1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2014, Joyent, Inc.  All rights reserved.
  25  */
  26 
  27 /*
  28  * MAC Services Module
  29  *
  30  * The GLDv3 framework locking -  The MAC layer
  31  * --------------------------------------------
  32  *
  33  * The MAC layer is central to the GLD framework and can provide the locking
  34  * framework needed for itself and for the use of MAC clients. MAC end points
  35  * are fairly disjoint and don't share a lot of state. So a coarse grained
  36  * multi-threading scheme is to single thread all create/modify/delete or set
  37  * type of control operations on a per mac end point while allowing data threads
  38  * concurrently.
  39  *
  40  * Control operations (set) that modify a mac end point are always serialized on
  41  * a per mac end point basis, We have at most 1 such thread per mac end point
  42  * at a time.
  43  *
  44  * All other operations that are not serialized are essentially multi-threaded.
  45  * For example a control operation (get) like getting statistics which may not
  46  * care about reading values atomically or data threads sending or receiving
  47  * data. Mostly these type of operations don't modify the control state. Any
  48  * state these operations care about are protected using traditional locks.
  49  *
  50  * The perimeter only serializes serial operations. It does not imply there
  51  * aren't any other concurrent operations. However a serialized operation may
  52  * sometimes need to make sure it is the only thread. In this case it needs
  53  * to use reference counting mechanisms to cv_wait until any current data
  54  * threads are done.
  55  *
  56  * The mac layer itself does not hold any locks across a call to another layer.
  57  * The perimeter is however held across a down call to the driver to make the
  58  * whole control operation atomic with respect to other control operations.
  59  * Also the data path and get type control operations may proceed concurrently.
  60  * These operations synchronize with the single serial operation on a given mac
  61  * end point using regular locks. The perimeter ensures that conflicting
  62  * operations like say a mac_multicast_add and a mac_multicast_remove on the
  63  * same mac end point don't interfere with each other and also ensures that the
  64  * changes in the mac layer and the call to the underlying driver to say add a
  65  * multicast address are done atomically without interference from a thread
  66  * trying to delete the same address.
  67  *
  68  * For example, consider
  69  * mac_multicst_add()
  70  * {
  71  *      mac_perimeter_enter();  serialize all control operations
  72  *
  73  *      grab list lock          protect against access by data threads
  74  *      add to list
  75  *      drop list lock
  76  *
  77  *      call driver's mi_multicst
  78  *
  79  *      mac_perimeter_exit();
  80  * }
  81  *
  82  * To lessen the number of serialization locks and simplify the lock hierarchy,
  83  * we serialize all the control operations on a per mac end point by using a
  84  * single serialization lock called the perimeter. We allow recursive entry into
  85  * the perimeter to facilitate use of this mechanism by both the mac client and
  86  * the MAC layer itself.
  87  *
  88  * MAC client means an entity that does an operation on a mac handle
  89  * obtained from a mac_open/mac_client_open. Similarly MAC driver means
  90  * an entity that does an operation on a mac handle obtained from a
  91  * mac_register. An entity could be both client and driver but on different
  92  * handles eg. aggr. and should only make the corresponding mac interface calls
  93  * i.e. mac driver interface or mac client interface as appropriate for that
  94  * mac handle.
  95  *
  96  * General rules.
  97  * -------------
  98  *
  99  * R1. The lock order of upcall threads is natually opposite to downcall
 100  * threads. Hence upcalls must not hold any locks across layers for fear of
 101  * recursive lock enter and lock order violation. This applies to all layers.
 102  *
 103  * R2. The perimeter is just another lock. Since it is held in the down
 104  * direction, acquiring the perimeter in an upcall is prohibited as it would
 105  * cause a deadlock. This applies to all layers.
 106  *
 107  * Note that upcalls that need to grab the mac perimeter (for example
 108  * mac_notify upcalls) can still achieve that by posting the request to a
 109  * thread, which can then grab all the required perimeters and locks in the
 110  * right global order. Note that in the above example the mac layer iself
 111  * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
 112  * to the client must do that. Please see the aggr code for an example.
 113  *
 114  * MAC client rules
 115  * ----------------
 116  *
 117  * R3. A MAC client may use the MAC provided perimeter facility to serialize
 118  * control operations on a per mac end point. It does this by by acquring
 119  * and holding the perimeter across a sequence of calls to the mac layer.
 120  * This ensures atomicity across the entire block of mac calls. In this
 121  * model the MAC client must not hold any client locks across the calls to
 122  * the mac layer. This model is the preferred solution.
 123  *
 124  * R4. However if a MAC client has a lot of global state across all mac end
 125  * points the per mac end point serialization may not be sufficient. In this
 126  * case the client may choose to use global locks or use its own serialization.
 127  * To avoid deadlocks, these client layer locks held across the mac calls
 128  * in the control path must never be acquired by the data path for the reason
 129  * mentioned below.
 130  *
 131  * (Assume that a control operation that holds a client lock blocks in the
 132  * mac layer waiting for upcall reference counts to drop to zero. If an upcall
 133  * data thread that holds this reference count, tries to acquire the same
 134  * client lock subsequently it will deadlock).
 135  *
 136  * A MAC client may follow either the R3 model or the R4 model, but can't
 137  * mix both. In the former, the hierarchy is Perim -> client locks, but in
 138  * the latter it is client locks -> Perim.
 139  *
 140  * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
 141  * context since they may block while trying to acquire the perimeter.
 142  * In addition some calls may block waiting for upcall refcnts to come down to
 143  * zero.
 144  *
 145  * R6. MAC clients must make sure that they are single threaded and all threads
 146  * from the top (in particular data threads) have finished before calling
 147  * mac_client_close. The MAC framework does not track the number of client
 148  * threads using the mac client handle. Also mac clients must make sure
 149  * they have undone all the control operations before calling mac_client_close.
 150  * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
 151  * mac_unicast_add/mac_multicast_add.
 152  *
 153  * MAC framework rules
 154  * -------------------
 155  *
 156  * R7. The mac layer itself must not hold any mac layer locks (except the mac
 157  * perimeter) across a call to any other layer from the mac layer. The call to
 158  * any other layer could be via mi_* entry points, classifier entry points into
 159  * the driver or via upcall pointers into layers above. The mac perimeter may
 160  * be acquired or held only in the down direction, for e.g. when calling into
 161  * a mi_* driver enty point to provide atomicity of the operation.
 162  *
 163  * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
 164  * mac driver interfaces, the MAC layer must provide a cut out for control
 165  * interfaces like upcall notifications and start them in a separate thread.
 166  *
 167  * R9. Note that locking order also implies a plumbing order. For example
 168  * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
 169  * to plumb in any other order must be failed at mac_open time, otherwise it
 170  * could lead to deadlocks due to inverse locking order.
 171  *
 172  * R10. MAC driver interfaces must not block since the driver could call them
 173  * in interrupt context.
 174  *
 175  * R11. Walkers must preferably not hold any locks while calling walker
 176  * callbacks. Instead these can operate on reference counts. In simple
 177  * callbacks it may be ok to hold a lock and call the callbacks, but this is
 178  * harder to maintain in the general case of arbitrary callbacks.
 179  *
 180  * R12. The MAC layer must protect upcall notification callbacks using reference
 181  * counts rather than holding locks across the callbacks.
 182  *
 183  * R13. Given the variety of drivers, it is preferable if the MAC layer can make
 184  * sure that any pointers (such as mac ring pointers) it passes to the driver
 185  * remain valid until mac unregister time. Currently the mac layer achieves
 186  * this by using generation numbers for rings and freeing the mac rings only
 187  * at unregister time.  The MAC layer must provide a layer of indirection and
 188  * must not expose underlying driver rings or driver data structures/pointers
 189  * directly to MAC clients.
 190  *
 191  * MAC driver rules
 192  * ----------------
 193  *
 194  * R14. It would be preferable if MAC drivers don't hold any locks across any
 195  * mac call. However at a minimum they must not hold any locks across data
 196  * upcalls. They must also make sure that all references to mac data structures
 197  * are cleaned up and that it is single threaded at mac_unregister time.
 198  *
 199  * R15. MAC driver interfaces don't block and so the action may be done
 200  * asynchronously in a separate thread as for example handling notifications.
 201  * The driver must not assume that the action is complete when the call
 202  * returns.
 203  *
 204  * R16. Drivers must maintain a generation number per Rx ring, and pass it
 205  * back to mac_rx_ring(); They are expected to increment the generation
 206  * number whenever the ring's stop routine is invoked.
 207  * See comments in mac_rx_ring();
 208  *
 209  * R17 Similarly mi_stop is another synchronization point and the driver must
 210  * ensure that all upcalls are done and there won't be any future upcall
 211  * before returning from mi_stop.
 212  *
 213  * R18. The driver may assume that all set/modify control operations via
 214  * the mi_* entry points are single threaded on a per mac end point.
 215  *
 216  * Lock and Perimeter hierarchy scenarios
 217  * ---------------------------------------
 218  *
 219  * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
 220  *
 221  * ft_lock -> fe_lock [mac_flow_lookup]
 222  *
 223  * mi_rw_lock -> fe_lock [mac_bcast_send]
 224  *
 225  * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
 226  *
 227  * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
 228  *
 229  * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
 230  *
 231  * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
 232  * client to driver. In the case of clients that explictly use the mac provided
 233  * perimeter mechanism for its serialization, the hierarchy is
 234  * Perimeter -> mac layer locks, since the client never holds any locks across
 235  * the mac calls. In the case of clients that use its own locks the hierarchy
 236  * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
 237  * calls mac_perim_enter/exit in this case.
 238  *
 239  * Subflow creation rules
 240  * ---------------------------
 241  * o In case of a user specified cpulist present on underlying link and flows,
 242  * the flows cpulist must be a subset of the underlying link.
 243  * o In case of a user specified fanout mode present on link and flow, the
 244  * subflow fanout count has to be less than or equal to that of the
 245  * underlying link. The cpu-bindings for the subflows will be a subset of
 246  * the underlying link.
 247  * o In case if no cpulist specified on both underlying link and flow, the
 248  * underlying link relies on a  MAC tunable to provide out of box fanout.
 249  * The subflow will have no cpulist (the subflow will be unbound)
 250  * o In case if no cpulist is specified on the underlying link, a subflow can
 251  * carry  either a user-specified cpulist or fanout count. The cpu-bindings
 252  * for the subflow will not adhere to restriction that they need to be subset
 253  * of the underlying link.
 254  * o In case where the underlying link is carrying either a user specified
 255  * cpulist or fanout mode and for a unspecified subflow, the subflow will be
 256  * created unbound.
 257  * o While creating unbound subflows, bandwidth mode changes attempt to
 258  * figure a right fanout count. In such cases the fanout count will override
 259  * the unbound cpu-binding behavior.
 260  * o In addition to this, while cycling between flow and link properties, we
 261  * impose a restriction that if a link property has a subflow with
 262  * user-specified attributes, we will not allow changing the link property.
 263  * The administrator needs to reset all the user specified properties for the
 264  * subflows before attempting a link property change.
 265  * Some of the above rules can be overridden by specifying additional command
 266  * line options while creating or modifying link or subflow properties.
 267  *
 268  * Datapath
 269  * --------
 270  *
 271  * For information on the datapath, the world of soft rings, hardware rings, how
 272  * it is structured, and the path of an mblk_t between a driver and a mac
 273  * client, see mac_sched.c.
 274  */
 275 
 276 #include <sys/types.h>
 277 #include <sys/conf.h>
 278 #include <sys/id_space.h>
 279 #include <sys/esunddi.h>
 280 #include <sys/stat.h>
 281 #include <sys/mkdev.h>
 282 #include <sys/stream.h>
 283 #include <sys/strsun.h>
 284 #include <sys/strsubr.h>
 285 #include <sys/dlpi.h>
 286 #include <sys/list.h>
 287 #include <sys/modhash.h>
 288 #include <sys/mac_provider.h>
 289 #include <sys/mac_client_impl.h>
 290 #include <sys/mac_soft_ring.h>
 291 #include <sys/mac_stat.h>
 292 #include <sys/mac_impl.h>
 293 #include <sys/mac.h>
 294 #include <sys/dls.h>
 295 #include <sys/dld.h>
 296 #include <sys/modctl.h>
 297 #include <sys/fs/dv_node.h>
 298 #include <sys/thread.h>
 299 #include <sys/proc.h>
 300 #include <sys/callb.h>
 301 #include <sys/cpuvar.h>
 302 #include <sys/atomic.h>
 303 #include <sys/bitmap.h>
 304 #include <sys/sdt.h>
 305 #include <sys/mac_flow.h>
 306 #include <sys/ddi_intr_impl.h>
 307 #include <sys/disp.h>
 308 #include <sys/sdt.h>
 309 #include <sys/vnic.h>
 310 #include <sys/vnic_impl.h>
 311 #include <sys/vlan.h>
 312 #include <inet/ip.h>
 313 #include <inet/ip6.h>
 314 #include <sys/exacct.h>
 315 #include <sys/exacct_impl.h>
 316 #include <inet/nd.h>
 317 #include <sys/ethernet.h>
 318 #include <sys/pool.h>
 319 #include <sys/pool_pset.h>
 320 #include <sys/cpupart.h>
 321 #include <inet/wifi_ioctl.h>
 322 #include <net/wpa.h>
 323 
 324 #define IMPL_HASHSZ     67      /* prime */
 325 
 326 kmem_cache_t            *i_mac_impl_cachep;
 327 mod_hash_t              *i_mac_impl_hash;
 328 krwlock_t               i_mac_impl_lock;
 329 uint_t                  i_mac_impl_count;
 330 static kmem_cache_t     *mac_ring_cache;
 331 static id_space_t       *minor_ids;
 332 static uint32_t         minor_count;
 333 static pool_event_cb_t  mac_pool_event_reg;
 334 
 335 /*
 336  * Logging stuff. Perhaps mac_logging_interval could be broken into
 337  * mac_flow_log_interval and mac_link_log_interval if we want to be
 338  * able to schedule them differently.
 339  */
 340 uint_t                  mac_logging_interval;
 341 boolean_t               mac_flow_log_enable;
 342 boolean_t               mac_link_log_enable;
 343 timeout_id_t            mac_logging_timer;
 344 
 345 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */
 346 int mac_dbg = 0;
 347 
 348 #define MACTYPE_KMODDIR "mac"
 349 #define MACTYPE_HASHSZ  67
 350 static mod_hash_t       *i_mactype_hash;
 351 /*
 352  * i_mactype_lock synchronizes threads that obtain references to mactype_t
 353  * structures through i_mactype_getplugin().
 354  */
 355 static kmutex_t         i_mactype_lock;
 356 
 357 /*
 358  * mac_tx_percpu_cnt
 359  *
 360  * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
 361  * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
 362  * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
 363  * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
 364  */
 365 int mac_tx_percpu_cnt;
 366 int mac_tx_percpu_cnt_max = 128;
 367 
 368 /*
 369  * Call back functions for the bridge module.  These are guaranteed to be valid
 370  * when holding a reference on a link or when holding mip->mi_bridge_lock and
 371  * mi_bridge_link is non-NULL.
 372  */
 373 mac_bridge_tx_t mac_bridge_tx_cb;
 374 mac_bridge_rx_t mac_bridge_rx_cb;
 375 mac_bridge_ref_t mac_bridge_ref_cb;
 376 mac_bridge_ls_t mac_bridge_ls_cb;
 377 
 378 static int i_mac_constructor(void *, void *, int);
 379 static void i_mac_destructor(void *, void *);
 380 static int i_mac_ring_ctor(void *, void *, int);
 381 static void i_mac_ring_dtor(void *, void *);
 382 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
 383 void mac_tx_client_flush(mac_client_impl_t *);
 384 void mac_tx_client_block(mac_client_impl_t *);
 385 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
 386 static int mac_start_group_and_rings(mac_group_t *);
 387 static void mac_stop_group_and_rings(mac_group_t *);
 388 static void mac_pool_event_cb(pool_event_t, int, void *);
 389 
 390 typedef struct netinfo_s {
 391         list_node_t     ni_link;
 392         void            *ni_record;
 393         int             ni_size;
 394         int             ni_type;
 395 } netinfo_t;
 396 
 397 /*
 398  * Module initialization functions.
 399  */
 400 
 401 void
 402 mac_init(void)
 403 {
 404         mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
 405             boot_max_ncpus);
 406 
 407         /* Upper bound is mac_tx_percpu_cnt_max */
 408         if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
 409                 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
 410 
 411         if (mac_tx_percpu_cnt < 1) {
 412                 /* Someone set max_tx_percpu_cnt_max to 0 or less */
 413                 mac_tx_percpu_cnt = 1;
 414         }
 415 
 416         ASSERT(mac_tx_percpu_cnt >= 1);
 417         mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
 418         /*
 419          * Make it of the form 2**N - 1 in the range
 420          * [0 .. mac_tx_percpu_cnt_max - 1]
 421          */
 422         mac_tx_percpu_cnt--;
 423 
 424         i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
 425             sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
 426             NULL, NULL, NULL, 0);
 427         ASSERT(i_mac_impl_cachep != NULL);
 428 
 429         mac_ring_cache = kmem_cache_create("mac_ring_cache",
 430             sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
 431             NULL, NULL, 0);
 432         ASSERT(mac_ring_cache != NULL);
 433 
 434         i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
 435             IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
 436             mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
 437         rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
 438 
 439         mac_flow_init();
 440         mac_soft_ring_init();
 441         mac_bcast_init();
 442         mac_client_init();
 443 
 444         i_mac_impl_count = 0;
 445 
 446         i_mactype_hash = mod_hash_create_extended("mactype_hash",
 447             MACTYPE_HASHSZ,
 448             mod_hash_null_keydtor, mod_hash_null_valdtor,
 449             mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
 450 
 451         /*
 452          * Allocate an id space to manage minor numbers. The range of the
 453          * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1.  This
 454          * leaves half of the 32-bit minors available for driver private use.
 455          */
 456         minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
 457             MAC_PRIVATE_MINOR-1);
 458         ASSERT(minor_ids != NULL);
 459         minor_count = 0;
 460 
 461         /* Let's default to 20 seconds */
 462         mac_logging_interval = 20;
 463         mac_flow_log_enable = B_FALSE;
 464         mac_link_log_enable = B_FALSE;
 465         mac_logging_timer = 0;
 466 
 467         /* Register to be notified of noteworthy pools events */
 468         mac_pool_event_reg.pec_func =  mac_pool_event_cb;
 469         mac_pool_event_reg.pec_arg = NULL;
 470         pool_event_cb_register(&mac_pool_event_reg);
 471 }
 472 
 473 int
 474 mac_fini(void)
 475 {
 476 
 477         if (i_mac_impl_count > 0 || minor_count > 0)
 478                 return (EBUSY);
 479 
 480         pool_event_cb_unregister(&mac_pool_event_reg);
 481 
 482         id_space_destroy(minor_ids);
 483         mac_flow_fini();
 484 
 485         mod_hash_destroy_hash(i_mac_impl_hash);
 486         rw_destroy(&i_mac_impl_lock);
 487 
 488         mac_client_fini();
 489         kmem_cache_destroy(mac_ring_cache);
 490 
 491         mod_hash_destroy_hash(i_mactype_hash);
 492         mac_soft_ring_finish();
 493 
 494 
 495         return (0);
 496 }
 497 
 498 /*
 499  * Initialize a GLDv3 driver's device ops.  A driver that manages its own ops
 500  * (e.g. softmac) may pass in a NULL ops argument.
 501  */
 502 void
 503 mac_init_ops(struct dev_ops *ops, const char *name)
 504 {
 505         major_t major = ddi_name_to_major((char *)name);
 506 
 507         /*
 508          * By returning on error below, we are not letting the driver continue
 509          * in an undefined context.  The mac_register() function will faill if
 510          * DN_GLDV3_DRIVER isn't set.
 511          */
 512         if (major == DDI_MAJOR_T_NONE)
 513                 return;
 514         LOCK_DEV_OPS(&devnamesp[major].dn_lock);
 515         devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER);
 516         UNLOCK_DEV_OPS(&devnamesp[major].dn_lock);
 517         if (ops != NULL)
 518                 dld_init_ops(ops, name);
 519 }
 520 
 521 void
 522 mac_fini_ops(struct dev_ops *ops)
 523 {
 524         dld_fini_ops(ops);
 525 }
 526 
 527 /*ARGSUSED*/
 528 static int
 529 i_mac_constructor(void *buf, void *arg, int kmflag)
 530 {
 531         mac_impl_t      *mip = buf;
 532 
 533         bzero(buf, sizeof (mac_impl_t));
 534 
 535         mip->mi_linkstate = LINK_STATE_UNKNOWN;
 536 
 537         rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
 538         mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
 539         mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
 540         mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
 541 
 542         mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
 543         cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
 544         mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
 545         cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
 546 
 547         mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL);
 548 
 549         return (0);
 550 }
 551 
 552 /*ARGSUSED*/
 553 static void
 554 i_mac_destructor(void *buf, void *arg)
 555 {
 556         mac_impl_t      *mip = buf;
 557         mac_cb_info_t   *mcbi;
 558 
 559         ASSERT(mip->mi_ref == 0);
 560         ASSERT(mip->mi_active == 0);
 561         ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
 562         ASSERT(mip->mi_devpromisc == 0);
 563         ASSERT(mip->mi_ksp == NULL);
 564         ASSERT(mip->mi_kstat_count == 0);
 565         ASSERT(mip->mi_nclients == 0);
 566         ASSERT(mip->mi_nactiveclients == 0);
 567         ASSERT(mip->mi_single_active_client == NULL);
 568         ASSERT(mip->mi_state_flags == 0);
 569         ASSERT(mip->mi_factory_addr == NULL);
 570         ASSERT(mip->mi_factory_addr_num == 0);
 571         ASSERT(mip->mi_default_tx_ring == NULL);
 572 
 573         mcbi = &mip->mi_notify_cb_info;
 574         ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
 575         ASSERT(mip->mi_notify_bits == 0);
 576         ASSERT(mip->mi_notify_thread == NULL);
 577         ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
 578         mcbi->mcbi_lockp = NULL;
 579 
 580         mcbi = &mip->mi_promisc_cb_info;
 581         ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
 582         ASSERT(mip->mi_promisc_list == NULL);
 583         ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
 584         mcbi->mcbi_lockp = NULL;
 585 
 586         ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
 587         ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
 588 
 589         rw_destroy(&mip->mi_rw_lock);
 590 
 591         mutex_destroy(&mip->mi_promisc_lock);
 592         cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
 593         mutex_destroy(&mip->mi_notify_lock);
 594         cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
 595         mutex_destroy(&mip->mi_ring_lock);
 596 
 597         ASSERT(mip->mi_bridge_link == NULL);
 598 }
 599 
 600 /* ARGSUSED */
 601 static int
 602 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
 603 {
 604         mac_ring_t *ring = (mac_ring_t *)buf;
 605 
 606         bzero(ring, sizeof (mac_ring_t));
 607         cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
 608         mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
 609         ring->mr_state = MR_FREE;
 610         return (0);
 611 }
 612 
 613 /* ARGSUSED */
 614 static void
 615 i_mac_ring_dtor(void *buf, void *arg)
 616 {
 617         mac_ring_t *ring = (mac_ring_t *)buf;
 618 
 619         cv_destroy(&ring->mr_cv);
 620         mutex_destroy(&ring->mr_lock);
 621 }
 622 
 623 /*
 624  * Common functions to do mac callback addition and deletion. Currently this is
 625  * used by promisc callbacks and notify callbacks. List addition and deletion
 626  * need to take care of list walkers. List walkers in general, can't hold list
 627  * locks and make upcall callbacks due to potential lock order and recursive
 628  * reentry issues. Instead list walkers increment the list walker count to mark
 629  * the presence of a walker thread. Addition can be carefully done to ensure
 630  * that the list walker always sees either the old list or the new list.
 631  * However the deletion can't be done while the walker is active, instead the
 632  * deleting thread simply marks the entry as logically deleted. The last walker
 633  * physically deletes and frees up the logically deleted entries when the walk
 634  * is complete.
 635  */
 636 void
 637 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
 638     mac_cb_t *mcb_elem)
 639 {
 640         mac_cb_t        *p;
 641         mac_cb_t        **pp;
 642 
 643         /* Verify it is not already in the list */
 644         for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
 645                 if (p == mcb_elem)
 646                         break;
 647         }
 648         VERIFY(p == NULL);
 649 
 650         /*
 651          * Add it to the head of the callback list. The membar ensures that
 652          * the following list pointer manipulations reach global visibility
 653          * in exactly the program order below.
 654          */
 655         ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 656 
 657         mcb_elem->mcb_nextp = *mcb_head;
 658         membar_producer();
 659         *mcb_head = mcb_elem;
 660 }
 661 
 662 /*
 663  * Mark the entry as logically deleted. If there aren't any walkers unlink
 664  * from the list. In either case return the corresponding status.
 665  */
 666 boolean_t
 667 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
 668     mac_cb_t *mcb_elem)
 669 {
 670         mac_cb_t        *p;
 671         mac_cb_t        **pp;
 672 
 673         ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 674         /*
 675          * Search the callback list for the entry to be removed
 676          */
 677         for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
 678                 if (p == mcb_elem)
 679                         break;
 680         }
 681         VERIFY(p != NULL);
 682 
 683         /*
 684          * If there are walkers just mark it as deleted and the last walker
 685          * will remove from the list and free it.
 686          */
 687         if (mcbi->mcbi_walker_cnt != 0) {
 688                 p->mcb_flags |= MCB_CONDEMNED;
 689                 mcbi->mcbi_del_cnt++;
 690                 return (B_FALSE);
 691         }
 692 
 693         ASSERT(mcbi->mcbi_del_cnt == 0);
 694         *pp = p->mcb_nextp;
 695         p->mcb_nextp = NULL;
 696         return (B_TRUE);
 697 }
 698 
 699 /*
 700  * Wait for all pending callback removals to be completed
 701  */
 702 void
 703 mac_callback_remove_wait(mac_cb_info_t *mcbi)
 704 {
 705         ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 706         while (mcbi->mcbi_del_cnt != 0) {
 707                 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
 708                 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
 709         }
 710 }
 711 
 712 /*
 713  * The last mac callback walker does the cleanup. Walk the list and unlik
 714  * all the logically deleted entries and construct a temporary list of
 715  * removed entries. Return the list of removed entries to the caller.
 716  */
 717 mac_cb_t *
 718 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
 719 {
 720         mac_cb_t        *p;
 721         mac_cb_t        **pp;
 722         mac_cb_t        *rmlist = NULL;         /* List of removed elements */
 723         int     cnt = 0;
 724 
 725         ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 726         ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
 727 
 728         pp = mcb_head;
 729         while (*pp != NULL) {
 730                 if ((*pp)->mcb_flags & MCB_CONDEMNED) {
 731                         p = *pp;
 732                         *pp = p->mcb_nextp;
 733                         p->mcb_nextp = rmlist;
 734                         rmlist = p;
 735                         cnt++;
 736                         continue;
 737                 }
 738                 pp = &(*pp)->mcb_nextp;
 739         }
 740 
 741         ASSERT(mcbi->mcbi_del_cnt == cnt);
 742         mcbi->mcbi_del_cnt = 0;
 743         return (rmlist);
 744 }
 745 
 746 boolean_t
 747 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
 748 {
 749         mac_cb_t        *mcb;
 750 
 751         /* Verify it is not already in the list */
 752         for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
 753                 if (mcb == mcb_elem)
 754                         return (B_TRUE);
 755         }
 756 
 757         return (B_FALSE);
 758 }
 759 
 760 boolean_t
 761 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
 762 {
 763         boolean_t       found;
 764 
 765         mutex_enter(mcbi->mcbi_lockp);
 766         found = mac_callback_lookup(mcb_headp, mcb_elem);
 767         mutex_exit(mcbi->mcbi_lockp);
 768 
 769         return (found);
 770 }
 771 
 772 /* Free the list of removed callbacks */
 773 void
 774 mac_callback_free(mac_cb_t *rmlist)
 775 {
 776         mac_cb_t        *mcb;
 777         mac_cb_t        *mcb_next;
 778 
 779         for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
 780                 mcb_next = mcb->mcb_nextp;
 781                 kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
 782         }
 783 }
 784 
 785 /*
 786  * The promisc callbacks are in 2 lists, one off the 'mip' and another off the
 787  * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there
 788  * is only a single shared total walker count, and an entry can't be physically
 789  * unlinked if a walker is active on either list. The last walker does this
 790  * cleanup of logically deleted entries.
 791  */
 792 void
 793 i_mac_promisc_walker_cleanup(mac_impl_t *mip)
 794 {
 795         mac_cb_t        *rmlist;
 796         mac_cb_t        *mcb;
 797         mac_cb_t        *mcb_next;
 798         mac_promisc_impl_t      *mpip;
 799 
 800         /*
 801          * Construct a temporary list of deleted callbacks by walking the
 802          * the mi_promisc_list. Then for each entry in the temporary list,
 803          * remove it from the mci_promisc_list and free the entry.
 804          */
 805         rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info,
 806             &mip->mi_promisc_list);
 807 
 808         for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
 809                 mcb_next = mcb->mcb_nextp;
 810                 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
 811                 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
 812                     &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link));
 813                 mcb->mcb_flags = 0;
 814                 mcb->mcb_nextp = NULL;
 815                 kmem_cache_free(mac_promisc_impl_cache, mpip);
 816         }
 817 }
 818 
 819 void
 820 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
 821 {
 822         mac_cb_info_t   *mcbi;
 823 
 824         /*
 825          * Signal the notify thread even after mi_ref has become zero and
 826          * mi_disabled is set. The synchronization with the notify thread
 827          * happens in mac_unregister and that implies the driver must make
 828          * sure it is single-threaded (with respect to mac calls) and that
 829          * all pending mac calls have returned before it calls mac_unregister
 830          */
 831         rw_enter(&i_mac_impl_lock, RW_READER);
 832         if (mip->mi_state_flags & MIS_DISABLED)
 833                 goto exit;
 834 
 835         /*
 836          * Guard against incorrect notifications.  (Running a newer
 837          * mac client against an older implementation?)
 838          */
 839         if (type >= MAC_NNOTE)
 840                 goto exit;
 841 
 842         mcbi = &mip->mi_notify_cb_info;
 843         mutex_enter(mcbi->mcbi_lockp);
 844         mip->mi_notify_bits |= (1 << type);
 845         cv_broadcast(&mcbi->mcbi_cv);
 846         mutex_exit(mcbi->mcbi_lockp);
 847 
 848 exit:
 849         rw_exit(&i_mac_impl_lock);
 850 }
 851 
 852 /*
 853  * Mac serialization primitives. Please see the block comment at the
 854  * top of the file.
 855  */
 856 void
 857 i_mac_perim_enter(mac_impl_t *mip)
 858 {
 859         mac_client_impl_t       *mcip;
 860 
 861         if (mip->mi_state_flags & MIS_IS_VNIC) {
 862                 /*
 863                  * This is a VNIC. Return the lower mac since that is what
 864                  * we want to serialize on.
 865                  */
 866                 mcip = mac_vnic_lower(mip);
 867                 mip = mcip->mci_mip;
 868         }
 869 
 870         mutex_enter(&mip->mi_perim_lock);
 871         if (mip->mi_perim_owner == curthread) {
 872                 mip->mi_perim_ocnt++;
 873                 mutex_exit(&mip->mi_perim_lock);
 874                 return;
 875         }
 876 
 877         while (mip->mi_perim_owner != NULL)
 878                 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
 879 
 880         mip->mi_perim_owner = curthread;
 881         ASSERT(mip->mi_perim_ocnt == 0);
 882         mip->mi_perim_ocnt++;
 883 #ifdef DEBUG
 884         mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
 885             MAC_PERIM_STACK_DEPTH);
 886 #endif
 887         mutex_exit(&mip->mi_perim_lock);
 888 }
 889 
 890 int
 891 i_mac_perim_enter_nowait(mac_impl_t *mip)
 892 {
 893         /*
 894          * The vnic is a special case, since the serialization is done based
 895          * on the lower mac. If the lower mac is busy, it does not imply the
 896          * vnic can't be unregistered. But in the case of other drivers,
 897          * a busy perimeter or open mac handles implies that the mac is busy
 898          * and can't be unregistered.
 899          */
 900         if (mip->mi_state_flags & MIS_IS_VNIC) {
 901                 i_mac_perim_enter(mip);
 902                 return (0);
 903         }
 904 
 905         mutex_enter(&mip->mi_perim_lock);
 906         if (mip->mi_perim_owner != NULL) {
 907                 mutex_exit(&mip->mi_perim_lock);
 908                 return (EBUSY);
 909         }
 910         ASSERT(mip->mi_perim_ocnt == 0);
 911         mip->mi_perim_owner = curthread;
 912         mip->mi_perim_ocnt++;
 913         mutex_exit(&mip->mi_perim_lock);
 914 
 915         return (0);
 916 }
 917 
 918 void
 919 i_mac_perim_exit(mac_impl_t *mip)
 920 {
 921         mac_client_impl_t *mcip;
 922 
 923         if (mip->mi_state_flags & MIS_IS_VNIC) {
 924                 /*
 925                  * This is a VNIC. Return the lower mac since that is what
 926                  * we want to serialize on.
 927                  */
 928                 mcip = mac_vnic_lower(mip);
 929                 mip = mcip->mci_mip;
 930         }
 931 
 932         ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
 933 
 934         mutex_enter(&mip->mi_perim_lock);
 935         if (--mip->mi_perim_ocnt == 0) {
 936                 mip->mi_perim_owner = NULL;
 937                 cv_signal(&mip->mi_perim_cv);
 938         }
 939         mutex_exit(&mip->mi_perim_lock);
 940 }
 941 
 942 /*
 943  * Returns whether the current thread holds the mac perimeter. Used in making
 944  * assertions.
 945  */
 946 boolean_t
 947 mac_perim_held(mac_handle_t mh)
 948 {
 949         mac_impl_t      *mip = (mac_impl_t *)mh;
 950         mac_client_impl_t *mcip;
 951 
 952         if (mip->mi_state_flags & MIS_IS_VNIC) {
 953                 /*
 954                  * This is a VNIC. Return the lower mac since that is what
 955                  * we want to serialize on.
 956                  */
 957                 mcip = mac_vnic_lower(mip);
 958                 mip = mcip->mci_mip;
 959         }
 960         return (mip->mi_perim_owner == curthread);
 961 }
 962 
 963 /*
 964  * mac client interfaces to enter the mac perimeter of a mac end point, given
 965  * its mac handle, or macname or linkid.
 966  */
 967 void
 968 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
 969 {
 970         mac_impl_t      *mip = (mac_impl_t *)mh;
 971 
 972         i_mac_perim_enter(mip);
 973         /*
 974          * The mac_perim_handle_t returned encodes the 'mip' and whether a
 975          * mac_open has been done internally while entering the perimeter.
 976          * This information is used in mac_perim_exit
 977          */
 978         MAC_ENCODE_MPH(*mphp, mip, 0);
 979 }
 980 
 981 int
 982 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
 983 {
 984         int     err;
 985         mac_handle_t    mh;
 986 
 987         if ((err = mac_open(name, &mh)) != 0)
 988                 return (err);
 989 
 990         mac_perim_enter_by_mh(mh, mphp);
 991         MAC_ENCODE_MPH(*mphp, mh, 1);
 992         return (0);
 993 }
 994 
 995 int
 996 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
 997 {
 998         int     err;
 999         mac_handle_t    mh;
1000 
1001         if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
1002                 return (err);
1003 
1004         mac_perim_enter_by_mh(mh, mphp);
1005         MAC_ENCODE_MPH(*mphp, mh, 1);
1006         return (0);
1007 }
1008 
1009 void
1010 mac_perim_exit(mac_perim_handle_t mph)
1011 {
1012         mac_impl_t      *mip;
1013         boolean_t       need_close;
1014 
1015         MAC_DECODE_MPH(mph, mip, need_close);
1016         i_mac_perim_exit(mip);
1017         if (need_close)
1018                 mac_close((mac_handle_t)mip);
1019 }
1020 
1021 int
1022 mac_hold(const char *macname, mac_impl_t **pmip)
1023 {
1024         mac_impl_t      *mip;
1025         int             err;
1026 
1027         /*
1028          * Check the device name length to make sure it won't overflow our
1029          * buffer.
1030          */
1031         if (strlen(macname) >= MAXNAMELEN)
1032                 return (EINVAL);
1033 
1034         /*
1035          * Look up its entry in the global hash table.
1036          */
1037         rw_enter(&i_mac_impl_lock, RW_WRITER);
1038         err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
1039             (mod_hash_val_t *)&mip);
1040 
1041         if (err != 0) {
1042                 rw_exit(&i_mac_impl_lock);
1043                 return (ENOENT);
1044         }
1045 
1046         if (mip->mi_state_flags & MIS_DISABLED) {
1047                 rw_exit(&i_mac_impl_lock);
1048                 return (ENOENT);
1049         }
1050 
1051         if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
1052                 rw_exit(&i_mac_impl_lock);
1053                 return (EBUSY);
1054         }
1055 
1056         mip->mi_ref++;
1057         rw_exit(&i_mac_impl_lock);
1058 
1059         *pmip = mip;
1060         return (0);
1061 }
1062 
1063 void
1064 mac_rele(mac_impl_t *mip)
1065 {
1066         rw_enter(&i_mac_impl_lock, RW_WRITER);
1067         ASSERT(mip->mi_ref != 0);
1068         if (--mip->mi_ref == 0) {
1069                 ASSERT(mip->mi_nactiveclients == 0 &&
1070                     !(mip->mi_state_flags & MIS_EXCLUSIVE));
1071         }
1072         rw_exit(&i_mac_impl_lock);
1073 }
1074 
1075 /*
1076  * Private GLDv3 function to start a MAC instance.
1077  */
1078 int
1079 mac_start(mac_handle_t mh)
1080 {
1081         mac_impl_t      *mip = (mac_impl_t *)mh;
1082         int             err = 0;
1083         mac_group_t     *defgrp;
1084 
1085         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1086         ASSERT(mip->mi_start != NULL);
1087 
1088         /*
1089          * Check whether the device is already started.
1090          */
1091         if (mip->mi_active++ == 0) {
1092                 mac_ring_t *ring = NULL;
1093 
1094                 /*
1095                  * Start the device.
1096                  */
1097                 err = mip->mi_start(mip->mi_driver);
1098                 if (err != 0) {
1099                         mip->mi_active--;
1100                         return (err);
1101                 }
1102 
1103                 /*
1104                  * Start the default tx ring.
1105                  */
1106                 if (mip->mi_default_tx_ring != NULL) {
1107 
1108                         ring = (mac_ring_t *)mip->mi_default_tx_ring;
1109                         if (ring->mr_state != MR_INUSE) {
1110                                 err = mac_start_ring(ring);
1111                                 if (err != 0) {
1112                                         mip->mi_active--;
1113                                         return (err);
1114                                 }
1115                         }
1116                 }
1117 
1118                 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1119                         /*
1120                          * Start the default ring, since it will be needed
1121                          * to receive broadcast and multicast traffic for
1122                          * both primary and non-primary MAC clients.
1123                          */
1124                         ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1125                         err = mac_start_group_and_rings(defgrp);
1126                         if (err != 0) {
1127                                 mip->mi_active--;
1128                                 if ((ring != NULL) &&
1129                                     (ring->mr_state == MR_INUSE))
1130                                         mac_stop_ring(ring);
1131                                 return (err);
1132                         }
1133                         mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED);
1134                 }
1135         }
1136 
1137         return (err);
1138 }
1139 
1140 /*
1141  * Private GLDv3 function to stop a MAC instance.
1142  */
1143 void
1144 mac_stop(mac_handle_t mh)
1145 {
1146         mac_impl_t      *mip = (mac_impl_t *)mh;
1147         mac_group_t     *grp;
1148 
1149         ASSERT(mip->mi_stop != NULL);
1150         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1151 
1152         /*
1153          * Check whether the device is still needed.
1154          */
1155         ASSERT(mip->mi_active != 0);
1156         if (--mip->mi_active == 0) {
1157                 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1158                         /*
1159                          * There should be no more active clients since the
1160                          * MAC is being stopped. Stop the default RX group
1161                          * and transition it back to registered state.
1162                          *
1163                          * When clients are torn down, the groups
1164                          * are release via mac_release_rx_group which
1165                          * knows the the default group is always in
1166                          * started mode since broadcast uses it. So
1167                          * we can assert that their are no clients
1168                          * (since mac_bcast_add doesn't register itself
1169                          * as a client) and group is in SHARED state.
1170                          */
1171                         ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1172                         ASSERT(MAC_GROUP_NO_CLIENT(grp) &&
1173                             mip->mi_nactiveclients == 0);
1174                         mac_stop_group_and_rings(grp);
1175                         mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1176                 }
1177 
1178                 if (mip->mi_default_tx_ring != NULL) {
1179                         mac_ring_t *ring;
1180 
1181                         ring = (mac_ring_t *)mip->mi_default_tx_ring;
1182                         if (ring->mr_state == MR_INUSE) {
1183                                 mac_stop_ring(ring);
1184                                 ring->mr_flag = 0;
1185                         }
1186                 }
1187 
1188                 /*
1189                  * Stop the device.
1190                  */
1191                 mip->mi_stop(mip->mi_driver);
1192         }
1193 }
1194 
1195 int
1196 i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1197 {
1198         int             err = 0;
1199 
1200         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1201         ASSERT(mip->mi_setpromisc != NULL);
1202 
1203         if (on) {
1204                 /*
1205                  * Enable promiscuous mode on the device if not yet enabled.
1206                  */
1207                 if (mip->mi_devpromisc++ == 0) {
1208                         err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1209                         if (err != 0) {
1210                                 mip->mi_devpromisc--;
1211                                 return (err);
1212                         }
1213                         i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1214                 }
1215         } else {
1216                 if (mip->mi_devpromisc == 0)
1217                         return (EPROTO);
1218 
1219                 /*
1220                  * Disable promiscuous mode on the device if this is the last
1221                  * enabling.
1222                  */
1223                 if (--mip->mi_devpromisc == 0) {
1224                         err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1225                         if (err != 0) {
1226                                 mip->mi_devpromisc++;
1227                                 return (err);
1228                         }
1229                         i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1230                 }
1231         }
1232 
1233         return (0);
1234 }
1235 
1236 /*
1237  * The promiscuity state can change any time. If the caller needs to take
1238  * actions that are atomic with the promiscuity state, then the caller needs
1239  * to bracket the entire sequence with mac_perim_enter/exit
1240  */
1241 boolean_t
1242 mac_promisc_get(mac_handle_t mh)
1243 {
1244         mac_impl_t              *mip = (mac_impl_t *)mh;
1245 
1246         /*
1247          * Return the current promiscuity.
1248          */
1249         return (mip->mi_devpromisc != 0);
1250 }
1251 
1252 /*
1253  * Invoked at MAC instance attach time to initialize the list
1254  * of factory MAC addresses supported by a MAC instance. This function
1255  * builds a local cache in the mac_impl_t for the MAC addresses
1256  * supported by the underlying hardware. The MAC clients themselves
1257  * use the mac_addr_factory*() functions to query and reserve
1258  * factory MAC addresses.
1259  */
1260 void
1261 mac_addr_factory_init(mac_impl_t *mip)
1262 {
1263         mac_capab_multifactaddr_t capab;
1264         uint8_t *addr;
1265         int i;
1266 
1267         /*
1268          * First round to see how many factory MAC addresses are available.
1269          */
1270         bzero(&capab, sizeof (capab));
1271         if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1272             &capab) || (capab.mcm_naddr == 0)) {
1273                 /*
1274                  * The MAC instance doesn't support multiple factory
1275                  * MAC addresses, we're done here.
1276                  */
1277                 return;
1278         }
1279 
1280         /*
1281          * Allocate the space and get all the factory addresses.
1282          */
1283         addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1284         capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1285 
1286         mip->mi_factory_addr_num = capab.mcm_naddr;
1287         mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1288             sizeof (mac_factory_addr_t), KM_SLEEP);
1289 
1290         for (i = 0; i < capab.mcm_naddr; i++) {
1291                 bcopy(addr + i * MAXMACADDRLEN,
1292                     mip->mi_factory_addr[i].mfa_addr,
1293                     mip->mi_type->mt_addr_length);
1294                 mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1295         }
1296 
1297         kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1298 }
1299 
1300 void
1301 mac_addr_factory_fini(mac_impl_t *mip)
1302 {
1303         if (mip->mi_factory_addr == NULL) {
1304                 ASSERT(mip->mi_factory_addr_num == 0);
1305                 return;
1306         }
1307 
1308         kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1309             sizeof (mac_factory_addr_t));
1310 
1311         mip->mi_factory_addr = NULL;
1312         mip->mi_factory_addr_num = 0;
1313 }
1314 
1315 /*
1316  * Reserve a factory MAC address. If *slot is set to -1, the function
1317  * attempts to reserve any of the available factory MAC addresses and
1318  * returns the reserved slot id. If no slots are available, the function
1319  * returns ENOSPC. If *slot is not set to -1, the function reserves
1320  * the specified slot if it is available, or returns EBUSY is the slot
1321  * is already used. Returns ENOTSUP if the underlying MAC does not
1322  * support multiple factory addresses. If the slot number is not -1 but
1323  * is invalid, returns EINVAL.
1324  */
1325 int
1326 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1327 {
1328         mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1329         mac_impl_t *mip = mcip->mci_mip;
1330         int i, ret = 0;
1331 
1332         i_mac_perim_enter(mip);
1333         /*
1334          * Protect against concurrent readers that may need a self-consistent
1335          * view of the factory addresses
1336          */
1337         rw_enter(&mip->mi_rw_lock, RW_WRITER);
1338 
1339         if (mip->mi_factory_addr_num == 0) {
1340                 ret = ENOTSUP;
1341                 goto bail;
1342         }
1343 
1344         if (*slot != -1) {
1345                 /* check the specified slot */
1346                 if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1347                         ret = EINVAL;
1348                         goto bail;
1349                 }
1350                 if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1351                         ret = EBUSY;
1352                         goto bail;
1353                 }
1354         } else {
1355                 /* pick the next available slot */
1356                 for (i = 0; i < mip->mi_factory_addr_num; i++) {
1357                         if (!mip->mi_factory_addr[i].mfa_in_use)
1358                                 break;
1359                 }
1360 
1361                 if (i == mip->mi_factory_addr_num) {
1362                         ret = ENOSPC;
1363                         goto bail;
1364                 }
1365                 *slot = i+1;
1366         }
1367 
1368         mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1369         mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1370 
1371 bail:
1372         rw_exit(&mip->mi_rw_lock);
1373         i_mac_perim_exit(mip);
1374         return (ret);
1375 }
1376 
1377 /*
1378  * Release the specified factory MAC address slot.
1379  */
1380 void
1381 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1382 {
1383         mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1384         mac_impl_t *mip = mcip->mci_mip;
1385 
1386         i_mac_perim_enter(mip);
1387         /*
1388          * Protect against concurrent readers that may need a self-consistent
1389          * view of the factory addresses
1390          */
1391         rw_enter(&mip->mi_rw_lock, RW_WRITER);
1392 
1393         ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1394         ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1395 
1396         mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1397 
1398         rw_exit(&mip->mi_rw_lock);
1399         i_mac_perim_exit(mip);
1400 }
1401 
1402 /*
1403  * Stores in mac_addr the value of the specified MAC address. Returns
1404  * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1405  * The caller must provide a string of at least MAXNAMELEN bytes.
1406  */
1407 void
1408 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1409     uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1410 {
1411         mac_impl_t *mip = (mac_impl_t *)mh;
1412         boolean_t in_use;
1413 
1414         ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1415 
1416         /*
1417          * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1418          * and mi_rw_lock
1419          */
1420         rw_enter(&mip->mi_rw_lock, RW_READER);
1421         bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1422         *addr_len = mip->mi_type->mt_addr_length;
1423         in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1424         if (in_use && client_name != NULL) {
1425                 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1426                     client_name, MAXNAMELEN);
1427         }
1428         if (in_use_arg != NULL)
1429                 *in_use_arg = in_use;
1430         rw_exit(&mip->mi_rw_lock);
1431 }
1432 
1433 /*
1434  * Returns the number of factory MAC addresses (in addition to the
1435  * primary MAC address), 0 if the underlying MAC doesn't support
1436  * that feature.
1437  */
1438 uint_t
1439 mac_addr_factory_num(mac_handle_t mh)
1440 {
1441         mac_impl_t *mip = (mac_impl_t *)mh;
1442 
1443         return (mip->mi_factory_addr_num);
1444 }
1445 
1446 
1447 void
1448 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1449 {
1450         mac_ring_t      *ring;
1451 
1452         for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1453                 ring->mr_flag &= ~flag;
1454 }
1455 
1456 /*
1457  * The following mac_hwrings_xxx() functions are private mac client functions
1458  * used by the aggr driver to access and control the underlying HW Rx group
1459  * and rings. In this case, the aggr driver has exclusive control of the
1460  * underlying HW Rx group/rings, it calls the following functions to
1461  * start/stop the HW Rx rings, disable/enable polling, add/remove mac'
1462  * addresses, or set up the Rx callback.
1463  */
1464 /* ARGSUSED */
1465 static void
1466 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1467     mblk_t *mp_chain, boolean_t loopback)
1468 {
1469         mac_soft_ring_set_t     *mac_srs = (mac_soft_ring_set_t *)srs;
1470         mac_srs_rx_t            *srs_rx = &mac_srs->srs_rx;
1471         mac_direct_rx_t         proc;
1472         void                    *arg1;
1473         mac_resource_handle_t   arg2;
1474 
1475         proc = srs_rx->sr_func;
1476         arg1 = srs_rx->sr_arg1;
1477         arg2 = mac_srs->srs_mrh;
1478 
1479         proc(arg1, arg2, mp_chain, NULL);
1480 }
1481 
1482 /*
1483  * This function is called to get the list of HW rings that are reserved by
1484  * an exclusive mac client.
1485  *
1486  * Return value: the number of HW rings.
1487  */
1488 int
1489 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1490     mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1491 {
1492         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
1493         flow_entry_t            *flent = mcip->mci_flent;
1494         mac_group_t             *grp;
1495         mac_ring_t              *ring;
1496         int                     cnt = 0;
1497 
1498         if (rtype == MAC_RING_TYPE_RX) {
1499                 grp = flent->fe_rx_ring_group;
1500         } else if (rtype == MAC_RING_TYPE_TX) {
1501                 grp = flent->fe_tx_ring_group;
1502         } else {
1503                 ASSERT(B_FALSE);
1504                 return (-1);
1505         }
1506         /*
1507          * The mac client did not reserve any RX group, return directly.
1508          * This is probably because the underlying MAC does not support
1509          * any groups.
1510          */
1511         if (hwgh != NULL)
1512                 *hwgh = NULL;
1513         if (grp == NULL)
1514                 return (0);
1515         /*
1516          * This group must be reserved by this mac client.
1517          */
1518         ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1519             (mcip == MAC_GROUP_ONLY_CLIENT(grp)));
1520 
1521         for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1522                 ASSERT(cnt < MAX_RINGS_PER_GROUP);
1523                 hwrh[cnt] = (mac_ring_handle_t)ring;
1524         }
1525         if (hwgh != NULL)
1526                 *hwgh = (mac_group_handle_t)grp;
1527 
1528         return (cnt);
1529 }
1530 
1531 /*
1532  * This function is called to get info about Tx/Rx rings.
1533  *
1534  * Return value: returns uint_t which will have various bits set
1535  * that indicates different properties of the ring.
1536  */
1537 uint_t
1538 mac_hwring_getinfo(mac_ring_handle_t rh)
1539 {
1540         mac_ring_t *ring = (mac_ring_t *)rh;
1541         mac_ring_info_t *info = &ring->mr_info;
1542 
1543         return (info->mri_flags);
1544 }
1545 
1546 /*
1547  * Export ddi interrupt handles from the HW ring to the pseudo ring and
1548  * setup the RX callback of the mac client which exclusively controls
1549  * HW ring.
1550  */
1551 void
1552 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh,
1553     mac_ring_handle_t pseudo_rh)
1554 {
1555         mac_ring_t              *hw_ring = (mac_ring_t *)hwrh;
1556         mac_ring_t              *pseudo_ring;
1557         mac_soft_ring_set_t     *mac_srs = hw_ring->mr_srs;
1558 
1559         if (pseudo_rh != NULL) {
1560                 pseudo_ring = (mac_ring_t *)pseudo_rh;
1561                 /* Export the ddi handles to pseudo ring */
1562                 pseudo_ring->mr_info.mri_intr.mi_ddi_handle =
1563                     hw_ring->mr_info.mri_intr.mi_ddi_handle;
1564                 pseudo_ring->mr_info.mri_intr.mi_ddi_shared =
1565                     hw_ring->mr_info.mri_intr.mi_ddi_shared;
1566                 /*
1567                  * Save a pointer to pseudo ring in the hw ring. If
1568                  * interrupt handle changes, the hw ring will be
1569                  * notified of the change (see mac_ring_intr_set())
1570                  * and the appropriate change has to be made to
1571                  * the pseudo ring that has exported the ddi handle.
1572                  */
1573                 hw_ring->mr_prh = pseudo_rh;
1574         }
1575 
1576         if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1577                 ASSERT(!(mac_srs->srs_type & SRST_TX));
1578                 mac_srs->srs_mrh = prh;
1579                 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1580         }
1581 }
1582 
1583 void
1584 mac_hwring_teardown(mac_ring_handle_t hwrh)
1585 {
1586         mac_ring_t              *hw_ring = (mac_ring_t *)hwrh;
1587         mac_soft_ring_set_t     *mac_srs;
1588 
1589         if (hw_ring == NULL)
1590                 return;
1591         hw_ring->mr_prh = NULL;
1592         if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1593                 mac_srs = hw_ring->mr_srs;
1594                 ASSERT(!(mac_srs->srs_type & SRST_TX));
1595                 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1596                 mac_srs->srs_mrh = NULL;
1597         }
1598 }
1599 
1600 int
1601 mac_hwring_disable_intr(mac_ring_handle_t rh)
1602 {
1603         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1604         mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1605 
1606         return (intr->mi_disable(intr->mi_handle));
1607 }
1608 
1609 int
1610 mac_hwring_enable_intr(mac_ring_handle_t rh)
1611 {
1612         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1613         mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1614 
1615         return (intr->mi_enable(intr->mi_handle));
1616 }
1617 
1618 int
1619 mac_hwring_start(mac_ring_handle_t rh)
1620 {
1621         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1622 
1623         MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1624         return (0);
1625 }
1626 
1627 void
1628 mac_hwring_stop(mac_ring_handle_t rh)
1629 {
1630         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1631 
1632         mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1633 }
1634 
1635 mblk_t *
1636 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1637 {
1638         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1639         mac_ring_info_t *info = &rr_ring->mr_info;
1640 
1641         return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1642 }
1643 
1644 /*
1645  * Send packets through a selected tx ring.
1646  */
1647 mblk_t *
1648 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp)
1649 {
1650         mac_ring_t *ring = (mac_ring_t *)rh;
1651         mac_ring_info_t *info = &ring->mr_info;
1652 
1653         ASSERT(ring->mr_type == MAC_RING_TYPE_TX &&
1654             ring->mr_state >= MR_INUSE);
1655         return (info->mri_tx(info->mri_driver, mp));
1656 }
1657 
1658 /*
1659  * Query stats for a particular rx/tx ring
1660  */
1661 int
1662 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val)
1663 {
1664         mac_ring_t      *ring = (mac_ring_t *)rh;
1665         mac_ring_info_t *info = &ring->mr_info;
1666 
1667         return (info->mri_stat(info->mri_driver, stat, val));
1668 }
1669 
1670 /*
1671  * Private function that is only used by aggr to send packets through
1672  * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports
1673  * that does not expose Tx rings, aggr_ring_tx() entry point needs
1674  * access to mac_impl_t to send packets through m_tx() entry point.
1675  * It accomplishes this by calling mac_hwring_send_priv() function.
1676  */
1677 mblk_t *
1678 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp)
1679 {
1680         mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1681         mac_impl_t *mip = mcip->mci_mip;
1682 
1683         MAC_TX(mip, rh, mp, mcip);
1684         return (mp);
1685 }
1686 
1687 int
1688 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1689 {
1690         mac_group_t *group = (mac_group_t *)gh;
1691 
1692         return (mac_group_addmac(group, addr));
1693 }
1694 
1695 int
1696 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1697 {
1698         mac_group_t *group = (mac_group_t *)gh;
1699 
1700         return (mac_group_remmac(group, addr));
1701 }
1702 
1703 /*
1704  * Set the RX group to be shared/reserved. Note that the group must be
1705  * started/stopped outside of this function.
1706  */
1707 void
1708 mac_set_group_state(mac_group_t *grp, mac_group_state_t state)
1709 {
1710         /*
1711          * If there is no change in the group state, just return.
1712          */
1713         if (grp->mrg_state == state)
1714                 return;
1715 
1716         switch (state) {
1717         case MAC_GROUP_STATE_RESERVED:
1718                 /*
1719                  * Successfully reserved the group.
1720                  *
1721                  * Given that there is an exclusive client controlling this
1722                  * group, we enable the group level polling when available,
1723                  * so that SRSs get to turn on/off individual rings they's
1724                  * assigned to.
1725                  */
1726                 ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1727 
1728                 if (grp->mrg_type == MAC_RING_TYPE_RX &&
1729                     GROUP_INTR_DISABLE_FUNC(grp) != NULL) {
1730                         GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1731                 }
1732                 break;
1733 
1734         case MAC_GROUP_STATE_SHARED:
1735                 /*
1736                  * Set all rings of this group to software classified.
1737                  * If the group has an overriding interrupt, then re-enable it.
1738                  */
1739                 ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1740 
1741                 if (grp->mrg_type == MAC_RING_TYPE_RX &&
1742                     GROUP_INTR_ENABLE_FUNC(grp) != NULL) {
1743                         GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1744                 }
1745                 /* The ring is not available for reservations any more */
1746                 break;
1747 
1748         case MAC_GROUP_STATE_REGISTERED:
1749                 /* Also callable from mac_register, perim is not held */
1750                 break;
1751 
1752         default:
1753                 ASSERT(B_FALSE);
1754                 break;
1755         }
1756 
1757         grp->mrg_state = state;
1758 }
1759 
1760 /*
1761  * Quiesce future hardware classified packets for the specified Rx ring
1762  */
1763 static void
1764 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
1765 {
1766         ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
1767         ASSERT(ring_flag == MR_CONDEMNED || ring_flag  == MR_QUIESCE);
1768 
1769         mutex_enter(&rx_ring->mr_lock);
1770         rx_ring->mr_flag |= ring_flag;
1771         while (rx_ring->mr_refcnt != 0)
1772                 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
1773         mutex_exit(&rx_ring->mr_lock);
1774 }
1775 
1776 /*
1777  * Please see mac_tx for details about the per cpu locking scheme
1778  */
1779 static void
1780 mac_tx_lock_all(mac_client_impl_t *mcip)
1781 {
1782         int     i;
1783 
1784         for (i = 0; i <= mac_tx_percpu_cnt; i++)
1785                 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1786 }
1787 
1788 static void
1789 mac_tx_unlock_all(mac_client_impl_t *mcip)
1790 {
1791         int     i;
1792 
1793         for (i = mac_tx_percpu_cnt; i >= 0; i--)
1794                 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1795 }
1796 
1797 static void
1798 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
1799 {
1800         int     i;
1801 
1802         for (i = mac_tx_percpu_cnt; i > 0; i--)
1803                 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1804 }
1805 
1806 static int
1807 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
1808 {
1809         int     i;
1810         int     refcnt = 0;
1811 
1812         for (i = 0; i <= mac_tx_percpu_cnt; i++)
1813                 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
1814 
1815         return (refcnt);
1816 }
1817 
1818 /*
1819  * Stop future Tx packets coming down from the client in preparation for
1820  * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
1821  * of rings between clients
1822  */
1823 void
1824 mac_tx_client_block(mac_client_impl_t *mcip)
1825 {
1826         mac_tx_lock_all(mcip);
1827         mcip->mci_tx_flag |= MCI_TX_QUIESCE;
1828         while (mac_tx_sum_refcnt(mcip) != 0) {
1829                 mac_tx_unlock_allbutzero(mcip);
1830                 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1831                 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1832                 mac_tx_lock_all(mcip);
1833         }
1834         mac_tx_unlock_all(mcip);
1835 }
1836 
1837 void
1838 mac_tx_client_unblock(mac_client_impl_t *mcip)
1839 {
1840         mac_tx_lock_all(mcip);
1841         mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
1842         mac_tx_unlock_all(mcip);
1843         /*
1844          * We may fail to disable flow control for the last MAC_NOTE_TX
1845          * notification because the MAC client is quiesced. Send the
1846          * notification again.
1847          */
1848         i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
1849 }
1850 
1851 /*
1852  * Wait for an SRS to quiesce. The SRS worker will signal us when the
1853  * quiesce is done.
1854  */
1855 static void
1856 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
1857 {
1858         mutex_enter(&srs->srs_lock);
1859         while (!(srs->srs_state & srs_flag))
1860                 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
1861         mutex_exit(&srs->srs_lock);
1862 }
1863 
1864 /*
1865  * Quiescing an Rx SRS is achieved by the following sequence. The protocol
1866  * works bottom up by cutting off packet flow from the bottommost point in the
1867  * mac, then the SRS, and then the soft rings. There are 2 use cases of this
1868  * mechanism. One is a temporary quiesce of the SRS, such as say while changing
1869  * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
1870  * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
1871  * for the SRS and MR flags. In the former case the threads pause waiting for
1872  * a restart, while in the latter case the threads exit. The Tx SRS teardown
1873  * is also mostly similar to the above.
1874  *
1875  * 1. Stop future hardware classified packets at the lowest level in the mac.
1876  *    Remove any hardware classification rule (CONDEMNED case) and mark the
1877  *    rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
1878  *    from increasing. Upcalls from the driver that come through hardware
1879  *    classification will be dropped in mac_rx from now on. Then we wait for
1880  *    the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
1881  *    sure there aren't any upcall threads from the driver through hardware
1882  *    classification. In the case of SRS teardown we also remove the
1883  *    classification rule in the driver.
1884  *
1885  * 2. Stop future software classified packets by marking the flow entry with
1886  *    FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
1887  *    increasing. We also remove the flow entry from the table in the latter
1888  *    case. Then wait for the fe_refcnt to reach an appropriate quiescent value
1889  *    that indicates there aren't any active threads using that flow entry.
1890  *
1891  * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
1892  *    SRS worker thread, and the soft ring threads are quiesced in sequence
1893  *    with the SRS worker thread serving as a master controller. This
1894  *    mechansim is explained in mac_srs_worker_quiesce().
1895  *
1896  * The restart mechanism to reactivate the SRS and softrings is explained
1897  * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
1898  * restart sequence.
1899  */
1900 void
1901 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
1902 {
1903         flow_entry_t    *flent = srs->srs_flent;
1904         uint_t  mr_flag, srs_done_flag;
1905 
1906         ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1907         ASSERT(!(srs->srs_type & SRST_TX));
1908 
1909         if (srs_quiesce_flag == SRS_CONDEMNED) {
1910                 mr_flag = MR_CONDEMNED;
1911                 srs_done_flag = SRS_CONDEMNED_DONE;
1912                 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1913                         mac_srs_client_poll_disable(srs->srs_mcip, srs);
1914         } else {
1915                 ASSERT(srs_quiesce_flag == SRS_QUIESCE);
1916                 mr_flag = MR_QUIESCE;
1917                 srs_done_flag = SRS_QUIESCE_DONE;
1918                 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1919                         mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
1920         }
1921 
1922         if (srs->srs_ring != NULL) {
1923                 mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
1924         } else {
1925                 /*
1926                  * SRS is driven by software classification. In case
1927                  * of CONDEMNED, the top level teardown functions will
1928                  * deal with flow removal.
1929                  */
1930                 if (srs_quiesce_flag != SRS_CONDEMNED) {
1931                         FLOW_MARK(flent, FE_QUIESCE);
1932                         mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
1933                 }
1934         }
1935 
1936         /*
1937          * Signal the SRS to quiesce itself, and then cv_wait for the
1938          * SRS quiesce to complete. The SRS worker thread will wake us
1939          * up when the quiesce is complete
1940          */
1941         mac_srs_signal(srs, srs_quiesce_flag);
1942         mac_srs_quiesce_wait(srs, srs_done_flag);
1943 }
1944 
1945 /*
1946  * Remove an SRS.
1947  */
1948 void
1949 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
1950 {
1951         flow_entry_t *flent = srs->srs_flent;
1952         int i;
1953 
1954         mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
1955         /*
1956          * Locate and remove our entry in the fe_rx_srs[] array, and
1957          * adjust the fe_rx_srs array entries and array count by
1958          * moving the last entry into the vacated spot.
1959          */
1960         mutex_enter(&flent->fe_lock);
1961         for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1962                 if (flent->fe_rx_srs[i] == srs)
1963                         break;
1964         }
1965 
1966         ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
1967         if (i != flent->fe_rx_srs_cnt - 1) {
1968                 flent->fe_rx_srs[i] =
1969                     flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
1970                 i = flent->fe_rx_srs_cnt - 1;
1971         }
1972 
1973         flent->fe_rx_srs[i] = NULL;
1974         flent->fe_rx_srs_cnt--;
1975         mutex_exit(&flent->fe_lock);
1976 
1977         mac_srs_free(srs);
1978 }
1979 
1980 static void
1981 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
1982 {
1983         mutex_enter(&srs->srs_lock);
1984         srs->srs_state &= ~flag;
1985         mutex_exit(&srs->srs_lock);
1986 }
1987 
1988 void
1989 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
1990 {
1991         flow_entry_t    *flent = srs->srs_flent;
1992         mac_ring_t      *mr;
1993 
1994         ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1995         ASSERT((srs->srs_type & SRST_TX) == 0);
1996 
1997         /*
1998          * This handles a change in the number of SRSs between the quiesce and
1999          * and restart operation of a flow.
2000          */
2001         if (!SRS_QUIESCED(srs))
2002                 return;
2003 
2004         /*
2005          * Signal the SRS to restart itself. Wait for the restart to complete
2006          * Note that we only restart the SRS if it is not marked as
2007          * permanently quiesced.
2008          */
2009         if (!SRS_QUIESCED_PERMANENT(srs)) {
2010                 mac_srs_signal(srs, SRS_RESTART);
2011                 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2012                 mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2013 
2014                 mac_srs_client_poll_restart(srs->srs_mcip, srs);
2015         }
2016 
2017         /* Finally clear the flags to let the packets in */
2018         mr = srs->srs_ring;
2019         if (mr != NULL) {
2020                 MAC_RING_UNMARK(mr, MR_QUIESCE);
2021                 /* In case the ring was stopped, safely restart it */
2022                 if (mr->mr_state != MR_INUSE)
2023                         (void) mac_start_ring(mr);
2024         } else {
2025                 FLOW_UNMARK(flent, FE_QUIESCE);
2026         }
2027 }
2028 
2029 /*
2030  * Temporary quiesce of a flow and associated Rx SRS.
2031  * Please see block comment above mac_rx_classify_flow_rem.
2032  */
2033 /* ARGSUSED */
2034 int
2035 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
2036 {
2037         int             i;
2038 
2039         for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2040                 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
2041                     SRS_QUIESCE);
2042         }
2043         return (0);
2044 }
2045 
2046 /*
2047  * Restart a flow and associated Rx SRS that has been quiesced temporarily
2048  * Please see block comment above mac_rx_classify_flow_rem
2049  */
2050 /* ARGSUSED */
2051 int
2052 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
2053 {
2054         int             i;
2055 
2056         for (i = 0; i < flent->fe_rx_srs_cnt; i++)
2057                 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
2058 
2059         return (0);
2060 }
2061 
2062 void
2063 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
2064 {
2065         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2066         flow_entry_t            *flent = mcip->mci_flent;
2067         mac_impl_t              *mip = mcip->mci_mip;
2068         mac_soft_ring_set_t     *mac_srs;
2069         int                     i;
2070 
2071         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2072 
2073         if (flent == NULL)
2074                 return;
2075 
2076         for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2077                 mac_srs = flent->fe_rx_srs[i];
2078                 mutex_enter(&mac_srs->srs_lock);
2079                 if (on)
2080                         mac_srs->srs_state |= SRS_QUIESCE_PERM;
2081                 else
2082                         mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
2083                 mutex_exit(&mac_srs->srs_lock);
2084         }
2085 }
2086 
2087 void
2088 mac_rx_client_quiesce(mac_client_handle_t mch)
2089 {
2090         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2091         mac_impl_t              *mip = mcip->mci_mip;
2092 
2093         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2094 
2095         if (MCIP_DATAPATH_SETUP(mcip)) {
2096                 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
2097                     NULL);
2098                 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2099                     mac_rx_classify_flow_quiesce, NULL);
2100         }
2101 }
2102 
2103 void
2104 mac_rx_client_restart(mac_client_handle_t mch)
2105 {
2106         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2107         mac_impl_t              *mip = mcip->mci_mip;
2108 
2109         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2110 
2111         if (MCIP_DATAPATH_SETUP(mcip)) {
2112                 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
2113                 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2114                     mac_rx_classify_flow_restart, NULL);
2115         }
2116 }
2117 
2118 /*
2119  * This function only quiesces the Tx SRS and softring worker threads. Callers
2120  * need to make sure that there aren't any mac client threads doing current or
2121  * future transmits in the mac before calling this function.
2122  */
2123 void
2124 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2125 {
2126         mac_client_impl_t       *mcip = srs->srs_mcip;
2127 
2128         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2129 
2130         ASSERT(srs->srs_type & SRST_TX);
2131         ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2132             srs_quiesce_flag == SRS_QUIESCE);
2133 
2134         /*
2135          * Signal the SRS to quiesce itself, and then cv_wait for the
2136          * SRS quiesce to complete. The SRS worker thread will wake us
2137          * up when the quiesce is complete
2138          */
2139         mac_srs_signal(srs, srs_quiesce_flag);
2140         mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2141             SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2142 }
2143 
2144 void
2145 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2146 {
2147         /*
2148          * Resizing the fanout could result in creation of new SRSs.
2149          * They may not necessarily be in the quiesced state in which
2150          * case it need be restarted
2151          */
2152         if (!SRS_QUIESCED(srs))
2153                 return;
2154 
2155         mac_srs_signal(srs, SRS_RESTART);
2156         mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2157         mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2158 }
2159 
2160 /*
2161  * Temporary quiesce of a flow and associated Rx SRS.
2162  * Please see block comment above mac_rx_srs_quiesce
2163  */
2164 /* ARGSUSED */
2165 int
2166 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2167 {
2168         /*
2169          * The fe_tx_srs is null for a subflow on an interface that is
2170          * not plumbed
2171          */
2172         if (flent->fe_tx_srs != NULL)
2173                 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2174         return (0);
2175 }
2176 
2177 /* ARGSUSED */
2178 int
2179 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2180 {
2181         /*
2182          * The fe_tx_srs is null for a subflow on an interface that is
2183          * not plumbed
2184          */
2185         if (flent->fe_tx_srs != NULL)
2186                 mac_tx_srs_restart(flent->fe_tx_srs);
2187         return (0);
2188 }
2189 
2190 static void
2191 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag)
2192 {
2193         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2194 
2195         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2196 
2197         mac_tx_client_block(mcip);
2198         if (MCIP_TX_SRS(mcip) != NULL) {
2199                 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2200                 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2201                     mac_tx_flow_quiesce, NULL);
2202         }
2203 }
2204 
2205 void
2206 mac_tx_client_quiesce(mac_client_handle_t mch)
2207 {
2208         i_mac_tx_client_quiesce(mch, SRS_QUIESCE);
2209 }
2210 
2211 void
2212 mac_tx_client_condemn(mac_client_handle_t mch)
2213 {
2214         i_mac_tx_client_quiesce(mch, SRS_CONDEMNED);
2215 }
2216 
2217 void
2218 mac_tx_client_restart(mac_client_handle_t mch)
2219 {
2220         mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2221 
2222         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2223 
2224         mac_tx_client_unblock(mcip);
2225         if (MCIP_TX_SRS(mcip) != NULL) {
2226                 mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2227                 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2228                     mac_tx_flow_restart, NULL);
2229         }
2230 }
2231 
2232 void
2233 mac_tx_client_flush(mac_client_impl_t *mcip)
2234 {
2235         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2236 
2237         mac_tx_client_quiesce((mac_client_handle_t)mcip);
2238         mac_tx_client_restart((mac_client_handle_t)mcip);
2239 }
2240 
2241 void
2242 mac_client_quiesce(mac_client_impl_t *mcip)
2243 {
2244         mac_rx_client_quiesce((mac_client_handle_t)mcip);
2245         mac_tx_client_quiesce((mac_client_handle_t)mcip);
2246 }
2247 
2248 void
2249 mac_client_restart(mac_client_impl_t *mcip)
2250 {
2251         mac_rx_client_restart((mac_client_handle_t)mcip);
2252         mac_tx_client_restart((mac_client_handle_t)mcip);
2253 }
2254 
2255 /*
2256  * Allocate a minor number.
2257  */
2258 minor_t
2259 mac_minor_hold(boolean_t sleep)
2260 {
2261         minor_t minor;
2262 
2263         /*
2264          * Grab a value from the arena.
2265          */
2266         atomic_inc_32(&minor_count);
2267 
2268         if (sleep)
2269                 minor = (uint_t)id_alloc(minor_ids);
2270         else
2271                 minor = (uint_t)id_alloc_nosleep(minor_ids);
2272 
2273         if (minor == 0) {
2274                 atomic_dec_32(&minor_count);
2275                 return (0);
2276         }
2277 
2278         return (minor);
2279 }
2280 
2281 /*
2282  * Release a previously allocated minor number.
2283  */
2284 void
2285 mac_minor_rele(minor_t minor)
2286 {
2287         /*
2288          * Return the value to the arena.
2289          */
2290         id_free(minor_ids, minor);
2291         atomic_dec_32(&minor_count);
2292 }
2293 
2294 uint32_t
2295 mac_no_notification(mac_handle_t mh)
2296 {
2297         mac_impl_t *mip = (mac_impl_t *)mh;
2298 
2299         return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2300             mip->mi_capab_legacy.ml_unsup_note : 0);
2301 }
2302 
2303 /*
2304  * Prevent any new opens of this mac in preparation for unregister
2305  */
2306 int
2307 i_mac_disable(mac_impl_t *mip)
2308 {
2309         mac_client_impl_t       *mcip;
2310 
2311         rw_enter(&i_mac_impl_lock, RW_WRITER);
2312         if (mip->mi_state_flags & MIS_DISABLED) {
2313                 /* Already disabled, return success */
2314                 rw_exit(&i_mac_impl_lock);
2315                 return (0);
2316         }
2317         /*
2318          * See if there are any other references to this mac_t (e.g., VLAN's).
2319          * If so return failure. If all the other checks below pass, then
2320          * set mi_disabled atomically under the i_mac_impl_lock to prevent
2321          * any new VLAN's from being created or new mac client opens of this
2322          * mac end point.
2323          */
2324         if (mip->mi_ref > 0) {
2325                 rw_exit(&i_mac_impl_lock);
2326                 return (EBUSY);
2327         }
2328 
2329         /*
2330          * mac clients must delete all multicast groups they join before
2331          * closing. bcast groups are reference counted, the last client
2332          * to delete the group will wait till the group is physically
2333          * deleted. Since all clients have closed this mac end point
2334          * mi_bcast_ngrps must be zero at this point
2335          */
2336         ASSERT(mip->mi_bcast_ngrps == 0);
2337 
2338         /*
2339          * Don't let go of this if it has some flows.
2340          * All other code guarantees no flows are added to a disabled
2341          * mac, therefore it is sufficient to check for the flow table
2342          * only here.
2343          */
2344         mcip = mac_primary_client_handle(mip);
2345         if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2346                 rw_exit(&i_mac_impl_lock);
2347                 return (ENOTEMPTY);
2348         }
2349 
2350         mip->mi_state_flags |= MIS_DISABLED;
2351         rw_exit(&i_mac_impl_lock);
2352         return (0);
2353 }
2354 
2355 int
2356 mac_disable_nowait(mac_handle_t mh)
2357 {
2358         mac_impl_t      *mip = (mac_impl_t *)mh;
2359         int err;
2360 
2361         if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2362                 return (err);
2363         err = i_mac_disable(mip);
2364         i_mac_perim_exit(mip);
2365         return (err);
2366 }
2367 
2368 int
2369 mac_disable(mac_handle_t mh)
2370 {
2371         mac_impl_t      *mip = (mac_impl_t *)mh;
2372         int err;
2373 
2374         i_mac_perim_enter(mip);
2375         err = i_mac_disable(mip);
2376         i_mac_perim_exit(mip);
2377 
2378         /*
2379          * Clean up notification thread and wait for it to exit.
2380          */
2381         if (err == 0)
2382                 i_mac_notify_exit(mip);
2383 
2384         return (err);
2385 }
2386 
2387 /*
2388  * Called when the MAC instance has a non empty flow table, to de-multiplex
2389  * incoming packets to the right flow.
2390  * The MAC's rw lock is assumed held as a READER.
2391  */
2392 /* ARGSUSED */
2393 static mblk_t *
2394 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2395 {
2396         flow_entry_t    *flent = NULL;
2397         uint_t          flags = FLOW_INBOUND;
2398         int             err;
2399 
2400         /*
2401          * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN
2402          * to mac_flow_lookup() so that the VLAN packets can be successfully
2403          * passed to the non-VLAN aggregation flows.
2404          *
2405          * Note that there is possibly a race between this and
2406          * mac_unicast_remove/add() and VLAN packets could be incorrectly
2407          * classified to non-VLAN flows of non-aggregation mac clients. These
2408          * VLAN packets will be then filtered out by the mac module.
2409          */
2410         if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0)
2411                 flags |= FLOW_IGNORE_VLAN;
2412 
2413         err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2414         if (err != 0) {
2415                 /* no registered receive function */
2416                 return (mp);
2417         } else {
2418                 mac_client_impl_t       *mcip;
2419 
2420                 /*
2421                  * This flent might just be an additional one on the MAC client,
2422                  * i.e. for classification purposes (different fdesc), however
2423                  * the resources, SRS et. al., are in the mci_flent, so if
2424                  * this isn't the mci_flent, we need to get it.
2425                  */
2426                 if ((mcip = flent->fe_mcip) != NULL &&
2427                     mcip->mci_flent != flent) {
2428                         FLOW_REFRELE(flent);
2429                         flent = mcip->mci_flent;
2430                         FLOW_TRY_REFHOLD(flent, err);
2431                         if (err != 0)
2432                                 return (mp);
2433                 }
2434                 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2435                     B_FALSE);
2436                 FLOW_REFRELE(flent);
2437         }
2438         return (NULL);
2439 }
2440 
2441 mblk_t *
2442 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2443 {
2444         mac_impl_t      *mip = (mac_impl_t *)mh;
2445         mblk_t          *bp, *bp1, **bpp, *list = NULL;
2446 
2447         /*
2448          * We walk the chain and attempt to classify each packet.
2449          * The packets that couldn't be classified will be returned
2450          * back to the caller.
2451          */
2452         bp = mp_chain;
2453         bpp = &list;
2454         while (bp != NULL) {
2455                 bp1 = bp;
2456                 bp = bp->b_next;
2457                 bp1->b_next = NULL;
2458 
2459                 if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2460                         *bpp = bp1;
2461                         bpp = &bp1->b_next;
2462                 }
2463         }
2464         return (list);
2465 }
2466 
2467 static int
2468 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2469 {
2470         mac_ring_handle_t ring = arg;
2471 
2472         if (flent->fe_tx_srs)
2473                 mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2474         return (0);
2475 }
2476 
2477 void
2478 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2479 {
2480         mac_client_impl_t       *cclient;
2481         mac_soft_ring_set_t     *mac_srs;
2482 
2483         /*
2484          * After grabbing the mi_rw_lock, the list of clients can't change.
2485          * If there are any clients mi_disabled must be B_FALSE and can't
2486          * get set since there are clients. If there aren't any clients we
2487          * don't do anything. In any case the mip has to be valid. The driver
2488          * must make sure that it goes single threaded (with respect to mac
2489          * calls) and wait for all pending mac calls to finish before calling
2490          * mac_unregister.
2491          */
2492         rw_enter(&i_mac_impl_lock, RW_READER);
2493         if (mip->mi_state_flags & MIS_DISABLED) {
2494                 rw_exit(&i_mac_impl_lock);
2495                 return;
2496         }
2497 
2498         /*
2499          * Get MAC tx srs from walking mac_client_handle list.
2500          */
2501         rw_enter(&mip->mi_rw_lock, RW_READER);
2502         for (cclient = mip->mi_clients_list; cclient != NULL;
2503             cclient = cclient->mci_client_next) {
2504                 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) {
2505                         mac_tx_srs_wakeup(mac_srs, ring);
2506                 } else {
2507                         /*
2508                          * Aggr opens underlying ports in exclusive mode
2509                          * and registers flow control callbacks using
2510                          * mac_tx_client_notify(). When opened in
2511                          * exclusive mode, Tx SRS won't be created
2512                          * during mac_unicast_add().
2513                          */
2514                         if (cclient->mci_state_flags & MCIS_EXCLUSIVE) {
2515                                 mac_tx_invoke_callbacks(cclient,
2516                                     (mac_tx_cookie_t)ring);
2517                         }
2518                 }
2519                 (void) mac_flow_walk(cclient->mci_subflow_tab,
2520                     mac_tx_flow_srs_wakeup, ring);
2521         }
2522         rw_exit(&mip->mi_rw_lock);
2523         rw_exit(&i_mac_impl_lock);
2524 }
2525 
2526 /* ARGSUSED */
2527 void
2528 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2529     boolean_t add)
2530 {
2531         mac_impl_t *mip = (mac_impl_t *)mh;
2532 
2533         i_mac_perim_enter((mac_impl_t *)mh);
2534         /*
2535          * If no specific refresh function was given then default to the
2536          * driver's m_multicst entry point.
2537          */
2538         if (refresh == NULL) {
2539                 refresh = mip->mi_multicst;
2540                 arg = mip->mi_driver;
2541         }
2542 
2543         mac_bcast_refresh(mip, refresh, arg, add);
2544         i_mac_perim_exit((mac_impl_t *)mh);
2545 }
2546 
2547 void
2548 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2549 {
2550         mac_impl_t      *mip = (mac_impl_t *)mh;
2551 
2552         /*
2553          * If no specific refresh function was given then default to the
2554          * driver's m_promisc entry point.
2555          */
2556         if (refresh == NULL) {
2557                 refresh = mip->mi_setpromisc;
2558                 arg = mip->mi_driver;
2559         }
2560         ASSERT(refresh != NULL);
2561 
2562         /*
2563          * Call the refresh function with the current promiscuity.
2564          */
2565         refresh(arg, (mip->mi_devpromisc != 0));
2566 }
2567 
2568 /*
2569  * The mac client requests that the mac not to change its margin size to
2570  * be less than the specified value.  If "current" is B_TRUE, then the client
2571  * requests the mac not to change its margin size to be smaller than the
2572  * current size. Further, return the current margin size value in this case.
2573  *
2574  * We keep every requested size in an ordered list from largest to smallest.
2575  */
2576 int
2577 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2578 {
2579         mac_impl_t              *mip = (mac_impl_t *)mh;
2580         mac_margin_req_t        **pp, *p;
2581         int                     err = 0;
2582 
2583         rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2584         if (current)
2585                 *marginp = mip->mi_margin;
2586 
2587         /*
2588          * If the current margin value cannot satisfy the margin requested,
2589          * return ENOTSUP directly.
2590          */
2591         if (*marginp > mip->mi_margin) {
2592                 err = ENOTSUP;
2593                 goto done;
2594         }
2595 
2596         /*
2597          * Check whether the given margin is already in the list. If so,
2598          * bump the reference count.
2599          */
2600         for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2601                 if (p->mmr_margin == *marginp) {
2602                         /*
2603                          * The margin requested is already in the list,
2604                          * so just bump the reference count.
2605                          */
2606                         p->mmr_ref++;
2607                         goto done;
2608                 }
2609                 if (p->mmr_margin < *marginp)
2610                         break;
2611         }
2612 
2613 
2614         p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2615         p->mmr_margin = *marginp;
2616         p->mmr_ref++;
2617         p->mmr_nextp = *pp;
2618         *pp = p;
2619 
2620 done:
2621         rw_exit(&(mip->mi_rw_lock));
2622         return (err);
2623 }
2624 
2625 /*
2626  * The mac client requests to cancel its previous mac_margin_add() request.
2627  * We remove the requested margin size from the list.
2628  */
2629 int
2630 mac_margin_remove(mac_handle_t mh, uint32_t margin)
2631 {
2632         mac_impl_t              *mip = (mac_impl_t *)mh;
2633         mac_margin_req_t        **pp, *p;
2634         int                     err = 0;
2635 
2636         rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2637         /*
2638          * Find the entry in the list for the given margin.
2639          */
2640         for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2641                 if (p->mmr_margin == margin) {
2642                         if (--p->mmr_ref == 0)
2643                                 break;
2644 
2645                         /*
2646                          * There is still a reference to this address so
2647                          * there's nothing more to do.
2648                          */
2649                         goto done;
2650                 }
2651         }
2652 
2653         /*
2654          * We did not find an entry for the given margin.
2655          */
2656         if (p == NULL) {
2657                 err = ENOENT;
2658                 goto done;
2659         }
2660 
2661         ASSERT(p->mmr_ref == 0);
2662 
2663         /*
2664          * Remove it from the list.
2665          */
2666         *pp = p->mmr_nextp;
2667         kmem_free(p, sizeof (mac_margin_req_t));
2668 done:
2669         rw_exit(&(mip->mi_rw_lock));
2670         return (err);
2671 }
2672 
2673 boolean_t
2674 mac_margin_update(mac_handle_t mh, uint32_t margin)
2675 {
2676         mac_impl_t      *mip = (mac_impl_t *)mh;
2677         uint32_t        margin_needed = 0;
2678 
2679         rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2680 
2681         if (mip->mi_mmrp != NULL)
2682                 margin_needed = mip->mi_mmrp->mmr_margin;
2683 
2684         if (margin_needed <= margin)
2685                 mip->mi_margin = margin;
2686 
2687         rw_exit(&(mip->mi_rw_lock));
2688 
2689         if (margin_needed <= margin)
2690                 i_mac_notify(mip, MAC_NOTE_MARGIN);
2691 
2692         return (margin_needed <= margin);
2693 }
2694 
2695 /*
2696  * MAC clients use this interface to request that a MAC device not change its
2697  * MTU below the specified amount. At this time, that amount must be within the
2698  * range of the device's current minimum and the device's current maximum. eg. a
2699  * client cannot request a 3000 byte MTU when the device's MTU is currently
2700  * 2000.
2701  *
2702  * If "current" is set to B_TRUE, then the request is to simply to reserve the
2703  * current underlying mac's maximum for this mac client and return it in mtup.
2704  */
2705 int
2706 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current)
2707 {
2708         mac_impl_t              *mip = (mac_impl_t *)mh;
2709         mac_mtu_req_t           *prev, *cur;
2710         mac_propval_range_t     mpr;
2711         int                     err;
2712 
2713         i_mac_perim_enter(mip);
2714         rw_enter(&mip->mi_rw_lock, RW_WRITER);
2715 
2716         if (current == B_TRUE)
2717                 *mtup = mip->mi_sdu_max;
2718         mpr.mpr_count = 1;
2719         err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL);
2720         if (err != 0) {
2721                 rw_exit(&mip->mi_rw_lock);
2722                 i_mac_perim_exit(mip);
2723                 return (err);
2724         }
2725 
2726         if (*mtup > mip->mi_sdu_max ||
2727             *mtup < mpr.mpr_range_uint32[0].mpur_min) {
2728                 rw_exit(&mip->mi_rw_lock);
2729                 i_mac_perim_exit(mip);
2730                 return (ENOTSUP);
2731         }
2732 
2733         prev = NULL;
2734         for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2735                 if (*mtup == cur->mtr_mtu) {
2736                         cur->mtr_ref++;
2737                         rw_exit(&mip->mi_rw_lock);
2738                         i_mac_perim_exit(mip);
2739                         return (0);
2740                 }
2741 
2742                 if (*mtup > cur->mtr_mtu)
2743                         break;
2744 
2745                 prev = cur;
2746         }
2747 
2748         cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP);
2749         cur->mtr_mtu = *mtup;
2750         cur->mtr_ref = 1;
2751         if (prev != NULL) {
2752                 cur->mtr_nextp = prev->mtr_nextp;
2753                 prev->mtr_nextp = cur;
2754         } else {
2755                 cur->mtr_nextp = mip->mi_mtrp;
2756                 mip->mi_mtrp = cur;
2757         }
2758 
2759         rw_exit(&mip->mi_rw_lock);
2760         i_mac_perim_exit(mip);
2761         return (0);
2762 }
2763 
2764 int
2765 mac_mtu_remove(mac_handle_t mh, uint32_t mtu)
2766 {
2767         mac_impl_t *mip = (mac_impl_t *)mh;
2768         mac_mtu_req_t *cur, *prev;
2769 
2770         i_mac_perim_enter(mip);
2771         rw_enter(&mip->mi_rw_lock, RW_WRITER);
2772 
2773         prev = NULL;
2774         for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2775                 if (cur->mtr_mtu == mtu) {
2776                         ASSERT(cur->mtr_ref > 0);
2777                         cur->mtr_ref--;
2778                         if (cur->mtr_ref == 0) {
2779                                 if (prev == NULL) {
2780                                         mip->mi_mtrp = cur->mtr_nextp;
2781                                 } else {
2782                                         prev->mtr_nextp = cur->mtr_nextp;
2783                                 }
2784                                 kmem_free(cur, sizeof (mac_mtu_req_t));
2785                         }
2786                         rw_exit(&mip->mi_rw_lock);
2787                         i_mac_perim_exit(mip);
2788                         return (0);
2789                 }
2790 
2791                 prev = cur;
2792         }
2793 
2794         rw_exit(&mip->mi_rw_lock);
2795         i_mac_perim_exit(mip);
2796         return (ENOENT);
2797 }
2798 
2799 /*
2800  * MAC Type Plugin functions.
2801  */
2802 
2803 mactype_t *
2804 mactype_getplugin(const char *pname)
2805 {
2806         mactype_t       *mtype = NULL;
2807         boolean_t       tried_modload = B_FALSE;
2808 
2809         mutex_enter(&i_mactype_lock);
2810 
2811 find_registered_mactype:
2812         if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
2813             (mod_hash_val_t *)&mtype) != 0) {
2814                 if (!tried_modload) {
2815                         /*
2816                          * If the plugin has not yet been loaded, then
2817                          * attempt to load it now.  If modload() succeeds,
2818                          * the plugin should have registered using
2819                          * mactype_register(), in which case we can go back
2820                          * and attempt to find it again.
2821                          */
2822                         if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
2823                                 tried_modload = B_TRUE;
2824                                 goto find_registered_mactype;
2825                         }
2826                 }
2827         } else {
2828                 /*
2829                  * Note that there's no danger that the plugin we've loaded
2830                  * could be unloaded between the modload() step and the
2831                  * reference count bump here, as we're holding
2832                  * i_mactype_lock, which mactype_unregister() also holds.
2833                  */
2834                 atomic_inc_32(&mtype->mt_ref);
2835         }
2836 
2837         mutex_exit(&i_mactype_lock);
2838         return (mtype);
2839 }
2840 
2841 mactype_register_t *
2842 mactype_alloc(uint_t mactype_version)
2843 {
2844         mactype_register_t *mtrp;
2845 
2846         /*
2847          * Make sure there isn't a version mismatch between the plugin and
2848          * the framework.  In the future, if multiple versions are
2849          * supported, this check could become more sophisticated.
2850          */
2851         if (mactype_version != MACTYPE_VERSION)
2852                 return (NULL);
2853 
2854         mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
2855         mtrp->mtr_version = mactype_version;
2856         return (mtrp);
2857 }
2858 
2859 void
2860 mactype_free(mactype_register_t *mtrp)
2861 {
2862         kmem_free(mtrp, sizeof (mactype_register_t));
2863 }
2864 
2865 int
2866 mactype_register(mactype_register_t *mtrp)
2867 {
2868         mactype_t       *mtp;
2869         mactype_ops_t   *ops = mtrp->mtr_ops;
2870 
2871         /* Do some sanity checking before we register this MAC type. */
2872         if (mtrp->mtr_ident == NULL || ops == NULL)
2873                 return (EINVAL);
2874 
2875         /*
2876          * Verify that all mandatory callbacks are set in the ops
2877          * vector.
2878          */
2879         if (ops->mtops_unicst_verify == NULL ||
2880             ops->mtops_multicst_verify == NULL ||
2881             ops->mtops_sap_verify == NULL ||
2882             ops->mtops_header == NULL ||
2883             ops->mtops_header_info == NULL) {
2884                 return (EINVAL);
2885         }
2886 
2887         mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
2888         mtp->mt_ident = mtrp->mtr_ident;
2889         mtp->mt_ops = *ops;
2890         mtp->mt_type = mtrp->mtr_mactype;
2891         mtp->mt_nativetype = mtrp->mtr_nativetype;
2892         mtp->mt_addr_length = mtrp->mtr_addrlen;
2893         if (mtrp->mtr_brdcst_addr != NULL) {
2894                 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
2895                 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
2896                     mtrp->mtr_addrlen);
2897         }
2898 
2899         mtp->mt_stats = mtrp->mtr_stats;
2900         mtp->mt_statcount = mtrp->mtr_statcount;
2901 
2902         mtp->mt_mapping = mtrp->mtr_mapping;
2903         mtp->mt_mappingcount = mtrp->mtr_mappingcount;
2904 
2905         if (mod_hash_insert(i_mactype_hash,
2906             (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
2907                 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2908                 kmem_free(mtp, sizeof (*mtp));
2909                 return (EEXIST);
2910         }
2911         return (0);
2912 }
2913 
2914 int
2915 mactype_unregister(const char *ident)
2916 {
2917         mactype_t       *mtp;
2918         mod_hash_val_t  val;
2919         int             err;
2920 
2921         /*
2922          * Let's not allow MAC drivers to use this plugin while we're
2923          * trying to unregister it.  Holding i_mactype_lock also prevents a
2924          * plugin from unregistering while a MAC driver is attempting to
2925          * hold a reference to it in i_mactype_getplugin().
2926          */
2927         mutex_enter(&i_mactype_lock);
2928 
2929         if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
2930             (mod_hash_val_t *)&mtp)) != 0) {
2931                 /* A plugin is trying to unregister, but it never registered. */
2932                 err = ENXIO;
2933                 goto done;
2934         }
2935 
2936         if (mtp->mt_ref != 0) {
2937                 err = EBUSY;
2938                 goto done;
2939         }
2940 
2941         err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
2942         ASSERT(err == 0);
2943         if (err != 0) {
2944                 /* This should never happen, thus the ASSERT() above. */
2945                 err = EINVAL;
2946                 goto done;
2947         }
2948         ASSERT(mtp == (mactype_t *)val);
2949 
2950         if (mtp->mt_brdcst_addr != NULL)
2951                 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2952         kmem_free(mtp, sizeof (mactype_t));
2953 done:
2954         mutex_exit(&i_mactype_lock);
2955         return (err);
2956 }
2957 
2958 /*
2959  * Checks the size of the value size specified for a property as
2960  * part of a property operation. Returns B_TRUE if the size is
2961  * correct, B_FALSE otherwise.
2962  */
2963 boolean_t
2964 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
2965 {
2966         uint_t minsize = 0;
2967 
2968         if (is_range)
2969                 return (valsize >= sizeof (mac_propval_range_t));
2970 
2971         switch (id) {
2972         case MAC_PROP_ZONE:
2973                 minsize = sizeof (dld_ioc_zid_t);
2974                 break;
2975         case MAC_PROP_AUTOPUSH:
2976                 if (valsize != 0)
2977                         minsize = sizeof (struct dlautopush);
2978                 break;
2979         case MAC_PROP_TAGMODE:
2980                 minsize = sizeof (link_tagmode_t);
2981                 break;
2982         case MAC_PROP_RESOURCE:
2983         case MAC_PROP_RESOURCE_EFF:
2984                 minsize = sizeof (mac_resource_props_t);
2985                 break;
2986         case MAC_PROP_DUPLEX:
2987                 minsize = sizeof (link_duplex_t);
2988                 break;
2989         case MAC_PROP_SPEED:
2990                 minsize = sizeof (uint64_t);
2991                 break;
2992         case MAC_PROP_STATUS:
2993                 minsize = sizeof (link_state_t);
2994                 break;
2995         case MAC_PROP_AUTONEG:
2996         case MAC_PROP_EN_AUTONEG:
2997                 minsize = sizeof (uint8_t);
2998                 break;
2999         case MAC_PROP_MTU:
3000         case MAC_PROP_LLIMIT:
3001         case MAC_PROP_LDECAY:
3002                 minsize = sizeof (uint32_t);
3003                 break;
3004         case MAC_PROP_FLOWCTRL:
3005                 minsize = sizeof (link_flowctrl_t);
3006                 break;
3007         case MAC_PROP_ADV_10GFDX_CAP:
3008         case MAC_PROP_EN_10GFDX_CAP:
3009         case MAC_PROP_ADV_1000HDX_CAP:
3010         case MAC_PROP_EN_1000HDX_CAP:
3011         case MAC_PROP_ADV_100FDX_CAP:
3012         case MAC_PROP_EN_100FDX_CAP:
3013         case MAC_PROP_ADV_100HDX_CAP:
3014         case MAC_PROP_EN_100HDX_CAP:
3015         case MAC_PROP_ADV_10FDX_CAP:
3016         case MAC_PROP_EN_10FDX_CAP:
3017         case MAC_PROP_ADV_10HDX_CAP:
3018         case MAC_PROP_EN_10HDX_CAP:
3019         case MAC_PROP_ADV_100T4_CAP:
3020         case MAC_PROP_EN_100T4_CAP:
3021                 minsize = sizeof (uint8_t);
3022                 break;
3023         case MAC_PROP_PVID:
3024                 minsize = sizeof (uint16_t);
3025                 break;
3026         case MAC_PROP_IPTUN_HOPLIMIT:
3027                 minsize = sizeof (uint32_t);
3028                 break;
3029         case MAC_PROP_IPTUN_ENCAPLIMIT:
3030                 minsize = sizeof (uint32_t);
3031                 break;
3032         case MAC_PROP_MAX_TX_RINGS_AVAIL:
3033         case MAC_PROP_MAX_RX_RINGS_AVAIL:
3034         case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3035         case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3036                 minsize = sizeof (uint_t);
3037                 break;
3038         case MAC_PROP_WL_ESSID:
3039                 minsize = sizeof (wl_linkstatus_t);
3040                 break;
3041         case MAC_PROP_WL_BSSID:
3042                 minsize = sizeof (wl_bssid_t);
3043                 break;
3044         case MAC_PROP_WL_BSSTYPE:
3045                 minsize = sizeof (wl_bss_type_t);
3046                 break;
3047         case MAC_PROP_WL_LINKSTATUS:
3048                 minsize = sizeof (wl_linkstatus_t);
3049                 break;
3050         case MAC_PROP_WL_DESIRED_RATES:
3051                 minsize = sizeof (wl_rates_t);
3052                 break;
3053         case MAC_PROP_WL_SUPPORTED_RATES:
3054                 minsize = sizeof (wl_rates_t);
3055                 break;
3056         case MAC_PROP_WL_AUTH_MODE:
3057                 minsize = sizeof (wl_authmode_t);
3058                 break;
3059         case MAC_PROP_WL_ENCRYPTION:
3060                 minsize = sizeof (wl_encryption_t);
3061                 break;
3062         case MAC_PROP_WL_RSSI:
3063                 minsize = sizeof (wl_rssi_t);
3064                 break;
3065         case MAC_PROP_WL_PHY_CONFIG:
3066                 minsize = sizeof (wl_phy_conf_t);
3067                 break;
3068         case MAC_PROP_WL_CAPABILITY:
3069                 minsize = sizeof (wl_capability_t);
3070                 break;
3071         case MAC_PROP_WL_WPA:
3072                 minsize = sizeof (wl_wpa_t);
3073                 break;
3074         case MAC_PROP_WL_SCANRESULTS:
3075                 minsize = sizeof (wl_wpa_ess_t);
3076                 break;
3077         case MAC_PROP_WL_POWER_MODE:
3078                 minsize = sizeof (wl_ps_mode_t);
3079                 break;
3080         case MAC_PROP_WL_RADIO:
3081                 minsize = sizeof (wl_radio_t);
3082                 break;
3083         case MAC_PROP_WL_ESS_LIST:
3084                 minsize = sizeof (wl_ess_list_t);
3085                 break;
3086         case MAC_PROP_WL_KEY_TAB:
3087                 minsize = sizeof (wl_wep_key_tab_t);
3088                 break;
3089         case MAC_PROP_WL_CREATE_IBSS:
3090                 minsize = sizeof (wl_create_ibss_t);
3091                 break;
3092         case MAC_PROP_WL_SETOPTIE:
3093                 minsize = sizeof (wl_wpa_ie_t);
3094                 break;
3095         case MAC_PROP_WL_DELKEY:
3096                 minsize = sizeof (wl_del_key_t);
3097                 break;
3098         case MAC_PROP_WL_KEY:
3099                 minsize = sizeof (wl_key_t);
3100                 break;
3101         case MAC_PROP_WL_MLME:
3102                 minsize = sizeof (wl_mlme_t);
3103                 break;
3104         }
3105 
3106         return (valsize >= minsize);
3107 }
3108 
3109 /*
3110  * mac_set_prop() sets MAC or hardware driver properties:
3111  *
3112  * - MAC-managed properties such as resource properties include maxbw,
3113  *   priority, and cpu binding list, as well as the default port VID
3114  *   used by bridging. These properties are consumed by the MAC layer
3115  *   itself and not passed down to the driver. For resource control
3116  *   properties, this function invokes mac_set_resources() which will
3117  *   cache the property value in mac_impl_t and may call
3118  *   mac_client_set_resource() to update property value of the primary
3119  *   mac client, if it exists.
3120  *
3121  * - Properties which act on the hardware and must be passed to the
3122  *   driver, such as MTU, through the driver's mc_setprop() entry point.
3123  */
3124 int
3125 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3126     uint_t valsize)
3127 {
3128         int err = ENOTSUP;
3129         mac_impl_t *mip = (mac_impl_t *)mh;
3130 
3131         ASSERT(MAC_PERIM_HELD(mh));
3132 
3133         switch (id) {
3134         case MAC_PROP_RESOURCE: {
3135                 mac_resource_props_t *mrp;
3136 
3137                 /* call mac_set_resources() for MAC properties */
3138                 ASSERT(valsize >= sizeof (mac_resource_props_t));
3139                 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3140                 bcopy(val, mrp, sizeof (*mrp));
3141                 err = mac_set_resources(mh, mrp);
3142                 kmem_free(mrp, sizeof (*mrp));
3143                 break;
3144         }
3145 
3146         case MAC_PROP_PVID:
3147                 ASSERT(valsize >= sizeof (uint16_t));
3148                 if (mip->mi_state_flags & MIS_IS_VNIC)
3149                         return (EINVAL);
3150                 err = mac_set_pvid(mh, *(uint16_t *)val);
3151                 break;
3152 
3153         case MAC_PROP_MTU: {
3154                 uint32_t mtu;
3155 
3156                 ASSERT(valsize >= sizeof (uint32_t));
3157                 bcopy(val, &mtu, sizeof (mtu));
3158                 err = mac_set_mtu(mh, mtu, NULL);
3159                 break;
3160         }
3161 
3162         case MAC_PROP_LLIMIT:
3163         case MAC_PROP_LDECAY: {
3164                 uint32_t learnval;
3165 
3166                 if (valsize < sizeof (learnval) ||
3167                     (mip->mi_state_flags & MIS_IS_VNIC))
3168                         return (EINVAL);
3169                 bcopy(val, &learnval, sizeof (learnval));
3170                 if (learnval == 0 && id == MAC_PROP_LDECAY)
3171                         return (EINVAL);
3172                 if (id == MAC_PROP_LLIMIT)
3173                         mip->mi_llimit = learnval;
3174                 else
3175                         mip->mi_ldecay = learnval;
3176                 err = 0;
3177                 break;
3178         }
3179 
3180         default:
3181                 /* For other driver properties, call driver's callback */
3182                 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3183                         err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3184                             name, id, valsize, val);
3185                 }
3186         }
3187         return (err);
3188 }
3189 
3190 /*
3191  * mac_get_prop() gets MAC or device driver properties.
3192  *
3193  * If the property is a driver property, mac_get_prop() calls driver's callback
3194  * entry point to get it.
3195  * If the property is a MAC property, mac_get_prop() invokes mac_get_resources()
3196  * which returns the cached value in mac_impl_t.
3197  */
3198 int
3199 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3200     uint_t valsize)
3201 {
3202         int err = ENOTSUP;
3203         mac_impl_t *mip = (mac_impl_t *)mh;
3204         uint_t  rings;
3205         uint_t  vlinks;
3206 
3207         bzero(val, valsize);
3208 
3209         switch (id) {
3210         case MAC_PROP_RESOURCE: {
3211                 mac_resource_props_t *mrp;
3212 
3213                 /* If mac property, read from cache */
3214                 ASSERT(valsize >= sizeof (mac_resource_props_t));
3215                 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3216                 mac_get_resources(mh, mrp);
3217                 bcopy(mrp, val, sizeof (*mrp));
3218                 kmem_free(mrp, sizeof (*mrp));
3219                 return (0);
3220         }
3221         case MAC_PROP_RESOURCE_EFF: {
3222                 mac_resource_props_t *mrp;
3223 
3224                 /* If mac effective property, read from client */
3225                 ASSERT(valsize >= sizeof (mac_resource_props_t));
3226                 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3227                 mac_get_effective_resources(mh, mrp);
3228                 bcopy(mrp, val, sizeof (*mrp));
3229                 kmem_free(mrp, sizeof (*mrp));
3230                 return (0);
3231         }
3232 
3233         case MAC_PROP_PVID:
3234                 ASSERT(valsize >= sizeof (uint16_t));
3235                 if (mip->mi_state_flags & MIS_IS_VNIC)
3236                         return (EINVAL);
3237                 *(uint16_t *)val = mac_get_pvid(mh);
3238                 return (0);
3239 
3240         case MAC_PROP_LLIMIT:
3241         case MAC_PROP_LDECAY:
3242                 ASSERT(valsize >= sizeof (uint32_t));
3243                 if (mip->mi_state_flags & MIS_IS_VNIC)
3244                         return (EINVAL);
3245                 if (id == MAC_PROP_LLIMIT)
3246                         bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit));
3247                 else
3248                         bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay));
3249                 return (0);
3250 
3251         case MAC_PROP_MTU: {
3252                 uint32_t sdu;
3253 
3254                 ASSERT(valsize >= sizeof (uint32_t));
3255                 mac_sdu_get2(mh, NULL, &sdu, NULL);
3256                 bcopy(&sdu, val, sizeof (sdu));
3257 
3258                 return (0);
3259         }
3260         case MAC_PROP_STATUS: {
3261                 link_state_t link_state;
3262 
3263                 if (valsize < sizeof (link_state))
3264                         return (EINVAL);
3265                 link_state = mac_link_get(mh);
3266                 bcopy(&link_state, val, sizeof (link_state));
3267 
3268                 return (0);
3269         }
3270 
3271         case MAC_PROP_MAX_RX_RINGS_AVAIL:
3272         case MAC_PROP_MAX_TX_RINGS_AVAIL:
3273                 ASSERT(valsize >= sizeof (uint_t));
3274                 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ?
3275                     mac_rxavail_get(mh) : mac_txavail_get(mh);
3276                 bcopy(&rings, val, sizeof (uint_t));
3277                 return (0);
3278 
3279         case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3280         case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3281                 ASSERT(valsize >= sizeof (uint_t));
3282                 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ?
3283                     mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh);
3284                 bcopy(&vlinks, val, sizeof (uint_t));
3285                 return (0);
3286 
3287         case MAC_PROP_RXRINGSRANGE:
3288         case MAC_PROP_TXRINGSRANGE:
3289                 /*
3290                  * The value for these properties are returned through
3291                  * the MAC_PROP_RESOURCE property.
3292                  */
3293                 return (0);
3294 
3295         default:
3296                 break;
3297 
3298         }
3299 
3300         /* If driver property, request from driver */
3301         if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
3302                 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id,
3303                     valsize, val);
3304         }
3305 
3306         return (err);
3307 }
3308 
3309 /*
3310  * Helper function to initialize the range structure for use in
3311  * mac_get_prop. If the type can be other than uint32, we can
3312  * pass that as an arg.
3313  */
3314 static void
3315 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max)
3316 {
3317         range->mpr_count = 1;
3318         range->mpr_type = MAC_PROPVAL_UINT32;
3319         range->mpr_range_uint32[0].mpur_min = min;
3320         range->mpr_range_uint32[0].mpur_max = max;
3321 }
3322 
3323 /*
3324  * Returns information about the specified property, such as default
3325  * values or permissions.
3326  */
3327 int
3328 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name,
3329     void *default_val, uint_t default_size, mac_propval_range_t *range,
3330     uint_t *perm)
3331 {
3332         mac_prop_info_state_t state;
3333         mac_impl_t *mip = (mac_impl_t *)mh;
3334         uint_t  max;
3335 
3336         /*
3337          * A property is read/write by default unless the driver says
3338          * otherwise.
3339          */
3340         if (perm != NULL)
3341                 *perm = MAC_PROP_PERM_RW;
3342 
3343         if (default_val != NULL)
3344                 bzero(default_val, default_size);
3345 
3346         /*
3347          * First, handle framework properties for which we don't need to
3348          * involve the driver.
3349          */
3350         switch (id) {
3351         case MAC_PROP_RESOURCE:
3352         case MAC_PROP_PVID:
3353         case MAC_PROP_LLIMIT:
3354         case MAC_PROP_LDECAY:
3355                 return (0);
3356 
3357         case MAC_PROP_MAX_RX_RINGS_AVAIL:
3358         case MAC_PROP_MAX_TX_RINGS_AVAIL:
3359         case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3360         case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3361                 if (perm != NULL)
3362                         *perm = MAC_PROP_PERM_READ;
3363                 return (0);
3364 
3365         case MAC_PROP_RXRINGSRANGE:
3366         case MAC_PROP_TXRINGSRANGE:
3367                 /*
3368                  * Currently, we support range for RX and TX rings properties.
3369                  * When we extend this support to maxbw, cpus and priority,
3370                  * we should move this to mac_get_resources.
3371                  * There is no default value for RX or TX rings.
3372                  */
3373                 if ((mip->mi_state_flags & MIS_IS_VNIC) &&
3374                     mac_is_vnic_primary(mh)) {
3375                         /*
3376                          * We don't support setting rings for a VLAN
3377                          * data link because it shares its ring with the
3378                          * primary MAC client.
3379                          */
3380                         if (perm != NULL)
3381                                 *perm = MAC_PROP_PERM_READ;
3382                         if (range != NULL)
3383                                 range->mpr_count = 0;
3384                 } else if (range != NULL) {
3385                         if (mip->mi_state_flags & MIS_IS_VNIC)
3386                                 mh = mac_get_lower_mac_handle(mh);
3387                         mip = (mac_impl_t *)mh;
3388                         if ((id == MAC_PROP_RXRINGSRANGE &&
3389                             mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) ||
3390                             (id == MAC_PROP_TXRINGSRANGE &&
3391                             mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) {
3392                                 if (id == MAC_PROP_RXRINGSRANGE) {
3393                                         if ((mac_rxhwlnksavail_get(mh) +
3394                                             mac_rxhwlnksrsvd_get(mh)) <= 1) {
3395                                                 /*
3396                                                  * doesn't support groups or
3397                                                  * rings
3398                                                  */
3399                                                 range->mpr_count = 0;
3400                                         } else {
3401                                                 /*
3402                                                  * supports specifying groups,
3403                                                  * but not rings
3404                                                  */
3405                                                 _mac_set_range(range, 0, 0);
3406                                         }
3407                                 } else {
3408                                         if ((mac_txhwlnksavail_get(mh) +
3409                                             mac_txhwlnksrsvd_get(mh)) <= 1) {
3410                                                 /*
3411                                                  * doesn't support groups or
3412                                                  * rings
3413                                                  */
3414                                                 range->mpr_count = 0;
3415                                         } else {
3416                                                 /*
3417                                                  * supports specifying groups,
3418                                                  * but not rings
3419                                                  */
3420                                                 _mac_set_range(range, 0, 0);
3421                                         }
3422                                 }
3423                         } else {
3424                                 max = id == MAC_PROP_RXRINGSRANGE ?
3425                                     mac_rxavail_get(mh) + mac_rxrsvd_get(mh) :
3426                                     mac_txavail_get(mh) + mac_txrsvd_get(mh);
3427                                 if (max <= 1) {
3428                                         /*
3429                                          * doesn't support groups or
3430                                          * rings
3431                                          */
3432                                         range->mpr_count = 0;
3433                                 } else  {
3434                                         /*
3435                                          * -1 because we have to leave out the
3436                                          * default ring.
3437                                          */
3438                                         _mac_set_range(range, 1, max - 1);
3439                                 }
3440                         }
3441                 }
3442                 return (0);
3443 
3444         case MAC_PROP_STATUS:
3445                 if (perm != NULL)
3446                         *perm = MAC_PROP_PERM_READ;
3447                 return (0);
3448         }
3449 
3450         /*
3451          * Get the property info from the driver if it implements the
3452          * property info entry point.
3453          */
3454         bzero(&state, sizeof (state));
3455 
3456         if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) {
3457                 state.pr_default = default_val;
3458                 state.pr_default_size = default_size;
3459 
3460                 /*
3461                  * The caller specifies the maximum number of ranges
3462                  * it can accomodate using mpr_count. We don't touch
3463                  * this value until the driver returns from its
3464                  * mc_propinfo() callback, and ensure we don't exceed
3465                  * this number of range as the driver defines
3466                  * supported range from its mc_propinfo().
3467                  *
3468                  * pr_range_cur_count keeps track of how many ranges
3469                  * were defined by the driver from its mc_propinfo()
3470                  * entry point.
3471                  *
3472                  * On exit, the user-specified range mpr_count returns
3473                  * the number of ranges specified by the driver on
3474                  * success, or the number of ranges it wanted to
3475                  * define if that number of ranges could not be
3476                  * accomodated by the specified range structure.  In
3477                  * the latter case, the caller will be able to
3478                  * allocate a larger range structure, and query the
3479                  * property again.
3480                  */
3481                 state.pr_range_cur_count = 0;
3482                 state.pr_range = range;
3483 
3484                 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id,
3485                     (mac_prop_info_handle_t)&state);
3486 
3487                 if (state.pr_flags & MAC_PROP_INFO_RANGE)
3488                         range->mpr_count = state.pr_range_cur_count;
3489 
3490                 /*
3491                  * The operation could fail if the buffer supplied by
3492                  * the user was too small for the range or default
3493                  * value of the property.
3494                  */
3495                 if (state.pr_errno != 0)
3496                         return (state.pr_errno);
3497 
3498                 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM)
3499                         *perm = state.pr_perm;
3500         }
3501 
3502         /*
3503          * The MAC layer may want to provide default values or allowed
3504          * ranges for properties if the driver does not provide a
3505          * property info entry point, or that entry point exists, but
3506          * it did not provide a default value or allowed ranges for
3507          * that property.
3508          */
3509         switch (id) {
3510         case MAC_PROP_MTU: {
3511                 uint32_t sdu;
3512 
3513                 mac_sdu_get2(mh, NULL, &sdu, NULL);
3514 
3515                 if (range != NULL && !(state.pr_flags &
3516                     MAC_PROP_INFO_RANGE)) {
3517                         /* MTU range */
3518                         _mac_set_range(range, sdu, sdu);
3519                 }
3520 
3521                 if (default_val != NULL && !(state.pr_flags &
3522                     MAC_PROP_INFO_DEFAULT)) {
3523                         if (mip->mi_info.mi_media == DL_ETHER)
3524                                 sdu = ETHERMTU;
3525                         /* default MTU value */
3526                         bcopy(&sdu, default_val, sizeof (sdu));
3527                 }
3528         }
3529         }
3530 
3531         return (0);
3532 }
3533 
3534 int
3535 mac_fastpath_disable(mac_handle_t mh)
3536 {
3537         mac_impl_t      *mip = (mac_impl_t *)mh;
3538 
3539         if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3540                 return (0);
3541 
3542         return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
3543 }
3544 
3545 void
3546 mac_fastpath_enable(mac_handle_t mh)
3547 {
3548         mac_impl_t      *mip = (mac_impl_t *)mh;
3549 
3550         if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3551                 return;
3552 
3553         mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
3554 }
3555 
3556 void
3557 mac_register_priv_prop(mac_impl_t *mip, char **priv_props)
3558 {
3559         uint_t nprops, i;
3560 
3561         if (priv_props == NULL)
3562                 return;
3563 
3564         nprops = 0;
3565         while (priv_props[nprops] != NULL)
3566                 nprops++;
3567         if (nprops == 0)
3568                 return;
3569 
3570 
3571         mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP);
3572 
3573         for (i = 0; i < nprops; i++) {
3574                 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP);
3575                 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i],
3576                     MAXLINKPROPNAME);
3577         }
3578 
3579         mip->mi_priv_prop_count = nprops;
3580 }
3581 
3582 void
3583 mac_unregister_priv_prop(mac_impl_t *mip)
3584 {
3585         uint_t i;
3586 
3587         if (mip->mi_priv_prop_count == 0) {
3588                 ASSERT(mip->mi_priv_prop == NULL);
3589                 return;
3590         }
3591 
3592         for (i = 0; i < mip->mi_priv_prop_count; i++)
3593                 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME);
3594         kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count *
3595             sizeof (char *));
3596 
3597         mip->mi_priv_prop = NULL;
3598         mip->mi_priv_prop_count = 0;
3599 }
3600 
3601 /*
3602  * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
3603  * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
3604  * cases if MAC free's the ring structure after mac_stop_ring(), any
3605  * illegal access to the ring structure coming from the driver will panic
3606  * the system. In order to protect the system from such inadverent access,
3607  * we maintain a cache of rings in the mac_impl_t after they get free'd up.
3608  * When packets are received on free'd up rings, MAC (through the generation
3609  * count mechanism) will drop such packets.
3610  */
3611 static mac_ring_t *
3612 mac_ring_alloc(mac_impl_t *mip)
3613 {
3614         mac_ring_t *ring;
3615 
3616         mutex_enter(&mip->mi_ring_lock);
3617         if (mip->mi_ring_freelist != NULL) {
3618                 ring = mip->mi_ring_freelist;
3619                 mip->mi_ring_freelist = ring->mr_next;
3620                 bzero(ring, sizeof (mac_ring_t));
3621                 mutex_exit(&mip->mi_ring_lock);
3622         } else {
3623                 mutex_exit(&mip->mi_ring_lock);
3624                 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
3625         }
3626         ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
3627         return (ring);
3628 }
3629 
3630 static void
3631 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
3632 {
3633         ASSERT(ring->mr_state == MR_FREE);
3634 
3635         mutex_enter(&mip->mi_ring_lock);
3636         ring->mr_state = MR_FREE;
3637         ring->mr_flag = 0;
3638         ring->mr_next = mip->mi_ring_freelist;
3639         ring->mr_mip = NULL;
3640         mip->mi_ring_freelist = ring;
3641         mac_ring_stat_delete(ring);
3642         mutex_exit(&mip->mi_ring_lock);
3643 }
3644 
3645 static void
3646 mac_ring_freeall(mac_impl_t *mip)
3647 {
3648         mac_ring_t *ring_next;
3649         mutex_enter(&mip->mi_ring_lock);
3650         mac_ring_t *ring = mip->mi_ring_freelist;
3651         while (ring != NULL) {
3652                 ring_next = ring->mr_next;
3653                 kmem_cache_free(mac_ring_cache, ring);
3654                 ring = ring_next;
3655         }
3656         mip->mi_ring_freelist = NULL;
3657         mutex_exit(&mip->mi_ring_lock);
3658 }
3659 
3660 int
3661 mac_start_ring(mac_ring_t *ring)
3662 {
3663         int rv = 0;
3664 
3665         ASSERT(ring->mr_state == MR_FREE);
3666 
3667         if (ring->mr_start != NULL) {
3668                 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
3669                 if (rv != 0)
3670                         return (rv);
3671         }
3672 
3673         ring->mr_state = MR_INUSE;
3674         return (rv);
3675 }
3676 
3677 void
3678 mac_stop_ring(mac_ring_t *ring)
3679 {
3680         ASSERT(ring->mr_state == MR_INUSE);
3681 
3682         if (ring->mr_stop != NULL)
3683                 ring->mr_stop(ring->mr_driver);
3684 
3685         ring->mr_state = MR_FREE;
3686 
3687         /*
3688          * Increment the ring generation number for this ring.
3689          */
3690         ring->mr_gen_num++;
3691 }
3692 
3693 int
3694 mac_start_group(mac_group_t *group)
3695 {
3696         int rv = 0;
3697 
3698         if (group->mrg_start != NULL)
3699                 rv = group->mrg_start(group->mrg_driver);
3700 
3701         return (rv);
3702 }
3703 
3704 void
3705 mac_stop_group(mac_group_t *group)
3706 {
3707         if (group->mrg_stop != NULL)
3708                 group->mrg_stop(group->mrg_driver);
3709 }
3710 
3711 /*
3712  * Called from mac_start() on the default Rx group. Broadcast and multicast
3713  * packets are received only on the default group. Hence the default group
3714  * needs to be up even if the primary client is not up, for the other groups
3715  * to be functional. We do this by calling this function at mac_start time
3716  * itself. However the broadcast packets that are received can't make their
3717  * way beyond mac_rx until a mac client creates a broadcast flow.
3718  */
3719 static int
3720 mac_start_group_and_rings(mac_group_t *group)
3721 {
3722         mac_ring_t      *ring;
3723         int             rv = 0;
3724 
3725         ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
3726         if ((rv = mac_start_group(group)) != 0)
3727                 return (rv);
3728 
3729         for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3730                 ASSERT(ring->mr_state == MR_FREE);
3731                 if ((rv = mac_start_ring(ring)) != 0)
3732                         goto error;
3733                 ring->mr_classify_type = MAC_SW_CLASSIFIER;
3734         }
3735         return (0);
3736 
3737 error:
3738         mac_stop_group_and_rings(group);
3739         return (rv);
3740 }
3741 
3742 /* Called from mac_stop on the default Rx group */
3743 static void
3744 mac_stop_group_and_rings(mac_group_t *group)
3745 {
3746         mac_ring_t      *ring;
3747 
3748         for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3749                 if (ring->mr_state != MR_FREE) {
3750                         mac_stop_ring(ring);
3751                         ring->mr_flag = 0;
3752                         ring->mr_classify_type = MAC_NO_CLASSIFIER;
3753                 }
3754         }
3755         mac_stop_group(group);
3756 }
3757 
3758 
3759 static mac_ring_t *
3760 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
3761     mac_capab_rings_t *cap_rings)
3762 {
3763         mac_ring_t *ring, *rnext;
3764         mac_ring_info_t ring_info;
3765         ddi_intr_handle_t ddi_handle;
3766 
3767         ring = mac_ring_alloc(mip);
3768 
3769         /* Prepare basic information of ring */
3770 
3771         /*
3772          * Ring index is numbered to be unique across a particular device.
3773          * Ring index computation makes following assumptions:
3774          *      - For drivers with static grouping (e.g. ixgbe, bge),
3775          *      ring index exchanged with the driver (e.g. during mr_rget)
3776          *      is unique only across the group the ring belongs to.
3777          *      - Drivers with dynamic grouping (e.g. nxge), start
3778          *      with single group (mrg_index = 0).
3779          */
3780         ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index;
3781         ring->mr_type = group->mrg_type;
3782         ring->mr_gh = (mac_group_handle_t)group;
3783 
3784         /* Insert the new ring to the list. */
3785         ring->mr_next = group->mrg_rings;
3786         group->mrg_rings = ring;
3787 
3788         /* Zero to reuse the info data structure */
3789         bzero(&ring_info, sizeof (ring_info));
3790 
3791         /* Query ring information from driver */
3792         cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
3793             index, &ring_info, (mac_ring_handle_t)ring);
3794 
3795         ring->mr_info = ring_info;
3796 
3797         /*
3798          * The interrupt handle could be shared among multiple rings.
3799          * Thus if there is a bunch of rings that are sharing an
3800          * interrupt, then only one ring among the bunch will be made
3801          * available for interrupt re-targeting; the rest will have
3802          * ddi_shared flag set to TRUE and would not be available for
3803          * be interrupt re-targeting.
3804          */
3805         if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) {
3806                 rnext = ring->mr_next;
3807                 while (rnext != NULL) {
3808                         if (rnext->mr_info.mri_intr.mi_ddi_handle ==
3809                             ddi_handle) {
3810                                 /*
3811                                  * If default ring (mr_index == 0) is part
3812                                  * of a group of rings sharing an
3813                                  * interrupt, then set ddi_shared flag for
3814                                  * the default ring and give another ring
3815                                  * the chance to be re-targeted.
3816                                  */
3817                                 if (rnext->mr_index == 0 &&
3818                                     !rnext->mr_info.mri_intr.mi_ddi_shared) {
3819                                         rnext->mr_info.mri_intr.mi_ddi_shared =
3820                                             B_TRUE;
3821                                 } else {
3822                                         ring->mr_info.mri_intr.mi_ddi_shared =
3823                                             B_TRUE;
3824                                 }
3825                                 break;
3826                         }
3827                         rnext = rnext->mr_next;
3828                 }
3829                 /*
3830                  * If rnext is NULL, then no matching ddi_handle was found.
3831                  * Rx rings get registered first. So if this is a Tx ring,
3832                  * then go through all the Rx rings and see if there is a
3833                  * matching ddi handle.
3834                  */
3835                 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) {
3836                         mac_compare_ddi_handle(mip->mi_rx_groups,
3837                             mip->mi_rx_group_count, ring);
3838                 }
3839         }
3840 
3841         /* Update ring's status */
3842         ring->mr_state = MR_FREE;
3843         ring->mr_flag = 0;
3844 
3845         /* Update the ring count of the group */
3846         group->mrg_cur_count++;
3847 
3848         /* Create per ring kstats */
3849         if (ring->mr_stat != NULL) {
3850                 ring->mr_mip = mip;
3851                 mac_ring_stat_create(ring);
3852         }
3853 
3854         return (ring);
3855 }
3856 
3857 /*
3858  * Rings are chained together for easy regrouping.
3859  */
3860 static void
3861 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
3862     mac_capab_rings_t *cap_rings)
3863 {
3864         int index;
3865 
3866         /*
3867          * Initialize all ring members of this group. Size of zero will not
3868          * enter the loop, so it's safe for initializing an empty group.
3869          */
3870         for (index = size - 1; index >= 0; index--)
3871                 (void) mac_init_ring(mip, group, index, cap_rings);
3872 }
3873 
3874 int
3875 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
3876 {
3877         mac_capab_rings_t       *cap_rings;
3878         mac_group_t             *group;
3879         mac_group_t             *groups;
3880         mac_group_info_t        group_info;
3881         uint_t                  group_free = 0;
3882         uint_t                  ring_left;
3883         mac_ring_t              *ring;
3884         int                     g;
3885         int                     err = 0;
3886         uint_t                  grpcnt;
3887         boolean_t               pseudo_txgrp = B_FALSE;
3888 
3889         switch (rtype) {
3890         case MAC_RING_TYPE_RX:
3891                 ASSERT(mip->mi_rx_groups == NULL);
3892 
3893                 cap_rings = &mip->mi_rx_rings_cap;
3894                 cap_rings->mr_type = MAC_RING_TYPE_RX;
3895                 break;
3896         case MAC_RING_TYPE_TX:
3897                 ASSERT(mip->mi_tx_groups == NULL);
3898 
3899                 cap_rings = &mip->mi_tx_rings_cap;
3900                 cap_rings->mr_type = MAC_RING_TYPE_TX;
3901                 break;
3902         default:
3903                 ASSERT(B_FALSE);
3904         }
3905 
3906         if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings))
3907                 return (0);
3908         grpcnt = cap_rings->mr_gnum;
3909 
3910         /*
3911          * If we have multiple TX rings, but only one TX group, we can
3912          * create pseudo TX groups (one per TX ring) in the MAC layer,
3913          * except for an aggr. For an aggr currently we maintain only
3914          * one group with all the rings (for all its ports), going
3915          * forwards we might change this.
3916          */
3917         if (rtype == MAC_RING_TYPE_TX &&
3918             cap_rings->mr_gnum == 0 && cap_rings->mr_rnum >  0 &&
3919             (mip->mi_state_flags & MIS_IS_AGGR) == 0) {
3920                 /*
3921                  * The -1 here is because we create a default TX group
3922                  * with all the rings in it.
3923                  */
3924                 grpcnt = cap_rings->mr_rnum - 1;
3925                 pseudo_txgrp = B_TRUE;
3926         }
3927 
3928         /*
3929          * Allocate a contiguous buffer for all groups.
3930          */
3931         groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP);
3932 
3933         ring_left = cap_rings->mr_rnum;
3934 
3935         /*
3936          * Get all ring groups if any, and get their ring members
3937          * if any.
3938          */
3939         for (g = 0; g < grpcnt; g++) {
3940                 group = groups + g;
3941 
3942                 /* Prepare basic information of the group */
3943                 group->mrg_index = g;
3944                 group->mrg_type = rtype;
3945                 group->mrg_state = MAC_GROUP_STATE_UNINIT;
3946                 group->mrg_mh = (mac_handle_t)mip;
3947                 group->mrg_next = group + 1;
3948 
3949                 /* Zero to reuse the info data structure */
3950                 bzero(&group_info, sizeof (group_info));
3951 
3952                 if (pseudo_txgrp) {
3953                         /*
3954                          * This is a pseudo group that we created, apart
3955                          * from setting the state there is nothing to be
3956                          * done.
3957                          */
3958                         group->mrg_state = MAC_GROUP_STATE_REGISTERED;
3959                         group_free++;
3960                         continue;
3961                 }
3962                 /* Query group information from driver */
3963                 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
3964                     (mac_group_handle_t)group);
3965 
3966                 switch (cap_rings->mr_group_type) {
3967                 case MAC_GROUP_TYPE_DYNAMIC:
3968                         if (cap_rings->mr_gaddring == NULL ||
3969                             cap_rings->mr_gremring == NULL) {
3970                                 DTRACE_PROBE3(
3971                                     mac__init__rings_no_addremring,
3972                                     char *, mip->mi_name,
3973                                     mac_group_add_ring_t,
3974                                     cap_rings->mr_gaddring,
3975                                     mac_group_add_ring_t,
3976                                     cap_rings->mr_gremring);
3977                                 err = EINVAL;
3978                                 goto bail;
3979                         }
3980 
3981                         switch (rtype) {
3982                         case MAC_RING_TYPE_RX:
3983                                 /*
3984                                  * The first RX group must have non-zero
3985                                  * rings, and the following groups must
3986                                  * have zero rings.
3987                                  */
3988                                 if (g == 0 && group_info.mgi_count == 0) {
3989                                         DTRACE_PROBE1(
3990                                             mac__init__rings__rx__def__zero,
3991                                             char *, mip->mi_name);
3992                                         err = EINVAL;
3993                                         goto bail;
3994                                 }
3995                                 if (g > 0 && group_info.mgi_count != 0) {
3996                                         DTRACE_PROBE3(
3997                                             mac__init__rings__rx__nonzero,
3998                                             char *, mip->mi_name,
3999                                             int, g, int, group_info.mgi_count);
4000                                         err = EINVAL;
4001                                         goto bail;
4002                                 }
4003                                 break;
4004                         case MAC_RING_TYPE_TX:
4005                                 /*
4006                                  * All TX ring groups must have zero rings.
4007                                  */
4008                                 if (group_info.mgi_count != 0) {
4009                                         DTRACE_PROBE3(
4010                                             mac__init__rings__tx__nonzero,
4011                                             char *, mip->mi_name,
4012                                             int, g, int, group_info.mgi_count);
4013                                         err = EINVAL;
4014                                         goto bail;
4015                                 }
4016                                 break;
4017                         }
4018                         break;
4019                 case MAC_GROUP_TYPE_STATIC:
4020                         /*
4021                          * Note that an empty group is allowed, e.g., an aggr
4022                          * would start with an empty group.
4023                          */
4024                         break;
4025                 default:
4026                         /* unknown group type */
4027                         DTRACE_PROBE2(mac__init__rings__unknown__type,
4028                             char *, mip->mi_name,
4029                             int, cap_rings->mr_group_type);
4030                         err = EINVAL;
4031                         goto bail;
4032                 }
4033 
4034 
4035                 /*
4036                  * Driver must register group->mgi_addmac/remmac() for rx groups
4037                  * to support multiple MAC addresses.
4038                  */
4039                 if (rtype == MAC_RING_TYPE_RX &&
4040                     ((group_info.mgi_addmac == NULL) ||
4041                     (group_info.mgi_remmac == NULL))) {
4042                         err = EINVAL;
4043                         goto bail;
4044                 }
4045 
4046                 /* Cache driver-supplied information */
4047                 group->mrg_info = group_info;
4048 
4049                 /* Update the group's status and group count. */
4050                 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4051                 group_free++;
4052 
4053                 group->mrg_rings = NULL;
4054                 group->mrg_cur_count = 0;
4055                 mac_init_group(mip, group, group_info.mgi_count, cap_rings);
4056                 ring_left -= group_info.mgi_count;
4057 
4058                 /* The current group size should be equal to default value */
4059                 ASSERT(group->mrg_cur_count == group_info.mgi_count);
4060         }
4061 
4062         /* Build up a dummy group for free resources as a pool */
4063         group = groups + grpcnt;
4064 
4065         /* Prepare basic information of the group */
4066         group->mrg_index = -1;
4067         group->mrg_type = rtype;
4068         group->mrg_state = MAC_GROUP_STATE_UNINIT;
4069         group->mrg_mh = (mac_handle_t)mip;
4070         group->mrg_next = NULL;
4071 
4072         /*
4073          * If there are ungrouped rings, allocate a continuous buffer for
4074          * remaining resources.
4075          */
4076         if (ring_left != 0) {
4077                 group->mrg_rings = NULL;
4078                 group->mrg_cur_count = 0;
4079                 mac_init_group(mip, group, ring_left, cap_rings);
4080 
4081                 /* The current group size should be equal to ring_left */
4082                 ASSERT(group->mrg_cur_count == ring_left);
4083 
4084                 ring_left = 0;
4085 
4086                 /* Update this group's status */
4087                 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4088         } else
4089                 group->mrg_rings = NULL;
4090 
4091         ASSERT(ring_left == 0);
4092 
4093 bail:
4094 
4095         /* Cache other important information to finalize the initialization */
4096         switch (rtype) {
4097         case MAC_RING_TYPE_RX:
4098                 mip->mi_rx_group_type = cap_rings->mr_group_type;
4099                 mip->mi_rx_group_count = cap_rings->mr_gnum;
4100                 mip->mi_rx_groups = groups;
4101                 mip->mi_rx_donor_grp = groups;
4102                 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4103                         /*
4104                          * The default ring is reserved since it is
4105                          * used for sending the broadcast etc. packets.
4106                          */
4107                         mip->mi_rxrings_avail =
4108                             mip->mi_rx_groups->mrg_cur_count - 1;
4109                         mip->mi_rxrings_rsvd = 1;
4110                 }
4111                 /*
4112                  * The default group cannot be reserved. It is used by
4113                  * all the clients that do not have an exclusive group.
4114                  */
4115                 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1;
4116                 mip->mi_rxhwclnt_used = 1;
4117                 break;
4118         case MAC_RING_TYPE_TX:
4119                 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC :
4120                     cap_rings->mr_group_type;
4121                 mip->mi_tx_group_count = grpcnt;
4122                 mip->mi_tx_group_free = group_free;
4123                 mip->mi_tx_groups = groups;
4124 
4125                 group = groups + grpcnt;
4126                 ring = group->mrg_rings;
4127                 /*
4128                  * The ring can be NULL in the case of aggr. Aggr will
4129                  * have an empty Tx group which will get populated
4130                  * later when pseudo Tx rings are added after
4131                  * mac_register() is done.
4132                  */
4133                 if (ring == NULL) {
4134                         ASSERT(mip->mi_state_flags & MIS_IS_AGGR);
4135                         /*
4136                          * pass the group to aggr so it can add Tx
4137                          * rings to the group later.
4138                          */
4139                         cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL,
4140                             (mac_group_handle_t)group);
4141                         /*
4142                          * Even though there are no rings at this time
4143                          * (rings will come later), set the group
4144                          * state to registered.
4145                          */
4146                         group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4147                 } else {
4148                         /*
4149                          * Ring 0 is used as the default one and it could be
4150                          * assigned to a client as well.
4151                          */
4152                         while ((ring->mr_index != 0) && (ring->mr_next != NULL))
4153                                 ring = ring->mr_next;
4154                         ASSERT(ring->mr_index == 0);
4155                         mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4156                 }
4157                 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)
4158                         mip->mi_txrings_avail = group->mrg_cur_count - 1;
4159                         /*
4160                          * The default ring cannot be reserved.
4161                          */
4162                         mip->mi_txrings_rsvd = 1;
4163                 /*
4164                  * The default group cannot be reserved. It will be shared
4165                  * by clients that do not have an exclusive group.
4166                  */
4167                 mip->mi_txhwclnt_avail = mip->mi_tx_group_count;
4168                 mip->mi_txhwclnt_used = 1;
4169                 break;
4170         default:
4171                 ASSERT(B_FALSE);
4172         }
4173 
4174         if (err != 0)
4175                 mac_free_rings(mip, rtype);
4176 
4177         return (err);
4178 }
4179 
4180 /*
4181  * The ddi interrupt handle could be shared amoung rings. If so, compare
4182  * the new ring's ddi handle with the existing ones and set ddi_shared
4183  * flag.
4184  */
4185 void
4186 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring)
4187 {
4188         mac_group_t *group;
4189         mac_ring_t *ring;
4190         ddi_intr_handle_t ddi_handle;
4191         int g;
4192 
4193         ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle;
4194         for (g = 0; g < grpcnt; g++) {
4195                 group = groups + g;
4196                 for (ring = group->mrg_rings; ring != NULL;
4197                     ring = ring->mr_next) {
4198                         if (ring == cring)
4199                                 continue;
4200                         if (ring->mr_info.mri_intr.mi_ddi_handle ==
4201                             ddi_handle) {
4202                                 if (cring->mr_type == MAC_RING_TYPE_RX &&
4203                                     ring->mr_index == 0 &&
4204                                     !ring->mr_info.mri_intr.mi_ddi_shared) {
4205                                         ring->mr_info.mri_intr.mi_ddi_shared =
4206                                             B_TRUE;
4207                                 } else {
4208                                         cring->mr_info.mri_intr.mi_ddi_shared =
4209                                             B_TRUE;
4210                                 }
4211                                 return;
4212                         }
4213                 }
4214         }
4215 }
4216 
4217 /*
4218  * Called to free all groups of particular type (RX or TX). It's assumed that
4219  * no clients are using these groups.
4220  */
4221 void
4222 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4223 {
4224         mac_group_t *group, *groups;
4225         uint_t group_count;
4226 
4227         switch (rtype) {
4228         case MAC_RING_TYPE_RX:
4229                 if (mip->mi_rx_groups == NULL)
4230                         return;
4231 
4232                 groups = mip->mi_rx_groups;
4233                 group_count = mip->mi_rx_group_count;
4234 
4235                 mip->mi_rx_groups = NULL;
4236                 mip->mi_rx_donor_grp = NULL;
4237                 mip->mi_rx_group_count = 0;
4238                 break;
4239         case MAC_RING_TYPE_TX:
4240                 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
4241 
4242                 if (mip->mi_tx_groups == NULL)
4243                         return;
4244 
4245                 groups = mip->mi_tx_groups;
4246                 group_count = mip->mi_tx_group_count;
4247 
4248                 mip->mi_tx_groups = NULL;
4249                 mip->mi_tx_group_count = 0;
4250                 mip->mi_tx_group_free = 0;
4251                 mip->mi_default_tx_ring = NULL;
4252                 break;
4253         default:
4254                 ASSERT(B_FALSE);
4255         }
4256 
4257         for (group = groups; group != NULL; group = group->mrg_next) {
4258                 mac_ring_t *ring;
4259 
4260                 if (group->mrg_cur_count == 0)
4261                         continue;
4262 
4263                 ASSERT(group->mrg_rings != NULL);
4264 
4265                 while ((ring = group->mrg_rings) != NULL) {
4266                         group->mrg_rings = ring->mr_next;
4267                         mac_ring_free(mip, ring);
4268                 }
4269         }
4270 
4271         /* Free all the cached rings */
4272         mac_ring_freeall(mip);
4273         /* Free the block of group data strutures */
4274         kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
4275 }
4276 
4277 /*
4278  * Associate a MAC address with a receive group.
4279  *
4280  * The return value of this function should always be checked properly, because
4281  * any type of failure could cause unexpected results. A group can be added
4282  * or removed with a MAC address only after it has been reserved. Ideally,
4283  * a successful reservation always leads to calling mac_group_addmac() to
4284  * steer desired traffic. Failure of adding an unicast MAC address doesn't
4285  * always imply that the group is functioning abnormally.
4286  *
4287  * Currently this function is called everywhere, and it reflects assumptions
4288  * about MAC addresses in the implementation. CR 6735196.
4289  */
4290 int
4291 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
4292 {
4293         ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4294         ASSERT(group->mrg_info.mgi_addmac != NULL);
4295 
4296         return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
4297 }
4298 
4299 /*
4300  * Remove the association between MAC address and receive group.
4301  */
4302 int
4303 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
4304 {
4305         ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4306         ASSERT(group->mrg_info.mgi_remmac != NULL);
4307 
4308         return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
4309 }
4310 
4311 /*
4312  * This is the entry point for packets transmitted through the bridging code.
4313  * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh'
4314  * pointer may be NULL to select the default ring.
4315  */
4316 mblk_t *
4317 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp)
4318 {
4319         mac_handle_t mh;
4320 
4321         /*
4322          * Once we take a reference on the bridge link, the bridge
4323          * module itself can't unload, so the callback pointers are
4324          * stable.
4325          */
4326         mutex_enter(&mip->mi_bridge_lock);
4327         if ((mh = mip->mi_bridge_link) != NULL)
4328                 mac_bridge_ref_cb(mh, B_TRUE);
4329         mutex_exit(&mip->mi_bridge_lock);
4330         if (mh == NULL) {
4331                 MAC_RING_TX(mip, rh, mp, mp);
4332         } else {
4333                 mp = mac_bridge_tx_cb(mh, rh, mp);
4334                 mac_bridge_ref_cb(mh, B_FALSE);
4335         }
4336 
4337         return (mp);
4338 }
4339 
4340 /*
4341  * Find a ring from its index.
4342  */
4343 mac_ring_handle_t
4344 mac_find_ring(mac_group_handle_t gh, int index)
4345 {
4346         mac_group_t *group = (mac_group_t *)gh;
4347         mac_ring_t *ring = group->mrg_rings;
4348 
4349         for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
4350                 if (ring->mr_index == index)
4351                         break;
4352 
4353         return ((mac_ring_handle_t)ring);
4354 }
4355 /*
4356  * Add a ring to an existing group.
4357  *
4358  * The ring must be either passed directly (for example if the ring
4359  * movement is initiated by the framework), or specified through a driver
4360  * index (for example when the ring is added by the driver.
4361  *
4362  * The caller needs to call mac_perim_enter() before calling this function.
4363  */
4364 int
4365 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
4366 {
4367         mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4368         mac_capab_rings_t *cap_rings;
4369         boolean_t driver_call = (ring == NULL);
4370         mac_group_type_t group_type;
4371         int ret = 0;
4372         flow_entry_t *flent;
4373 
4374         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4375 
4376         switch (group->mrg_type) {
4377         case MAC_RING_TYPE_RX:
4378                 cap_rings = &mip->mi_rx_rings_cap;
4379                 group_type = mip->mi_rx_group_type;
4380                 break;
4381         case MAC_RING_TYPE_TX:
4382                 cap_rings = &mip->mi_tx_rings_cap;
4383                 group_type = mip->mi_tx_group_type;
4384                 break;
4385         default:
4386                 ASSERT(B_FALSE);
4387         }
4388 
4389         /*
4390          * There should be no ring with the same ring index in the target
4391          * group.
4392          */
4393         ASSERT(mac_find_ring((mac_group_handle_t)group,
4394             driver_call ? index : ring->mr_index) == NULL);
4395 
4396         if (driver_call) {
4397                 /*
4398                  * The function is called as a result of a request from
4399                  * a driver to add a ring to an existing group, for example
4400                  * from the aggregation driver. Allocate a new mac_ring_t
4401                  * for that ring.
4402                  */
4403                 ring = mac_init_ring(mip, group, index, cap_rings);
4404                 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
4405         } else {
4406                 /*
4407                  * The function is called as a result of a MAC layer request
4408                  * to add a ring to an existing group. In this case the
4409                  * ring is being moved between groups, which requires
4410                  * the underlying driver to support dynamic grouping,
4411                  * and the mac_ring_t already exists.
4412                  */
4413                 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4414                 ASSERT(group->mrg_driver == NULL ||
4415                     cap_rings->mr_gaddring != NULL);
4416                 ASSERT(ring->mr_gh == NULL);
4417         }
4418 
4419         /*
4420          * At this point the ring should not be in use, and it should be
4421          * of the right for the target group.
4422          */
4423         ASSERT(ring->mr_state < MR_INUSE);
4424         ASSERT(ring->mr_srs == NULL);
4425         ASSERT(ring->mr_type == group->mrg_type);
4426 
4427         if (!driver_call) {
4428                 /*
4429                  * Add the driver level hardware ring if the process was not
4430                  * initiated by the driver, and the target group is not the
4431                  * group.
4432                  */
4433                 if (group->mrg_driver != NULL) {
4434                         cap_rings->mr_gaddring(group->mrg_driver,
4435                             ring->mr_driver, ring->mr_type);
4436                 }
4437 
4438                 /*
4439                  * Insert the ring ahead existing rings.
4440                  */
4441                 ring->mr_next = group->mrg_rings;
4442                 group->mrg_rings = ring;
4443                 ring->mr_gh = (mac_group_handle_t)group;
4444                 group->mrg_cur_count++;
4445         }
4446 
4447         /*
4448          * If the group has not been actively used, we're done.
4449          */
4450         if (group->mrg_index != -1 &&
4451             group->mrg_state < MAC_GROUP_STATE_RESERVED)
4452                 return (0);
4453 
4454         /*
4455          * Start the ring if needed. Failure causes to undo the grouping action.
4456          */
4457         if (ring->mr_state != MR_INUSE) {
4458                 if ((ret = mac_start_ring(ring)) != 0) {
4459                         if (!driver_call) {
4460                                 cap_rings->mr_gremring(group->mrg_driver,
4461                                     ring->mr_driver, ring->mr_type);
4462                         }
4463                         group->mrg_cur_count--;
4464                         group->mrg_rings = ring->mr_next;
4465 
4466                         ring->mr_gh = NULL;
4467 
4468                         if (driver_call)
4469                                 mac_ring_free(mip, ring);
4470 
4471                         return (ret);
4472                 }
4473         }
4474 
4475         /*
4476          * Set up SRS/SR according to the ring type.
4477          */
4478         switch (ring->mr_type) {
4479         case MAC_RING_TYPE_RX:
4480                 /*
4481                  * Setup SRS on top of the new ring if the group is
4482                  * reserved for someones exclusive use.
4483                  */
4484                 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
4485                         mac_client_impl_t *mcip;
4486 
4487                         mcip = MAC_GROUP_ONLY_CLIENT(group);
4488                         /*
4489                          * Even though this group is reserved we migth still
4490                          * have multiple clients, i.e a VLAN shares the
4491                          * group with the primary mac client.
4492                          */
4493                         if (mcip != NULL) {
4494                                 flent = mcip->mci_flent;
4495                                 ASSERT(flent->fe_rx_srs_cnt > 0);
4496                                 mac_rx_srs_group_setup(mcip, flent, SRST_LINK);
4497                                 mac_fanout_setup(mcip, flent,
4498                                     MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver,
4499                                     mcip, NULL, NULL);
4500                         } else {
4501                                 ring->mr_classify_type = MAC_SW_CLASSIFIER;
4502                         }
4503                 }
4504                 break;
4505         case MAC_RING_TYPE_TX:
4506         {
4507                 mac_grp_client_t        *mgcp = group->mrg_clients;
4508                 mac_client_impl_t       *mcip;
4509                 mac_soft_ring_set_t     *mac_srs;
4510                 mac_srs_tx_t            *tx;
4511 
4512                 if (MAC_GROUP_NO_CLIENT(group)) {
4513                         if (ring->mr_state == MR_INUSE)
4514                                 mac_stop_ring(ring);
4515                         ring->mr_flag = 0;
4516                         break;
4517                 }
4518                 /*
4519                  * If the rings are being moved to a group that has
4520                  * clients using it, then add the new rings to the
4521                  * clients SRS.
4522                  */
4523                 while (mgcp != NULL) {
4524                         boolean_t       is_aggr;
4525 
4526                         mcip = mgcp->mgc_client;
4527                         flent = mcip->mci_flent;
4528                         is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR);
4529                         mac_srs = MCIP_TX_SRS(mcip);
4530                         tx = &mac_srs->srs_tx;
4531                         mac_tx_client_quiesce((mac_client_handle_t)mcip);
4532                         /*
4533                          * If we are  growing from 1 to multiple rings.
4534                          */
4535                         if (tx->st_mode == SRS_TX_BW ||
4536                             tx->st_mode == SRS_TX_SERIALIZE ||
4537                             tx->st_mode == SRS_TX_DEFAULT) {
4538                                 mac_ring_t      *tx_ring = tx->st_arg2;
4539 
4540                                 tx->st_arg2 = NULL;
4541                                 mac_tx_srs_stat_recreate(mac_srs, B_TRUE);
4542                                 mac_tx_srs_add_ring(mac_srs, tx_ring);
4543                                 if (mac_srs->srs_type & SRST_BW_CONTROL) {
4544                                         tx->st_mode = is_aggr ? SRS_TX_BW_AGGR :
4545                                             SRS_TX_BW_FANOUT;
4546                                 } else {
4547                                         tx->st_mode = is_aggr ? SRS_TX_AGGR :
4548                                             SRS_TX_FANOUT;
4549                                 }
4550                                 tx->st_func = mac_tx_get_func(tx->st_mode);
4551                         }
4552                         mac_tx_srs_add_ring(mac_srs, ring);
4553                         mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4554                             mac_rx_deliver, mcip, NULL, NULL);
4555                         mac_tx_client_restart((mac_client_handle_t)mcip);
4556                         mgcp = mgcp->mgc_next;
4557                 }
4558                 break;
4559         }
4560         default:
4561                 ASSERT(B_FALSE);
4562         }
4563         /*
4564          * For aggr, the default ring will be NULL to begin with. If it
4565          * is NULL, then pick the first ring that gets added as the
4566          * default ring. Any ring in an aggregation can be removed at
4567          * any time (by the user action of removing a link) and if the
4568          * current default ring gets removed, then a new one gets
4569          * picked (see i_mac_group_rem_ring()).
4570          */
4571         if (mip->mi_state_flags & MIS_IS_AGGR &&
4572             mip->mi_default_tx_ring == NULL &&
4573             ring->mr_type == MAC_RING_TYPE_TX) {
4574                 mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4575         }
4576 
4577         MAC_RING_UNMARK(ring, MR_INCIPIENT);
4578         return (0);
4579 }
4580 
4581 /*
4582  * Remove a ring from it's current group. MAC internal function for dynamic
4583  * grouping.
4584  *
4585  * The caller needs to call mac_perim_enter() before calling this function.
4586  */
4587 void
4588 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
4589     boolean_t driver_call)
4590 {
4591         mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4592         mac_capab_rings_t *cap_rings = NULL;
4593         mac_group_type_t group_type;
4594 
4595         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4596 
4597         ASSERT(mac_find_ring((mac_group_handle_t)group,
4598             ring->mr_index) == (mac_ring_handle_t)ring);
4599         ASSERT((mac_group_t *)ring->mr_gh == group);
4600         ASSERT(ring->mr_type == group->mrg_type);
4601 
4602         if (ring->mr_state == MR_INUSE)
4603                 mac_stop_ring(ring);
4604         switch (ring->mr_type) {
4605         case MAC_RING_TYPE_RX:
4606                 group_type = mip->mi_rx_group_type;
4607                 cap_rings = &mip->mi_rx_rings_cap;
4608 
4609                 /*
4610                  * Only hardware classified packets hold a reference to the
4611                  * ring all the way up the Rx path. mac_rx_srs_remove()
4612                  * will take care of quiescing the Rx path and removing the
4613                  * SRS. The software classified path neither holds a reference
4614                  * nor any association with the ring in mac_rx.
4615                  */
4616                 if (ring->mr_srs != NULL) {
4617                         mac_rx_srs_remove(ring->mr_srs);
4618                         ring->mr_srs = NULL;
4619                 }
4620 
4621                 break;
4622         case MAC_RING_TYPE_TX:
4623         {
4624                 mac_grp_client_t        *mgcp;
4625                 mac_client_impl_t       *mcip;
4626                 mac_soft_ring_set_t     *mac_srs;
4627                 mac_srs_tx_t            *tx;
4628                 mac_ring_t              *rem_ring;
4629                 mac_group_t             *defgrp;
4630                 uint_t                  ring_info = 0;
4631 
4632                 /*
4633                  * For TX this function is invoked in three
4634                  * cases:
4635                  *
4636                  * 1) In the case of a failure during the
4637                  * initial creation of a group when a share is
4638                  * associated with a MAC client. So the SRS is not
4639                  * yet setup, and will be setup later after the
4640                  * group has been reserved and populated.
4641                  *
4642                  * 2) From mac_release_tx_group() when freeing
4643                  * a TX SRS.
4644                  *
4645                  * 3) In the case of aggr, when a port gets removed,
4646                  * the pseudo Tx rings that it exposed gets removed.
4647                  *
4648                  * In the first two cases the SRS and its soft
4649                  * rings are already quiesced.
4650                  */
4651                 if (driver_call) {
4652                         mac_client_impl_t *mcip;
4653                         mac_soft_ring_set_t *mac_srs;
4654                         mac_soft_ring_t *sringp;
4655                         mac_srs_tx_t *srs_tx;
4656 
4657                         if (mip->mi_state_flags & MIS_IS_AGGR &&
4658                             mip->mi_default_tx_ring ==
4659                             (mac_ring_handle_t)ring) {
4660                                 /* pick a new default Tx ring */
4661                                 mip->mi_default_tx_ring =
4662                                     (group->mrg_rings != ring) ?
4663                                     (mac_ring_handle_t)group->mrg_rings :
4664                                     (mac_ring_handle_t)(ring->mr_next);
4665                         }
4666                         /* Presently only aggr case comes here */
4667                         if (group->mrg_state != MAC_GROUP_STATE_RESERVED)
4668                                 break;
4669 
4670                         mcip = MAC_GROUP_ONLY_CLIENT(group);
4671                         ASSERT(mcip != NULL);
4672                         ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR);
4673                         mac_srs = MCIP_TX_SRS(mcip);
4674                         ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
4675                             mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
4676                         srs_tx = &mac_srs->srs_tx;
4677                         /*
4678                          * Wakeup any callers blocked on this
4679                          * Tx ring due to flow control.
4680                          */
4681                         sringp = srs_tx->st_soft_rings[ring->mr_index];
4682                         ASSERT(sringp != NULL);
4683                         mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp);
4684                         mac_tx_client_quiesce((mac_client_handle_t)mcip);
4685                         mac_tx_srs_del_ring(mac_srs, ring);
4686                         mac_tx_client_restart((mac_client_handle_t)mcip);
4687                         break;
4688                 }
4689                 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring);
4690                 group_type = mip->mi_tx_group_type;
4691                 cap_rings = &mip->mi_tx_rings_cap;
4692                 /*
4693                  * See if we need to take it out of the MAC clients using
4694                  * this group
4695                  */
4696                 if (MAC_GROUP_NO_CLIENT(group))
4697                         break;
4698                 mgcp = group->mrg_clients;
4699                 defgrp = MAC_DEFAULT_TX_GROUP(mip);
4700                 while (mgcp != NULL) {
4701                         mcip = mgcp->mgc_client;
4702                         mac_srs = MCIP_TX_SRS(mcip);
4703                         tx = &mac_srs->srs_tx;
4704                         mac_tx_client_quiesce((mac_client_handle_t)mcip);
4705                         /*
4706                          * If we are here when removing rings from the
4707                          * defgroup, mac_reserve_tx_ring would have
4708                          * already deleted the ring from the MAC
4709                          * clients in the group.
4710                          */
4711                         if (group != defgrp) {
4712                                 mac_tx_invoke_callbacks(mcip,
4713                                     (mac_tx_cookie_t)
4714                                     mac_tx_srs_get_soft_ring(mac_srs, ring));
4715                                 mac_tx_srs_del_ring(mac_srs, ring);
4716                         }
4717                         /*
4718                          * Additionally, if  we are left with only
4719                          * one ring in the group after this, we need
4720                          * to modify the mode etc. to. (We haven't
4721                          * yet taken the ring out, so we check with 2).
4722                          */
4723                         if (group->mrg_cur_count == 2) {
4724                                 if (ring->mr_next == NULL)
4725                                         rem_ring = group->mrg_rings;
4726                                 else
4727                                         rem_ring = ring->mr_next;
4728                                 mac_tx_invoke_callbacks(mcip,
4729                                     (mac_tx_cookie_t)
4730                                     mac_tx_srs_get_soft_ring(mac_srs,
4731                                     rem_ring));
4732                                 mac_tx_srs_del_ring(mac_srs, rem_ring);
4733                                 if (rem_ring->mr_state != MR_INUSE) {
4734                                         (void) mac_start_ring(rem_ring);
4735                                 }
4736                                 tx->st_arg2 = (void *)rem_ring;
4737                                 mac_tx_srs_stat_recreate(mac_srs, B_FALSE);
4738                                 ring_info = mac_hwring_getinfo(
4739                                     (mac_ring_handle_t)rem_ring);
4740                                 /*
4741                                  * We are  shrinking from multiple
4742                                  * to 1 ring.
4743                                  */
4744                                 if (mac_srs->srs_type & SRST_BW_CONTROL) {
4745                                         tx->st_mode = SRS_TX_BW;
4746                                 } else if (mac_tx_serialize ||
4747                                     (ring_info & MAC_RING_TX_SERIALIZE)) {
4748                                         tx->st_mode = SRS_TX_SERIALIZE;
4749                                 } else {
4750                                         tx->st_mode = SRS_TX_DEFAULT;
4751                                 }
4752                                 tx->st_func = mac_tx_get_func(tx->st_mode);
4753                         }
4754                         mac_tx_client_restart((mac_client_handle_t)mcip);
4755                         mgcp = mgcp->mgc_next;
4756                 }
4757                 break;
4758         }
4759         default:
4760                 ASSERT(B_FALSE);
4761         }
4762 
4763         /*
4764          * Remove the ring from the group.
4765          */
4766         if (ring == group->mrg_rings)
4767                 group->mrg_rings = ring->mr_next;
4768         else {
4769                 mac_ring_t *pre;
4770 
4771                 pre = group->mrg_rings;
4772                 while (pre->mr_next != ring)
4773                         pre = pre->mr_next;
4774                 pre->mr_next = ring->mr_next;
4775         }
4776         group->mrg_cur_count--;
4777 
4778         if (!driver_call) {
4779                 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4780                 ASSERT(group->mrg_driver == NULL ||
4781                     cap_rings->mr_gremring != NULL);
4782 
4783                 /*
4784                  * Remove the driver level hardware ring.
4785                  */
4786                 if (group->mrg_driver != NULL) {
4787                         cap_rings->mr_gremring(group->mrg_driver,
4788                             ring->mr_driver, ring->mr_type);
4789                 }
4790         }
4791 
4792         ring->mr_gh = NULL;
4793         if (driver_call)
4794                 mac_ring_free(mip, ring);
4795         else
4796                 ring->mr_flag = 0;
4797 }
4798 
4799 /*
4800  * Move a ring to the target group. If needed, remove the ring from the group
4801  * that it currently belongs to.
4802  *
4803  * The caller need to enter MAC's perimeter by calling mac_perim_enter().
4804  */
4805 static int
4806 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
4807 {
4808         mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
4809         int rv;
4810 
4811         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4812         ASSERT(d_group != NULL);
4813         ASSERT(s_group->mrg_mh == d_group->mrg_mh);
4814 
4815         if (s_group == d_group)
4816                 return (0);
4817 
4818         /*
4819          * Remove it from current group first.
4820          */
4821         if (s_group != NULL)
4822                 i_mac_group_rem_ring(s_group, ring, B_FALSE);
4823 
4824         /*
4825          * Add it to the new group.
4826          */
4827         rv = i_mac_group_add_ring(d_group, ring, 0);
4828         if (rv != 0) {
4829                 /*
4830                  * Failed to add ring back to source group. If
4831                  * that fails, the ring is stuck in limbo, log message.
4832                  */
4833                 if (i_mac_group_add_ring(s_group, ring, 0)) {
4834                         cmn_err(CE_WARN, "%s: failed to move ring %p\n",
4835                             mip->mi_name, (void *)ring);
4836                 }
4837         }
4838 
4839         return (rv);
4840 }
4841 
4842 /*
4843  * Find a MAC address according to its value.
4844  */
4845 mac_address_t *
4846 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
4847 {
4848         mac_address_t *map;
4849 
4850         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4851 
4852         for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
4853                 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
4854                         break;
4855         }
4856 
4857         return (map);
4858 }
4859 
4860 /*
4861  * Check whether the MAC address is shared by multiple clients.
4862  */
4863 boolean_t
4864 mac_check_macaddr_shared(mac_address_t *map)
4865 {
4866         ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
4867 
4868         return (map->ma_nusers > 1);
4869 }
4870 
4871 /*
4872  * Remove the specified MAC address from the MAC address list and free it.
4873  */
4874 static void
4875 mac_free_macaddr(mac_address_t *map)
4876 {
4877         mac_impl_t *mip = map->ma_mip;
4878 
4879         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4880         ASSERT(mip->mi_addresses != NULL);
4881 
4882         map = mac_find_macaddr(mip, map->ma_addr);
4883 
4884         ASSERT(map != NULL);
4885         ASSERT(map->ma_nusers == 0);
4886 
4887         if (map == mip->mi_addresses) {
4888                 mip->mi_addresses = map->ma_next;
4889         } else {
4890                 mac_address_t *pre;
4891 
4892                 pre = mip->mi_addresses;
4893                 while (pre->ma_next != map)
4894                         pre = pre->ma_next;
4895                 pre->ma_next = map->ma_next;
4896         }
4897 
4898         kmem_free(map, sizeof (mac_address_t));
4899 }
4900 
4901 /*
4902  * Add a MAC address reference for a client. If the desired MAC address
4903  * exists, add a reference to it. Otherwise, add the new address by adding
4904  * it to a reserved group or setting promiscuous mode. Won't try different
4905  * group is the group is non-NULL, so the caller must explictly share
4906  * default group when needed.
4907  *
4908  * Note, the primary MAC address is initialized at registration time, so
4909  * to add it to default group only need to activate it if its reference
4910  * count is still zero. Also, some drivers may not have advertised RINGS
4911  * capability.
4912  */
4913 int
4914 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr,
4915     boolean_t use_hw)
4916 {
4917         mac_address_t *map;
4918         int err = 0;
4919         boolean_t allocated_map = B_FALSE;
4920 
4921         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4922 
4923         map = mac_find_macaddr(mip, mac_addr);
4924 
4925         /*
4926          * If the new MAC address has not been added. Allocate a new one
4927          * and set it up.
4928          */
4929         if (map == NULL) {
4930                 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
4931                 map->ma_len = mip->mi_type->mt_addr_length;
4932                 bcopy(mac_addr, map->ma_addr, map->ma_len);
4933                 map->ma_nusers = 0;
4934                 map->ma_group = group;
4935                 map->ma_mip = mip;
4936 
4937                 /* add the new MAC address to the head of the address list */
4938                 map->ma_next = mip->mi_addresses;
4939                 mip->mi_addresses = map;
4940 
4941                 allocated_map = B_TRUE;
4942         }
4943 
4944         ASSERT(map->ma_group == NULL || map->ma_group == group);
4945         if (map->ma_group == NULL)
4946                 map->ma_group = group;
4947 
4948         /*
4949          * If the MAC address is already in use, simply account for the
4950          * new client.
4951          */
4952         if (map->ma_nusers++ > 0)
4953                 return (0);
4954 
4955         /*
4956          * Activate this MAC address by adding it to the reserved group.
4957          */
4958         if (group != NULL) {
4959                 err = mac_group_addmac(group, (const uint8_t *)mac_addr);
4960                 if (err == 0) {
4961                         map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
4962                         return (0);
4963                 }
4964         }
4965 
4966         /*
4967          * The MAC address addition failed. If the client requires a
4968          * hardware classified MAC address, fail the operation.
4969          */
4970         if (use_hw) {
4971                 err = ENOSPC;
4972                 goto bail;
4973         }
4974 
4975         /*
4976          * Try promiscuous mode.
4977          *
4978          * For drivers that don't advertise RINGS capability, do
4979          * nothing for the primary address.
4980          */
4981         if ((group == NULL) &&
4982             (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
4983                 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
4984                 return (0);
4985         }
4986 
4987         /*
4988          * Enable promiscuous mode in order to receive traffic
4989          * to the new MAC address.
4990          */
4991         if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
4992                 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
4993                 return (0);
4994         }
4995 
4996         /*
4997          * Free the MAC address that could not be added. Don't free
4998          * a pre-existing address, it could have been the entry
4999          * for the primary MAC address which was pre-allocated by
5000          * mac_init_macaddr(), and which must remain on the list.
5001          */
5002 bail:
5003         map->ma_nusers--;
5004         if (allocated_map)
5005                 mac_free_macaddr(map);
5006         return (err);
5007 }
5008 
5009 /*
5010  * Remove a reference to a MAC address. This may cause to remove the MAC
5011  * address from an associated group or to turn off promiscuous mode.
5012  * The caller needs to handle the failure properly.
5013  */
5014 int
5015 mac_remove_macaddr(mac_address_t *map)
5016 {
5017         mac_impl_t *mip = map->ma_mip;
5018         int err = 0;
5019 
5020         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5021 
5022         ASSERT(map == mac_find_macaddr(mip, map->ma_addr));
5023 
5024         /*
5025          * If it's not the last client using this MAC address, only update
5026          * the MAC clients count.
5027          */
5028         if (--map->ma_nusers > 0)
5029                 return (0);
5030 
5031         /*
5032          * The MAC address is no longer used by any MAC client, so remove
5033          * it from its associated group, or turn off promiscuous mode
5034          * if it was enabled for the MAC address.
5035          */
5036         switch (map->ma_type) {
5037         case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5038                 /*
5039                  * Don't free the preset primary address for drivers that
5040                  * don't advertise RINGS capability.
5041                  */
5042                 if (map->ma_group == NULL)
5043                         return (0);
5044 
5045                 err = mac_group_remmac(map->ma_group, map->ma_addr);
5046                 if (err == 0)
5047                         map->ma_group = NULL;
5048                 break;
5049         case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5050                 err = i_mac_promisc_set(mip, B_FALSE);
5051                 break;
5052         default:
5053                 ASSERT(B_FALSE);
5054         }
5055 
5056         if (err != 0)
5057                 return (err);
5058 
5059         /*
5060          * We created MAC address for the primary one at registration, so we
5061          * won't free it here. mac_fini_macaddr() will take care of it.
5062          */
5063         if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
5064                 mac_free_macaddr(map);
5065 
5066         return (0);
5067 }
5068 
5069 /*
5070  * Update an existing MAC address. The caller need to make sure that the new
5071  * value has not been used.
5072  */
5073 int
5074 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
5075 {
5076         mac_impl_t *mip = map->ma_mip;
5077         int err = 0;
5078 
5079         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5080         ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5081 
5082         switch (map->ma_type) {
5083         case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5084                 /*
5085                  * Update the primary address for drivers that are not
5086                  * RINGS capable.
5087                  */
5088                 if (mip->mi_rx_groups == NULL) {
5089                         err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
5090                             mac_addr);
5091                         if (err != 0)
5092                                 return (err);
5093                         break;
5094                 }
5095 
5096                 /*
5097                  * If this MAC address is not currently in use,
5098                  * simply break out and update the value.
5099                  */
5100                 if (map->ma_nusers == 0)
5101                         break;
5102 
5103                 /*
5104                  * Need to replace the MAC address associated with a group.
5105                  */
5106                 err = mac_group_remmac(map->ma_group, map->ma_addr);
5107                 if (err != 0)
5108                         return (err);
5109 
5110                 err = mac_group_addmac(map->ma_group, mac_addr);
5111 
5112                 /*
5113                  * Failure hints hardware error. The MAC layer needs to
5114                  * have error notification facility to handle this.
5115                  * Now, simply try to restore the value.
5116                  */
5117                 if (err != 0)
5118                         (void) mac_group_addmac(map->ma_group, map->ma_addr);
5119 
5120                 break;
5121         case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5122                 /*
5123                  * Need to do nothing more if in promiscuous mode.
5124                  */
5125                 break;
5126         default:
5127                 ASSERT(B_FALSE);
5128         }
5129 
5130         /*
5131          * Successfully replaced the MAC address.
5132          */
5133         if (err == 0)
5134                 bcopy(mac_addr, map->ma_addr, map->ma_len);
5135 
5136         return (err);
5137 }
5138 
5139 /*
5140  * Freshen the MAC address with new value. Its caller must have updated the
5141  * hardware MAC address before calling this function.
5142  * This funcitons is supposed to be used to handle the MAC address change
5143  * notification from underlying drivers.
5144  */
5145 void
5146 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
5147 {
5148         mac_impl_t *mip = map->ma_mip;
5149 
5150         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5151         ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5152 
5153         /*
5154          * Freshen the MAC address with new value.
5155          */
5156         bcopy(mac_addr, map->ma_addr, map->ma_len);
5157         bcopy(mac_addr, mip->mi_addr, map->ma_len);
5158 
5159         /*
5160          * Update all MAC clients that share this MAC address.
5161          */
5162         mac_unicast_update_clients(mip, map);
5163 }
5164 
5165 /*
5166  * Set up the primary MAC address.
5167  */
5168 void
5169 mac_init_macaddr(mac_impl_t *mip)
5170 {
5171         mac_address_t *map;
5172 
5173         /*
5174          * The reference count is initialized to zero, until it's really
5175          * activated.
5176          */
5177         map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5178         map->ma_len = mip->mi_type->mt_addr_length;
5179         bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
5180 
5181         /*
5182          * If driver advertises RINGS capability, it shouldn't have initialized
5183          * its primary MAC address. For other drivers, including VNIC, the
5184          * primary address must work after registration.
5185          */
5186         if (mip->mi_rx_groups == NULL)
5187                 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5188 
5189         map->ma_mip = mip;
5190 
5191         mip->mi_addresses = map;
5192 }
5193 
5194 /*
5195  * Clean up the primary MAC address. Note, only one primary MAC address
5196  * is allowed. All other MAC addresses must have been freed appropriately.
5197  */
5198 void
5199 mac_fini_macaddr(mac_impl_t *mip)
5200 {
5201         mac_address_t *map = mip->mi_addresses;
5202 
5203         if (map == NULL)
5204                 return;
5205 
5206         /*
5207          * If mi_addresses is initialized, there should be exactly one
5208          * entry left on the list with no users.
5209          */
5210         ASSERT(map->ma_nusers == 0);
5211         ASSERT(map->ma_next == NULL);
5212 
5213         kmem_free(map, sizeof (mac_address_t));
5214         mip->mi_addresses = NULL;
5215 }
5216 
5217 /*
5218  * Logging related functions.
5219  *
5220  * Note that Kernel statistics have been extended to maintain fine
5221  * granularity of statistics viz. hardware lane, software lane, fanout
5222  * stats etc. However, extended accounting continues to support only
5223  * aggregate statistics like before.
5224  */
5225 
5226 /* Write the flow description to a netinfo_t record */
5227 static netinfo_t *
5228 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
5229 {
5230         netinfo_t               *ninfo;
5231         net_desc_t              *ndesc;
5232         flow_desc_t             *fdesc;
5233         mac_resource_props_t    *mrp;
5234 
5235         ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5236         if (ninfo == NULL)
5237                 return (NULL);
5238         ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5239         if (ndesc == NULL) {
5240                 kmem_free(ninfo, sizeof (netinfo_t));
5241                 return (NULL);
5242         }
5243 
5244         /*
5245          * Grab the fe_lock to see a self-consistent fe_flow_desc.
5246          * Updates to the fe_flow_desc are done under the fe_lock
5247          */
5248         mutex_enter(&flent->fe_lock);
5249         fdesc = &flent->fe_flow_desc;
5250         mrp = &flent->fe_resource_props;
5251 
5252         ndesc->nd_name = flent->fe_flow_name;
5253         ndesc->nd_devname = mcip->mci_name;
5254         bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5255         bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL);
5256         ndesc->nd_sap = htonl(fdesc->fd_sap);
5257         ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
5258         ndesc->nd_bw_limit = mrp->mrp_maxbw;
5259         if (ndesc->nd_isv4) {
5260                 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
5261                 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
5262         } else {
5263                 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN);
5264                 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN);
5265         }
5266         ndesc->nd_sport = htons(fdesc->fd_local_port);
5267         ndesc->nd_dport = htons(fdesc->fd_remote_port);
5268         ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol;
5269         mutex_exit(&flent->fe_lock);
5270 
5271         ninfo->ni_record = ndesc;
5272         ninfo->ni_size = sizeof (net_desc_t);
5273         ninfo->ni_type = EX_NET_FLDESC_REC;
5274 
5275         return (ninfo);
5276 }
5277 
5278 /* Write the flow statistics to a netinfo_t record */
5279 static netinfo_t *
5280 mac_write_flow_stats(flow_entry_t *flent)
5281 {
5282         netinfo_t               *ninfo;
5283         net_stat_t              *nstat;
5284         mac_soft_ring_set_t     *mac_srs;
5285         mac_rx_stats_t          *mac_rx_stat;
5286         mac_tx_stats_t          *mac_tx_stat;
5287         int                     i;
5288 
5289         ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5290         if (ninfo == NULL)
5291                 return (NULL);
5292         nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5293         if (nstat == NULL) {
5294                 kmem_free(ninfo, sizeof (netinfo_t));
5295                 return (NULL);
5296         }
5297 
5298         nstat->ns_name = flent->fe_flow_name;
5299         for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5300                 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5301                 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5302 
5303                 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5304                     mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes;
5305                 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5306                     mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5307                 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5308         }
5309 
5310         mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
5311         if (mac_srs != NULL) {
5312                 mac_tx_stat = &mac_srs->srs_tx.st_stat;
5313 
5314                 nstat->ns_obytes = mac_tx_stat->mts_obytes;
5315                 nstat->ns_opackets = mac_tx_stat->mts_opackets;
5316                 nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5317         }
5318 
5319         ninfo->ni_record = nstat;
5320         ninfo->ni_size = sizeof (net_stat_t);
5321         ninfo->ni_type = EX_NET_FLSTAT_REC;
5322 
5323         return (ninfo);
5324 }
5325 
5326 /* Write the link description to a netinfo_t record */
5327 static netinfo_t *
5328 mac_write_link_desc(mac_client_impl_t *mcip)
5329 {
5330         netinfo_t               *ninfo;
5331         net_desc_t              *ndesc;
5332         flow_entry_t            *flent = mcip->mci_flent;
5333 
5334         ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5335         if (ninfo == NULL)
5336                 return (NULL);
5337         ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5338         if (ndesc == NULL) {
5339                 kmem_free(ninfo, sizeof (netinfo_t));
5340                 return (NULL);
5341         }
5342 
5343         ndesc->nd_name = mcip->mci_name;
5344         ndesc->nd_devname = mcip->mci_name;
5345         ndesc->nd_isv4 = B_TRUE;
5346         /*
5347          * Grab the fe_lock to see a self-consistent fe_flow_desc.
5348          * Updates to the fe_flow_desc are done under the fe_lock
5349          * after removing the flent from the flow table.
5350          */
5351         mutex_enter(&flent->fe_lock);
5352         bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5353         mutex_exit(&flent->fe_lock);
5354 
5355         ninfo->ni_record = ndesc;
5356         ninfo->ni_size = sizeof (net_desc_t);
5357         ninfo->ni_type = EX_NET_LNDESC_REC;
5358 
5359         return (ninfo);
5360 }
5361 
5362 /* Write the link statistics to a netinfo_t record */
5363 static netinfo_t *
5364 mac_write_link_stats(mac_client_impl_t *mcip)
5365 {
5366         netinfo_t               *ninfo;
5367         net_stat_t              *nstat;
5368         flow_entry_t            *flent;
5369         mac_soft_ring_set_t     *mac_srs;
5370         mac_rx_stats_t          *mac_rx_stat;
5371         mac_tx_stats_t          *mac_tx_stat;
5372         int                     i;
5373 
5374         ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5375         if (ninfo == NULL)
5376                 return (NULL);
5377         nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5378         if (nstat == NULL) {
5379                 kmem_free(ninfo, sizeof (netinfo_t));
5380                 return (NULL);
5381         }
5382 
5383         nstat->ns_name = mcip->mci_name;
5384         flent = mcip->mci_flent;
5385         if (flent != NULL)  {
5386                 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5387                         mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5388                         mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5389 
5390                         nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5391                             mac_rx_stat->mrs_pollbytes +
5392                             mac_rx_stat->mrs_lclbytes;
5393                         nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5394                             mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5395                         nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5396                 }
5397         }
5398 
5399         mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs);
5400         if (mac_srs != NULL) {
5401                 mac_tx_stat = &mac_srs->srs_tx.st_stat;
5402 
5403                 nstat->ns_obytes = mac_tx_stat->mts_obytes;
5404                 nstat->ns_opackets = mac_tx_stat->mts_opackets;
5405                 nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5406         }
5407 
5408         ninfo->ni_record = nstat;
5409         ninfo->ni_size = sizeof (net_stat_t);
5410         ninfo->ni_type = EX_NET_LNSTAT_REC;
5411 
5412         return (ninfo);
5413 }
5414 
5415 typedef struct i_mac_log_state_s {
5416         boolean_t       mi_last;
5417         int             mi_fenable;
5418         int             mi_lenable;
5419         list_t          *mi_list;
5420 } i_mac_log_state_t;
5421 
5422 /*
5423  * For a given flow, if the description has not been logged before, do it now.
5424  * If it is a VNIC, then we have collected information about it from the MAC
5425  * table, so skip it.
5426  *
5427  * Called through mac_flow_walk_nolock()
5428  *
5429  * Return 0 if successful.
5430  */
5431 static int
5432 mac_log_flowinfo(flow_entry_t *flent, void *arg)
5433 {
5434         mac_client_impl_t       *mcip = flent->fe_mcip;
5435         i_mac_log_state_t       *lstate = arg;
5436         netinfo_t               *ninfo;
5437 
5438         if (mcip == NULL)
5439                 return (0);
5440 
5441         /*
5442          * If the name starts with "vnic", and fe_user_generated is true (to
5443          * exclude the mcast and active flow entries created implicitly for
5444          * a vnic, it is a VNIC flow.  i.e. vnic1 is a vnic flow,
5445          * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
5446          */
5447         if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
5448             (flent->fe_type & FLOW_USER) != 0) {
5449                 return (0);
5450         }
5451 
5452         if (!flent->fe_desc_logged) {
5453                 /*
5454                  * We don't return error because we want to continue the
5455                  * walk in case this is the last walk which means we
5456                  * need to reset fe_desc_logged in all the flows.
5457                  */
5458                 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL)
5459                         return (0);
5460                 list_insert_tail(lstate->mi_list, ninfo);
5461                 flent->fe_desc_logged = B_TRUE;
5462         }
5463 
5464         /*
5465          * Regardless of the error, we want to proceed in case we have to
5466          * reset fe_desc_logged.
5467          */
5468         ninfo = mac_write_flow_stats(flent);
5469         if (ninfo == NULL)
5470                 return (-1);
5471 
5472         list_insert_tail(lstate->mi_list, ninfo);
5473 
5474         if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
5475                 flent->fe_desc_logged = B_FALSE;
5476 
5477         return (0);
5478 }
5479 
5480 /*
5481  * Log the description for each mac client of this mac_impl_t, if it
5482  * hasn't already been done. Additionally, log statistics for the link as
5483  * well. Walk the flow table and log information for each flow as well.
5484  * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
5485  * also fe_desc_logged, if flow logging is on) since we want to log the
5486  * description if and when logging is restarted.
5487  *
5488  * Return 0 upon success or -1 upon failure
5489  */
5490 static int
5491 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate)
5492 {
5493         mac_client_impl_t       *mcip;
5494         netinfo_t               *ninfo;
5495 
5496         i_mac_perim_enter(mip);
5497         /*
5498          * Only walk the client list for NIC and etherstub
5499          */
5500         if ((mip->mi_state_flags & MIS_DISABLED) ||
5501             ((mip->mi_state_flags & MIS_IS_VNIC) &&
5502             (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) {
5503                 i_mac_perim_exit(mip);
5504                 return (0);
5505         }
5506 
5507         for (mcip = mip->mi_clients_list; mcip != NULL;
5508             mcip = mcip->mci_client_next) {
5509                 if (!MCIP_DATAPATH_SETUP(mcip))
5510                         continue;
5511                 if (lstate->mi_lenable) {
5512                         if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
5513                                 ninfo = mac_write_link_desc(mcip);
5514                                 if (ninfo == NULL) {
5515                                 /*
5516                                  * We can't terminate it if this is the last
5517                                  * walk, else there might be some links with
5518                                  * mi_desc_logged set to true, which means
5519                                  * their description won't be logged the next
5520                                  * time logging is started (similarly for the
5521                                  * flows within such links). We can continue
5522                                  * without walking the flow table (i.e. to
5523                                  * set fe_desc_logged to false) because we
5524                                  * won't have written any flow stuff for this
5525                                  * link as we haven't logged the link itself.
5526                                  */
5527                                         i_mac_perim_exit(mip);
5528                                         if (lstate->mi_last)
5529                                                 return (0);
5530                                         else
5531                                                 return (-1);
5532                                 }
5533                                 mcip->mci_state_flags |= MCIS_DESC_LOGGED;
5534                                 list_insert_tail(lstate->mi_list, ninfo);
5535                         }
5536                 }
5537 
5538                 ninfo = mac_write_link_stats(mcip);
5539                 if (ninfo == NULL && !lstate->mi_last) {
5540                         i_mac_perim_exit(mip);
5541                         return (-1);
5542                 }
5543                 list_insert_tail(lstate->mi_list, ninfo);
5544 
5545                 if (lstate->mi_last)
5546                         mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
5547 
5548                 if (lstate->mi_fenable) {
5549                         if (mcip->mci_subflow_tab != NULL) {
5550                                 (void) mac_flow_walk_nolock(
5551                                     mcip->mci_subflow_tab, mac_log_flowinfo,
5552                                     lstate);
5553                         }
5554                 }
5555         }
5556         i_mac_perim_exit(mip);
5557         return (0);
5558 }
5559 
5560 /*
5561  * modhash walker function to add a mac_impl_t to a list
5562  */
5563 /*ARGSUSED*/
5564 static uint_t
5565 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5566 {
5567         list_t                  *list = (list_t *)arg;
5568         mac_impl_t              *mip = (mac_impl_t *)val;
5569 
5570         if ((mip->mi_state_flags & MIS_DISABLED) == 0) {
5571                 list_insert_tail(list, mip);
5572                 mip->mi_ref++;
5573         }
5574 
5575         return (MH_WALK_CONTINUE);
5576 }
5577 
5578 void
5579 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate)
5580 {
5581         list_t                  mac_impl_list;
5582         mac_impl_t              *mip;
5583         netinfo_t               *ninfo;
5584 
5585         /* Create list of mac_impls */
5586         ASSERT(RW_LOCK_HELD(&i_mac_impl_lock));
5587         list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t,
5588             mi_node));
5589         mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list);
5590         rw_exit(&i_mac_impl_lock);
5591 
5592         /* Create log entries for each mac_impl */
5593         for (mip = list_head(&mac_impl_list); mip != NULL;
5594             mip = list_next(&mac_impl_list, mip)) {
5595                 if (i_mac_impl_log(mip, lstate) != 0)
5596                         continue;
5597         }
5598 
5599         /* Remove elements and destroy list of mac_impls */
5600         rw_enter(&i_mac_impl_lock, RW_WRITER);
5601         while ((mip = list_remove_tail(&mac_impl_list)) != NULL) {
5602                 mip->mi_ref--;
5603         }
5604         rw_exit(&i_mac_impl_lock);
5605         list_destroy(&mac_impl_list);
5606 
5607         /*
5608          * Write log entries to files outside of locks, free associated
5609          * structures, and remove entries from the list.
5610          */
5611         while ((ninfo = list_head(net_log_list)) != NULL) {
5612                 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type);
5613                 list_remove(net_log_list, ninfo);
5614                 kmem_free(ninfo->ni_record, ninfo->ni_size);
5615                 kmem_free(ninfo, sizeof (*ninfo));
5616         }
5617         list_destroy(net_log_list);
5618 }
5619 
5620 /*
5621  * The timer thread that runs every mac_logging_interval seconds and logs
5622  * link and/or flow information.
5623  */
5624 /* ARGSUSED */
5625 void
5626 mac_log_linkinfo(void *arg)
5627 {
5628         i_mac_log_state_t       lstate;
5629         list_t                  net_log_list;
5630 
5631         list_create(&net_log_list, sizeof (netinfo_t),
5632             offsetof(netinfo_t, ni_link));
5633 
5634         rw_enter(&i_mac_impl_lock, RW_READER);
5635         if (!mac_flow_log_enable && !mac_link_log_enable) {
5636                 rw_exit(&i_mac_impl_lock);
5637                 return;
5638         }
5639         lstate.mi_fenable = mac_flow_log_enable;
5640         lstate.mi_lenable = mac_link_log_enable;
5641         lstate.mi_last = B_FALSE;
5642         lstate.mi_list = &net_log_list;
5643 
5644         /* Write log entries for each mac_impl in the list */
5645         i_mac_log_info(&net_log_list, &lstate);
5646 
5647         if (mac_flow_log_enable || mac_link_log_enable) {
5648                 mac_logging_timer = timeout(mac_log_linkinfo, NULL,
5649                     SEC_TO_TICK(mac_logging_interval));
5650         }
5651 }
5652 
5653 typedef struct i_mac_fastpath_state_s {
5654         boolean_t       mf_disable;
5655         int             mf_err;
5656 } i_mac_fastpath_state_t;
5657 
5658 /* modhash walker function to enable or disable fastpath */
5659 /*ARGSUSED*/
5660 static uint_t
5661 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val,
5662     void *arg)
5663 {
5664         i_mac_fastpath_state_t  *state = arg;
5665         mac_handle_t            mh = (mac_handle_t)val;
5666 
5667         if (state->mf_disable)
5668                 state->mf_err = mac_fastpath_disable(mh);
5669         else
5670                 mac_fastpath_enable(mh);
5671 
5672         return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
5673 }
5674 
5675 /*
5676  * Start the logging timer.
5677  */
5678 int
5679 mac_start_logusage(mac_logtype_t type, uint_t interval)
5680 {
5681         i_mac_fastpath_state_t  dstate = {B_TRUE, 0};
5682         i_mac_fastpath_state_t  estate = {B_FALSE, 0};
5683         int                     err;
5684 
5685         rw_enter(&i_mac_impl_lock, RW_WRITER);
5686         switch (type) {
5687         case MAC_LOGTYPE_FLOW:
5688                 if (mac_flow_log_enable) {
5689                         rw_exit(&i_mac_impl_lock);
5690                         return (0);
5691                 }
5692                 /* FALLTHRU */
5693         case MAC_LOGTYPE_LINK:
5694                 if (mac_link_log_enable) {
5695                         rw_exit(&i_mac_impl_lock);
5696                         return (0);
5697                 }
5698                 break;
5699         default:
5700                 ASSERT(0);
5701         }
5702 
5703         /* Disable fastpath */
5704         mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate);
5705         if ((err = dstate.mf_err) != 0) {
5706                 /* Reenable fastpath  */
5707                 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5708                 rw_exit(&i_mac_impl_lock);
5709                 return (err);
5710         }
5711 
5712         switch (type) {
5713         case MAC_LOGTYPE_FLOW:
5714                 mac_flow_log_enable = B_TRUE;
5715                 /* FALLTHRU */
5716         case MAC_LOGTYPE_LINK:
5717                 mac_link_log_enable = B_TRUE;
5718                 break;
5719         }
5720 
5721         mac_logging_interval = interval;
5722         rw_exit(&i_mac_impl_lock);
5723         mac_log_linkinfo(NULL);
5724         return (0);
5725 }
5726 
5727 /*
5728  * Stop the logging timer if both link and flow logging are turned off.
5729  */
5730 void
5731 mac_stop_logusage(mac_logtype_t type)
5732 {
5733         i_mac_log_state_t       lstate;
5734         i_mac_fastpath_state_t  estate = {B_FALSE, 0};
5735         list_t                  net_log_list;
5736 
5737         list_create(&net_log_list, sizeof (netinfo_t),
5738             offsetof(netinfo_t, ni_link));
5739 
5740         rw_enter(&i_mac_impl_lock, RW_WRITER);
5741 
5742         lstate.mi_fenable = mac_flow_log_enable;
5743         lstate.mi_lenable = mac_link_log_enable;
5744         lstate.mi_list = &net_log_list;
5745 
5746         /* Last walk */
5747         lstate.mi_last = B_TRUE;
5748 
5749         switch (type) {
5750         case MAC_LOGTYPE_FLOW:
5751                 if (lstate.mi_fenable) {
5752                         ASSERT(mac_link_log_enable);
5753                         mac_flow_log_enable = B_FALSE;
5754                         mac_link_log_enable = B_FALSE;
5755                         break;
5756                 }
5757                 /* FALLTHRU */
5758         case MAC_LOGTYPE_LINK:
5759                 if (!lstate.mi_lenable || mac_flow_log_enable) {
5760                         rw_exit(&i_mac_impl_lock);
5761                         return;
5762                 }
5763                 mac_link_log_enable = B_FALSE;
5764                 break;
5765         default:
5766                 ASSERT(0);
5767         }
5768 
5769         /* Reenable fastpath */
5770         mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5771 
5772         (void) untimeout(mac_logging_timer);
5773         mac_logging_timer = 0;
5774 
5775         /* Write log entries for each mac_impl in the list */
5776         i_mac_log_info(&net_log_list, &lstate);
5777 }
5778 
5779 /*
5780  * Walk the rx and tx SRS/SRs for a flow and update the priority value.
5781  */
5782 void
5783 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
5784 {
5785         pri_t                   pri;
5786         int                     count;
5787         mac_soft_ring_set_t     *mac_srs;
5788 
5789         if (flent->fe_rx_srs_cnt <= 0)
5790                 return;
5791 
5792         if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
5793             SRST_FLOW) {
5794                 pri = FLOW_PRIORITY(mcip->mci_min_pri,
5795                     mcip->mci_max_pri,
5796                     flent->fe_resource_props.mrp_priority);
5797         } else {
5798                 pri = mcip->mci_max_pri;
5799         }
5800 
5801         for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
5802                 mac_srs = flent->fe_rx_srs[count];
5803                 mac_update_srs_priority(mac_srs, pri);
5804         }
5805         /*
5806          * If we have a Tx SRS, we need to modify all the threads associated
5807          * with it.
5808          */
5809         if (flent->fe_tx_srs != NULL)
5810                 mac_update_srs_priority(flent->fe_tx_srs, pri);
5811 }
5812 
5813 /*
5814  * RX and TX rings are reserved according to different semantics depending
5815  * on the requests from the MAC clients and type of rings:
5816  *
5817  * On the Tx side, by default we reserve individual rings, independently from
5818  * the groups.
5819  *
5820  * On the Rx side, the reservation is at the granularity of the group
5821  * of rings, and used for v12n level 1 only. It has a special case for the
5822  * primary client.
5823  *
5824  * If a share is allocated to a MAC client, we allocate a TX group and an
5825  * RX group to the client, and assign TX rings and RX rings to these
5826  * groups according to information gathered from the driver through
5827  * the share capability.
5828  *
5829  * The foreseable evolution of Rx rings will handle v12n level 2 and higher
5830  * to allocate individual rings out of a group and program the hw classifier
5831  * based on IP address or higher level criteria.
5832  */
5833 
5834 /*
5835  * mac_reserve_tx_ring()
5836  * Reserve a unused ring by marking it with MR_INUSE state.
5837  * As reserved, the ring is ready to function.
5838  *
5839  * Notes for Hybrid I/O:
5840  *
5841  * If a specific ring is needed, it is specified through the desired_ring
5842  * argument. Otherwise that argument is set to NULL.
5843  * If the desired ring was previous allocated to another client, this
5844  * function swaps it with a new ring from the group of unassigned rings.
5845  */
5846 mac_ring_t *
5847 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
5848 {
5849         mac_group_t             *group;
5850         mac_grp_client_t        *mgcp;
5851         mac_client_impl_t       *mcip;
5852         mac_soft_ring_set_t     *srs;
5853 
5854         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5855 
5856         /*
5857          * Find an available ring and start it before changing its status.
5858          * The unassigned rings are at the end of the mi_tx_groups
5859          * array.
5860          */
5861         group = MAC_DEFAULT_TX_GROUP(mip);
5862 
5863         /* Can't take the default ring out of the default group */
5864         ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring);
5865 
5866         if (desired_ring->mr_state == MR_FREE) {
5867                 ASSERT(MAC_GROUP_NO_CLIENT(group));
5868                 if (mac_start_ring(desired_ring) != 0)
5869                         return (NULL);
5870                 return (desired_ring);
5871         }
5872         /*
5873          * There are clients using this ring, so let's move the clients
5874          * away from using this ring.
5875          */
5876         for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
5877                 mcip = mgcp->mgc_client;
5878                 mac_tx_client_quiesce((mac_client_handle_t)mcip);
5879                 srs = MCIP_TX_SRS(mcip);
5880                 ASSERT(mac_tx_srs_ring_present(srs, desired_ring));
5881                 mac_tx_invoke_callbacks(mcip,
5882                     (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs,
5883                     desired_ring));
5884                 mac_tx_srs_del_ring(srs, desired_ring);
5885                 mac_tx_client_restart((mac_client_handle_t)mcip);
5886         }
5887         return (desired_ring);
5888 }
5889 
5890 /*
5891  * For a reserved group with multiple clients, return the primary client.
5892  */
5893 static mac_client_impl_t *
5894 mac_get_grp_primary(mac_group_t *grp)
5895 {
5896         mac_grp_client_t        *mgcp = grp->mrg_clients;
5897         mac_client_impl_t       *mcip;
5898 
5899         while (mgcp != NULL) {
5900                 mcip = mgcp->mgc_client;
5901                 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC)
5902                         return (mcip);
5903                 mgcp = mgcp->mgc_next;
5904         }
5905         return (NULL);
5906 }
5907 
5908 /*
5909  * Hybrid I/O specifies the ring that should be given to a share.
5910  * If the ring is already used by clients, then we need to release
5911  * the ring back to the default group so that we can give it to
5912  * the share. This means the clients using this ring now get a
5913  * replacement ring. If there aren't any replacement rings, this
5914  * function returns a failure.
5915  */
5916 static int
5917 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type,
5918     mac_ring_t *ring, mac_ring_t **rings, int nrings)
5919 {
5920         mac_group_t             *group = (mac_group_t *)ring->mr_gh;
5921         mac_resource_props_t    *mrp;
5922         mac_client_impl_t       *mcip;
5923         mac_group_t             *defgrp;
5924         mac_ring_t              *tring;
5925         mac_group_t             *tgrp;
5926         int                     i;
5927         int                     j;
5928 
5929         mcip = MAC_GROUP_ONLY_CLIENT(group);
5930         if (mcip == NULL)
5931                 mcip = mac_get_grp_primary(group);
5932         ASSERT(mcip != NULL);
5933         ASSERT(mcip->mci_share == NULL);
5934 
5935         mrp = MCIP_RESOURCE_PROPS(mcip);
5936         if (ring_type == MAC_RING_TYPE_RX) {
5937                 defgrp = mip->mi_rx_donor_grp;
5938                 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) {
5939                         /* Need to put this mac client in the default group */
5940                         if (mac_rx_switch_group(mcip, group, defgrp) != 0)
5941                                 return (ENOSPC);
5942                 } else {
5943                         /*
5944                          * Switch this ring with some other ring from
5945                          * the default group.
5946                          */
5947                         for (tring = defgrp->mrg_rings; tring != NULL;
5948                             tring = tring->mr_next) {
5949                                 if (tring->mr_index == 0)
5950                                         continue;
5951                                 for (j = 0; j < nrings; j++) {
5952                                         if (rings[j] == tring)
5953                                                 break;
5954                                 }
5955                                 if (j >= nrings)
5956                                         break;
5957                         }
5958                         if (tring == NULL)
5959                                 return (ENOSPC);
5960                         if (mac_group_mov_ring(mip, group, tring) != 0)
5961                                 return (ENOSPC);
5962                         if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
5963                                 (void) mac_group_mov_ring(mip, defgrp, tring);
5964                                 return (ENOSPC);
5965                         }
5966                 }
5967                 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
5968                 return (0);
5969         }
5970 
5971         defgrp = MAC_DEFAULT_TX_GROUP(mip);
5972         if (ring == (mac_ring_t *)mip->mi_default_tx_ring) {
5973                 /*
5974                  * See if we can get a spare ring to replace the default
5975                  * ring.
5976                  */
5977                 if (defgrp->mrg_cur_count == 1) {
5978                         /*
5979                          * Need to get a ring from another client, see if
5980                          * there are any clients that can be moved to
5981                          * the default group, thereby freeing some rings.
5982                          */
5983                         for (i = 0; i < mip->mi_tx_group_count; i++) {
5984                                 tgrp = &mip->mi_tx_groups[i];
5985                                 if (tgrp->mrg_state ==
5986                                     MAC_GROUP_STATE_REGISTERED) {
5987                                         continue;
5988                                 }
5989                                 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
5990                                 if (mcip == NULL)
5991                                         mcip = mac_get_grp_primary(tgrp);
5992                                 ASSERT(mcip != NULL);
5993                                 mrp = MCIP_RESOURCE_PROPS(mcip);
5994                                 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
5995                                         ASSERT(tgrp->mrg_cur_count == 1);
5996                                         /*
5997                                          * If this ring is part of the
5998                                          * rings asked by the share we cannot
5999                                          * use it as the default ring.
6000                                          */
6001                                         for (j = 0; j < nrings; j++) {
6002                                                 if (rings[j] == tgrp->mrg_rings)
6003                                                         break;
6004                                         }
6005                                         if (j < nrings)
6006                                                 continue;
6007                                         mac_tx_client_quiesce(
6008                                             (mac_client_handle_t)mcip);
6009                                         mac_tx_switch_group(mcip, tgrp,
6010                                             defgrp);
6011                                         mac_tx_client_restart(
6012                                             (mac_client_handle_t)mcip);
6013                                         break;
6014                                 }
6015                         }
6016                         /*
6017                          * All the rings are reserved, can't give up the
6018                          * default ring.
6019                          */
6020                         if (defgrp->mrg_cur_count <= 1)
6021                                 return (ENOSPC);
6022                 }
6023                 /*
6024                  * Swap the default ring with another.
6025                  */
6026                 for (tring = defgrp->mrg_rings; tring != NULL;
6027                     tring = tring->mr_next) {
6028                         /*
6029                          * If this ring is part of the rings asked by the
6030                          * share we cannot use it as the default ring.
6031                          */
6032                         for (j = 0; j < nrings; j++) {
6033                                 if (rings[j] == tring)
6034                                         break;
6035                         }
6036                         if (j >= nrings)
6037                                 break;
6038                 }
6039                 ASSERT(tring != NULL);
6040                 mip->mi_default_tx_ring = (mac_ring_handle_t)tring;
6041                 return (0);
6042         }
6043         /*
6044          * The Tx ring is with a group reserved by a MAC client. See if
6045          * we can swap it.
6046          */
6047         ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6048         mcip = MAC_GROUP_ONLY_CLIENT(group);
6049         if (mcip == NULL)
6050                 mcip = mac_get_grp_primary(group);
6051         ASSERT(mcip !=  NULL);
6052         mrp = MCIP_RESOURCE_PROPS(mcip);
6053         mac_tx_client_quiesce((mac_client_handle_t)mcip);
6054         if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6055                 ASSERT(group->mrg_cur_count == 1);
6056                 /* Put this mac client in the default group */
6057                 mac_tx_switch_group(mcip, group, defgrp);
6058         } else {
6059                 /*
6060                  * Switch this ring with some other ring from
6061                  * the default group.
6062                  */
6063                 for (tring = defgrp->mrg_rings; tring != NULL;
6064                     tring = tring->mr_next) {
6065                         if (tring == (mac_ring_t *)mip->mi_default_tx_ring)
6066                                 continue;
6067                         /*
6068                          * If this ring is part of the rings asked by the
6069                          * share we cannot use it for swapping.
6070                          */
6071                         for (j = 0; j < nrings; j++) {
6072                                 if (rings[j] == tring)
6073                                         break;
6074                         }
6075                         if (j >= nrings)
6076                                 break;
6077                 }
6078                 if (tring == NULL) {
6079                         mac_tx_client_restart((mac_client_handle_t)mcip);
6080                         return (ENOSPC);
6081                 }
6082                 if (mac_group_mov_ring(mip, group, tring) != 0) {
6083                         mac_tx_client_restart((mac_client_handle_t)mcip);
6084                         return (ENOSPC);
6085                 }
6086                 if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6087                         (void) mac_group_mov_ring(mip, defgrp, tring);
6088                         mac_tx_client_restart((mac_client_handle_t)mcip);
6089                         return (ENOSPC);
6090                 }
6091         }
6092         mac_tx_client_restart((mac_client_handle_t)mcip);
6093         ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6094         return (0);
6095 }
6096 
6097 /*
6098  * Populate a zero-ring group with rings. If the share is non-NULL,
6099  * the rings are chosen according to that share.
6100  * Invoked after allocating a new RX or TX group through
6101  * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
6102  * Returns zero on success, an errno otherwise.
6103  */
6104 int
6105 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
6106     mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share,
6107     uint32_t ringcnt)
6108 {
6109         mac_ring_t **rings, *ring;
6110         uint_t nrings;
6111         int rv = 0, i = 0, j;
6112 
6113         ASSERT((ring_type == MAC_RING_TYPE_RX &&
6114             mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) ||
6115             (ring_type == MAC_RING_TYPE_TX &&
6116             mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC));
6117 
6118         /*
6119          * First find the rings to allocate to the group.
6120          */
6121         if (share != NULL) {
6122                 /* get rings through ms_squery() */
6123                 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
6124                 ASSERT(nrings != 0);
6125                 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
6126                     KM_SLEEP);
6127                 mip->mi_share_capab.ms_squery(share, ring_type,
6128                     (mac_ring_handle_t *)rings, &nrings);
6129                 for (i = 0; i < nrings; i++) {
6130                         /*
6131                          * If we have given this ring to a non-default
6132                          * group, we need to check if we can get this
6133                          * ring.
6134                          */
6135                         ring = rings[i];
6136                         if (ring->mr_gh != (mac_group_handle_t)src_group ||
6137                             ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6138                                 if (mac_reclaim_ring_from_grp(mip, ring_type,
6139                                     ring, rings, nrings) != 0) {
6140                                         rv = ENOSPC;
6141                                         goto bail;
6142                                 }
6143                         }
6144                 }
6145         } else {
6146                 /*
6147                  * Pick one ring from default group.
6148                  *
6149                  * for now pick the second ring which requires the first ring
6150                  * at index 0 to stay in the default group, since it is the
6151                  * ring which carries the multicast traffic.
6152                  * We need a better way for a driver to indicate this,
6153                  * for example a per-ring flag.
6154                  */
6155                 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t),
6156                     KM_SLEEP);
6157                 for (ring = src_group->mrg_rings; ring != NULL;
6158                     ring = ring->mr_next) {
6159                         if (ring_type == MAC_RING_TYPE_RX &&
6160                             ring->mr_index == 0) {
6161                                 continue;
6162                         }
6163                         if (ring_type == MAC_RING_TYPE_TX &&
6164                             ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6165                                 continue;
6166                         }
6167                         rings[i++] = ring;
6168                         if (i == ringcnt)
6169                                 break;
6170                 }
6171                 ASSERT(ring != NULL);
6172                 nrings = i;
6173                 /* Not enough rings as required */
6174                 if (nrings != ringcnt) {
6175                         rv = ENOSPC;
6176                         goto bail;
6177                 }
6178         }
6179 
6180         switch (ring_type) {
6181         case MAC_RING_TYPE_RX:
6182                 if (src_group->mrg_cur_count - nrings < 1) {
6183                         /* we ran out of rings */
6184                         rv = ENOSPC;
6185                         goto bail;
6186                 }
6187 
6188                 /* move receive rings to new group */
6189                 for (i = 0; i < nrings; i++) {
6190                         rv = mac_group_mov_ring(mip, new_group, rings[i]);
6191                         if (rv != 0) {
6192                                 /* move rings back on failure */
6193                                 for (j = 0; j < i; j++) {
6194                                         (void) mac_group_mov_ring(mip,
6195                                             src_group, rings[j]);
6196                                 }
6197                                 goto bail;
6198                         }
6199                 }
6200                 break;
6201 
6202         case MAC_RING_TYPE_TX: {
6203                 mac_ring_t *tmp_ring;
6204 
6205                 /* move the TX rings to the new group */
6206                 for (i = 0; i < nrings; i++) {
6207                         /* get the desired ring */
6208                         tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
6209                         if (tmp_ring == NULL) {
6210                                 rv = ENOSPC;
6211                                 goto bail;
6212                         }
6213                         ASSERT(tmp_ring == rings[i]);
6214                         rv = mac_group_mov_ring(mip, new_group, rings[i]);
6215                         if (rv != 0) {
6216                                 /* cleanup on failure */
6217                                 for (j = 0; j < i; j++) {
6218                                         (void) mac_group_mov_ring(mip,
6219                                             MAC_DEFAULT_TX_GROUP(mip),
6220                                             rings[j]);
6221                                 }
6222                                 goto bail;
6223                         }
6224                 }
6225                 break;
6226         }
6227         }
6228 
6229         /* add group to share */
6230         if (share != NULL)
6231                 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
6232 
6233 bail:
6234         /* free temporary array of rings */
6235         kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
6236 
6237         return (rv);
6238 }
6239 
6240 void
6241 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
6242 {
6243         mac_grp_client_t *mgcp;
6244 
6245         for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6246                 if (mgcp->mgc_client == mcip)
6247                         break;
6248         }
6249 
6250         VERIFY(mgcp == NULL);
6251 
6252         mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
6253         mgcp->mgc_client = mcip;
6254         mgcp->mgc_next = grp->mrg_clients;
6255         grp->mrg_clients = mgcp;
6256 
6257 }
6258 
6259 void
6260 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
6261 {
6262         mac_grp_client_t *mgcp, **pprev;
6263 
6264         for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
6265             pprev = &mgcp->mgc_next, mgcp = *pprev) {
6266                 if (mgcp->mgc_client == mcip)
6267                         break;
6268         }
6269 
6270         ASSERT(mgcp != NULL);
6271 
6272         *pprev = mgcp->mgc_next;
6273         kmem_free(mgcp, sizeof (mac_grp_client_t));
6274 }
6275 
6276 /*
6277  * mac_reserve_rx_group()
6278  *
6279  * Finds an available group and exclusively reserves it for a client.
6280  * The group is chosen to suit the flow's resource controls (bandwidth and
6281  * fanout requirements) and the address type.
6282  * If the requestor is the pimary MAC then return the group with the
6283  * largest number of rings, otherwise the default ring when available.
6284  */
6285 mac_group_t *
6286 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move)
6287 {
6288         mac_share_handle_t      share = mcip->mci_share;
6289         mac_impl_t              *mip = mcip->mci_mip;
6290         mac_group_t             *grp = NULL;
6291         int                     i;
6292         int                     err = 0;
6293         mac_address_t           *map;
6294         mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
6295         int                     nrings;
6296         int                     donor_grp_rcnt;
6297         boolean_t               need_exclgrp = B_FALSE;
6298         int                     need_rings = 0;
6299         mac_group_t             *candidate_grp = NULL;
6300         mac_client_impl_t       *gclient;
6301         mac_resource_props_t    *gmrp;
6302         mac_group_t             *donorgrp = NULL;
6303         boolean_t               rxhw = mrp->mrp_mask & MRP_RX_RINGS;
6304         boolean_t               unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
6305         boolean_t               isprimary;
6306 
6307         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6308 
6309         isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6310 
6311         /*
6312          * Check if a group already has this mac address (case of VLANs)
6313          * unless we are moving this MAC client from one group to another.
6314          */
6315         if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) {
6316                 if (map->ma_group != NULL)
6317                         return (map->ma_group);
6318         }
6319         if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0)
6320                 return (NULL);
6321         /*
6322          * If exclusive open, return NULL which will enable the
6323          * caller to use the default group.
6324          */
6325         if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
6326                 return (NULL);
6327 
6328         /* For dynamic groups default unspecified to 1 */
6329         if (rxhw && unspec &&
6330             mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6331                 mrp->mrp_nrxrings = 1;
6332         }
6333         /*
6334          * For static grouping we allow only specifying rings=0 and
6335          * unspecified
6336          */
6337         if (rxhw && mrp->mrp_nrxrings > 0 &&
6338             mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) {
6339                 return (NULL);
6340         }
6341         if (rxhw) {
6342                 /*
6343                  * We have explicitly asked for a group (with nrxrings,
6344                  * if unspec).
6345                  */
6346                 if (unspec || mrp->mrp_nrxrings > 0) {
6347                         need_exclgrp = B_TRUE;
6348                         need_rings = mrp->mrp_nrxrings;
6349                 } else if (mrp->mrp_nrxrings == 0) {
6350                         /*
6351                          * We have asked for a software group.
6352                          */
6353                         return (NULL);
6354                 }
6355         } else if (isprimary && mip->mi_nactiveclients == 1 &&
6356             mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6357                 /*
6358                  * If the primary is the only active client on this
6359                  * mip and we have not asked for any rings, we give
6360                  * it the default group so that the primary gets to
6361                  * use all the rings.
6362                  */
6363                 return (NULL);
6364         }
6365 
6366         /* The group that can donate rings */
6367         donorgrp = mip->mi_rx_donor_grp;
6368 
6369         /*
6370          * The number of rings that the default group can donate.
6371          * We need to leave at least one ring.
6372          */
6373         donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6374 
6375         /*
6376          * Try to exclusively reserve a RX group.
6377          *
6378          * For flows requiring HW_DEFAULT_RING (unicast flow of the primary
6379          * client), try to reserve the a non-default RX group and give
6380          * it all the rings from the donor group, except the default ring
6381          *
6382          * For flows requiring HW_RING (unicast flow of other clients), try
6383          * to reserve non-default RX group with the specified number of
6384          * rings, if available.
6385          *
6386          * For flows that have not asked for software or hardware ring,
6387          * try to reserve a non-default group with 1 ring, if available.
6388          */
6389         for (i = 1; i < mip->mi_rx_group_count; i++) {
6390                 grp = &mip->mi_rx_groups[i];
6391 
6392                 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
6393                     int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
6394 
6395                 /*
6396                  * Check if this group could be a candidate group for
6397                  * eviction if we need a group for this MAC client,
6398                  * but there aren't any. A candidate group is one
6399                  * that didn't ask for an exclusive group, but got
6400                  * one and it has enough rings (combined with what
6401                  * the donor group can donate) for the new MAC
6402                  * client
6403                  */
6404                 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) {
6405                         /*
6406                          * If the primary/donor group is not the default
6407                          * group, don't bother looking for a candidate group.
6408                          * If we don't have enough rings we will check
6409                          * if the primary group can be vacated.
6410                          */
6411                         if (candidate_grp == NULL &&
6412                             donorgrp == MAC_DEFAULT_RX_GROUP(mip)) {
6413                                 ASSERT(!MAC_GROUP_NO_CLIENT(grp));
6414                                 gclient = MAC_GROUP_ONLY_CLIENT(grp);
6415                                 if (gclient == NULL)
6416                                         gclient = mac_get_grp_primary(grp);
6417                                 ASSERT(gclient != NULL);
6418                                 gmrp = MCIP_RESOURCE_PROPS(gclient);
6419                                 if (gclient->mci_share == NULL &&
6420                                     (gmrp->mrp_mask & MRP_RX_RINGS) == 0 &&
6421                                     (unspec ||
6422                                     (grp->mrg_cur_count + donor_grp_rcnt >=
6423                                     need_rings))) {
6424                                         candidate_grp = grp;
6425                                 }
6426                         }
6427                         continue;
6428                 }
6429                 /*
6430                  * This group could already be SHARED by other multicast
6431                  * flows on this client. In that case, the group would
6432                  * be shared and has already been started.
6433                  */
6434                 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
6435 
6436                 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
6437                     (mac_start_group(grp) != 0)) {
6438                         continue;
6439                 }
6440 
6441                 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6442                         break;
6443                 ASSERT(grp->mrg_cur_count == 0);
6444 
6445                 /*
6446                  * Populate the group. Rings should be taken
6447                  * from the donor group.
6448                  */
6449                 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1;
6450 
6451                 /*
6452                  * If the donor group can't donate, let's just walk and
6453                  * see if someone can vacate a group, so that we have
6454                  * enough rings for this, unless we already have
6455                  * identified a candiate group..
6456                  */
6457                 if (nrings <= donor_grp_rcnt) {
6458                         err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6459                             donorgrp, grp, share, nrings);
6460                         if (err == 0) {
6461                                 /*
6462                                  * For a share i_mac_group_allocate_rings gets
6463                                  * the rings from the driver, let's populate
6464                                  * the property for the client now.
6465                                  */
6466                                 if (share != NULL) {
6467                                         mac_client_set_rings(
6468                                             (mac_client_handle_t)mcip,
6469                                             grp->mrg_cur_count, -1);
6470                                 }
6471                                 if (mac_is_primary_client(mcip) && !rxhw)
6472                                         mip->mi_rx_donor_grp = grp;
6473                                 break;
6474                         }
6475                 }
6476 
6477                 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6478                     mip->mi_name, int, grp->mrg_index, int, err);
6479 
6480                 /*
6481                  * It's a dynamic group but the grouping operation
6482                  * failed.
6483                  */
6484                 mac_stop_group(grp);
6485         }
6486         /* We didn't find an exclusive group for this MAC client */
6487         if (i >= mip->mi_rx_group_count) {
6488 
6489                 if (!need_exclgrp)
6490                         return (NULL);
6491 
6492                 /*
6493                  * If we found a candidate group then we switch the
6494                  * MAC client from the candidate_group to the default
6495                  * group and give the group to this MAC client. If
6496                  * we didn't find a candidate_group, check if the
6497                  * primary is in its own group and if it can make way
6498                  * for this MAC client.
6499                  */
6500                 if (candidate_grp == NULL &&
6501                     donorgrp != MAC_DEFAULT_RX_GROUP(mip) &&
6502                     donorgrp->mrg_cur_count >= need_rings) {
6503                         candidate_grp = donorgrp;
6504                 }
6505                 if (candidate_grp != NULL) {
6506                         boolean_t       prim_grp = B_FALSE;
6507 
6508                         /*
6509                          * Switch the MAC client from the candidate group
6510                          * to the default group.. If this group was the
6511                          * donor group, then after the switch we need
6512                          * to update the donor group too.
6513                          */
6514                         grp = candidate_grp;
6515                         gclient = MAC_GROUP_ONLY_CLIENT(grp);
6516                         if (gclient == NULL)
6517                                 gclient = mac_get_grp_primary(grp);
6518                         if (grp == mip->mi_rx_donor_grp)
6519                                 prim_grp = B_TRUE;
6520                         if (mac_rx_switch_group(gclient, grp,
6521                             MAC_DEFAULT_RX_GROUP(mip)) != 0) {
6522                                 return (NULL);
6523                         }
6524                         if (prim_grp) {
6525                                 mip->mi_rx_donor_grp =
6526                                     MAC_DEFAULT_RX_GROUP(mip);
6527                                 donorgrp = MAC_DEFAULT_RX_GROUP(mip);
6528                         }
6529 
6530 
6531                         /*
6532                          * Now give this group with the required rings
6533                          * to this MAC client.
6534                          */
6535                         ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
6536                         if (mac_start_group(grp) != 0)
6537                                 return (NULL);
6538 
6539                         if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6540                                 return (grp);
6541 
6542                         donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6543                         ASSERT(grp->mrg_cur_count == 0);
6544                         ASSERT(donor_grp_rcnt >= need_rings);
6545                         err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6546                             donorgrp, grp, share, need_rings);
6547                         if (err == 0) {
6548                                 /*
6549                                  * For a share i_mac_group_allocate_rings gets
6550                                  * the rings from the driver, let's populate
6551                                  * the property for the client now.
6552                                  */
6553                                 if (share != NULL) {
6554                                         mac_client_set_rings(
6555                                             (mac_client_handle_t)mcip,
6556                                             grp->mrg_cur_count, -1);
6557                                 }
6558                                 DTRACE_PROBE2(rx__group__reserved,
6559                                     char *, mip->mi_name, int, grp->mrg_index);
6560                                 return (grp);
6561                         }
6562                         DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6563                             mip->mi_name, int, grp->mrg_index, int, err);
6564                         mac_stop_group(grp);
6565                 }
6566                 return (NULL);
6567         }
6568         ASSERT(grp != NULL);
6569 
6570         DTRACE_PROBE2(rx__group__reserved,
6571             char *, mip->mi_name, int, grp->mrg_index);
6572         return (grp);
6573 }
6574 
6575 /*
6576  * mac_rx_release_group()
6577  *
6578  * This is called when there are no clients left for the group.
6579  * The group is stopped and marked MAC_GROUP_STATE_REGISTERED,
6580  * and if it is a non default group, the shares are removed and
6581  * all rings are assigned back to default group.
6582  */
6583 void
6584 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
6585 {
6586         mac_impl_t              *mip = mcip->mci_mip;
6587         mac_ring_t              *ring;
6588 
6589         ASSERT(group != MAC_DEFAULT_RX_GROUP(mip));
6590 
6591         if (mip->mi_rx_donor_grp == group)
6592                 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip);
6593 
6594         /*
6595          * This is the case where there are no clients left. Any
6596          * SRS etc on this group have also be quiesced.
6597          */
6598         for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
6599                 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
6600                         ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6601                         /*
6602                          * Remove the SRS associated with the HW ring.
6603                          * As a result, polling will be disabled.
6604                          */
6605                         ring->mr_srs = NULL;
6606                 }
6607                 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED ||
6608                     ring->mr_state == MR_INUSE);
6609                 if (ring->mr_state == MR_INUSE) {
6610                         mac_stop_ring(ring);
6611                         ring->mr_flag = 0;
6612                 }
6613         }
6614 
6615         /* remove group from share */
6616         if (mcip->mci_share != NULL) {
6617                 mip->mi_share_capab.ms_sremove(mcip->mci_share,
6618                     group->mrg_driver);
6619         }
6620 
6621         if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6622                 mac_ring_t *ring;
6623 
6624                 /*
6625                  * Rings were dynamically allocated to group.
6626                  * Move rings back to default group.
6627                  */
6628                 while ((ring = group->mrg_rings) != NULL) {
6629                         (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp,
6630                             ring);
6631                 }
6632         }
6633         mac_stop_group(group);
6634         /*
6635          * Possible improvement: See if we can assign the group just released
6636          * to a another client of the mip
6637          */
6638 }
6639 
6640 /*
6641  * When we move the primary's mac address between groups, we need to also
6642  * take all the clients sharing the same mac address along with it (VLANs)
6643  * We remove the mac address for such clients from the group after quiescing
6644  * them. When we add the mac address we restart the client. Note that
6645  * the primary's mac address is removed from the group after all the
6646  * other clients sharing the address are removed. Similarly, the primary's
6647  * mac address is added before all the other client's mac address are
6648  * added. While grp is the group where the clients reside, tgrp is
6649  * the group where the addresses have to be added.
6650  */
6651 static void
6652 mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp,
6653     mac_group_t *tgrp, uint8_t *maddr, boolean_t add)
6654 {
6655         mac_impl_t              *mip = mcip->mci_mip;
6656         mac_grp_client_t        *mgcp = grp->mrg_clients;
6657         mac_client_impl_t       *gmcip;
6658         boolean_t               prim;
6659 
6660         prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6661 
6662         /*
6663          * If the clients are in a non-default group, we just have to
6664          * walk the group's client list. If it is in the default group
6665          * (which will be shared by other clients as well, we need to
6666          * check if the unicast address matches mcip's unicast.
6667          */
6668         while (mgcp != NULL) {
6669                 gmcip = mgcp->mgc_client;
6670                 if (gmcip != mcip &&
6671                     (grp != MAC_DEFAULT_RX_GROUP(mip) ||
6672                     mcip->mci_unicast == gmcip->mci_unicast)) {
6673                         if (!add) {
6674                                 mac_rx_client_quiesce(
6675                                     (mac_client_handle_t)gmcip);
6676                                 (void) mac_remove_macaddr(mcip->mci_unicast);
6677                         } else {
6678                                 (void) mac_add_macaddr(mip, tgrp, maddr, prim);
6679                                 mac_rx_client_restart(
6680                                     (mac_client_handle_t)gmcip);
6681                         }
6682                 }
6683                 mgcp = mgcp->mgc_next;
6684         }
6685 }
6686 
6687 
6688 /*
6689  * Move the MAC address from fgrp to tgrp. If this is the primary client,
6690  * we need to take any VLANs etc. together too.
6691  */
6692 static int
6693 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp,
6694     mac_group_t *tgrp)
6695 {
6696         mac_impl_t              *mip = mcip->mci_mip;
6697         uint8_t                 maddr[MAXMACADDRLEN];
6698         int                     err = 0;
6699         boolean_t               prim;
6700         boolean_t               multiclnt = B_FALSE;
6701 
6702         mac_rx_client_quiesce((mac_client_handle_t)mcip);
6703         ASSERT(mcip->mci_unicast != NULL);
6704         bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len);
6705 
6706         prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6707         if (mcip->mci_unicast->ma_nusers > 1) {
6708                 mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE);
6709                 multiclnt = B_TRUE;
6710         }
6711         ASSERT(mcip->mci_unicast->ma_nusers == 1);
6712         err = mac_remove_macaddr(mcip->mci_unicast);
6713         if (err != 0) {
6714                 mac_rx_client_restart((mac_client_handle_t)mcip);
6715                 if (multiclnt) {
6716                         mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6717                             B_TRUE);
6718                 }
6719                 return (err);
6720         }
6721         /*
6722          * Program the H/W Classifier first, if this fails we need
6723          * not proceed with the other stuff.
6724          */
6725         if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) {
6726                 /* Revert back the H/W Classifier */
6727                 if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) {
6728                         /*
6729                          * This should not fail now since it worked earlier,
6730                          * should we panic?
6731                          */
6732                         cmn_err(CE_WARN,
6733                             "mac_rx_switch_group: switching %p back"
6734                             " to group %p failed!!", (void *)mcip,
6735                             (void *)fgrp);
6736                 }
6737                 mac_rx_client_restart((mac_client_handle_t)mcip);
6738                 if (multiclnt) {
6739                         mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6740                             B_TRUE);
6741                 }
6742                 return (err);
6743         }
6744         mcip->mci_unicast = mac_find_macaddr(mip, maddr);
6745         mac_rx_client_restart((mac_client_handle_t)mcip);
6746         if (multiclnt)
6747                 mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE);
6748         return (err);
6749 }
6750 
6751 /*
6752  * Switch the MAC client from one group to another. This means we need
6753  * to remove the MAC address from the group, remove the MAC client,
6754  * teardown the SRSs and revert the group state. Then, we add the client
6755  * to the destination group, set the SRSs, and add the MAC address to the
6756  * group.
6757  */
6758 int
6759 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
6760     mac_group_t *tgrp)
6761 {
6762         int                     err;
6763         mac_group_state_t       next_state;
6764         mac_client_impl_t       *group_only_mcip;
6765         mac_client_impl_t       *gmcip;
6766         mac_impl_t              *mip = mcip->mci_mip;
6767         mac_grp_client_t        *mgcp;
6768 
6769         ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group);
6770 
6771         if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0)
6772                 return (err);
6773 
6774         /*
6775          * The group might be reserved, but SRSs may not be set up, e.g.
6776          * primary and its vlans using a reserved group.
6777          */
6778         if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6779             MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
6780                 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE);
6781         }
6782         if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) {
6783                 mgcp = fgrp->mrg_clients;
6784                 while (mgcp != NULL) {
6785                         gmcip = mgcp->mgc_client;
6786                         mgcp = mgcp->mgc_next;
6787                         mac_group_remove_client(fgrp, gmcip);
6788                         mac_group_add_client(tgrp, gmcip);
6789                         gmcip->mci_flent->fe_rx_ring_group = tgrp;
6790                 }
6791                 mac_release_rx_group(mcip, fgrp);
6792                 ASSERT(MAC_GROUP_NO_CLIENT(fgrp));
6793                 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED);
6794         } else {
6795                 mac_group_remove_client(fgrp, mcip);
6796                 mac_group_add_client(tgrp, mcip);
6797                 mcip->mci_flent->fe_rx_ring_group = tgrp;
6798                 /*
6799                  * If there are other clients (VLANs) sharing this address
6800                  * we should be here only for the primary.
6801                  */
6802                 if (mcip->mci_unicast->ma_nusers > 1) {
6803                         /*
6804                          * We need to move all the clients that are using
6805                          * this h/w address.
6806                          */
6807                         mgcp = fgrp->mrg_clients;
6808                         while (mgcp != NULL) {
6809                                 gmcip = mgcp->mgc_client;
6810                                 mgcp = mgcp->mgc_next;
6811                                 if (mcip->mci_unicast == gmcip->mci_unicast) {
6812                                         mac_group_remove_client(fgrp, gmcip);
6813                                         mac_group_add_client(tgrp, gmcip);
6814                                         gmcip->mci_flent->fe_rx_ring_group =
6815                                             tgrp;
6816                                 }
6817                         }
6818                 }
6819                 /*
6820                  * The default group will still take the multicast,
6821                  * broadcast traffic etc., so it won't go to
6822                  * MAC_GROUP_STATE_REGISTERED.
6823                  */
6824                 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED)
6825                         mac_rx_group_unmark(fgrp, MR_CONDEMNED);
6826                 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED);
6827         }
6828         next_state = mac_group_next_state(tgrp, &group_only_mcip,
6829             MAC_DEFAULT_RX_GROUP(mip), B_TRUE);
6830         mac_set_group_state(tgrp, next_state);
6831         /*
6832          * If the destination group is reserved, setup the SRSs etc.
6833          */
6834         if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
6835                 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK);
6836                 mac_fanout_setup(mcip, mcip->mci_flent,
6837                     MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL,
6838                     NULL);
6839                 mac_rx_group_unmark(tgrp, MR_INCIPIENT);
6840         } else {
6841                 mac_rx_switch_grp_to_sw(tgrp);
6842         }
6843         return (0);
6844 }
6845 
6846 /*
6847  * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
6848  * when a share was allocated to the client.
6849  */
6850 mac_group_t *
6851 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move)
6852 {
6853         mac_impl_t              *mip = mcip->mci_mip;
6854         mac_group_t             *grp = NULL;
6855         int                     rv;
6856         int                     i;
6857         int                     err;
6858         mac_group_t             *defgrp;
6859         mac_share_handle_t      share = mcip->mci_share;
6860         mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
6861         int                     nrings;
6862         int                     defnrings;
6863         boolean_t               need_exclgrp = B_FALSE;
6864         int                     need_rings = 0;
6865         mac_group_t             *candidate_grp = NULL;
6866         mac_client_impl_t       *gclient;
6867         mac_resource_props_t    *gmrp;
6868         boolean_t               txhw = mrp->mrp_mask & MRP_TX_RINGS;
6869         boolean_t               unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
6870         boolean_t               isprimary;
6871 
6872         isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6873         /*
6874          * When we come here for a VLAN on the primary (dladm create-vlan),
6875          * we need to pair it along with the primary (to keep it consistent
6876          * with the RX side). So, we check if the primary is already assigned
6877          * to a group and return the group if so. The other way is also
6878          * true, i.e. the VLAN is already created and now we are plumbing
6879          * the primary.
6880          */
6881         if (!move && isprimary) {
6882                 for (gclient = mip->mi_clients_list; gclient != NULL;
6883                     gclient = gclient->mci_client_next) {
6884                         if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC &&
6885                             gclient->mci_flent->fe_tx_ring_group != NULL) {
6886                                 return (gclient->mci_flent->fe_tx_ring_group);
6887                         }
6888                 }
6889         }
6890 
6891         if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0)
6892                 return (NULL);
6893 
6894         /* For dynamic groups, default unspec to 1 */
6895         if (txhw && unspec &&
6896             mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6897                 mrp->mrp_ntxrings = 1;
6898         }
6899         /*
6900          * For static grouping we allow only specifying rings=0 and
6901          * unspecified
6902          */
6903         if (txhw && mrp->mrp_ntxrings > 0 &&
6904             mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) {
6905                 return (NULL);
6906         }
6907 
6908         if (txhw) {
6909                 /*
6910                  * We have explicitly asked for a group (with ntxrings,
6911                  * if unspec).
6912                  */
6913                 if (unspec || mrp->mrp_ntxrings > 0) {
6914                         need_exclgrp = B_TRUE;
6915                         need_rings = mrp->mrp_ntxrings;
6916                 } else if (mrp->mrp_ntxrings == 0) {
6917                         /*
6918                          * We have asked for a software group.
6919                          */
6920                         return (NULL);
6921                 }
6922         }
6923         defgrp = MAC_DEFAULT_TX_GROUP(mip);
6924         /*
6925          * The number of rings that the default group can donate.
6926          * We need to leave at least one ring - the default ring - in
6927          * this group.
6928          */
6929         defnrings = defgrp->mrg_cur_count - 1;
6930 
6931         /*
6932          * Primary gets default group unless explicitly told not
6933          * to  (i.e. rings > 0).
6934          */
6935         if (isprimary && !need_exclgrp)
6936                 return (NULL);
6937 
6938         nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1;
6939         for (i = 0; i <  mip->mi_tx_group_count; i++) {
6940                 grp = &mip->mi_tx_groups[i];
6941                 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
6942                     (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) {
6943                         /*
6944                          * Select a candidate for replacement if we don't
6945                          * get an exclusive group. A candidate group is one
6946                          * that didn't ask for an exclusive group, but got
6947                          * one and it has enough rings (combined with what
6948                          * the default group can donate) for the new MAC
6949                          * client.
6950                          */
6951                         if (grp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6952                             candidate_grp == NULL) {
6953                                 gclient = MAC_GROUP_ONLY_CLIENT(grp);
6954                                 if (gclient == NULL)
6955                                         gclient = mac_get_grp_primary(grp);
6956                                 gmrp = MCIP_RESOURCE_PROPS(gclient);
6957                                 if (gclient->mci_share == NULL &&
6958                                     (gmrp->mrp_mask & MRP_TX_RINGS) == 0 &&
6959                                     (unspec ||
6960                                     (grp->mrg_cur_count + defnrings) >=
6961                                     need_rings)) {
6962                                         candidate_grp = grp;
6963                                 }
6964                         }
6965                         continue;
6966                 }
6967                 /*
6968                  * If the default can't donate let's just walk and
6969                  * see if someone can vacate a group, so that we have
6970                  * enough rings for this.
6971                  */
6972                 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC ||
6973                     nrings <= defnrings) {
6974                         if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) {
6975                                 rv = mac_start_group(grp);
6976                                 ASSERT(rv == 0);
6977                         }
6978                         break;
6979                 }
6980         }
6981 
6982         /* The default group */
6983         if (i >= mip->mi_tx_group_count) {
6984                 /*
6985                  * If we need an exclusive group and have identified a
6986                  * candidate group we switch the MAC client from the
6987                  * candidate group to the default group and give the
6988                  * candidate group to this client.
6989                  */
6990                 if (need_exclgrp && candidate_grp != NULL) {
6991                         /*
6992                          * Switch the MAC client from the candidate group
6993                          * to the default group.
6994                          */
6995                         grp = candidate_grp;
6996                         gclient = MAC_GROUP_ONLY_CLIENT(grp);
6997                         if (gclient == NULL)
6998                                 gclient = mac_get_grp_primary(grp);
6999                         mac_tx_client_quiesce((mac_client_handle_t)gclient);
7000                         mac_tx_switch_group(gclient, grp, defgrp);
7001                         mac_tx_client_restart((mac_client_handle_t)gclient);
7002 
7003                         /*
7004                          * Give the candidate group with the specified number
7005                          * of rings to this MAC client.
7006                          */
7007                         ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7008                         rv = mac_start_group(grp);
7009                         ASSERT(rv == 0);
7010 
7011                         if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7012                                 return (grp);
7013 
7014                         ASSERT(grp->mrg_cur_count == 0);
7015                         ASSERT(defgrp->mrg_cur_count > need_rings);
7016 
7017                         err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX,
7018                             defgrp, grp, share, need_rings);
7019                         if (err == 0) {
7020                                 /*
7021                                  * For a share i_mac_group_allocate_rings gets
7022                                  * the rings from the driver, let's populate
7023                                  * the property for the client now.
7024                                  */
7025                                 if (share != NULL) {
7026                                         mac_client_set_rings(
7027                                             (mac_client_handle_t)mcip, -1,
7028                                             grp->mrg_cur_count);
7029                                 }
7030                                 mip->mi_tx_group_free--;
7031                                 return (grp);
7032                         }
7033                         DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *,
7034                             mip->mi_name, int, grp->mrg_index, int, err);
7035                         mac_stop_group(grp);
7036                 }
7037                 return (NULL);
7038         }
7039         /*
7040          * We got an exclusive group, but it is not dynamic.
7041          */
7042         if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
7043                 mip->mi_tx_group_free--;
7044                 return (grp);
7045         }
7046 
7047         rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp,
7048             share, nrings);
7049         if (rv != 0) {
7050                 DTRACE_PROBE3(tx__group__reserve__alloc__rings,
7051                     char *, mip->mi_name, int, grp->mrg_index, int, rv);
7052                 mac_stop_group(grp);
7053                 return (NULL);
7054         }
7055         /*
7056          * For a share i_mac_group_allocate_rings gets the rings from the
7057          * driver, let's populate the property for the client now.
7058          */
7059         if (share != NULL) {
7060                 mac_client_set_rings((mac_client_handle_t)mcip, -1,
7061                     grp->mrg_cur_count);
7062         }
7063         mip->mi_tx_group_free--;
7064         return (grp);
7065 }
7066 
7067 void
7068 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp)
7069 {
7070         mac_impl_t              *mip = mcip->mci_mip;
7071         mac_share_handle_t      share = mcip->mci_share;
7072         mac_ring_t              *ring;
7073         mac_soft_ring_set_t     *srs = MCIP_TX_SRS(mcip);
7074         mac_group_t             *defgrp;
7075 
7076         defgrp = MAC_DEFAULT_TX_GROUP(mip);
7077         if (srs != NULL) {
7078                 if (srs->srs_soft_ring_count > 0) {
7079                         for (ring = grp->mrg_rings; ring != NULL;
7080                             ring = ring->mr_next) {
7081                                 ASSERT(mac_tx_srs_ring_present(srs, ring));
7082                                 mac_tx_invoke_callbacks(mcip,
7083                                     (mac_tx_cookie_t)
7084                                     mac_tx_srs_get_soft_ring(srs, ring));
7085                                 mac_tx_srs_del_ring(srs, ring);
7086                         }
7087                 } else {
7088                         ASSERT(srs->srs_tx.st_arg2 != NULL);
7089                         srs->srs_tx.st_arg2 = NULL;
7090                         mac_srs_stat_delete(srs);
7091                 }
7092         }
7093         if (share != NULL)
7094                 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
7095 
7096         /* move the ring back to the pool */
7097         if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7098                 while ((ring = grp->mrg_rings) != NULL)
7099                         (void) mac_group_mov_ring(mip, defgrp, ring);
7100         }
7101         mac_stop_group(grp);
7102         mip->mi_tx_group_free++;
7103 }
7104 
7105 /*
7106  * Disassociate a MAC client from a group, i.e go through the rings in the
7107  * group and delete all the soft rings tied to them.
7108  */
7109 static void
7110 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent)
7111 {
7112         mac_client_impl_t       *mcip = flent->fe_mcip;
7113         mac_soft_ring_set_t     *tx_srs;
7114         mac_srs_tx_t            *tx;
7115         mac_ring_t              *ring;
7116 
7117         tx_srs = flent->fe_tx_srs;
7118         tx = &tx_srs->srs_tx;
7119 
7120         /* Single ring case we haven't created any soft rings */
7121         if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE ||
7122             tx->st_mode == SRS_TX_DEFAULT) {
7123                 tx->st_arg2 = NULL;
7124                 mac_srs_stat_delete(tx_srs);
7125         /* Fanout case, where we have to dismantle the soft rings */
7126         } else {
7127                 for (ring = fgrp->mrg_rings; ring != NULL;
7128                     ring = ring->mr_next) {
7129                         ASSERT(mac_tx_srs_ring_present(tx_srs, ring));
7130                         mac_tx_invoke_callbacks(mcip,
7131                             (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs,
7132                             ring));
7133                         mac_tx_srs_del_ring(tx_srs, ring);
7134                 }
7135                 ASSERT(tx->st_arg2 == NULL);
7136         }
7137 }
7138 
7139 /*
7140  * Switch the MAC client from one group to another. This means we need
7141  * to remove the MAC client, teardown the SRSs and revert the group state.
7142  * Then, we add the client to the destination roup, set the SRSs etc.
7143  */
7144 void
7145 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7146     mac_group_t *tgrp)
7147 {
7148         mac_client_impl_t       *group_only_mcip;
7149         mac_impl_t              *mip = mcip->mci_mip;
7150         flow_entry_t            *flent = mcip->mci_flent;
7151         mac_group_t             *defgrp;
7152         mac_grp_client_t        *mgcp;
7153         mac_client_impl_t       *gmcip;
7154         flow_entry_t            *gflent;
7155 
7156         defgrp = MAC_DEFAULT_TX_GROUP(mip);
7157         ASSERT(fgrp == flent->fe_tx_ring_group);
7158 
7159         if (fgrp == defgrp) {
7160                 /*
7161                  * If this is the primary we need to find any VLANs on
7162                  * the primary and move them too.
7163                  */
7164                 mac_group_remove_client(fgrp, mcip);
7165                 mac_tx_dismantle_soft_rings(fgrp, flent);
7166                 if (mcip->mci_unicast->ma_nusers > 1) {
7167                         mgcp = fgrp->mrg_clients;
7168                         while (mgcp != NULL) {
7169                                 gmcip = mgcp->mgc_client;
7170                                 mgcp = mgcp->mgc_next;
7171                                 if (mcip->mci_unicast != gmcip->mci_unicast)
7172                                         continue;
7173                                 mac_tx_client_quiesce(
7174                                     (mac_client_handle_t)gmcip);
7175 
7176                                 gflent = gmcip->mci_flent;
7177                                 mac_group_remove_client(fgrp, gmcip);
7178                                 mac_tx_dismantle_soft_rings(fgrp, gflent);
7179 
7180                                 mac_group_add_client(tgrp, gmcip);
7181                                 gflent->fe_tx_ring_group = tgrp;
7182                                 /* We could directly set this to SHARED */
7183                                 tgrp->mrg_state = mac_group_next_state(tgrp,
7184                                     &group_only_mcip, defgrp, B_FALSE);
7185 
7186                                 mac_tx_srs_group_setup(gmcip, gflent,
7187                                     SRST_LINK);
7188                                 mac_fanout_setup(gmcip, gflent,
7189                                     MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7190                                     gmcip, NULL, NULL);
7191 
7192                                 mac_tx_client_restart(
7193                                     (mac_client_handle_t)gmcip);
7194                         }
7195                 }
7196                 if (MAC_GROUP_NO_CLIENT(fgrp)) {
7197                         mac_ring_t      *ring;
7198                         int             cnt;
7199                         int             ringcnt;
7200 
7201                         fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7202                         /*
7203                          * Additionally, we also need to stop all
7204                          * the rings in the default group, except
7205                          * the default ring. The reason being
7206                          * this group won't be released since it is
7207                          * the default group, so the rings won't
7208                          * be stopped otherwise.
7209                          */
7210                         ringcnt = fgrp->mrg_cur_count;
7211                         ring = fgrp->mrg_rings;
7212                         for (cnt = 0; cnt < ringcnt; cnt++) {
7213                                 if (ring->mr_state == MR_INUSE &&
7214                                     ring !=
7215                                     (mac_ring_t *)mip->mi_default_tx_ring) {
7216                                         mac_stop_ring(ring);
7217                                         ring->mr_flag = 0;
7218                                 }
7219                                 ring = ring->mr_next;
7220                         }
7221                 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7222                         fgrp->mrg_state = MAC_GROUP_STATE_RESERVED;
7223                 } else {
7224                         ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED);
7225                 }
7226         } else {
7227                 /*
7228                  * We could have VLANs sharing the non-default group with
7229                  * the primary.
7230                  */
7231                 mgcp = fgrp->mrg_clients;
7232                 while (mgcp != NULL) {
7233                         gmcip = mgcp->mgc_client;
7234                         mgcp = mgcp->mgc_next;
7235                         if (gmcip == mcip)
7236                                 continue;
7237                         mac_tx_client_quiesce((mac_client_handle_t)gmcip);
7238                         gflent = gmcip->mci_flent;
7239 
7240                         mac_group_remove_client(fgrp, gmcip);
7241                         mac_tx_dismantle_soft_rings(fgrp, gflent);
7242 
7243                         mac_group_add_client(tgrp, gmcip);
7244                         gflent->fe_tx_ring_group = tgrp;
7245                         /* We could directly set this to SHARED */
7246                         tgrp->mrg_state = mac_group_next_state(tgrp,
7247                             &group_only_mcip, defgrp, B_FALSE);
7248                         mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK);
7249                         mac_fanout_setup(gmcip, gflent,
7250                             MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7251                             gmcip, NULL, NULL);
7252 
7253                         mac_tx_client_restart((mac_client_handle_t)gmcip);
7254                 }
7255                 mac_group_remove_client(fgrp, mcip);
7256                 mac_release_tx_group(mcip, fgrp);
7257                 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7258         }
7259 
7260         /* Add it to the tgroup */
7261         mac_group_add_client(tgrp, mcip);
7262         flent->fe_tx_ring_group = tgrp;
7263         tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip,
7264             defgrp, B_FALSE);
7265 
7266         mac_tx_srs_group_setup(mcip, flent, SRST_LINK);
7267         mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
7268             mac_rx_deliver, mcip, NULL, NULL);
7269 }
7270 
7271 /*
7272  * This is a 1-time control path activity initiated by the client (IP).
7273  * The mac perimeter protects against other simultaneous control activities,
7274  * for example an ioctl that attempts to change the degree of fanout and
7275  * increase or decrease the number of softrings associated with this Tx SRS.
7276  */
7277 static mac_tx_notify_cb_t *
7278 mac_client_tx_notify_add(mac_client_impl_t *mcip,
7279     mac_tx_notify_t notify, void *arg)
7280 {
7281         mac_cb_info_t *mcbi;
7282         mac_tx_notify_cb_t *mtnfp;
7283 
7284         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7285 
7286         mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
7287         mtnfp->mtnf_fn = notify;
7288         mtnfp->mtnf_arg = arg;
7289         mtnfp->mtnf_link.mcb_objp = mtnfp;
7290         mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
7291         mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
7292 
7293         mcbi = &mcip->mci_tx_notify_cb_info;
7294         mutex_enter(mcbi->mcbi_lockp);
7295         mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
7296         mutex_exit(mcbi->mcbi_lockp);
7297         return (mtnfp);
7298 }
7299 
7300 static void
7301 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
7302 {
7303         mac_cb_info_t   *mcbi;
7304         mac_cb_t        **cblist;
7305 
7306         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7307 
7308         if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
7309             &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
7310                 cmn_err(CE_WARN,
7311                     "mac_client_tx_notify_remove: callback not "
7312                     "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
7313                 return;
7314         }
7315 
7316         mcbi = &mcip->mci_tx_notify_cb_info;
7317         cblist = &mcip->mci_tx_notify_cb_list;
7318         mutex_enter(mcbi->mcbi_lockp);
7319         if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
7320                 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
7321         else
7322                 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
7323         mutex_exit(mcbi->mcbi_lockp);
7324 }
7325 
7326 /*
7327  * mac_client_tx_notify():
7328  * call to add and remove flow control callback routine.
7329  */
7330 mac_tx_notify_handle_t
7331 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
7332     void *ptr)
7333 {
7334         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
7335         mac_tx_notify_cb_t      *mtnfp = NULL;
7336 
7337         i_mac_perim_enter(mcip->mci_mip);
7338 
7339         if (callb_func != NULL) {
7340                 /* Add a notify callback */
7341                 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
7342         } else {
7343                 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
7344         }
7345         i_mac_perim_exit(mcip->mci_mip);
7346 
7347         return ((mac_tx_notify_handle_t)mtnfp);
7348 }
7349 
7350 void
7351 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf,
7352     mac_bridge_ref_t reff, mac_bridge_ls_t lsf)
7353 {
7354         mac_bridge_tx_cb = txf;
7355         mac_bridge_rx_cb = rxf;
7356         mac_bridge_ref_cb = reff;
7357         mac_bridge_ls_cb = lsf;
7358 }
7359 
7360 int
7361 mac_bridge_set(mac_handle_t mh, mac_handle_t link)
7362 {
7363         mac_impl_t *mip = (mac_impl_t *)mh;
7364         int retv;
7365 
7366         mutex_enter(&mip->mi_bridge_lock);
7367         if (mip->mi_bridge_link == NULL) {
7368                 mip->mi_bridge_link = link;
7369                 retv = 0;
7370         } else {
7371                 retv = EBUSY;
7372         }
7373         mutex_exit(&mip->mi_bridge_lock);
7374         if (retv == 0) {
7375                 mac_poll_state_change(mh, B_FALSE);
7376                 mac_capab_update(mh);
7377         }
7378         return (retv);
7379 }
7380 
7381 /*
7382  * Disable bridging on the indicated link.
7383  */
7384 void
7385 mac_bridge_clear(mac_handle_t mh, mac_handle_t link)
7386 {
7387         mac_impl_t *mip = (mac_impl_t *)mh;
7388 
7389         mutex_enter(&mip->mi_bridge_lock);
7390         ASSERT(mip->mi_bridge_link == link);
7391         mip->mi_bridge_link = NULL;
7392         mutex_exit(&mip->mi_bridge_lock);
7393         mac_poll_state_change(mh, B_TRUE);
7394         mac_capab_update(mh);
7395 }
7396 
7397 void
7398 mac_no_active(mac_handle_t mh)
7399 {
7400         mac_impl_t *mip = (mac_impl_t *)mh;
7401 
7402         i_mac_perim_enter(mip);
7403         mip->mi_state_flags |= MIS_NO_ACTIVE;
7404         i_mac_perim_exit(mip);
7405 }
7406 
7407 /*
7408  * Walk the primary VLAN clients whenever the primary's rings property
7409  * changes and update the mac_resource_props_t for the VLAN's client.
7410  * We need to do this since we don't support setting these properties
7411  * on the primary's VLAN clients, but the VLAN clients have to
7412  * follow the primary w.r.t the rings property;
7413  */
7414 void
7415 mac_set_prim_vlan_rings(mac_impl_t  *mip, mac_resource_props_t *mrp)
7416 {
7417         mac_client_impl_t       *vmcip;
7418         mac_resource_props_t    *vmrp;
7419 
7420         for (vmcip = mip->mi_clients_list; vmcip != NULL;
7421             vmcip = vmcip->mci_client_next) {
7422                 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) ||
7423                     mac_client_vid((mac_client_handle_t)vmcip) ==
7424                     VLAN_ID_NONE) {
7425                         continue;
7426                 }
7427                 vmrp = MCIP_RESOURCE_PROPS(vmcip);
7428 
7429                 vmrp->mrp_nrxrings =  mrp->mrp_nrxrings;
7430                 if (mrp->mrp_mask & MRP_RX_RINGS)
7431                         vmrp->mrp_mask |= MRP_RX_RINGS;
7432                 else if (vmrp->mrp_mask & MRP_RX_RINGS)
7433                         vmrp->mrp_mask &= ~MRP_RX_RINGS;
7434 
7435                 vmrp->mrp_ntxrings =  mrp->mrp_ntxrings;
7436                 if (mrp->mrp_mask & MRP_TX_RINGS)
7437                         vmrp->mrp_mask |= MRP_TX_RINGS;
7438                 else if (vmrp->mrp_mask & MRP_TX_RINGS)
7439                         vmrp->mrp_mask &= ~MRP_TX_RINGS;
7440 
7441                 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
7442                         vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
7443                 else
7444                         vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
7445 
7446                 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
7447                         vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
7448                 else
7449                         vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
7450         }
7451 }
7452 
7453 /*
7454  * We are adding or removing ring(s) from a group. The source for taking
7455  * rings is the default group. The destination for giving rings back is
7456  * the default group.
7457  */
7458 int
7459 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group,
7460     mac_group_t *defgrp)
7461 {
7462         mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
7463         uint_t                  modify;
7464         int                     count;
7465         mac_ring_t              *ring;
7466         mac_ring_t              *next;
7467         mac_impl_t              *mip = mcip->mci_mip;
7468         mac_ring_t              **rings;
7469         uint_t                  ringcnt;
7470         int                     i = 0;
7471         boolean_t               rx_group = group->mrg_type == MAC_RING_TYPE_RX;
7472         int                     start;
7473         int                     end;
7474         mac_group_t             *tgrp;
7475         int                     j;
7476         int                     rv = 0;
7477 
7478         /*
7479          * If we are asked for just a group, we give 1 ring, else
7480          * the specified number of rings.
7481          */
7482         if (rx_group) {
7483                 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1:
7484                     mrp->mrp_nrxrings;
7485         } else {
7486                 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1:
7487                     mrp->mrp_ntxrings;
7488         }
7489 
7490         /* don't allow modifying rings for a share for now. */
7491         ASSERT(mcip->mci_share == NULL);
7492 
7493         if (ringcnt == group->mrg_cur_count)
7494                 return (0);
7495 
7496         if (group->mrg_cur_count > ringcnt) {
7497                 modify = group->mrg_cur_count - ringcnt;
7498                 if (rx_group) {
7499                         if (mip->mi_rx_donor_grp == group) {
7500                                 ASSERT(mac_is_primary_client(mcip));
7501                                 mip->mi_rx_donor_grp = defgrp;
7502                         } else {
7503                                 defgrp = mip->mi_rx_donor_grp;
7504                         }
7505                 }
7506                 ring = group->mrg_rings;
7507                 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t),
7508                     KM_SLEEP);
7509                 j = 0;
7510                 for (count = 0; count < modify; count++) {
7511                         next = ring->mr_next;
7512                         rv = mac_group_mov_ring(mip, defgrp, ring);
7513                         if (rv != 0) {
7514                                 /* cleanup on failure */
7515                                 for (j = 0; j < count; j++) {
7516                                         (void) mac_group_mov_ring(mip, group,
7517                                             rings[j]);
7518                                 }
7519                                 break;
7520                         }
7521                         rings[j++] = ring;
7522                         ring = next;
7523                 }
7524                 kmem_free(rings, modify * sizeof (mac_ring_handle_t));
7525                 return (rv);
7526         }
7527         if (ringcnt >= MAX_RINGS_PER_GROUP)
7528                 return (EINVAL);
7529 
7530         modify = ringcnt - group->mrg_cur_count;
7531 
7532         if (rx_group) {
7533                 if (group != mip->mi_rx_donor_grp)
7534                         defgrp = mip->mi_rx_donor_grp;
7535                 else
7536                         /*
7537                          * This is the donor group with all the remaining
7538                          * rings. Default group now gets to be the donor
7539                          */
7540                         mip->mi_rx_donor_grp = defgrp;
7541                 start = 1;
7542                 end = mip->mi_rx_group_count;
7543         } else {
7544                 start = 0;
7545                 end = mip->mi_tx_group_count - 1;
7546         }
7547         /*
7548          * If the default doesn't have any rings, lets see if we can
7549          * take rings given to an h/w client that doesn't need it.
7550          * For now, we just see if there is  any one client that can donate
7551          * all the required rings.
7552          */
7553         if (defgrp->mrg_cur_count < (modify + 1)) {
7554                 for (i = start; i < end; i++) {
7555                         if (rx_group) {
7556                                 tgrp = &mip->mi_rx_groups[i];
7557                                 if (tgrp == group || tgrp->mrg_state <
7558                                     MAC_GROUP_STATE_RESERVED) {
7559                                         continue;
7560                                 }
7561                                 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7562                                 if (mcip == NULL)
7563                                         mcip = mac_get_grp_primary(tgrp);
7564                                 ASSERT(mcip != NULL);
7565                                 mrp = MCIP_RESOURCE_PROPS(mcip);
7566                                 if ((mrp->mrp_mask & MRP_RX_RINGS) != 0)
7567                                         continue;
7568                                 if ((tgrp->mrg_cur_count +
7569                                     defgrp->mrg_cur_count) < (modify + 1)) {
7570                                         continue;
7571                                 }
7572                                 if (mac_rx_switch_group(mcip, tgrp,
7573                                     defgrp) != 0) {
7574                                         return (ENOSPC);
7575                                 }
7576                         } else {
7577                                 tgrp = &mip->mi_tx_groups[i];
7578                                 if (tgrp == group || tgrp->mrg_state <
7579                                     MAC_GROUP_STATE_RESERVED) {
7580                                         continue;
7581                                 }
7582                                 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7583                                 if (mcip == NULL)
7584                                         mcip = mac_get_grp_primary(tgrp);
7585                                 mrp = MCIP_RESOURCE_PROPS(mcip);
7586                                 if ((mrp->mrp_mask & MRP_TX_RINGS) != 0)
7587                                         continue;
7588                                 if ((tgrp->mrg_cur_count +
7589                                     defgrp->mrg_cur_count) < (modify + 1)) {
7590                                         continue;
7591                                 }
7592                                 /* OK, we can switch this to s/w */
7593                                 mac_tx_client_quiesce(
7594                                     (mac_client_handle_t)mcip);
7595                                 mac_tx_switch_group(mcip, tgrp, defgrp);
7596                                 mac_tx_client_restart(
7597                                     (mac_client_handle_t)mcip);
7598                         }
7599                 }
7600                 if (defgrp->mrg_cur_count < (modify + 1))
7601                         return (ENOSPC);
7602         }
7603         if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp,
7604             group, mcip->mci_share, modify)) != 0) {
7605                 return (rv);
7606         }
7607         return (0);
7608 }
7609 
7610 /*
7611  * Given the poolname in mac_resource_props, find the cpupart
7612  * that is associated with this pool.  The cpupart will be used
7613  * later for finding the cpus to be bound to the networking threads.
7614  *
7615  * use_default is set B_TRUE if pools are enabled and pool_default
7616  * is returned.  This avoids a 2nd lookup to set the poolname
7617  * for pool-effective.
7618  *
7619  * returns:
7620  *
7621  *    NULL -   pools are disabled or if the 'cpus' property is set.
7622  *    cpupart of pool_default  - pools are enabled and the pool
7623  *             is not available or poolname is blank
7624  *    cpupart of named pool    - pools are enabled and the pool
7625  *             is available.
7626  */
7627 cpupart_t *
7628 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default)
7629 {
7630         pool_t          *pool;
7631         cpupart_t       *cpupart;
7632 
7633         *use_default = B_FALSE;
7634 
7635         /* CPUs property is set */
7636         if (mrp->mrp_mask & MRP_CPUS)
7637                 return (NULL);
7638 
7639         ASSERT(pool_lock_held());
7640 
7641         /* Pools are disabled, no pset */
7642         if (pool_state == POOL_DISABLED)
7643                 return (NULL);
7644 
7645         /* Pools property is set */
7646         if (mrp->mrp_mask & MRP_POOL) {
7647                 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) {
7648                         /* Pool not found */
7649                         DTRACE_PROBE1(mac_pset_find_no_pool, char *,
7650                             mrp->mrp_pool);
7651                         *use_default = B_TRUE;
7652                         pool = pool_default;
7653                 }
7654         /* Pools property is not set */
7655         } else {
7656                 *use_default = B_TRUE;
7657                 pool = pool_default;
7658         }
7659 
7660         /* Find the CPU pset that corresponds to the pool */
7661         mutex_enter(&cpu_lock);
7662         if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) {
7663                 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t,
7664                     pool->pool_pset->pset_id);
7665         }
7666         mutex_exit(&cpu_lock);
7667 
7668         return (cpupart);
7669 }
7670 
7671 void
7672 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart,
7673     mac_resource_props_t *mrp, mac_resource_props_t *emrp)
7674 {
7675         ASSERT(pool_lock_held());
7676 
7677         if (cpupart != NULL) {
7678                 emrp->mrp_mask |= MRP_POOL;
7679                 if (use_default) {
7680                         (void) strcpy(emrp->mrp_pool,
7681                             "pool_default");
7682                 } else {
7683                         ASSERT(strlen(mrp->mrp_pool) != 0);
7684                         (void) strcpy(emrp->mrp_pool,
7685                             mrp->mrp_pool);
7686                 }
7687         } else {
7688                 emrp->mrp_mask &= ~MRP_POOL;
7689                 bzero(emrp->mrp_pool, MAXPATHLEN);
7690         }
7691 }
7692 
7693 struct mac_pool_arg {
7694         char            mpa_poolname[MAXPATHLEN];
7695         pool_event_t    mpa_what;
7696 };
7697 
7698 /*ARGSUSED*/
7699 static uint_t
7700 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
7701 {
7702         struct mac_pool_arg     *mpa = arg;
7703         mac_impl_t              *mip = (mac_impl_t *)val;
7704         mac_client_impl_t       *mcip;
7705         mac_resource_props_t    *mrp, *emrp;
7706         boolean_t               pool_update = B_FALSE;
7707         boolean_t               pool_clear = B_FALSE;
7708         boolean_t               use_default = B_FALSE;
7709         cpupart_t               *cpupart = NULL;
7710 
7711         mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
7712         i_mac_perim_enter(mip);
7713         for (mcip = mip->mi_clients_list; mcip != NULL;
7714             mcip = mcip->mci_client_next) {
7715                 pool_update = B_FALSE;
7716                 pool_clear = B_FALSE;
7717                 use_default = B_FALSE;
7718                 mac_client_get_resources((mac_client_handle_t)mcip, mrp);
7719                 emrp = MCIP_EFFECTIVE_PROPS(mcip);
7720 
7721                 /*
7722                  * When pools are enabled
7723                  */
7724                 if ((mpa->mpa_what == POOL_E_ENABLE) &&
7725                     ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7726                         mrp->mrp_mask |= MRP_POOL;
7727                         pool_update = B_TRUE;
7728                 }
7729 
7730                 /*
7731                  * When pools are disabled
7732                  */
7733                 if ((mpa->mpa_what == POOL_E_DISABLE) &&
7734                     ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7735                         mrp->mrp_mask |= MRP_POOL;
7736                         pool_clear = B_TRUE;
7737                 }
7738 
7739                 /*
7740                  * Look for links with the pool property set and the poolname
7741                  * matching the one which is changing.
7742                  */
7743                 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) {
7744                         /*
7745                          * The pool associated with the link has changed.
7746                          */
7747                         if (mpa->mpa_what == POOL_E_CHANGE) {
7748                                 mrp->mrp_mask |= MRP_POOL;
7749                                 pool_update = B_TRUE;
7750                         }
7751                 }
7752 
7753                 /*
7754                  * This link is associated with pool_default and
7755                  * pool_default has changed.
7756                  */
7757                 if ((mpa->mpa_what == POOL_E_CHANGE) &&
7758                     (strcmp(emrp->mrp_pool, "pool_default") == 0) &&
7759                     (strcmp(mpa->mpa_poolname, "pool_default") == 0)) {
7760                         mrp->mrp_mask |= MRP_POOL;
7761                         pool_update = B_TRUE;
7762                 }
7763 
7764                 /*
7765                  * Get new list of cpus for the pool, bind network
7766                  * threads to new list of cpus and update resources.
7767                  */
7768                 if (pool_update) {
7769                         if (MCIP_DATAPATH_SETUP(mcip)) {
7770                                 pool_lock();
7771                                 cpupart = mac_pset_find(mrp, &use_default);
7772                                 mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7773                                     mac_rx_deliver, mcip, NULL, cpupart);
7774                                 mac_set_pool_effective(use_default, cpupart,
7775                                     mrp, emrp);
7776                                 pool_unlock();
7777                         }
7778                         mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7779                             B_FALSE);
7780                 }
7781 
7782                 /*
7783                  * Clear the effective pool and bind network threads
7784                  * to any available CPU.
7785                  */
7786                 if (pool_clear) {
7787                         if (MCIP_DATAPATH_SETUP(mcip)) {
7788                                 emrp->mrp_mask &= ~MRP_POOL;
7789                                 bzero(emrp->mrp_pool, MAXPATHLEN);
7790                                 mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7791                                     mac_rx_deliver, mcip, NULL, NULL);
7792                         }
7793                         mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7794                             B_FALSE);
7795                 }
7796         }
7797         i_mac_perim_exit(mip);
7798         kmem_free(mrp, sizeof (*mrp));
7799         return (MH_WALK_CONTINUE);
7800 }
7801 
7802 static void
7803 mac_pool_update(void *arg)
7804 {
7805         mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg);
7806         kmem_free(arg, sizeof (struct mac_pool_arg));
7807 }
7808 
7809 /*
7810  * Callback function to be executed when a noteworthy pool event
7811  * takes place.
7812  */
7813 /* ARGSUSED */
7814 static void
7815 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg)
7816 {
7817         pool_t                  *pool;
7818         char                    *poolname = NULL;
7819         struct mac_pool_arg     *mpa;
7820 
7821         pool_lock();
7822         mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP);
7823 
7824         switch (what) {
7825         case POOL_E_ENABLE:
7826         case POOL_E_DISABLE:
7827                 break;
7828 
7829         case POOL_E_CHANGE:
7830                 pool = pool_lookup_pool_by_id(id);
7831                 if (pool == NULL) {
7832                         kmem_free(mpa, sizeof (struct mac_pool_arg));
7833                         pool_unlock();
7834                         return;
7835                 }
7836                 pool_get_name(pool, &poolname);
7837                 (void) strlcpy(mpa->mpa_poolname, poolname,
7838                     sizeof (mpa->mpa_poolname));
7839                 break;
7840 
7841         default:
7842                 kmem_free(mpa, sizeof (struct mac_pool_arg));
7843                 pool_unlock();
7844                 return;
7845         }
7846         pool_unlock();
7847 
7848         mpa->mpa_what = what;
7849 
7850         mac_pool_update(mpa);
7851 }
7852 
7853 /*
7854  * Set effective rings property. This could be called from datapath_setup/
7855  * datapath_teardown or set-linkprop.
7856  * If the group is reserved we just go ahead and set the effective rings.
7857  * Additionally, for TX this could mean the default  group has lost/gained
7858  * some rings, so if the default group is reserved, we need to adjust the
7859  * effective rings for the default group clients. For RX, if we are working
7860  * with the non-default group, we just need * to reset the effective props
7861  * for the default group clients.
7862  */
7863 void
7864 mac_set_rings_effective(mac_client_impl_t *mcip)
7865 {
7866         mac_impl_t              *mip = mcip->mci_mip;
7867         mac_group_t             *grp;
7868         mac_group_t             *defgrp;
7869         flow_entry_t            *flent = mcip->mci_flent;
7870         mac_resource_props_t    *emrp = MCIP_EFFECTIVE_PROPS(mcip);
7871         mac_grp_client_t        *mgcp;
7872         mac_client_impl_t       *gmcip;
7873 
7874         grp = flent->fe_rx_ring_group;
7875         if (grp != NULL) {
7876                 defgrp = MAC_DEFAULT_RX_GROUP(mip);
7877                 /*
7878                  * If we have reserved a group, set the effective rings
7879                  * to the ring count in the group.
7880                  */
7881                 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7882                         emrp->mrp_mask |= MRP_RX_RINGS;
7883                         emrp->mrp_nrxrings = grp->mrg_cur_count;
7884                 }
7885 
7886                 /*
7887                  * We go through the clients in the shared group and
7888                  * reset the effective properties. It is possible this
7889                  * might have already been done for some client (i.e.
7890                  * if some client is being moved to a group that is
7891                  * already shared). The case where the default group is
7892                  * RESERVED is taken care of above (note in the RX side if
7893                  * there is a non-default group, the default group is always
7894                  * SHARED).
7895                  */
7896                 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7897                         if (grp->mrg_state == MAC_GROUP_STATE_SHARED)
7898                                 mgcp = grp->mrg_clients;
7899                         else
7900                                 mgcp = defgrp->mrg_clients;
7901                         while (mgcp != NULL) {
7902                                 gmcip = mgcp->mgc_client;
7903                                 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7904                                 if (emrp->mrp_mask & MRP_RX_RINGS) {
7905                                         emrp->mrp_mask &= ~MRP_RX_RINGS;
7906                                         emrp->mrp_nrxrings = 0;
7907                                 }
7908                                 mgcp = mgcp->mgc_next;
7909                         }
7910                 }
7911         }
7912 
7913         /* Now the TX side */
7914         grp = flent->fe_tx_ring_group;
7915         if (grp != NULL) {
7916                 defgrp = MAC_DEFAULT_TX_GROUP(mip);
7917 
7918                 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7919                         emrp->mrp_mask |= MRP_TX_RINGS;
7920                         emrp->mrp_ntxrings = grp->mrg_cur_count;
7921                 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7922                         mgcp = grp->mrg_clients;
7923                         while (mgcp != NULL) {
7924                                 gmcip = mgcp->mgc_client;
7925                                 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7926                                 if (emrp->mrp_mask & MRP_TX_RINGS) {
7927                                         emrp->mrp_mask &= ~MRP_TX_RINGS;
7928                                         emrp->mrp_ntxrings = 0;
7929                                 }
7930                                 mgcp = mgcp->mgc_next;
7931                         }
7932                 }
7933 
7934                 /*
7935                  * If the group is not the default group and the default
7936                  * group is reserved, the ring count in the default group
7937                  * might have changed, update it.
7938                  */
7939                 if (grp != defgrp &&
7940                     defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7941                         gmcip = MAC_GROUP_ONLY_CLIENT(defgrp);
7942                         emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7943                         emrp->mrp_ntxrings = defgrp->mrg_cur_count;
7944                 }
7945         }
7946         emrp = MCIP_EFFECTIVE_PROPS(mcip);
7947 }
7948 
7949 /*
7950  * Check if the primary is in the default group. If so, see if we
7951  * can give it a an exclusive group now that another client is
7952  * being configured. We take the primary out of the default group
7953  * because the multicast/broadcast packets for the all the clients
7954  * will land in the default ring in the default group which means
7955  * any client in the default group, even if it is the only on in
7956  * the group, will lose exclusive access to the rings, hence
7957  * polling.
7958  */
7959 mac_client_impl_t *
7960 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw)
7961 {
7962         mac_impl_t              *mip = mcip->mci_mip;
7963         mac_group_t             *defgrp = MAC_DEFAULT_RX_GROUP(mip);
7964         flow_entry_t            *flent = mcip->mci_flent;
7965         mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
7966         uint8_t                 *mac_addr;
7967         mac_group_t             *ngrp;
7968 
7969         /*
7970          * Check if the primary is in the default group, if not
7971          * or if it is explicitly configured to be in the default
7972          * group OR set the RX rings property, return.
7973          */
7974         if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS)
7975                 return (NULL);
7976 
7977         /*
7978          * If the new client needs an exclusive group and we
7979          * don't have another for the primary, return.
7980          */
7981         if (rxhw && mip->mi_rxhwclnt_avail < 2)
7982                 return (NULL);
7983 
7984         mac_addr = flent->fe_flow_desc.fd_dst_mac;
7985         /*
7986          * We call this when we are setting up the datapath for
7987          * the first non-primary.
7988          */
7989         ASSERT(mip->mi_nactiveclients == 2);
7990         /*
7991          * OK, now we have the primary that needs to be relocated.
7992          */
7993         ngrp =  mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
7994         if (ngrp == NULL)
7995                 return (NULL);
7996         if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
7997                 mac_stop_group(ngrp);
7998                 return (NULL);
7999         }
8000         return (mcip);
8001 }