Print this page
    
6121 Copy-paste bug in mac_init_rings()
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/io/mac/mac.c
          +++ new/usr/src/uts/common/io/mac/mac.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24   24   * Copyright (c) 2014, Joyent, Inc.  All rights reserved.
  25   25   */
  26   26  
  27   27  /*
  28   28   * MAC Services Module
  29   29   *
  30   30   * The GLDv3 framework locking -  The MAC layer
  31   31   * --------------------------------------------
  32   32   *
  33   33   * The MAC layer is central to the GLD framework and can provide the locking
  34   34   * framework needed for itself and for the use of MAC clients. MAC end points
  35   35   * are fairly disjoint and don't share a lot of state. So a coarse grained
  36   36   * multi-threading scheme is to single thread all create/modify/delete or set
  37   37   * type of control operations on a per mac end point while allowing data threads
  38   38   * concurrently.
  39   39   *
  40   40   * Control operations (set) that modify a mac end point are always serialized on
  41   41   * a per mac end point basis, We have at most 1 such thread per mac end point
  42   42   * at a time.
  43   43   *
  44   44   * All other operations that are not serialized are essentially multi-threaded.
  45   45   * For example a control operation (get) like getting statistics which may not
  46   46   * care about reading values atomically or data threads sending or receiving
  47   47   * data. Mostly these type of operations don't modify the control state. Any
  48   48   * state these operations care about are protected using traditional locks.
  49   49   *
  50   50   * The perimeter only serializes serial operations. It does not imply there
  51   51   * aren't any other concurrent operations. However a serialized operation may
  52   52   * sometimes need to make sure it is the only thread. In this case it needs
  53   53   * to use reference counting mechanisms to cv_wait until any current data
  54   54   * threads are done.
  55   55   *
  56   56   * The mac layer itself does not hold any locks across a call to another layer.
  57   57   * The perimeter is however held across a down call to the driver to make the
  58   58   * whole control operation atomic with respect to other control operations.
  59   59   * Also the data path and get type control operations may proceed concurrently.
  60   60   * These operations synchronize with the single serial operation on a given mac
  61   61   * end point using regular locks. The perimeter ensures that conflicting
  62   62   * operations like say a mac_multicast_add and a mac_multicast_remove on the
  63   63   * same mac end point don't interfere with each other and also ensures that the
  64   64   * changes in the mac layer and the call to the underlying driver to say add a
  65   65   * multicast address are done atomically without interference from a thread
  66   66   * trying to delete the same address.
  67   67   *
  68   68   * For example, consider
  69   69   * mac_multicst_add()
  70   70   * {
  71   71   *      mac_perimeter_enter();  serialize all control operations
  72   72   *
  73   73   *      grab list lock          protect against access by data threads
  74   74   *      add to list
  75   75   *      drop list lock
  76   76   *
  77   77   *      call driver's mi_multicst
  78   78   *
  79   79   *      mac_perimeter_exit();
  80   80   * }
  81   81   *
  82   82   * To lessen the number of serialization locks and simplify the lock hierarchy,
  83   83   * we serialize all the control operations on a per mac end point by using a
  84   84   * single serialization lock called the perimeter. We allow recursive entry into
  85   85   * the perimeter to facilitate use of this mechanism by both the mac client and
  86   86   * the MAC layer itself.
  87   87   *
  88   88   * MAC client means an entity that does an operation on a mac handle
  89   89   * obtained from a mac_open/mac_client_open. Similarly MAC driver means
  90   90   * an entity that does an operation on a mac handle obtained from a
  91   91   * mac_register. An entity could be both client and driver but on different
  92   92   * handles eg. aggr. and should only make the corresponding mac interface calls
  93   93   * i.e. mac driver interface or mac client interface as appropriate for that
  94   94   * mac handle.
  95   95   *
  96   96   * General rules.
  97   97   * -------------
  98   98   *
  99   99   * R1. The lock order of upcall threads is natually opposite to downcall
 100  100   * threads. Hence upcalls must not hold any locks across layers for fear of
 101  101   * recursive lock enter and lock order violation. This applies to all layers.
 102  102   *
 103  103   * R2. The perimeter is just another lock. Since it is held in the down
 104  104   * direction, acquiring the perimeter in an upcall is prohibited as it would
 105  105   * cause a deadlock. This applies to all layers.
 106  106   *
 107  107   * Note that upcalls that need to grab the mac perimeter (for example
 108  108   * mac_notify upcalls) can still achieve that by posting the request to a
 109  109   * thread, which can then grab all the required perimeters and locks in the
 110  110   * right global order. Note that in the above example the mac layer iself
 111  111   * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
 112  112   * to the client must do that. Please see the aggr code for an example.
 113  113   *
 114  114   * MAC client rules
 115  115   * ----------------
 116  116   *
 117  117   * R3. A MAC client may use the MAC provided perimeter facility to serialize
 118  118   * control operations on a per mac end point. It does this by by acquring
 119  119   * and holding the perimeter across a sequence of calls to the mac layer.
 120  120   * This ensures atomicity across the entire block of mac calls. In this
 121  121   * model the MAC client must not hold any client locks across the calls to
 122  122   * the mac layer. This model is the preferred solution.
 123  123   *
 124  124   * R4. However if a MAC client has a lot of global state across all mac end
 125  125   * points the per mac end point serialization may not be sufficient. In this
 126  126   * case the client may choose to use global locks or use its own serialization.
 127  127   * To avoid deadlocks, these client layer locks held across the mac calls
 128  128   * in the control path must never be acquired by the data path for the reason
 129  129   * mentioned below.
 130  130   *
 131  131   * (Assume that a control operation that holds a client lock blocks in the
 132  132   * mac layer waiting for upcall reference counts to drop to zero. If an upcall
 133  133   * data thread that holds this reference count, tries to acquire the same
 134  134   * client lock subsequently it will deadlock).
 135  135   *
 136  136   * A MAC client may follow either the R3 model or the R4 model, but can't
 137  137   * mix both. In the former, the hierarchy is Perim -> client locks, but in
 138  138   * the latter it is client locks -> Perim.
 139  139   *
 140  140   * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
 141  141   * context since they may block while trying to acquire the perimeter.
 142  142   * In addition some calls may block waiting for upcall refcnts to come down to
 143  143   * zero.
 144  144   *
 145  145   * R6. MAC clients must make sure that they are single threaded and all threads
 146  146   * from the top (in particular data threads) have finished before calling
 147  147   * mac_client_close. The MAC framework does not track the number of client
 148  148   * threads using the mac client handle. Also mac clients must make sure
 149  149   * they have undone all the control operations before calling mac_client_close.
 150  150   * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
 151  151   * mac_unicast_add/mac_multicast_add.
 152  152   *
 153  153   * MAC framework rules
 154  154   * -------------------
 155  155   *
 156  156   * R7. The mac layer itself must not hold any mac layer locks (except the mac
 157  157   * perimeter) across a call to any other layer from the mac layer. The call to
 158  158   * any other layer could be via mi_* entry points, classifier entry points into
 159  159   * the driver or via upcall pointers into layers above. The mac perimeter may
 160  160   * be acquired or held only in the down direction, for e.g. when calling into
 161  161   * a mi_* driver enty point to provide atomicity of the operation.
 162  162   *
 163  163   * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
 164  164   * mac driver interfaces, the MAC layer must provide a cut out for control
 165  165   * interfaces like upcall notifications and start them in a separate thread.
 166  166   *
 167  167   * R9. Note that locking order also implies a plumbing order. For example
 168  168   * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
 169  169   * to plumb in any other order must be failed at mac_open time, otherwise it
 170  170   * could lead to deadlocks due to inverse locking order.
 171  171   *
 172  172   * R10. MAC driver interfaces must not block since the driver could call them
 173  173   * in interrupt context.
 174  174   *
 175  175   * R11. Walkers must preferably not hold any locks while calling walker
 176  176   * callbacks. Instead these can operate on reference counts. In simple
 177  177   * callbacks it may be ok to hold a lock and call the callbacks, but this is
 178  178   * harder to maintain in the general case of arbitrary callbacks.
 179  179   *
 180  180   * R12. The MAC layer must protect upcall notification callbacks using reference
 181  181   * counts rather than holding locks across the callbacks.
 182  182   *
 183  183   * R13. Given the variety of drivers, it is preferable if the MAC layer can make
 184  184   * sure that any pointers (such as mac ring pointers) it passes to the driver
 185  185   * remain valid until mac unregister time. Currently the mac layer achieves
 186  186   * this by using generation numbers for rings and freeing the mac rings only
 187  187   * at unregister time.  The MAC layer must provide a layer of indirection and
 188  188   * must not expose underlying driver rings or driver data structures/pointers
 189  189   * directly to MAC clients.
 190  190   *
 191  191   * MAC driver rules
 192  192   * ----------------
 193  193   *
 194  194   * R14. It would be preferable if MAC drivers don't hold any locks across any
 195  195   * mac call. However at a minimum they must not hold any locks across data
 196  196   * upcalls. They must also make sure that all references to mac data structures
 197  197   * are cleaned up and that it is single threaded at mac_unregister time.
 198  198   *
 199  199   * R15. MAC driver interfaces don't block and so the action may be done
 200  200   * asynchronously in a separate thread as for example handling notifications.
 201  201   * The driver must not assume that the action is complete when the call
 202  202   * returns.
 203  203   *
 204  204   * R16. Drivers must maintain a generation number per Rx ring, and pass it
 205  205   * back to mac_rx_ring(); They are expected to increment the generation
 206  206   * number whenever the ring's stop routine is invoked.
 207  207   * See comments in mac_rx_ring();
 208  208   *
 209  209   * R17 Similarly mi_stop is another synchronization point and the driver must
 210  210   * ensure that all upcalls are done and there won't be any future upcall
 211  211   * before returning from mi_stop.
 212  212   *
 213  213   * R18. The driver may assume that all set/modify control operations via
 214  214   * the mi_* entry points are single threaded on a per mac end point.
 215  215   *
 216  216   * Lock and Perimeter hierarchy scenarios
 217  217   * ---------------------------------------
 218  218   *
 219  219   * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
 220  220   *
 221  221   * ft_lock -> fe_lock [mac_flow_lookup]
 222  222   *
 223  223   * mi_rw_lock -> fe_lock [mac_bcast_send]
 224  224   *
 225  225   * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
 226  226   *
 227  227   * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
 228  228   *
 229  229   * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
 230  230   *
 231  231   * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
 232  232   * client to driver. In the case of clients that explictly use the mac provided
 233  233   * perimeter mechanism for its serialization, the hierarchy is
 234  234   * Perimeter -> mac layer locks, since the client never holds any locks across
 235  235   * the mac calls. In the case of clients that use its own locks the hierarchy
 236  236   * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
 237  237   * calls mac_perim_enter/exit in this case.
 238  238   *
 239  239   * Subflow creation rules
 240  240   * ---------------------------
 241  241   * o In case of a user specified cpulist present on underlying link and flows,
 242  242   * the flows cpulist must be a subset of the underlying link.
 243  243   * o In case of a user specified fanout mode present on link and flow, the
 244  244   * subflow fanout count has to be less than or equal to that of the
 245  245   * underlying link. The cpu-bindings for the subflows will be a subset of
 246  246   * the underlying link.
 247  247   * o In case if no cpulist specified on both underlying link and flow, the
 248  248   * underlying link relies on a  MAC tunable to provide out of box fanout.
 249  249   * The subflow will have no cpulist (the subflow will be unbound)
 250  250   * o In case if no cpulist is specified on the underlying link, a subflow can
 251  251   * carry  either a user-specified cpulist or fanout count. The cpu-bindings
 252  252   * for the subflow will not adhere to restriction that they need to be subset
 253  253   * of the underlying link.
 254  254   * o In case where the underlying link is carrying either a user specified
 255  255   * cpulist or fanout mode and for a unspecified subflow, the subflow will be
 256  256   * created unbound.
 257  257   * o While creating unbound subflows, bandwidth mode changes attempt to
 258  258   * figure a right fanout count. In such cases the fanout count will override
 259  259   * the unbound cpu-binding behavior.
 260  260   * o In addition to this, while cycling between flow and link properties, we
 261  261   * impose a restriction that if a link property has a subflow with
 262  262   * user-specified attributes, we will not allow changing the link property.
 263  263   * The administrator needs to reset all the user specified properties for the
 264  264   * subflows before attempting a link property change.
 265  265   * Some of the above rules can be overridden by specifying additional command
 266  266   * line options while creating or modifying link or subflow properties.
 267  267   *
 268  268   * Datapath
 269  269   * --------
 270  270   *
 271  271   * For information on the datapath, the world of soft rings, hardware rings, how
 272  272   * it is structured, and the path of an mblk_t between a driver and a mac
 273  273   * client, see mac_sched.c.
 274  274   */
 275  275  
 276  276  #include <sys/types.h>
 277  277  #include <sys/conf.h>
 278  278  #include <sys/id_space.h>
 279  279  #include <sys/esunddi.h>
 280  280  #include <sys/stat.h>
 281  281  #include <sys/mkdev.h>
 282  282  #include <sys/stream.h>
 283  283  #include <sys/strsun.h>
 284  284  #include <sys/strsubr.h>
 285  285  #include <sys/dlpi.h>
 286  286  #include <sys/list.h>
 287  287  #include <sys/modhash.h>
 288  288  #include <sys/mac_provider.h>
 289  289  #include <sys/mac_client_impl.h>
 290  290  #include <sys/mac_soft_ring.h>
 291  291  #include <sys/mac_stat.h>
 292  292  #include <sys/mac_impl.h>
 293  293  #include <sys/mac.h>
 294  294  #include <sys/dls.h>
 295  295  #include <sys/dld.h>
 296  296  #include <sys/modctl.h>
 297  297  #include <sys/fs/dv_node.h>
 298  298  #include <sys/thread.h>
 299  299  #include <sys/proc.h>
 300  300  #include <sys/callb.h>
 301  301  #include <sys/cpuvar.h>
 302  302  #include <sys/atomic.h>
 303  303  #include <sys/bitmap.h>
 304  304  #include <sys/sdt.h>
 305  305  #include <sys/mac_flow.h>
 306  306  #include <sys/ddi_intr_impl.h>
 307  307  #include <sys/disp.h>
 308  308  #include <sys/sdt.h>
 309  309  #include <sys/vnic.h>
 310  310  #include <sys/vnic_impl.h>
 311  311  #include <sys/vlan.h>
 312  312  #include <inet/ip.h>
 313  313  #include <inet/ip6.h>
 314  314  #include <sys/exacct.h>
 315  315  #include <sys/exacct_impl.h>
 316  316  #include <inet/nd.h>
 317  317  #include <sys/ethernet.h>
 318  318  #include <sys/pool.h>
 319  319  #include <sys/pool_pset.h>
 320  320  #include <sys/cpupart.h>
 321  321  #include <inet/wifi_ioctl.h>
 322  322  #include <net/wpa.h>
 323  323  
 324  324  #define IMPL_HASHSZ     67      /* prime */
 325  325  
 326  326  kmem_cache_t            *i_mac_impl_cachep;
 327  327  mod_hash_t              *i_mac_impl_hash;
 328  328  krwlock_t               i_mac_impl_lock;
 329  329  uint_t                  i_mac_impl_count;
 330  330  static kmem_cache_t     *mac_ring_cache;
 331  331  static id_space_t       *minor_ids;
 332  332  static uint32_t         minor_count;
 333  333  static pool_event_cb_t  mac_pool_event_reg;
 334  334  
 335  335  /*
 336  336   * Logging stuff. Perhaps mac_logging_interval could be broken into
 337  337   * mac_flow_log_interval and mac_link_log_interval if we want to be
 338  338   * able to schedule them differently.
 339  339   */
 340  340  uint_t                  mac_logging_interval;
 341  341  boolean_t               mac_flow_log_enable;
 342  342  boolean_t               mac_link_log_enable;
 343  343  timeout_id_t            mac_logging_timer;
 344  344  
 345  345  /* for debugging, see MAC_DBG_PRT() in mac_impl.h */
 346  346  int mac_dbg = 0;
 347  347  
 348  348  #define MACTYPE_KMODDIR "mac"
 349  349  #define MACTYPE_HASHSZ  67
 350  350  static mod_hash_t       *i_mactype_hash;
 351  351  /*
 352  352   * i_mactype_lock synchronizes threads that obtain references to mactype_t
 353  353   * structures through i_mactype_getplugin().
 354  354   */
 355  355  static kmutex_t         i_mactype_lock;
 356  356  
 357  357  /*
 358  358   * mac_tx_percpu_cnt
 359  359   *
 360  360   * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
 361  361   * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
 362  362   * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
 363  363   * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
 364  364   */
 365  365  int mac_tx_percpu_cnt;
 366  366  int mac_tx_percpu_cnt_max = 128;
 367  367  
 368  368  /*
 369  369   * Call back functions for the bridge module.  These are guaranteed to be valid
 370  370   * when holding a reference on a link or when holding mip->mi_bridge_lock and
 371  371   * mi_bridge_link is non-NULL.
 372  372   */
 373  373  mac_bridge_tx_t mac_bridge_tx_cb;
 374  374  mac_bridge_rx_t mac_bridge_rx_cb;
 375  375  mac_bridge_ref_t mac_bridge_ref_cb;
 376  376  mac_bridge_ls_t mac_bridge_ls_cb;
 377  377  
 378  378  static int i_mac_constructor(void *, void *, int);
 379  379  static void i_mac_destructor(void *, void *);
 380  380  static int i_mac_ring_ctor(void *, void *, int);
 381  381  static void i_mac_ring_dtor(void *, void *);
 382  382  static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
 383  383  void mac_tx_client_flush(mac_client_impl_t *);
 384  384  void mac_tx_client_block(mac_client_impl_t *);
 385  385  static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
 386  386  static int mac_start_group_and_rings(mac_group_t *);
 387  387  static void mac_stop_group_and_rings(mac_group_t *);
 388  388  static void mac_pool_event_cb(pool_event_t, int, void *);
 389  389  
 390  390  typedef struct netinfo_s {
 391  391          list_node_t     ni_link;
 392  392          void            *ni_record;
 393  393          int             ni_size;
 394  394          int             ni_type;
 395  395  } netinfo_t;
 396  396  
 397  397  /*
 398  398   * Module initialization functions.
 399  399   */
 400  400  
 401  401  void
 402  402  mac_init(void)
 403  403  {
 404  404          mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
 405  405              boot_max_ncpus);
 406  406  
 407  407          /* Upper bound is mac_tx_percpu_cnt_max */
 408  408          if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
 409  409                  mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
 410  410  
 411  411          if (mac_tx_percpu_cnt < 1) {
 412  412                  /* Someone set max_tx_percpu_cnt_max to 0 or less */
 413  413                  mac_tx_percpu_cnt = 1;
 414  414          }
 415  415  
 416  416          ASSERT(mac_tx_percpu_cnt >= 1);
 417  417          mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
 418  418          /*
 419  419           * Make it of the form 2**N - 1 in the range
 420  420           * [0 .. mac_tx_percpu_cnt_max - 1]
 421  421           */
 422  422          mac_tx_percpu_cnt--;
 423  423  
 424  424          i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
 425  425              sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
 426  426              NULL, NULL, NULL, 0);
 427  427          ASSERT(i_mac_impl_cachep != NULL);
 428  428  
 429  429          mac_ring_cache = kmem_cache_create("mac_ring_cache",
 430  430              sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
 431  431              NULL, NULL, 0);
 432  432          ASSERT(mac_ring_cache != NULL);
 433  433  
 434  434          i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
 435  435              IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
 436  436              mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
 437  437          rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
 438  438  
 439  439          mac_flow_init();
 440  440          mac_soft_ring_init();
 441  441          mac_bcast_init();
 442  442          mac_client_init();
 443  443  
 444  444          i_mac_impl_count = 0;
 445  445  
 446  446          i_mactype_hash = mod_hash_create_extended("mactype_hash",
 447  447              MACTYPE_HASHSZ,
 448  448              mod_hash_null_keydtor, mod_hash_null_valdtor,
 449  449              mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
 450  450  
 451  451          /*
 452  452           * Allocate an id space to manage minor numbers. The range of the
 453  453           * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1.  This
 454  454           * leaves half of the 32-bit minors available for driver private use.
 455  455           */
 456  456          minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
 457  457              MAC_PRIVATE_MINOR-1);
 458  458          ASSERT(minor_ids != NULL);
 459  459          minor_count = 0;
 460  460  
 461  461          /* Let's default to 20 seconds */
 462  462          mac_logging_interval = 20;
 463  463          mac_flow_log_enable = B_FALSE;
 464  464          mac_link_log_enable = B_FALSE;
 465  465          mac_logging_timer = 0;
 466  466  
 467  467          /* Register to be notified of noteworthy pools events */
 468  468          mac_pool_event_reg.pec_func =  mac_pool_event_cb;
 469  469          mac_pool_event_reg.pec_arg = NULL;
 470  470          pool_event_cb_register(&mac_pool_event_reg);
 471  471  }
 472  472  
 473  473  int
 474  474  mac_fini(void)
 475  475  {
 476  476  
 477  477          if (i_mac_impl_count > 0 || minor_count > 0)
 478  478                  return (EBUSY);
 479  479  
 480  480          pool_event_cb_unregister(&mac_pool_event_reg);
 481  481  
 482  482          id_space_destroy(minor_ids);
 483  483          mac_flow_fini();
 484  484  
 485  485          mod_hash_destroy_hash(i_mac_impl_hash);
 486  486          rw_destroy(&i_mac_impl_lock);
 487  487  
 488  488          mac_client_fini();
 489  489          kmem_cache_destroy(mac_ring_cache);
 490  490  
 491  491          mod_hash_destroy_hash(i_mactype_hash);
 492  492          mac_soft_ring_finish();
 493  493  
 494  494  
 495  495          return (0);
 496  496  }
 497  497  
 498  498  /*
 499  499   * Initialize a GLDv3 driver's device ops.  A driver that manages its own ops
 500  500   * (e.g. softmac) may pass in a NULL ops argument.
 501  501   */
 502  502  void
 503  503  mac_init_ops(struct dev_ops *ops, const char *name)
 504  504  {
 505  505          major_t major = ddi_name_to_major((char *)name);
 506  506  
 507  507          /*
 508  508           * By returning on error below, we are not letting the driver continue
 509  509           * in an undefined context.  The mac_register() function will faill if
 510  510           * DN_GLDV3_DRIVER isn't set.
 511  511           */
 512  512          if (major == DDI_MAJOR_T_NONE)
 513  513                  return;
 514  514          LOCK_DEV_OPS(&devnamesp[major].dn_lock);
 515  515          devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER);
 516  516          UNLOCK_DEV_OPS(&devnamesp[major].dn_lock);
 517  517          if (ops != NULL)
 518  518                  dld_init_ops(ops, name);
 519  519  }
 520  520  
 521  521  void
 522  522  mac_fini_ops(struct dev_ops *ops)
 523  523  {
 524  524          dld_fini_ops(ops);
 525  525  }
 526  526  
 527  527  /*ARGSUSED*/
 528  528  static int
 529  529  i_mac_constructor(void *buf, void *arg, int kmflag)
 530  530  {
 531  531          mac_impl_t      *mip = buf;
 532  532  
 533  533          bzero(buf, sizeof (mac_impl_t));
 534  534  
 535  535          mip->mi_linkstate = LINK_STATE_UNKNOWN;
 536  536  
 537  537          rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
 538  538          mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
 539  539          mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
 540  540          mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
 541  541  
 542  542          mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
 543  543          cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
 544  544          mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
 545  545          cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
 546  546  
 547  547          mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL);
 548  548  
 549  549          return (0);
 550  550  }
 551  551  
 552  552  /*ARGSUSED*/
 553  553  static void
 554  554  i_mac_destructor(void *buf, void *arg)
 555  555  {
 556  556          mac_impl_t      *mip = buf;
 557  557          mac_cb_info_t   *mcbi;
 558  558  
 559  559          ASSERT(mip->mi_ref == 0);
 560  560          ASSERT(mip->mi_active == 0);
 561  561          ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
 562  562          ASSERT(mip->mi_devpromisc == 0);
 563  563          ASSERT(mip->mi_ksp == NULL);
 564  564          ASSERT(mip->mi_kstat_count == 0);
 565  565          ASSERT(mip->mi_nclients == 0);
 566  566          ASSERT(mip->mi_nactiveclients == 0);
 567  567          ASSERT(mip->mi_single_active_client == NULL);
 568  568          ASSERT(mip->mi_state_flags == 0);
 569  569          ASSERT(mip->mi_factory_addr == NULL);
 570  570          ASSERT(mip->mi_factory_addr_num == 0);
 571  571          ASSERT(mip->mi_default_tx_ring == NULL);
 572  572  
 573  573          mcbi = &mip->mi_notify_cb_info;
 574  574          ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
 575  575          ASSERT(mip->mi_notify_bits == 0);
 576  576          ASSERT(mip->mi_notify_thread == NULL);
 577  577          ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
 578  578          mcbi->mcbi_lockp = NULL;
 579  579  
 580  580          mcbi = &mip->mi_promisc_cb_info;
 581  581          ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
 582  582          ASSERT(mip->mi_promisc_list == NULL);
 583  583          ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
 584  584          mcbi->mcbi_lockp = NULL;
 585  585  
 586  586          ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
 587  587          ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
 588  588  
 589  589          rw_destroy(&mip->mi_rw_lock);
 590  590  
 591  591          mutex_destroy(&mip->mi_promisc_lock);
 592  592          cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
 593  593          mutex_destroy(&mip->mi_notify_lock);
 594  594          cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
 595  595          mutex_destroy(&mip->mi_ring_lock);
 596  596  
 597  597          ASSERT(mip->mi_bridge_link == NULL);
 598  598  }
 599  599  
 600  600  /* ARGSUSED */
 601  601  static int
 602  602  i_mac_ring_ctor(void *buf, void *arg, int kmflag)
 603  603  {
 604  604          mac_ring_t *ring = (mac_ring_t *)buf;
 605  605  
 606  606          bzero(ring, sizeof (mac_ring_t));
 607  607          cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
 608  608          mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
 609  609          ring->mr_state = MR_FREE;
 610  610          return (0);
 611  611  }
 612  612  
 613  613  /* ARGSUSED */
 614  614  static void
 615  615  i_mac_ring_dtor(void *buf, void *arg)
 616  616  {
 617  617          mac_ring_t *ring = (mac_ring_t *)buf;
 618  618  
 619  619          cv_destroy(&ring->mr_cv);
 620  620          mutex_destroy(&ring->mr_lock);
 621  621  }
 622  622  
 623  623  /*
 624  624   * Common functions to do mac callback addition and deletion. Currently this is
 625  625   * used by promisc callbacks and notify callbacks. List addition and deletion
 626  626   * need to take care of list walkers. List walkers in general, can't hold list
 627  627   * locks and make upcall callbacks due to potential lock order and recursive
 628  628   * reentry issues. Instead list walkers increment the list walker count to mark
 629  629   * the presence of a walker thread. Addition can be carefully done to ensure
 630  630   * that the list walker always sees either the old list or the new list.
 631  631   * However the deletion can't be done while the walker is active, instead the
 632  632   * deleting thread simply marks the entry as logically deleted. The last walker
 633  633   * physically deletes and frees up the logically deleted entries when the walk
 634  634   * is complete.
 635  635   */
 636  636  void
 637  637  mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
 638  638      mac_cb_t *mcb_elem)
 639  639  {
 640  640          mac_cb_t        *p;
 641  641          mac_cb_t        **pp;
 642  642  
 643  643          /* Verify it is not already in the list */
 644  644          for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
 645  645                  if (p == mcb_elem)
 646  646                          break;
 647  647          }
 648  648          VERIFY(p == NULL);
 649  649  
 650  650          /*
 651  651           * Add it to the head of the callback list. The membar ensures that
 652  652           * the following list pointer manipulations reach global visibility
 653  653           * in exactly the program order below.
 654  654           */
 655  655          ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 656  656  
 657  657          mcb_elem->mcb_nextp = *mcb_head;
 658  658          membar_producer();
 659  659          *mcb_head = mcb_elem;
 660  660  }
 661  661  
 662  662  /*
 663  663   * Mark the entry as logically deleted. If there aren't any walkers unlink
 664  664   * from the list. In either case return the corresponding status.
 665  665   */
 666  666  boolean_t
 667  667  mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
 668  668      mac_cb_t *mcb_elem)
 669  669  {
 670  670          mac_cb_t        *p;
 671  671          mac_cb_t        **pp;
 672  672  
 673  673          ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 674  674          /*
 675  675           * Search the callback list for the entry to be removed
 676  676           */
 677  677          for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
 678  678                  if (p == mcb_elem)
 679  679                          break;
 680  680          }
 681  681          VERIFY(p != NULL);
 682  682  
 683  683          /*
 684  684           * If there are walkers just mark it as deleted and the last walker
 685  685           * will remove from the list and free it.
 686  686           */
 687  687          if (mcbi->mcbi_walker_cnt != 0) {
 688  688                  p->mcb_flags |= MCB_CONDEMNED;
 689  689                  mcbi->mcbi_del_cnt++;
 690  690                  return (B_FALSE);
 691  691          }
 692  692  
 693  693          ASSERT(mcbi->mcbi_del_cnt == 0);
 694  694          *pp = p->mcb_nextp;
 695  695          p->mcb_nextp = NULL;
 696  696          return (B_TRUE);
 697  697  }
 698  698  
 699  699  /*
 700  700   * Wait for all pending callback removals to be completed
 701  701   */
 702  702  void
 703  703  mac_callback_remove_wait(mac_cb_info_t *mcbi)
 704  704  {
 705  705          ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 706  706          while (mcbi->mcbi_del_cnt != 0) {
 707  707                  DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
 708  708                  cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
 709  709          }
 710  710  }
 711  711  
 712  712  /*
 713  713   * The last mac callback walker does the cleanup. Walk the list and unlik
 714  714   * all the logically deleted entries and construct a temporary list of
 715  715   * removed entries. Return the list of removed entries to the caller.
 716  716   */
 717  717  mac_cb_t *
 718  718  mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
 719  719  {
 720  720          mac_cb_t        *p;
 721  721          mac_cb_t        **pp;
 722  722          mac_cb_t        *rmlist = NULL;         /* List of removed elements */
 723  723          int     cnt = 0;
 724  724  
 725  725          ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 726  726          ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
 727  727  
 728  728          pp = mcb_head;
 729  729          while (*pp != NULL) {
 730  730                  if ((*pp)->mcb_flags & MCB_CONDEMNED) {
 731  731                          p = *pp;
 732  732                          *pp = p->mcb_nextp;
 733  733                          p->mcb_nextp = rmlist;
 734  734                          rmlist = p;
 735  735                          cnt++;
 736  736                          continue;
 737  737                  }
 738  738                  pp = &(*pp)->mcb_nextp;
 739  739          }
 740  740  
 741  741          ASSERT(mcbi->mcbi_del_cnt == cnt);
 742  742          mcbi->mcbi_del_cnt = 0;
 743  743          return (rmlist);
 744  744  }
 745  745  
 746  746  boolean_t
 747  747  mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
 748  748  {
 749  749          mac_cb_t        *mcb;
 750  750  
 751  751          /* Verify it is not already in the list */
 752  752          for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
 753  753                  if (mcb == mcb_elem)
 754  754                          return (B_TRUE);
 755  755          }
 756  756  
 757  757          return (B_FALSE);
 758  758  }
 759  759  
 760  760  boolean_t
 761  761  mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
 762  762  {
 763  763          boolean_t       found;
 764  764  
 765  765          mutex_enter(mcbi->mcbi_lockp);
 766  766          found = mac_callback_lookup(mcb_headp, mcb_elem);
 767  767          mutex_exit(mcbi->mcbi_lockp);
 768  768  
 769  769          return (found);
 770  770  }
 771  771  
 772  772  /* Free the list of removed callbacks */
 773  773  void
 774  774  mac_callback_free(mac_cb_t *rmlist)
 775  775  {
 776  776          mac_cb_t        *mcb;
 777  777          mac_cb_t        *mcb_next;
 778  778  
 779  779          for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
 780  780                  mcb_next = mcb->mcb_nextp;
 781  781                  kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
 782  782          }
 783  783  }
 784  784  
 785  785  /*
 786  786   * The promisc callbacks are in 2 lists, one off the 'mip' and another off the
 787  787   * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there
 788  788   * is only a single shared total walker count, and an entry can't be physically
 789  789   * unlinked if a walker is active on either list. The last walker does this
 790  790   * cleanup of logically deleted entries.
 791  791   */
 792  792  void
 793  793  i_mac_promisc_walker_cleanup(mac_impl_t *mip)
 794  794  {
 795  795          mac_cb_t        *rmlist;
 796  796          mac_cb_t        *mcb;
 797  797          mac_cb_t        *mcb_next;
 798  798          mac_promisc_impl_t      *mpip;
 799  799  
 800  800          /*
 801  801           * Construct a temporary list of deleted callbacks by walking the
 802  802           * the mi_promisc_list. Then for each entry in the temporary list,
 803  803           * remove it from the mci_promisc_list and free the entry.
 804  804           */
 805  805          rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info,
 806  806              &mip->mi_promisc_list);
 807  807  
 808  808          for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
 809  809                  mcb_next = mcb->mcb_nextp;
 810  810                  mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
 811  811                  VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
 812  812                      &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link));
 813  813                  mcb->mcb_flags = 0;
 814  814                  mcb->mcb_nextp = NULL;
 815  815                  kmem_cache_free(mac_promisc_impl_cache, mpip);
 816  816          }
 817  817  }
 818  818  
 819  819  void
 820  820  i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
 821  821  {
 822  822          mac_cb_info_t   *mcbi;
 823  823  
 824  824          /*
 825  825           * Signal the notify thread even after mi_ref has become zero and
 826  826           * mi_disabled is set. The synchronization with the notify thread
 827  827           * happens in mac_unregister and that implies the driver must make
 828  828           * sure it is single-threaded (with respect to mac calls) and that
 829  829           * all pending mac calls have returned before it calls mac_unregister
 830  830           */
 831  831          rw_enter(&i_mac_impl_lock, RW_READER);
 832  832          if (mip->mi_state_flags & MIS_DISABLED)
 833  833                  goto exit;
 834  834  
 835  835          /*
 836  836           * Guard against incorrect notifications.  (Running a newer
 837  837           * mac client against an older implementation?)
 838  838           */
 839  839          if (type >= MAC_NNOTE)
 840  840                  goto exit;
 841  841  
 842  842          mcbi = &mip->mi_notify_cb_info;
 843  843          mutex_enter(mcbi->mcbi_lockp);
 844  844          mip->mi_notify_bits |= (1 << type);
 845  845          cv_broadcast(&mcbi->mcbi_cv);
 846  846          mutex_exit(mcbi->mcbi_lockp);
 847  847  
 848  848  exit:
 849  849          rw_exit(&i_mac_impl_lock);
 850  850  }
 851  851  
 852  852  /*
 853  853   * Mac serialization primitives. Please see the block comment at the
 854  854   * top of the file.
 855  855   */
 856  856  void
 857  857  i_mac_perim_enter(mac_impl_t *mip)
 858  858  {
 859  859          mac_client_impl_t       *mcip;
 860  860  
 861  861          if (mip->mi_state_flags & MIS_IS_VNIC) {
 862  862                  /*
 863  863                   * This is a VNIC. Return the lower mac since that is what
 864  864                   * we want to serialize on.
 865  865                   */
 866  866                  mcip = mac_vnic_lower(mip);
 867  867                  mip = mcip->mci_mip;
 868  868          }
 869  869  
 870  870          mutex_enter(&mip->mi_perim_lock);
 871  871          if (mip->mi_perim_owner == curthread) {
 872  872                  mip->mi_perim_ocnt++;
 873  873                  mutex_exit(&mip->mi_perim_lock);
 874  874                  return;
 875  875          }
 876  876  
 877  877          while (mip->mi_perim_owner != NULL)
 878  878                  cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
 879  879  
 880  880          mip->mi_perim_owner = curthread;
 881  881          ASSERT(mip->mi_perim_ocnt == 0);
 882  882          mip->mi_perim_ocnt++;
 883  883  #ifdef DEBUG
 884  884          mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
 885  885              MAC_PERIM_STACK_DEPTH);
 886  886  #endif
 887  887          mutex_exit(&mip->mi_perim_lock);
 888  888  }
 889  889  
 890  890  int
 891  891  i_mac_perim_enter_nowait(mac_impl_t *mip)
 892  892  {
 893  893          /*
 894  894           * The vnic is a special case, since the serialization is done based
 895  895           * on the lower mac. If the lower mac is busy, it does not imply the
 896  896           * vnic can't be unregistered. But in the case of other drivers,
 897  897           * a busy perimeter or open mac handles implies that the mac is busy
 898  898           * and can't be unregistered.
 899  899           */
 900  900          if (mip->mi_state_flags & MIS_IS_VNIC) {
 901  901                  i_mac_perim_enter(mip);
 902  902                  return (0);
 903  903          }
 904  904  
 905  905          mutex_enter(&mip->mi_perim_lock);
 906  906          if (mip->mi_perim_owner != NULL) {
 907  907                  mutex_exit(&mip->mi_perim_lock);
 908  908                  return (EBUSY);
 909  909          }
 910  910          ASSERT(mip->mi_perim_ocnt == 0);
 911  911          mip->mi_perim_owner = curthread;
 912  912          mip->mi_perim_ocnt++;
 913  913          mutex_exit(&mip->mi_perim_lock);
 914  914  
 915  915          return (0);
 916  916  }
 917  917  
 918  918  void
 919  919  i_mac_perim_exit(mac_impl_t *mip)
 920  920  {
 921  921          mac_client_impl_t *mcip;
 922  922  
 923  923          if (mip->mi_state_flags & MIS_IS_VNIC) {
 924  924                  /*
 925  925                   * This is a VNIC. Return the lower mac since that is what
 926  926                   * we want to serialize on.
 927  927                   */
 928  928                  mcip = mac_vnic_lower(mip);
 929  929                  mip = mcip->mci_mip;
 930  930          }
 931  931  
 932  932          ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
 933  933  
 934  934          mutex_enter(&mip->mi_perim_lock);
 935  935          if (--mip->mi_perim_ocnt == 0) {
 936  936                  mip->mi_perim_owner = NULL;
 937  937                  cv_signal(&mip->mi_perim_cv);
 938  938          }
 939  939          mutex_exit(&mip->mi_perim_lock);
 940  940  }
 941  941  
 942  942  /*
 943  943   * Returns whether the current thread holds the mac perimeter. Used in making
 944  944   * assertions.
 945  945   */
 946  946  boolean_t
 947  947  mac_perim_held(mac_handle_t mh)
 948  948  {
 949  949          mac_impl_t      *mip = (mac_impl_t *)mh;
 950  950          mac_client_impl_t *mcip;
 951  951  
 952  952          if (mip->mi_state_flags & MIS_IS_VNIC) {
 953  953                  /*
 954  954                   * This is a VNIC. Return the lower mac since that is what
 955  955                   * we want to serialize on.
 956  956                   */
 957  957                  mcip = mac_vnic_lower(mip);
 958  958                  mip = mcip->mci_mip;
 959  959          }
 960  960          return (mip->mi_perim_owner == curthread);
 961  961  }
 962  962  
 963  963  /*
 964  964   * mac client interfaces to enter the mac perimeter of a mac end point, given
 965  965   * its mac handle, or macname or linkid.
 966  966   */
 967  967  void
 968  968  mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
 969  969  {
 970  970          mac_impl_t      *mip = (mac_impl_t *)mh;
 971  971  
 972  972          i_mac_perim_enter(mip);
 973  973          /*
 974  974           * The mac_perim_handle_t returned encodes the 'mip' and whether a
 975  975           * mac_open has been done internally while entering the perimeter.
 976  976           * This information is used in mac_perim_exit
 977  977           */
 978  978          MAC_ENCODE_MPH(*mphp, mip, 0);
 979  979  }
 980  980  
 981  981  int
 982  982  mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
 983  983  {
 984  984          int     err;
 985  985          mac_handle_t    mh;
 986  986  
 987  987          if ((err = mac_open(name, &mh)) != 0)
 988  988                  return (err);
 989  989  
 990  990          mac_perim_enter_by_mh(mh, mphp);
 991  991          MAC_ENCODE_MPH(*mphp, mh, 1);
 992  992          return (0);
 993  993  }
 994  994  
 995  995  int
 996  996  mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
 997  997  {
 998  998          int     err;
 999  999          mac_handle_t    mh;
1000 1000  
1001 1001          if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
1002 1002                  return (err);
1003 1003  
1004 1004          mac_perim_enter_by_mh(mh, mphp);
1005 1005          MAC_ENCODE_MPH(*mphp, mh, 1);
1006 1006          return (0);
1007 1007  }
1008 1008  
1009 1009  void
1010 1010  mac_perim_exit(mac_perim_handle_t mph)
1011 1011  {
1012 1012          mac_impl_t      *mip;
1013 1013          boolean_t       need_close;
1014 1014  
1015 1015          MAC_DECODE_MPH(mph, mip, need_close);
1016 1016          i_mac_perim_exit(mip);
1017 1017          if (need_close)
1018 1018                  mac_close((mac_handle_t)mip);
1019 1019  }
1020 1020  
1021 1021  int
1022 1022  mac_hold(const char *macname, mac_impl_t **pmip)
1023 1023  {
1024 1024          mac_impl_t      *mip;
1025 1025          int             err;
1026 1026  
1027 1027          /*
1028 1028           * Check the device name length to make sure it won't overflow our
1029 1029           * buffer.
1030 1030           */
1031 1031          if (strlen(macname) >= MAXNAMELEN)
1032 1032                  return (EINVAL);
1033 1033  
1034 1034          /*
1035 1035           * Look up its entry in the global hash table.
1036 1036           */
1037 1037          rw_enter(&i_mac_impl_lock, RW_WRITER);
1038 1038          err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
1039 1039              (mod_hash_val_t *)&mip);
1040 1040  
1041 1041          if (err != 0) {
1042 1042                  rw_exit(&i_mac_impl_lock);
1043 1043                  return (ENOENT);
1044 1044          }
1045 1045  
1046 1046          if (mip->mi_state_flags & MIS_DISABLED) {
1047 1047                  rw_exit(&i_mac_impl_lock);
1048 1048                  return (ENOENT);
1049 1049          }
1050 1050  
1051 1051          if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
1052 1052                  rw_exit(&i_mac_impl_lock);
1053 1053                  return (EBUSY);
1054 1054          }
1055 1055  
1056 1056          mip->mi_ref++;
1057 1057          rw_exit(&i_mac_impl_lock);
1058 1058  
1059 1059          *pmip = mip;
1060 1060          return (0);
1061 1061  }
1062 1062  
1063 1063  void
1064 1064  mac_rele(mac_impl_t *mip)
1065 1065  {
1066 1066          rw_enter(&i_mac_impl_lock, RW_WRITER);
1067 1067          ASSERT(mip->mi_ref != 0);
1068 1068          if (--mip->mi_ref == 0) {
1069 1069                  ASSERT(mip->mi_nactiveclients == 0 &&
1070 1070                      !(mip->mi_state_flags & MIS_EXCLUSIVE));
1071 1071          }
1072 1072          rw_exit(&i_mac_impl_lock);
1073 1073  }
1074 1074  
1075 1075  /*
1076 1076   * Private GLDv3 function to start a MAC instance.
1077 1077   */
1078 1078  int
1079 1079  mac_start(mac_handle_t mh)
1080 1080  {
1081 1081          mac_impl_t      *mip = (mac_impl_t *)mh;
1082 1082          int             err = 0;
1083 1083          mac_group_t     *defgrp;
1084 1084  
1085 1085          ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1086 1086          ASSERT(mip->mi_start != NULL);
1087 1087  
1088 1088          /*
1089 1089           * Check whether the device is already started.
1090 1090           */
1091 1091          if (mip->mi_active++ == 0) {
1092 1092                  mac_ring_t *ring = NULL;
1093 1093  
1094 1094                  /*
1095 1095                   * Start the device.
1096 1096                   */
1097 1097                  err = mip->mi_start(mip->mi_driver);
1098 1098                  if (err != 0) {
1099 1099                          mip->mi_active--;
1100 1100                          return (err);
1101 1101                  }
1102 1102  
1103 1103                  /*
1104 1104                   * Start the default tx ring.
1105 1105                   */
1106 1106                  if (mip->mi_default_tx_ring != NULL) {
1107 1107  
1108 1108                          ring = (mac_ring_t *)mip->mi_default_tx_ring;
1109 1109                          if (ring->mr_state != MR_INUSE) {
1110 1110                                  err = mac_start_ring(ring);
1111 1111                                  if (err != 0) {
1112 1112                                          mip->mi_active--;
1113 1113                                          return (err);
1114 1114                                  }
1115 1115                          }
1116 1116                  }
1117 1117  
1118 1118                  if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1119 1119                          /*
1120 1120                           * Start the default ring, since it will be needed
1121 1121                           * to receive broadcast and multicast traffic for
1122 1122                           * both primary and non-primary MAC clients.
1123 1123                           */
1124 1124                          ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1125 1125                          err = mac_start_group_and_rings(defgrp);
1126 1126                          if (err != 0) {
1127 1127                                  mip->mi_active--;
1128 1128                                  if ((ring != NULL) &&
1129 1129                                      (ring->mr_state == MR_INUSE))
1130 1130                                          mac_stop_ring(ring);
1131 1131                                  return (err);
1132 1132                          }
1133 1133                          mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED);
1134 1134                  }
1135 1135          }
1136 1136  
1137 1137          return (err);
1138 1138  }
1139 1139  
1140 1140  /*
1141 1141   * Private GLDv3 function to stop a MAC instance.
1142 1142   */
1143 1143  void
1144 1144  mac_stop(mac_handle_t mh)
1145 1145  {
1146 1146          mac_impl_t      *mip = (mac_impl_t *)mh;
1147 1147          mac_group_t     *grp;
1148 1148  
1149 1149          ASSERT(mip->mi_stop != NULL);
1150 1150          ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1151 1151  
1152 1152          /*
1153 1153           * Check whether the device is still needed.
1154 1154           */
1155 1155          ASSERT(mip->mi_active != 0);
1156 1156          if (--mip->mi_active == 0) {
1157 1157                  if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1158 1158                          /*
1159 1159                           * There should be no more active clients since the
1160 1160                           * MAC is being stopped. Stop the default RX group
1161 1161                           * and transition it back to registered state.
1162 1162                           *
1163 1163                           * When clients are torn down, the groups
1164 1164                           * are release via mac_release_rx_group which
1165 1165                           * knows the the default group is always in
1166 1166                           * started mode since broadcast uses it. So
1167 1167                           * we can assert that their are no clients
1168 1168                           * (since mac_bcast_add doesn't register itself
1169 1169                           * as a client) and group is in SHARED state.
1170 1170                           */
1171 1171                          ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1172 1172                          ASSERT(MAC_GROUP_NO_CLIENT(grp) &&
1173 1173                              mip->mi_nactiveclients == 0);
1174 1174                          mac_stop_group_and_rings(grp);
1175 1175                          mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1176 1176                  }
1177 1177  
1178 1178                  if (mip->mi_default_tx_ring != NULL) {
1179 1179                          mac_ring_t *ring;
1180 1180  
1181 1181                          ring = (mac_ring_t *)mip->mi_default_tx_ring;
1182 1182                          if (ring->mr_state == MR_INUSE) {
1183 1183                                  mac_stop_ring(ring);
1184 1184                                  ring->mr_flag = 0;
1185 1185                          }
1186 1186                  }
1187 1187  
1188 1188                  /*
1189 1189                   * Stop the device.
1190 1190                   */
1191 1191                  mip->mi_stop(mip->mi_driver);
1192 1192          }
1193 1193  }
1194 1194  
1195 1195  int
1196 1196  i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1197 1197  {
1198 1198          int             err = 0;
1199 1199  
1200 1200          ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1201 1201          ASSERT(mip->mi_setpromisc != NULL);
1202 1202  
1203 1203          if (on) {
1204 1204                  /*
1205 1205                   * Enable promiscuous mode on the device if not yet enabled.
1206 1206                   */
1207 1207                  if (mip->mi_devpromisc++ == 0) {
1208 1208                          err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1209 1209                          if (err != 0) {
1210 1210                                  mip->mi_devpromisc--;
1211 1211                                  return (err);
1212 1212                          }
1213 1213                          i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1214 1214                  }
1215 1215          } else {
1216 1216                  if (mip->mi_devpromisc == 0)
1217 1217                          return (EPROTO);
1218 1218  
1219 1219                  /*
1220 1220                   * Disable promiscuous mode on the device if this is the last
1221 1221                   * enabling.
1222 1222                   */
1223 1223                  if (--mip->mi_devpromisc == 0) {
1224 1224                          err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1225 1225                          if (err != 0) {
1226 1226                                  mip->mi_devpromisc++;
1227 1227                                  return (err);
1228 1228                          }
1229 1229                          i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1230 1230                  }
1231 1231          }
1232 1232  
1233 1233          return (0);
1234 1234  }
1235 1235  
1236 1236  /*
1237 1237   * The promiscuity state can change any time. If the caller needs to take
1238 1238   * actions that are atomic with the promiscuity state, then the caller needs
1239 1239   * to bracket the entire sequence with mac_perim_enter/exit
1240 1240   */
1241 1241  boolean_t
1242 1242  mac_promisc_get(mac_handle_t mh)
1243 1243  {
1244 1244          mac_impl_t              *mip = (mac_impl_t *)mh;
1245 1245  
1246 1246          /*
1247 1247           * Return the current promiscuity.
1248 1248           */
1249 1249          return (mip->mi_devpromisc != 0);
1250 1250  }
1251 1251  
1252 1252  /*
1253 1253   * Invoked at MAC instance attach time to initialize the list
1254 1254   * of factory MAC addresses supported by a MAC instance. This function
1255 1255   * builds a local cache in the mac_impl_t for the MAC addresses
1256 1256   * supported by the underlying hardware. The MAC clients themselves
1257 1257   * use the mac_addr_factory*() functions to query and reserve
1258 1258   * factory MAC addresses.
1259 1259   */
1260 1260  void
1261 1261  mac_addr_factory_init(mac_impl_t *mip)
1262 1262  {
1263 1263          mac_capab_multifactaddr_t capab;
1264 1264          uint8_t *addr;
1265 1265          int i;
1266 1266  
1267 1267          /*
1268 1268           * First round to see how many factory MAC addresses are available.
1269 1269           */
1270 1270          bzero(&capab, sizeof (capab));
1271 1271          if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1272 1272              &capab) || (capab.mcm_naddr == 0)) {
1273 1273                  /*
1274 1274                   * The MAC instance doesn't support multiple factory
1275 1275                   * MAC addresses, we're done here.
1276 1276                   */
1277 1277                  return;
1278 1278          }
1279 1279  
1280 1280          /*
1281 1281           * Allocate the space and get all the factory addresses.
1282 1282           */
1283 1283          addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1284 1284          capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1285 1285  
1286 1286          mip->mi_factory_addr_num = capab.mcm_naddr;
1287 1287          mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1288 1288              sizeof (mac_factory_addr_t), KM_SLEEP);
1289 1289  
1290 1290          for (i = 0; i < capab.mcm_naddr; i++) {
1291 1291                  bcopy(addr + i * MAXMACADDRLEN,
1292 1292                      mip->mi_factory_addr[i].mfa_addr,
1293 1293                      mip->mi_type->mt_addr_length);
1294 1294                  mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1295 1295          }
1296 1296  
1297 1297          kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1298 1298  }
1299 1299  
1300 1300  void
1301 1301  mac_addr_factory_fini(mac_impl_t *mip)
1302 1302  {
1303 1303          if (mip->mi_factory_addr == NULL) {
1304 1304                  ASSERT(mip->mi_factory_addr_num == 0);
1305 1305                  return;
1306 1306          }
1307 1307  
1308 1308          kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1309 1309              sizeof (mac_factory_addr_t));
1310 1310  
1311 1311          mip->mi_factory_addr = NULL;
1312 1312          mip->mi_factory_addr_num = 0;
1313 1313  }
1314 1314  
1315 1315  /*
1316 1316   * Reserve a factory MAC address. If *slot is set to -1, the function
1317 1317   * attempts to reserve any of the available factory MAC addresses and
1318 1318   * returns the reserved slot id. If no slots are available, the function
1319 1319   * returns ENOSPC. If *slot is not set to -1, the function reserves
1320 1320   * the specified slot if it is available, or returns EBUSY is the slot
1321 1321   * is already used. Returns ENOTSUP if the underlying MAC does not
1322 1322   * support multiple factory addresses. If the slot number is not -1 but
1323 1323   * is invalid, returns EINVAL.
1324 1324   */
1325 1325  int
1326 1326  mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1327 1327  {
1328 1328          mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1329 1329          mac_impl_t *mip = mcip->mci_mip;
1330 1330          int i, ret = 0;
1331 1331  
1332 1332          i_mac_perim_enter(mip);
1333 1333          /*
1334 1334           * Protect against concurrent readers that may need a self-consistent
1335 1335           * view of the factory addresses
1336 1336           */
1337 1337          rw_enter(&mip->mi_rw_lock, RW_WRITER);
1338 1338  
1339 1339          if (mip->mi_factory_addr_num == 0) {
1340 1340                  ret = ENOTSUP;
1341 1341                  goto bail;
1342 1342          }
1343 1343  
1344 1344          if (*slot != -1) {
1345 1345                  /* check the specified slot */
1346 1346                  if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1347 1347                          ret = EINVAL;
1348 1348                          goto bail;
1349 1349                  }
1350 1350                  if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1351 1351                          ret = EBUSY;
1352 1352                          goto bail;
1353 1353                  }
1354 1354          } else {
1355 1355                  /* pick the next available slot */
1356 1356                  for (i = 0; i < mip->mi_factory_addr_num; i++) {
1357 1357                          if (!mip->mi_factory_addr[i].mfa_in_use)
1358 1358                                  break;
1359 1359                  }
1360 1360  
1361 1361                  if (i == mip->mi_factory_addr_num) {
1362 1362                          ret = ENOSPC;
1363 1363                          goto bail;
1364 1364                  }
1365 1365                  *slot = i+1;
1366 1366          }
1367 1367  
1368 1368          mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1369 1369          mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1370 1370  
1371 1371  bail:
1372 1372          rw_exit(&mip->mi_rw_lock);
1373 1373          i_mac_perim_exit(mip);
1374 1374          return (ret);
1375 1375  }
1376 1376  
1377 1377  /*
1378 1378   * Release the specified factory MAC address slot.
1379 1379   */
1380 1380  void
1381 1381  mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1382 1382  {
1383 1383          mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1384 1384          mac_impl_t *mip = mcip->mci_mip;
1385 1385  
1386 1386          i_mac_perim_enter(mip);
1387 1387          /*
1388 1388           * Protect against concurrent readers that may need a self-consistent
1389 1389           * view of the factory addresses
1390 1390           */
1391 1391          rw_enter(&mip->mi_rw_lock, RW_WRITER);
1392 1392  
1393 1393          ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1394 1394          ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1395 1395  
1396 1396          mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1397 1397  
1398 1398          rw_exit(&mip->mi_rw_lock);
1399 1399          i_mac_perim_exit(mip);
1400 1400  }
1401 1401  
1402 1402  /*
1403 1403   * Stores in mac_addr the value of the specified MAC address. Returns
1404 1404   * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1405 1405   * The caller must provide a string of at least MAXNAMELEN bytes.
1406 1406   */
1407 1407  void
1408 1408  mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1409 1409      uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1410 1410  {
1411 1411          mac_impl_t *mip = (mac_impl_t *)mh;
1412 1412          boolean_t in_use;
1413 1413  
1414 1414          ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1415 1415  
1416 1416          /*
1417 1417           * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1418 1418           * and mi_rw_lock
1419 1419           */
1420 1420          rw_enter(&mip->mi_rw_lock, RW_READER);
1421 1421          bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1422 1422          *addr_len = mip->mi_type->mt_addr_length;
1423 1423          in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1424 1424          if (in_use && client_name != NULL) {
1425 1425                  bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1426 1426                      client_name, MAXNAMELEN);
1427 1427          }
1428 1428          if (in_use_arg != NULL)
1429 1429                  *in_use_arg = in_use;
1430 1430          rw_exit(&mip->mi_rw_lock);
1431 1431  }
1432 1432  
1433 1433  /*
1434 1434   * Returns the number of factory MAC addresses (in addition to the
1435 1435   * primary MAC address), 0 if the underlying MAC doesn't support
1436 1436   * that feature.
1437 1437   */
1438 1438  uint_t
1439 1439  mac_addr_factory_num(mac_handle_t mh)
1440 1440  {
1441 1441          mac_impl_t *mip = (mac_impl_t *)mh;
1442 1442  
1443 1443          return (mip->mi_factory_addr_num);
1444 1444  }
1445 1445  
1446 1446  
1447 1447  void
1448 1448  mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1449 1449  {
1450 1450          mac_ring_t      *ring;
1451 1451  
1452 1452          for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1453 1453                  ring->mr_flag &= ~flag;
1454 1454  }
1455 1455  
1456 1456  /*
1457 1457   * The following mac_hwrings_xxx() functions are private mac client functions
1458 1458   * used by the aggr driver to access and control the underlying HW Rx group
1459 1459   * and rings. In this case, the aggr driver has exclusive control of the
1460 1460   * underlying HW Rx group/rings, it calls the following functions to
1461 1461   * start/stop the HW Rx rings, disable/enable polling, add/remove mac'
1462 1462   * addresses, or set up the Rx callback.
1463 1463   */
1464 1464  /* ARGSUSED */
1465 1465  static void
1466 1466  mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1467 1467      mblk_t *mp_chain, boolean_t loopback)
1468 1468  {
1469 1469          mac_soft_ring_set_t     *mac_srs = (mac_soft_ring_set_t *)srs;
1470 1470          mac_srs_rx_t            *srs_rx = &mac_srs->srs_rx;
1471 1471          mac_direct_rx_t         proc;
1472 1472          void                    *arg1;
1473 1473          mac_resource_handle_t   arg2;
1474 1474  
1475 1475          proc = srs_rx->sr_func;
1476 1476          arg1 = srs_rx->sr_arg1;
1477 1477          arg2 = mac_srs->srs_mrh;
1478 1478  
1479 1479          proc(arg1, arg2, mp_chain, NULL);
1480 1480  }
1481 1481  
1482 1482  /*
1483 1483   * This function is called to get the list of HW rings that are reserved by
1484 1484   * an exclusive mac client.
1485 1485   *
1486 1486   * Return value: the number of HW rings.
1487 1487   */
1488 1488  int
1489 1489  mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1490 1490      mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1491 1491  {
1492 1492          mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
1493 1493          flow_entry_t            *flent = mcip->mci_flent;
1494 1494          mac_group_t             *grp;
1495 1495          mac_ring_t              *ring;
1496 1496          int                     cnt = 0;
1497 1497  
1498 1498          if (rtype == MAC_RING_TYPE_RX) {
1499 1499                  grp = flent->fe_rx_ring_group;
1500 1500          } else if (rtype == MAC_RING_TYPE_TX) {
1501 1501                  grp = flent->fe_tx_ring_group;
1502 1502          } else {
1503 1503                  ASSERT(B_FALSE);
1504 1504                  return (-1);
1505 1505          }
1506 1506          /*
1507 1507           * The mac client did not reserve any RX group, return directly.
1508 1508           * This is probably because the underlying MAC does not support
1509 1509           * any groups.
1510 1510           */
1511 1511          if (hwgh != NULL)
1512 1512                  *hwgh = NULL;
1513 1513          if (grp == NULL)
1514 1514                  return (0);
1515 1515          /*
1516 1516           * This group must be reserved by this mac client.
1517 1517           */
1518 1518          ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1519 1519              (mcip == MAC_GROUP_ONLY_CLIENT(grp)));
1520 1520  
1521 1521          for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1522 1522                  ASSERT(cnt < MAX_RINGS_PER_GROUP);
1523 1523                  hwrh[cnt] = (mac_ring_handle_t)ring;
1524 1524          }
1525 1525          if (hwgh != NULL)
1526 1526                  *hwgh = (mac_group_handle_t)grp;
1527 1527  
1528 1528          return (cnt);
1529 1529  }
1530 1530  
1531 1531  /*
1532 1532   * This function is called to get info about Tx/Rx rings.
1533 1533   *
1534 1534   * Return value: returns uint_t which will have various bits set
1535 1535   * that indicates different properties of the ring.
1536 1536   */
1537 1537  uint_t
1538 1538  mac_hwring_getinfo(mac_ring_handle_t rh)
1539 1539  {
1540 1540          mac_ring_t *ring = (mac_ring_t *)rh;
1541 1541          mac_ring_info_t *info = &ring->mr_info;
1542 1542  
1543 1543          return (info->mri_flags);
1544 1544  }
1545 1545  
1546 1546  /*
1547 1547   * Export ddi interrupt handles from the HW ring to the pseudo ring and
1548 1548   * setup the RX callback of the mac client which exclusively controls
1549 1549   * HW ring.
1550 1550   */
1551 1551  void
1552 1552  mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh,
1553 1553      mac_ring_handle_t pseudo_rh)
1554 1554  {
1555 1555          mac_ring_t              *hw_ring = (mac_ring_t *)hwrh;
1556 1556          mac_ring_t              *pseudo_ring;
1557 1557          mac_soft_ring_set_t     *mac_srs = hw_ring->mr_srs;
1558 1558  
1559 1559          if (pseudo_rh != NULL) {
1560 1560                  pseudo_ring = (mac_ring_t *)pseudo_rh;
1561 1561                  /* Export the ddi handles to pseudo ring */
1562 1562                  pseudo_ring->mr_info.mri_intr.mi_ddi_handle =
1563 1563                      hw_ring->mr_info.mri_intr.mi_ddi_handle;
1564 1564                  pseudo_ring->mr_info.mri_intr.mi_ddi_shared =
1565 1565                      hw_ring->mr_info.mri_intr.mi_ddi_shared;
1566 1566                  /*
1567 1567                   * Save a pointer to pseudo ring in the hw ring. If
1568 1568                   * interrupt handle changes, the hw ring will be
1569 1569                   * notified of the change (see mac_ring_intr_set())
1570 1570                   * and the appropriate change has to be made to
1571 1571                   * the pseudo ring that has exported the ddi handle.
1572 1572                   */
1573 1573                  hw_ring->mr_prh = pseudo_rh;
1574 1574          }
1575 1575  
1576 1576          if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1577 1577                  ASSERT(!(mac_srs->srs_type & SRST_TX));
1578 1578                  mac_srs->srs_mrh = prh;
1579 1579                  mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1580 1580          }
1581 1581  }
1582 1582  
1583 1583  void
1584 1584  mac_hwring_teardown(mac_ring_handle_t hwrh)
1585 1585  {
1586 1586          mac_ring_t              *hw_ring = (mac_ring_t *)hwrh;
1587 1587          mac_soft_ring_set_t     *mac_srs;
1588 1588  
1589 1589          if (hw_ring == NULL)
1590 1590                  return;
1591 1591          hw_ring->mr_prh = NULL;
1592 1592          if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1593 1593                  mac_srs = hw_ring->mr_srs;
1594 1594                  ASSERT(!(mac_srs->srs_type & SRST_TX));
1595 1595                  mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1596 1596                  mac_srs->srs_mrh = NULL;
1597 1597          }
1598 1598  }
1599 1599  
1600 1600  int
1601 1601  mac_hwring_disable_intr(mac_ring_handle_t rh)
1602 1602  {
1603 1603          mac_ring_t *rr_ring = (mac_ring_t *)rh;
1604 1604          mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1605 1605  
1606 1606          return (intr->mi_disable(intr->mi_handle));
1607 1607  }
1608 1608  
1609 1609  int
1610 1610  mac_hwring_enable_intr(mac_ring_handle_t rh)
1611 1611  {
1612 1612          mac_ring_t *rr_ring = (mac_ring_t *)rh;
1613 1613          mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1614 1614  
1615 1615          return (intr->mi_enable(intr->mi_handle));
1616 1616  }
1617 1617  
1618 1618  int
1619 1619  mac_hwring_start(mac_ring_handle_t rh)
1620 1620  {
1621 1621          mac_ring_t *rr_ring = (mac_ring_t *)rh;
1622 1622  
1623 1623          MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1624 1624          return (0);
1625 1625  }
1626 1626  
1627 1627  void
1628 1628  mac_hwring_stop(mac_ring_handle_t rh)
1629 1629  {
1630 1630          mac_ring_t *rr_ring = (mac_ring_t *)rh;
1631 1631  
1632 1632          mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1633 1633  }
1634 1634  
1635 1635  mblk_t *
1636 1636  mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1637 1637  {
1638 1638          mac_ring_t *rr_ring = (mac_ring_t *)rh;
1639 1639          mac_ring_info_t *info = &rr_ring->mr_info;
1640 1640  
1641 1641          return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1642 1642  }
1643 1643  
1644 1644  /*
1645 1645   * Send packets through a selected tx ring.
1646 1646   */
1647 1647  mblk_t *
1648 1648  mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp)
1649 1649  {
1650 1650          mac_ring_t *ring = (mac_ring_t *)rh;
1651 1651          mac_ring_info_t *info = &ring->mr_info;
1652 1652  
1653 1653          ASSERT(ring->mr_type == MAC_RING_TYPE_TX &&
1654 1654              ring->mr_state >= MR_INUSE);
1655 1655          return (info->mri_tx(info->mri_driver, mp));
1656 1656  }
1657 1657  
1658 1658  /*
1659 1659   * Query stats for a particular rx/tx ring
1660 1660   */
1661 1661  int
1662 1662  mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val)
1663 1663  {
1664 1664          mac_ring_t      *ring = (mac_ring_t *)rh;
1665 1665          mac_ring_info_t *info = &ring->mr_info;
1666 1666  
1667 1667          return (info->mri_stat(info->mri_driver, stat, val));
1668 1668  }
1669 1669  
1670 1670  /*
1671 1671   * Private function that is only used by aggr to send packets through
1672 1672   * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports
1673 1673   * that does not expose Tx rings, aggr_ring_tx() entry point needs
1674 1674   * access to mac_impl_t to send packets through m_tx() entry point.
1675 1675   * It accomplishes this by calling mac_hwring_send_priv() function.
1676 1676   */
1677 1677  mblk_t *
1678 1678  mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp)
1679 1679  {
1680 1680          mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1681 1681          mac_impl_t *mip = mcip->mci_mip;
1682 1682  
1683 1683          MAC_TX(mip, rh, mp, mcip);
1684 1684          return (mp);
1685 1685  }
1686 1686  
1687 1687  int
1688 1688  mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1689 1689  {
1690 1690          mac_group_t *group = (mac_group_t *)gh;
1691 1691  
1692 1692          return (mac_group_addmac(group, addr));
1693 1693  }
1694 1694  
1695 1695  int
1696 1696  mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1697 1697  {
1698 1698          mac_group_t *group = (mac_group_t *)gh;
1699 1699  
1700 1700          return (mac_group_remmac(group, addr));
1701 1701  }
1702 1702  
1703 1703  /*
1704 1704   * Set the RX group to be shared/reserved. Note that the group must be
1705 1705   * started/stopped outside of this function.
1706 1706   */
1707 1707  void
1708 1708  mac_set_group_state(mac_group_t *grp, mac_group_state_t state)
1709 1709  {
1710 1710          /*
1711 1711           * If there is no change in the group state, just return.
1712 1712           */
1713 1713          if (grp->mrg_state == state)
1714 1714                  return;
1715 1715  
1716 1716          switch (state) {
1717 1717          case MAC_GROUP_STATE_RESERVED:
1718 1718                  /*
1719 1719                   * Successfully reserved the group.
1720 1720                   *
1721 1721                   * Given that there is an exclusive client controlling this
1722 1722                   * group, we enable the group level polling when available,
1723 1723                   * so that SRSs get to turn on/off individual rings they's
1724 1724                   * assigned to.
1725 1725                   */
1726 1726                  ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1727 1727  
1728 1728                  if (grp->mrg_type == MAC_RING_TYPE_RX &&
1729 1729                      GROUP_INTR_DISABLE_FUNC(grp) != NULL) {
1730 1730                          GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1731 1731                  }
1732 1732                  break;
1733 1733  
1734 1734          case MAC_GROUP_STATE_SHARED:
1735 1735                  /*
1736 1736                   * Set all rings of this group to software classified.
1737 1737                   * If the group has an overriding interrupt, then re-enable it.
1738 1738                   */
1739 1739                  ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1740 1740  
1741 1741                  if (grp->mrg_type == MAC_RING_TYPE_RX &&
1742 1742                      GROUP_INTR_ENABLE_FUNC(grp) != NULL) {
1743 1743                          GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1744 1744                  }
1745 1745                  /* The ring is not available for reservations any more */
1746 1746                  break;
1747 1747  
1748 1748          case MAC_GROUP_STATE_REGISTERED:
1749 1749                  /* Also callable from mac_register, perim is not held */
1750 1750                  break;
1751 1751  
1752 1752          default:
1753 1753                  ASSERT(B_FALSE);
1754 1754                  break;
1755 1755          }
1756 1756  
1757 1757          grp->mrg_state = state;
1758 1758  }
1759 1759  
1760 1760  /*
1761 1761   * Quiesce future hardware classified packets for the specified Rx ring
1762 1762   */
1763 1763  static void
1764 1764  mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
1765 1765  {
1766 1766          ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
1767 1767          ASSERT(ring_flag == MR_CONDEMNED || ring_flag  == MR_QUIESCE);
1768 1768  
1769 1769          mutex_enter(&rx_ring->mr_lock);
1770 1770          rx_ring->mr_flag |= ring_flag;
1771 1771          while (rx_ring->mr_refcnt != 0)
1772 1772                  cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
1773 1773          mutex_exit(&rx_ring->mr_lock);
1774 1774  }
1775 1775  
1776 1776  /*
1777 1777   * Please see mac_tx for details about the per cpu locking scheme
1778 1778   */
1779 1779  static void
1780 1780  mac_tx_lock_all(mac_client_impl_t *mcip)
1781 1781  {
1782 1782          int     i;
1783 1783  
1784 1784          for (i = 0; i <= mac_tx_percpu_cnt; i++)
1785 1785                  mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1786 1786  }
1787 1787  
1788 1788  static void
1789 1789  mac_tx_unlock_all(mac_client_impl_t *mcip)
1790 1790  {
1791 1791          int     i;
1792 1792  
1793 1793          for (i = mac_tx_percpu_cnt; i >= 0; i--)
1794 1794                  mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1795 1795  }
1796 1796  
1797 1797  static void
1798 1798  mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
1799 1799  {
1800 1800          int     i;
1801 1801  
1802 1802          for (i = mac_tx_percpu_cnt; i > 0; i--)
1803 1803                  mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1804 1804  }
1805 1805  
1806 1806  static int
1807 1807  mac_tx_sum_refcnt(mac_client_impl_t *mcip)
1808 1808  {
1809 1809          int     i;
1810 1810          int     refcnt = 0;
1811 1811  
1812 1812          for (i = 0; i <= mac_tx_percpu_cnt; i++)
1813 1813                  refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
1814 1814  
1815 1815          return (refcnt);
1816 1816  }
1817 1817  
1818 1818  /*
1819 1819   * Stop future Tx packets coming down from the client in preparation for
1820 1820   * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
1821 1821   * of rings between clients
1822 1822   */
1823 1823  void
1824 1824  mac_tx_client_block(mac_client_impl_t *mcip)
1825 1825  {
1826 1826          mac_tx_lock_all(mcip);
1827 1827          mcip->mci_tx_flag |= MCI_TX_QUIESCE;
1828 1828          while (mac_tx_sum_refcnt(mcip) != 0) {
1829 1829                  mac_tx_unlock_allbutzero(mcip);
1830 1830                  cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1831 1831                  mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1832 1832                  mac_tx_lock_all(mcip);
1833 1833          }
1834 1834          mac_tx_unlock_all(mcip);
1835 1835  }
1836 1836  
1837 1837  void
1838 1838  mac_tx_client_unblock(mac_client_impl_t *mcip)
1839 1839  {
1840 1840          mac_tx_lock_all(mcip);
1841 1841          mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
1842 1842          mac_tx_unlock_all(mcip);
1843 1843          /*
1844 1844           * We may fail to disable flow control for the last MAC_NOTE_TX
1845 1845           * notification because the MAC client is quiesced. Send the
1846 1846           * notification again.
1847 1847           */
1848 1848          i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
1849 1849  }
1850 1850  
1851 1851  /*
1852 1852   * Wait for an SRS to quiesce. The SRS worker will signal us when the
1853 1853   * quiesce is done.
1854 1854   */
1855 1855  static void
1856 1856  mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
1857 1857  {
1858 1858          mutex_enter(&srs->srs_lock);
1859 1859          while (!(srs->srs_state & srs_flag))
1860 1860                  cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
1861 1861          mutex_exit(&srs->srs_lock);
1862 1862  }
1863 1863  
1864 1864  /*
1865 1865   * Quiescing an Rx SRS is achieved by the following sequence. The protocol
1866 1866   * works bottom up by cutting off packet flow from the bottommost point in the
1867 1867   * mac, then the SRS, and then the soft rings. There are 2 use cases of this
1868 1868   * mechanism. One is a temporary quiesce of the SRS, such as say while changing
1869 1869   * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
1870 1870   * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
1871 1871   * for the SRS and MR flags. In the former case the threads pause waiting for
1872 1872   * a restart, while in the latter case the threads exit. The Tx SRS teardown
1873 1873   * is also mostly similar to the above.
1874 1874   *
1875 1875   * 1. Stop future hardware classified packets at the lowest level in the mac.
1876 1876   *    Remove any hardware classification rule (CONDEMNED case) and mark the
1877 1877   *    rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
1878 1878   *    from increasing. Upcalls from the driver that come through hardware
1879 1879   *    classification will be dropped in mac_rx from now on. Then we wait for
1880 1880   *    the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
1881 1881   *    sure there aren't any upcall threads from the driver through hardware
1882 1882   *    classification. In the case of SRS teardown we also remove the
1883 1883   *    classification rule in the driver.
1884 1884   *
1885 1885   * 2. Stop future software classified packets by marking the flow entry with
1886 1886   *    FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
1887 1887   *    increasing. We also remove the flow entry from the table in the latter
1888 1888   *    case. Then wait for the fe_refcnt to reach an appropriate quiescent value
1889 1889   *    that indicates there aren't any active threads using that flow entry.
1890 1890   *
1891 1891   * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
1892 1892   *    SRS worker thread, and the soft ring threads are quiesced in sequence
1893 1893   *    with the SRS worker thread serving as a master controller. This
1894 1894   *    mechansim is explained in mac_srs_worker_quiesce().
1895 1895   *
1896 1896   * The restart mechanism to reactivate the SRS and softrings is explained
1897 1897   * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
1898 1898   * restart sequence.
1899 1899   */
1900 1900  void
1901 1901  mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
1902 1902  {
1903 1903          flow_entry_t    *flent = srs->srs_flent;
1904 1904          uint_t  mr_flag, srs_done_flag;
1905 1905  
1906 1906          ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1907 1907          ASSERT(!(srs->srs_type & SRST_TX));
1908 1908  
1909 1909          if (srs_quiesce_flag == SRS_CONDEMNED) {
1910 1910                  mr_flag = MR_CONDEMNED;
1911 1911                  srs_done_flag = SRS_CONDEMNED_DONE;
1912 1912                  if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1913 1913                          mac_srs_client_poll_disable(srs->srs_mcip, srs);
1914 1914          } else {
1915 1915                  ASSERT(srs_quiesce_flag == SRS_QUIESCE);
1916 1916                  mr_flag = MR_QUIESCE;
1917 1917                  srs_done_flag = SRS_QUIESCE_DONE;
1918 1918                  if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1919 1919                          mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
1920 1920          }
1921 1921  
1922 1922          if (srs->srs_ring != NULL) {
1923 1923                  mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
1924 1924          } else {
1925 1925                  /*
1926 1926                   * SRS is driven by software classification. In case
1927 1927                   * of CONDEMNED, the top level teardown functions will
1928 1928                   * deal with flow removal.
1929 1929                   */
1930 1930                  if (srs_quiesce_flag != SRS_CONDEMNED) {
1931 1931                          FLOW_MARK(flent, FE_QUIESCE);
1932 1932                          mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
1933 1933                  }
1934 1934          }
1935 1935  
1936 1936          /*
1937 1937           * Signal the SRS to quiesce itself, and then cv_wait for the
1938 1938           * SRS quiesce to complete. The SRS worker thread will wake us
1939 1939           * up when the quiesce is complete
1940 1940           */
1941 1941          mac_srs_signal(srs, srs_quiesce_flag);
1942 1942          mac_srs_quiesce_wait(srs, srs_done_flag);
1943 1943  }
1944 1944  
1945 1945  /*
1946 1946   * Remove an SRS.
1947 1947   */
1948 1948  void
1949 1949  mac_rx_srs_remove(mac_soft_ring_set_t *srs)
1950 1950  {
1951 1951          flow_entry_t *flent = srs->srs_flent;
1952 1952          int i;
1953 1953  
1954 1954          mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
1955 1955          /*
1956 1956           * Locate and remove our entry in the fe_rx_srs[] array, and
1957 1957           * adjust the fe_rx_srs array entries and array count by
1958 1958           * moving the last entry into the vacated spot.
1959 1959           */
1960 1960          mutex_enter(&flent->fe_lock);
1961 1961          for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1962 1962                  if (flent->fe_rx_srs[i] == srs)
1963 1963                          break;
1964 1964          }
1965 1965  
1966 1966          ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
1967 1967          if (i != flent->fe_rx_srs_cnt - 1) {
1968 1968                  flent->fe_rx_srs[i] =
1969 1969                      flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
1970 1970                  i = flent->fe_rx_srs_cnt - 1;
1971 1971          }
1972 1972  
1973 1973          flent->fe_rx_srs[i] = NULL;
1974 1974          flent->fe_rx_srs_cnt--;
1975 1975          mutex_exit(&flent->fe_lock);
1976 1976  
1977 1977          mac_srs_free(srs);
1978 1978  }
1979 1979  
1980 1980  static void
1981 1981  mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
1982 1982  {
1983 1983          mutex_enter(&srs->srs_lock);
1984 1984          srs->srs_state &= ~flag;
1985 1985          mutex_exit(&srs->srs_lock);
1986 1986  }
1987 1987  
1988 1988  void
1989 1989  mac_rx_srs_restart(mac_soft_ring_set_t *srs)
1990 1990  {
1991 1991          flow_entry_t    *flent = srs->srs_flent;
1992 1992          mac_ring_t      *mr;
1993 1993  
1994 1994          ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1995 1995          ASSERT((srs->srs_type & SRST_TX) == 0);
1996 1996  
1997 1997          /*
1998 1998           * This handles a change in the number of SRSs between the quiesce and
1999 1999           * and restart operation of a flow.
2000 2000           */
2001 2001          if (!SRS_QUIESCED(srs))
2002 2002                  return;
2003 2003  
2004 2004          /*
2005 2005           * Signal the SRS to restart itself. Wait for the restart to complete
2006 2006           * Note that we only restart the SRS if it is not marked as
2007 2007           * permanently quiesced.
2008 2008           */
2009 2009          if (!SRS_QUIESCED_PERMANENT(srs)) {
2010 2010                  mac_srs_signal(srs, SRS_RESTART);
2011 2011                  mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2012 2012                  mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2013 2013  
2014 2014                  mac_srs_client_poll_restart(srs->srs_mcip, srs);
2015 2015          }
2016 2016  
2017 2017          /* Finally clear the flags to let the packets in */
2018 2018          mr = srs->srs_ring;
2019 2019          if (mr != NULL) {
2020 2020                  MAC_RING_UNMARK(mr, MR_QUIESCE);
2021 2021                  /* In case the ring was stopped, safely restart it */
2022 2022                  if (mr->mr_state != MR_INUSE)
2023 2023                          (void) mac_start_ring(mr);
2024 2024          } else {
2025 2025                  FLOW_UNMARK(flent, FE_QUIESCE);
2026 2026          }
2027 2027  }
2028 2028  
2029 2029  /*
2030 2030   * Temporary quiesce of a flow and associated Rx SRS.
2031 2031   * Please see block comment above mac_rx_classify_flow_rem.
2032 2032   */
2033 2033  /* ARGSUSED */
2034 2034  int
2035 2035  mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
2036 2036  {
2037 2037          int             i;
2038 2038  
2039 2039          for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2040 2040                  mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
2041 2041                      SRS_QUIESCE);
2042 2042          }
2043 2043          return (0);
2044 2044  }
2045 2045  
2046 2046  /*
2047 2047   * Restart a flow and associated Rx SRS that has been quiesced temporarily
2048 2048   * Please see block comment above mac_rx_classify_flow_rem
2049 2049   */
2050 2050  /* ARGSUSED */
2051 2051  int
2052 2052  mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
2053 2053  {
2054 2054          int             i;
2055 2055  
2056 2056          for (i = 0; i < flent->fe_rx_srs_cnt; i++)
2057 2057                  mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
2058 2058  
2059 2059          return (0);
2060 2060  }
2061 2061  
2062 2062  void
2063 2063  mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
2064 2064  {
2065 2065          mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2066 2066          flow_entry_t            *flent = mcip->mci_flent;
2067 2067          mac_impl_t              *mip = mcip->mci_mip;
2068 2068          mac_soft_ring_set_t     *mac_srs;
2069 2069          int                     i;
2070 2070  
2071 2071          ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2072 2072  
2073 2073          if (flent == NULL)
2074 2074                  return;
2075 2075  
2076 2076          for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2077 2077                  mac_srs = flent->fe_rx_srs[i];
2078 2078                  mutex_enter(&mac_srs->srs_lock);
2079 2079                  if (on)
2080 2080                          mac_srs->srs_state |= SRS_QUIESCE_PERM;
2081 2081                  else
2082 2082                          mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
2083 2083                  mutex_exit(&mac_srs->srs_lock);
2084 2084          }
2085 2085  }
2086 2086  
2087 2087  void
2088 2088  mac_rx_client_quiesce(mac_client_handle_t mch)
2089 2089  {
2090 2090          mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2091 2091          mac_impl_t              *mip = mcip->mci_mip;
2092 2092  
2093 2093          ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2094 2094  
2095 2095          if (MCIP_DATAPATH_SETUP(mcip)) {
2096 2096                  (void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
2097 2097                      NULL);
2098 2098                  (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2099 2099                      mac_rx_classify_flow_quiesce, NULL);
2100 2100          }
2101 2101  }
2102 2102  
2103 2103  void
2104 2104  mac_rx_client_restart(mac_client_handle_t mch)
2105 2105  {
2106 2106          mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2107 2107          mac_impl_t              *mip = mcip->mci_mip;
2108 2108  
2109 2109          ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2110 2110  
2111 2111          if (MCIP_DATAPATH_SETUP(mcip)) {
2112 2112                  (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
2113 2113                  (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2114 2114                      mac_rx_classify_flow_restart, NULL);
2115 2115          }
2116 2116  }
2117 2117  
2118 2118  /*
2119 2119   * This function only quiesces the Tx SRS and softring worker threads. Callers
2120 2120   * need to make sure that there aren't any mac client threads doing current or
2121 2121   * future transmits in the mac before calling this function.
2122 2122   */
2123 2123  void
2124 2124  mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2125 2125  {
2126 2126          mac_client_impl_t       *mcip = srs->srs_mcip;
2127 2127  
2128 2128          ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2129 2129  
2130 2130          ASSERT(srs->srs_type & SRST_TX);
2131 2131          ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2132 2132              srs_quiesce_flag == SRS_QUIESCE);
2133 2133  
2134 2134          /*
2135 2135           * Signal the SRS to quiesce itself, and then cv_wait for the
2136 2136           * SRS quiesce to complete. The SRS worker thread will wake us
2137 2137           * up when the quiesce is complete
2138 2138           */
2139 2139          mac_srs_signal(srs, srs_quiesce_flag);
2140 2140          mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2141 2141              SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2142 2142  }
2143 2143  
2144 2144  void
2145 2145  mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2146 2146  {
2147 2147          /*
2148 2148           * Resizing the fanout could result in creation of new SRSs.
2149 2149           * They may not necessarily be in the quiesced state in which
2150 2150           * case it need be restarted
2151 2151           */
2152 2152          if (!SRS_QUIESCED(srs))
2153 2153                  return;
2154 2154  
2155 2155          mac_srs_signal(srs, SRS_RESTART);
2156 2156          mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2157 2157          mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2158 2158  }
2159 2159  
2160 2160  /*
2161 2161   * Temporary quiesce of a flow and associated Rx SRS.
2162 2162   * Please see block comment above mac_rx_srs_quiesce
2163 2163   */
2164 2164  /* ARGSUSED */
2165 2165  int
2166 2166  mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2167 2167  {
2168 2168          /*
2169 2169           * The fe_tx_srs is null for a subflow on an interface that is
2170 2170           * not plumbed
2171 2171           */
2172 2172          if (flent->fe_tx_srs != NULL)
2173 2173                  mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2174 2174          return (0);
2175 2175  }
2176 2176  
2177 2177  /* ARGSUSED */
2178 2178  int
2179 2179  mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2180 2180  {
2181 2181          /*
2182 2182           * The fe_tx_srs is null for a subflow on an interface that is
2183 2183           * not plumbed
2184 2184           */
2185 2185          if (flent->fe_tx_srs != NULL)
2186 2186                  mac_tx_srs_restart(flent->fe_tx_srs);
2187 2187          return (0);
2188 2188  }
2189 2189  
2190 2190  static void
2191 2191  i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag)
2192 2192  {
2193 2193          mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2194 2194  
2195 2195          ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2196 2196  
2197 2197          mac_tx_client_block(mcip);
2198 2198          if (MCIP_TX_SRS(mcip) != NULL) {
2199 2199                  mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2200 2200                  (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2201 2201                      mac_tx_flow_quiesce, NULL);
2202 2202          }
2203 2203  }
2204 2204  
2205 2205  void
2206 2206  mac_tx_client_quiesce(mac_client_handle_t mch)
2207 2207  {
2208 2208          i_mac_tx_client_quiesce(mch, SRS_QUIESCE);
2209 2209  }
2210 2210  
2211 2211  void
2212 2212  mac_tx_client_condemn(mac_client_handle_t mch)
2213 2213  {
2214 2214          i_mac_tx_client_quiesce(mch, SRS_CONDEMNED);
2215 2215  }
2216 2216  
2217 2217  void
2218 2218  mac_tx_client_restart(mac_client_handle_t mch)
2219 2219  {
2220 2220          mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2221 2221  
2222 2222          ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2223 2223  
2224 2224          mac_tx_client_unblock(mcip);
2225 2225          if (MCIP_TX_SRS(mcip) != NULL) {
2226 2226                  mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2227 2227                  (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2228 2228                      mac_tx_flow_restart, NULL);
2229 2229          }
2230 2230  }
2231 2231  
2232 2232  void
2233 2233  mac_tx_client_flush(mac_client_impl_t *mcip)
2234 2234  {
2235 2235          ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2236 2236  
2237 2237          mac_tx_client_quiesce((mac_client_handle_t)mcip);
2238 2238          mac_tx_client_restart((mac_client_handle_t)mcip);
2239 2239  }
2240 2240  
2241 2241  void
2242 2242  mac_client_quiesce(mac_client_impl_t *mcip)
2243 2243  {
2244 2244          mac_rx_client_quiesce((mac_client_handle_t)mcip);
2245 2245          mac_tx_client_quiesce((mac_client_handle_t)mcip);
2246 2246  }
2247 2247  
2248 2248  void
2249 2249  mac_client_restart(mac_client_impl_t *mcip)
2250 2250  {
2251 2251          mac_rx_client_restart((mac_client_handle_t)mcip);
2252 2252          mac_tx_client_restart((mac_client_handle_t)mcip);
2253 2253  }
2254 2254  
2255 2255  /*
2256 2256   * Allocate a minor number.
2257 2257   */
2258 2258  minor_t
2259 2259  mac_minor_hold(boolean_t sleep)
2260 2260  {
2261 2261          minor_t minor;
2262 2262  
2263 2263          /*
2264 2264           * Grab a value from the arena.
2265 2265           */
2266 2266          atomic_inc_32(&minor_count);
2267 2267  
2268 2268          if (sleep)
2269 2269                  minor = (uint_t)id_alloc(minor_ids);
2270 2270          else
2271 2271                  minor = (uint_t)id_alloc_nosleep(minor_ids);
2272 2272  
2273 2273          if (minor == 0) {
2274 2274                  atomic_dec_32(&minor_count);
2275 2275                  return (0);
2276 2276          }
2277 2277  
2278 2278          return (minor);
2279 2279  }
2280 2280  
2281 2281  /*
2282 2282   * Release a previously allocated minor number.
2283 2283   */
2284 2284  void
2285 2285  mac_minor_rele(minor_t minor)
2286 2286  {
2287 2287          /*
2288 2288           * Return the value to the arena.
2289 2289           */
2290 2290          id_free(minor_ids, minor);
2291 2291          atomic_dec_32(&minor_count);
2292 2292  }
2293 2293  
2294 2294  uint32_t
2295 2295  mac_no_notification(mac_handle_t mh)
2296 2296  {
2297 2297          mac_impl_t *mip = (mac_impl_t *)mh;
2298 2298  
2299 2299          return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2300 2300              mip->mi_capab_legacy.ml_unsup_note : 0);
2301 2301  }
2302 2302  
2303 2303  /*
2304 2304   * Prevent any new opens of this mac in preparation for unregister
2305 2305   */
2306 2306  int
2307 2307  i_mac_disable(mac_impl_t *mip)
2308 2308  {
2309 2309          mac_client_impl_t       *mcip;
2310 2310  
2311 2311          rw_enter(&i_mac_impl_lock, RW_WRITER);
2312 2312          if (mip->mi_state_flags & MIS_DISABLED) {
2313 2313                  /* Already disabled, return success */
2314 2314                  rw_exit(&i_mac_impl_lock);
2315 2315                  return (0);
2316 2316          }
2317 2317          /*
2318 2318           * See if there are any other references to this mac_t (e.g., VLAN's).
2319 2319           * If so return failure. If all the other checks below pass, then
2320 2320           * set mi_disabled atomically under the i_mac_impl_lock to prevent
2321 2321           * any new VLAN's from being created or new mac client opens of this
2322 2322           * mac end point.
2323 2323           */
2324 2324          if (mip->mi_ref > 0) {
2325 2325                  rw_exit(&i_mac_impl_lock);
2326 2326                  return (EBUSY);
2327 2327          }
2328 2328  
2329 2329          /*
2330 2330           * mac clients must delete all multicast groups they join before
2331 2331           * closing. bcast groups are reference counted, the last client
2332 2332           * to delete the group will wait till the group is physically
2333 2333           * deleted. Since all clients have closed this mac end point
2334 2334           * mi_bcast_ngrps must be zero at this point
2335 2335           */
2336 2336          ASSERT(mip->mi_bcast_ngrps == 0);
2337 2337  
2338 2338          /*
2339 2339           * Don't let go of this if it has some flows.
2340 2340           * All other code guarantees no flows are added to a disabled
2341 2341           * mac, therefore it is sufficient to check for the flow table
2342 2342           * only here.
2343 2343           */
2344 2344          mcip = mac_primary_client_handle(mip);
2345 2345          if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2346 2346                  rw_exit(&i_mac_impl_lock);
2347 2347                  return (ENOTEMPTY);
2348 2348          }
2349 2349  
2350 2350          mip->mi_state_flags |= MIS_DISABLED;
2351 2351          rw_exit(&i_mac_impl_lock);
2352 2352          return (0);
2353 2353  }
2354 2354  
2355 2355  int
2356 2356  mac_disable_nowait(mac_handle_t mh)
2357 2357  {
2358 2358          mac_impl_t      *mip = (mac_impl_t *)mh;
2359 2359          int err;
2360 2360  
2361 2361          if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2362 2362                  return (err);
2363 2363          err = i_mac_disable(mip);
2364 2364          i_mac_perim_exit(mip);
2365 2365          return (err);
2366 2366  }
2367 2367  
2368 2368  int
2369 2369  mac_disable(mac_handle_t mh)
2370 2370  {
2371 2371          mac_impl_t      *mip = (mac_impl_t *)mh;
2372 2372          int err;
2373 2373  
2374 2374          i_mac_perim_enter(mip);
2375 2375          err = i_mac_disable(mip);
2376 2376          i_mac_perim_exit(mip);
2377 2377  
2378 2378          /*
2379 2379           * Clean up notification thread and wait for it to exit.
2380 2380           */
2381 2381          if (err == 0)
2382 2382                  i_mac_notify_exit(mip);
2383 2383  
2384 2384          return (err);
2385 2385  }
2386 2386  
2387 2387  /*
2388 2388   * Called when the MAC instance has a non empty flow table, to de-multiplex
2389 2389   * incoming packets to the right flow.
2390 2390   * The MAC's rw lock is assumed held as a READER.
2391 2391   */
2392 2392  /* ARGSUSED */
2393 2393  static mblk_t *
2394 2394  mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2395 2395  {
2396 2396          flow_entry_t    *flent = NULL;
2397 2397          uint_t          flags = FLOW_INBOUND;
2398 2398          int             err;
2399 2399  
2400 2400          /*
2401 2401           * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN
2402 2402           * to mac_flow_lookup() so that the VLAN packets can be successfully
2403 2403           * passed to the non-VLAN aggregation flows.
2404 2404           *
2405 2405           * Note that there is possibly a race between this and
2406 2406           * mac_unicast_remove/add() and VLAN packets could be incorrectly
2407 2407           * classified to non-VLAN flows of non-aggregation mac clients. These
2408 2408           * VLAN packets will be then filtered out by the mac module.
2409 2409           */
2410 2410          if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0)
2411 2411                  flags |= FLOW_IGNORE_VLAN;
2412 2412  
2413 2413          err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2414 2414          if (err != 0) {
2415 2415                  /* no registered receive function */
2416 2416                  return (mp);
2417 2417          } else {
2418 2418                  mac_client_impl_t       *mcip;
2419 2419  
2420 2420                  /*
2421 2421                   * This flent might just be an additional one on the MAC client,
2422 2422                   * i.e. for classification purposes (different fdesc), however
2423 2423                   * the resources, SRS et. al., are in the mci_flent, so if
2424 2424                   * this isn't the mci_flent, we need to get it.
2425 2425                   */
2426 2426                  if ((mcip = flent->fe_mcip) != NULL &&
2427 2427                      mcip->mci_flent != flent) {
2428 2428                          FLOW_REFRELE(flent);
2429 2429                          flent = mcip->mci_flent;
2430 2430                          FLOW_TRY_REFHOLD(flent, err);
2431 2431                          if (err != 0)
2432 2432                                  return (mp);
2433 2433                  }
2434 2434                  (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2435 2435                      B_FALSE);
2436 2436                  FLOW_REFRELE(flent);
2437 2437          }
2438 2438          return (NULL);
2439 2439  }
2440 2440  
2441 2441  mblk_t *
2442 2442  mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2443 2443  {
2444 2444          mac_impl_t      *mip = (mac_impl_t *)mh;
2445 2445          mblk_t          *bp, *bp1, **bpp, *list = NULL;
2446 2446  
2447 2447          /*
2448 2448           * We walk the chain and attempt to classify each packet.
2449 2449           * The packets that couldn't be classified will be returned
2450 2450           * back to the caller.
2451 2451           */
2452 2452          bp = mp_chain;
2453 2453          bpp = &list;
2454 2454          while (bp != NULL) {
2455 2455                  bp1 = bp;
2456 2456                  bp = bp->b_next;
2457 2457                  bp1->b_next = NULL;
2458 2458  
2459 2459                  if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2460 2460                          *bpp = bp1;
2461 2461                          bpp = &bp1->b_next;
2462 2462                  }
2463 2463          }
2464 2464          return (list);
2465 2465  }
2466 2466  
2467 2467  static int
2468 2468  mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2469 2469  {
2470 2470          mac_ring_handle_t ring = arg;
2471 2471  
2472 2472          if (flent->fe_tx_srs)
2473 2473                  mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2474 2474          return (0);
2475 2475  }
2476 2476  
2477 2477  void
2478 2478  i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2479 2479  {
2480 2480          mac_client_impl_t       *cclient;
2481 2481          mac_soft_ring_set_t     *mac_srs;
2482 2482  
2483 2483          /*
2484 2484           * After grabbing the mi_rw_lock, the list of clients can't change.
2485 2485           * If there are any clients mi_disabled must be B_FALSE and can't
2486 2486           * get set since there are clients. If there aren't any clients we
2487 2487           * don't do anything. In any case the mip has to be valid. The driver
2488 2488           * must make sure that it goes single threaded (with respect to mac
2489 2489           * calls) and wait for all pending mac calls to finish before calling
2490 2490           * mac_unregister.
2491 2491           */
2492 2492          rw_enter(&i_mac_impl_lock, RW_READER);
2493 2493          if (mip->mi_state_flags & MIS_DISABLED) {
2494 2494                  rw_exit(&i_mac_impl_lock);
2495 2495                  return;
2496 2496          }
2497 2497  
2498 2498          /*
2499 2499           * Get MAC tx srs from walking mac_client_handle list.
2500 2500           */
2501 2501          rw_enter(&mip->mi_rw_lock, RW_READER);
2502 2502          for (cclient = mip->mi_clients_list; cclient != NULL;
2503 2503              cclient = cclient->mci_client_next) {
2504 2504                  if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) {
2505 2505                          mac_tx_srs_wakeup(mac_srs, ring);
2506 2506                  } else {
2507 2507                          /*
2508 2508                           * Aggr opens underlying ports in exclusive mode
2509 2509                           * and registers flow control callbacks using
2510 2510                           * mac_tx_client_notify(). When opened in
2511 2511                           * exclusive mode, Tx SRS won't be created
2512 2512                           * during mac_unicast_add().
2513 2513                           */
2514 2514                          if (cclient->mci_state_flags & MCIS_EXCLUSIVE) {
2515 2515                                  mac_tx_invoke_callbacks(cclient,
2516 2516                                      (mac_tx_cookie_t)ring);
2517 2517                          }
2518 2518                  }
2519 2519                  (void) mac_flow_walk(cclient->mci_subflow_tab,
2520 2520                      mac_tx_flow_srs_wakeup, ring);
2521 2521          }
2522 2522          rw_exit(&mip->mi_rw_lock);
2523 2523          rw_exit(&i_mac_impl_lock);
2524 2524  }
2525 2525  
2526 2526  /* ARGSUSED */
2527 2527  void
2528 2528  mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2529 2529      boolean_t add)
2530 2530  {
2531 2531          mac_impl_t *mip = (mac_impl_t *)mh;
2532 2532  
2533 2533          i_mac_perim_enter((mac_impl_t *)mh);
2534 2534          /*
2535 2535           * If no specific refresh function was given then default to the
2536 2536           * driver's m_multicst entry point.
2537 2537           */
2538 2538          if (refresh == NULL) {
2539 2539                  refresh = mip->mi_multicst;
2540 2540                  arg = mip->mi_driver;
2541 2541          }
2542 2542  
2543 2543          mac_bcast_refresh(mip, refresh, arg, add);
2544 2544          i_mac_perim_exit((mac_impl_t *)mh);
2545 2545  }
2546 2546  
2547 2547  void
2548 2548  mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2549 2549  {
2550 2550          mac_impl_t      *mip = (mac_impl_t *)mh;
2551 2551  
2552 2552          /*
2553 2553           * If no specific refresh function was given then default to the
2554 2554           * driver's m_promisc entry point.
2555 2555           */
2556 2556          if (refresh == NULL) {
2557 2557                  refresh = mip->mi_setpromisc;
2558 2558                  arg = mip->mi_driver;
2559 2559          }
2560 2560          ASSERT(refresh != NULL);
2561 2561  
2562 2562          /*
2563 2563           * Call the refresh function with the current promiscuity.
2564 2564           */
2565 2565          refresh(arg, (mip->mi_devpromisc != 0));
2566 2566  }
2567 2567  
2568 2568  /*
2569 2569   * The mac client requests that the mac not to change its margin size to
2570 2570   * be less than the specified value.  If "current" is B_TRUE, then the client
2571 2571   * requests the mac not to change its margin size to be smaller than the
2572 2572   * current size. Further, return the current margin size value in this case.
2573 2573   *
2574 2574   * We keep every requested size in an ordered list from largest to smallest.
2575 2575   */
2576 2576  int
2577 2577  mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2578 2578  {
2579 2579          mac_impl_t              *mip = (mac_impl_t *)mh;
2580 2580          mac_margin_req_t        **pp, *p;
2581 2581          int                     err = 0;
2582 2582  
2583 2583          rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2584 2584          if (current)
2585 2585                  *marginp = mip->mi_margin;
2586 2586  
2587 2587          /*
2588 2588           * If the current margin value cannot satisfy the margin requested,
2589 2589           * return ENOTSUP directly.
2590 2590           */
2591 2591          if (*marginp > mip->mi_margin) {
2592 2592                  err = ENOTSUP;
2593 2593                  goto done;
2594 2594          }
2595 2595  
2596 2596          /*
2597 2597           * Check whether the given margin is already in the list. If so,
2598 2598           * bump the reference count.
2599 2599           */
2600 2600          for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2601 2601                  if (p->mmr_margin == *marginp) {
2602 2602                          /*
2603 2603                           * The margin requested is already in the list,
2604 2604                           * so just bump the reference count.
2605 2605                           */
2606 2606                          p->mmr_ref++;
2607 2607                          goto done;
2608 2608                  }
2609 2609                  if (p->mmr_margin < *marginp)
2610 2610                          break;
2611 2611          }
2612 2612  
2613 2613  
2614 2614          p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2615 2615          p->mmr_margin = *marginp;
2616 2616          p->mmr_ref++;
2617 2617          p->mmr_nextp = *pp;
2618 2618          *pp = p;
2619 2619  
2620 2620  done:
2621 2621          rw_exit(&(mip->mi_rw_lock));
2622 2622          return (err);
2623 2623  }
2624 2624  
2625 2625  /*
2626 2626   * The mac client requests to cancel its previous mac_margin_add() request.
2627 2627   * We remove the requested margin size from the list.
2628 2628   */
2629 2629  int
2630 2630  mac_margin_remove(mac_handle_t mh, uint32_t margin)
2631 2631  {
2632 2632          mac_impl_t              *mip = (mac_impl_t *)mh;
2633 2633          mac_margin_req_t        **pp, *p;
2634 2634          int                     err = 0;
2635 2635  
2636 2636          rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2637 2637          /*
2638 2638           * Find the entry in the list for the given margin.
2639 2639           */
2640 2640          for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2641 2641                  if (p->mmr_margin == margin) {
2642 2642                          if (--p->mmr_ref == 0)
2643 2643                                  break;
2644 2644  
2645 2645                          /*
2646 2646                           * There is still a reference to this address so
2647 2647                           * there's nothing more to do.
2648 2648                           */
2649 2649                          goto done;
2650 2650                  }
2651 2651          }
2652 2652  
2653 2653          /*
2654 2654           * We did not find an entry for the given margin.
2655 2655           */
2656 2656          if (p == NULL) {
2657 2657                  err = ENOENT;
2658 2658                  goto done;
2659 2659          }
2660 2660  
2661 2661          ASSERT(p->mmr_ref == 0);
2662 2662  
2663 2663          /*
2664 2664           * Remove it from the list.
2665 2665           */
2666 2666          *pp = p->mmr_nextp;
2667 2667          kmem_free(p, sizeof (mac_margin_req_t));
2668 2668  done:
2669 2669          rw_exit(&(mip->mi_rw_lock));
2670 2670          return (err);
2671 2671  }
2672 2672  
2673 2673  boolean_t
2674 2674  mac_margin_update(mac_handle_t mh, uint32_t margin)
2675 2675  {
2676 2676          mac_impl_t      *mip = (mac_impl_t *)mh;
2677 2677          uint32_t        margin_needed = 0;
2678 2678  
2679 2679          rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2680 2680  
2681 2681          if (mip->mi_mmrp != NULL)
2682 2682                  margin_needed = mip->mi_mmrp->mmr_margin;
2683 2683  
2684 2684          if (margin_needed <= margin)
2685 2685                  mip->mi_margin = margin;
2686 2686  
2687 2687          rw_exit(&(mip->mi_rw_lock));
2688 2688  
2689 2689          if (margin_needed <= margin)
2690 2690                  i_mac_notify(mip, MAC_NOTE_MARGIN);
2691 2691  
2692 2692          return (margin_needed <= margin);
2693 2693  }
2694 2694  
2695 2695  /*
2696 2696   * MAC clients use this interface to request that a MAC device not change its
2697 2697   * MTU below the specified amount. At this time, that amount must be within the
2698 2698   * range of the device's current minimum and the device's current maximum. eg. a
2699 2699   * client cannot request a 3000 byte MTU when the device's MTU is currently
2700 2700   * 2000.
2701 2701   *
2702 2702   * If "current" is set to B_TRUE, then the request is to simply to reserve the
2703 2703   * current underlying mac's maximum for this mac client and return it in mtup.
2704 2704   */
2705 2705  int
2706 2706  mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current)
2707 2707  {
2708 2708          mac_impl_t              *mip = (mac_impl_t *)mh;
2709 2709          mac_mtu_req_t           *prev, *cur;
2710 2710          mac_propval_range_t     mpr;
2711 2711          int                     err;
2712 2712  
2713 2713          i_mac_perim_enter(mip);
2714 2714          rw_enter(&mip->mi_rw_lock, RW_WRITER);
2715 2715  
2716 2716          if (current == B_TRUE)
2717 2717                  *mtup = mip->mi_sdu_max;
2718 2718          mpr.mpr_count = 1;
2719 2719          err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL);
2720 2720          if (err != 0) {
2721 2721                  rw_exit(&mip->mi_rw_lock);
2722 2722                  i_mac_perim_exit(mip);
2723 2723                  return (err);
2724 2724          }
2725 2725  
2726 2726          if (*mtup > mip->mi_sdu_max ||
2727 2727              *mtup < mpr.mpr_range_uint32[0].mpur_min) {
2728 2728                  rw_exit(&mip->mi_rw_lock);
2729 2729                  i_mac_perim_exit(mip);
2730 2730                  return (ENOTSUP);
2731 2731          }
2732 2732  
2733 2733          prev = NULL;
2734 2734          for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2735 2735                  if (*mtup == cur->mtr_mtu) {
2736 2736                          cur->mtr_ref++;
2737 2737                          rw_exit(&mip->mi_rw_lock);
2738 2738                          i_mac_perim_exit(mip);
2739 2739                          return (0);
2740 2740                  }
2741 2741  
2742 2742                  if (*mtup > cur->mtr_mtu)
2743 2743                          break;
2744 2744  
2745 2745                  prev = cur;
2746 2746          }
2747 2747  
2748 2748          cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP);
2749 2749          cur->mtr_mtu = *mtup;
2750 2750          cur->mtr_ref = 1;
2751 2751          if (prev != NULL) {
2752 2752                  cur->mtr_nextp = prev->mtr_nextp;
2753 2753                  prev->mtr_nextp = cur;
2754 2754          } else {
2755 2755                  cur->mtr_nextp = mip->mi_mtrp;
2756 2756                  mip->mi_mtrp = cur;
2757 2757          }
2758 2758  
2759 2759          rw_exit(&mip->mi_rw_lock);
2760 2760          i_mac_perim_exit(mip);
2761 2761          return (0);
2762 2762  }
2763 2763  
2764 2764  int
2765 2765  mac_mtu_remove(mac_handle_t mh, uint32_t mtu)
2766 2766  {
2767 2767          mac_impl_t *mip = (mac_impl_t *)mh;
2768 2768          mac_mtu_req_t *cur, *prev;
2769 2769  
2770 2770          i_mac_perim_enter(mip);
2771 2771          rw_enter(&mip->mi_rw_lock, RW_WRITER);
2772 2772  
2773 2773          prev = NULL;
2774 2774          for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2775 2775                  if (cur->mtr_mtu == mtu) {
2776 2776                          ASSERT(cur->mtr_ref > 0);
2777 2777                          cur->mtr_ref--;
2778 2778                          if (cur->mtr_ref == 0) {
2779 2779                                  if (prev == NULL) {
2780 2780                                          mip->mi_mtrp = cur->mtr_nextp;
2781 2781                                  } else {
2782 2782                                          prev->mtr_nextp = cur->mtr_nextp;
2783 2783                                  }
2784 2784                                  kmem_free(cur, sizeof (mac_mtu_req_t));
2785 2785                          }
2786 2786                          rw_exit(&mip->mi_rw_lock);
2787 2787                          i_mac_perim_exit(mip);
2788 2788                          return (0);
2789 2789                  }
2790 2790  
2791 2791                  prev = cur;
2792 2792          }
2793 2793  
2794 2794          rw_exit(&mip->mi_rw_lock);
2795 2795          i_mac_perim_exit(mip);
2796 2796          return (ENOENT);
2797 2797  }
2798 2798  
2799 2799  /*
2800 2800   * MAC Type Plugin functions.
2801 2801   */
2802 2802  
2803 2803  mactype_t *
2804 2804  mactype_getplugin(const char *pname)
2805 2805  {
2806 2806          mactype_t       *mtype = NULL;
2807 2807          boolean_t       tried_modload = B_FALSE;
2808 2808  
2809 2809          mutex_enter(&i_mactype_lock);
2810 2810  
2811 2811  find_registered_mactype:
2812 2812          if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
2813 2813              (mod_hash_val_t *)&mtype) != 0) {
2814 2814                  if (!tried_modload) {
2815 2815                          /*
2816 2816                           * If the plugin has not yet been loaded, then
2817 2817                           * attempt to load it now.  If modload() succeeds,
2818 2818                           * the plugin should have registered using
2819 2819                           * mactype_register(), in which case we can go back
2820 2820                           * and attempt to find it again.
2821 2821                           */
2822 2822                          if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
2823 2823                                  tried_modload = B_TRUE;
2824 2824                                  goto find_registered_mactype;
2825 2825                          }
2826 2826                  }
2827 2827          } else {
2828 2828                  /*
2829 2829                   * Note that there's no danger that the plugin we've loaded
2830 2830                   * could be unloaded between the modload() step and the
2831 2831                   * reference count bump here, as we're holding
2832 2832                   * i_mactype_lock, which mactype_unregister() also holds.
2833 2833                   */
2834 2834                  atomic_inc_32(&mtype->mt_ref);
2835 2835          }
2836 2836  
2837 2837          mutex_exit(&i_mactype_lock);
2838 2838          return (mtype);
2839 2839  }
2840 2840  
2841 2841  mactype_register_t *
2842 2842  mactype_alloc(uint_t mactype_version)
2843 2843  {
2844 2844          mactype_register_t *mtrp;
2845 2845  
2846 2846          /*
2847 2847           * Make sure there isn't a version mismatch between the plugin and
2848 2848           * the framework.  In the future, if multiple versions are
2849 2849           * supported, this check could become more sophisticated.
2850 2850           */
2851 2851          if (mactype_version != MACTYPE_VERSION)
2852 2852                  return (NULL);
2853 2853  
2854 2854          mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
2855 2855          mtrp->mtr_version = mactype_version;
2856 2856          return (mtrp);
2857 2857  }
2858 2858  
2859 2859  void
2860 2860  mactype_free(mactype_register_t *mtrp)
2861 2861  {
2862 2862          kmem_free(mtrp, sizeof (mactype_register_t));
2863 2863  }
2864 2864  
2865 2865  int
2866 2866  mactype_register(mactype_register_t *mtrp)
2867 2867  {
2868 2868          mactype_t       *mtp;
2869 2869          mactype_ops_t   *ops = mtrp->mtr_ops;
2870 2870  
2871 2871          /* Do some sanity checking before we register this MAC type. */
2872 2872          if (mtrp->mtr_ident == NULL || ops == NULL)
2873 2873                  return (EINVAL);
2874 2874  
2875 2875          /*
2876 2876           * Verify that all mandatory callbacks are set in the ops
2877 2877           * vector.
2878 2878           */
2879 2879          if (ops->mtops_unicst_verify == NULL ||
2880 2880              ops->mtops_multicst_verify == NULL ||
2881 2881              ops->mtops_sap_verify == NULL ||
2882 2882              ops->mtops_header == NULL ||
2883 2883              ops->mtops_header_info == NULL) {
2884 2884                  return (EINVAL);
2885 2885          }
2886 2886  
2887 2887          mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
2888 2888          mtp->mt_ident = mtrp->mtr_ident;
2889 2889          mtp->mt_ops = *ops;
2890 2890          mtp->mt_type = mtrp->mtr_mactype;
2891 2891          mtp->mt_nativetype = mtrp->mtr_nativetype;
2892 2892          mtp->mt_addr_length = mtrp->mtr_addrlen;
2893 2893          if (mtrp->mtr_brdcst_addr != NULL) {
2894 2894                  mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
2895 2895                  bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
2896 2896                      mtrp->mtr_addrlen);
2897 2897          }
2898 2898  
2899 2899          mtp->mt_stats = mtrp->mtr_stats;
2900 2900          mtp->mt_statcount = mtrp->mtr_statcount;
2901 2901  
2902 2902          mtp->mt_mapping = mtrp->mtr_mapping;
2903 2903          mtp->mt_mappingcount = mtrp->mtr_mappingcount;
2904 2904  
2905 2905          if (mod_hash_insert(i_mactype_hash,
2906 2906              (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
2907 2907                  kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2908 2908                  kmem_free(mtp, sizeof (*mtp));
2909 2909                  return (EEXIST);
2910 2910          }
2911 2911          return (0);
2912 2912  }
2913 2913  
2914 2914  int
2915 2915  mactype_unregister(const char *ident)
2916 2916  {
2917 2917          mactype_t       *mtp;
2918 2918          mod_hash_val_t  val;
2919 2919          int             err;
2920 2920  
2921 2921          /*
2922 2922           * Let's not allow MAC drivers to use this plugin while we're
2923 2923           * trying to unregister it.  Holding i_mactype_lock also prevents a
2924 2924           * plugin from unregistering while a MAC driver is attempting to
2925 2925           * hold a reference to it in i_mactype_getplugin().
2926 2926           */
2927 2927          mutex_enter(&i_mactype_lock);
2928 2928  
2929 2929          if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
2930 2930              (mod_hash_val_t *)&mtp)) != 0) {
2931 2931                  /* A plugin is trying to unregister, but it never registered. */
2932 2932                  err = ENXIO;
2933 2933                  goto done;
2934 2934          }
2935 2935  
2936 2936          if (mtp->mt_ref != 0) {
2937 2937                  err = EBUSY;
2938 2938                  goto done;
2939 2939          }
2940 2940  
2941 2941          err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
2942 2942          ASSERT(err == 0);
2943 2943          if (err != 0) {
2944 2944                  /* This should never happen, thus the ASSERT() above. */
2945 2945                  err = EINVAL;
2946 2946                  goto done;
2947 2947          }
2948 2948          ASSERT(mtp == (mactype_t *)val);
2949 2949  
2950 2950          if (mtp->mt_brdcst_addr != NULL)
2951 2951                  kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2952 2952          kmem_free(mtp, sizeof (mactype_t));
2953 2953  done:
2954 2954          mutex_exit(&i_mactype_lock);
2955 2955          return (err);
2956 2956  }
2957 2957  
2958 2958  /*
2959 2959   * Checks the size of the value size specified for a property as
2960 2960   * part of a property operation. Returns B_TRUE if the size is
2961 2961   * correct, B_FALSE otherwise.
2962 2962   */
2963 2963  boolean_t
2964 2964  mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
2965 2965  {
2966 2966          uint_t minsize = 0;
2967 2967  
2968 2968          if (is_range)
2969 2969                  return (valsize >= sizeof (mac_propval_range_t));
2970 2970  
2971 2971          switch (id) {
2972 2972          case MAC_PROP_ZONE:
2973 2973                  minsize = sizeof (dld_ioc_zid_t);
2974 2974                  break;
2975 2975          case MAC_PROP_AUTOPUSH:
2976 2976                  if (valsize != 0)
2977 2977                          minsize = sizeof (struct dlautopush);
2978 2978                  break;
2979 2979          case MAC_PROP_TAGMODE:
2980 2980                  minsize = sizeof (link_tagmode_t);
2981 2981                  break;
2982 2982          case MAC_PROP_RESOURCE:
2983 2983          case MAC_PROP_RESOURCE_EFF:
2984 2984                  minsize = sizeof (mac_resource_props_t);
2985 2985                  break;
2986 2986          case MAC_PROP_DUPLEX:
2987 2987                  minsize = sizeof (link_duplex_t);
2988 2988                  break;
2989 2989          case MAC_PROP_SPEED:
2990 2990                  minsize = sizeof (uint64_t);
2991 2991                  break;
2992 2992          case MAC_PROP_STATUS:
2993 2993                  minsize = sizeof (link_state_t);
2994 2994                  break;
2995 2995          case MAC_PROP_AUTONEG:
2996 2996          case MAC_PROP_EN_AUTONEG:
2997 2997                  minsize = sizeof (uint8_t);
2998 2998                  break;
2999 2999          case MAC_PROP_MTU:
3000 3000          case MAC_PROP_LLIMIT:
3001 3001          case MAC_PROP_LDECAY:
3002 3002                  minsize = sizeof (uint32_t);
3003 3003                  break;
3004 3004          case MAC_PROP_FLOWCTRL:
3005 3005                  minsize = sizeof (link_flowctrl_t);
3006 3006                  break;
3007 3007          case MAC_PROP_ADV_10GFDX_CAP:
3008 3008          case MAC_PROP_EN_10GFDX_CAP:
3009 3009          case MAC_PROP_ADV_1000HDX_CAP:
3010 3010          case MAC_PROP_EN_1000HDX_CAP:
3011 3011          case MAC_PROP_ADV_100FDX_CAP:
3012 3012          case MAC_PROP_EN_100FDX_CAP:
3013 3013          case MAC_PROP_ADV_100HDX_CAP:
3014 3014          case MAC_PROP_EN_100HDX_CAP:
3015 3015          case MAC_PROP_ADV_10FDX_CAP:
3016 3016          case MAC_PROP_EN_10FDX_CAP:
3017 3017          case MAC_PROP_ADV_10HDX_CAP:
3018 3018          case MAC_PROP_EN_10HDX_CAP:
3019 3019          case MAC_PROP_ADV_100T4_CAP:
3020 3020          case MAC_PROP_EN_100T4_CAP:
3021 3021                  minsize = sizeof (uint8_t);
3022 3022                  break;
3023 3023          case MAC_PROP_PVID:
3024 3024                  minsize = sizeof (uint16_t);
3025 3025                  break;
3026 3026          case MAC_PROP_IPTUN_HOPLIMIT:
3027 3027                  minsize = sizeof (uint32_t);
3028 3028                  break;
3029 3029          case MAC_PROP_IPTUN_ENCAPLIMIT:
3030 3030                  minsize = sizeof (uint32_t);
3031 3031                  break;
3032 3032          case MAC_PROP_MAX_TX_RINGS_AVAIL:
3033 3033          case MAC_PROP_MAX_RX_RINGS_AVAIL:
3034 3034          case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3035 3035          case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3036 3036                  minsize = sizeof (uint_t);
3037 3037                  break;
3038 3038          case MAC_PROP_WL_ESSID:
3039 3039                  minsize = sizeof (wl_linkstatus_t);
3040 3040                  break;
3041 3041          case MAC_PROP_WL_BSSID:
3042 3042                  minsize = sizeof (wl_bssid_t);
3043 3043                  break;
3044 3044          case MAC_PROP_WL_BSSTYPE:
3045 3045                  minsize = sizeof (wl_bss_type_t);
3046 3046                  break;
3047 3047          case MAC_PROP_WL_LINKSTATUS:
3048 3048                  minsize = sizeof (wl_linkstatus_t);
3049 3049                  break;
3050 3050          case MAC_PROP_WL_DESIRED_RATES:
3051 3051                  minsize = sizeof (wl_rates_t);
3052 3052                  break;
3053 3053          case MAC_PROP_WL_SUPPORTED_RATES:
3054 3054                  minsize = sizeof (wl_rates_t);
3055 3055                  break;
3056 3056          case MAC_PROP_WL_AUTH_MODE:
3057 3057                  minsize = sizeof (wl_authmode_t);
3058 3058                  break;
3059 3059          case MAC_PROP_WL_ENCRYPTION:
3060 3060                  minsize = sizeof (wl_encryption_t);
3061 3061                  break;
3062 3062          case MAC_PROP_WL_RSSI:
3063 3063                  minsize = sizeof (wl_rssi_t);
3064 3064                  break;
3065 3065          case MAC_PROP_WL_PHY_CONFIG:
3066 3066                  minsize = sizeof (wl_phy_conf_t);
3067 3067                  break;
3068 3068          case MAC_PROP_WL_CAPABILITY:
3069 3069                  minsize = sizeof (wl_capability_t);
3070 3070                  break;
3071 3071          case MAC_PROP_WL_WPA:
3072 3072                  minsize = sizeof (wl_wpa_t);
3073 3073                  break;
3074 3074          case MAC_PROP_WL_SCANRESULTS:
3075 3075                  minsize = sizeof (wl_wpa_ess_t);
3076 3076                  break;
3077 3077          case MAC_PROP_WL_POWER_MODE:
3078 3078                  minsize = sizeof (wl_ps_mode_t);
3079 3079                  break;
3080 3080          case MAC_PROP_WL_RADIO:
3081 3081                  minsize = sizeof (wl_radio_t);
3082 3082                  break;
3083 3083          case MAC_PROP_WL_ESS_LIST:
3084 3084                  minsize = sizeof (wl_ess_list_t);
3085 3085                  break;
3086 3086          case MAC_PROP_WL_KEY_TAB:
3087 3087                  minsize = sizeof (wl_wep_key_tab_t);
3088 3088                  break;
3089 3089          case MAC_PROP_WL_CREATE_IBSS:
3090 3090                  minsize = sizeof (wl_create_ibss_t);
3091 3091                  break;
3092 3092          case MAC_PROP_WL_SETOPTIE:
3093 3093                  minsize = sizeof (wl_wpa_ie_t);
3094 3094                  break;
3095 3095          case MAC_PROP_WL_DELKEY:
3096 3096                  minsize = sizeof (wl_del_key_t);
3097 3097                  break;
3098 3098          case MAC_PROP_WL_KEY:
3099 3099                  minsize = sizeof (wl_key_t);
3100 3100                  break;
3101 3101          case MAC_PROP_WL_MLME:
3102 3102                  minsize = sizeof (wl_mlme_t);
3103 3103                  break;
3104 3104          }
3105 3105  
3106 3106          return (valsize >= minsize);
3107 3107  }
3108 3108  
3109 3109  /*
3110 3110   * mac_set_prop() sets MAC or hardware driver properties:
3111 3111   *
3112 3112   * - MAC-managed properties such as resource properties include maxbw,
3113 3113   *   priority, and cpu binding list, as well as the default port VID
3114 3114   *   used by bridging. These properties are consumed by the MAC layer
3115 3115   *   itself and not passed down to the driver. For resource control
3116 3116   *   properties, this function invokes mac_set_resources() which will
3117 3117   *   cache the property value in mac_impl_t and may call
3118 3118   *   mac_client_set_resource() to update property value of the primary
3119 3119   *   mac client, if it exists.
3120 3120   *
3121 3121   * - Properties which act on the hardware and must be passed to the
3122 3122   *   driver, such as MTU, through the driver's mc_setprop() entry point.
3123 3123   */
3124 3124  int
3125 3125  mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3126 3126      uint_t valsize)
3127 3127  {
3128 3128          int err = ENOTSUP;
3129 3129          mac_impl_t *mip = (mac_impl_t *)mh;
3130 3130  
3131 3131          ASSERT(MAC_PERIM_HELD(mh));
3132 3132  
3133 3133          switch (id) {
3134 3134          case MAC_PROP_RESOURCE: {
3135 3135                  mac_resource_props_t *mrp;
3136 3136  
3137 3137                  /* call mac_set_resources() for MAC properties */
3138 3138                  ASSERT(valsize >= sizeof (mac_resource_props_t));
3139 3139                  mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3140 3140                  bcopy(val, mrp, sizeof (*mrp));
3141 3141                  err = mac_set_resources(mh, mrp);
3142 3142                  kmem_free(mrp, sizeof (*mrp));
3143 3143                  break;
3144 3144          }
3145 3145  
3146 3146          case MAC_PROP_PVID:
3147 3147                  ASSERT(valsize >= sizeof (uint16_t));
3148 3148                  if (mip->mi_state_flags & MIS_IS_VNIC)
3149 3149                          return (EINVAL);
3150 3150                  err = mac_set_pvid(mh, *(uint16_t *)val);
3151 3151                  break;
3152 3152  
3153 3153          case MAC_PROP_MTU: {
3154 3154                  uint32_t mtu;
3155 3155  
3156 3156                  ASSERT(valsize >= sizeof (uint32_t));
3157 3157                  bcopy(val, &mtu, sizeof (mtu));
3158 3158                  err = mac_set_mtu(mh, mtu, NULL);
3159 3159                  break;
3160 3160          }
3161 3161  
3162 3162          case MAC_PROP_LLIMIT:
3163 3163          case MAC_PROP_LDECAY: {
3164 3164                  uint32_t learnval;
3165 3165  
3166 3166                  if (valsize < sizeof (learnval) ||
3167 3167                      (mip->mi_state_flags & MIS_IS_VNIC))
3168 3168                          return (EINVAL);
3169 3169                  bcopy(val, &learnval, sizeof (learnval));
3170 3170                  if (learnval == 0 && id == MAC_PROP_LDECAY)
3171 3171                          return (EINVAL);
3172 3172                  if (id == MAC_PROP_LLIMIT)
3173 3173                          mip->mi_llimit = learnval;
3174 3174                  else
3175 3175                          mip->mi_ldecay = learnval;
3176 3176                  err = 0;
3177 3177                  break;
3178 3178          }
3179 3179  
3180 3180          default:
3181 3181                  /* For other driver properties, call driver's callback */
3182 3182                  if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3183 3183                          err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3184 3184                              name, id, valsize, val);
3185 3185                  }
3186 3186          }
3187 3187          return (err);
3188 3188  }
3189 3189  
3190 3190  /*
3191 3191   * mac_get_prop() gets MAC or device driver properties.
3192 3192   *
3193 3193   * If the property is a driver property, mac_get_prop() calls driver's callback
3194 3194   * entry point to get it.
3195 3195   * If the property is a MAC property, mac_get_prop() invokes mac_get_resources()
3196 3196   * which returns the cached value in mac_impl_t.
3197 3197   */
3198 3198  int
3199 3199  mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3200 3200      uint_t valsize)
3201 3201  {
3202 3202          int err = ENOTSUP;
3203 3203          mac_impl_t *mip = (mac_impl_t *)mh;
3204 3204          uint_t  rings;
3205 3205          uint_t  vlinks;
3206 3206  
3207 3207          bzero(val, valsize);
3208 3208  
3209 3209          switch (id) {
3210 3210          case MAC_PROP_RESOURCE: {
3211 3211                  mac_resource_props_t *mrp;
3212 3212  
3213 3213                  /* If mac property, read from cache */
3214 3214                  ASSERT(valsize >= sizeof (mac_resource_props_t));
3215 3215                  mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3216 3216                  mac_get_resources(mh, mrp);
3217 3217                  bcopy(mrp, val, sizeof (*mrp));
3218 3218                  kmem_free(mrp, sizeof (*mrp));
3219 3219                  return (0);
3220 3220          }
3221 3221          case MAC_PROP_RESOURCE_EFF: {
3222 3222                  mac_resource_props_t *mrp;
3223 3223  
3224 3224                  /* If mac effective property, read from client */
3225 3225                  ASSERT(valsize >= sizeof (mac_resource_props_t));
3226 3226                  mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3227 3227                  mac_get_effective_resources(mh, mrp);
3228 3228                  bcopy(mrp, val, sizeof (*mrp));
3229 3229                  kmem_free(mrp, sizeof (*mrp));
3230 3230                  return (0);
3231 3231          }
3232 3232  
3233 3233          case MAC_PROP_PVID:
3234 3234                  ASSERT(valsize >= sizeof (uint16_t));
3235 3235                  if (mip->mi_state_flags & MIS_IS_VNIC)
3236 3236                          return (EINVAL);
3237 3237                  *(uint16_t *)val = mac_get_pvid(mh);
3238 3238                  return (0);
3239 3239  
3240 3240          case MAC_PROP_LLIMIT:
3241 3241          case MAC_PROP_LDECAY:
3242 3242                  ASSERT(valsize >= sizeof (uint32_t));
3243 3243                  if (mip->mi_state_flags & MIS_IS_VNIC)
3244 3244                          return (EINVAL);
3245 3245                  if (id == MAC_PROP_LLIMIT)
3246 3246                          bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit));
3247 3247                  else
3248 3248                          bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay));
3249 3249                  return (0);
3250 3250  
3251 3251          case MAC_PROP_MTU: {
3252 3252                  uint32_t sdu;
3253 3253  
3254 3254                  ASSERT(valsize >= sizeof (uint32_t));
3255 3255                  mac_sdu_get2(mh, NULL, &sdu, NULL);
3256 3256                  bcopy(&sdu, val, sizeof (sdu));
3257 3257  
3258 3258                  return (0);
3259 3259          }
3260 3260          case MAC_PROP_STATUS: {
3261 3261                  link_state_t link_state;
3262 3262  
3263 3263                  if (valsize < sizeof (link_state))
3264 3264                          return (EINVAL);
3265 3265                  link_state = mac_link_get(mh);
3266 3266                  bcopy(&link_state, val, sizeof (link_state));
3267 3267  
3268 3268                  return (0);
3269 3269          }
3270 3270  
3271 3271          case MAC_PROP_MAX_RX_RINGS_AVAIL:
3272 3272          case MAC_PROP_MAX_TX_RINGS_AVAIL:
3273 3273                  ASSERT(valsize >= sizeof (uint_t));
3274 3274                  rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ?
3275 3275                      mac_rxavail_get(mh) : mac_txavail_get(mh);
3276 3276                  bcopy(&rings, val, sizeof (uint_t));
3277 3277                  return (0);
3278 3278  
3279 3279          case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3280 3280          case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3281 3281                  ASSERT(valsize >= sizeof (uint_t));
3282 3282                  vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ?
3283 3283                      mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh);
3284 3284                  bcopy(&vlinks, val, sizeof (uint_t));
3285 3285                  return (0);
3286 3286  
3287 3287          case MAC_PROP_RXRINGSRANGE:
3288 3288          case MAC_PROP_TXRINGSRANGE:
3289 3289                  /*
3290 3290                   * The value for these properties are returned through
3291 3291                   * the MAC_PROP_RESOURCE property.
3292 3292                   */
3293 3293                  return (0);
3294 3294  
3295 3295          default:
3296 3296                  break;
3297 3297  
3298 3298          }
3299 3299  
3300 3300          /* If driver property, request from driver */
3301 3301          if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
3302 3302                  err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id,
3303 3303                      valsize, val);
3304 3304          }
3305 3305  
3306 3306          return (err);
3307 3307  }
3308 3308  
3309 3309  /*
3310 3310   * Helper function to initialize the range structure for use in
3311 3311   * mac_get_prop. If the type can be other than uint32, we can
3312 3312   * pass that as an arg.
3313 3313   */
3314 3314  static void
3315 3315  _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max)
3316 3316  {
3317 3317          range->mpr_count = 1;
3318 3318          range->mpr_type = MAC_PROPVAL_UINT32;
3319 3319          range->mpr_range_uint32[0].mpur_min = min;
3320 3320          range->mpr_range_uint32[0].mpur_max = max;
3321 3321  }
3322 3322  
3323 3323  /*
3324 3324   * Returns information about the specified property, such as default
3325 3325   * values or permissions.
3326 3326   */
3327 3327  int
3328 3328  mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name,
3329 3329      void *default_val, uint_t default_size, mac_propval_range_t *range,
3330 3330      uint_t *perm)
3331 3331  {
3332 3332          mac_prop_info_state_t state;
3333 3333          mac_impl_t *mip = (mac_impl_t *)mh;
3334 3334          uint_t  max;
3335 3335  
3336 3336          /*
3337 3337           * A property is read/write by default unless the driver says
3338 3338           * otherwise.
3339 3339           */
3340 3340          if (perm != NULL)
3341 3341                  *perm = MAC_PROP_PERM_RW;
3342 3342  
3343 3343          if (default_val != NULL)
3344 3344                  bzero(default_val, default_size);
3345 3345  
3346 3346          /*
3347 3347           * First, handle framework properties for which we don't need to
3348 3348           * involve the driver.
3349 3349           */
3350 3350          switch (id) {
3351 3351          case MAC_PROP_RESOURCE:
3352 3352          case MAC_PROP_PVID:
3353 3353          case MAC_PROP_LLIMIT:
3354 3354          case MAC_PROP_LDECAY:
3355 3355                  return (0);
3356 3356  
3357 3357          case MAC_PROP_MAX_RX_RINGS_AVAIL:
3358 3358          case MAC_PROP_MAX_TX_RINGS_AVAIL:
3359 3359          case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3360 3360          case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3361 3361                  if (perm != NULL)
3362 3362                          *perm = MAC_PROP_PERM_READ;
3363 3363                  return (0);
3364 3364  
3365 3365          case MAC_PROP_RXRINGSRANGE:
3366 3366          case MAC_PROP_TXRINGSRANGE:
3367 3367                  /*
3368 3368                   * Currently, we support range for RX and TX rings properties.
3369 3369                   * When we extend this support to maxbw, cpus and priority,
3370 3370                   * we should move this to mac_get_resources.
3371 3371                   * There is no default value for RX or TX rings.
3372 3372                   */
3373 3373                  if ((mip->mi_state_flags & MIS_IS_VNIC) &&
3374 3374                      mac_is_vnic_primary(mh)) {
3375 3375                          /*
3376 3376                           * We don't support setting rings for a VLAN
3377 3377                           * data link because it shares its ring with the
3378 3378                           * primary MAC client.
3379 3379                           */
3380 3380                          if (perm != NULL)
3381 3381                                  *perm = MAC_PROP_PERM_READ;
3382 3382                          if (range != NULL)
3383 3383                                  range->mpr_count = 0;
3384 3384                  } else if (range != NULL) {
3385 3385                          if (mip->mi_state_flags & MIS_IS_VNIC)
3386 3386                                  mh = mac_get_lower_mac_handle(mh);
3387 3387                          mip = (mac_impl_t *)mh;
3388 3388                          if ((id == MAC_PROP_RXRINGSRANGE &&
3389 3389                              mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) ||
3390 3390                              (id == MAC_PROP_TXRINGSRANGE &&
3391 3391                              mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) {
3392 3392                                  if (id == MAC_PROP_RXRINGSRANGE) {
3393 3393                                          if ((mac_rxhwlnksavail_get(mh) +
3394 3394                                              mac_rxhwlnksrsvd_get(mh)) <= 1) {
3395 3395                                                  /*
3396 3396                                                   * doesn't support groups or
3397 3397                                                   * rings
3398 3398                                                   */
3399 3399                                                  range->mpr_count = 0;
3400 3400                                          } else {
3401 3401                                                  /*
3402 3402                                                   * supports specifying groups,
3403 3403                                                   * but not rings
3404 3404                                                   */
3405 3405                                                  _mac_set_range(range, 0, 0);
3406 3406                                          }
3407 3407                                  } else {
3408 3408                                          if ((mac_txhwlnksavail_get(mh) +
3409 3409                                              mac_txhwlnksrsvd_get(mh)) <= 1) {
3410 3410                                                  /*
3411 3411                                                   * doesn't support groups or
3412 3412                                                   * rings
3413 3413                                                   */
3414 3414                                                  range->mpr_count = 0;
3415 3415                                          } else {
3416 3416                                                  /*
3417 3417                                                   * supports specifying groups,
3418 3418                                                   * but not rings
3419 3419                                                   */
3420 3420                                                  _mac_set_range(range, 0, 0);
3421 3421                                          }
3422 3422                                  }
3423 3423                          } else {
3424 3424                                  max = id == MAC_PROP_RXRINGSRANGE ?
3425 3425                                      mac_rxavail_get(mh) + mac_rxrsvd_get(mh) :
3426 3426                                      mac_txavail_get(mh) + mac_txrsvd_get(mh);
3427 3427                                  if (max <= 1) {
3428 3428                                          /*
3429 3429                                           * doesn't support groups or
3430 3430                                           * rings
3431 3431                                           */
3432 3432                                          range->mpr_count = 0;
3433 3433                                  } else  {
3434 3434                                          /*
3435 3435                                           * -1 because we have to leave out the
3436 3436                                           * default ring.
3437 3437                                           */
3438 3438                                          _mac_set_range(range, 1, max - 1);
3439 3439                                  }
3440 3440                          }
3441 3441                  }
3442 3442                  return (0);
3443 3443  
3444 3444          case MAC_PROP_STATUS:
3445 3445                  if (perm != NULL)
3446 3446                          *perm = MAC_PROP_PERM_READ;
3447 3447                  return (0);
3448 3448          }
3449 3449  
3450 3450          /*
3451 3451           * Get the property info from the driver if it implements the
3452 3452           * property info entry point.
3453 3453           */
3454 3454          bzero(&state, sizeof (state));
3455 3455  
3456 3456          if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) {
3457 3457                  state.pr_default = default_val;
3458 3458                  state.pr_default_size = default_size;
3459 3459  
3460 3460                  /*
3461 3461                   * The caller specifies the maximum number of ranges
3462 3462                   * it can accomodate using mpr_count. We don't touch
3463 3463                   * this value until the driver returns from its
3464 3464                   * mc_propinfo() callback, and ensure we don't exceed
3465 3465                   * this number of range as the driver defines
3466 3466                   * supported range from its mc_propinfo().
3467 3467                   *
3468 3468                   * pr_range_cur_count keeps track of how many ranges
3469 3469                   * were defined by the driver from its mc_propinfo()
3470 3470                   * entry point.
3471 3471                   *
3472 3472                   * On exit, the user-specified range mpr_count returns
3473 3473                   * the number of ranges specified by the driver on
3474 3474                   * success, or the number of ranges it wanted to
3475 3475                   * define if that number of ranges could not be
3476 3476                   * accomodated by the specified range structure.  In
3477 3477                   * the latter case, the caller will be able to
3478 3478                   * allocate a larger range structure, and query the
3479 3479                   * property again.
3480 3480                   */
3481 3481                  state.pr_range_cur_count = 0;
3482 3482                  state.pr_range = range;
3483 3483  
3484 3484                  mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id,
3485 3485                      (mac_prop_info_handle_t)&state);
3486 3486  
3487 3487                  if (state.pr_flags & MAC_PROP_INFO_RANGE)
3488 3488                          range->mpr_count = state.pr_range_cur_count;
3489 3489  
3490 3490                  /*
3491 3491                   * The operation could fail if the buffer supplied by
3492 3492                   * the user was too small for the range or default
3493 3493                   * value of the property.
3494 3494                   */
3495 3495                  if (state.pr_errno != 0)
3496 3496                          return (state.pr_errno);
3497 3497  
3498 3498                  if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM)
3499 3499                          *perm = state.pr_perm;
3500 3500          }
3501 3501  
3502 3502          /*
3503 3503           * The MAC layer may want to provide default values or allowed
3504 3504           * ranges for properties if the driver does not provide a
3505 3505           * property info entry point, or that entry point exists, but
3506 3506           * it did not provide a default value or allowed ranges for
3507 3507           * that property.
3508 3508           */
3509 3509          switch (id) {
3510 3510          case MAC_PROP_MTU: {
3511 3511                  uint32_t sdu;
3512 3512  
3513 3513                  mac_sdu_get2(mh, NULL, &sdu, NULL);
3514 3514  
3515 3515                  if (range != NULL && !(state.pr_flags &
3516 3516                      MAC_PROP_INFO_RANGE)) {
3517 3517                          /* MTU range */
3518 3518                          _mac_set_range(range, sdu, sdu);
3519 3519                  }
3520 3520  
3521 3521                  if (default_val != NULL && !(state.pr_flags &
3522 3522                      MAC_PROP_INFO_DEFAULT)) {
3523 3523                          if (mip->mi_info.mi_media == DL_ETHER)
3524 3524                                  sdu = ETHERMTU;
3525 3525                          /* default MTU value */
3526 3526                          bcopy(&sdu, default_val, sizeof (sdu));
3527 3527                  }
3528 3528          }
3529 3529          }
3530 3530  
3531 3531          return (0);
3532 3532  }
3533 3533  
3534 3534  int
3535 3535  mac_fastpath_disable(mac_handle_t mh)
3536 3536  {
3537 3537          mac_impl_t      *mip = (mac_impl_t *)mh;
3538 3538  
3539 3539          if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3540 3540                  return (0);
3541 3541  
3542 3542          return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
3543 3543  }
3544 3544  
3545 3545  void
3546 3546  mac_fastpath_enable(mac_handle_t mh)
3547 3547  {
3548 3548          mac_impl_t      *mip = (mac_impl_t *)mh;
3549 3549  
3550 3550          if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3551 3551                  return;
3552 3552  
3553 3553          mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
3554 3554  }
3555 3555  
3556 3556  void
3557 3557  mac_register_priv_prop(mac_impl_t *mip, char **priv_props)
3558 3558  {
3559 3559          uint_t nprops, i;
3560 3560  
3561 3561          if (priv_props == NULL)
3562 3562                  return;
3563 3563  
3564 3564          nprops = 0;
3565 3565          while (priv_props[nprops] != NULL)
3566 3566                  nprops++;
3567 3567          if (nprops == 0)
3568 3568                  return;
3569 3569  
3570 3570  
3571 3571          mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP);
3572 3572  
3573 3573          for (i = 0; i < nprops; i++) {
3574 3574                  mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP);
3575 3575                  (void) strlcpy(mip->mi_priv_prop[i], priv_props[i],
3576 3576                      MAXLINKPROPNAME);
3577 3577          }
3578 3578  
3579 3579          mip->mi_priv_prop_count = nprops;
3580 3580  }
3581 3581  
3582 3582  void
3583 3583  mac_unregister_priv_prop(mac_impl_t *mip)
3584 3584  {
3585 3585          uint_t i;
3586 3586  
3587 3587          if (mip->mi_priv_prop_count == 0) {
3588 3588                  ASSERT(mip->mi_priv_prop == NULL);
3589 3589                  return;
3590 3590          }
3591 3591  
3592 3592          for (i = 0; i < mip->mi_priv_prop_count; i++)
3593 3593                  kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME);
3594 3594          kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count *
3595 3595              sizeof (char *));
3596 3596  
3597 3597          mip->mi_priv_prop = NULL;
3598 3598          mip->mi_priv_prop_count = 0;
3599 3599  }
3600 3600  
3601 3601  /*
3602 3602   * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
3603 3603   * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
3604 3604   * cases if MAC free's the ring structure after mac_stop_ring(), any
3605 3605   * illegal access to the ring structure coming from the driver will panic
3606 3606   * the system. In order to protect the system from such inadverent access,
3607 3607   * we maintain a cache of rings in the mac_impl_t after they get free'd up.
3608 3608   * When packets are received on free'd up rings, MAC (through the generation
3609 3609   * count mechanism) will drop such packets.
3610 3610   */
3611 3611  static mac_ring_t *
3612 3612  mac_ring_alloc(mac_impl_t *mip)
3613 3613  {
3614 3614          mac_ring_t *ring;
3615 3615  
3616 3616          mutex_enter(&mip->mi_ring_lock);
3617 3617          if (mip->mi_ring_freelist != NULL) {
3618 3618                  ring = mip->mi_ring_freelist;
3619 3619                  mip->mi_ring_freelist = ring->mr_next;
3620 3620                  bzero(ring, sizeof (mac_ring_t));
3621 3621                  mutex_exit(&mip->mi_ring_lock);
3622 3622          } else {
3623 3623                  mutex_exit(&mip->mi_ring_lock);
3624 3624                  ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
3625 3625          }
3626 3626          ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
3627 3627          return (ring);
3628 3628  }
3629 3629  
3630 3630  static void
3631 3631  mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
3632 3632  {
3633 3633          ASSERT(ring->mr_state == MR_FREE);
3634 3634  
3635 3635          mutex_enter(&mip->mi_ring_lock);
3636 3636          ring->mr_state = MR_FREE;
3637 3637          ring->mr_flag = 0;
3638 3638          ring->mr_next = mip->mi_ring_freelist;
3639 3639          ring->mr_mip = NULL;
3640 3640          mip->mi_ring_freelist = ring;
3641 3641          mac_ring_stat_delete(ring);
3642 3642          mutex_exit(&mip->mi_ring_lock);
3643 3643  }
3644 3644  
3645 3645  static void
3646 3646  mac_ring_freeall(mac_impl_t *mip)
3647 3647  {
3648 3648          mac_ring_t *ring_next;
3649 3649          mutex_enter(&mip->mi_ring_lock);
3650 3650          mac_ring_t *ring = mip->mi_ring_freelist;
3651 3651          while (ring != NULL) {
3652 3652                  ring_next = ring->mr_next;
3653 3653                  kmem_cache_free(mac_ring_cache, ring);
3654 3654                  ring = ring_next;
3655 3655          }
3656 3656          mip->mi_ring_freelist = NULL;
3657 3657          mutex_exit(&mip->mi_ring_lock);
3658 3658  }
3659 3659  
3660 3660  int
3661 3661  mac_start_ring(mac_ring_t *ring)
3662 3662  {
3663 3663          int rv = 0;
3664 3664  
3665 3665          ASSERT(ring->mr_state == MR_FREE);
3666 3666  
3667 3667          if (ring->mr_start != NULL) {
3668 3668                  rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
3669 3669                  if (rv != 0)
3670 3670                          return (rv);
3671 3671          }
3672 3672  
3673 3673          ring->mr_state = MR_INUSE;
3674 3674          return (rv);
3675 3675  }
3676 3676  
3677 3677  void
3678 3678  mac_stop_ring(mac_ring_t *ring)
3679 3679  {
3680 3680          ASSERT(ring->mr_state == MR_INUSE);
3681 3681  
3682 3682          if (ring->mr_stop != NULL)
3683 3683                  ring->mr_stop(ring->mr_driver);
3684 3684  
3685 3685          ring->mr_state = MR_FREE;
3686 3686  
3687 3687          /*
3688 3688           * Increment the ring generation number for this ring.
3689 3689           */
3690 3690          ring->mr_gen_num++;
3691 3691  }
3692 3692  
3693 3693  int
3694 3694  mac_start_group(mac_group_t *group)
3695 3695  {
3696 3696          int rv = 0;
3697 3697  
3698 3698          if (group->mrg_start != NULL)
3699 3699                  rv = group->mrg_start(group->mrg_driver);
3700 3700  
3701 3701          return (rv);
3702 3702  }
3703 3703  
3704 3704  void
3705 3705  mac_stop_group(mac_group_t *group)
3706 3706  {
3707 3707          if (group->mrg_stop != NULL)
3708 3708                  group->mrg_stop(group->mrg_driver);
3709 3709  }
3710 3710  
3711 3711  /*
3712 3712   * Called from mac_start() on the default Rx group. Broadcast and multicast
3713 3713   * packets are received only on the default group. Hence the default group
3714 3714   * needs to be up even if the primary client is not up, for the other groups
3715 3715   * to be functional. We do this by calling this function at mac_start time
3716 3716   * itself. However the broadcast packets that are received can't make their
3717 3717   * way beyond mac_rx until a mac client creates a broadcast flow.
3718 3718   */
3719 3719  static int
3720 3720  mac_start_group_and_rings(mac_group_t *group)
3721 3721  {
3722 3722          mac_ring_t      *ring;
3723 3723          int             rv = 0;
3724 3724  
3725 3725          ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
3726 3726          if ((rv = mac_start_group(group)) != 0)
3727 3727                  return (rv);
3728 3728  
3729 3729          for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3730 3730                  ASSERT(ring->mr_state == MR_FREE);
3731 3731                  if ((rv = mac_start_ring(ring)) != 0)
3732 3732                          goto error;
3733 3733                  ring->mr_classify_type = MAC_SW_CLASSIFIER;
3734 3734          }
3735 3735          return (0);
3736 3736  
3737 3737  error:
3738 3738          mac_stop_group_and_rings(group);
3739 3739          return (rv);
3740 3740  }
3741 3741  
3742 3742  /* Called from mac_stop on the default Rx group */
3743 3743  static void
3744 3744  mac_stop_group_and_rings(mac_group_t *group)
3745 3745  {
3746 3746          mac_ring_t      *ring;
3747 3747  
3748 3748          for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3749 3749                  if (ring->mr_state != MR_FREE) {
3750 3750                          mac_stop_ring(ring);
3751 3751                          ring->mr_flag = 0;
3752 3752                          ring->mr_classify_type = MAC_NO_CLASSIFIER;
3753 3753                  }
3754 3754          }
3755 3755          mac_stop_group(group);
3756 3756  }
3757 3757  
3758 3758  
3759 3759  static mac_ring_t *
3760 3760  mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
3761 3761      mac_capab_rings_t *cap_rings)
3762 3762  {
3763 3763          mac_ring_t *ring, *rnext;
3764 3764          mac_ring_info_t ring_info;
3765 3765          ddi_intr_handle_t ddi_handle;
3766 3766  
3767 3767          ring = mac_ring_alloc(mip);
3768 3768  
3769 3769          /* Prepare basic information of ring */
3770 3770  
3771 3771          /*
3772 3772           * Ring index is numbered to be unique across a particular device.
3773 3773           * Ring index computation makes following assumptions:
3774 3774           *      - For drivers with static grouping (e.g. ixgbe, bge),
3775 3775           *      ring index exchanged with the driver (e.g. during mr_rget)
3776 3776           *      is unique only across the group the ring belongs to.
3777 3777           *      - Drivers with dynamic grouping (e.g. nxge), start
3778 3778           *      with single group (mrg_index = 0).
3779 3779           */
3780 3780          ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index;
3781 3781          ring->mr_type = group->mrg_type;
3782 3782          ring->mr_gh = (mac_group_handle_t)group;
3783 3783  
3784 3784          /* Insert the new ring to the list. */
3785 3785          ring->mr_next = group->mrg_rings;
3786 3786          group->mrg_rings = ring;
3787 3787  
3788 3788          /* Zero to reuse the info data structure */
3789 3789          bzero(&ring_info, sizeof (ring_info));
3790 3790  
3791 3791          /* Query ring information from driver */
3792 3792          cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
3793 3793              index, &ring_info, (mac_ring_handle_t)ring);
3794 3794  
3795 3795          ring->mr_info = ring_info;
3796 3796  
3797 3797          /*
3798 3798           * The interrupt handle could be shared among multiple rings.
3799 3799           * Thus if there is a bunch of rings that are sharing an
3800 3800           * interrupt, then only one ring among the bunch will be made
3801 3801           * available for interrupt re-targeting; the rest will have
3802 3802           * ddi_shared flag set to TRUE and would not be available for
3803 3803           * be interrupt re-targeting.
3804 3804           */
3805 3805          if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) {
3806 3806                  rnext = ring->mr_next;
3807 3807                  while (rnext != NULL) {
3808 3808                          if (rnext->mr_info.mri_intr.mi_ddi_handle ==
3809 3809                              ddi_handle) {
3810 3810                                  /*
3811 3811                                   * If default ring (mr_index == 0) is part
3812 3812                                   * of a group of rings sharing an
3813 3813                                   * interrupt, then set ddi_shared flag for
3814 3814                                   * the default ring and give another ring
3815 3815                                   * the chance to be re-targeted.
3816 3816                                   */
3817 3817                                  if (rnext->mr_index == 0 &&
3818 3818                                      !rnext->mr_info.mri_intr.mi_ddi_shared) {
3819 3819                                          rnext->mr_info.mri_intr.mi_ddi_shared =
3820 3820                                              B_TRUE;
3821 3821                                  } else {
3822 3822                                          ring->mr_info.mri_intr.mi_ddi_shared =
3823 3823                                              B_TRUE;
3824 3824                                  }
3825 3825                                  break;
3826 3826                          }
3827 3827                          rnext = rnext->mr_next;
3828 3828                  }
3829 3829                  /*
3830 3830                   * If rnext is NULL, then no matching ddi_handle was found.
3831 3831                   * Rx rings get registered first. So if this is a Tx ring,
3832 3832                   * then go through all the Rx rings and see if there is a
3833 3833                   * matching ddi handle.
3834 3834                   */
3835 3835                  if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) {
3836 3836                          mac_compare_ddi_handle(mip->mi_rx_groups,
3837 3837                              mip->mi_rx_group_count, ring);
3838 3838                  }
3839 3839          }
3840 3840  
3841 3841          /* Update ring's status */
3842 3842          ring->mr_state = MR_FREE;
3843 3843          ring->mr_flag = 0;
3844 3844  
3845 3845          /* Update the ring count of the group */
3846 3846          group->mrg_cur_count++;
3847 3847  
3848 3848          /* Create per ring kstats */
3849 3849          if (ring->mr_stat != NULL) {
3850 3850                  ring->mr_mip = mip;
3851 3851                  mac_ring_stat_create(ring);
3852 3852          }
3853 3853  
3854 3854          return (ring);
3855 3855  }
3856 3856  
3857 3857  /*
3858 3858   * Rings are chained together for easy regrouping.
3859 3859   */
3860 3860  static void
3861 3861  mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
3862 3862      mac_capab_rings_t *cap_rings)
3863 3863  {
3864 3864          int index;
3865 3865  
3866 3866          /*
3867 3867           * Initialize all ring members of this group. Size of zero will not
3868 3868           * enter the loop, so it's safe for initializing an empty group.
3869 3869           */
3870 3870          for (index = size - 1; index >= 0; index--)
3871 3871                  (void) mac_init_ring(mip, group, index, cap_rings);
3872 3872  }
3873 3873  
3874 3874  int
3875 3875  mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
3876 3876  {
3877 3877          mac_capab_rings_t       *cap_rings;
3878 3878          mac_group_t             *group;
3879 3879          mac_group_t             *groups;
3880 3880          mac_group_info_t        group_info;
3881 3881          uint_t                  group_free = 0;
3882 3882          uint_t                  ring_left;
3883 3883          mac_ring_t              *ring;
3884 3884          int                     g;
3885 3885          int                     err = 0;
3886 3886          uint_t                  grpcnt;
3887 3887          boolean_t               pseudo_txgrp = B_FALSE;
3888 3888  
3889 3889          switch (rtype) {
3890 3890          case MAC_RING_TYPE_RX:
3891 3891                  ASSERT(mip->mi_rx_groups == NULL);
3892 3892  
3893 3893                  cap_rings = &mip->mi_rx_rings_cap;
3894 3894                  cap_rings->mr_type = MAC_RING_TYPE_RX;
3895 3895                  break;
3896 3896          case MAC_RING_TYPE_TX:
3897 3897                  ASSERT(mip->mi_tx_groups == NULL);
3898 3898  
3899 3899                  cap_rings = &mip->mi_tx_rings_cap;
3900 3900                  cap_rings->mr_type = MAC_RING_TYPE_TX;
3901 3901                  break;
3902 3902          default:
3903 3903                  ASSERT(B_FALSE);
3904 3904          }
3905 3905  
3906 3906          if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings))
3907 3907                  return (0);
3908 3908          grpcnt = cap_rings->mr_gnum;
3909 3909  
3910 3910          /*
3911 3911           * If we have multiple TX rings, but only one TX group, we can
3912 3912           * create pseudo TX groups (one per TX ring) in the MAC layer,
3913 3913           * except for an aggr. For an aggr currently we maintain only
3914 3914           * one group with all the rings (for all its ports), going
3915 3915           * forwards we might change this.
3916 3916           */
3917 3917          if (rtype == MAC_RING_TYPE_TX &&
3918 3918              cap_rings->mr_gnum == 0 && cap_rings->mr_rnum >  0 &&
3919 3919              (mip->mi_state_flags & MIS_IS_AGGR) == 0) {
3920 3920                  /*
3921 3921                   * The -1 here is because we create a default TX group
3922 3922                   * with all the rings in it.
3923 3923                   */
3924 3924                  grpcnt = cap_rings->mr_rnum - 1;
3925 3925                  pseudo_txgrp = B_TRUE;
3926 3926          }
3927 3927  
3928 3928          /*
3929 3929           * Allocate a contiguous buffer for all groups.
3930 3930           */
3931 3931          groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP);
3932 3932  
3933 3933          ring_left = cap_rings->mr_rnum;
3934 3934  
3935 3935          /*
3936 3936           * Get all ring groups if any, and get their ring members
3937 3937           * if any.
3938 3938           */
3939 3939          for (g = 0; g < grpcnt; g++) {
3940 3940                  group = groups + g;
3941 3941  
3942 3942                  /* Prepare basic information of the group */
3943 3943                  group->mrg_index = g;
3944 3944                  group->mrg_type = rtype;
3945 3945                  group->mrg_state = MAC_GROUP_STATE_UNINIT;
3946 3946                  group->mrg_mh = (mac_handle_t)mip;
3947 3947                  group->mrg_next = group + 1;
3948 3948  
3949 3949                  /* Zero to reuse the info data structure */
3950 3950                  bzero(&group_info, sizeof (group_info));
3951 3951  
3952 3952                  if (pseudo_txgrp) {
3953 3953                          /*
3954 3954                           * This is a pseudo group that we created, apart
3955 3955                           * from setting the state there is nothing to be
3956 3956                           * done.
3957 3957                           */
3958 3958                          group->mrg_state = MAC_GROUP_STATE_REGISTERED;
3959 3959                          group_free++;
3960 3960                          continue;
3961 3961                  }
3962 3962                  /* Query group information from driver */
3963 3963                  cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
3964 3964                      (mac_group_handle_t)group);
3965 3965  
3966 3966                  switch (cap_rings->mr_group_type) {
3967 3967                  case MAC_GROUP_TYPE_DYNAMIC:
3968 3968                          if (cap_rings->mr_gaddring == NULL ||
3969 3969                              cap_rings->mr_gremring == NULL) {
3970 3970                                  DTRACE_PROBE3(
3971 3971                                      mac__init__rings_no_addremring,
3972 3972                                      char *, mip->mi_name,
3973 3973                                      mac_group_add_ring_t,
3974 3974                                      cap_rings->mr_gaddring,
3975 3975                                      mac_group_add_ring_t,
3976 3976                                      cap_rings->mr_gremring);
3977 3977                                  err = EINVAL;
3978 3978                                  goto bail;
3979 3979                          }
3980 3980  
3981 3981                          switch (rtype) {
3982 3982                          case MAC_RING_TYPE_RX:
3983 3983                                  /*
3984 3984                                   * The first RX group must have non-zero
3985 3985                                   * rings, and the following groups must
3986 3986                                   * have zero rings.
3987 3987                                   */
3988 3988                                  if (g == 0 && group_info.mgi_count == 0) {
3989 3989                                          DTRACE_PROBE1(
3990 3990                                              mac__init__rings__rx__def__zero,
3991 3991                                              char *, mip->mi_name);
3992 3992                                          err = EINVAL;
3993 3993                                          goto bail;
3994 3994                                  }
3995 3995                                  if (g > 0 && group_info.mgi_count != 0) {
3996 3996                                          DTRACE_PROBE3(
3997 3997                                              mac__init__rings__rx__nonzero,
3998 3998                                              char *, mip->mi_name,
3999 3999                                              int, g, int, group_info.mgi_count);
4000 4000                                          err = EINVAL;
4001 4001                                          goto bail;
4002 4002                                  }
4003 4003                                  break;
4004 4004                          case MAC_RING_TYPE_TX:
4005 4005                                  /*
4006 4006                                   * All TX ring groups must have zero rings.
4007 4007                                   */
4008 4008                                  if (group_info.mgi_count != 0) {
4009 4009                                          DTRACE_PROBE3(
4010 4010                                              mac__init__rings__tx__nonzero,
4011 4011                                              char *, mip->mi_name,
4012 4012                                              int, g, int, group_info.mgi_count);
4013 4013                                          err = EINVAL;
4014 4014                                          goto bail;
4015 4015                                  }
4016 4016                                  break;
4017 4017                          }
4018 4018                          break;
4019 4019                  case MAC_GROUP_TYPE_STATIC:
4020 4020                          /*
4021 4021                           * Note that an empty group is allowed, e.g., an aggr
4022 4022                           * would start with an empty group.
4023 4023                           */
4024 4024                          break;
4025 4025                  default:
4026 4026                          /* unknown group type */
4027 4027                          DTRACE_PROBE2(mac__init__rings__unknown__type,
4028 4028                              char *, mip->mi_name,
  
    | 
      ↓ open down ↓ | 
    4028 lines elided | 
    
      ↑ open up ↑ | 
  
4029 4029                              int, cap_rings->mr_group_type);
4030 4030                          err = EINVAL;
4031 4031                          goto bail;
4032 4032                  }
4033 4033  
4034 4034  
4035 4035                  /*
4036 4036                   * Driver must register group->mgi_addmac/remmac() for rx groups
4037 4037                   * to support multiple MAC addresses.
4038 4038                   */
4039      -                if (rtype == MAC_RING_TYPE_RX) {
4040      -                        if ((group_info.mgi_addmac == NULL) ||
4041      -                            (group_info.mgi_addmac == NULL)) {
4042      -                                goto bail;
4043      -                        }
     4039 +                if (rtype == MAC_RING_TYPE_RX &&
     4040 +                    ((group_info.mgi_addmac == NULL) ||
     4041 +                    (group_info.mgi_remmac == NULL))) {
     4042 +                        err = EINVAL;
     4043 +                        goto bail;
4044 4044                  }
4045 4045  
4046 4046                  /* Cache driver-supplied information */
4047 4047                  group->mrg_info = group_info;
4048 4048  
4049 4049                  /* Update the group's status and group count. */
4050 4050                  mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4051 4051                  group_free++;
4052 4052  
4053 4053                  group->mrg_rings = NULL;
4054 4054                  group->mrg_cur_count = 0;
4055 4055                  mac_init_group(mip, group, group_info.mgi_count, cap_rings);
4056 4056                  ring_left -= group_info.mgi_count;
4057 4057  
4058 4058                  /* The current group size should be equal to default value */
4059 4059                  ASSERT(group->mrg_cur_count == group_info.mgi_count);
4060 4060          }
4061 4061  
4062 4062          /* Build up a dummy group for free resources as a pool */
4063 4063          group = groups + grpcnt;
4064 4064  
4065 4065          /* Prepare basic information of the group */
4066 4066          group->mrg_index = -1;
4067 4067          group->mrg_type = rtype;
4068 4068          group->mrg_state = MAC_GROUP_STATE_UNINIT;
4069 4069          group->mrg_mh = (mac_handle_t)mip;
4070 4070          group->mrg_next = NULL;
4071 4071  
4072 4072          /*
4073 4073           * If there are ungrouped rings, allocate a continuous buffer for
4074 4074           * remaining resources.
4075 4075           */
4076 4076          if (ring_left != 0) {
4077 4077                  group->mrg_rings = NULL;
4078 4078                  group->mrg_cur_count = 0;
4079 4079                  mac_init_group(mip, group, ring_left, cap_rings);
4080 4080  
4081 4081                  /* The current group size should be equal to ring_left */
4082 4082                  ASSERT(group->mrg_cur_count == ring_left);
4083 4083  
4084 4084                  ring_left = 0;
4085 4085  
4086 4086                  /* Update this group's status */
4087 4087                  mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4088 4088          } else
4089 4089                  group->mrg_rings = NULL;
4090 4090  
4091 4091          ASSERT(ring_left == 0);
4092 4092  
4093 4093  bail:
4094 4094  
4095 4095          /* Cache other important information to finalize the initialization */
4096 4096          switch (rtype) {
4097 4097          case MAC_RING_TYPE_RX:
4098 4098                  mip->mi_rx_group_type = cap_rings->mr_group_type;
4099 4099                  mip->mi_rx_group_count = cap_rings->mr_gnum;
4100 4100                  mip->mi_rx_groups = groups;
4101 4101                  mip->mi_rx_donor_grp = groups;
4102 4102                  if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4103 4103                          /*
4104 4104                           * The default ring is reserved since it is
4105 4105                           * used for sending the broadcast etc. packets.
4106 4106                           */
4107 4107                          mip->mi_rxrings_avail =
4108 4108                              mip->mi_rx_groups->mrg_cur_count - 1;
4109 4109                          mip->mi_rxrings_rsvd = 1;
4110 4110                  }
4111 4111                  /*
4112 4112                   * The default group cannot be reserved. It is used by
4113 4113                   * all the clients that do not have an exclusive group.
4114 4114                   */
4115 4115                  mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1;
4116 4116                  mip->mi_rxhwclnt_used = 1;
4117 4117                  break;
4118 4118          case MAC_RING_TYPE_TX:
4119 4119                  mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC :
4120 4120                      cap_rings->mr_group_type;
4121 4121                  mip->mi_tx_group_count = grpcnt;
4122 4122                  mip->mi_tx_group_free = group_free;
4123 4123                  mip->mi_tx_groups = groups;
4124 4124  
4125 4125                  group = groups + grpcnt;
4126 4126                  ring = group->mrg_rings;
4127 4127                  /*
4128 4128                   * The ring can be NULL in the case of aggr. Aggr will
4129 4129                   * have an empty Tx group which will get populated
4130 4130                   * later when pseudo Tx rings are added after
4131 4131                   * mac_register() is done.
4132 4132                   */
4133 4133                  if (ring == NULL) {
4134 4134                          ASSERT(mip->mi_state_flags & MIS_IS_AGGR);
4135 4135                          /*
4136 4136                           * pass the group to aggr so it can add Tx
4137 4137                           * rings to the group later.
4138 4138                           */
4139 4139                          cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL,
4140 4140                              (mac_group_handle_t)group);
4141 4141                          /*
4142 4142                           * Even though there are no rings at this time
4143 4143                           * (rings will come later), set the group
4144 4144                           * state to registered.
4145 4145                           */
4146 4146                          group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4147 4147                  } else {
4148 4148                          /*
4149 4149                           * Ring 0 is used as the default one and it could be
4150 4150                           * assigned to a client as well.
4151 4151                           */
4152 4152                          while ((ring->mr_index != 0) && (ring->mr_next != NULL))
4153 4153                                  ring = ring->mr_next;
4154 4154                          ASSERT(ring->mr_index == 0);
4155 4155                          mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4156 4156                  }
4157 4157                  if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)
4158 4158                          mip->mi_txrings_avail = group->mrg_cur_count - 1;
4159 4159                          /*
4160 4160                           * The default ring cannot be reserved.
4161 4161                           */
4162 4162                          mip->mi_txrings_rsvd = 1;
4163 4163                  /*
4164 4164                   * The default group cannot be reserved. It will be shared
4165 4165                   * by clients that do not have an exclusive group.
4166 4166                   */
4167 4167                  mip->mi_txhwclnt_avail = mip->mi_tx_group_count;
4168 4168                  mip->mi_txhwclnt_used = 1;
4169 4169                  break;
4170 4170          default:
4171 4171                  ASSERT(B_FALSE);
4172 4172          }
4173 4173  
4174 4174          if (err != 0)
4175 4175                  mac_free_rings(mip, rtype);
4176 4176  
4177 4177          return (err);
4178 4178  }
4179 4179  
4180 4180  /*
4181 4181   * The ddi interrupt handle could be shared amoung rings. If so, compare
4182 4182   * the new ring's ddi handle with the existing ones and set ddi_shared
4183 4183   * flag.
4184 4184   */
4185 4185  void
4186 4186  mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring)
4187 4187  {
4188 4188          mac_group_t *group;
4189 4189          mac_ring_t *ring;
4190 4190          ddi_intr_handle_t ddi_handle;
4191 4191          int g;
4192 4192  
4193 4193          ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle;
4194 4194          for (g = 0; g < grpcnt; g++) {
4195 4195                  group = groups + g;
4196 4196                  for (ring = group->mrg_rings; ring != NULL;
4197 4197                      ring = ring->mr_next) {
4198 4198                          if (ring == cring)
4199 4199                                  continue;
4200 4200                          if (ring->mr_info.mri_intr.mi_ddi_handle ==
4201 4201                              ddi_handle) {
4202 4202                                  if (cring->mr_type == MAC_RING_TYPE_RX &&
4203 4203                                      ring->mr_index == 0 &&
4204 4204                                      !ring->mr_info.mri_intr.mi_ddi_shared) {
4205 4205                                          ring->mr_info.mri_intr.mi_ddi_shared =
4206 4206                                              B_TRUE;
4207 4207                                  } else {
4208 4208                                          cring->mr_info.mri_intr.mi_ddi_shared =
4209 4209                                              B_TRUE;
4210 4210                                  }
4211 4211                                  return;
4212 4212                          }
4213 4213                  }
4214 4214          }
4215 4215  }
4216 4216  
4217 4217  /*
4218 4218   * Called to free all groups of particular type (RX or TX). It's assumed that
4219 4219   * no clients are using these groups.
4220 4220   */
4221 4221  void
4222 4222  mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4223 4223  {
4224 4224          mac_group_t *group, *groups;
4225 4225          uint_t group_count;
4226 4226  
4227 4227          switch (rtype) {
4228 4228          case MAC_RING_TYPE_RX:
4229 4229                  if (mip->mi_rx_groups == NULL)
4230 4230                          return;
4231 4231  
4232 4232                  groups = mip->mi_rx_groups;
4233 4233                  group_count = mip->mi_rx_group_count;
4234 4234  
4235 4235                  mip->mi_rx_groups = NULL;
4236 4236                  mip->mi_rx_donor_grp = NULL;
4237 4237                  mip->mi_rx_group_count = 0;
4238 4238                  break;
4239 4239          case MAC_RING_TYPE_TX:
4240 4240                  ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
4241 4241  
4242 4242                  if (mip->mi_tx_groups == NULL)
4243 4243                          return;
4244 4244  
4245 4245                  groups = mip->mi_tx_groups;
4246 4246                  group_count = mip->mi_tx_group_count;
4247 4247  
4248 4248                  mip->mi_tx_groups = NULL;
4249 4249                  mip->mi_tx_group_count = 0;
4250 4250                  mip->mi_tx_group_free = 0;
4251 4251                  mip->mi_default_tx_ring = NULL;
4252 4252                  break;
4253 4253          default:
4254 4254                  ASSERT(B_FALSE);
4255 4255          }
4256 4256  
4257 4257          for (group = groups; group != NULL; group = group->mrg_next) {
4258 4258                  mac_ring_t *ring;
4259 4259  
4260 4260                  if (group->mrg_cur_count == 0)
4261 4261                          continue;
4262 4262  
4263 4263                  ASSERT(group->mrg_rings != NULL);
4264 4264  
4265 4265                  while ((ring = group->mrg_rings) != NULL) {
4266 4266                          group->mrg_rings = ring->mr_next;
4267 4267                          mac_ring_free(mip, ring);
4268 4268                  }
4269 4269          }
4270 4270  
4271 4271          /* Free all the cached rings */
4272 4272          mac_ring_freeall(mip);
4273 4273          /* Free the block of group data strutures */
4274 4274          kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
4275 4275  }
4276 4276  
4277 4277  /*
4278 4278   * Associate a MAC address with a receive group.
4279 4279   *
4280 4280   * The return value of this function should always be checked properly, because
4281 4281   * any type of failure could cause unexpected results. A group can be added
4282 4282   * or removed with a MAC address only after it has been reserved. Ideally,
4283 4283   * a successful reservation always leads to calling mac_group_addmac() to
4284 4284   * steer desired traffic. Failure of adding an unicast MAC address doesn't
4285 4285   * always imply that the group is functioning abnormally.
4286 4286   *
4287 4287   * Currently this function is called everywhere, and it reflects assumptions
4288 4288   * about MAC addresses in the implementation. CR 6735196.
4289 4289   */
4290 4290  int
4291 4291  mac_group_addmac(mac_group_t *group, const uint8_t *addr)
4292 4292  {
4293 4293          ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4294 4294          ASSERT(group->mrg_info.mgi_addmac != NULL);
4295 4295  
4296 4296          return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
4297 4297  }
4298 4298  
4299 4299  /*
4300 4300   * Remove the association between MAC address and receive group.
4301 4301   */
4302 4302  int
4303 4303  mac_group_remmac(mac_group_t *group, const uint8_t *addr)
4304 4304  {
4305 4305          ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4306 4306          ASSERT(group->mrg_info.mgi_remmac != NULL);
4307 4307  
4308 4308          return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
4309 4309  }
4310 4310  
4311 4311  /*
4312 4312   * This is the entry point for packets transmitted through the bridging code.
4313 4313   * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh'
4314 4314   * pointer may be NULL to select the default ring.
4315 4315   */
4316 4316  mblk_t *
4317 4317  mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp)
4318 4318  {
4319 4319          mac_handle_t mh;
4320 4320  
4321 4321          /*
4322 4322           * Once we take a reference on the bridge link, the bridge
4323 4323           * module itself can't unload, so the callback pointers are
4324 4324           * stable.
4325 4325           */
4326 4326          mutex_enter(&mip->mi_bridge_lock);
4327 4327          if ((mh = mip->mi_bridge_link) != NULL)
4328 4328                  mac_bridge_ref_cb(mh, B_TRUE);
4329 4329          mutex_exit(&mip->mi_bridge_lock);
4330 4330          if (mh == NULL) {
4331 4331                  MAC_RING_TX(mip, rh, mp, mp);
4332 4332          } else {
4333 4333                  mp = mac_bridge_tx_cb(mh, rh, mp);
4334 4334                  mac_bridge_ref_cb(mh, B_FALSE);
4335 4335          }
4336 4336  
4337 4337          return (mp);
4338 4338  }
4339 4339  
4340 4340  /*
4341 4341   * Find a ring from its index.
4342 4342   */
4343 4343  mac_ring_handle_t
4344 4344  mac_find_ring(mac_group_handle_t gh, int index)
4345 4345  {
4346 4346          mac_group_t *group = (mac_group_t *)gh;
4347 4347          mac_ring_t *ring = group->mrg_rings;
4348 4348  
4349 4349          for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
4350 4350                  if (ring->mr_index == index)
4351 4351                          break;
4352 4352  
4353 4353          return ((mac_ring_handle_t)ring);
4354 4354  }
4355 4355  /*
4356 4356   * Add a ring to an existing group.
4357 4357   *
4358 4358   * The ring must be either passed directly (for example if the ring
4359 4359   * movement is initiated by the framework), or specified through a driver
4360 4360   * index (for example when the ring is added by the driver.
4361 4361   *
4362 4362   * The caller needs to call mac_perim_enter() before calling this function.
4363 4363   */
4364 4364  int
4365 4365  i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
4366 4366  {
4367 4367          mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4368 4368          mac_capab_rings_t *cap_rings;
4369 4369          boolean_t driver_call = (ring == NULL);
4370 4370          mac_group_type_t group_type;
4371 4371          int ret = 0;
4372 4372          flow_entry_t *flent;
4373 4373  
4374 4374          ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4375 4375  
4376 4376          switch (group->mrg_type) {
4377 4377          case MAC_RING_TYPE_RX:
4378 4378                  cap_rings = &mip->mi_rx_rings_cap;
4379 4379                  group_type = mip->mi_rx_group_type;
4380 4380                  break;
4381 4381          case MAC_RING_TYPE_TX:
4382 4382                  cap_rings = &mip->mi_tx_rings_cap;
4383 4383                  group_type = mip->mi_tx_group_type;
4384 4384                  break;
4385 4385          default:
4386 4386                  ASSERT(B_FALSE);
4387 4387          }
4388 4388  
4389 4389          /*
4390 4390           * There should be no ring with the same ring index in the target
4391 4391           * group.
4392 4392           */
4393 4393          ASSERT(mac_find_ring((mac_group_handle_t)group,
4394 4394              driver_call ? index : ring->mr_index) == NULL);
4395 4395  
4396 4396          if (driver_call) {
4397 4397                  /*
4398 4398                   * The function is called as a result of a request from
4399 4399                   * a driver to add a ring to an existing group, for example
4400 4400                   * from the aggregation driver. Allocate a new mac_ring_t
4401 4401                   * for that ring.
4402 4402                   */
4403 4403                  ring = mac_init_ring(mip, group, index, cap_rings);
4404 4404                  ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
4405 4405          } else {
4406 4406                  /*
4407 4407                   * The function is called as a result of a MAC layer request
4408 4408                   * to add a ring to an existing group. In this case the
4409 4409                   * ring is being moved between groups, which requires
4410 4410                   * the underlying driver to support dynamic grouping,
4411 4411                   * and the mac_ring_t already exists.
4412 4412                   */
4413 4413                  ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4414 4414                  ASSERT(group->mrg_driver == NULL ||
4415 4415                      cap_rings->mr_gaddring != NULL);
4416 4416                  ASSERT(ring->mr_gh == NULL);
4417 4417          }
4418 4418  
4419 4419          /*
4420 4420           * At this point the ring should not be in use, and it should be
4421 4421           * of the right for the target group.
4422 4422           */
4423 4423          ASSERT(ring->mr_state < MR_INUSE);
4424 4424          ASSERT(ring->mr_srs == NULL);
4425 4425          ASSERT(ring->mr_type == group->mrg_type);
4426 4426  
4427 4427          if (!driver_call) {
4428 4428                  /*
4429 4429                   * Add the driver level hardware ring if the process was not
4430 4430                   * initiated by the driver, and the target group is not the
4431 4431                   * group.
4432 4432                   */
4433 4433                  if (group->mrg_driver != NULL) {
4434 4434                          cap_rings->mr_gaddring(group->mrg_driver,
4435 4435                              ring->mr_driver, ring->mr_type);
4436 4436                  }
4437 4437  
4438 4438                  /*
4439 4439                   * Insert the ring ahead existing rings.
4440 4440                   */
4441 4441                  ring->mr_next = group->mrg_rings;
4442 4442                  group->mrg_rings = ring;
4443 4443                  ring->mr_gh = (mac_group_handle_t)group;
4444 4444                  group->mrg_cur_count++;
4445 4445          }
4446 4446  
4447 4447          /*
4448 4448           * If the group has not been actively used, we're done.
4449 4449           */
4450 4450          if (group->mrg_index != -1 &&
4451 4451              group->mrg_state < MAC_GROUP_STATE_RESERVED)
4452 4452                  return (0);
4453 4453  
4454 4454          /*
4455 4455           * Start the ring if needed. Failure causes to undo the grouping action.
4456 4456           */
4457 4457          if (ring->mr_state != MR_INUSE) {
4458 4458                  if ((ret = mac_start_ring(ring)) != 0) {
4459 4459                          if (!driver_call) {
4460 4460                                  cap_rings->mr_gremring(group->mrg_driver,
4461 4461                                      ring->mr_driver, ring->mr_type);
4462 4462                          }
4463 4463                          group->mrg_cur_count--;
4464 4464                          group->mrg_rings = ring->mr_next;
4465 4465  
4466 4466                          ring->mr_gh = NULL;
4467 4467  
4468 4468                          if (driver_call)
4469 4469                                  mac_ring_free(mip, ring);
4470 4470  
4471 4471                          return (ret);
4472 4472                  }
4473 4473          }
4474 4474  
4475 4475          /*
4476 4476           * Set up SRS/SR according to the ring type.
4477 4477           */
4478 4478          switch (ring->mr_type) {
4479 4479          case MAC_RING_TYPE_RX:
4480 4480                  /*
4481 4481                   * Setup SRS on top of the new ring if the group is
4482 4482                   * reserved for someones exclusive use.
4483 4483                   */
4484 4484                  if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
4485 4485                          mac_client_impl_t *mcip;
4486 4486  
4487 4487                          mcip = MAC_GROUP_ONLY_CLIENT(group);
4488 4488                          /*
4489 4489                           * Even though this group is reserved we migth still
4490 4490                           * have multiple clients, i.e a VLAN shares the
4491 4491                           * group with the primary mac client.
4492 4492                           */
4493 4493                          if (mcip != NULL) {
4494 4494                                  flent = mcip->mci_flent;
4495 4495                                  ASSERT(flent->fe_rx_srs_cnt > 0);
4496 4496                                  mac_rx_srs_group_setup(mcip, flent, SRST_LINK);
4497 4497                                  mac_fanout_setup(mcip, flent,
4498 4498                                      MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver,
4499 4499                                      mcip, NULL, NULL);
4500 4500                          } else {
4501 4501                                  ring->mr_classify_type = MAC_SW_CLASSIFIER;
4502 4502                          }
4503 4503                  }
4504 4504                  break;
4505 4505          case MAC_RING_TYPE_TX:
4506 4506          {
4507 4507                  mac_grp_client_t        *mgcp = group->mrg_clients;
4508 4508                  mac_client_impl_t       *mcip;
4509 4509                  mac_soft_ring_set_t     *mac_srs;
4510 4510                  mac_srs_tx_t            *tx;
4511 4511  
4512 4512                  if (MAC_GROUP_NO_CLIENT(group)) {
4513 4513                          if (ring->mr_state == MR_INUSE)
4514 4514                                  mac_stop_ring(ring);
4515 4515                          ring->mr_flag = 0;
4516 4516                          break;
4517 4517                  }
4518 4518                  /*
4519 4519                   * If the rings are being moved to a group that has
4520 4520                   * clients using it, then add the new rings to the
4521 4521                   * clients SRS.
4522 4522                   */
4523 4523                  while (mgcp != NULL) {
4524 4524                          boolean_t       is_aggr;
4525 4525  
4526 4526                          mcip = mgcp->mgc_client;
4527 4527                          flent = mcip->mci_flent;
4528 4528                          is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR);
4529 4529                          mac_srs = MCIP_TX_SRS(mcip);
4530 4530                          tx = &mac_srs->srs_tx;
4531 4531                          mac_tx_client_quiesce((mac_client_handle_t)mcip);
4532 4532                          /*
4533 4533                           * If we are  growing from 1 to multiple rings.
4534 4534                           */
4535 4535                          if (tx->st_mode == SRS_TX_BW ||
4536 4536                              tx->st_mode == SRS_TX_SERIALIZE ||
4537 4537                              tx->st_mode == SRS_TX_DEFAULT) {
4538 4538                                  mac_ring_t      *tx_ring = tx->st_arg2;
4539 4539  
4540 4540                                  tx->st_arg2 = NULL;
4541 4541                                  mac_tx_srs_stat_recreate(mac_srs, B_TRUE);
4542 4542                                  mac_tx_srs_add_ring(mac_srs, tx_ring);
4543 4543                                  if (mac_srs->srs_type & SRST_BW_CONTROL) {
4544 4544                                          tx->st_mode = is_aggr ? SRS_TX_BW_AGGR :
4545 4545                                              SRS_TX_BW_FANOUT;
4546 4546                                  } else {
4547 4547                                          tx->st_mode = is_aggr ? SRS_TX_AGGR :
4548 4548                                              SRS_TX_FANOUT;
4549 4549                                  }
4550 4550                                  tx->st_func = mac_tx_get_func(tx->st_mode);
4551 4551                          }
4552 4552                          mac_tx_srs_add_ring(mac_srs, ring);
4553 4553                          mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4554 4554                              mac_rx_deliver, mcip, NULL, NULL);
4555 4555                          mac_tx_client_restart((mac_client_handle_t)mcip);
4556 4556                          mgcp = mgcp->mgc_next;
4557 4557                  }
4558 4558                  break;
4559 4559          }
4560 4560          default:
4561 4561                  ASSERT(B_FALSE);
4562 4562          }
4563 4563          /*
4564 4564           * For aggr, the default ring will be NULL to begin with. If it
4565 4565           * is NULL, then pick the first ring that gets added as the
4566 4566           * default ring. Any ring in an aggregation can be removed at
4567 4567           * any time (by the user action of removing a link) and if the
4568 4568           * current default ring gets removed, then a new one gets
4569 4569           * picked (see i_mac_group_rem_ring()).
4570 4570           */
4571 4571          if (mip->mi_state_flags & MIS_IS_AGGR &&
4572 4572              mip->mi_default_tx_ring == NULL &&
4573 4573              ring->mr_type == MAC_RING_TYPE_TX) {
4574 4574                  mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4575 4575          }
4576 4576  
4577 4577          MAC_RING_UNMARK(ring, MR_INCIPIENT);
4578 4578          return (0);
4579 4579  }
4580 4580  
4581 4581  /*
4582 4582   * Remove a ring from it's current group. MAC internal function for dynamic
4583 4583   * grouping.
4584 4584   *
4585 4585   * The caller needs to call mac_perim_enter() before calling this function.
4586 4586   */
4587 4587  void
4588 4588  i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
4589 4589      boolean_t driver_call)
4590 4590  {
4591 4591          mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4592 4592          mac_capab_rings_t *cap_rings = NULL;
4593 4593          mac_group_type_t group_type;
4594 4594  
4595 4595          ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4596 4596  
4597 4597          ASSERT(mac_find_ring((mac_group_handle_t)group,
4598 4598              ring->mr_index) == (mac_ring_handle_t)ring);
4599 4599          ASSERT((mac_group_t *)ring->mr_gh == group);
4600 4600          ASSERT(ring->mr_type == group->mrg_type);
4601 4601  
4602 4602          if (ring->mr_state == MR_INUSE)
4603 4603                  mac_stop_ring(ring);
4604 4604          switch (ring->mr_type) {
4605 4605          case MAC_RING_TYPE_RX:
4606 4606                  group_type = mip->mi_rx_group_type;
4607 4607                  cap_rings = &mip->mi_rx_rings_cap;
4608 4608  
4609 4609                  /*
4610 4610                   * Only hardware classified packets hold a reference to the
4611 4611                   * ring all the way up the Rx path. mac_rx_srs_remove()
4612 4612                   * will take care of quiescing the Rx path and removing the
4613 4613                   * SRS. The software classified path neither holds a reference
4614 4614                   * nor any association with the ring in mac_rx.
4615 4615                   */
4616 4616                  if (ring->mr_srs != NULL) {
4617 4617                          mac_rx_srs_remove(ring->mr_srs);
4618 4618                          ring->mr_srs = NULL;
4619 4619                  }
4620 4620  
4621 4621                  break;
4622 4622          case MAC_RING_TYPE_TX:
4623 4623          {
4624 4624                  mac_grp_client_t        *mgcp;
4625 4625                  mac_client_impl_t       *mcip;
4626 4626                  mac_soft_ring_set_t     *mac_srs;
4627 4627                  mac_srs_tx_t            *tx;
4628 4628                  mac_ring_t              *rem_ring;
4629 4629                  mac_group_t             *defgrp;
4630 4630                  uint_t                  ring_info = 0;
4631 4631  
4632 4632                  /*
4633 4633                   * For TX this function is invoked in three
4634 4634                   * cases:
4635 4635                   *
4636 4636                   * 1) In the case of a failure during the
4637 4637                   * initial creation of a group when a share is
4638 4638                   * associated with a MAC client. So the SRS is not
4639 4639                   * yet setup, and will be setup later after the
4640 4640                   * group has been reserved and populated.
4641 4641                   *
4642 4642                   * 2) From mac_release_tx_group() when freeing
4643 4643                   * a TX SRS.
4644 4644                   *
4645 4645                   * 3) In the case of aggr, when a port gets removed,
4646 4646                   * the pseudo Tx rings that it exposed gets removed.
4647 4647                   *
4648 4648                   * In the first two cases the SRS and its soft
4649 4649                   * rings are already quiesced.
4650 4650                   */
4651 4651                  if (driver_call) {
4652 4652                          mac_client_impl_t *mcip;
4653 4653                          mac_soft_ring_set_t *mac_srs;
4654 4654                          mac_soft_ring_t *sringp;
4655 4655                          mac_srs_tx_t *srs_tx;
4656 4656  
4657 4657                          if (mip->mi_state_flags & MIS_IS_AGGR &&
4658 4658                              mip->mi_default_tx_ring ==
4659 4659                              (mac_ring_handle_t)ring) {
4660 4660                                  /* pick a new default Tx ring */
4661 4661                                  mip->mi_default_tx_ring =
4662 4662                                      (group->mrg_rings != ring) ?
4663 4663                                      (mac_ring_handle_t)group->mrg_rings :
4664 4664                                      (mac_ring_handle_t)(ring->mr_next);
4665 4665                          }
4666 4666                          /* Presently only aggr case comes here */
4667 4667                          if (group->mrg_state != MAC_GROUP_STATE_RESERVED)
4668 4668                                  break;
4669 4669  
4670 4670                          mcip = MAC_GROUP_ONLY_CLIENT(group);
4671 4671                          ASSERT(mcip != NULL);
4672 4672                          ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR);
4673 4673                          mac_srs = MCIP_TX_SRS(mcip);
4674 4674                          ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
4675 4675                              mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
4676 4676                          srs_tx = &mac_srs->srs_tx;
4677 4677                          /*
4678 4678                           * Wakeup any callers blocked on this
4679 4679                           * Tx ring due to flow control.
4680 4680                           */
4681 4681                          sringp = srs_tx->st_soft_rings[ring->mr_index];
4682 4682                          ASSERT(sringp != NULL);
4683 4683                          mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp);
4684 4684                          mac_tx_client_quiesce((mac_client_handle_t)mcip);
4685 4685                          mac_tx_srs_del_ring(mac_srs, ring);
4686 4686                          mac_tx_client_restart((mac_client_handle_t)mcip);
4687 4687                          break;
4688 4688                  }
4689 4689                  ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring);
4690 4690                  group_type = mip->mi_tx_group_type;
4691 4691                  cap_rings = &mip->mi_tx_rings_cap;
4692 4692                  /*
4693 4693                   * See if we need to take it out of the MAC clients using
4694 4694                   * this group
4695 4695                   */
4696 4696                  if (MAC_GROUP_NO_CLIENT(group))
4697 4697                          break;
4698 4698                  mgcp = group->mrg_clients;
4699 4699                  defgrp = MAC_DEFAULT_TX_GROUP(mip);
4700 4700                  while (mgcp != NULL) {
4701 4701                          mcip = mgcp->mgc_client;
4702 4702                          mac_srs = MCIP_TX_SRS(mcip);
4703 4703                          tx = &mac_srs->srs_tx;
4704 4704                          mac_tx_client_quiesce((mac_client_handle_t)mcip);
4705 4705                          /*
4706 4706                           * If we are here when removing rings from the
4707 4707                           * defgroup, mac_reserve_tx_ring would have
4708 4708                           * already deleted the ring from the MAC
4709 4709                           * clients in the group.
4710 4710                           */
4711 4711                          if (group != defgrp) {
4712 4712                                  mac_tx_invoke_callbacks(mcip,
4713 4713                                      (mac_tx_cookie_t)
4714 4714                                      mac_tx_srs_get_soft_ring(mac_srs, ring));
4715 4715                                  mac_tx_srs_del_ring(mac_srs, ring);
4716 4716                          }
4717 4717                          /*
4718 4718                           * Additionally, if  we are left with only
4719 4719                           * one ring in the group after this, we need
4720 4720                           * to modify the mode etc. to. (We haven't
4721 4721                           * yet taken the ring out, so we check with 2).
4722 4722                           */
4723 4723                          if (group->mrg_cur_count == 2) {
4724 4724                                  if (ring->mr_next == NULL)
4725 4725                                          rem_ring = group->mrg_rings;
4726 4726                                  else
4727 4727                                          rem_ring = ring->mr_next;
4728 4728                                  mac_tx_invoke_callbacks(mcip,
4729 4729                                      (mac_tx_cookie_t)
4730 4730                                      mac_tx_srs_get_soft_ring(mac_srs,
4731 4731                                      rem_ring));
4732 4732                                  mac_tx_srs_del_ring(mac_srs, rem_ring);
4733 4733                                  if (rem_ring->mr_state != MR_INUSE) {
4734 4734                                          (void) mac_start_ring(rem_ring);
4735 4735                                  }
4736 4736                                  tx->st_arg2 = (void *)rem_ring;
4737 4737                                  mac_tx_srs_stat_recreate(mac_srs, B_FALSE);
4738 4738                                  ring_info = mac_hwring_getinfo(
4739 4739                                      (mac_ring_handle_t)rem_ring);
4740 4740                                  /*
4741 4741                                   * We are  shrinking from multiple
4742 4742                                   * to 1 ring.
4743 4743                                   */
4744 4744                                  if (mac_srs->srs_type & SRST_BW_CONTROL) {
4745 4745                                          tx->st_mode = SRS_TX_BW;
4746 4746                                  } else if (mac_tx_serialize ||
4747 4747                                      (ring_info & MAC_RING_TX_SERIALIZE)) {
4748 4748                                          tx->st_mode = SRS_TX_SERIALIZE;
4749 4749                                  } else {
4750 4750                                          tx->st_mode = SRS_TX_DEFAULT;
4751 4751                                  }
4752 4752                                  tx->st_func = mac_tx_get_func(tx->st_mode);
4753 4753                          }
4754 4754                          mac_tx_client_restart((mac_client_handle_t)mcip);
4755 4755                          mgcp = mgcp->mgc_next;
4756 4756                  }
4757 4757                  break;
4758 4758          }
4759 4759          default:
4760 4760                  ASSERT(B_FALSE);
4761 4761          }
4762 4762  
4763 4763          /*
4764 4764           * Remove the ring from the group.
4765 4765           */
4766 4766          if (ring == group->mrg_rings)
4767 4767                  group->mrg_rings = ring->mr_next;
4768 4768          else {
4769 4769                  mac_ring_t *pre;
4770 4770  
4771 4771                  pre = group->mrg_rings;
4772 4772                  while (pre->mr_next != ring)
4773 4773                          pre = pre->mr_next;
4774 4774                  pre->mr_next = ring->mr_next;
4775 4775          }
4776 4776          group->mrg_cur_count--;
4777 4777  
4778 4778          if (!driver_call) {
4779 4779                  ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4780 4780                  ASSERT(group->mrg_driver == NULL ||
4781 4781                      cap_rings->mr_gremring != NULL);
4782 4782  
4783 4783                  /*
4784 4784                   * Remove the driver level hardware ring.
4785 4785                   */
4786 4786                  if (group->mrg_driver != NULL) {
4787 4787                          cap_rings->mr_gremring(group->mrg_driver,
4788 4788                              ring->mr_driver, ring->mr_type);
4789 4789                  }
4790 4790          }
4791 4791  
4792 4792          ring->mr_gh = NULL;
4793 4793          if (driver_call)
4794 4794                  mac_ring_free(mip, ring);
4795 4795          else
4796 4796                  ring->mr_flag = 0;
4797 4797  }
4798 4798  
4799 4799  /*
4800 4800   * Move a ring to the target group. If needed, remove the ring from the group
4801 4801   * that it currently belongs to.
4802 4802   *
4803 4803   * The caller need to enter MAC's perimeter by calling mac_perim_enter().
4804 4804   */
4805 4805  static int
4806 4806  mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
4807 4807  {
4808 4808          mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
4809 4809          int rv;
4810 4810  
4811 4811          ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4812 4812          ASSERT(d_group != NULL);
4813 4813          ASSERT(s_group->mrg_mh == d_group->mrg_mh);
4814 4814  
4815 4815          if (s_group == d_group)
4816 4816                  return (0);
4817 4817  
4818 4818          /*
4819 4819           * Remove it from current group first.
4820 4820           */
4821 4821          if (s_group != NULL)
4822 4822                  i_mac_group_rem_ring(s_group, ring, B_FALSE);
4823 4823  
4824 4824          /*
4825 4825           * Add it to the new group.
4826 4826           */
4827 4827          rv = i_mac_group_add_ring(d_group, ring, 0);
4828 4828          if (rv != 0) {
4829 4829                  /*
4830 4830                   * Failed to add ring back to source group. If
4831 4831                   * that fails, the ring is stuck in limbo, log message.
4832 4832                   */
4833 4833                  if (i_mac_group_add_ring(s_group, ring, 0)) {
4834 4834                          cmn_err(CE_WARN, "%s: failed to move ring %p\n",
4835 4835                              mip->mi_name, (void *)ring);
4836 4836                  }
4837 4837          }
4838 4838  
4839 4839          return (rv);
4840 4840  }
4841 4841  
4842 4842  /*
4843 4843   * Find a MAC address according to its value.
4844 4844   */
4845 4845  mac_address_t *
4846 4846  mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
4847 4847  {
4848 4848          mac_address_t *map;
4849 4849  
4850 4850          ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4851 4851  
4852 4852          for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
4853 4853                  if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
4854 4854                          break;
4855 4855          }
4856 4856  
4857 4857          return (map);
4858 4858  }
4859 4859  
4860 4860  /*
4861 4861   * Check whether the MAC address is shared by multiple clients.
4862 4862   */
4863 4863  boolean_t
4864 4864  mac_check_macaddr_shared(mac_address_t *map)
4865 4865  {
4866 4866          ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
4867 4867  
4868 4868          return (map->ma_nusers > 1);
4869 4869  }
4870 4870  
4871 4871  /*
4872 4872   * Remove the specified MAC address from the MAC address list and free it.
4873 4873   */
4874 4874  static void
4875 4875  mac_free_macaddr(mac_address_t *map)
4876 4876  {
4877 4877          mac_impl_t *mip = map->ma_mip;
4878 4878  
4879 4879          ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4880 4880          ASSERT(mip->mi_addresses != NULL);
4881 4881  
4882 4882          map = mac_find_macaddr(mip, map->ma_addr);
4883 4883  
4884 4884          ASSERT(map != NULL);
4885 4885          ASSERT(map->ma_nusers == 0);
4886 4886  
4887 4887          if (map == mip->mi_addresses) {
4888 4888                  mip->mi_addresses = map->ma_next;
4889 4889          } else {
4890 4890                  mac_address_t *pre;
4891 4891  
4892 4892                  pre = mip->mi_addresses;
4893 4893                  while (pre->ma_next != map)
4894 4894                          pre = pre->ma_next;
4895 4895                  pre->ma_next = map->ma_next;
4896 4896          }
4897 4897  
4898 4898          kmem_free(map, sizeof (mac_address_t));
4899 4899  }
4900 4900  
4901 4901  /*
4902 4902   * Add a MAC address reference for a client. If the desired MAC address
4903 4903   * exists, add a reference to it. Otherwise, add the new address by adding
4904 4904   * it to a reserved group or setting promiscuous mode. Won't try different
4905 4905   * group is the group is non-NULL, so the caller must explictly share
4906 4906   * default group when needed.
4907 4907   *
4908 4908   * Note, the primary MAC address is initialized at registration time, so
4909 4909   * to add it to default group only need to activate it if its reference
4910 4910   * count is still zero. Also, some drivers may not have advertised RINGS
4911 4911   * capability.
4912 4912   */
4913 4913  int
4914 4914  mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr,
4915 4915      boolean_t use_hw)
4916 4916  {
4917 4917          mac_address_t *map;
4918 4918          int err = 0;
4919 4919          boolean_t allocated_map = B_FALSE;
4920 4920  
4921 4921          ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4922 4922  
4923 4923          map = mac_find_macaddr(mip, mac_addr);
4924 4924  
4925 4925          /*
4926 4926           * If the new MAC address has not been added. Allocate a new one
4927 4927           * and set it up.
4928 4928           */
4929 4929          if (map == NULL) {
4930 4930                  map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
4931 4931                  map->ma_len = mip->mi_type->mt_addr_length;
4932 4932                  bcopy(mac_addr, map->ma_addr, map->ma_len);
4933 4933                  map->ma_nusers = 0;
4934 4934                  map->ma_group = group;
4935 4935                  map->ma_mip = mip;
4936 4936  
4937 4937                  /* add the new MAC address to the head of the address list */
4938 4938                  map->ma_next = mip->mi_addresses;
4939 4939                  mip->mi_addresses = map;
4940 4940  
4941 4941                  allocated_map = B_TRUE;
4942 4942          }
4943 4943  
4944 4944          ASSERT(map->ma_group == NULL || map->ma_group == group);
4945 4945          if (map->ma_group == NULL)
4946 4946                  map->ma_group = group;
4947 4947  
4948 4948          /*
4949 4949           * If the MAC address is already in use, simply account for the
4950 4950           * new client.
4951 4951           */
4952 4952          if (map->ma_nusers++ > 0)
4953 4953                  return (0);
4954 4954  
4955 4955          /*
4956 4956           * Activate this MAC address by adding it to the reserved group.
4957 4957           */
4958 4958          if (group != NULL) {
4959 4959                  err = mac_group_addmac(group, (const uint8_t *)mac_addr);
4960 4960                  if (err == 0) {
4961 4961                          map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
4962 4962                          return (0);
4963 4963                  }
4964 4964          }
4965 4965  
4966 4966          /*
4967 4967           * The MAC address addition failed. If the client requires a
4968 4968           * hardware classified MAC address, fail the operation.
4969 4969           */
4970 4970          if (use_hw) {
4971 4971                  err = ENOSPC;
4972 4972                  goto bail;
4973 4973          }
4974 4974  
4975 4975          /*
4976 4976           * Try promiscuous mode.
4977 4977           *
4978 4978           * For drivers that don't advertise RINGS capability, do
4979 4979           * nothing for the primary address.
4980 4980           */
4981 4981          if ((group == NULL) &&
4982 4982              (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
4983 4983                  map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
4984 4984                  return (0);
4985 4985          }
4986 4986  
4987 4987          /*
4988 4988           * Enable promiscuous mode in order to receive traffic
4989 4989           * to the new MAC address.
4990 4990           */
4991 4991          if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
4992 4992                  map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
4993 4993                  return (0);
4994 4994          }
4995 4995  
4996 4996          /*
4997 4997           * Free the MAC address that could not be added. Don't free
4998 4998           * a pre-existing address, it could have been the entry
4999 4999           * for the primary MAC address which was pre-allocated by
5000 5000           * mac_init_macaddr(), and which must remain on the list.
5001 5001           */
5002 5002  bail:
5003 5003          map->ma_nusers--;
5004 5004          if (allocated_map)
5005 5005                  mac_free_macaddr(map);
5006 5006          return (err);
5007 5007  }
5008 5008  
5009 5009  /*
5010 5010   * Remove a reference to a MAC address. This may cause to remove the MAC
5011 5011   * address from an associated group or to turn off promiscuous mode.
5012 5012   * The caller needs to handle the failure properly.
5013 5013   */
5014 5014  int
5015 5015  mac_remove_macaddr(mac_address_t *map)
5016 5016  {
5017 5017          mac_impl_t *mip = map->ma_mip;
5018 5018          int err = 0;
5019 5019  
5020 5020          ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5021 5021  
5022 5022          ASSERT(map == mac_find_macaddr(mip, map->ma_addr));
5023 5023  
5024 5024          /*
5025 5025           * If it's not the last client using this MAC address, only update
5026 5026           * the MAC clients count.
5027 5027           */
5028 5028          if (--map->ma_nusers > 0)
5029 5029                  return (0);
5030 5030  
5031 5031          /*
5032 5032           * The MAC address is no longer used by any MAC client, so remove
5033 5033           * it from its associated group, or turn off promiscuous mode
5034 5034           * if it was enabled for the MAC address.
5035 5035           */
5036 5036          switch (map->ma_type) {
5037 5037          case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5038 5038                  /*
5039 5039                   * Don't free the preset primary address for drivers that
5040 5040                   * don't advertise RINGS capability.
5041 5041                   */
5042 5042                  if (map->ma_group == NULL)
5043 5043                          return (0);
5044 5044  
5045 5045                  err = mac_group_remmac(map->ma_group, map->ma_addr);
5046 5046                  if (err == 0)
5047 5047                          map->ma_group = NULL;
5048 5048                  break;
5049 5049          case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5050 5050                  err = i_mac_promisc_set(mip, B_FALSE);
5051 5051                  break;
5052 5052          default:
5053 5053                  ASSERT(B_FALSE);
5054 5054          }
5055 5055  
5056 5056          if (err != 0)
5057 5057                  return (err);
5058 5058  
5059 5059          /*
5060 5060           * We created MAC address for the primary one at registration, so we
5061 5061           * won't free it here. mac_fini_macaddr() will take care of it.
5062 5062           */
5063 5063          if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
5064 5064                  mac_free_macaddr(map);
5065 5065  
5066 5066          return (0);
5067 5067  }
5068 5068  
5069 5069  /*
5070 5070   * Update an existing MAC address. The caller need to make sure that the new
5071 5071   * value has not been used.
5072 5072   */
5073 5073  int
5074 5074  mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
5075 5075  {
5076 5076          mac_impl_t *mip = map->ma_mip;
5077 5077          int err = 0;
5078 5078  
5079 5079          ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5080 5080          ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5081 5081  
5082 5082          switch (map->ma_type) {
5083 5083          case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5084 5084                  /*
5085 5085                   * Update the primary address for drivers that are not
5086 5086                   * RINGS capable.
5087 5087                   */
5088 5088                  if (mip->mi_rx_groups == NULL) {
5089 5089                          err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
5090 5090                              mac_addr);
5091 5091                          if (err != 0)
5092 5092                                  return (err);
5093 5093                          break;
5094 5094                  }
5095 5095  
5096 5096                  /*
5097 5097                   * If this MAC address is not currently in use,
5098 5098                   * simply break out and update the value.
5099 5099                   */
5100 5100                  if (map->ma_nusers == 0)
5101 5101                          break;
5102 5102  
5103 5103                  /*
5104 5104                   * Need to replace the MAC address associated with a group.
5105 5105                   */
5106 5106                  err = mac_group_remmac(map->ma_group, map->ma_addr);
5107 5107                  if (err != 0)
5108 5108                          return (err);
5109 5109  
5110 5110                  err = mac_group_addmac(map->ma_group, mac_addr);
5111 5111  
5112 5112                  /*
5113 5113                   * Failure hints hardware error. The MAC layer needs to
5114 5114                   * have error notification facility to handle this.
5115 5115                   * Now, simply try to restore the value.
5116 5116                   */
5117 5117                  if (err != 0)
5118 5118                          (void) mac_group_addmac(map->ma_group, map->ma_addr);
5119 5119  
5120 5120                  break;
5121 5121          case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5122 5122                  /*
5123 5123                   * Need to do nothing more if in promiscuous mode.
5124 5124                   */
5125 5125                  break;
5126 5126          default:
5127 5127                  ASSERT(B_FALSE);
5128 5128          }
5129 5129  
5130 5130          /*
5131 5131           * Successfully replaced the MAC address.
5132 5132           */
5133 5133          if (err == 0)
5134 5134                  bcopy(mac_addr, map->ma_addr, map->ma_len);
5135 5135  
5136 5136          return (err);
5137 5137  }
5138 5138  
5139 5139  /*
5140 5140   * Freshen the MAC address with new value. Its caller must have updated the
5141 5141   * hardware MAC address before calling this function.
5142 5142   * This funcitons is supposed to be used to handle the MAC address change
5143 5143   * notification from underlying drivers.
5144 5144   */
5145 5145  void
5146 5146  mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
5147 5147  {
5148 5148          mac_impl_t *mip = map->ma_mip;
5149 5149  
5150 5150          ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5151 5151          ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5152 5152  
5153 5153          /*
5154 5154           * Freshen the MAC address with new value.
5155 5155           */
5156 5156          bcopy(mac_addr, map->ma_addr, map->ma_len);
5157 5157          bcopy(mac_addr, mip->mi_addr, map->ma_len);
5158 5158  
5159 5159          /*
5160 5160           * Update all MAC clients that share this MAC address.
5161 5161           */
5162 5162          mac_unicast_update_clients(mip, map);
5163 5163  }
5164 5164  
5165 5165  /*
5166 5166   * Set up the primary MAC address.
5167 5167   */
5168 5168  void
5169 5169  mac_init_macaddr(mac_impl_t *mip)
5170 5170  {
5171 5171          mac_address_t *map;
5172 5172  
5173 5173          /*
5174 5174           * The reference count is initialized to zero, until it's really
5175 5175           * activated.
5176 5176           */
5177 5177          map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5178 5178          map->ma_len = mip->mi_type->mt_addr_length;
5179 5179          bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
5180 5180  
5181 5181          /*
5182 5182           * If driver advertises RINGS capability, it shouldn't have initialized
5183 5183           * its primary MAC address. For other drivers, including VNIC, the
5184 5184           * primary address must work after registration.
5185 5185           */
5186 5186          if (mip->mi_rx_groups == NULL)
5187 5187                  map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5188 5188  
5189 5189          map->ma_mip = mip;
5190 5190  
5191 5191          mip->mi_addresses = map;
5192 5192  }
5193 5193  
5194 5194  /*
5195 5195   * Clean up the primary MAC address. Note, only one primary MAC address
5196 5196   * is allowed. All other MAC addresses must have been freed appropriately.
5197 5197   */
5198 5198  void
5199 5199  mac_fini_macaddr(mac_impl_t *mip)
5200 5200  {
5201 5201          mac_address_t *map = mip->mi_addresses;
5202 5202  
5203 5203          if (map == NULL)
5204 5204                  return;
5205 5205  
5206 5206          /*
5207 5207           * If mi_addresses is initialized, there should be exactly one
5208 5208           * entry left on the list with no users.
5209 5209           */
5210 5210          ASSERT(map->ma_nusers == 0);
5211 5211          ASSERT(map->ma_next == NULL);
5212 5212  
5213 5213          kmem_free(map, sizeof (mac_address_t));
5214 5214          mip->mi_addresses = NULL;
5215 5215  }
5216 5216  
5217 5217  /*
5218 5218   * Logging related functions.
5219 5219   *
5220 5220   * Note that Kernel statistics have been extended to maintain fine
5221 5221   * granularity of statistics viz. hardware lane, software lane, fanout
5222 5222   * stats etc. However, extended accounting continues to support only
5223 5223   * aggregate statistics like before.
5224 5224   */
5225 5225  
5226 5226  /* Write the flow description to a netinfo_t record */
5227 5227  static netinfo_t *
5228 5228  mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
5229 5229  {
5230 5230          netinfo_t               *ninfo;
5231 5231          net_desc_t              *ndesc;
5232 5232          flow_desc_t             *fdesc;
5233 5233          mac_resource_props_t    *mrp;
5234 5234  
5235 5235          ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5236 5236          if (ninfo == NULL)
5237 5237                  return (NULL);
5238 5238          ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5239 5239          if (ndesc == NULL) {
5240 5240                  kmem_free(ninfo, sizeof (netinfo_t));
5241 5241                  return (NULL);
5242 5242          }
5243 5243  
5244 5244          /*
5245 5245           * Grab the fe_lock to see a self-consistent fe_flow_desc.
5246 5246           * Updates to the fe_flow_desc are done under the fe_lock
5247 5247           */
5248 5248          mutex_enter(&flent->fe_lock);
5249 5249          fdesc = &flent->fe_flow_desc;
5250 5250          mrp = &flent->fe_resource_props;
5251 5251  
5252 5252          ndesc->nd_name = flent->fe_flow_name;
5253 5253          ndesc->nd_devname = mcip->mci_name;
5254 5254          bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5255 5255          bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL);
5256 5256          ndesc->nd_sap = htonl(fdesc->fd_sap);
5257 5257          ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
5258 5258          ndesc->nd_bw_limit = mrp->mrp_maxbw;
5259 5259          if (ndesc->nd_isv4) {
5260 5260                  ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
5261 5261                  ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
5262 5262          } else {
5263 5263                  bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN);
5264 5264                  bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN);
5265 5265          }
5266 5266          ndesc->nd_sport = htons(fdesc->fd_local_port);
5267 5267          ndesc->nd_dport = htons(fdesc->fd_remote_port);
5268 5268          ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol;
5269 5269          mutex_exit(&flent->fe_lock);
5270 5270  
5271 5271          ninfo->ni_record = ndesc;
5272 5272          ninfo->ni_size = sizeof (net_desc_t);
5273 5273          ninfo->ni_type = EX_NET_FLDESC_REC;
5274 5274  
5275 5275          return (ninfo);
5276 5276  }
5277 5277  
5278 5278  /* Write the flow statistics to a netinfo_t record */
5279 5279  static netinfo_t *
5280 5280  mac_write_flow_stats(flow_entry_t *flent)
5281 5281  {
5282 5282          netinfo_t               *ninfo;
5283 5283          net_stat_t              *nstat;
5284 5284          mac_soft_ring_set_t     *mac_srs;
5285 5285          mac_rx_stats_t          *mac_rx_stat;
5286 5286          mac_tx_stats_t          *mac_tx_stat;
5287 5287          int                     i;
5288 5288  
5289 5289          ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5290 5290          if (ninfo == NULL)
5291 5291                  return (NULL);
5292 5292          nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5293 5293          if (nstat == NULL) {
5294 5294                  kmem_free(ninfo, sizeof (netinfo_t));
5295 5295                  return (NULL);
5296 5296          }
5297 5297  
5298 5298          nstat->ns_name = flent->fe_flow_name;
5299 5299          for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5300 5300                  mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5301 5301                  mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5302 5302  
5303 5303                  nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5304 5304                      mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes;
5305 5305                  nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5306 5306                      mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5307 5307                  nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5308 5308          }
5309 5309  
5310 5310          mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
5311 5311          if (mac_srs != NULL) {
5312 5312                  mac_tx_stat = &mac_srs->srs_tx.st_stat;
5313 5313  
5314 5314                  nstat->ns_obytes = mac_tx_stat->mts_obytes;
5315 5315                  nstat->ns_opackets = mac_tx_stat->mts_opackets;
5316 5316                  nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5317 5317          }
5318 5318  
5319 5319          ninfo->ni_record = nstat;
5320 5320          ninfo->ni_size = sizeof (net_stat_t);
5321 5321          ninfo->ni_type = EX_NET_FLSTAT_REC;
5322 5322  
5323 5323          return (ninfo);
5324 5324  }
5325 5325  
5326 5326  /* Write the link description to a netinfo_t record */
5327 5327  static netinfo_t *
5328 5328  mac_write_link_desc(mac_client_impl_t *mcip)
5329 5329  {
5330 5330          netinfo_t               *ninfo;
5331 5331          net_desc_t              *ndesc;
5332 5332          flow_entry_t            *flent = mcip->mci_flent;
5333 5333  
5334 5334          ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5335 5335          if (ninfo == NULL)
5336 5336                  return (NULL);
5337 5337          ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5338 5338          if (ndesc == NULL) {
5339 5339                  kmem_free(ninfo, sizeof (netinfo_t));
5340 5340                  return (NULL);
5341 5341          }
5342 5342  
5343 5343          ndesc->nd_name = mcip->mci_name;
5344 5344          ndesc->nd_devname = mcip->mci_name;
5345 5345          ndesc->nd_isv4 = B_TRUE;
5346 5346          /*
5347 5347           * Grab the fe_lock to see a self-consistent fe_flow_desc.
5348 5348           * Updates to the fe_flow_desc are done under the fe_lock
5349 5349           * after removing the flent from the flow table.
5350 5350           */
5351 5351          mutex_enter(&flent->fe_lock);
5352 5352          bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5353 5353          mutex_exit(&flent->fe_lock);
5354 5354  
5355 5355          ninfo->ni_record = ndesc;
5356 5356          ninfo->ni_size = sizeof (net_desc_t);
5357 5357          ninfo->ni_type = EX_NET_LNDESC_REC;
5358 5358  
5359 5359          return (ninfo);
5360 5360  }
5361 5361  
5362 5362  /* Write the link statistics to a netinfo_t record */
5363 5363  static netinfo_t *
5364 5364  mac_write_link_stats(mac_client_impl_t *mcip)
5365 5365  {
5366 5366          netinfo_t               *ninfo;
5367 5367          net_stat_t              *nstat;
5368 5368          flow_entry_t            *flent;
5369 5369          mac_soft_ring_set_t     *mac_srs;
5370 5370          mac_rx_stats_t          *mac_rx_stat;
5371 5371          mac_tx_stats_t          *mac_tx_stat;
5372 5372          int                     i;
5373 5373  
5374 5374          ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5375 5375          if (ninfo == NULL)
5376 5376                  return (NULL);
5377 5377          nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5378 5378          if (nstat == NULL) {
5379 5379                  kmem_free(ninfo, sizeof (netinfo_t));
5380 5380                  return (NULL);
5381 5381          }
5382 5382  
5383 5383          nstat->ns_name = mcip->mci_name;
5384 5384          flent = mcip->mci_flent;
5385 5385          if (flent != NULL)  {
5386 5386                  for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5387 5387                          mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5388 5388                          mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5389 5389  
5390 5390                          nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5391 5391                              mac_rx_stat->mrs_pollbytes +
5392 5392                              mac_rx_stat->mrs_lclbytes;
5393 5393                          nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5394 5394                              mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5395 5395                          nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5396 5396                  }
5397 5397          }
5398 5398  
5399 5399          mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs);
5400 5400          if (mac_srs != NULL) {
5401 5401                  mac_tx_stat = &mac_srs->srs_tx.st_stat;
5402 5402  
5403 5403                  nstat->ns_obytes = mac_tx_stat->mts_obytes;
5404 5404                  nstat->ns_opackets = mac_tx_stat->mts_opackets;
5405 5405                  nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5406 5406          }
5407 5407  
5408 5408          ninfo->ni_record = nstat;
5409 5409          ninfo->ni_size = sizeof (net_stat_t);
5410 5410          ninfo->ni_type = EX_NET_LNSTAT_REC;
5411 5411  
5412 5412          return (ninfo);
5413 5413  }
5414 5414  
5415 5415  typedef struct i_mac_log_state_s {
5416 5416          boolean_t       mi_last;
5417 5417          int             mi_fenable;
5418 5418          int             mi_lenable;
5419 5419          list_t          *mi_list;
5420 5420  } i_mac_log_state_t;
5421 5421  
5422 5422  /*
5423 5423   * For a given flow, if the description has not been logged before, do it now.
5424 5424   * If it is a VNIC, then we have collected information about it from the MAC
5425 5425   * table, so skip it.
5426 5426   *
5427 5427   * Called through mac_flow_walk_nolock()
5428 5428   *
5429 5429   * Return 0 if successful.
5430 5430   */
5431 5431  static int
5432 5432  mac_log_flowinfo(flow_entry_t *flent, void *arg)
5433 5433  {
5434 5434          mac_client_impl_t       *mcip = flent->fe_mcip;
5435 5435          i_mac_log_state_t       *lstate = arg;
5436 5436          netinfo_t               *ninfo;
5437 5437  
5438 5438          if (mcip == NULL)
5439 5439                  return (0);
5440 5440  
5441 5441          /*
5442 5442           * If the name starts with "vnic", and fe_user_generated is true (to
5443 5443           * exclude the mcast and active flow entries created implicitly for
5444 5444           * a vnic, it is a VNIC flow.  i.e. vnic1 is a vnic flow,
5445 5445           * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
5446 5446           */
5447 5447          if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
5448 5448              (flent->fe_type & FLOW_USER) != 0) {
5449 5449                  return (0);
5450 5450          }
5451 5451  
5452 5452          if (!flent->fe_desc_logged) {
5453 5453                  /*
5454 5454                   * We don't return error because we want to continue the
5455 5455                   * walk in case this is the last walk which means we
5456 5456                   * need to reset fe_desc_logged in all the flows.
5457 5457                   */
5458 5458                  if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL)
5459 5459                          return (0);
5460 5460                  list_insert_tail(lstate->mi_list, ninfo);
5461 5461                  flent->fe_desc_logged = B_TRUE;
5462 5462          }
5463 5463  
5464 5464          /*
5465 5465           * Regardless of the error, we want to proceed in case we have to
5466 5466           * reset fe_desc_logged.
5467 5467           */
5468 5468          ninfo = mac_write_flow_stats(flent);
5469 5469          if (ninfo == NULL)
5470 5470                  return (-1);
5471 5471  
5472 5472          list_insert_tail(lstate->mi_list, ninfo);
5473 5473  
5474 5474          if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
5475 5475                  flent->fe_desc_logged = B_FALSE;
5476 5476  
5477 5477          return (0);
5478 5478  }
5479 5479  
5480 5480  /*
5481 5481   * Log the description for each mac client of this mac_impl_t, if it
5482 5482   * hasn't already been done. Additionally, log statistics for the link as
5483 5483   * well. Walk the flow table and log information for each flow as well.
5484 5484   * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
5485 5485   * also fe_desc_logged, if flow logging is on) since we want to log the
5486 5486   * description if and when logging is restarted.
5487 5487   *
5488 5488   * Return 0 upon success or -1 upon failure
5489 5489   */
5490 5490  static int
5491 5491  i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate)
5492 5492  {
5493 5493          mac_client_impl_t       *mcip;
5494 5494          netinfo_t               *ninfo;
5495 5495  
5496 5496          i_mac_perim_enter(mip);
5497 5497          /*
5498 5498           * Only walk the client list for NIC and etherstub
5499 5499           */
5500 5500          if ((mip->mi_state_flags & MIS_DISABLED) ||
5501 5501              ((mip->mi_state_flags & MIS_IS_VNIC) &&
5502 5502              (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) {
5503 5503                  i_mac_perim_exit(mip);
5504 5504                  return (0);
5505 5505          }
5506 5506  
5507 5507          for (mcip = mip->mi_clients_list; mcip != NULL;
5508 5508              mcip = mcip->mci_client_next) {
5509 5509                  if (!MCIP_DATAPATH_SETUP(mcip))
5510 5510                          continue;
5511 5511                  if (lstate->mi_lenable) {
5512 5512                          if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
5513 5513                                  ninfo = mac_write_link_desc(mcip);
5514 5514                                  if (ninfo == NULL) {
5515 5515                                  /*
5516 5516                                   * We can't terminate it if this is the last
5517 5517                                   * walk, else there might be some links with
5518 5518                                   * mi_desc_logged set to true, which means
5519 5519                                   * their description won't be logged the next
5520 5520                                   * time logging is started (similarly for the
5521 5521                                   * flows within such links). We can continue
5522 5522                                   * without walking the flow table (i.e. to
5523 5523                                   * set fe_desc_logged to false) because we
5524 5524                                   * won't have written any flow stuff for this
5525 5525                                   * link as we haven't logged the link itself.
5526 5526                                   */
5527 5527                                          i_mac_perim_exit(mip);
5528 5528                                          if (lstate->mi_last)
5529 5529                                                  return (0);
5530 5530                                          else
5531 5531                                                  return (-1);
5532 5532                                  }
5533 5533                                  mcip->mci_state_flags |= MCIS_DESC_LOGGED;
5534 5534                                  list_insert_tail(lstate->mi_list, ninfo);
5535 5535                          }
5536 5536                  }
5537 5537  
5538 5538                  ninfo = mac_write_link_stats(mcip);
5539 5539                  if (ninfo == NULL && !lstate->mi_last) {
5540 5540                          i_mac_perim_exit(mip);
5541 5541                          return (-1);
5542 5542                  }
5543 5543                  list_insert_tail(lstate->mi_list, ninfo);
5544 5544  
5545 5545                  if (lstate->mi_last)
5546 5546                          mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
5547 5547  
5548 5548                  if (lstate->mi_fenable) {
5549 5549                          if (mcip->mci_subflow_tab != NULL) {
5550 5550                                  (void) mac_flow_walk_nolock(
5551 5551                                      mcip->mci_subflow_tab, mac_log_flowinfo,
5552 5552                                      lstate);
5553 5553                          }
5554 5554                  }
5555 5555          }
5556 5556          i_mac_perim_exit(mip);
5557 5557          return (0);
5558 5558  }
5559 5559  
5560 5560  /*
5561 5561   * modhash walker function to add a mac_impl_t to a list
5562 5562   */
5563 5563  /*ARGSUSED*/
5564 5564  static uint_t
5565 5565  i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5566 5566  {
5567 5567          list_t                  *list = (list_t *)arg;
5568 5568          mac_impl_t              *mip = (mac_impl_t *)val;
5569 5569  
5570 5570          if ((mip->mi_state_flags & MIS_DISABLED) == 0) {
5571 5571                  list_insert_tail(list, mip);
5572 5572                  mip->mi_ref++;
5573 5573          }
5574 5574  
5575 5575          return (MH_WALK_CONTINUE);
5576 5576  }
5577 5577  
5578 5578  void
5579 5579  i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate)
5580 5580  {
5581 5581          list_t                  mac_impl_list;
5582 5582          mac_impl_t              *mip;
5583 5583          netinfo_t               *ninfo;
5584 5584  
5585 5585          /* Create list of mac_impls */
5586 5586          ASSERT(RW_LOCK_HELD(&i_mac_impl_lock));
5587 5587          list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t,
5588 5588              mi_node));
5589 5589          mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list);
5590 5590          rw_exit(&i_mac_impl_lock);
5591 5591  
5592 5592          /* Create log entries for each mac_impl */
5593 5593          for (mip = list_head(&mac_impl_list); mip != NULL;
5594 5594              mip = list_next(&mac_impl_list, mip)) {
5595 5595                  if (i_mac_impl_log(mip, lstate) != 0)
5596 5596                          continue;
5597 5597          }
5598 5598  
5599 5599          /* Remove elements and destroy list of mac_impls */
5600 5600          rw_enter(&i_mac_impl_lock, RW_WRITER);
5601 5601          while ((mip = list_remove_tail(&mac_impl_list)) != NULL) {
5602 5602                  mip->mi_ref--;
5603 5603          }
5604 5604          rw_exit(&i_mac_impl_lock);
5605 5605          list_destroy(&mac_impl_list);
5606 5606  
5607 5607          /*
5608 5608           * Write log entries to files outside of locks, free associated
5609 5609           * structures, and remove entries from the list.
5610 5610           */
5611 5611          while ((ninfo = list_head(net_log_list)) != NULL) {
5612 5612                  (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type);
5613 5613                  list_remove(net_log_list, ninfo);
5614 5614                  kmem_free(ninfo->ni_record, ninfo->ni_size);
5615 5615                  kmem_free(ninfo, sizeof (*ninfo));
5616 5616          }
5617 5617          list_destroy(net_log_list);
5618 5618  }
5619 5619  
5620 5620  /*
5621 5621   * The timer thread that runs every mac_logging_interval seconds and logs
5622 5622   * link and/or flow information.
5623 5623   */
5624 5624  /* ARGSUSED */
5625 5625  void
5626 5626  mac_log_linkinfo(void *arg)
5627 5627  {
5628 5628          i_mac_log_state_t       lstate;
5629 5629          list_t                  net_log_list;
5630 5630  
5631 5631          list_create(&net_log_list, sizeof (netinfo_t),
5632 5632              offsetof(netinfo_t, ni_link));
5633 5633  
5634 5634          rw_enter(&i_mac_impl_lock, RW_READER);
5635 5635          if (!mac_flow_log_enable && !mac_link_log_enable) {
5636 5636                  rw_exit(&i_mac_impl_lock);
5637 5637                  return;
5638 5638          }
5639 5639          lstate.mi_fenable = mac_flow_log_enable;
5640 5640          lstate.mi_lenable = mac_link_log_enable;
5641 5641          lstate.mi_last = B_FALSE;
5642 5642          lstate.mi_list = &net_log_list;
5643 5643  
5644 5644          /* Write log entries for each mac_impl in the list */
5645 5645          i_mac_log_info(&net_log_list, &lstate);
5646 5646  
5647 5647          if (mac_flow_log_enable || mac_link_log_enable) {
5648 5648                  mac_logging_timer = timeout(mac_log_linkinfo, NULL,
5649 5649                      SEC_TO_TICK(mac_logging_interval));
5650 5650          }
5651 5651  }
5652 5652  
5653 5653  typedef struct i_mac_fastpath_state_s {
5654 5654          boolean_t       mf_disable;
5655 5655          int             mf_err;
5656 5656  } i_mac_fastpath_state_t;
5657 5657  
5658 5658  /* modhash walker function to enable or disable fastpath */
5659 5659  /*ARGSUSED*/
5660 5660  static uint_t
5661 5661  i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val,
5662 5662      void *arg)
5663 5663  {
5664 5664          i_mac_fastpath_state_t  *state = arg;
5665 5665          mac_handle_t            mh = (mac_handle_t)val;
5666 5666  
5667 5667          if (state->mf_disable)
5668 5668                  state->mf_err = mac_fastpath_disable(mh);
5669 5669          else
5670 5670                  mac_fastpath_enable(mh);
5671 5671  
5672 5672          return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
5673 5673  }
5674 5674  
5675 5675  /*
5676 5676   * Start the logging timer.
5677 5677   */
5678 5678  int
5679 5679  mac_start_logusage(mac_logtype_t type, uint_t interval)
5680 5680  {
5681 5681          i_mac_fastpath_state_t  dstate = {B_TRUE, 0};
5682 5682          i_mac_fastpath_state_t  estate = {B_FALSE, 0};
5683 5683          int                     err;
5684 5684  
5685 5685          rw_enter(&i_mac_impl_lock, RW_WRITER);
5686 5686          switch (type) {
5687 5687          case MAC_LOGTYPE_FLOW:
5688 5688                  if (mac_flow_log_enable) {
5689 5689                          rw_exit(&i_mac_impl_lock);
5690 5690                          return (0);
5691 5691                  }
5692 5692                  /* FALLTHRU */
5693 5693          case MAC_LOGTYPE_LINK:
5694 5694                  if (mac_link_log_enable) {
5695 5695                          rw_exit(&i_mac_impl_lock);
5696 5696                          return (0);
5697 5697                  }
5698 5698                  break;
5699 5699          default:
5700 5700                  ASSERT(0);
5701 5701          }
5702 5702  
5703 5703          /* Disable fastpath */
5704 5704          mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate);
5705 5705          if ((err = dstate.mf_err) != 0) {
5706 5706                  /* Reenable fastpath  */
5707 5707                  mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5708 5708                  rw_exit(&i_mac_impl_lock);
5709 5709                  return (err);
5710 5710          }
5711 5711  
5712 5712          switch (type) {
5713 5713          case MAC_LOGTYPE_FLOW:
5714 5714                  mac_flow_log_enable = B_TRUE;
5715 5715                  /* FALLTHRU */
5716 5716          case MAC_LOGTYPE_LINK:
5717 5717                  mac_link_log_enable = B_TRUE;
5718 5718                  break;
5719 5719          }
5720 5720  
5721 5721          mac_logging_interval = interval;
5722 5722          rw_exit(&i_mac_impl_lock);
5723 5723          mac_log_linkinfo(NULL);
5724 5724          return (0);
5725 5725  }
5726 5726  
5727 5727  /*
5728 5728   * Stop the logging timer if both link and flow logging are turned off.
5729 5729   */
5730 5730  void
5731 5731  mac_stop_logusage(mac_logtype_t type)
5732 5732  {
5733 5733          i_mac_log_state_t       lstate;
5734 5734          i_mac_fastpath_state_t  estate = {B_FALSE, 0};
5735 5735          list_t                  net_log_list;
5736 5736  
5737 5737          list_create(&net_log_list, sizeof (netinfo_t),
5738 5738              offsetof(netinfo_t, ni_link));
5739 5739  
5740 5740          rw_enter(&i_mac_impl_lock, RW_WRITER);
5741 5741  
5742 5742          lstate.mi_fenable = mac_flow_log_enable;
5743 5743          lstate.mi_lenable = mac_link_log_enable;
5744 5744          lstate.mi_list = &net_log_list;
5745 5745  
5746 5746          /* Last walk */
5747 5747          lstate.mi_last = B_TRUE;
5748 5748  
5749 5749          switch (type) {
5750 5750          case MAC_LOGTYPE_FLOW:
5751 5751                  if (lstate.mi_fenable) {
5752 5752                          ASSERT(mac_link_log_enable);
5753 5753                          mac_flow_log_enable = B_FALSE;
5754 5754                          mac_link_log_enable = B_FALSE;
5755 5755                          break;
5756 5756                  }
5757 5757                  /* FALLTHRU */
5758 5758          case MAC_LOGTYPE_LINK:
5759 5759                  if (!lstate.mi_lenable || mac_flow_log_enable) {
5760 5760                          rw_exit(&i_mac_impl_lock);
5761 5761                          return;
5762 5762                  }
5763 5763                  mac_link_log_enable = B_FALSE;
5764 5764                  break;
5765 5765          default:
5766 5766                  ASSERT(0);
5767 5767          }
5768 5768  
5769 5769          /* Reenable fastpath */
5770 5770          mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5771 5771  
5772 5772          (void) untimeout(mac_logging_timer);
5773 5773          mac_logging_timer = 0;
5774 5774  
5775 5775          /* Write log entries for each mac_impl in the list */
5776 5776          i_mac_log_info(&net_log_list, &lstate);
5777 5777  }
5778 5778  
5779 5779  /*
5780 5780   * Walk the rx and tx SRS/SRs for a flow and update the priority value.
5781 5781   */
5782 5782  void
5783 5783  mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
5784 5784  {
5785 5785          pri_t                   pri;
5786 5786          int                     count;
5787 5787          mac_soft_ring_set_t     *mac_srs;
5788 5788  
5789 5789          if (flent->fe_rx_srs_cnt <= 0)
5790 5790                  return;
5791 5791  
5792 5792          if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
5793 5793              SRST_FLOW) {
5794 5794                  pri = FLOW_PRIORITY(mcip->mci_min_pri,
5795 5795                      mcip->mci_max_pri,
5796 5796                      flent->fe_resource_props.mrp_priority);
5797 5797          } else {
5798 5798                  pri = mcip->mci_max_pri;
5799 5799          }
5800 5800  
5801 5801          for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
5802 5802                  mac_srs = flent->fe_rx_srs[count];
5803 5803                  mac_update_srs_priority(mac_srs, pri);
5804 5804          }
5805 5805          /*
5806 5806           * If we have a Tx SRS, we need to modify all the threads associated
5807 5807           * with it.
5808 5808           */
5809 5809          if (flent->fe_tx_srs != NULL)
5810 5810                  mac_update_srs_priority(flent->fe_tx_srs, pri);
5811 5811  }
5812 5812  
5813 5813  /*
5814 5814   * RX and TX rings are reserved according to different semantics depending
5815 5815   * on the requests from the MAC clients and type of rings:
5816 5816   *
5817 5817   * On the Tx side, by default we reserve individual rings, independently from
5818 5818   * the groups.
5819 5819   *
5820 5820   * On the Rx side, the reservation is at the granularity of the group
5821 5821   * of rings, and used for v12n level 1 only. It has a special case for the
5822 5822   * primary client.
5823 5823   *
5824 5824   * If a share is allocated to a MAC client, we allocate a TX group and an
5825 5825   * RX group to the client, and assign TX rings and RX rings to these
5826 5826   * groups according to information gathered from the driver through
5827 5827   * the share capability.
5828 5828   *
5829 5829   * The foreseable evolution of Rx rings will handle v12n level 2 and higher
5830 5830   * to allocate individual rings out of a group and program the hw classifier
5831 5831   * based on IP address or higher level criteria.
5832 5832   */
5833 5833  
5834 5834  /*
5835 5835   * mac_reserve_tx_ring()
5836 5836   * Reserve a unused ring by marking it with MR_INUSE state.
5837 5837   * As reserved, the ring is ready to function.
5838 5838   *
5839 5839   * Notes for Hybrid I/O:
5840 5840   *
5841 5841   * If a specific ring is needed, it is specified through the desired_ring
5842 5842   * argument. Otherwise that argument is set to NULL.
5843 5843   * If the desired ring was previous allocated to another client, this
5844 5844   * function swaps it with a new ring from the group of unassigned rings.
5845 5845   */
5846 5846  mac_ring_t *
5847 5847  mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
5848 5848  {
5849 5849          mac_group_t             *group;
5850 5850          mac_grp_client_t        *mgcp;
5851 5851          mac_client_impl_t       *mcip;
5852 5852          mac_soft_ring_set_t     *srs;
5853 5853  
5854 5854          ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5855 5855  
5856 5856          /*
5857 5857           * Find an available ring and start it before changing its status.
5858 5858           * The unassigned rings are at the end of the mi_tx_groups
5859 5859           * array.
5860 5860           */
5861 5861          group = MAC_DEFAULT_TX_GROUP(mip);
5862 5862  
5863 5863          /* Can't take the default ring out of the default group */
5864 5864          ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring);
5865 5865  
5866 5866          if (desired_ring->mr_state == MR_FREE) {
5867 5867                  ASSERT(MAC_GROUP_NO_CLIENT(group));
5868 5868                  if (mac_start_ring(desired_ring) != 0)
5869 5869                          return (NULL);
5870 5870                  return (desired_ring);
5871 5871          }
5872 5872          /*
5873 5873           * There are clients using this ring, so let's move the clients
5874 5874           * away from using this ring.
5875 5875           */
5876 5876          for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
5877 5877                  mcip = mgcp->mgc_client;
5878 5878                  mac_tx_client_quiesce((mac_client_handle_t)mcip);
5879 5879                  srs = MCIP_TX_SRS(mcip);
5880 5880                  ASSERT(mac_tx_srs_ring_present(srs, desired_ring));
5881 5881                  mac_tx_invoke_callbacks(mcip,
5882 5882                      (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs,
5883 5883                      desired_ring));
5884 5884                  mac_tx_srs_del_ring(srs, desired_ring);
5885 5885                  mac_tx_client_restart((mac_client_handle_t)mcip);
5886 5886          }
5887 5887          return (desired_ring);
5888 5888  }
5889 5889  
5890 5890  /*
5891 5891   * For a reserved group with multiple clients, return the primary client.
5892 5892   */
5893 5893  static mac_client_impl_t *
5894 5894  mac_get_grp_primary(mac_group_t *grp)
5895 5895  {
5896 5896          mac_grp_client_t        *mgcp = grp->mrg_clients;
5897 5897          mac_client_impl_t       *mcip;
5898 5898  
5899 5899          while (mgcp != NULL) {
5900 5900                  mcip = mgcp->mgc_client;
5901 5901                  if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC)
5902 5902                          return (mcip);
5903 5903                  mgcp = mgcp->mgc_next;
5904 5904          }
5905 5905          return (NULL);
5906 5906  }
5907 5907  
5908 5908  /*
5909 5909   * Hybrid I/O specifies the ring that should be given to a share.
5910 5910   * If the ring is already used by clients, then we need to release
5911 5911   * the ring back to the default group so that we can give it to
5912 5912   * the share. This means the clients using this ring now get a
5913 5913   * replacement ring. If there aren't any replacement rings, this
5914 5914   * function returns a failure.
5915 5915   */
5916 5916  static int
5917 5917  mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type,
5918 5918      mac_ring_t *ring, mac_ring_t **rings, int nrings)
5919 5919  {
5920 5920          mac_group_t             *group = (mac_group_t *)ring->mr_gh;
5921 5921          mac_resource_props_t    *mrp;
5922 5922          mac_client_impl_t       *mcip;
5923 5923          mac_group_t             *defgrp;
5924 5924          mac_ring_t              *tring;
5925 5925          mac_group_t             *tgrp;
5926 5926          int                     i;
5927 5927          int                     j;
5928 5928  
5929 5929          mcip = MAC_GROUP_ONLY_CLIENT(group);
5930 5930          if (mcip == NULL)
5931 5931                  mcip = mac_get_grp_primary(group);
5932 5932          ASSERT(mcip != NULL);
5933 5933          ASSERT(mcip->mci_share == NULL);
5934 5934  
5935 5935          mrp = MCIP_RESOURCE_PROPS(mcip);
5936 5936          if (ring_type == MAC_RING_TYPE_RX) {
5937 5937                  defgrp = mip->mi_rx_donor_grp;
5938 5938                  if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) {
5939 5939                          /* Need to put this mac client in the default group */
5940 5940                          if (mac_rx_switch_group(mcip, group, defgrp) != 0)
5941 5941                                  return (ENOSPC);
5942 5942                  } else {
5943 5943                          /*
5944 5944                           * Switch this ring with some other ring from
5945 5945                           * the default group.
5946 5946                           */
5947 5947                          for (tring = defgrp->mrg_rings; tring != NULL;
5948 5948                              tring = tring->mr_next) {
5949 5949                                  if (tring->mr_index == 0)
5950 5950                                          continue;
5951 5951                                  for (j = 0; j < nrings; j++) {
5952 5952                                          if (rings[j] == tring)
5953 5953                                                  break;
5954 5954                                  }
5955 5955                                  if (j >= nrings)
5956 5956                                          break;
5957 5957                          }
5958 5958                          if (tring == NULL)
5959 5959                                  return (ENOSPC);
5960 5960                          if (mac_group_mov_ring(mip, group, tring) != 0)
5961 5961                                  return (ENOSPC);
5962 5962                          if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
5963 5963                                  (void) mac_group_mov_ring(mip, defgrp, tring);
5964 5964                                  return (ENOSPC);
5965 5965                          }
5966 5966                  }
5967 5967                  ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
5968 5968                  return (0);
5969 5969          }
5970 5970  
5971 5971          defgrp = MAC_DEFAULT_TX_GROUP(mip);
5972 5972          if (ring == (mac_ring_t *)mip->mi_default_tx_ring) {
5973 5973                  /*
5974 5974                   * See if we can get a spare ring to replace the default
5975 5975                   * ring.
5976 5976                   */
5977 5977                  if (defgrp->mrg_cur_count == 1) {
5978 5978                          /*
5979 5979                           * Need to get a ring from another client, see if
5980 5980                           * there are any clients that can be moved to
5981 5981                           * the default group, thereby freeing some rings.
5982 5982                           */
5983 5983                          for (i = 0; i < mip->mi_tx_group_count; i++) {
5984 5984                                  tgrp = &mip->mi_tx_groups[i];
5985 5985                                  if (tgrp->mrg_state ==
5986 5986                                      MAC_GROUP_STATE_REGISTERED) {
5987 5987                                          continue;
5988 5988                                  }
5989 5989                                  mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
5990 5990                                  if (mcip == NULL)
5991 5991                                          mcip = mac_get_grp_primary(tgrp);
5992 5992                                  ASSERT(mcip != NULL);
5993 5993                                  mrp = MCIP_RESOURCE_PROPS(mcip);
5994 5994                                  if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
5995 5995                                          ASSERT(tgrp->mrg_cur_count == 1);
5996 5996                                          /*
5997 5997                                           * If this ring is part of the
5998 5998                                           * rings asked by the share we cannot
5999 5999                                           * use it as the default ring.
6000 6000                                           */
6001 6001                                          for (j = 0; j < nrings; j++) {
6002 6002                                                  if (rings[j] == tgrp->mrg_rings)
6003 6003                                                          break;
6004 6004                                          }
6005 6005                                          if (j < nrings)
6006 6006                                                  continue;
6007 6007                                          mac_tx_client_quiesce(
6008 6008                                              (mac_client_handle_t)mcip);
6009 6009                                          mac_tx_switch_group(mcip, tgrp,
6010 6010                                              defgrp);
6011 6011                                          mac_tx_client_restart(
6012 6012                                              (mac_client_handle_t)mcip);
6013 6013                                          break;
6014 6014                                  }
6015 6015                          }
6016 6016                          /*
6017 6017                           * All the rings are reserved, can't give up the
6018 6018                           * default ring.
6019 6019                           */
6020 6020                          if (defgrp->mrg_cur_count <= 1)
6021 6021                                  return (ENOSPC);
6022 6022                  }
6023 6023                  /*
6024 6024                   * Swap the default ring with another.
6025 6025                   */
6026 6026                  for (tring = defgrp->mrg_rings; tring != NULL;
6027 6027                      tring = tring->mr_next) {
6028 6028                          /*
6029 6029                           * If this ring is part of the rings asked by the
6030 6030                           * share we cannot use it as the default ring.
6031 6031                           */
6032 6032                          for (j = 0; j < nrings; j++) {
6033 6033                                  if (rings[j] == tring)
6034 6034                                          break;
6035 6035                          }
6036 6036                          if (j >= nrings)
6037 6037                                  break;
6038 6038                  }
6039 6039                  ASSERT(tring != NULL);
6040 6040                  mip->mi_default_tx_ring = (mac_ring_handle_t)tring;
6041 6041                  return (0);
6042 6042          }
6043 6043          /*
6044 6044           * The Tx ring is with a group reserved by a MAC client. See if
6045 6045           * we can swap it.
6046 6046           */
6047 6047          ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6048 6048          mcip = MAC_GROUP_ONLY_CLIENT(group);
6049 6049          if (mcip == NULL)
6050 6050                  mcip = mac_get_grp_primary(group);
6051 6051          ASSERT(mcip !=  NULL);
6052 6052          mrp = MCIP_RESOURCE_PROPS(mcip);
6053 6053          mac_tx_client_quiesce((mac_client_handle_t)mcip);
6054 6054          if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6055 6055                  ASSERT(group->mrg_cur_count == 1);
6056 6056                  /* Put this mac client in the default group */
6057 6057                  mac_tx_switch_group(mcip, group, defgrp);
6058 6058          } else {
6059 6059                  /*
6060 6060                   * Switch this ring with some other ring from
6061 6061                   * the default group.
6062 6062                   */
6063 6063                  for (tring = defgrp->mrg_rings; tring != NULL;
6064 6064                      tring = tring->mr_next) {
6065 6065                          if (tring == (mac_ring_t *)mip->mi_default_tx_ring)
6066 6066                                  continue;
6067 6067                          /*
6068 6068                           * If this ring is part of the rings asked by the
6069 6069                           * share we cannot use it for swapping.
6070 6070                           */
6071 6071                          for (j = 0; j < nrings; j++) {
6072 6072                                  if (rings[j] == tring)
6073 6073                                          break;
6074 6074                          }
6075 6075                          if (j >= nrings)
6076 6076                                  break;
6077 6077                  }
6078 6078                  if (tring == NULL) {
6079 6079                          mac_tx_client_restart((mac_client_handle_t)mcip);
6080 6080                          return (ENOSPC);
6081 6081                  }
6082 6082                  if (mac_group_mov_ring(mip, group, tring) != 0) {
6083 6083                          mac_tx_client_restart((mac_client_handle_t)mcip);
6084 6084                          return (ENOSPC);
6085 6085                  }
6086 6086                  if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6087 6087                          (void) mac_group_mov_ring(mip, defgrp, tring);
6088 6088                          mac_tx_client_restart((mac_client_handle_t)mcip);
6089 6089                          return (ENOSPC);
6090 6090                  }
6091 6091          }
6092 6092          mac_tx_client_restart((mac_client_handle_t)mcip);
6093 6093          ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6094 6094          return (0);
6095 6095  }
6096 6096  
6097 6097  /*
6098 6098   * Populate a zero-ring group with rings. If the share is non-NULL,
6099 6099   * the rings are chosen according to that share.
6100 6100   * Invoked after allocating a new RX or TX group through
6101 6101   * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
6102 6102   * Returns zero on success, an errno otherwise.
6103 6103   */
6104 6104  int
6105 6105  i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
6106 6106      mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share,
6107 6107      uint32_t ringcnt)
6108 6108  {
6109 6109          mac_ring_t **rings, *ring;
6110 6110          uint_t nrings;
6111 6111          int rv = 0, i = 0, j;
6112 6112  
6113 6113          ASSERT((ring_type == MAC_RING_TYPE_RX &&
6114 6114              mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) ||
6115 6115              (ring_type == MAC_RING_TYPE_TX &&
6116 6116              mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC));
6117 6117  
6118 6118          /*
6119 6119           * First find the rings to allocate to the group.
6120 6120           */
6121 6121          if (share != NULL) {
6122 6122                  /* get rings through ms_squery() */
6123 6123                  mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
6124 6124                  ASSERT(nrings != 0);
6125 6125                  rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
6126 6126                      KM_SLEEP);
6127 6127                  mip->mi_share_capab.ms_squery(share, ring_type,
6128 6128                      (mac_ring_handle_t *)rings, &nrings);
6129 6129                  for (i = 0; i < nrings; i++) {
6130 6130                          /*
6131 6131                           * If we have given this ring to a non-default
6132 6132                           * group, we need to check if we can get this
6133 6133                           * ring.
6134 6134                           */
6135 6135                          ring = rings[i];
6136 6136                          if (ring->mr_gh != (mac_group_handle_t)src_group ||
6137 6137                              ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6138 6138                                  if (mac_reclaim_ring_from_grp(mip, ring_type,
6139 6139                                      ring, rings, nrings) != 0) {
6140 6140                                          rv = ENOSPC;
6141 6141                                          goto bail;
6142 6142                                  }
6143 6143                          }
6144 6144                  }
6145 6145          } else {
6146 6146                  /*
6147 6147                   * Pick one ring from default group.
6148 6148                   *
6149 6149                   * for now pick the second ring which requires the first ring
6150 6150                   * at index 0 to stay in the default group, since it is the
6151 6151                   * ring which carries the multicast traffic.
6152 6152                   * We need a better way for a driver to indicate this,
6153 6153                   * for example a per-ring flag.
6154 6154                   */
6155 6155                  rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t),
6156 6156                      KM_SLEEP);
6157 6157                  for (ring = src_group->mrg_rings; ring != NULL;
6158 6158                      ring = ring->mr_next) {
6159 6159                          if (ring_type == MAC_RING_TYPE_RX &&
6160 6160                              ring->mr_index == 0) {
6161 6161                                  continue;
6162 6162                          }
6163 6163                          if (ring_type == MAC_RING_TYPE_TX &&
6164 6164                              ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6165 6165                                  continue;
6166 6166                          }
6167 6167                          rings[i++] = ring;
6168 6168                          if (i == ringcnt)
6169 6169                                  break;
6170 6170                  }
6171 6171                  ASSERT(ring != NULL);
6172 6172                  nrings = i;
6173 6173                  /* Not enough rings as required */
6174 6174                  if (nrings != ringcnt) {
6175 6175                          rv = ENOSPC;
6176 6176                          goto bail;
6177 6177                  }
6178 6178          }
6179 6179  
6180 6180          switch (ring_type) {
6181 6181          case MAC_RING_TYPE_RX:
6182 6182                  if (src_group->mrg_cur_count - nrings < 1) {
6183 6183                          /* we ran out of rings */
6184 6184                          rv = ENOSPC;
6185 6185                          goto bail;
6186 6186                  }
6187 6187  
6188 6188                  /* move receive rings to new group */
6189 6189                  for (i = 0; i < nrings; i++) {
6190 6190                          rv = mac_group_mov_ring(mip, new_group, rings[i]);
6191 6191                          if (rv != 0) {
6192 6192                                  /* move rings back on failure */
6193 6193                                  for (j = 0; j < i; j++) {
6194 6194                                          (void) mac_group_mov_ring(mip,
6195 6195                                              src_group, rings[j]);
6196 6196                                  }
6197 6197                                  goto bail;
6198 6198                          }
6199 6199                  }
6200 6200                  break;
6201 6201  
6202 6202          case MAC_RING_TYPE_TX: {
6203 6203                  mac_ring_t *tmp_ring;
6204 6204  
6205 6205                  /* move the TX rings to the new group */
6206 6206                  for (i = 0; i < nrings; i++) {
6207 6207                          /* get the desired ring */
6208 6208                          tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
6209 6209                          if (tmp_ring == NULL) {
6210 6210                                  rv = ENOSPC;
6211 6211                                  goto bail;
6212 6212                          }
6213 6213                          ASSERT(tmp_ring == rings[i]);
6214 6214                          rv = mac_group_mov_ring(mip, new_group, rings[i]);
6215 6215                          if (rv != 0) {
6216 6216                                  /* cleanup on failure */
6217 6217                                  for (j = 0; j < i; j++) {
6218 6218                                          (void) mac_group_mov_ring(mip,
6219 6219                                              MAC_DEFAULT_TX_GROUP(mip),
6220 6220                                              rings[j]);
6221 6221                                  }
6222 6222                                  goto bail;
6223 6223                          }
6224 6224                  }
6225 6225                  break;
6226 6226          }
6227 6227          }
6228 6228  
6229 6229          /* add group to share */
6230 6230          if (share != NULL)
6231 6231                  mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
6232 6232  
6233 6233  bail:
6234 6234          /* free temporary array of rings */
6235 6235          kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
6236 6236  
6237 6237          return (rv);
6238 6238  }
6239 6239  
6240 6240  void
6241 6241  mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
6242 6242  {
6243 6243          mac_grp_client_t *mgcp;
6244 6244  
6245 6245          for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6246 6246                  if (mgcp->mgc_client == mcip)
6247 6247                          break;
6248 6248          }
6249 6249  
6250 6250          VERIFY(mgcp == NULL);
6251 6251  
6252 6252          mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
6253 6253          mgcp->mgc_client = mcip;
6254 6254          mgcp->mgc_next = grp->mrg_clients;
6255 6255          grp->mrg_clients = mgcp;
6256 6256  
6257 6257  }
6258 6258  
6259 6259  void
6260 6260  mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
6261 6261  {
6262 6262          mac_grp_client_t *mgcp, **pprev;
6263 6263  
6264 6264          for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
6265 6265              pprev = &mgcp->mgc_next, mgcp = *pprev) {
6266 6266                  if (mgcp->mgc_client == mcip)
6267 6267                          break;
6268 6268          }
6269 6269  
6270 6270          ASSERT(mgcp != NULL);
6271 6271  
6272 6272          *pprev = mgcp->mgc_next;
6273 6273          kmem_free(mgcp, sizeof (mac_grp_client_t));
6274 6274  }
6275 6275  
6276 6276  /*
6277 6277   * mac_reserve_rx_group()
6278 6278   *
6279 6279   * Finds an available group and exclusively reserves it for a client.
6280 6280   * The group is chosen to suit the flow's resource controls (bandwidth and
6281 6281   * fanout requirements) and the address type.
6282 6282   * If the requestor is the pimary MAC then return the group with the
6283 6283   * largest number of rings, otherwise the default ring when available.
6284 6284   */
6285 6285  mac_group_t *
6286 6286  mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move)
6287 6287  {
6288 6288          mac_share_handle_t      share = mcip->mci_share;
6289 6289          mac_impl_t              *mip = mcip->mci_mip;
6290 6290          mac_group_t             *grp = NULL;
6291 6291          int                     i;
6292 6292          int                     err = 0;
6293 6293          mac_address_t           *map;
6294 6294          mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
6295 6295          int                     nrings;
6296 6296          int                     donor_grp_rcnt;
6297 6297          boolean_t               need_exclgrp = B_FALSE;
6298 6298          int                     need_rings = 0;
6299 6299          mac_group_t             *candidate_grp = NULL;
6300 6300          mac_client_impl_t       *gclient;
6301 6301          mac_resource_props_t    *gmrp;
6302 6302          mac_group_t             *donorgrp = NULL;
6303 6303          boolean_t               rxhw = mrp->mrp_mask & MRP_RX_RINGS;
6304 6304          boolean_t               unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
6305 6305          boolean_t               isprimary;
6306 6306  
6307 6307          ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6308 6308  
6309 6309          isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6310 6310  
6311 6311          /*
6312 6312           * Check if a group already has this mac address (case of VLANs)
6313 6313           * unless we are moving this MAC client from one group to another.
6314 6314           */
6315 6315          if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) {
6316 6316                  if (map->ma_group != NULL)
6317 6317                          return (map->ma_group);
6318 6318          }
6319 6319          if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0)
6320 6320                  return (NULL);
6321 6321          /*
6322 6322           * If exclusive open, return NULL which will enable the
6323 6323           * caller to use the default group.
6324 6324           */
6325 6325          if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
6326 6326                  return (NULL);
6327 6327  
6328 6328          /* For dynamic groups default unspecified to 1 */
6329 6329          if (rxhw && unspec &&
6330 6330              mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6331 6331                  mrp->mrp_nrxrings = 1;
6332 6332          }
6333 6333          /*
6334 6334           * For static grouping we allow only specifying rings=0 and
6335 6335           * unspecified
6336 6336           */
6337 6337          if (rxhw && mrp->mrp_nrxrings > 0 &&
6338 6338              mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) {
6339 6339                  return (NULL);
6340 6340          }
6341 6341          if (rxhw) {
6342 6342                  /*
6343 6343                   * We have explicitly asked for a group (with nrxrings,
6344 6344                   * if unspec).
6345 6345                   */
6346 6346                  if (unspec || mrp->mrp_nrxrings > 0) {
6347 6347                          need_exclgrp = B_TRUE;
6348 6348                          need_rings = mrp->mrp_nrxrings;
6349 6349                  } else if (mrp->mrp_nrxrings == 0) {
6350 6350                          /*
6351 6351                           * We have asked for a software group.
6352 6352                           */
6353 6353                          return (NULL);
6354 6354                  }
6355 6355          } else if (isprimary && mip->mi_nactiveclients == 1 &&
6356 6356              mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6357 6357                  /*
6358 6358                   * If the primary is the only active client on this
6359 6359                   * mip and we have not asked for any rings, we give
6360 6360                   * it the default group so that the primary gets to
6361 6361                   * use all the rings.
6362 6362                   */
6363 6363                  return (NULL);
6364 6364          }
6365 6365  
6366 6366          /* The group that can donate rings */
6367 6367          donorgrp = mip->mi_rx_donor_grp;
6368 6368  
6369 6369          /*
6370 6370           * The number of rings that the default group can donate.
6371 6371           * We need to leave at least one ring.
6372 6372           */
6373 6373          donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6374 6374  
6375 6375          /*
6376 6376           * Try to exclusively reserve a RX group.
6377 6377           *
6378 6378           * For flows requiring HW_DEFAULT_RING (unicast flow of the primary
6379 6379           * client), try to reserve the a non-default RX group and give
6380 6380           * it all the rings from the donor group, except the default ring
6381 6381           *
6382 6382           * For flows requiring HW_RING (unicast flow of other clients), try
6383 6383           * to reserve non-default RX group with the specified number of
6384 6384           * rings, if available.
6385 6385           *
6386 6386           * For flows that have not asked for software or hardware ring,
6387 6387           * try to reserve a non-default group with 1 ring, if available.
6388 6388           */
6389 6389          for (i = 1; i < mip->mi_rx_group_count; i++) {
6390 6390                  grp = &mip->mi_rx_groups[i];
6391 6391  
6392 6392                  DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
6393 6393                      int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
6394 6394  
6395 6395                  /*
6396 6396                   * Check if this group could be a candidate group for
6397 6397                   * eviction if we need a group for this MAC client,
6398 6398                   * but there aren't any. A candidate group is one
6399 6399                   * that didn't ask for an exclusive group, but got
6400 6400                   * one and it has enough rings (combined with what
6401 6401                   * the donor group can donate) for the new MAC
6402 6402                   * client
6403 6403                   */
6404 6404                  if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) {
6405 6405                          /*
6406 6406                           * If the primary/donor group is not the default
6407 6407                           * group, don't bother looking for a candidate group.
6408 6408                           * If we don't have enough rings we will check
6409 6409                           * if the primary group can be vacated.
6410 6410                           */
6411 6411                          if (candidate_grp == NULL &&
6412 6412                              donorgrp == MAC_DEFAULT_RX_GROUP(mip)) {
6413 6413                                  ASSERT(!MAC_GROUP_NO_CLIENT(grp));
6414 6414                                  gclient = MAC_GROUP_ONLY_CLIENT(grp);
6415 6415                                  if (gclient == NULL)
6416 6416                                          gclient = mac_get_grp_primary(grp);
6417 6417                                  ASSERT(gclient != NULL);
6418 6418                                  gmrp = MCIP_RESOURCE_PROPS(gclient);
6419 6419                                  if (gclient->mci_share == NULL &&
6420 6420                                      (gmrp->mrp_mask & MRP_RX_RINGS) == 0 &&
6421 6421                                      (unspec ||
6422 6422                                      (grp->mrg_cur_count + donor_grp_rcnt >=
6423 6423                                      need_rings))) {
6424 6424                                          candidate_grp = grp;
6425 6425                                  }
6426 6426                          }
6427 6427                          continue;
6428 6428                  }
6429 6429                  /*
6430 6430                   * This group could already be SHARED by other multicast
6431 6431                   * flows on this client. In that case, the group would
6432 6432                   * be shared and has already been started.
6433 6433                   */
6434 6434                  ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
6435 6435  
6436 6436                  if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
6437 6437                      (mac_start_group(grp) != 0)) {
6438 6438                          continue;
6439 6439                  }
6440 6440  
6441 6441                  if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6442 6442                          break;
6443 6443                  ASSERT(grp->mrg_cur_count == 0);
6444 6444  
6445 6445                  /*
6446 6446                   * Populate the group. Rings should be taken
6447 6447                   * from the donor group.
6448 6448                   */
6449 6449                  nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1;
6450 6450  
6451 6451                  /*
6452 6452                   * If the donor group can't donate, let's just walk and
6453 6453                   * see if someone can vacate a group, so that we have
6454 6454                   * enough rings for this, unless we already have
6455 6455                   * identified a candiate group..
6456 6456                   */
6457 6457                  if (nrings <= donor_grp_rcnt) {
6458 6458                          err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6459 6459                              donorgrp, grp, share, nrings);
6460 6460                          if (err == 0) {
6461 6461                                  /*
6462 6462                                   * For a share i_mac_group_allocate_rings gets
6463 6463                                   * the rings from the driver, let's populate
6464 6464                                   * the property for the client now.
6465 6465                                   */
6466 6466                                  if (share != NULL) {
6467 6467                                          mac_client_set_rings(
6468 6468                                              (mac_client_handle_t)mcip,
6469 6469                                              grp->mrg_cur_count, -1);
6470 6470                                  }
6471 6471                                  if (mac_is_primary_client(mcip) && !rxhw)
6472 6472                                          mip->mi_rx_donor_grp = grp;
6473 6473                                  break;
6474 6474                          }
6475 6475                  }
6476 6476  
6477 6477                  DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6478 6478                      mip->mi_name, int, grp->mrg_index, int, err);
6479 6479  
6480 6480                  /*
6481 6481                   * It's a dynamic group but the grouping operation
6482 6482                   * failed.
6483 6483                   */
6484 6484                  mac_stop_group(grp);
6485 6485          }
6486 6486          /* We didn't find an exclusive group for this MAC client */
6487 6487          if (i >= mip->mi_rx_group_count) {
6488 6488  
6489 6489                  if (!need_exclgrp)
6490 6490                          return (NULL);
6491 6491  
6492 6492                  /*
6493 6493                   * If we found a candidate group then we switch the
6494 6494                   * MAC client from the candidate_group to the default
6495 6495                   * group and give the group to this MAC client. If
6496 6496                   * we didn't find a candidate_group, check if the
6497 6497                   * primary is in its own group and if it can make way
6498 6498                   * for this MAC client.
6499 6499                   */
6500 6500                  if (candidate_grp == NULL &&
6501 6501                      donorgrp != MAC_DEFAULT_RX_GROUP(mip) &&
6502 6502                      donorgrp->mrg_cur_count >= need_rings) {
6503 6503                          candidate_grp = donorgrp;
6504 6504                  }
6505 6505                  if (candidate_grp != NULL) {
6506 6506                          boolean_t       prim_grp = B_FALSE;
6507 6507  
6508 6508                          /*
6509 6509                           * Switch the MAC client from the candidate group
6510 6510                           * to the default group.. If this group was the
6511 6511                           * donor group, then after the switch we need
6512 6512                           * to update the donor group too.
6513 6513                           */
6514 6514                          grp = candidate_grp;
6515 6515                          gclient = MAC_GROUP_ONLY_CLIENT(grp);
6516 6516                          if (gclient == NULL)
6517 6517                                  gclient = mac_get_grp_primary(grp);
6518 6518                          if (grp == mip->mi_rx_donor_grp)
6519 6519                                  prim_grp = B_TRUE;
6520 6520                          if (mac_rx_switch_group(gclient, grp,
6521 6521                              MAC_DEFAULT_RX_GROUP(mip)) != 0) {
6522 6522                                  return (NULL);
6523 6523                          }
6524 6524                          if (prim_grp) {
6525 6525                                  mip->mi_rx_donor_grp =
6526 6526                                      MAC_DEFAULT_RX_GROUP(mip);
6527 6527                                  donorgrp = MAC_DEFAULT_RX_GROUP(mip);
6528 6528                          }
6529 6529  
6530 6530  
6531 6531                          /*
6532 6532                           * Now give this group with the required rings
6533 6533                           * to this MAC client.
6534 6534                           */
6535 6535                          ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
6536 6536                          if (mac_start_group(grp) != 0)
6537 6537                                  return (NULL);
6538 6538  
6539 6539                          if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6540 6540                                  return (grp);
6541 6541  
6542 6542                          donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6543 6543                          ASSERT(grp->mrg_cur_count == 0);
6544 6544                          ASSERT(donor_grp_rcnt >= need_rings);
6545 6545                          err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6546 6546                              donorgrp, grp, share, need_rings);
6547 6547                          if (err == 0) {
6548 6548                                  /*
6549 6549                                   * For a share i_mac_group_allocate_rings gets
6550 6550                                   * the rings from the driver, let's populate
6551 6551                                   * the property for the client now.
6552 6552                                   */
6553 6553                                  if (share != NULL) {
6554 6554                                          mac_client_set_rings(
6555 6555                                              (mac_client_handle_t)mcip,
6556 6556                                              grp->mrg_cur_count, -1);
6557 6557                                  }
6558 6558                                  DTRACE_PROBE2(rx__group__reserved,
6559 6559                                      char *, mip->mi_name, int, grp->mrg_index);
6560 6560                                  return (grp);
6561 6561                          }
6562 6562                          DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6563 6563                              mip->mi_name, int, grp->mrg_index, int, err);
6564 6564                          mac_stop_group(grp);
6565 6565                  }
6566 6566                  return (NULL);
6567 6567          }
6568 6568          ASSERT(grp != NULL);
6569 6569  
6570 6570          DTRACE_PROBE2(rx__group__reserved,
6571 6571              char *, mip->mi_name, int, grp->mrg_index);
6572 6572          return (grp);
6573 6573  }
6574 6574  
6575 6575  /*
6576 6576   * mac_rx_release_group()
6577 6577   *
6578 6578   * This is called when there are no clients left for the group.
6579 6579   * The group is stopped and marked MAC_GROUP_STATE_REGISTERED,
6580 6580   * and if it is a non default group, the shares are removed and
6581 6581   * all rings are assigned back to default group.
6582 6582   */
6583 6583  void
6584 6584  mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
6585 6585  {
6586 6586          mac_impl_t              *mip = mcip->mci_mip;
6587 6587          mac_ring_t              *ring;
6588 6588  
6589 6589          ASSERT(group != MAC_DEFAULT_RX_GROUP(mip));
6590 6590  
6591 6591          if (mip->mi_rx_donor_grp == group)
6592 6592                  mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip);
6593 6593  
6594 6594          /*
6595 6595           * This is the case where there are no clients left. Any
6596 6596           * SRS etc on this group have also be quiesced.
6597 6597           */
6598 6598          for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
6599 6599                  if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
6600 6600                          ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6601 6601                          /*
6602 6602                           * Remove the SRS associated with the HW ring.
6603 6603                           * As a result, polling will be disabled.
6604 6604                           */
6605 6605                          ring->mr_srs = NULL;
6606 6606                  }
6607 6607                  ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED ||
6608 6608                      ring->mr_state == MR_INUSE);
6609 6609                  if (ring->mr_state == MR_INUSE) {
6610 6610                          mac_stop_ring(ring);
6611 6611                          ring->mr_flag = 0;
6612 6612                  }
6613 6613          }
6614 6614  
6615 6615          /* remove group from share */
6616 6616          if (mcip->mci_share != NULL) {
6617 6617                  mip->mi_share_capab.ms_sremove(mcip->mci_share,
6618 6618                      group->mrg_driver);
6619 6619          }
6620 6620  
6621 6621          if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6622 6622                  mac_ring_t *ring;
6623 6623  
6624 6624                  /*
6625 6625                   * Rings were dynamically allocated to group.
6626 6626                   * Move rings back to default group.
6627 6627                   */
6628 6628                  while ((ring = group->mrg_rings) != NULL) {
6629 6629                          (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp,
6630 6630                              ring);
6631 6631                  }
6632 6632          }
6633 6633          mac_stop_group(group);
6634 6634          /*
6635 6635           * Possible improvement: See if we can assign the group just released
6636 6636           * to a another client of the mip
6637 6637           */
6638 6638  }
6639 6639  
6640 6640  /*
6641 6641   * When we move the primary's mac address between groups, we need to also
6642 6642   * take all the clients sharing the same mac address along with it (VLANs)
6643 6643   * We remove the mac address for such clients from the group after quiescing
6644 6644   * them. When we add the mac address we restart the client. Note that
6645 6645   * the primary's mac address is removed from the group after all the
6646 6646   * other clients sharing the address are removed. Similarly, the primary's
6647 6647   * mac address is added before all the other client's mac address are
6648 6648   * added. While grp is the group where the clients reside, tgrp is
6649 6649   * the group where the addresses have to be added.
6650 6650   */
6651 6651  static void
6652 6652  mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp,
6653 6653      mac_group_t *tgrp, uint8_t *maddr, boolean_t add)
6654 6654  {
6655 6655          mac_impl_t              *mip = mcip->mci_mip;
6656 6656          mac_grp_client_t        *mgcp = grp->mrg_clients;
6657 6657          mac_client_impl_t       *gmcip;
6658 6658          boolean_t               prim;
6659 6659  
6660 6660          prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6661 6661  
6662 6662          /*
6663 6663           * If the clients are in a non-default group, we just have to
6664 6664           * walk the group's client list. If it is in the default group
6665 6665           * (which will be shared by other clients as well, we need to
6666 6666           * check if the unicast address matches mcip's unicast.
6667 6667           */
6668 6668          while (mgcp != NULL) {
6669 6669                  gmcip = mgcp->mgc_client;
6670 6670                  if (gmcip != mcip &&
6671 6671                      (grp != MAC_DEFAULT_RX_GROUP(mip) ||
6672 6672                      mcip->mci_unicast == gmcip->mci_unicast)) {
6673 6673                          if (!add) {
6674 6674                                  mac_rx_client_quiesce(
6675 6675                                      (mac_client_handle_t)gmcip);
6676 6676                                  (void) mac_remove_macaddr(mcip->mci_unicast);
6677 6677                          } else {
6678 6678                                  (void) mac_add_macaddr(mip, tgrp, maddr, prim);
6679 6679                                  mac_rx_client_restart(
6680 6680                                      (mac_client_handle_t)gmcip);
6681 6681                          }
6682 6682                  }
6683 6683                  mgcp = mgcp->mgc_next;
6684 6684          }
6685 6685  }
6686 6686  
6687 6687  
6688 6688  /*
6689 6689   * Move the MAC address from fgrp to tgrp. If this is the primary client,
6690 6690   * we need to take any VLANs etc. together too.
6691 6691   */
6692 6692  static int
6693 6693  mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp,
6694 6694      mac_group_t *tgrp)
6695 6695  {
6696 6696          mac_impl_t              *mip = mcip->mci_mip;
6697 6697          uint8_t                 maddr[MAXMACADDRLEN];
6698 6698          int                     err = 0;
6699 6699          boolean_t               prim;
6700 6700          boolean_t               multiclnt = B_FALSE;
6701 6701  
6702 6702          mac_rx_client_quiesce((mac_client_handle_t)mcip);
6703 6703          ASSERT(mcip->mci_unicast != NULL);
6704 6704          bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len);
6705 6705  
6706 6706          prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6707 6707          if (mcip->mci_unicast->ma_nusers > 1) {
6708 6708                  mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE);
6709 6709                  multiclnt = B_TRUE;
6710 6710          }
6711 6711          ASSERT(mcip->mci_unicast->ma_nusers == 1);
6712 6712          err = mac_remove_macaddr(mcip->mci_unicast);
6713 6713          if (err != 0) {
6714 6714                  mac_rx_client_restart((mac_client_handle_t)mcip);
6715 6715                  if (multiclnt) {
6716 6716                          mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6717 6717                              B_TRUE);
6718 6718                  }
6719 6719                  return (err);
6720 6720          }
6721 6721          /*
6722 6722           * Program the H/W Classifier first, if this fails we need
6723 6723           * not proceed with the other stuff.
6724 6724           */
6725 6725          if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) {
6726 6726                  /* Revert back the H/W Classifier */
6727 6727                  if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) {
6728 6728                          /*
6729 6729                           * This should not fail now since it worked earlier,
6730 6730                           * should we panic?
6731 6731                           */
6732 6732                          cmn_err(CE_WARN,
6733 6733                              "mac_rx_switch_group: switching %p back"
6734 6734                              " to group %p failed!!", (void *)mcip,
6735 6735                              (void *)fgrp);
6736 6736                  }
6737 6737                  mac_rx_client_restart((mac_client_handle_t)mcip);
6738 6738                  if (multiclnt) {
6739 6739                          mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6740 6740                              B_TRUE);
6741 6741                  }
6742 6742                  return (err);
6743 6743          }
6744 6744          mcip->mci_unicast = mac_find_macaddr(mip, maddr);
6745 6745          mac_rx_client_restart((mac_client_handle_t)mcip);
6746 6746          if (multiclnt)
6747 6747                  mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE);
6748 6748          return (err);
6749 6749  }
6750 6750  
6751 6751  /*
6752 6752   * Switch the MAC client from one group to another. This means we need
6753 6753   * to remove the MAC address from the group, remove the MAC client,
6754 6754   * teardown the SRSs and revert the group state. Then, we add the client
6755 6755   * to the destination group, set the SRSs, and add the MAC address to the
6756 6756   * group.
6757 6757   */
6758 6758  int
6759 6759  mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
6760 6760      mac_group_t *tgrp)
6761 6761  {
6762 6762          int                     err;
6763 6763          mac_group_state_t       next_state;
6764 6764          mac_client_impl_t       *group_only_mcip;
6765 6765          mac_client_impl_t       *gmcip;
6766 6766          mac_impl_t              *mip = mcip->mci_mip;
6767 6767          mac_grp_client_t        *mgcp;
6768 6768  
6769 6769          ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group);
6770 6770  
6771 6771          if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0)
6772 6772                  return (err);
6773 6773  
6774 6774          /*
6775 6775           * The group might be reserved, but SRSs may not be set up, e.g.
6776 6776           * primary and its vlans using a reserved group.
6777 6777           */
6778 6778          if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6779 6779              MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
6780 6780                  mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE);
6781 6781          }
6782 6782          if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) {
6783 6783                  mgcp = fgrp->mrg_clients;
6784 6784                  while (mgcp != NULL) {
6785 6785                          gmcip = mgcp->mgc_client;
6786 6786                          mgcp = mgcp->mgc_next;
6787 6787                          mac_group_remove_client(fgrp, gmcip);
6788 6788                          mac_group_add_client(tgrp, gmcip);
6789 6789                          gmcip->mci_flent->fe_rx_ring_group = tgrp;
6790 6790                  }
6791 6791                  mac_release_rx_group(mcip, fgrp);
6792 6792                  ASSERT(MAC_GROUP_NO_CLIENT(fgrp));
6793 6793                  mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED);
6794 6794          } else {
6795 6795                  mac_group_remove_client(fgrp, mcip);
6796 6796                  mac_group_add_client(tgrp, mcip);
6797 6797                  mcip->mci_flent->fe_rx_ring_group = tgrp;
6798 6798                  /*
6799 6799                   * If there are other clients (VLANs) sharing this address
6800 6800                   * we should be here only for the primary.
6801 6801                   */
6802 6802                  if (mcip->mci_unicast->ma_nusers > 1) {
6803 6803                          /*
6804 6804                           * We need to move all the clients that are using
6805 6805                           * this h/w address.
6806 6806                           */
6807 6807                          mgcp = fgrp->mrg_clients;
6808 6808                          while (mgcp != NULL) {
6809 6809                                  gmcip = mgcp->mgc_client;
6810 6810                                  mgcp = mgcp->mgc_next;
6811 6811                                  if (mcip->mci_unicast == gmcip->mci_unicast) {
6812 6812                                          mac_group_remove_client(fgrp, gmcip);
6813 6813                                          mac_group_add_client(tgrp, gmcip);
6814 6814                                          gmcip->mci_flent->fe_rx_ring_group =
6815 6815                                              tgrp;
6816 6816                                  }
6817 6817                          }
6818 6818                  }
6819 6819                  /*
6820 6820                   * The default group will still take the multicast,
6821 6821                   * broadcast traffic etc., so it won't go to
6822 6822                   * MAC_GROUP_STATE_REGISTERED.
6823 6823                   */
6824 6824                  if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED)
6825 6825                          mac_rx_group_unmark(fgrp, MR_CONDEMNED);
6826 6826                  mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED);
6827 6827          }
6828 6828          next_state = mac_group_next_state(tgrp, &group_only_mcip,
6829 6829              MAC_DEFAULT_RX_GROUP(mip), B_TRUE);
6830 6830          mac_set_group_state(tgrp, next_state);
6831 6831          /*
6832 6832           * If the destination group is reserved, setup the SRSs etc.
6833 6833           */
6834 6834          if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
6835 6835                  mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK);
6836 6836                  mac_fanout_setup(mcip, mcip->mci_flent,
6837 6837                      MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL,
6838 6838                      NULL);
6839 6839                  mac_rx_group_unmark(tgrp, MR_INCIPIENT);
6840 6840          } else {
6841 6841                  mac_rx_switch_grp_to_sw(tgrp);
6842 6842          }
6843 6843          return (0);
6844 6844  }
6845 6845  
6846 6846  /*
6847 6847   * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
6848 6848   * when a share was allocated to the client.
6849 6849   */
6850 6850  mac_group_t *
6851 6851  mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move)
6852 6852  {
6853 6853          mac_impl_t              *mip = mcip->mci_mip;
6854 6854          mac_group_t             *grp = NULL;
6855 6855          int                     rv;
6856 6856          int                     i;
6857 6857          int                     err;
6858 6858          mac_group_t             *defgrp;
6859 6859          mac_share_handle_t      share = mcip->mci_share;
6860 6860          mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
6861 6861          int                     nrings;
6862 6862          int                     defnrings;
6863 6863          boolean_t               need_exclgrp = B_FALSE;
6864 6864          int                     need_rings = 0;
6865 6865          mac_group_t             *candidate_grp = NULL;
6866 6866          mac_client_impl_t       *gclient;
6867 6867          mac_resource_props_t    *gmrp;
6868 6868          boolean_t               txhw = mrp->mrp_mask & MRP_TX_RINGS;
6869 6869          boolean_t               unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
6870 6870          boolean_t               isprimary;
6871 6871  
6872 6872          isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6873 6873          /*
6874 6874           * When we come here for a VLAN on the primary (dladm create-vlan),
6875 6875           * we need to pair it along with the primary (to keep it consistent
6876 6876           * with the RX side). So, we check if the primary is already assigned
6877 6877           * to a group and return the group if so. The other way is also
6878 6878           * true, i.e. the VLAN is already created and now we are plumbing
6879 6879           * the primary.
6880 6880           */
6881 6881          if (!move && isprimary) {
6882 6882                  for (gclient = mip->mi_clients_list; gclient != NULL;
6883 6883                      gclient = gclient->mci_client_next) {
6884 6884                          if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC &&
6885 6885                              gclient->mci_flent->fe_tx_ring_group != NULL) {
6886 6886                                  return (gclient->mci_flent->fe_tx_ring_group);
6887 6887                          }
6888 6888                  }
6889 6889          }
6890 6890  
6891 6891          if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0)
6892 6892                  return (NULL);
6893 6893  
6894 6894          /* For dynamic groups, default unspec to 1 */
6895 6895          if (txhw && unspec &&
6896 6896              mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6897 6897                  mrp->mrp_ntxrings = 1;
6898 6898          }
6899 6899          /*
6900 6900           * For static grouping we allow only specifying rings=0 and
6901 6901           * unspecified
6902 6902           */
6903 6903          if (txhw && mrp->mrp_ntxrings > 0 &&
6904 6904              mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) {
6905 6905                  return (NULL);
6906 6906          }
6907 6907  
6908 6908          if (txhw) {
6909 6909                  /*
6910 6910                   * We have explicitly asked for a group (with ntxrings,
6911 6911                   * if unspec).
6912 6912                   */
6913 6913                  if (unspec || mrp->mrp_ntxrings > 0) {
6914 6914                          need_exclgrp = B_TRUE;
6915 6915                          need_rings = mrp->mrp_ntxrings;
6916 6916                  } else if (mrp->mrp_ntxrings == 0) {
6917 6917                          /*
6918 6918                           * We have asked for a software group.
6919 6919                           */
6920 6920                          return (NULL);
6921 6921                  }
6922 6922          }
6923 6923          defgrp = MAC_DEFAULT_TX_GROUP(mip);
6924 6924          /*
6925 6925           * The number of rings that the default group can donate.
6926 6926           * We need to leave at least one ring - the default ring - in
6927 6927           * this group.
6928 6928           */
6929 6929          defnrings = defgrp->mrg_cur_count - 1;
6930 6930  
6931 6931          /*
6932 6932           * Primary gets default group unless explicitly told not
6933 6933           * to  (i.e. rings > 0).
6934 6934           */
6935 6935          if (isprimary && !need_exclgrp)
6936 6936                  return (NULL);
6937 6937  
6938 6938          nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1;
6939 6939          for (i = 0; i <  mip->mi_tx_group_count; i++) {
6940 6940                  grp = &mip->mi_tx_groups[i];
6941 6941                  if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
6942 6942                      (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) {
6943 6943                          /*
6944 6944                           * Select a candidate for replacement if we don't
6945 6945                           * get an exclusive group. A candidate group is one
6946 6946                           * that didn't ask for an exclusive group, but got
6947 6947                           * one and it has enough rings (combined with what
6948 6948                           * the default group can donate) for the new MAC
6949 6949                           * client.
6950 6950                           */
6951 6951                          if (grp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6952 6952                              candidate_grp == NULL) {
6953 6953                                  gclient = MAC_GROUP_ONLY_CLIENT(grp);
6954 6954                                  if (gclient == NULL)
6955 6955                                          gclient = mac_get_grp_primary(grp);
6956 6956                                  gmrp = MCIP_RESOURCE_PROPS(gclient);
6957 6957                                  if (gclient->mci_share == NULL &&
6958 6958                                      (gmrp->mrp_mask & MRP_TX_RINGS) == 0 &&
6959 6959                                      (unspec ||
6960 6960                                      (grp->mrg_cur_count + defnrings) >=
6961 6961                                      need_rings)) {
6962 6962                                          candidate_grp = grp;
6963 6963                                  }
6964 6964                          }
6965 6965                          continue;
6966 6966                  }
6967 6967                  /*
6968 6968                   * If the default can't donate let's just walk and
6969 6969                   * see if someone can vacate a group, so that we have
6970 6970                   * enough rings for this.
6971 6971                   */
6972 6972                  if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC ||
6973 6973                      nrings <= defnrings) {
6974 6974                          if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) {
6975 6975                                  rv = mac_start_group(grp);
6976 6976                                  ASSERT(rv == 0);
6977 6977                          }
6978 6978                          break;
6979 6979                  }
6980 6980          }
6981 6981  
6982 6982          /* The default group */
6983 6983          if (i >= mip->mi_tx_group_count) {
6984 6984                  /*
6985 6985                   * If we need an exclusive group and have identified a
6986 6986                   * candidate group we switch the MAC client from the
6987 6987                   * candidate group to the default group and give the
6988 6988                   * candidate group to this client.
6989 6989                   */
6990 6990                  if (need_exclgrp && candidate_grp != NULL) {
6991 6991                          /*
6992 6992                           * Switch the MAC client from the candidate group
6993 6993                           * to the default group.
6994 6994                           */
6995 6995                          grp = candidate_grp;
6996 6996                          gclient = MAC_GROUP_ONLY_CLIENT(grp);
6997 6997                          if (gclient == NULL)
6998 6998                                  gclient = mac_get_grp_primary(grp);
6999 6999                          mac_tx_client_quiesce((mac_client_handle_t)gclient);
7000 7000                          mac_tx_switch_group(gclient, grp, defgrp);
7001 7001                          mac_tx_client_restart((mac_client_handle_t)gclient);
7002 7002  
7003 7003                          /*
7004 7004                           * Give the candidate group with the specified number
7005 7005                           * of rings to this MAC client.
7006 7006                           */
7007 7007                          ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7008 7008                          rv = mac_start_group(grp);
7009 7009                          ASSERT(rv == 0);
7010 7010  
7011 7011                          if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7012 7012                                  return (grp);
7013 7013  
7014 7014                          ASSERT(grp->mrg_cur_count == 0);
7015 7015                          ASSERT(defgrp->mrg_cur_count > need_rings);
7016 7016  
7017 7017                          err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX,
7018 7018                              defgrp, grp, share, need_rings);
7019 7019                          if (err == 0) {
7020 7020                                  /*
7021 7021                                   * For a share i_mac_group_allocate_rings gets
7022 7022                                   * the rings from the driver, let's populate
7023 7023                                   * the property for the client now.
7024 7024                                   */
7025 7025                                  if (share != NULL) {
7026 7026                                          mac_client_set_rings(
7027 7027                                              (mac_client_handle_t)mcip, -1,
7028 7028                                              grp->mrg_cur_count);
7029 7029                                  }
7030 7030                                  mip->mi_tx_group_free--;
7031 7031                                  return (grp);
7032 7032                          }
7033 7033                          DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *,
7034 7034                              mip->mi_name, int, grp->mrg_index, int, err);
7035 7035                          mac_stop_group(grp);
7036 7036                  }
7037 7037                  return (NULL);
7038 7038          }
7039 7039          /*
7040 7040           * We got an exclusive group, but it is not dynamic.
7041 7041           */
7042 7042          if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
7043 7043                  mip->mi_tx_group_free--;
7044 7044                  return (grp);
7045 7045          }
7046 7046  
7047 7047          rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp,
7048 7048              share, nrings);
7049 7049          if (rv != 0) {
7050 7050                  DTRACE_PROBE3(tx__group__reserve__alloc__rings,
7051 7051                      char *, mip->mi_name, int, grp->mrg_index, int, rv);
7052 7052                  mac_stop_group(grp);
7053 7053                  return (NULL);
7054 7054          }
7055 7055          /*
7056 7056           * For a share i_mac_group_allocate_rings gets the rings from the
7057 7057           * driver, let's populate the property for the client now.
7058 7058           */
7059 7059          if (share != NULL) {
7060 7060                  mac_client_set_rings((mac_client_handle_t)mcip, -1,
7061 7061                      grp->mrg_cur_count);
7062 7062          }
7063 7063          mip->mi_tx_group_free--;
7064 7064          return (grp);
7065 7065  }
7066 7066  
7067 7067  void
7068 7068  mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp)
7069 7069  {
7070 7070          mac_impl_t              *mip = mcip->mci_mip;
7071 7071          mac_share_handle_t      share = mcip->mci_share;
7072 7072          mac_ring_t              *ring;
7073 7073          mac_soft_ring_set_t     *srs = MCIP_TX_SRS(mcip);
7074 7074          mac_group_t             *defgrp;
7075 7075  
7076 7076          defgrp = MAC_DEFAULT_TX_GROUP(mip);
7077 7077          if (srs != NULL) {
7078 7078                  if (srs->srs_soft_ring_count > 0) {
7079 7079                          for (ring = grp->mrg_rings; ring != NULL;
7080 7080                              ring = ring->mr_next) {
7081 7081                                  ASSERT(mac_tx_srs_ring_present(srs, ring));
7082 7082                                  mac_tx_invoke_callbacks(mcip,
7083 7083                                      (mac_tx_cookie_t)
7084 7084                                      mac_tx_srs_get_soft_ring(srs, ring));
7085 7085                                  mac_tx_srs_del_ring(srs, ring);
7086 7086                          }
7087 7087                  } else {
7088 7088                          ASSERT(srs->srs_tx.st_arg2 != NULL);
7089 7089                          srs->srs_tx.st_arg2 = NULL;
7090 7090                          mac_srs_stat_delete(srs);
7091 7091                  }
7092 7092          }
7093 7093          if (share != NULL)
7094 7094                  mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
7095 7095  
7096 7096          /* move the ring back to the pool */
7097 7097          if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7098 7098                  while ((ring = grp->mrg_rings) != NULL)
7099 7099                          (void) mac_group_mov_ring(mip, defgrp, ring);
7100 7100          }
7101 7101          mac_stop_group(grp);
7102 7102          mip->mi_tx_group_free++;
7103 7103  }
7104 7104  
7105 7105  /*
7106 7106   * Disassociate a MAC client from a group, i.e go through the rings in the
7107 7107   * group and delete all the soft rings tied to them.
7108 7108   */
7109 7109  static void
7110 7110  mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent)
7111 7111  {
7112 7112          mac_client_impl_t       *mcip = flent->fe_mcip;
7113 7113          mac_soft_ring_set_t     *tx_srs;
7114 7114          mac_srs_tx_t            *tx;
7115 7115          mac_ring_t              *ring;
7116 7116  
7117 7117          tx_srs = flent->fe_tx_srs;
7118 7118          tx = &tx_srs->srs_tx;
7119 7119  
7120 7120          /* Single ring case we haven't created any soft rings */
7121 7121          if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE ||
7122 7122              tx->st_mode == SRS_TX_DEFAULT) {
7123 7123                  tx->st_arg2 = NULL;
7124 7124                  mac_srs_stat_delete(tx_srs);
7125 7125          /* Fanout case, where we have to dismantle the soft rings */
7126 7126          } else {
7127 7127                  for (ring = fgrp->mrg_rings; ring != NULL;
7128 7128                      ring = ring->mr_next) {
7129 7129                          ASSERT(mac_tx_srs_ring_present(tx_srs, ring));
7130 7130                          mac_tx_invoke_callbacks(mcip,
7131 7131                              (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs,
7132 7132                              ring));
7133 7133                          mac_tx_srs_del_ring(tx_srs, ring);
7134 7134                  }
7135 7135                  ASSERT(tx->st_arg2 == NULL);
7136 7136          }
7137 7137  }
7138 7138  
7139 7139  /*
7140 7140   * Switch the MAC client from one group to another. This means we need
7141 7141   * to remove the MAC client, teardown the SRSs and revert the group state.
7142 7142   * Then, we add the client to the destination roup, set the SRSs etc.
7143 7143   */
7144 7144  void
7145 7145  mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7146 7146      mac_group_t *tgrp)
7147 7147  {
7148 7148          mac_client_impl_t       *group_only_mcip;
7149 7149          mac_impl_t              *mip = mcip->mci_mip;
7150 7150          flow_entry_t            *flent = mcip->mci_flent;
7151 7151          mac_group_t             *defgrp;
7152 7152          mac_grp_client_t        *mgcp;
7153 7153          mac_client_impl_t       *gmcip;
7154 7154          flow_entry_t            *gflent;
7155 7155  
7156 7156          defgrp = MAC_DEFAULT_TX_GROUP(mip);
7157 7157          ASSERT(fgrp == flent->fe_tx_ring_group);
7158 7158  
7159 7159          if (fgrp == defgrp) {
7160 7160                  /*
7161 7161                   * If this is the primary we need to find any VLANs on
7162 7162                   * the primary and move them too.
7163 7163                   */
7164 7164                  mac_group_remove_client(fgrp, mcip);
7165 7165                  mac_tx_dismantle_soft_rings(fgrp, flent);
7166 7166                  if (mcip->mci_unicast->ma_nusers > 1) {
7167 7167                          mgcp = fgrp->mrg_clients;
7168 7168                          while (mgcp != NULL) {
7169 7169                                  gmcip = mgcp->mgc_client;
7170 7170                                  mgcp = mgcp->mgc_next;
7171 7171                                  if (mcip->mci_unicast != gmcip->mci_unicast)
7172 7172                                          continue;
7173 7173                                  mac_tx_client_quiesce(
7174 7174                                      (mac_client_handle_t)gmcip);
7175 7175  
7176 7176                                  gflent = gmcip->mci_flent;
7177 7177                                  mac_group_remove_client(fgrp, gmcip);
7178 7178                                  mac_tx_dismantle_soft_rings(fgrp, gflent);
7179 7179  
7180 7180                                  mac_group_add_client(tgrp, gmcip);
7181 7181                                  gflent->fe_tx_ring_group = tgrp;
7182 7182                                  /* We could directly set this to SHARED */
7183 7183                                  tgrp->mrg_state = mac_group_next_state(tgrp,
7184 7184                                      &group_only_mcip, defgrp, B_FALSE);
7185 7185  
7186 7186                                  mac_tx_srs_group_setup(gmcip, gflent,
7187 7187                                      SRST_LINK);
7188 7188                                  mac_fanout_setup(gmcip, gflent,
7189 7189                                      MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7190 7190                                      gmcip, NULL, NULL);
7191 7191  
7192 7192                                  mac_tx_client_restart(
7193 7193                                      (mac_client_handle_t)gmcip);
7194 7194                          }
7195 7195                  }
7196 7196                  if (MAC_GROUP_NO_CLIENT(fgrp)) {
7197 7197                          mac_ring_t      *ring;
7198 7198                          int             cnt;
7199 7199                          int             ringcnt;
7200 7200  
7201 7201                          fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7202 7202                          /*
7203 7203                           * Additionally, we also need to stop all
7204 7204                           * the rings in the default group, except
7205 7205                           * the default ring. The reason being
7206 7206                           * this group won't be released since it is
7207 7207                           * the default group, so the rings won't
7208 7208                           * be stopped otherwise.
7209 7209                           */
7210 7210                          ringcnt = fgrp->mrg_cur_count;
7211 7211                          ring = fgrp->mrg_rings;
7212 7212                          for (cnt = 0; cnt < ringcnt; cnt++) {
7213 7213                                  if (ring->mr_state == MR_INUSE &&
7214 7214                                      ring !=
7215 7215                                      (mac_ring_t *)mip->mi_default_tx_ring) {
7216 7216                                          mac_stop_ring(ring);
7217 7217                                          ring->mr_flag = 0;
7218 7218                                  }
7219 7219                                  ring = ring->mr_next;
7220 7220                          }
7221 7221                  } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7222 7222                          fgrp->mrg_state = MAC_GROUP_STATE_RESERVED;
7223 7223                  } else {
7224 7224                          ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED);
7225 7225                  }
7226 7226          } else {
7227 7227                  /*
7228 7228                   * We could have VLANs sharing the non-default group with
7229 7229                   * the primary.
7230 7230                   */
7231 7231                  mgcp = fgrp->mrg_clients;
7232 7232                  while (mgcp != NULL) {
7233 7233                          gmcip = mgcp->mgc_client;
7234 7234                          mgcp = mgcp->mgc_next;
7235 7235                          if (gmcip == mcip)
7236 7236                                  continue;
7237 7237                          mac_tx_client_quiesce((mac_client_handle_t)gmcip);
7238 7238                          gflent = gmcip->mci_flent;
7239 7239  
7240 7240                          mac_group_remove_client(fgrp, gmcip);
7241 7241                          mac_tx_dismantle_soft_rings(fgrp, gflent);
7242 7242  
7243 7243                          mac_group_add_client(tgrp, gmcip);
7244 7244                          gflent->fe_tx_ring_group = tgrp;
7245 7245                          /* We could directly set this to SHARED */
7246 7246                          tgrp->mrg_state = mac_group_next_state(tgrp,
7247 7247                              &group_only_mcip, defgrp, B_FALSE);
7248 7248                          mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK);
7249 7249                          mac_fanout_setup(gmcip, gflent,
7250 7250                              MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7251 7251                              gmcip, NULL, NULL);
7252 7252  
7253 7253                          mac_tx_client_restart((mac_client_handle_t)gmcip);
7254 7254                  }
7255 7255                  mac_group_remove_client(fgrp, mcip);
7256 7256                  mac_release_tx_group(mcip, fgrp);
7257 7257                  fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7258 7258          }
7259 7259  
7260 7260          /* Add it to the tgroup */
7261 7261          mac_group_add_client(tgrp, mcip);
7262 7262          flent->fe_tx_ring_group = tgrp;
7263 7263          tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip,
7264 7264              defgrp, B_FALSE);
7265 7265  
7266 7266          mac_tx_srs_group_setup(mcip, flent, SRST_LINK);
7267 7267          mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
7268 7268              mac_rx_deliver, mcip, NULL, NULL);
7269 7269  }
7270 7270  
7271 7271  /*
7272 7272   * This is a 1-time control path activity initiated by the client (IP).
7273 7273   * The mac perimeter protects against other simultaneous control activities,
7274 7274   * for example an ioctl that attempts to change the degree of fanout and
7275 7275   * increase or decrease the number of softrings associated with this Tx SRS.
7276 7276   */
7277 7277  static mac_tx_notify_cb_t *
7278 7278  mac_client_tx_notify_add(mac_client_impl_t *mcip,
7279 7279      mac_tx_notify_t notify, void *arg)
7280 7280  {
7281 7281          mac_cb_info_t *mcbi;
7282 7282          mac_tx_notify_cb_t *mtnfp;
7283 7283  
7284 7284          ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7285 7285  
7286 7286          mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
7287 7287          mtnfp->mtnf_fn = notify;
7288 7288          mtnfp->mtnf_arg = arg;
7289 7289          mtnfp->mtnf_link.mcb_objp = mtnfp;
7290 7290          mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
7291 7291          mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
7292 7292  
7293 7293          mcbi = &mcip->mci_tx_notify_cb_info;
7294 7294          mutex_enter(mcbi->mcbi_lockp);
7295 7295          mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
7296 7296          mutex_exit(mcbi->mcbi_lockp);
7297 7297          return (mtnfp);
7298 7298  }
7299 7299  
7300 7300  static void
7301 7301  mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
7302 7302  {
7303 7303          mac_cb_info_t   *mcbi;
7304 7304          mac_cb_t        **cblist;
7305 7305  
7306 7306          ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7307 7307  
7308 7308          if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
7309 7309              &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
7310 7310                  cmn_err(CE_WARN,
7311 7311                      "mac_client_tx_notify_remove: callback not "
7312 7312                      "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
7313 7313                  return;
7314 7314          }
7315 7315  
7316 7316          mcbi = &mcip->mci_tx_notify_cb_info;
7317 7317          cblist = &mcip->mci_tx_notify_cb_list;
7318 7318          mutex_enter(mcbi->mcbi_lockp);
7319 7319          if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
7320 7320                  kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
7321 7321          else
7322 7322                  mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
7323 7323          mutex_exit(mcbi->mcbi_lockp);
7324 7324  }
7325 7325  
7326 7326  /*
7327 7327   * mac_client_tx_notify():
7328 7328   * call to add and remove flow control callback routine.
7329 7329   */
7330 7330  mac_tx_notify_handle_t
7331 7331  mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
7332 7332      void *ptr)
7333 7333  {
7334 7334          mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
7335 7335          mac_tx_notify_cb_t      *mtnfp = NULL;
7336 7336  
7337 7337          i_mac_perim_enter(mcip->mci_mip);
7338 7338  
7339 7339          if (callb_func != NULL) {
7340 7340                  /* Add a notify callback */
7341 7341                  mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
7342 7342          } else {
7343 7343                  mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
7344 7344          }
7345 7345          i_mac_perim_exit(mcip->mci_mip);
7346 7346  
7347 7347          return ((mac_tx_notify_handle_t)mtnfp);
7348 7348  }
7349 7349  
7350 7350  void
7351 7351  mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf,
7352 7352      mac_bridge_ref_t reff, mac_bridge_ls_t lsf)
7353 7353  {
7354 7354          mac_bridge_tx_cb = txf;
7355 7355          mac_bridge_rx_cb = rxf;
7356 7356          mac_bridge_ref_cb = reff;
7357 7357          mac_bridge_ls_cb = lsf;
7358 7358  }
7359 7359  
7360 7360  int
7361 7361  mac_bridge_set(mac_handle_t mh, mac_handle_t link)
7362 7362  {
7363 7363          mac_impl_t *mip = (mac_impl_t *)mh;
7364 7364          int retv;
7365 7365  
7366 7366          mutex_enter(&mip->mi_bridge_lock);
7367 7367          if (mip->mi_bridge_link == NULL) {
7368 7368                  mip->mi_bridge_link = link;
7369 7369                  retv = 0;
7370 7370          } else {
7371 7371                  retv = EBUSY;
7372 7372          }
7373 7373          mutex_exit(&mip->mi_bridge_lock);
7374 7374          if (retv == 0) {
7375 7375                  mac_poll_state_change(mh, B_FALSE);
7376 7376                  mac_capab_update(mh);
7377 7377          }
7378 7378          return (retv);
7379 7379  }
7380 7380  
7381 7381  /*
7382 7382   * Disable bridging on the indicated link.
7383 7383   */
7384 7384  void
7385 7385  mac_bridge_clear(mac_handle_t mh, mac_handle_t link)
7386 7386  {
7387 7387          mac_impl_t *mip = (mac_impl_t *)mh;
7388 7388  
7389 7389          mutex_enter(&mip->mi_bridge_lock);
7390 7390          ASSERT(mip->mi_bridge_link == link);
7391 7391          mip->mi_bridge_link = NULL;
7392 7392          mutex_exit(&mip->mi_bridge_lock);
7393 7393          mac_poll_state_change(mh, B_TRUE);
7394 7394          mac_capab_update(mh);
7395 7395  }
7396 7396  
7397 7397  void
7398 7398  mac_no_active(mac_handle_t mh)
7399 7399  {
7400 7400          mac_impl_t *mip = (mac_impl_t *)mh;
7401 7401  
7402 7402          i_mac_perim_enter(mip);
7403 7403          mip->mi_state_flags |= MIS_NO_ACTIVE;
7404 7404          i_mac_perim_exit(mip);
7405 7405  }
7406 7406  
7407 7407  /*
7408 7408   * Walk the primary VLAN clients whenever the primary's rings property
7409 7409   * changes and update the mac_resource_props_t for the VLAN's client.
7410 7410   * We need to do this since we don't support setting these properties
7411 7411   * on the primary's VLAN clients, but the VLAN clients have to
7412 7412   * follow the primary w.r.t the rings property;
7413 7413   */
7414 7414  void
7415 7415  mac_set_prim_vlan_rings(mac_impl_t  *mip, mac_resource_props_t *mrp)
7416 7416  {
7417 7417          mac_client_impl_t       *vmcip;
7418 7418          mac_resource_props_t    *vmrp;
7419 7419  
7420 7420          for (vmcip = mip->mi_clients_list; vmcip != NULL;
7421 7421              vmcip = vmcip->mci_client_next) {
7422 7422                  if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) ||
7423 7423                      mac_client_vid((mac_client_handle_t)vmcip) ==
7424 7424                      VLAN_ID_NONE) {
7425 7425                          continue;
7426 7426                  }
7427 7427                  vmrp = MCIP_RESOURCE_PROPS(vmcip);
7428 7428  
7429 7429                  vmrp->mrp_nrxrings =  mrp->mrp_nrxrings;
7430 7430                  if (mrp->mrp_mask & MRP_RX_RINGS)
7431 7431                          vmrp->mrp_mask |= MRP_RX_RINGS;
7432 7432                  else if (vmrp->mrp_mask & MRP_RX_RINGS)
7433 7433                          vmrp->mrp_mask &= ~MRP_RX_RINGS;
7434 7434  
7435 7435                  vmrp->mrp_ntxrings =  mrp->mrp_ntxrings;
7436 7436                  if (mrp->mrp_mask & MRP_TX_RINGS)
7437 7437                          vmrp->mrp_mask |= MRP_TX_RINGS;
7438 7438                  else if (vmrp->mrp_mask & MRP_TX_RINGS)
7439 7439                          vmrp->mrp_mask &= ~MRP_TX_RINGS;
7440 7440  
7441 7441                  if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
7442 7442                          vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
7443 7443                  else
7444 7444                          vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
7445 7445  
7446 7446                  if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
7447 7447                          vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
7448 7448                  else
7449 7449                          vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
7450 7450          }
7451 7451  }
7452 7452  
7453 7453  /*
7454 7454   * We are adding or removing ring(s) from a group. The source for taking
7455 7455   * rings is the default group. The destination for giving rings back is
7456 7456   * the default group.
7457 7457   */
7458 7458  int
7459 7459  mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group,
7460 7460      mac_group_t *defgrp)
7461 7461  {
7462 7462          mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
7463 7463          uint_t                  modify;
7464 7464          int                     count;
7465 7465          mac_ring_t              *ring;
7466 7466          mac_ring_t              *next;
7467 7467          mac_impl_t              *mip = mcip->mci_mip;
7468 7468          mac_ring_t              **rings;
7469 7469          uint_t                  ringcnt;
7470 7470          int                     i = 0;
7471 7471          boolean_t               rx_group = group->mrg_type == MAC_RING_TYPE_RX;
7472 7472          int                     start;
7473 7473          int                     end;
7474 7474          mac_group_t             *tgrp;
7475 7475          int                     j;
7476 7476          int                     rv = 0;
7477 7477  
7478 7478          /*
7479 7479           * If we are asked for just a group, we give 1 ring, else
7480 7480           * the specified number of rings.
7481 7481           */
7482 7482          if (rx_group) {
7483 7483                  ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1:
7484 7484                      mrp->mrp_nrxrings;
7485 7485          } else {
7486 7486                  ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1:
7487 7487                      mrp->mrp_ntxrings;
7488 7488          }
7489 7489  
7490 7490          /* don't allow modifying rings for a share for now. */
7491 7491          ASSERT(mcip->mci_share == NULL);
7492 7492  
7493 7493          if (ringcnt == group->mrg_cur_count)
7494 7494                  return (0);
7495 7495  
7496 7496          if (group->mrg_cur_count > ringcnt) {
7497 7497                  modify = group->mrg_cur_count - ringcnt;
7498 7498                  if (rx_group) {
7499 7499                          if (mip->mi_rx_donor_grp == group) {
7500 7500                                  ASSERT(mac_is_primary_client(mcip));
7501 7501                                  mip->mi_rx_donor_grp = defgrp;
7502 7502                          } else {
7503 7503                                  defgrp = mip->mi_rx_donor_grp;
7504 7504                          }
7505 7505                  }
7506 7506                  ring = group->mrg_rings;
7507 7507                  rings = kmem_alloc(modify * sizeof (mac_ring_handle_t),
7508 7508                      KM_SLEEP);
7509 7509                  j = 0;
7510 7510                  for (count = 0; count < modify; count++) {
7511 7511                          next = ring->mr_next;
7512 7512                          rv = mac_group_mov_ring(mip, defgrp, ring);
7513 7513                          if (rv != 0) {
7514 7514                                  /* cleanup on failure */
7515 7515                                  for (j = 0; j < count; j++) {
7516 7516                                          (void) mac_group_mov_ring(mip, group,
7517 7517                                              rings[j]);
7518 7518                                  }
7519 7519                                  break;
7520 7520                          }
7521 7521                          rings[j++] = ring;
7522 7522                          ring = next;
7523 7523                  }
7524 7524                  kmem_free(rings, modify * sizeof (mac_ring_handle_t));
7525 7525                  return (rv);
7526 7526          }
7527 7527          if (ringcnt >= MAX_RINGS_PER_GROUP)
7528 7528                  return (EINVAL);
7529 7529  
7530 7530          modify = ringcnt - group->mrg_cur_count;
7531 7531  
7532 7532          if (rx_group) {
7533 7533                  if (group != mip->mi_rx_donor_grp)
7534 7534                          defgrp = mip->mi_rx_donor_grp;
7535 7535                  else
7536 7536                          /*
7537 7537                           * This is the donor group with all the remaining
7538 7538                           * rings. Default group now gets to be the donor
7539 7539                           */
7540 7540                          mip->mi_rx_donor_grp = defgrp;
7541 7541                  start = 1;
7542 7542                  end = mip->mi_rx_group_count;
7543 7543          } else {
7544 7544                  start = 0;
7545 7545                  end = mip->mi_tx_group_count - 1;
7546 7546          }
7547 7547          /*
7548 7548           * If the default doesn't have any rings, lets see if we can
7549 7549           * take rings given to an h/w client that doesn't need it.
7550 7550           * For now, we just see if there is  any one client that can donate
7551 7551           * all the required rings.
7552 7552           */
7553 7553          if (defgrp->mrg_cur_count < (modify + 1)) {
7554 7554                  for (i = start; i < end; i++) {
7555 7555                          if (rx_group) {
7556 7556                                  tgrp = &mip->mi_rx_groups[i];
7557 7557                                  if (tgrp == group || tgrp->mrg_state <
7558 7558                                      MAC_GROUP_STATE_RESERVED) {
7559 7559                                          continue;
7560 7560                                  }
7561 7561                                  mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7562 7562                                  if (mcip == NULL)
7563 7563                                          mcip = mac_get_grp_primary(tgrp);
7564 7564                                  ASSERT(mcip != NULL);
7565 7565                                  mrp = MCIP_RESOURCE_PROPS(mcip);
7566 7566                                  if ((mrp->mrp_mask & MRP_RX_RINGS) != 0)
7567 7567                                          continue;
7568 7568                                  if ((tgrp->mrg_cur_count +
7569 7569                                      defgrp->mrg_cur_count) < (modify + 1)) {
7570 7570                                          continue;
7571 7571                                  }
7572 7572                                  if (mac_rx_switch_group(mcip, tgrp,
7573 7573                                      defgrp) != 0) {
7574 7574                                          return (ENOSPC);
7575 7575                                  }
7576 7576                          } else {
7577 7577                                  tgrp = &mip->mi_tx_groups[i];
7578 7578                                  if (tgrp == group || tgrp->mrg_state <
7579 7579                                      MAC_GROUP_STATE_RESERVED) {
7580 7580                                          continue;
7581 7581                                  }
7582 7582                                  mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7583 7583                                  if (mcip == NULL)
7584 7584                                          mcip = mac_get_grp_primary(tgrp);
7585 7585                                  mrp = MCIP_RESOURCE_PROPS(mcip);
7586 7586                                  if ((mrp->mrp_mask & MRP_TX_RINGS) != 0)
7587 7587                                          continue;
7588 7588                                  if ((tgrp->mrg_cur_count +
7589 7589                                      defgrp->mrg_cur_count) < (modify + 1)) {
7590 7590                                          continue;
7591 7591                                  }
7592 7592                                  /* OK, we can switch this to s/w */
7593 7593                                  mac_tx_client_quiesce(
7594 7594                                      (mac_client_handle_t)mcip);
7595 7595                                  mac_tx_switch_group(mcip, tgrp, defgrp);
7596 7596                                  mac_tx_client_restart(
7597 7597                                      (mac_client_handle_t)mcip);
7598 7598                          }
7599 7599                  }
7600 7600                  if (defgrp->mrg_cur_count < (modify + 1))
7601 7601                          return (ENOSPC);
7602 7602          }
7603 7603          if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp,
7604 7604              group, mcip->mci_share, modify)) != 0) {
7605 7605                  return (rv);
7606 7606          }
7607 7607          return (0);
7608 7608  }
7609 7609  
7610 7610  /*
7611 7611   * Given the poolname in mac_resource_props, find the cpupart
7612 7612   * that is associated with this pool.  The cpupart will be used
7613 7613   * later for finding the cpus to be bound to the networking threads.
7614 7614   *
7615 7615   * use_default is set B_TRUE if pools are enabled and pool_default
7616 7616   * is returned.  This avoids a 2nd lookup to set the poolname
7617 7617   * for pool-effective.
7618 7618   *
7619 7619   * returns:
7620 7620   *
7621 7621   *    NULL -   pools are disabled or if the 'cpus' property is set.
7622 7622   *    cpupart of pool_default  - pools are enabled and the pool
7623 7623   *             is not available or poolname is blank
7624 7624   *    cpupart of named pool    - pools are enabled and the pool
7625 7625   *             is available.
7626 7626   */
7627 7627  cpupart_t *
7628 7628  mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default)
7629 7629  {
7630 7630          pool_t          *pool;
7631 7631          cpupart_t       *cpupart;
7632 7632  
7633 7633          *use_default = B_FALSE;
7634 7634  
7635 7635          /* CPUs property is set */
7636 7636          if (mrp->mrp_mask & MRP_CPUS)
7637 7637                  return (NULL);
7638 7638  
7639 7639          ASSERT(pool_lock_held());
7640 7640  
7641 7641          /* Pools are disabled, no pset */
7642 7642          if (pool_state == POOL_DISABLED)
7643 7643                  return (NULL);
7644 7644  
7645 7645          /* Pools property is set */
7646 7646          if (mrp->mrp_mask & MRP_POOL) {
7647 7647                  if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) {
7648 7648                          /* Pool not found */
7649 7649                          DTRACE_PROBE1(mac_pset_find_no_pool, char *,
7650 7650                              mrp->mrp_pool);
7651 7651                          *use_default = B_TRUE;
7652 7652                          pool = pool_default;
7653 7653                  }
7654 7654          /* Pools property is not set */
7655 7655          } else {
7656 7656                  *use_default = B_TRUE;
7657 7657                  pool = pool_default;
7658 7658          }
7659 7659  
7660 7660          /* Find the CPU pset that corresponds to the pool */
7661 7661          mutex_enter(&cpu_lock);
7662 7662          if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) {
7663 7663                  DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t,
7664 7664                      pool->pool_pset->pset_id);
7665 7665          }
7666 7666          mutex_exit(&cpu_lock);
7667 7667  
7668 7668          return (cpupart);
7669 7669  }
7670 7670  
7671 7671  void
7672 7672  mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart,
7673 7673      mac_resource_props_t *mrp, mac_resource_props_t *emrp)
7674 7674  {
7675 7675          ASSERT(pool_lock_held());
7676 7676  
7677 7677          if (cpupart != NULL) {
7678 7678                  emrp->mrp_mask |= MRP_POOL;
7679 7679                  if (use_default) {
7680 7680                          (void) strcpy(emrp->mrp_pool,
7681 7681                              "pool_default");
7682 7682                  } else {
7683 7683                          ASSERT(strlen(mrp->mrp_pool) != 0);
7684 7684                          (void) strcpy(emrp->mrp_pool,
7685 7685                              mrp->mrp_pool);
7686 7686                  }
7687 7687          } else {
7688 7688                  emrp->mrp_mask &= ~MRP_POOL;
7689 7689                  bzero(emrp->mrp_pool, MAXPATHLEN);
7690 7690          }
7691 7691  }
7692 7692  
7693 7693  struct mac_pool_arg {
7694 7694          char            mpa_poolname[MAXPATHLEN];
7695 7695          pool_event_t    mpa_what;
7696 7696  };
7697 7697  
7698 7698  /*ARGSUSED*/
7699 7699  static uint_t
7700 7700  mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
7701 7701  {
7702 7702          struct mac_pool_arg     *mpa = arg;
7703 7703          mac_impl_t              *mip = (mac_impl_t *)val;
7704 7704          mac_client_impl_t       *mcip;
7705 7705          mac_resource_props_t    *mrp, *emrp;
7706 7706          boolean_t               pool_update = B_FALSE;
7707 7707          boolean_t               pool_clear = B_FALSE;
7708 7708          boolean_t               use_default = B_FALSE;
7709 7709          cpupart_t               *cpupart = NULL;
7710 7710  
7711 7711          mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
7712 7712          i_mac_perim_enter(mip);
7713 7713          for (mcip = mip->mi_clients_list; mcip != NULL;
7714 7714              mcip = mcip->mci_client_next) {
7715 7715                  pool_update = B_FALSE;
7716 7716                  pool_clear = B_FALSE;
7717 7717                  use_default = B_FALSE;
7718 7718                  mac_client_get_resources((mac_client_handle_t)mcip, mrp);
7719 7719                  emrp = MCIP_EFFECTIVE_PROPS(mcip);
7720 7720  
7721 7721                  /*
7722 7722                   * When pools are enabled
7723 7723                   */
7724 7724                  if ((mpa->mpa_what == POOL_E_ENABLE) &&
7725 7725                      ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7726 7726                          mrp->mrp_mask |= MRP_POOL;
7727 7727                          pool_update = B_TRUE;
7728 7728                  }
7729 7729  
7730 7730                  /*
7731 7731                   * When pools are disabled
7732 7732                   */
7733 7733                  if ((mpa->mpa_what == POOL_E_DISABLE) &&
7734 7734                      ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7735 7735                          mrp->mrp_mask |= MRP_POOL;
7736 7736                          pool_clear = B_TRUE;
7737 7737                  }
7738 7738  
7739 7739                  /*
7740 7740                   * Look for links with the pool property set and the poolname
7741 7741                   * matching the one which is changing.
7742 7742                   */
7743 7743                  if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) {
7744 7744                          /*
7745 7745                           * The pool associated with the link has changed.
7746 7746                           */
7747 7747                          if (mpa->mpa_what == POOL_E_CHANGE) {
7748 7748                                  mrp->mrp_mask |= MRP_POOL;
7749 7749                                  pool_update = B_TRUE;
7750 7750                          }
7751 7751                  }
7752 7752  
7753 7753                  /*
7754 7754                   * This link is associated with pool_default and
7755 7755                   * pool_default has changed.
7756 7756                   */
7757 7757                  if ((mpa->mpa_what == POOL_E_CHANGE) &&
7758 7758                      (strcmp(emrp->mrp_pool, "pool_default") == 0) &&
7759 7759                      (strcmp(mpa->mpa_poolname, "pool_default") == 0)) {
7760 7760                          mrp->mrp_mask |= MRP_POOL;
7761 7761                          pool_update = B_TRUE;
7762 7762                  }
7763 7763  
7764 7764                  /*
7765 7765                   * Get new list of cpus for the pool, bind network
7766 7766                   * threads to new list of cpus and update resources.
7767 7767                   */
7768 7768                  if (pool_update) {
7769 7769                          if (MCIP_DATAPATH_SETUP(mcip)) {
7770 7770                                  pool_lock();
7771 7771                                  cpupart = mac_pset_find(mrp, &use_default);
7772 7772                                  mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7773 7773                                      mac_rx_deliver, mcip, NULL, cpupart);
7774 7774                                  mac_set_pool_effective(use_default, cpupart,
7775 7775                                      mrp, emrp);
7776 7776                                  pool_unlock();
7777 7777                          }
7778 7778                          mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7779 7779                              B_FALSE);
7780 7780                  }
7781 7781  
7782 7782                  /*
7783 7783                   * Clear the effective pool and bind network threads
7784 7784                   * to any available CPU.
7785 7785                   */
7786 7786                  if (pool_clear) {
7787 7787                          if (MCIP_DATAPATH_SETUP(mcip)) {
7788 7788                                  emrp->mrp_mask &= ~MRP_POOL;
7789 7789                                  bzero(emrp->mrp_pool, MAXPATHLEN);
7790 7790                                  mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7791 7791                                      mac_rx_deliver, mcip, NULL, NULL);
7792 7792                          }
7793 7793                          mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7794 7794                              B_FALSE);
7795 7795                  }
7796 7796          }
7797 7797          i_mac_perim_exit(mip);
7798 7798          kmem_free(mrp, sizeof (*mrp));
7799 7799          return (MH_WALK_CONTINUE);
7800 7800  }
7801 7801  
7802 7802  static void
7803 7803  mac_pool_update(void *arg)
7804 7804  {
7805 7805          mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg);
7806 7806          kmem_free(arg, sizeof (struct mac_pool_arg));
7807 7807  }
7808 7808  
7809 7809  /*
7810 7810   * Callback function to be executed when a noteworthy pool event
7811 7811   * takes place.
7812 7812   */
7813 7813  /* ARGSUSED */
7814 7814  static void
7815 7815  mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg)
7816 7816  {
7817 7817          pool_t                  *pool;
7818 7818          char                    *poolname = NULL;
7819 7819          struct mac_pool_arg     *mpa;
7820 7820  
7821 7821          pool_lock();
7822 7822          mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP);
7823 7823  
7824 7824          switch (what) {
7825 7825          case POOL_E_ENABLE:
7826 7826          case POOL_E_DISABLE:
7827 7827                  break;
7828 7828  
7829 7829          case POOL_E_CHANGE:
7830 7830                  pool = pool_lookup_pool_by_id(id);
7831 7831                  if (pool == NULL) {
7832 7832                          kmem_free(mpa, sizeof (struct mac_pool_arg));
7833 7833                          pool_unlock();
7834 7834                          return;
7835 7835                  }
7836 7836                  pool_get_name(pool, &poolname);
7837 7837                  (void) strlcpy(mpa->mpa_poolname, poolname,
7838 7838                      sizeof (mpa->mpa_poolname));
7839 7839                  break;
7840 7840  
7841 7841          default:
7842 7842                  kmem_free(mpa, sizeof (struct mac_pool_arg));
7843 7843                  pool_unlock();
7844 7844                  return;
7845 7845          }
7846 7846          pool_unlock();
7847 7847  
7848 7848          mpa->mpa_what = what;
7849 7849  
7850 7850          mac_pool_update(mpa);
7851 7851  }
7852 7852  
7853 7853  /*
7854 7854   * Set effective rings property. This could be called from datapath_setup/
7855 7855   * datapath_teardown or set-linkprop.
7856 7856   * If the group is reserved we just go ahead and set the effective rings.
7857 7857   * Additionally, for TX this could mean the default  group has lost/gained
7858 7858   * some rings, so if the default group is reserved, we need to adjust the
7859 7859   * effective rings for the default group clients. For RX, if we are working
7860 7860   * with the non-default group, we just need * to reset the effective props
7861 7861   * for the default group clients.
7862 7862   */
7863 7863  void
7864 7864  mac_set_rings_effective(mac_client_impl_t *mcip)
7865 7865  {
7866 7866          mac_impl_t              *mip = mcip->mci_mip;
7867 7867          mac_group_t             *grp;
7868 7868          mac_group_t             *defgrp;
7869 7869          flow_entry_t            *flent = mcip->mci_flent;
7870 7870          mac_resource_props_t    *emrp = MCIP_EFFECTIVE_PROPS(mcip);
7871 7871          mac_grp_client_t        *mgcp;
7872 7872          mac_client_impl_t       *gmcip;
7873 7873  
7874 7874          grp = flent->fe_rx_ring_group;
7875 7875          if (grp != NULL) {
7876 7876                  defgrp = MAC_DEFAULT_RX_GROUP(mip);
7877 7877                  /*
7878 7878                   * If we have reserved a group, set the effective rings
7879 7879                   * to the ring count in the group.
7880 7880                   */
7881 7881                  if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7882 7882                          emrp->mrp_mask |= MRP_RX_RINGS;
7883 7883                          emrp->mrp_nrxrings = grp->mrg_cur_count;
7884 7884                  }
7885 7885  
7886 7886                  /*
7887 7887                   * We go through the clients in the shared group and
7888 7888                   * reset the effective properties. It is possible this
7889 7889                   * might have already been done for some client (i.e.
7890 7890                   * if some client is being moved to a group that is
7891 7891                   * already shared). The case where the default group is
7892 7892                   * RESERVED is taken care of above (note in the RX side if
7893 7893                   * there is a non-default group, the default group is always
7894 7894                   * SHARED).
7895 7895                   */
7896 7896                  if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7897 7897                          if (grp->mrg_state == MAC_GROUP_STATE_SHARED)
7898 7898                                  mgcp = grp->mrg_clients;
7899 7899                          else
7900 7900                                  mgcp = defgrp->mrg_clients;
7901 7901                          while (mgcp != NULL) {
7902 7902                                  gmcip = mgcp->mgc_client;
7903 7903                                  emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7904 7904                                  if (emrp->mrp_mask & MRP_RX_RINGS) {
7905 7905                                          emrp->mrp_mask &= ~MRP_RX_RINGS;
7906 7906                                          emrp->mrp_nrxrings = 0;
7907 7907                                  }
7908 7908                                  mgcp = mgcp->mgc_next;
7909 7909                          }
7910 7910                  }
7911 7911          }
7912 7912  
7913 7913          /* Now the TX side */
7914 7914          grp = flent->fe_tx_ring_group;
7915 7915          if (grp != NULL) {
7916 7916                  defgrp = MAC_DEFAULT_TX_GROUP(mip);
7917 7917  
7918 7918                  if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7919 7919                          emrp->mrp_mask |= MRP_TX_RINGS;
7920 7920                          emrp->mrp_ntxrings = grp->mrg_cur_count;
7921 7921                  } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7922 7922                          mgcp = grp->mrg_clients;
7923 7923                          while (mgcp != NULL) {
7924 7924                                  gmcip = mgcp->mgc_client;
7925 7925                                  emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7926 7926                                  if (emrp->mrp_mask & MRP_TX_RINGS) {
7927 7927                                          emrp->mrp_mask &= ~MRP_TX_RINGS;
7928 7928                                          emrp->mrp_ntxrings = 0;
7929 7929                                  }
7930 7930                                  mgcp = mgcp->mgc_next;
7931 7931                          }
7932 7932                  }
7933 7933  
7934 7934                  /*
7935 7935                   * If the group is not the default group and the default
7936 7936                   * group is reserved, the ring count in the default group
7937 7937                   * might have changed, update it.
7938 7938                   */
7939 7939                  if (grp != defgrp &&
7940 7940                      defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7941 7941                          gmcip = MAC_GROUP_ONLY_CLIENT(defgrp);
7942 7942                          emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7943 7943                          emrp->mrp_ntxrings = defgrp->mrg_cur_count;
7944 7944                  }
7945 7945          }
7946 7946          emrp = MCIP_EFFECTIVE_PROPS(mcip);
7947 7947  }
7948 7948  
7949 7949  /*
7950 7950   * Check if the primary is in the default group. If so, see if we
7951 7951   * can give it a an exclusive group now that another client is
7952 7952   * being configured. We take the primary out of the default group
7953 7953   * because the multicast/broadcast packets for the all the clients
7954 7954   * will land in the default ring in the default group which means
7955 7955   * any client in the default group, even if it is the only on in
7956 7956   * the group, will lose exclusive access to the rings, hence
7957 7957   * polling.
7958 7958   */
7959 7959  mac_client_impl_t *
7960 7960  mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw)
7961 7961  {
7962 7962          mac_impl_t              *mip = mcip->mci_mip;
7963 7963          mac_group_t             *defgrp = MAC_DEFAULT_RX_GROUP(mip);
7964 7964          flow_entry_t            *flent = mcip->mci_flent;
7965 7965          mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
7966 7966          uint8_t                 *mac_addr;
7967 7967          mac_group_t             *ngrp;
7968 7968  
7969 7969          /*
7970 7970           * Check if the primary is in the default group, if not
7971 7971           * or if it is explicitly configured to be in the default
7972 7972           * group OR set the RX rings property, return.
7973 7973           */
7974 7974          if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS)
7975 7975                  return (NULL);
7976 7976  
7977 7977          /*
7978 7978           * If the new client needs an exclusive group and we
7979 7979           * don't have another for the primary, return.
7980 7980           */
7981 7981          if (rxhw && mip->mi_rxhwclnt_avail < 2)
7982 7982                  return (NULL);
7983 7983  
7984 7984          mac_addr = flent->fe_flow_desc.fd_dst_mac;
7985 7985          /*
7986 7986           * We call this when we are setting up the datapath for
7987 7987           * the first non-primary.
7988 7988           */
7989 7989          ASSERT(mip->mi_nactiveclients == 2);
7990 7990          /*
7991 7991           * OK, now we have the primary that needs to be relocated.
7992 7992           */
7993 7993          ngrp =  mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
7994 7994          if (ngrp == NULL)
7995 7995                  return (NULL);
7996 7996          if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
7997 7997                  mac_stop_group(ngrp);
7998 7998                  return (NULL);
7999 7999          }
8000 8000          return (mcip);
8001 8001  }
  
    | 
      ↓ open down ↓ | 
    3948 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX