    clear, it goes out in clear. Thus, this will prevent chosen
1274  *    plain text attack.
1275  * 2) The client may or may not expect things to come in secure.
1276  *    If it comes in secure, the policy constraints are checked
1277  *    before delivering it to the upper layers. If it comes in
1278  *    clear, ipsec_inbound_accept_clear will decide whether to
1279  *    accept this in clear or not. In both the cases, if the returned
1280  *    message (IP header + 8 bytes) that caused the icmp message has
1281  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1282  *    sending up. If there are only 8 bytes of returned message, then
1283  *    upper client will not be notified.
1284  * 3) Check with global policy to see whether it matches the constaints.
1285  *    But this will be done only if icmp_accept_messages_in_clear is
1286  *    zero.
1287  * 4) If we need to change both in IP and ULP, then the decision taken
1288  *    while affecting the values in IP and while delivering up to TCP
1289  *    should be the same.
1290  *
1291  *      There are two cases.
1292  *
1293  *      a) If we reject data at the IP layer (ipsec_check_global_policy()
1294  *         failed), we will not deliver it to the ULP, even though they
1295  *         are *willing* to accept in *clear*. This is fine as our global
1296  *         disposition to icmp messages asks us reject the datagram.
1297  *
1298  *      b) If we accept data at the IP layer (ipsec_check_global_policy()
1299  *         succeeded or icmp_accept_messages_in_clear is 1), and not able
1300  *         to deliver it to ULP (policy failed), it can lead to
1301  *         consistency problems. The cases known at this time are
1302  *         ICMP_DESTINATION_UNREACHABLE  messages with following code
1303  *         values :
1304  *
1305  *         - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1306  *           and Upper layer rejects. Then the communication will
1307  *           come to a stop. This is solved by making similar decisions
1308  *           at both levels. Currently, when we are unable to deliver
1309  *           to the Upper Layer (due to policy failures) while IP has
1310  *           adjusted dce_pmtu, the next outbound datagram would
1311  *           generate a local ICMP_FRAGMENTATION_NEEDED message - which
1312  *           will be with the right level of protection. Thus the right
1313  *           value will be communicated even if we are not able to
1314  *           communicate when we get from the wire initially. But this
1315  *           assumes there would be at least one outbound datagram after
1316  *           IP has adjusted its dce_pmtu value. To make things
1317  *           simpler, we accept in clear after the validation of
1318  *           AH/ESP headers.
1319  *
1320  *         - Other ICMP ERRORS : We may not be able to deliver it to the
1321  *           upper layer depending on the level of protection the upper
1322  *           layer expects and the disposition in ipsec_inbound_accept_clear().
1323  *           ipsec_inbound_accept_clear() decides whether a given ICMP error
1324  *           should be accepted in clear when the Upper layer expects secure.
1325  *           Thus the communication may get aborted by some bad ICMP
1326  *           packets.
1327  */
1328 mblk_t *
1329 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1330 {
1331         icmph_t         *icmph;
1332         ipha_t          *ipha;          /* Outer header */
1333         int             ip_hdr_length;  /* Outer header length */
1334         boolean_t       interested;
1335         ipif_t          *ipif;
1336         uint32_t        ts;
1337         uint32_t        *tsp;
1338         timestruc_t     now;
1339         ill_t           *ill = ira->ira_ill;
1340         ip_stack_t      *ipst = ill->ill_ipst;
1341         zoneid_t        zoneid = ira->ira_zoneid;
1342         int             len_needed;
1343         mblk_t          *mp_ret = NULL;
1344 
1345         ipha = (ipha_t *)mp->b_rptr;
1346 
1347         BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1348 
1349         ip_hdr_length = ira->ira_ip_hdr_length;
1350         if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1351                 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1352                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1353                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1354                         freemsg(mp);
1355                         return (NULL);
1356                 }
1357                 /* Last chance to get real. */
1358                 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1359                 if (ipha == NULL) {
1360                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1361                         freemsg(mp);
1362                         return (NULL);
1363                 }
1364         }
1365 
1366         /* The IP header will always be a multiple of four bytes */
1367         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1368         ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1369             icmph->icmph_code));
1370 
1371         /*
1372          * We will set "interested" to "true" if we should pass a copy to
1373          * the transport or if we handle the packet locally.
1374          */
1375         interested = B_FALSE;
1376         switch (icmph->icmph_type) {
1377         case ICMP_ECHO_REPLY:
1378                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1379                 break;
1380         case ICMP_DEST_UNREACHABLE:
1381                 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1382                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1383                 interested = B_TRUE;    /* Pass up to transport */
1384                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1385                 break;
1386         case ICMP_SOURCE_QUENCH:
1387                 interested = B_TRUE;    /* Pass up to transport */
1388                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1389                 break;
1390         case ICMP_REDIRECT:
1391                 if (!ipst->ips_ip_ignore_redirect)
1392                         interested = B_TRUE;
1393                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1394                 break;
1395         case ICMP_ECHO_REQUEST:
1396                 /*
1397                  * Whether to respond to echo requests that come in as IP
1398                  * broadcasts or as IP multicast is subject to debate
1399                  * (what isn't?).  We aim to please, you pick it.
1400                  * Default is do it.
1401                  */
1402                 if (ira->ira_flags & IRAF_MULTICAST) {
1403                         /* multicast: respond based on tunable */
1404                         interested = ipst->ips_ip_g_resp_to_echo_mcast;
1405                 } else if (ira->ira_flags & IRAF_BROADCAST) {
1406                         /* broadcast: respond based on tunable */
1407                         interested = ipst->ips_ip_g_resp_to_echo_bcast;
1408                 } else {
1409                         /* unicast: always respond */
1410                         interested = B_TRUE;
1411                 }
1412                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1413                 if (!interested) {
1414                         /* We never pass these to RAW sockets */
1415                         freemsg(mp);
1416                         return (NULL);
1417                 }
1418 
1419                 /* Check db_ref to make sure we can modify the packet. */
1420                 if (mp->b_datap->db_ref > 1) {
1421                         mblk_t  *mp1;
1422 
1423                         mp1 = copymsg(mp);
1424                         freemsg(mp);
1425                         if (!mp1) {
1426                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1427                                 return (NULL);
1428                         }
1429                         mp = mp1;
1430                         ipha = (ipha_t *)mp->b_rptr;
1431                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1432                 }
1433                 icmph->icmph_type = ICMP_ECHO_REPLY;
1434                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1435                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1436                 return (NULL);
1437 
1438         case ICMP_ROUTER_ADVERTISEMENT:
1439         case ICMP_ROUTER_SOLICITATION:
1440                 break;
1441         case ICMP_TIME_EXCEEDED:
1442                 interested = B_TRUE;    /* Pass up to transport */
1443                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1444                 break;
1445         case ICMP_PARAM_PROBLEM:
1446                 interested = B_TRUE;    /* Pass up to transport */
1447                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1448                 break;
1449         case ICMP_TIME_STAMP_REQUEST:
1450                 /* Response to Time Stamp Requests is local policy. */
1451                 if (ipst->ips_ip_g_resp_to_timestamp) {
1452                         if (ira->ira_flags & IRAF_MULTIBROADCAST)
1453                                 interested =
1454                                     ipst->ips_ip_g_resp_to_timestamp_bcast;
1455                         else
1456                                 interested = B_TRUE;
1457                 }
1458                 if (!interested) {
1459                         /* We never pass these to RAW sockets */
1460                         freemsg(mp);
1461                         return (NULL);
1462                 }
1463 
1464                 /* Make sure we have enough of the packet */
1465                 len_needed = ip_hdr_length + ICMPH_SIZE +
1466                     3 * sizeof (uint32_t);
1467 
1468                 if (mp->b_wptr - mp->b_rptr < len_needed) {
1469                         ipha = ip_pullup(mp, len_needed, ira);
1470                         if (ipha == NULL) {
1471                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1472                                 ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1473                                     mp, ill);
1474                                 freemsg(mp);
1475                                 return (NULL);
1476                         }
1477                         /* Refresh following the pullup. */
1478                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1479                 }
1480                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1481                 /* Check db_ref to make sure we can modify the packet. */
1482                 if (mp->b_datap->db_ref > 1) {
1483                         mblk_t  *mp1;
1484 
1485                         mp1 = copymsg(mp);
1486                         freemsg(mp);
1487                         if (!mp1) {
1488                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1489                                 return (NULL);
1490                         }
1491                         mp = mp1;
1492                         ipha = (ipha_t *)mp->b_rptr;
1493                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1494                 }
1495                 icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1496                 tsp = (uint32_t *)&icmph[1];
1497                 tsp++;          /* Skip past 'originate time' */
1498                 /* Compute # of milliseconds since midnight */
1499                 gethrestime(&now);
1500                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1501                     NSEC2MSEC(now.tv_nsec);
1502                 *tsp++ = htonl(ts);     /* Lay in 'receive time' */
1503                 *tsp++ = htonl(ts);     /* Lay in 'send time' */
1504                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1505                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1506                 return (NULL);
1507 
1508         case ICMP_TIME_STAMP_REPLY:
1509                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1510                 break;
1511         case ICMP_INFO_REQUEST:
1512                 /* Per RFC 1122 3.2.2.7, ignore this. */
1513         case ICMP_INFO_REPLY:
1514                 break;
1515         case ICMP_ADDRESS_MASK_REQUEST:
1516                 if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1517                         interested =
1518                             ipst->ips_ip_respond_to_address_mask_broadcast;
1519                 } else {
1520                         interested = B_TRUE;
1521                 }
1522                 if (!interested) {
1523                         /* We never pass these to RAW sockets */
1524                         freemsg(mp);
1525                         return (NULL);
1526                 }
1527                 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1528                 if (mp->b_wptr - mp->b_rptr < len_needed) {
1529                         ipha = ip_pullup(mp, len_needed, ira);
1530                         if (ipha == NULL) {
1531                                 BUMP_MIB(ill->ill_ip_mib,
1532                                     ipIfStatsInTruncatedPkts);
1533                                 ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1534                                     ill);
1535                                 freemsg(mp);
1536                                 return (NULL);
1537                         }
1538                         /* Refresh following the pullup. */
1539                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1540                 }
1541                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1542                 /* Check db_ref to make sure we can modify the packet. */
1543                 if (mp->b_datap->db_ref > 1) {
1544                         mblk_t  *mp1;
1545 
1546                         mp1 = copymsg(mp);
1547                         freemsg(mp);
1548                         if (!mp1) {
1549                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1550                                 return (NULL);
1551                         }
1552                         mp = mp1;
1553                         ipha = (ipha_t *)mp->b_rptr;
1554                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1555                 }
1556                 /*
1557                  * Need the ipif with the mask be the same as the source
1558                  * address of the mask reply. For unicast we have a specific
1559                  * ipif. For multicast/broadcast we only handle onlink
1560                  * senders, and use the source address to pick an ipif.
1561                  */
1562                 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1563                 if (ipif == NULL) {
1564                         /* Broadcast or multicast */
1565                         ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1566                         if (ipif == NULL) {
1567                                 freemsg(mp);
1568                                 return (NULL);
1569                         }
1570                 }
1571                 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1572                 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1573                 ipif_refrele(ipif);
1574                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1575                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1576                 return (NULL);
1577 
1578         case ICMP_ADDRESS_MASK_REPLY:
1579                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1580                 break;
1581         default:
1582                 interested = B_TRUE;    /* Pass up to transport */
1583                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1584                 break;
1585         }
1586         /*
1587          * See if there is an ICMP client to avoid an extra copymsg/freemsg
1588          * if there isn't one.
1589          */
1590         if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1591                 /* If there is an ICMP client and we want one too, copy it. */
1592 
1593                 if (!interested) {
1594                         /* Caller will deliver to RAW sockets */
1595                         return (mp);
1596                 }
1597                 mp_ret = copymsg(mp);
1598                 if (mp_ret == NULL) {
1599                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1600                         ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1601                 }
1602         } else if (!interested) {
1603                 /* Neither we nor raw sockets are interested. Drop packet now */
1604                 freemsg(mp);
1605                 return (NULL);
1606         }
1607 
1608         /*
1609          * ICMP error or redirect packet. Make sure we have enough of
1610          * the header and that db_ref == 1 since we might end up modifying
1611          * the packet.
1612          */
1613         if (mp->b_cont != NULL) {
1614                 if (ip_pullup(mp, -1, ira) == NULL) {
1615                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1616                         ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1617                             mp, ill);
1618                         freemsg(mp);
1619                         return (mp_ret);
1620                 }
1621         }
1622 
1623         if (mp->b_datap->db_ref > 1) {
1624                 mblk_t  *mp1;
1625 
1626                 mp1 = copymsg(mp);
1627                 if (mp1 == NULL) {
1628                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1629                         ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1630                         freemsg(mp);
1631                         return (mp_ret);
1632                 }
1633                 freemsg(mp);
1634                 mp = mp1;
1635         }
1636 
1637         /*
1638          * In case mp has changed, verify the message before any further
1639          * processes.
1640          */
1641         ipha = (ipha_t *)mp->b_rptr;
1642         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1643         if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1644                 freemsg(mp);
1645                 return (mp_ret);
1646         }
1647 
1648         switch (icmph->icmph_type) {
1649         case ICMP_REDIRECT:
1650                 icmp_redirect_v4(mp, ipha, icmph, ira);
1651                 break;
1652         case ICMP_DEST_UNREACHABLE:
1653                 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1654                         /* Update DCE and adjust MTU is icmp header if needed */
1655                         icmp_inbound_too_big_v4(icmph, ira);
1656                 }
1657                 /* FALLTHRU */
1658         default:
1659                 icmp_inbound_error_fanout_v4(mp, icmph, ira);
1660                 break;
1661         }
1662         return (mp_ret);
1663 }
1664 
1665 /*
1666  * Send an ICMP echo, timestamp or address mask reply.
1667  * The caller has already updated the payload part of the packet.
1668  * We handle the ICMP checksum, IP source address selection and feed
1669  * the packet into ip_output_simple.
1670  */
1671 static void
1672 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1673     ip_recv_attr_t *ira)
1674 {
1675         uint_t          ip_hdr_length = ira->ira_ip_hdr_length;
1676         ill_t           *ill = ira->ira_ill;
1677         ip_stack_t      *ipst = ill->ill_ipst;
1678         ip_xmit_attr_t  ixas;
1679 
1680         /* Send out an ICMP packet */
1681         icmph->icmph_checksum = 0;
1682         icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1683         /* Reset time to live. */
1684         ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1685         {
1686                 /* Swap source and destination addresses */
1687                 ipaddr_t tmp;
1688 
1689                 tmp = ipha->ipha_src;
1690                 ipha->ipha_src = ipha->ipha_dst;
1691                 ipha->ipha_dst = tmp;
1692         }
1693         ipha->ipha_ident = 0;
1694         if (!IS_SIMPLE_IPH(ipha))
1695                 icmp_options_update(ipha);
1696 
1697         bzero(&ixas, sizeof (ixas));
1698         ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1699         ixas.ixa_zoneid = ira->ira_zoneid;
1700         ixas.ixa_cred = kcred;
1701         ixas.ixa_cpid = NOPID;
1702         ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
1703         ixas.ixa_ifindex = 0;
1704         ixas.ixa_ipst = ipst;
1705         ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1706 
1707         if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1708                 /*
1709                  * This packet should go out the same way as it
1710                  * came in i.e in clear, independent of the IPsec policy
1711                  * for transmitting packets.
1712                  */
1713                 ixas.ixa_flags |= IXAF_NO_IPSEC;
1714         } else {
1715                 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1716                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1717                         /* Note: mp already consumed and ip_drop_packet done */
1718                         return;
1719                 }
1720         }
1721         if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1722                 /*
1723                  * Not one or our addresses (IRE_LOCALs), thus we let
1724                  * ip_output_simple pick the source.
1725                  */
1726                 ipha->ipha_src = INADDR_ANY;
1727                 ixas.ixa_flags |= IXAF_SET_SOURCE;
1728         }
1729         /* Should we send with DF and use dce_pmtu? */
1730         if (ipst->ips_ipv4_icmp_return_pmtu) {
1731                 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1732                 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1733         }
1734 
1735         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1736 
1737         (void) ip_output_simple(mp, &ixas);
1738         ixa_cleanup(&ixas);
1739 }
1740 
1741 /*
1742  * Verify the ICMP messages for either for ICMP error or redirect packet.
1743  * The caller should have fully pulled up the message. If it's a redirect
1744  * packet, only basic checks on IP header will be done; otherwise, verify
1745  * the packet by looking at the included ULP header.
1746  *
1747  * Called before icmp_inbound_error_fanout_v4 is called.
1748  */
1749 static boolean_t
1750 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1751 {
1752         ill_t           *ill = ira->ira_ill;
1753         int             hdr_length;
1754         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
1755         conn_t          *connp;
1756         ipha_t          *ipha;  /* Inner IP header */
1757 
1758         ipha = (ipha_t *)&icmph[1];
1759         if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1760                 goto truncated;
1761 
1762         hdr_length = IPH_HDR_LENGTH(ipha);
1763 
1764         if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1765                 goto discard_pkt;
1766 
1767         if (hdr_length < sizeof (ipha_t))
1768                 goto truncated;
1769 
1770         if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1771                 goto truncated;
1772 
1773         /*
1774          * Stop here for ICMP_REDIRECT.
1775          */
1776         if (icmph->icmph_type == ICMP_REDIRECT)
1777                 return (B_TRUE);
1778 
1779         /*
1780          * ICMP errors only.
1781          */
1782         switch (ipha->ipha_protocol) {
1783         case IPPROTO_UDP:
1784                 /*
1785                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1786                  * transport header.
1787                  */
1788                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1789                     mp->b_wptr)
1790                         goto truncated;
1791                 break;
1792         case IPPROTO_TCP: {
1793                 tcpha_t         *tcpha;
1794 
1795                 /*
1796                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1797                  * transport header.
1798                  */
1799                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1800                     mp->b_wptr)
1801                         goto truncated;
1802 
1803                 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1804                 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1805                     ipst);
1806                 if (connp == NULL)
1807                         goto discard_pkt;
1808 
1809                 if ((connp->conn_verifyicmp != NULL) &&
1810                     !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1811                         CONN_DEC_REF(connp);
1812                         goto discard_pkt;
1813                 }
1814                 CONN_DEC_REF(connp);
1815                 break;
1816         }
1817         case IPPROTO_SCTP:
1818                 /*
1819                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1820                  * transport header.
1821                  */
1822                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1823                     mp->b_wptr)
1824                         goto truncated;
1825                 break;
1826         case IPPROTO_ESP:
1827         case IPPROTO_AH:
1828                 break;
1829         case IPPROTO_ENCAP:
1830                 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1831                     mp->b_wptr)
1832                         goto truncated;
1833                 break;
1834         default:
1835                 break;
1836         }
1837 
1838         return (B_TRUE);
1839 
1840 discard_pkt:
1841         /* Bogus ICMP error. */
1842         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1843         return (B_FALSE);
1844 
1845 truncated:
1846         /* We pulled up everthing already. Must be truncated */
1847         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1848         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1849         return (B_FALSE);
1850 }
1851 
1852 /* Table from RFC 1191 */
1853 static int icmp_frag_size_table[] =
1854 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1855 
1856 /*
1857  * Process received ICMP Packet too big.
1858  * Just handles the DCE create/update, including using the above table of
1859  * PMTU guesses. The caller is responsible for validating the packet before
1860  * passing it in and also to fanout the ICMP error to any matching transport
1861  * conns. Assumes the message has been fully pulled up and verified.
1862  *
1863  * Before getting here, the caller has called icmp_inbound_verify_v4()
1864  * that should have verified with ULP to prevent undoing the changes we're
1865  * going to make to DCE. For example, TCP might have verified that the packet
1866  * which generated error is in the send window.
1867  *
1868  * In some cases modified this MTU in the ICMP header packet; the caller
1869  * should pass to the matching ULP after this returns.
1870  */
1871 static void
1872 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1873 {
1874         dce_t           *dce;
1875         int             old_mtu;
1876         int             mtu, orig_mtu;
1877         ipaddr_t        dst;
1878         boolean_t       disable_pmtud;
1879         ill_t           *ill = ira->ira_ill;
1880         ip_stack_t      *ipst = ill->ill_ipst;
1881         uint_t          hdr_length;
1882         ipha_t          *ipha;
1883 
1884         /* Caller already pulled up everything. */
1885         ipha = (ipha_t *)&icmph[1];
1886         ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1887             icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1888         ASSERT(ill != NULL);
1889 
1890         hdr_length = IPH_HDR_LENGTH(ipha);
1891 
1892         /*
1893          * We handle path MTU for source routed packets since the DCE
1894          * is looked up using the final destination.
1895          */
1896         dst = ip_get_dst(ipha);
1897 
1898         dce = dce_lookup_and_add_v4(dst, ipst);
1899         if (dce == NULL) {
1900                 /* Couldn't add a unique one - ENOMEM */
1901                 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1902                     ntohl(dst)));
1903                 return;
1904         }
1905 
1906         /* Check for MTU discovery advice as described in RFC 1191 */
1907         mtu = ntohs(icmph->icmph_du_mtu);
1908         orig_mtu = mtu;
1909         disable_pmtud = B_FALSE;
1910 
1911         mutex_enter(&dce->dce_lock);
1912         if (dce->dce_flags & DCEF_PMTU)
1913                 old_mtu = dce->dce_pmtu;
1914         else
1915                 old_mtu = ill->ill_mtu;
1916 
1917         if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1918                 uint32_t length;
1919                 int     i;
1920 
1921                 /*
1922                  * Use the table from RFC 1191 to figure out
1923                  * the next "plateau" based on the length in
1924                  * the original IP packet.
1925                  */
1926                 length = ntohs(ipha->ipha_length);
1927                 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1928                     uint32_t, length);
1929                 if (old_mtu <= length &&
1930                     old_mtu >= length - hdr_length) {
1931                         /*
1932                          * Handle broken BSD 4.2 systems that
1933                          * return the wrong ipha_length in ICMP
1934                          * errors.
1935                          */
1936                         ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1937                             length, old_mtu));
1938                         length -= hdr_length;
1939                 }
1940                 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1941                         if (length > icmp_frag_size_table[i])
1942                                 break;
1943                 }
1944                 if (i == A_CNT(icmp_frag_size_table)) {
1945                         /* Smaller than IP_MIN_MTU! */
1946                         ip1dbg(("Too big for packet size %d\n",
1947                             length));
1948                         disable_pmtud = B_TRUE;
1949                         mtu = ipst->ips_ip_pmtu_min;
1950                 } else {
1951                         mtu = icmp_frag_size_table[i];
1952                         ip1dbg(("Calculated mtu %d, packet size %d, "
1953                             "before %d\n", mtu, length, old_mtu));
1954                         if (mtu < ipst->ips_ip_pmtu_min) {
1955                                 mtu = ipst->ips_ip_pmtu_min;
1956                                 disable_pmtud = B_TRUE;
1957                         }
1958                 }
1959         }
1960         if (disable_pmtud)
1961                 dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1962         else
1963                 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1964 
1965         dce->dce_pmtu = MIN(old_mtu, mtu);
1966         /* Prepare to send the new max frag size for the ULP. */
1967         icmph->icmph_du_zero = 0;
1968         icmph->icmph_du_mtu =  htons((uint16_t)dce->dce_pmtu);
1969         DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1970             dce, int, orig_mtu, int, mtu);
1971 
1972         /* We now have a PMTU for sure */
1973         dce->dce_flags |= DCEF_PMTU;
1974         dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1975         mutex_exit(&dce->dce_lock);
1976         /*
1977          * After dropping the lock the new value is visible to everyone.
1978          * Then we bump the generation number so any cached values reinspect
1979          * the dce_t.
1980          */
1981         dce_increment_generation(dce);
1982         dce_refrele(dce);
1983 }
1984 
1985 /*
1986  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1987  * calls this function.
1988  */
1989 static mblk_t *
1990 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1991 {
1992         int length;
1993 
1994         ASSERT(mp->b_datap->db_type == M_DATA);
1995 
1996         /* icmp_inbound_v4 has already pulled up the whole error packet */
1997         ASSERT(mp->b_cont == NULL);
1998 
1999         /*
2000          * The length that we want to overlay is the inner header
2001          * and what follows it.
2002          */
2003         length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
2004 
2005         /*
2006          * Overlay the inner header and whatever follows it over the
2007          * outer header.
2008          */
2009         bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2010 
2011         /* Adjust for what we removed */
2012         mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2013         return (mp);
2014 }
2015 
2016 /*
2017  * Try to pass the ICMP message upstream in case the ULP cares.
2018  *
2019  * If the packet that caused the ICMP error is secure, we send
2020  * it to AH/ESP to make sure that the attached packet has a
2021  * valid association. ipha in the code below points to the
2022  * IP header of the packet that caused the error.
2023  *
2024  * For IPsec cases, we let the next-layer-up (which has access to
2025  * cached policy on the conn_t, or can query the SPD directly)
2026  * subtract out any IPsec overhead if they must.  We therefore make no
2027  * adjustments here for IPsec overhead.
2028  *
2029  * IFN could have been generated locally or by some router.
2030  *
2031  * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2032  * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2033  *          This happens because IP adjusted its value of MTU on an
2034  *          earlier IFN message and could not tell the upper layer,
2035  *          the new adjusted value of MTU e.g. Packet was encrypted
2036  *          or there was not enough information to fanout to upper
2037  *          layers. Thus on the next outbound datagram, ire_send_wire
2038  *          generates the IFN, where IPsec processing has *not* been
2039  *          done.
2040  *
2041  *          Note that we retain ixa_fragsize across IPsec thus once
2042  *          we have picking ixa_fragsize and entered ipsec_out_process we do
2043  *          no change the fragsize even if the path MTU changes before
2044  *          we reach ip_output_post_ipsec.
2045  *
2046  *          In the local case, IRAF_LOOPBACK will be set indicating
2047  *          that IFN was generated locally.
2048  *
2049  * ROUTER : IFN could be secure or non-secure.
2050  *
2051  *          * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2052  *            packet in error has AH/ESP headers to validate the AH/ESP
2053  *            headers. AH/ESP will verify whether there is a valid SA or
2054  *            not and send it back. We will fanout again if we have more
2055  *            data in the packet.
2056  *
2057  *            If the packet in error does not have AH/ESP, we handle it
2058  *            like any other case.
2059  *
2060  *          * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2061  *            up to AH/ESP for validation. AH/ESP will verify whether there is a
2062  *            valid SA or not and send it back. We will fanout again if
2063  *            we have more data in the packet.
2064  *
2065  *            If the packet in error does not have AH/ESP, we handle it
2066  *            like any other case.
2067  *
2068  * The caller must have called icmp_inbound_verify_v4.
2069  */
2070 static void
2071 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2072 {
2073         uint16_t        *up;    /* Pointer to ports in ULP header */
2074         uint32_t        ports;  /* reversed ports for fanout */
2075         ipha_t          ripha;  /* With reversed addresses */
2076         ipha_t          *ipha;  /* Inner IP header */
2077         uint_t          hdr_length; /* Inner IP header length */
2078         tcpha_t         *tcpha;
2079         conn_t          *connp;
2080         ill_t           *ill = ira->ira_ill;
2081         ip_stack_t      *ipst = ill->ill_ipst;
2082         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
2083         ill_t           *rill = ira->ira_rill;
2084 
2085         /* Caller already pulled up everything. */
2086         ipha = (ipha_t *)&icmph[1];
2087         ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2088         ASSERT(mp->b_cont == NULL);
2089 
2090         hdr_length = IPH_HDR_LENGTH(ipha);
2091         ira->ira_protocol = ipha->ipha_protocol;
2092 
2093         /*
2094          * We need a separate IP header with the source and destination
2095          * addresses reversed to do fanout/classification because the ipha in
2096          * the ICMP error is in the form we sent it out.
2097          */
2098         ripha.ipha_src = ipha->ipha_dst;
2099         ripha.ipha_dst = ipha->ipha_src;
2100         ripha.ipha_protocol = ipha->ipha_protocol;
2101         ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2102 
2103         ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2104             ripha.ipha_protocol, ntohl(ipha->ipha_src),
2105             ntohl(ipha->ipha_dst),
2106             icmph->icmph_type, icmph->icmph_code));
2107 
2108         switch (ipha->ipha_protocol) {
2109         case IPPROTO_UDP:
2110                 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2111 
2112                 /* Attempt to find a client stream based on port. */
2113                 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2114                     ntohs(up[0]), ntohs(up[1])));
2115 
2116                 /* Note that we send error to all matches. */
2117                 ira->ira_flags |= IRAF_ICMP_ERROR;
2118                 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2119                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2120                 return;
2121 
2122         case IPPROTO_TCP:
2123                 /*
2124                  * Find a TCP client stream for this packet.
2125                  * Note that we do a reverse lookup since the header is
2126                  * in the form we sent it out.
2127                  */
2128                 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2129                 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2130                     ipst);
2131                 if (connp == NULL)
2132                         goto discard_pkt;
2133 
2134                 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2135                     (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2136                         mp = ipsec_check_inbound_policy(mp, connp,
2137                             ipha, NULL, ira);
2138                         if (mp == NULL) {
2139                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2140                                 /* Note that mp is NULL */
2141                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2142                                 CONN_DEC_REF(connp);
2143                                 return;
2144                         }
2145                 }
2146 
2147                 ira->ira_flags |= IRAF_ICMP_ERROR;
2148                 ira->ira_ill = ira->ira_rill = NULL;
2149                 if (IPCL_IS_TCP(connp)) {
2150                         SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2151                             connp->conn_recvicmp, connp, ira, SQ_FILL,
2152                             SQTAG_TCP_INPUT_ICMP_ERR);
2153                 } else {
2154                         /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2155                         (connp->conn_recv)(connp, mp, NULL, ira);
2156                         CONN_DEC_REF(connp);
2157                 }
2158                 ira->ira_ill = ill;
2159                 ira->ira_rill = rill;
2160                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2161                 return;
2162 
2163         case IPPROTO_SCTP:
2164                 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2165                 /* Find a SCTP client stream for this packet. */
2166                 ((uint16_t *)&ports)[0] = up[1];
2167                 ((uint16_t *)&ports)[1] = up[0];
2168 
2169                 ira->ira_flags |= IRAF_ICMP_ERROR;
2170                 ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2171                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2172                 return;
2173 
2174         case IPPROTO_ESP:
2175         case IPPROTO_AH:
2176                 if (!ipsec_loaded(ipss)) {
2177                         ip_proto_not_sup(mp, ira);
2178                         return;
2179                 }
2180 
2181                 if (ipha->ipha_protocol == IPPROTO_ESP)
2182                         mp = ipsecesp_icmp_error(mp, ira);
2183                 else
2184                         mp = ipsecah_icmp_error(mp, ira);
2185                 if (mp == NULL)
2186                         return;
2187 
2188                 /* Just in case ipsec didn't preserve the NULL b_cont */
2189                 if (mp->b_cont != NULL) {
2190                         if (!pullupmsg(mp, -1))
2191                                 goto discard_pkt;
2192                 }
2193 
2194                 /*
2195                  * Note that ira_pktlen and ira_ip_hdr_length are no longer
2196                  * correct, but we don't use them any more here.
2197                  *
2198                  * If succesful, the mp has been modified to not include
2199                  * the ESP/AH header so we can fanout to the ULP's icmp
2200                  * error handler.
2201                  */
2202                 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2203                         goto truncated;
2204 
2205                 /* Verify the modified message before any further processes. */
2206                 ipha = (ipha_t *)mp->b_rptr;
2207                 hdr_length = IPH_HDR_LENGTH(ipha);
2208                 icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2209                 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2210                         freemsg(mp);
2211                         return;
2212                 }
2213 
2214                 icmp_inbound_error_fanout_v4(mp, icmph, ira);
2215                 return;
2216 
2217         case IPPROTO_ENCAP: {
2218                 /* Look for self-encapsulated packets that caused an error */
2219                 ipha_t *in_ipha;
2220 
2221                 /*
2222                  * Caller has verified that length has to be
2223                  * at least the size of IP header.
2224                  */
2225                 ASSERT(hdr_length >= sizeof (ipha_t));
2226                 /*
2227                  * Check the sanity of the inner IP header like
2228                  * we did for the outer header.
2229                  */
2230                 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2231                 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2232                         goto discard_pkt;
2233                 }
2234                 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2235                         goto discard_pkt;
2236                 }
2237                 /* Check for Self-encapsulated tunnels */
2238                 if (in_ipha->ipha_src == ipha->ipha_src &&
2239                     in_ipha->ipha_dst == ipha->ipha_dst) {
2240 
2241                         mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2242                             in_ipha);
2243                         if (mp == NULL)
2244                                 goto discard_pkt;
2245 
2246                         /*
2247                          * Just in case self_encap didn't preserve the NULL
2248                          * b_cont
2249                          */
2250                         if (mp->b_cont != NULL) {
2251                                 if (!pullupmsg(mp, -1))
2252                                         goto discard_pkt;
2253                         }
2254                         /*
2255                          * Note that ira_pktlen and ira_ip_hdr_length are no
2256                          * longer correct, but we don't use them any more here.
2257                          */
2258                         if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2259                                 goto truncated;
2260 
2261                         /*
2262                          * Verify the modified message before any further
2263                          * processes.
2264                          */
2265                         ipha = (ipha_t *)mp->b_rptr;
2266                         hdr_length = IPH_HDR_LENGTH(ipha);
2267                         icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2268                         if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2269                                 freemsg(mp);
2270                                 return;
2271                         }
2272 
2273                         /*
2274                          * The packet in error is self-encapsualted.
2275                          * And we are finding it further encapsulated
2276                          * which we could not have possibly generated.
2277                          */
2278                         if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2279                                 goto discard_pkt;
2280                         }
2281                         icmp_inbound_error_fanout_v4(mp, icmph, ira);
2282                         return;
2283                 }
2284                 /* No self-encapsulated */
2285                 /* FALLTHRU */
2286         }
2287         case IPPROTO_IPV6:
2288                 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2289                     &ripha.ipha_dst, ipst)) != NULL) {
2290                         ira->ira_flags |= IRAF_ICMP_ERROR;
2291                         connp->conn_recvicmp(connp, mp, NULL, ira);
2292                         CONN_DEC_REF(connp);
2293                         ira->ira_flags &= ~IRAF_ICMP_ERROR;
2294                         return;
2295                 }
2296                 /*
2297                  * No IP tunnel is interested, fallthrough and see
2298                  * if a raw socket will want it.
2299                  */
2300                 /* FALLTHRU */
2301         default:
2302                 ira->ira_flags |= IRAF_ICMP_ERROR;
2303                 ip_fanout_proto_v4(mp, &ripha, ira);
2304                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2305                 return;
2306         }
2307         /* NOTREACHED */
2308 discard_pkt:
2309         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2310         ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2311         ip_drop_input("ipIfStatsInDiscards", mp, ill);
2312         freemsg(mp);
2313         return;
2314 
2315 truncated:
2316         /* We pulled up everthing already. Must be truncated */
2317         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2318         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2319         freemsg(mp);
2320 }
2321 
2322 /*
2323  * Common IP options parser.
2324  *
2325  * Setup routine: fill in *optp with options-parsing state, then
2326  * tail-call ipoptp_next to return the first option.
2327  */
2328 uint8_t
2329 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2330 {
2331         uint32_t totallen; /* total length of all options */
2332 
2333         totallen = ipha->ipha_version_and_hdr_length -
2334             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2335         totallen <<= 2;
2336         optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2337         optp->ipoptp_end = optp->ipoptp_next + totallen;
2338         optp->ipoptp_flags = 0;
2339         return (ipoptp_next(optp));
2340 }
2341 
2342 /* Like above but without an ipha_t */
2343 uint8_t
2344 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2345 {
2346         optp->ipoptp_next = opt;
2347         optp->ipoptp_end = optp->ipoptp_next + totallen;
2348         optp->ipoptp_flags = 0;
2349         return (ipoptp_next(optp));
2350 }
2351 
2352 /*
2353  * Common IP options parser: extract next option.
2354  */
2355 uint8_t
2356 ipoptp_next(ipoptp_t *optp)
2357 {
2358         uint8_t *end = optp->ipoptp_end;
2359         uint8_t *cur = optp->ipoptp_next;
2360         uint8_t opt, len, pointer;
2361 
2362         /*
2363          * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2364          * has been corrupted.
2365          */
2366         ASSERT(cur <= end);
2367 
2368         if (cur == end)
2369                 return (IPOPT_EOL);
2370 
2371         opt = cur[IPOPT_OPTVAL];
2372 
2373         /*
2374          * Skip any NOP options.
2375          */
2376         while (opt == IPOPT_NOP) {
2377                 cur++;
2378                 if (cur == end)
2379                         return (IPOPT_EOL);
2380                 opt = cur[IPOPT_OPTVAL];
2381         }
2382 
2383         if (opt == IPOPT_EOL)
2384                 return (IPOPT_EOL);
2385 
2386         /*
2387          * Option requiring a length.
2388          */
2389         if ((cur + 1) >= end) {
2390                 optp->ipoptp_flags |= IPOPTP_ERROR;
2391                 return (IPOPT_EOL);
2392         }
2393         len = cur[IPOPT_OLEN];
2394         if (len < 2) {
2395                 optp->ipoptp_flags |= IPOPTP_ERROR;
2396                 return (IPOPT_EOL);
2397         }
2398         optp->ipoptp_cur = cur;
2399         optp->ipoptp_len = len;
2400         optp->ipoptp_next = cur + len;
2401         if (cur + len > end) {
2402                 optp->ipoptp_flags |= IPOPTP_ERROR;
2403                 return (IPOPT_EOL);
2404         }
2405 
2406         /*
2407          * For the options which require a pointer field, make sure
2408          * its there, and make sure it points to either something
2409          * inside this option, or the end of the option.
2410          */
2411         switch (opt) {
2412         case IPOPT_RR:
2413         case IPOPT_TS:
2414         case IPOPT_LSRR:
2415         case IPOPT_SSRR:
2416                 if (len <= IPOPT_OFFSET) {
2417                         optp->ipoptp_flags |= IPOPTP_ERROR;
2418                         return (opt);
2419                 }
2420                 pointer = cur[IPOPT_OFFSET];
2421                 if (pointer - 1 > len) {
2422                         optp->ipoptp_flags |= IPOPTP_ERROR;
2423                         return (opt);
2424                 }
2425                 break;
2426         }
2427 
2428         /*
2429          * Sanity check the pointer field based on the type of the
2430          * option.
2431          */
2432         switch (opt) {
2433         case IPOPT_RR:
2434         case IPOPT_SSRR:
2435         case IPOPT_LSRR:
2436                 if (pointer < IPOPT_MINOFF_SR)
2437                         optp->ipoptp_flags |= IPOPTP_ERROR;
2438                 break;
2439         case IPOPT_TS:
2440                 if (pointer < IPOPT_MINOFF_IT)
2441                         optp->ipoptp_flags |= IPOPTP_ERROR;
2442                 /*
2443                  * Note that the Internet Timestamp option also
2444                  * contains two four bit fields (the Overflow field,
2445                  * and the Flag field), which follow the pointer
2446                  * field.  We don't need to check that these fields
2447                  * fall within the length of the option because this
2448                  * was implicitely done above.  We've checked that the
2449                  * pointer value is at least IPOPT_MINOFF_IT, and that
2450                  * it falls within the option.  Since IPOPT_MINOFF_IT >
2451                  * IPOPT_POS_OV_FLG, we don't need the explicit check.
2452                  */
2453                 ASSERT(len > IPOPT_POS_OV_FLG);
2454                 break;
2455         }
2456 
2457         return (opt);
2458 }
2459 
2460 /*
2461  * Use the outgoing IP header to create an IP_OPTIONS option the way
2462  * it was passed down from the application.
2463  *
2464  * This is compatible with BSD in that it returns
2465  * the reverse source route with the final destination
2466  * as the last entry. The first 4 bytes of the option
2467  * will contain the final destination.
2468  */
2469 int
2470 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2471 {
2472         ipoptp_t        opts;
2473         uchar_t         *opt;
2474         uint8_t         optval;
2475         uint8_t         optlen;
2476         uint32_t        len = 0;
2477         uchar_t         *buf1 = buf;
2478         uint32_t        totallen;
2479         ipaddr_t        dst;
2480         ip_pkt_t        *ipp = &connp->conn_xmit_ipp;
2481 
2482         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2483                 return (0);
2484 
2485         totallen = ipp->ipp_ipv4_options_len;
2486         if (totallen & 0x3)
2487                 return (0);
2488 
2489         buf += IP_ADDR_LEN;     /* Leave room for final destination */
2490         len += IP_ADDR_LEN;
2491         bzero(buf1, IP_ADDR_LEN);
2492 
2493         dst = connp->conn_faddr_v4;
2494 
2495         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2496             optval != IPOPT_EOL;
2497             optval = ipoptp_next(&opts)) {
2498                 int     off;
2499 
2500                 opt = opts.ipoptp_cur;
2501                 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2502                         break;
2503                 }
2504                 optlen = opts.ipoptp_len;
2505 
2506                 switch (optval) {
2507                 case IPOPT_SSRR:
2508                 case IPOPT_LSRR:
2509 
2510                         /*
2511                          * Insert destination as the first entry in the source
2512                          * route and move down the entries on step.
2513                          * The last entry gets placed at buf1.
2514                          */
2515                         buf[IPOPT_OPTVAL] = optval;
2516                         buf[IPOPT_OLEN] = optlen;
2517                         buf[IPOPT_OFFSET] = optlen;
2518 
2519                         off = optlen - IP_ADDR_LEN;
2520                         if (off < 0) {
2521                                 /* No entries in source route */
2522                                 break;
2523                         }
2524                         /* Last entry in source route if not already set */
2525                         if (dst == INADDR_ANY)
2526                                 bcopy(opt + off, buf1, IP_ADDR_LEN);
2527                         off -= IP_ADDR_LEN;
2528 
2529                         while (off > 0) {
2530                                 bcopy(opt + off,
2531                                     buf + off + IP_ADDR_LEN,
2532                                     IP_ADDR_LEN);
2533                                 off -= IP_ADDR_LEN;
2534                         }
2535                         /* ipha_dst into first slot */
2536                         bcopy(&dst, buf + off + IP_ADDR_LEN,
2537                             IP_ADDR_LEN);
2538                         buf += optlen;
2539                         len += optlen;
2540                         break;
2541 
2542                 default:
2543                         bcopy(opt, buf, optlen);
2544                         buf += optlen;
2545                         len += optlen;
2546                         break;
2547                 }
2548         }
2549 done:
2550         /* Pad the resulting options */
2551         while (len & 0x3) {
2552                 *buf++ = IPOPT_EOL;
2553                 len++;
2554         }
2555         return (len);
2556 }
2557 
2558 /*
2559  * Update any record route or timestamp options to include this host.
2560  * Reverse any source route option.
2561  * This routine assumes that the options are well formed i.e. that they
2562  * have already been checked.
2563  */
2564 static void
2565 icmp_options_update(ipha_t *ipha)
2566 {
2567         ipoptp_t        opts;
2568         uchar_t         *opt;
2569         uint8_t         optval;
2570         ipaddr_t        src;            /* Our local address */
2571         ipaddr_t        dst;
2572 
2573         ip2dbg(("icmp_options_update\n"));
2574         src = ipha->ipha_src;
2575         dst = ipha->ipha_dst;
2576 
2577         for (optval = ipoptp_first(&opts, ipha);
2578             optval != IPOPT_EOL;
2579             optval = ipoptp_next(&opts)) {
2580                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2581                 opt = opts.ipoptp_cur;
2582                 ip2dbg(("icmp_options_update: opt %d, len %d\n",
2583                     optval, opts.ipoptp_len));
2584                 switch (optval) {
2585                         int off1, off2;
2586                 case IPOPT_SSRR:
2587                 case IPOPT_LSRR:
2588                         /*
2589                          * Reverse the source route.  The first entry
2590                          * should be the next to last one in the current
2591                          * source route (the last entry is our address).
2592                          * The last entry should be the final destination.
2593                          */
2594                         off1 = IPOPT_MINOFF_SR - 1;
2595                         off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2596                         if (off2 < 0) {
2597                                 /* No entries in source route */
2598                                 ip1dbg((
2599                                     "icmp_options_update: bad src route\n"));
2600                                 break;
2601                         }
2602                         bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2603                         bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2604                         bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2605                         off2 -= IP_ADDR_LEN;
2606 
2607                         while (off1 < off2) {
2608                                 bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2609                                 bcopy((char *)opt + off2, (char *)opt + off1,
2610                                     IP_ADDR_LEN);
2611                                 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2612                                 off1 += IP_ADDR_LEN;
2613                                 off2 -= IP_ADDR_LEN;
2614                         }
2615                         opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2616                         break;
2617                 }
2618         }
2619 }
2620 
2621 /*
2622  * Process received ICMP Redirect messages.
2623  * Assumes the caller has verified that the headers are in the pulled up mblk.
2624  * Consumes mp.
2625  */
2626 static void
2627 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2628 {
2629         ire_t           *ire, *nire;
2630         ire_t           *prev_ire;
2631         ipaddr_t        src, dst, gateway;
2632         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2633         ipha_t          *inner_ipha;    /* Inner IP header */
2634 
2635         /* Caller already pulled up everything. */
2636         inner_ipha = (ipha_t *)&icmph[1];
2637         src = ipha->ipha_src;
2638         dst = inner_ipha->ipha_dst;
2639         gateway = icmph->icmph_rd_gateway;
2640         /* Make sure the new gateway is reachable somehow. */
2641         ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2642             ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2643         /*
2644          * Make sure we had a route for the dest in question and that
2645          * that route was pointing to the old gateway (the source of the
2646          * redirect packet.)
2647          * We do longest match and then compare ire_gateway_addr below.
2648          */
2649         prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2650             NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2651         /*
2652          * Check that
2653          *      the redirect was not from ourselves
2654          *      the new gateway and the old gateway are directly reachable
2655          */
2656         if (prev_ire == NULL || ire == NULL ||
2657             (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2658             (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2659             !(ire->ire_type & IRE_IF_ALL) ||
2660             prev_ire->ire_gateway_addr != src) {
2661                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2662                 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2663                 freemsg(mp);
2664                 if (ire != NULL)
2665                         ire_refrele(ire);
2666                 if (prev_ire != NULL)
2667                         ire_refrele(prev_ire);
2668                 return;
2669         }
2670 
2671         ire_refrele(prev_ire);
2672         ire_refrele(ire);
2673 
2674         /*
2675          * TODO: more precise handling for cases 0, 2, 3, the latter two
2676          * require TOS routing
2677          */
2678         switch (icmph->icmph_code) {
2679         case 0:
2680         case 1:
2681                 /* TODO: TOS specificity for cases 2 and 3 */
2682         case 2:
2683         case 3:
2684                 break;
2685         default:
2686                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2687                 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2688                 freemsg(mp);
2689                 return;
2690         }
2691         /*
2692          * Create a Route Association.  This will allow us to remember that
2693          * someone we believe told us to use the particular gateway.
2694          */
2695         ire = ire_create(
2696             (uchar_t *)&dst,                        /* dest addr */
2697             (uchar_t *)&ip_g_all_ones,              /* mask */
2698             (uchar_t *)&gateway,            /* gateway addr */
2699             IRE_HOST,
2700             NULL,                               /* ill */
2701             ALL_ZONES,
2702             (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2703             NULL,                               /* tsol_gc_t */
2704             ipst);
2705 
2706         if (ire == NULL) {
2707                 freemsg(mp);
2708                 return;
2709         }
2710         nire = ire_add(ire);
2711         /* Check if it was a duplicate entry */
2712         if (nire != NULL && nire != ire) {
2713                 ASSERT(nire->ire_identical_ref > 1);
2714                 ire_delete(nire);
2715                 ire_refrele(nire);
2716                 nire = NULL;
2717         }
2718         ire = nire;
2719         if (ire != NULL) {
2720                 ire_refrele(ire);               /* Held in ire_add */
2721 
2722                 /* tell routing sockets that we received a redirect */
2723                 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2724                     (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2725                     (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2726         }
2727 
2728         /*
2729          * Delete any existing IRE_HOST type redirect ires for this destination.
2730          * This together with the added IRE has the effect of
2731          * modifying an existing redirect.
2732          */
2733         prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2734             ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2735         if (prev_ire != NULL) {
2736                 if (prev_ire ->ire_flags & RTF_DYNAMIC)
2737                         ire_delete(prev_ire);
2738                 ire_refrele(prev_ire);
2739         }
2740 
2741         freemsg(mp);
2742 }
2743 
2744 /*
2745  * Generate an ICMP parameter problem message.
2746  * When called from ip_output side a minimal ip_recv_attr_t needs to be
2747  * constructed by the caller.
2748  */
2749 static void
2750 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2751 {
2752         icmph_t icmph;
2753         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2754 
2755         mp = icmp_pkt_err_ok(mp, ira);
2756         if (mp == NULL)
2757                 return;
2758 
2759         bzero(&icmph, sizeof (icmph_t));
2760         icmph.icmph_type = ICMP_PARAM_PROBLEM;
2761         icmph.icmph_pp_ptr = ptr;
2762         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2763         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2764 }
2765 
2766 /*
2767  * Build and ship an IPv4 ICMP message using the packet data in mp, and
2768  * the ICMP header pointed to by "stuff".  (May be called as writer.)
2769  * Note: assumes that icmp_pkt_err_ok has been called to verify that
2770  * an icmp error packet can be sent.
2771  * Assigns an appropriate source address to the packet. If ipha_dst is
2772  * one of our addresses use it for source. Otherwise let ip_output_simple
2773  * pick the source address.
2774  */
2775 static void
2776 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2777 {
2778         ipaddr_t dst;
2779         icmph_t *icmph;
2780         ipha_t  *ipha;
2781         uint_t  len_needed;
2782         size_t  msg_len;
2783         mblk_t  *mp1;
2784         ipaddr_t src;
2785         ire_t   *ire;
2786         ip_xmit_attr_t ixas;
2787         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2788 
2789         ipha = (ipha_t *)mp->b_rptr;
2790 
2791         bzero(&ixas, sizeof (ixas));
2792         ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2793         ixas.ixa_zoneid = ira->ira_zoneid;
2794         ixas.ixa_ifindex = 0;
2795         ixas.ixa_ipst = ipst;
2796         ixas.ixa_cred = kcred;
2797         ixas.ixa_cpid = NOPID;
2798         ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
2799         ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2800 
2801         if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2802                 /*
2803                  * Apply IPsec based on how IPsec was applied to
2804                  * the packet that had the error.
2805                  *
2806                  * If it was an outbound packet that caused the ICMP
2807                  * error, then the caller will have setup the IRA
2808                  * appropriately.
2809                  */
2810                 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2811                         BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2812                         /* Note: mp already consumed and ip_drop_packet done */
2813                         return;
2814                 }
2815         } else {
2816                 /*
2817                  * This is in clear. The icmp message we are building
2818                  * here should go out in clear, independent of our policy.
2819                  */
2820                 ixas.ixa_flags |= IXAF_NO_IPSEC;
2821         }
2822 
2823         /* Remember our eventual destination */
2824         dst = ipha->ipha_src;
2825 
2826         /*
2827          * If the packet was for one of our unicast addresses, make
2828          * sure we respond with that as the source. Otherwise
2829          * have ip_output_simple pick the source address.
2830          */
2831         ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2832             (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2833             MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2834         if (ire != NULL) {
2835                 ire_refrele(ire);
2836                 src = ipha->ipha_dst;
2837         } else {
2838                 src = INADDR_ANY;
2839                 ixas.ixa_flags |= IXAF_SET_SOURCE;
2840         }
2841 
2842         /*
2843          * Check if we can send back more then 8 bytes in addition to
2844          * the IP header.  We try to send 64 bytes of data and the internal
2845          * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2846          */
2847         len_needed = IPH_HDR_LENGTH(ipha);
2848         if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2849             ipha->ipha_protocol == IPPROTO_IPV6) {
2850                 if (!pullupmsg(mp, -1)) {
2851                         BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2852                         ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2853                         freemsg(mp);
2854                         return;
2855                 }
2856                 ipha = (ipha_t *)mp->b_rptr;
2857 
2858                 if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2859                         len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2860                             len_needed));
2861                 } else {
2862                         ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2863 
2864                         ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2865                         len_needed += ip_hdr_length_v6(mp, ip6h);
2866                 }
2867         }
2868         len_needed += ipst->ips_ip_icmp_return;
2869         msg_len = msgdsize(mp);
2870         if (msg_len > len_needed) {
2871                 (void) adjmsg(mp, len_needed - msg_len);
2872                 msg_len = len_needed;
2873         }
2874         mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2875         if (mp1 == NULL) {
2876                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2877                 freemsg(mp);
2878                 return;
2879         }
2880         mp1->b_cont = mp;
2881         mp = mp1;
2882 
2883         /*
2884          * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2885          * node generates be accepted in peace by all on-host destinations.
2886          * If we do NOT assume that all on-host destinations trust
2887          * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2888          * (Look for IXAF_TRUSTED_ICMP).
2889          */
2890         ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2891 
2892         ipha = (ipha_t *)mp->b_rptr;
2893         mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2894         *ipha = icmp_ipha;
2895         ipha->ipha_src = src;
2896         ipha->ipha_dst = dst;
2897         ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2898         msg_len += sizeof (icmp_ipha) + len;
2899         if (msg_len > IP_MAXPACKET) {
2900                 (void) adjmsg(mp, IP_MAXPACKET - msg_len);
2901                 msg_len = IP_MAXPACKET;
2902         }
2903         ipha->ipha_length = htons((uint16_t)msg_len);
2904         icmph = (icmph_t *)&ipha[1];
2905         bcopy(stuff, icmph, len);
2906         icmph->icmph_checksum = 0;
2907         icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2908         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2909 
2910         (void) ip_output_simple(mp, &ixas);
2911         ixa_cleanup(&ixas);
2912 }
2913 
2914 /*
2915  * Determine if an ICMP error packet can be sent given the rate limit.
2916  * The limit consists of an average frequency (icmp_pkt_err_interval measured
2917  * in milliseconds) and a burst size. Burst size number of packets can
2918  * be sent arbitrarely closely spaced.
2919  * The state is tracked using two variables to implement an approximate
2920  * token bucket filter:
2921  *      icmp_pkt_err_last - lbolt value when the last burst started
2922  *      icmp_pkt_err_sent - number of packets sent in current burst
2923  */
2924 boolean_t
2925 icmp_err_rate_limit(ip_stack_t *ipst)
2926 {
2927         clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2928         uint_t refilled; /* Number of packets refilled in tbf since last */
2929         /* Guard against changes by loading into local variable */
2930         uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2931 
2932         if (err_interval == 0)
2933                 return (B_FALSE);
2934 
2935         if (ipst->ips_icmp_pkt_err_last > now) {
2936                 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2937                 ipst->ips_icmp_pkt_err_last = 0;
2938                 ipst->ips_icmp_pkt_err_sent = 0;
2939         }
2940         /*
2941          * If we are in a burst update the token bucket filter.
2942          * Update the "last" time to be close to "now" but make sure
2943          * we don't loose precision.
2944          */
2945         if (ipst->ips_icmp_pkt_err_sent != 0) {
2946                 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2947                 if (refilled > ipst->ips_icmp_pkt_err_sent) {
2948                         ipst->ips_icmp_pkt_err_sent = 0;
2949                 } else {
2950                         ipst->ips_icmp_pkt_err_sent -= refilled;
2951                         ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2952                 }
2953         }
2954         if (ipst->ips_icmp_pkt_err_sent == 0) {
2955                 /* Start of new burst */
2956                 ipst->ips_icmp_pkt_err_last = now;
2957         }
2958         if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2959                 ipst->ips_icmp_pkt_err_sent++;
2960                 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2961                     ipst->ips_icmp_pkt_err_sent));
2962                 return (B_FALSE);
2963         }
2964         ip1dbg(("icmp_err_rate_limit: dropped\n"));
2965         return (B_TRUE);
2966 }
2967 
2968 /*
2969  * Check if it is ok to send an IPv4 ICMP error packet in
2970  * response to the IPv4 packet in mp.
2971  * Free the message and return null if no
2972  * ICMP error packet should be sent.
2973  */
2974 static mblk_t *
2975 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2976 {
2977         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2978         icmph_t *icmph;
2979         ipha_t  *ipha;
2980         uint_t  len_needed;
2981 
2982         if (!mp)
2983                 return (NULL);
2984         ipha = (ipha_t *)mp->b_rptr;
2985         if (ip_csum_hdr(ipha)) {
2986                 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2987                 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2988                 freemsg(mp);
2989                 return (NULL);
2990         }
2991         if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2992             ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2993             CLASSD(ipha->ipha_dst) ||
2994             CLASSD(ipha->ipha_src) ||
2995             (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2996                 /* Note: only errors to the fragment with offset 0 */
2997                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2998                 freemsg(mp);
2999                 return (NULL);
3000         }
3001         if (ipha->ipha_protocol == IPPROTO_ICMP) {
3002                 /*
3003                  * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3004                  * errors in response to any ICMP errors.
3005                  */
3006                 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3007                 if (mp->b_wptr - mp->b_rptr < len_needed) {
3008                         if (!pullupmsg(mp, len_needed)) {
3009                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3010                                 freemsg(mp);
3011                                 return (NULL);
3012                         }
3013                         ipha = (ipha_t *)mp->b_rptr;
3014                 }
3015                 icmph = (icmph_t *)
3016                     (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3017                 switch (icmph->icmph_type) {
3018                 case ICMP_DEST_UNREACHABLE:
3019                 case ICMP_SOURCE_QUENCH:
3020                 case ICMP_TIME_EXCEEDED:
3021                 case ICMP_PARAM_PROBLEM:
3022                 case ICMP_REDIRECT:
3023                         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3024                         freemsg(mp);
3025                         return (NULL);
3026                 default:
3027                         break;
3028                 }
3029         }
3030         /*
3031          * If this is a labeled system, then check to see if we're allowed to
3032          * send a response to this particular sender.  If not, then just drop.
3033          */
3034         if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3035                 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3036                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3037                 freemsg(mp);
3038                 return (NULL);
3039         }
3040         if (icmp_err_rate_limit(ipst)) {
3041                 /*
3042                  * Only send ICMP error packets every so often.
3043                  * This should be done on a per port/source basis,
3044                  * but for now this will suffice.
3045                  */
3046                 freemsg(mp);
3047                 return (NULL);
3048         }
3049         return (mp);
3050 }
3051 
3052 /*
3053  * Called when a packet was sent out the same link that it arrived on.
3054  * Check if it is ok to send a redirect and then send it.
3055  */
3056 void
3057 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3058     ip_recv_attr_t *ira)
3059 {
3060         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
3061         ipaddr_t        src, nhop;
3062         mblk_t          *mp1;
3063         ire_t           *nhop_ire;
3064 
3065         /*
3066          * Check the source address to see if it originated
3067          * on the same logical subnet it is going back out on.
3068          * If so, we should be able to send it a redirect.
3069          * Avoid sending a redirect if the destination
3070          * is directly connected (i.e., we matched an IRE_ONLINK),
3071          * or if the packet was source routed out this interface.
3072          *
3073          * We avoid sending a redirect if the
3074          * destination is directly connected
3075          * because it is possible that multiple
3076          * IP subnets may have been configured on
3077          * the link, and the source may not
3078          * be on the same subnet as ip destination,
3079          * even though they are on the same
3080          * physical link.
3081          */
3082         if ((ire->ire_type & IRE_ONLINK) ||
3083             ip_source_routed(ipha, ipst))
3084                 return;
3085 
3086         nhop_ire = ire_nexthop(ire);
3087         if (nhop_ire == NULL)
3088                 return;
3089 
3090         nhop = nhop_ire->ire_addr;
3091 
3092         if (nhop_ire->ire_type & IRE_IF_CLONE) {
3093                 ire_t   *ire2;
3094 
3095                 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3096                 mutex_enter(&nhop_ire->ire_lock);
3097                 ire2 = nhop_ire->ire_dep_parent;
3098                 if (ire2 != NULL)
3099                         ire_refhold(ire2);
3100                 mutex_exit(&nhop_ire->ire_lock);
3101                 ire_refrele(nhop_ire);
3102                 nhop_ire = ire2;
3103         }
3104         if (nhop_ire == NULL)
3105                 return;
3106 
3107         ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3108 
3109         src = ipha->ipha_src;
3110 
3111         /*
3112          * We look at the interface ire for the nexthop,
3113          * to see if ipha_src is in the same subnet
3114          * as the nexthop.
3115          */
3116         if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3117                 /*
3118                  * The source is directly connected.
3119                  */
3120                 mp1 = copymsg(mp);
3121                 if (mp1 != NULL) {
3122                         icmp_send_redirect(mp1, nhop, ira);
3123                 }
3124         }
3125         ire_refrele(nhop_ire);
3126 }
3127 
3128 /*
3129  * Generate an ICMP redirect message.
3130  */
3131 static void
3132 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3133 {
3134         icmph_t icmph;
3135         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3136 
3137         mp = icmp_pkt_err_ok(mp, ira);
3138         if (mp == NULL)
3139                 return;
3140 
3141         bzero(&icmph, sizeof (icmph_t));
3142         icmph.icmph_type = ICMP_REDIRECT;
3143         icmph.icmph_code = 1;
3144         icmph.icmph_rd_gateway = gateway;
3145         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3146         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3147 }
3148 
3149 /*
3150  * Generate an ICMP time exceeded message.
3151  */
3152 void
3153 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3154 {
3155         icmph_t icmph;
3156         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3157 
3158         mp = icmp_pkt_err_ok(mp, ira);
3159         if (mp == NULL)
3160                 return;
3161 
3162         bzero(&icmph, sizeof (icmph_t));
3163         icmph.icmph_type = ICMP_TIME_EXCEEDED;
3164         icmph.icmph_code = code;
3165         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3166         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3167 }
3168 
3169 /*
3170  * Generate an ICMP unreachable message.
3171  * When called from ip_output side a minimal ip_recv_attr_t needs to be
3172  * constructed by the caller.
3173  */
3174 void
3175 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3176 {
3177         icmph_t icmph;
3178         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3179 
3180         mp = icmp_pkt_err_ok(mp, ira);
3181         if (mp == NULL)
3182                 return;
3183 
3184         bzero(&icmph, sizeof (icmph_t));
3185         icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3186         icmph.icmph_code = code;
3187         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3188         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3189 }
3190 
3191 /*
3192  * Latch in the IPsec state for a stream based the policy in the listener
3193  * and the actions in the ip_recv_attr_t.
3194  * Called directly from TCP and SCTP.
3195  */
3196 boolean_t
3197 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3198 {
3199         ASSERT(lconnp->conn_policy != NULL);
3200         ASSERT(connp->conn_policy == NULL);
3201 
3202         IPPH_REFHOLD(lconnp->conn_policy);
3203         connp->conn_policy = lconnp->conn_policy;
3204 
3205         if (ira->ira_ipsec_action != NULL) {
3206                 if (connp->conn_latch == NULL) {
3207                         connp->conn_latch = iplatch_create();
3208                         if (connp->conn_latch == NULL)
3209                                 return (B_FALSE);
3210                 }
3211                 ipsec_latch_inbound(connp, ira);
3212         }
3213         return (B_TRUE);
3214 }
3215 
3216 /*
3217  * Verify whether or not the IP address is a valid local address.
3218  * Could be a unicast, including one for a down interface.
3219  * If allow_mcbc then a multicast or broadcast address is also
3220  * acceptable.
3221  *
3222  * In the case of a broadcast/multicast address, however, the
3223  * upper protocol is expected to reset the src address
3224  * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3225  * no packets are emitted with broadcast/multicast address as
3226  * source address (that violates hosts requirements RFC 1122)
3227  * The addresses valid for bind are:
3228  *      (1) - INADDR_ANY (0)
3229  *      (2) - IP address of an UP interface
3230  *      (3) - IP address of a DOWN interface
3231  *      (4) - valid local IP broadcast addresses. In this case
3232  *      the conn will only receive packets destined to
3233  *      the specified broadcast address.
3234  *      (5) - a multicast address. In this case
3235  *      the conn will only receive packets destined to
3236  *      the specified multicast address. Note: the
3237  *      application still has to issue an
3238  *      IP_ADD_MEMBERSHIP socket option.
3239  *
3240  * In all the above cases, the bound address must be valid in the current zone.
3241  * When the address is loopback, multicast or broadcast, there might be many
3242  * matching IREs so bind has to look up based on the zone.
3243  */
3244 ip_laddr_t
3245 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3246     ip_stack_t *ipst, boolean_t allow_mcbc)
3247 {
3248         ire_t *src_ire;
3249 
3250         ASSERT(src_addr != INADDR_ANY);
3251 
3252         src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3253             NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3254 
3255         /*
3256          * If an address other than in6addr_any is requested,
3257          * we verify that it is a valid address for bind
3258          * Note: Following code is in if-else-if form for
3259          * readability compared to a condition check.
3260          */
3261         if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3262                 /*
3263                  * (2) Bind to address of local UP interface
3264                  */
3265                 ire_refrele(src_ire);
3266                 return (IPVL_UNICAST_UP);
3267         } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3268                 /*
3269                  * (4) Bind to broadcast address
3270                  */
3271                 ire_refrele(src_ire);
3272                 if (allow_mcbc)
3273                         return (IPVL_BCAST);
3274                 else
3275                         return (IPVL_BAD);
3276         } else if (CLASSD(src_addr)) {
3277                 /* (5) bind to multicast address. */
3278                 if (src_ire != NULL)
3279                         ire_refrele(src_ire);
3280 
3281                 if (allow_mcbc)
3282                         return (IPVL_MCAST);
3283                 else
3284                         return (IPVL_BAD);
3285         } else {
3286                 ipif_t *ipif;
3287 
3288                 /*
3289                  * (3) Bind to address of local DOWN interface?
3290                  * (ipif_lookup_addr() looks up all interfaces
3291                  * but we do not get here for UP interfaces
3292                  * - case (2) above)
3293                  */
3294                 if (src_ire != NULL)
3295                         ire_refrele(src_ire);
3296 
3297                 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3298                 if (ipif == NULL)
3299                         return (IPVL_BAD);
3300 
3301                 /* Not a useful source? */
3302                 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3303                         ipif_refrele(ipif);
3304                         return (IPVL_BAD);
3305                 }
3306                 ipif_refrele(ipif);
3307                 return (IPVL_UNICAST_DOWN);
3308         }
3309 }
3310 
3311 /*
3312  * Insert in the bind fanout for IPv4 and IPv6.
3313  * The caller should already have used ip_laddr_verify_v*() before calling
3314  * this.
3315  */
3316 int
3317 ip_laddr_fanout_insert(conn_t *connp)
3318 {
3319         int             error;
3320 
3321         /*
3322          * Allow setting new policies. For example, disconnects result
3323          * in us being called. As we would have set conn_policy_cached
3324          * to B_TRUE before, we should set it to B_FALSE, so that policy
3325          * can change after the disconnect.
3326          */
3327         connp->conn_policy_cached = B_FALSE;
3328 
3329         error = ipcl_bind_insert(connp);
3330         if (error != 0) {
3331                 if (connp->conn_anon_port) {
3332                         (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3333                             connp->conn_mlp_type, connp->conn_proto,
3334                             ntohs(connp->conn_lport), B_FALSE);
3335                 }
3336                 connp->conn_mlp_type = mlptSingle;
3337         }
3338         return (error);
3339 }
3340 
3341 /*
3342  * Verify that both the source and destination addresses are valid. If
3343  * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3344  * i.e. have no route to it.  Protocols like TCP want to verify destination
3345  * reachability, while tunnels do not.
3346  *
3347  * Determine the route, the interface, and (optionally) the source address
3348  * to use to reach a given destination.
3349  * Note that we allow connect to broadcast and multicast addresses when
3350  * IPDF_ALLOW_MCBC is set.
3351  * first_hop and dst_addr are normally the same, but if source routing
3352  * they will differ; in that case the first_hop is what we'll use for the
3353  * routing lookup but the dce and label checks will be done on dst_addr,
3354  *
3355  * If uinfo is set, then we fill in the best available information
3356  * we have for the destination. This is based on (in priority order) any
3357  * metrics and path MTU stored in a dce_t, route metrics, and finally the
3358  * ill_mtu/ill_mc_mtu.
3359  *
3360  * Tsol note: If we have a source route then dst_addr != firsthop. But we
3361  * always do the label check on dst_addr.
3362  */
3363 int
3364 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3365     ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3366 {
3367         ire_t           *ire = NULL;
3368         int             error = 0;
3369         ipaddr_t        setsrc;                         /* RTF_SETSRC */
3370         zoneid_t        zoneid = ixa->ixa_zoneid;    /* Honors SO_ALLZONES */
3371         ip_stack_t      *ipst = ixa->ixa_ipst;
3372         dce_t           *dce;
3373         uint_t          pmtu;
3374         uint_t          generation;
3375         nce_t           *nce;
3376         ill_t           *ill = NULL;
3377         boolean_t       multirt = B_FALSE;
3378 
3379         ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3380 
3381         /*
3382          * We never send to zero; the ULPs map it to the loopback address.
3383          * We can't allow it since we use zero to mean unitialized in some
3384          * places.
3385          */
3386         ASSERT(dst_addr != INADDR_ANY);
3387 
3388         if (is_system_labeled()) {
3389                 ts_label_t *tsl = NULL;
3390 
3391                 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3392                     mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3393                 if (error != 0)
3394                         return (error);
3395                 if (tsl != NULL) {
3396                         /* Update the label */
3397                         ip_xmit_attr_replace_tsl(ixa, tsl);
3398                 }
3399         }
3400 
3401         setsrc = INADDR_ANY;
3402         /*
3403          * Select a route; For IPMP interfaces, we would only select
3404          * a "hidden" route (i.e., going through a specific under_ill)
3405          * if ixa_ifindex has been specified.
3406          */
3407         ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3408             &generation, &setsrc, &error, &multirt);
3409         ASSERT(ire != NULL);    /* IRE_NOROUTE if none found */
3410         if (error != 0)
3411                 goto bad_addr;
3412 
3413         /*
3414          * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3415          * If IPDF_VERIFY_DST is set, the destination must be reachable;
3416          * Otherwise the destination needn't be reachable.
3417          *
3418          * If we match on a reject or black hole, then we've got a
3419          * local failure.  May as well fail out the connect() attempt,
3420          * since it's never going to succeed.
3421          */
3422         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3423                 /*
3424                  * If we're verifying destination reachability, we always want
3425                  * to complain here.
3426                  *
3427                  * If we're not verifying destination reachability but the
3428                  * destination has a route, we still want to fail on the
3429                  * temporary address and broadcast address tests.
3430                  *
3431                  * In both cases do we let the code continue so some reasonable
3432                  * information is returned to the caller. That enables the
3433                  * caller to use (and even cache) the IRE. conn_ip_ouput will
3434                  * use the generation mismatch path to check for the unreachable
3435                  * case thereby avoiding any specific check in the main path.
3436                  */
3437                 ASSERT(generation == IRE_GENERATION_VERIFY);
3438                 if (flags & IPDF_VERIFY_DST) {
3439                         /*
3440                          * Set errno but continue to set up ixa_ire to be
3441                          * the RTF_REJECT|RTF_BLACKHOLE IRE.
3442                          * That allows callers to use ip_output to get an
3443                          * ICMP error back.
3444                          */
3445                         if (!(ire->ire_type & IRE_HOST))
3446                                 error = ENETUNREACH;
3447                         else
3448                                 error = EHOSTUNREACH;
3449                 }
3450         }
3451 
3452         if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3453             !(flags & IPDF_ALLOW_MCBC)) {
3454                 ire_refrele(ire);
3455                 ire = ire_reject(ipst, B_FALSE);
3456                 generation = IRE_GENERATION_VERIFY;
3457                 error = ENETUNREACH;
3458         }
3459 
3460         /* Cache things */
3461         if (ixa->ixa_ire != NULL)
3462                 ire_refrele_notr(ixa->ixa_ire);
3463 #ifdef DEBUG
3464         ire_refhold_notr(ire);
3465         ire_refrele(ire);
3466 #endif
3467         ixa->ixa_ire = ire;
3468         ixa->ixa_ire_generation = generation;
3469 
3470         /*
3471          * Ensure that ixa_dce is always set any time that ixa_ire is set,
3472          * since some callers will send a packet to conn_ip_output() even if
3473          * there's an error.
3474          */
3475         if (flags & IPDF_UNIQUE_DCE) {
3476                 /* Fallback to the default dce if allocation fails */
3477                 dce = dce_lookup_and_add_v4(dst_addr, ipst);
3478                 if (dce != NULL)
3479                         generation = dce->dce_generation;
3480                 else
3481                         dce = dce_lookup_v4(dst_addr, ipst, &generation);
3482         } else {
3483                 dce = dce_lookup_v4(dst_addr, ipst, &generation);
3484         }
3485         ASSERT(dce != NULL);
3486         if (ixa->ixa_dce != NULL)
3487                 dce_refrele_notr(ixa->ixa_dce);
3488 #ifdef DEBUG
3489         dce_refhold_notr(dce);
3490         dce_refrele(dce);
3491 #endif
3492         ixa->ixa_dce = dce;
3493         ixa->ixa_dce_generation = generation;
3494 
3495         /*
3496          * For multicast with multirt we have a flag passed back from
3497          * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3498          * possible multicast address.
3499          * We also need a flag for multicast since we can't check
3500          * whether RTF_MULTIRT is set in ixa_ire for multicast.
3501          */
3502         if (multirt) {
3503                 ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3504                 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3505         } else {
3506                 ixa->ixa_postfragfn = ire->ire_postfragfn;
3507                 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3508         }
3509         if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3510                 /* Get an nce to cache. */
3511                 nce = ire_to_nce(ire, firsthop, NULL);
3512                 if (nce == NULL) {
3513                         /* Allocation failure? */
3514                         ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3515                 } else {
3516                         if (ixa->ixa_nce != NULL)
3517                                 nce_refrele(ixa->ixa_nce);
3518                         ixa->ixa_nce = nce;
3519                 }
3520         }
3521 
3522         /*
3523          * If the source address is a loopback address, the
3524          * destination had best be local or multicast.
3525          * If we are sending to an IRE_LOCAL using a loopback source then
3526          * it had better be the same zoneid.
3527          */
3528         if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3529                 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3530                         ire = NULL;     /* Stored in ixa_ire */
3531                         error = EADDRNOTAVAIL;
3532                         goto bad_addr;
3533                 }
3534                 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3535                         ire = NULL;     /* Stored in ixa_ire */
3536                         error = EADDRNOTAVAIL;
3537                         goto bad_addr;
3538                 }
3539         }
3540         if (ire->ire_type & IRE_BROADCAST) {
3541                 /*
3542                  * If the ULP didn't have a specified source, then we
3543                  * make sure we reselect the source when sending
3544                  * broadcasts out different interfaces.
3545                  */
3546                 if (flags & IPDF_SELECT_SRC)
3547                         ixa->ixa_flags |= IXAF_SET_SOURCE;
3548                 else
3549                         ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3550         }
3551 
3552         /*
3553          * Does the caller want us to pick a source address?
3554          */
3555         if (flags & IPDF_SELECT_SRC) {
3556                 ipaddr_t        src_addr;
3557 
3558                 /*
3559                  * We use use ire_nexthop_ill to avoid the under ipmp
3560                  * interface for source address selection. Note that for ipmp
3561                  * probe packets, ixa_ifindex would have been specified, and
3562                  * the ip_select_route() invocation would have picked an ire
3563                  * will ire_ill pointing at an under interface.
3564                  */
3565                 ill = ire_nexthop_ill(ire);
3566 
3567                 /* If unreachable we have no ill but need some source */
3568                 if (ill == NULL) {
3569                         src_addr = htonl(INADDR_LOOPBACK);
3570                         /* Make sure we look for a better source address */
3571                         generation = SRC_GENERATION_VERIFY;
3572                 } else {
3573                         error = ip_select_source_v4(ill, setsrc, dst_addr,
3574                             ixa->ixa_multicast_ifaddr, zoneid,
3575                             ipst, &src_addr, &generation, NULL);
3576                         if (error != 0) {
3577                                 ire = NULL;     /* Stored in ixa_ire */
3578                                 goto bad_addr;
3579                         }
3580                 }
3581 
3582                 /*
3583                  * We allow the source address to to down.
3584                  * However, we check that we don't use the loopback address
3585                  * as a source when sending out on the wire.
3586                  */
3587                 if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3588                     !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3589                     !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3590                         ire = NULL;     /* Stored in ixa_ire */
3591                         error = EADDRNOTAVAIL;
3592                         goto bad_addr;
3593                 }
3594 
3595                 *src_addrp = src_addr;
3596                 ixa->ixa_src_generation = generation;
3597         }
3598 
3599         /*
3600          * Make sure we don't leave an unreachable ixa_nce in place
3601          * since ip_select_route is used when we unplumb i.e., remove
3602          * references on ixa_ire, ixa_nce, and ixa_dce.
3603          */
3604         nce = ixa->ixa_nce;
3605         if (nce != NULL && nce->nce_is_condemned) {
3606                 nce_refrele(nce);
3607                 ixa->ixa_nce = NULL;
3608                 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3609         }
3610 
3611         /*
3612          * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3613          * However, we can't do it for IPv4 multicast or broadcast.
3614          */
3615         if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3616                 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3617 
3618         /*
3619          * Set initial value for fragmentation limit. Either conn_ip_output
3620          * or ULP might updates it when there are routing changes.
3621          * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3622          */
3623         pmtu = ip_get_pmtu(ixa);
3624         ixa->ixa_fragsize = pmtu;
3625         /* Make sure ixa_fragsize and ixa_pmtu remain identical */
3626         if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3627                 ixa->ixa_pmtu = pmtu;
3628 
3629         /*
3630          * Extract information useful for some transports.
3631          * First we look for DCE metrics. Then we take what we have in
3632          * the metrics in the route, where the offlink is used if we have
3633          * one.
3634          */
3635         if (uinfo != NULL) {
3636                 bzero(uinfo, sizeof (*uinfo));
3637 
3638                 if (dce->dce_flags & DCEF_UINFO)
3639                         *uinfo = dce->dce_uinfo;
3640 
3641                 rts_merge_metrics(uinfo, &ire->ire_metrics);
3642 
3643                 /* Allow ire_metrics to decrease the path MTU from above */
3644                 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3645                         uinfo->iulp_mtu = pmtu;
3646 
3647                 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3648                 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3649                 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3650         }
3651 
3652         if (ill != NULL)
3653                 ill_refrele(ill);
3654 
3655         return (error);
3656 
3657 bad_addr:
3658         if (ire != NULL)
3659                 ire_refrele(ire);
3660 
3661         if (ill != NULL)
3662                 ill_refrele(ill);
3663 
3664         /*
3665          * Make sure we don't leave an unreachable ixa_nce in place
3666          * since ip_select_route is used when we unplumb i.e., remove
3667          * references on ixa_ire, ixa_nce, and ixa_dce.
3668          */
3669         nce = ixa->ixa_nce;
3670         if (nce != NULL && nce->nce_is_condemned) {
3671                 nce_refrele(nce);
3672                 ixa->ixa_nce = NULL;
3673                 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3674         }
3675 
3676         return (error);
3677 }
3678 
3679 
3680 /*
3681  * Get the base MTU for the case when path MTU discovery is not used.
3682  * Takes the MTU of the IRE into account.
3683  */
3684 uint_t
3685 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3686 {
3687         uint_t mtu;
3688         uint_t iremtu = ire->ire_metrics.iulp_mtu;
3689 
3690         if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3691                 mtu = ill->ill_mc_mtu;
3692         else
3693                 mtu = ill->ill_mtu;
3694 
3695         if (iremtu != 0 && iremtu < mtu)
3696                 mtu = iremtu;
3697 
3698         return (mtu);
3699 }
3700 
3701 /*
3702  * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3703  * Assumes that ixa_ire, dce, and nce have already been set up.
3704  *
3705  * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3706  * We avoid path MTU discovery if it is disabled with ndd.
3707  * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3708  *
3709  * NOTE: We also used to turn it off for source routed packets. That
3710  * is no longer required since the dce is per final destination.
3711  */
3712 uint_t
3713 ip_get_pmtu(ip_xmit_attr_t *ixa)
3714 {
3715         ip_stack_t      *ipst = ixa->ixa_ipst;
3716         dce_t           *dce;
3717         nce_t           *nce;
3718         ire_t           *ire;
3719         uint_t          pmtu;
3720 
3721         ire = ixa->ixa_ire;
3722         dce = ixa->ixa_dce;
3723         nce = ixa->ixa_nce;
3724 
3725         /*
3726          * If path MTU discovery has been turned off by ndd, then we ignore
3727          * any dce_pmtu and for IPv4 we will not set DF.
3728          */
3729         if (!ipst->ips_ip_path_mtu_discovery)
3730                 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3731 
3732         pmtu = IP_MAXPACKET;
3733         /*
3734          * Decide whether whether IPv4 sets DF
3735          * For IPv6 "no DF" means to use the 1280 mtu
3736          */
3737         if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3738                 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3739         } else {
3740                 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3741                 if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3742                         pmtu = IPV6_MIN_MTU;
3743         }
3744 
3745         /* Check if the PMTU is to old before we use it */
3746         if ((dce->dce_flags & DCEF_PMTU) &&
3747             TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3748             ipst->ips_ip_pathmtu_interval) {
3749                 /*
3750                  * Older than 20 minutes. Drop the path MTU information.
3751                  */
3752                 mutex_enter(&dce->dce_lock);
3753                 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3754                 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3755                 mutex_exit(&dce->dce_lock);
3756                 dce_increment_generation(dce);
3757         }
3758 
3759         /* The metrics on the route can lower the path MTU */
3760         if (ire->ire_metrics.iulp_mtu != 0 &&
3761             ire->ire_metrics.iulp_mtu < pmtu)
3762                 pmtu = ire->ire_metrics.iulp_mtu;
3763 
3764         /*
3765          * If the path MTU is smaller than some minimum, we still use dce_pmtu
3766          * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3767          * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3768          */
3769         if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3770                 if (dce->dce_flags & DCEF_PMTU) {
3771                         if (dce->dce_pmtu < pmtu)
3772                                 pmtu = dce->dce_pmtu;
3773 
3774                         if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3775                                 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3776                                 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3777                         } else {
3778                                 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3779                                 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3780                         }
3781                 } else {
3782                         ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3783                         ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3784                 }
3785         }
3786 
3787         /*
3788          * If we have an IRE_LOCAL we use the loopback mtu instead of
3789          * the ill for going out the wire i.e., IRE_LOCAL gets the same
3790          * mtu as IRE_LOOPBACK.
3791          */
3792         if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3793                 uint_t loopback_mtu;
3794 
3795                 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3796                     ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3797 
3798                 if (loopback_mtu < pmtu)
3799                         pmtu = loopback_mtu;
3800         } else if (nce != NULL) {
3801                 /*
3802                  * Make sure we don't exceed the interface MTU.
3803                  * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3804                  * an ill. We'd use the above IP_MAXPACKET in that case just
3805                  * to tell the transport something larger than zero.
3806                  */
3807                 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3808                         if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3809                                 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3810                         if (nce->nce_common->ncec_ill != nce->nce_ill &&
3811                             nce->nce_ill->ill_mc_mtu < pmtu) {
3812                                 /*
3813                                  * for interfaces in an IPMP group, the mtu of
3814                                  * the nce_ill (under_ill) could be different
3815                                  * from the mtu of the ncec_ill, so we take the
3816                                  * min of the two.
3817                                  */
3818                                 pmtu = nce->nce_ill->ill_mc_mtu;
3819                         }
3820                 } else {
3821                         if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3822                                 pmtu = nce->nce_common->ncec_ill->ill_mtu;
3823                         if (nce->nce_common->ncec_ill != nce->nce_ill &&
3824                             nce->nce_ill->ill_mtu < pmtu) {
3825                                 /*
3826                                  * for interfaces in an IPMP group, the mtu of
3827                                  * the nce_ill (under_ill) could be different
3828                                  * from the mtu of the ncec_ill, so we take the
3829                                  * min of the two.
3830                                  */
3831                                 pmtu = nce->nce_ill->ill_mtu;
3832                         }
3833                 }
3834         }
3835 
3836         /*
3837          * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3838          * Only applies to IPv6.
3839          */
3840         if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3841                 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3842                         switch (ixa->ixa_use_min_mtu) {
3843                         case IPV6_USE_MIN_MTU_MULTICAST:
3844                                 if (ire->ire_type & IRE_MULTICAST)
3845                                         pmtu = IPV6_MIN_MTU;
3846                                 break;
3847                         case IPV6_USE_MIN_MTU_ALWAYS:
3848                                 pmtu = IPV6_MIN_MTU;
3849                                 break;
3850                         case IPV6_USE_MIN_MTU_NEVER:
3851                                 break;
3852                         }
3853                 } else {
3854                         /* Default is IPV6_USE_MIN_MTU_MULTICAST */
3855                         if (ire->ire_type & IRE_MULTICAST)
3856                                 pmtu = IPV6_MIN_MTU;
3857                 }
3858         }
3859 
3860         /*
3861          * For multirouted IPv6 packets, the IP layer will insert a 8-byte
3862          * fragment header in every packet. We compensate for those cases by
3863          * returning a smaller path MTU to the ULP.
3864          *
3865          * In the case of CGTP then ip_output will add a fragment header.
3866          * Make sure there is room for it by telling a smaller number
3867          * to the transport.
3868          *
3869          * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3870          * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3871          * which is the size of the packets it can send.
3872          */
3873         if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3874                 if ((ire->ire_flags & RTF_MULTIRT) ||
3875                     (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3876                         pmtu -= sizeof (ip6_frag_t);
3877                         ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3878                 }
3879         }
3880 
3881         return (pmtu);
3882 }
3883 
3884 /*
3885  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3886  * the final piece where we don't.  Return a pointer to the first mblk in the
3887  * result, and update the pointer to the next mblk to chew on.  If anything
3888  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3889  * NULL pointer.
3890  */
3891 mblk_t *
3892 ip_carve_mp(mblk_t **mpp, ssize_t len)
3893 {
3894         mblk_t  *mp0;
3895         mblk_t  *mp1;
3896         mblk_t  *mp2;
3897 
3898         if (!len || !mpp || !(mp0 = *mpp))
3899                 return (NULL);
3900         /* If we aren't going to consume the first mblk, we need a dup. */
3901         if (mp0->b_wptr - mp0->b_rptr > len) {
3902                 mp1 = dupb(mp0);
3903                 if (mp1) {
3904                         /* Partition the data between the two mblks. */
3905                         mp1->b_wptr = mp1->b_rptr + len;
3906                         mp0->b_rptr = mp1->b_wptr;
3907                         /*
3908                          * after adjustments if mblk not consumed is now
3909                          * unaligned, try to align it. If this fails free
3910                          * all messages and let upper layer recover.
3911                          */
3912                         if (!OK_32PTR(mp0->b_rptr)) {
3913                                 if (!pullupmsg(mp0, -1)) {
3914                                         freemsg(mp0);
3915                                         freemsg(mp1);
3916                                         *mpp = NULL;
3917                                         return (NULL);
3918                                 }
3919                         }
3920                 }
3921                 return (mp1);
3922         }
3923         /* Eat through as many mblks as we need to get len bytes. */
3924         len -= mp0->b_wptr - mp0->b_rptr;
3925         for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3926                 if (mp2->b_wptr - mp2->b_rptr > len) {
3927                         /*
3928                          * We won't consume the entire last mblk.  Like
3929                          * above, dup and partition it.
3930                          */
3931                         mp1->b_cont = dupb(mp2);
3932                         mp1 = mp1->b_cont;
3933                         if (!mp1) {
3934                                 /*
3935                                  * Trouble.  Rather than go to a lot of
3936                                  * trouble to clean up, we free the messages.
3937                                  * This won't be any worse than losing it on
3938                                  * the wire.
3939                                  */
3940                                 freemsg(mp0);
3941                                 freemsg(mp2);
3942                                 *mpp = NULL;
3943                                 return (NULL);
3944                         }
3945                         mp1->b_wptr = mp1->b_rptr + len;
3946                         mp2->b_rptr = mp1->b_wptr;
3947                         /*
3948                          * after adjustments if mblk not consumed is now
3949                          * unaligned, try to align it. If this fails free
3950                          * all messages and let upper layer recover.
3951                          */
3952                         if (!OK_32PTR(mp2->b_rptr)) {
3953                                 if (!pullupmsg(mp2, -1)) {
3954                                         freemsg(mp0);
3955                                         freemsg(mp2);
3956                                         *mpp = NULL;
3957                                         return (NULL);
3958                                 }
3959                         }
3960                         *mpp = mp2;
3961                         return (mp0);
3962                 }
3963                 /* Decrement len by the amount we just got. */
3964                 len -= mp2->b_wptr - mp2->b_rptr;
3965         }
3966         /*
3967          * len should be reduced to zero now.  If not our caller has
3968          * screwed up.
3969          */
3970         if (len) {
3971                 /* Shouldn't happen! */
3972                 freemsg(mp0);
3973                 *mpp = NULL;
3974                 return (NULL);
3975         }
3976         /*
3977          * We consumed up to exactly the end of an mblk.  Detach the part
3978          * we are returning from the rest of the chain.
3979          */
3980         mp1->b_cont = NULL;
3981         *mpp = mp2;
3982         return (mp0);
3983 }
3984 
3985 /* The ill stream is being unplumbed. Called from ip_close */
3986 int
3987 ip_modclose(ill_t *ill)
3988 {
3989         boolean_t success;
3990         ipsq_t  *ipsq;
3991         ipif_t  *ipif;
3992         queue_t *q = ill->ill_rq;
3993         ip_stack_t      *ipst = ill->ill_ipst;
3994         int     i;
3995         arl_ill_common_t *ai = ill->ill_common;
3996 
3997         /*
3998          * The punlink prior to this may have initiated a capability
3999          * negotiation. But ipsq_enter will block until that finishes or
4000          * times out.
4001          */
4002         success = ipsq_enter(ill, B_FALSE, NEW_OP);
4003 
4004         /*
4005          * Open/close/push/pop is guaranteed to be single threaded
4006          * per stream by STREAMS. FS guarantees that all references
4007          * from top are gone before close is called. So there can't
4008          * be another close thread that has set CONDEMNED on this ill.
4009          * and cause ipsq_enter to return failure.
4010          */
4011         ASSERT(success);
4012         ipsq = ill->ill_phyint->phyint_ipsq;
4013 
4014         /*
4015          * Mark it condemned. No new reference will be made to this ill.
4016          * Lookup functions will return an error. Threads that try to
4017          * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4018          * that the refcnt will drop down to zero.
4019          */
4020         mutex_enter(&ill->ill_lock);
4021         ill->ill_state_flags |= ILL_CONDEMNED;
4022         for (ipif = ill->ill_ipif; ipif != NULL;
4023             ipif = ipif->ipif_next) {
4024                 ipif->ipif_state_flags |= IPIF_CONDEMNED;
4025         }
4026         /*
4027          * Wake up anybody waiting to enter the ipsq. ipsq_enter
4028          * returns  error if ILL_CONDEMNED is set
4029          */
4030         cv_broadcast(&ill->ill_cv);
4031         mutex_exit(&ill->ill_lock);
4032 
4033         /*
4034          * Send all the deferred DLPI messages downstream which came in
4035          * during the small window right before ipsq_enter(). We do this
4036          * without waiting for the ACKs because all the ACKs for M_PROTO
4037          * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4038          */
4039         ill_dlpi_send_deferred(ill);
4040 
4041         /*
4042          * Shut down fragmentation reassembly.
4043          * ill_frag_timer won't start a timer again.
4044          * Now cancel any existing timer
4045          */
4046         (void) untimeout(ill->ill_frag_timer_id);
4047         (void) ill_frag_timeout(ill, 0);
4048 
4049         /*
4050          * Call ill_delete to bring down the ipifs, ilms and ill on
4051          * this ill. Then wait for the refcnts to drop to zero.
4052          * ill_is_freeable checks whether the ill is really quiescent.
4053          * Then make sure that threads that are waiting to enter the
4054          * ipsq have seen the error returned by ipsq_enter and have
4055          * gone away. Then we call ill_delete_tail which does the
4056          * DL_UNBIND_REQ with the driver and then qprocsoff.
4057          */
4058         ill_delete(ill);
4059         mutex_enter(&ill->ill_lock);
4060         while (!ill_is_freeable(ill))
4061                 cv_wait(&ill->ill_cv, &ill->ill_lock);
4062 
4063         while (ill->ill_waiters)
4064                 cv_wait(&ill->ill_cv, &ill->ill_lock);
4065 
4066         mutex_exit(&ill->ill_lock);
4067 
4068         /*
4069          * ill_delete_tail drops reference on ill_ipst, but we need to keep
4070          * it held until the end of the function since the cleanup
4071          * below needs to be able to use the ip_stack_t.
4072          */
4073         netstack_hold(ipst->ips_netstack);
4074 
4075         /* qprocsoff is done via ill_delete_tail */
4076         ill_delete_tail(ill);
4077         /*
4078          * synchronously wait for arp stream to unbind. After this, we
4079          * cannot get any data packets up from the driver.
4080          */
4081         arp_unbind_complete(ill);
4082         ASSERT(ill->ill_ipst == NULL);
4083 
4084         /*
4085          * Walk through all conns and qenable those that have queued data.
4086          * Close synchronization needs this to
4087          * be done to ensure that all upper layers blocked
4088          * due to flow control to the closing device
4089          * get unblocked.
4090          */
4091         ip1dbg(("ip_wsrv: walking\n"));
4092         for (i = 0; i < TX_FANOUT_SIZE; i++) {
4093                 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4094         }
4095 
4096         /*
4097          * ai can be null if this is an IPv6 ill, or if the IPv4
4098          * stream is being torn down before ARP was plumbed (e.g.,
4099          * /sbin/ifconfig plumbing a stream twice, and encountering
4100          * an error
4101          */
4102         if (ai != NULL) {
4103                 ASSERT(!ill->ill_isv6);
4104                 mutex_enter(&ai->ai_lock);
4105                 ai->ai_ill = NULL;
4106                 if (ai->ai_arl == NULL) {
4107                         mutex_destroy(&ai->ai_lock);
4108                         kmem_free(ai, sizeof (*ai));
4109                 } else {
4110                         cv_signal(&ai->ai_ill_unplumb_done);
4111                         mutex_exit(&ai->ai_lock);
4112                 }
4113         }
4114 
4115         mutex_enter(&ipst->ips_ip_mi_lock);
4116         mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4117         mutex_exit(&ipst->ips_ip_mi_lock);
4118 
4119         /*
4120          * credp could be null if the open didn't succeed and ip_modopen
4121          * itself calls ip_close.
4122          */
4123         if (ill->ill_credp != NULL)
4124                 crfree(ill->ill_credp);
4125 
4126         mutex_destroy(&ill->ill_saved_ire_lock);
4127         mutex_destroy(&ill->ill_lock);
4128         rw_destroy(&ill->ill_mcast_lock);
4129         mutex_destroy(&ill->ill_mcast_serializer);
4130         list_destroy(&ill->ill_nce);
4131 
4132         /*
4133          * Now we are done with the module close pieces that
4134          * need the netstack_t.
4135          */
4136         netstack_rele(ipst->ips_netstack);
4137 
4138         mi_close_free((IDP)ill);
4139         q->q_ptr = WR(q)->q_ptr = NULL;
4140 
4141         ipsq_exit(ipsq);
4142 
4143         return (0);
4144 }
4145 
4146 /*
4147  * This is called as part of close() for IP, UDP, ICMP, and RTS
4148  * in order to quiesce the conn.
4149  */
4150 void
4151 ip_quiesce_conn(conn_t *connp)
4152 {
4153         boolean_t       drain_cleanup_reqd = B_FALSE;
4154         boolean_t       conn_ioctl_cleanup_reqd = B_FALSE;
4155         boolean_t       ilg_cleanup_reqd = B_FALSE;
4156         ip_stack_t      *ipst;
4157 
4158         ASSERT(!IPCL_IS_TCP(connp));
4159         ipst = connp->conn_netstack->netstack_ip;
4160 
4161         /*
4162          * Mark the conn as closing, and this conn must not be
4163          * inserted in future into any list. Eg. conn_drain_insert(),
4164          * won't insert this conn into the conn_drain_list.
4165          *
4166          * conn_idl, and conn_ilg cannot get set henceforth.
4167          */
4168         mutex_enter(&connp->conn_lock);
4169         ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4170         connp->conn_state_flags |= CONN_CLOSING;
4171         if (connp->conn_idl != NULL)
4172                 drain_cleanup_reqd = B_TRUE;
4173         if (connp->conn_oper_pending_ill != NULL)
4174                 conn_ioctl_cleanup_reqd = B_TRUE;
4175         if (connp->conn_dhcpinit_ill != NULL) {
4176                 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4177                 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4178                 ill_set_inputfn(connp->conn_dhcpinit_ill);
4179                 connp->conn_dhcpinit_ill = NULL;
4180         }
4181         if (connp->conn_ilg != NULL)
4182                 ilg_cleanup_reqd = B_TRUE;
4183         mutex_exit(&connp->conn_lock);
4184 
4185         if (conn_ioctl_cleanup_reqd)
4186                 conn_ioctl_cleanup(connp);
4187 
4188         if (is_system_labeled() && connp->conn_anon_port) {
4189                 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4190                     connp->conn_mlp_type, connp->conn_proto,
4191                     ntohs(connp->conn_lport), B_FALSE);
4192                 connp->conn_anon_port = 0;
4193         }
4194         connp->conn_mlp_type = mlptSingle;
4195 
4196         /*
4197          * Remove this conn from any fanout list it is on.
4198          * and then wait for any threads currently operating
4199          * on this endpoint to finish
4200          */
4201         ipcl_hash_remove(connp);
4202 
4203         /*
4204          * Remove this conn from the drain list, and do any other cleanup that
4205          * may be required.  (TCP conns are never flow controlled, and
4206          * conn_idl will be NULL.)
4207          */
4208         if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4209                 idl_t *idl = connp->conn_idl;
4210 
4211                 mutex_enter(&idl->idl_lock);
4212                 conn_drain(connp, B_TRUE);
4213                 mutex_exit(&idl->idl_lock);
4214         }
4215 
4216         if (connp == ipst->ips_ip_g_mrouter)
4217                 (void) ip_mrouter_done(ipst);
4218 
4219         if (ilg_cleanup_reqd)
4220                 ilg_delete_all(connp);
4221 
4222         /*
4223          * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4224          * callers from write side can't be there now because close
4225          * is in progress. The only other caller is ipcl_walk
4226          * which checks for the condemned flag.
4227          */
4228         mutex_enter(&connp->conn_lock);
4229         connp->conn_state_flags |= CONN_CONDEMNED;
4230         while (connp->conn_ref != 1)
4231                 cv_wait(&connp->conn_cv, &connp->conn_lock);
4232         connp->conn_state_flags |= CONN_QUIESCED;
4233         mutex_exit(&connp->conn_lock);
4234 }
4235 
4236 /* ARGSUSED */
4237 int
4238 ip_close(queue_t *q, int flags)
4239 {
4240         conn_t          *connp;
4241 
4242         /*
4243          * Call the appropriate delete routine depending on whether this is
4244          * a module or device.
4245          */
4246         if (WR(q)->q_next != NULL) {
4247                 /* This is a module close */
4248                 return (ip_modclose((ill_t *)q->q_ptr));
4249         }
4250 
4251         connp = q->q_ptr;
4252         ip_quiesce_conn(connp);
4253 
4254         qprocsoff(q);
4255 
4256         /*
4257          * Now we are truly single threaded on this stream, and can
4258          * delete the things hanging off the connp, and finally the connp.
4259          * We removed this connp from the fanout list, it cannot be
4260          * accessed thru the fanouts, and we already waited for the
4261          * conn_ref to drop to 0. We are already in close, so
4262          * there cannot be any other thread from the top. qprocsoff
4263          * has completed, and service has completed or won't run in
4264          * future.
4265          */
4266         ASSERT(connp->conn_ref == 1);
4267 
4268         inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4269 
4270         connp->conn_ref--;
4271         ipcl_conn_destroy(connp);
4272 
4273         q->q_ptr = WR(q)->q_ptr = NULL;
4274         return (0);
4275 }
4276 
4277 /*
4278  * Wapper around putnext() so that ip_rts_request can merely use
4279  * conn_recv.
4280  */
4281 /*ARGSUSED2*/
4282 static void
4283 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4284 {
4285         conn_t *connp = (conn_t *)arg1;
4286 
4287         putnext(connp->conn_rq, mp);
4288 }
4289 
4290 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4291 /* ARGSUSED */
4292 static void
4293 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4294 {
4295         freemsg(mp);
4296 }
4297 
4298 /*
4299  * Called when the module is about to be unloaded
4300  */
4301 void
4302 ip_ddi_destroy(void)
4303 {
4304         /* This needs to be called before destroying any transports. */
4305         mutex_enter(&cpu_lock);
4306         unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4307         mutex_exit(&cpu_lock);
4308 
4309         tnet_fini();
4310 
4311         icmp_ddi_g_destroy();
4312         rts_ddi_g_destroy();
4313         udp_ddi_g_destroy();
4314         sctp_ddi_g_destroy();
4315         tcp_ddi_g_destroy();
4316         ilb_ddi_g_destroy();
4317         dce_g_destroy();
4318         ipsec_policy_g_destroy();
4319         ipcl_g_destroy();
4320         ip_net_g_destroy();
4321         ip_ire_g_fini();
4322         inet_minor_destroy(ip_minor_arena_sa);
4323 #if defined(_LP64)
4324         inet_minor_destroy(ip_minor_arena_la);
4325 #endif
4326 
4327 #ifdef DEBUG
4328         list_destroy(&ip_thread_list);
4329         rw_destroy(&ip_thread_rwlock);
4330         tsd_destroy(&ip_thread_data);
4331 #endif
4332 
4333         netstack_unregister(NS_IP);
4334 }
4335 
4336 /*
4337  * First step in cleanup.
4338  */
4339 /* ARGSUSED */
4340 static void
4341 ip_stack_shutdown(netstackid_t stackid, void *arg)
4342 {
4343         ip_stack_t *ipst = (ip_stack_t *)arg;
4344         kt_did_t ktid;
4345 
4346 #ifdef NS_DEBUG
4347         printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4348 #endif
4349 
4350         /*
4351          * Perform cleanup for special interfaces (loopback and IPMP).
4352          */
4353         ip_interface_cleanup(ipst);
4354 
4355         /*
4356          * The *_hook_shutdown()s start the process of notifying any
4357          * consumers that things are going away.... nothing is destroyed.
4358          */
4359         ipv4_hook_shutdown(ipst);
4360         ipv6_hook_shutdown(ipst);
4361         arp_hook_shutdown(ipst);
4362 
4363         mutex_enter(&ipst->ips_capab_taskq_lock);
4364         ktid = ipst->ips_capab_taskq_thread->t_did;
4365         ipst->ips_capab_taskq_quit = B_TRUE;
4366         cv_signal(&ipst->ips_capab_taskq_cv);
4367         mutex_exit(&ipst->ips_capab_taskq_lock);
4368 
4369         /*
4370          * In rare occurrences, particularly on virtual hardware where CPUs can
4371          * be de-scheduled, the thread that we just signaled will not run until
4372          * after we have gotten through parts of ip_stack_fini. If that happens
4373          * then we'll try to grab the ips_capab_taskq_lock as part of returning
4374          * from cv_wait which no longer exists.
4375          */
4376         thread_join(ktid);
4377 }
4378 
4379 /*
4380  * Free the IP stack instance.
4381  */
4382 static void
4383 ip_stack_fini(netstackid_t stackid, void *arg)
4384 {
4385         ip_stack_t *ipst = (ip_stack_t *)arg;
4386         int ret;
4387 
4388 #ifdef NS_DEBUG
4389         printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4390 #endif
4391         /*
4392          * At this point, all of the notifications that the events and
4393          * protocols are going away have been run, meaning that we can
4394          * now set about starting to clean things up.
4395          */
4396         ipobs_fini(ipst);
4397         ipv4_hook_destroy(ipst);
4398         ipv6_hook_destroy(ipst);
4399         arp_hook_destroy(ipst);
4400         ip_net_destroy(ipst);
4401 
4402         ipmp_destroy(ipst);
4403 
4404         ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4405         ipst->ips_ip_mibkp = NULL;
4406         icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4407         ipst->ips_icmp_mibkp = NULL;
4408         ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4409         ipst->ips_ip_kstat = NULL;
4410         bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4411         ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4412         ipst->ips_ip6_kstat = NULL;
4413         bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4414 
4415         kmem_free(ipst->ips_propinfo_tbl,
4416             ip_propinfo_count * sizeof (mod_prop_info_t));
4417         ipst->ips_propinfo_tbl = NULL;
4418 
4419         dce_stack_destroy(ipst);
4420         ip_mrouter_stack_destroy(ipst);
4421 
4422         /*
4423          * Quiesce all of our timers. Note we set the quiesce flags before we
4424          * call untimeout. The slowtimers may actually kick off another instance
4425          * of the non-slow timers.
4426          */
4427         mutex_enter(&ipst->ips_igmp_timer_lock);
4428         ipst->ips_igmp_timer_quiesce = B_TRUE;
4429         mutex_exit(&ipst->ips_igmp_timer_lock);
4430 
4431         mutex_enter(&ipst->ips_mld_timer_lock);
4432         ipst->ips_mld_timer_quiesce = B_TRUE;
4433         mutex_exit(&ipst->ips_mld_timer_lock);
4434 
4435         mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
4436         ipst->ips_igmp_slowtimeout_quiesce = B_TRUE;
4437         mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
4438 
4439         mutex_enter(&ipst->ips_mld_slowtimeout_lock);
4440         ipst->ips_mld_slowtimeout_quiesce = B_TRUE;
4441         mutex_exit(&ipst->ips_mld_slowtimeout_lock);
4442 
4443         ret = untimeout(ipst->ips_igmp_timeout_id);
4444         if (ret == -1) {
4445                 ASSERT(ipst->ips_igmp_timeout_id == 0);
4446         } else {
4447                 ASSERT(ipst->ips_igmp_timeout_id != 0);
4448                 ipst->ips_igmp_timeout_id = 0;
4449         }
4450         ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4451         if (ret == -1) {
4452                 ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4453         } else {
4454                 ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4455                 ipst->ips_igmp_slowtimeout_id = 0;
4456         }
4457         ret = untimeout(ipst->ips_mld_timeout_id);
4458         if (ret == -1) {
4459                 ASSERT(ipst->ips_mld_timeout_id == 0);
4460         } else {
4461                 ASSERT(ipst->ips_mld_timeout_id != 0);
4462                 ipst->ips_mld_timeout_id = 0;
4463         }
4464         ret = untimeout(ipst->ips_mld_slowtimeout_id);
4465         if (ret == -1) {
4466                 ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4467         } else {
4468                 ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4469                 ipst->ips_mld_slowtimeout_id = 0;
4470         }
4471 
4472         ip_ire_fini(ipst);
4473         ip6_asp_free(ipst);
4474         conn_drain_fini(ipst);
4475         ipcl_destroy(ipst);
4476 
4477         mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4478         mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4479         kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4480         ipst->ips_ndp4 = NULL;
4481         kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4482         ipst->ips_ndp6 = NULL;
4483 
4484         if (ipst->ips_loopback_ksp != NULL) {
4485                 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4486                 ipst->ips_loopback_ksp = NULL;
4487         }
4488 
4489         mutex_destroy(&ipst->ips_capab_taskq_lock);
4490         cv_destroy(&ipst->ips_capab_taskq_cv);
4491 
4492         rw_destroy(&ipst->ips_srcid_lock);
4493 
4494         mutex_destroy(&ipst->ips_ip_mi_lock);
4495         rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4496 
4497         mutex_destroy(&ipst->ips_igmp_timer_lock);
4498         mutex_destroy(&ipst->ips_mld_timer_lock);
4499         mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4500         mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4501         mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4502         rw_destroy(&ipst->ips_ill_g_lock);
4503 
4504         kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4505         ipst->ips_phyint_g_list = NULL;
4506         kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4507         ipst->ips_ill_g_heads = NULL;
4508 
4509         ldi_ident_release(ipst->ips_ldi_ident);
4510         kmem_free(ipst, sizeof (*ipst));
4511 }
4512 
4513 /*
4514  * This function is called from the TSD destructor, and is used to debug
4515  * reference count issues in IP. See block comment in <inet/ip_if.h> for
4516  * details.
4517  */
4518 static void
4519 ip_thread_exit(void *phash)
4520 {
4521         th_hash_t *thh = phash;
4522 
4523         rw_enter(&ip_thread_rwlock, RW_WRITER);
4524         list_remove(&ip_thread_list, thh);
4525         rw_exit(&ip_thread_rwlock);
4526         mod_hash_destroy_hash(thh->thh_hash);
4527         kmem_free(thh, sizeof (*thh));
4528 }
4529 
4530 /*
4531  * Called when the IP kernel module is loaded into the kernel
4532  */
4533 void
4534 ip_ddi_init(void)
4535 {
4536         ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4537 
4538         /*
4539          * For IP and TCP the minor numbers should start from 2 since we have 4
4540          * initial devices: ip, ip6, tcp, tcp6.
4541          */
4542         /*
4543          * If this is a 64-bit kernel, then create two separate arenas -
4544          * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4545          * other for socket apps in the range 2^^18 through 2^^32-1.
4546          */
4547         ip_minor_arena_la = NULL;
4548         ip_minor_arena_sa = NULL;
4549 #if defined(_LP64)
4550         if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4551             INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4552                 cmn_err(CE_PANIC,
4553                     "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4554         }
4555         if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4556             MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4557                 cmn_err(CE_PANIC,
4558                     "ip_ddi_init: ip_minor_arena_la creation failed\n");
4559         }
4560 #else
4561         if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4562             INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4563                 cmn_err(CE_PANIC,
4564                     "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4565         }
4566 #endif
4567         ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4568 
4569         ipcl_g_init();
4570         ip_ire_g_init();
4571         ip_net_g_init();
4572 
4573 #ifdef DEBUG
4574         tsd_create(&ip_thread_data, ip_thread_exit);
4575         rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4576         list_create(&ip_thread_list, sizeof (th_hash_t),
4577             offsetof(th_hash_t, thh_link));
4578 #endif
4579         ipsec_policy_g_init();
4580         tcp_ddi_g_init();
4581         sctp_ddi_g_init();
4582         dce_g_init();
4583 
4584         /*
4585          * We want to be informed each time a stack is created or
4586          * destroyed in the kernel, so we can maintain the
4587          * set of udp_stack_t's.
4588          */
4589         netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4590             ip_stack_fini);
4591 
4592         tnet_init();
4593 
4594         udp_ddi_g_init();
4595         rts_ddi_g_init();
4596         icmp_ddi_g_init();
4597         ilb_ddi_g_init();
4598 
4599         /* This needs to be called after all transports are initialized. */
4600         mutex_enter(&cpu_lock);
4601         register_cpu_setup_func(ip_tp_cpu_update, NULL);
4602         mutex_exit(&cpu_lock);
4603 }
4604 
4605 /*
4606  * Initialize the IP stack instance.
4607  */
4608 static void *
4609 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4610 {
4611         ip_stack_t      *ipst;
4612         size_t          arrsz;
4613         major_t         major;
4614 
4615 #ifdef NS_DEBUG
4616         printf("ip_stack_init(stack %d)\n", stackid);
4617 #endif
4618 
4619         ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4620         ipst->ips_netstack = ns;
4621 
4622         ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4623             KM_SLEEP);
4624         ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4625             KM_SLEEP);
4626         ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4627         ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4628         mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4629         mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4630 
4631         mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4632         ipst->ips_igmp_deferred_next = INFINITY;
4633         mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4634         ipst->ips_mld_deferred_next = INFINITY;
4635         mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4636         mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4637         mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4638         mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4639         rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4640         rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4641 
4642         ipcl_init(ipst);
4643         ip_ire_init(ipst);
4644         ip6_asp_init(ipst);
4645         ipif_init(ipst);
4646         conn_drain_init(ipst);
4647         ip_mrouter_stack_init(ipst);
4648         dce_stack_init(ipst);
4649 
4650         ipst->ips_ip_multirt_log_interval = 1000;
4651 
4652         ipst->ips_ill_index = 1;
4653 
4654         ipst->ips_saved_ip_forwarding = -1;
4655         ipst->ips_reg_vif_num = ALL_VIFS;    /* Index to Register vif */
4656 
4657         arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4658         ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4659         bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4660 
4661         ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4662         ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4663         ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4664         ipst->ips_ip6_kstat =
4665             ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4666 
4667         ipst->ips_ip_src_id = 1;
4668         rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4669 
4670         ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4671 
4672         ip_net_init(ipst, ns);
4673         ipv4_hook_init(ipst);
4674         ipv6_hook_init(ipst);
4675         arp_hook_init(ipst);
4676         ipmp_init(ipst);
4677         ipobs_init(ipst);
4678 
4679         /*
4680          * Create the taskq dispatcher thread and initialize related stuff.
4681          */
4682         mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4683         cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4684         ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4685             ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4686 
4687         major = mod_name_to_major(INET_NAME);
4688         (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4689         return (ipst);
4690 }
4691 
4692 /*
4693  * Allocate and initialize a DLPI template of the specified length.  (May be
4694  * called as writer.)
4695  */
4696 mblk_t *
4697 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4698 {
4699         mblk_t  *mp;
4700 
4701         mp = allocb(len, BPRI_MED);
4702         if (!mp)
4703                 return (NULL);
4704 
4705         /*
4706          * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4707          * of which we don't seem to use) are sent with M_PCPROTO, and
4708          * that other DLPI are M_PROTO.
4709          */
4710         if (prim == DL_INFO_REQ) {
4711                 mp->b_datap->db_type = M_PCPROTO;
4712         } else {
4713                 mp->b_datap->db_type = M_PROTO;
4714         }
4715 
4716         mp->b_wptr = mp->b_rptr + len;
4717         bzero(mp->b_rptr, len);
4718         ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4719         return (mp);
4720 }
4721 
4722 /*
4723  * Allocate and initialize a DLPI notification.  (May be called as writer.)
4724  */
4725 mblk_t *
4726 ip_dlnotify_alloc(uint_t notification, uint_t data)
4727 {
4728         dl_notify_ind_t *notifyp;
4729         mblk_t          *mp;
4730 
4731         if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4732                 return (NULL);
4733 
4734         notifyp = (dl_notify_ind_t *)mp->b_rptr;
4735         notifyp->dl_notification = notification;
4736         notifyp->dl_data = data;
4737         return (mp);
4738 }
4739 
4740 mblk_t *
4741 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4742 {
4743         dl_notify_ind_t *notifyp;
4744         mblk_t          *mp;
4745 
4746         if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4747                 return (NULL);
4748 
4749         notifyp = (dl_notify_ind_t *)mp->b_rptr;
4750         notifyp->dl_notification = notification;
4751         notifyp->dl_data1 = data1;
4752         notifyp->dl_data2 = data2;
4753         return (mp);
4754 }
4755 
4756 /*
4757  * Debug formatting routine.  Returns a character string representation of the
4758  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
4759  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4760  *
4761  * Once the ndd table-printing interfaces are removed, this can be changed to
4762  * standard dotted-decimal form.
4763  */
4764 char *
4765 ip_dot_addr(ipaddr_t addr, char *buf)
4766 {
4767         uint8_t *ap = (uint8_t *)&addr;
4768 
4769         (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4770             ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4771         return (buf);
4772 }
4773 
4774 /*
4775  * Write the given MAC address as a printable string in the usual colon-
4776  * separated format.
4777  */
4778 const char *
4779 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4780 {
4781         char *bp;
4782 
4783         if (alen == 0 || buflen < 4)
4784                 return ("?");
4785         bp = buf;
4786         for (;;) {
4787                 /*
4788                  * If there are more MAC address bytes available, but we won't
4789                  * have any room to print them, then add "..." to the string
4790                  * instead.  See below for the 'magic number' explanation.
4791                  */
4792                 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4793                         (void) strcpy(bp, "...");
4794                         break;
4795                 }
4796                 (void) sprintf(bp, "%02x", *addr++);
4797                 bp += 2;
4798                 if (--alen == 0)
4799                         break;
4800                 *bp++ = ':';
4801                 buflen -= 3;
4802                 /*
4803                  * At this point, based on the first 'if' statement above,
4804                  * either alen == 1 and buflen >= 3, or alen > 1 and
4805                  * buflen >= 4.  The first case leaves room for the final "xx"
4806                  * number and trailing NUL byte.  The second leaves room for at
4807                  * least "...".  Thus the apparently 'magic' numbers chosen for
4808                  * that statement.
4809                  */
4810         }
4811         return (buf);
4812 }
4813 
4814 /*
4815  * Called when it is conceptually a ULP that would sent the packet
4816  * e.g., port unreachable and protocol unreachable. Check that the packet
4817  * would have passed the IPsec global policy before sending the error.
4818  *
4819  * Send an ICMP error after patching up the packet appropriately.
4820  * Uses ip_drop_input and bumps the appropriate MIB.
4821  */
4822 void
4823 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4824     ip_recv_attr_t *ira)
4825 {
4826         ipha_t          *ipha;
4827         boolean_t       secure;
4828         ill_t           *ill = ira->ira_ill;
4829         ip_stack_t      *ipst = ill->ill_ipst;
4830         netstack_t      *ns = ipst->ips_netstack;
4831         ipsec_stack_t   *ipss = ns->netstack_ipsec;
4832 
4833         secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4834 
4835         /*
4836          * We are generating an icmp error for some inbound packet.
4837          * Called from all ip_fanout_(udp, tcp, proto) functions.
4838          * Before we generate an error, check with global policy
4839          * to see whether this is allowed to enter the system. As
4840          * there is no "conn", we are checking with global policy.
4841          */
4842         ipha = (ipha_t *)mp->b_rptr;
4843         if (secure || ipss->ipsec_inbound_v4_policy_present) {
4844                 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4845                 if (mp == NULL)
4846                         return;
4847         }
4848 
4849         /* We never send errors for protocols that we do implement */
4850         if (ira->ira_protocol == IPPROTO_ICMP ||
4851             ira->ira_protocol == IPPROTO_IGMP) {
4852                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4853                 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4854                 freemsg(mp);
4855                 return;
4856         }
4857         /*
4858          * Have to correct checksum since
4859          * the packet might have been
4860          * fragmented and the reassembly code in ip_rput
4861          * does not restore the IP checksum.
4862          */
4863         ipha->ipha_hdr_checksum = 0;
4864         ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4865 
4866         switch (icmp_type) {
4867         case ICMP_DEST_UNREACHABLE:
4868                 switch (icmp_code) {
4869                 case ICMP_PROTOCOL_UNREACHABLE:
4870                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4871                         ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4872                         break;
4873                 case ICMP_PORT_UNREACHABLE:
4874                         BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4875                         ip_drop_input("ipIfStatsNoPorts", mp, ill);
4876                         break;
4877                 }
4878 
4879                 icmp_unreachable(mp, icmp_code, ira);
4880                 break;
4881         default:
4882 #ifdef DEBUG
4883                 panic("ip_fanout_send_icmp_v4: wrong type");
4884                 /*NOTREACHED*/
4885 #else
4886                 freemsg(mp);
4887                 break;
4888 #endif
4889         }
4890 }
4891 
4892 /*
4893  * Used to send an ICMP error message when a packet is received for
4894  * a protocol that is not supported. The mblk passed as argument
4895  * is consumed by this function.
4896  */
4897 void
4898 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4899 {
4900         ipha_t          *ipha;
4901 
4902         ipha = (ipha_t *)mp->b_rptr;
4903         if (ira->ira_flags & IRAF_IS_IPV4) {
4904                 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4905                 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4906                     ICMP_PROTOCOL_UNREACHABLE, ira);
4907         } else {
4908                 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4909                 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4910                     ICMP6_PARAMPROB_NEXTHEADER, ira);
4911         }
4912 }
4913 
4914 /*
4915  * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4916  * Handles IPv4 and IPv6.
4917  * We are responsible for disposing of mp, such as by freemsg() or putnext()
4918  * Caller is responsible for dropping references to the conn.
4919  */
4920 void
4921 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4922     ip_recv_attr_t *ira)
4923 {
4924         ill_t           *ill = ira->ira_ill;
4925         ip_stack_t      *ipst = ill->ill_ipst;
4926         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
4927         boolean_t       secure;
4928         uint_t          protocol = ira->ira_protocol;
4929         iaflags_t       iraflags = ira->ira_flags;
4930         queue_t         *rq;
4931 
4932         secure = iraflags & IRAF_IPSEC_SECURE;
4933 
4934         rq = connp->conn_rq;
4935         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4936                 switch (protocol) {
4937                 case IPPROTO_ICMPV6:
4938                         BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4939                         break;
4940                 case IPPROTO_ICMP:
4941                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4942                         break;
4943                 default:
4944                         BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4945                         break;
4946                 }
4947                 freemsg(mp);
4948                 return;
4949         }
4950 
4951         ASSERT(!(IPCL_IS_IPTUN(connp)));
4952 
4953         if (((iraflags & IRAF_IS_IPV4) ?
4954             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4955             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4956             secure) {
4957                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
4958                     ip6h, ira);
4959                 if (mp == NULL) {
4960                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4961                         /* Note that mp is NULL */
4962                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
4963                         return;
4964                 }
4965         }
4966 
4967         if (iraflags & IRAF_ICMP_ERROR) {
4968                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
4969         } else {
4970                 ill_t *rill = ira->ira_rill;
4971 
4972                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4973                 ira->ira_ill = ira->ira_rill = NULL;
4974                 /* Send it upstream */
4975                 (connp->conn_recv)(connp, mp, NULL, ira);
4976                 ira->ira_ill = ill;
4977                 ira->ira_rill = rill;
4978         }
4979 }
4980 
4981 /*
4982  * Handle protocols with which IP is less intimate.  There
4983  * can be more than one stream bound to a particular
4984  * protocol.  When this is the case, normally each one gets a copy
4985  * of any incoming packets.
4986  *
4987  * IPsec NOTE :
4988  *
4989  * Don't allow a secure packet going up a non-secure connection.
4990  * We don't allow this because
4991  *
4992  * 1) Reply might go out in clear which will be dropped at
4993  *    the sending side.
4994  * 2) If the reply goes out in clear it will give the
4995  *    adversary enough information for getting the key in
4996  *    most of the cases.
4997  *
4998  * Moreover getting a secure packet when we expect clear
4999  * implies that SA's were added without checking for
5000  * policy on both ends. This should not happen once ISAKMP
5001  * is used to negotiate SAs as SAs will be added only after
5002  * verifying the policy.
5003  *
5004  * Zones notes:
5005  * Earlier in ip_input on a system with multiple shared-IP zones we
5006  * duplicate the multicast and broadcast packets and send them up
5007  * with each explicit zoneid that exists on that ill.
5008  * This means that here we can match the zoneid with SO_ALLZONES being special.
5009  */
5010 void
5011 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
5012 {
5013         mblk_t          *mp1;
5014         ipaddr_t        laddr;
5015         conn_t          *connp, *first_connp, *next_connp;
5016         connf_t         *connfp;
5017         ill_t           *ill = ira->ira_ill;
5018         ip_stack_t      *ipst = ill->ill_ipst;
5019 
5020         laddr = ipha->ipha_dst;
5021 
5022         connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
5023         mutex_enter(&connfp->connf_lock);
5024         connp = connfp->connf_head;
5025         for (connp = connfp->connf_head; connp != NULL;
5026             connp = connp->conn_next) {
5027                 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5028                 if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5029                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5030                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
5031                         break;
5032                 }
5033         }
5034 
5035         if (connp == NULL) {
5036                 /*
5037                  * No one bound to these addresses.  Is
5038                  * there a client that wants all
5039                  * unclaimed datagrams?
5040                  */
5041                 mutex_exit(&connfp->connf_lock);
5042                 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5043                     ICMP_PROTOCOL_UNREACHABLE, ira);
5044                 return;
5045         }
5046 
5047         ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5048 
5049         CONN_INC_REF(connp);
5050         first_connp = connp;
5051         connp = connp->conn_next;
5052 
5053         for (;;) {
5054                 while (connp != NULL) {
5055                         /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5056                         if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5057                             (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5058                             tsol_receive_local(mp, &laddr, IPV4_VERSION,
5059                             ira, connp)))
5060                                 break;
5061                         connp = connp->conn_next;
5062                 }
5063 
5064                 if (connp == NULL) {
5065                         /* No more interested clients */
5066                         connp = first_connp;
5067                         break;
5068                 }
5069                 if (((mp1 = dupmsg(mp)) == NULL) &&
5070                     ((mp1 = copymsg(mp)) == NULL)) {
5071                         /* Memory allocation failed */
5072                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5073                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
5074                         connp = first_connp;
5075                         break;
5076                 }
5077 
5078                 CONN_INC_REF(connp);
5079                 mutex_exit(&connfp->connf_lock);
5080 
5081                 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5082                     ira);
5083 
5084                 mutex_enter(&connfp->connf_lock);
5085                 /* Follow the next pointer before releasing the conn. */
5086                 next_connp = connp->conn_next;
5087                 CONN_DEC_REF(connp);
5088                 connp = next_connp;
5089         }
5090 
5091         /* Last one.  Send it upstream. */
5092         mutex_exit(&connfp->connf_lock);
5093 
5094         ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5095 
5096         CONN_DEC_REF(connp);
5097 }
5098 
5099 /*
5100  * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5101  * pass it along to ESP if the SPI is non-zero.  Returns the mblk if the mblk
5102  * is not consumed.
5103  *
5104  * One of three things can happen, all of which affect the passed-in mblk:
5105  *
5106  * 1.) The packet is stock UDP and gets its zero-SPI stripped.  Return mblk..
5107  *
5108  * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5109  *     ESP packet, and is passed along to ESP for consumption.  Return NULL.
5110  *
5111  * 3.) The packet is an ESP-in-UDP Keepalive.  Drop it and return NULL.
5112  */
5113 mblk_t *
5114 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5115 {
5116         int shift, plen, iph_len;
5117         ipha_t *ipha;
5118         udpha_t *udpha;
5119         uint32_t *spi;
5120         uint32_t esp_ports;
5121         uint8_t *orptr;
5122         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
5123         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
5124 
5125         ipha = (ipha_t *)mp->b_rptr;
5126         iph_len = ira->ira_ip_hdr_length;
5127         plen = ira->ira_pktlen;
5128 
5129         if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5130                 /*
5131                  * Most likely a keepalive for the benefit of an intervening
5132                  * NAT.  These aren't for us, per se, so drop it.
5133                  *
5134                  * RFC 3947/8 doesn't say for sure what to do for 2-3
5135                  * byte packets (keepalives are 1-byte), but we'll drop them
5136                  * also.
5137                  */
5138                 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5139                     DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5140                 return (NULL);
5141         }
5142 
5143         if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5144                 /* might as well pull it all up - it might be ESP. */
5145                 if (!pullupmsg(mp, -1)) {
5146                         ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5147                             DROPPER(ipss, ipds_esp_nomem),
5148                             &ipss->ipsec_dropper);
5149                         return (NULL);
5150                 }
5151 
5152                 ipha = (ipha_t *)mp->b_rptr;
5153         }
5154         spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5155         if (*spi == 0) {
5156                 /* UDP packet - remove 0-spi. */
5157                 shift = sizeof (uint32_t);
5158         } else {
5159                 /* ESP-in-UDP packet - reduce to ESP. */
5160                 ipha->ipha_protocol = IPPROTO_ESP;
5161                 shift = sizeof (udpha_t);
5162         }
5163 
5164         /* Fix IP header */
5165         ira->ira_pktlen = (plen - shift);
5166         ipha->ipha_length = htons(ira->ira_pktlen);
5167         ipha->ipha_hdr_checksum = 0;
5168 
5169         orptr = mp->b_rptr;
5170         mp->b_rptr += shift;
5171 
5172         udpha = (udpha_t *)(orptr + iph_len);
5173         if (*spi == 0) {
5174                 ASSERT((uint8_t *)ipha == orptr);
5175                 udpha->uha_length = htons(plen - shift - iph_len);
5176                 iph_len += sizeof (udpha_t);    /* For the call to ovbcopy(). */
5177                 esp_ports = 0;
5178         } else {
5179                 esp_ports = *((uint32_t *)udpha);
5180                 ASSERT(esp_ports != 0);
5181         }
5182         ovbcopy(orptr, orptr + shift, iph_len);
5183         if (esp_ports != 0) /* Punt up for ESP processing. */ {
5184                 ipha = (ipha_t *)(orptr + shift);
5185 
5186                 ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5187                 ira->ira_esp_udp_ports = esp_ports;
5188                 ip_fanout_v4(mp, ipha, ira);
5189                 return (NULL);
5190         }
5191         return (mp);
5192 }
5193 
5194 /*
5195  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5196  * Handles IPv4 and IPv6.
5197  * We are responsible for disposing of mp, such as by freemsg() or putnext()
5198  * Caller is responsible for dropping references to the conn.
5199  */
5200 void
5201 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5202     ip_recv_attr_t *ira)
5203 {
5204         ill_t           *ill = ira->ira_ill;
5205         ip_stack_t      *ipst = ill->ill_ipst;
5206         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
5207         boolean_t       secure;
5208         iaflags_t       iraflags = ira->ira_flags;
5209 
5210         secure = iraflags & IRAF_IPSEC_SECURE;
5211 
5212         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5213             !canputnext(connp->conn_rq)) {
5214                 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5215                 freemsg(mp);
5216                 return;
5217         }
5218 
5219         if (((iraflags & IRAF_IS_IPV4) ?
5220             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5221             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5222             secure) {
5223                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
5224                     ip6h, ira);
5225                 if (mp == NULL) {
5226                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5227                         /* Note that mp is NULL */
5228                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
5229                         return;
5230                 }
5231         }
5232 
5233         /*
5234          * Since this code is not used for UDP unicast we don't need a NAT_T
5235          * check. Only ip_fanout_v4 has that check.
5236          */
5237         if (ira->ira_flags & IRAF_ICMP_ERROR) {
5238                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
5239         } else {
5240                 ill_t *rill = ira->ira_rill;
5241 
5242                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5243                 ira->ira_ill = ira->ira_rill = NULL;
5244                 /* Send it upstream */
5245                 (connp->conn_recv)(connp, mp, NULL, ira);
5246                 ira->ira_ill = ill;
5247                 ira->ira_rill = rill;
5248         }
5249 }
5250 
5251 /*
5252  * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5253  * (Unicast fanout is handled in ip_input_v4.)
5254  *
5255  * If SO_REUSEADDR is set all multicast and broadcast packets
5256  * will be delivered to all conns bound to the same port.
5257  *
5258  * If there is at least one matching AF_INET receiver, then we will
5259  * ignore any AF_INET6 receivers.
5260  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5261  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5262  * packets.
5263  *
5264  * Zones notes:
5265  * Earlier in ip_input on a system with multiple shared-IP zones we
5266  * duplicate the multicast and broadcast packets and send them up
5267  * with each explicit zoneid that exists on that ill.
5268  * This means that here we can match the zoneid with SO_ALLZONES being special.
5269  */
5270 void
5271 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5272     ip_recv_attr_t *ira)
5273 {
5274         ipaddr_t        laddr;
5275         in6_addr_t      v6faddr;
5276         conn_t          *connp;
5277         connf_t         *connfp;
5278         ipaddr_t        faddr;
5279         ill_t           *ill = ira->ira_ill;
5280         ip_stack_t      *ipst = ill->ill_ipst;
5281 
5282         ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5283 
5284         laddr = ipha->ipha_dst;
5285         faddr = ipha->ipha_src;
5286 
5287         connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5288         mutex_enter(&connfp->connf_lock);
5289         connp = connfp->connf_head;
5290 
5291         /*
5292          * If SO_REUSEADDR has been set on the first we send the
5293          * packet to all clients that have joined the group and
5294          * match the port.
5295          */
5296         while (connp != NULL) {
5297                 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5298                     conn_wantpacket(connp, ira, ipha) &&
5299                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5300                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5301                         break;
5302                 connp = connp->conn_next;
5303         }
5304 
5305         if (connp == NULL)
5306                 goto notfound;
5307 
5308         CONN_INC_REF(connp);
5309 
5310         if (connp->conn_reuseaddr) {
5311                 conn_t          *first_connp = connp;
5312                 conn_t          *next_connp;
5313                 mblk_t          *mp1;
5314 
5315                 connp = connp->conn_next;
5316                 for (;;) {
5317                         while (connp != NULL) {
5318                                 if (IPCL_UDP_MATCH(connp, lport, laddr,
5319                                     fport, faddr) &&
5320                                     conn_wantpacket(connp, ira, ipha) &&
5321                                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5322                                     tsol_receive_local(mp, &laddr, IPV4_VERSION,
5323                                     ira, connp)))
5324                                         break;
5325                                 connp = connp->conn_next;
5326                         }
5327                         if (connp == NULL) {
5328                                 /* No more interested clients */
5329                                 connp = first_connp;
5330                                 break;
5331                         }
5332                         if (((mp1 = dupmsg(mp)) == NULL) &&
5333                             ((mp1 = copymsg(mp)) == NULL)) {
5334                                 /* Memory allocation failed */
5335                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5336                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5337                                 connp = first_connp;
5338                                 break;
5339                         }
5340                         CONN_INC_REF(connp);
5341                         mutex_exit(&connfp->connf_lock);
5342 
5343                         IP_STAT(ipst, ip_udp_fanmb);
5344                         ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5345                             NULL, ira);
5346                         mutex_enter(&connfp->connf_lock);
5347                         /* Follow the next pointer before releasing the conn */
5348                         next_connp = connp->conn_next;
5349                         CONN_DEC_REF(connp);
5350                         connp = next_connp;
5351                 }
5352         }
5353 
5354         /* Last one.  Send it upstream. */
5355         mutex_exit(&connfp->connf_lock);
5356         IP_STAT(ipst, ip_udp_fanmb);
5357         ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5358         CONN_DEC_REF(connp);
5359         return;
5360 
5361 notfound:
5362         mutex_exit(&connfp->connf_lock);
5363         /*
5364          * IPv6 endpoints bound to multicast IPv4-mapped addresses
5365          * have already been matched above, since they live in the IPv4
5366          * fanout tables. This implies we only need to
5367          * check for IPv6 in6addr_any endpoints here.
5368          * Thus we compare using ipv6_all_zeros instead of the destination
5369          * address, except for the multicast group membership lookup which
5370          * uses the IPv4 destination.
5371          */
5372         IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5373         connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5374         mutex_enter(&connfp->connf_lock);
5375         connp = connfp->connf_head;
5376         /*
5377          * IPv4 multicast packet being delivered to an AF_INET6
5378          * in6addr_any endpoint.
5379          * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5380          * and not conn_wantpacket_v6() since any multicast membership is
5381          * for an IPv4-mapped multicast address.
5382          */
5383         while (connp != NULL) {
5384                 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5385                     fport, v6faddr) &&
5386                     conn_wantpacket(connp, ira, ipha) &&
5387                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5388                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5389                         break;
5390                 connp = connp->conn_next;
5391         }
5392 
5393         if (connp == NULL) {
5394                 /*
5395                  * No one bound to this port.  Is
5396                  * there a client that wants all
5397                  * unclaimed datagrams?
5398                  */
5399                 mutex_exit(&connfp->connf_lock);
5400 
5401                 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5402                     NULL) {
5403                         ASSERT(ira->ira_protocol == IPPROTO_UDP);
5404                         ip_fanout_proto_v4(mp, ipha, ira);
5405                 } else {
5406                         /*
5407                          * We used to attempt to send an icmp error here, but
5408                          * since this is known to be a multicast packet
5409                          * and we don't send icmp errors in response to
5410                          * multicast, just drop the packet and give up sooner.
5411                          */
5412                         BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5413                         freemsg(mp);
5414                 }
5415                 return;
5416         }
5417         ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5418 
5419         /*
5420          * If SO_REUSEADDR has been set on the first we send the
5421          * packet to all clients that have joined the group and
5422          * match the port.
5423          */
5424         if (connp->conn_reuseaddr) {
5425                 conn_t          *first_connp = connp;
5426                 conn_t          *next_connp;
5427                 mblk_t          *mp1;
5428 
5429                 CONN_INC_REF(connp);
5430                 connp = connp->conn_next;
5431                 for (;;) {
5432                         while (connp != NULL) {
5433                                 if (IPCL_UDP_MATCH_V6(connp, lport,
5434                                     ipv6_all_zeros, fport, v6faddr) &&
5435                                     conn_wantpacket(connp, ira, ipha) &&
5436                                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5437                                     tsol_receive_local(mp, &laddr, IPV4_VERSION,
5438                                     ira, connp)))
5439                                         break;
5440                                 connp = connp->conn_next;
5441                         }
5442                         if (connp == NULL) {
5443                                 /* No more interested clients */
5444                                 connp = first_connp;
5445                                 break;
5446                         }
5447                         if (((mp1 = dupmsg(mp)) == NULL) &&
5448                             ((mp1 = copymsg(mp)) == NULL)) {
5449                                 /* Memory allocation failed */
5450                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5451                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5452                                 connp = first_connp;
5453                                 break;
5454                         }
5455                         CONN_INC_REF(connp);
5456                         mutex_exit(&connfp->connf_lock);
5457 
5458                         IP_STAT(ipst, ip_udp_fanmb);
5459                         ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5460                             NULL, ira);
5461                         mutex_enter(&connfp->connf_lock);
5462                         /* Follow the next pointer before releasing the conn */
5463                         next_connp = connp->conn_next;
5464                         CONN_DEC_REF(connp);
5465                         connp = next_connp;
5466                 }
5467         }
5468 
5469         /* Last one.  Send it upstream. */
5470         mutex_exit(&connfp->connf_lock);
5471         IP_STAT(ipst, ip_udp_fanmb);
5472         ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5473         CONN_DEC_REF(connp);
5474 }
5475 
5476 /*
5477  * Split an incoming packet's IPv4 options into the label and the other options.
5478  * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5479  * clearing out any leftover label or options.
5480  * Otherwise it just makes ipp point into the packet.
5481  *
5482  * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5483  */
5484 int
5485 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5486 {
5487         uchar_t         *opt;
5488         uint32_t        totallen;
5489         uint32_t        optval;
5490         uint32_t        optlen;
5491 
5492         ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5493         ipp->ipp_hoplimit = ipha->ipha_ttl;
5494         ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5495         IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5496 
5497         /*
5498          * Get length (in 4 byte octets) of IP header options.
5499          */
5500         totallen = ipha->ipha_version_and_hdr_length -
5501             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5502 
5503         if (totallen == 0) {
5504                 if (!allocate)
5505                         return (0);
5506 
5507                 /* Clear out anything from a previous packet */
5508                 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5509                         kmem_free(ipp->ipp_ipv4_options,
5510                             ipp->ipp_ipv4_options_len);
5511                         ipp->ipp_ipv4_options = NULL;
5512                         ipp->ipp_ipv4_options_len = 0;
5513                         ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5514                 }
5515                 if (ipp->ipp_fields & IPPF_LABEL_V4) {
5516                         kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5517                         ipp->ipp_label_v4 = NULL;
5518                         ipp->ipp_label_len_v4 = 0;
5519                         ipp->ipp_fields &= ~IPPF_LABEL_V4;
5520                 }
5521                 return (0);
5522         }
5523 
5524         totallen <<= 2;
5525         opt = (uchar_t *)&ipha[1];
5526         if (!is_system_labeled()) {
5527 
5528         copyall:
5529                 if (!allocate) {
5530                         if (totallen != 0) {
5531                                 ipp->ipp_ipv4_options = opt;
5532                                 ipp->ipp_ipv4_options_len = totallen;
5533                                 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5534                         }
5535                         return (0);
5536                 }
5537                 /* Just copy all of options */
5538                 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5539                         if (totallen == ipp->ipp_ipv4_options_len) {
5540                                 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5541                                 return (0);
5542                         }
5543                         kmem_free(ipp->ipp_ipv4_options,
5544                             ipp->ipp_ipv4_options_len);
5545                         ipp->ipp_ipv4_options = NULL;
5546                         ipp->ipp_ipv4_options_len = 0;
5547                         ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5548                 }
5549                 if (totallen == 0)
5550                         return (0);
5551 
5552                 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5553                 if (ipp->ipp_ipv4_options == NULL)
5554                         return (ENOMEM);
5555                 ipp->ipp_ipv4_options_len = totallen;
5556                 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5557                 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5558                 return (0);
5559         }
5560 
5561         if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5562                 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5563                 ipp->ipp_label_v4 = NULL;
5564                 ipp->ipp_label_len_v4 = 0;
5565                 ipp->ipp_fields &= ~IPPF_LABEL_V4;
5566         }
5567 
5568         /*
5569          * Search for CIPSO option.
5570          * We assume CIPSO is first in options if it is present.
5571          * If it isn't, then ipp_opt_ipv4_options will not include the options
5572          * prior to the CIPSO option.
5573          */
5574         while (totallen != 0) {
5575                 switch (optval = opt[IPOPT_OPTVAL]) {
5576                 case IPOPT_EOL:
5577                         return (0);
5578                 case IPOPT_NOP:
5579                         optlen = 1;
5580                         break;
5581                 default:
5582                         if (totallen <= IPOPT_OLEN)
5583                                 return (EINVAL);
5584                         optlen = opt[IPOPT_OLEN];
5585                         if (optlen < 2)
5586                                 return (EINVAL);
5587                 }
5588                 if (optlen > totallen)
5589                         return (EINVAL);
5590 
5591                 switch (optval) {
5592                 case IPOPT_COMSEC:
5593                         if (!allocate) {
5594                                 ipp->ipp_label_v4 = opt;
5595                                 ipp->ipp_label_len_v4 = optlen;
5596                                 ipp->ipp_fields |= IPPF_LABEL_V4;
5597                         } else {
5598                                 ipp->ipp_label_v4 = kmem_alloc(optlen,
5599                                     KM_NOSLEEP);
5600                                 if (ipp->ipp_label_v4 == NULL)
5601                                         return (ENOMEM);
5602                                 ipp->ipp_label_len_v4 = optlen;
5603                                 ipp->ipp_fields |= IPPF_LABEL_V4;
5604                                 bcopy(opt, ipp->ipp_label_v4, optlen);
5605                         }
5606                         totallen -= optlen;
5607                         opt += optlen;
5608 
5609                         /* Skip padding bytes until we get to a multiple of 4 */
5610                         while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5611                                 totallen--;
5612                                 opt++;
5613                         }
5614                         /* Remaining as ipp_ipv4_options */
5615                         goto copyall;
5616                 }
5617                 totallen -= optlen;
5618                 opt += optlen;
5619         }
5620         /* No CIPSO found; return everything as ipp_ipv4_options */
5621         totallen = ipha->ipha_version_and_hdr_length -
5622             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5623         totallen <<= 2;
5624         opt = (uchar_t *)&ipha[1];
5625         goto copyall;
5626 }
5627 
5628 /*
5629  * Efficient versions of lookup for an IRE when we only
5630  * match the address.
5631  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5632  * Does not handle multicast addresses.
5633  */
5634 uint_t
5635 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5636 {
5637         ire_t *ire;
5638         uint_t result;
5639 
5640         ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5641         ASSERT(ire != NULL);
5642         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5643                 result = IRE_NOROUTE;
5644         else
5645                 result = ire->ire_type;
5646         ire_refrele(ire);
5647         return (result);
5648 }
5649 
5650 /*
5651  * Efficient versions of lookup for an IRE when we only
5652  * match the address.
5653  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5654  * Does not handle multicast addresses.
5655  */
5656 uint_t
5657 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5658 {
5659         ire_t *ire;
5660         uint_t result;
5661 
5662         ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5663         ASSERT(ire != NULL);
5664         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5665                 result = IRE_NOROUTE;
5666         else
5667                 result = ire->ire_type;
5668         ire_refrele(ire);
5669         return (result);
5670 }
5671 
5672 /*
5673  * Nobody should be sending
5674  * packets up this stream
5675  */
5676 static void
5677 ip_lrput(queue_t *q, mblk_t *mp)
5678 {
5679         switch (mp->b_datap->db_type) {
5680         case M_FLUSH:
5681                 /* Turn around */
5682                 if (*mp->b_rptr & FLUSHW) {
5683                         *mp->b_rptr &= ~FLUSHR;
5684                         qreply(q, mp);
5685                         return;
5686                 }
5687                 break;
5688         }
5689         freemsg(mp);
5690 }
5691 
5692 /* Nobody should be sending packets down this stream */
5693 /* ARGSUSED */
5694 void
5695 ip_lwput(queue_t *q, mblk_t *mp)
5696 {
5697         freemsg(mp);
5698 }
5699 
5700 /*
5701  * Move the first hop in any source route to ipha_dst and remove that part of
5702  * the source route.  Called by other protocols.  Errors in option formatting
5703  * are ignored - will be handled by ip_output_options. Return the final
5704  * destination (either ipha_dst or the last entry in a source route.)
5705  */
5706 ipaddr_t
5707 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5708 {
5709         ipoptp_t        opts;
5710         uchar_t         *opt;
5711         uint8_t         optval;
5712         uint8_t         optlen;
5713         ipaddr_t        dst;
5714         int             i;
5715         ip_stack_t      *ipst = ns->netstack_ip;
5716 
5717         ip2dbg(("ip_massage_options\n"));
5718         dst = ipha->ipha_dst;
5719         for (optval = ipoptp_first(&opts, ipha);
5720             optval != IPOPT_EOL;
5721             optval = ipoptp_next(&opts)) {
5722                 opt = opts.ipoptp_cur;
5723                 switch (optval) {
5724                         uint8_t off;
5725                 case IPOPT_SSRR:
5726                 case IPOPT_LSRR:
5727                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5728                                 ip1dbg(("ip_massage_options: bad src route\n"));
5729                                 break;
5730                         }
5731                         optlen = opts.ipoptp_len;
5732                         off = opt[IPOPT_OFFSET];
5733                         off--;
5734                 redo_srr:
5735                         if (optlen < IP_ADDR_LEN ||
5736                             off > optlen - IP_ADDR_LEN) {
5737                                 /* End of source route */
5738                                 ip1dbg(("ip_massage_options: end of SR\n"));
5739                                 break;
5740                         }
5741                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5742                         ip1dbg(("ip_massage_options: next hop 0x%x\n",
5743                             ntohl(dst)));
5744                         /*
5745                          * Check if our address is present more than
5746                          * once as consecutive hops in source route.
5747                          * XXX verify per-interface ip_forwarding
5748                          * for source route?
5749                          */
5750                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5751                                 off += IP_ADDR_LEN;
5752                                 goto redo_srr;
5753                         }
5754                         if (dst == htonl(INADDR_LOOPBACK)) {
5755                                 ip1dbg(("ip_massage_options: loopback addr in "
5756                                     "source route!\n"));
5757                                 break;
5758                         }
5759                         /*
5760                          * Update ipha_dst to be the first hop and remove the
5761                          * first hop from the source route (by overwriting
5762                          * part of the option with NOP options).
5763                          */
5764                         ipha->ipha_dst = dst;
5765                         /* Put the last entry in dst */
5766                         off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5767                             3;
5768                         bcopy(&opt[off], &dst, IP_ADDR_LEN);
5769 
5770                         ip1dbg(("ip_massage_options: last hop 0x%x\n",
5771                             ntohl(dst)));
5772                         /* Move down and overwrite */
5773                         opt[IP_ADDR_LEN] = opt[0];
5774                         opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5775                         opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5776                         for (i = 0; i < IP_ADDR_LEN; i++)
5777                                 opt[i] = IPOPT_NOP;
5778                         break;
5779                 }
5780         }
5781         return (dst);
5782 }
5783 
5784 /*
5785  * Return the network mask
5786  * associated with the specified address.
5787  */
5788 ipaddr_t
5789 ip_net_mask(ipaddr_t addr)
5790 {
5791         uchar_t *up = (uchar_t *)&addr;
5792         ipaddr_t mask = 0;
5793         uchar_t *maskp = (uchar_t *)&mask;
5794 
5795 #if defined(__i386) || defined(__amd64)
5796 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER
5797 #endif
5798 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
5799         maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5800 #endif
5801         if (CLASSD(addr)) {
5802                 maskp[0] = 0xF0;
5803                 return (mask);
5804         }
5805 
5806         /* We assume Class E default netmask to be 32 */
5807         if (CLASSE(addr))
5808                 return (0xffffffffU);
5809 
5810         if (addr == 0)
5811                 return (0);
5812         maskp[0] = 0xFF;
5813         if ((up[0] & 0x80) == 0)
5814                 return (mask);
5815 
5816         maskp[1] = 0xFF;
5817         if ((up[0] & 0xC0) == 0x80)
5818                 return (mask);
5819 
5820         maskp[2] = 0xFF;
5821         if ((up[0] & 0xE0) == 0xC0)
5822                 return (mask);
5823 
5824         /* Otherwise return no mask */
5825         return ((ipaddr_t)0);
5826 }
5827 
5828 /* Name/Value Table Lookup Routine */
5829 char *
5830 ip_nv_lookup(nv_t *nv, int value)
5831 {
5832         if (!nv)
5833                 return (NULL);
5834         for (; nv->nv_name; nv++) {
5835                 if (nv->nv_value == value)
5836                         return (nv->nv_name);
5837         }
5838         return ("unknown");
5839 }
5840 
5841 static int
5842 ip_wait_for_info_ack(ill_t *ill)
5843 {
5844         int err;
5845 
5846         mutex_enter(&ill->ill_lock);
5847         while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5848                 /*
5849                  * Return value of 0 indicates a pending signal.
5850                  */
5851                 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5852                 if (err == 0) {
5853                         mutex_exit(&ill->ill_lock);
5854                         return (EINTR);
5855                 }
5856         }
5857         mutex_exit(&ill->ill_lock);
5858         /*
5859          * ip_rput_other could have set an error  in ill_error on
5860          * receipt of M_ERROR.
5861          */
5862         return (ill->ill_error);
5863 }
5864 
5865 /*
5866  * This is a module open, i.e. this is a control stream for access
5867  * to a DLPI device.  We allocate an ill_t as the instance data in
5868  * this case.
5869  */
5870 static int
5871 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5872 {
5873         ill_t   *ill;
5874         int     err;
5875         zoneid_t zoneid;
5876         netstack_t *ns;
5877         ip_stack_t *ipst;
5878 
5879         /*
5880          * Prevent unprivileged processes from pushing IP so that
5881          * they can't send raw IP.
5882          */
5883         if (secpolicy_net_rawaccess(credp) != 0)
5884                 return (EPERM);
5885 
5886         ns = netstack_find_by_cred(credp);
5887         ASSERT(ns != NULL);
5888         ipst = ns->netstack_ip;
5889         ASSERT(ipst != NULL);
5890 
5891         /*
5892          * For exclusive stacks we set the zoneid to zero
5893          * to make IP operate as if in the global zone.
5894          */
5895         if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5896                 zoneid = GLOBAL_ZONEID;
5897         else
5898                 zoneid = crgetzoneid(credp);
5899 
5900         ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5901         q->q_ptr = WR(q)->q_ptr = ill;
5902         ill->ill_ipst = ipst;
5903         ill->ill_zoneid = zoneid;
5904 
5905         /*
5906          * ill_init initializes the ill fields and then sends down
5907          * down a DL_INFO_REQ after calling qprocson.
5908          */
5909         err = ill_init(q, ill);
5910 
5911         if (err != 0) {
5912                 mi_free(ill);
5913                 netstack_rele(ipst->ips_netstack);
5914                 q->q_ptr = NULL;
5915                 WR(q)->q_ptr = NULL;
5916                 return (err);
5917         }
5918 
5919         /*
5920          * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5921          *
5922          * ill_init initializes the ipsq marking this thread as
5923          * writer
5924          */
5925         ipsq_exit(ill->ill_phyint->phyint_ipsq);
5926         err = ip_wait_for_info_ack(ill);
5927         if (err == 0)
5928                 ill->ill_credp = credp;
5929         else
5930                 goto fail;
5931 
5932         crhold(credp);
5933 
5934         mutex_enter(&ipst->ips_ip_mi_lock);
5935         err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5936             sflag, credp);
5937         mutex_exit(&ipst->ips_ip_mi_lock);
5938 fail:
5939         if (err) {
5940                 (void) ip_close(q, 0);
5941                 return (err);
5942         }
5943         return (0);
5944 }
5945 
5946 /* For /dev/ip aka AF_INET open */
5947 int
5948 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5949 {
5950         return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5951 }
5952 
5953 /* For /dev/ip6 aka AF_INET6 open */
5954 int
5955 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5956 {
5957         return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5958 }
5959 
5960 /* IP open routine. */
5961 int
5962 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5963     boolean_t isv6)
5964 {
5965         conn_t          *connp;
5966         major_t         maj;
5967         zoneid_t        zoneid;
5968         netstack_t      *ns;
5969         ip_stack_t      *ipst;
5970 
5971         /* Allow reopen. */
5972         if (q->q_ptr != NULL)
5973                 return (0);
5974 
5975         if (sflag & MODOPEN) {
5976                 /* This is a module open */
5977                 return (ip_modopen(q, devp, flag, sflag, credp));
5978         }
5979 
5980         if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5981                 /*
5982                  * Non streams based socket looking for a stream
5983                  * to access IP
5984                  */
5985                 return (ip_helper_stream_setup(q, devp, flag, sflag,
5986                     credp, isv6));
5987         }
5988 
5989         ns = netstack_find_by_cred(credp);
5990         ASSERT(ns != NULL);
5991         ipst = ns->netstack_ip;
5992         ASSERT(ipst != NULL);
5993 
5994         /*
5995          * For exclusive stacks we set the zoneid to zero
5996          * to make IP operate as if in the global zone.
5997          */
5998         if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5999                 zoneid = GLOBAL_ZONEID;
6000         else
6001                 zoneid = crgetzoneid(credp);
6002 
6003         /*
6004          * We are opening as a device. This is an IP client stream, and we
6005          * allocate an conn_t as the instance data.
6006          */
6007         connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
6008 
6009         /*
6010          * ipcl_conn_create did a netstack_hold. Undo the hold that was
6011          * done by netstack_find_by_cred()
6012          */
6013         netstack_rele(ipst->ips_netstack);
6014 
6015         connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
6016         /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
6017         connp->conn_ixa->ixa_zoneid = zoneid;
6018         connp->conn_zoneid = zoneid;
6019 
6020         connp->conn_rq = q;
6021         q->q_ptr = WR(q)->q_ptr = connp;
6022 
6023         /* Minor tells us which /dev entry was opened */
6024         if (isv6) {
6025                 connp->conn_family = AF_INET6;
6026                 connp->conn_ipversion = IPV6_VERSION;
6027                 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
6028                 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
6029         } else {
6030                 connp->conn_family = AF_INET;
6031                 connp->conn_ipversion = IPV4_VERSION;
6032                 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6033         }
6034 
6035         if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6036             ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6037                 connp->conn_minor_arena = ip_minor_arena_la;
6038         } else {
6039                 /*
6040                  * Either minor numbers in the large arena were exhausted
6041                  * or a non socket application is doing the open.
6042                  * Try to allocate from the small arena.
6043                  */
6044                 if ((connp->conn_dev =
6045                     inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6046                         /* CONN_DEC_REF takes care of netstack_rele() */
6047                         q->q_ptr = WR(q)->q_ptr = NULL;
6048                         CONN_DEC_REF(connp);
6049                         return (EBUSY);
6050                 }
6051                 connp->conn_minor_arena = ip_minor_arena_sa;
6052         }
6053 
6054         maj = getemajor(*devp);
6055         *devp = makedevice(maj, (minor_t)connp->conn_dev);
6056 
6057         /*
6058          * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6059          */
6060         connp->conn_cred = credp;
6061         connp->conn_cpid = curproc->p_pid;
6062         /* Cache things in ixa without an extra refhold */
6063         ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6064         connp->conn_ixa->ixa_cred = connp->conn_cred;
6065         connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6066         if (is_system_labeled())
6067                 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6068 
6069         /*
6070          * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6071          */
6072         connp->conn_recv = ip_conn_input;
6073         connp->conn_recvicmp = ip_conn_input_icmp;
6074 
6075         crhold(connp->conn_cred);
6076 
6077         /*
6078          * If the caller has the process-wide flag set, then default to MAC
6079          * exempt mode.  This allows read-down to unlabeled hosts.
6080          */
6081         if (getpflags(NET_MAC_AWARE, credp) != 0)
6082                 connp->conn_mac_mode = CONN_MAC_AWARE;
6083 
6084         connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6085 
6086         connp->conn_rq = q;
6087         connp->conn_wq = WR(q);
6088 
6089         /* Non-zero default values */
6090         connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6091 
6092         /*
6093          * Make the conn globally visible to walkers
6094          */
6095         ASSERT(connp->conn_ref == 1);
6096         mutex_enter(&connp->conn_lock);
6097         connp->conn_state_flags &= ~CONN_INCIPIENT;
6098         mutex_exit(&connp->conn_lock);
6099 
6100         qprocson(q);
6101 
6102         return (0);
6103 }
6104 
6105 /*
6106  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6107  * all of them are copied to the conn_t. If the req is "zero", the policy is
6108  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6109  * fields.
6110  * We keep only the latest setting of the policy and thus policy setting
6111  * is not incremental/cumulative.
6112  *
6113  * Requests to set policies with multiple alternative actions will
6114  * go through a different API.
6115  */
6116 int
6117 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6118 {
6119         uint_t ah_req = 0;
6120         uint_t esp_req = 0;
6121         uint_t se_req = 0;
6122         ipsec_act_t *actp = NULL;
6123         uint_t nact;
6124         ipsec_policy_head_t *ph;
6125         boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6126         int error = 0;
6127         netstack_t      *ns = connp->conn_netstack;
6128         ip_stack_t      *ipst = ns->netstack_ip;
6129         ipsec_stack_t   *ipss = ns->netstack_ipsec;
6130 
6131 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6132 
6133         /*
6134          * The IP_SEC_OPT option does not allow variable length parameters,
6135          * hence a request cannot be NULL.
6136          */
6137         if (req == NULL)
6138                 return (EINVAL);
6139 
6140         ah_req = req->ipsr_ah_req;
6141         esp_req = req->ipsr_esp_req;
6142         se_req = req->ipsr_self_encap_req;
6143 
6144         /* Don't allow setting self-encap without one or more of AH/ESP. */
6145         if (se_req != 0 && esp_req == 0 && ah_req == 0)
6146                 return (EINVAL);
6147 
6148         /*
6149          * Are we dealing with a request to reset the policy (i.e.
6150          * zero requests).
6151          */
6152         is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6153             (esp_req & REQ_MASK) == 0 &&
6154             (se_req & REQ_MASK) == 0);
6155 
6156         if (!is_pol_reset) {
6157                 /*
6158                  * If we couldn't load IPsec, fail with "protocol
6159                  * not supported".
6160                  * IPsec may not have been loaded for a request with zero
6161                  * policies, so we don't fail in this case.
6162                  */
6163                 mutex_enter(&ipss->ipsec_loader_lock);
6164                 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6165                         mutex_exit(&ipss->ipsec_loader_lock);
6166                         return (EPROTONOSUPPORT);
6167                 }
6168                 mutex_exit(&ipss->ipsec_loader_lock);
6169 
6170                 /*
6171                  * Test for valid requests. Invalid algorithms
6172                  * need to be tested by IPsec code because new
6173                  * algorithms can be added dynamically.
6174                  */
6175                 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6176                     (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6177                     (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6178                         return (EINVAL);
6179                 }
6180 
6181                 /*
6182                  * Only privileged users can issue these
6183                  * requests.
6184                  */
6185                 if (((ah_req & IPSEC_PREF_NEVER) ||
6186                     (esp_req & IPSEC_PREF_NEVER) ||
6187                     (se_req & IPSEC_PREF_NEVER)) &&
6188                     secpolicy_ip_config(cr, B_FALSE) != 0) {
6189                         return (EPERM);
6190                 }
6191 
6192                 /*
6193                  * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6194                  * are mutually exclusive.
6195                  */
6196                 if (((ah_req & REQ_MASK) == REQ_MASK) ||
6197                     ((esp_req & REQ_MASK) == REQ_MASK) ||
6198                     ((se_req & REQ_MASK) == REQ_MASK)) {
6199                         /* Both of them are set */
6200                         return (EINVAL);
6201                 }
6202         }
6203 
6204         ASSERT(MUTEX_HELD(&connp->conn_lock));
6205 
6206         /*
6207          * If we have already cached policies in conn_connect(), don't
6208          * let them change now. We cache policies for connections
6209          * whose src,dst [addr, port] is known.
6210          */
6211         if (connp->conn_policy_cached) {
6212                 return (EINVAL);
6213         }
6214 
6215         /*
6216          * We have a zero policies, reset the connection policy if already
6217          * set. This will cause the connection to inherit the
6218          * global policy, if any.
6219          */
6220         if (is_pol_reset) {
6221                 if (connp->conn_policy != NULL) {
6222                         IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6223                         connp->conn_policy = NULL;
6224                 }
6225                 connp->conn_in_enforce_policy = B_FALSE;
6226                 connp->conn_out_enforce_policy = B_FALSE;
6227                 return (0);
6228         }
6229 
6230         ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6231             ipst->ips_netstack);
6232         if (ph == NULL)
6233                 goto enomem;
6234 
6235         ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6236         if (actp == NULL)
6237                 goto enomem;
6238 
6239         /*
6240          * Always insert IPv4 policy entries, since they can also apply to
6241          * ipv6 sockets being used in ipv4-compat mode.
6242          */
6243         if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6244             IPSEC_TYPE_INBOUND, ns))
6245                 goto enomem;
6246         is_pol_inserted = B_TRUE;
6247         if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6248             IPSEC_TYPE_OUTBOUND, ns))
6249                 goto enomem;
6250 
6251         /*
6252          * We're looking at a v6 socket, also insert the v6-specific
6253          * entries.
6254          */
6255         if (connp->conn_family == AF_INET6) {
6256                 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6257                     IPSEC_TYPE_INBOUND, ns))
6258                         goto enomem;
6259                 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6260                     IPSEC_TYPE_OUTBOUND, ns))
6261                         goto enomem;
6262         }
6263 
6264         ipsec_actvec_free(actp, nact);
6265 
6266         /*
6267          * If the requests need security, set enforce_policy.
6268          * If the requests are IPSEC_PREF_NEVER, one should
6269          * still set conn_out_enforce_policy so that ip_set_destination
6270          * marks the ip_xmit_attr_t appropriatly. This is needed so that
6271          * for connections that we don't cache policy in at connect time,
6272          * if global policy matches in ip_output_attach_policy, we
6273          * don't wrongly inherit global policy. Similarly, we need
6274          * to set conn_in_enforce_policy also so that we don't verify
6275          * policy wrongly.
6276          */
6277         if ((ah_req & REQ_MASK) != 0 ||
6278             (esp_req & REQ_MASK) != 0 ||
6279             (se_req & REQ_MASK) != 0) {
6280                 connp->conn_in_enforce_policy = B_TRUE;
6281                 connp->conn_out_enforce_policy = B_TRUE;
6282         }
6283 
6284         return (error);
6285 #undef REQ_MASK
6286 
6287         /*
6288          * Common memory-allocation-failure exit path.
6289          */
6290 enomem:
6291         if (actp != NULL)
6292                 ipsec_actvec_free(actp, nact);
6293         if (is_pol_inserted)
6294                 ipsec_polhead_flush(ph, ns);
6295         return (ENOMEM);
6296 }
6297 
6298 /*
6299  * Set socket options for joining and leaving multicast groups.
6300  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6301  * The caller has already check that the option name is consistent with
6302  * the address family of the socket.
6303  */
6304 int
6305 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6306     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6307 {
6308         int             *i1 = (int *)invalp;
6309         int             error = 0;
6310         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
6311         struct ip_mreq  *v4_mreqp;
6312         struct ipv6_mreq *v6_mreqp;
6313         struct group_req *greqp;
6314         ire_t *ire;
6315         boolean_t done = B_FALSE;
6316         ipaddr_t ifaddr;
6317         in6_addr_t v6group;
6318         uint_t ifindex;
6319         boolean_t mcast_opt = B_TRUE;
6320         mcast_record_t fmode;
6321         int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6322             ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6323 
6324         switch (name) {
6325         case IP_ADD_MEMBERSHIP:
6326         case IPV6_JOIN_GROUP:
6327                 mcast_opt = B_FALSE;
6328                 /* FALLTHRU */
6329         case MCAST_JOIN_GROUP:
6330                 fmode = MODE_IS_EXCLUDE;
6331                 optfn = ip_opt_add_group;
6332                 break;
6333 
6334         case IP_DROP_MEMBERSHIP:
6335         case IPV6_LEAVE_GROUP:
6336                 mcast_opt = B_FALSE;
6337                 /* FALLTHRU */
6338         case MCAST_LEAVE_GROUP:
6339                 fmode = MODE_IS_INCLUDE;
6340                 optfn = ip_opt_delete_group;
6341                 break;
6342         default:
6343                 ASSERT(0);
6344         }
6345 
6346         if (mcast_opt) {
6347                 struct sockaddr_in *sin;
6348                 struct sockaddr_in6 *sin6;
6349 
6350                 greqp = (struct group_req *)i1;
6351                 if (greqp->gr_group.ss_family == AF_INET) {
6352                         sin = (struct sockaddr_in *)&(greqp->gr_group);
6353                         IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6354                 } else {
6355                         if (!inet6)
6356                                 return (EINVAL);        /* Not on INET socket */
6357 
6358                         sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6359                         v6group = sin6->sin6_addr;
6360                 }
6361                 ifaddr = INADDR_ANY;
6362                 ifindex = greqp->gr_interface;
6363         } else if (inet6) {
6364                 v6_mreqp = (struct ipv6_mreq *)i1;
6365                 v6group = v6_mreqp->ipv6mr_multiaddr;
6366                 ifaddr = INADDR_ANY;
6367                 ifindex = v6_mreqp->ipv6mr_interface;
6368         } else {
6369                 v4_mreqp = (struct ip_mreq *)i1;
6370                 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6371                 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6372                 ifindex = 0;
6373         }
6374 
6375         /*
6376          * In the multirouting case, we need to replicate
6377          * the request on all interfaces that will take part
6378          * in replication.  We do so because multirouting is
6379          * reflective, thus we will probably receive multi-
6380          * casts on those interfaces.
6381          * The ip_multirt_apply_membership() succeeds if
6382          * the operation succeeds on at least one interface.
6383          */
6384         if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6385                 ipaddr_t group;
6386 
6387                 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6388 
6389                 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6390                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6391                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6392         } else {
6393                 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6394                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6395                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6396         }
6397         if (ire != NULL) {
6398                 if (ire->ire_flags & RTF_MULTIRT) {
6399                         error = ip_multirt_apply_membership(optfn, ire, connp,
6400                             checkonly, &v6group, fmode, &ipv6_all_zeros);
6401                         done = B_TRUE;
6402                 }
6403                 ire_refrele(ire);
6404         }
6405 
6406         if (!done) {
6407                 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6408                     fmode, &ipv6_all_zeros);
6409         }
6410         return (error);
6411 }
6412 
6413 /*
6414  * Set socket options for joining and leaving multicast groups
6415  * for specific sources.
6416  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6417  * The caller has already check that the option name is consistent with
6418  * the address family of the socket.
6419  */
6420 int
6421 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6422     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6423 {
6424         int             *i1 = (int *)invalp;
6425         int             error = 0;
6426         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
6427         struct ip_mreq_source *imreqp;
6428         struct group_source_req *gsreqp;
6429         in6_addr_t v6group, v6src;
6430         uint32_t ifindex;
6431         ipaddr_t ifaddr;
6432         boolean_t mcast_opt = B_TRUE;
6433         mcast_record_t fmode;
6434         ire_t *ire;
6435         boolean_t done = B_FALSE;
6436         int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6437             ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6438 
6439         switch (name) {
6440         case IP_BLOCK_SOURCE:
6441                 mcast_opt = B_FALSE;
6442                 /* FALLTHRU */
6443         case MCAST_BLOCK_SOURCE:
6444                 fmode = MODE_IS_EXCLUDE;
6445                 optfn = ip_opt_add_group;
6446                 break;
6447 
6448         case IP_UNBLOCK_SOURCE:
6449                 mcast_opt = B_FALSE;
6450                 /* FALLTHRU */
6451         case MCAST_UNBLOCK_SOURCE:
6452                 fmode = MODE_IS_EXCLUDE;
6453                 optfn = ip_opt_delete_group;
6454                 break;
6455 
6456         case IP_ADD_SOURCE_MEMBERSHIP:
6457                 mcast_opt = B_FALSE;
6458                 /* FALLTHRU */
6459         case MCAST_JOIN_SOURCE_GROUP:
6460                 fmode = MODE_IS_INCLUDE;
6461                 optfn = ip_opt_add_group;
6462                 break;
6463 
6464         case IP_DROP_SOURCE_MEMBERSHIP:
6465                 mcast_opt = B_FALSE;
6466                 /* FALLTHRU */
6467         case MCAST_LEAVE_SOURCE_GROUP:
6468                 fmode = MODE_IS_INCLUDE;
6469                 optfn = ip_opt_delete_group;
6470                 break;
6471         default:
6472                 ASSERT(0);
6473         }
6474 
6475         if (mcast_opt) {
6476                 gsreqp = (struct group_source_req *)i1;
6477                 ifindex = gsreqp->gsr_interface;
6478                 if (gsreqp->gsr_group.ss_family == AF_INET) {
6479                         struct sockaddr_in *s;
6480                         s = (struct sockaddr_in *)&gsreqp->gsr_group;
6481                         IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6482                         s = (struct sockaddr_in *)&gsreqp->gsr_source;
6483                         IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6484                 } else {
6485                         struct sockaddr_in6 *s6;
6486 
6487                         if (!inet6)
6488                                 return (EINVAL);        /* Not on INET socket */
6489 
6490                         s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6491                         v6group = s6->sin6_addr;
6492                         s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6493                         v6src = s6->sin6_addr;
6494                 }
6495                 ifaddr = INADDR_ANY;
6496         } else {
6497                 imreqp = (struct ip_mreq_source *)i1;
6498                 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6499                 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6500                 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6501                 ifindex = 0;
6502         }
6503 
6504         /*
6505          * Handle src being mapped INADDR_ANY by changing it to unspecified.
6506          */
6507         if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6508                 v6src = ipv6_all_zeros;
6509 
6510         /*
6511          * In the multirouting case, we need to replicate
6512          * the request as noted in the mcast cases above.
6513          */
6514         if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6515                 ipaddr_t group;
6516 
6517                 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6518 
6519                 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6520                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6521                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6522         } else {
6523                 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6524                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6525                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6526         }
6527         if (ire != NULL) {
6528                 if (ire->ire_flags & RTF_MULTIRT) {
6529                         error = ip_multirt_apply_membership(optfn, ire, connp,
6530                             checkonly, &v6group, fmode, &v6src);
6531                         done = B_TRUE;
6532                 }
6533                 ire_refrele(ire);
6534         }
6535         if (!done) {
6536                 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6537                     fmode, &v6src);
6538         }
6539         return (error);
6540 }
6541 
6542 /*
6543  * Given a destination address and a pointer to where to put the information
6544  * this routine fills in the mtuinfo.
6545  * The socket must be connected.
6546  * For sctp conn_faddr is the primary address.
6547  */
6548 int
6549 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6550 {
6551         uint32_t        pmtu = IP_MAXPACKET;
6552         uint_t          scopeid;
6553 
6554         if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6555                 return (-1);
6556 
6557         /* In case we never sent or called ip_set_destination_v4/v6 */
6558         if (ixa->ixa_ire != NULL)
6559                 pmtu = ip_get_pmtu(ixa);
6560 
6561         if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6562                 scopeid = ixa->ixa_scopeid;
6563         else
6564                 scopeid = 0;
6565 
6566         bzero(mtuinfo, sizeof (*mtuinfo));
6567         mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6568         mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6569         mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6570         mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6571         mtuinfo->ip6m_mtu = pmtu;
6572 
6573         return (sizeof (struct ip6_mtuinfo));
6574 }
6575 
6576 /*
6577  * When the src multihoming is changed from weak to [strong, preferred]
6578  * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6579  * and identify routes that were created by user-applications in the
6580  * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6581  * currently defined. These routes are then 'rebound', i.e., their ire_ill
6582  * is selected by finding an interface route for the gateway.
6583  */
6584 /* ARGSUSED */
6585 void
6586 ip_ire_rebind_walker(ire_t *ire, void *notused)
6587 {
6588         if (!ire->ire_unbound || ire->ire_ill != NULL)
6589                 return;
6590         ire_rebind(ire);
6591         ire_delete(ire);
6592 }
6593 
6594 /*
6595  * When the src multihoming is changed from  [strong, preferred] to weak,
6596  * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6597  * set any entries that were created by user-applications in the unbound state
6598  * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6599  */
6600 /* ARGSUSED */
6601 void
6602 ip_ire_unbind_walker(ire_t *ire, void *notused)
6603 {
6604         ire_t *new_ire;
6605 
6606         if (!ire->ire_unbound || ire->ire_ill == NULL)
6607                 return;
6608         if (ire->ire_ipversion == IPV6_VERSION) {
6609                 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6610                     &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6611                     ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6612         } else {
6613                 new_ire = ire_create((uchar_t *)&ire->ire_addr,
6614                     (uchar_t *)&ire->ire_mask,
6615                     (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6616                     ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6617         }
6618         if (new_ire == NULL)
6619                 return;
6620         new_ire->ire_unbound = B_TRUE;
6621         /*
6622          * The bound ire must first be deleted so that we don't return
6623          * the existing one on the attempt to add the unbound new_ire.
6624          */
6625         ire_delete(ire);
6626         new_ire = ire_add(new_ire);
6627         if (new_ire != NULL)
6628                 ire_refrele(new_ire);
6629 }
6630 
6631 /*
6632  * When the settings of ip*_strict_src_multihoming tunables are changed,
6633  * all cached routes need to be recomputed. This recomputation needs to be
6634  * done when going from weaker to stronger modes so that the cached ire
6635  * for the connection does not violate the current ip*_strict_src_multihoming
6636  * setting. It also needs to be done when going from stronger to weaker modes,
6637  * so that we fall back to matching on the longest-matching-route (as opposed
6638  * to a shorter match that may have been selected in the strong mode
6639  * to satisfy src_multihoming settings).
6640  *
6641  * The cached ixa_ire entires for all conn_t entries are marked as
6642  * "verify" so that they will be recomputed for the next packet.
6643  */
6644 void
6645 conn_ire_revalidate(conn_t *connp, void *arg)
6646 {
6647         boolean_t isv6 = (boolean_t)arg;
6648 
6649         if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6650             (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6651                 return;
6652         connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6653 }
6654 
6655 /*
6656  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6657  * When an ipf is passed here for the first time, if
6658  * we already have in-order fragments on the queue, we convert from the fast-
6659  * path reassembly scheme to the hard-case scheme.  From then on, additional
6660  * fragments are reassembled here.  We keep track of the start and end offsets
6661  * of each piece, and the number of holes in the chain.  When the hole count
6662  * goes to zero, we are done!
6663  *
6664  * The ipf_count will be updated to account for any mblk(s) added (pointed to
6665  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6666  * ipfb_count and ill_frag_count by the difference of ipf_count before and
6667  * after the call to ip_reassemble().
6668  */
6669 int
6670 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6671     size_t msg_len)
6672 {
6673         uint_t  end;
6674         mblk_t  *next_mp;
6675         mblk_t  *mp1;
6676         uint_t  offset;
6677         boolean_t incr_dups = B_TRUE;
6678         boolean_t offset_zero_seen = B_FALSE;
6679         boolean_t pkt_boundary_checked = B_FALSE;
6680 
6681         /* If start == 0 then ipf_nf_hdr_len has to be set. */
6682         ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6683 
6684         /* Add in byte count */
6685         ipf->ipf_count += msg_len;
6686         if (ipf->ipf_end) {
6687                 /*
6688                  * We were part way through in-order reassembly, but now there
6689                  * is a hole.  We walk through messages already queued, and
6690                  * mark them for hard case reassembly.  We know that up till
6691                  * now they were in order starting from offset zero.
6692                  */
6693                 offset = 0;
6694                 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6695                         IP_REASS_SET_START(mp1, offset);
6696                         if (offset == 0) {
6697                                 ASSERT(ipf->ipf_nf_hdr_len != 0);
6698                                 offset = -ipf->ipf_nf_hdr_len;
6699                         }
6700                         offset += mp1->b_wptr - mp1->b_rptr;
6701                         IP_REASS_SET_END(mp1, offset);
6702                 }
6703                 /* One hole at the end. */
6704                 ipf->ipf_hole_cnt = 1;
6705                 /* Brand it as a hard case, forever. */
6706                 ipf->ipf_end = 0;
6707         }
6708         /* Walk through all the new pieces. */
6709         do {
6710                 end = start + (mp->b_wptr - mp->b_rptr);
6711                 /*
6712                  * If start is 0, decrease 'end' only for the first mblk of
6713                  * the fragment. Otherwise 'end' can get wrong value in the
6714                  * second pass of the loop if first mblk is exactly the
6715                  * size of ipf_nf_hdr_len.
6716                  */
6717                 if (start == 0 && !offset_zero_seen) {
6718                         /* First segment */
6719                         ASSERT(ipf->ipf_nf_hdr_len != 0);
6720                         end -= ipf->ipf_nf_hdr_len;
6721                         offset_zero_seen = B_TRUE;
6722                 }
6723                 next_mp = mp->b_cont;
6724                 /*
6725                  * We are checking to see if there is any interesing data
6726                  * to process.  If there isn't and the mblk isn't the
6727                  * one which carries the unfragmentable header then we
6728                  * drop it.  It's possible to have just the unfragmentable
6729                  * header come through without any data.  That needs to be
6730                  * saved.
6731                  *
6732                  * If the assert at the top of this function holds then the
6733                  * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
6734                  * is infrequently traveled enough that the test is left in
6735                  * to protect against future code changes which break that
6736                  * invariant.
6737                  */
6738                 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6739                         /* Empty.  Blast it. */
6740                         IP_REASS_SET_START(mp, 0);
6741                         IP_REASS_SET_END(mp, 0);
6742                         /*
6743                          * If the ipf points to the mblk we are about to free,
6744                          * update ipf to point to the next mblk (or NULL
6745                          * if none).
6746                          */
6747                         if (ipf->ipf_mp->b_cont == mp)
6748                                 ipf->ipf_mp->b_cont = next_mp;
6749                         freeb(mp);
6750                         continue;
6751                 }
6752                 mp->b_cont = NULL;
6753                 IP_REASS_SET_START(mp, start);
6754                 IP_REASS_SET_END(mp, end);
6755                 if (!ipf->ipf_tail_mp) {
6756                         ipf->ipf_tail_mp = mp;
6757                         ipf->ipf_mp->b_cont = mp;
6758                         if (start == 0 || !more) {
6759                                 ipf->ipf_hole_cnt = 1;
6760                                 /*
6761                                  * if the first fragment comes in more than one
6762                                  * mblk, this loop will be executed for each
6763                                  * mblk. Need to adjust hole count so exiting
6764                                  * this routine will leave hole count at 1.
6765                                  */
6766                                 if (next_mp)
6767                                         ipf->ipf_hole_cnt++;
6768                         } else
6769                                 ipf->ipf_hole_cnt = 2;
6770                         continue;
6771                 } else if (ipf->ipf_last_frag_seen && !more &&
6772                     !pkt_boundary_checked) {
6773                         /*
6774                          * We check datagram boundary only if this fragment
6775                          * claims to be the last fragment and we have seen a
6776                          * last fragment in the past too. We do this only
6777                          * once for a given fragment.
6778                          *
6779                          * start cannot be 0 here as fragments with start=0
6780                          * and MF=0 gets handled as a complete packet. These
6781                          * fragments should not reach here.
6782                          */
6783 
6784                         if (start + msgdsize(mp) !=
6785                             IP_REASS_END(ipf->ipf_tail_mp)) {
6786                                 /*
6787                                  * We have two fragments both of which claim
6788                                  * to be the last fragment but gives conflicting
6789                                  * information about the whole datagram size.
6790                                  * Something fishy is going on. Drop the
6791                                  * fragment and free up the reassembly list.
6792                                  */
6793                                 return (IP_REASS_FAILED);
6794                         }
6795 
6796                         /*
6797                          * We shouldn't come to this code block again for this
6798                          * particular fragment.
6799                          */
6800                         pkt_boundary_checked = B_TRUE;
6801                 }
6802 
6803                 /* New stuff at or beyond tail? */
6804                 offset = IP_REASS_END(ipf->ipf_tail_mp);
6805                 if (start >= offset) {
6806                         if (ipf->ipf_last_frag_seen) {
6807                                 /* current fragment is beyond last fragment */
6808                                 return (IP_REASS_FAILED);
6809                         }
6810                         /* Link it on end. */
6811                         ipf->ipf_tail_mp->b_cont = mp;
6812                         ipf->ipf_tail_mp = mp;
6813                         if (more) {
6814                                 if (start != offset)
6815                                         ipf->ipf_hole_cnt++;
6816                         } else if (start == offset && next_mp == NULL)
6817                                         ipf->ipf_hole_cnt--;
6818                         continue;
6819                 }
6820                 mp1 = ipf->ipf_mp->b_cont;
6821                 offset = IP_REASS_START(mp1);
6822                 /* New stuff at the front? */
6823                 if (start < offset) {
6824                         if (start == 0) {
6825                                 if (end >= offset) {
6826                                         /* Nailed the hole at the begining. */
6827                                         ipf->ipf_hole_cnt--;
6828                                 }
6829                         } else if (end < offset) {
6830                                 /*
6831                                  * A hole, stuff, and a hole where there used
6832                                  * to be just a hole.
6833                                  */
6834                                 ipf->ipf_hole_cnt++;
6835                         }
6836                         mp->b_cont = mp1;
6837                         /* Check for overlap. */
6838                         while (end > offset) {
6839                                 if (end < IP_REASS_END(mp1)) {
6840                                         mp->b_wptr -= end - offset;
6841                                         IP_REASS_SET_END(mp, offset);
6842                                         BUMP_MIB(ill->ill_ip_mib,
6843                                             ipIfStatsReasmPartDups);
6844                                         break;
6845                                 }
6846                                 /* Did we cover another hole? */
6847                                 if ((mp1->b_cont &&
6848                                     IP_REASS_END(mp1) !=
6849                                     IP_REASS_START(mp1->b_cont) &&
6850                                     end >= IP_REASS_START(mp1->b_cont)) ||
6851                                     (!ipf->ipf_last_frag_seen && !more)) {
6852                                         ipf->ipf_hole_cnt--;
6853                                 }
6854                                 /* Clip out mp1. */
6855                                 if ((mp->b_cont = mp1->b_cont) == NULL) {
6856                                         /*
6857                                          * After clipping out mp1, this guy
6858                                          * is now hanging off the end.
6859                                          */
6860                                         ipf->ipf_tail_mp = mp;
6861                                 }
6862                                 IP_REASS_SET_START(mp1, 0);
6863                                 IP_REASS_SET_END(mp1, 0);
6864                                 /* Subtract byte count */
6865                                 ipf->ipf_count -= mp1->b_datap->db_lim -
6866                                     mp1->b_datap->db_base;
6867                                 freeb(mp1);
6868                                 BUMP_MIB(ill->ill_ip_mib,
6869                                     ipIfStatsReasmPartDups);
6870                                 mp1 = mp->b_cont;
6871                                 if (!mp1)
6872                                         break;
6873                                 offset = IP_REASS_START(mp1);
6874                         }
6875                         ipf->ipf_mp->b_cont = mp;
6876                         continue;
6877                 }
6878                 /*
6879                  * The new piece starts somewhere between the start of the head
6880                  * and before the end of the tail.
6881                  */
6882                 for (; mp1; mp1 = mp1->b_cont) {
6883                         offset = IP_REASS_END(mp1);
6884                         if (start < offset) {
6885                                 if (end <= offset) {
6886                                         /* Nothing new. */
6887                                         IP_REASS_SET_START(mp, 0);
6888                                         IP_REASS_SET_END(mp, 0);
6889                                         /* Subtract byte count */
6890                                         ipf->ipf_count -= mp->b_datap->db_lim -
6891                                             mp->b_datap->db_base;
6892                                         if (incr_dups) {
6893                                                 ipf->ipf_num_dups++;
6894                                                 incr_dups = B_FALSE;
6895                                         }
6896                                         freeb(mp);
6897                                         BUMP_MIB(ill->ill_ip_mib,
6898                                             ipIfStatsReasmDuplicates);
6899                                         break;
6900                                 }
6901                                 /*
6902                                  * Trim redundant stuff off beginning of new
6903                                  * piece.
6904                                  */
6905                                 IP_REASS_SET_START(mp, offset);
6906                                 mp->b_rptr += offset - start;
6907                                 BUMP_MIB(ill->ill_ip_mib,
6908                                     ipIfStatsReasmPartDups);
6909                                 start = offset;
6910                                 if (!mp1->b_cont) {
6911                                         /*
6912                                          * After trimming, this guy is now
6913                                          * hanging off the end.
6914                                          */
6915                                         mp1->b_cont = mp;
6916                                         ipf->ipf_tail_mp = mp;
6917                                         if (!more) {
6918                                                 ipf->ipf_hole_cnt--;
6919                                         }
6920                                         break;
6921                                 }
6922                         }
6923                         if (start >= IP_REASS_START(mp1->b_cont))
6924                                 continue;
6925                         /* Fill a hole */
6926                         if (start > offset)
6927                                 ipf->ipf_hole_cnt++;
6928                         mp->b_cont = mp1->b_cont;
6929                         mp1->b_cont = mp;
6930                         mp1 = mp->b_cont;
6931                         offset = IP_REASS_START(mp1);
6932                         if (end >= offset) {
6933                                 ipf->ipf_hole_cnt--;
6934                                 /* Check for overlap. */
6935                                 while (end > offset) {
6936                                         if (end < IP_REASS_END(mp1)) {
6937                                                 mp->b_wptr -= end - offset;
6938                                                 IP_REASS_SET_END(mp, offset);
6939                                                 /*
6940                                                  * TODO we might bump
6941                                                  * this up twice if there is
6942                                                  * overlap at both ends.
6943                                                  */
6944                                                 BUMP_MIB(ill->ill_ip_mib,
6945                                                     ipIfStatsReasmPartDups);
6946                                                 break;
6947                                         }
6948                                         /* Did we cover another hole? */
6949                                         if ((mp1->b_cont &&
6950                                             IP_REASS_END(mp1)
6951                                             != IP_REASS_START(mp1->b_cont) &&
6952                                             end >=
6953                                             IP_REASS_START(mp1->b_cont)) ||
6954                                             (!ipf->ipf_last_frag_seen &&
6955                                             !more)) {
6956                                                 ipf->ipf_hole_cnt--;
6957                                         }
6958                                         /* Clip out mp1. */
6959                                         if ((mp->b_cont = mp1->b_cont) ==
6960                                             NULL) {
6961                                                 /*
6962                                                  * After clipping out mp1,
6963                                                  * this guy is now hanging
6964                                                  * off the end.
6965                                                  */
6966                                                 ipf->ipf_tail_mp = mp;
6967                                         }
6968                                         IP_REASS_SET_START(mp1, 0);
6969                                         IP_REASS_SET_END(mp1, 0);
6970                                         /* Subtract byte count */
6971                                         ipf->ipf_count -=
6972                                             mp1->b_datap->db_lim -
6973                                             mp1->b_datap->db_base;
6974                                         freeb(mp1);
6975                                         BUMP_MIB(ill->ill_ip_mib,
6976                                             ipIfStatsReasmPartDups);
6977                                         mp1 = mp->b_cont;
6978                                         if (!mp1)
6979                                                 break;
6980                                         offset = IP_REASS_START(mp1);
6981                                 }
6982                         }
6983                         break;
6984                 }
6985         } while (start = end, mp = next_mp);
6986 
6987         /* Fragment just processed could be the last one. Remember this fact */
6988         if (!more)
6989                 ipf->ipf_last_frag_seen = B_TRUE;
6990 
6991         /* Still got holes? */
6992         if (ipf->ipf_hole_cnt)
6993                 return (IP_REASS_PARTIAL);
6994         /* Clean up overloaded fields to avoid upstream disasters. */
6995         for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6996                 IP_REASS_SET_START(mp1, 0);
6997                 IP_REASS_SET_END(mp1, 0);
6998         }
6999         return (IP_REASS_COMPLETE);
7000 }
7001 
7002 /*
7003  * Fragmentation reassembly.  Each ILL has a hash table for
7004  * queuing packets undergoing reassembly for all IPIFs
7005  * associated with the ILL.  The hash is based on the packet
7006  * IP ident field.  The ILL frag hash table was allocated
7007  * as a timer block at the time the ILL was created.  Whenever
7008  * there is anything on the reassembly queue, the timer will
7009  * be running.  Returns the reassembled packet if reassembly completes.
7010  */
7011 mblk_t *
7012 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
7013 {
7014         uint32_t        frag_offset_flags;
7015         mblk_t          *t_mp;
7016         ipaddr_t        dst;
7017         uint8_t         proto = ipha->ipha_protocol;
7018         uint32_t        sum_val;
7019         uint16_t        sum_flags;
7020         ipf_t           *ipf;
7021         ipf_t           **ipfp;
7022         ipfb_t          *ipfb;
7023         uint16_t        ident;
7024         uint32_t        offset;
7025         ipaddr_t        src;
7026         uint_t          hdr_length;
7027         uint32_t        end;
7028         mblk_t          *mp1;
7029         mblk_t          *tail_mp;
7030         size_t          count;
7031         size_t          msg_len;
7032         uint8_t         ecn_info = 0;
7033         uint32_t        packet_size;
7034         boolean_t       pruned = B_FALSE;
7035         ill_t           *ill = ira->ira_ill;
7036         ip_stack_t      *ipst = ill->ill_ipst;
7037 
7038         /*
7039          * Drop the fragmented as early as possible, if
7040          * we don't have resource(s) to re-assemble.
7041          */
7042         if (ipst->ips_ip_reass_queue_bytes == 0) {
7043                 freemsg(mp);
7044                 return (NULL);
7045         }
7046 
7047         /* Check for fragmentation offset; return if there's none */
7048         if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7049             (IPH_MF | IPH_OFFSET)) == 0)
7050                 return (mp);
7051 
7052         /*
7053          * We utilize hardware computed checksum info only for UDP since
7054          * IP fragmentation is a normal occurrence for the protocol.  In
7055          * addition, checksum offload support for IP fragments carrying
7056          * UDP payload is commonly implemented across network adapters.
7057          */
7058         ASSERT(ira->ira_rill != NULL);
7059         if (proto == IPPROTO_UDP && dohwcksum &&
7060             ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7061             (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7062                 mblk_t *mp1 = mp->b_cont;
7063                 int32_t len;
7064 
7065                 /* Record checksum information from the packet */
7066                 sum_val = (uint32_t)DB_CKSUM16(mp);
7067                 sum_flags = DB_CKSUMFLAGS(mp);
7068 
7069                 /* IP payload offset from beginning of mblk */
7070                 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7071 
7072                 if ((sum_flags & HCK_PARTIALCKSUM) &&
7073                     (mp1 == NULL || mp1->b_cont == NULL) &&
7074                     offset >= DB_CKSUMSTART(mp) &&
7075                     ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7076                         uint32_t adj;
7077                         /*
7078                          * Partial checksum has been calculated by hardware
7079                          * and attached to the packet; in addition, any
7080                          * prepended extraneous data is even byte aligned.
7081                          * If any such data exists, we adjust the checksum;
7082                          * this would also handle any postpended data.
7083                          */
7084                         IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7085                             mp, mp1, len, adj);
7086 
7087                         /* One's complement subtract extraneous checksum */
7088                         if (adj >= sum_val)
7089                                 sum_val = ~(adj - sum_val) & 0xFFFF;
7090                         else
7091                                 sum_val -= adj;
7092                 }
7093         } else {
7094                 sum_val = 0;
7095                 sum_flags = 0;
7096         }
7097 
7098         /* Clear hardware checksumming flag */
7099         DB_CKSUMFLAGS(mp) = 0;
7100 
7101         ident = ipha->ipha_ident;
7102         offset = (frag_offset_flags << 3) & 0xFFFF;
7103         src = ipha->ipha_src;
7104         dst = ipha->ipha_dst;
7105         hdr_length = IPH_HDR_LENGTH(ipha);
7106         end = ntohs(ipha->ipha_length) - hdr_length;
7107 
7108         /* If end == 0 then we have a packet with no data, so just free it */
7109         if (end == 0) {
7110                 freemsg(mp);
7111                 return (NULL);
7112         }
7113 
7114         /* Record the ECN field info. */
7115         ecn_info = (ipha->ipha_type_of_service & 0x3);
7116         if (offset != 0) {
7117                 /*
7118                  * If this isn't the first piece, strip the header, and
7119                  * add the offset to the end value.
7120                  */
7121                 mp->b_rptr += hdr_length;
7122                 end += offset;
7123         }
7124 
7125         /* Handle vnic loopback of fragments */
7126         if (mp->b_datap->db_ref > 2)
7127                 msg_len = 0;
7128         else
7129                 msg_len = MBLKSIZE(mp);
7130 
7131         tail_mp = mp;
7132         while (tail_mp->b_cont != NULL) {
7133                 tail_mp = tail_mp->b_cont;
7134                 if (tail_mp->b_datap->db_ref <= 2)
7135                         msg_len += MBLKSIZE(tail_mp);
7136         }
7137 
7138         /* If the reassembly list for this ILL will get too big, prune it */
7139         if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7140             ipst->ips_ip_reass_queue_bytes) {
7141                 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7142                     uint_t, ill->ill_frag_count,
7143                     uint_t, ipst->ips_ip_reass_queue_bytes);
7144                 ill_frag_prune(ill,
7145                     (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7146                     (ipst->ips_ip_reass_queue_bytes - msg_len));
7147                 pruned = B_TRUE;
7148         }
7149 
7150         ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7151         mutex_enter(&ipfb->ipfb_lock);
7152 
7153         ipfp = &ipfb->ipfb_ipf;
7154         /* Try to find an existing fragment queue for this packet. */
7155         for (;;) {
7156                 ipf = ipfp[0];
7157                 if (ipf != NULL) {
7158                         /*
7159                          * It has to match on ident and src/dst address.
7160                          */
7161                         if (ipf->ipf_ident == ident &&
7162                             ipf->ipf_src == src &&
7163                             ipf->ipf_dst == dst &&
7164                             ipf->ipf_protocol == proto) {
7165                                 /*
7166                                  * If we have received too many
7167                                  * duplicate fragments for this packet
7168                                  * free it.
7169                                  */
7170                                 if (ipf->ipf_num_dups > ip_max_frag_dups) {
7171                                         ill_frag_free_pkts(ill, ipfb, ipf, 1);
7172                                         freemsg(mp);
7173                                         mutex_exit(&ipfb->ipfb_lock);
7174                                         return (NULL);
7175                                 }
7176                                 /* Found it. */
7177                                 break;
7178                         }
7179                         ipfp = &ipf->ipf_hash_next;
7180                         continue;
7181                 }
7182 
7183                 /*
7184                  * If we pruned the list, do we want to store this new
7185                  * fragment?. We apply an optimization here based on the
7186                  * fact that most fragments will be received in order.
7187                  * So if the offset of this incoming fragment is zero,
7188                  * it is the first fragment of a new packet. We will
7189                  * keep it.  Otherwise drop the fragment, as we have
7190                  * probably pruned the packet already (since the
7191                  * packet cannot be found).
7192                  */
7193                 if (pruned && offset != 0) {
7194                         mutex_exit(&ipfb->ipfb_lock);
7195                         freemsg(mp);
7196                         return (NULL);
7197                 }
7198 
7199                 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
7200                         /*
7201                          * Too many fragmented packets in this hash
7202                          * bucket. Free the oldest.
7203                          */
7204                         ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7205                 }
7206 
7207                 /* New guy.  Allocate a frag message. */
7208                 mp1 = allocb(sizeof (*ipf), BPRI_MED);
7209                 if (mp1 == NULL) {
7210                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7211                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7212                         freemsg(mp);
7213 reass_done:
7214                         mutex_exit(&ipfb->ipfb_lock);
7215                         return (NULL);
7216                 }
7217 
7218                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7219                 mp1->b_cont = mp;
7220 
7221                 /* Initialize the fragment header. */
7222                 ipf = (ipf_t *)mp1->b_rptr;
7223                 ipf->ipf_mp = mp1;
7224                 ipf->ipf_ptphn = ipfp;
7225                 ipfp[0] = ipf;
7226                 ipf->ipf_hash_next = NULL;
7227                 ipf->ipf_ident = ident;
7228                 ipf->ipf_protocol = proto;
7229                 ipf->ipf_src = src;
7230                 ipf->ipf_dst = dst;
7231                 ipf->ipf_nf_hdr_len = 0;
7232                 /* Record reassembly start time. */
7233                 ipf->ipf_timestamp = gethrestime_sec();
7234                 /* Record ipf generation and account for frag header */
7235                 ipf->ipf_gen = ill->ill_ipf_gen++;
7236                 ipf->ipf_count = MBLKSIZE(mp1);
7237                 ipf->ipf_last_frag_seen = B_FALSE;
7238                 ipf->ipf_ecn = ecn_info;
7239                 ipf->ipf_num_dups = 0;
7240                 ipfb->ipfb_frag_pkts++;
7241                 ipf->ipf_checksum = 0;
7242                 ipf->ipf_checksum_flags = 0;
7243 
7244                 /* Store checksum value in fragment header */
7245                 if (sum_flags != 0) {
7246                         sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7247                         sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7248                         ipf->ipf_checksum = sum_val;
7249                         ipf->ipf_checksum_flags = sum_flags;
7250                 }
7251 
7252                 /*
7253                  * We handle reassembly two ways.  In the easy case,
7254                  * where all the fragments show up in order, we do
7255                  * minimal bookkeeping, and just clip new pieces on
7256                  * the end.  If we ever see a hole, then we go off
7257                  * to ip_reassemble which has to mark the pieces and
7258                  * keep track of the number of holes, etc.  Obviously,
7259                  * the point of having both mechanisms is so we can
7260                  * handle the easy case as efficiently as possible.
7261                  */
7262                 if (offset == 0) {
7263                         /* Easy case, in-order reassembly so far. */
7264                         ipf->ipf_count += msg_len;
7265                         ipf->ipf_tail_mp = tail_mp;
7266                         /*
7267                          * Keep track of next expected offset in
7268                          * ipf_end.
7269                          */
7270                         ipf->ipf_end = end;
7271                         ipf->ipf_nf_hdr_len = hdr_length;
7272                 } else {
7273                         /* Hard case, hole at the beginning. */
7274                         ipf->ipf_tail_mp = NULL;
7275                         /*
7276                          * ipf_end == 0 means that we have given up
7277                          * on easy reassembly.
7278                          */
7279                         ipf->ipf_end = 0;
7280 
7281                         /* Forget checksum offload from now on */
7282                         ipf->ipf_checksum_flags = 0;
7283 
7284                         /*
7285                          * ipf_hole_cnt is set by ip_reassemble.
7286                          * ipf_count is updated by ip_reassemble.
7287                          * No need to check for return value here
7288                          * as we don't expect reassembly to complete
7289                          * or fail for the first fragment itself.
7290                          */
7291                         (void) ip_reassemble(mp, ipf,
7292                             (frag_offset_flags & IPH_OFFSET) << 3,
7293                             (frag_offset_flags & IPH_MF), ill, msg_len);
7294                 }
7295                 /* Update per ipfb and ill byte counts */
7296                 ipfb->ipfb_count += ipf->ipf_count;
7297                 ASSERT(ipfb->ipfb_count > 0);     /* Wraparound */
7298                 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7299                 /* If the frag timer wasn't already going, start it. */
7300                 mutex_enter(&ill->ill_lock);
7301                 ill_frag_timer_start(ill);
7302                 mutex_exit(&ill->ill_lock);
7303                 goto reass_done;
7304         }
7305 
7306         /*
7307          * If the packet's flag has changed (it could be coming up
7308          * from an interface different than the previous, therefore
7309          * possibly different checksum capability), then forget about
7310          * any stored checksum states.  Otherwise add the value to
7311          * the existing one stored in the fragment header.
7312          */
7313         if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7314                 sum_val += ipf->ipf_checksum;
7315                 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7316                 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7317                 ipf->ipf_checksum = sum_val;
7318         } else if (ipf->ipf_checksum_flags != 0) {
7319                 /* Forget checksum offload from now on */
7320                 ipf->ipf_checksum_flags = 0;
7321         }
7322 
7323         /*
7324          * We have a new piece of a datagram which is already being
7325          * reassembled.  Update the ECN info if all IP fragments
7326          * are ECN capable.  If there is one which is not, clear
7327          * all the info.  If there is at least one which has CE
7328          * code point, IP needs to report that up to transport.
7329          */
7330         if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7331                 if (ecn_info == IPH_ECN_CE)
7332                         ipf->ipf_ecn = IPH_ECN_CE;
7333         } else {
7334                 ipf->ipf_ecn = IPH_ECN_NECT;
7335         }
7336         if (offset && ipf->ipf_end == offset) {
7337                 /* The new fragment fits at the end */
7338                 ipf->ipf_tail_mp->b_cont = mp;
7339                 /* Update the byte count */
7340                 ipf->ipf_count += msg_len;
7341                 /* Update per ipfb and ill byte counts */
7342                 ipfb->ipfb_count += msg_len;
7343                 ASSERT(ipfb->ipfb_count > 0);     /* Wraparound */
7344                 atomic_add_32(&ill->ill_frag_count, msg_len);
7345                 if (frag_offset_flags & IPH_MF) {
7346                         /* More to come. */
7347                         ipf->ipf_end = end;
7348                         ipf->ipf_tail_mp = tail_mp;
7349                         goto reass_done;
7350                 }
7351         } else {
7352                 /* Go do the hard cases. */
7353                 int ret;
7354 
7355                 if (offset == 0)
7356                         ipf->ipf_nf_hdr_len = hdr_length;
7357 
7358                 /* Save current byte count */
7359                 count = ipf->ipf_count;
7360                 ret = ip_reassemble(mp, ipf,
7361                     (frag_offset_flags & IPH_OFFSET) << 3,
7362                     (frag_offset_flags & IPH_MF), ill, msg_len);
7363                 /* Count of bytes added and subtracted (freeb()ed) */
7364                 count = ipf->ipf_count - count;
7365                 if (count) {
7366                         /* Update per ipfb and ill byte counts */
7367                         ipfb->ipfb_count += count;
7368                         ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7369                         atomic_add_32(&ill->ill_frag_count, count);
7370                 }
7371                 if (ret == IP_REASS_PARTIAL) {
7372                         goto reass_done;
7373                 } else if (ret == IP_REASS_FAILED) {
7374                         /* Reassembly failed. Free up all resources */
7375                         ill_frag_free_pkts(ill, ipfb, ipf, 1);
7376                         for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7377                                 IP_REASS_SET_START(t_mp, 0);
7378                                 IP_REASS_SET_END(t_mp, 0);
7379                         }
7380                         freemsg(mp);
7381                         goto reass_done;
7382                 }
7383                 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7384         }
7385         /*
7386          * We have completed reassembly.  Unhook the frag header from
7387          * the reassembly list.
7388          *
7389          * Before we free the frag header, record the ECN info
7390          * to report back to the transport.
7391          */
7392         ecn_info = ipf->ipf_ecn;
7393         BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7394         ipfp = ipf->ipf_ptphn;
7395 
7396         /* We need to supply these to caller */
7397         if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7398                 sum_val = ipf->ipf_checksum;
7399         else
7400                 sum_val = 0;
7401 
7402         mp1 = ipf->ipf_mp;
7403         count = ipf->ipf_count;
7404         ipf = ipf->ipf_hash_next;
7405         if (ipf != NULL)
7406                 ipf->ipf_ptphn = ipfp;
7407         ipfp[0] = ipf;
7408         atomic_add_32(&ill->ill_frag_count, -count);
7409         ASSERT(ipfb->ipfb_count >= count);
7410         ipfb->ipfb_count -= count;
7411         ipfb->ipfb_frag_pkts--;
7412         mutex_exit(&ipfb->ipfb_lock);
7413         /* Ditch the frag header. */
7414         mp = mp1->b_cont;
7415 
7416         freeb(mp1);
7417 
7418         /* Restore original IP length in header. */
7419         packet_size = (uint32_t)msgdsize(mp);
7420         if (packet_size > IP_MAXPACKET) {
7421                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7422                 ip_drop_input("Reassembled packet too large", mp, ill);
7423                 freemsg(mp);
7424                 return (NULL);
7425         }
7426 
7427         if (DB_REF(mp) > 1) {
7428                 mblk_t *mp2 = copymsg(mp);
7429 
7430                 if (mp2 == NULL) {
7431                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7432                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7433                         freemsg(mp);
7434                         return (NULL);
7435                 }
7436                 freemsg(mp);
7437                 mp = mp2;
7438         }
7439         ipha = (ipha_t *)mp->b_rptr;
7440 
7441         ipha->ipha_length = htons((uint16_t)packet_size);
7442         /* We're now complete, zip the frag state */
7443         ipha->ipha_fragment_offset_and_flags = 0;
7444         /* Record the ECN info. */
7445         ipha->ipha_type_of_service &= 0xFC;
7446         ipha->ipha_type_of_service |= ecn_info;
7447 
7448         /* Update the receive attributes */
7449         ira->ira_pktlen = packet_size;
7450         ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7451 
7452         /* Reassembly is successful; set checksum information in packet */
7453         DB_CKSUM16(mp) = (uint16_t)sum_val;
7454         DB_CKSUMFLAGS(mp) = sum_flags;
7455         DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7456 
7457         return (mp);
7458 }
7459 
7460 /*
7461  * Pullup function that should be used for IP input in order to
7462  * ensure we do not loose the L2 source address; we need the l2 source
7463  * address for IP_RECVSLLA and for ndp_input.
7464  *
7465  * We return either NULL or b_rptr.
7466  */
7467 void *
7468 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7469 {
7470         ill_t           *ill = ira->ira_ill;
7471 
7472         if (ip_rput_pullups++ == 0) {
7473                 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7474                     "ip_pullup: %s forced us to "
7475                     " pullup pkt, hdr len %ld, hdr addr %p",
7476                     ill->ill_name, len, (void *)mp->b_rptr);
7477         }
7478         if (!(ira->ira_flags & IRAF_L2SRC_SET))
7479                 ip_setl2src(mp, ira, ira->ira_rill);
7480         ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7481         if (!pullupmsg(mp, len))
7482                 return (NULL);
7483         else
7484                 return (mp->b_rptr);
7485 }
7486 
7487 /*
7488  * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7489  * When called from the ULP ira_rill will be NULL hence the caller has to
7490  * pass in the ill.
7491  */
7492 /* ARGSUSED */
7493 void
7494 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7495 {
7496         const uchar_t *addr;
7497         int alen;
7498 
7499         if (ira->ira_flags & IRAF_L2SRC_SET)
7500                 return;
7501 
7502         ASSERT(ill != NULL);
7503         alen = ill->ill_phys_addr_length;
7504         ASSERT(alen <= sizeof (ira->ira_l2src));
7505         if (ira->ira_mhip != NULL &&
7506             (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7507                 bcopy(addr, ira->ira_l2src, alen);
7508         } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7509             (addr = ill->ill_phys_addr) != NULL) {
7510                 bcopy(addr, ira->ira_l2src, alen);
7511         } else {
7512                 bzero(ira->ira_l2src, alen);
7513         }
7514         ira->ira_flags |= IRAF_L2SRC_SET;
7515 }
7516 
7517 /*
7518  * check ip header length and align it.
7519  */
7520 mblk_t *
7521 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7522 {
7523         ill_t   *ill = ira->ira_ill;
7524         ssize_t len;
7525 
7526         len = MBLKL(mp);
7527 
7528         if (!OK_32PTR(mp->b_rptr))
7529                 IP_STAT(ill->ill_ipst, ip_notaligned);
7530         else
7531                 IP_STAT(ill->ill_ipst, ip_recv_pullup);
7532 
7533         /* Guard against bogus device drivers */
7534         if (len < 0) {
7535                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7536                 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7537                 freemsg(mp);
7538                 return (NULL);
7539         }
7540 
7541         if (len == 0) {
7542                 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7543                 mblk_t *mp1 = mp->b_cont;
7544 
7545                 if (!(ira->ira_flags & IRAF_L2SRC_SET))
7546                         ip_setl2src(mp, ira, ira->ira_rill);
7547                 ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7548 
7549                 freeb(mp);
7550                 mp = mp1;
7551                 if (mp == NULL)
7552                         return (NULL);
7553 
7554                 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7555                         return (mp);
7556         }
7557         if (ip_pullup(mp, min_size, ira) == NULL) {
7558                 if (msgdsize(mp) < min_size) {
7559                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7560                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7561                 } else {
7562                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7563                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7564                 }
7565                 freemsg(mp);
7566                 return (NULL);
7567         }
7568         return (mp);
7569 }
7570 
7571 /*
7572  * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7573  */
7574 mblk_t *
7575 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len,
7576     uint_t min_size, ip_recv_attr_t *ira)
7577 {
7578         ill_t   *ill = ira->ira_ill;
7579 
7580         /*
7581          * Make sure we have data length consistent
7582          * with the IP header.
7583          */
7584         if (mp->b_cont == NULL) {
7585                 /* pkt_len is based on ipha_len, not the mblk length */
7586                 if (pkt_len < min_size) {
7587                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7588                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7589                         freemsg(mp);
7590                         return (NULL);
7591                 }
7592                 if (len < 0) {
7593                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7594                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7595                         freemsg(mp);
7596                         return (NULL);
7597                 }
7598                 /* Drop any pad */
7599                 mp->b_wptr = rptr + pkt_len;
7600         } else if ((len += msgdsize(mp->b_cont)) != 0) {
7601                 ASSERT(pkt_len >= min_size);
7602                 if (pkt_len < min_size) {
7603                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7604                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7605                         freemsg(mp);
7606                         return (NULL);
7607                 }
7608                 if (len < 0) {
7609                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7610                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7611                         freemsg(mp);
7612                         return (NULL);
7613                 }
7614                 /* Drop any pad */
7615                 (void) adjmsg(mp, -len);
7616                 /*
7617                  * adjmsg may have freed an mblk from the chain, hence
7618                  * invalidate any hw checksum here. This will force IP to
7619                  * calculate the checksum in sw, but only for this packet.
7620                  */
7621                 DB_CKSUMFLAGS(mp) = 0;
7622                 IP_STAT(ill->ill_ipst, ip_multimblk);
7623         }
7624         return (mp);
7625 }
7626 
7627 /*
7628  * Check that the IPv4 opt_len is consistent with the packet and pullup
7629  * the options.
7630  */
7631 mblk_t *
7632 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7633     ip_recv_attr_t *ira)
7634 {
7635         ill_t   *ill = ira->ira_ill;
7636         ssize_t len;
7637 
7638         /* Assume no IPv6 packets arrive over the IPv4 queue */
7639         if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7640                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7641                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7642                 ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7643                 freemsg(mp);
7644                 return (NULL);
7645         }
7646 
7647         if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7648                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7649                 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7650                 freemsg(mp);
7651                 return (NULL);
7652         }
7653         /*
7654          * Recompute complete header length and make sure we
7655          * have access to all of it.
7656          */
7657         len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7658         if (len > (mp->b_wptr - mp->b_rptr)) {
7659                 if (len > pkt_len) {
7660                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7661                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7662                         freemsg(mp);
7663                         return (NULL);
7664                 }
7665                 if (ip_pullup(mp, len, ira) == NULL) {
7666                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7667                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7668                         freemsg(mp);
7669                         return (NULL);
7670                 }
7671         }
7672         return (mp);
7673 }
7674 
7675 /*
7676  * Returns a new ire, or the same ire, or NULL.
7677  * If a different IRE is returned, then it is held; the caller
7678  * needs to release it.
7679  * In no case is there any hold/release on the ire argument.
7680  */
7681 ire_t *
7682 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7683 {
7684         ire_t           *new_ire;
7685         ill_t           *ire_ill;
7686         uint_t          ifindex;
7687         ip_stack_t      *ipst = ill->ill_ipst;
7688         boolean_t       strict_check = B_FALSE;
7689 
7690         /*
7691          * IPMP common case: if IRE and ILL are in the same group, there's no
7692          * issue (e.g. packet received on an underlying interface matched an
7693          * IRE_LOCAL on its associated group interface).
7694          */
7695         ASSERT(ire->ire_ill != NULL);
7696         if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7697                 return (ire);
7698 
7699         /*
7700          * Do another ire lookup here, using the ingress ill, to see if the
7701          * interface is in a usesrc group.
7702          * As long as the ills belong to the same group, we don't consider
7703          * them to be arriving on the wrong interface. Thus, if the switch
7704          * is doing inbound load spreading, we won't drop packets when the
7705          * ip*_strict_dst_multihoming switch is on.
7706          * We also need to check for IPIF_UNNUMBERED point2point interfaces
7707          * where the local address may not be unique. In this case we were
7708          * at the mercy of the initial ire lookup and the IRE_LOCAL it
7709          * actually returned. The new lookup, which is more specific, should
7710          * only find the IRE_LOCAL associated with the ingress ill if one
7711          * exists.
7712          */
7713         if (ire->ire_ipversion == IPV4_VERSION) {
7714                 if (ipst->ips_ip_strict_dst_multihoming)
7715                         strict_check = B_TRUE;
7716                 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7717                     IRE_LOCAL, ill, ALL_ZONES, NULL,
7718                     (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7719         } else {
7720                 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7721                 if (ipst->ips_ipv6_strict_dst_multihoming)
7722                         strict_check = B_TRUE;
7723                 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7724                     IRE_LOCAL, ill, ALL_ZONES, NULL,
7725                     (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7726         }
7727         /*
7728          * If the same ire that was returned in ip_input() is found then this
7729          * is an indication that usesrc groups are in use. The packet
7730          * arrived on a different ill in the group than the one associated with
7731          * the destination address.  If a different ire was found then the same
7732          * IP address must be hosted on multiple ills. This is possible with
7733          * unnumbered point2point interfaces. We switch to use this new ire in
7734          * order to have accurate interface statistics.
7735          */
7736         if (new_ire != NULL) {
7737                 /* Note: held in one case but not the other? Caller handles */
7738                 if (new_ire != ire)
7739                         return (new_ire);
7740                 /* Unchanged */
7741                 ire_refrele(new_ire);
7742                 return (ire);
7743         }
7744 
7745         /*
7746          * Chase pointers once and store locally.
7747          */
7748         ASSERT(ire->ire_ill != NULL);
7749         ire_ill = ire->ire_ill;
7750         ifindex = ill->ill_usesrc_ifindex;
7751 
7752         /*
7753          * Check if it's a legal address on the 'usesrc' interface.
7754          * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7755          * can just check phyint_ifindex.
7756          */
7757         if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7758                 return (ire);
7759         }
7760 
7761         /*
7762          * If the ip*_strict_dst_multihoming switch is on then we can
7763          * only accept this packet if the interface is marked as routing.
7764          */
7765         if (!(strict_check))
7766                 return (ire);
7767 
7768         if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7769                 return (ire);
7770         }
7771         return (NULL);
7772 }
7773 
7774 /*
7775  * This function is used to construct a mac_header_info_s from a
7776  * DL_UNITDATA_IND message.
7777  * The address fields in the mhi structure points into the message,
7778  * thus the caller can't use those fields after freeing the message.
7779  *
7780  * We determine whether the packet received is a non-unicast packet
7781  * and in doing so, determine whether or not it is broadcast vs multicast.
7782  * For it to be a broadcast packet, we must have the appropriate mblk_t
7783  * hanging off the ill_t.  If this is either not present or doesn't match
7784  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7785  * to be multicast.  Thus NICs that have no broadcast address (or no
7786  * capability for one, such as point to point links) cannot return as
7787  * the packet being broadcast.
7788  */
7789 void
7790 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7791 {
7792         dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7793         mblk_t *bmp;
7794         uint_t extra_offset;
7795 
7796         bzero(mhip, sizeof (struct mac_header_info_s));
7797 
7798         mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7799 
7800         if (ill->ill_sap_length < 0)
7801                 extra_offset = 0;
7802         else
7803                 extra_offset = ill->ill_sap_length;
7804 
7805         mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7806             extra_offset;
7807         mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7808             extra_offset;
7809 
7810         if (!ind->dl_group_address)
7811                 return;
7812 
7813         /* Multicast or broadcast */
7814         mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7815 
7816         if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7817             ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7818             (bmp = ill->ill_bcast_mp) != NULL) {
7819                 dl_unitdata_req_t *dlur;
7820                 uint8_t *bphys_addr;
7821 
7822                 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7823                 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7824                     extra_offset;
7825 
7826                 if (bcmp(mhip->mhi_daddr, bphys_addr,
7827                     ind->dl_dest_addr_length) == 0)
7828                         mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7829         }
7830 }
7831 
7832 /*
7833  * This function is used to construct a mac_header_info_s from a
7834  * M_DATA fastpath message from a DLPI driver.
7835  * The address fields in the mhi structure points into the message,
7836  * thus the caller can't use those fields after freeing the message.
7837  *
7838  * We determine whether the packet received is a non-unicast packet
7839  * and in doing so, determine whether or not it is broadcast vs multicast.
7840  * For it to be a broadcast packet, we must have the appropriate mblk_t
7841  * hanging off the ill_t.  If this is either not present or doesn't match
7842  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7843  * to be multicast.  Thus NICs that have no broadcast address (or no
7844  * capability for one, such as point to point links) cannot return as
7845  * the packet being broadcast.
7846  */
7847 void
7848 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7849 {
7850         mblk_t *bmp;
7851         struct ether_header *pether;
7852 
7853         bzero(mhip, sizeof (struct mac_header_info_s));
7854 
7855         mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7856 
7857         pether = (struct ether_header *)((char *)mp->b_rptr
7858             - sizeof (struct ether_header));
7859 
7860         /*
7861          * Make sure the interface is an ethernet type, since we don't
7862          * know the header format for anything but Ethernet. Also make
7863          * sure we are pointing correctly above db_base.
7864          */
7865         if (ill->ill_type != IFT_ETHER)
7866                 return;
7867 
7868 retry:
7869         if ((uchar_t *)pether < mp->b_datap->db_base)
7870                 return;
7871 
7872         /* Is there a VLAN tag? */
7873         if (ill->ill_isv6) {
7874                 if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7875                         pether = (struct ether_header *)((char *)pether - 4);
7876                         goto retry;
7877                 }
7878         } else {
7879                 if (pether->ether_type != htons(ETHERTYPE_IP)) {
7880                         pether = (struct ether_header *)((char *)pether - 4);
7881                         goto retry;
7882                 }
7883         }
7884         mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7885         mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7886 
7887         if (!(mhip->mhi_daddr[0] & 0x01))
7888                 return;
7889 
7890         /* Multicast or broadcast */
7891         mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7892 
7893         if ((bmp = ill->ill_bcast_mp) != NULL) {
7894                 dl_unitdata_req_t *dlur;
7895                 uint8_t *bphys_addr;
7896                 uint_t  addrlen;
7897 
7898                 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7899                 addrlen = dlur->dl_dest_addr_length;
7900                 if (ill->ill_sap_length < 0) {
7901                         bphys_addr = (uchar_t *)dlur +
7902                             dlur->dl_dest_addr_offset;
7903                         addrlen += ill->ill_sap_length;
7904                 } else {
7905                         bphys_addr = (uchar_t *)dlur +
7906                             dlur->dl_dest_addr_offset +
7907                             ill->ill_sap_length;
7908                         addrlen -= ill->ill_sap_length;
7909                 }
7910                 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7911                         mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7912         }
7913 }
7914 
7915 /*
7916  * Handle anything but M_DATA messages
7917  * We see the DL_UNITDATA_IND which are part
7918  * of the data path, and also the other messages from the driver.
7919  */
7920 void
7921 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7922 {
7923         mblk_t          *first_mp;
7924         struct iocblk   *iocp;
7925         struct mac_header_info_s mhi;
7926 
7927         switch (DB_TYPE(mp)) {
7928         case M_PROTO:
7929         case M_PCPROTO: {
7930                 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7931                     DL_UNITDATA_IND) {
7932                         /* Go handle anything other than data elsewhere. */
7933                         ip_rput_dlpi(ill, mp);
7934                         return;
7935                 }
7936 
7937                 first_mp = mp;
7938                 mp = first_mp->b_cont;
7939                 first_mp->b_cont = NULL;
7940 
7941                 if (mp == NULL) {
7942                         freeb(first_mp);
7943                         return;
7944                 }
7945                 ip_dlur_to_mhi(ill, first_mp, &mhi);
7946                 if (ill->ill_isv6)
7947                         ip_input_v6(ill, NULL, mp, &mhi);
7948                 else
7949                         ip_input(ill, NULL, mp, &mhi);
7950 
7951                 /* Ditch the DLPI header. */
7952                 freeb(first_mp);
7953                 return;
7954         }
7955         case M_IOCACK:
7956                 iocp = (struct iocblk *)mp->b_rptr;
7957                 switch (iocp->ioc_cmd) {
7958                 case DL_IOC_HDR_INFO:
7959                         ill_fastpath_ack(ill, mp);
7960                         return;
7961                 default:
7962                         putnext(ill->ill_rq, mp);
7963                         return;
7964                 }
7965                 /* FALLTHRU */
7966         case M_ERROR:
7967         case M_HANGUP:
7968                 mutex_enter(&ill->ill_lock);
7969                 if (ill->ill_state_flags & ILL_CONDEMNED) {
7970                         mutex_exit(&ill->ill_lock);
7971                         freemsg(mp);
7972                         return;
7973                 }
7974                 ill_refhold_locked(ill);
7975                 mutex_exit(&ill->ill_lock);
7976                 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7977                     B_FALSE);
7978                 return;
7979         case M_CTL:
7980                 putnext(ill->ill_rq, mp);
7981                 return;
7982         case M_IOCNAK:
7983                 ip1dbg(("got iocnak "));
7984                 iocp = (struct iocblk *)mp->b_rptr;
7985                 switch (iocp->ioc_cmd) {
7986                 case DL_IOC_HDR_INFO:
7987                         ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7988                         return;
7989                 default:
7990                         break;
7991                 }
7992                 /* FALLTHRU */
7993         default:
7994                 putnext(ill->ill_rq, mp);
7995                 return;
7996         }
7997 }
7998 
7999 /* Read side put procedure.  Packets coming from the wire arrive here. */
8000 void
8001 ip_rput(queue_t *q, mblk_t *mp)
8002 {
8003         ill_t   *ill;
8004         union DL_primitives *dl;
8005 
8006         ill = (ill_t *)q->q_ptr;
8007 
8008         if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
8009                 /*
8010                  * If things are opening or closing, only accept high-priority
8011                  * DLPI messages.  (On open ill->ill_ipif has not yet been
8012                  * created; on close, things hanging off the ill may have been
8013                  * freed already.)
8014                  */
8015                 dl = (union DL_primitives *)mp->b_rptr;
8016                 if (DB_TYPE(mp) != M_PCPROTO ||
8017                     dl->dl_primitive == DL_UNITDATA_IND) {
8018                         inet_freemsg(mp);
8019                         return;
8020                 }
8021         }
8022         if (DB_TYPE(mp) == M_DATA) {
8023                 struct mac_header_info_s mhi;
8024 
8025                 ip_mdata_to_mhi(ill, mp, &mhi);
8026                 ip_input(ill, NULL, mp, &mhi);
8027         } else {
8028                 ip_rput_notdata(ill, mp);
8029         }
8030 }
8031 
8032 /*
8033  * Move the information to a copy.
8034  */
8035 mblk_t *
8036 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8037 {
8038         mblk_t          *mp1;
8039         ill_t           *ill = ira->ira_ill;
8040         ip_stack_t      *ipst = ill->ill_ipst;
8041 
8042         IP_STAT(ipst, ip_db_ref);
8043 
8044         /* Make sure we have ira_l2src before we loose the original mblk */
8045         if (!(ira->ira_flags & IRAF_L2SRC_SET))
8046                 ip_setl2src(mp, ira, ira->ira_rill);
8047 
8048         mp1 = copymsg(mp);
8049         if (mp1 == NULL) {
8050                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8051                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
8052                 freemsg(mp);
8053                 return (NULL);
8054         }
8055         /* preserve the hardware checksum flags and data, if present */
8056         if (DB_CKSUMFLAGS(mp) != 0) {
8057                 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8058                 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8059                 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8060                 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8061                 DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8062         }
8063         freemsg(mp);
8064         return (mp1);
8065 }
8066 
8067 static void
8068 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8069     t_uscalar_t err)
8070 {
8071         if (dl_err == DL_SYSERR) {
8072                 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8073                     "%s: %s failed: DL_SYSERR (errno %u)\n",
8074                     ill->ill_name, dl_primstr(prim), err);
8075                 return;
8076         }
8077 
8078         (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8079             "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8080             dl_errstr(dl_err));
8081 }
8082 
8083 /*
8084  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8085  * than DL_UNITDATA_IND messages. If we need to process this message
8086  * exclusively, we call qwriter_ip, in which case we also need to call
8087  * ill_refhold before that, since qwriter_ip does an ill_refrele.
8088  */
8089 void
8090 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8091 {
8092         dl_ok_ack_t     *dloa = (dl_ok_ack_t *)mp->b_rptr;
8093         dl_error_ack_t  *dlea = (dl_error_ack_t *)dloa;
8094         queue_t         *q = ill->ill_rq;
8095         t_uscalar_t     prim = dloa->dl_primitive;
8096         t_uscalar_t     reqprim = DL_PRIM_INVAL;
8097 
8098         DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8099             char *, dl_primstr(prim), ill_t *, ill);
8100         ip1dbg(("ip_rput_dlpi"));
8101 
8102         /*
8103          * If we received an ACK but didn't send a request for it, then it
8104          * can't be part of any pending operation; discard up-front.
8105          */
8106         switch (prim) {
8107         case DL_ERROR_ACK:
8108                 reqprim = dlea->dl_error_primitive;
8109                 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8110                     "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8111                     reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8112                     dlea->dl_unix_errno));
8113                 break;
8114         case DL_OK_ACK:
8115                 reqprim = dloa->dl_correct_primitive;
8116                 break;
8117         case DL_INFO_ACK:
8118                 reqprim = DL_INFO_REQ;
8119                 break;
8120         case DL_BIND_ACK:
8121                 reqprim = DL_BIND_REQ;
8122                 break;
8123         case DL_PHYS_ADDR_ACK:
8124                 reqprim = DL_PHYS_ADDR_REQ;
8125                 break;
8126         case DL_NOTIFY_ACK:
8127                 reqprim = DL_NOTIFY_REQ;
8128                 break;
8129         case DL_CAPABILITY_ACK:
8130                 reqprim = DL_CAPABILITY_REQ;
8131                 break;
8132         }
8133 
8134         if (prim != DL_NOTIFY_IND) {
8135                 if (reqprim == DL_PRIM_INVAL ||
8136                     !ill_dlpi_pending(ill, reqprim)) {
8137                         /* Not a DLPI message we support or expected */
8138                         freemsg(mp);
8139                         return;
8140                 }
8141                 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8142                     dl_primstr(reqprim)));
8143         }
8144 
8145         switch (reqprim) {
8146         case DL_UNBIND_REQ:
8147                 /*
8148                  * NOTE: we mark the unbind as complete even if we got a
8149                  * DL_ERROR_ACK, since there's not much else we can do.
8150                  */
8151                 mutex_enter(&ill->ill_lock);
8152                 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8153                 cv_signal(&ill->ill_cv);
8154                 mutex_exit(&ill->ill_lock);
8155                 break;
8156 
8157         case DL_ENABMULTI_REQ:
8158                 if (prim == DL_OK_ACK) {
8159                         if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8160                                 ill->ill_dlpi_multicast_state = IDS_OK;
8161                 }
8162                 break;
8163         }
8164 
8165         /*
8166          * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8167          * need to become writer to continue to process it.  Because an
8168          * exclusive operation doesn't complete until replies to all queued
8169          * DLPI messages have been received, we know we're in the middle of an
8170          * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8171          *
8172          * As required by qwriter_ip(), we refhold the ill; it will refrele.
8173          * Since this is on the ill stream we unconditionally bump up the
8174          * refcount without doing ILL_CAN_LOOKUP().
8175          */
8176         ill_refhold(ill);
8177         if (prim == DL_NOTIFY_IND)
8178                 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8179         else
8180                 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8181 }
8182 
8183 /*
8184  * Handling of DLPI messages that require exclusive access to the ipsq.
8185  *
8186  * Need to do ipsq_pending_mp_get on ioctl completion, which could
8187  * happen here. (along with mi_copy_done)
8188  */
8189 /* ARGSUSED */
8190 static void
8191 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8192 {
8193         dl_ok_ack_t     *dloa = (dl_ok_ack_t *)mp->b_rptr;
8194         dl_error_ack_t  *dlea = (dl_error_ack_t *)dloa;
8195         int             err = 0;
8196         ill_t           *ill = (ill_t *)q->q_ptr;
8197         ipif_t          *ipif = NULL;
8198         mblk_t          *mp1 = NULL;
8199         conn_t          *connp = NULL;
8200         t_uscalar_t     paddrreq;
8201         mblk_t          *mp_hw;
8202         boolean_t       success;
8203         boolean_t       ioctl_aborted = B_FALSE;
8204         boolean_t       log = B_TRUE;
8205 
8206         DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8207             char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8208 
8209         ip1dbg(("ip_rput_dlpi_writer .."));
8210         ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8211         ASSERT(IAM_WRITER_ILL(ill));
8212 
8213         ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8214         /*
8215          * The current ioctl could have been aborted by the user and a new
8216          * ioctl to bring up another ill could have started. We could still
8217          * get a response from the driver later.
8218          */
8219         if (ipif != NULL && ipif->ipif_ill != ill)
8220                 ioctl_aborted = B_TRUE;
8221 
8222         switch (dloa->dl_primitive) {
8223         case DL_ERROR_ACK:
8224                 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8225                     dl_primstr(dlea->dl_error_primitive)));
8226 
8227                 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8228                     char *, dl_primstr(dlea->dl_error_primitive),
8229                     ill_t *, ill);
8230 
8231                 switch (dlea->dl_error_primitive) {
8232                 case DL_DISABMULTI_REQ:
8233                         ill_dlpi_done(ill, dlea->dl_error_primitive);
8234                         break;
8235                 case DL_PROMISCON_REQ:
8236                 case DL_PROMISCOFF_REQ:
8237                 case DL_UNBIND_REQ:
8238                 case DL_ATTACH_REQ:
8239                 case DL_INFO_REQ:
8240                         ill_dlpi_done(ill, dlea->dl_error_primitive);
8241                         break;
8242                 case DL_NOTIFY_REQ:
8243                         ill_dlpi_done(ill, DL_NOTIFY_REQ);
8244                         log = B_FALSE;
8245                         break;
8246                 case DL_PHYS_ADDR_REQ:
8247                         /*
8248                          * For IPv6 only, there are two additional
8249                          * phys_addr_req's sent to the driver to get the
8250                          * IPv6 token and lla. This allows IP to acquire
8251                          * the hardware address format for a given interface
8252                          * without having built in knowledge of the hardware
8253                          * address. ill_phys_addr_pend keeps track of the last
8254                          * DL_PAR sent so we know which response we are
8255                          * dealing with. ill_dlpi_done will update
8256                          * ill_phys_addr_pend when it sends the next req.
8257                          * We don't complete the IOCTL until all three DL_PARs
8258                          * have been attempted, so set *_len to 0 and break.
8259                          */
8260                         paddrreq = ill->ill_phys_addr_pend;
8261                         ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8262                         if (paddrreq == DL_IPV6_TOKEN) {
8263                                 ill->ill_token_length = 0;
8264                                 log = B_FALSE;
8265                                 break;
8266                         } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8267                                 ill->ill_nd_lla_len = 0;
8268                                 log = B_FALSE;
8269                                 break;
8270                         }
8271                         /*
8272                          * Something went wrong with the DL_PHYS_ADDR_REQ.
8273                          * We presumably have an IOCTL hanging out waiting
8274                          * for completion. Find it and complete the IOCTL
8275                          * with the error noted.
8276                          * However, ill_dl_phys was called on an ill queue
8277                          * (from SIOCSLIFNAME), thus conn_pending_ill is not
8278                          * set. But the ioctl is known to be pending on ill_wq.
8279                          */
8280                         if (!ill->ill_ifname_pending)
8281                                 break;
8282                         ill->ill_ifname_pending = 0;
8283                         if (!ioctl_aborted)
8284                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8285                         if (mp1 != NULL) {
8286                                 /*
8287                                  * This operation (SIOCSLIFNAME) must have
8288                                  * happened on the ill. Assert there is no conn
8289                                  */
8290                                 ASSERT(connp == NULL);
8291                                 q = ill->ill_wq;
8292                         }
8293                         break;
8294                 case DL_BIND_REQ:
8295                         ill_dlpi_done(ill, DL_BIND_REQ);
8296                         if (ill->ill_ifname_pending)
8297                                 break;
8298                         mutex_enter(&ill->ill_lock);
8299                         ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8300                         mutex_exit(&ill->ill_lock);
8301                         /*
8302                          * Something went wrong with the bind.  We presumably
8303                          * have an IOCTL hanging out waiting for completion.
8304                          * Find it, take down the interface that was coming
8305                          * up, and complete the IOCTL with the error noted.
8306                          */
8307                         if (!ioctl_aborted)
8308                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8309                         if (mp1 != NULL) {
8310                                 /*
8311                                  * This might be a result of a DL_NOTE_REPLUMB
8312                                  * notification. In that case, connp is NULL.
8313                                  */
8314                                 if (connp != NULL)
8315                                         q = CONNP_TO_WQ(connp);
8316 
8317                                 (void) ipif_down(ipif, NULL, NULL);
8318                                 /* error is set below the switch */
8319                         }
8320                         break;
8321                 case DL_ENABMULTI_REQ:
8322                         ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8323 
8324                         if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8325                                 ill->ill_dlpi_multicast_state = IDS_FAILED;
8326                         if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8327 
8328                                 printf("ip: joining multicasts failed (%d)"
8329                                     " on %s - will use link layer "
8330                                     "broadcasts for multicast\n",
8331                                     dlea->dl_errno, ill->ill_name);
8332 
8333                                 /*
8334                                  * Set up for multi_bcast; We are the
8335                                  * writer, so ok to access ill->ill_ipif
8336                                  * without any lock.
8337                                  */
8338                                 mutex_enter(&ill->ill_phyint->phyint_lock);
8339                                 ill->ill_phyint->phyint_flags |=
8340                                     PHYI_MULTI_BCAST;
8341                                 mutex_exit(&ill->ill_phyint->phyint_lock);
8342 
8343                         }
8344                         freemsg(mp);    /* Don't want to pass this up */
8345                         return;
8346                 case DL_CAPABILITY_REQ:
8347                         ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8348                             "DL_CAPABILITY REQ\n"));
8349                         if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8350                                 ill->ill_dlpi_capab_state = IDCS_FAILED;
8351                         ill_capability_done(ill);
8352                         freemsg(mp);
8353                         return;
8354                 }
8355                 /*
8356                  * Note the error for IOCTL completion (mp1 is set when
8357                  * ready to complete ioctl). If ill_ifname_pending_err is
8358                  * set, an error occured during plumbing (ill_ifname_pending),
8359                  * so we want to report that error.
8360                  *
8361                  * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8362                  * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8363                  * expected to get errack'd if the driver doesn't support
8364                  * these flags (e.g. ethernet). log will be set to B_FALSE
8365                  * if these error conditions are encountered.
8366                  */
8367                 if (mp1 != NULL) {
8368                         if (ill->ill_ifname_pending_err != 0)  {
8369                                 err = ill->ill_ifname_pending_err;
8370                                 ill->ill_ifname_pending_err = 0;
8371                         } else {
8372                                 err = dlea->dl_unix_errno ?
8373                                     dlea->dl_unix_errno : ENXIO;
8374                         }
8375                 /*
8376                  * If we're plumbing an interface and an error hasn't already
8377                  * been saved, set ill_ifname_pending_err to the error passed
8378                  * up. Ignore the error if log is B_FALSE (see comment above).
8379                  */
8380                 } else if (log && ill->ill_ifname_pending &&
8381                     ill->ill_ifname_pending_err == 0) {
8382                         ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8383                             dlea->dl_unix_errno : ENXIO;
8384                 }
8385 
8386                 if (log)
8387                         ip_dlpi_error(ill, dlea->dl_error_primitive,
8388                             dlea->dl_errno, dlea->dl_unix_errno);
8389                 break;
8390         case DL_CAPABILITY_ACK:
8391                 ill_capability_ack(ill, mp);
8392                 /*
8393                  * The message has been handed off to ill_capability_ack
8394                  * and must not be freed below
8395                  */
8396                 mp = NULL;
8397                 break;
8398 
8399         case DL_INFO_ACK:
8400                 /* Call a routine to handle this one. */
8401                 ill_dlpi_done(ill, DL_INFO_REQ);
8402                 ip_ll_subnet_defaults(ill, mp);
8403                 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8404                 return;
8405         case DL_BIND_ACK:
8406                 /*
8407                  * We should have an IOCTL waiting on this unless
8408                  * sent by ill_dl_phys, in which case just return
8409                  */
8410                 ill_dlpi_done(ill, DL_BIND_REQ);
8411 
8412                 if (ill->ill_ifname_pending) {
8413                         DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8414                             ill_t *, ill, mblk_t *, mp);
8415                         break;
8416                 }
8417                 mutex_enter(&ill->ill_lock);
8418                 ill->ill_dl_up = 1;
8419                 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8420                 mutex_exit(&ill->ill_lock);
8421 
8422                 if (!ioctl_aborted)
8423                         mp1 = ipsq_pending_mp_get(ipsq, &connp);
8424                 if (mp1 == NULL) {
8425                         DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8426                         break;
8427                 }
8428                 /*
8429                  * mp1 was added by ill_dl_up(). if that is a result of
8430                  * a DL_NOTE_REPLUMB notification, connp could be NULL.
8431                  */
8432                 if (connp != NULL)
8433                         q = CONNP_TO_WQ(connp);
8434                 /*
8435                  * We are exclusive. So nothing can change even after
8436                  * we get the pending mp.
8437                  */
8438                 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8439                 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8440                 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8441 
8442                 /*
8443                  * Now bring up the resolver; when that is complete, we'll
8444                  * create IREs.  Note that we intentionally mirror what
8445                  * ipif_up() would have done, because we got here by way of
8446                  * ill_dl_up(), which stopped ipif_up()'s processing.
8447                  */
8448                 if (ill->ill_isv6) {
8449                         /*
8450                          * v6 interfaces.
8451                          * Unlike ARP which has to do another bind
8452                          * and attach, once we get here we are
8453                          * done with NDP
8454                          */
8455                         (void) ipif_resolver_up(ipif, Res_act_initial);
8456                         if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8457                                 err = ipif_up_done_v6(ipif);
8458                 } else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8459                         /*
8460                          * ARP and other v4 external resolvers.
8461                          * Leave the pending mblk intact so that
8462                          * the ioctl completes in ip_rput().
8463                          */
8464                         if (connp != NULL)
8465                                 mutex_enter(&connp->conn_lock);
8466                         mutex_enter(&ill->ill_lock);
8467                         success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8468                         mutex_exit(&ill->ill_lock);
8469                         if (connp != NULL)
8470                                 mutex_exit(&connp->conn_lock);
8471                         if (success) {
8472                                 err = ipif_resolver_up(ipif, Res_act_initial);
8473                                 if (err == EINPROGRESS) {
8474                                         freemsg(mp);
8475                                         return;
8476                                 }
8477                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8478                         } else {
8479                                 /* The conn has started closing */
8480                                 err = EINTR;
8481                         }
8482                 } else {
8483                         /*
8484                          * This one is complete. Reply to pending ioctl.
8485                          */
8486                         (void) ipif_resolver_up(ipif, Res_act_initial);
8487                         err = ipif_up_done(ipif);
8488                 }
8489 
8490                 if ((err == 0) && (ill->ill_up_ipifs)) {
8491                         err = ill_up_ipifs(ill, q, mp1);
8492                         if (err == EINPROGRESS) {
8493                                 freemsg(mp);
8494                                 return;
8495                         }
8496                 }
8497 
8498                 /*
8499                  * If we have a moved ipif to bring up, and everything has
8500                  * succeeded to this point, bring it up on the IPMP ill.
8501                  * Otherwise, leave it down -- the admin can try to bring it
8502                  * up by hand if need be.
8503                  */
8504                 if (ill->ill_move_ipif != NULL) {
8505                         if (err != 0) {
8506                                 ill->ill_move_ipif = NULL;
8507                         } else {
8508                                 ipif = ill->ill_move_ipif;
8509                                 ill->ill_move_ipif = NULL;
8510                                 err = ipif_up(ipif, q, mp1);
8511                                 if (err == EINPROGRESS) {
8512                                         freemsg(mp);
8513                                         return;
8514                                 }
8515                         }
8516                 }
8517                 break;
8518 
8519         case DL_NOTIFY_IND: {
8520                 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8521                 uint_t orig_mtu, orig_mc_mtu;
8522 
8523                 switch (notify->dl_notification) {
8524                 case DL_NOTE_PHYS_ADDR:
8525                         err = ill_set_phys_addr(ill, mp);
8526                         break;
8527 
8528                 case DL_NOTE_REPLUMB:
8529                         /*
8530                          * Directly return after calling ill_replumb().
8531                          * Note that we should not free mp as it is reused
8532                          * in the ill_replumb() function.
8533                          */
8534                         err = ill_replumb(ill, mp);
8535                         return;
8536 
8537                 case DL_NOTE_FASTPATH_FLUSH:
8538                         nce_flush(ill, B_FALSE);
8539                         break;
8540 
8541                 case DL_NOTE_SDU_SIZE:
8542                 case DL_NOTE_SDU_SIZE2:
8543                         /*
8544                          * The dce and fragmentation code can cope with
8545                          * this changing while packets are being sent.
8546                          * When packets are sent ip_output will discover
8547                          * a change.
8548                          *
8549                          * Change the MTU size of the interface.
8550                          */
8551                         mutex_enter(&ill->ill_lock);
8552                         orig_mtu = ill->ill_mtu;
8553                         orig_mc_mtu = ill->ill_mc_mtu;
8554                         switch (notify->dl_notification) {
8555                         case DL_NOTE_SDU_SIZE:
8556                                 ill->ill_current_frag =
8557                                     (uint_t)notify->dl_data;
8558                                 ill->ill_mc_mtu = (uint_t)notify->dl_data;
8559                                 break;
8560                         case DL_NOTE_SDU_SIZE2:
8561                                 ill->ill_current_frag =
8562                                     (uint_t)notify->dl_data1;
8563                                 ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8564                                 break;
8565                         }
8566                         if (ill->ill_current_frag > ill->ill_max_frag)
8567                                 ill->ill_max_frag = ill->ill_current_frag;
8568 
8569                         if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8570                                 ill->ill_mtu = ill->ill_current_frag;
8571 
8572                                 /*
8573                                  * If ill_user_mtu was set (via
8574                                  * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8575                                  */
8576                                 if (ill->ill_user_mtu != 0 &&
8577                                     ill->ill_user_mtu < ill->ill_mtu)
8578                                         ill->ill_mtu = ill->ill_user_mtu;
8579 
8580                                 if (ill->ill_user_mtu != 0 &&
8581                                     ill->ill_user_mtu < ill->ill_mc_mtu)
8582                                         ill->ill_mc_mtu = ill->ill_user_mtu;
8583 
8584                                 if (ill->ill_isv6) {
8585                                         if (ill->ill_mtu < IPV6_MIN_MTU)
8586                                                 ill->ill_mtu = IPV6_MIN_MTU;
8587                                         if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8588                                                 ill->ill_mc_mtu = IPV6_MIN_MTU;
8589                                 } else {
8590                                         if (ill->ill_mtu < IP_MIN_MTU)
8591                                                 ill->ill_mtu = IP_MIN_MTU;
8592                                         if (ill->ill_mc_mtu < IP_MIN_MTU)
8593                                                 ill->ill_mc_mtu = IP_MIN_MTU;
8594                                 }
8595                         } else if (ill->ill_mc_mtu > ill->ill_mtu) {
8596                                 ill->ill_mc_mtu = ill->ill_mtu;
8597                         }
8598 
8599                         mutex_exit(&ill->ill_lock);
8600                         /*
8601                          * Make sure all dce_generation checks find out
8602                          * that ill_mtu/ill_mc_mtu has changed.
8603                          */
8604                         if (orig_mtu != ill->ill_mtu ||
8605                             orig_mc_mtu != ill->ill_mc_mtu) {
8606                                 dce_increment_all_generations(ill->ill_isv6,
8607                                     ill->ill_ipst);
8608                         }
8609 
8610                         /*
8611                          * Refresh IPMP meta-interface MTU if necessary.
8612                          */
8613                         if (IS_UNDER_IPMP(ill))
8614                                 ipmp_illgrp_refresh_mtu(ill->ill_grp);
8615                         break;
8616 
8617                 case DL_NOTE_LINK_UP:
8618                 case DL_NOTE_LINK_DOWN: {
8619                         /*
8620                          * We are writer. ill / phyint / ipsq assocs stable.
8621                          * The RUNNING flag reflects the state of the link.
8622                          */
8623                         phyint_t *phyint = ill->ill_phyint;
8624                         uint64_t new_phyint_flags;
8625                         boolean_t changed = B_FALSE;
8626                         boolean_t went_up;
8627 
8628                         went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8629                         mutex_enter(&phyint->phyint_lock);
8630 
8631                         new_phyint_flags = went_up ?
8632                             phyint->phyint_flags | PHYI_RUNNING :
8633                             phyint->phyint_flags & ~PHYI_RUNNING;
8634 
8635                         if (IS_IPMP(ill)) {
8636                                 new_phyint_flags = went_up ?
8637                                     new_phyint_flags & ~PHYI_FAILED :
8638                                     new_phyint_flags | PHYI_FAILED;
8639                         }
8640 
8641                         if (new_phyint_flags != phyint->phyint_flags) {
8642                                 phyint->phyint_flags = new_phyint_flags;
8643                                 changed = B_TRUE;
8644                         }
8645                         mutex_exit(&phyint->phyint_lock);
8646                         /*
8647                          * ill_restart_dad handles the DAD restart and routing
8648                          * socket notification logic.
8649                          */
8650                         if (changed) {
8651                                 ill_restart_dad(phyint->phyint_illv4, went_up);
8652                                 ill_restart_dad(phyint->phyint_illv6, went_up);
8653                         }
8654                         break;
8655                 }
8656                 case DL_NOTE_PROMISC_ON_PHYS: {
8657                         phyint_t *phyint = ill->ill_phyint;
8658 
8659                         mutex_enter(&phyint->phyint_lock);
8660                         phyint->phyint_flags |= PHYI_PROMISC;
8661                         mutex_exit(&phyint->phyint_lock);
8662                         break;
8663                 }
8664                 case DL_NOTE_PROMISC_OFF_PHYS: {
8665                         phyint_t *phyint = ill->ill_phyint;
8666 
8667                         mutex_enter(&phyint->phyint_lock);
8668                         phyint->phyint_flags &= ~PHYI_PROMISC;
8669                         mutex_exit(&phyint->phyint_lock);
8670                         break;
8671                 }
8672                 case DL_NOTE_CAPAB_RENEG:
8673                         /*
8674                          * Something changed on the driver side.
8675                          * It wants us to renegotiate the capabilities
8676                          * on this ill. One possible cause is the aggregation
8677                          * interface under us where a port got added or
8678                          * went away.
8679                          *
8680                          * If the capability negotiation is already done
8681                          * or is in progress, reset the capabilities and
8682                          * mark the ill's ill_capab_reneg to be B_TRUE,
8683                          * so that when the ack comes back, we can start
8684                          * the renegotiation process.
8685                          *
8686                          * Note that if ill_capab_reneg is already B_TRUE
8687                          * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8688                          * the capability resetting request has been sent
8689                          * and the renegotiation has not been started yet;
8690                          * nothing needs to be done in this case.
8691                          */
8692                         ipsq_current_start(ipsq, ill->ill_ipif, 0);
8693                         ill_capability_reset(ill, B_TRUE);
8694                         ipsq_current_finish(ipsq);
8695                         break;
8696 
8697                 case DL_NOTE_ALLOWED_IPS:
8698                         ill_set_allowed_ips(ill, mp);
8699                         break;
8700                 default:
8701                         ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8702                             "type 0x%x for DL_NOTIFY_IND\n",
8703                             notify->dl_notification));
8704                         break;
8705                 }
8706 
8707                 /*
8708                  * As this is an asynchronous operation, we
8709                  * should not call ill_dlpi_done
8710                  */
8711                 break;
8712         }
8713         case DL_NOTIFY_ACK: {
8714                 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8715 
8716                 if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8717                         ill->ill_note_link = 1;
8718                 ill_dlpi_done(ill, DL_NOTIFY_REQ);
8719                 break;
8720         }
8721         case DL_PHYS_ADDR_ACK: {
8722                 /*
8723                  * As part of plumbing the interface via SIOCSLIFNAME,
8724                  * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8725                  * whose answers we receive here.  As each answer is received,
8726                  * we call ill_dlpi_done() to dispatch the next request as
8727                  * we're processing the current one.  Once all answers have
8728                  * been received, we use ipsq_pending_mp_get() to dequeue the
8729                  * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
8730                  * is invoked from an ill queue, conn_oper_pending_ill is not
8731                  * available, but we know the ioctl is pending on ill_wq.)
8732                  */
8733                 uint_t  paddrlen, paddroff;
8734                 uint8_t *addr;
8735 
8736                 paddrreq = ill->ill_phys_addr_pend;
8737                 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8738                 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8739                 addr = mp->b_rptr + paddroff;
8740 
8741                 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8742                 if (paddrreq == DL_IPV6_TOKEN) {
8743                         /*
8744                          * bcopy to low-order bits of ill_token
8745                          *
8746                          * XXX Temporary hack - currently, all known tokens
8747                          * are 64 bits, so I'll cheat for the moment.
8748                          */
8749                         bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8750                         ill->ill_token_length = paddrlen;
8751                         break;
8752                 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8753                         ASSERT(ill->ill_nd_lla_mp == NULL);
8754                         ill_set_ndmp(ill, mp, paddroff, paddrlen);
8755                         mp = NULL;
8756                         break;
8757                 } else if (paddrreq == DL_CURR_DEST_ADDR) {
8758                         ASSERT(ill->ill_dest_addr_mp == NULL);
8759                         ill->ill_dest_addr_mp = mp;
8760                         ill->ill_dest_addr = addr;
8761                         mp = NULL;
8762                         if (ill->ill_isv6) {
8763                                 ill_setdesttoken(ill);
8764                                 ipif_setdestlinklocal(ill->ill_ipif);
8765                         }
8766                         break;
8767                 }
8768 
8769                 ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8770                 ASSERT(ill->ill_phys_addr_mp == NULL);
8771                 if (!ill->ill_ifname_pending)
8772                         break;
8773                 ill->ill_ifname_pending = 0;
8774                 if (!ioctl_aborted)
8775                         mp1 = ipsq_pending_mp_get(ipsq, &connp);
8776                 if (mp1 != NULL) {
8777                         ASSERT(connp == NULL);
8778                         q = ill->ill_wq;
8779                 }
8780                 /*
8781                  * If any error acks received during the plumbing sequence,
8782                  * ill_ifname_pending_err will be set. Break out and send up
8783                  * the error to the pending ioctl.
8784                  */
8785                 if (ill->ill_ifname_pending_err != 0) {
8786                         err = ill->ill_ifname_pending_err;
8787                         ill->ill_ifname_pending_err = 0;
8788                         break;
8789                 }
8790 
8791                 ill->ill_phys_addr_mp = mp;
8792                 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8793                 mp = NULL;
8794 
8795                 /*
8796                  * If paddrlen or ill_phys_addr_length is zero, the DLPI
8797                  * provider doesn't support physical addresses.  We check both
8798                  * paddrlen and ill_phys_addr_length because sppp (PPP) does
8799                  * not have physical addresses, but historically adversises a
8800                  * physical address length of 0 in its DL_INFO_ACK, but 6 in
8801                  * its DL_PHYS_ADDR_ACK.
8802                  */
8803                 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8804                         ill->ill_phys_addr = NULL;
8805                 } else if (paddrlen != ill->ill_phys_addr_length) {
8806                         ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8807                             paddrlen, ill->ill_phys_addr_length));
8808                         err = EINVAL;
8809                         break;
8810                 }
8811 
8812                 if (ill->ill_nd_lla_mp == NULL) {
8813                         if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8814                                 err = ENOMEM;
8815                                 break;
8816                         }
8817                         ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8818                 }
8819 
8820                 if (ill->ill_isv6) {
8821                         ill_setdefaulttoken(ill);
8822                         ipif_setlinklocal(ill->ill_ipif);
8823                 }
8824                 break;
8825         }
8826         case DL_OK_ACK:
8827                 ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8828                     dl_primstr((int)dloa->dl_correct_primitive),
8829                     dloa->dl_correct_primitive));
8830                 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8831                     char *, dl_primstr(dloa->dl_correct_primitive),
8832                     ill_t *, ill);
8833 
8834                 switch (dloa->dl_correct_primitive) {
8835                 case DL_ENABMULTI_REQ:
8836                 case DL_DISABMULTI_REQ:
8837                         ill_dlpi_done(ill, dloa->dl_correct_primitive);
8838                         break;
8839                 case DL_PROMISCON_REQ:
8840                 case DL_PROMISCOFF_REQ:
8841                 case DL_UNBIND_REQ:
8842                 case DL_ATTACH_REQ:
8843                         ill_dlpi_done(ill, dloa->dl_correct_primitive);
8844                         break;
8845                 }
8846                 break;
8847         default:
8848                 break;
8849         }
8850 
8851         freemsg(mp);
8852         if (mp1 == NULL)
8853                 return;
8854 
8855         /*
8856          * The operation must complete without EINPROGRESS since
8857          * ipsq_pending_mp_get() has removed the mblk (mp1).  Otherwise,
8858          * the operation will be stuck forever inside the IPSQ.
8859          */
8860         ASSERT(err != EINPROGRESS);
8861 
8862         DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8863             int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8864             ipif_t *, NULL);
8865 
8866         switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8867         case 0:
8868                 ipsq_current_finish(ipsq);
8869                 break;
8870 
8871         case SIOCSLIFNAME:
8872         case IF_UNITSEL: {
8873                 ill_t *ill_other = ILL_OTHER(ill);
8874 
8875                 /*
8876                  * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8877                  * ill has a peer which is in an IPMP group, then place ill
8878                  * into the same group.  One catch: although ifconfig plumbs
8879                  * the appropriate IPMP meta-interface prior to plumbing this
8880                  * ill, it is possible for multiple ifconfig applications to
8881                  * race (or for another application to adjust plumbing), in
8882                  * which case the IPMP meta-interface we need will be missing.
8883                  * If so, kick the phyint out of the group.
8884                  */
8885                 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8886                         ipmp_grp_t      *grp = ill->ill_phyint->phyint_grp;
8887                         ipmp_illgrp_t   *illg;
8888 
8889                         illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8890                         if (illg == NULL)
8891                                 ipmp_phyint_leave_grp(ill->ill_phyint);
8892                         else
8893                                 ipmp_ill_join_illgrp(ill, illg);
8894                 }
8895 
8896                 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8897                         ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8898                 else
8899                         ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8900                 break;
8901         }
8902         case SIOCLIFADDIF:
8903                 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8904                 break;
8905 
8906         default:
8907                 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8908                 break;
8909         }
8910 }
8911 
8912 /*
8913  * ip_rput_other is called by ip_rput to handle messages modifying the global
8914  * state in IP.  If 'ipsq' is non-NULL, caller is writer on it.
8915  */
8916 /* ARGSUSED */
8917 void
8918 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8919 {
8920         ill_t           *ill = q->q_ptr;
8921         struct iocblk   *iocp;
8922 
8923         ip1dbg(("ip_rput_other "));
8924         if (ipsq != NULL) {
8925                 ASSERT(IAM_WRITER_IPSQ(ipsq));
8926                 ASSERT(ipsq->ipsq_xop ==
8927                     ill->ill_phyint->phyint_ipsq->ipsq_xop);
8928         }
8929 
8930         switch (mp->b_datap->db_type) {
8931         case M_ERROR:
8932         case M_HANGUP:
8933                 /*
8934                  * The device has a problem.  We force the ILL down.  It can
8935                  * be brought up again manually using SIOCSIFFLAGS (via
8936                  * ifconfig or equivalent).
8937                  */
8938                 ASSERT(ipsq != NULL);
8939                 if (mp->b_rptr < mp->b_wptr)
8940                         ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8941                 if (ill->ill_error == 0)
8942                         ill->ill_error = ENXIO;
8943                 if (!ill_down_start(q, mp))
8944                         return;
8945                 ipif_all_down_tail(ipsq, q, mp, NULL);
8946                 break;
8947         case M_IOCNAK: {
8948                 iocp = (struct iocblk *)mp->b_rptr;
8949 
8950                 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8951                 /*
8952                  * If this was the first attempt, turn off the fastpath
8953                  * probing.
8954                  */
8955                 mutex_enter(&ill->ill_lock);
8956                 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8957                         ill->ill_dlpi_fastpath_state = IDS_FAILED;
8958                         mutex_exit(&ill->ill_lock);
8959                         /*
8960                          * don't flush the nce_t entries: we use them
8961                          * as an index to the ncec itself.
8962                          */
8963                         ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8964                             ill->ill_name));
8965                 } else {
8966                         mutex_exit(&ill->ill_lock);
8967                 }
8968                 freemsg(mp);
8969                 break;
8970         }
8971         default:
8972                 ASSERT(0);
8973                 break;
8974         }
8975 }
8976 
8977 /*
8978  * Update any source route, record route or timestamp options
8979  * When it fails it has consumed the message and BUMPed the MIB.
8980  */
8981 boolean_t
8982 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8983     ip_recv_attr_t *ira)
8984 {
8985         ipoptp_t        opts;
8986         uchar_t         *opt;
8987         uint8_t         optval;
8988         uint8_t         optlen;
8989         ipaddr_t        dst;
8990         ipaddr_t        ifaddr;
8991         uint32_t        ts;
8992         timestruc_t     now;
8993         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
8994 
8995         ip2dbg(("ip_forward_options\n"));
8996         dst = ipha->ipha_dst;
8997         for (optval = ipoptp_first(&opts, ipha);
8998             optval != IPOPT_EOL;
8999             optval = ipoptp_next(&opts)) {
9000                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9001                 opt = opts.ipoptp_cur;
9002                 optlen = opts.ipoptp_len;
9003                 ip2dbg(("ip_forward_options: opt %d, len %d\n",
9004                     optval, opts.ipoptp_len));
9005                 switch (optval) {
9006                         uint32_t off;
9007                 case IPOPT_SSRR:
9008                 case IPOPT_LSRR:
9009                         /* Check if adminstratively disabled */
9010                         if (!ipst->ips_ip_forward_src_routed) {
9011                                 BUMP_MIB(dst_ill->ill_ip_mib,
9012                                     ipIfStatsForwProhibits);
9013                                 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
9014                                     mp, dst_ill);
9015                                 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
9016                                     ira);
9017                                 return (B_FALSE);
9018                         }
9019                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9020                                 /*
9021                                  * Must be partial since ip_input_options
9022                                  * checked for strict.
9023                                  */
9024                                 break;
9025                         }
9026                         off = opt[IPOPT_OFFSET];
9027                         off--;
9028                 redo_srr:
9029                         if (optlen < IP_ADDR_LEN ||
9030                             off > optlen - IP_ADDR_LEN) {
9031                                 /* End of source route */
9032                                 ip1dbg((
9033                                     "ip_forward_options: end of SR\n"));
9034                                 break;
9035                         }
9036                         /* Pick a reasonable address on the outbound if */
9037                         ASSERT(dst_ill != NULL);
9038                         if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9039                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9040                             NULL) != 0) {
9041                                 /* No source! Shouldn't happen */
9042                                 ifaddr = INADDR_ANY;
9043                         }
9044                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9045                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9046                         ip1dbg(("ip_forward_options: next hop 0x%x\n",
9047                             ntohl(dst)));
9048 
9049                         /*
9050                          * Check if our address is present more than
9051                          * once as consecutive hops in source route.
9052                          */
9053                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9054                                 off += IP_ADDR_LEN;
9055                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9056                                 goto redo_srr;
9057                         }
9058                         ipha->ipha_dst = dst;
9059                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9060                         break;
9061                 case IPOPT_RR:
9062                         off = opt[IPOPT_OFFSET];
9063                         off--;
9064                         if (optlen < IP_ADDR_LEN ||
9065                             off > optlen - IP_ADDR_LEN) {
9066                                 /* No more room - ignore */
9067                                 ip1dbg((
9068                                     "ip_forward_options: end of RR\n"));
9069                                 break;
9070                         }
9071                         /* Pick a reasonable address on the outbound if */
9072                         ASSERT(dst_ill != NULL);
9073                         if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9074                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9075                             NULL) != 0) {
9076                                 /* No source! Shouldn't happen */
9077                                 ifaddr = INADDR_ANY;
9078                         }
9079                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9080                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9081                         break;
9082                 case IPOPT_TS:
9083                         /* Insert timestamp if there is room */
9084                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9085                         case IPOPT_TS_TSONLY:
9086                                 off = IPOPT_TS_TIMELEN;
9087                                 break;
9088                         case IPOPT_TS_PRESPEC:
9089                         case IPOPT_TS_PRESPEC_RFC791:
9090                                 /* Verify that the address matched */
9091                                 off = opt[IPOPT_OFFSET] - 1;
9092                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9093                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9094                                         /* Not for us */
9095                                         break;
9096                                 }
9097                                 /* FALLTHRU */
9098                         case IPOPT_TS_TSANDADDR:
9099                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9100                                 break;
9101                         default:
9102                                 /*
9103                                  * ip_*put_options should have already
9104                                  * dropped this packet.
9105                                  */
9106                                 cmn_err(CE_PANIC, "ip_forward_options: "
9107                                     "unknown IT - bug in ip_input_options?\n");
9108                                 return (B_TRUE);        /* Keep "lint" happy */
9109                         }
9110                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9111                                 /* Increase overflow counter */
9112                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9113                                 opt[IPOPT_POS_OV_FLG] =
9114                                     (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9115                                     (off << 4));
9116                                 break;
9117                         }
9118                         off = opt[IPOPT_OFFSET] - 1;
9119                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9120                         case IPOPT_TS_PRESPEC:
9121                         case IPOPT_TS_PRESPEC_RFC791:
9122                         case IPOPT_TS_TSANDADDR:
9123                                 /* Pick a reasonable addr on the outbound if */
9124                                 ASSERT(dst_ill != NULL);
9125                                 if (ip_select_source_v4(dst_ill, INADDR_ANY,
9126                                     dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9127                                     NULL, NULL) != 0) {
9128                                         /* No source! Shouldn't happen */
9129                                         ifaddr = INADDR_ANY;
9130                                 }
9131                                 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9132                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9133                                 /* FALLTHRU */
9134                         case IPOPT_TS_TSONLY:
9135                                 off = opt[IPOPT_OFFSET] - 1;
9136                                 /* Compute # of milliseconds since midnight */
9137                                 gethrestime(&now);
9138                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9139                                     NSEC2MSEC(now.tv_nsec);
9140                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9141                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9142                                 break;
9143                         }
9144                         break;
9145                 }
9146         }
9147         return (B_TRUE);
9148 }
9149 
9150 /*
9151  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9152  * returns 'true' if there are still fragments left on the queue, in
9153  * which case we restart the timer.
9154  */
9155 void
9156 ill_frag_timer(void *arg)
9157 {
9158         ill_t   *ill = (ill_t *)arg;
9159         boolean_t frag_pending;
9160         ip_stack_t *ipst = ill->ill_ipst;
9161         time_t  timeout;
9162 
9163         mutex_enter(&ill->ill_lock);
9164         ASSERT(!ill->ill_fragtimer_executing);
9165         if (ill->ill_state_flags & ILL_CONDEMNED) {
9166                 ill->ill_frag_timer_id = 0;
9167                 mutex_exit(&ill->ill_lock);
9168                 return;
9169         }
9170         ill->ill_fragtimer_executing = 1;
9171         mutex_exit(&ill->ill_lock);
9172 
9173         timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9174             ipst->ips_ip_reassembly_timeout);
9175 
9176         frag_pending = ill_frag_timeout(ill, timeout);
9177 
9178         /*
9179          * Restart the timer, if we have fragments pending or if someone
9180          * wanted us to be scheduled again.
9181          */
9182         mutex_enter(&ill->ill_lock);
9183         ill->ill_fragtimer_executing = 0;
9184         ill->ill_frag_timer_id = 0;
9185         if (frag_pending || ill->ill_fragtimer_needrestart)
9186                 ill_frag_timer_start(ill);
9187         mutex_exit(&ill->ill_lock);
9188 }
9189 
9190 void
9191 ill_frag_timer_start(ill_t *ill)
9192 {
9193         ip_stack_t *ipst = ill->ill_ipst;
9194         clock_t timeo_ms;
9195 
9196         ASSERT(MUTEX_HELD(&ill->ill_lock));
9197 
9198         /* If the ill is closing or opening don't proceed */
9199         if (ill->ill_state_flags & ILL_CONDEMNED)
9200                 return;
9201 
9202         if (ill->ill_fragtimer_executing) {
9203                 /*
9204                  * ill_frag_timer is currently executing. Just record the
9205                  * the fact that we want the timer to be restarted.
9206                  * ill_frag_timer will post a timeout before it returns,
9207                  * ensuring it will be called again.
9208                  */
9209                 ill->ill_fragtimer_needrestart = 1;
9210                 return;
9211         }
9212 
9213         if (ill->ill_frag_timer_id == 0) {
9214                 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9215                     ipst->ips_ip_reassembly_timeout) * SECONDS;
9216 
9217                 /*
9218                  * The timer is neither running nor is the timeout handler
9219                  * executing. Post a timeout so that ill_frag_timer will be
9220                  * called
9221                  */
9222                 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9223                     MSEC_TO_TICK(timeo_ms >> 1));
9224                 ill->ill_fragtimer_needrestart = 0;
9225         }
9226 }
9227 
9228 /*
9229  * Update any source route, record route or timestamp options.
9230  * Check that we are at end of strict source route.
9231  * The options have already been checked for sanity in ip_input_options().
9232  */
9233 boolean_t
9234 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9235 {
9236         ipoptp_t        opts;
9237         uchar_t         *opt;
9238         uint8_t         optval;
9239         uint8_t         optlen;
9240         ipaddr_t        dst;
9241         ipaddr_t        ifaddr;
9242         uint32_t        ts;
9243         timestruc_t     now;
9244         ill_t           *ill = ira->ira_ill;
9245         ip_stack_t      *ipst = ill->ill_ipst;
9246 
9247         ip2dbg(("ip_input_local_options\n"));
9248 
9249         for (optval = ipoptp_first(&opts, ipha);
9250             optval != IPOPT_EOL;
9251             optval = ipoptp_next(&opts)) {
9252                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9253                 opt = opts.ipoptp_cur;
9254                 optlen = opts.ipoptp_len;
9255                 ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9256                     optval, optlen));
9257                 switch (optval) {
9258                         uint32_t off;
9259                 case IPOPT_SSRR:
9260                 case IPOPT_LSRR:
9261                         off = opt[IPOPT_OFFSET];
9262                         off--;
9263                         if (optlen < IP_ADDR_LEN ||
9264                             off > optlen - IP_ADDR_LEN) {
9265                                 /* End of source route */
9266                                 ip1dbg(("ip_input_local_options: end of SR\n"));
9267                                 break;
9268                         }
9269                         /*
9270                          * This will only happen if two consecutive entries
9271                          * in the source route contains our address or if
9272                          * it is a packet with a loose source route which
9273                          * reaches us before consuming the whole source route
9274                          */
9275                         ip1dbg(("ip_input_local_options: not end of SR\n"));
9276                         if (optval == IPOPT_SSRR) {
9277                                 goto bad_src_route;
9278                         }
9279                         /*
9280                          * Hack: instead of dropping the packet truncate the
9281                          * source route to what has been used by filling the
9282                          * rest with IPOPT_NOP.
9283                          */
9284                         opt[IPOPT_OLEN] = (uint8_t)off;
9285                         while (off < optlen) {
9286                                 opt[off++] = IPOPT_NOP;
9287                         }
9288                         break;
9289                 case IPOPT_RR:
9290                         off = opt[IPOPT_OFFSET];
9291                         off--;
9292                         if (optlen < IP_ADDR_LEN ||
9293                             off > optlen - IP_ADDR_LEN) {
9294                                 /* No more room - ignore */
9295                                 ip1dbg((
9296                                     "ip_input_local_options: end of RR\n"));
9297                                 break;
9298                         }
9299                         /* Pick a reasonable address on the outbound if */
9300                         if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9301                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9302                             NULL) != 0) {
9303                                 /* No source! Shouldn't happen */
9304                                 ifaddr = INADDR_ANY;
9305                         }
9306                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9307                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9308                         break;
9309                 case IPOPT_TS:
9310                         /* Insert timestamp if there is romm */
9311                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9312                         case IPOPT_TS_TSONLY:
9313                                 off = IPOPT_TS_TIMELEN;
9314                                 break;
9315                         case IPOPT_TS_PRESPEC:
9316                         case IPOPT_TS_PRESPEC_RFC791:
9317                                 /* Verify that the address matched */
9318                                 off = opt[IPOPT_OFFSET] - 1;
9319                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9320                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9321                                         /* Not for us */
9322                                         break;
9323                                 }
9324                                 /* FALLTHRU */
9325                         case IPOPT_TS_TSANDADDR:
9326                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9327                                 break;
9328                         default:
9329                                 /*
9330                                  * ip_*put_options should have already
9331                                  * dropped this packet.
9332                                  */
9333                                 cmn_err(CE_PANIC, "ip_input_local_options: "
9334                                     "unknown IT - bug in ip_input_options?\n");
9335                                 return (B_TRUE);        /* Keep "lint" happy */
9336                         }
9337                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9338                                 /* Increase overflow counter */
9339                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9340                                 opt[IPOPT_POS_OV_FLG] =
9341                                     (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9342                                     (off << 4));
9343                                 break;
9344                         }
9345                         off = opt[IPOPT_OFFSET] - 1;
9346                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9347                         case IPOPT_TS_PRESPEC:
9348                         case IPOPT_TS_PRESPEC_RFC791:
9349                         case IPOPT_TS_TSANDADDR:
9350                                 /* Pick a reasonable addr on the outbound if */
9351                                 if (ip_select_source_v4(ill, INADDR_ANY,
9352                                     ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9353                                     &ifaddr, NULL, NULL) != 0) {
9354                                         /* No source! Shouldn't happen */
9355                                         ifaddr = INADDR_ANY;
9356                                 }
9357                                 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9358                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9359                                 /* FALLTHRU */
9360                         case IPOPT_TS_TSONLY:
9361                                 off = opt[IPOPT_OFFSET] - 1;
9362                                 /* Compute # of milliseconds since midnight */
9363                                 gethrestime(&now);
9364                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9365                                     NSEC2MSEC(now.tv_nsec);
9366                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9367                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9368                                 break;
9369                         }
9370                         break;
9371                 }
9372         }
9373         return (B_TRUE);
9374 
9375 bad_src_route:
9376         /* make sure we clear any indication of a hardware checksum */
9377         DB_CKSUMFLAGS(mp) = 0;
9378         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9379         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9380         return (B_FALSE);
9381 
9382 }
9383 
9384 /*
9385  * Process IP options in an inbound packet.  Always returns the nexthop.
9386  * Normally this is the passed in nexthop, but if there is an option
9387  * that effects the nexthop (such as a source route) that will be returned.
9388  * Sets *errorp if there is an error, in which case an ICMP error has been sent
9389  * and mp freed.
9390  */
9391 ipaddr_t
9392 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9393     ip_recv_attr_t *ira, int *errorp)
9394 {
9395         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
9396         ipoptp_t        opts;
9397         uchar_t         *opt;
9398         uint8_t         optval;
9399         uint8_t         optlen;
9400         intptr_t        code = 0;
9401         ire_t           *ire;
9402 
9403         ip2dbg(("ip_input_options\n"));
9404         *errorp = 0;
9405         for (optval = ipoptp_first(&opts, ipha);
9406             optval != IPOPT_EOL;
9407             optval = ipoptp_next(&opts)) {
9408                 opt = opts.ipoptp_cur;
9409                 optlen = opts.ipoptp_len;
9410                 ip2dbg(("ip_input_options: opt %d, len %d\n",
9411                     optval, optlen));
9412                 /*
9413                  * Note: we need to verify the checksum before we
9414                  * modify anything thus this routine only extracts the next
9415                  * hop dst from any source route.
9416                  */
9417                 switch (optval) {
9418                         uint32_t off;
9419                 case IPOPT_SSRR:
9420                 case IPOPT_LSRR:
9421                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9422                                 if (optval == IPOPT_SSRR) {
9423                                         ip1dbg(("ip_input_options: not next"
9424                                             " strict source route 0x%x\n",
9425                                             ntohl(dst)));
9426                                         code = (char *)&ipha->ipha_dst -
9427                                             (char *)ipha;
9428                                         goto param_prob; /* RouterReq's */
9429                                 }
9430                                 ip2dbg(("ip_input_options: "
9431                                     "not next source route 0x%x\n",
9432                                     ntohl(dst)));
9433                                 break;
9434                         }
9435 
9436                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9437                                 ip1dbg((
9438                                     "ip_input_options: bad option offset\n"));
9439                                 code = (char *)&opt[IPOPT_OLEN] -
9440                                     (char *)ipha;
9441                                 goto param_prob;
9442                         }
9443                         off = opt[IPOPT_OFFSET];
9444                         off--;
9445                 redo_srr:
9446                         if (optlen < IP_ADDR_LEN ||
9447                             off > optlen - IP_ADDR_LEN) {
9448                                 /* End of source route */
9449                                 ip1dbg(("ip_input_options: end of SR\n"));
9450                                 break;
9451                         }
9452                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9453                         ip1dbg(("ip_input_options: next hop 0x%x\n",
9454                             ntohl(dst)));
9455 
9456                         /*
9457                          * Check if our address is present more than
9458                          * once as consecutive hops in source route.
9459                          * XXX verify per-interface ip_forwarding
9460                          * for source route?
9461                          */
9462                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9463                                 off += IP_ADDR_LEN;
9464                                 goto redo_srr;
9465                         }
9466 
9467                         if (dst == htonl(INADDR_LOOPBACK)) {
9468                                 ip1dbg(("ip_input_options: loopback addr in "
9469                                     "source route!\n"));
9470                                 goto bad_src_route;
9471                         }
9472                         /*
9473                          * For strict: verify that dst is directly
9474                          * reachable.
9475                          */
9476                         if (optval == IPOPT_SSRR) {
9477                                 ire = ire_ftable_lookup_v4(dst, 0, 0,
9478                                     IRE_INTERFACE, NULL, ALL_ZONES,
9479                                     ira->ira_tsl,
9480                                     MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9481                                     NULL);
9482                                 if (ire == NULL) {
9483                                         ip1dbg(("ip_input_options: SSRR not "
9484                                             "directly reachable: 0x%x\n",
9485                                             ntohl(dst)));
9486                                         goto bad_src_route;
9487                                 }
9488                                 ire_refrele(ire);
9489                         }
9490                         /*
9491                          * Defer update of the offset and the record route
9492                          * until the packet is forwarded.
9493                          */
9494                         break;
9495                 case IPOPT_RR:
9496                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9497                                 ip1dbg((
9498                                     "ip_input_options: bad option offset\n"));
9499                                 code = (char *)&opt[IPOPT_OLEN] -
9500                                     (char *)ipha;
9501                                 goto param_prob;
9502                         }
9503                         break;
9504                 case IPOPT_TS:
9505                         /*
9506                          * Verify that length >= 5 and that there is either
9507                          * room for another timestamp or that the overflow
9508                          * counter is not maxed out.
9509                          */
9510                         code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9511                         if (optlen < IPOPT_MINLEN_IT) {
9512                                 goto param_prob;
9513                         }
9514                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9515                                 ip1dbg((
9516                                     "ip_input_options: bad option offset\n"));
9517                                 code = (char *)&opt[IPOPT_OFFSET] -
9518                                     (char *)ipha;
9519                                 goto param_prob;
9520                         }
9521                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9522                         case IPOPT_TS_TSONLY:
9523                                 off = IPOPT_TS_TIMELEN;
9524                                 break;
9525                         case IPOPT_TS_TSANDADDR:
9526                         case IPOPT_TS_PRESPEC:
9527                         case IPOPT_TS_PRESPEC_RFC791:
9528                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9529                                 break;
9530                         default:
9531                                 code = (char *)&opt[IPOPT_POS_OV_FLG] -
9532                                     (char *)ipha;
9533                                 goto param_prob;
9534                         }
9535                         if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9536                             (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9537                                 /*
9538                                  * No room and the overflow counter is 15
9539                                  * already.
9540                                  */
9541                                 goto param_prob;
9542                         }
9543                         break;
9544                 }
9545         }
9546 
9547         if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9548                 return (dst);
9549         }
9550 
9551         ip1dbg(("ip_input_options: error processing IP options."));
9552         code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9553 
9554 param_prob:
9555         /* make sure we clear any indication of a hardware checksum */
9556         DB_CKSUMFLAGS(mp) = 0;
9557         ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9558         icmp_param_problem(mp, (uint8_t)code, ira);
9559         *errorp = -1;
9560         return (dst);
9561 
9562 bad_src_route:
9563         /* make sure we clear any indication of a hardware checksum */
9564         DB_CKSUMFLAGS(mp) = 0;
9565         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9566         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9567         *errorp = -1;
9568         return (dst);
9569 }
9570 
9571 /*
9572  * IP & ICMP info in >=14 msg's ...
9573  *  - ip fixed part (mib2_ip_t)
9574  *  - icmp fixed part (mib2_icmp_t)
9575  *  - ipAddrEntryTable (ip 20)          all IPv4 ipifs
9576  *  - ipRouteEntryTable (ip 21)         all IPv4 IREs
9577  *  - ipNetToMediaEntryTable (ip 22)    all IPv4 Neighbor Cache entries
9578  *  - ipRouteAttributeTable (ip 102)    labeled routes
9579  *  - ip multicast membership (ip_member_t)
9580  *  - ip multicast source filtering (ip_grpsrc_t)
9581  *  - igmp fixed part (struct igmpstat)
9582  *  - multicast routing stats (struct mrtstat)
9583  *  - multicast routing vifs (array of struct vifctl)
9584  *  - multicast routing routes (array of struct mfcctl)
9585  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9586  *                                      One per ill plus one generic
9587  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9588  *                                      One per ill plus one generic
9589  *  - ipv6RouteEntry                    all IPv6 IREs
9590  *  - ipv6RouteAttributeTable (ip6 102) labeled routes
9591  *  - ipv6NetToMediaEntry               all IPv6 Neighbor Cache entries
9592  *  - ipv6AddrEntry                     all IPv6 ipifs
9593  *  - ipv6 multicast membership (ipv6_member_t)
9594  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
9595  *
9596  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9597  * already filled in by the caller.
9598  * If legacy_req is true then MIB structures needs to be truncated to their
9599  * legacy sizes before being returned.
9600  * Return value of 0 indicates that no messages were sent and caller
9601  * should free mpctl.
9602  */
9603 int
9604 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9605 {
9606         ip_stack_t *ipst;
9607         sctp_stack_t *sctps;
9608 
9609         if (q->q_next != NULL) {
9610                 ipst = ILLQ_TO_IPST(q);
9611         } else {
9612                 ipst = CONNQ_TO_IPST(q);
9613         }
9614         ASSERT(ipst != NULL);
9615         sctps = ipst->ips_netstack->netstack_sctp;
9616 
9617         if (mpctl == NULL || mpctl->b_cont == NULL) {
9618                 return (0);
9619         }
9620 
9621         /*
9622          * For the purposes of the (broken) packet shell use
9623          * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9624          * to make TCP and UDP appear first in the list of mib items.
9625          * TBD: We could expand this and use it in netstat so that
9626          * the kernel doesn't have to produce large tables (connections,
9627          * routes, etc) when netstat only wants the statistics or a particular
9628          * table.
9629          */
9630         if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9631                 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9632                         return (1);
9633                 }
9634         }
9635 
9636         if (level != MIB2_TCP) {
9637                 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9638                         return (1);
9639                 }
9640         }
9641 
9642         if (level != MIB2_UDP) {
9643                 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9644                         return (1);
9645                 }
9646         }
9647 
9648         if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9649             ipst, legacy_req)) == NULL) {
9650                 return (1);
9651         }
9652 
9653         if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9654             legacy_req)) == NULL) {
9655                 return (1);
9656         }
9657 
9658         if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9659                 return (1);
9660         }
9661 
9662         if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9663                 return (1);
9664         }
9665 
9666         if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9667                 return (1);
9668         }
9669 
9670         if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9671                 return (1);
9672         }
9673 
9674         if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9675             legacy_req)) == NULL) {
9676                 return (1);
9677         }
9678 
9679         if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9680             legacy_req)) == NULL) {
9681                 return (1);
9682         }
9683 
9684         if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9685                 return (1);
9686         }
9687 
9688         if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9689                 return (1);
9690         }
9691 
9692         if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9693                 return (1);
9694         }
9695 
9696         if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9697                 return (1);
9698         }
9699 
9700         if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9701                 return (1);
9702         }
9703 
9704         if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9705                 return (1);
9706         }
9707 
9708         mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9709         if (mpctl == NULL)
9710                 return (1);
9711 
9712         mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9713         if (mpctl == NULL)
9714                 return (1);
9715 
9716         if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9717                 return (1);
9718         }
9719         if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9720                 return (1);
9721         }
9722         freemsg(mpctl);
9723         return (1);
9724 }
9725 
9726 /* Get global (legacy) IPv4 statistics */
9727 static mblk_t *
9728 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9729     ip_stack_t *ipst, boolean_t legacy_req)
9730 {
9731         mib2_ip_t               old_ip_mib;
9732         struct opthdr           *optp;
9733         mblk_t                  *mp2ctl;
9734         mib2_ipAddrEntry_t      mae;
9735 
9736         /*
9737          * make a copy of the original message
9738          */
9739         mp2ctl = copymsg(mpctl);
9740 
9741         /* fixed length IP structure... */
9742         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9743         optp->level = MIB2_IP;
9744         optp->name = 0;
9745         SET_MIB(old_ip_mib.ipForwarding,
9746             (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9747         SET_MIB(old_ip_mib.ipDefaultTTL,
9748             (uint32_t)ipst->ips_ip_def_ttl);
9749         SET_MIB(old_ip_mib.ipReasmTimeout,
9750             ipst->ips_ip_reassembly_timeout);
9751         SET_MIB(old_ip_mib.ipAddrEntrySize,
9752             (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9753             sizeof (mib2_ipAddrEntry_t));
9754         SET_MIB(old_ip_mib.ipRouteEntrySize,
9755             sizeof (mib2_ipRouteEntry_t));
9756         SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9757             sizeof (mib2_ipNetToMediaEntry_t));
9758         SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9759         SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9760         SET_MIB(old_ip_mib.ipRouteAttributeSize,
9761             sizeof (mib2_ipAttributeEntry_t));
9762         SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9763         SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9764 
9765         /*
9766          * Grab the statistics from the new IP MIB
9767          */
9768         SET_MIB(old_ip_mib.ipInReceives,
9769             (uint32_t)ipmib->ipIfStatsHCInReceives);
9770         SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9771         SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9772         SET_MIB(old_ip_mib.ipForwDatagrams,
9773             (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9774         SET_MIB(old_ip_mib.ipInUnknownProtos,
9775             ipmib->ipIfStatsInUnknownProtos);
9776         SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9777         SET_MIB(old_ip_mib.ipInDelivers,
9778             (uint32_t)ipmib->ipIfStatsHCInDelivers);
9779         SET_MIB(old_ip_mib.ipOutRequests,
9780             (uint32_t)ipmib->ipIfStatsHCOutRequests);
9781         SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9782         SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9783         SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9784         SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9785         SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9786         SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9787         SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9788         SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9789 
9790         /* ipRoutingDiscards is not being used */
9791         SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9792         SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9793         SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9794         SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9795         SET_MIB(old_ip_mib.ipReasmDuplicates,
9796             ipmib->ipIfStatsReasmDuplicates);
9797         SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9798         SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9799         SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9800         SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9801         SET_MIB(old_ip_mib.rawipInOverflows,
9802             ipmib->rawipIfStatsInOverflows);
9803 
9804         SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9805         SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9806         SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9807         SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9808         SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9809             ipmib->ipIfStatsOutSwitchIPVersion);
9810 
9811         if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9812             (int)sizeof (old_ip_mib))) {
9813                 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9814                     (uint_t)sizeof (old_ip_mib)));
9815         }
9816 
9817         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9818         ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9819             (int)optp->level, (int)optp->name, (int)optp->len));
9820         qreply(q, mpctl);
9821         return (mp2ctl);
9822 }
9823 
9824 /* Per interface IPv4 statistics */
9825 static mblk_t *
9826 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9827     boolean_t legacy_req)
9828 {
9829         struct opthdr           *optp;
9830         mblk_t                  *mp2ctl;
9831         ill_t                   *ill;
9832         ill_walk_context_t      ctx;
9833         mblk_t                  *mp_tail = NULL;
9834         mib2_ipIfStatsEntry_t   global_ip_mib;
9835         mib2_ipAddrEntry_t      mae;
9836 
9837         /*
9838          * Make a copy of the original message
9839          */
9840         mp2ctl = copymsg(mpctl);
9841 
9842         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9843         optp->level = MIB2_IP;
9844         optp->name = MIB2_IP_TRAFFIC_STATS;
9845         /* Include "unknown interface" ip_mib */
9846         ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9847         ipst->ips_ip_mib.ipIfStatsIfIndex =
9848             MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9849         SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9850             (ipst->ips_ip_forwarding ? 1 : 2));
9851         SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9852             (uint32_t)ipst->ips_ip_def_ttl);
9853         SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9854             sizeof (mib2_ipIfStatsEntry_t));
9855         SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9856             sizeof (mib2_ipAddrEntry_t));
9857         SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9858             sizeof (mib2_ipRouteEntry_t));
9859         SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9860             sizeof (mib2_ipNetToMediaEntry_t));
9861         SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9862             sizeof (ip_member_t));
9863         SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9864             sizeof (ip_grpsrc_t));
9865 
9866         bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9867 
9868         if (legacy_req) {
9869                 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9870                     LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9871         }
9872 
9873         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9874             (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9875                 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9876                     "failed to allocate %u bytes\n",
9877                     (uint_t)sizeof (global_ip_mib)));
9878         }
9879 
9880         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9881         ill = ILL_START_WALK_V4(&ctx, ipst);
9882         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9883                 ill->ill_ip_mib->ipIfStatsIfIndex =
9884                     ill->ill_phyint->phyint_ifindex;
9885                 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9886                     (ipst->ips_ip_forwarding ? 1 : 2));
9887                 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9888                     (uint32_t)ipst->ips_ip_def_ttl);
9889 
9890                 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9891                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9892                     (char *)ill->ill_ip_mib,
9893                     (int)sizeof (*ill->ill_ip_mib))) {
9894                         ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9895                             "failed to allocate %u bytes\n",
9896                             (uint_t)sizeof (*ill->ill_ip_mib)));
9897                 }
9898         }
9899         rw_exit(&ipst->ips_ill_g_lock);
9900 
9901         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9902         ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9903             "level %d, name %d, len %d\n",
9904             (int)optp->level, (int)optp->name, (int)optp->len));
9905         qreply(q, mpctl);
9906 
9907         if (mp2ctl == NULL)
9908                 return (NULL);
9909 
9910         return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9911             legacy_req));
9912 }
9913 
9914 /* Global IPv4 ICMP statistics */
9915 static mblk_t *
9916 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9917 {
9918         struct opthdr           *optp;
9919         mblk_t                  *mp2ctl;
9920 
9921         /*
9922          * Make a copy of the original message
9923          */
9924         mp2ctl = copymsg(mpctl);
9925 
9926         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9927         optp->level = MIB2_ICMP;
9928         optp->name = 0;
9929         if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9930             (int)sizeof (ipst->ips_icmp_mib))) {
9931                 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9932                     (uint_t)sizeof (ipst->ips_icmp_mib)));
9933         }
9934         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9935         ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9936             (int)optp->level, (int)optp->name, (int)optp->len));
9937         qreply(q, mpctl);
9938         return (mp2ctl);
9939 }
9940 
9941 /* Global IPv4 IGMP statistics */
9942 static mblk_t *
9943 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9944 {
9945         struct opthdr           *optp;
9946         mblk_t                  *mp2ctl;
9947 
9948         /*
9949          * make a copy of the original message
9950          */
9951         mp2ctl = copymsg(mpctl);
9952 
9953         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9954         optp->level = EXPER_IGMP;
9955         optp->name = 0;
9956         if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9957             (int)sizeof (ipst->ips_igmpstat))) {
9958                 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9959                     (uint_t)sizeof (ipst->ips_igmpstat)));
9960         }
9961         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9962         ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9963             (int)optp->level, (int)optp->name, (int)optp->len));
9964         qreply(q, mpctl);
9965         return (mp2ctl);
9966 }
9967 
9968 /* Global IPv4 Multicast Routing statistics */
9969 static mblk_t *
9970 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9971 {
9972         struct opthdr           *optp;
9973         mblk_t                  *mp2ctl;
9974 
9975         /*
9976          * make a copy of the original message
9977          */
9978         mp2ctl = copymsg(mpctl);
9979 
9980         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9981         optp->level = EXPER_DVMRP;
9982         optp->name = 0;
9983         if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
9984                 ip0dbg(("ip_mroute_stats: failed\n"));
9985         }
9986         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9987         ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
9988             (int)optp->level, (int)optp->name, (int)optp->len));
9989         qreply(q, mpctl);
9990         return (mp2ctl);
9991 }
9992 
9993 /* IPv4 address information */
9994 static mblk_t *
9995 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9996     boolean_t legacy_req)
9997 {
9998         struct opthdr           *optp;
9999         mblk_t                  *mp2ctl;
10000         mblk_t                  *mp_tail = NULL;
10001         ill_t                   *ill;
10002         ipif_t                  *ipif;
10003         uint_t                  bitval;
10004         mib2_ipAddrEntry_t      mae;
10005         size_t                  mae_size;
10006         zoneid_t                zoneid;
10007         ill_walk_context_t      ctx;
10008 
10009         /*
10010          * make a copy of the original message
10011          */
10012         mp2ctl = copymsg(mpctl);
10013 
10014         mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
10015             sizeof (mib2_ipAddrEntry_t);
10016 
10017         /* ipAddrEntryTable */
10018 
10019         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10020         optp->level = MIB2_IP;
10021         optp->name = MIB2_IP_ADDR;
10022         zoneid = Q_TO_CONN(q)->conn_zoneid;
10023 
10024         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10025         ill = ILL_START_WALK_V4(&ctx, ipst);
10026         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10027                 for (ipif = ill->ill_ipif; ipif != NULL;
10028                     ipif = ipif->ipif_next) {
10029                         if (ipif->ipif_zoneid != zoneid &&
10030                             ipif->ipif_zoneid != ALL_ZONES)
10031                                 continue;
10032                         /* Sum of count from dead IRE_LO* and our current */
10033                         mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10034                         if (ipif->ipif_ire_local != NULL) {
10035                                 mae.ipAdEntInfo.ae_ibcnt +=
10036                                     ipif->ipif_ire_local->ire_ib_pkt_count;
10037                         }
10038                         mae.ipAdEntInfo.ae_obcnt = 0;
10039                         mae.ipAdEntInfo.ae_focnt = 0;
10040 
10041                         ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10042                             OCTET_LENGTH);
10043                         mae.ipAdEntIfIndex.o_length =
10044                             mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10045                         mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10046                         mae.ipAdEntNetMask = ipif->ipif_net_mask;
10047                         mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10048                         mae.ipAdEntInfo.ae_subnet_len =
10049                             ip_mask_to_plen(ipif->ipif_net_mask);
10050                         mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10051                         for (bitval = 1;
10052                             bitval &&
10053                             !(bitval & ipif->ipif_brd_addr);
10054                             bitval <<= 1)
10055                                 noop;
10056                         mae.ipAdEntBcastAddr = bitval;
10057                         mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10058                         mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10059                         mae.ipAdEntInfo.ae_metric  = ipif->ipif_ill->ill_metric;
10060                         mae.ipAdEntInfo.ae_broadcast_addr =
10061                             ipif->ipif_brd_addr;
10062                         mae.ipAdEntInfo.ae_pp_dst_addr =
10063                             ipif->ipif_pp_dst_addr;
10064                         mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10065                             ill->ill_flags | ill->ill_phyint->phyint_flags;
10066                         mae.ipAdEntRetransmitTime =
10067                             ill->ill_reachable_retrans_time;
10068 
10069                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10070                             (char *)&mae, (int)mae_size)) {
10071                                 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10072                                     "allocate %u bytes\n", (uint_t)mae_size));
10073                         }
10074                 }
10075         }
10076         rw_exit(&ipst->ips_ill_g_lock);
10077 
10078         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10079         ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10080             (int)optp->level, (int)optp->name, (int)optp->len));
10081         qreply(q, mpctl);
10082         return (mp2ctl);
10083 }
10084 
10085 /* IPv6 address information */
10086 static mblk_t *
10087 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10088     boolean_t legacy_req)
10089 {
10090         struct opthdr           *optp;
10091         mblk_t                  *mp2ctl;
10092         mblk_t                  *mp_tail = NULL;
10093         ill_t                   *ill;
10094         ipif_t                  *ipif;
10095         mib2_ipv6AddrEntry_t    mae6;
10096         size_t                  mae6_size;
10097         zoneid_t                zoneid;
10098         ill_walk_context_t      ctx;
10099 
10100         /*
10101          * make a copy of the original message
10102          */
10103         mp2ctl = copymsg(mpctl);
10104 
10105         mae6_size = (legacy_req) ?
10106             LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10107             sizeof (mib2_ipv6AddrEntry_t);
10108 
10109         /* ipv6AddrEntryTable */
10110 
10111         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10112         optp->level = MIB2_IP6;
10113         optp->name = MIB2_IP6_ADDR;
10114         zoneid = Q_TO_CONN(q)->conn_zoneid;
10115 
10116         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10117         ill = ILL_START_WALK_V6(&ctx, ipst);
10118         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10119                 for (ipif = ill->ill_ipif; ipif != NULL;
10120                     ipif = ipif->ipif_next) {
10121                         if (ipif->ipif_zoneid != zoneid &&
10122                             ipif->ipif_zoneid != ALL_ZONES)
10123                                 continue;
10124                         /* Sum of count from dead IRE_LO* and our current */
10125                         mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10126                         if (ipif->ipif_ire_local != NULL) {
10127                                 mae6.ipv6AddrInfo.ae_ibcnt +=
10128                                     ipif->ipif_ire_local->ire_ib_pkt_count;
10129                         }
10130                         mae6.ipv6AddrInfo.ae_obcnt = 0;
10131                         mae6.ipv6AddrInfo.ae_focnt = 0;
10132 
10133                         ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10134                             OCTET_LENGTH);
10135                         mae6.ipv6AddrIfIndex.o_length =
10136                             mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10137                         mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10138                         mae6.ipv6AddrPfxLength =
10139                             ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10140                         mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10141                         mae6.ipv6AddrInfo.ae_subnet_len =
10142                             mae6.ipv6AddrPfxLength;
10143                         mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10144 
10145                         /* Type: stateless(1), stateful(2), unknown(3) */
10146                         if (ipif->ipif_flags & IPIF_ADDRCONF)
10147                                 mae6.ipv6AddrType = 1;
10148                         else
10149                                 mae6.ipv6AddrType = 2;
10150                         /* Anycast: true(1), false(2) */
10151                         if (ipif->ipif_flags & IPIF_ANYCAST)
10152                                 mae6.ipv6AddrAnycastFlag = 1;
10153                         else
10154                                 mae6.ipv6AddrAnycastFlag = 2;
10155 
10156                         /*
10157                          * Address status: preferred(1), deprecated(2),
10158                          * invalid(3), inaccessible(4), unknown(5)
10159                          */
10160                         if (ipif->ipif_flags & IPIF_NOLOCAL)
10161                                 mae6.ipv6AddrStatus = 3;
10162                         else if (ipif->ipif_flags & IPIF_DEPRECATED)
10163                                 mae6.ipv6AddrStatus = 2;
10164                         else
10165                                 mae6.ipv6AddrStatus = 1;
10166                         mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10167                         mae6.ipv6AddrInfo.ae_metric  =
10168                             ipif->ipif_ill->ill_metric;
10169                         mae6.ipv6AddrInfo.ae_pp_dst_addr =
10170                             ipif->ipif_v6pp_dst_addr;
10171                         mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10172                             ill->ill_flags | ill->ill_phyint->phyint_flags;
10173                         mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10174                         mae6.ipv6AddrIdentifier = ill->ill_token;
10175                         mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10176                         mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10177                         mae6.ipv6AddrRetransmitTime =
10178                             ill->ill_reachable_retrans_time;
10179                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10180                             (char *)&mae6, (int)mae6_size)) {
10181                                 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10182                                     "allocate %u bytes\n",
10183                                     (uint_t)mae6_size));
10184                         }
10185                 }
10186         }
10187         rw_exit(&ipst->ips_ill_g_lock);
10188 
10189         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10190         ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10191             (int)optp->level, (int)optp->name, (int)optp->len));
10192         qreply(q, mpctl);
10193         return (mp2ctl);
10194 }
10195 
10196 /* IPv4 multicast group membership. */
10197 static mblk_t *
10198 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10199 {
10200         struct opthdr           *optp;
10201         mblk_t                  *mp2ctl;
10202         ill_t                   *ill;
10203         ipif_t                  *ipif;
10204         ilm_t                   *ilm;
10205         ip_member_t             ipm;
10206         mblk_t                  *mp_tail = NULL;
10207         ill_walk_context_t      ctx;
10208         zoneid_t                zoneid;
10209 
10210         /*
10211          * make a copy of the original message
10212          */
10213         mp2ctl = copymsg(mpctl);
10214         zoneid = Q_TO_CONN(q)->conn_zoneid;
10215 
10216         /* ipGroupMember table */
10217         optp = (struct opthdr *)&mpctl->b_rptr[
10218             sizeof (struct T_optmgmt_ack)];
10219         optp->level = MIB2_IP;
10220         optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10221 
10222         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10223         ill = ILL_START_WALK_V4(&ctx, ipst);
10224         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10225                 /* Make sure the ill isn't going away. */
10226                 if (!ill_check_and_refhold(ill))
10227                         continue;
10228                 rw_exit(&ipst->ips_ill_g_lock);
10229                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10230                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10231                         if (ilm->ilm_zoneid != zoneid &&
10232                             ilm->ilm_zoneid != ALL_ZONES)
10233                                 continue;
10234 
10235                         /* Is there an ipif for ilm_ifaddr? */
10236                         for (ipif = ill->ill_ipif; ipif != NULL;
10237                             ipif = ipif->ipif_next) {
10238                                 if (!IPIF_IS_CONDEMNED(ipif) &&
10239                                     ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10240                                     ilm->ilm_ifaddr != INADDR_ANY)
10241                                         break;
10242                         }
10243                         if (ipif != NULL) {
10244                                 ipif_get_name(ipif,
10245                                     ipm.ipGroupMemberIfIndex.o_bytes,
10246                                     OCTET_LENGTH);
10247                         } else {
10248                                 ill_get_name(ill,
10249                                     ipm.ipGroupMemberIfIndex.o_bytes,
10250                                     OCTET_LENGTH);
10251                         }
10252                         ipm.ipGroupMemberIfIndex.o_length =
10253                             mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10254 
10255                         ipm.ipGroupMemberAddress = ilm->ilm_addr;
10256                         ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10257                         ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10258                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10259                             (char *)&ipm, (int)sizeof (ipm))) {
10260                                 ip1dbg(("ip_snmp_get_mib2_ip_group: "
10261                                     "failed to allocate %u bytes\n",
10262                                     (uint_t)sizeof (ipm)));
10263                         }
10264                 }
10265                 rw_exit(&ill->ill_mcast_lock);
10266                 ill_refrele(ill);
10267                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10268         }
10269         rw_exit(&ipst->ips_ill_g_lock);
10270         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10271         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10272             (int)optp->level, (int)optp->name, (int)optp->len));
10273         qreply(q, mpctl);
10274         return (mp2ctl);
10275 }
10276 
10277 /* IPv6 multicast group membership. */
10278 static mblk_t *
10279 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10280 {
10281         struct opthdr           *optp;
10282         mblk_t                  *mp2ctl;
10283         ill_t                   *ill;
10284         ilm_t                   *ilm;
10285         ipv6_member_t           ipm6;
10286         mblk_t                  *mp_tail = NULL;
10287         ill_walk_context_t      ctx;
10288         zoneid_t                zoneid;
10289 
10290         /*
10291          * make a copy of the original message
10292          */
10293         mp2ctl = copymsg(mpctl);
10294         zoneid = Q_TO_CONN(q)->conn_zoneid;
10295 
10296         /* ip6GroupMember table */
10297         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10298         optp->level = MIB2_IP6;
10299         optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10300 
10301         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10302         ill = ILL_START_WALK_V6(&ctx, ipst);
10303         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10304                 /* Make sure the ill isn't going away. */
10305                 if (!ill_check_and_refhold(ill))
10306                         continue;
10307                 rw_exit(&ipst->ips_ill_g_lock);
10308                 /*
10309                  * Normally we don't have any members on under IPMP interfaces.
10310                  * We report them as a debugging aid.
10311                  */
10312                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10313                 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10314                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10315                         if (ilm->ilm_zoneid != zoneid &&
10316                             ilm->ilm_zoneid != ALL_ZONES)
10317                                 continue;       /* not this zone */
10318                         ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10319                         ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10320                         ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10321                         if (!snmp_append_data2(mpctl->b_cont,
10322                             &mp_tail,
10323                             (char *)&ipm6, (int)sizeof (ipm6))) {
10324                                 ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10325                                     "failed to allocate %u bytes\n",
10326                                     (uint_t)sizeof (ipm6)));
10327                         }
10328                 }
10329                 rw_exit(&ill->ill_mcast_lock);
10330                 ill_refrele(ill);
10331                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10332         }
10333         rw_exit(&ipst->ips_ill_g_lock);
10334 
10335         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10336         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10337             (int)optp->level, (int)optp->name, (int)optp->len));
10338         qreply(q, mpctl);
10339         return (mp2ctl);
10340 }
10341 
10342 /* IP multicast filtered sources */
10343 static mblk_t *
10344 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10345 {
10346         struct opthdr           *optp;
10347         mblk_t                  *mp2ctl;
10348         ill_t                   *ill;
10349         ipif_t                  *ipif;
10350         ilm_t                   *ilm;
10351         ip_grpsrc_t             ips;
10352         mblk_t                  *mp_tail = NULL;
10353         ill_walk_context_t      ctx;
10354         zoneid_t                zoneid;
10355         int                     i;
10356         slist_t                 *sl;
10357 
10358         /*
10359          * make a copy of the original message
10360          */
10361         mp2ctl = copymsg(mpctl);
10362         zoneid = Q_TO_CONN(q)->conn_zoneid;
10363 
10364         /* ipGroupSource table */
10365         optp = (struct opthdr *)&mpctl->b_rptr[
10366             sizeof (struct T_optmgmt_ack)];
10367         optp->level = MIB2_IP;
10368         optp->name = EXPER_IP_GROUP_SOURCES;
10369 
10370         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10371         ill = ILL_START_WALK_V4(&ctx, ipst);
10372         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10373                 /* Make sure the ill isn't going away. */
10374                 if (!ill_check_and_refhold(ill))
10375                         continue;
10376                 rw_exit(&ipst->ips_ill_g_lock);
10377                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10378                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10379                         sl = ilm->ilm_filter;
10380                         if (ilm->ilm_zoneid != zoneid &&
10381                             ilm->ilm_zoneid != ALL_ZONES)
10382                                 continue;
10383                         if (SLIST_IS_EMPTY(sl))
10384                                 continue;
10385 
10386                         /* Is there an ipif for ilm_ifaddr? */
10387                         for (ipif = ill->ill_ipif; ipif != NULL;
10388                             ipif = ipif->ipif_next) {
10389                                 if (!IPIF_IS_CONDEMNED(ipif) &&
10390                                     ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10391                                     ilm->ilm_ifaddr != INADDR_ANY)
10392                                         break;
10393                         }
10394                         if (ipif != NULL) {
10395                                 ipif_get_name(ipif,
10396                                     ips.ipGroupSourceIfIndex.o_bytes,
10397                                     OCTET_LENGTH);
10398                         } else {
10399                                 ill_get_name(ill,
10400                                     ips.ipGroupSourceIfIndex.o_bytes,
10401                                     OCTET_LENGTH);
10402                         }
10403                         ips.ipGroupSourceIfIndex.o_length =
10404                             mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10405 
10406                         ips.ipGroupSourceGroup = ilm->ilm_addr;
10407                         for (i = 0; i < sl->sl_numsrc; i++) {
10408                                 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10409                                         continue;
10410                                 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10411                                     ips.ipGroupSourceAddress);
10412                                 if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10413                                     (char *)&ips, (int)sizeof (ips)) == 0) {
10414                                         ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10415                                             " failed to allocate %u bytes\n",
10416                                             (uint_t)sizeof (ips)));
10417                                 }
10418                         }
10419                 }
10420                 rw_exit(&ill->ill_mcast_lock);
10421                 ill_refrele(ill);
10422                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10423         }
10424         rw_exit(&ipst->ips_ill_g_lock);
10425         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10426         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10427             (int)optp->level, (int)optp->name, (int)optp->len));
10428         qreply(q, mpctl);
10429         return (mp2ctl);
10430 }
10431 
10432 /* IPv6 multicast filtered sources. */
10433 static mblk_t *
10434 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10435 {
10436         struct opthdr           *optp;
10437         mblk_t                  *mp2ctl;
10438         ill_t                   *ill;
10439         ilm_t                   *ilm;
10440         ipv6_grpsrc_t           ips6;
10441         mblk_t                  *mp_tail = NULL;
10442         ill_walk_context_t      ctx;
10443         zoneid_t                zoneid;
10444         int                     i;
10445         slist_t                 *sl;
10446 
10447         /*
10448          * make a copy of the original message
10449          */
10450         mp2ctl = copymsg(mpctl);
10451         zoneid = Q_TO_CONN(q)->conn_zoneid;
10452 
10453         /* ip6GroupMember table */
10454         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10455         optp->level = MIB2_IP6;
10456         optp->name = EXPER_IP6_GROUP_SOURCES;
10457 
10458         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10459         ill = ILL_START_WALK_V6(&ctx, ipst);
10460         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10461                 /* Make sure the ill isn't going away. */
10462                 if (!ill_check_and_refhold(ill))
10463                         continue;
10464                 rw_exit(&ipst->ips_ill_g_lock);
10465                 /*
10466                  * Normally we don't have any members on under IPMP interfaces.
10467                  * We report them as a debugging aid.
10468                  */
10469                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10470                 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10471                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10472                         sl = ilm->ilm_filter;
10473                         if (ilm->ilm_zoneid != zoneid &&
10474                             ilm->ilm_zoneid != ALL_ZONES)
10475                                 continue;
10476                         if (SLIST_IS_EMPTY(sl))
10477                                 continue;
10478                         ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10479                         for (i = 0; i < sl->sl_numsrc; i++) {
10480                                 ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10481                                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10482                                     (char *)&ips6, (int)sizeof (ips6))) {
10483                                         ip1dbg(("ip_snmp_get_mib2_ip6_"
10484                                             "group_src: failed to allocate "
10485                                             "%u bytes\n",
10486                                             (uint_t)sizeof (ips6)));
10487                                 }
10488                         }
10489                 }
10490                 rw_exit(&ill->ill_mcast_lock);
10491                 ill_refrele(ill);
10492                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10493         }
10494         rw_exit(&ipst->ips_ill_g_lock);
10495 
10496         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10497         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10498             (int)optp->level, (int)optp->name, (int)optp->len));
10499         qreply(q, mpctl);
10500         return (mp2ctl);
10501 }
10502 
10503 /* Multicast routing virtual interface table. */
10504 static mblk_t *
10505 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10506 {
10507         struct opthdr           *optp;
10508         mblk_t                  *mp2ctl;
10509 
10510         /*
10511          * make a copy of the original message
10512          */
10513         mp2ctl = copymsg(mpctl);
10514 
10515         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10516         optp->level = EXPER_DVMRP;
10517         optp->name = EXPER_DVMRP_VIF;
10518         if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10519                 ip0dbg(("ip_mroute_vif: failed\n"));
10520         }
10521         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10522         ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10523             (int)optp->level, (int)optp->name, (int)optp->len));
10524         qreply(q, mpctl);
10525         return (mp2ctl);
10526 }
10527 
10528 /* Multicast routing table. */
10529 static mblk_t *
10530 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10531 {
10532         struct opthdr           *optp;
10533         mblk_t                  *mp2ctl;
10534 
10535         /*
10536          * make a copy of the original message
10537          */
10538         mp2ctl = copymsg(mpctl);
10539 
10540         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10541         optp->level = EXPER_DVMRP;
10542         optp->name = EXPER_DVMRP_MRT;
10543         if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10544                 ip0dbg(("ip_mroute_mrt: failed\n"));
10545         }
10546         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10547         ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10548             (int)optp->level, (int)optp->name, (int)optp->len));
10549         qreply(q, mpctl);
10550         return (mp2ctl);
10551 }
10552 
10553 /*
10554  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10555  * in one IRE walk.
10556  */
10557 static mblk_t *
10558 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10559     ip_stack_t *ipst)
10560 {
10561         struct opthdr   *optp;
10562         mblk_t          *mp2ctl;        /* Returned */
10563         mblk_t          *mp3ctl;        /* nettomedia */
10564         mblk_t          *mp4ctl;        /* routeattrs */
10565         iproutedata_t   ird;
10566         zoneid_t        zoneid;
10567 
10568         /*
10569          * make copies of the original message
10570          *      - mp2ctl is returned unchanged to the caller for his use
10571          *      - mpctl is sent upstream as ipRouteEntryTable
10572          *      - mp3ctl is sent upstream as ipNetToMediaEntryTable
10573          *      - mp4ctl is sent upstream as ipRouteAttributeTable
10574          */
10575         mp2ctl = copymsg(mpctl);
10576         mp3ctl = copymsg(mpctl);
10577         mp4ctl = copymsg(mpctl);
10578         if (mp3ctl == NULL || mp4ctl == NULL) {
10579                 freemsg(mp4ctl);
10580                 freemsg(mp3ctl);
10581                 freemsg(mp2ctl);
10582                 freemsg(mpctl);
10583                 return (NULL);
10584         }
10585 
10586         bzero(&ird, sizeof (ird));
10587 
10588         ird.ird_route.lp_head = mpctl->b_cont;
10589         ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10590         ird.ird_attrs.lp_head = mp4ctl->b_cont;
10591         /*
10592          * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10593          * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10594          * intended a temporary solution until a proper MIB API is provided
10595          * that provides complete filtering/caller-opt-in.
10596          */
10597         if (level == EXPER_IP_AND_ALL_IRES)
10598                 ird.ird_flags |= IRD_REPORT_ALL;
10599 
10600         zoneid = Q_TO_CONN(q)->conn_zoneid;
10601         ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10602 
10603         /* ipRouteEntryTable in mpctl */
10604         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10605         optp->level = MIB2_IP;
10606         optp->name = MIB2_IP_ROUTE;
10607         optp->len = msgdsize(ird.ird_route.lp_head);
10608         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10609             (int)optp->level, (int)optp->name, (int)optp->len));
10610         qreply(q, mpctl);
10611 
10612         /* ipNetToMediaEntryTable in mp3ctl */
10613         ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10614 
10615         optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10616         optp->level = MIB2_IP;
10617         optp->name = MIB2_IP_MEDIA;
10618         optp->len = msgdsize(ird.ird_netmedia.lp_head);
10619         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10620             (int)optp->level, (int)optp->name, (int)optp->len));
10621         qreply(q, mp3ctl);
10622 
10623         /* ipRouteAttributeTable in mp4ctl */
10624         optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10625         optp->level = MIB2_IP;
10626         optp->name = EXPER_IP_RTATTR;
10627         optp->len = msgdsize(ird.ird_attrs.lp_head);
10628         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10629             (int)optp->level, (int)optp->name, (int)optp->len));
10630         if (optp->len == 0)
10631                 freemsg(mp4ctl);
10632         else
10633                 qreply(q, mp4ctl);
10634 
10635         return (mp2ctl);
10636 }
10637 
10638 /*
10639  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10640  * ipv6NetToMediaEntryTable in an NDP walk.
10641  */
10642 static mblk_t *
10643 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10644     ip_stack_t *ipst)
10645 {
10646         struct opthdr   *optp;
10647         mblk_t          *mp2ctl;        /* Returned */
10648         mblk_t          *mp3ctl;        /* nettomedia */
10649         mblk_t          *mp4ctl;        /* routeattrs */
10650         iproutedata_t   ird;
10651         zoneid_t        zoneid;
10652 
10653         /*
10654          * make copies of the original message
10655          *      - mp2ctl is returned unchanged to the caller for his use
10656          *      - mpctl is sent upstream as ipv6RouteEntryTable
10657          *      - mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10658          *      - mp4ctl is sent upstream as ipv6RouteAttributeTable
10659          */
10660         mp2ctl = copymsg(mpctl);
10661         mp3ctl = copymsg(mpctl);
10662         mp4ctl = copymsg(mpctl);
10663         if (mp3ctl == NULL || mp4ctl == NULL) {
10664                 freemsg(mp4ctl);
10665                 freemsg(mp3ctl);
10666                 freemsg(mp2ctl);
10667                 freemsg(mpctl);
10668                 return (NULL);
10669         }
10670 
10671         bzero(&ird, sizeof (ird));
10672 
10673         ird.ird_route.lp_head = mpctl->b_cont;
10674         ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10675         ird.ird_attrs.lp_head = mp4ctl->b_cont;
10676         /*
10677          * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10678          * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10679          * intended a temporary solution until a proper MIB API is provided
10680          * that provides complete filtering/caller-opt-in.
10681          */
10682         if (level == EXPER_IP_AND_ALL_IRES)
10683                 ird.ird_flags |= IRD_REPORT_ALL;
10684 
10685         zoneid = Q_TO_CONN(q)->conn_zoneid;
10686         ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10687 
10688         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10689         optp->level = MIB2_IP6;
10690         optp->name = MIB2_IP6_ROUTE;
10691         optp->len = msgdsize(ird.ird_route.lp_head);
10692         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10693             (int)optp->level, (int)optp->name, (int)optp->len));
10694         qreply(q, mpctl);
10695 
10696         /* ipv6NetToMediaEntryTable in mp3ctl */
10697         ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10698 
10699         optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10700         optp->level = MIB2_IP6;
10701         optp->name = MIB2_IP6_MEDIA;
10702         optp->len = msgdsize(ird.ird_netmedia.lp_head);
10703         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10704             (int)optp->level, (int)optp->name, (int)optp->len));
10705         qreply(q, mp3ctl);
10706 
10707         /* ipv6RouteAttributeTable in mp4ctl */
10708         optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10709         optp->level = MIB2_IP6;
10710         optp->name = EXPER_IP_RTATTR;
10711         optp->len = msgdsize(ird.ird_attrs.lp_head);
10712         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10713             (int)optp->level, (int)optp->name, (int)optp->len));
10714         if (optp->len == 0)
10715                 freemsg(mp4ctl);
10716         else
10717                 qreply(q, mp4ctl);
10718 
10719         return (mp2ctl);
10720 }
10721 
10722 /*
10723  * IPv6 mib: One per ill
10724  */
10725 static mblk_t *
10726 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10727     boolean_t legacy_req)
10728 {
10729         struct opthdr           *optp;
10730         mblk_t                  *mp2ctl;
10731         ill_t                   *ill;
10732         ill_walk_context_t      ctx;
10733         mblk_t                  *mp_tail = NULL;
10734         mib2_ipv6AddrEntry_t    mae6;
10735         mib2_ipIfStatsEntry_t   *ise;
10736         size_t                  ise_size, iae_size;
10737 
10738         /*
10739          * Make a copy of the original message
10740          */
10741         mp2ctl = copymsg(mpctl);
10742 
10743         /* fixed length IPv6 structure ... */
10744 
10745         if (legacy_req) {
10746                 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10747                     mib2_ipIfStatsEntry_t);
10748                 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10749         } else {
10750                 ise_size = sizeof (mib2_ipIfStatsEntry_t);
10751                 iae_size = sizeof (mib2_ipv6AddrEntry_t);
10752         }
10753 
10754         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10755         optp->level = MIB2_IP6;
10756         optp->name = 0;
10757         /* Include "unknown interface" ip6_mib */
10758         ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10759         ipst->ips_ip6_mib.ipIfStatsIfIndex =
10760             MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10761         SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10762             ipst->ips_ipv6_forwarding ? 1 : 2);
10763         SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10764             ipst->ips_ipv6_def_hops);
10765         SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10766             sizeof (mib2_ipIfStatsEntry_t));
10767         SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10768             sizeof (mib2_ipv6AddrEntry_t));
10769         SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10770             sizeof (mib2_ipv6RouteEntry_t));
10771         SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10772             sizeof (mib2_ipv6NetToMediaEntry_t));
10773         SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10774             sizeof (ipv6_member_t));
10775         SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10776             sizeof (ipv6_grpsrc_t));
10777 
10778         /*
10779          * Synchronize 64- and 32-bit counters
10780          */
10781         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10782             ipIfStatsHCInReceives);
10783         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10784             ipIfStatsHCInDelivers);
10785         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10786             ipIfStatsHCOutRequests);
10787         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10788             ipIfStatsHCOutForwDatagrams);
10789         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10790             ipIfStatsHCOutMcastPkts);
10791         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10792             ipIfStatsHCInMcastPkts);
10793 
10794         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10795             (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10796                 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10797                     (uint_t)ise_size));
10798         } else if (legacy_req) {
10799                 /* Adjust the EntrySize fields for legacy requests. */
10800                 ise =
10801                     (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10802                 SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10803                 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10804         }
10805 
10806         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10807         ill = ILL_START_WALK_V6(&ctx, ipst);
10808         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10809                 ill->ill_ip_mib->ipIfStatsIfIndex =
10810                     ill->ill_phyint->phyint_ifindex;
10811                 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10812                     ipst->ips_ipv6_forwarding ? 1 : 2);
10813                 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10814                     ill->ill_max_hops);
10815 
10816                 /*
10817                  * Synchronize 64- and 32-bit counters
10818                  */
10819                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10820                     ipIfStatsHCInReceives);
10821                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10822                     ipIfStatsHCInDelivers);
10823                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10824                     ipIfStatsHCOutRequests);
10825                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10826                     ipIfStatsHCOutForwDatagrams);
10827                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10828                     ipIfStatsHCOutMcastPkts);
10829                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10830                     ipIfStatsHCInMcastPkts);
10831 
10832                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10833                     (char *)ill->ill_ip_mib, (int)ise_size)) {
10834                         ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10835                         "%u bytes\n", (uint_t)ise_size));
10836                 } else if (legacy_req) {
10837                         /* Adjust the EntrySize fields for legacy requests. */
10838                         ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10839                             (int)ise_size);
10840                         SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10841                         SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10842                 }
10843         }
10844         rw_exit(&ipst->ips_ill_g_lock);
10845 
10846         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10847         ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10848             (int)optp->level, (int)optp->name, (int)optp->len));
10849         qreply(q, mpctl);
10850         return (mp2ctl);
10851 }
10852 
10853 /*
10854  * ICMPv6 mib: One per ill
10855  */
10856 static mblk_t *
10857 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10858 {
10859         struct opthdr           *optp;
10860         mblk_t                  *mp2ctl;
10861         ill_t                   *ill;
10862         ill_walk_context_t      ctx;
10863         mblk_t                  *mp_tail = NULL;
10864         /*
10865          * Make a copy of the original message
10866          */
10867         mp2ctl = copymsg(mpctl);
10868 
10869         /* fixed length ICMPv6 structure ... */
10870 
10871         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10872         optp->level = MIB2_ICMP6;
10873         optp->name = 0;
10874         /* Include "unknown interface" icmp6_mib */
10875         ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10876             MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10877         ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10878             sizeof (mib2_ipv6IfIcmpEntry_t);
10879         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10880             (char *)&ipst->ips_icmp6_mib,
10881             (int)sizeof (ipst->ips_icmp6_mib))) {
10882                 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10883                     (uint_t)sizeof (ipst->ips_icmp6_mib)));
10884         }
10885 
10886         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10887         ill = ILL_START_WALK_V6(&ctx, ipst);
10888         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10889                 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10890                     ill->ill_phyint->phyint_ifindex;
10891                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10892                     (char *)ill->ill_icmp6_mib,
10893                     (int)sizeof (*ill->ill_icmp6_mib))) {
10894                         ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10895                             "%u bytes\n",
10896                             (uint_t)sizeof (*ill->ill_icmp6_mib)));
10897                 }
10898         }
10899         rw_exit(&ipst->ips_ill_g_lock);
10900 
10901         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10902         ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10903             (int)optp->level, (int)optp->name, (int)optp->len));
10904         qreply(q, mpctl);
10905         return (mp2ctl);
10906 }
10907 
10908 /*
10909  * ire_walk routine to create both ipRouteEntryTable and
10910  * ipRouteAttributeTable in one IRE walk
10911  */
10912 static void
10913 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10914 {
10915         ill_t                           *ill;
10916         mib2_ipRouteEntry_t             *re;
10917         mib2_ipAttributeEntry_t         iaes;
10918         tsol_ire_gw_secattr_t           *attrp;
10919         tsol_gc_t                       *gc = NULL;
10920         tsol_gcgrp_t                    *gcgrp = NULL;
10921         ip_stack_t                      *ipst = ire->ire_ipst;
10922 
10923         ASSERT(ire->ire_ipversion == IPV4_VERSION);
10924 
10925         if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10926                 if (ire->ire_testhidden)
10927                         return;
10928                 if (ire->ire_type & IRE_IF_CLONE)
10929                         return;
10930         }
10931 
10932         if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10933                 return;
10934 
10935         if ((attrp = ire->ire_gw_secattr) != NULL) {
10936                 mutex_enter(&attrp->igsa_lock);
10937                 if ((gc = attrp->igsa_gc) != NULL) {
10938                         gcgrp = gc->gc_grp;
10939                         ASSERT(gcgrp != NULL);
10940                         rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10941                 }
10942                 mutex_exit(&attrp->igsa_lock);
10943         }
10944         /*
10945          * Return all IRE types for route table... let caller pick and choose
10946          */
10947         re->ipRouteDest = ire->ire_addr;
10948         ill = ire->ire_ill;
10949         re->ipRouteIfIndex.o_length = 0;
10950         if (ill != NULL) {
10951                 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10952                 re->ipRouteIfIndex.o_length =
10953                     mi_strlen(re->ipRouteIfIndex.o_bytes);
10954         }
10955         re->ipRouteMetric1 = -1;
10956         re->ipRouteMetric2 = -1;
10957         re->ipRouteMetric3 = -1;
10958         re->ipRouteMetric4 = -1;
10959 
10960         re->ipRouteNextHop = ire->ire_gateway_addr;
10961         /* indirect(4), direct(3), or invalid(2) */
10962         if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10963                 re->ipRouteType = 2;
10964         else if (ire->ire_type & IRE_ONLINK)
10965                 re->ipRouteType = 3;
10966         else
10967                 re->ipRouteType = 4;
10968 
10969         re->ipRouteProto = -1;
10970         re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10971         re->ipRouteMask = ire->ire_mask;
10972         re->ipRouteMetric5 = -1;
10973         re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10974         if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10975                 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10976 
10977         re->ipRouteInfo.re_frag_flag = 0;
10978         re->ipRouteInfo.re_rtt               = 0;
10979         re->ipRouteInfo.re_src_addr  = 0;
10980         re->ipRouteInfo.re_ref               = ire->ire_refcnt;
10981         re->ipRouteInfo.re_obpkt     = ire->ire_ob_pkt_count;
10982         re->ipRouteInfo.re_ibpkt     = ire->ire_ib_pkt_count;
10983         re->ipRouteInfo.re_flags     = ire->ire_flags;
10984 
10985         /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
10986         if (ire->ire_type & IRE_INTERFACE) {
10987                 ire_t *child;
10988 
10989                 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
10990                 child = ire->ire_dep_children;
10991                 while (child != NULL) {
10992                         re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
10993                         re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
10994                         child = child->ire_dep_sib_next;
10995                 }
10996                 rw_exit(&ipst->ips_ire_dep_lock);
10997         }
10998 
10999         if (ire->ire_flags & RTF_DYNAMIC) {
11000                 re->ipRouteInfo.re_ire_type  = IRE_HOST_REDIRECT;
11001         } else {
11002                 re->ipRouteInfo.re_ire_type  = ire->ire_type;
11003         }
11004 
11005         if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11006             (char *)re, (int)sizeof (*re))) {
11007                 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
11008                     (uint_t)sizeof (*re)));
11009         }
11010 
11011         if (gc != NULL) {
11012                 iaes.iae_routeidx = ird->ird_idx;
11013                 iaes.iae_doi = gc->gc_db->gcdb_doi;
11014                 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11015 
11016                 if (!snmp_append_data2(ird->ird_attrs.lp_head,
11017                     &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11018                         ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
11019                             "bytes\n", (uint_t)sizeof (iaes)));
11020                 }
11021         }
11022 
11023         /* bump route index for next pass */
11024         ird->ird_idx++;
11025 
11026         kmem_free(re, sizeof (*re));
11027         if (gcgrp != NULL)
11028                 rw_exit(&gcgrp->gcgrp_rwlock);
11029 }
11030 
11031 /*
11032  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11033  */
11034 static void
11035 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11036 {
11037         ill_t                           *ill;
11038         mib2_ipv6RouteEntry_t           *re;
11039         mib2_ipAttributeEntry_t         iaes;
11040         tsol_ire_gw_secattr_t           *attrp;
11041         tsol_gc_t                       *gc = NULL;
11042         tsol_gcgrp_t                    *gcgrp = NULL;
11043         ip_stack_t                      *ipst = ire->ire_ipst;
11044 
11045         ASSERT(ire->ire_ipversion == IPV6_VERSION);
11046 
11047         if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11048                 if (ire->ire_testhidden)
11049                         return;
11050                 if (ire->ire_type & IRE_IF_CLONE)
11051                         return;
11052         }
11053 
11054         if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11055                 return;
11056 
11057         if ((attrp = ire->ire_gw_secattr) != NULL) {
11058                 mutex_enter(&attrp->igsa_lock);
11059                 if ((gc = attrp->igsa_gc) != NULL) {
11060                         gcgrp = gc->gc_grp;
11061                         ASSERT(gcgrp != NULL);
11062                         rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11063                 }
11064                 mutex_exit(&attrp->igsa_lock);
11065         }
11066         /*
11067          * Return all IRE types for route table... let caller pick and choose
11068          */
11069         re->ipv6RouteDest = ire->ire_addr_v6;
11070         re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11071         re->ipv6RouteIndex = 0;      /* Unique when multiple with same dest/plen */
11072         re->ipv6RouteIfIndex.o_length = 0;
11073         ill = ire->ire_ill;
11074         if (ill != NULL) {
11075                 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11076                 re->ipv6RouteIfIndex.o_length =
11077                     mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11078         }
11079 
11080         ASSERT(!(ire->ire_type & IRE_BROADCAST));
11081 
11082         mutex_enter(&ire->ire_lock);
11083         re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11084         mutex_exit(&ire->ire_lock);
11085 
11086         /* remote(4), local(3), or discard(2) */
11087         if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11088                 re->ipv6RouteType = 2;
11089         else if (ire->ire_type & IRE_ONLINK)
11090                 re->ipv6RouteType = 3;
11091         else
11092                 re->ipv6RouteType = 4;
11093 
11094         re->ipv6RouteProtocol        = -1;
11095         re->ipv6RoutePolicy  = 0;
11096         re->ipv6RouteAge     = gethrestime_sec() - ire->ire_create_time;
11097         re->ipv6RouteNextHopRDI      = 0;
11098         re->ipv6RouteWeight  = 0;
11099         re->ipv6RouteMetric  = 0;
11100         re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11101         if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11102                 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11103 
11104         re->ipv6RouteInfo.re_frag_flag       = 0;
11105         re->ipv6RouteInfo.re_rtt     = 0;
11106         re->ipv6RouteInfo.re_src_addr        = ipv6_all_zeros;
11107         re->ipv6RouteInfo.re_obpkt   = ire->ire_ob_pkt_count;
11108         re->ipv6RouteInfo.re_ibpkt   = ire->ire_ib_pkt_count;
11109         re->ipv6RouteInfo.re_ref     = ire->ire_refcnt;
11110         re->ipv6RouteInfo.re_flags   = ire->ire_flags;
11111 
11112         /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11113         if (ire->ire_type & IRE_INTERFACE) {
11114                 ire_t *child;
11115 
11116                 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11117                 child = ire->ire_dep_children;
11118                 while (child != NULL) {
11119                         re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11120                         re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11121                         child = child->ire_dep_sib_next;
11122                 }
11123                 rw_exit(&ipst->ips_ire_dep_lock);
11124         }
11125         if (ire->ire_flags & RTF_DYNAMIC) {
11126                 re->ipv6RouteInfo.re_ire_type        = IRE_HOST_REDIRECT;
11127         } else {
11128                 re->ipv6RouteInfo.re_ire_type        = ire->ire_type;
11129         }
11130 
11131         if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11132             (char *)re, (int)sizeof (*re))) {
11133                 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11134                     (uint_t)sizeof (*re)));
11135         }
11136 
11137         if (gc != NULL) {
11138                 iaes.iae_routeidx = ird->ird_idx;
11139                 iaes.iae_doi = gc->gc_db->gcdb_doi;
11140                 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11141 
11142                 if (!snmp_append_data2(ird->ird_attrs.lp_head,
11143                     &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11144                         ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11145                             "bytes\n", (uint_t)sizeof (iaes)));
11146                 }
11147         }
11148 
11149         /* bump route index for next pass */
11150         ird->ird_idx++;
11151 
11152         kmem_free(re, sizeof (*re));
11153         if (gcgrp != NULL)
11154                 rw_exit(&gcgrp->gcgrp_rwlock);
11155 }
11156 
11157 /*
11158  * ncec_walk routine to create ipv6NetToMediaEntryTable
11159  */
11160 static int
11161 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird)
11162 {
11163         ill_t                           *ill;
11164         mib2_ipv6NetToMediaEntry_t      ntme;
11165 
11166         ill = ncec->ncec_ill;
11167         /* skip arpce entries, and loopback ncec entries */
11168         if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11169                 return (0);
11170         /*
11171          * Neighbor cache entry attached to IRE with on-link
11172          * destination.
11173          * We report all IPMP groups on ncec_ill which is normally the upper.
11174          */
11175         ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11176         ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11177         ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11178         if (ncec->ncec_lladdr != NULL) {
11179                 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11180                     ntme.ipv6NetToMediaPhysAddress.o_length);
11181         }
11182         /*
11183          * Note: Returns ND_* states. Should be:
11184          * reachable(1), stale(2), delay(3), probe(4),
11185          * invalid(5), unknown(6)
11186          */
11187         ntme.ipv6NetToMediaState = ncec->ncec_state;
11188         ntme.ipv6NetToMediaLastUpdated = 0;
11189 
11190         /* other(1), dynamic(2), static(3), local(4) */
11191         if (NCE_MYADDR(ncec)) {
11192                 ntme.ipv6NetToMediaType = 4;
11193         } else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11194                 ntme.ipv6NetToMediaType = 1; /* proxy */
11195         } else if (ncec->ncec_flags & NCE_F_STATIC) {
11196                 ntme.ipv6NetToMediaType = 3;
11197         } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11198                 ntme.ipv6NetToMediaType = 1;
11199         } else {
11200                 ntme.ipv6NetToMediaType = 2;
11201         }
11202 
11203         if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11204             &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11205                 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11206                     (uint_t)sizeof (ntme)));
11207         }
11208         return (0);
11209 }
11210 
11211 int
11212 nce2ace(ncec_t *ncec)
11213 {
11214         int flags = 0;
11215 
11216         if (NCE_ISREACHABLE(ncec))
11217                 flags |= ACE_F_RESOLVED;
11218         if (ncec->ncec_flags & NCE_F_AUTHORITY)
11219                 flags |= ACE_F_AUTHORITY;
11220         if (ncec->ncec_flags & NCE_F_PUBLISH)
11221                 flags |= ACE_F_PUBLISH;
11222         if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11223                 flags |= ACE_F_PERMANENT;
11224         if (NCE_MYADDR(ncec))
11225                 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11226         if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11227                 flags |= ACE_F_UNVERIFIED;
11228         if (ncec->ncec_flags & NCE_F_AUTHORITY)
11229                 flags |= ACE_F_AUTHORITY;
11230         if (ncec->ncec_flags & NCE_F_DELAYED)
11231                 flags |= ACE_F_DELAYED;
11232         return (flags);
11233 }
11234 
11235 /*
11236  * ncec_walk routine to create ipNetToMediaEntryTable
11237  */
11238 static int
11239 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird)
11240 {
11241         ill_t                           *ill;
11242         mib2_ipNetToMediaEntry_t        ntme;
11243         const char                      *name = "unknown";
11244         ipaddr_t                        ncec_addr;
11245 
11246         ill = ncec->ncec_ill;
11247         if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11248             ill->ill_net_type == IRE_LOOPBACK)
11249                 return (0);
11250 
11251         /* We report all IPMP groups on ncec_ill which is normally the upper. */
11252         name = ill->ill_name;
11253         /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11254         if (NCE_MYADDR(ncec)) {
11255                 ntme.ipNetToMediaType = 4;
11256         } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11257                 ntme.ipNetToMediaType = 1;
11258         } else {
11259                 ntme.ipNetToMediaType = 3;
11260         }
11261         ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11262         bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11263             ntme.ipNetToMediaIfIndex.o_length);
11264 
11265         IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11266         bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11267 
11268         ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11269         ncec_addr = INADDR_BROADCAST;
11270         bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11271             sizeof (ncec_addr));
11272         /*
11273          * map all the flags to the ACE counterpart.
11274          */
11275         ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11276 
11277         ntme.ipNetToMediaPhysAddress.o_length =
11278             MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11279 
11280         if (!NCE_ISREACHABLE(ncec))
11281                 ntme.ipNetToMediaPhysAddress.o_length = 0;
11282         else {
11283                 if (ncec->ncec_lladdr != NULL) {
11284                         bcopy(ncec->ncec_lladdr,
11285                             ntme.ipNetToMediaPhysAddress.o_bytes,
11286                             ntme.ipNetToMediaPhysAddress.o_length);
11287                 }
11288         }
11289 
11290         if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11291             &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11292                 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11293                     (uint_t)sizeof (ntme)));
11294         }
11295         return (0);
11296 }
11297 
11298 /*
11299  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11300  */
11301 /* ARGSUSED */
11302 int
11303 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11304 {
11305         switch (level) {
11306         case MIB2_IP:
11307         case MIB2_ICMP:
11308                 switch (name) {
11309                 default:
11310                         break;
11311                 }
11312                 return (1);
11313         default:
11314                 return (1);
11315         }
11316 }
11317 
11318 /*
11319  * When there exists both a 64- and 32-bit counter of a particular type
11320  * (i.e., InReceives), only the 64-bit counters are added.
11321  */
11322 void
11323 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11324 {
11325         UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11326         UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11327         UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11328         UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11329         UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11330         UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11331         UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11332         UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11333         UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11334         UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11335         UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11336         UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11337         UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11338         UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11339         UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11340         UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11341         UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11342         UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11343         UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11344         UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11345         UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11346         UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11347             o2->ipIfStatsInWrongIPVersion);
11348         UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11349             o2->ipIfStatsInWrongIPVersion);
11350         UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11351             o2->ipIfStatsOutSwitchIPVersion);
11352         UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11353         UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11354         UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11355             o2->ipIfStatsHCInForwDatagrams);
11356         UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11357         UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11358         UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11359             o2->ipIfStatsHCOutForwDatagrams);
11360         UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11361         UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11362         UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11363         UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11364         UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11365         UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11366         UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11367             o2->ipIfStatsHCOutMcastOctets);
11368         UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11369         UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11370         UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11371         UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11372         UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11373         UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11374         UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11375 }
11376 
11377 void
11378 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11379 {
11380         UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11381         UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11382         UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11383         UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11384         UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11385         UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11386         UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11387         UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11388         UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11389         UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11390             o2->ipv6IfIcmpInRouterSolicits);
11391         UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11392             o2->ipv6IfIcmpInRouterAdvertisements);
11393         UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11394             o2->ipv6IfIcmpInNeighborSolicits);
11395         UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11396             o2->ipv6IfIcmpInNeighborAdvertisements);
11397         UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11398         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11399             o2->ipv6IfIcmpInGroupMembQueries);
11400         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11401             o2->ipv6IfIcmpInGroupMembResponses);
11402         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11403             o2->ipv6IfIcmpInGroupMembReductions);
11404         UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11405         UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11406         UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11407             o2->ipv6IfIcmpOutDestUnreachs);
11408         UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11409             o2->ipv6IfIcmpOutAdminProhibs);
11410         UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11411         UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11412             o2->ipv6IfIcmpOutParmProblems);
11413         UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11414         UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11415         UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11416         UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11417             o2->ipv6IfIcmpOutRouterSolicits);
11418         UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11419             o2->ipv6IfIcmpOutRouterAdvertisements);
11420         UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11421             o2->ipv6IfIcmpOutNeighborSolicits);
11422         UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11423             o2->ipv6IfIcmpOutNeighborAdvertisements);
11424         UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11425         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11426             o2->ipv6IfIcmpOutGroupMembQueries);
11427         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11428             o2->ipv6IfIcmpOutGroupMembResponses);
11429         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11430             o2->ipv6IfIcmpOutGroupMembReductions);
11431         UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11432         UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11433         UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11434             o2->ipv6IfIcmpInBadNeighborAdvertisements);
11435         UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11436             o2->ipv6IfIcmpInBadNeighborSolicitations);
11437         UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11438         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11439             o2->ipv6IfIcmpInGroupMembTotal);
11440         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11441             o2->ipv6IfIcmpInGroupMembBadQueries);
11442         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11443             o2->ipv6IfIcmpInGroupMembBadReports);
11444         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11445             o2->ipv6IfIcmpInGroupMembOurReports);
11446 }
11447 
11448 /*
11449  * Called before the options are updated to check if this packet will
11450  * be source routed from here.
11451  * This routine assumes that the options are well formed i.e. that they
11452  * have already been checked.
11453  */
11454 boolean_t
11455 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11456 {
11457         ipoptp_t        opts;
11458         uchar_t         *opt;
11459         uint8_t         optval;
11460         uint8_t         optlen;
11461         ipaddr_t        dst;
11462 
11463         if (IS_SIMPLE_IPH(ipha)) {
11464                 ip2dbg(("not source routed\n"));
11465                 return (B_FALSE);
11466         }
11467         dst = ipha->ipha_dst;
11468         for (optval = ipoptp_first(&opts, ipha);
11469             optval != IPOPT_EOL;
11470             optval = ipoptp_next(&opts)) {
11471                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11472                 opt = opts.ipoptp_cur;
11473                 optlen = opts.ipoptp_len;
11474                 ip2dbg(("ip_source_routed: opt %d, len %d\n",
11475                     optval, optlen));
11476                 switch (optval) {
11477                         uint32_t off;
11478                 case IPOPT_SSRR:
11479                 case IPOPT_LSRR:
11480                         /*
11481                          * If dst is one of our addresses and there are some
11482                          * entries left in the source route return (true).
11483                          */
11484                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11485                                 ip2dbg(("ip_source_routed: not next"
11486                                     " source route 0x%x\n",
11487                                     ntohl(dst)));
11488                                 return (B_FALSE);
11489                         }
11490                         off = opt[IPOPT_OFFSET];
11491                         off--;
11492                         if (optlen < IP_ADDR_LEN ||
11493                             off > optlen - IP_ADDR_LEN) {
11494                                 /* End of source route */
11495                                 ip1dbg(("ip_source_routed: end of SR\n"));
11496                                 return (B_FALSE);
11497                         }
11498                         return (B_TRUE);
11499                 }
11500         }
11501         ip2dbg(("not source routed\n"));
11502         return (B_FALSE);
11503 }
11504 
11505 /*
11506  * ip_unbind is called by the transports to remove a conn from
11507  * the fanout table.
11508  */
11509 void
11510 ip_unbind(conn_t *connp)
11511 {
11512 
11513         ASSERT(!MUTEX_HELD(&connp->conn_lock));
11514 
11515         if (is_system_labeled() && connp->conn_anon_port) {
11516                 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11517                     connp->conn_mlp_type, connp->conn_proto,
11518                     ntohs(connp->conn_lport), B_FALSE);
11519                 connp->conn_anon_port = 0;
11520         }
11521         connp->conn_mlp_type = mlptSingle;
11522 
11523         ipcl_hash_remove(connp);
11524 }
11525 
11526 /*
11527  * Used for deciding the MSS size for the upper layer. Thus
11528  * we need to check the outbound policy values in the conn.
11529  */
11530 int
11531 conn_ipsec_length(conn_t *connp)
11532 {
11533         ipsec_latch_t *ipl;
11534 
11535         ipl = connp->conn_latch;
11536         if (ipl == NULL)
11537                 return (0);
11538 
11539         if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11540                 return (0);
11541 
11542         return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11543 }
11544 
11545 /*
11546  * Returns an estimate of the IPsec headers size. This is used if
11547  * we don't want to call into IPsec to get the exact size.
11548  */
11549 int
11550 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11551 {
11552         ipsec_action_t *a;
11553 
11554         if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11555                 return (0);
11556 
11557         a = ixa->ixa_ipsec_action;
11558         if (a == NULL) {
11559                 ASSERT(ixa->ixa_ipsec_policy != NULL);
11560                 a = ixa->ixa_ipsec_policy->ipsp_act;
11561         }
11562         ASSERT(a != NULL);
11563 
11564         return (a->ipa_ovhd);
11565 }
11566 
11567 /*
11568  * If there are any source route options, return the true final
11569  * destination. Otherwise, return the destination.
11570  */
11571 ipaddr_t
11572 ip_get_dst(ipha_t *ipha)
11573 {
11574         ipoptp_t        opts;
11575         uchar_t         *opt;
11576         uint8_t         optval;
11577         uint8_t         optlen;
11578         ipaddr_t        dst;
11579         uint32_t off;
11580 
11581         dst = ipha->ipha_dst;
11582 
11583         if (IS_SIMPLE_IPH(ipha))
11584                 return (dst);
11585 
11586         for (optval = ipoptp_first(&opts, ipha);
11587             optval != IPOPT_EOL;
11588             optval = ipoptp_next(&opts)) {
11589                 opt = opts.ipoptp_cur;
11590                 optlen = opts.ipoptp_len;
11591                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11592                 switch (optval) {
11593                 case IPOPT_SSRR:
11594                 case IPOPT_LSRR:
11595                         off = opt[IPOPT_OFFSET];
11596                         /*
11597                          * If one of the conditions is true, it means
11598                          * end of options and dst already has the right
11599                          * value.
11600                          */
11601                         if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11602                                 off = optlen - IP_ADDR_LEN;
11603                                 bcopy(&opt[off], &dst, IP_ADDR_LEN);
11604                         }
11605                         return (dst);
11606                 default:
11607                         break;
11608                 }
11609         }
11610 
11611         return (dst);
11612 }
11613 
11614 /*
11615  * Outbound IP fragmentation routine.
11616  * Assumes the caller has checked whether or not fragmentation should
11617  * be allowed. Here we copy the DF bit from the header to all the generated
11618  * fragments.
11619  */
11620 int
11621 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11622     uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11623     zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11624 {
11625         int             i1;
11626         int             hdr_len;
11627         mblk_t          *hdr_mp;
11628         ipha_t          *ipha;
11629         int             ip_data_end;
11630         int             len;
11631         mblk_t          *mp = mp_orig;
11632         int             offset;
11633         ill_t           *ill = nce->nce_ill;
11634         ip_stack_t      *ipst = ill->ill_ipst;
11635         mblk_t          *carve_mp;
11636         uint32_t        frag_flag;
11637         uint_t          priority = mp->b_band;
11638         int             error = 0;
11639 
11640         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11641 
11642         if (pkt_len != msgdsize(mp)) {
11643                 ip0dbg(("Packet length mismatch: %d, %ld\n",
11644                     pkt_len, msgdsize(mp)));
11645                 freemsg(mp);
11646                 return (EINVAL);
11647         }
11648 
11649         if (max_frag == 0) {
11650                 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11651                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11652                 ip_drop_output("FragFails: zero max_frag", mp, ill);
11653                 freemsg(mp);
11654                 return (EINVAL);
11655         }
11656 
11657         ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11658         ipha = (ipha_t *)mp->b_rptr;
11659         ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11660         frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11661 
11662         /*
11663          * Establish the starting offset.  May not be zero if we are fragging
11664          * a fragment that is being forwarded.
11665          */
11666         offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11667 
11668         /* TODO why is this test needed? */
11669         if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11670                 /* TODO: notify ulp somehow */
11671                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11672                 ip_drop_output("FragFails: bad starting offset", mp, ill);
11673                 freemsg(mp);
11674                 return (EINVAL);
11675         }
11676 
11677         hdr_len = IPH_HDR_LENGTH(ipha);
11678         ipha->ipha_hdr_checksum = 0;
11679 
11680         /*
11681          * Establish the number of bytes maximum per frag, after putting
11682          * in the header.
11683          */
11684         len = (max_frag - hdr_len) & ~7;
11685 
11686         /* Get a copy of the header for the trailing frags */
11687         hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11688             mp);
11689         if (hdr_mp == NULL) {
11690                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11691                 ip_drop_output("FragFails: no hdr_mp", mp, ill);
11692                 freemsg(mp);
11693                 return (ENOBUFS);
11694         }
11695 
11696         /* Store the starting offset, with the MoreFrags flag. */
11697         i1 = offset | IPH_MF | frag_flag;
11698         ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11699 
11700         /* Establish the ending byte offset, based on the starting offset. */
11701         offset <<= 3;
11702         ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11703 
11704         /* Store the length of the first fragment in the IP header. */
11705         i1 = len + hdr_len;
11706         ASSERT(i1 <= IP_MAXPACKET);
11707         ipha->ipha_length = htons((uint16_t)i1);
11708 
11709         /*
11710          * Compute the IP header checksum for the first frag.  We have to
11711          * watch out that we stop at the end of the header.
11712          */
11713         ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11714 
11715         /*
11716          * Now carve off the first frag.  Note that this will include the
11717          * original IP header.
11718          */
11719         if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11720                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11721                 ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11722                 freeb(hdr_mp);
11723                 freemsg(mp_orig);
11724                 return (ENOBUFS);
11725         }
11726 
11727         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11728 
11729         error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11730             ixa_cookie);
11731         if (error != 0 && error != EWOULDBLOCK) {
11732                 /* No point in sending the other fragments */
11733                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11734                 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11735                 freeb(hdr_mp);
11736                 freemsg(mp_orig);
11737                 return (error);
11738         }
11739 
11740         /* No need to redo state machine in loop */
11741         ixaflags &= ~IXAF_REACH_CONF;
11742 
11743         /* Advance the offset to the second frag starting point. */
11744         offset += len;
11745         /*
11746          * Update hdr_len from the copied header - there might be less options
11747          * in the later fragments.
11748          */
11749         hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11750         /* Loop until done. */
11751         for (;;) {
11752                 uint16_t        offset_and_flags;
11753                 uint16_t        ip_len;
11754 
11755                 if (ip_data_end - offset > len) {
11756                         /*
11757                          * Carve off the appropriate amount from the original
11758                          * datagram.
11759                          */
11760                         if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11761                                 mp = NULL;
11762                                 break;
11763                         }
11764                         /*
11765                          * More frags after this one.  Get another copy
11766                          * of the header.
11767                          */
11768                         if (carve_mp->b_datap->db_ref == 1 &&
11769                             hdr_mp->b_wptr - hdr_mp->b_rptr <
11770                             carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11771                                 /* Inline IP header */
11772                                 carve_mp->b_rptr -= hdr_mp->b_wptr -
11773                                     hdr_mp->b_rptr;
11774                                 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11775                                     hdr_mp->b_wptr - hdr_mp->b_rptr);
11776                                 mp = carve_mp;
11777                         } else {
11778                                 if (!(mp = copyb(hdr_mp))) {
11779                                         freemsg(carve_mp);
11780                                         break;
11781                                 }
11782                                 /* Get priority marking, if any. */
11783                                 mp->b_band = priority;
11784                                 mp->b_cont = carve_mp;
11785                         }
11786                         ipha = (ipha_t *)mp->b_rptr;
11787                         offset_and_flags = IPH_MF;
11788                 } else {
11789                         /*
11790                          * Last frag.  Consume the header. Set len to
11791                          * the length of this last piece.
11792                          */
11793                         len = ip_data_end - offset;
11794 
11795                         /*
11796                          * Carve off the appropriate amount from the original
11797                          * datagram.
11798                          */
11799                         if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11800                                 mp = NULL;
11801                                 break;
11802                         }
11803                         if (carve_mp->b_datap->db_ref == 1 &&
11804                             hdr_mp->b_wptr - hdr_mp->b_rptr <
11805                             carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11806                                 /* Inline IP header */
11807                                 carve_mp->b_rptr -= hdr_mp->b_wptr -
11808                                     hdr_mp->b_rptr;
11809                                 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11810                                     hdr_mp->b_wptr - hdr_mp->b_rptr);
11811                                 mp = carve_mp;
11812                                 freeb(hdr_mp);
11813                                 hdr_mp = mp;
11814                         } else {
11815                                 mp = hdr_mp;
11816                                 /* Get priority marking, if any. */
11817                                 mp->b_band = priority;
11818                                 mp->b_cont = carve_mp;
11819                         }
11820                         ipha = (ipha_t *)mp->b_rptr;
11821                         /* A frag of a frag might have IPH_MF non-zero */
11822                         offset_and_flags =
11823                             ntohs(ipha->ipha_fragment_offset_and_flags) &
11824                             IPH_MF;
11825                 }
11826                 offset_and_flags |= (uint16_t)(offset >> 3);
11827                 offset_and_flags |= (uint16_t)frag_flag;
11828                 /* Store the offset and flags in the IP header. */
11829                 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11830 
11831                 /* Store the length in the IP header. */
11832                 ip_len = (uint16_t)(len + hdr_len);
11833                 ipha->ipha_length = htons(ip_len);
11834 
11835                 /*
11836                  * Set the IP header checksum.  Note that mp is just
11837                  * the header, so this is easy to pass to ip_csum.
11838                  */
11839                 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11840 
11841                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11842 
11843                 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11844                     nolzid, ixa_cookie);
11845                 /* All done if we just consumed the hdr_mp. */
11846                 if (mp == hdr_mp) {
11847                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11848                         return (error);
11849                 }
11850                 if (error != 0 && error != EWOULDBLOCK) {
11851                         DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11852                             mblk_t *, hdr_mp);
11853                         /* No point in sending the other fragments */
11854                         break;
11855                 }
11856 
11857                 /* Otherwise, advance and loop. */
11858                 offset += len;
11859         }
11860         /* Clean up following allocation failure. */
11861         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11862         ip_drop_output("FragFails: loop ended", NULL, ill);
11863         if (mp != hdr_mp)
11864                 freeb(hdr_mp);
11865         if (mp != mp_orig)
11866                 freemsg(mp_orig);
11867         return (error);
11868 }
11869 
11870 /*
11871  * Copy the header plus those options which have the copy bit set
11872  */
11873 static mblk_t *
11874 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11875     mblk_t *src)
11876 {
11877         mblk_t  *mp;
11878         uchar_t *up;
11879 
11880         /*
11881          * Quick check if we need to look for options without the copy bit
11882          * set
11883          */
11884         mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11885         if (!mp)
11886                 return (mp);
11887         mp->b_rptr += ipst->ips_ip_wroff_extra;
11888         if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11889                 bcopy(rptr, mp->b_rptr, hdr_len);
11890                 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11891                 return (mp);
11892         }
11893         up  = mp->b_rptr;
11894         bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11895         up += IP_SIMPLE_HDR_LENGTH;
11896         rptr += IP_SIMPLE_HDR_LENGTH;
11897         hdr_len -= IP_SIMPLE_HDR_LENGTH;
11898         while (hdr_len > 0) {
11899                 uint32_t optval;
11900                 uint32_t optlen;
11901 
11902                 optval = *rptr;
11903                 if (optval == IPOPT_EOL)
11904                         break;
11905                 if (optval == IPOPT_NOP)
11906                         optlen = 1;
11907                 else
11908                         optlen = rptr[1];
11909                 if (optval & IPOPT_COPY) {
11910                         bcopy(rptr, up, optlen);
11911                         up += optlen;
11912                 }
11913                 rptr += optlen;
11914                 hdr_len -= optlen;
11915         }
11916         /*
11917          * Make sure that we drop an even number of words by filling
11918          * with EOL to the next word boundary.
11919          */
11920         for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11921             hdr_len & 0x3; hdr_len++)
11922                 *up++ = IPOPT_EOL;
11923         mp->b_wptr = up;
11924         /* Update header length */
11925         mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11926         return (mp);
11927 }
11928 
11929 /*
11930  * Update any source route, record route, or timestamp options when
11931  * sending a packet back to ourselves.
11932  * Check that we are at end of strict source route.
11933  * The options have been sanity checked by ip_output_options().
11934  */
11935 void
11936 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11937 {
11938         ipoptp_t        opts;
11939         uchar_t         *opt;
11940         uint8_t         optval;
11941         uint8_t         optlen;
11942         ipaddr_t        dst;
11943         uint32_t        ts;
11944         timestruc_t     now;
11945 
11946         for (optval = ipoptp_first(&opts, ipha);
11947             optval != IPOPT_EOL;
11948             optval = ipoptp_next(&opts)) {
11949                 opt = opts.ipoptp_cur;
11950                 optlen = opts.ipoptp_len;
11951                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11952                 switch (optval) {
11953                         uint32_t off;
11954                 case IPOPT_SSRR:
11955                 case IPOPT_LSRR:
11956                         off = opt[IPOPT_OFFSET];
11957                         off--;
11958                         if (optlen < IP_ADDR_LEN ||
11959                             off > optlen - IP_ADDR_LEN) {
11960                                 /* End of source route */
11961                                 break;
11962                         }
11963                         /*
11964                          * This will only happen if two consecutive entries
11965                          * in the source route contains our address or if
11966                          * it is a packet with a loose source route which
11967                          * reaches us before consuming the whole source route
11968                          */
11969 
11970                         if (optval == IPOPT_SSRR) {
11971                                 return;
11972                         }
11973                         /*
11974                          * Hack: instead of dropping the packet truncate the
11975                          * source route to what has been used by filling the
11976                          * rest with IPOPT_NOP.
11977                          */
11978                         opt[IPOPT_OLEN] = (uint8_t)off;
11979                         while (off < optlen) {
11980                                 opt[off++] = IPOPT_NOP;
11981                         }
11982                         break;
11983                 case IPOPT_RR:
11984                         off = opt[IPOPT_OFFSET];
11985                         off--;
11986                         if (optlen < IP_ADDR_LEN ||
11987                             off > optlen - IP_ADDR_LEN) {
11988                                 /* No more room - ignore */
11989                                 ip1dbg((
11990                                     "ip_output_local_options: end of RR\n"));
11991                                 break;
11992                         }
11993                         dst = htonl(INADDR_LOOPBACK);
11994                         bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
11995                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
11996                         break;
11997                 case IPOPT_TS:
11998                         /* Insert timestamp if there is romm */
11999                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12000                         case IPOPT_TS_TSONLY:
12001                                 off = IPOPT_TS_TIMELEN;
12002                                 break;
12003                         case IPOPT_TS_PRESPEC:
12004                         case IPOPT_TS_PRESPEC_RFC791:
12005                                 /* Verify that the address matched */
12006                                 off = opt[IPOPT_OFFSET] - 1;
12007                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
12008                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
12009                                         /* Not for us */
12010                                         break;
12011                                 }
12012                                 /* FALLTHRU */
12013                         case IPOPT_TS_TSANDADDR:
12014                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
12015                                 break;
12016                         default:
12017                                 /*
12018                                  * ip_*put_options should have already
12019                                  * dropped this packet.
12020                                  */
12021                                 cmn_err(CE_PANIC, "ip_output_local_options: "
12022                                     "unknown IT - bug in ip_output_options?\n");
12023                                 return; /* Keep "lint" happy */
12024                         }
12025                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
12026                                 /* Increase overflow counter */
12027                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
12028                                 opt[IPOPT_POS_OV_FLG] = (uint8_t)
12029                                     (opt[IPOPT_POS_OV_FLG] & 0x0F) |
12030                                     (off << 4);
12031                                 break;
12032                         }
12033                         off = opt[IPOPT_OFFSET] - 1;
12034                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12035                         case IPOPT_TS_PRESPEC:
12036                         case IPOPT_TS_PRESPEC_RFC791:
12037                         case IPOPT_TS_TSANDADDR:
12038                                 dst = htonl(INADDR_LOOPBACK);
12039                                 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12040                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12041                                 /* FALLTHRU */
12042                         case IPOPT_TS_TSONLY:
12043                                 off = opt[IPOPT_OFFSET] - 1;
12044                                 /* Compute # of milliseconds since midnight */
12045                                 gethrestime(&now);
12046                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12047                                     NSEC2MSEC(now.tv_nsec);
12048                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12049                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12050                                 break;
12051                         }
12052                         break;
12053                 }
12054         }
12055 }
12056 
12057 /*
12058  * Prepend an M_DATA fastpath header, and if none present prepend a
12059  * DL_UNITDATA_REQ. Frees the mblk on failure.
12060  *
12061  * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12062  * If there is a change to them, the nce will be deleted (condemned) and
12063  * a new nce_t will be created when packets are sent. Thus we need no locks
12064  * to access those fields.
12065  *
12066  * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12067  * we place b_band in dl_priority.dl_max.
12068  */
12069 static mblk_t *
12070 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12071 {
12072         uint_t  hlen;
12073         mblk_t *mp1;
12074         uint_t  priority;
12075         uchar_t *rptr;
12076 
12077         rptr = mp->b_rptr;
12078 
12079         ASSERT(DB_TYPE(mp) == M_DATA);
12080         priority = mp->b_band;
12081 
12082         ASSERT(nce != NULL);
12083         if ((mp1 = nce->nce_fp_mp) != NULL) {
12084                 hlen = MBLKL(mp1);
12085                 /*
12086                  * Check if we have enough room to prepend fastpath
12087                  * header
12088                  */
12089                 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12090                         rptr -= hlen;
12091                         bcopy(mp1->b_rptr, rptr, hlen);
12092                         /*
12093                          * Set the b_rptr to the start of the link layer
12094                          * header
12095                          */
12096                         mp->b_rptr = rptr;
12097                         return (mp);
12098                 }
12099                 mp1 = copyb(mp1);
12100                 if (mp1 == NULL) {
12101                         ill_t *ill = nce->nce_ill;
12102 
12103                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12104                         ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12105                         freemsg(mp);
12106                         return (NULL);
12107                 }
12108                 mp1->b_band = priority;
12109                 mp1->b_cont = mp;
12110                 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12111                 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12112                 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12113                 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12114                 DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12115                 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12116                 /*
12117                  * XXX disable ICK_VALID and compute checksum
12118                  * here; can happen if nce_fp_mp changes and
12119                  * it can't be copied now due to insufficient
12120                  * space. (unlikely, fp mp can change, but it
12121                  * does not increase in length)
12122                  */
12123                 return (mp1);
12124         }
12125         mp1 = copyb(nce->nce_dlur_mp);
12126 
12127         if (mp1 == NULL) {
12128                 ill_t *ill = nce->nce_ill;
12129 
12130                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12131                 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12132                 freemsg(mp);
12133                 return (NULL);
12134         }
12135         mp1->b_cont = mp;
12136         if (priority != 0) {
12137                 mp1->b_band = priority;
12138                 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12139                     priority;
12140         }
12141         return (mp1);
12142 }
12143 
12144 /*
12145  * Finish the outbound IPsec processing. This function is called from
12146  * ipsec_out_process() if the IPsec packet was processed
12147  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12148  * asynchronously.
12149  *
12150  * This is common to IPv4 and IPv6.
12151  */
12152 int
12153 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12154 {
12155         iaflags_t       ixaflags = ixa->ixa_flags;
12156         uint_t          pktlen;
12157 
12158 
12159         /* AH/ESP don't update ixa_pktlen when they modify the packet */
12160         if (ixaflags & IXAF_IS_IPV4) {
12161                 ipha_t          *ipha = (ipha_t *)mp->b_rptr;
12162 
12163                 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12164                 pktlen = ntohs(ipha->ipha_length);
12165         } else {
12166                 ip6_t           *ip6h = (ip6_t *)mp->b_rptr;
12167 
12168                 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12169                 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12170         }
12171 
12172         /*
12173          * We release any hard reference on the SAs here to make
12174          * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12175          * on the SAs.
12176          * If in the future we want the hard latching of the SAs in the
12177          * ip_xmit_attr_t then we should remove this.
12178          */
12179         if (ixa->ixa_ipsec_esp_sa != NULL) {
12180                 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12181                 ixa->ixa_ipsec_esp_sa = NULL;
12182         }
12183         if (ixa->ixa_ipsec_ah_sa != NULL) {
12184                 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12185                 ixa->ixa_ipsec_ah_sa = NULL;
12186         }
12187 
12188         /* Do we need to fragment? */
12189         if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12190             pktlen > ixa->ixa_fragsize) {
12191                 if (ixaflags & IXAF_IS_IPV4) {
12192                         ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12193                         /*
12194                          * We check for the DF case in ipsec_out_process
12195                          * hence this only handles the non-DF case.
12196                          */
12197                         return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12198                             pktlen, ixa->ixa_fragsize,
12199                             ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12200                             ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12201                             &ixa->ixa_cookie));
12202                 } else {
12203                         mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12204                         if (mp == NULL) {
12205                                 /* MIB and ip_drop_output already done */
12206                                 return (ENOMEM);
12207                         }
12208                         pktlen += sizeof (ip6_frag_t);
12209                         if (pktlen > ixa->ixa_fragsize) {
12210                                 return (ip_fragment_v6(mp, ixa->ixa_nce,
12211                                     ixa->ixa_flags, pktlen,
12212                                     ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12213                                     ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12214                                     ixa->ixa_postfragfn, &ixa->ixa_cookie));
12215                         }
12216                 }
12217         }
12218         return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12219             pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12220             ixa->ixa_no_loop_zoneid, NULL));
12221 }
12222 
12223 /*
12224  * Finish the inbound IPsec processing. This function is called from
12225  * ipsec_out_process() if the IPsec packet was processed
12226  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12227  * asynchronously.
12228  *
12229  * This is common to IPv4 and IPv6.
12230  */
12231 void
12232 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12233 {
12234         iaflags_t       iraflags = ira->ira_flags;
12235 
12236         /* Length might have changed */
12237         if (iraflags & IRAF_IS_IPV4) {
12238                 ipha_t          *ipha = (ipha_t *)mp->b_rptr;
12239 
12240                 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12241                 ira->ira_pktlen = ntohs(ipha->ipha_length);
12242                 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12243                 ira->ira_protocol = ipha->ipha_protocol;
12244 
12245                 ip_fanout_v4(mp, ipha, ira);
12246         } else {
12247                 ip6_t           *ip6h = (ip6_t *)mp->b_rptr;
12248                 uint8_t         *nexthdrp;
12249 
12250                 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12251                 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12252                 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12253                     &nexthdrp)) {
12254                         /* Malformed packet */
12255                         BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12256                         ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12257                         freemsg(mp);
12258                         return;
12259                 }
12260                 ira->ira_protocol = *nexthdrp;
12261                 ip_fanout_v6(mp, ip6h, ira);
12262         }
12263 }
12264 
12265 /*
12266  * Select which AH & ESP SA's to use (if any) for the outbound packet.
12267  *
12268  * If this function returns B_TRUE, the requested SA's have been filled
12269  * into the ixa_ipsec_*_sa pointers.
12270  *
12271  * If the function returns B_FALSE, the packet has been "consumed", most
12272  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12273  *
12274  * The SA references created by the protocol-specific "select"
12275  * function will be released in ip_output_post_ipsec.
12276  */
12277 static boolean_t
12278 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12279 {
12280         boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12281         ipsec_policy_t *pp;
12282         ipsec_action_t *ap;
12283 
12284         ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12285         ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12286             (ixa->ixa_ipsec_action != NULL));
12287 
12288         ap = ixa->ixa_ipsec_action;
12289         if (ap == NULL) {
12290                 pp = ixa->ixa_ipsec_policy;
12291                 ASSERT(pp != NULL);
12292                 ap = pp->ipsp_act;
12293                 ASSERT(ap != NULL);
12294         }
12295 
12296         /*
12297          * We have an action.  now, let's select SA's.
12298          * A side effect of setting ixa_ipsec_*_sa is that it will
12299          * be cached in the conn_t.
12300          */
12301         if (ap->ipa_want_esp) {
12302                 if (ixa->ixa_ipsec_esp_sa == NULL) {
12303                         need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12304                             IPPROTO_ESP);
12305                 }
12306                 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12307         }
12308 
12309         if (ap->ipa_want_ah) {
12310                 if (ixa->ixa_ipsec_ah_sa == NULL) {
12311                         need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12312                             IPPROTO_AH);
12313                 }
12314                 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12315                 /*
12316                  * The ESP and AH processing order needs to be preserved
12317                  * when both protocols are required (ESP should be applied
12318                  * before AH for an outbound packet). Force an ESP ACQUIRE
12319                  * when both ESP and AH are required, and an AH ACQUIRE
12320                  * is needed.
12321                  */
12322                 if (ap->ipa_want_esp && need_ah_acquire)
12323                         need_esp_acquire = B_TRUE;
12324         }
12325 
12326         /*
12327          * Send an ACQUIRE (extended, regular, or both) if we need one.
12328          * Release SAs that got referenced, but will not be used until we
12329          * acquire _all_ of the SAs we need.
12330          */
12331         if (need_ah_acquire || need_esp_acquire) {
12332                 if (ixa->ixa_ipsec_ah_sa != NULL) {
12333                         IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12334                         ixa->ixa_ipsec_ah_sa = NULL;
12335                 }
12336                 if (ixa->ixa_ipsec_esp_sa != NULL) {
12337                         IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12338                         ixa->ixa_ipsec_esp_sa = NULL;
12339                 }
12340 
12341                 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12342                 return (B_FALSE);
12343         }
12344 
12345         return (B_TRUE);
12346 }
12347 
12348 /*
12349  * Handle IPsec output processing.
12350  * This function is only entered once for a given packet.
12351  * We try to do things synchronously, but if we need to have user-level
12352  * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12353  * will be completed
12354  *  - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12355  *  - when asynchronous ESP is done it will do AH
12356  *
12357  * In all cases we come back in ip_output_post_ipsec() to fragment and
12358  * send out the packet.
12359  */
12360 int
12361 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12362 {
12363         ill_t           *ill = ixa->ixa_nce->nce_ill;
12364         ip_stack_t      *ipst = ixa->ixa_ipst;
12365         ipsec_stack_t   *ipss;
12366         ipsec_policy_t  *pp;
12367         ipsec_action_t  *ap;
12368 
12369         ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12370 
12371         ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12372             (ixa->ixa_ipsec_action != NULL));
12373 
12374         ipss = ipst->ips_netstack->netstack_ipsec;
12375         if (!ipsec_loaded(ipss)) {
12376                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12377                 ip_drop_packet(mp, B_TRUE, ill,
12378                     DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12379                     &ipss->ipsec_dropper);
12380                 return (ENOTSUP);
12381         }
12382 
12383         ap = ixa->ixa_ipsec_action;
12384         if (ap == NULL) {
12385                 pp = ixa->ixa_ipsec_policy;
12386                 ASSERT(pp != NULL);
12387                 ap = pp->ipsp_act;
12388                 ASSERT(ap != NULL);
12389         }
12390 
12391         /* Handle explicit drop action and bypass. */
12392         switch (ap->ipa_act.ipa_type) {
12393         case IPSEC_ACT_DISCARD:
12394         case IPSEC_ACT_REJECT:
12395                 ip_drop_packet(mp, B_FALSE, ill,
12396                     DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12397                 return (EHOSTUNREACH);  /* IPsec policy failure */
12398         case IPSEC_ACT_BYPASS:
12399                 return (ip_output_post_ipsec(mp, ixa));
12400         }
12401 
12402         /*
12403          * The order of processing is first insert a IP header if needed.
12404          * Then insert the ESP header and then the AH header.
12405          */
12406         if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12407                 /*
12408                  * First get the outer IP header before sending
12409                  * it to ESP.
12410                  */
12411                 ipha_t *oipha, *iipha;
12412                 mblk_t *outer_mp, *inner_mp;
12413 
12414                 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12415                         (void) mi_strlog(ill->ill_rq, 0,
12416                             SL_ERROR|SL_TRACE|SL_CONSOLE,
12417                             "ipsec_out_process: "
12418                             "Self-Encapsulation failed: Out of memory\n");
12419                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12420                         ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12421                         freemsg(mp);
12422                         return (ENOBUFS);
12423                 }
12424                 inner_mp = mp;
12425                 ASSERT(inner_mp->b_datap->db_type == M_DATA);
12426                 oipha = (ipha_t *)outer_mp->b_rptr;
12427                 iipha = (ipha_t *)inner_mp->b_rptr;
12428                 *oipha = *iipha;
12429                 outer_mp->b_wptr += sizeof (ipha_t);
12430                 oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12431                     sizeof (ipha_t));
12432                 oipha->ipha_protocol = IPPROTO_ENCAP;
12433                 oipha->ipha_version_and_hdr_length =
12434                     IP_SIMPLE_HDR_VERSION;
12435                 oipha->ipha_hdr_checksum = 0;
12436                 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12437                 outer_mp->b_cont = inner_mp;
12438                 mp = outer_mp;
12439 
12440                 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12441         }
12442 
12443         /* If we need to wait for a SA then we can't return any errno */
12444         if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12445             (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12446             !ipsec_out_select_sa(mp, ixa))
12447                 return (0);
12448 
12449         /*
12450          * By now, we know what SA's to use.  Toss over to ESP & AH
12451          * to do the heavy lifting.
12452          */
12453         if (ap->ipa_want_esp) {
12454                 ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12455 
12456                 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12457                 if (mp == NULL) {
12458                         /*
12459                          * Either it failed or is pending. In the former case
12460                          * ipIfStatsInDiscards was increased.
12461                          */
12462                         return (0);
12463                 }
12464         }
12465 
12466         if (ap->ipa_want_ah) {
12467                 ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12468 
12469                 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12470                 if (mp == NULL) {
12471                         /*
12472                          * Either it failed or is pending. In the former case
12473                          * ipIfStatsInDiscards was increased.
12474                          */
12475                         return (0);
12476                 }
12477         }
12478         /*
12479          * We are done with IPsec processing. Send it over
12480          * the wire.
12481          */
12482         return (ip_output_post_ipsec(mp, ixa));
12483 }
12484 
12485 /*
12486  * ioctls that go through a down/up sequence may need to wait for the down
12487  * to complete. This involves waiting for the ire and ipif refcnts to go down
12488  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12489  */
12490 /* ARGSUSED */
12491 void
12492 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12493 {
12494         struct iocblk *iocp;
12495         mblk_t *mp1;
12496         ip_ioctl_cmd_t *ipip;
12497         int err;
12498         sin_t   *sin;
12499         struct lifreq *lifr;
12500         struct ifreq *ifr;
12501 
12502         iocp = (struct iocblk *)mp->b_rptr;
12503         ASSERT(ipsq != NULL);
12504         /* Existence of mp1 verified in ip_wput_nondata */
12505         mp1 = mp->b_cont->b_cont;
12506         ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12507         if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12508                 /*
12509                  * Special case where ipx_current_ipif is not set:
12510                  * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12511                  * We are here as were not able to complete the operation in
12512                  * ipif_set_values because we could not become exclusive on
12513                  * the new ipsq.
12514                  */
12515                 ill_t *ill = q->q_ptr;
12516                 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12517         }
12518         ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12519 
12520         if (ipip->ipi_cmd_type == IF_CMD) {
12521                 /* This a old style SIOC[GS]IF* command */
12522                 ifr = (struct ifreq *)mp1->b_rptr;
12523                 sin = (sin_t *)&ifr->ifr_addr;
12524         } else if (ipip->ipi_cmd_type == LIF_CMD) {
12525                 /* This a new style SIOC[GS]LIF* command */
12526                 lifr = (struct lifreq *)mp1->b_rptr;
12527                 sin = (sin_t *)&lifr->lifr_addr;
12528         } else {
12529                 sin = NULL;
12530         }
12531 
12532         err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12533             q, mp, ipip, mp1->b_rptr);
12534 
12535         DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12536             int, ipip->ipi_cmd,
12537             ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12538             ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12539 
12540         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12541 }
12542 
12543 /*
12544  * ioctl processing
12545  *
12546  * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12547  * the ioctl command in the ioctl tables, determines the copyin data size
12548  * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12549  *
12550  * ioctl processing then continues when the M_IOCDATA makes its way down to
12551  * ip_wput_nondata().  The ioctl is looked up again in the ioctl table, its
12552  * associated 'conn' is refheld till the end of the ioctl and the general
12553  * ioctl processing function ip_process_ioctl() is called to extract the
12554  * arguments and process the ioctl.  To simplify extraction, ioctl commands
12555  * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12556  * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12557  * is used to extract the ioctl's arguments.
12558  *
12559  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12560  * so goes thru the serialization primitive ipsq_try_enter. Then the
12561  * appropriate function to handle the ioctl is called based on the entry in
12562  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12563  * which also refreleases the 'conn' that was refheld at the start of the
12564  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12565  *
12566  * Many exclusive ioctls go thru an internal down up sequence as part of
12567  * the operation. For example an attempt to change the IP address of an
12568  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12569  * does all the cleanup such as deleting all ires that use this address.
12570  * Then we need to wait till all references to the interface go away.
12571  */
12572 void
12573 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12574 {
12575         struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12576         ip_ioctl_cmd_t *ipip = arg;
12577         ip_extract_func_t *extract_funcp;
12578         cmd_info_t ci;
12579         int err;
12580         boolean_t entered_ipsq = B_FALSE;
12581 
12582         ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12583 
12584         if (ipip == NULL)
12585                 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12586 
12587         /*
12588          * SIOCLIFADDIF needs to go thru a special path since the
12589          * ill may not exist yet. This happens in the case of lo0
12590          * which is created using this ioctl.
12591          */
12592         if (ipip->ipi_cmd == SIOCLIFADDIF) {
12593                 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12594                 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12595                     int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12596                 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12597                 return;
12598         }
12599 
12600         ci.ci_ipif = NULL;
12601         switch (ipip->ipi_cmd_type) {
12602         case MISC_CMD:
12603         case MSFILT_CMD:
12604                 /*
12605                  * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12606                  */
12607                 if (ipip->ipi_cmd == IF_UNITSEL) {
12608                         /* ioctl comes down the ill */
12609                         ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12610                         ipif_refhold(ci.ci_ipif);
12611                 }
12612                 err = 0;
12613                 ci.ci_sin = NULL;
12614                 ci.ci_sin6 = NULL;
12615                 ci.ci_lifr = NULL;
12616                 extract_funcp = NULL;
12617                 break;
12618 
12619         case IF_CMD:
12620         case LIF_CMD:
12621                 extract_funcp = ip_extract_lifreq;
12622                 break;
12623 
12624         case ARP_CMD:
12625         case XARP_CMD:
12626                 extract_funcp = ip_extract_arpreq;
12627                 break;
12628 
12629         default:
12630                 ASSERT(0);
12631         }
12632 
12633         if (extract_funcp != NULL) {
12634                 err = (*extract_funcp)(q, mp, ipip, &ci);
12635                 if (err != 0) {
12636                         DTRACE_PROBE4(ipif__ioctl,
12637                             char *, "ip_process_ioctl finish err",
12638                             int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12639                         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12640                         return;
12641                 }
12642 
12643                 /*
12644                  * All of the extraction functions return a refheld ipif.
12645                  */
12646                 ASSERT(ci.ci_ipif != NULL);
12647         }
12648 
12649         if (!(ipip->ipi_flags & IPI_WR)) {
12650                 /*
12651                  * A return value of EINPROGRESS means the ioctl is
12652                  * either queued and waiting for some reason or has
12653                  * already completed.
12654                  */
12655                 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12656                     ci.ci_lifr);
12657                 if (ci.ci_ipif != NULL) {
12658                         DTRACE_PROBE4(ipif__ioctl,
12659                             char *, "ip_process_ioctl finish RD",
12660                             int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12661                             ipif_t *, ci.ci_ipif);
12662                         ipif_refrele(ci.ci_ipif);
12663                 } else {
12664                         DTRACE_PROBE4(ipif__ioctl,
12665                             char *, "ip_process_ioctl finish RD",
12666                             int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12667                 }
12668                 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12669                 return;
12670         }
12671 
12672         ASSERT(ci.ci_ipif != NULL);
12673 
12674         /*
12675          * If ipsq is non-NULL, we are already being called exclusively
12676          */
12677         ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12678         if (ipsq == NULL) {
12679                 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12680                     NEW_OP, B_TRUE);
12681                 if (ipsq == NULL) {
12682                         ipif_refrele(ci.ci_ipif);
12683                         return;
12684                 }
12685                 entered_ipsq = B_TRUE;
12686         }
12687         /*
12688          * Release the ipif so that ipif_down and friends that wait for
12689          * references to go away are not misled about the current ipif_refcnt
12690          * values. We are writer so we can access the ipif even after releasing
12691          * the ipif.
12692          */
12693         ipif_refrele(ci.ci_ipif);
12694 
12695         ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12696 
12697         /*
12698          * A return value of EINPROGRESS means the ioctl is
12699          * either queued and waiting for some reason or has
12700          * already completed.
12701          */
12702         err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12703 
12704         DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12705             int, ipip->ipi_cmd,
12706             ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12707             ipif_t *, ci.ci_ipif);
12708         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12709 
12710         if (entered_ipsq)
12711                 ipsq_exit(ipsq);
12712 }
12713 
12714 /*
12715  * Complete the ioctl. Typically ioctls use the mi package and need to
12716  * do mi_copyout/mi_copy_done.
12717  */
12718 void
12719 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12720 {
12721         conn_t  *connp = NULL;
12722 
12723         if (err == EINPROGRESS)
12724                 return;
12725 
12726         if (CONN_Q(q)) {
12727                 connp = Q_TO_CONN(q);
12728                 ASSERT(connp->conn_ref >= 2);
12729         }
12730 
12731         switch (mode) {
12732         case COPYOUT:
12733                 if (err == 0)
12734                         mi_copyout(q, mp);
12735                 else
12736                         mi_copy_done(q, mp, err);
12737                 break;
12738 
12739         case NO_COPYOUT:
12740                 mi_copy_done(q, mp, err);
12741                 break;
12742 
12743         default:
12744                 ASSERT(mode == CONN_CLOSE);     /* aborted through CONN_CLOSE */
12745                 break;
12746         }
12747 
12748         /*
12749          * The conn refhold and ioctlref placed on the conn at the start of the
12750          * ioctl are released here.
12751          */
12752         if (connp != NULL) {
12753                 CONN_DEC_IOCTLREF(connp);
12754                 CONN_OPER_PENDING_DONE(connp);
12755         }
12756 
12757         if (ipsq != NULL)
12758                 ipsq_current_finish(ipsq);
12759 }
12760 
12761 /* Handles all non data messages */
12762 void
12763 ip_wput_nondata(queue_t *q, mblk_t *mp)
12764 {
12765         mblk_t          *mp1;
12766         struct iocblk   *iocp;
12767         ip_ioctl_cmd_t  *ipip;
12768         conn_t          *connp;
12769         cred_t          *cr;
12770         char            *proto_str;
12771 
12772         if (CONN_Q(q))
12773                 connp = Q_TO_CONN(q);
12774         else
12775                 connp = NULL;
12776 
12777         switch (DB_TYPE(mp)) {
12778         case M_IOCTL:
12779                 /*
12780                  * IOCTL processing begins in ip_sioctl_copyin_setup which
12781                  * will arrange to copy in associated control structures.
12782                  */
12783                 ip_sioctl_copyin_setup(q, mp);
12784                 return;
12785         case M_IOCDATA:
12786                 /*
12787                  * Ensure that this is associated with one of our trans-
12788                  * parent ioctls.  If it's not ours, discard it if we're
12789                  * running as a driver, or pass it on if we're a module.
12790                  */
12791                 iocp = (struct iocblk *)mp->b_rptr;
12792                 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12793                 if (ipip == NULL) {
12794                         if (q->q_next == NULL) {
12795                                 goto nak;
12796                         } else {
12797                                 putnext(q, mp);
12798                         }
12799                         return;
12800                 }
12801                 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12802                         /*
12803                          * The ioctl is one we recognise, but is not consumed
12804                          * by IP as a module and we are a module, so we drop
12805                          */
12806                         goto nak;
12807                 }
12808 
12809                 /* IOCTL continuation following copyin or copyout. */
12810                 if (mi_copy_state(q, mp, NULL) == -1) {
12811                         /*
12812                          * The copy operation failed.  mi_copy_state already
12813                          * cleaned up, so we're out of here.
12814                          */
12815                         return;
12816                 }
12817                 /*
12818                  * If we just completed a copy in, we become writer and
12819                  * continue processing in ip_sioctl_copyin_done.  If it
12820                  * was a copy out, we call mi_copyout again.  If there is
12821                  * nothing more to copy out, it will complete the IOCTL.
12822                  */
12823                 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12824                         if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12825                                 mi_copy_done(q, mp, EPROTO);
12826                                 return;
12827                         }
12828                         /*
12829                          * Check for cases that need more copying.  A return
12830                          * value of 0 means a second copyin has been started,
12831                          * so we return; a return value of 1 means no more
12832                          * copying is needed, so we continue.
12833                          */
12834                         if (ipip->ipi_cmd_type == MSFILT_CMD &&
12835                             MI_COPY_COUNT(mp) == 1) {
12836                                 if (ip_copyin_msfilter(q, mp) == 0)
12837                                         return;
12838                         }
12839                         /*
12840                          * Refhold the conn, till the ioctl completes. This is
12841                          * needed in case the ioctl ends up in the pending mp
12842                          * list. Every mp in the ipx_pending_mp list must have
12843                          * a refhold on the conn to resume processing. The
12844                          * refhold is released when the ioctl completes
12845                          * (whether normally or abnormally). An ioctlref is also
12846                          * placed on the conn to prevent TCP from removing the
12847                          * queue needed to send the ioctl reply back.
12848                          * In all cases ip_ioctl_finish is called to finish
12849                          * the ioctl and release the refholds.
12850                          */
12851                         if (connp != NULL) {
12852                                 /* This is not a reentry */
12853                                 CONN_INC_REF(connp);
12854                                 CONN_INC_IOCTLREF(connp);
12855                         } else {
12856                                 if (!(ipip->ipi_flags & IPI_MODOK)) {
12857                                         mi_copy_done(q, mp, EINVAL);
12858                                         return;
12859                                 }
12860                         }
12861 
12862                         ip_process_ioctl(NULL, q, mp, ipip);
12863 
12864                 } else {
12865                         mi_copyout(q, mp);
12866                 }
12867                 return;
12868 
12869         case M_IOCNAK:
12870                 /*
12871                  * The only way we could get here is if a resolver didn't like
12872                  * an IOCTL we sent it.  This shouldn't happen.
12873                  */
12874                 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12875                     "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12876                     ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12877                 freemsg(mp);
12878                 return;
12879         case M_IOCACK:
12880                 /* /dev/ip shouldn't see this */
12881                 goto nak;
12882         case M_FLUSH:
12883                 if (*mp->b_rptr & FLUSHW)
12884                         flushq(q, FLUSHALL);
12885                 if (q->q_next) {
12886                         putnext(q, mp);
12887                         return;
12888                 }
12889                 if (*mp->b_rptr & FLUSHR) {
12890                         *mp->b_rptr &= ~FLUSHW;
12891                         qreply(q, mp);
12892                         return;
12893                 }
12894                 freemsg(mp);
12895                 return;
12896         case M_CTL:
12897                 break;
12898         case M_PROTO:
12899         case M_PCPROTO:
12900                 /*
12901                  * The only PROTO messages we expect are SNMP-related.
12902                  */
12903                 switch (((union T_primitives *)mp->b_rptr)->type) {
12904                 case T_SVR4_OPTMGMT_REQ:
12905                         ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12906                             "flags %x\n",
12907                             ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12908 
12909                         if (connp == NULL) {
12910                                 proto_str = "T_SVR4_OPTMGMT_REQ";
12911                                 goto protonak;
12912                         }
12913 
12914                         /*
12915                          * All Solaris components should pass a db_credp
12916                          * for this TPI message, hence we ASSERT.
12917                          * But in case there is some other M_PROTO that looks
12918                          * like a TPI message sent by some other kernel
12919                          * component, we check and return an error.
12920                          */
12921                         cr = msg_getcred(mp, NULL);
12922                         ASSERT(cr != NULL);
12923                         if (cr == NULL) {
12924                                 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12925                                 if (mp != NULL)
12926                                         qreply(q, mp);
12927                                 return;
12928                         }
12929 
12930                         if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12931                                 proto_str = "Bad SNMPCOM request?";
12932                                 goto protonak;
12933                         }
12934                         return;
12935                 default:
12936                         ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12937                             (int)*(uint_t *)mp->b_rptr));
12938                         freemsg(mp);
12939                         return;
12940                 }
12941         default:
12942                 break;
12943         }
12944         if (q->q_next) {
12945                 putnext(q, mp);
12946         } else
12947                 freemsg(mp);
12948         return;
12949 
12950 nak:
12951         iocp->ioc_error = EINVAL;
12952         mp->b_datap->db_type = M_IOCNAK;
12953         iocp->ioc_count = 0;
12954         qreply(q, mp);
12955         return;
12956 
12957 protonak:
12958         cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12959         if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12960                 qreply(q, mp);
12961 }
12962 
12963 /*
12964  * Process IP options in an outbound packet.  Verify that the nexthop in a
12965  * strict source route is onlink.
12966  * Returns non-zero if something fails in which case an ICMP error has been
12967  * sent and mp freed.
12968  *
12969  * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12970  */
12971 int
12972 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12973 {
12974         ipoptp_t        opts;
12975         uchar_t         *opt;
12976         uint8_t         optval;
12977         uint8_t         optlen;
12978         ipaddr_t        dst;
12979         intptr_t        code = 0;
12980         ire_t           *ire;
12981         ip_stack_t      *ipst = ixa->ixa_ipst;
12982         ip_recv_attr_t  iras;
12983 
12984         ip2dbg(("ip_output_options\n"));
12985 
12986         dst = ipha->ipha_dst;
12987         for (optval = ipoptp_first(&opts, ipha);
12988             optval != IPOPT_EOL;
12989             optval = ipoptp_next(&opts)) {
12990                 opt = opts.ipoptp_cur;
12991                 optlen = opts.ipoptp_len;
12992                 ip2dbg(("ip_output_options: opt %d, len %d\n",
12993                     optval, optlen));
12994                 switch (optval) {
12995                         uint32_t off;
12996                 case IPOPT_SSRR:
12997                 case IPOPT_LSRR:
12998                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12999                                 ip1dbg((
13000                                     "ip_output_options: bad option offset\n"));
13001                                 code = (char *)&opt[IPOPT_OLEN] -
13002                                     (char *)ipha;
13003                                 goto param_prob;
13004                         }
13005                         off = opt[IPOPT_OFFSET];
13006                         ip1dbg(("ip_output_options: next hop 0x%x\n",
13007                             ntohl(dst)));
13008                         /*
13009                          * For strict: verify that dst is directly
13010                          * reachable.
13011                          */
13012                         if (optval == IPOPT_SSRR) {
13013                                 ire = ire_ftable_lookup_v4(dst, 0, 0,
13014                                     IRE_INTERFACE, NULL, ALL_ZONES,
13015                                     ixa->ixa_tsl,
13016                                     MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
13017                                     NULL);
13018                                 if (ire == NULL) {
13019                                         ip1dbg(("ip_output_options: SSRR not"
13020                                             " directly reachable: 0x%x\n",
13021                                             ntohl(dst)));
13022                                         goto bad_src_route;
13023                                 }
13024                                 ire_refrele(ire);
13025                         }
13026                         break;
13027                 case IPOPT_RR:
13028                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13029                                 ip1dbg((
13030                                     "ip_output_options: bad option offset\n"));
13031                                 code = (char *)&opt[IPOPT_OLEN] -
13032                                     (char *)ipha;
13033                                 goto param_prob;
13034                         }
13035                         break;
13036                 case IPOPT_TS:
13037                         /*
13038                          * Verify that length >=5 and that there is either
13039                          * room for another timestamp or that the overflow
13040                          * counter is not maxed out.
13041                          */
13042                         code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13043                         if (optlen < IPOPT_MINLEN_IT) {
13044                                 goto param_prob;
13045                         }
13046                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13047                                 ip1dbg((
13048                                     "ip_output_options: bad option offset\n"));
13049                                 code = (char *)&opt[IPOPT_OFFSET] -
13050                                     (char *)ipha;
13051                                 goto param_prob;
13052                         }
13053                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13054                         case IPOPT_TS_TSONLY:
13055                                 off = IPOPT_TS_TIMELEN;
13056                                 break;
13057                         case IPOPT_TS_TSANDADDR:
13058                         case IPOPT_TS_PRESPEC:
13059                         case IPOPT_TS_PRESPEC_RFC791:
13060                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13061                                 break;
13062                         default:
13063                                 code = (char *)&opt[IPOPT_POS_OV_FLG] -
13064                                     (char *)ipha;
13065                                 goto param_prob;
13066                         }
13067                         if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13068                             (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13069                                 /*
13070                                  * No room and the overflow counter is 15
13071                                  * already.
13072                                  */
13073                                 goto param_prob;
13074                         }
13075                         break;
13076                 }
13077         }
13078 
13079         if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13080                 return (0);
13081 
13082         ip1dbg(("ip_output_options: error processing IP options."));
13083         code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13084 
13085 param_prob:
13086         bzero(&iras, sizeof (iras));
13087         iras.ira_ill = iras.ira_rill = ill;
13088         iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13089         iras.ira_rifindex = iras.ira_ruifindex;
13090         iras.ira_flags = IRAF_IS_IPV4;
13091 
13092         ip_drop_output("ip_output_options", mp, ill);
13093         icmp_param_problem(mp, (uint8_t)code, &iras);
13094         ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13095         return (-1);
13096 
13097 bad_src_route:
13098         bzero(&iras, sizeof (iras));
13099         iras.ira_ill = iras.ira_rill = ill;
13100         iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13101         iras.ira_rifindex = iras.ira_ruifindex;
13102         iras.ira_flags = IRAF_IS_IPV4;
13103 
13104         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13105         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13106         ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13107         return (-1);
13108 }
13109 
13110 /*
13111  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13112  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13113  * thru /etc/system.
13114  */
13115 #define CONN_MAXDRAINCNT        64
13116 
13117 static void
13118 conn_drain_init(ip_stack_t *ipst)
13119 {
13120         int i, j;
13121         idl_tx_list_t *itl_tx;
13122 
13123         ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13124 
13125         if ((ipst->ips_conn_drain_list_cnt == 0) ||
13126             (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13127                 /*
13128                  * Default value of the number of drainers is the
13129                  * number of cpus, subject to maximum of 8 drainers.
13130                  */
13131                 if (boot_max_ncpus != -1)
13132                         ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13133                 else
13134                         ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13135         }
13136 
13137         ipst->ips_idl_tx_list =
13138             kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13139         for (i = 0; i < TX_FANOUT_SIZE; i++) {
13140                 itl_tx =  &ipst->ips_idl_tx_list[i];
13141                 itl_tx->txl_drain_list =
13142                     kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13143                     sizeof (idl_t), KM_SLEEP);
13144                 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13145                 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13146                         mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13147                             MUTEX_DEFAULT, NULL);
13148                         itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13149                 }
13150         }
13151 }
13152 
13153 static void
13154 conn_drain_fini(ip_stack_t *ipst)
13155 {
13156         int i;
13157         idl_tx_list_t *itl_tx;
13158 
13159         for (i = 0; i < TX_FANOUT_SIZE; i++) {
13160                 itl_tx =  &ipst->ips_idl_tx_list[i];
13161                 kmem_free(itl_tx->txl_drain_list,
13162                     ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13163         }
13164         kmem_free(ipst->ips_idl_tx_list,
13165             TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13166         ipst->ips_idl_tx_list = NULL;
13167 }
13168 
13169 /*
13170  * Flow control has blocked us from proceeding.  Insert the given conn in one
13171  * of the conn drain lists.  When flow control is unblocked, either ip_wsrv()
13172  * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13173  * will call conn_walk_drain().  See the flow control notes at the top of this
13174  * file for more details.
13175  */
13176 void
13177 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13178 {
13179         idl_t   *idl = tx_list->txl_drain_list;
13180         uint_t  index;
13181         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
13182 
13183         mutex_enter(&connp->conn_lock);
13184         if (connp->conn_state_flags & CONN_CLOSING) {
13185                 /*
13186                  * The conn is closing as a result of which CONN_CLOSING
13187                  * is set. Return.
13188                  */
13189                 mutex_exit(&connp->conn_lock);
13190                 return;
13191         } else if (connp->conn_idl == NULL) {
13192                 /*
13193                  * Assign the next drain list round robin. We dont' use
13194                  * a lock, and thus it may not be strictly round robin.
13195                  * Atomicity of load/stores is enough to make sure that
13196                  * conn_drain_list_index is always within bounds.
13197                  */
13198                 index = tx_list->txl_drain_index;
13199                 ASSERT(index < ipst->ips_conn_drain_list_cnt);
13200                 connp->conn_idl = &tx_list->txl_drain_list[index];
13201                 index++;
13202                 if (index == ipst->ips_conn_drain_list_cnt)
13203                         index = 0;
13204                 tx_list->txl_drain_index = index;
13205         } else {
13206                 ASSERT(connp->conn_idl->idl_itl == tx_list);
13207         }
13208         mutex_exit(&connp->conn_lock);
13209 
13210         idl = connp->conn_idl;
13211         mutex_enter(&idl->idl_lock);
13212         if ((connp->conn_drain_prev != NULL) ||
13213             (connp->conn_state_flags & CONN_CLOSING)) {
13214                 /*
13215                  * The conn is either already in the drain list or closing.
13216                  * (We needed to check for CONN_CLOSING again since close can
13217                  * sneak in between dropping conn_lock and acquiring idl_lock.)
13218                  */
13219                 mutex_exit(&idl->idl_lock);
13220                 return;
13221         }
13222 
13223         /*
13224          * The conn is not in the drain list. Insert it at the
13225          * tail of the drain list. The drain list is circular
13226          * and doubly linked. idl_conn points to the 1st element
13227          * in the list.
13228          */
13229         if (idl->idl_conn == NULL) {
13230                 idl->idl_conn = connp;
13231                 connp->conn_drain_next = connp;
13232                 connp->conn_drain_prev = connp;
13233         } else {
13234                 conn_t *head = idl->idl_conn;
13235 
13236                 connp->conn_drain_next = head;
13237                 connp->conn_drain_prev = head->conn_drain_prev;
13238                 head->conn_drain_prev->conn_drain_next = connp;
13239                 head->conn_drain_prev = connp;
13240         }
13241         /*
13242          * For non streams based sockets assert flow control.
13243          */
13244         conn_setqfull(connp, NULL);
13245         mutex_exit(&idl->idl_lock);
13246 }
13247 
13248 static void
13249 conn_drain_remove(conn_t *connp)
13250 {
13251         idl_t *idl = connp->conn_idl;
13252 
13253         if (idl != NULL) {
13254                 /*
13255                  * Remove ourself from the drain list.
13256                  */
13257                 if (connp->conn_drain_next == connp) {
13258                         /* Singleton in the list */
13259                         ASSERT(connp->conn_drain_prev == connp);
13260                         idl->idl_conn = NULL;
13261                 } else {
13262                         connp->conn_drain_prev->conn_drain_next =
13263                             connp->conn_drain_next;
13264                         connp->conn_drain_next->conn_drain_prev =
13265                             connp->conn_drain_prev;
13266                         if (idl->idl_conn == connp)
13267                                 idl->idl_conn = connp->conn_drain_next;
13268                 }
13269 
13270                 /*
13271                  * NOTE: because conn_idl is associated with a specific drain
13272                  * list which in turn is tied to the index the TX ring
13273                  * (txl_cookie) hashes to, and because the TX ring can change
13274                  * over the lifetime of the conn_t, we must clear conn_idl so
13275                  * a subsequent conn_drain_insert() will set conn_idl again
13276                  * based on the latest txl_cookie.
13277                  */
13278                 connp->conn_idl = NULL;
13279         }
13280         connp->conn_drain_next = NULL;
13281         connp->conn_drain_prev = NULL;
13282 
13283         conn_clrqfull(connp, NULL);
13284         /*
13285          * For streams based sockets open up flow control.
13286          */
13287         if (!IPCL_IS_NONSTR(connp))
13288                 enableok(connp->conn_wq);
13289 }
13290 
13291 /*
13292  * This conn is closing, and we are called from ip_close. OR
13293  * this conn is draining because flow-control on the ill has been relieved.
13294  *
13295  * We must also need to remove conn's on this idl from the list, and also
13296  * inform the sockfs upcalls about the change in flow-control.
13297  */
13298 static void
13299 conn_drain(conn_t *connp, boolean_t closing)
13300 {
13301         idl_t *idl;
13302         conn_t *next_connp;
13303 
13304         /*
13305          * connp->conn_idl is stable at this point, and no lock is needed
13306          * to check it. If we are called from ip_close, close has already
13307          * set CONN_CLOSING, thus freezing the value of conn_idl, and
13308          * called us only because conn_idl is non-null. If we are called thru
13309          * service, conn_idl could be null, but it cannot change because
13310          * service is single-threaded per queue, and there cannot be another
13311          * instance of service trying to call conn_drain_insert on this conn
13312          * now.
13313          */
13314         ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13315 
13316         /*
13317          * If the conn doesn't exist or is not on a drain list, bail.
13318          */
13319         if (connp == NULL || connp->conn_idl == NULL ||
13320             connp->conn_drain_prev == NULL) {
13321                 return;
13322         }
13323 
13324         idl = connp->conn_idl;
13325         ASSERT(MUTEX_HELD(&idl->idl_lock));
13326 
13327         if (!closing) {
13328                 next_connp = connp->conn_drain_next;
13329                 while (next_connp != connp) {
13330                         conn_t *delconnp = next_connp;
13331 
13332                         next_connp = next_connp->conn_drain_next;
13333                         conn_drain_remove(delconnp);
13334                 }
13335                 ASSERT(connp->conn_drain_next == idl->idl_conn);
13336         }
13337         conn_drain_remove(connp);
13338 }
13339 
13340 /*
13341  * Write service routine. Shared perimeter entry point.
13342  * The device queue's messages has fallen below the low water mark and STREAMS
13343  * has backenabled the ill_wq. Send sockfs notification about flow-control on
13344  * each waiting conn.
13345  */
13346 void
13347 ip_wsrv(queue_t *q)
13348 {
13349         ill_t   *ill;
13350 
13351         ill = (ill_t *)q->q_ptr;
13352         if (ill->ill_state_flags == 0) {
13353                 ip_stack_t *ipst = ill->ill_ipst;
13354 
13355                 /*
13356                  * The device flow control has opened up.
13357                  * Walk through conn drain lists and qenable the
13358                  * first conn in each list. This makes sense only
13359                  * if the stream is fully plumbed and setup.
13360                  * Hence the ill_state_flags check above.
13361                  */
13362                 ip1dbg(("ip_wsrv: walking\n"));
13363                 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13364                 enableok(ill->ill_wq);
13365         }
13366 }
13367 
13368 /*
13369  * Callback to disable flow control in IP.
13370  *
13371  * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13372  * is enabled.
13373  *
13374  * When MAC_TX() is not able to send any more packets, dld sets its queue
13375  * to QFULL and enable the STREAMS flow control. Later, when the underlying
13376  * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13377  * function and wakes up corresponding mac worker threads, which in turn
13378  * calls this callback function, and disables flow control.
13379  */
13380 void
13381 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13382 {
13383         ill_t *ill = (ill_t *)arg;
13384         ip_stack_t *ipst = ill->ill_ipst;
13385         idl_tx_list_t *idl_txl;
13386 
13387         idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13388         mutex_enter(&idl_txl->txl_lock);
13389         /* add code to to set a flag to indicate idl_txl is enabled */
13390         conn_walk_drain(ipst, idl_txl);
13391         mutex_exit(&idl_txl->txl_lock);
13392 }
13393 
13394 /*
13395  * Flow control has been relieved and STREAMS has backenabled us; drain
13396  * all the conn lists on `tx_list'.
13397  */
13398 static void
13399 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13400 {
13401         int i;
13402         idl_t *idl;
13403 
13404         IP_STAT(ipst, ip_conn_walk_drain);
13405 
13406         for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13407                 idl = &tx_list->txl_drain_list[i];
13408                 mutex_enter(&idl->idl_lock);
13409                 conn_drain(idl->idl_conn, B_FALSE);
13410                 mutex_exit(&idl->idl_lock);
13411         }
13412 }
13413 
13414 /*
13415  * Determine if the ill and multicast aspects of that packets
13416  * "matches" the conn.
13417  */
13418 boolean_t
13419 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13420 {
13421         ill_t           *ill = ira->ira_rill;
13422         zoneid_t        zoneid = ira->ira_zoneid;
13423         uint_t          in_ifindex;
13424         ipaddr_t        dst, src;
13425 
13426         dst = ipha->ipha_dst;
13427         src = ipha->ipha_src;
13428 
13429         /*
13430          * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13431          * unicast, broadcast and multicast reception to
13432          * conn_incoming_ifindex.
13433          * conn_wantpacket is called for unicast, broadcast and
13434          * multicast packets.
13435          */
13436         in_ifindex = connp->conn_incoming_ifindex;
13437 
13438         /* mpathd can bind to the under IPMP interface, which we allow */
13439         if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13440                 if (!IS_UNDER_IPMP(ill))
13441                         return (B_FALSE);
13442 
13443                 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13444                         return (B_FALSE);
13445         }
13446 
13447         if (!IPCL_ZONE_MATCH(connp, zoneid))
13448                 return (B_FALSE);
13449 
13450         if (!(ira->ira_flags & IRAF_MULTICAST))
13451                 return (B_TRUE);
13452 
13453         if (connp->conn_multi_router) {
13454                 /* multicast packet and multicast router socket: send up */
13455                 return (B_TRUE);
13456         }
13457 
13458         if (ipha->ipha_protocol == IPPROTO_PIM ||
13459             ipha->ipha_protocol == IPPROTO_RSVP)
13460                 return (B_TRUE);
13461 
13462         return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13463 }
13464 
13465 void
13466 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13467 {
13468         if (IPCL_IS_NONSTR(connp)) {
13469                 (*connp->conn_upcalls->su_txq_full)
13470                     (connp->conn_upper_handle, B_TRUE);
13471                 if (flow_stopped != NULL)
13472                         *flow_stopped = B_TRUE;
13473         } else {
13474                 queue_t *q = connp->conn_wq;
13475 
13476                 ASSERT(q != NULL);
13477                 if (!(q->q_flag & QFULL)) {
13478                         mutex_enter(QLOCK(q));
13479                         if (!(q->q_flag & QFULL)) {
13480                                 /* still need to set QFULL */
13481                                 q->q_flag |= QFULL;
13482                                 /* set flow_stopped to true under QLOCK */
13483                                 if (flow_stopped != NULL)
13484                                         *flow_stopped = B_TRUE;
13485                                 mutex_exit(QLOCK(q));
13486                         } else {
13487                                 /* flow_stopped is left unchanged */
13488                                 mutex_exit(QLOCK(q));
13489                         }
13490                 }
13491         }
13492 }
13493 
13494 void
13495 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13496 {
13497         if (IPCL_IS_NONSTR(connp)) {
13498                 (*connp->conn_upcalls->su_txq_full)
13499                     (connp->conn_upper_handle, B_FALSE);
13500                 if (flow_stopped != NULL)
13501                         *flow_stopped = B_FALSE;
13502         } else {
13503                 queue_t *q = connp->conn_wq;
13504 
13505                 ASSERT(q != NULL);
13506                 if (q->q_flag & QFULL) {
13507                         mutex_enter(QLOCK(q));
13508                         if (q->q_flag & QFULL) {
13509                                 q->q_flag &= ~QFULL;
13510                                 /* set flow_stopped to false under QLOCK */
13511                                 if (flow_stopped != NULL)
13512                                         *flow_stopped = B_FALSE;
13513                                 mutex_exit(QLOCK(q));
13514                                 if (q->q_flag & QWANTW)
13515                                         qbackenable(q, 0);
13516                         } else {
13517                                 /* flow_stopped is left unchanged */
13518                                 mutex_exit(QLOCK(q));
13519                         }
13520                 }
13521         }
13522 
13523         mutex_enter(&connp->conn_lock);
13524         connp->conn_blocked = B_FALSE;
13525         mutex_exit(&connp->conn_lock);
13526 }
13527 
13528 /*
13529  * Return the length in bytes of the IPv4 headers (base header, label, and
13530  * other IP options) that will be needed based on the
13531  * ip_pkt_t structure passed by the caller.
13532  *
13533  * The returned length does not include the length of the upper level
13534  * protocol (ULP) header.
13535  * The caller needs to check that the length doesn't exceed the max for IPv4.
13536  */
13537 int
13538 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13539 {
13540         int len;
13541 
13542         len = IP_SIMPLE_HDR_LENGTH;
13543         if (ipp->ipp_fields & IPPF_LABEL_V4) {
13544                 ASSERT(ipp->ipp_label_len_v4 != 0);
13545                 /* We need to round up here */
13546                 len += (ipp->ipp_label_len_v4 + 3) & ~3;
13547         }
13548 
13549         if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13550                 ASSERT(ipp->ipp_ipv4_options_len != 0);
13551                 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13552                 len += ipp->ipp_ipv4_options_len;
13553         }
13554         return (len);
13555 }
13556 
13557 /*
13558  * All-purpose routine to build an IPv4 header with options based
13559  * on the abstract ip_pkt_t.
13560  *
13561  * The caller has to set the source and destination address as well as
13562  * ipha_length. The caller has to massage any source route and compensate
13563  * for the ULP pseudo-header checksum due to the source route.
13564  */
13565 void
13566 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13567     uint8_t protocol)
13568 {
13569         ipha_t  *ipha = (ipha_t *)buf;
13570         uint8_t *cp;
13571 
13572         /* Initialize IPv4 header */
13573         ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13574         ipha->ipha_length = 0;       /* Caller will set later */
13575         ipha->ipha_ident = 0;
13576         ipha->ipha_fragment_offset_and_flags = 0;
13577         ipha->ipha_ttl = ipp->ipp_unicast_hops;
13578         ipha->ipha_protocol = protocol;
13579         ipha->ipha_hdr_checksum = 0;
13580 
13581         if ((ipp->ipp_fields & IPPF_ADDR) &&
13582             IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13583                 ipha->ipha_src = ipp->ipp_addr_v4;
13584 
13585         cp = (uint8_t *)&ipha[1];
13586         if (ipp->ipp_fields & IPPF_LABEL_V4) {
13587                 ASSERT(ipp->ipp_label_len_v4 != 0);
13588                 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13589                 cp += ipp->ipp_label_len_v4;
13590                 /* We need to round up here */
13591                 while ((uintptr_t)cp & 0x3) {
13592                         *cp++ = IPOPT_NOP;
13593                 }
13594         }
13595 
13596         if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13597                 ASSERT(ipp->ipp_ipv4_options_len != 0);
13598                 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13599                 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13600                 cp += ipp->ipp_ipv4_options_len;
13601         }
13602         ipha->ipha_version_and_hdr_length =
13603             (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13604 
13605         ASSERT((int)(cp - buf) == buf_len);
13606 }
13607 
13608 /* Allocate the private structure */
13609 static int
13610 ip_priv_alloc(void **bufp)
13611 {
13612         void    *buf;
13613 
13614         if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13615                 return (ENOMEM);
13616 
13617         *bufp = buf;
13618         return (0);
13619 }
13620 
13621 /* Function to delete the private structure */
13622 void
13623 ip_priv_free(void *buf)
13624 {
13625         ASSERT(buf != NULL);
13626         kmem_free(buf, sizeof (ip_priv_t));
13627 }
13628 
13629 /*
13630  * The entry point for IPPF processing.
13631  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13632  * routine just returns.
13633  *
13634  * When called, ip_process generates an ipp_packet_t structure
13635  * which holds the state information for this packet and invokes the
13636  * the classifier (via ipp_packet_process). The classification, depending on
13637  * configured filters, results in a list of actions for this packet. Invoking
13638  * an action may cause the packet to be dropped, in which case we return NULL.
13639  * proc indicates the callout position for
13640  * this packet and ill is the interface this packet arrived on or will leave
13641  * on (inbound and outbound resp.).
13642  *
13643  * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13644  * on the ill corrsponding to the destination IP address.
13645  */
13646 mblk_t *
13647 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13648 {
13649         ip_priv_t       *priv;
13650         ipp_action_id_t aid;
13651         int             rc = 0;
13652         ipp_packet_t    *pp;
13653 
13654         /* If the classifier is not loaded, return  */
13655         if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13656                 return (mp);
13657         }
13658 
13659         ASSERT(mp != NULL);
13660 
13661         /* Allocate the packet structure */
13662         rc = ipp_packet_alloc(&pp, "ip", aid);
13663         if (rc != 0)
13664                 goto drop;
13665 
13666         /* Allocate the private structure */
13667         rc = ip_priv_alloc((void **)&priv);
13668         if (rc != 0) {
13669                 ipp_packet_free(pp);
13670                 goto drop;
13671         }
13672         priv->proc = proc;
13673         priv->ill_index = ill_get_upper_ifindex(rill);
13674 
13675         ipp_packet_set_private(pp, priv, ip_priv_free);
13676         ipp_packet_set_data(pp, mp);
13677 
13678         /* Invoke the classifier */
13679         rc = ipp_packet_process(&pp);
13680         if (pp != NULL) {
13681                 mp = ipp_packet_get_data(pp);
13682                 ipp_packet_free(pp);
13683                 if (rc != 0)
13684                         goto drop;
13685                 return (mp);
13686         } else {
13687                 /* No mp to trace in ip_drop_input/ip_drop_output  */
13688                 mp = NULL;
13689         }
13690 drop:
13691         if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13692                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13693                 ip_drop_input("ip_process", mp, ill);
13694         } else {
13695                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13696                 ip_drop_output("ip_process", mp, ill);
13697         }
13698         freemsg(mp);
13699         return (NULL);
13700 }
13701 
13702 /*
13703  * Propagate a multicast group membership operation (add/drop) on
13704  * all the interfaces crossed by the related multirt routes.
13705  * The call is considered successful if the operation succeeds
13706  * on at least one interface.
13707  *
13708  * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13709  * multicast addresses with the ire argument being the first one.
13710  * We walk the bucket to find all the of those.
13711  *
13712  * Common to IPv4 and IPv6.
13713  */
13714 static int
13715 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13716     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13717     ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13718     mcast_record_t fmode, const in6_addr_t *v6src)
13719 {
13720         ire_t           *ire_gw;
13721         irb_t           *irb;
13722         int             ifindex;
13723         int             error = 0;
13724         int             result;
13725         ip_stack_t      *ipst = ire->ire_ipst;
13726         ipaddr_t        group;
13727         boolean_t       isv6;
13728         int             match_flags;
13729 
13730         if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13731                 IN6_V4MAPPED_TO_IPADDR(v6group, group);
13732                 isv6 = B_FALSE;
13733         } else {
13734                 isv6 = B_TRUE;
13735         }
13736 
13737         irb = ire->ire_bucket;
13738         ASSERT(irb != NULL);
13739 
13740         result = 0;
13741         irb_refhold(irb);
13742         for (; ire != NULL; ire = ire->ire_next) {
13743                 if ((ire->ire_flags & RTF_MULTIRT) == 0)
13744                         continue;
13745 
13746                 /* We handle -ifp routes by matching on the ill if set */
13747                 match_flags = MATCH_IRE_TYPE;
13748                 if (ire->ire_ill != NULL)
13749                         match_flags |= MATCH_IRE_ILL;
13750 
13751                 if (isv6) {
13752                         if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13753                                 continue;
13754 
13755                         ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13756                             0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13757                             match_flags, 0, ipst, NULL);
13758                 } else {
13759                         if (ire->ire_addr != group)
13760                                 continue;
13761 
13762                         ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13763                             0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13764                             match_flags, 0, ipst, NULL);
13765                 }
13766                 /* No interface route exists for the gateway; skip this ire. */
13767                 if (ire_gw == NULL)
13768                         continue;
13769                 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13770                         ire_refrele(ire_gw);
13771                         continue;
13772                 }
13773                 ASSERT(ire_gw->ire_ill != NULL);     /* IRE_INTERFACE */
13774                 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13775 
13776                 /*
13777                  * The operation is considered a success if
13778                  * it succeeds at least once on any one interface.
13779                  */
13780                 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13781                     fmode, v6src);
13782                 if (error == 0)
13783                         result = CGTP_MCAST_SUCCESS;
13784 
13785                 ire_refrele(ire_gw);
13786         }
13787         irb_refrele(irb);
13788         /*
13789          * Consider the call as successful if we succeeded on at least
13790          * one interface. Otherwise, return the last encountered error.
13791          */
13792         return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13793 }
13794 
13795 /*
13796  * Return the expected CGTP hooks version number.
13797  */
13798 int
13799 ip_cgtp_filter_supported(void)
13800 {
13801         return (ip_cgtp_filter_rev);
13802 }
13803 
13804 /*
13805  * CGTP hooks can be registered by invoking this function.
13806  * Checks that the version number matches.
13807  */
13808 int
13809 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13810 {
13811         netstack_t *ns;
13812         ip_stack_t *ipst;
13813 
13814         if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13815                 return (ENOTSUP);
13816 
13817         ns = netstack_find_by_stackid(stackid);
13818         if (ns == NULL)
13819                 return (EINVAL);
13820         ipst = ns->netstack_ip;
13821         ASSERT(ipst != NULL);
13822 
13823         if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13824                 netstack_rele(ns);
13825                 return (EALREADY);
13826         }
13827 
13828         ipst->ips_ip_cgtp_filter_ops = ops;
13829 
13830         ill_set_inputfn_all(ipst);
13831 
13832         netstack_rele(ns);
13833         return (0);
13834 }
13835 
13836 /*
13837  * CGTP hooks can be unregistered by invoking this function.
13838  * Returns ENXIO if there was no registration.
13839  * Returns EBUSY if the ndd variable has not been turned off.
13840  */
13841 int
13842 ip_cgtp_filter_unregister(netstackid_t stackid)
13843 {
13844         netstack_t *ns;
13845         ip_stack_t *ipst;
13846 
13847         ns = netstack_find_by_stackid(stackid);
13848         if (ns == NULL)
13849                 return (EINVAL);
13850         ipst = ns->netstack_ip;
13851         ASSERT(ipst != NULL);
13852 
13853         if (ipst->ips_ip_cgtp_filter) {
13854                 netstack_rele(ns);
13855                 return (EBUSY);
13856         }
13857 
13858         if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13859                 netstack_rele(ns);
13860                 return (ENXIO);
13861         }
13862         ipst->ips_ip_cgtp_filter_ops = NULL;
13863 
13864         ill_set_inputfn_all(ipst);
13865 
13866         netstack_rele(ns);
13867         return (0);
13868 }
13869 
13870 /*
13871  * Check whether there is a CGTP filter registration.
13872  * Returns non-zero if there is a registration, otherwise returns zero.
13873  * Note: returns zero if bad stackid.
13874  */
13875 int
13876 ip_cgtp_filter_is_registered(netstackid_t stackid)
13877 {
13878         netstack_t *ns;
13879         ip_stack_t *ipst;
13880         int ret;
13881 
13882         ns = netstack_find_by_stackid(stackid);
13883         if (ns == NULL)
13884                 return (0);
13885         ipst = ns->netstack_ip;
13886         ASSERT(ipst != NULL);
13887 
13888         if (ipst->ips_ip_cgtp_filter_ops != NULL)
13889                 ret = 1;
13890         else
13891                 ret = 0;
13892 
13893         netstack_rele(ns);
13894         return (ret);
13895 }
13896 
13897 static int
13898 ip_squeue_switch(int val)
13899 {
13900         int rval;
13901 
13902         switch (val) {
13903         case IP_SQUEUE_ENTER_NODRAIN:
13904                 rval = SQ_NODRAIN;
13905                 break;
13906         case IP_SQUEUE_ENTER:
13907                 rval = SQ_PROCESS;
13908                 break;
13909         case IP_SQUEUE_FILL:
13910         default:
13911                 rval = SQ_FILL;
13912                 break;
13913         }
13914         return (rval);
13915 }
13916 
13917 static void *
13918 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13919 {
13920         kstat_t *ksp;
13921 
13922         ip_stat_t template = {
13923                 { "ip_udp_fannorm",             KSTAT_DATA_UINT64 },
13924                 { "ip_udp_fanmb",               KSTAT_DATA_UINT64 },
13925                 { "ip_recv_pullup",             KSTAT_DATA_UINT64 },
13926                 { "ip_db_ref",                  KSTAT_DATA_UINT64 },
13927                 { "ip_notaligned",              KSTAT_DATA_UINT64 },
13928                 { "ip_multimblk",               KSTAT_DATA_UINT64 },
13929                 { "ip_opt",                     KSTAT_DATA_UINT64 },
13930                 { "ipsec_proto_ahesp",          KSTAT_DATA_UINT64 },
13931                 { "ip_conn_flputbq",            KSTAT_DATA_UINT64 },
13932                 { "ip_conn_walk_drain",         KSTAT_DATA_UINT64 },
13933                 { "ip_out_sw_cksum",            KSTAT_DATA_UINT64 },
13934                 { "ip_out_sw_cksum_bytes",      KSTAT_DATA_UINT64 },
13935                 { "ip_in_sw_cksum",             KSTAT_DATA_UINT64 },
13936                 { "ip_ire_reclaim_calls",       KSTAT_DATA_UINT64 },
13937                 { "ip_ire_reclaim_deleted",     KSTAT_DATA_UINT64 },
13938                 { "ip_nce_reclaim_calls",       KSTAT_DATA_UINT64 },
13939                 { "ip_nce_reclaim_deleted",     KSTAT_DATA_UINT64 },
13940                 { "ip_dce_reclaim_calls",       KSTAT_DATA_UINT64 },
13941                 { "ip_dce_reclaim_deleted",     KSTAT_DATA_UINT64 },
13942                 { "ip_tcp_in_full_hw_cksum_err",        KSTAT_DATA_UINT64 },
13943                 { "ip_tcp_in_part_hw_cksum_err",        KSTAT_DATA_UINT64 },
13944                 { "ip_tcp_in_sw_cksum_err",             KSTAT_DATA_UINT64 },
13945                 { "ip_udp_in_full_hw_cksum_err",        KSTAT_DATA_UINT64 },
13946                 { "ip_udp_in_part_hw_cksum_err",        KSTAT_DATA_UINT64 },
13947                 { "ip_udp_in_sw_cksum_err",     KSTAT_DATA_UINT64 },
13948                 { "conn_in_recvdstaddr",        KSTAT_DATA_UINT64 },
13949                 { "conn_in_recvopts",           KSTAT_DATA_UINT64 },
13950                 { "conn_in_recvif",             KSTAT_DATA_UINT64 },
13951                 { "conn_in_recvslla",           KSTAT_DATA_UINT64 },
13952                 { "conn_in_recvucred",          KSTAT_DATA_UINT64 },
13953                 { "conn_in_recvttl",            KSTAT_DATA_UINT64 },
13954                 { "conn_in_recvhopopts",        KSTAT_DATA_UINT64 },
13955                 { "conn_in_recvhoplimit",       KSTAT_DATA_UINT64 },
13956                 { "conn_in_recvdstopts",        KSTAT_DATA_UINT64 },
13957                 { "conn_in_recvrthdrdstopts",   KSTAT_DATA_UINT64 },
13958                 { "conn_in_recvrthdr",          KSTAT_DATA_UINT64 },
13959                 { "conn_in_recvpktinfo",        KSTAT_DATA_UINT64 },
13960                 { "conn_in_recvtclass",         KSTAT_DATA_UINT64 },
13961                 { "conn_in_timestamp",          KSTAT_DATA_UINT64 },
13962         };
13963 
13964         ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13965             KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13966             KSTAT_FLAG_VIRTUAL, stackid);
13967 
13968         if (ksp == NULL)
13969                 return (NULL);
13970 
13971         bcopy(&template, ip_statisticsp, sizeof (template));
13972         ksp->ks_data = (void *)ip_statisticsp;
13973         ksp->ks_private = (void *)(uintptr_t)stackid;
13974 
13975         kstat_install(ksp);
13976         return (ksp);
13977 }
13978 
13979 static void
13980 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
13981 {
13982         if (ksp != NULL) {
13983                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
13984                 kstat_delete_netstack(ksp, stackid);
13985         }
13986 }
13987 
13988 static void *
13989 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
13990 {
13991         kstat_t *ksp;
13992 
13993         ip_named_kstat_t template = {
13994                 { "forwarding",         KSTAT_DATA_UINT32, 0 },
13995                 { "defaultTTL",         KSTAT_DATA_UINT32, 0 },
13996                 { "inReceives",         KSTAT_DATA_UINT64, 0 },
13997                 { "inHdrErrors",        KSTAT_DATA_UINT32, 0 },
13998                 { "inAddrErrors",       KSTAT_DATA_UINT32, 0 },
13999                 { "forwDatagrams",      KSTAT_DATA_UINT64, 0 },
14000                 { "inUnknownProtos",    KSTAT_DATA_UINT32, 0 },
14001                 { "inDiscards",         KSTAT_DATA_UINT32, 0 },
14002                 { "inDelivers",         KSTAT_DATA_UINT64, 0 },
14003                 { "outRequests",        KSTAT_DATA_UINT64, 0 },
14004                 { "outDiscards",        KSTAT_DATA_UINT32, 0 },
14005                 { "outNoRoutes",        KSTAT_DATA_UINT32, 0 },
14006                 { "reasmTimeout",       KSTAT_DATA_UINT32, 0 },
14007                 { "reasmReqds",         KSTAT_DATA_UINT32, 0 },
14008                 { "reasmOKs",           KSTAT_DATA_UINT32, 0 },
14009                 { "reasmFails",         KSTAT_DATA_UINT32, 0 },
14010                 { "fragOKs",            KSTAT_DATA_UINT32, 0 },
14011                 { "fragFails",          KSTAT_DATA_UINT32, 0 },
14012                 { "fragCreates",        KSTAT_DATA_UINT32, 0 },
14013                 { "addrEntrySize",      KSTAT_DATA_INT32, 0 },
14014                 { "routeEntrySize",     KSTAT_DATA_INT32, 0 },
14015                 { "netToMediaEntrySize",        KSTAT_DATA_INT32, 0 },
14016                 { "routingDiscards",    KSTAT_DATA_UINT32, 0 },
14017                 { "inErrs",             KSTAT_DATA_UINT32, 0 },
14018                 { "noPorts",            KSTAT_DATA_UINT32, 0 },
14019                 { "inCksumErrs",        KSTAT_DATA_UINT32, 0 },
14020                 { "reasmDuplicates",    KSTAT_DATA_UINT32, 0 },
14021                 { "reasmPartDups",      KSTAT_DATA_UINT32, 0 },
14022                 { "forwProhibits",      KSTAT_DATA_UINT32, 0 },
14023                 { "udpInCksumErrs",     KSTAT_DATA_UINT32, 0 },
14024                 { "udpInOverflows",     KSTAT_DATA_UINT32, 0 },
14025                 { "rawipInOverflows",   KSTAT_DATA_UINT32, 0 },
14026                 { "ipsecInSucceeded",   KSTAT_DATA_UINT32, 0 },
14027                 { "ipsecInFailed",      KSTAT_DATA_INT32, 0 },
14028                 { "memberEntrySize",    KSTAT_DATA_INT32, 0 },
14029                 { "inIPv6",             KSTAT_DATA_UINT32, 0 },
14030                 { "outIPv6",            KSTAT_DATA_UINT32, 0 },
14031                 { "outSwitchIPv6",      KSTAT_DATA_UINT32, 0 },
14032         };
14033 
14034         ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14035             NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14036         if (ksp == NULL || ksp->ks_data == NULL)
14037                 return (NULL);
14038 
14039         template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14040         template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14041         template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14042         template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14043         template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14044 
14045         template.netToMediaEntrySize.value.i32 =
14046             sizeof (mib2_ipNetToMediaEntry_t);
14047 
14048         template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14049 
14050         bcopy(&template, ksp->ks_data, sizeof (template));
14051         ksp->ks_update = ip_kstat_update;
14052         ksp->ks_private = (void *)(uintptr_t)stackid;
14053 
14054         kstat_install(ksp);
14055         return (ksp);
14056 }
14057 
14058 static void
14059 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14060 {
14061         if (ksp != NULL) {
14062                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14063                 kstat_delete_netstack(ksp, stackid);
14064         }
14065 }
14066 
14067 static int
14068 ip_kstat_update(kstat_t *kp, int rw)
14069 {
14070         ip_named_kstat_t *ipkp;
14071         mib2_ipIfStatsEntry_t ipmib;
14072         ill_walk_context_t ctx;
14073         ill_t *ill;
14074         netstackid_t    stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14075         netstack_t      *ns;
14076         ip_stack_t      *ipst;
14077 
14078         if (kp == NULL || kp->ks_data == NULL)
14079                 return (EIO);
14080 
14081         if (rw == KSTAT_WRITE)
14082                 return (EACCES);
14083 
14084         ns = netstack_find_by_stackid(stackid);
14085         if (ns == NULL)
14086                 return (-1);
14087         ipst = ns->netstack_ip;
14088         if (ipst == NULL) {
14089                 netstack_rele(ns);
14090                 return (-1);
14091         }
14092         ipkp = (ip_named_kstat_t *)kp->ks_data;
14093 
14094         bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14095         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14096         ill = ILL_START_WALK_V4(&ctx, ipst);
14097         for (; ill != NULL; ill = ill_next(&ctx, ill))
14098                 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14099         rw_exit(&ipst->ips_ill_g_lock);
14100 
14101         ipkp->forwarding.value.ui32 =                ipmib.ipIfStatsForwarding;
14102         ipkp->defaultTTL.value.ui32 =                ipmib.ipIfStatsDefaultTTL;
14103         ipkp->inReceives.value.ui64 =                ipmib.ipIfStatsHCInReceives;
14104         ipkp->inHdrErrors.value.ui32 =               ipmib.ipIfStatsInHdrErrors;
14105         ipkp->inAddrErrors.value.ui32 =              ipmib.ipIfStatsInAddrErrors;
14106         ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14107         ipkp->inUnknownProtos.value.ui32 =   ipmib.ipIfStatsInUnknownProtos;
14108         ipkp->inDiscards.value.ui32 =                ipmib.ipIfStatsInDiscards;
14109         ipkp->inDelivers.value.ui64 =                ipmib.ipIfStatsHCInDelivers;
14110         ipkp->outRequests.value.ui64 =               ipmib.ipIfStatsHCOutRequests;
14111         ipkp->outDiscards.value.ui32 =               ipmib.ipIfStatsOutDiscards;
14112         ipkp->outNoRoutes.value.ui32 =               ipmib.ipIfStatsOutNoRoutes;
14113         ipkp->reasmTimeout.value.ui32 =              ipst->ips_ip_reassembly_timeout;
14114         ipkp->reasmReqds.value.ui32 =                ipmib.ipIfStatsReasmReqds;
14115         ipkp->reasmOKs.value.ui32 =          ipmib.ipIfStatsReasmOKs;
14116         ipkp->reasmFails.value.ui32 =                ipmib.ipIfStatsReasmFails;
14117         ipkp->fragOKs.value.ui32 =           ipmib.ipIfStatsOutFragOKs;
14118         ipkp->fragFails.value.ui32 =         ipmib.ipIfStatsOutFragFails;
14119         ipkp->fragCreates.value.ui32 =               ipmib.ipIfStatsOutFragCreates;
14120 
14121         ipkp->routingDiscards.value.ui32 =   0;
14122         ipkp->inErrs.value.ui32 =            ipmib.tcpIfStatsInErrs;
14123         ipkp->noPorts.value.ui32 =           ipmib.udpIfStatsNoPorts;
14124         ipkp->inCksumErrs.value.ui32 =               ipmib.ipIfStatsInCksumErrs;
14125         ipkp->reasmDuplicates.value.ui32 =   ipmib.ipIfStatsReasmDuplicates;
14126         ipkp->reasmPartDups.value.ui32 =     ipmib.ipIfStatsReasmPartDups;
14127         ipkp->forwProhibits.value.ui32 =     ipmib.ipIfStatsForwProhibits;
14128         ipkp->udpInCksumErrs.value.ui32 =    ipmib.udpIfStatsInCksumErrs;
14129         ipkp->udpInOverflows.value.ui32 =    ipmib.udpIfStatsInOverflows;
14130         ipkp->rawipInOverflows.value.ui32 =  ipmib.rawipIfStatsInOverflows;
14131         ipkp->ipsecInSucceeded.value.ui32 =  ipmib.ipsecIfStatsInSucceeded;
14132         ipkp->ipsecInFailed.value.i32 =              ipmib.ipsecIfStatsInFailed;
14133 
14134         ipkp->inIPv6.value.ui32 =    ipmib.ipIfStatsInWrongIPVersion;
14135         ipkp->outIPv6.value.ui32 =   ipmib.ipIfStatsOutWrongIPVersion;
14136         ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14137 
14138         netstack_rele(ns);
14139 
14140         return (0);
14141 }
14142 
14143 static void *
14144 icmp_kstat_init(netstackid_t stackid)
14145 {
14146         kstat_t *ksp;
14147 
14148         icmp_named_kstat_t template = {
14149                 { "inMsgs",             KSTAT_DATA_UINT32 },
14150                 { "inErrors",           KSTAT_DATA_UINT32 },
14151                 { "inDestUnreachs",     KSTAT_DATA_UINT32 },
14152                 { "inTimeExcds",        KSTAT_DATA_UINT32 },
14153                 { "inParmProbs",        KSTAT_DATA_UINT32 },
14154                 { "inSrcQuenchs",       KSTAT_DATA_UINT32 },
14155                 { "inRedirects",        KSTAT_DATA_UINT32 },
14156                 { "inEchos",            KSTAT_DATA_UINT32 },
14157                 { "inEchoReps",         KSTAT_DATA_UINT32 },
14158                 { "inTimestamps",       KSTAT_DATA_UINT32 },
14159                 { "inTimestampReps",    KSTAT_DATA_UINT32 },
14160                 { "inAddrMasks",        KSTAT_DATA_UINT32 },
14161                 { "inAddrMaskReps",     KSTAT_DATA_UINT32 },
14162                 { "outMsgs",            KSTAT_DATA_UINT32 },
14163                 { "outErrors",          KSTAT_DATA_UINT32 },
14164                 { "outDestUnreachs",    KSTAT_DATA_UINT32 },
14165                 { "outTimeExcds",       KSTAT_DATA_UINT32 },
14166                 { "outParmProbs",       KSTAT_DATA_UINT32 },
14167                 { "outSrcQuenchs",      KSTAT_DATA_UINT32 },
14168                 { "outRedirects",       KSTAT_DATA_UINT32 },
14169                 { "outEchos",           KSTAT_DATA_UINT32 },
14170                 { "outEchoReps",        KSTAT_DATA_UINT32 },
14171                 { "outTimestamps",      KSTAT_DATA_UINT32 },
14172                 { "outTimestampReps",   KSTAT_DATA_UINT32 },
14173                 { "outAddrMasks",       KSTAT_DATA_UINT32 },
14174                 { "outAddrMaskReps",    KSTAT_DATA_UINT32 },
14175                 { "inChksumErrs",       KSTAT_DATA_UINT32 },
14176                 { "inUnknowns",         KSTAT_DATA_UINT32 },
14177                 { "inFragNeeded",       KSTAT_DATA_UINT32 },
14178                 { "outFragNeeded",      KSTAT_DATA_UINT32 },
14179                 { "outDrops",           KSTAT_DATA_UINT32 },
14180                 { "inOverFlows",        KSTAT_DATA_UINT32 },
14181                 { "inBadRedirects",     KSTAT_DATA_UINT32 },
14182         };
14183 
14184         ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14185             NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14186         if (ksp == NULL || ksp->ks_data == NULL)
14187                 return (NULL);
14188 
14189         bcopy(&template, ksp->ks_data, sizeof (template));
14190 
14191         ksp->ks_update = icmp_kstat_update;
14192         ksp->ks_private = (void *)(uintptr_t)stackid;
14193 
14194         kstat_install(ksp);
14195         return (ksp);
14196 }
14197 
14198 static void
14199 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14200 {
14201         if (ksp != NULL) {
14202                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14203                 kstat_delete_netstack(ksp, stackid);
14204         }
14205 }
14206 
14207 static int
14208 icmp_kstat_update(kstat_t *kp, int rw)
14209 {
14210         icmp_named_kstat_t *icmpkp;
14211         netstackid_t    stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14212         netstack_t      *ns;
14213         ip_stack_t      *ipst;
14214 
14215         if ((kp == NULL) || (kp->ks_data == NULL))
14216                 return (EIO);
14217 
14218         if (rw == KSTAT_WRITE)
14219                 return (EACCES);
14220 
14221         ns = netstack_find_by_stackid(stackid);
14222         if (ns == NULL)
14223                 return (-1);
14224         ipst = ns->netstack_ip;
14225         if (ipst == NULL) {
14226                 netstack_rele(ns);
14227                 return (-1);
14228         }
14229         icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14230 
14231         icmpkp->inMsgs.value.ui32 =      ipst->ips_icmp_mib.icmpInMsgs;
14232         icmpkp->inErrors.value.ui32 =            ipst->ips_icmp_mib.icmpInErrors;
14233         icmpkp->inDestUnreachs.value.ui32 =
14234             ipst->ips_icmp_mib.icmpInDestUnreachs;
14235         icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
14236         icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
14237         icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
14238         icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
14239         icmpkp->inEchos.value.ui32 =     ipst->ips_icmp_mib.icmpInEchos;
14240         icmpkp->inEchoReps.value.ui32 =          ipst->ips_icmp_mib.icmpInEchoReps;
14241         icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
14242         icmpkp->inTimestampReps.value.ui32 =
14243             ipst->ips_icmp_mib.icmpInTimestampReps;
14244         icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
14245         icmpkp->inAddrMaskReps.value.ui32 =
14246             ipst->ips_icmp_mib.icmpInAddrMaskReps;
14247         icmpkp->outMsgs.value.ui32 =     ipst->ips_icmp_mib.icmpOutMsgs;
14248         icmpkp->outErrors.value.ui32 =           ipst->ips_icmp_mib.icmpOutErrors;
14249         icmpkp->outDestUnreachs.value.ui32 =
14250             ipst->ips_icmp_mib.icmpOutDestUnreachs;
14251         icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
14252         icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
14253         icmpkp->outSrcQuenchs.value.ui32 =
14254             ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14255         icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
14256         icmpkp->outEchos.value.ui32 =            ipst->ips_icmp_mib.icmpOutEchos;
14257         icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
14258         icmpkp->outTimestamps.value.ui32 =
14259             ipst->ips_icmp_mib.icmpOutTimestamps;
14260         icmpkp->outTimestampReps.value.ui32 =
14261             ipst->ips_icmp_mib.icmpOutTimestampReps;
14262         icmpkp->outAddrMasks.value.ui32 =
14263             ipst->ips_icmp_mib.icmpOutAddrMasks;
14264         icmpkp->outAddrMaskReps.value.ui32 =
14265             ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14266         icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
14267         icmpkp->inUnknowns.value.ui32 =          ipst->ips_icmp_mib.icmpInUnknowns;
14268         icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
14269         icmpkp->outFragNeeded.value.ui32 =
14270             ipst->ips_icmp_mib.icmpOutFragNeeded;
14271         icmpkp->outDrops.value.ui32 =            ipst->ips_icmp_mib.icmpOutDrops;
14272         icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
14273         icmpkp->inBadRedirects.value.ui32 =
14274             ipst->ips_icmp_mib.icmpInBadRedirects;
14275 
14276         netstack_rele(ns);
14277         return (0);
14278 }
14279 
14280 /*
14281  * This is the fanout function for raw socket opened for SCTP.  Note
14282  * that it is called after SCTP checks that there is no socket which
14283  * wants a packet.  Then before SCTP handles this out of the blue packet,
14284  * this function is called to see if there is any raw socket for SCTP.
14285  * If there is and it is bound to the correct address, the packet will
14286  * be sent to that socket.  Note that only one raw socket can be bound to
14287  * a port.  This is assured in ipcl_sctp_hash_insert();
14288  */
14289 void
14290 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14291     ip_recv_attr_t *ira)
14292 {
14293         conn_t          *connp;
14294         queue_t         *rq;
14295         boolean_t       secure;
14296         ill_t           *ill = ira->ira_ill;
14297         ip_stack_t      *ipst = ill->ill_ipst;
14298         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
14299         sctp_stack_t    *sctps = ipst->ips_netstack->netstack_sctp;
14300         iaflags_t       iraflags = ira->ira_flags;
14301         ill_t           *rill = ira->ira_rill;
14302 
14303         secure = iraflags & IRAF_IPSEC_SECURE;
14304 
14305         connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14306             ira, ipst);
14307         if (connp == NULL) {
14308                 /*
14309                  * Although raw sctp is not summed, OOB chunks must be.
14310                  * Drop the packet here if the sctp checksum failed.
14311                  */
14312                 if (iraflags & IRAF_SCTP_CSUM_ERR) {
14313                         SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14314                         freemsg(mp);
14315                         return;
14316                 }
14317                 ira->ira_ill = ira->ira_rill = NULL;
14318                 sctp_ootb_input(mp, ira, ipst);
14319                 ira->ira_ill = ill;
14320                 ira->ira_rill = rill;
14321                 return;
14322         }
14323         rq = connp->conn_rq;
14324         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14325                 CONN_DEC_REF(connp);
14326                 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14327                 freemsg(mp);
14328                 return;
14329         }
14330         if (((iraflags & IRAF_IS_IPV4) ?
14331             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14332             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14333             secure) {
14334                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
14335                     ip6h, ira);
14336                 if (mp == NULL) {
14337                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14338                         /* Note that mp is NULL */
14339                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
14340                         CONN_DEC_REF(connp);
14341                         return;
14342                 }
14343         }
14344 
14345         if (iraflags & IRAF_ICMP_ERROR) {
14346                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
14347         } else {
14348                 ill_t *rill = ira->ira_rill;
14349 
14350                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14351                 /* This is the SOCK_RAW, IPPROTO_SCTP case. */
14352                 ira->ira_ill = ira->ira_rill = NULL;
14353                 (connp->conn_recv)(connp, mp, NULL, ira);
14354                 ira->ira_ill = ill;
14355                 ira->ira_rill = rill;
14356         }
14357         CONN_DEC_REF(connp);
14358 }
14359 
14360 /*
14361  * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14362  * header before the ip payload.
14363  */
14364 static void
14365 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14366 {
14367         int len = (mp->b_wptr - mp->b_rptr);
14368         mblk_t *ip_mp;
14369 
14370         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14371         if (is_fp_mp || len != fp_mp_len) {
14372                 if (len > fp_mp_len) {
14373                         /*
14374                          * fastpath header and ip header in the first mblk
14375                          */
14376                         mp->b_rptr += fp_mp_len;
14377                 } else {
14378                         /*
14379                          * ip_xmit_attach_llhdr had to prepend an mblk to
14380                          * attach the fastpath header before ip header.
14381                          */
14382                         ip_mp = mp->b_cont;
14383                         freeb(mp);
14384                         mp = ip_mp;
14385                         mp->b_rptr += (fp_mp_len - len);
14386                 }
14387         } else {
14388                 ip_mp = mp->b_cont;
14389                 freeb(mp);
14390                 mp = ip_mp;
14391         }
14392         ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14393         freemsg(mp);
14394 }
14395 
14396 /*
14397  * Normal post fragmentation function.
14398  *
14399  * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14400  * using the same state machine.
14401  *
14402  * We return an error on failure. In particular we return EWOULDBLOCK
14403  * when the driver flow controls. In that case this ensures that ip_wsrv runs
14404  * (currently by canputnext failure resulting in backenabling from GLD.)
14405  * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14406  * indication that they can flow control until ip_wsrv() tells then to restart.
14407  *
14408  * If the nce passed by caller is incomplete, this function
14409  * queues the packet and if necessary, sends ARP request and bails.
14410  * If the Neighbor Cache passed is fully resolved, we simply prepend
14411  * the link-layer header to the packet, do ipsec hw acceleration
14412  * work if necessary, and send the packet out on the wire.
14413  */
14414 /* ARGSUSED6 */
14415 int
14416 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14417     uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14418 {
14419         queue_t         *wq;
14420         ill_t           *ill = nce->nce_ill;
14421         ip_stack_t      *ipst = ill->ill_ipst;
14422         uint64_t        delta;
14423         boolean_t       isv6 = ill->ill_isv6;
14424         boolean_t       fp_mp;
14425         ncec_t          *ncec = nce->nce_common;
14426         int64_t         now = LBOLT_FASTPATH64;
14427         boolean_t       is_probe;
14428 
14429         DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14430 
14431         ASSERT(mp != NULL);
14432         ASSERT(mp->b_datap->db_type == M_DATA);
14433         ASSERT(pkt_len == msgdsize(mp));
14434 
14435         /*
14436          * If we have already been here and are coming back after ARP/ND.
14437          * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14438          * in that case since they have seen the packet when it came here
14439          * the first time.
14440          */
14441         if (ixaflags & IXAF_NO_TRACE)
14442                 goto sendit;
14443 
14444         if (ixaflags & IXAF_IS_IPV4) {
14445                 ipha_t *ipha = (ipha_t *)mp->b_rptr;
14446 
14447                 ASSERT(!isv6);
14448                 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14449                 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14450                     !(ixaflags & IXAF_NO_PFHOOK)) {
14451                         int     error;
14452 
14453                         FW_HOOKS(ipst->ips_ip4_physical_out_event,
14454                             ipst->ips_ipv4firewall_physical_out,
14455                             NULL, ill, ipha, mp, mp, 0, ipst, error);
14456                         DTRACE_PROBE1(ip4__physical__out__end,
14457                             mblk_t *, mp);
14458                         if (mp == NULL)
14459                                 return (error);
14460 
14461                         /* The length could have changed */
14462                         pkt_len = msgdsize(mp);
14463                 }
14464                 if (ipst->ips_ip4_observe.he_interested) {
14465                         /*
14466                          * Note that for TX the zoneid is the sending
14467                          * zone, whether or not MLP is in play.
14468                          * Since the szone argument is the IP zoneid (i.e.,
14469                          * zero for exclusive-IP zones) and ipobs wants
14470                          * the system zoneid, we map it here.
14471                          */
14472                         szone = IP_REAL_ZONEID(szone, ipst);
14473 
14474                         /*
14475                          * On the outbound path the destination zone will be
14476                          * unknown as we're sending this packet out on the
14477                          * wire.
14478                          */
14479                         ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14480                             ill, ipst);
14481                 }
14482                 DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14483                     void_ip_t *, ipha,  __dtrace_ipsr_ill_t *, ill,
14484                     ipha_t *, ipha, ip6_t *, NULL, int, 0);
14485         } else {
14486                 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14487 
14488                 ASSERT(isv6);
14489                 ASSERT(pkt_len ==
14490                     ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14491                 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14492                     !(ixaflags & IXAF_NO_PFHOOK)) {
14493                         int     error;
14494 
14495                         FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14496                             ipst->ips_ipv6firewall_physical_out,
14497                             NULL, ill, ip6h, mp, mp, 0, ipst, error);
14498                         DTRACE_PROBE1(ip6__physical__out__end,
14499                             mblk_t *, mp);
14500                         if (mp == NULL)
14501                                 return (error);
14502 
14503                         /* The length could have changed */
14504                         pkt_len = msgdsize(mp);
14505                 }
14506                 if (ipst->ips_ip6_observe.he_interested) {
14507                         /* See above */
14508                         szone = IP_REAL_ZONEID(szone, ipst);
14509 
14510                         ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14511                             ill, ipst);
14512                 }
14513                 DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14514                     void_ip_t *, ip6h,  __dtrace_ipsr_ill_t *, ill,
14515                     ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14516         }
14517 
14518 sendit:
14519         /*
14520          * We check the state without a lock because the state can never
14521          * move "backwards" to initial or incomplete.
14522          */
14523         switch (ncec->ncec_state) {
14524         case ND_REACHABLE:
14525         case ND_STALE:
14526         case ND_DELAY:
14527         case ND_PROBE:
14528                 mp = ip_xmit_attach_llhdr(mp, nce);
14529                 if (mp == NULL) {
14530                         /*
14531                          * ip_xmit_attach_llhdr has increased
14532                          * ipIfStatsOutDiscards and called ip_drop_output()
14533                          */
14534                         return (ENOBUFS);
14535                 }
14536                 /*
14537                  * check if nce_fastpath completed and we tagged on a
14538                  * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14539                  */
14540                 fp_mp = (mp->b_datap->db_type == M_DATA);
14541 
14542                 if (fp_mp &&
14543                     (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14544                         ill_dld_direct_t *idd;
14545 
14546                         idd = &ill->ill_dld_capab->idc_direct;
14547                         /*
14548                          * Send the packet directly to DLD, where it
14549                          * may be queued depending on the availability
14550                          * of transmit resources at the media layer.
14551                          * Return value should be taken into
14552                          * account and flow control the TCP.
14553                          */
14554                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14555                         UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14556                             pkt_len);
14557 
14558                         if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14559                                 (void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14560                                     (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14561                         } else {
14562                                 uintptr_t cookie;
14563 
14564                                 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14565                                     mp, (uintptr_t)xmit_hint, 0)) != 0) {
14566                                         if (ixacookie != NULL)
14567                                                 *ixacookie = cookie;
14568                                         return (EWOULDBLOCK);
14569                                 }
14570                         }
14571                 } else {
14572                         wq = ill->ill_wq;
14573 
14574                         if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14575                             !canputnext(wq)) {
14576                                 if (ixacookie != NULL)
14577                                         *ixacookie = 0;
14578                                 ip_xmit_flowctl_drop(ill, mp, fp_mp,
14579                                     nce->nce_fp_mp != NULL ?
14580                                     MBLKL(nce->nce_fp_mp) : 0);
14581                                 return (EWOULDBLOCK);
14582                         }
14583                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14584                         UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14585                             pkt_len);
14586                         putnext(wq, mp);
14587                 }
14588 
14589                 /*
14590                  * The rest of this function implements Neighbor Unreachability
14591                  * detection. Determine if the ncec is eligible for NUD.
14592                  */
14593                 if (ncec->ncec_flags & NCE_F_NONUD)
14594                         return (0);
14595 
14596                 ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14597 
14598                 /*
14599                  * Check for upper layer advice
14600                  */
14601                 if (ixaflags & IXAF_REACH_CONF) {
14602                         timeout_id_t tid;
14603 
14604                         /*
14605                          * It should be o.k. to check the state without
14606                          * a lock here, at most we lose an advice.
14607                          */
14608                         ncec->ncec_last = TICK_TO_MSEC(now);
14609                         if (ncec->ncec_state != ND_REACHABLE) {
14610                                 mutex_enter(&ncec->ncec_lock);
14611                                 ncec->ncec_state = ND_REACHABLE;
14612                                 tid = ncec->ncec_timeout_id;
14613                                 ncec->ncec_timeout_id = 0;
14614                                 mutex_exit(&ncec->ncec_lock);
14615                                 (void) untimeout(tid);
14616                                 if (ip_debug > 2) {
14617                                         /* ip1dbg */
14618                                         pr_addr_dbg("ip_xmit: state"
14619                                             " for %s changed to"
14620                                             " REACHABLE\n", AF_INET6,
14621                                             &ncec->ncec_addr);
14622                                 }
14623                         }
14624                         return (0);
14625                 }
14626 
14627                 delta =  TICK_TO_MSEC(now) - ncec->ncec_last;
14628                 ip1dbg(("ip_xmit: delta = %" PRId64
14629                     " ill_reachable_time = %d \n", delta,
14630                     ill->ill_reachable_time));
14631                 if (delta > (uint64_t)ill->ill_reachable_time) {
14632                         mutex_enter(&ncec->ncec_lock);
14633                         switch (ncec->ncec_state) {
14634                         case ND_REACHABLE:
14635                                 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14636                                 /* FALLTHROUGH */
14637                         case ND_STALE:
14638                                 /*
14639                                  * ND_REACHABLE is identical to
14640                                  * ND_STALE in this specific case. If
14641                                  * reachable time has expired for this
14642                                  * neighbor (delta is greater than
14643                                  * reachable time), conceptually, the
14644                                  * neighbor cache is no longer in
14645                                  * REACHABLE state, but already in
14646                                  * STALE state.  So the correct
14647                                  * transition here is to ND_DELAY.
14648                                  */
14649                                 ncec->ncec_state = ND_DELAY;
14650                                 mutex_exit(&ncec->ncec_lock);
14651                                 nce_restart_timer(ncec,
14652                                     ipst->ips_delay_first_probe_time);
14653                                 if (ip_debug > 3) {
14654                                         /* ip2dbg */
14655                                         pr_addr_dbg("ip_xmit: state"
14656                                             " for %s changed to"
14657                                             " DELAY\n", AF_INET6,
14658                                             &ncec->ncec_addr);
14659                                 }
14660                                 break;
14661                         case ND_DELAY:
14662                         case ND_PROBE:
14663                                 mutex_exit(&ncec->ncec_lock);
14664                                 /* Timers have already started */
14665                                 break;
14666                         case ND_UNREACHABLE:
14667                                 /*
14668                                  * nce_timer has detected that this ncec
14669                                  * is unreachable and initiated deleting
14670                                  * this ncec.
14671                                  * This is a harmless race where we found the
14672                                  * ncec before it was deleted and have
14673                                  * just sent out a packet using this
14674                                  * unreachable ncec.
14675                                  */
14676                                 mutex_exit(&ncec->ncec_lock);
14677                                 break;
14678                         default:
14679                                 ASSERT(0);
14680                                 mutex_exit(&ncec->ncec_lock);
14681                         }
14682                 }
14683                 return (0);
14684 
14685         case ND_INCOMPLETE:
14686                 /*
14687                  * the state could have changed since we didn't hold the lock.
14688                  * Re-verify state under lock.
14689                  */
14690                 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14691                 mutex_enter(&ncec->ncec_lock);
14692                 if (NCE_ISREACHABLE(ncec)) {
14693                         mutex_exit(&ncec->ncec_lock);
14694                         goto sendit;
14695                 }
14696                 /* queue the packet */
14697                 nce_queue_mp(ncec, mp, is_probe);
14698                 mutex_exit(&ncec->ncec_lock);
14699                 DTRACE_PROBE2(ip__xmit__incomplete,
14700                     (ncec_t *), ncec, (mblk_t *), mp);
14701                 return (0);
14702 
14703         case ND_INITIAL:
14704                 /*
14705                  * State could have changed since we didn't hold the lock, so
14706                  * re-verify state.
14707                  */
14708                 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14709                 mutex_enter(&ncec->ncec_lock);
14710                 if (NCE_ISREACHABLE(ncec))  {
14711                         mutex_exit(&ncec->ncec_lock);
14712                         goto sendit;
14713                 }
14714                 nce_queue_mp(ncec, mp, is_probe);
14715                 if (ncec->ncec_state == ND_INITIAL) {
14716                         ncec->ncec_state = ND_INCOMPLETE;
14717                         mutex_exit(&ncec->ncec_lock);
14718                         /*
14719                          * figure out the source we want to use
14720                          * and resolve it.
14721                          */
14722                         ip_ndp_resolve(ncec);
14723                 } else  {
14724                         mutex_exit(&ncec->ncec_lock);
14725                 }
14726                 return (0);
14727 
14728         case ND_UNREACHABLE:
14729                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14730                 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14731                     mp, ill);
14732                 freemsg(mp);
14733                 return (0);
14734 
14735         default:
14736                 ASSERT(0);
14737                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14738                 ip_drop_output("ipIfStatsOutDiscards - ND_other",
14739                     mp, ill);
14740                 freemsg(mp);
14741                 return (ENETUNREACH);
14742         }
14743 }
14744 
14745 /*
14746  * Return B_TRUE if the buffers differ in length or content.
14747  * This is used for comparing extension header buffers.
14748  * Note that an extension header would be declared different
14749  * even if all that changed was the next header value in that header i.e.
14750  * what really changed is the next extension header.
14751  */
14752 boolean_t
14753 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14754     uint_t blen)
14755 {
14756         if (!b_valid)
14757                 blen = 0;
14758 
14759         if (alen != blen)
14760                 return (B_TRUE);
14761         if (alen == 0)
14762                 return (B_FALSE);       /* Both zero length */
14763         return (bcmp(abuf, bbuf, alen));
14764 }
14765 
14766 /*
14767  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14768  * Return B_FALSE if memory allocation fails - don't change any state!
14769  */
14770 boolean_t
14771 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14772     const void *src, uint_t srclen)
14773 {
14774         void *dst;
14775 
14776         if (!src_valid)
14777                 srclen = 0;
14778 
14779         ASSERT(*dstlenp == 0);
14780         if (src != NULL && srclen != 0) {
14781                 dst = mi_alloc(srclen, BPRI_MED);
14782                 if (dst == NULL)
14783                         return (B_FALSE);
14784         } else {
14785                 dst = NULL;
14786         }
14787         if (*dstp != NULL)
14788                 mi_free(*dstp);
14789         *dstp = dst;
14790         *dstlenp = dst == NULL ? 0 : srclen;
14791         return (B_TRUE);
14792 }
14793 
14794 /*
14795  * Replace what is in *dst, *dstlen with the source.
14796  * Assumes ip_allocbuf has already been called.
14797  */
14798 void
14799 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14800     const void *src, uint_t srclen)
14801 {
14802         if (!src_valid)
14803                 srclen = 0;
14804 
14805         ASSERT(*dstlenp == srclen);
14806         if (src != NULL && srclen != 0)
14807                 bcopy(src, *dstp, srclen);
14808 }
14809 
14810 /*
14811  * Free the storage pointed to by the members of an ip_pkt_t.
14812  */
14813 void
14814 ip_pkt_free(ip_pkt_t *ipp)
14815 {
14816         uint_t  fields = ipp->ipp_fields;
14817 
14818         if (fields & IPPF_HOPOPTS) {
14819                 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14820                 ipp->ipp_hopopts = NULL;
14821                 ipp->ipp_hopoptslen = 0;
14822         }
14823         if (fields & IPPF_RTHDRDSTOPTS) {
14824                 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14825                 ipp->ipp_rthdrdstopts = NULL;
14826                 ipp->ipp_rthdrdstoptslen = 0;
14827         }
14828         if (fields & IPPF_DSTOPTS) {
14829                 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14830                 ipp->ipp_dstopts = NULL;
14831                 ipp->ipp_dstoptslen = 0;
14832         }
14833         if (fields & IPPF_RTHDR) {
14834                 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14835                 ipp->ipp_rthdr = NULL;
14836                 ipp->ipp_rthdrlen = 0;
14837         }
14838         if (fields & IPPF_IPV4_OPTIONS) {
14839                 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14840                 ipp->ipp_ipv4_options = NULL;
14841                 ipp->ipp_ipv4_options_len = 0;
14842         }
14843         if (fields & IPPF_LABEL_V4) {
14844                 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14845                 ipp->ipp_label_v4 = NULL;
14846                 ipp->ipp_label_len_v4 = 0;
14847         }
14848         if (fields & IPPF_LABEL_V6) {
14849                 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14850                 ipp->ipp_label_v6 = NULL;
14851                 ipp->ipp_label_len_v6 = 0;
14852         }
14853         ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14854             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14855 }
14856 
14857 /*
14858  * Copy from src to dst and allocate as needed.
14859  * Returns zero or ENOMEM.
14860  *
14861  * The caller must initialize dst to zero.
14862  */
14863 int
14864 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14865 {
14866         uint_t  fields = src->ipp_fields;
14867 
14868         /* Start with fields that don't require memory allocation */
14869         dst->ipp_fields = fields &
14870             ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14871             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14872 
14873         dst->ipp_addr = src->ipp_addr;
14874         dst->ipp_unicast_hops = src->ipp_unicast_hops;
14875         dst->ipp_hoplimit = src->ipp_hoplimit;
14876         dst->ipp_tclass = src->ipp_tclass;
14877         dst->ipp_type_of_service = src->ipp_type_of_service;
14878 
14879         if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14880             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14881                 return (0);
14882 
14883         if (fields & IPPF_HOPOPTS) {
14884                 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14885                 if (dst->ipp_hopopts == NULL) {
14886                         ip_pkt_free(dst);
14887                         return (ENOMEM);
14888                 }
14889                 dst->ipp_fields |= IPPF_HOPOPTS;
14890                 bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14891                     src->ipp_hopoptslen);
14892                 dst->ipp_hopoptslen = src->ipp_hopoptslen;
14893         }
14894         if (fields & IPPF_RTHDRDSTOPTS) {
14895                 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14896                     kmflag);
14897                 if (dst->ipp_rthdrdstopts == NULL) {
14898                         ip_pkt_free(dst);
14899                         return (ENOMEM);
14900                 }
14901                 dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14902                 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14903                     src->ipp_rthdrdstoptslen);
14904                 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14905         }
14906         if (fields & IPPF_DSTOPTS) {
14907                 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14908                 if (dst->ipp_dstopts == NULL) {
14909                         ip_pkt_free(dst);
14910                         return (ENOMEM);
14911                 }
14912                 dst->ipp_fields |= IPPF_DSTOPTS;
14913                 bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14914                     src->ipp_dstoptslen);
14915                 dst->ipp_dstoptslen = src->ipp_dstoptslen;
14916         }
14917         if (fields & IPPF_RTHDR) {
14918                 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14919                 if (dst->ipp_rthdr == NULL) {
14920                         ip_pkt_free(dst);
14921                         return (ENOMEM);
14922                 }
14923                 dst->ipp_fields |= IPPF_RTHDR;
14924                 bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14925                     src->ipp_rthdrlen);
14926                 dst->ipp_rthdrlen = src->ipp_rthdrlen;
14927         }
14928         if (fields & IPPF_IPV4_OPTIONS) {
14929                 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14930                     kmflag);
14931                 if (dst->ipp_ipv4_options == NULL) {
14932                         ip_pkt_free(dst);
14933                         return (ENOMEM);
14934                 }
14935                 dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14936                 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14937                     src->ipp_ipv4_options_len);
14938                 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14939         }
14940         if (fields & IPPF_LABEL_V4) {
14941                 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14942                 if (dst->ipp_label_v4 == NULL) {
14943                         ip_pkt_free(dst);
14944                         return (ENOMEM);
14945                 }
14946                 dst->ipp_fields |= IPPF_LABEL_V4;
14947                 bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14948                     src->ipp_label_len_v4);
14949                 dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14950         }
14951         if (fields & IPPF_LABEL_V6) {
14952                 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14953                 if (dst->ipp_label_v6 == NULL) {
14954                         ip_pkt_free(dst);
14955                         return (ENOMEM);
14956                 }
14957                 dst->ipp_fields |= IPPF_LABEL_V6;
14958                 bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14959                     src->ipp_label_len_v6);
14960                 dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14961         }
14962         if (fields & IPPF_FRAGHDR) {
14963                 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14964                 if (dst->ipp_fraghdr == NULL) {
14965                         ip_pkt_free(dst);
14966                         return (ENOMEM);
14967                 }
14968                 dst->ipp_fields |= IPPF_FRAGHDR;
14969                 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14970                     src->ipp_fraghdrlen);
14971                 dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14972         }
14973         return (0);
14974 }
14975 
14976 /*
14977  * Returns INADDR_ANY if no source route
14978  */
14979 ipaddr_t
14980 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
14981 {
14982         ipaddr_t        nexthop = INADDR_ANY;
14983         ipoptp_t        opts;
14984         uchar_t         *opt;
14985         uint8_t         optval;
14986         uint8_t         optlen;
14987         uint32_t        totallen;
14988 
14989         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
14990                 return (INADDR_ANY);
14991 
14992         totallen = ipp->ipp_ipv4_options_len;
14993         if (totallen & 0x3)
14994                 return (INADDR_ANY);
14995 
14996         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
14997             optval != IPOPT_EOL;
14998             optval = ipoptp_next(&opts)) {
14999                 opt = opts.ipoptp_cur;
15000                 switch (optval) {
15001                         uint8_t off;
15002                 case IPOPT_SSRR:
15003                 case IPOPT_LSRR:
15004                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15005                                 break;
15006                         }
15007                         optlen = opts.ipoptp_len;
15008                         off = opt[IPOPT_OFFSET];
15009                         off--;
15010                         if (optlen < IP_ADDR_LEN ||
15011                             off > optlen - IP_ADDR_LEN) {
15012                                 /* End of source route */
15013                                 break;
15014                         }
15015                         bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
15016                         if (nexthop == htonl(INADDR_LOOPBACK)) {
15017                                 /* Ignore */
15018                                 nexthop = INADDR_ANY;
15019                                 break;
15020                         }
15021                         break;
15022                 }
15023         }
15024         return (nexthop);
15025 }
15026 
15027 /*
15028  * Reverse a source route.
15029  */
15030 void
15031 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15032 {
15033         ipaddr_t        tmp;
15034         ipoptp_t        opts;
15035         uchar_t         *opt;
15036         uint8_t         optval;
15037         uint32_t        totallen;
15038 
15039         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15040                 return;
15041 
15042         totallen = ipp->ipp_ipv4_options_len;
15043         if (totallen & 0x3)
15044                 return;
15045 
15046         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15047             optval != IPOPT_EOL;
15048             optval = ipoptp_next(&opts)) {
15049                 uint8_t off1, off2;
15050 
15051                 opt = opts.ipoptp_cur;
15052                 switch (optval) {
15053                 case IPOPT_SSRR:
15054                 case IPOPT_LSRR:
15055                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15056                                 break;
15057                         }
15058                         off1 = IPOPT_MINOFF_SR - 1;
15059                         off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15060                         while (off2 > off1) {
15061                                 bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15062                                 bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15063                                 bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15064                                 off2 -= IP_ADDR_LEN;
15065                                 off1 += IP_ADDR_LEN;
15066                         }
15067                         opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15068                         break;
15069                 }
15070         }
15071 }
15072 
15073 /*
15074  * Returns NULL if no routing header
15075  */
15076 in6_addr_t *
15077 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15078 {
15079         in6_addr_t      *nexthop = NULL;
15080         ip6_rthdr0_t    *rthdr;
15081 
15082         if (!(ipp->ipp_fields & IPPF_RTHDR))
15083                 return (NULL);
15084 
15085         rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15086         if (rthdr->ip6r0_segleft == 0)
15087                 return (NULL);
15088 
15089         nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15090         return (nexthop);
15091 }
15092 
15093 zoneid_t
15094 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15095     zoneid_t lookup_zoneid)
15096 {
15097         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
15098         ire_t           *ire;
15099         int             ire_flags = MATCH_IRE_TYPE;
15100         zoneid_t        zoneid = ALL_ZONES;
15101 
15102         if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15103                 return (ALL_ZONES);
15104 
15105         if (lookup_zoneid != ALL_ZONES)
15106                 ire_flags |= MATCH_IRE_ZONEONLY;
15107         ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15108             NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15109         if (ire != NULL) {
15110                 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15111                 ire_refrele(ire);
15112         }
15113         return (zoneid);
15114 }
15115 
15116 zoneid_t
15117 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15118     ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15119 {
15120         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
15121         ire_t           *ire;
15122         int             ire_flags = MATCH_IRE_TYPE;
15123         zoneid_t        zoneid = ALL_ZONES;
15124 
15125         if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15126                 return (ALL_ZONES);
15127 
15128         if (IN6_IS_ADDR_LINKLOCAL(addr))
15129                 ire_flags |= MATCH_IRE_ILL;
15130 
15131         if (lookup_zoneid != ALL_ZONES)
15132                 ire_flags |= MATCH_IRE_ZONEONLY;
15133         ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15134             ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15135         if (ire != NULL) {
15136                 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15137                 ire_refrele(ire);
15138         }
15139         return (zoneid);
15140 }
15141 
15142 /*
15143  * IP obserability hook support functions.
15144  */
15145 static void
15146 ipobs_init(ip_stack_t *ipst)
15147 {
15148         netid_t id;
15149 
15150         id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15151 
15152         ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15153         VERIFY(ipst->ips_ip4_observe_pr != NULL);
15154 
15155         ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15156         VERIFY(ipst->ips_ip6_observe_pr != NULL);
15157 }
15158 
15159 static void
15160 ipobs_fini(ip_stack_t *ipst)
15161 {
15162 
15163         VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15164         VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15165 }
15166 
15167 /*
15168  * hook_pkt_observe_t is composed in network byte order so that the
15169  * entire mblk_t chain handed into hook_run can be used as-is.
15170  * The caveat is that use of the fields, such as the zone fields,
15171  * requires conversion into host byte order first.
15172  */
15173 void
15174 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15175     const ill_t *ill, ip_stack_t *ipst)
15176 {
15177         hook_pkt_observe_t *hdr;
15178         uint64_t grifindex;
15179         mblk_t *imp;
15180 
15181         imp = allocb(sizeof (*hdr), BPRI_HI);
15182         if (imp == NULL)
15183                 return;
15184 
15185         hdr = (hook_pkt_observe_t *)imp->b_rptr;
15186         /*
15187          * b_wptr is set to make the apparent size of the data in the mblk_t
15188          * to exclude the pointers at the end of hook_pkt_observer_t.
15189          */
15190         imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15191         imp->b_cont = mp;
15192 
15193         ASSERT(DB_TYPE(mp) == M_DATA);
15194 
15195         if (IS_UNDER_IPMP(ill))
15196                 grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15197         else
15198                 grifindex = 0;
15199 
15200         hdr->hpo_version = 1;
15201         hdr->hpo_htype = htons(htype);
15202         hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15203         hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15204         hdr->hpo_grifindex = htonl(grifindex);
15205         hdr->hpo_zsrc = htonl(zsrc);
15206         hdr->hpo_zdst = htonl(zdst);
15207         hdr->hpo_pkt = imp;
15208         hdr->hpo_ctx = ipst->ips_netstack;
15209 
15210         if (ill->ill_isv6) {
15211                 hdr->hpo_family = AF_INET6;
15212                 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15213                     ipst->ips_ipv6observing, (hook_data_t)hdr);
15214         } else {
15215                 hdr->hpo_family = AF_INET;
15216                 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15217                     ipst->ips_ipv4observing, (hook_data_t)hdr);
15218         }
15219 
15220         imp->b_cont = NULL;
15221         freemsg(imp);
15222 }
15223 
15224 /*
15225  * Utility routine that checks if `v4srcp' is a valid address on underlying
15226  * interface `ill'.  If `ipifp' is non-NULL, it's set to a held ipif
15227  * associated with `v4srcp' on success.  NOTE: if this is not called from
15228  * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15229  * group during or after this lookup.
15230  */
15231 boolean_t
15232 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15233 {
15234         ipif_t *ipif;
15235 
15236         ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15237         if (ipif != NULL) {
15238                 if (ipifp != NULL)
15239                         *ipifp = ipif;
15240                 else
15241                         ipif_refrele(ipif);
15242                 return (B_TRUE);
15243         }
15244 
15245         ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15246             *v4srcp));
15247         return (B_FALSE);
15248 }
15249 
15250 /*
15251  * Transport protocol call back function for CPU state change.
15252  */
15253 /* ARGSUSED */
15254 static int
15255 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15256 {
15257         processorid_t cpu_seqid;
15258         netstack_handle_t nh;
15259         netstack_t *ns;
15260 
15261         ASSERT(MUTEX_HELD(&cpu_lock));
15262 
15263         switch (what) {
15264         case CPU_CONFIG:
15265         case CPU_ON:
15266         case CPU_INIT:
15267         case CPU_CPUPART_IN:
15268                 cpu_seqid = cpu[id]->cpu_seqid;
15269                 netstack_next_init(&nh);
15270                 while ((ns = netstack_next(&nh)) != NULL) {
15271                         tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15272                         sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15273                         udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15274                         netstack_rele(ns);
15275                 }
15276                 netstack_next_fini(&nh);
15277                 break;
15278         case CPU_UNCONFIG:
15279         case CPU_OFF:
15280         case CPU_CPUPART_OUT:
15281                 /*
15282                  * Nothing to do.  We don't remove the per CPU stats from
15283                  * the IP stack even when the CPU goes offline.
15284                  */
15285                 break;
15286         default:
15287                 break;
15288         }
15289         return (0);
15290 }