Print this page
5882 Temporary pool names
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Igor Kozhukhov <igor@dilos.org>
Reviewed by: John Kennedy <john.kennedy@delphix.com>
Approved by: Dan McDonald <danmcd@joyent.com>
| Split |
Close |
| Expand all |
| Collapse all |
--- old/usr/src/uts/common/fs/zfs/spa_config.c
+++ new/usr/src/uts/common/fs/zfs/spa_config.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 25 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
26 26 * Copyright 2017 Joyent, Inc.
27 27 */
28 28
29 29 #include <sys/spa.h>
30 30 #include <sys/fm/fs/zfs.h>
31 31 #include <sys/spa_impl.h>
32 32 #include <sys/nvpair.h>
33 33 #include <sys/uio.h>
34 34 #include <sys/fs/zfs.h>
35 35 #include <sys/vdev_impl.h>
36 36 #include <sys/zfs_ioctl.h>
37 37 #include <sys/utsname.h>
38 38 #include <sys/systeminfo.h>
39 39 #include <sys/sunddi.h>
40 40 #include <sys/zfeature.h>
41 41 #ifdef _KERNEL
42 42 #include <sys/kobj.h>
43 43 #include <sys/zone.h>
44 44 #endif
45 45
46 46 /*
47 47 * Pool configuration repository.
48 48 *
49 49 * Pool configuration is stored as a packed nvlist on the filesystem. By
50 50 * default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot
51 51 * (when the ZFS module is loaded). Pools can also have the 'cachefile'
52 52 * property set that allows them to be stored in an alternate location until
53 53 * the control of external software.
54 54 *
55 55 * For each cache file, we have a single nvlist which holds all the
56 56 * configuration information. When the module loads, we read this information
57 57 * from /etc/zfs/zpool.cache and populate the SPA namespace. This namespace is
58 58 * maintained independently in spa.c. Whenever the namespace is modified, or
59 59 * the configuration of a pool is changed, we call spa_write_cachefile(), which
60 60 * walks through all the active pools and writes the configuration to disk.
61 61 */
62 62
63 63 static uint64_t spa_config_generation = 1;
64 64
65 65 /*
66 66 * This can be overridden in userland to preserve an alternate namespace for
67 67 * userland pools when doing testing.
68 68 */
69 69 const char *spa_config_path = ZPOOL_CACHE;
70 70
71 71 /*
72 72 * Called when the module is first loaded, this routine loads the configuration
73 73 * file into the SPA namespace. It does not actually open or load the pools; it
74 74 * only populates the namespace.
75 75 */
76 76 void
77 77 spa_config_load(void)
78 78 {
79 79 void *buf = NULL;
80 80 nvlist_t *nvlist, *child;
81 81 nvpair_t *nvpair;
82 82 char *pathname;
83 83 struct _buf *file;
84 84 uint64_t fsize;
85 85
86 86 /*
87 87 * Open the configuration file.
88 88 */
89 89 pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
90 90
91 91 (void) snprintf(pathname, MAXPATHLEN, "%s%s",
92 92 (rootdir != NULL) ? "./" : "", spa_config_path);
93 93
94 94 file = kobj_open_file(pathname);
95 95
96 96 kmem_free(pathname, MAXPATHLEN);
97 97
98 98 if (file == (struct _buf *)-1)
99 99 return;
100 100
101 101 if (kobj_get_filesize(file, &fsize) != 0)
102 102 goto out;
103 103
104 104 buf = kmem_alloc(fsize, KM_SLEEP);
105 105
106 106 /*
107 107 * Read the nvlist from the file.
108 108 */
109 109 if (kobj_read_file(file, buf, fsize, 0) < 0)
110 110 goto out;
111 111
112 112 /*
113 113 * Unpack the nvlist.
114 114 */
115 115 if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0)
116 116 goto out;
117 117
118 118 /*
119 119 * Iterate over all elements in the nvlist, creating a new spa_t for
120 120 * each one with the specified configuration.
121 121 */
122 122 mutex_enter(&spa_namespace_lock);
123 123 nvpair = NULL;
124 124 while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) {
125 125 if (nvpair_type(nvpair) != DATA_TYPE_NVLIST)
126 126 continue;
127 127
128 128 child = fnvpair_value_nvlist(nvpair);
129 129
130 130 if (spa_lookup(nvpair_name(nvpair)) != NULL)
131 131 continue;
132 132 (void) spa_add(nvpair_name(nvpair), child, NULL);
133 133 }
134 134 mutex_exit(&spa_namespace_lock);
135 135
136 136 nvlist_free(nvlist);
137 137
138 138 out:
139 139 if (buf != NULL)
140 140 kmem_free(buf, fsize);
141 141
142 142 kobj_close_file(file);
143 143 }
144 144
145 145 static int
146 146 spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl)
147 147 {
148 148 size_t buflen;
149 149 char *buf;
150 150 vnode_t *vp;
151 151 int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX;
152 152 char *temp;
153 153 int err;
154 154
155 155 /*
156 156 * If the nvlist is empty (NULL), then remove the old cachefile.
157 157 */
158 158 if (nvl == NULL) {
159 159 err = vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE);
160 160 return (err);
161 161 }
162 162
163 163 /*
164 164 * Pack the configuration into a buffer.
165 165 */
166 166 buf = fnvlist_pack(nvl, &buflen);
167 167 temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
168 168
169 169 /*
170 170 * Write the configuration to disk. We need to do the traditional
171 171 * 'write to temporary file, sync, move over original' to make sure we
172 172 * always have a consistent view of the data.
173 173 */
174 174 (void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path);
175 175
176 176 err = vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0);
177 177 if (err == 0) {
178 178 err = vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE,
179 179 0, RLIM64_INFINITY, kcred, NULL);
180 180 if (err == 0)
181 181 err = VOP_FSYNC(vp, FSYNC, kcred, NULL);
182 182 if (err == 0)
183 183 err = vn_rename(temp, dp->scd_path, UIO_SYSSPACE);
184 184 (void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL);
185 185 VN_RELE(vp);
186 186 }
187 187
188 188 (void) vn_remove(temp, UIO_SYSSPACE, RMFILE);
189 189
190 190 fnvlist_pack_free(buf, buflen);
191 191 kmem_free(temp, MAXPATHLEN);
192 192 return (err);
193 193 }
194 194
195 195 /*
196 196 * Synchronize pool configuration to disk. This must be called with the
197 197 * namespace lock held. Synchronizing the pool cache is typically done after
198 198 * the configuration has been synced to the MOS. This exposes a window where
199 199 * the MOS config will have been updated but the cache file has not. If
200 200 * the system were to crash at that instant then the cached config may not
|
↓ open down ↓ |
200 lines elided |
↑ open up ↑ |
201 201 * contain the correct information to open the pool and an explicit import
202 202 * would be required.
203 203 */
204 204 void
205 205 spa_write_cachefile(spa_t *target, boolean_t removing, boolean_t postsysevent)
206 206 {
207 207 spa_config_dirent_t *dp, *tdp;
208 208 nvlist_t *nvl;
209 209 boolean_t ccw_failure;
210 210 int error;
211 + char *pool_name;
211 212
212 213 ASSERT(MUTEX_HELD(&spa_namespace_lock));
213 214
214 215 if (rootdir == NULL || !(spa_mode_global & FWRITE))
215 216 return;
216 217
217 218 /*
218 219 * Iterate over all cachefiles for the pool, past or present. When the
219 220 * cachefile is changed, the new one is pushed onto this list, allowing
220 221 * us to update previous cachefiles that no longer contain this pool.
221 222 */
222 223 ccw_failure = B_FALSE;
223 224 for (dp = list_head(&target->spa_config_list); dp != NULL;
224 225 dp = list_next(&target->spa_config_list, dp)) {
225 226 spa_t *spa = NULL;
226 227 if (dp->scd_path == NULL)
227 228 continue;
228 229
229 230 /*
230 231 * Iterate over all pools, adding any matching pools to 'nvl'.
231 232 */
232 233 nvl = NULL;
233 234 while ((spa = spa_next(spa)) != NULL) {
234 235 /*
235 236 * Skip over our own pool if we're about to remove
236 237 * ourselves from the spa namespace or any pool that
237 238 * is readonly. Since we cannot guarantee that a
238 239 * readonly pool would successfully import upon reboot,
239 240 * we don't allow them to be written to the cache file.
240 241 */
241 242 if ((spa == target && removing) ||
242 243 !spa_writeable(spa))
243 244 continue;
244 245
245 246 mutex_enter(&spa->spa_props_lock);
246 247 tdp = list_head(&spa->spa_config_list);
|
↓ open down ↓ |
26 lines elided |
↑ open up ↑ |
247 248 if (spa->spa_config == NULL ||
248 249 tdp->scd_path == NULL ||
249 250 strcmp(tdp->scd_path, dp->scd_path) != 0) {
250 251 mutex_exit(&spa->spa_props_lock);
251 252 continue;
252 253 }
253 254
254 255 if (nvl == NULL)
255 256 nvl = fnvlist_alloc();
256 257
257 - fnvlist_add_nvlist(nvl, spa->spa_name,
258 + if (spa->spa_import_flags & ZFS_IMPORT_TEMP_NAME) {
259 + pool_name = fnvlist_lookup_string(
260 + spa->spa_config, ZPOOL_CONFIG_POOL_NAME);
261 + } else {
262 + pool_name = spa_name(spa);
263 + }
264 +
265 + fnvlist_add_nvlist(nvl, pool_name,
258 266 spa->spa_config);
259 267 mutex_exit(&spa->spa_props_lock);
260 268 }
261 269
262 270 error = spa_config_write(dp, nvl);
263 271 if (error != 0)
264 272 ccw_failure = B_TRUE;
265 273 nvlist_free(nvl);
266 274 }
267 275
268 276 if (ccw_failure) {
269 277 /*
270 278 * Keep trying so that configuration data is
271 279 * written if/when any temporary filesystem
272 280 * resource issues are resolved.
273 281 */
274 282 if (target->spa_ccw_fail_time == 0) {
275 283 zfs_ereport_post(FM_EREPORT_ZFS_CONFIG_CACHE_WRITE,
276 284 target, NULL, NULL, 0, 0);
277 285 }
278 286 target->spa_ccw_fail_time = gethrtime();
279 287 spa_async_request(target, SPA_ASYNC_CONFIG_UPDATE);
280 288 } else {
281 289 /*
282 290 * Do not rate limit future attempts to update
283 291 * the config cache.
284 292 */
285 293 target->spa_ccw_fail_time = 0;
286 294 }
287 295
288 296 /*
289 297 * Remove any config entries older than the current one.
290 298 */
291 299 dp = list_head(&target->spa_config_list);
292 300 while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) {
293 301 list_remove(&target->spa_config_list, tdp);
294 302 if (tdp->scd_path != NULL)
295 303 spa_strfree(tdp->scd_path);
296 304 kmem_free(tdp, sizeof (spa_config_dirent_t));
297 305 }
298 306
299 307 spa_config_generation++;
300 308
301 309 if (postsysevent)
302 310 spa_event_notify(target, NULL, NULL, ESC_ZFS_CONFIG_SYNC);
303 311 }
304 312
305 313 /*
306 314 * Sigh. Inside a local zone, we don't have access to /etc/zfs/zpool.cache,
307 315 * and we don't want to allow the local zone to see all the pools anyway.
308 316 * So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration
309 317 * information for all pool visible within the zone.
310 318 */
311 319 nvlist_t *
312 320 spa_all_configs(uint64_t *generation)
313 321 {
314 322 nvlist_t *pools;
315 323 spa_t *spa = NULL;
316 324
317 325 if (*generation == spa_config_generation)
318 326 return (NULL);
319 327
320 328 pools = fnvlist_alloc();
321 329
322 330 mutex_enter(&spa_namespace_lock);
323 331 while ((spa = spa_next(spa)) != NULL) {
324 332 if (INGLOBALZONE(curproc) ||
325 333 zone_dataset_visible(spa_name(spa), NULL)) {
326 334 mutex_enter(&spa->spa_props_lock);
327 335 fnvlist_add_nvlist(pools, spa_name(spa),
328 336 spa->spa_config);
329 337 mutex_exit(&spa->spa_props_lock);
330 338 }
331 339 }
332 340 *generation = spa_config_generation;
333 341 mutex_exit(&spa_namespace_lock);
334 342
335 343 return (pools);
336 344 }
337 345
338 346 void
339 347 spa_config_set(spa_t *spa, nvlist_t *config)
340 348 {
341 349 mutex_enter(&spa->spa_props_lock);
342 350 if (spa->spa_config != NULL && spa->spa_config != config)
343 351 nvlist_free(spa->spa_config);
344 352 spa->spa_config = config;
345 353 mutex_exit(&spa->spa_props_lock);
346 354 }
347 355
348 356 /*
349 357 * Generate the pool's configuration based on the current in-core state.
350 358 *
351 359 * We infer whether to generate a complete config or just one top-level config
|
↓ open down ↓ |
84 lines elided |
↑ open up ↑ |
352 360 * based on whether vd is the root vdev.
353 361 */
354 362 nvlist_t *
355 363 spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats)
356 364 {
357 365 nvlist_t *config, *nvroot;
358 366 vdev_t *rvd = spa->spa_root_vdev;
359 367 unsigned long hostid = 0;
360 368 boolean_t locked = B_FALSE;
361 369 uint64_t split_guid;
370 + char *pool_name;
362 371
363 372 if (vd == NULL) {
364 373 vd = rvd;
365 374 locked = B_TRUE;
366 375 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
367 376 }
368 377
369 378 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
370 379 (SCL_CONFIG | SCL_STATE));
371 380
372 381 /*
373 382 * If txg is -1, report the current value of spa->spa_config_txg.
374 383 */
375 384 if (txg == -1ULL)
376 385 txg = spa->spa_config_txg;
377 386
387 + /*
388 + * Originally, users had to handle spa namespace collisions by either
389 + * exporting the already imported pool or by specifying a new name for
390 + * the pool with a conflicting name. In the case of root pools from
391 + * virtual guests, neither approach to collision resolution is
392 + * reasonable. This is addressed by extending the new name syntax with
393 + * an option to specify that the new name is temporary. When specified,
394 + * ZFS_IMPORT_TEMP_NAME will be set in spa->spa_import_flags to tell us
395 + * to use the previous name, which we do below.
396 + */
397 + if (spa->spa_import_flags & ZFS_IMPORT_TEMP_NAME) {
398 + pool_name = fnvlist_lookup_string(spa->spa_config,
399 + ZPOOL_CONFIG_POOL_NAME);
400 + } else {
401 + pool_name = spa_name(spa);
402 + }
403 +
378 404 config = fnvlist_alloc();
379 405
380 406 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
381 - fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, spa_name(spa));
407 + fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, pool_name);
382 408 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, spa_state(spa));
383 409 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, txg);
384 410 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa));
385 411 if (spa->spa_comment != NULL) {
386 412 fnvlist_add_string(config, ZPOOL_CONFIG_COMMENT,
387 413 spa->spa_comment);
388 414 }
389 415
390 416 hostid = zone_get_hostid(NULL);
391 417
392 418 if (hostid != 0) {
393 419 fnvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, hostid);
394 420 }
395 421 fnvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, utsname.nodename);
396 422
397 423 int config_gen_flags = 0;
398 424 if (vd != rvd) {
399 425 fnvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID,
400 426 vd->vdev_top->vdev_guid);
401 427 fnvlist_add_uint64(config, ZPOOL_CONFIG_GUID,
402 428 vd->vdev_guid);
403 429 if (vd->vdev_isspare) {
404 430 fnvlist_add_uint64(config,
405 431 ZPOOL_CONFIG_IS_SPARE, 1ULL);
406 432 }
407 433 if (vd->vdev_islog) {
408 434 fnvlist_add_uint64(config,
409 435 ZPOOL_CONFIG_IS_LOG, 1ULL);
410 436 }
411 437 vd = vd->vdev_top; /* label contains top config */
412 438 } else {
413 439 /*
414 440 * Only add the (potentially large) split information
415 441 * in the mos config, and not in the vdev labels
416 442 */
417 443 if (spa->spa_config_splitting != NULL)
418 444 fnvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT,
419 445 spa->spa_config_splitting);
420 446 fnvlist_add_boolean(config,
421 447 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS);
422 448
423 449 config_gen_flags |= VDEV_CONFIG_MOS;
424 450 }
425 451
426 452 /*
427 453 * Add the top-level config. We even add this on pools which
428 454 * don't support holes in the namespace.
429 455 */
430 456 vdev_top_config_generate(spa, config);
431 457
432 458 /*
433 459 * If we're splitting, record the original pool's guid.
434 460 */
435 461 if (spa->spa_config_splitting != NULL &&
436 462 nvlist_lookup_uint64(spa->spa_config_splitting,
437 463 ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) {
438 464 fnvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID,
439 465 split_guid);
440 466 }
441 467
442 468 nvroot = vdev_config_generate(spa, vd, getstats, config_gen_flags);
443 469 fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot);
444 470 nvlist_free(nvroot);
445 471
446 472 /*
447 473 * Store what's necessary for reading the MOS in the label.
448 474 */
449 475 fnvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
450 476 spa->spa_label_features);
451 477
452 478 if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) {
453 479 ddt_histogram_t *ddh;
454 480 ddt_stat_t *dds;
455 481 ddt_object_t *ddo;
456 482
457 483 ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP);
458 484 ddt_get_dedup_histogram(spa, ddh);
459 485 fnvlist_add_uint64_array(config,
460 486 ZPOOL_CONFIG_DDT_HISTOGRAM,
461 487 (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t));
462 488 kmem_free(ddh, sizeof (ddt_histogram_t));
463 489
464 490 ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP);
465 491 ddt_get_dedup_object_stats(spa, ddo);
466 492 fnvlist_add_uint64_array(config,
467 493 ZPOOL_CONFIG_DDT_OBJ_STATS,
468 494 (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t));
469 495 kmem_free(ddo, sizeof (ddt_object_t));
470 496
471 497 dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP);
472 498 ddt_get_dedup_stats(spa, dds);
473 499 fnvlist_add_uint64_array(config,
474 500 ZPOOL_CONFIG_DDT_STATS,
475 501 (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t));
476 502 kmem_free(dds, sizeof (ddt_stat_t));
477 503 }
478 504
479 505 if (locked)
480 506 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
481 507
482 508 return (config);
483 509 }
484 510
485 511 /*
486 512 * Update all disk labels, generate a fresh config based on the current
487 513 * in-core state, and sync the global config cache (do not sync the config
488 514 * cache if this is a booting rootpool).
489 515 */
490 516 void
491 517 spa_config_update(spa_t *spa, int what)
492 518 {
493 519 vdev_t *rvd = spa->spa_root_vdev;
494 520 uint64_t txg;
495 521 int c;
496 522
497 523 ASSERT(MUTEX_HELD(&spa_namespace_lock));
498 524
499 525 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
500 526 txg = spa_last_synced_txg(spa) + 1;
501 527 if (what == SPA_CONFIG_UPDATE_POOL) {
502 528 vdev_config_dirty(rvd);
503 529 } else {
504 530 /*
505 531 * If we have top-level vdevs that were added but have
506 532 * not yet been prepared for allocation, do that now.
507 533 * (It's safe now because the config cache is up to date,
508 534 * so it will be able to translate the new DVAs.)
509 535 * See comments in spa_vdev_add() for full details.
510 536 */
511 537 for (c = 0; c < rvd->vdev_children; c++) {
512 538 vdev_t *tvd = rvd->vdev_child[c];
513 539
514 540 /*
515 541 * Explicitly skip vdevs that are indirect or
516 542 * log vdevs that are being removed. The reason
517 543 * is that both of those can have vdev_ms_array
518 544 * set to 0 and we wouldn't want to change their
519 545 * metaslab size nor call vdev_expand() on them.
520 546 */
521 547 if (!vdev_is_concrete(tvd) ||
522 548 (tvd->vdev_islog && tvd->vdev_removing))
523 549 continue;
524 550
525 551 if (tvd->vdev_ms_array == 0)
526 552 vdev_metaslab_set_size(tvd);
527 553 vdev_expand(tvd, txg);
528 554 }
529 555 }
530 556 spa_config_exit(spa, SCL_ALL, FTAG);
531 557
532 558 /*
533 559 * Wait for the mosconfig to be regenerated and synced.
534 560 */
535 561 txg_wait_synced(spa->spa_dsl_pool, txg);
536 562
537 563 /*
538 564 * Update the global config cache to reflect the new mosconfig.
539 565 */
540 566 if (!spa->spa_is_root) {
541 567 spa_write_cachefile(spa, B_FALSE,
542 568 what != SPA_CONFIG_UPDATE_POOL);
543 569 }
544 570
545 571 if (what == SPA_CONFIG_UPDATE_POOL)
546 572 spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS);
547 573 }
|
↓ open down ↓ |
156 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX