1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
  25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
  26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
  27  * Copyright 2013 Saso Kiselkov. All rights reserved.
  28  * Copyright (c) 2014 Integros [integros.com]
  29  * Copyright 2016 Toomas Soome <tsoome@me.com>
  30  * Copyright 2018 Joyent, Inc.
  31  * Copyright (c) 2017 Datto Inc.
  32  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
  33  */
  34 
  35 /*
  36  * SPA: Storage Pool Allocator
  37  *
  38  * This file contains all the routines used when modifying on-disk SPA state.
  39  * This includes opening, importing, destroying, exporting a pool, and syncing a
  40  * pool.
  41  */
  42 
  43 #include <sys/zfs_context.h>
  44 #include <sys/fm/fs/zfs.h>
  45 #include <sys/spa_impl.h>
  46 #include <sys/zio.h>
  47 #include <sys/zio_checksum.h>
  48 #include <sys/dmu.h>
  49 #include <sys/dmu_tx.h>
  50 #include <sys/zap.h>
  51 #include <sys/zil.h>
  52 #include <sys/ddt.h>
  53 #include <sys/vdev_impl.h>
  54 #include <sys/vdev_removal.h>
  55 #include <sys/vdev_indirect_mapping.h>
  56 #include <sys/vdev_indirect_births.h>
  57 #include <sys/vdev_initialize.h>
  58 #include <sys/metaslab.h>
  59 #include <sys/metaslab_impl.h>
  60 #include <sys/uberblock_impl.h>
  61 #include <sys/txg.h>
  62 #include <sys/avl.h>
  63 #include <sys/bpobj.h>
  64 #include <sys/dmu_traverse.h>
  65 #include <sys/dmu_objset.h>
  66 #include <sys/unique.h>
  67 #include <sys/dsl_pool.h>
  68 #include <sys/dsl_dataset.h>
  69 #include <sys/dsl_dir.h>
  70 #include <sys/dsl_prop.h>
  71 #include <sys/dsl_synctask.h>
  72 #include <sys/fs/zfs.h>
  73 #include <sys/arc.h>
  74 #include <sys/callb.h>
  75 #include <sys/systeminfo.h>
  76 #include <sys/spa_boot.h>
  77 #include <sys/zfs_ioctl.h>
  78 #include <sys/dsl_scan.h>
  79 #include <sys/zfeature.h>
  80 #include <sys/dsl_destroy.h>
  81 #include <sys/abd.h>
  82 
  83 #ifdef  _KERNEL
  84 #include <sys/bootprops.h>
  85 #include <sys/callb.h>
  86 #include <sys/cpupart.h>
  87 #include <sys/pool.h>
  88 #include <sys/sysdc.h>
  89 #include <sys/zone.h>
  90 #endif  /* _KERNEL */
  91 
  92 #include "zfs_prop.h"
  93 #include "zfs_comutil.h"
  94 
  95 /*
  96  * The interval, in seconds, at which failed configuration cache file writes
  97  * should be retried.
  98  */
  99 int zfs_ccw_retry_interval = 300;
 100 
 101 typedef enum zti_modes {
 102         ZTI_MODE_FIXED,                 /* value is # of threads (min 1) */
 103         ZTI_MODE_BATCH,                 /* cpu-intensive; value is ignored */
 104         ZTI_MODE_NULL,                  /* don't create a taskq */
 105         ZTI_NMODES
 106 } zti_modes_t;
 107 
 108 #define ZTI_P(n, q)     { ZTI_MODE_FIXED, (n), (q) }
 109 #define ZTI_BATCH       { ZTI_MODE_BATCH, 0, 1 }
 110 #define ZTI_NULL        { ZTI_MODE_NULL, 0, 0 }
 111 
 112 #define ZTI_N(n)        ZTI_P(n, 1)
 113 #define ZTI_ONE         ZTI_N(1)
 114 
 115 typedef struct zio_taskq_info {
 116         zti_modes_t zti_mode;
 117         uint_t zti_value;
 118         uint_t zti_count;
 119 } zio_taskq_info_t;
 120 
 121 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
 122         "issue", "issue_high", "intr", "intr_high"
 123 };
 124 
 125 /*
 126  * This table defines the taskq settings for each ZFS I/O type. When
 127  * initializing a pool, we use this table to create an appropriately sized
 128  * taskq. Some operations are low volume and therefore have a small, static
 129  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
 130  * macros. Other operations process a large amount of data; the ZTI_BATCH
 131  * macro causes us to create a taskq oriented for throughput. Some operations
 132  * are so high frequency and short-lived that the taskq itself can become a a
 133  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
 134  * additional degree of parallelism specified by the number of threads per-
 135  * taskq and the number of taskqs; when dispatching an event in this case, the
 136  * particular taskq is chosen at random.
 137  *
 138  * The different taskq priorities are to handle the different contexts (issue
 139  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
 140  * need to be handled with minimum delay.
 141  */
 142 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
 143         /* ISSUE        ISSUE_HIGH      INTR            INTR_HIGH */
 144         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* NULL */
 145         { ZTI_N(8),     ZTI_NULL,       ZTI_P(12, 8),   ZTI_NULL }, /* READ */
 146         { ZTI_BATCH,    ZTI_N(5),       ZTI_N(8),       ZTI_N(5) }, /* WRITE */
 147         { ZTI_P(12, 8), ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* FREE */
 148         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* CLAIM */
 149         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* IOCTL */
 150 };
 151 
 152 static void spa_sync_version(void *arg, dmu_tx_t *tx);
 153 static void spa_sync_props(void *arg, dmu_tx_t *tx);
 154 static boolean_t spa_has_active_shared_spare(spa_t *spa);
 155 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
 156 static void spa_vdev_resilver_done(spa_t *spa);
 157 
 158 uint_t          zio_taskq_batch_pct = 75;       /* 1 thread per cpu in pset */
 159 id_t            zio_taskq_psrset_bind = PS_NONE;
 160 boolean_t       zio_taskq_sysdc = B_TRUE;       /* use SDC scheduling class */
 161 uint_t          zio_taskq_basedc = 80;          /* base duty cycle */
 162 
 163 boolean_t       spa_create_process = B_TRUE;    /* no process ==> no sysdc */
 164 extern int      zfs_sync_pass_deferred_free;
 165 
 166 /*
 167  * Report any spa_load_verify errors found, but do not fail spa_load.
 168  * This is used by zdb to analyze non-idle pools.
 169  */
 170 boolean_t       spa_load_verify_dryrun = B_FALSE;
 171 
 172 /*
 173  * This (illegal) pool name is used when temporarily importing a spa_t in order
 174  * to get the vdev stats associated with the imported devices.
 175  */
 176 #define TRYIMPORT_NAME  "$import"
 177 
 178 /*
 179  * For debugging purposes: print out vdev tree during pool import.
 180  */
 181 boolean_t       spa_load_print_vdev_tree = B_FALSE;
 182 
 183 /*
 184  * A non-zero value for zfs_max_missing_tvds means that we allow importing
 185  * pools with missing top-level vdevs. This is strictly intended for advanced
 186  * pool recovery cases since missing data is almost inevitable. Pools with
 187  * missing devices can only be imported read-only for safety reasons, and their
 188  * fail-mode will be automatically set to "continue".
 189  *
 190  * With 1 missing vdev we should be able to import the pool and mount all
 191  * datasets. User data that was not modified after the missing device has been
 192  * added should be recoverable. This means that snapshots created prior to the
 193  * addition of that device should be completely intact.
 194  *
 195  * With 2 missing vdevs, some datasets may fail to mount since there are
 196  * dataset statistics that are stored as regular metadata. Some data might be
 197  * recoverable if those vdevs were added recently.
 198  *
 199  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
 200  * may be missing entirely. Chances of data recovery are very low. Note that
 201  * there are also risks of performing an inadvertent rewind as we might be
 202  * missing all the vdevs with the latest uberblocks.
 203  */
 204 uint64_t        zfs_max_missing_tvds = 0;
 205 
 206 /*
 207  * The parameters below are similar to zfs_max_missing_tvds but are only
 208  * intended for a preliminary open of the pool with an untrusted config which
 209  * might be incomplete or out-dated.
 210  *
 211  * We are more tolerant for pools opened from a cachefile since we could have
 212  * an out-dated cachefile where a device removal was not registered.
 213  * We could have set the limit arbitrarily high but in the case where devices
 214  * are really missing we would want to return the proper error codes; we chose
 215  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
 216  * and we get a chance to retrieve the trusted config.
 217  */
 218 uint64_t        zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
 219 
 220 /*
 221  * In the case where config was assembled by scanning device paths (/dev/dsks
 222  * by default) we are less tolerant since all the existing devices should have
 223  * been detected and we want spa_load to return the right error codes.
 224  */
 225 uint64_t        zfs_max_missing_tvds_scan = 0;
 226 
 227 /*
 228  * Debugging aid that pauses spa_sync() towards the end.
 229  */
 230 boolean_t       zfs_pause_spa_sync = B_FALSE;
 231 
 232 /*
 233  * ==========================================================================
 234  * SPA properties routines
 235  * ==========================================================================
 236  */
 237 
 238 /*
 239  * Add a (source=src, propname=propval) list to an nvlist.
 240  */
 241 static void
 242 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
 243     uint64_t intval, zprop_source_t src)
 244 {
 245         const char *propname = zpool_prop_to_name(prop);
 246         nvlist_t *propval;
 247 
 248         VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 249         VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
 250 
 251         if (strval != NULL)
 252                 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
 253         else
 254                 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
 255 
 256         VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
 257         nvlist_free(propval);
 258 }
 259 
 260 /*
 261  * Get property values from the spa configuration.
 262  */
 263 static void
 264 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
 265 {
 266         vdev_t *rvd = spa->spa_root_vdev;
 267         dsl_pool_t *pool = spa->spa_dsl_pool;
 268         uint64_t size, alloc, cap, version;
 269         zprop_source_t src = ZPROP_SRC_NONE;
 270         spa_config_dirent_t *dp;
 271         metaslab_class_t *mc = spa_normal_class(spa);
 272 
 273         ASSERT(MUTEX_HELD(&spa->spa_props_lock));
 274 
 275         if (rvd != NULL) {
 276                 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
 277                 size = metaslab_class_get_space(spa_normal_class(spa));
 278                 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
 279                 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
 280                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
 281                 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
 282                     size - alloc, src);
 283                 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
 284                     spa->spa_checkpoint_info.sci_dspace, src);
 285 
 286                 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
 287                     metaslab_class_fragmentation(mc), src);
 288                 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
 289                     metaslab_class_expandable_space(mc), src);
 290                 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
 291                     (spa_mode(spa) == FREAD), src);
 292 
 293                 cap = (size == 0) ? 0 : (alloc * 100 / size);
 294                 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
 295 
 296                 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
 297                     ddt_get_pool_dedup_ratio(spa), src);
 298 
 299                 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
 300                     rvd->vdev_state, src);
 301 
 302                 version = spa_version(spa);
 303                 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
 304                         src = ZPROP_SRC_DEFAULT;
 305                 else
 306                         src = ZPROP_SRC_LOCAL;
 307                 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
 308         }
 309 
 310         if (pool != NULL) {
 311                 /*
 312                  * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
 313                  * when opening pools before this version freedir will be NULL.
 314                  */
 315                 if (pool->dp_free_dir != NULL) {
 316                         spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
 317                             dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
 318                             src);
 319                 } else {
 320                         spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
 321                             NULL, 0, src);
 322                 }
 323 
 324                 if (pool->dp_leak_dir != NULL) {
 325                         spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
 326                             dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
 327                             src);
 328                 } else {
 329                         spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
 330                             NULL, 0, src);
 331                 }
 332         }
 333 
 334         spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
 335 
 336         if (spa->spa_comment != NULL) {
 337                 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
 338                     0, ZPROP_SRC_LOCAL);
 339         }
 340 
 341         if (spa->spa_root != NULL)
 342                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
 343                     0, ZPROP_SRC_LOCAL);
 344 
 345         if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
 346                 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
 347                     MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
 348         } else {
 349                 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
 350                     SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
 351         }
 352 
 353         if ((dp = list_head(&spa->spa_config_list)) != NULL) {
 354                 if (dp->scd_path == NULL) {
 355                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 356                             "none", 0, ZPROP_SRC_LOCAL);
 357                 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
 358                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 359                             dp->scd_path, 0, ZPROP_SRC_LOCAL);
 360                 }
 361         }
 362 }
 363 
 364 /*
 365  * Get zpool property values.
 366  */
 367 int
 368 spa_prop_get(spa_t *spa, nvlist_t **nvp)
 369 {
 370         objset_t *mos = spa->spa_meta_objset;
 371         zap_cursor_t zc;
 372         zap_attribute_t za;
 373         int err;
 374 
 375         VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 376 
 377         mutex_enter(&spa->spa_props_lock);
 378 
 379         /*
 380          * Get properties from the spa config.
 381          */
 382         spa_prop_get_config(spa, nvp);
 383 
 384         /* If no pool property object, no more prop to get. */
 385         if (mos == NULL || spa->spa_pool_props_object == 0) {
 386                 mutex_exit(&spa->spa_props_lock);
 387                 return (0);
 388         }
 389 
 390         /*
 391          * Get properties from the MOS pool property object.
 392          */
 393         for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
 394             (err = zap_cursor_retrieve(&zc, &za)) == 0;
 395             zap_cursor_advance(&zc)) {
 396                 uint64_t intval = 0;
 397                 char *strval = NULL;
 398                 zprop_source_t src = ZPROP_SRC_DEFAULT;
 399                 zpool_prop_t prop;
 400 
 401                 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
 402                         continue;
 403 
 404                 switch (za.za_integer_length) {
 405                 case 8:
 406                         /* integer property */
 407                         if (za.za_first_integer !=
 408                             zpool_prop_default_numeric(prop))
 409                                 src = ZPROP_SRC_LOCAL;
 410 
 411                         if (prop == ZPOOL_PROP_BOOTFS) {
 412                                 dsl_pool_t *dp;
 413                                 dsl_dataset_t *ds = NULL;
 414 
 415                                 dp = spa_get_dsl(spa);
 416                                 dsl_pool_config_enter(dp, FTAG);
 417                                 err = dsl_dataset_hold_obj(dp,
 418                                     za.za_first_integer, FTAG, &ds);
 419                                 if (err != 0) {
 420                                         dsl_pool_config_exit(dp, FTAG);
 421                                         break;
 422                                 }
 423 
 424                                 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
 425                                     KM_SLEEP);
 426                                 dsl_dataset_name(ds, strval);
 427                                 dsl_dataset_rele(ds, FTAG);
 428                                 dsl_pool_config_exit(dp, FTAG);
 429                         } else {
 430                                 strval = NULL;
 431                                 intval = za.za_first_integer;
 432                         }
 433 
 434                         spa_prop_add_list(*nvp, prop, strval, intval, src);
 435 
 436                         if (strval != NULL)
 437                                 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
 438 
 439                         break;
 440 
 441                 case 1:
 442                         /* string property */
 443                         strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
 444                         err = zap_lookup(mos, spa->spa_pool_props_object,
 445                             za.za_name, 1, za.za_num_integers, strval);
 446                         if (err) {
 447                                 kmem_free(strval, za.za_num_integers);
 448                                 break;
 449                         }
 450                         spa_prop_add_list(*nvp, prop, strval, 0, src);
 451                         kmem_free(strval, za.za_num_integers);
 452                         break;
 453 
 454                 default:
 455                         break;
 456                 }
 457         }
 458         zap_cursor_fini(&zc);
 459         mutex_exit(&spa->spa_props_lock);
 460 out:
 461         if (err && err != ENOENT) {
 462                 nvlist_free(*nvp);
 463                 *nvp = NULL;
 464                 return (err);
 465         }
 466 
 467         return (0);
 468 }
 469 
 470 /*
 471  * Validate the given pool properties nvlist and modify the list
 472  * for the property values to be set.
 473  */
 474 static int
 475 spa_prop_validate(spa_t *spa, nvlist_t *props)
 476 {
 477         nvpair_t *elem;
 478         int error = 0, reset_bootfs = 0;
 479         uint64_t objnum = 0;
 480         boolean_t has_feature = B_FALSE;
 481 
 482         elem = NULL;
 483         while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
 484                 uint64_t intval;
 485                 char *strval, *slash, *check, *fname;
 486                 const char *propname = nvpair_name(elem);
 487                 zpool_prop_t prop = zpool_name_to_prop(propname);
 488 
 489                 switch (prop) {
 490                 case ZPOOL_PROP_INVAL:
 491                         if (!zpool_prop_feature(propname)) {
 492                                 error = SET_ERROR(EINVAL);
 493                                 break;
 494                         }
 495 
 496                         /*
 497                          * Sanitize the input.
 498                          */
 499                         if (nvpair_type(elem) != DATA_TYPE_UINT64) {
 500                                 error = SET_ERROR(EINVAL);
 501                                 break;
 502                         }
 503 
 504                         if (nvpair_value_uint64(elem, &intval) != 0) {
 505                                 error = SET_ERROR(EINVAL);
 506                                 break;
 507                         }
 508 
 509                         if (intval != 0) {
 510                                 error = SET_ERROR(EINVAL);
 511                                 break;
 512                         }
 513 
 514                         fname = strchr(propname, '@') + 1;
 515                         if (zfeature_lookup_name(fname, NULL) != 0) {
 516                                 error = SET_ERROR(EINVAL);
 517                                 break;
 518                         }
 519 
 520                         has_feature = B_TRUE;
 521                         break;
 522 
 523                 case ZPOOL_PROP_VERSION:
 524                         error = nvpair_value_uint64(elem, &intval);
 525                         if (!error &&
 526                             (intval < spa_version(spa) ||
 527                             intval > SPA_VERSION_BEFORE_FEATURES ||
 528                             has_feature))
 529                                 error = SET_ERROR(EINVAL);
 530                         break;
 531 
 532                 case ZPOOL_PROP_DELEGATION:
 533                 case ZPOOL_PROP_AUTOREPLACE:
 534                 case ZPOOL_PROP_LISTSNAPS:
 535                 case ZPOOL_PROP_AUTOEXPAND:
 536                         error = nvpair_value_uint64(elem, &intval);
 537                         if (!error && intval > 1)
 538                                 error = SET_ERROR(EINVAL);
 539                         break;
 540 
 541                 case ZPOOL_PROP_BOOTFS:
 542                         /*
 543                          * If the pool version is less than SPA_VERSION_BOOTFS,
 544                          * or the pool is still being created (version == 0),
 545                          * the bootfs property cannot be set.
 546                          */
 547                         if (spa_version(spa) < SPA_VERSION_BOOTFS) {
 548                                 error = SET_ERROR(ENOTSUP);
 549                                 break;
 550                         }
 551 
 552                         /*
 553                          * Make sure the vdev config is bootable
 554                          */
 555                         if (!vdev_is_bootable(spa->spa_root_vdev)) {
 556                                 error = SET_ERROR(ENOTSUP);
 557                                 break;
 558                         }
 559 
 560                         reset_bootfs = 1;
 561 
 562                         error = nvpair_value_string(elem, &strval);
 563 
 564                         if (!error) {
 565                                 objset_t *os;
 566                                 uint64_t propval;
 567 
 568                                 if (strval == NULL || strval[0] == '\0') {
 569                                         objnum = zpool_prop_default_numeric(
 570                                             ZPOOL_PROP_BOOTFS);
 571                                         break;
 572                                 }
 573 
 574                                 error = dmu_objset_hold(strval, FTAG, &os);
 575                                 if (error != 0)
 576                                         break;
 577 
 578                                 /*
 579                                  * Must be ZPL, and its property settings
 580                                  * must be supported by GRUB (compression
 581                                  * is not gzip, and large blocks are not used).
 582                                  */
 583 
 584                                 if (dmu_objset_type(os) != DMU_OST_ZFS) {
 585                                         error = SET_ERROR(ENOTSUP);
 586                                 } else if ((error =
 587                                     dsl_prop_get_int_ds(dmu_objset_ds(os),
 588                                     zfs_prop_to_name(ZFS_PROP_COMPRESSION),
 589                                     &propval)) == 0 &&
 590                                     !BOOTFS_COMPRESS_VALID(propval)) {
 591                                         error = SET_ERROR(ENOTSUP);
 592                                 } else {
 593                                         objnum = dmu_objset_id(os);
 594                                 }
 595                                 dmu_objset_rele(os, FTAG);
 596                         }
 597                         break;
 598 
 599                 case ZPOOL_PROP_FAILUREMODE:
 600                         error = nvpair_value_uint64(elem, &intval);
 601                         if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
 602                             intval > ZIO_FAILURE_MODE_PANIC))
 603                                 error = SET_ERROR(EINVAL);
 604 
 605                         /*
 606                          * This is a special case which only occurs when
 607                          * the pool has completely failed. This allows
 608                          * the user to change the in-core failmode property
 609                          * without syncing it out to disk (I/Os might
 610                          * currently be blocked). We do this by returning
 611                          * EIO to the caller (spa_prop_set) to trick it
 612                          * into thinking we encountered a property validation
 613                          * error.
 614                          */
 615                         if (!error && spa_suspended(spa)) {
 616                                 spa->spa_failmode = intval;
 617                                 error = SET_ERROR(EIO);
 618                         }
 619                         break;
 620 
 621                 case ZPOOL_PROP_CACHEFILE:
 622                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 623                                 break;
 624 
 625                         if (strval[0] == '\0')
 626                                 break;
 627 
 628                         if (strcmp(strval, "none") == 0)
 629                                 break;
 630 
 631                         if (strval[0] != '/') {
 632                                 error = SET_ERROR(EINVAL);
 633                                 break;
 634                         }
 635 
 636                         slash = strrchr(strval, '/');
 637                         ASSERT(slash != NULL);
 638 
 639                         if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
 640                             strcmp(slash, "/..") == 0)
 641                                 error = SET_ERROR(EINVAL);
 642                         break;
 643 
 644                 case ZPOOL_PROP_COMMENT:
 645                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 646                                 break;
 647                         for (check = strval; *check != '\0'; check++) {
 648                                 /*
 649                                  * The kernel doesn't have an easy isprint()
 650                                  * check.  For this kernel check, we merely
 651                                  * check ASCII apart from DEL.  Fix this if
 652                                  * there is an easy-to-use kernel isprint().
 653                                  */
 654                                 if (*check >= 0x7f) {
 655                                         error = SET_ERROR(EINVAL);
 656                                         break;
 657                                 }
 658                         }
 659                         if (strlen(strval) > ZPROP_MAX_COMMENT)
 660                                 error = E2BIG;
 661                         break;
 662 
 663                 case ZPOOL_PROP_DEDUPDITTO:
 664                         if (spa_version(spa) < SPA_VERSION_DEDUP)
 665                                 error = SET_ERROR(ENOTSUP);
 666                         else
 667                                 error = nvpair_value_uint64(elem, &intval);
 668                         if (error == 0 &&
 669                             intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
 670                                 error = SET_ERROR(EINVAL);
 671                         break;
 672                 }
 673 
 674                 if (error)
 675                         break;
 676         }
 677 
 678         if (!error && reset_bootfs) {
 679                 error = nvlist_remove(props,
 680                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
 681 
 682                 if (!error) {
 683                         error = nvlist_add_uint64(props,
 684                             zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
 685                 }
 686         }
 687 
 688         return (error);
 689 }
 690 
 691 void
 692 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
 693 {
 694         char *cachefile;
 695         spa_config_dirent_t *dp;
 696 
 697         if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
 698             &cachefile) != 0)
 699                 return;
 700 
 701         dp = kmem_alloc(sizeof (spa_config_dirent_t),
 702             KM_SLEEP);
 703 
 704         if (cachefile[0] == '\0')
 705                 dp->scd_path = spa_strdup(spa_config_path);
 706         else if (strcmp(cachefile, "none") == 0)
 707                 dp->scd_path = NULL;
 708         else
 709                 dp->scd_path = spa_strdup(cachefile);
 710 
 711         list_insert_head(&spa->spa_config_list, dp);
 712         if (need_sync)
 713                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
 714 }
 715 
 716 int
 717 spa_prop_set(spa_t *spa, nvlist_t *nvp)
 718 {
 719         int error;
 720         nvpair_t *elem = NULL;
 721         boolean_t need_sync = B_FALSE;
 722 
 723         if ((error = spa_prop_validate(spa, nvp)) != 0)
 724                 return (error);
 725 
 726         while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
 727                 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
 728 
 729                 if (prop == ZPOOL_PROP_CACHEFILE ||
 730                     prop == ZPOOL_PROP_ALTROOT ||
 731                     prop == ZPOOL_PROP_READONLY)
 732                         continue;
 733 
 734                 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
 735                         uint64_t ver;
 736 
 737                         if (prop == ZPOOL_PROP_VERSION) {
 738                                 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
 739                         } else {
 740                                 ASSERT(zpool_prop_feature(nvpair_name(elem)));
 741                                 ver = SPA_VERSION_FEATURES;
 742                                 need_sync = B_TRUE;
 743                         }
 744 
 745                         /* Save time if the version is already set. */
 746                         if (ver == spa_version(spa))
 747                                 continue;
 748 
 749                         /*
 750                          * In addition to the pool directory object, we might
 751                          * create the pool properties object, the features for
 752                          * read object, the features for write object, or the
 753                          * feature descriptions object.
 754                          */
 755                         error = dsl_sync_task(spa->spa_name, NULL,
 756                             spa_sync_version, &ver,
 757                             6, ZFS_SPACE_CHECK_RESERVED);
 758                         if (error)
 759                                 return (error);
 760                         continue;
 761                 }
 762 
 763                 need_sync = B_TRUE;
 764                 break;
 765         }
 766 
 767         if (need_sync) {
 768                 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
 769                     nvp, 6, ZFS_SPACE_CHECK_RESERVED));
 770         }
 771 
 772         return (0);
 773 }
 774 
 775 /*
 776  * If the bootfs property value is dsobj, clear it.
 777  */
 778 void
 779 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
 780 {
 781         if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
 782                 VERIFY(zap_remove(spa->spa_meta_objset,
 783                     spa->spa_pool_props_object,
 784                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
 785                 spa->spa_bootfs = 0;
 786         }
 787 }
 788 
 789 /*ARGSUSED*/
 790 static int
 791 spa_change_guid_check(void *arg, dmu_tx_t *tx)
 792 {
 793         uint64_t *newguid = arg;
 794         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 795         vdev_t *rvd = spa->spa_root_vdev;
 796         uint64_t vdev_state;
 797 
 798         if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
 799                 int error = (spa_has_checkpoint(spa)) ?
 800                     ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
 801                 return (SET_ERROR(error));
 802         }
 803 
 804         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 805         vdev_state = rvd->vdev_state;
 806         spa_config_exit(spa, SCL_STATE, FTAG);
 807 
 808         if (vdev_state != VDEV_STATE_HEALTHY)
 809                 return (SET_ERROR(ENXIO));
 810 
 811         ASSERT3U(spa_guid(spa), !=, *newguid);
 812 
 813         return (0);
 814 }
 815 
 816 static void
 817 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
 818 {
 819         uint64_t *newguid = arg;
 820         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 821         uint64_t oldguid;
 822         vdev_t *rvd = spa->spa_root_vdev;
 823 
 824         oldguid = spa_guid(spa);
 825 
 826         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 827         rvd->vdev_guid = *newguid;
 828         rvd->vdev_guid_sum += (*newguid - oldguid);
 829         vdev_config_dirty(rvd);
 830         spa_config_exit(spa, SCL_STATE, FTAG);
 831 
 832         spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
 833             oldguid, *newguid);
 834 }
 835 
 836 /*
 837  * Change the GUID for the pool.  This is done so that we can later
 838  * re-import a pool built from a clone of our own vdevs.  We will modify
 839  * the root vdev's guid, our own pool guid, and then mark all of our
 840  * vdevs dirty.  Note that we must make sure that all our vdevs are
 841  * online when we do this, or else any vdevs that weren't present
 842  * would be orphaned from our pool.  We are also going to issue a
 843  * sysevent to update any watchers.
 844  */
 845 int
 846 spa_change_guid(spa_t *spa)
 847 {
 848         int error;
 849         uint64_t guid;
 850 
 851         mutex_enter(&spa->spa_vdev_top_lock);
 852         mutex_enter(&spa_namespace_lock);
 853         guid = spa_generate_guid(NULL);
 854 
 855         error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
 856             spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
 857 
 858         if (error == 0) {
 859                 spa_write_cachefile(spa, B_FALSE, B_TRUE);
 860                 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
 861         }
 862 
 863         mutex_exit(&spa_namespace_lock);
 864         mutex_exit(&spa->spa_vdev_top_lock);
 865 
 866         return (error);
 867 }
 868 
 869 /*
 870  * ==========================================================================
 871  * SPA state manipulation (open/create/destroy/import/export)
 872  * ==========================================================================
 873  */
 874 
 875 static int
 876 spa_error_entry_compare(const void *a, const void *b)
 877 {
 878         spa_error_entry_t *sa = (spa_error_entry_t *)a;
 879         spa_error_entry_t *sb = (spa_error_entry_t *)b;
 880         int ret;
 881 
 882         ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
 883             sizeof (zbookmark_phys_t));
 884 
 885         if (ret < 0)
 886                 return (-1);
 887         else if (ret > 0)
 888                 return (1);
 889         else
 890                 return (0);
 891 }
 892 
 893 /*
 894  * Utility function which retrieves copies of the current logs and
 895  * re-initializes them in the process.
 896  */
 897 void
 898 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
 899 {
 900         ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
 901 
 902         bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
 903         bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
 904 
 905         avl_create(&spa->spa_errlist_scrub,
 906             spa_error_entry_compare, sizeof (spa_error_entry_t),
 907             offsetof(spa_error_entry_t, se_avl));
 908         avl_create(&spa->spa_errlist_last,
 909             spa_error_entry_compare, sizeof (spa_error_entry_t),
 910             offsetof(spa_error_entry_t, se_avl));
 911 }
 912 
 913 static void
 914 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 915 {
 916         const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
 917         enum zti_modes mode = ztip->zti_mode;
 918         uint_t value = ztip->zti_value;
 919         uint_t count = ztip->zti_count;
 920         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 921         char name[32];
 922         uint_t flags = 0;
 923         boolean_t batch = B_FALSE;
 924 
 925         if (mode == ZTI_MODE_NULL) {
 926                 tqs->stqs_count = 0;
 927                 tqs->stqs_taskq = NULL;
 928                 return;
 929         }
 930 
 931         ASSERT3U(count, >, 0);
 932 
 933         tqs->stqs_count = count;
 934         tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
 935 
 936         switch (mode) {
 937         case ZTI_MODE_FIXED:
 938                 ASSERT3U(value, >=, 1);
 939                 value = MAX(value, 1);
 940                 break;
 941 
 942         case ZTI_MODE_BATCH:
 943                 batch = B_TRUE;
 944                 flags |= TASKQ_THREADS_CPU_PCT;
 945                 value = zio_taskq_batch_pct;
 946                 break;
 947 
 948         default:
 949                 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
 950                     "spa_activate()",
 951                     zio_type_name[t], zio_taskq_types[q], mode, value);
 952                 break;
 953         }
 954 
 955         for (uint_t i = 0; i < count; i++) {
 956                 taskq_t *tq;
 957 
 958                 if (count > 1) {
 959                         (void) snprintf(name, sizeof (name), "%s_%s_%u",
 960                             zio_type_name[t], zio_taskq_types[q], i);
 961                 } else {
 962                         (void) snprintf(name, sizeof (name), "%s_%s",
 963                             zio_type_name[t], zio_taskq_types[q]);
 964                 }
 965 
 966                 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
 967                         if (batch)
 968                                 flags |= TASKQ_DC_BATCH;
 969 
 970                         tq = taskq_create_sysdc(name, value, 50, INT_MAX,
 971                             spa->spa_proc, zio_taskq_basedc, flags);
 972                 } else {
 973                         pri_t pri = maxclsyspri;
 974                         /*
 975                          * The write issue taskq can be extremely CPU
 976                          * intensive.  Run it at slightly lower priority
 977                          * than the other taskqs.
 978                          */
 979                         if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
 980                                 pri--;
 981 
 982                         tq = taskq_create_proc(name, value, pri, 50,
 983                             INT_MAX, spa->spa_proc, flags);
 984                 }
 985 
 986                 tqs->stqs_taskq[i] = tq;
 987         }
 988 }
 989 
 990 static void
 991 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 992 {
 993         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 994 
 995         if (tqs->stqs_taskq == NULL) {
 996                 ASSERT0(tqs->stqs_count);
 997                 return;
 998         }
 999 
1000         for (uint_t i = 0; i < tqs->stqs_count; i++) {
1001                 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1002                 taskq_destroy(tqs->stqs_taskq[i]);
1003         }
1004 
1005         kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1006         tqs->stqs_taskq = NULL;
1007 }
1008 
1009 /*
1010  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1011  * Note that a type may have multiple discrete taskqs to avoid lock contention
1012  * on the taskq itself. In that case we choose which taskq at random by using
1013  * the low bits of gethrtime().
1014  */
1015 void
1016 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1017     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1018 {
1019         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1020         taskq_t *tq;
1021 
1022         ASSERT3P(tqs->stqs_taskq, !=, NULL);
1023         ASSERT3U(tqs->stqs_count, !=, 0);
1024 
1025         if (tqs->stqs_count == 1) {
1026                 tq = tqs->stqs_taskq[0];
1027         } else {
1028                 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1029         }
1030 
1031         taskq_dispatch_ent(tq, func, arg, flags, ent);
1032 }
1033 
1034 static void
1035 spa_create_zio_taskqs(spa_t *spa)
1036 {
1037         for (int t = 0; t < ZIO_TYPES; t++) {
1038                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1039                         spa_taskqs_init(spa, t, q);
1040                 }
1041         }
1042 }
1043 
1044 #ifdef _KERNEL
1045 static void
1046 spa_thread(void *arg)
1047 {
1048         callb_cpr_t cprinfo;
1049 
1050         spa_t *spa = arg;
1051         user_t *pu = PTOU(curproc);
1052 
1053         CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1054             spa->spa_name);
1055 
1056         ASSERT(curproc != &p0);
1057         (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1058             "zpool-%s", spa->spa_name);
1059         (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1060 
1061         /* bind this thread to the requested psrset */
1062         if (zio_taskq_psrset_bind != PS_NONE) {
1063                 pool_lock();
1064                 mutex_enter(&cpu_lock);
1065                 mutex_enter(&pidlock);
1066                 mutex_enter(&curproc->p_lock);
1067 
1068                 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1069                     0, NULL, NULL) == 0)  {
1070                         curthread->t_bind_pset = zio_taskq_psrset_bind;
1071                 } else {
1072                         cmn_err(CE_WARN,
1073                             "Couldn't bind process for zfs pool \"%s\" to "
1074                             "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1075                 }
1076 
1077                 mutex_exit(&curproc->p_lock);
1078                 mutex_exit(&pidlock);
1079                 mutex_exit(&cpu_lock);
1080                 pool_unlock();
1081         }
1082 
1083         if (zio_taskq_sysdc) {
1084                 sysdc_thread_enter(curthread, 100, 0);
1085         }
1086 
1087         spa->spa_proc = curproc;
1088         spa->spa_did = curthread->t_did;
1089 
1090         spa_create_zio_taskqs(spa);
1091 
1092         mutex_enter(&spa->spa_proc_lock);
1093         ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1094 
1095         spa->spa_proc_state = SPA_PROC_ACTIVE;
1096         cv_broadcast(&spa->spa_proc_cv);
1097 
1098         CALLB_CPR_SAFE_BEGIN(&cprinfo);
1099         while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1100                 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1101         CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1102 
1103         ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1104         spa->spa_proc_state = SPA_PROC_GONE;
1105         spa->spa_proc = &p0;
1106         cv_broadcast(&spa->spa_proc_cv);
1107         CALLB_CPR_EXIT(&cprinfo);   /* drops spa_proc_lock */
1108 
1109         mutex_enter(&curproc->p_lock);
1110         lwp_exit();
1111 }
1112 #endif
1113 
1114 /*
1115  * Activate an uninitialized pool.
1116  */
1117 static void
1118 spa_activate(spa_t *spa, int mode)
1119 {
1120         ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1121 
1122         spa->spa_state = POOL_STATE_ACTIVE;
1123         spa->spa_mode = mode;
1124 
1125         spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1126         spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1127 
1128         /* Try to create a covering process */
1129         mutex_enter(&spa->spa_proc_lock);
1130         ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1131         ASSERT(spa->spa_proc == &p0);
1132         spa->spa_did = 0;
1133 
1134         /* Only create a process if we're going to be around a while. */
1135         if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1136                 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1137                     NULL, 0) == 0) {
1138                         spa->spa_proc_state = SPA_PROC_CREATED;
1139                         while (spa->spa_proc_state == SPA_PROC_CREATED) {
1140                                 cv_wait(&spa->spa_proc_cv,
1141                                     &spa->spa_proc_lock);
1142                         }
1143                         ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1144                         ASSERT(spa->spa_proc != &p0);
1145                         ASSERT(spa->spa_did != 0);
1146                 } else {
1147 #ifdef _KERNEL
1148                         cmn_err(CE_WARN,
1149                             "Couldn't create process for zfs pool \"%s\"\n",
1150                             spa->spa_name);
1151 #endif
1152                 }
1153         }
1154         mutex_exit(&spa->spa_proc_lock);
1155 
1156         /* If we didn't create a process, we need to create our taskqs. */
1157         if (spa->spa_proc == &p0) {
1158                 spa_create_zio_taskqs(spa);
1159         }
1160 
1161         for (size_t i = 0; i < TXG_SIZE; i++) {
1162                 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1163                     ZIO_FLAG_CANFAIL);
1164         }
1165 
1166         list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1167             offsetof(vdev_t, vdev_config_dirty_node));
1168         list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1169             offsetof(objset_t, os_evicting_node));
1170         list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1171             offsetof(vdev_t, vdev_state_dirty_node));
1172 
1173         txg_list_create(&spa->spa_vdev_txg_list, spa,
1174             offsetof(struct vdev, vdev_txg_node));
1175 
1176         avl_create(&spa->spa_errlist_scrub,
1177             spa_error_entry_compare, sizeof (spa_error_entry_t),
1178             offsetof(spa_error_entry_t, se_avl));
1179         avl_create(&spa->spa_errlist_last,
1180             spa_error_entry_compare, sizeof (spa_error_entry_t),
1181             offsetof(spa_error_entry_t, se_avl));
1182 }
1183 
1184 /*
1185  * Opposite of spa_activate().
1186  */
1187 static void
1188 spa_deactivate(spa_t *spa)
1189 {
1190         ASSERT(spa->spa_sync_on == B_FALSE);
1191         ASSERT(spa->spa_dsl_pool == NULL);
1192         ASSERT(spa->spa_root_vdev == NULL);
1193         ASSERT(spa->spa_async_zio_root == NULL);
1194         ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1195 
1196         spa_evicting_os_wait(spa);
1197 
1198         txg_list_destroy(&spa->spa_vdev_txg_list);
1199 
1200         list_destroy(&spa->spa_config_dirty_list);
1201         list_destroy(&spa->spa_evicting_os_list);
1202         list_destroy(&spa->spa_state_dirty_list);
1203 
1204         for (int t = 0; t < ZIO_TYPES; t++) {
1205                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1206                         spa_taskqs_fini(spa, t, q);
1207                 }
1208         }
1209 
1210         for (size_t i = 0; i < TXG_SIZE; i++) {
1211                 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1212                 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1213                 spa->spa_txg_zio[i] = NULL;
1214         }
1215 
1216         metaslab_class_destroy(spa->spa_normal_class);
1217         spa->spa_normal_class = NULL;
1218 
1219         metaslab_class_destroy(spa->spa_log_class);
1220         spa->spa_log_class = NULL;
1221 
1222         /*
1223          * If this was part of an import or the open otherwise failed, we may
1224          * still have errors left in the queues.  Empty them just in case.
1225          */
1226         spa_errlog_drain(spa);
1227 
1228         avl_destroy(&spa->spa_errlist_scrub);
1229         avl_destroy(&spa->spa_errlist_last);
1230 
1231         spa->spa_state = POOL_STATE_UNINITIALIZED;
1232 
1233         mutex_enter(&spa->spa_proc_lock);
1234         if (spa->spa_proc_state != SPA_PROC_NONE) {
1235                 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1236                 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1237                 cv_broadcast(&spa->spa_proc_cv);
1238                 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1239                         ASSERT(spa->spa_proc != &p0);
1240                         cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1241                 }
1242                 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1243                 spa->spa_proc_state = SPA_PROC_NONE;
1244         }
1245         ASSERT(spa->spa_proc == &p0);
1246         mutex_exit(&spa->spa_proc_lock);
1247 
1248         /*
1249          * We want to make sure spa_thread() has actually exited the ZFS
1250          * module, so that the module can't be unloaded out from underneath
1251          * it.
1252          */
1253         if (spa->spa_did != 0) {
1254                 thread_join(spa->spa_did);
1255                 spa->spa_did = 0;
1256         }
1257 }
1258 
1259 /*
1260  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1261  * will create all the necessary vdevs in the appropriate layout, with each vdev
1262  * in the CLOSED state.  This will prep the pool before open/creation/import.
1263  * All vdev validation is done by the vdev_alloc() routine.
1264  */
1265 static int
1266 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1267     uint_t id, int atype)
1268 {
1269         nvlist_t **child;
1270         uint_t children;
1271         int error;
1272 
1273         if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1274                 return (error);
1275 
1276         if ((*vdp)->vdev_ops->vdev_op_leaf)
1277                 return (0);
1278 
1279         error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1280             &child, &children);
1281 
1282         if (error == ENOENT)
1283                 return (0);
1284 
1285         if (error) {
1286                 vdev_free(*vdp);
1287                 *vdp = NULL;
1288                 return (SET_ERROR(EINVAL));
1289         }
1290 
1291         for (int c = 0; c < children; c++) {
1292                 vdev_t *vd;
1293                 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1294                     atype)) != 0) {
1295                         vdev_free(*vdp);
1296                         *vdp = NULL;
1297                         return (error);
1298                 }
1299         }
1300 
1301         ASSERT(*vdp != NULL);
1302 
1303         return (0);
1304 }
1305 
1306 /*
1307  * Opposite of spa_load().
1308  */
1309 static void
1310 spa_unload(spa_t *spa)
1311 {
1312         int i;
1313 
1314         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1315 
1316         spa_load_note(spa, "UNLOADING");
1317 
1318         /*
1319          * Stop async tasks.
1320          */
1321         spa_async_suspend(spa);
1322 
1323         if (spa->spa_root_vdev) {
1324                 vdev_initialize_stop_all(spa->spa_root_vdev,
1325                     VDEV_INITIALIZE_ACTIVE);
1326         }
1327 
1328         /*
1329          * Stop syncing.
1330          */
1331         if (spa->spa_sync_on) {
1332                 txg_sync_stop(spa->spa_dsl_pool);
1333                 spa->spa_sync_on = B_FALSE;
1334         }
1335 
1336         /*
1337          * Even though vdev_free() also calls vdev_metaslab_fini, we need
1338          * to call it earlier, before we wait for async i/o to complete.
1339          * This ensures that there is no async metaslab prefetching, by
1340          * calling taskq_wait(mg_taskq).
1341          */
1342         if (spa->spa_root_vdev != NULL) {
1343                 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1344                 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1345                         vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1346                 spa_config_exit(spa, SCL_ALL, spa);
1347         }
1348 
1349         /*
1350          * Wait for any outstanding async I/O to complete.
1351          */
1352         if (spa->spa_async_zio_root != NULL) {
1353                 for (int i = 0; i < max_ncpus; i++)
1354                         (void) zio_wait(spa->spa_async_zio_root[i]);
1355                 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1356                 spa->spa_async_zio_root = NULL;
1357         }
1358 
1359         if (spa->spa_vdev_removal != NULL) {
1360                 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1361                 spa->spa_vdev_removal = NULL;
1362         }
1363 
1364         if (spa->spa_condense_zthr != NULL) {
1365                 ASSERT(!zthr_isrunning(spa->spa_condense_zthr));
1366                 zthr_destroy(spa->spa_condense_zthr);
1367                 spa->spa_condense_zthr = NULL;
1368         }
1369 
1370         if (spa->spa_checkpoint_discard_zthr != NULL) {
1371                 ASSERT(!zthr_isrunning(spa->spa_checkpoint_discard_zthr));
1372                 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1373                 spa->spa_checkpoint_discard_zthr = NULL;
1374         }
1375 
1376         spa_condense_fini(spa);
1377 
1378         bpobj_close(&spa->spa_deferred_bpobj);
1379 
1380         spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1381 
1382         /*
1383          * Close all vdevs.
1384          */
1385         if (spa->spa_root_vdev)
1386                 vdev_free(spa->spa_root_vdev);
1387         ASSERT(spa->spa_root_vdev == NULL);
1388 
1389         /*
1390          * Close the dsl pool.
1391          */
1392         if (spa->spa_dsl_pool) {
1393                 dsl_pool_close(spa->spa_dsl_pool);
1394                 spa->spa_dsl_pool = NULL;
1395                 spa->spa_meta_objset = NULL;
1396         }
1397 
1398         ddt_unload(spa);
1399 
1400         /*
1401          * Drop and purge level 2 cache
1402          */
1403         spa_l2cache_drop(spa);
1404 
1405         for (i = 0; i < spa->spa_spares.sav_count; i++)
1406                 vdev_free(spa->spa_spares.sav_vdevs[i]);
1407         if (spa->spa_spares.sav_vdevs) {
1408                 kmem_free(spa->spa_spares.sav_vdevs,
1409                     spa->spa_spares.sav_count * sizeof (void *));
1410                 spa->spa_spares.sav_vdevs = NULL;
1411         }
1412         if (spa->spa_spares.sav_config) {
1413                 nvlist_free(spa->spa_spares.sav_config);
1414                 spa->spa_spares.sav_config = NULL;
1415         }
1416         spa->spa_spares.sav_count = 0;
1417 
1418         for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1419                 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1420                 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1421         }
1422         if (spa->spa_l2cache.sav_vdevs) {
1423                 kmem_free(spa->spa_l2cache.sav_vdevs,
1424                     spa->spa_l2cache.sav_count * sizeof (void *));
1425                 spa->spa_l2cache.sav_vdevs = NULL;
1426         }
1427         if (spa->spa_l2cache.sav_config) {
1428                 nvlist_free(spa->spa_l2cache.sav_config);
1429                 spa->spa_l2cache.sav_config = NULL;
1430         }
1431         spa->spa_l2cache.sav_count = 0;
1432 
1433         spa->spa_async_suspended = 0;
1434 
1435         spa->spa_indirect_vdevs_loaded = B_FALSE;
1436 
1437         if (spa->spa_comment != NULL) {
1438                 spa_strfree(spa->spa_comment);
1439                 spa->spa_comment = NULL;
1440         }
1441 
1442         spa_config_exit(spa, SCL_ALL, spa);
1443 }
1444 
1445 /*
1446  * Load (or re-load) the current list of vdevs describing the active spares for
1447  * this pool.  When this is called, we have some form of basic information in
1448  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1449  * then re-generate a more complete list including status information.
1450  */
1451 void
1452 spa_load_spares(spa_t *spa)
1453 {
1454         nvlist_t **spares;
1455         uint_t nspares;
1456         int i;
1457         vdev_t *vd, *tvd;
1458 
1459 #ifndef _KERNEL
1460         /*
1461          * zdb opens both the current state of the pool and the
1462          * checkpointed state (if present), with a different spa_t.
1463          *
1464          * As spare vdevs are shared among open pools, we skip loading
1465          * them when we load the checkpointed state of the pool.
1466          */
1467         if (!spa_writeable(spa))
1468                 return;
1469 #endif
1470 
1471         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1472 
1473         /*
1474          * First, close and free any existing spare vdevs.
1475          */
1476         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1477                 vd = spa->spa_spares.sav_vdevs[i];
1478 
1479                 /* Undo the call to spa_activate() below */
1480                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1481                     B_FALSE)) != NULL && tvd->vdev_isspare)
1482                         spa_spare_remove(tvd);
1483                 vdev_close(vd);
1484                 vdev_free(vd);
1485         }
1486 
1487         if (spa->spa_spares.sav_vdevs)
1488                 kmem_free(spa->spa_spares.sav_vdevs,
1489                     spa->spa_spares.sav_count * sizeof (void *));
1490 
1491         if (spa->spa_spares.sav_config == NULL)
1492                 nspares = 0;
1493         else
1494                 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1495                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1496 
1497         spa->spa_spares.sav_count = (int)nspares;
1498         spa->spa_spares.sav_vdevs = NULL;
1499 
1500         if (nspares == 0)
1501                 return;
1502 
1503         /*
1504          * Construct the array of vdevs, opening them to get status in the
1505          * process.   For each spare, there is potentially two different vdev_t
1506          * structures associated with it: one in the list of spares (used only
1507          * for basic validation purposes) and one in the active vdev
1508          * configuration (if it's spared in).  During this phase we open and
1509          * validate each vdev on the spare list.  If the vdev also exists in the
1510          * active configuration, then we also mark this vdev as an active spare.
1511          */
1512         spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1513             KM_SLEEP);
1514         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1515                 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1516                     VDEV_ALLOC_SPARE) == 0);
1517                 ASSERT(vd != NULL);
1518 
1519                 spa->spa_spares.sav_vdevs[i] = vd;
1520 
1521                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1522                     B_FALSE)) != NULL) {
1523                         if (!tvd->vdev_isspare)
1524                                 spa_spare_add(tvd);
1525 
1526                         /*
1527                          * We only mark the spare active if we were successfully
1528                          * able to load the vdev.  Otherwise, importing a pool
1529                          * with a bad active spare would result in strange
1530                          * behavior, because multiple pool would think the spare
1531                          * is actively in use.
1532                          *
1533                          * There is a vulnerability here to an equally bizarre
1534                          * circumstance, where a dead active spare is later
1535                          * brought back to life (onlined or otherwise).  Given
1536                          * the rarity of this scenario, and the extra complexity
1537                          * it adds, we ignore the possibility.
1538                          */
1539                         if (!vdev_is_dead(tvd))
1540                                 spa_spare_activate(tvd);
1541                 }
1542 
1543                 vd->vdev_top = vd;
1544                 vd->vdev_aux = &spa->spa_spares;
1545 
1546                 if (vdev_open(vd) != 0)
1547                         continue;
1548 
1549                 if (vdev_validate_aux(vd) == 0)
1550                         spa_spare_add(vd);
1551         }
1552 
1553         /*
1554          * Recompute the stashed list of spares, with status information
1555          * this time.
1556          */
1557         VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1558             DATA_TYPE_NVLIST_ARRAY) == 0);
1559 
1560         spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1561             KM_SLEEP);
1562         for (i = 0; i < spa->spa_spares.sav_count; i++)
1563                 spares[i] = vdev_config_generate(spa,
1564                     spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1565         VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1566             ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1567         for (i = 0; i < spa->spa_spares.sav_count; i++)
1568                 nvlist_free(spares[i]);
1569         kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1570 }
1571 
1572 /*
1573  * Load (or re-load) the current list of vdevs describing the active l2cache for
1574  * this pool.  When this is called, we have some form of basic information in
1575  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1576  * then re-generate a more complete list including status information.
1577  * Devices which are already active have their details maintained, and are
1578  * not re-opened.
1579  */
1580 void
1581 spa_load_l2cache(spa_t *spa)
1582 {
1583         nvlist_t **l2cache;
1584         uint_t nl2cache;
1585         int i, j, oldnvdevs;
1586         uint64_t guid;
1587         vdev_t *vd, **oldvdevs, **newvdevs;
1588         spa_aux_vdev_t *sav = &spa->spa_l2cache;
1589 
1590 #ifndef _KERNEL
1591         /*
1592          * zdb opens both the current state of the pool and the
1593          * checkpointed state (if present), with a different spa_t.
1594          *
1595          * As L2 caches are part of the ARC which is shared among open
1596          * pools, we skip loading them when we load the checkpointed
1597          * state of the pool.
1598          */
1599         if (!spa_writeable(spa))
1600                 return;
1601 #endif
1602 
1603         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1604 
1605         if (sav->sav_config != NULL) {
1606                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1607                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1608                 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1609         } else {
1610                 nl2cache = 0;
1611                 newvdevs = NULL;
1612         }
1613 
1614         oldvdevs = sav->sav_vdevs;
1615         oldnvdevs = sav->sav_count;
1616         sav->sav_vdevs = NULL;
1617         sav->sav_count = 0;
1618 
1619         /*
1620          * Process new nvlist of vdevs.
1621          */
1622         for (i = 0; i < nl2cache; i++) {
1623                 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1624                     &guid) == 0);
1625 
1626                 newvdevs[i] = NULL;
1627                 for (j = 0; j < oldnvdevs; j++) {
1628                         vd = oldvdevs[j];
1629                         if (vd != NULL && guid == vd->vdev_guid) {
1630                                 /*
1631                                  * Retain previous vdev for add/remove ops.
1632                                  */
1633                                 newvdevs[i] = vd;
1634                                 oldvdevs[j] = NULL;
1635                                 break;
1636                         }
1637                 }
1638 
1639                 if (newvdevs[i] == NULL) {
1640                         /*
1641                          * Create new vdev
1642                          */
1643                         VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1644                             VDEV_ALLOC_L2CACHE) == 0);
1645                         ASSERT(vd != NULL);
1646                         newvdevs[i] = vd;
1647 
1648                         /*
1649                          * Commit this vdev as an l2cache device,
1650                          * even if it fails to open.
1651                          */
1652                         spa_l2cache_add(vd);
1653 
1654                         vd->vdev_top = vd;
1655                         vd->vdev_aux = sav;
1656 
1657                         spa_l2cache_activate(vd);
1658 
1659                         if (vdev_open(vd) != 0)
1660                                 continue;
1661 
1662                         (void) vdev_validate_aux(vd);
1663 
1664                         if (!vdev_is_dead(vd))
1665                                 l2arc_add_vdev(spa, vd);
1666                 }
1667         }
1668 
1669         /*
1670          * Purge vdevs that were dropped
1671          */
1672         for (i = 0; i < oldnvdevs; i++) {
1673                 uint64_t pool;
1674 
1675                 vd = oldvdevs[i];
1676                 if (vd != NULL) {
1677                         ASSERT(vd->vdev_isl2cache);
1678 
1679                         if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1680                             pool != 0ULL && l2arc_vdev_present(vd))
1681                                 l2arc_remove_vdev(vd);
1682                         vdev_clear_stats(vd);
1683                         vdev_free(vd);
1684                 }
1685         }
1686 
1687         if (oldvdevs)
1688                 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1689 
1690         if (sav->sav_config == NULL)
1691                 goto out;
1692 
1693         sav->sav_vdevs = newvdevs;
1694         sav->sav_count = (int)nl2cache;
1695 
1696         /*
1697          * Recompute the stashed list of l2cache devices, with status
1698          * information this time.
1699          */
1700         VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1701             DATA_TYPE_NVLIST_ARRAY) == 0);
1702 
1703         l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1704         for (i = 0; i < sav->sav_count; i++)
1705                 l2cache[i] = vdev_config_generate(spa,
1706                     sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1707         VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1708             ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1709 out:
1710         for (i = 0; i < sav->sav_count; i++)
1711                 nvlist_free(l2cache[i]);
1712         if (sav->sav_count)
1713                 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1714 }
1715 
1716 static int
1717 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1718 {
1719         dmu_buf_t *db;
1720         char *packed = NULL;
1721         size_t nvsize = 0;
1722         int error;
1723         *value = NULL;
1724 
1725         error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1726         if (error != 0)
1727                 return (error);
1728 
1729         nvsize = *(uint64_t *)db->db_data;
1730         dmu_buf_rele(db, FTAG);
1731 
1732         packed = kmem_alloc(nvsize, KM_SLEEP);
1733         error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1734             DMU_READ_PREFETCH);
1735         if (error == 0)
1736                 error = nvlist_unpack(packed, nvsize, value, 0);
1737         kmem_free(packed, nvsize);
1738 
1739         return (error);
1740 }
1741 
1742 /*
1743  * Concrete top-level vdevs that are not missing and are not logs. At every
1744  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1745  */
1746 static uint64_t
1747 spa_healthy_core_tvds(spa_t *spa)
1748 {
1749         vdev_t *rvd = spa->spa_root_vdev;
1750         uint64_t tvds = 0;
1751 
1752         for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1753                 vdev_t *vd = rvd->vdev_child[i];
1754                 if (vd->vdev_islog)
1755                         continue;
1756                 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1757                         tvds++;
1758         }
1759 
1760         return (tvds);
1761 }
1762 
1763 /*
1764  * Checks to see if the given vdev could not be opened, in which case we post a
1765  * sysevent to notify the autoreplace code that the device has been removed.
1766  */
1767 static void
1768 spa_check_removed(vdev_t *vd)
1769 {
1770         for (uint64_t c = 0; c < vd->vdev_children; c++)
1771                 spa_check_removed(vd->vdev_child[c]);
1772 
1773         if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1774             vdev_is_concrete(vd)) {
1775                 zfs_post_autoreplace(vd->vdev_spa, vd);
1776                 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1777         }
1778 }
1779 
1780 static int
1781 spa_check_for_missing_logs(spa_t *spa)
1782 {
1783         vdev_t *rvd = spa->spa_root_vdev;
1784 
1785         /*
1786          * If we're doing a normal import, then build up any additional
1787          * diagnostic information about missing log devices.
1788          * We'll pass this up to the user for further processing.
1789          */
1790         if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1791                 nvlist_t **child, *nv;
1792                 uint64_t idx = 0;
1793 
1794                 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1795                     KM_SLEEP);
1796                 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1797 
1798                 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1799                         vdev_t *tvd = rvd->vdev_child[c];
1800 
1801                         /*
1802                          * We consider a device as missing only if it failed
1803                          * to open (i.e. offline or faulted is not considered
1804                          * as missing).
1805                          */
1806                         if (tvd->vdev_islog &&
1807                             tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1808                                 child[idx++] = vdev_config_generate(spa, tvd,
1809                                     B_FALSE, VDEV_CONFIG_MISSING);
1810                         }
1811                 }
1812 
1813                 if (idx > 0) {
1814                         fnvlist_add_nvlist_array(nv,
1815                             ZPOOL_CONFIG_CHILDREN, child, idx);
1816                         fnvlist_add_nvlist(spa->spa_load_info,
1817                             ZPOOL_CONFIG_MISSING_DEVICES, nv);
1818 
1819                         for (uint64_t i = 0; i < idx; i++)
1820                                 nvlist_free(child[i]);
1821                 }
1822                 nvlist_free(nv);
1823                 kmem_free(child, rvd->vdev_children * sizeof (char **));
1824 
1825                 if (idx > 0) {
1826                         spa_load_failed(spa, "some log devices are missing");
1827                         vdev_dbgmsg_print_tree(rvd, 2);
1828                         return (SET_ERROR(ENXIO));
1829                 }
1830         } else {
1831                 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1832                         vdev_t *tvd = rvd->vdev_child[c];
1833 
1834                         if (tvd->vdev_islog &&
1835                             tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1836                                 spa_set_log_state(spa, SPA_LOG_CLEAR);
1837                                 spa_load_note(spa, "some log devices are "
1838                                     "missing, ZIL is dropped.");
1839                                 vdev_dbgmsg_print_tree(rvd, 2);
1840                                 break;
1841                         }
1842                 }
1843         }
1844 
1845         return (0);
1846 }
1847 
1848 /*
1849  * Check for missing log devices
1850  */
1851 static boolean_t
1852 spa_check_logs(spa_t *spa)
1853 {
1854         boolean_t rv = B_FALSE;
1855         dsl_pool_t *dp = spa_get_dsl(spa);
1856 
1857         switch (spa->spa_log_state) {
1858         case SPA_LOG_MISSING:
1859                 /* need to recheck in case slog has been restored */
1860         case SPA_LOG_UNKNOWN:
1861                 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1862                     zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1863                 if (rv)
1864                         spa_set_log_state(spa, SPA_LOG_MISSING);
1865                 break;
1866         }
1867         return (rv);
1868 }
1869 
1870 static boolean_t
1871 spa_passivate_log(spa_t *spa)
1872 {
1873         vdev_t *rvd = spa->spa_root_vdev;
1874         boolean_t slog_found = B_FALSE;
1875 
1876         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1877 
1878         if (!spa_has_slogs(spa))
1879                 return (B_FALSE);
1880 
1881         for (int c = 0; c < rvd->vdev_children; c++) {
1882                 vdev_t *tvd = rvd->vdev_child[c];
1883                 metaslab_group_t *mg = tvd->vdev_mg;
1884 
1885                 if (tvd->vdev_islog) {
1886                         metaslab_group_passivate(mg);
1887                         slog_found = B_TRUE;
1888                 }
1889         }
1890 
1891         return (slog_found);
1892 }
1893 
1894 static void
1895 spa_activate_log(spa_t *spa)
1896 {
1897         vdev_t *rvd = spa->spa_root_vdev;
1898 
1899         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1900 
1901         for (int c = 0; c < rvd->vdev_children; c++) {
1902                 vdev_t *tvd = rvd->vdev_child[c];
1903                 metaslab_group_t *mg = tvd->vdev_mg;
1904 
1905                 if (tvd->vdev_islog)
1906                         metaslab_group_activate(mg);
1907         }
1908 }
1909 
1910 int
1911 spa_reset_logs(spa_t *spa)
1912 {
1913         int error;
1914 
1915         error = dmu_objset_find(spa_name(spa), zil_reset,
1916             NULL, DS_FIND_CHILDREN);
1917         if (error == 0) {
1918                 /*
1919                  * We successfully offlined the log device, sync out the
1920                  * current txg so that the "stubby" block can be removed
1921                  * by zil_sync().
1922                  */
1923                 txg_wait_synced(spa->spa_dsl_pool, 0);
1924         }
1925         return (error);
1926 }
1927 
1928 static void
1929 spa_aux_check_removed(spa_aux_vdev_t *sav)
1930 {
1931         for (int i = 0; i < sav->sav_count; i++)
1932                 spa_check_removed(sav->sav_vdevs[i]);
1933 }
1934 
1935 void
1936 spa_claim_notify(zio_t *zio)
1937 {
1938         spa_t *spa = zio->io_spa;
1939 
1940         if (zio->io_error)
1941                 return;
1942 
1943         mutex_enter(&spa->spa_props_lock);       /* any mutex will do */
1944         if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1945                 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1946         mutex_exit(&spa->spa_props_lock);
1947 }
1948 
1949 typedef struct spa_load_error {
1950         uint64_t        sle_meta_count;
1951         uint64_t        sle_data_count;
1952 } spa_load_error_t;
1953 
1954 static void
1955 spa_load_verify_done(zio_t *zio)
1956 {
1957         blkptr_t *bp = zio->io_bp;
1958         spa_load_error_t *sle = zio->io_private;
1959         dmu_object_type_t type = BP_GET_TYPE(bp);
1960         int error = zio->io_error;
1961         spa_t *spa = zio->io_spa;
1962 
1963         abd_free(zio->io_abd);
1964         if (error) {
1965                 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1966                     type != DMU_OT_INTENT_LOG)
1967                         atomic_inc_64(&sle->sle_meta_count);
1968                 else
1969                         atomic_inc_64(&sle->sle_data_count);
1970         }
1971 
1972         mutex_enter(&spa->spa_scrub_lock);
1973         spa->spa_scrub_inflight--;
1974         cv_broadcast(&spa->spa_scrub_io_cv);
1975         mutex_exit(&spa->spa_scrub_lock);
1976 }
1977 
1978 /*
1979  * Maximum number of concurrent scrub i/os to create while verifying
1980  * a pool while importing it.
1981  */
1982 int spa_load_verify_maxinflight = 10000;
1983 boolean_t spa_load_verify_metadata = B_TRUE;
1984 boolean_t spa_load_verify_data = B_TRUE;
1985 
1986 /*ARGSUSED*/
1987 static int
1988 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1989     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1990 {
1991         if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1992                 return (0);
1993         /*
1994          * Note: normally this routine will not be called if
1995          * spa_load_verify_metadata is not set.  However, it may be useful
1996          * to manually set the flag after the traversal has begun.
1997          */
1998         if (!spa_load_verify_metadata)
1999                 return (0);
2000         if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2001                 return (0);
2002 
2003         zio_t *rio = arg;
2004         size_t size = BP_GET_PSIZE(bp);
2005 
2006         mutex_enter(&spa->spa_scrub_lock);
2007         while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
2008                 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2009         spa->spa_scrub_inflight++;
2010         mutex_exit(&spa->spa_scrub_lock);
2011 
2012         zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2013             spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2014             ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2015             ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2016         return (0);
2017 }
2018 
2019 /* ARGSUSED */
2020 int
2021 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2022 {
2023         if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2024                 return (SET_ERROR(ENAMETOOLONG));
2025 
2026         return (0);
2027 }
2028 
2029 static int
2030 spa_load_verify(spa_t *spa)
2031 {
2032         zio_t *rio;
2033         spa_load_error_t sle = { 0 };
2034         zpool_load_policy_t policy;
2035         boolean_t verify_ok = B_FALSE;
2036         int error = 0;
2037 
2038         zpool_get_load_policy(spa->spa_config, &policy);
2039 
2040         if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2041                 return (0);
2042 
2043         dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2044         error = dmu_objset_find_dp(spa->spa_dsl_pool,
2045             spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2046             DS_FIND_CHILDREN);
2047         dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2048         if (error != 0)
2049                 return (error);
2050 
2051         rio = zio_root(spa, NULL, &sle,
2052             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2053 
2054         if (spa_load_verify_metadata) {
2055                 if (spa->spa_extreme_rewind) {
2056                         spa_load_note(spa, "performing a complete scan of the "
2057                             "pool since extreme rewind is on. This may take "
2058                             "a very long time.\n  (spa_load_verify_data=%u, "
2059                             "spa_load_verify_metadata=%u)",
2060                             spa_load_verify_data, spa_load_verify_metadata);
2061                 }
2062                 error = traverse_pool(spa, spa->spa_verify_min_txg,
2063                     TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2064                     spa_load_verify_cb, rio);
2065         }
2066 
2067         (void) zio_wait(rio);
2068 
2069         spa->spa_load_meta_errors = sle.sle_meta_count;
2070         spa->spa_load_data_errors = sle.sle_data_count;
2071 
2072         if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2073                 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2074                     "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2075                     (u_longlong_t)sle.sle_data_count);
2076         }
2077 
2078         if (spa_load_verify_dryrun ||
2079             (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2080             sle.sle_data_count <= policy.zlp_maxdata)) {
2081                 int64_t loss = 0;
2082 
2083                 verify_ok = B_TRUE;
2084                 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2085                 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2086 
2087                 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2088                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2089                     ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2090                 VERIFY(nvlist_add_int64(spa->spa_load_info,
2091                     ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2092                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2093                     ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2094         } else {
2095                 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2096         }
2097 
2098         if (spa_load_verify_dryrun)
2099                 return (0);
2100 
2101         if (error) {
2102                 if (error != ENXIO && error != EIO)
2103                         error = SET_ERROR(EIO);
2104                 return (error);
2105         }
2106 
2107         return (verify_ok ? 0 : EIO);
2108 }
2109 
2110 /*
2111  * Find a value in the pool props object.
2112  */
2113 static void
2114 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2115 {
2116         (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2117             zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2118 }
2119 
2120 /*
2121  * Find a value in the pool directory object.
2122  */
2123 static int
2124 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2125 {
2126         int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2127             name, sizeof (uint64_t), 1, val);
2128 
2129         if (error != 0 && (error != ENOENT || log_enoent)) {
2130                 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2131                     "[error=%d]", name, error);
2132         }
2133 
2134         return (error);
2135 }
2136 
2137 static int
2138 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2139 {
2140         vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2141         return (SET_ERROR(err));
2142 }
2143 
2144 static void
2145 spa_spawn_aux_threads(spa_t *spa)
2146 {
2147         ASSERT(spa_writeable(spa));
2148 
2149         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2150 
2151         spa_start_indirect_condensing_thread(spa);
2152 
2153         ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2154         spa->spa_checkpoint_discard_zthr =
2155             zthr_create(spa_checkpoint_discard_thread_check,
2156             spa_checkpoint_discard_thread, spa);
2157 }
2158 
2159 /*
2160  * Fix up config after a partly-completed split.  This is done with the
2161  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2162  * pool have that entry in their config, but only the splitting one contains
2163  * a list of all the guids of the vdevs that are being split off.
2164  *
2165  * This function determines what to do with that list: either rejoin
2166  * all the disks to the pool, or complete the splitting process.  To attempt
2167  * the rejoin, each disk that is offlined is marked online again, and
2168  * we do a reopen() call.  If the vdev label for every disk that was
2169  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2170  * then we call vdev_split() on each disk, and complete the split.
2171  *
2172  * Otherwise we leave the config alone, with all the vdevs in place in
2173  * the original pool.
2174  */
2175 static void
2176 spa_try_repair(spa_t *spa, nvlist_t *config)
2177 {
2178         uint_t extracted;
2179         uint64_t *glist;
2180         uint_t i, gcount;
2181         nvlist_t *nvl;
2182         vdev_t **vd;
2183         boolean_t attempt_reopen;
2184 
2185         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2186                 return;
2187 
2188         /* check that the config is complete */
2189         if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2190             &glist, &gcount) != 0)
2191                 return;
2192 
2193         vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2194 
2195         /* attempt to online all the vdevs & validate */
2196         attempt_reopen = B_TRUE;
2197         for (i = 0; i < gcount; i++) {
2198                 if (glist[i] == 0)      /* vdev is hole */
2199                         continue;
2200 
2201                 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2202                 if (vd[i] == NULL) {
2203                         /*
2204                          * Don't bother attempting to reopen the disks;
2205                          * just do the split.
2206                          */
2207                         attempt_reopen = B_FALSE;
2208                 } else {
2209                         /* attempt to re-online it */
2210                         vd[i]->vdev_offline = B_FALSE;
2211                 }
2212         }
2213 
2214         if (attempt_reopen) {
2215                 vdev_reopen(spa->spa_root_vdev);
2216 
2217                 /* check each device to see what state it's in */
2218                 for (extracted = 0, i = 0; i < gcount; i++) {
2219                         if (vd[i] != NULL &&
2220                             vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2221                                 break;
2222                         ++extracted;
2223                 }
2224         }
2225 
2226         /*
2227          * If every disk has been moved to the new pool, or if we never
2228          * even attempted to look at them, then we split them off for
2229          * good.
2230          */
2231         if (!attempt_reopen || gcount == extracted) {
2232                 for (i = 0; i < gcount; i++)
2233                         if (vd[i] != NULL)
2234                                 vdev_split(vd[i]);
2235                 vdev_reopen(spa->spa_root_vdev);
2236         }
2237 
2238         kmem_free(vd, gcount * sizeof (vdev_t *));
2239 }
2240 
2241 static int
2242 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2243 {
2244         char *ereport = FM_EREPORT_ZFS_POOL;
2245         int error;
2246 
2247         spa->spa_load_state = state;
2248 
2249         gethrestime(&spa->spa_loaded_ts);
2250         error = spa_load_impl(spa, type, &ereport);
2251 
2252         /*
2253          * Don't count references from objsets that are already closed
2254          * and are making their way through the eviction process.
2255          */
2256         spa_evicting_os_wait(spa);
2257         spa->spa_minref = refcount_count(&spa->spa_refcount);
2258         if (error) {
2259                 if (error != EEXIST) {
2260                         spa->spa_loaded_ts.tv_sec = 0;
2261                         spa->spa_loaded_ts.tv_nsec = 0;
2262                 }
2263                 if (error != EBADF) {
2264                         zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2265                 }
2266         }
2267         spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2268         spa->spa_ena = 0;
2269 
2270         return (error);
2271 }
2272 
2273 /*
2274  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2275  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2276  * spa's per-vdev ZAP list.
2277  */
2278 static uint64_t
2279 vdev_count_verify_zaps(vdev_t *vd)
2280 {
2281         spa_t *spa = vd->vdev_spa;
2282         uint64_t total = 0;
2283         if (vd->vdev_top_zap != 0) {
2284                 total++;
2285                 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2286                     spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2287         }
2288         if (vd->vdev_leaf_zap != 0) {
2289                 total++;
2290                 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2291                     spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2292         }
2293 
2294         for (uint64_t i = 0; i < vd->vdev_children; i++) {
2295                 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2296         }
2297 
2298         return (total);
2299 }
2300 
2301 static int
2302 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2303 {
2304         uint64_t hostid;
2305         char *hostname;
2306         uint64_t myhostid = 0;
2307 
2308         if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2309             ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2310                 hostname = fnvlist_lookup_string(mos_config,
2311                     ZPOOL_CONFIG_HOSTNAME);
2312 
2313                 myhostid = zone_get_hostid(NULL);
2314 
2315                 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2316                         cmn_err(CE_WARN, "pool '%s' could not be "
2317                             "loaded as it was last accessed by "
2318                             "another system (host: %s hostid: 0x%llx). "
2319                             "See: http://illumos.org/msg/ZFS-8000-EY",
2320                             spa_name(spa), hostname, (u_longlong_t)hostid);
2321                         spa_load_failed(spa, "hostid verification failed: pool "
2322                             "last accessed by host: %s (hostid: 0x%llx)",
2323                             hostname, (u_longlong_t)hostid);
2324                         return (SET_ERROR(EBADF));
2325                 }
2326         }
2327 
2328         return (0);
2329 }
2330 
2331 static int
2332 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2333 {
2334         int error = 0;
2335         nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2336         int parse;
2337         vdev_t *rvd;
2338         uint64_t pool_guid;
2339         char *comment;
2340 
2341         /*
2342          * Versioning wasn't explicitly added to the label until later, so if
2343          * it's not present treat it as the initial version.
2344          */
2345         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2346             &spa->spa_ubsync.ub_version) != 0)
2347                 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2348 
2349         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2350                 spa_load_failed(spa, "invalid config provided: '%s' missing",
2351                     ZPOOL_CONFIG_POOL_GUID);
2352                 return (SET_ERROR(EINVAL));
2353         }
2354 
2355         /*
2356          * If we are doing an import, ensure that the pool is not already
2357          * imported by checking if its pool guid already exists in the
2358          * spa namespace.
2359          *
2360          * The only case that we allow an already imported pool to be
2361          * imported again, is when the pool is checkpointed and we want to
2362          * look at its checkpointed state from userland tools like zdb.
2363          */
2364 #ifdef _KERNEL
2365         if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2366             spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2367             spa_guid_exists(pool_guid, 0)) {
2368 #else
2369         if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2370             spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2371             spa_guid_exists(pool_guid, 0) &&
2372             !spa_importing_readonly_checkpoint(spa)) {
2373 #endif
2374                 spa_load_failed(spa, "a pool with guid %llu is already open",
2375                     (u_longlong_t)pool_guid);
2376                 return (SET_ERROR(EEXIST));
2377         }
2378 
2379         spa->spa_config_guid = pool_guid;
2380 
2381         nvlist_free(spa->spa_load_info);
2382         spa->spa_load_info = fnvlist_alloc();
2383 
2384         ASSERT(spa->spa_comment == NULL);
2385         if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2386                 spa->spa_comment = spa_strdup(comment);
2387 
2388         (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2389             &spa->spa_config_txg);
2390 
2391         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2392                 spa->spa_config_splitting = fnvlist_dup(nvl);
2393 
2394         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2395                 spa_load_failed(spa, "invalid config provided: '%s' missing",
2396                     ZPOOL_CONFIG_VDEV_TREE);
2397                 return (SET_ERROR(EINVAL));
2398         }
2399 
2400         /*
2401          * Create "The Godfather" zio to hold all async IOs
2402          */
2403         spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2404             KM_SLEEP);
2405         for (int i = 0; i < max_ncpus; i++) {
2406                 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2407                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2408                     ZIO_FLAG_GODFATHER);
2409         }
2410 
2411         /*
2412          * Parse the configuration into a vdev tree.  We explicitly set the
2413          * value that will be returned by spa_version() since parsing the
2414          * configuration requires knowing the version number.
2415          */
2416         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2417         parse = (type == SPA_IMPORT_EXISTING ?
2418             VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2419         error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2420         spa_config_exit(spa, SCL_ALL, FTAG);
2421 
2422         if (error != 0) {
2423                 spa_load_failed(spa, "unable to parse config [error=%d]",
2424                     error);
2425                 return (error);
2426         }
2427 
2428         ASSERT(spa->spa_root_vdev == rvd);
2429         ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2430         ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2431 
2432         if (type != SPA_IMPORT_ASSEMBLE) {
2433                 ASSERT(spa_guid(spa) == pool_guid);
2434         }
2435 
2436         return (0);
2437 }
2438 
2439 /*
2440  * Recursively open all vdevs in the vdev tree. This function is called twice:
2441  * first with the untrusted config, then with the trusted config.
2442  */
2443 static int
2444 spa_ld_open_vdevs(spa_t *spa)
2445 {
2446         int error = 0;
2447 
2448         /*
2449          * spa_missing_tvds_allowed defines how many top-level vdevs can be
2450          * missing/unopenable for the root vdev to be still considered openable.
2451          */
2452         if (spa->spa_trust_config) {
2453                 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2454         } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2455                 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2456         } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2457                 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2458         } else {
2459                 spa->spa_missing_tvds_allowed = 0;
2460         }
2461 
2462         spa->spa_missing_tvds_allowed =
2463             MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2464 
2465         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2466         error = vdev_open(spa->spa_root_vdev);
2467         spa_config_exit(spa, SCL_ALL, FTAG);
2468 
2469         if (spa->spa_missing_tvds != 0) {
2470                 spa_load_note(spa, "vdev tree has %lld missing top-level "
2471                     "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2472                 if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2473                         /*
2474                          * Although theoretically we could allow users to open
2475                          * incomplete pools in RW mode, we'd need to add a lot
2476                          * of extra logic (e.g. adjust pool space to account
2477                          * for missing vdevs).
2478                          * This limitation also prevents users from accidentally
2479                          * opening the pool in RW mode during data recovery and
2480                          * damaging it further.
2481                          */
2482                         spa_load_note(spa, "pools with missing top-level "
2483                             "vdevs can only be opened in read-only mode.");
2484                         error = SET_ERROR(ENXIO);
2485                 } else {
2486                         spa_load_note(spa, "current settings allow for maximum "
2487                             "%lld missing top-level vdevs at this stage.",
2488                             (u_longlong_t)spa->spa_missing_tvds_allowed);
2489                 }
2490         }
2491         if (error != 0) {
2492                 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2493                     error);
2494         }
2495         if (spa->spa_missing_tvds != 0 || error != 0)
2496                 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2497 
2498         return (error);
2499 }
2500 
2501 /*
2502  * We need to validate the vdev labels against the configuration that
2503  * we have in hand. This function is called twice: first with an untrusted
2504  * config, then with a trusted config. The validation is more strict when the
2505  * config is trusted.
2506  */
2507 static int
2508 spa_ld_validate_vdevs(spa_t *spa)
2509 {
2510         int error = 0;
2511         vdev_t *rvd = spa->spa_root_vdev;
2512 
2513         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2514         error = vdev_validate(rvd);
2515         spa_config_exit(spa, SCL_ALL, FTAG);
2516 
2517         if (error != 0) {
2518                 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2519                 return (error);
2520         }
2521 
2522         if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2523                 spa_load_failed(spa, "cannot open vdev tree after invalidating "
2524                     "some vdevs");
2525                 vdev_dbgmsg_print_tree(rvd, 2);
2526                 return (SET_ERROR(ENXIO));
2527         }
2528 
2529         return (0);
2530 }
2531 
2532 static void
2533 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2534 {
2535         spa->spa_state = POOL_STATE_ACTIVE;
2536         spa->spa_ubsync = spa->spa_uberblock;
2537         spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2538             TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2539         spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2540             spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2541         spa->spa_claim_max_txg = spa->spa_first_txg;
2542         spa->spa_prev_software_version = ub->ub_software_version;
2543 }
2544 
2545 static int
2546 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2547 {
2548         vdev_t *rvd = spa->spa_root_vdev;
2549         nvlist_t *label;
2550         uberblock_t *ub = &spa->spa_uberblock;
2551 
2552         /*
2553          * If we are opening the checkpointed state of the pool by
2554          * rewinding to it, at this point we will have written the
2555          * checkpointed uberblock to the vdev labels, so searching
2556          * the labels will find the right uberblock.  However, if
2557          * we are opening the checkpointed state read-only, we have
2558          * not modified the labels. Therefore, we must ignore the
2559          * labels and continue using the spa_uberblock that was set
2560          * by spa_ld_checkpoint_rewind.
2561          *
2562          * Note that it would be fine to ignore the labels when
2563          * rewinding (opening writeable) as well. However, if we
2564          * crash just after writing the labels, we will end up
2565          * searching the labels. Doing so in the common case means
2566          * that this code path gets exercised normally, rather than
2567          * just in the edge case.
2568          */
2569         if (ub->ub_checkpoint_txg != 0 &&
2570             spa_importing_readonly_checkpoint(spa)) {
2571                 spa_ld_select_uberblock_done(spa, ub);
2572                 return (0);
2573         }
2574 
2575         /*
2576          * Find the best uberblock.
2577          */
2578         vdev_uberblock_load(rvd, ub, &label);
2579 
2580         /*
2581          * If we weren't able to find a single valid uberblock, return failure.
2582          */
2583         if (ub->ub_txg == 0) {
2584                 nvlist_free(label);
2585                 spa_load_failed(spa, "no valid uberblock found");
2586                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2587         }
2588 
2589         spa_load_note(spa, "using uberblock with txg=%llu",
2590             (u_longlong_t)ub->ub_txg);
2591 
2592         /*
2593          * If the pool has an unsupported version we can't open it.
2594          */
2595         if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2596                 nvlist_free(label);
2597                 spa_load_failed(spa, "version %llu is not supported",
2598                     (u_longlong_t)ub->ub_version);
2599                 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2600         }
2601 
2602         if (ub->ub_version >= SPA_VERSION_FEATURES) {
2603                 nvlist_t *features;
2604 
2605                 /*
2606                  * If we weren't able to find what's necessary for reading the
2607                  * MOS in the label, return failure.
2608                  */
2609                 if (label == NULL) {
2610                         spa_load_failed(spa, "label config unavailable");
2611                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2612                             ENXIO));
2613                 }
2614 
2615                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2616                     &features) != 0) {
2617                         nvlist_free(label);
2618                         spa_load_failed(spa, "invalid label: '%s' missing",
2619                             ZPOOL_CONFIG_FEATURES_FOR_READ);
2620                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2621                             ENXIO));
2622                 }
2623 
2624                 /*
2625                  * Update our in-core representation with the definitive values
2626                  * from the label.
2627                  */
2628                 nvlist_free(spa->spa_label_features);
2629                 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2630         }
2631 
2632         nvlist_free(label);
2633 
2634         /*
2635          * Look through entries in the label nvlist's features_for_read. If
2636          * there is a feature listed there which we don't understand then we
2637          * cannot open a pool.
2638          */
2639         if (ub->ub_version >= SPA_VERSION_FEATURES) {
2640                 nvlist_t *unsup_feat;
2641 
2642                 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2643                     0);
2644 
2645                 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2646                     NULL); nvp != NULL;
2647                     nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2648                         if (!zfeature_is_supported(nvpair_name(nvp))) {
2649                                 VERIFY(nvlist_add_string(unsup_feat,
2650                                     nvpair_name(nvp), "") == 0);
2651                         }
2652                 }
2653 
2654                 if (!nvlist_empty(unsup_feat)) {
2655                         VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2656                             ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2657                         nvlist_free(unsup_feat);
2658                         spa_load_failed(spa, "some features are unsupported");
2659                         return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2660                             ENOTSUP));
2661                 }
2662 
2663                 nvlist_free(unsup_feat);
2664         }
2665 
2666         if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2667                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2668                 spa_try_repair(spa, spa->spa_config);
2669                 spa_config_exit(spa, SCL_ALL, FTAG);
2670                 nvlist_free(spa->spa_config_splitting);
2671                 spa->spa_config_splitting = NULL;
2672         }
2673 
2674         /*
2675          * Initialize internal SPA structures.
2676          */
2677         spa_ld_select_uberblock_done(spa, ub);
2678 
2679         return (0);
2680 }
2681 
2682 static int
2683 spa_ld_open_rootbp(spa_t *spa)
2684 {
2685         int error = 0;
2686         vdev_t *rvd = spa->spa_root_vdev;
2687 
2688         error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2689         if (error != 0) {
2690                 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
2691                     "[error=%d]", error);
2692                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2693         }
2694         spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2695 
2696         return (0);
2697 }
2698 
2699 static int
2700 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
2701     boolean_t reloading)
2702 {
2703         vdev_t *mrvd, *rvd = spa->spa_root_vdev;
2704         nvlist_t *nv, *mos_config, *policy;
2705         int error = 0, copy_error;
2706         uint64_t healthy_tvds, healthy_tvds_mos;
2707         uint64_t mos_config_txg;
2708 
2709         if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
2710             != 0)
2711                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2712 
2713         /*
2714          * If we're assembling a pool from a split, the config provided is
2715          * already trusted so there is nothing to do.
2716          */
2717         if (type == SPA_IMPORT_ASSEMBLE)
2718                 return (0);
2719 
2720         healthy_tvds = spa_healthy_core_tvds(spa);
2721 
2722         if (load_nvlist(spa, spa->spa_config_object, &mos_config)
2723             != 0) {
2724                 spa_load_failed(spa, "unable to retrieve MOS config");
2725                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2726         }
2727 
2728         /*
2729          * If we are doing an open, pool owner wasn't verified yet, thus do
2730          * the verification here.
2731          */
2732         if (spa->spa_load_state == SPA_LOAD_OPEN) {
2733                 error = spa_verify_host(spa, mos_config);
2734                 if (error != 0) {
2735                         nvlist_free(mos_config);
2736                         return (error);
2737                 }
2738         }
2739 
2740         nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
2741 
2742         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2743 
2744         /*
2745          * Build a new vdev tree from the trusted config
2746          */
2747         VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
2748 
2749         /*
2750          * Vdev paths in the MOS may be obsolete. If the untrusted config was
2751          * obtained by scanning /dev/dsk, then it will have the right vdev
2752          * paths. We update the trusted MOS config with this information.
2753          * We first try to copy the paths with vdev_copy_path_strict, which
2754          * succeeds only when both configs have exactly the same vdev tree.
2755          * If that fails, we fall back to a more flexible method that has a
2756          * best effort policy.
2757          */
2758         copy_error = vdev_copy_path_strict(rvd, mrvd);
2759         if (copy_error != 0 || spa_load_print_vdev_tree) {
2760                 spa_load_note(spa, "provided vdev tree:");
2761                 vdev_dbgmsg_print_tree(rvd, 2);
2762                 spa_load_note(spa, "MOS vdev tree:");
2763                 vdev_dbgmsg_print_tree(mrvd, 2);
2764         }
2765         if (copy_error != 0) {
2766                 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
2767                     "back to vdev_copy_path_relaxed");
2768                 vdev_copy_path_relaxed(rvd, mrvd);
2769         }
2770 
2771         vdev_close(rvd);
2772         vdev_free(rvd);
2773         spa->spa_root_vdev = mrvd;
2774         rvd = mrvd;
2775         spa_config_exit(spa, SCL_ALL, FTAG);
2776 
2777         /*
2778          * We will use spa_config if we decide to reload the spa or if spa_load
2779          * fails and we rewind. We must thus regenerate the config using the
2780          * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
2781          * pass settings on how to load the pool and is not stored in the MOS.
2782          * We copy it over to our new, trusted config.
2783          */
2784         mos_config_txg = fnvlist_lookup_uint64(mos_config,
2785             ZPOOL_CONFIG_POOL_TXG);
2786         nvlist_free(mos_config);
2787         mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
2788         if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
2789             &policy) == 0)
2790                 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
2791         spa_config_set(spa, mos_config);
2792         spa->spa_config_source = SPA_CONFIG_SRC_MOS;
2793 
2794         /*
2795          * Now that we got the config from the MOS, we should be more strict
2796          * in checking blkptrs and can make assumptions about the consistency
2797          * of the vdev tree. spa_trust_config must be set to true before opening
2798          * vdevs in order for them to be writeable.
2799          */
2800         spa->spa_trust_config = B_TRUE;
2801 
2802         /*
2803          * Open and validate the new vdev tree
2804          */
2805         error = spa_ld_open_vdevs(spa);
2806         if (error != 0)
2807                 return (error);
2808 
2809         error = spa_ld_validate_vdevs(spa);
2810         if (error != 0)
2811                 return (error);
2812 
2813         if (copy_error != 0 || spa_load_print_vdev_tree) {
2814                 spa_load_note(spa, "final vdev tree:");
2815                 vdev_dbgmsg_print_tree(rvd, 2);
2816         }
2817 
2818         if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
2819             !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
2820                 /*
2821                  * Sanity check to make sure that we are indeed loading the
2822                  * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
2823                  * in the config provided and they happened to be the only ones
2824                  * to have the latest uberblock, we could involuntarily perform
2825                  * an extreme rewind.
2826                  */
2827                 healthy_tvds_mos = spa_healthy_core_tvds(spa);
2828                 if (healthy_tvds_mos - healthy_tvds >=
2829                     SPA_SYNC_MIN_VDEVS) {
2830                         spa_load_note(spa, "config provided misses too many "
2831                             "top-level vdevs compared to MOS (%lld vs %lld). ",
2832                             (u_longlong_t)healthy_tvds,
2833                             (u_longlong_t)healthy_tvds_mos);
2834                         spa_load_note(spa, "vdev tree:");
2835                         vdev_dbgmsg_print_tree(rvd, 2);
2836                         if (reloading) {
2837                                 spa_load_failed(spa, "config was already "
2838                                     "provided from MOS. Aborting.");
2839                                 return (spa_vdev_err(rvd,
2840                                     VDEV_AUX_CORRUPT_DATA, EIO));
2841                         }
2842                         spa_load_note(spa, "spa must be reloaded using MOS "
2843                             "config");
2844                         return (SET_ERROR(EAGAIN));
2845                 }
2846         }
2847 
2848         error = spa_check_for_missing_logs(spa);
2849         if (error != 0)
2850                 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2851 
2852         if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
2853                 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
2854                     "guid sum (%llu != %llu)",
2855                     (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
2856                     (u_longlong_t)rvd->vdev_guid_sum);
2857                 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2858                     ENXIO));
2859         }
2860 
2861         return (0);
2862 }
2863 
2864 static int
2865 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
2866 {
2867         int error = 0;
2868         vdev_t *rvd = spa->spa_root_vdev;
2869 
2870         /*
2871          * Everything that we read before spa_remove_init() must be stored
2872          * on concreted vdevs.  Therefore we do this as early as possible.
2873          */
2874         error = spa_remove_init(spa);
2875         if (error != 0) {
2876                 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
2877                     error);
2878                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2879         }
2880 
2881         /*
2882          * Retrieve information needed to condense indirect vdev mappings.
2883          */
2884         error = spa_condense_init(spa);
2885         if (error != 0) {
2886                 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
2887                     error);
2888                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
2889         }
2890 
2891         return (0);
2892 }
2893 
2894 static int
2895 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
2896 {
2897         int error = 0;
2898         vdev_t *rvd = spa->spa_root_vdev;
2899 
2900         if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2901                 boolean_t missing_feat_read = B_FALSE;
2902                 nvlist_t *unsup_feat, *enabled_feat;
2903 
2904                 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2905                     &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
2906                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2907                 }
2908 
2909                 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2910                     &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
2911                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2912                 }
2913 
2914                 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2915                     &spa->spa_feat_desc_obj, B_TRUE) != 0) {
2916                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2917                 }
2918 
2919                 enabled_feat = fnvlist_alloc();
2920                 unsup_feat = fnvlist_alloc();
2921 
2922                 if (!spa_features_check(spa, B_FALSE,
2923                     unsup_feat, enabled_feat))
2924                         missing_feat_read = B_TRUE;
2925 
2926                 if (spa_writeable(spa) ||
2927                     spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
2928                         if (!spa_features_check(spa, B_TRUE,
2929                             unsup_feat, enabled_feat)) {
2930                                 *missing_feat_writep = B_TRUE;
2931                         }
2932                 }
2933 
2934                 fnvlist_add_nvlist(spa->spa_load_info,
2935                     ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2936 
2937                 if (!nvlist_empty(unsup_feat)) {
2938                         fnvlist_add_nvlist(spa->spa_load_info,
2939                             ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2940                 }
2941 
2942                 fnvlist_free(enabled_feat);
2943                 fnvlist_free(unsup_feat);
2944 
2945                 if (!missing_feat_read) {
2946                         fnvlist_add_boolean(spa->spa_load_info,
2947                             ZPOOL_CONFIG_CAN_RDONLY);
2948                 }
2949 
2950                 /*
2951                  * If the state is SPA_LOAD_TRYIMPORT, our objective is
2952                  * twofold: to determine whether the pool is available for
2953                  * import in read-write mode and (if it is not) whether the
2954                  * pool is available for import in read-only mode. If the pool
2955                  * is available for import in read-write mode, it is displayed
2956                  * as available in userland; if it is not available for import
2957                  * in read-only mode, it is displayed as unavailable in
2958                  * userland. If the pool is available for import in read-only
2959                  * mode but not read-write mode, it is displayed as unavailable
2960                  * in userland with a special note that the pool is actually
2961                  * available for open in read-only mode.
2962                  *
2963                  * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2964                  * missing a feature for write, we must first determine whether
2965                  * the pool can be opened read-only before returning to
2966                  * userland in order to know whether to display the
2967                  * abovementioned note.
2968                  */
2969                 if (missing_feat_read || (*missing_feat_writep &&
2970                     spa_writeable(spa))) {
2971                         spa_load_failed(spa, "pool uses unsupported features");
2972                         return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2973                             ENOTSUP));
2974                 }
2975 
2976                 /*
2977                  * Load refcounts for ZFS features from disk into an in-memory
2978                  * cache during SPA initialization.
2979                  */
2980                 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2981                         uint64_t refcount;
2982 
2983                         error = feature_get_refcount_from_disk(spa,
2984                             &spa_feature_table[i], &refcount);
2985                         if (error == 0) {
2986                                 spa->spa_feat_refcount_cache[i] = refcount;
2987                         } else if (error == ENOTSUP) {
2988                                 spa->spa_feat_refcount_cache[i] =
2989                                     SPA_FEATURE_DISABLED;
2990                         } else {
2991                                 spa_load_failed(spa, "error getting refcount "
2992                                     "for feature %s [error=%d]",
2993                                     spa_feature_table[i].fi_guid, error);
2994                                 return (spa_vdev_err(rvd,
2995                                     VDEV_AUX_CORRUPT_DATA, EIO));
2996                         }
2997                 }
2998         }
2999 
3000         if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3001                 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3002                     &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3003                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3004         }
3005 
3006         return (0);
3007 }
3008 
3009 static int
3010 spa_ld_load_special_directories(spa_t *spa)
3011 {
3012         int error = 0;
3013         vdev_t *rvd = spa->spa_root_vdev;
3014 
3015         spa->spa_is_initializing = B_TRUE;
3016         error = dsl_pool_open(spa->spa_dsl_pool);
3017         spa->spa_is_initializing = B_FALSE;
3018         if (error != 0) {
3019                 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3020                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3021         }
3022 
3023         return (0);
3024 }
3025 
3026 static int
3027 spa_ld_get_props(spa_t *spa)
3028 {
3029         int error = 0;
3030         uint64_t obj;
3031         vdev_t *rvd = spa->spa_root_vdev;
3032 
3033         /* Grab the secret checksum salt from the MOS. */
3034         error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3035             DMU_POOL_CHECKSUM_SALT, 1,
3036             sizeof (spa->spa_cksum_salt.zcs_bytes),
3037             spa->spa_cksum_salt.zcs_bytes);
3038         if (error == ENOENT) {
3039                 /* Generate a new salt for subsequent use */
3040                 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3041                     sizeof (spa->spa_cksum_salt.zcs_bytes));
3042         } else if (error != 0) {
3043                 spa_load_failed(spa, "unable to retrieve checksum salt from "
3044                     "MOS [error=%d]", error);
3045                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3046         }
3047 
3048         if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3049                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3050         error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3051         if (error != 0) {
3052                 spa_load_failed(spa, "error opening deferred-frees bpobj "
3053                     "[error=%d]", error);
3054                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3055         }
3056 
3057         /*
3058          * Load the bit that tells us to use the new accounting function
3059          * (raid-z deflation).  If we have an older pool, this will not
3060          * be present.
3061          */
3062         error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3063         if (error != 0 && error != ENOENT)
3064                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3065 
3066         error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3067             &spa->spa_creation_version, B_FALSE);
3068         if (error != 0 && error != ENOENT)
3069                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3070 
3071         /*
3072          * Load the persistent error log.  If we have an older pool, this will
3073          * not be present.
3074          */
3075         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3076             B_FALSE);
3077         if (error != 0 && error != ENOENT)
3078                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3079 
3080         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3081             &spa->spa_errlog_scrub, B_FALSE);
3082         if (error != 0 && error != ENOENT)
3083                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3084 
3085         /*
3086          * Load the history object.  If we have an older pool, this
3087          * will not be present.
3088          */
3089         error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3090         if (error != 0 && error != ENOENT)
3091                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3092 
3093         /*
3094          * Load the per-vdev ZAP map. If we have an older pool, this will not
3095          * be present; in this case, defer its creation to a later time to
3096          * avoid dirtying the MOS this early / out of sync context. See
3097          * spa_sync_config_object.
3098          */
3099 
3100         /* The sentinel is only available in the MOS config. */
3101         nvlist_t *mos_config;
3102         if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3103                 spa_load_failed(spa, "unable to retrieve MOS config");
3104                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3105         }
3106 
3107         error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3108             &spa->spa_all_vdev_zaps, B_FALSE);
3109 
3110         if (error == ENOENT) {
3111                 VERIFY(!nvlist_exists(mos_config,
3112                     ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3113                 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3114                 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3115         } else if (error != 0) {
3116                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3117         } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3118                 /*
3119                  * An older version of ZFS overwrote the sentinel value, so
3120                  * we have orphaned per-vdev ZAPs in the MOS. Defer their
3121                  * destruction to later; see spa_sync_config_object.
3122                  */
3123                 spa->spa_avz_action = AVZ_ACTION_DESTROY;
3124                 /*
3125                  * We're assuming that no vdevs have had their ZAPs created
3126                  * before this. Better be sure of it.
3127                  */
3128                 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3129         }
3130         nvlist_free(mos_config);
3131 
3132         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3133 
3134         error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3135             B_FALSE);
3136         if (error && error != ENOENT)
3137                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3138 
3139         if (error == 0) {
3140                 uint64_t autoreplace;
3141 
3142                 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3143                 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3144                 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3145                 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3146                 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3147                 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3148                     &spa->spa_dedup_ditto);
3149 
3150                 spa->spa_autoreplace = (autoreplace != 0);
3151         }
3152 
3153         /*
3154          * If we are importing a pool with missing top-level vdevs,
3155          * we enforce that the pool doesn't panic or get suspended on
3156          * error since the likelihood of missing data is extremely high.
3157          */
3158         if (spa->spa_missing_tvds > 0 &&
3159             spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3160             spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3161                 spa_load_note(spa, "forcing failmode to 'continue' "
3162                     "as some top level vdevs are missing");
3163                 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3164         }
3165 
3166         return (0);
3167 }
3168 
3169 static int
3170 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3171 {
3172         int error = 0;
3173         vdev_t *rvd = spa->spa_root_vdev;
3174 
3175         /*
3176          * If we're assembling the pool from the split-off vdevs of
3177          * an existing pool, we don't want to attach the spares & cache
3178          * devices.
3179          */
3180 
3181         /*
3182          * Load any hot spares for this pool.
3183          */
3184         error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3185             B_FALSE);
3186         if (error != 0 && error != ENOENT)
3187                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3188         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3189                 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3190                 if (load_nvlist(spa, spa->spa_spares.sav_object,
3191                     &spa->spa_spares.sav_config) != 0) {
3192                         spa_load_failed(spa, "error loading spares nvlist");
3193                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3194                 }
3195 
3196                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3197                 spa_load_spares(spa);
3198                 spa_config_exit(spa, SCL_ALL, FTAG);
3199         } else if (error == 0) {
3200                 spa->spa_spares.sav_sync = B_TRUE;
3201         }
3202 
3203         /*
3204          * Load any level 2 ARC devices for this pool.
3205          */
3206         error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3207             &spa->spa_l2cache.sav_object, B_FALSE);
3208         if (error != 0 && error != ENOENT)
3209                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3210         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3211                 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3212                 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3213                     &spa->spa_l2cache.sav_config) != 0) {
3214                         spa_load_failed(spa, "error loading l2cache nvlist");
3215                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3216                 }
3217 
3218                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3219                 spa_load_l2cache(spa);
3220                 spa_config_exit(spa, SCL_ALL, FTAG);
3221         } else if (error == 0) {
3222                 spa->spa_l2cache.sav_sync = B_TRUE;
3223         }
3224 
3225         return (0);
3226 }
3227 
3228 static int
3229 spa_ld_load_vdev_metadata(spa_t *spa)
3230 {
3231         int error = 0;
3232         vdev_t *rvd = spa->spa_root_vdev;
3233 
3234         /*
3235          * If the 'autoreplace' property is set, then post a resource notifying
3236          * the ZFS DE that it should not issue any faults for unopenable
3237          * devices.  We also iterate over the vdevs, and post a sysevent for any
3238          * unopenable vdevs so that the normal autoreplace handler can take
3239          * over.
3240          */
3241         if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3242                 spa_check_removed(spa->spa_root_vdev);
3243                 /*
3244                  * For the import case, this is done in spa_import(), because
3245                  * at this point we're using the spare definitions from
3246                  * the MOS config, not necessarily from the userland config.
3247                  */
3248                 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3249                         spa_aux_check_removed(&spa->spa_spares);
3250                         spa_aux_check_removed(&spa->spa_l2cache);
3251                 }
3252         }
3253 
3254         /*
3255          * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3256          */
3257         error = vdev_load(rvd);
3258         if (error != 0) {
3259                 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3260                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3261         }
3262 
3263         /*
3264          * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3265          */
3266         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3267         vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3268         spa_config_exit(spa, SCL_ALL, FTAG);
3269 
3270         return (0);
3271 }
3272 
3273 static int
3274 spa_ld_load_dedup_tables(spa_t *spa)
3275 {
3276         int error = 0;
3277         vdev_t *rvd = spa->spa_root_vdev;
3278 
3279         error = ddt_load(spa);
3280         if (error != 0) {
3281                 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3282                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3283         }
3284 
3285         return (0);
3286 }
3287 
3288 static int
3289 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3290 {
3291         vdev_t *rvd = spa->spa_root_vdev;
3292 
3293         if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3294                 boolean_t missing = spa_check_logs(spa);
3295                 if (missing) {
3296                         if (spa->spa_missing_tvds != 0) {
3297                                 spa_load_note(spa, "spa_check_logs failed "
3298                                     "so dropping the logs");
3299                         } else {
3300                                 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3301                                 spa_load_failed(spa, "spa_check_logs failed");
3302                                 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3303                                     ENXIO));
3304                         }
3305                 }
3306         }
3307 
3308         return (0);
3309 }
3310 
3311 static int
3312 spa_ld_verify_pool_data(spa_t *spa)
3313 {
3314         int error = 0;
3315         vdev_t *rvd = spa->spa_root_vdev;
3316 
3317         /*
3318          * We've successfully opened the pool, verify that we're ready
3319          * to start pushing transactions.
3320          */
3321         if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3322                 error = spa_load_verify(spa);
3323                 if (error != 0) {
3324                         spa_load_failed(spa, "spa_load_verify failed "
3325                             "[error=%d]", error);
3326                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3327                             error));
3328                 }
3329         }
3330 
3331         return (0);
3332 }
3333 
3334 static void
3335 spa_ld_claim_log_blocks(spa_t *spa)
3336 {
3337         dmu_tx_t *tx;
3338         dsl_pool_t *dp = spa_get_dsl(spa);
3339 
3340         /*
3341          * Claim log blocks that haven't been committed yet.
3342          * This must all happen in a single txg.
3343          * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3344          * invoked from zil_claim_log_block()'s i/o done callback.
3345          * Price of rollback is that we abandon the log.
3346          */
3347         spa->spa_claiming = B_TRUE;
3348 
3349         tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3350         (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3351             zil_claim, tx, DS_FIND_CHILDREN);
3352         dmu_tx_commit(tx);
3353 
3354         spa->spa_claiming = B_FALSE;
3355 
3356         spa_set_log_state(spa, SPA_LOG_GOOD);
3357 }
3358 
3359 static void
3360 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3361     boolean_t update_config_cache)
3362 {
3363         vdev_t *rvd = spa->spa_root_vdev;
3364         int need_update = B_FALSE;
3365 
3366         /*
3367          * If the config cache is stale, or we have uninitialized
3368          * metaslabs (see spa_vdev_add()), then update the config.
3369          *
3370          * If this is a verbatim import, trust the current
3371          * in-core spa_config and update the disk labels.
3372          */
3373         if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3374             spa->spa_load_state == SPA_LOAD_IMPORT ||
3375             spa->spa_load_state == SPA_LOAD_RECOVER ||
3376             (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3377                 need_update = B_TRUE;
3378 
3379         for (int c = 0; c < rvd->vdev_children; c++)
3380                 if (rvd->vdev_child[c]->vdev_ms_array == 0)
3381                         need_update = B_TRUE;
3382 
3383         /*
3384          * Update the config cache asychronously in case we're the
3385          * root pool, in which case the config cache isn't writable yet.
3386          */
3387         if (need_update)
3388                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3389 }
3390 
3391 static void
3392 spa_ld_prepare_for_reload(spa_t *spa)
3393 {
3394         int mode = spa->spa_mode;
3395         int async_suspended = spa->spa_async_suspended;
3396 
3397         spa_unload(spa);
3398         spa_deactivate(spa);
3399         spa_activate(spa, mode);
3400 
3401         /*
3402          * We save the value of spa_async_suspended as it gets reset to 0 by
3403          * spa_unload(). We want to restore it back to the original value before
3404          * returning as we might be calling spa_async_resume() later.
3405          */
3406         spa->spa_async_suspended = async_suspended;
3407 }
3408 
3409 static int
3410 spa_ld_read_checkpoint_txg(spa_t *spa)
3411 {
3412         uberblock_t checkpoint;
3413         int error = 0;
3414 
3415         ASSERT0(spa->spa_checkpoint_txg);
3416         ASSERT(MUTEX_HELD(&spa_namespace_lock));
3417 
3418         error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3419             DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3420             sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3421 
3422         if (error == ENOENT)
3423                 return (0);
3424 
3425         if (error != 0)
3426                 return (error);
3427 
3428         ASSERT3U(checkpoint.ub_txg, !=, 0);
3429         ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3430         ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3431         spa->spa_checkpoint_txg = checkpoint.ub_txg;
3432         spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3433 
3434         return (0);
3435 }
3436 
3437 static int
3438 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3439 {
3440         int error = 0;
3441 
3442         ASSERT(MUTEX_HELD(&spa_namespace_lock));
3443         ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3444 
3445         /*
3446          * Never trust the config that is provided unless we are assembling
3447          * a pool following a split.
3448          * This means don't trust blkptrs and the vdev tree in general. This
3449          * also effectively puts the spa in read-only mode since
3450          * spa_writeable() checks for spa_trust_config to be true.
3451          * We will later load a trusted config from the MOS.
3452          */
3453         if (type != SPA_IMPORT_ASSEMBLE)
3454                 spa->spa_trust_config = B_FALSE;
3455 
3456         /*
3457          * Parse the config provided to create a vdev tree.
3458          */
3459         error = spa_ld_parse_config(spa, type);
3460         if (error != 0)
3461                 return (error);
3462 
3463         /*
3464          * Now that we have the vdev tree, try to open each vdev. This involves
3465          * opening the underlying physical device, retrieving its geometry and
3466          * probing the vdev with a dummy I/O. The state of each vdev will be set
3467          * based on the success of those operations. After this we'll be ready
3468          * to read from the vdevs.
3469          */
3470         error = spa_ld_open_vdevs(spa);
3471         if (error != 0)
3472                 return (error);
3473 
3474         /*
3475          * Read the label of each vdev and make sure that the GUIDs stored
3476          * there match the GUIDs in the config provided.
3477          * If we're assembling a new pool that's been split off from an
3478          * existing pool, the labels haven't yet been updated so we skip
3479          * validation for now.
3480          */
3481         if (type != SPA_IMPORT_ASSEMBLE) {
3482                 error = spa_ld_validate_vdevs(spa);
3483                 if (error != 0)
3484                         return (error);
3485         }
3486 
3487         /*
3488          * Read all vdev labels to find the best uberblock (i.e. latest,
3489          * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3490          * get the list of features required to read blkptrs in the MOS from
3491          * the vdev label with the best uberblock and verify that our version
3492          * of zfs supports them all.
3493          */
3494         error = spa_ld_select_uberblock(spa, type);
3495         if (error != 0)
3496                 return (error);
3497 
3498         /*
3499          * Pass that uberblock to the dsl_pool layer which will open the root
3500          * blkptr. This blkptr points to the latest version of the MOS and will
3501          * allow us to read its contents.
3502          */
3503         error = spa_ld_open_rootbp(spa);
3504         if (error != 0)
3505                 return (error);
3506 
3507         return (0);
3508 }
3509 
3510 static int
3511 spa_ld_checkpoint_rewind(spa_t *spa)
3512 {
3513         uberblock_t checkpoint;
3514         int error = 0;
3515 
3516         ASSERT(MUTEX_HELD(&spa_namespace_lock));
3517         ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3518 
3519         error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3520             DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3521             sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3522 
3523         if (error != 0) {
3524                 spa_load_failed(spa, "unable to retrieve checkpointed "
3525                     "uberblock from the MOS config [error=%d]", error);
3526 
3527                 if (error == ENOENT)
3528                         error = ZFS_ERR_NO_CHECKPOINT;
3529 
3530                 return (error);
3531         }
3532 
3533         ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
3534         ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
3535 
3536         /*
3537          * We need to update the txg and timestamp of the checkpointed
3538          * uberblock to be higher than the latest one. This ensures that
3539          * the checkpointed uberblock is selected if we were to close and
3540          * reopen the pool right after we've written it in the vdev labels.
3541          * (also see block comment in vdev_uberblock_compare)
3542          */
3543         checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
3544         checkpoint.ub_timestamp = gethrestime_sec();
3545 
3546         /*
3547          * Set current uberblock to be the checkpointed uberblock.
3548          */
3549         spa->spa_uberblock = checkpoint;
3550 
3551         /*
3552          * If we are doing a normal rewind, then the pool is open for
3553          * writing and we sync the "updated" checkpointed uberblock to
3554          * disk. Once this is done, we've basically rewound the whole
3555          * pool and there is no way back.
3556          *
3557          * There are cases when we don't want to attempt and sync the
3558          * checkpointed uberblock to disk because we are opening a
3559          * pool as read-only. Specifically, verifying the checkpointed
3560          * state with zdb, and importing the checkpointed state to get
3561          * a "preview" of its content.
3562          */
3563         if (spa_writeable(spa)) {
3564                 vdev_t *rvd = spa->spa_root_vdev;
3565 
3566                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3567                 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
3568                 int svdcount = 0;
3569                 int children = rvd->vdev_children;
3570                 int c0 = spa_get_random(children);
3571 
3572                 for (int c = 0; c < children; c++) {
3573                         vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
3574 
3575                         /* Stop when revisiting the first vdev */
3576                         if (c > 0 && svd[0] == vd)
3577                                 break;
3578 
3579                         if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
3580                             !vdev_is_concrete(vd))
3581                                 continue;
3582 
3583                         svd[svdcount++] = vd;
3584                         if (svdcount == SPA_SYNC_MIN_VDEVS)
3585                                 break;
3586                 }
3587                 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
3588                 if (error == 0)
3589                         spa->spa_last_synced_guid = rvd->vdev_guid;
3590                 spa_config_exit(spa, SCL_ALL, FTAG);
3591 
3592                 if (error != 0) {
3593                         spa_load_failed(spa, "failed to write checkpointed "
3594                             "uberblock to the vdev labels [error=%d]", error);
3595                         return (error);
3596                 }
3597         }
3598 
3599         return (0);
3600 }
3601 
3602 static int
3603 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
3604     boolean_t *update_config_cache)
3605 {
3606         int error;
3607 
3608         /*
3609          * Parse the config for pool, open and validate vdevs,
3610          * select an uberblock, and use that uberblock to open
3611          * the MOS.
3612          */
3613         error = spa_ld_mos_init(spa, type);
3614         if (error != 0)
3615                 return (error);
3616 
3617         /*
3618          * Retrieve the trusted config stored in the MOS and use it to create
3619          * a new, exact version of the vdev tree, then reopen all vdevs.
3620          */
3621         error = spa_ld_trusted_config(spa, type, B_FALSE);
3622         if (error == EAGAIN) {
3623                 if (update_config_cache != NULL)
3624                         *update_config_cache = B_TRUE;
3625 
3626                 /*
3627                  * Redo the loading process with the trusted config if it is
3628                  * too different from the untrusted config.
3629                  */
3630                 spa_ld_prepare_for_reload(spa);
3631                 spa_load_note(spa, "RELOADING");
3632                 error = spa_ld_mos_init(spa, type);
3633                 if (error != 0)
3634                         return (error);
3635 
3636                 error = spa_ld_trusted_config(spa, type, B_TRUE);
3637                 if (error != 0)
3638                         return (error);
3639 
3640         } else if (error != 0) {
3641                 return (error);
3642         }
3643 
3644         return (0);
3645 }
3646 
3647 /*
3648  * Load an existing storage pool, using the config provided. This config
3649  * describes which vdevs are part of the pool and is later validated against
3650  * partial configs present in each vdev's label and an entire copy of the
3651  * config stored in the MOS.
3652  */
3653 static int
3654 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
3655 {
3656         int error = 0;
3657         boolean_t missing_feat_write = B_FALSE;
3658         boolean_t checkpoint_rewind =
3659             (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3660         boolean_t update_config_cache = B_FALSE;
3661 
3662         ASSERT(MUTEX_HELD(&spa_namespace_lock));
3663         ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3664 
3665         spa_load_note(spa, "LOADING");
3666 
3667         error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
3668         if (error != 0)
3669                 return (error);
3670 
3671         /*
3672          * If we are rewinding to the checkpoint then we need to repeat
3673          * everything we've done so far in this function but this time
3674          * selecting the checkpointed uberblock and using that to open
3675          * the MOS.
3676          */
3677         if (checkpoint_rewind) {
3678                 /*
3679                  * If we are rewinding to the checkpoint update config cache
3680                  * anyway.
3681                  */
3682                 update_config_cache = B_TRUE;
3683 
3684                 /*
3685                  * Extract the checkpointed uberblock from the current MOS
3686                  * and use this as the pool's uberblock from now on. If the
3687                  * pool is imported as writeable we also write the checkpoint
3688                  * uberblock to the labels, making the rewind permanent.
3689                  */
3690                 error = spa_ld_checkpoint_rewind(spa);
3691                 if (error != 0)
3692                         return (error);
3693 
3694                 /*
3695                  * Redo the loading process process again with the
3696                  * checkpointed uberblock.
3697                  */
3698                 spa_ld_prepare_for_reload(spa);
3699                 spa_load_note(spa, "LOADING checkpointed uberblock");
3700                 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
3701                 if (error != 0)
3702                         return (error);
3703         }
3704 
3705         /*
3706          * Retrieve the checkpoint txg if the pool has a checkpoint.
3707          */
3708         error = spa_ld_read_checkpoint_txg(spa);
3709         if (error != 0)
3710                 return (error);
3711 
3712         /*
3713          * Retrieve the mapping of indirect vdevs. Those vdevs were removed
3714          * from the pool and their contents were re-mapped to other vdevs. Note
3715          * that everything that we read before this step must have been
3716          * rewritten on concrete vdevs after the last device removal was
3717          * initiated. Otherwise we could be reading from indirect vdevs before
3718          * we have loaded their mappings.
3719          */
3720         error = spa_ld_open_indirect_vdev_metadata(spa);
3721         if (error != 0)
3722                 return (error);
3723 
3724         /*
3725          * Retrieve the full list of active features from the MOS and check if
3726          * they are all supported.
3727          */
3728         error = spa_ld_check_features(spa, &missing_feat_write);
3729         if (error != 0)
3730                 return (error);
3731 
3732         /*
3733          * Load several special directories from the MOS needed by the dsl_pool
3734          * layer.
3735          */
3736         error = spa_ld_load_special_directories(spa);
3737         if (error != 0)
3738                 return (error);
3739 
3740         /*
3741          * Retrieve pool properties from the MOS.
3742          */
3743         error = spa_ld_get_props(spa);
3744         if (error != 0)
3745                 return (error);
3746 
3747         /*
3748          * Retrieve the list of auxiliary devices - cache devices and spares -
3749          * and open them.
3750          */
3751         error = spa_ld_open_aux_vdevs(spa, type);
3752         if (error != 0)
3753                 return (error);
3754 
3755         /*
3756          * Load the metadata for all vdevs. Also check if unopenable devices
3757          * should be autoreplaced.
3758          */
3759         error = spa_ld_load_vdev_metadata(spa);
3760         if (error != 0)
3761                 return (error);
3762 
3763         error = spa_ld_load_dedup_tables(spa);
3764         if (error != 0)
3765                 return (error);
3766 
3767         /*
3768          * Verify the logs now to make sure we don't have any unexpected errors
3769          * when we claim log blocks later.
3770          */
3771         error = spa_ld_verify_logs(spa, type, ereport);
3772         if (error != 0)
3773                 return (error);
3774 
3775         if (missing_feat_write) {
3776                 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
3777 
3778                 /*
3779                  * At this point, we know that we can open the pool in
3780                  * read-only mode but not read-write mode. We now have enough
3781                  * information and can return to userland.
3782                  */
3783                 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
3784                     ENOTSUP));
3785         }
3786 
3787         /*
3788          * Traverse the last txgs to make sure the pool was left off in a safe
3789          * state. When performing an extreme rewind, we verify the whole pool,
3790          * which can take a very long time.
3791          */
3792         error = spa_ld_verify_pool_data(spa);
3793         if (error != 0)
3794                 return (error);
3795 
3796         /*
3797          * Calculate the deflated space for the pool. This must be done before
3798          * we write anything to the pool because we'd need to update the space
3799          * accounting using the deflated sizes.
3800          */
3801         spa_update_dspace(spa);
3802 
3803         /*
3804          * We have now retrieved all the information we needed to open the
3805          * pool. If we are importing the pool in read-write mode, a few
3806          * additional steps must be performed to finish the import.
3807          */
3808         if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
3809             spa->spa_load_max_txg == UINT64_MAX)) {
3810                 uint64_t config_cache_txg = spa->spa_config_txg;
3811 
3812                 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
3813 
3814                 /*
3815                  * In case of a checkpoint rewind, log the original txg
3816                  * of the checkpointed uberblock.
3817                  */
3818                 if (checkpoint_rewind) {
3819                         spa_history_log_internal(spa, "checkpoint rewind",
3820                             NULL, "rewound state to txg=%llu",
3821                             (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
3822                 }
3823 
3824                 /*
3825                  * Traverse the ZIL and claim all blocks.
3826                  */
3827                 spa_ld_claim_log_blocks(spa);
3828 
3829                 /*
3830                  * Kick-off the syncing thread.
3831                  */
3832                 spa->spa_sync_on = B_TRUE;
3833                 txg_sync_start(spa->spa_dsl_pool);
3834 
3835                 /*
3836                  * Wait for all claims to sync.  We sync up to the highest
3837                  * claimed log block birth time so that claimed log blocks
3838                  * don't appear to be from the future.  spa_claim_max_txg
3839                  * will have been set for us by ZIL traversal operations
3840                  * performed above.
3841                  */
3842                 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3843 
3844                 /*
3845                  * Check if we need to request an update of the config. On the
3846                  * next sync, we would update the config stored in vdev labels
3847                  * and the cachefile (by default /etc/zfs/zpool.cache).
3848                  */
3849                 spa_ld_check_for_config_update(spa, config_cache_txg,
3850                     update_config_cache);
3851 
3852                 /*
3853                  * Check all DTLs to see if anything needs resilvering.
3854                  */
3855                 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3856                     vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3857                         spa_async_request(spa, SPA_ASYNC_RESILVER);
3858 
3859                 /*
3860                  * Log the fact that we booted up (so that we can detect if
3861                  * we rebooted in the middle of an operation).
3862                  */
3863                 spa_history_log_version(spa, "open");
3864 
3865                 spa_restart_removal(spa);
3866                 spa_spawn_aux_threads(spa);
3867 
3868                 /*
3869                  * Delete any inconsistent datasets.
3870                  *
3871                  * Note:
3872                  * Since we may be issuing deletes for clones here,
3873                  * we make sure to do so after we've spawned all the
3874                  * auxiliary threads above (from which the livelist
3875                  * deletion zthr is part of).
3876                  */
3877                 (void) dmu_objset_find(spa_name(spa),
3878                     dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
3879 
3880                 /*
3881                  * Clean up any stale temporary dataset userrefs.
3882                  */
3883                 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3884 
3885                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3886                 vdev_initialize_restart(spa->spa_root_vdev);
3887                 spa_config_exit(spa, SCL_CONFIG, FTAG);
3888         }
3889 
3890         spa_load_note(spa, "LOADED");
3891 
3892         return (0);
3893 }
3894 
3895 static int
3896 spa_load_retry(spa_t *spa, spa_load_state_t state)
3897 {
3898         int mode = spa->spa_mode;
3899 
3900         spa_unload(spa);
3901         spa_deactivate(spa);
3902 
3903         spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3904 
3905         spa_activate(spa, mode);
3906         spa_async_suspend(spa);
3907 
3908         spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
3909             (u_longlong_t)spa->spa_load_max_txg);
3910 
3911         return (spa_load(spa, state, SPA_IMPORT_EXISTING));
3912 }
3913 
3914 /*
3915  * If spa_load() fails this function will try loading prior txg's. If
3916  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3917  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3918  * function will not rewind the pool and will return the same error as
3919  * spa_load().
3920  */
3921 static int
3922 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
3923     int rewind_flags)
3924 {
3925         nvlist_t *loadinfo = NULL;
3926         nvlist_t *config = NULL;
3927         int load_error, rewind_error;
3928         uint64_t safe_rewind_txg;
3929         uint64_t min_txg;
3930 
3931         if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3932                 spa->spa_load_max_txg = spa->spa_load_txg;
3933                 spa_set_log_state(spa, SPA_LOG_CLEAR);
3934         } else {
3935                 spa->spa_load_max_txg = max_request;
3936                 if (max_request != UINT64_MAX)
3937                         spa->spa_extreme_rewind = B_TRUE;
3938         }
3939 
3940         load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
3941         if (load_error == 0)
3942                 return (0);
3943         if (load_error == ZFS_ERR_NO_CHECKPOINT) {
3944                 /*
3945                  * When attempting checkpoint-rewind on a pool with no
3946                  * checkpoint, we should not attempt to load uberblocks
3947                  * from previous txgs when spa_load fails.
3948                  */
3949                 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3950                 return (load_error);
3951         }
3952 
3953         if (spa->spa_root_vdev != NULL)
3954                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3955 
3956         spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3957         spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3958 
3959         if (rewind_flags & ZPOOL_NEVER_REWIND) {
3960                 nvlist_free(config);
3961                 return (load_error);
3962         }
3963 
3964         if (state == SPA_LOAD_RECOVER) {
3965                 /* Price of rolling back is discarding txgs, including log */
3966                 spa_set_log_state(spa, SPA_LOG_CLEAR);
3967         } else {
3968                 /*
3969                  * If we aren't rolling back save the load info from our first
3970                  * import attempt so that we can restore it after attempting
3971                  * to rewind.
3972                  */
3973                 loadinfo = spa->spa_load_info;
3974                 spa->spa_load_info = fnvlist_alloc();
3975         }
3976 
3977         spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3978         safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3979         min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3980             TXG_INITIAL : safe_rewind_txg;
3981 
3982         /*
3983          * Continue as long as we're finding errors, we're still within
3984          * the acceptable rewind range, and we're still finding uberblocks
3985          */
3986         while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3987             spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3988                 if (spa->spa_load_max_txg < safe_rewind_txg)
3989                         spa->spa_extreme_rewind = B_TRUE;
3990                 rewind_error = spa_load_retry(spa, state);
3991         }
3992 
3993         spa->spa_extreme_rewind = B_FALSE;
3994         spa->spa_load_max_txg = UINT64_MAX;
3995 
3996         if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3997                 spa_config_set(spa, config);
3998         else
3999                 nvlist_free(config);
4000 
4001         if (state == SPA_LOAD_RECOVER) {
4002                 ASSERT3P(loadinfo, ==, NULL);
4003                 return (rewind_error);
4004         } else {
4005                 /* Store the rewind info as part of the initial load info */
4006                 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4007                     spa->spa_load_info);
4008 
4009                 /* Restore the initial load info */
4010                 fnvlist_free(spa->spa_load_info);
4011                 spa->spa_load_info = loadinfo;
4012 
4013                 return (load_error);
4014         }
4015 }
4016 
4017 /*
4018  * Pool Open/Import
4019  *
4020  * The import case is identical to an open except that the configuration is sent
4021  * down from userland, instead of grabbed from the configuration cache.  For the
4022  * case of an open, the pool configuration will exist in the
4023  * POOL_STATE_UNINITIALIZED state.
4024  *
4025  * The stats information (gen/count/ustats) is used to gather vdev statistics at
4026  * the same time open the pool, without having to keep around the spa_t in some
4027  * ambiguous state.
4028  */
4029 static int
4030 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4031     nvlist_t **config)
4032 {
4033         spa_t *spa;
4034         spa_load_state_t state = SPA_LOAD_OPEN;
4035         int error;
4036         int locked = B_FALSE;
4037 
4038         *spapp = NULL;
4039 
4040         /*
4041          * As disgusting as this is, we need to support recursive calls to this
4042          * function because dsl_dir_open() is called during spa_load(), and ends
4043          * up calling spa_open() again.  The real fix is to figure out how to
4044          * avoid dsl_dir_open() calling this in the first place.
4045          */
4046         if (mutex_owner(&spa_namespace_lock) != curthread) {
4047                 mutex_enter(&spa_namespace_lock);
4048                 locked = B_TRUE;
4049         }
4050 
4051         if ((spa = spa_lookup(pool)) == NULL) {
4052                 if (locked)
4053                         mutex_exit(&spa_namespace_lock);
4054                 return (SET_ERROR(ENOENT));
4055         }
4056 
4057         if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4058                 zpool_load_policy_t policy;
4059 
4060                 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4061                     &policy);
4062                 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4063                         state = SPA_LOAD_RECOVER;
4064 
4065                 spa_activate(spa, spa_mode_global);
4066 
4067                 if (state != SPA_LOAD_RECOVER)
4068                         spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4069                 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4070 
4071                 zfs_dbgmsg("spa_open_common: opening %s", pool);
4072                 error = spa_load_best(spa, state, policy.zlp_txg,
4073                     policy.zlp_rewind);
4074 
4075                 if (error == EBADF) {
4076                         /*
4077                          * If vdev_validate() returns failure (indicated by
4078                          * EBADF), it indicates that one of the vdevs indicates
4079                          * that the pool has been exported or destroyed.  If
4080                          * this is the case, the config cache is out of sync and
4081                          * we should remove the pool from the namespace.
4082                          */
4083                         spa_unload(spa);
4084                         spa_deactivate(spa);
4085                         spa_write_cachefile(spa, B_TRUE, B_TRUE);
4086                         spa_remove(spa);
4087                         if (locked)
4088                                 mutex_exit(&spa_namespace_lock);
4089                         return (SET_ERROR(ENOENT));
4090                 }
4091 
4092                 if (error) {
4093                         /*
4094                          * We can't open the pool, but we still have useful
4095                          * information: the state of each vdev after the
4096                          * attempted vdev_open().  Return this to the user.
4097                          */
4098                         if (config != NULL && spa->spa_config) {
4099                                 VERIFY(nvlist_dup(spa->spa_config, config,
4100                                     KM_SLEEP) == 0);
4101                                 VERIFY(nvlist_add_nvlist(*config,
4102                                     ZPOOL_CONFIG_LOAD_INFO,
4103                                     spa->spa_load_info) == 0);
4104                         }
4105                         spa_unload(spa);
4106                         spa_deactivate(spa);
4107                         spa->spa_last_open_failed = error;
4108                         if (locked)
4109                                 mutex_exit(&spa_namespace_lock);
4110                         *spapp = NULL;
4111                         return (error);
4112                 }
4113         }
4114 
4115         spa_open_ref(spa, tag);
4116 
4117         if (config != NULL)
4118                 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4119 
4120         /*
4121          * If we've recovered the pool, pass back any information we
4122          * gathered while doing the load.
4123          */
4124         if (state == SPA_LOAD_RECOVER) {
4125                 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4126                     spa->spa_load_info) == 0);
4127         }
4128 
4129         if (locked) {
4130                 spa->spa_last_open_failed = 0;
4131                 spa->spa_last_ubsync_txg = 0;
4132                 spa->spa_load_txg = 0;
4133                 mutex_exit(&spa_namespace_lock);
4134         }
4135 
4136         *spapp = spa;
4137 
4138         return (0);
4139 }
4140 
4141 int
4142 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4143     nvlist_t **config)
4144 {
4145         return (spa_open_common(name, spapp, tag, policy, config));
4146 }
4147 
4148 int
4149 spa_open(const char *name, spa_t **spapp, void *tag)
4150 {
4151         return (spa_open_common(name, spapp, tag, NULL, NULL));
4152 }
4153 
4154 /*
4155  * Lookup the given spa_t, incrementing the inject count in the process,
4156  * preventing it from being exported or destroyed.
4157  */
4158 spa_t *
4159 spa_inject_addref(char *name)
4160 {
4161         spa_t *spa;
4162 
4163         mutex_enter(&spa_namespace_lock);
4164         if ((spa = spa_lookup(name)) == NULL) {
4165                 mutex_exit(&spa_namespace_lock);
4166                 return (NULL);
4167         }
4168         spa->spa_inject_ref++;
4169         mutex_exit(&spa_namespace_lock);
4170 
4171         return (spa);
4172 }
4173 
4174 void
4175 spa_inject_delref(spa_t *spa)
4176 {
4177         mutex_enter(&spa_namespace_lock);
4178         spa->spa_inject_ref--;
4179         mutex_exit(&spa_namespace_lock);
4180 }
4181 
4182 /*
4183  * Add spares device information to the nvlist.
4184  */
4185 static void
4186 spa_add_spares(spa_t *spa, nvlist_t *config)
4187 {
4188         nvlist_t **spares;
4189         uint_t i, nspares;
4190         nvlist_t *nvroot;
4191         uint64_t guid;
4192         vdev_stat_t *vs;
4193         uint_t vsc;
4194         uint64_t pool;
4195 
4196         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4197 
4198         if (spa->spa_spares.sav_count == 0)
4199                 return;
4200 
4201         VERIFY(nvlist_lookup_nvlist(config,
4202             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4203         VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4204             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4205         if (nspares != 0) {
4206                 VERIFY(nvlist_add_nvlist_array(nvroot,
4207                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4208                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
4209                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4210 
4211                 /*
4212                  * Go through and find any spares which have since been
4213                  * repurposed as an active spare.  If this is the case, update
4214                  * their status appropriately.
4215                  */
4216                 for (i = 0; i < nspares; i++) {
4217                         VERIFY(nvlist_lookup_uint64(spares[i],
4218                             ZPOOL_CONFIG_GUID, &guid) == 0);
4219                         if (spa_spare_exists(guid, &pool, NULL) &&
4220                             pool != 0ULL) {
4221                                 VERIFY(nvlist_lookup_uint64_array(
4222                                     spares[i], ZPOOL_CONFIG_VDEV_STATS,
4223                                     (uint64_t **)&vs, &vsc) == 0);
4224                                 vs->vs_state = VDEV_STATE_CANT_OPEN;
4225                                 vs->vs_aux = VDEV_AUX_SPARED;
4226                         }
4227                 }
4228         }
4229 }
4230 
4231 /*
4232  * Add l2cache device information to the nvlist, including vdev stats.
4233  */
4234 static void
4235 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4236 {
4237         nvlist_t **l2cache;
4238         uint_t i, j, nl2cache;
4239         nvlist_t *nvroot;
4240         uint64_t guid;
4241         vdev_t *vd;
4242         vdev_stat_t *vs;
4243         uint_t vsc;
4244 
4245         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4246 
4247         if (spa->spa_l2cache.sav_count == 0)
4248                 return;
4249 
4250         VERIFY(nvlist_lookup_nvlist(config,
4251             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4252         VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4253             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4254         if (nl2cache != 0) {
4255                 VERIFY(nvlist_add_nvlist_array(nvroot,
4256                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4257                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
4258                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4259 
4260                 /*
4261                  * Update level 2 cache device stats.
4262                  */
4263 
4264                 for (i = 0; i < nl2cache; i++) {
4265                         VERIFY(nvlist_lookup_uint64(l2cache[i],
4266                             ZPOOL_CONFIG_GUID, &guid) == 0);
4267 
4268                         vd = NULL;
4269                         for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4270                                 if (guid ==
4271                                     spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4272                                         vd = spa->spa_l2cache.sav_vdevs[j];
4273                                         break;
4274                                 }
4275                         }
4276                         ASSERT(vd != NULL);
4277 
4278                         VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4279                             ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4280                             == 0);
4281                         vdev_get_stats(vd, vs);
4282                 }
4283         }
4284 }
4285 
4286 static void
4287 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4288 {
4289         nvlist_t *features;
4290         zap_cursor_t zc;
4291         zap_attribute_t za;
4292 
4293         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4294         VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4295 
4296         if (spa->spa_feat_for_read_obj != 0) {
4297                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
4298                     spa->spa_feat_for_read_obj);
4299                     zap_cursor_retrieve(&zc, &za) == 0;
4300                     zap_cursor_advance(&zc)) {
4301                         ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4302                             za.za_num_integers == 1);
4303                         VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4304                             za.za_first_integer));
4305                 }
4306                 zap_cursor_fini(&zc);
4307         }
4308 
4309         if (spa->spa_feat_for_write_obj != 0) {
4310                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
4311                     spa->spa_feat_for_write_obj);
4312                     zap_cursor_retrieve(&zc, &za) == 0;
4313                     zap_cursor_advance(&zc)) {
4314                         ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4315                             za.za_num_integers == 1);
4316                         VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4317                             za.za_first_integer));
4318                 }
4319                 zap_cursor_fini(&zc);
4320         }
4321 
4322         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4323             features) == 0);
4324         nvlist_free(features);
4325 }
4326 
4327 int
4328 spa_get_stats(const char *name, nvlist_t **config,
4329     char *altroot, size_t buflen)
4330 {
4331         int error;
4332         spa_t *spa;
4333 
4334         *config = NULL;
4335         error = spa_open_common(name, &spa, FTAG, NULL, config);
4336 
4337         if (spa != NULL) {
4338                 /*
4339                  * This still leaves a window of inconsistency where the spares
4340                  * or l2cache devices could change and the config would be
4341                  * self-inconsistent.
4342                  */
4343                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4344 
4345                 if (*config != NULL) {
4346                         uint64_t loadtimes[2];
4347 
4348                         loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4349                         loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4350                         VERIFY(nvlist_add_uint64_array(*config,
4351                             ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4352 
4353                         VERIFY(nvlist_add_uint64(*config,
4354                             ZPOOL_CONFIG_ERRCOUNT,
4355                             spa_get_errlog_size(spa)) == 0);
4356 
4357                         if (spa_suspended(spa))
4358                                 VERIFY(nvlist_add_uint64(*config,
4359                                     ZPOOL_CONFIG_SUSPENDED,
4360                                     spa->spa_failmode) == 0);
4361 
4362                         spa_add_spares(spa, *config);
4363                         spa_add_l2cache(spa, *config);
4364                         spa_add_feature_stats(spa, *config);
4365                 }
4366         }
4367 
4368         /*
4369          * We want to get the alternate root even for faulted pools, so we cheat
4370          * and call spa_lookup() directly.
4371          */
4372         if (altroot) {
4373                 if (spa == NULL) {
4374                         mutex_enter(&spa_namespace_lock);
4375                         spa = spa_lookup(name);
4376                         if (spa)
4377                                 spa_altroot(spa, altroot, buflen);
4378                         else
4379                                 altroot[0] = '\0';
4380                         spa = NULL;
4381                         mutex_exit(&spa_namespace_lock);
4382                 } else {
4383                         spa_altroot(spa, altroot, buflen);
4384                 }
4385         }
4386 
4387         if (spa != NULL) {
4388                 spa_config_exit(spa, SCL_CONFIG, FTAG);
4389                 spa_close(spa, FTAG);
4390         }
4391 
4392         return (error);
4393 }
4394 
4395 /*
4396  * Validate that the auxiliary device array is well formed.  We must have an
4397  * array of nvlists, each which describes a valid leaf vdev.  If this is an
4398  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4399  * specified, as long as they are well-formed.
4400  */
4401 static int
4402 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4403     spa_aux_vdev_t *sav, const char *config, uint64_t version,
4404     vdev_labeltype_t label)
4405 {
4406         nvlist_t **dev;
4407         uint_t i, ndev;
4408         vdev_t *vd;
4409         int error;
4410 
4411         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4412 
4413         /*
4414          * It's acceptable to have no devs specified.
4415          */
4416         if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4417                 return (0);
4418 
4419         if (ndev == 0)
4420                 return (SET_ERROR(EINVAL));
4421 
4422         /*
4423          * Make sure the pool is formatted with a version that supports this
4424          * device type.
4425          */
4426         if (spa_version(spa) < version)
4427                 return (SET_ERROR(ENOTSUP));
4428 
4429         /*
4430          * Set the pending device list so we correctly handle device in-use
4431          * checking.
4432          */
4433         sav->sav_pending = dev;
4434         sav->sav_npending = ndev;
4435 
4436         for (i = 0; i < ndev; i++) {
4437                 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4438                     mode)) != 0)
4439                         goto out;
4440 
4441                 if (!vd->vdev_ops->vdev_op_leaf) {
4442                         vdev_free(vd);
4443                         error = SET_ERROR(EINVAL);
4444                         goto out;
4445                 }
4446 
4447                 /*
4448                  * The L2ARC currently only supports disk devices in
4449                  * kernel context.  For user-level testing, we allow it.
4450                  */
4451 #ifdef _KERNEL
4452                 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
4453                     strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
4454                         error = SET_ERROR(ENOTBLK);
4455                         vdev_free(vd);
4456                         goto out;
4457                 }
4458 #endif
4459                 vd->vdev_top = vd;
4460 
4461                 if ((error = vdev_open(vd)) == 0 &&
4462                     (error = vdev_label_init(vd, crtxg, label)) == 0) {
4463                         VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4464                             vd->vdev_guid) == 0);
4465                 }
4466 
4467                 vdev_free(vd);
4468 
4469                 if (error &&
4470                     (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4471                         goto out;
4472                 else
4473                         error = 0;
4474         }
4475 
4476 out:
4477         sav->sav_pending = NULL;
4478         sav->sav_npending = 0;
4479         return (error);
4480 }
4481 
4482 static int
4483 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4484 {
4485         int error;
4486 
4487         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4488 
4489         if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4490             &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4491             VDEV_LABEL_SPARE)) != 0) {
4492                 return (error);
4493         }
4494 
4495         return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4496             &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4497             VDEV_LABEL_L2CACHE));
4498 }
4499 
4500 static void
4501 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4502     const char *config)
4503 {
4504         int i;
4505 
4506         if (sav->sav_config != NULL) {
4507                 nvlist_t **olddevs;
4508                 uint_t oldndevs;
4509                 nvlist_t **newdevs;
4510 
4511                 /*
4512                  * Generate new dev list by concatentating with the
4513                  * current dev list.
4514                  */
4515                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4516                     &olddevs, &oldndevs) == 0);
4517 
4518                 newdevs = kmem_alloc(sizeof (void *) *
4519                     (ndevs + oldndevs), KM_SLEEP);
4520                 for (i = 0; i < oldndevs; i++)
4521                         VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4522                             KM_SLEEP) == 0);
4523                 for (i = 0; i < ndevs; i++)
4524                         VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4525                             KM_SLEEP) == 0);
4526 
4527                 VERIFY(nvlist_remove(sav->sav_config, config,
4528                     DATA_TYPE_NVLIST_ARRAY) == 0);
4529 
4530                 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4531                     config, newdevs, ndevs + oldndevs) == 0);
4532                 for (i = 0; i < oldndevs + ndevs; i++)
4533                         nvlist_free(newdevs[i]);
4534                 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4535         } else {
4536                 /*
4537                  * Generate a new dev list.
4538                  */
4539                 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4540                     KM_SLEEP) == 0);
4541                 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4542                     devs, ndevs) == 0);
4543         }
4544 }
4545 
4546 /*
4547  * Stop and drop level 2 ARC devices
4548  */
4549 void
4550 spa_l2cache_drop(spa_t *spa)
4551 {
4552         vdev_t *vd;
4553         int i;
4554         spa_aux_vdev_t *sav = &spa->spa_l2cache;
4555 
4556         for (i = 0; i < sav->sav_count; i++) {
4557                 uint64_t pool;
4558 
4559                 vd = sav->sav_vdevs[i];
4560                 ASSERT(vd != NULL);
4561 
4562                 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4563                     pool != 0ULL && l2arc_vdev_present(vd))
4564                         l2arc_remove_vdev(vd);
4565         }
4566 }
4567 
4568 /*
4569  * Pool Creation
4570  */
4571 int
4572 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4573     nvlist_t *zplprops)
4574 {
4575         spa_t *spa;
4576         char *altroot = NULL;
4577         vdev_t *rvd;
4578         dsl_pool_t *dp;
4579         dmu_tx_t *tx;
4580         int error = 0;
4581         uint64_t txg = TXG_INITIAL;
4582         nvlist_t **spares, **l2cache;
4583         uint_t nspares, nl2cache;
4584         uint64_t version, obj;
4585         boolean_t has_features;
4586 
4587         /*
4588          * If this pool already exists, return failure.
4589          */
4590         mutex_enter(&spa_namespace_lock);
4591         if (spa_lookup(pool) != NULL) {
4592                 mutex_exit(&spa_namespace_lock);
4593                 return (SET_ERROR(EEXIST));
4594         }
4595 
4596         /*
4597          * Allocate a new spa_t structure.
4598          */
4599         (void) nvlist_lookup_string(props,
4600             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4601         spa = spa_add(pool, NULL, altroot);
4602         spa_activate(spa, spa_mode_global);
4603 
4604         if (props && (error = spa_prop_validate(spa, props))) {
4605                 spa_deactivate(spa);
4606                 spa_remove(spa);
4607                 mutex_exit(&spa_namespace_lock);
4608                 return (error);
4609         }
4610 
4611         has_features = B_FALSE;
4612         for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
4613             elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4614                 if (zpool_prop_feature(nvpair_name(elem)))
4615                         has_features = B_TRUE;
4616         }
4617 
4618         if (has_features || nvlist_lookup_uint64(props,
4619             zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4620                 version = SPA_VERSION;
4621         }
4622         ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4623 
4624         spa->spa_first_txg = txg;
4625         spa->spa_uberblock.ub_txg = txg - 1;
4626         spa->spa_uberblock.ub_version = version;
4627         spa->spa_ubsync = spa->spa_uberblock;
4628         spa->spa_load_state = SPA_LOAD_CREATE;
4629         spa->spa_removing_phys.sr_state = DSS_NONE;
4630         spa->spa_removing_phys.sr_removing_vdev = -1;
4631         spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
4632 
4633         /*
4634          * Create "The Godfather" zio to hold all async IOs
4635          */
4636         spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4637             KM_SLEEP);
4638         for (int i = 0; i < max_ncpus; i++) {
4639                 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4640                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4641                     ZIO_FLAG_GODFATHER);
4642         }
4643 
4644         /*
4645          * Create the root vdev.
4646          */
4647         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4648 
4649         error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4650 
4651         ASSERT(error != 0 || rvd != NULL);
4652         ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4653 
4654         if (error == 0 && !zfs_allocatable_devs(nvroot))
4655                 error = SET_ERROR(EINVAL);
4656 
4657         if (error == 0 &&
4658             (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4659             (error = spa_validate_aux(spa, nvroot, txg,
4660             VDEV_ALLOC_ADD)) == 0) {
4661                 for (int c = 0; c < rvd->vdev_children; c++) {
4662                         vdev_metaslab_set_size(rvd->vdev_child[c]);
4663                         vdev_expand(rvd->vdev_child[c], txg);
4664                 }
4665         }
4666 
4667         spa_config_exit(spa, SCL_ALL, FTAG);
4668 
4669         if (error != 0) {
4670                 spa_unload(spa);
4671                 spa_deactivate(spa);
4672                 spa_remove(spa);
4673                 mutex_exit(&spa_namespace_lock);
4674                 return (error);
4675         }
4676 
4677         /*
4678          * Get the list of spares, if specified.
4679          */
4680         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4681             &spares, &nspares) == 0) {
4682                 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4683                     KM_SLEEP) == 0);
4684                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4685                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4686                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4687                 spa_load_spares(spa);
4688                 spa_config_exit(spa, SCL_ALL, FTAG);
4689                 spa->spa_spares.sav_sync = B_TRUE;
4690         }
4691 
4692         /*
4693          * Get the list of level 2 cache devices, if specified.
4694          */
4695         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4696             &l2cache, &nl2cache) == 0) {
4697                 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4698                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
4699                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4700                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4701                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4702                 spa_load_l2cache(spa);
4703                 spa_config_exit(spa, SCL_ALL, FTAG);
4704                 spa->spa_l2cache.sav_sync = B_TRUE;
4705         }
4706 
4707         spa->spa_is_initializing = B_TRUE;
4708         spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
4709         spa->spa_meta_objset = dp->dp_meta_objset;
4710         spa->spa_is_initializing = B_FALSE;
4711 
4712         /*
4713          * Create DDTs (dedup tables).
4714          */
4715         ddt_create(spa);
4716 
4717         spa_update_dspace(spa);
4718 
4719         tx = dmu_tx_create_assigned(dp, txg);
4720 
4721         /*
4722          * Create the pool config object.
4723          */
4724         spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4725             DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4726             DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4727 
4728         if (zap_add(spa->spa_meta_objset,
4729             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4730             sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4731                 cmn_err(CE_PANIC, "failed to add pool config");
4732         }
4733 
4734         if (spa_version(spa) >= SPA_VERSION_FEATURES)
4735                 spa_feature_create_zap_objects(spa, tx);
4736 
4737         if (zap_add(spa->spa_meta_objset,
4738             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4739             sizeof (uint64_t), 1, &version, tx) != 0) {
4740                 cmn_err(CE_PANIC, "failed to add pool version");
4741         }
4742 
4743         /* Newly created pools with the right version are always deflated. */
4744         if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4745                 spa->spa_deflate = TRUE;
4746                 if (zap_add(spa->spa_meta_objset,
4747                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4748                     sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4749                         cmn_err(CE_PANIC, "failed to add deflate");
4750                 }
4751         }
4752 
4753         /*
4754          * Create the deferred-free bpobj.  Turn off compression
4755          * because sync-to-convergence takes longer if the blocksize
4756          * keeps changing.
4757          */
4758         obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4759         dmu_object_set_compress(spa->spa_meta_objset, obj,
4760             ZIO_COMPRESS_OFF, tx);
4761         if (zap_add(spa->spa_meta_objset,
4762             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4763             sizeof (uint64_t), 1, &obj, tx) != 0) {
4764                 cmn_err(CE_PANIC, "failed to add bpobj");
4765         }
4766         VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4767             spa->spa_meta_objset, obj));
4768 
4769         /*
4770          * Create the pool's history object.
4771          */
4772         if (version >= SPA_VERSION_ZPOOL_HISTORY)
4773                 spa_history_create_obj(spa, tx);
4774 
4775         /*
4776          * Generate some random noise for salted checksums to operate on.
4777          */
4778         (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4779             sizeof (spa->spa_cksum_salt.zcs_bytes));
4780 
4781         /*
4782          * Set pool properties.
4783          */
4784         spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4785         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4786         spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4787         spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4788 
4789         if (props != NULL) {
4790                 spa_configfile_set(spa, props, B_FALSE);
4791                 spa_sync_props(props, tx);
4792         }
4793 
4794         dmu_tx_commit(tx);
4795 
4796         spa->spa_sync_on = B_TRUE;
4797         txg_sync_start(spa->spa_dsl_pool);
4798 
4799         /*
4800          * We explicitly wait for the first transaction to complete so that our
4801          * bean counters are appropriately updated.
4802          */
4803         txg_wait_synced(spa->spa_dsl_pool, txg);
4804 
4805         spa_spawn_aux_threads(spa);
4806 
4807         spa_write_cachefile(spa, B_FALSE, B_TRUE);
4808         spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4809 
4810         spa_history_log_version(spa, "create");
4811 
4812         /*
4813          * Don't count references from objsets that are already closed
4814          * and are making their way through the eviction process.
4815          */
4816         spa_evicting_os_wait(spa);
4817         spa->spa_minref = refcount_count(&spa->spa_refcount);
4818         spa->spa_load_state = SPA_LOAD_NONE;
4819 
4820         mutex_exit(&spa_namespace_lock);
4821 
4822         return (0);
4823 }
4824 
4825 #ifdef _KERNEL
4826 /*
4827  * Get the root pool information from the root disk, then import the root pool
4828  * during the system boot up time.
4829  */
4830 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
4831 
4832 static nvlist_t *
4833 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
4834 {
4835         nvlist_t *config;
4836         nvlist_t *nvtop, *nvroot;
4837         uint64_t pgid;
4838 
4839         if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
4840                 return (NULL);
4841 
4842         /*
4843          * Add this top-level vdev to the child array.
4844          */
4845         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4846             &nvtop) == 0);
4847         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4848             &pgid) == 0);
4849         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
4850 
4851         /*
4852          * Put this pool's top-level vdevs into a root vdev.
4853          */
4854         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4855         VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4856             VDEV_TYPE_ROOT) == 0);
4857         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4858         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4859         VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4860             &nvtop, 1) == 0);
4861 
4862         /*
4863          * Replace the existing vdev_tree with the new root vdev in
4864          * this pool's configuration (remove the old, add the new).
4865          */
4866         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4867         nvlist_free(nvroot);
4868         return (config);
4869 }
4870 
4871 /*
4872  * Walk the vdev tree and see if we can find a device with "better"
4873  * configuration. A configuration is "better" if the label on that
4874  * device has a more recent txg.
4875  */
4876 static void
4877 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
4878 {
4879         for (int c = 0; c < vd->vdev_children; c++)
4880                 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
4881 
4882         if (vd->vdev_ops->vdev_op_leaf) {
4883                 nvlist_t *label;
4884                 uint64_t label_txg;
4885 
4886                 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
4887                     &label) != 0)
4888                         return;
4889 
4890                 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
4891                     &label_txg) == 0);
4892 
4893                 /*
4894                  * Do we have a better boot device?
4895                  */
4896                 if (label_txg > *txg) {
4897                         *txg = label_txg;
4898                         *avd = vd;
4899                 }
4900                 nvlist_free(label);
4901         }
4902 }
4903 
4904 /*
4905  * Import a root pool.
4906  *
4907  * For x86. devpath_list will consist of devid and/or physpath name of
4908  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
4909  * The GRUB "findroot" command will return the vdev we should boot.
4910  *
4911  * For Sparc, devpath_list consists the physpath name of the booting device
4912  * no matter the rootpool is a single device pool or a mirrored pool.
4913  * e.g.
4914  *      "/pci@1f,0/ide@d/disk@0,0:a"
4915  */
4916 int
4917 spa_import_rootpool(char *devpath, char *devid)
4918 {
4919         spa_t *spa;
4920         vdev_t *rvd, *bvd, *avd = NULL;
4921         nvlist_t *config, *nvtop;
4922         uint64_t guid, txg;
4923         char *pname;
4924         int error;
4925 
4926         /*
4927          * Read the label from the boot device and generate a configuration.
4928          */
4929         config = spa_generate_rootconf(devpath, devid, &guid);
4930 #if defined(_OBP) && defined(_KERNEL)
4931         if (config == NULL) {
4932                 if (strstr(devpath, "/iscsi/ssd") != NULL) {
4933                         /* iscsi boot */
4934                         get_iscsi_bootpath_phy(devpath);
4935                         config = spa_generate_rootconf(devpath, devid, &guid);
4936                 }
4937         }
4938 #endif
4939         if (config == NULL) {
4940                 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4941                     devpath);
4942                 return (SET_ERROR(EIO));
4943         }
4944 
4945         VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4946             &pname) == 0);
4947         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4948 
4949         mutex_enter(&spa_namespace_lock);
4950         if ((spa = spa_lookup(pname)) != NULL) {
4951                 /*
4952                  * Remove the existing root pool from the namespace so that we
4953                  * can replace it with the correct config we just read in.
4954                  */
4955                 spa_remove(spa);
4956         }
4957 
4958         spa = spa_add(pname, config, NULL);
4959         spa->spa_is_root = B_TRUE;
4960         spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4961         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4962             &spa->spa_ubsync.ub_version) != 0)
4963                 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4964 
4965         /*
4966          * Build up a vdev tree based on the boot device's label config.
4967          */
4968         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4969             &nvtop) == 0);
4970         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4971         error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4972             VDEV_ALLOC_ROOTPOOL);
4973         spa_config_exit(spa, SCL_ALL, FTAG);
4974         if (error) {
4975                 mutex_exit(&spa_namespace_lock);
4976                 nvlist_free(config);
4977                 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4978                     pname);
4979                 return (error);
4980         }
4981 
4982         /*
4983          * Get the boot vdev.
4984          */
4985         if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4986                 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4987                     (u_longlong_t)guid);
4988                 error = SET_ERROR(ENOENT);
4989                 goto out;
4990         }
4991 
4992         /*
4993          * Determine if there is a better boot device.
4994          */
4995         avd = bvd;
4996         spa_alt_rootvdev(rvd, &avd, &txg);
4997         if (avd != bvd) {
4998                 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4999                     "try booting from '%s'", avd->vdev_path);
5000                 error = SET_ERROR(EINVAL);
5001                 goto out;
5002         }
5003 
5004         /*
5005          * If the boot device is part of a spare vdev then ensure that
5006          * we're booting off the active spare.
5007          */
5008         if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5009             !bvd->vdev_isspare) {
5010                 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5011                     "try booting from '%s'",
5012                     bvd->vdev_parent->
5013                     vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5014                 error = SET_ERROR(EINVAL);
5015                 goto out;
5016         }
5017 
5018         error = 0;
5019 out:
5020         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5021         vdev_free(rvd);
5022         spa_config_exit(spa, SCL_ALL, FTAG);
5023         mutex_exit(&spa_namespace_lock);
5024 
5025         nvlist_free(config);
5026         return (error);
5027 }
5028 
5029 #endif
5030 
5031 /*
5032  * Import a non-root pool into the system.
5033  */
5034 int
5035 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5036 {
5037         spa_t *spa;
5038         char *altroot = NULL;
5039         spa_load_state_t state = SPA_LOAD_IMPORT;
5040         zpool_load_policy_t policy;
5041         uint64_t mode = spa_mode_global;
5042         uint64_t readonly = B_FALSE;
5043         int error;
5044         nvlist_t *nvroot;
5045         nvlist_t **spares, **l2cache;
5046         uint_t nspares, nl2cache;
5047 
5048         /*
5049          * If a pool with this name exists, return failure.
5050          */
5051         mutex_enter(&spa_namespace_lock);
5052         if (spa_lookup(pool) != NULL) {
5053                 mutex_exit(&spa_namespace_lock);
5054                 return (SET_ERROR(EEXIST));
5055         }
5056 
5057         /*
5058          * Create and initialize the spa structure.
5059          */
5060         (void) nvlist_lookup_string(props,
5061             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5062         (void) nvlist_lookup_uint64(props,
5063             zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5064         if (readonly)
5065                 mode = FREAD;
5066         spa = spa_add(pool, config, altroot);
5067         spa->spa_import_flags = flags;
5068 
5069         /*
5070          * Verbatim import - Take a pool and insert it into the namespace
5071          * as if it had been loaded at boot.
5072          */
5073         if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5074                 if (props != NULL)
5075                         spa_configfile_set(spa, props, B_FALSE);
5076 
5077                 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5078                 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5079                 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5080                 mutex_exit(&spa_namespace_lock);
5081                 return (0);
5082         }
5083 
5084         spa_activate(spa, mode);
5085 
5086         /*
5087          * Don't start async tasks until we know everything is healthy.
5088          */
5089         spa_async_suspend(spa);
5090 
5091         zpool_get_load_policy(config, &policy);
5092         if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5093                 state = SPA_LOAD_RECOVER;
5094 
5095         spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5096 
5097         if (state != SPA_LOAD_RECOVER) {
5098                 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5099                 zfs_dbgmsg("spa_import: importing %s", pool);
5100         } else {
5101                 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5102                     "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5103         }
5104         error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5105 
5106         /*
5107          * Propagate anything learned while loading the pool and pass it
5108          * back to caller (i.e. rewind info, missing devices, etc).
5109          */
5110         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5111             spa->spa_load_info) == 0);
5112 
5113         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5114         /*
5115          * Toss any existing sparelist, as it doesn't have any validity
5116          * anymore, and conflicts with spa_has_spare().
5117          */
5118         if (spa->spa_spares.sav_config) {
5119                 nvlist_free(spa->spa_spares.sav_config);
5120                 spa->spa_spares.sav_config = NULL;
5121                 spa_load_spares(spa);
5122         }
5123         if (spa->spa_l2cache.sav_config) {
5124                 nvlist_free(spa->spa_l2cache.sav_config);
5125                 spa->spa_l2cache.sav_config = NULL;
5126                 spa_load_l2cache(spa);
5127         }
5128 
5129         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5130             &nvroot) == 0);
5131         if (error == 0)
5132                 error = spa_validate_aux(spa, nvroot, -1ULL,
5133                     VDEV_ALLOC_SPARE);
5134         if (error == 0)
5135                 error = spa_validate_aux(spa, nvroot, -1ULL,
5136                     VDEV_ALLOC_L2CACHE);
5137         spa_config_exit(spa, SCL_ALL, FTAG);
5138 
5139         if (props != NULL)
5140                 spa_configfile_set(spa, props, B_FALSE);
5141 
5142         if (error != 0 || (props && spa_writeable(spa) &&
5143             (error = spa_prop_set(spa, props)))) {
5144                 spa_unload(spa);
5145                 spa_deactivate(spa);
5146                 spa_remove(spa);
5147                 mutex_exit(&spa_namespace_lock);
5148                 return (error);
5149         }
5150 
5151         spa_async_resume(spa);
5152 
5153         /*
5154          * Override any spares and level 2 cache devices as specified by
5155          * the user, as these may have correct device names/devids, etc.
5156          */
5157         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5158             &spares, &nspares) == 0) {
5159                 if (spa->spa_spares.sav_config)
5160                         VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5161                             ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5162                 else
5163                         VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5164                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
5165                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5166                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5167                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5168                 spa_load_spares(spa);
5169                 spa_config_exit(spa, SCL_ALL, FTAG);
5170                 spa->spa_spares.sav_sync = B_TRUE;
5171         }
5172         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5173             &l2cache, &nl2cache) == 0) {
5174                 if (spa->spa_l2cache.sav_config)
5175                         VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5176                             ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5177                 else
5178                         VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5179                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
5180                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5181                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5182                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5183                 spa_load_l2cache(spa);
5184                 spa_config_exit(spa, SCL_ALL, FTAG);
5185                 spa->spa_l2cache.sav_sync = B_TRUE;
5186         }
5187 
5188         /*
5189          * Check for any removed devices.
5190          */
5191         if (spa->spa_autoreplace) {
5192                 spa_aux_check_removed(&spa->spa_spares);
5193                 spa_aux_check_removed(&spa->spa_l2cache);
5194         }
5195 
5196         if (spa_writeable(spa)) {
5197                 /*
5198                  * Update the config cache to include the newly-imported pool.
5199                  */
5200                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5201         }
5202 
5203         /*
5204          * It's possible that the pool was expanded while it was exported.
5205          * We kick off an async task to handle this for us.
5206          */
5207         spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5208 
5209         spa_history_log_version(spa, "import");
5210 
5211         spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5212 
5213         mutex_exit(&spa_namespace_lock);
5214 
5215         return (0);
5216 }
5217 
5218 nvlist_t *
5219 spa_tryimport(nvlist_t *tryconfig)
5220 {
5221         nvlist_t *config = NULL;
5222         char *poolname, *cachefile;
5223         spa_t *spa;
5224         uint64_t state;
5225         int error;
5226         zpool_load_policy_t policy;
5227 
5228         if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5229                 return (NULL);
5230 
5231         if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5232                 return (NULL);
5233 
5234         /*
5235          * Create and initialize the spa structure.
5236          */
5237         mutex_enter(&spa_namespace_lock);
5238         spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5239         spa_activate(spa, FREAD);
5240 
5241         /*
5242          * Rewind pool if a max txg was provided.
5243          */
5244         zpool_get_load_policy(spa->spa_config, &policy);
5245         if (policy.zlp_txg != UINT64_MAX) {
5246                 spa->spa_load_max_txg = policy.zlp_txg;
5247                 spa->spa_extreme_rewind = B_TRUE;
5248                 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5249                     poolname, (longlong_t)policy.zlp_txg);
5250         } else {
5251                 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5252         }
5253 
5254         if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5255             == 0) {
5256                 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5257                 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5258         } else {
5259                 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5260         }
5261 
5262         error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5263 
5264         /*
5265          * If 'tryconfig' was at least parsable, return the current config.
5266          */
5267         if (spa->spa_root_vdev != NULL) {
5268                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5269                 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5270                     poolname) == 0);
5271                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5272                     state) == 0);
5273                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5274                     spa->spa_uberblock.ub_timestamp) == 0);
5275                 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5276                     spa->spa_load_info) == 0);
5277 
5278                 /*
5279                  * If the bootfs property exists on this pool then we
5280                  * copy it out so that external consumers can tell which
5281                  * pools are bootable.
5282                  */
5283                 if ((!error || error == EEXIST) && spa->spa_bootfs) {
5284                         char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5285 
5286                         /*
5287                          * We have to play games with the name since the
5288                          * pool was opened as TRYIMPORT_NAME.
5289                          */
5290                         if (dsl_dsobj_to_dsname(spa_name(spa),
5291                             spa->spa_bootfs, tmpname) == 0) {
5292                                 char *cp;
5293                                 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5294 
5295                                 cp = strchr(tmpname, '/');
5296                                 if (cp == NULL) {
5297                                         (void) strlcpy(dsname, tmpname,
5298                                             MAXPATHLEN);
5299                                 } else {
5300                                         (void) snprintf(dsname, MAXPATHLEN,
5301                                             "%s/%s", poolname, ++cp);
5302                                 }
5303                                 VERIFY(nvlist_add_string(config,
5304                                     ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5305                                 kmem_free(dsname, MAXPATHLEN);
5306                         }
5307                         kmem_free(tmpname, MAXPATHLEN);
5308                 }
5309 
5310                 /*
5311                  * Add the list of hot spares and level 2 cache devices.
5312                  */
5313                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5314                 spa_add_spares(spa, config);
5315                 spa_add_l2cache(spa, config);
5316                 spa_config_exit(spa, SCL_CONFIG, FTAG);
5317         }
5318 
5319         spa_unload(spa);
5320         spa_deactivate(spa);
5321         spa_remove(spa);
5322         mutex_exit(&spa_namespace_lock);
5323 
5324         return (config);
5325 }
5326 
5327 /*
5328  * Pool export/destroy
5329  *
5330  * The act of destroying or exporting a pool is very simple.  We make sure there
5331  * is no more pending I/O and any references to the pool are gone.  Then, we
5332  * update the pool state and sync all the labels to disk, removing the
5333  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5334  * we don't sync the labels or remove the configuration cache.
5335  */
5336 static int
5337 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5338     boolean_t force, boolean_t hardforce)
5339 {
5340         spa_t *spa;
5341 
5342         if (oldconfig)
5343                 *oldconfig = NULL;
5344 
5345         if (!(spa_mode_global & FWRITE))
5346                 return (SET_ERROR(EROFS));
5347 
5348         mutex_enter(&spa_namespace_lock);
5349         if ((spa = spa_lookup(pool)) == NULL) {
5350                 mutex_exit(&spa_namespace_lock);
5351                 return (SET_ERROR(ENOENT));
5352         }
5353 
5354         /*
5355          * Put a hold on the pool, drop the namespace lock, stop async tasks,
5356          * reacquire the namespace lock, and see if we can export.
5357          */
5358         spa_open_ref(spa, FTAG);
5359         mutex_exit(&spa_namespace_lock);
5360         spa_async_suspend(spa);
5361         mutex_enter(&spa_namespace_lock);
5362         spa_close(spa, FTAG);
5363 
5364         /*
5365          * The pool will be in core if it's openable,
5366          * in which case we can modify its state.
5367          */
5368         if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5369 
5370                 /*
5371                  * Objsets may be open only because they're dirty, so we
5372                  * have to force it to sync before checking spa_refcnt.
5373                  */
5374                 txg_wait_synced(spa->spa_dsl_pool, 0);
5375                 spa_evicting_os_wait(spa);
5376 
5377                 /*
5378                  * A pool cannot be exported or destroyed if there are active
5379                  * references.  If we are resetting a pool, allow references by
5380                  * fault injection handlers.
5381                  */
5382                 if (!spa_refcount_zero(spa) ||
5383                     (spa->spa_inject_ref != 0 &&
5384                     new_state != POOL_STATE_UNINITIALIZED)) {
5385                         spa_async_resume(spa);
5386                         mutex_exit(&spa_namespace_lock);
5387                         return (SET_ERROR(EBUSY));
5388                 }
5389 
5390                 /*
5391                  * A pool cannot be exported if it has an active shared spare.
5392                  * This is to prevent other pools stealing the active spare
5393                  * from an exported pool. At user's own will, such pool can
5394                  * be forcedly exported.
5395                  */
5396                 if (!force && new_state == POOL_STATE_EXPORTED &&
5397                     spa_has_active_shared_spare(spa)) {
5398                         spa_async_resume(spa);
5399                         mutex_exit(&spa_namespace_lock);
5400                         return (SET_ERROR(EXDEV));
5401                 }
5402 
5403                 /*
5404                  * We're about to export or destroy this pool. Make sure
5405                  * we stop all initializtion activity here before we
5406                  * set the spa_final_txg. This will ensure that all
5407                  * dirty data resulting from the initialization is
5408                  * committed to disk before we unload the pool.
5409                  */
5410                 if (spa->spa_root_vdev != NULL) {
5411                         vdev_initialize_stop_all(spa->spa_root_vdev,
5412                             VDEV_INITIALIZE_ACTIVE);
5413                 }
5414 
5415                 /*
5416                  * We want this to be reflected on every label,
5417                  * so mark them all dirty.  spa_unload() will do the
5418                  * final sync that pushes these changes out.
5419                  */
5420                 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5421                         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5422                         spa->spa_state = new_state;
5423                         spa->spa_final_txg = spa_last_synced_txg(spa) +
5424                             TXG_DEFER_SIZE + 1;
5425                         vdev_config_dirty(spa->spa_root_vdev);
5426                         spa_config_exit(spa, SCL_ALL, FTAG);
5427                 }
5428         }
5429 
5430         spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
5431 
5432         if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5433                 spa_unload(spa);
5434                 spa_deactivate(spa);
5435         }
5436 
5437         if (oldconfig && spa->spa_config)
5438                 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
5439 
5440         if (new_state != POOL_STATE_UNINITIALIZED) {
5441                 if (!hardforce)
5442                         spa_write_cachefile(spa, B_TRUE, B_TRUE);
5443                 spa_remove(spa);
5444         }
5445         mutex_exit(&spa_namespace_lock);
5446 
5447         return (0);
5448 }
5449 
5450 /*
5451  * Destroy a storage pool.
5452  */
5453 int
5454 spa_destroy(char *pool)
5455 {
5456         return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
5457             B_FALSE, B_FALSE));
5458 }
5459 
5460 /*
5461  * Export a storage pool.
5462  */
5463 int
5464 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
5465     boolean_t hardforce)
5466 {
5467         return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
5468             force, hardforce));
5469 }
5470 
5471 /*
5472  * Similar to spa_export(), this unloads the spa_t without actually removing it
5473  * from the namespace in any way.
5474  */
5475 int
5476 spa_reset(char *pool)
5477 {
5478         return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
5479             B_FALSE, B_FALSE));
5480 }
5481 
5482 /*
5483  * ==========================================================================
5484  * Device manipulation
5485  * ==========================================================================
5486  */
5487 
5488 /*
5489  * Add a device to a storage pool.
5490  */
5491 int
5492 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
5493 {
5494         uint64_t txg, id;
5495         int error;
5496         vdev_t *rvd = spa->spa_root_vdev;
5497         vdev_t *vd, *tvd;
5498         nvlist_t **spares, **l2cache;
5499         uint_t nspares, nl2cache;
5500 
5501         ASSERT(spa_writeable(spa));
5502 
5503         txg = spa_vdev_enter(spa);
5504 
5505         if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
5506             VDEV_ALLOC_ADD)) != 0)
5507                 return (spa_vdev_exit(spa, NULL, txg, error));
5508 
5509         spa->spa_pending_vdev = vd;  /* spa_vdev_exit() will clear this */
5510 
5511         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
5512             &nspares) != 0)
5513                 nspares = 0;
5514 
5515         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
5516             &nl2cache) != 0)
5517                 nl2cache = 0;
5518 
5519         if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5520                 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5521 
5522         if (vd->vdev_children != 0 &&
5523             (error = vdev_create(vd, txg, B_FALSE)) != 0)
5524                 return (spa_vdev_exit(spa, vd, txg, error));
5525 
5526         /*
5527          * We must validate the spares and l2cache devices after checking the
5528          * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
5529          */
5530         if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5531                 return (spa_vdev_exit(spa, vd, txg, error));
5532 
5533         /*
5534          * If we are in the middle of a device removal, we can only add
5535          * devices which match the existing devices in the pool.
5536          * If we are in the middle of a removal, or have some indirect
5537          * vdevs, we can not add raidz toplevels.
5538          */
5539         if (spa->spa_vdev_removal != NULL ||
5540             spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5541                 for (int c = 0; c < vd->vdev_children; c++) {
5542                         tvd = vd->vdev_child[c];
5543                         if (spa->spa_vdev_removal != NULL &&
5544                             tvd->vdev_ashift != spa->spa_max_ashift) {
5545                                 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5546                         }
5547                         /* Fail if top level vdev is raidz */
5548                         if (tvd->vdev_ops == &vdev_raidz_ops) {
5549                                 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5550                         }
5551                         /*
5552                          * Need the top level mirror to be
5553                          * a mirror of leaf vdevs only
5554                          */
5555                         if (tvd->vdev_ops == &vdev_mirror_ops) {
5556                                 for (uint64_t cid = 0;
5557                                     cid < tvd->vdev_children; cid++) {
5558                                         vdev_t *cvd = tvd->vdev_child[cid];
5559                                         if (!cvd->vdev_ops->vdev_op_leaf) {
5560                                                 return (spa_vdev_exit(spa, vd,
5561                                                     txg, EINVAL));
5562                                         }
5563                                 }
5564                         }
5565                 }
5566         }
5567 
5568         for (int c = 0; c < vd->vdev_children; c++) {
5569 
5570                 /*
5571                  * Set the vdev id to the first hole, if one exists.
5572                  */
5573                 for (id = 0; id < rvd->vdev_children; id++) {
5574                         if (rvd->vdev_child[id]->vdev_ishole) {
5575                                 vdev_free(rvd->vdev_child[id]);
5576                                 break;
5577                         }
5578                 }
5579                 tvd = vd->vdev_child[c];
5580                 vdev_remove_child(vd, tvd);
5581                 tvd->vdev_id = id;
5582                 vdev_add_child(rvd, tvd);
5583                 vdev_config_dirty(tvd);
5584         }
5585 
5586         if (nspares != 0) {
5587                 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
5588                     ZPOOL_CONFIG_SPARES);
5589                 spa_load_spares(spa);
5590                 spa->spa_spares.sav_sync = B_TRUE;
5591         }
5592 
5593         if (nl2cache != 0) {
5594                 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
5595                     ZPOOL_CONFIG_L2CACHE);
5596                 spa_load_l2cache(spa);
5597                 spa->spa_l2cache.sav_sync = B_TRUE;
5598         }
5599 
5600         /*
5601          * We have to be careful when adding new vdevs to an existing pool.
5602          * If other threads start allocating from these vdevs before we
5603          * sync the config cache, and we lose power, then upon reboot we may
5604          * fail to open the pool because there are DVAs that the config cache
5605          * can't translate.  Therefore, we first add the vdevs without
5606          * initializing metaslabs; sync the config cache (via spa_vdev_exit());
5607          * and then let spa_config_update() initialize the new metaslabs.
5608          *
5609          * spa_load() checks for added-but-not-initialized vdevs, so that
5610          * if we lose power at any point in this sequence, the remaining
5611          * steps will be completed the next time we load the pool.
5612          */
5613         (void) spa_vdev_exit(spa, vd, txg, 0);
5614 
5615         mutex_enter(&spa_namespace_lock);
5616         spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5617         spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5618         mutex_exit(&spa_namespace_lock);
5619 
5620         return (0);
5621 }
5622 
5623 /*
5624  * Attach a device to a mirror.  The arguments are the path to any device
5625  * in the mirror, and the nvroot for the new device.  If the path specifies
5626  * a device that is not mirrored, we automatically insert the mirror vdev.
5627  *
5628  * If 'replacing' is specified, the new device is intended to replace the
5629  * existing device; in this case the two devices are made into their own
5630  * mirror using the 'replacing' vdev, which is functionally identical to
5631  * the mirror vdev (it actually reuses all the same ops) but has a few
5632  * extra rules: you can't attach to it after it's been created, and upon
5633  * completion of resilvering, the first disk (the one being replaced)
5634  * is automatically detached.
5635  */
5636 int
5637 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
5638 {
5639         uint64_t txg, dtl_max_txg;
5640         vdev_t *rvd = spa->spa_root_vdev;
5641         vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
5642         vdev_ops_t *pvops;
5643         char *oldvdpath, *newvdpath;
5644         int newvd_isspare;
5645         int error;
5646 
5647         ASSERT(spa_writeable(spa));
5648 
5649         txg = spa_vdev_enter(spa);
5650 
5651         oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
5652 
5653         ASSERT(MUTEX_HELD(&spa_namespace_lock));
5654         if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
5655                 error = (spa_has_checkpoint(spa)) ?
5656                     ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
5657                 return (spa_vdev_exit(spa, NULL, txg, error));
5658         }
5659 
5660         if (spa->spa_vdev_removal != NULL)
5661                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5662 
5663         if (oldvd == NULL)
5664                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5665 
5666         if (!oldvd->vdev_ops->vdev_op_leaf)
5667                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5668 
5669         pvd = oldvd->vdev_parent;
5670 
5671         if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
5672             VDEV_ALLOC_ATTACH)) != 0)
5673                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5674 
5675         if (newrootvd->vdev_children != 1)
5676                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5677 
5678         newvd = newrootvd->vdev_child[0];
5679 
5680         if (!newvd->vdev_ops->vdev_op_leaf)
5681                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5682 
5683         if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
5684                 return (spa_vdev_exit(spa, newrootvd, txg, error));
5685 
5686         /*
5687          * Spares can't replace logs
5688          */
5689         if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
5690                 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5691 
5692         if (!replacing) {
5693                 /*
5694                  * For attach, the only allowable parent is a mirror or the root
5695                  * vdev.
5696                  */
5697                 if (pvd->vdev_ops != &vdev_mirror_ops &&
5698                     pvd->vdev_ops != &vdev_root_ops)
5699                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5700 
5701                 pvops = &vdev_mirror_ops;
5702         } else {
5703                 /*
5704                  * Active hot spares can only be replaced by inactive hot
5705                  * spares.
5706                  */
5707                 if (pvd->vdev_ops == &vdev_spare_ops &&
5708                     oldvd->vdev_isspare &&
5709                     !spa_has_spare(spa, newvd->vdev_guid))
5710                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5711 
5712                 /*
5713                  * If the source is a hot spare, and the parent isn't already a
5714                  * spare, then we want to create a new hot spare.  Otherwise, we
5715                  * want to create a replacing vdev.  The user is not allowed to
5716                  * attach to a spared vdev child unless the 'isspare' state is
5717                  * the same (spare replaces spare, non-spare replaces
5718                  * non-spare).
5719                  */
5720                 if (pvd->vdev_ops == &vdev_replacing_ops &&
5721                     spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
5722                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5723                 } else if (pvd->vdev_ops == &vdev_spare_ops &&
5724                     newvd->vdev_isspare != oldvd->vdev_isspare) {
5725                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5726                 }
5727 
5728                 if (newvd->vdev_isspare)
5729                         pvops = &vdev_spare_ops;
5730                 else
5731                         pvops = &vdev_replacing_ops;
5732         }
5733 
5734         /*
5735          * Make sure the new device is big enough.
5736          */
5737         if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
5738                 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
5739 
5740         /*
5741          * The new device cannot have a higher alignment requirement
5742          * than the top-level vdev.
5743          */
5744         if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
5745                 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
5746 
5747         /*
5748          * If this is an in-place replacement, update oldvd's path and devid
5749          * to make it distinguishable from newvd, and unopenable from now on.
5750          */
5751         if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
5752                 spa_strfree(oldvd->vdev_path);
5753                 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
5754                     KM_SLEEP);
5755                 (void) sprintf(oldvd->vdev_path, "%s/%s",
5756                     newvd->vdev_path, "old");
5757                 if (oldvd->vdev_devid != NULL) {
5758                         spa_strfree(oldvd->vdev_devid);
5759                         oldvd->vdev_devid = NULL;
5760                 }
5761         }
5762 
5763         /* mark the device being resilvered */
5764         newvd->vdev_resilver_txg = txg;
5765 
5766         /*
5767          * If the parent is not a mirror, or if we're replacing, insert the new
5768          * mirror/replacing/spare vdev above oldvd.
5769          */
5770         if (pvd->vdev_ops != pvops)
5771                 pvd = vdev_add_parent(oldvd, pvops);
5772 
5773         ASSERT(pvd->vdev_top->vdev_parent == rvd);
5774         ASSERT(pvd->vdev_ops == pvops);
5775         ASSERT(oldvd->vdev_parent == pvd);
5776 
5777         /*
5778          * Extract the new device from its root and add it to pvd.
5779          */
5780         vdev_remove_child(newrootvd, newvd);
5781         newvd->vdev_id = pvd->vdev_children;
5782         newvd->vdev_crtxg = oldvd->vdev_crtxg;
5783         vdev_add_child(pvd, newvd);
5784 
5785         tvd = newvd->vdev_top;
5786         ASSERT(pvd->vdev_top == tvd);
5787         ASSERT(tvd->vdev_parent == rvd);
5788 
5789         vdev_config_dirty(tvd);
5790 
5791         /*
5792          * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
5793          * for any dmu_sync-ed blocks.  It will propagate upward when
5794          * spa_vdev_exit() calls vdev_dtl_reassess().
5795          */
5796         dtl_max_txg = txg + TXG_CONCURRENT_STATES;
5797 
5798         vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
5799             dtl_max_txg - TXG_INITIAL);
5800 
5801         if (newvd->vdev_isspare) {
5802                 spa_spare_activate(newvd);
5803                 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
5804         }
5805 
5806         oldvdpath = spa_strdup(oldvd->vdev_path);
5807         newvdpath = spa_strdup(newvd->vdev_path);
5808         newvd_isspare = newvd->vdev_isspare;
5809 
5810         /*
5811          * Mark newvd's DTL dirty in this txg.
5812          */
5813         vdev_dirty(tvd, VDD_DTL, newvd, txg);
5814 
5815         /*
5816          * Schedule the resilver to restart in the future. We do this to
5817          * ensure that dmu_sync-ed blocks have been stitched into the
5818          * respective datasets.
5819          */
5820         dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5821 
5822         if (spa->spa_bootfs)
5823                 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5824 
5825         spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
5826 
5827         /*
5828          * Commit the config
5829          */
5830         (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5831 
5832         spa_history_log_internal(spa, "vdev attach", NULL,
5833             "%s vdev=%s %s vdev=%s",
5834             replacing && newvd_isspare ? "spare in" :
5835             replacing ? "replace" : "attach", newvdpath,
5836             replacing ? "for" : "to", oldvdpath);
5837 
5838         spa_strfree(oldvdpath);
5839         spa_strfree(newvdpath);
5840 
5841         return (0);
5842 }
5843 
5844 /*
5845  * Detach a device from a mirror or replacing vdev.
5846  *
5847  * If 'replace_done' is specified, only detach if the parent
5848  * is a replacing vdev.
5849  */
5850 int
5851 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5852 {
5853         uint64_t txg;
5854         int error;
5855         vdev_t *rvd = spa->spa_root_vdev;
5856         vdev_t *vd, *pvd, *cvd, *tvd;
5857         boolean_t unspare = B_FALSE;
5858         uint64_t unspare_guid = 0;
5859         char *vdpath;
5860 
5861         ASSERT(spa_writeable(spa));
5862 
5863         txg = spa_vdev_enter(spa);
5864 
5865         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5866 
5867         /*
5868          * Besides being called directly from the userland through the
5869          * ioctl interface, spa_vdev_detach() can be potentially called
5870          * at the end of spa_vdev_resilver_done().
5871          *
5872          * In the regular case, when we have a checkpoint this shouldn't
5873          * happen as we never empty the DTLs of a vdev during the scrub
5874          * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
5875          * should never get here when we have a checkpoint.
5876          *
5877          * That said, even in a case when we checkpoint the pool exactly
5878          * as spa_vdev_resilver_done() calls this function everything
5879          * should be fine as the resilver will return right away.
5880          */
5881         ASSERT(MUTEX_HELD(&spa_namespace_lock));
5882         if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
5883                 error = (spa_has_checkpoint(spa)) ?
5884                     ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
5885                 return (spa_vdev_exit(spa, NULL, txg, error));
5886         }
5887 
5888         if (vd == NULL)
5889                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5890 
5891         if (!vd->vdev_ops->vdev_op_leaf)
5892                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5893 
5894         pvd = vd->vdev_parent;
5895 
5896         /*
5897          * If the parent/child relationship is not as expected, don't do it.
5898          * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5899          * vdev that's replacing B with C.  The user's intent in replacing
5900          * is to go from M(A,B) to M(A,C).  If the user decides to cancel
5901          * the replace by detaching C, the expected behavior is to end up
5902          * M(A,B).  But suppose that right after deciding to detach C,
5903          * the replacement of B completes.  We would have M(A,C), and then
5904          * ask to detach C, which would leave us with just A -- not what
5905          * the user wanted.  To prevent this, we make sure that the
5906          * parent/child relationship hasn't changed -- in this example,
5907          * that C's parent is still the replacing vdev R.
5908          */
5909         if (pvd->vdev_guid != pguid && pguid != 0)
5910                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5911 
5912         /*
5913          * Only 'replacing' or 'spare' vdevs can be replaced.
5914          */
5915         if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5916             pvd->vdev_ops != &vdev_spare_ops)
5917                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5918 
5919         ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5920             spa_version(spa) >= SPA_VERSION_SPARES);
5921 
5922         /*
5923          * Only mirror, replacing, and spare vdevs support detach.
5924          */
5925         if (pvd->vdev_ops != &vdev_replacing_ops &&
5926             pvd->vdev_ops != &vdev_mirror_ops &&
5927             pvd->vdev_ops != &vdev_spare_ops)
5928                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5929 
5930         /*
5931          * If this device has the only valid copy of some data,
5932          * we cannot safely detach it.
5933          */
5934         if (vdev_dtl_required(vd))
5935                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5936 
5937         ASSERT(pvd->vdev_children >= 2);
5938 
5939         /*
5940          * If we are detaching the second disk from a replacing vdev, then
5941          * check to see if we changed the original vdev's path to have "/old"
5942          * at the end in spa_vdev_attach().  If so, undo that change now.
5943          */
5944         if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5945             vd->vdev_path != NULL) {
5946                 size_t len = strlen(vd->vdev_path);
5947 
5948                 for (int c = 0; c < pvd->vdev_children; c++) {
5949                         cvd = pvd->vdev_child[c];
5950 
5951                         if (cvd == vd || cvd->vdev_path == NULL)
5952                                 continue;
5953 
5954                         if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5955                             strcmp(cvd->vdev_path + len, "/old") == 0) {
5956                                 spa_strfree(cvd->vdev_path);
5957                                 cvd->vdev_path = spa_strdup(vd->vdev_path);
5958                                 break;
5959                         }
5960                 }
5961         }
5962 
5963         /*
5964          * If we are detaching the original disk from a spare, then it implies
5965          * that the spare should become a real disk, and be removed from the
5966          * active spare list for the pool.
5967          */
5968         if (pvd->vdev_ops == &vdev_spare_ops &&
5969             vd->vdev_id == 0 &&
5970             pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5971                 unspare = B_TRUE;
5972 
5973         /*
5974          * Erase the disk labels so the disk can be used for other things.
5975          * This must be done after all other error cases are handled,
5976          * but before we disembowel vd (so we can still do I/O to it).
5977          * But if we can't do it, don't treat the error as fatal --
5978          * it may be that the unwritability of the disk is the reason
5979          * it's being detached!
5980          */
5981         error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5982 
5983         /*
5984          * Remove vd from its parent and compact the parent's children.
5985          */
5986         vdev_remove_child(pvd, vd);
5987         vdev_compact_children(pvd);
5988 
5989         /*
5990          * Remember one of the remaining children so we can get tvd below.
5991          */
5992         cvd = pvd->vdev_child[pvd->vdev_children - 1];
5993 
5994         /*
5995          * If we need to remove the remaining child from the list of hot spares,
5996          * do it now, marking the vdev as no longer a spare in the process.
5997          * We must do this before vdev_remove_parent(), because that can
5998          * change the GUID if it creates a new toplevel GUID.  For a similar
5999          * reason, we must remove the spare now, in the same txg as the detach;
6000          * otherwise someone could attach a new sibling, change the GUID, and
6001          * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6002          */
6003         if (unspare) {
6004                 ASSERT(cvd->vdev_isspare);
6005                 spa_spare_remove(cvd);
6006                 unspare_guid = cvd->vdev_guid;
6007                 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6008                 cvd->vdev_unspare = B_TRUE;
6009         }
6010 
6011         /*
6012          * If the parent mirror/replacing vdev only has one child,
6013          * the parent is no longer needed.  Remove it from the tree.
6014          */
6015         if (pvd->vdev_children == 1) {
6016                 if (pvd->vdev_ops == &vdev_spare_ops)
6017                         cvd->vdev_unspare = B_FALSE;
6018                 vdev_remove_parent(cvd);
6019         }
6020 
6021 
6022         /*
6023          * We don't set tvd until now because the parent we just removed
6024          * may have been the previous top-level vdev.
6025          */
6026         tvd = cvd->vdev_top;
6027         ASSERT(tvd->vdev_parent == rvd);
6028 
6029         /*
6030          * Reevaluate the parent vdev state.
6031          */
6032         vdev_propagate_state(cvd);
6033 
6034         /*
6035          * If the 'autoexpand' property is set on the pool then automatically
6036          * try to expand the size of the pool. For example if the device we
6037          * just detached was smaller than the others, it may be possible to
6038          * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6039          * first so that we can obtain the updated sizes of the leaf vdevs.
6040          */
6041         if (spa->spa_autoexpand) {
6042                 vdev_reopen(tvd);
6043                 vdev_expand(tvd, txg);
6044         }
6045 
6046         vdev_config_dirty(tvd);
6047 
6048         /*
6049          * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
6050          * vd->vdev_detached is set and free vd's DTL object in syncing context.
6051          * But first make sure we're not on any *other* txg's DTL list, to
6052          * prevent vd from being accessed after it's freed.
6053          */
6054         vdpath = spa_strdup(vd->vdev_path);
6055         for (int t = 0; t < TXG_SIZE; t++)
6056                 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6057         vd->vdev_detached = B_TRUE;
6058         vdev_dirty(tvd, VDD_DTL, vd, txg);
6059 
6060         spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6061 
6062         /* hang on to the spa before we release the lock */
6063         spa_open_ref(spa, FTAG);
6064 
6065         error = spa_vdev_exit(spa, vd, txg, 0);
6066 
6067         spa_history_log_internal(spa, "detach", NULL,
6068             "vdev=%s", vdpath);
6069         spa_strfree(vdpath);
6070 
6071         /*
6072          * If this was the removal of the original device in a hot spare vdev,
6073          * then we want to go through and remove the device from the hot spare
6074          * list of every other pool.
6075          */
6076         if (unspare) {
6077                 spa_t *altspa = NULL;
6078 
6079                 mutex_enter(&spa_namespace_lock);
6080                 while ((altspa = spa_next(altspa)) != NULL) {
6081                         if (altspa->spa_state != POOL_STATE_ACTIVE ||
6082                             altspa == spa)
6083                                 continue;
6084 
6085                         spa_open_ref(altspa, FTAG);
6086                         mutex_exit(&spa_namespace_lock);
6087                         (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6088                         mutex_enter(&spa_namespace_lock);
6089                         spa_close(altspa, FTAG);
6090                 }
6091                 mutex_exit(&spa_namespace_lock);
6092 
6093                 /* search the rest of the vdevs for spares to remove */
6094                 spa_vdev_resilver_done(spa);
6095         }
6096 
6097         /* all done with the spa; OK to release */
6098         mutex_enter(&spa_namespace_lock);
6099         spa_close(spa, FTAG);
6100         mutex_exit(&spa_namespace_lock);
6101 
6102         return (error);
6103 }
6104 
6105 int
6106 spa_vdev_initialize(spa_t *spa, uint64_t guid, uint64_t cmd_type)
6107 {
6108         /*
6109          * We hold the namespace lock through the whole function
6110          * to prevent any changes to the pool while we're starting or
6111          * stopping initialization. The config and state locks are held so that
6112          * we can properly assess the vdev state before we commit to
6113          * the initializing operation.
6114          */
6115         mutex_enter(&spa_namespace_lock);
6116         spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6117 
6118         /* Look up vdev and ensure it's a leaf. */
6119         vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6120         if (vd == NULL || vd->vdev_detached) {
6121                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6122                 mutex_exit(&spa_namespace_lock);
6123                 return (SET_ERROR(ENODEV));
6124         } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6125                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6126                 mutex_exit(&spa_namespace_lock);
6127                 return (SET_ERROR(EINVAL));
6128         } else if (!vdev_writeable(vd)) {
6129                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6130                 mutex_exit(&spa_namespace_lock);
6131                 return (SET_ERROR(EROFS));
6132         }
6133         mutex_enter(&vd->vdev_initialize_lock);
6134         spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6135 
6136         /*
6137          * When we activate an initialize action we check to see
6138          * if the vdev_initialize_thread is NULL. We do this instead
6139          * of using the vdev_initialize_state since there might be
6140          * a previous initialization process which has completed but
6141          * the thread is not exited.
6142          */
6143         if (cmd_type == POOL_INITIALIZE_DO &&
6144             (vd->vdev_initialize_thread != NULL ||
6145             vd->vdev_top->vdev_removing)) {
6146                 mutex_exit(&vd->vdev_initialize_lock);
6147                 mutex_exit(&spa_namespace_lock);
6148                 return (SET_ERROR(EBUSY));
6149         } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
6150             (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
6151             vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
6152                 mutex_exit(&vd->vdev_initialize_lock);
6153                 mutex_exit(&spa_namespace_lock);
6154                 return (SET_ERROR(ESRCH));
6155         } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
6156             vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
6157                 mutex_exit(&vd->vdev_initialize_lock);
6158                 mutex_exit(&spa_namespace_lock);
6159                 return (SET_ERROR(ESRCH));
6160         }
6161 
6162         switch (cmd_type) {
6163         case POOL_INITIALIZE_DO:
6164                 vdev_initialize(vd);
6165                 break;
6166         case POOL_INITIALIZE_CANCEL:
6167                 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED);
6168                 break;
6169         case POOL_INITIALIZE_SUSPEND:
6170                 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED);
6171                 break;
6172         default:
6173                 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6174         }
6175         mutex_exit(&vd->vdev_initialize_lock);
6176 
6177         /* Sync out the initializing state */
6178         txg_wait_synced(spa->spa_dsl_pool, 0);
6179         mutex_exit(&spa_namespace_lock);
6180 
6181         return (0);
6182 }
6183 
6184 
6185 /*
6186  * Split a set of devices from their mirrors, and create a new pool from them.
6187  */
6188 int
6189 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6190     nvlist_t *props, boolean_t exp)
6191 {
6192         int error = 0;
6193         uint64_t txg, *glist;
6194         spa_t *newspa;
6195         uint_t c, children, lastlog;
6196         nvlist_t **child, *nvl, *tmp;
6197         dmu_tx_t *tx;
6198         char *altroot = NULL;
6199         vdev_t *rvd, **vml = NULL;                      /* vdev modify list */
6200         boolean_t activate_slog;
6201 
6202         ASSERT(spa_writeable(spa));
6203 
6204         txg = spa_vdev_enter(spa);
6205 
6206         ASSERT(MUTEX_HELD(&spa_namespace_lock));
6207         if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6208                 error = (spa_has_checkpoint(spa)) ?
6209                     ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6210                 return (spa_vdev_exit(spa, NULL, txg, error));
6211         }
6212 
6213         /* clear the log and flush everything up to now */
6214         activate_slog = spa_passivate_log(spa);
6215         (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6216         error = spa_reset_logs(spa);
6217         txg = spa_vdev_config_enter(spa);
6218 
6219         if (activate_slog)
6220                 spa_activate_log(spa);
6221 
6222         if (error != 0)
6223                 return (spa_vdev_exit(spa, NULL, txg, error));
6224 
6225         /* check new spa name before going any further */
6226         if (spa_lookup(newname) != NULL)
6227                 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6228 
6229         /*
6230          * scan through all the children to ensure they're all mirrors
6231          */
6232         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6233             nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6234             &children) != 0)
6235                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6236 
6237         /* first, check to ensure we've got the right child count */
6238         rvd = spa->spa_root_vdev;
6239         lastlog = 0;
6240         for (c = 0; c < rvd->vdev_children; c++) {
6241                 vdev_t *vd = rvd->vdev_child[c];
6242 
6243                 /* don't count the holes & logs as children */
6244                 if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6245                         if (lastlog == 0)
6246                                 lastlog = c;
6247                         continue;
6248                 }
6249 
6250                 lastlog = 0;
6251         }
6252         if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6253                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6254 
6255         /* next, ensure no spare or cache devices are part of the split */
6256         if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6257             nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6258                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6259 
6260         vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6261         glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6262 
6263         /* then, loop over each vdev and validate it */
6264         for (c = 0; c < children; c++) {
6265                 uint64_t is_hole = 0;
6266 
6267                 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6268                     &is_hole);
6269 
6270                 if (is_hole != 0) {
6271                         if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6272                             spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6273                                 continue;
6274                         } else {
6275                                 error = SET_ERROR(EINVAL);
6276                                 break;
6277                         }
6278                 }
6279 
6280                 /* which disk is going to be split? */
6281                 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6282                     &glist[c]) != 0) {
6283                         error = SET_ERROR(EINVAL);
6284                         break;
6285                 }
6286 
6287                 /* look it up in the spa */
6288                 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
6289                 if (vml[c] == NULL) {
6290                         error = SET_ERROR(ENODEV);
6291                         break;
6292                 }
6293 
6294                 /* make sure there's nothing stopping the split */
6295                 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
6296                     vml[c]->vdev_islog ||
6297                     !vdev_is_concrete(vml[c]) ||
6298                     vml[c]->vdev_isspare ||
6299                     vml[c]->vdev_isl2cache ||
6300                     !vdev_writeable(vml[c]) ||
6301                     vml[c]->vdev_children != 0 ||
6302                     vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
6303                     c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
6304                         error = SET_ERROR(EINVAL);
6305                         break;
6306                 }
6307 
6308                 if (vdev_dtl_required(vml[c])) {
6309                         error = SET_ERROR(EBUSY);
6310                         break;
6311                 }
6312 
6313                 /* we need certain info from the top level */
6314                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
6315                     vml[c]->vdev_top->vdev_ms_array) == 0);
6316                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
6317                     vml[c]->vdev_top->vdev_ms_shift) == 0);
6318                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
6319                     vml[c]->vdev_top->vdev_asize) == 0);
6320                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
6321                     vml[c]->vdev_top->vdev_ashift) == 0);
6322 
6323                 /* transfer per-vdev ZAPs */
6324                 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
6325                 VERIFY0(nvlist_add_uint64(child[c],
6326                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
6327 
6328                 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
6329                 VERIFY0(nvlist_add_uint64(child[c],
6330                     ZPOOL_CONFIG_VDEV_TOP_ZAP,
6331                     vml[c]->vdev_parent->vdev_top_zap));
6332         }
6333 
6334         if (error != 0) {
6335                 kmem_free(vml, children * sizeof (vdev_t *));
6336                 kmem_free(glist, children * sizeof (uint64_t));
6337                 return (spa_vdev_exit(spa, NULL, txg, error));
6338         }
6339 
6340         /* stop writers from using the disks */
6341         for (c = 0; c < children; c++) {
6342                 if (vml[c] != NULL)
6343                         vml[c]->vdev_offline = B_TRUE;
6344         }
6345         vdev_reopen(spa->spa_root_vdev);
6346 
6347         /*
6348          * Temporarily record the splitting vdevs in the spa config.  This
6349          * will disappear once the config is regenerated.
6350          */
6351         VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6352         VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
6353             glist, children) == 0);
6354         kmem_free(glist, children * sizeof (uint64_t));
6355 
6356         mutex_enter(&spa->spa_props_lock);
6357         VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
6358             nvl) == 0);
6359         mutex_exit(&spa->spa_props_lock);
6360         spa->spa_config_splitting = nvl;
6361         vdev_config_dirty(spa->spa_root_vdev);
6362 
6363         /* configure and create the new pool */
6364         VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
6365         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6366             exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
6367         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6368             spa_version(spa)) == 0);
6369         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
6370             spa->spa_config_txg) == 0);
6371         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
6372             spa_generate_guid(NULL)) == 0);
6373         VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
6374         (void) nvlist_lookup_string(props,
6375             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6376 
6377         /* add the new pool to the namespace */
6378         newspa = spa_add(newname, config, altroot);
6379         newspa->spa_avz_action = AVZ_ACTION_REBUILD;
6380         newspa->spa_config_txg = spa->spa_config_txg;
6381         spa_set_log_state(newspa, SPA_LOG_CLEAR);
6382 
6383         /* release the spa config lock, retaining the namespace lock */
6384         spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6385 
6386         if (zio_injection_enabled)
6387                 zio_handle_panic_injection(spa, FTAG, 1);
6388 
6389         spa_activate(newspa, spa_mode_global);
6390         spa_async_suspend(newspa);
6391 
6392         for (c = 0; c < children; c++) {
6393                 if (vml[c] != NULL) {
6394                         /*
6395                          * Temporarily stop the initializing activity. We set
6396                          * the state to ACTIVE so that we know to resume
6397                          * the initializing once the split has completed.
6398                          */
6399                         mutex_enter(&vml[c]->vdev_initialize_lock);
6400                         vdev_initialize_stop(vml[c], VDEV_INITIALIZE_ACTIVE);
6401                         mutex_exit(&vml[c]->vdev_initialize_lock);
6402                 }
6403         }
6404 
6405         newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
6406 
6407         /* create the new pool from the disks of the original pool */
6408         error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
6409         if (error)
6410                 goto out;
6411 
6412         /* if that worked, generate a real config for the new pool */
6413         if (newspa->spa_root_vdev != NULL) {
6414                 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
6415                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
6416                 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
6417                     ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
6418                 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
6419                     B_TRUE));
6420         }
6421 
6422         /* set the props */
6423         if (props != NULL) {
6424                 spa_configfile_set(newspa, props, B_FALSE);
6425                 error = spa_prop_set(newspa, props);
6426                 if (error)
6427                         goto out;
6428         }
6429 
6430         /* flush everything */
6431         txg = spa_vdev_config_enter(newspa);
6432         vdev_config_dirty(newspa->spa_root_vdev);
6433         (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
6434 
6435         if (zio_injection_enabled)
6436                 zio_handle_panic_injection(spa, FTAG, 2);
6437 
6438         spa_async_resume(newspa);
6439 
6440         /* finally, update the original pool's config */
6441         txg = spa_vdev_config_enter(spa);
6442         tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
6443         error = dmu_tx_assign(tx, TXG_WAIT);
6444         if (error != 0)
6445                 dmu_tx_abort(tx);
6446         for (c = 0; c < children; c++) {
6447                 if (vml[c] != NULL) {
6448                         vdev_split(vml[c]);
6449                         if (error == 0)
6450                                 spa_history_log_internal(spa, "detach", tx,
6451                                     "vdev=%s", vml[c]->vdev_path);
6452 
6453                         vdev_free(vml[c]);
6454                 }
6455         }
6456         spa->spa_avz_action = AVZ_ACTION_REBUILD;
6457         vdev_config_dirty(spa->spa_root_vdev);
6458         spa->spa_config_splitting = NULL;
6459         nvlist_free(nvl);
6460         if (error == 0)
6461                 dmu_tx_commit(tx);
6462         (void) spa_vdev_exit(spa, NULL, txg, 0);
6463 
6464         if (zio_injection_enabled)
6465                 zio_handle_panic_injection(spa, FTAG, 3);
6466 
6467         /* split is complete; log a history record */
6468         spa_history_log_internal(newspa, "split", NULL,
6469             "from pool %s", spa_name(spa));
6470 
6471         kmem_free(vml, children * sizeof (vdev_t *));
6472 
6473         /* if we're not going to mount the filesystems in userland, export */
6474         if (exp)
6475                 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
6476                     B_FALSE, B_FALSE);
6477 
6478         return (error);
6479 
6480 out:
6481         spa_unload(newspa);
6482         spa_deactivate(newspa);
6483         spa_remove(newspa);
6484 
6485         txg = spa_vdev_config_enter(spa);
6486 
6487         /* re-online all offlined disks */
6488         for (c = 0; c < children; c++) {
6489                 if (vml[c] != NULL)
6490                         vml[c]->vdev_offline = B_FALSE;
6491         }
6492 
6493         /* restart initializing disks as necessary */
6494         spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
6495 
6496         vdev_reopen(spa->spa_root_vdev);
6497 
6498         nvlist_free(spa->spa_config_splitting);
6499         spa->spa_config_splitting = NULL;
6500         (void) spa_vdev_exit(spa, NULL, txg, error);
6501 
6502         kmem_free(vml, children * sizeof (vdev_t *));
6503         return (error);
6504 }
6505 
6506 /*
6507  * Find any device that's done replacing, or a vdev marked 'unspare' that's
6508  * currently spared, so we can detach it.
6509  */
6510 static vdev_t *
6511 spa_vdev_resilver_done_hunt(vdev_t *vd)
6512 {
6513         vdev_t *newvd, *oldvd;
6514 
6515         for (int c = 0; c < vd->vdev_children; c++) {
6516                 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
6517                 if (oldvd != NULL)
6518                         return (oldvd);
6519         }
6520 
6521         /*
6522          * Check for a completed replacement.  We always consider the first
6523          * vdev in the list to be the oldest vdev, and the last one to be
6524          * the newest (see spa_vdev_attach() for how that works).  In
6525          * the case where the newest vdev is faulted, we will not automatically
6526          * remove it after a resilver completes.  This is OK as it will require
6527          * user intervention to determine which disk the admin wishes to keep.
6528          */
6529         if (vd->vdev_ops == &vdev_replacing_ops) {
6530                 ASSERT(vd->vdev_children > 1);
6531 
6532                 newvd = vd->vdev_child[vd->vdev_children - 1];
6533                 oldvd = vd->vdev_child[0];
6534 
6535                 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
6536                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6537                     !vdev_dtl_required(oldvd))
6538                         return (oldvd);
6539         }
6540 
6541         /*
6542          * Check for a completed resilver with the 'unspare' flag set.
6543          * Also potentially update faulted state.
6544          */
6545         if (vd->vdev_ops == &vdev_spare_ops) {
6546                 vdev_t *first = vd->vdev_child[0];
6547                 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
6548 
6549                 if (last->vdev_unspare) {
6550                         oldvd = first;
6551                         newvd = last;
6552                 } else if (first->vdev_unspare) {
6553                         oldvd = last;
6554                         newvd = first;
6555                 } else {
6556                         oldvd = NULL;
6557                 }
6558 
6559                 if (oldvd != NULL &&
6560                     vdev_dtl_empty(newvd, DTL_MISSING) &&
6561                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6562                     !vdev_dtl_required(oldvd))
6563                         return (oldvd);
6564 
6565                 vdev_propagate_state(vd);
6566 
6567                 /*
6568                  * If there are more than two spares attached to a disk,
6569                  * and those spares are not required, then we want to
6570                  * attempt to free them up now so that they can be used
6571                  * by other pools.  Once we're back down to a single
6572                  * disk+spare, we stop removing them.
6573                  */
6574                 if (vd->vdev_children > 2) {
6575                         newvd = vd->vdev_child[1];
6576 
6577                         if (newvd->vdev_isspare && last->vdev_isspare &&
6578                             vdev_dtl_empty(last, DTL_MISSING) &&
6579                             vdev_dtl_empty(last, DTL_OUTAGE) &&
6580                             !vdev_dtl_required(newvd))
6581                                 return (newvd);
6582                 }
6583         }
6584 
6585         return (NULL);
6586 }
6587 
6588 static void
6589 spa_vdev_resilver_done(spa_t *spa)
6590 {
6591         vdev_t *vd, *pvd, *ppvd;
6592         uint64_t guid, sguid, pguid, ppguid;
6593 
6594         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6595 
6596         while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
6597                 pvd = vd->vdev_parent;
6598                 ppvd = pvd->vdev_parent;
6599                 guid = vd->vdev_guid;
6600                 pguid = pvd->vdev_guid;
6601                 ppguid = ppvd->vdev_guid;
6602                 sguid = 0;
6603                 /*
6604                  * If we have just finished replacing a hot spared device, then
6605                  * we need to detach the parent's first child (the original hot
6606                  * spare) as well.
6607                  */
6608                 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
6609                     ppvd->vdev_children == 2) {
6610                         ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
6611                         sguid = ppvd->vdev_child[1]->vdev_guid;
6612                 }
6613                 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
6614 
6615                 spa_config_exit(spa, SCL_ALL, FTAG);
6616                 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
6617                         return;
6618                 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
6619                         return;
6620                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6621         }
6622 
6623         spa_config_exit(spa, SCL_ALL, FTAG);
6624 }
6625 
6626 /*
6627  * Update the stored path or FRU for this vdev.
6628  */
6629 int
6630 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
6631     boolean_t ispath)
6632 {
6633         vdev_t *vd;
6634         boolean_t sync = B_FALSE;
6635 
6636         ASSERT(spa_writeable(spa));
6637 
6638         spa_vdev_state_enter(spa, SCL_ALL);
6639 
6640         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
6641                 return (spa_vdev_state_exit(spa, NULL, ENOENT));
6642 
6643         if (!vd->vdev_ops->vdev_op_leaf)
6644                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
6645 
6646         if (ispath) {
6647                 if (strcmp(value, vd->vdev_path) != 0) {
6648                         spa_strfree(vd->vdev_path);
6649                         vd->vdev_path = spa_strdup(value);
6650                         sync = B_TRUE;
6651                 }
6652         } else {
6653                 if (vd->vdev_fru == NULL) {
6654                         vd->vdev_fru = spa_strdup(value);
6655                         sync = B_TRUE;
6656                 } else if (strcmp(value, vd->vdev_fru) != 0) {
6657                         spa_strfree(vd->vdev_fru);
6658                         vd->vdev_fru = spa_strdup(value);
6659                         sync = B_TRUE;
6660                 }
6661         }
6662 
6663         return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6664 }
6665 
6666 int
6667 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6668 {
6669         return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6670 }
6671 
6672 int
6673 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6674 {
6675         return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6676 }
6677 
6678 /*
6679  * ==========================================================================
6680  * SPA Scanning
6681  * ==========================================================================
6682  */
6683 int
6684 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
6685 {
6686         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6687 
6688         if (dsl_scan_resilvering(spa->spa_dsl_pool))
6689                 return (SET_ERROR(EBUSY));
6690 
6691         return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
6692 }
6693 
6694 int
6695 spa_scan_stop(spa_t *spa)
6696 {
6697         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6698         if (dsl_scan_resilvering(spa->spa_dsl_pool))
6699                 return (SET_ERROR(EBUSY));
6700         return (dsl_scan_cancel(spa->spa_dsl_pool));
6701 }
6702 
6703 int
6704 spa_scan(spa_t *spa, pool_scan_func_t func)
6705 {
6706         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6707 
6708         if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6709                 return (SET_ERROR(ENOTSUP));
6710 
6711         /*
6712          * If a resilver was requested, but there is no DTL on a
6713          * writeable leaf device, we have nothing to do.
6714          */
6715         if (func == POOL_SCAN_RESILVER &&
6716             !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6717                 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6718                 return (0);
6719         }
6720 
6721         return (dsl_scan(spa->spa_dsl_pool, func));
6722 }
6723 
6724 /*
6725  * ==========================================================================
6726  * SPA async task processing
6727  * ==========================================================================
6728  */
6729 
6730 static void
6731 spa_async_remove(spa_t *spa, vdev_t *vd)
6732 {
6733         if (vd->vdev_remove_wanted) {
6734                 vd->vdev_remove_wanted = B_FALSE;
6735                 vd->vdev_delayed_close = B_FALSE;
6736                 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6737 
6738                 /*
6739                  * We want to clear the stats, but we don't want to do a full
6740                  * vdev_clear() as that will cause us to throw away
6741                  * degraded/faulted state as well as attempt to reopen the
6742                  * device, all of which is a waste.
6743                  */
6744                 vd->vdev_stat.vs_read_errors = 0;
6745                 vd->vdev_stat.vs_write_errors = 0;
6746                 vd->vdev_stat.vs_checksum_errors = 0;
6747 
6748                 vdev_state_dirty(vd->vdev_top);
6749         }
6750 
6751         for (int c = 0; c < vd->vdev_children; c++)
6752                 spa_async_remove(spa, vd->vdev_child[c]);
6753 }
6754 
6755 static void
6756 spa_async_probe(spa_t *spa, vdev_t *vd)
6757 {
6758         if (vd->vdev_probe_wanted) {
6759                 vd->vdev_probe_wanted = B_FALSE;
6760                 vdev_reopen(vd);        /* vdev_open() does the actual probe */
6761         }
6762 
6763         for (int c = 0; c < vd->vdev_children; c++)
6764                 spa_async_probe(spa, vd->vdev_child[c]);
6765 }
6766 
6767 static void
6768 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6769 {
6770         sysevent_id_t eid;
6771         nvlist_t *attr;
6772         char *physpath;
6773 
6774         if (!spa->spa_autoexpand)
6775                 return;
6776 
6777         for (int c = 0; c < vd->vdev_children; c++) {
6778                 vdev_t *cvd = vd->vdev_child[c];
6779                 spa_async_autoexpand(spa, cvd);
6780         }
6781 
6782         if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6783                 return;
6784 
6785         physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6786         (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6787 
6788         VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6789         VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6790 
6791         (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6792             ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
6793 
6794         nvlist_free(attr);
6795         kmem_free(physpath, MAXPATHLEN);
6796 }
6797 
6798 static void
6799 spa_async_thread(void *arg)
6800 {
6801         spa_t *spa = (spa_t *)arg;
6802         int tasks;
6803 
6804         ASSERT(spa->spa_sync_on);
6805 
6806         mutex_enter(&spa->spa_async_lock);
6807         tasks = spa->spa_async_tasks;
6808         spa->spa_async_tasks = 0;
6809         mutex_exit(&spa->spa_async_lock);
6810 
6811         /*
6812          * See if the config needs to be updated.
6813          */
6814         if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6815                 uint64_t old_space, new_space;
6816 
6817                 mutex_enter(&spa_namespace_lock);
6818                 old_space = metaslab_class_get_space(spa_normal_class(spa));
6819                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6820                 new_space = metaslab_class_get_space(spa_normal_class(spa));
6821                 mutex_exit(&spa_namespace_lock);
6822 
6823                 /*
6824                  * If the pool grew as a result of the config update,
6825                  * then log an internal history event.
6826                  */
6827                 if (new_space != old_space) {
6828                         spa_history_log_internal(spa, "vdev online", NULL,
6829                             "pool '%s' size: %llu(+%llu)",
6830                             spa_name(spa), new_space, new_space - old_space);
6831                 }
6832         }
6833 
6834         /*
6835          * See if any devices need to be marked REMOVED.
6836          */
6837         if (tasks & SPA_ASYNC_REMOVE) {
6838                 spa_vdev_state_enter(spa, SCL_NONE);
6839                 spa_async_remove(spa, spa->spa_root_vdev);
6840                 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6841                         spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6842                 for (int i = 0; i < spa->spa_spares.sav_count; i++)
6843                         spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6844                 (void) spa_vdev_state_exit(spa, NULL, 0);
6845         }
6846 
6847         if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6848                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6849                 spa_async_autoexpand(spa, spa->spa_root_vdev);
6850                 spa_config_exit(spa, SCL_CONFIG, FTAG);
6851         }
6852 
6853         /*
6854          * See if any devices need to be probed.
6855          */
6856         if (tasks & SPA_ASYNC_PROBE) {
6857                 spa_vdev_state_enter(spa, SCL_NONE);
6858                 spa_async_probe(spa, spa->spa_root_vdev);
6859                 (void) spa_vdev_state_exit(spa, NULL, 0);
6860         }
6861 
6862         /*
6863          * If any devices are done replacing, detach them.
6864          */
6865         if (tasks & SPA_ASYNC_RESILVER_DONE)
6866                 spa_vdev_resilver_done(spa);
6867 
6868         /*
6869          * Kick off a resilver.
6870          */
6871         if (tasks & SPA_ASYNC_RESILVER)
6872                 dsl_resilver_restart(spa->spa_dsl_pool, 0);
6873 
6874         if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
6875                 mutex_enter(&spa_namespace_lock);
6876                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6877                 vdev_initialize_restart(spa->spa_root_vdev);
6878                 spa_config_exit(spa, SCL_CONFIG, FTAG);
6879                 mutex_exit(&spa_namespace_lock);
6880         }
6881 
6882         /*
6883          * Let the world know that we're done.
6884          */
6885         mutex_enter(&spa->spa_async_lock);
6886         spa->spa_async_thread = NULL;
6887         cv_broadcast(&spa->spa_async_cv);
6888         mutex_exit(&spa->spa_async_lock);
6889         thread_exit();
6890 }
6891 
6892 void
6893 spa_async_suspend(spa_t *spa)
6894 {
6895         mutex_enter(&spa->spa_async_lock);
6896         spa->spa_async_suspended++;
6897         while (spa->spa_async_thread != NULL)
6898                 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6899         mutex_exit(&spa->spa_async_lock);
6900 
6901         spa_vdev_remove_suspend(spa);
6902 
6903         zthr_t *condense_thread = spa->spa_condense_zthr;
6904         if (condense_thread != NULL && zthr_isrunning(condense_thread))
6905                 VERIFY0(zthr_cancel(condense_thread));
6906 
6907         zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
6908         if (discard_thread != NULL && zthr_isrunning(discard_thread))
6909                 VERIFY0(zthr_cancel(discard_thread));
6910 }
6911 
6912 void
6913 spa_async_resume(spa_t *spa)
6914 {
6915         mutex_enter(&spa->spa_async_lock);
6916         ASSERT(spa->spa_async_suspended != 0);
6917         spa->spa_async_suspended--;
6918         mutex_exit(&spa->spa_async_lock);
6919         spa_restart_removal(spa);
6920 
6921         zthr_t *condense_thread = spa->spa_condense_zthr;
6922         if (condense_thread != NULL && !zthr_isrunning(condense_thread))
6923                 zthr_resume(condense_thread);
6924 
6925         zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
6926         if (discard_thread != NULL && !zthr_isrunning(discard_thread))
6927                 zthr_resume(discard_thread);
6928 }
6929 
6930 static boolean_t
6931 spa_async_tasks_pending(spa_t *spa)
6932 {
6933         uint_t non_config_tasks;
6934         uint_t config_task;
6935         boolean_t config_task_suspended;
6936 
6937         non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
6938         config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6939         if (spa->spa_ccw_fail_time == 0) {
6940                 config_task_suspended = B_FALSE;
6941         } else {
6942                 config_task_suspended =
6943                     (gethrtime() - spa->spa_ccw_fail_time) <
6944                     (zfs_ccw_retry_interval * NANOSEC);
6945         }
6946 
6947         return (non_config_tasks || (config_task && !config_task_suspended));
6948 }
6949 
6950 static void
6951 spa_async_dispatch(spa_t *spa)
6952 {
6953         mutex_enter(&spa->spa_async_lock);
6954         if (spa_async_tasks_pending(spa) &&
6955             !spa->spa_async_suspended &&
6956             spa->spa_async_thread == NULL &&
6957             rootdir != NULL)
6958                 spa->spa_async_thread = thread_create(NULL, 0,
6959                     spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6960         mutex_exit(&spa->spa_async_lock);
6961 }
6962 
6963 void
6964 spa_async_request(spa_t *spa, int task)
6965 {
6966         zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6967         mutex_enter(&spa->spa_async_lock);
6968         spa->spa_async_tasks |= task;
6969         mutex_exit(&spa->spa_async_lock);
6970 }
6971 
6972 /*
6973  * ==========================================================================
6974  * SPA syncing routines
6975  * ==========================================================================
6976  */
6977 
6978 static int
6979 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6980 {
6981         bpobj_t *bpo = arg;
6982         bpobj_enqueue(bpo, bp, tx);
6983         return (0);
6984 }
6985 
6986 static int
6987 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6988 {
6989         zio_t *zio = arg;
6990 
6991         zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6992             zio->io_flags));
6993         return (0);
6994 }
6995 
6996 /*
6997  * Note: this simple function is not inlined to make it easier to dtrace the
6998  * amount of time spent syncing frees.
6999  */
7000 static void
7001 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7002 {
7003         zio_t *zio = zio_root(spa, NULL, NULL, 0);
7004         bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7005         VERIFY(zio_wait(zio) == 0);
7006 }
7007 
7008 /*
7009  * Note: this simple function is not inlined to make it easier to dtrace the
7010  * amount of time spent syncing deferred frees.
7011  */
7012 static void
7013 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7014 {
7015         zio_t *zio = zio_root(spa, NULL, NULL, 0);
7016         VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7017             spa_free_sync_cb, zio, tx), ==, 0);
7018         VERIFY0(zio_wait(zio));
7019 }
7020 
7021 
7022 static void
7023 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7024 {
7025         char *packed = NULL;
7026         size_t bufsize;
7027         size_t nvsize = 0;
7028         dmu_buf_t *db;
7029 
7030         VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7031 
7032         /*
7033          * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7034          * information.  This avoids the dmu_buf_will_dirty() path and
7035          * saves us a pre-read to get data we don't actually care about.
7036          */
7037         bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7038         packed = kmem_alloc(bufsize, KM_SLEEP);
7039 
7040         VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7041             KM_SLEEP) == 0);
7042         bzero(packed + nvsize, bufsize - nvsize);
7043 
7044         dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7045 
7046         kmem_free(packed, bufsize);
7047 
7048         VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7049         dmu_buf_will_dirty(db, tx);
7050         *(uint64_t *)db->db_data = nvsize;
7051         dmu_buf_rele(db, FTAG);
7052 }
7053 
7054 static void
7055 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7056     const char *config, const char *entry)
7057 {
7058         nvlist_t *nvroot;
7059         nvlist_t **list;
7060         int i;
7061 
7062         if (!sav->sav_sync)
7063                 return;
7064 
7065         /*
7066          * Update the MOS nvlist describing the list of available devices.
7067          * spa_validate_aux() will have already made sure this nvlist is
7068          * valid and the vdevs are labeled appropriately.
7069          */
7070         if (sav->sav_object == 0) {
7071                 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7072                     DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7073                     sizeof (uint64_t), tx);
7074                 VERIFY(zap_update(spa->spa_meta_objset,
7075                     DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7076                     &sav->sav_object, tx) == 0);
7077         }
7078 
7079         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7080         if (sav->sav_count == 0) {
7081                 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7082         } else {
7083                 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7084                 for (i = 0; i < sav->sav_count; i++)
7085                         list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7086                             B_FALSE, VDEV_CONFIG_L2CACHE);
7087                 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7088                     sav->sav_count) == 0);
7089                 for (i = 0; i < sav->sav_count; i++)
7090                         nvlist_free(list[i]);
7091                 kmem_free(list, sav->sav_count * sizeof (void *));
7092         }
7093 
7094         spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7095         nvlist_free(nvroot);
7096 
7097         sav->sav_sync = B_FALSE;
7098 }
7099 
7100 /*
7101  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7102  * The all-vdev ZAP must be empty.
7103  */
7104 static void
7105 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7106 {
7107         spa_t *spa = vd->vdev_spa;
7108         if (vd->vdev_top_zap != 0) {
7109                 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7110                     vd->vdev_top_zap, tx));
7111         }
7112         if (vd->vdev_leaf_zap != 0) {
7113                 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7114                     vd->vdev_leaf_zap, tx));
7115         }
7116         for (uint64_t i = 0; i < vd->vdev_children; i++) {
7117                 spa_avz_build(vd->vdev_child[i], avz, tx);
7118         }
7119 }
7120 
7121 static void
7122 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7123 {
7124         nvlist_t *config;
7125 
7126         /*
7127          * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7128          * its config may not be dirty but we still need to build per-vdev ZAPs.
7129          * Similarly, if the pool is being assembled (e.g. after a split), we
7130          * need to rebuild the AVZ although the config may not be dirty.
7131          */
7132         if (list_is_empty(&spa->spa_config_dirty_list) &&
7133             spa->spa_avz_action == AVZ_ACTION_NONE)
7134                 return;
7135 
7136         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7137 
7138         ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7139             spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7140             spa->spa_all_vdev_zaps != 0);
7141 
7142         if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7143                 /* Make and build the new AVZ */
7144                 uint64_t new_avz = zap_create(spa->spa_meta_objset,
7145                     DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7146                 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7147 
7148                 /* Diff old AVZ with new one */
7149                 zap_cursor_t zc;
7150                 zap_attribute_t za;
7151 
7152                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
7153                     spa->spa_all_vdev_zaps);
7154                     zap_cursor_retrieve(&zc, &za) == 0;
7155                     zap_cursor_advance(&zc)) {
7156                         uint64_t vdzap = za.za_first_integer;
7157                         if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7158                             vdzap) == ENOENT) {
7159                                 /*
7160                                  * ZAP is listed in old AVZ but not in new one;
7161                                  * destroy it
7162                                  */
7163                                 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7164                                     tx));
7165                         }
7166                 }
7167 
7168                 zap_cursor_fini(&zc);
7169 
7170                 /* Destroy the old AVZ */
7171                 VERIFY0(zap_destroy(spa->spa_meta_objset,
7172                     spa->spa_all_vdev_zaps, tx));
7173 
7174                 /* Replace the old AVZ in the dir obj with the new one */
7175                 VERIFY0(zap_update(spa->spa_meta_objset,
7176                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
7177                     sizeof (new_avz), 1, &new_avz, tx));
7178 
7179                 spa->spa_all_vdev_zaps = new_avz;
7180         } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
7181                 zap_cursor_t zc;
7182                 zap_attribute_t za;
7183 
7184                 /* Walk through the AVZ and destroy all listed ZAPs */
7185                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
7186                     spa->spa_all_vdev_zaps);
7187                     zap_cursor_retrieve(&zc, &za) == 0;
7188                     zap_cursor_advance(&zc)) {
7189                         uint64_t zap = za.za_first_integer;
7190                         VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
7191                 }
7192 
7193                 zap_cursor_fini(&zc);
7194 
7195                 /* Destroy and unlink the AVZ itself */
7196                 VERIFY0(zap_destroy(spa->spa_meta_objset,
7197                     spa->spa_all_vdev_zaps, tx));
7198                 VERIFY0(zap_remove(spa->spa_meta_objset,
7199                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
7200                 spa->spa_all_vdev_zaps = 0;
7201         }
7202 
7203         if (spa->spa_all_vdev_zaps == 0) {
7204                 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
7205                     DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
7206                     DMU_POOL_VDEV_ZAP_MAP, tx);
7207         }
7208         spa->spa_avz_action = AVZ_ACTION_NONE;
7209 
7210         /* Create ZAPs for vdevs that don't have them. */
7211         vdev_construct_zaps(spa->spa_root_vdev, tx);
7212 
7213         config = spa_config_generate(spa, spa->spa_root_vdev,
7214             dmu_tx_get_txg(tx), B_FALSE);
7215 
7216         /*
7217          * If we're upgrading the spa version then make sure that
7218          * the config object gets updated with the correct version.
7219          */
7220         if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
7221                 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7222                     spa->spa_uberblock.ub_version);
7223 
7224         spa_config_exit(spa, SCL_STATE, FTAG);
7225 
7226         nvlist_free(spa->spa_config_syncing);
7227         spa->spa_config_syncing = config;
7228 
7229         spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
7230 }
7231 
7232 static void
7233 spa_sync_version(void *arg, dmu_tx_t *tx)
7234 {
7235         uint64_t *versionp = arg;
7236         uint64_t version = *versionp;
7237         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7238 
7239         /*
7240          * Setting the version is special cased when first creating the pool.
7241          */
7242         ASSERT(tx->tx_txg != TXG_INITIAL);
7243 
7244         ASSERT(SPA_VERSION_IS_SUPPORTED(version));
7245         ASSERT(version >= spa_version(spa));
7246 
7247         spa->spa_uberblock.ub_version = version;
7248         vdev_config_dirty(spa->spa_root_vdev);
7249         spa_history_log_internal(spa, "set", tx, "version=%lld", version);
7250 }
7251 
7252 /*
7253  * Set zpool properties.
7254  */
7255 static void
7256 spa_sync_props(void *arg, dmu_tx_t *tx)
7257 {
7258         nvlist_t *nvp = arg;
7259         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7260         objset_t *mos = spa->spa_meta_objset;
7261         nvpair_t *elem = NULL;
7262 
7263         mutex_enter(&spa->spa_props_lock);
7264 
7265         while ((elem = nvlist_next_nvpair(nvp, elem))) {
7266                 uint64_t intval;
7267                 char *strval, *fname;
7268                 zpool_prop_t prop;
7269                 const char *propname;
7270                 zprop_type_t proptype;
7271                 spa_feature_t fid;
7272 
7273                 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
7274                 case ZPOOL_PROP_INVAL:
7275                         /*
7276                          * We checked this earlier in spa_prop_validate().
7277                          */
7278                         ASSERT(zpool_prop_feature(nvpair_name(elem)));
7279 
7280                         fname = strchr(nvpair_name(elem), '@') + 1;
7281                         VERIFY0(zfeature_lookup_name(fname, &fid));
7282 
7283                         spa_feature_enable(spa, fid, tx);
7284                         spa_history_log_internal(spa, "set", tx,
7285                             "%s=enabled", nvpair_name(elem));
7286                         break;
7287 
7288                 case ZPOOL_PROP_VERSION:
7289                         intval = fnvpair_value_uint64(elem);
7290                         /*
7291                          * The version is synced seperatly before other
7292                          * properties and should be correct by now.
7293                          */
7294                         ASSERT3U(spa_version(spa), >=, intval);
7295                         break;
7296 
7297                 case ZPOOL_PROP_ALTROOT:
7298                         /*
7299                          * 'altroot' is a non-persistent property. It should
7300                          * have been set temporarily at creation or import time.
7301                          */
7302                         ASSERT(spa->spa_root != NULL);
7303                         break;
7304 
7305                 case ZPOOL_PROP_READONLY:
7306                 case ZPOOL_PROP_CACHEFILE:
7307                         /*
7308                          * 'readonly' and 'cachefile' are also non-persisitent
7309                          * properties.
7310                          */
7311                         break;
7312                 case ZPOOL_PROP_COMMENT:
7313                         strval = fnvpair_value_string(elem);
7314                         if (spa->spa_comment != NULL)
7315                                 spa_strfree(spa->spa_comment);
7316                         spa->spa_comment = spa_strdup(strval);
7317                         /*
7318                          * We need to dirty the configuration on all the vdevs
7319                          * so that their labels get updated.  It's unnecessary
7320                          * to do this for pool creation since the vdev's
7321                          * configuratoin has already been dirtied.
7322                          */
7323                         if (tx->tx_txg != TXG_INITIAL)
7324                                 vdev_config_dirty(spa->spa_root_vdev);
7325                         spa_history_log_internal(spa, "set", tx,
7326                             "%s=%s", nvpair_name(elem), strval);
7327                         break;
7328                 default:
7329                         /*
7330                          * Set pool property values in the poolprops mos object.
7331                          */
7332                         if (spa->spa_pool_props_object == 0) {
7333                                 spa->spa_pool_props_object =
7334                                     zap_create_link(mos, DMU_OT_POOL_PROPS,
7335                                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
7336                                     tx);
7337                         }
7338 
7339                         /* normalize the property name */
7340                         propname = zpool_prop_to_name(prop);
7341                         proptype = zpool_prop_get_type(prop);
7342 
7343                         if (nvpair_type(elem) == DATA_TYPE_STRING) {
7344                                 ASSERT(proptype == PROP_TYPE_STRING);
7345                                 strval = fnvpair_value_string(elem);
7346                                 VERIFY0(zap_update(mos,
7347                                     spa->spa_pool_props_object, propname,
7348                                     1, strlen(strval) + 1, strval, tx));
7349                                 spa_history_log_internal(spa, "set", tx,
7350                                     "%s=%s", nvpair_name(elem), strval);
7351                         } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
7352                                 intval = fnvpair_value_uint64(elem);
7353 
7354                                 if (proptype == PROP_TYPE_INDEX) {
7355                                         const char *unused;
7356                                         VERIFY0(zpool_prop_index_to_string(
7357                                             prop, intval, &unused));
7358                                 }
7359                                 VERIFY0(zap_update(mos,
7360                                     spa->spa_pool_props_object, propname,
7361                                     8, 1, &intval, tx));
7362                                 spa_history_log_internal(spa, "set", tx,
7363                                     "%s=%lld", nvpair_name(elem), intval);
7364                         } else {
7365                                 ASSERT(0); /* not allowed */
7366                         }
7367 
7368                         switch (prop) {
7369                         case ZPOOL_PROP_DELEGATION:
7370                                 spa->spa_delegation = intval;
7371                                 break;
7372                         case ZPOOL_PROP_BOOTFS:
7373                                 spa->spa_bootfs = intval;
7374                                 break;
7375                         case ZPOOL_PROP_FAILUREMODE:
7376                                 spa->spa_failmode = intval;
7377                                 break;
7378                         case ZPOOL_PROP_AUTOEXPAND:
7379                                 spa->spa_autoexpand = intval;
7380                                 if (tx->tx_txg != TXG_INITIAL)
7381                                         spa_async_request(spa,
7382                                             SPA_ASYNC_AUTOEXPAND);
7383                                 break;
7384                         case ZPOOL_PROP_DEDUPDITTO:
7385                                 spa->spa_dedup_ditto = intval;
7386                                 break;
7387                         default:
7388                                 break;
7389                         }
7390                 }
7391 
7392         }
7393 
7394         mutex_exit(&spa->spa_props_lock);
7395 }
7396 
7397 /*
7398  * Perform one-time upgrade on-disk changes.  spa_version() does not
7399  * reflect the new version this txg, so there must be no changes this
7400  * txg to anything that the upgrade code depends on after it executes.
7401  * Therefore this must be called after dsl_pool_sync() does the sync
7402  * tasks.
7403  */
7404 static void
7405 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
7406 {
7407         dsl_pool_t *dp = spa->spa_dsl_pool;
7408 
7409         ASSERT(spa->spa_sync_pass == 1);
7410 
7411         rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
7412 
7413         if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
7414             spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
7415                 dsl_pool_create_origin(dp, tx);
7416 
7417                 /* Keeping the origin open increases spa_minref */
7418                 spa->spa_minref += 3;
7419         }
7420 
7421         if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
7422             spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
7423                 dsl_pool_upgrade_clones(dp, tx);
7424         }
7425 
7426         if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
7427             spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
7428                 dsl_pool_upgrade_dir_clones(dp, tx);
7429 
7430                 /* Keeping the freedir open increases spa_minref */
7431                 spa->spa_minref += 3;
7432         }
7433 
7434         if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
7435             spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7436                 spa_feature_create_zap_objects(spa, tx);
7437         }
7438 
7439         /*
7440          * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
7441          * when possibility to use lz4 compression for metadata was added
7442          * Old pools that have this feature enabled must be upgraded to have
7443          * this feature active
7444          */
7445         if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7446                 boolean_t lz4_en = spa_feature_is_enabled(spa,
7447                     SPA_FEATURE_LZ4_COMPRESS);
7448                 boolean_t lz4_ac = spa_feature_is_active(spa,
7449                     SPA_FEATURE_LZ4_COMPRESS);
7450 
7451                 if (lz4_en && !lz4_ac)
7452                         spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
7453         }
7454 
7455         /*
7456          * If we haven't written the salt, do so now.  Note that the
7457          * feature may not be activated yet, but that's fine since
7458          * the presence of this ZAP entry is backwards compatible.
7459          */
7460         if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7461             DMU_POOL_CHECKSUM_SALT) == ENOENT) {
7462                 VERIFY0(zap_add(spa->spa_meta_objset,
7463                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
7464                     sizeof (spa->spa_cksum_salt.zcs_bytes),
7465                     spa->spa_cksum_salt.zcs_bytes, tx));
7466         }
7467 
7468         rrw_exit(&dp->dp_config_rwlock, FTAG);
7469 }
7470 
7471 static void
7472 vdev_indirect_state_sync_verify(vdev_t *vd)
7473 {
7474         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7475         vdev_indirect_births_t *vib = vd->vdev_indirect_births;
7476 
7477         if (vd->vdev_ops == &vdev_indirect_ops) {
7478                 ASSERT(vim != NULL);
7479                 ASSERT(vib != NULL);
7480         }
7481 
7482         if (vdev_obsolete_sm_object(vd) != 0) {
7483                 ASSERT(vd->vdev_obsolete_sm != NULL);
7484                 ASSERT(vd->vdev_removing ||
7485                     vd->vdev_ops == &vdev_indirect_ops);
7486                 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
7487                 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
7488 
7489                 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
7490                     space_map_object(vd->vdev_obsolete_sm));
7491                 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
7492                     space_map_allocated(vd->vdev_obsolete_sm));
7493         }
7494         ASSERT(vd->vdev_obsolete_segments != NULL);
7495 
7496         /*
7497          * Since frees / remaps to an indirect vdev can only
7498          * happen in syncing context, the obsolete segments
7499          * tree must be empty when we start syncing.
7500          */
7501         ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
7502 }
7503 
7504 /*
7505  * Sync the specified transaction group.  New blocks may be dirtied as
7506  * part of the process, so we iterate until it converges.
7507  */
7508 void
7509 spa_sync(spa_t *spa, uint64_t txg)
7510 {
7511         dsl_pool_t *dp = spa->spa_dsl_pool;
7512         objset_t *mos = spa->spa_meta_objset;
7513         bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
7514         vdev_t *rvd = spa->spa_root_vdev;
7515         vdev_t *vd;
7516         dmu_tx_t *tx;
7517         int error;
7518         uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
7519             zfs_vdev_queue_depth_pct / 100;
7520 
7521         VERIFY(spa_writeable(spa));
7522 
7523         /*
7524          * Wait for i/os issued in open context that need to complete
7525          * before this txg syncs.
7526          */
7527         (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
7528         spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
7529             ZIO_FLAG_CANFAIL);
7530 
7531         /*
7532          * Lock out configuration changes.
7533          */
7534         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7535 
7536         spa->spa_syncing_txg = txg;
7537         spa->spa_sync_pass = 0;
7538 
7539         for (int i = 0; i < spa->spa_alloc_count; i++) {
7540                 mutex_enter(&spa->spa_alloc_locks[i]);
7541                 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
7542                 mutex_exit(&spa->spa_alloc_locks[i]);
7543         }
7544 
7545         /*
7546          * If there are any pending vdev state changes, convert them
7547          * into config changes that go out with this transaction group.
7548          */
7549         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7550         while (list_head(&spa->spa_state_dirty_list) != NULL) {
7551                 /*
7552                  * We need the write lock here because, for aux vdevs,
7553                  * calling vdev_config_dirty() modifies sav_config.
7554                  * This is ugly and will become unnecessary when we
7555                  * eliminate the aux vdev wart by integrating all vdevs
7556                  * into the root vdev tree.
7557                  */
7558                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7559                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
7560                 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
7561                         vdev_state_clean(vd);
7562                         vdev_config_dirty(vd);
7563                 }
7564                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7565                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7566         }
7567         spa_config_exit(spa, SCL_STATE, FTAG);
7568 
7569         tx = dmu_tx_create_assigned(dp, txg);
7570 
7571         spa->spa_sync_starttime = gethrtime();
7572         VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
7573             spa->spa_sync_starttime + spa->spa_deadman_synctime));
7574 
7575         /*
7576          * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
7577          * set spa_deflate if we have no raid-z vdevs.
7578          */
7579         if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
7580             spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
7581                 int i;
7582 
7583                 for (i = 0; i < rvd->vdev_children; i++) {
7584                         vd = rvd->vdev_child[i];
7585                         if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
7586                                 break;
7587                 }
7588                 if (i == rvd->vdev_children) {
7589                         spa->spa_deflate = TRUE;
7590                         VERIFY(0 == zap_add(spa->spa_meta_objset,
7591                             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
7592                             sizeof (uint64_t), 1, &spa->spa_deflate, tx));
7593                 }
7594         }
7595 
7596         /*
7597          * Set the top-level vdev's max queue depth. Evaluate each
7598          * top-level's async write queue depth in case it changed.
7599          * The max queue depth will not change in the middle of syncing
7600          * out this txg.
7601          */
7602         uint64_t slots_per_allocator = 0;
7603         for (int c = 0; c < rvd->vdev_children; c++) {
7604                 vdev_t *tvd = rvd->vdev_child[c];
7605                 metaslab_group_t *mg = tvd->vdev_mg;
7606 
7607                 if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
7608                     !metaslab_group_initialized(mg))
7609                         continue;
7610 
7611                 /*
7612                  * It is safe to do a lock-free check here because only async
7613                  * allocations look at mg_max_alloc_queue_depth, and async
7614                  * allocations all happen from spa_sync().
7615                  */
7616                 for (int i = 0; i < spa->spa_alloc_count; i++)
7617                         ASSERT0(refcount_count(&(mg->mg_alloc_queue_depth[i])));
7618                 mg->mg_max_alloc_queue_depth = max_queue_depth;
7619 
7620                 for (int i = 0; i < spa->spa_alloc_count; i++) {
7621                         mg->mg_cur_max_alloc_queue_depth[i] =
7622                             zfs_vdev_def_queue_depth;
7623                 }
7624                 slots_per_allocator += zfs_vdev_def_queue_depth;
7625         }
7626         metaslab_class_t *mc = spa_normal_class(spa);
7627         for (int i = 0; i < spa->spa_alloc_count; i++) {
7628                 ASSERT0(refcount_count(&mc->mc_alloc_slots[i]));
7629                 mc->mc_alloc_max_slots[i] = slots_per_allocator;
7630         }
7631         mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
7632 
7633         for (int c = 0; c < rvd->vdev_children; c++) {
7634                 vdev_t *vd = rvd->vdev_child[c];
7635                 vdev_indirect_state_sync_verify(vd);
7636 
7637                 if (vdev_indirect_should_condense(vd)) {
7638                         spa_condense_indirect_start_sync(vd, tx);
7639                         break;
7640                 }
7641         }
7642 
7643         /*
7644          * Iterate to convergence.
7645          */
7646         do {
7647                 int pass = ++spa->spa_sync_pass;
7648 
7649                 spa_sync_config_object(spa, tx);
7650                 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
7651                     ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
7652                 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
7653                     ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
7654                 spa_errlog_sync(spa, txg);
7655                 dsl_pool_sync(dp, txg);
7656 
7657                 if (pass < zfs_sync_pass_deferred_free) {
7658                         spa_sync_frees(spa, free_bpl, tx);
7659                 } else {
7660                         /*
7661                          * We can not defer frees in pass 1, because
7662                          * we sync the deferred frees later in pass 1.
7663                          */
7664                         ASSERT3U(pass, >, 1);
7665                         bplist_iterate(free_bpl, bpobj_enqueue_cb,
7666                             &spa->spa_deferred_bpobj, tx);
7667                 }
7668 
7669                 ddt_sync(spa, txg);
7670                 dsl_scan_sync(dp, tx);
7671 
7672                 if (spa->spa_vdev_removal != NULL)
7673                         svr_sync(spa, tx);
7674 
7675                 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
7676                     != NULL)
7677                         vdev_sync(vd, txg);
7678 
7679                 if (pass == 1) {
7680                         spa_sync_upgrades(spa, tx);
7681                         ASSERT3U(txg, >=,
7682                             spa->spa_uberblock.ub_rootbp.blk_birth);
7683                         /*
7684                          * Note: We need to check if the MOS is dirty
7685                          * because we could have marked the MOS dirty
7686                          * without updating the uberblock (e.g. if we
7687                          * have sync tasks but no dirty user data).  We
7688                          * need to check the uberblock's rootbp because
7689                          * it is updated if we have synced out dirty
7690                          * data (though in this case the MOS will most
7691                          * likely also be dirty due to second order
7692                          * effects, we don't want to rely on that here).
7693                          */
7694                         if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7695                             !dmu_objset_is_dirty(mos, txg)) {
7696                                 /*
7697                                  * Nothing changed on the first pass,
7698                                  * therefore this TXG is a no-op.  Avoid
7699                                  * syncing deferred frees, so that we
7700                                  * can keep this TXG as a no-op.
7701                                  */
7702                                 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
7703                                     txg));
7704                                 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7705                                 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7706                                 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks,
7707                                     txg));
7708                                 break;
7709                         }
7710                         spa_sync_deferred_frees(spa, tx);
7711                 }
7712 
7713         } while (dmu_objset_is_dirty(mos, txg));
7714 
7715         if (!list_is_empty(&spa->spa_config_dirty_list)) {
7716                 /*
7717                  * Make sure that the number of ZAPs for all the vdevs matches
7718                  * the number of ZAPs in the per-vdev ZAP list. This only gets
7719                  * called if the config is dirty; otherwise there may be
7720                  * outstanding AVZ operations that weren't completed in
7721                  * spa_sync_config_object.
7722                  */
7723                 uint64_t all_vdev_zap_entry_count;
7724                 ASSERT0(zap_count(spa->spa_meta_objset,
7725                     spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
7726                 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
7727                     all_vdev_zap_entry_count);
7728         }
7729 
7730         if (spa->spa_vdev_removal != NULL) {
7731                 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
7732         }
7733 
7734         /*
7735          * Rewrite the vdev configuration (which includes the uberblock)
7736          * to commit the transaction group.
7737          *
7738          * If there are no dirty vdevs, we sync the uberblock to a few
7739          * random top-level vdevs that are known to be visible in the
7740          * config cache (see spa_vdev_add() for a complete description).
7741          * If there *are* dirty vdevs, sync the uberblock to all vdevs.
7742          */
7743         for (;;) {
7744                 /*
7745                  * We hold SCL_STATE to prevent vdev open/close/etc.
7746                  * while we're attempting to write the vdev labels.
7747                  */
7748                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7749 
7750                 if (list_is_empty(&spa->spa_config_dirty_list)) {
7751                         vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
7752                         int svdcount = 0;
7753                         int children = rvd->vdev_children;
7754                         int c0 = spa_get_random(children);
7755 
7756                         for (int c = 0; c < children; c++) {
7757                                 vd = rvd->vdev_child[(c0 + c) % children];
7758 
7759                                 /* Stop when revisiting the first vdev */
7760                                 if (c > 0 && svd[0] == vd)
7761                                         break;
7762 
7763                                 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
7764                                     !vdev_is_concrete(vd))
7765                                         continue;
7766 
7767                                 svd[svdcount++] = vd;
7768                                 if (svdcount == SPA_SYNC_MIN_VDEVS)
7769                                         break;
7770                         }
7771                         error = vdev_config_sync(svd, svdcount, txg);
7772                 } else {
7773                         error = vdev_config_sync(rvd->vdev_child,
7774                             rvd->vdev_children, txg);
7775                 }
7776 
7777                 if (error == 0)
7778                         spa->spa_last_synced_guid = rvd->vdev_guid;
7779 
7780                 spa_config_exit(spa, SCL_STATE, FTAG);
7781 
7782                 if (error == 0)
7783                         break;
7784                 zio_suspend(spa, NULL);
7785                 zio_resume_wait(spa);
7786         }
7787         dmu_tx_commit(tx);
7788 
7789         VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
7790 
7791         /*
7792          * Clear the dirty config list.
7793          */
7794         while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
7795                 vdev_config_clean(vd);
7796 
7797         /*
7798          * Now that the new config has synced transactionally,
7799          * let it become visible to the config cache.
7800          */
7801         if (spa->spa_config_syncing != NULL) {
7802                 spa_config_set(spa, spa->spa_config_syncing);
7803                 spa->spa_config_txg = txg;
7804                 spa->spa_config_syncing = NULL;
7805         }
7806 
7807         dsl_pool_sync_done(dp, txg);
7808 
7809         for (int i = 0; i < spa->spa_alloc_count; i++) {
7810                 mutex_enter(&spa->spa_alloc_locks[i]);
7811                 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
7812                 mutex_exit(&spa->spa_alloc_locks[i]);
7813         }
7814 
7815         /*
7816          * Update usable space statistics.
7817          */
7818         while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
7819             != NULL)
7820                 vdev_sync_done(vd, txg);
7821 
7822         spa_update_dspace(spa);
7823 
7824         /*
7825          * It had better be the case that we didn't dirty anything
7826          * since vdev_config_sync().
7827          */
7828         ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7829         ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7830         ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7831 
7832         while (zfs_pause_spa_sync)
7833                 delay(1);
7834 
7835         spa->spa_sync_pass = 0;
7836 
7837         /*
7838          * Update the last synced uberblock here. We want to do this at
7839          * the end of spa_sync() so that consumers of spa_last_synced_txg()
7840          * will be guaranteed that all the processing associated with
7841          * that txg has been completed.
7842          */
7843         spa->spa_ubsync = spa->spa_uberblock;
7844         spa_config_exit(spa, SCL_CONFIG, FTAG);
7845 
7846         spa_handle_ignored_writes(spa);
7847 
7848         /*
7849          * If any async tasks have been requested, kick them off.
7850          */
7851         spa_async_dispatch(spa);
7852 }
7853 
7854 /*
7855  * Sync all pools.  We don't want to hold the namespace lock across these
7856  * operations, so we take a reference on the spa_t and drop the lock during the
7857  * sync.
7858  */
7859 void
7860 spa_sync_allpools(void)
7861 {
7862         spa_t *spa = NULL;
7863         mutex_enter(&spa_namespace_lock);
7864         while ((spa = spa_next(spa)) != NULL) {
7865                 if (spa_state(spa) != POOL_STATE_ACTIVE ||
7866                     !spa_writeable(spa) || spa_suspended(spa))
7867                         continue;
7868                 spa_open_ref(spa, FTAG);
7869                 mutex_exit(&spa_namespace_lock);
7870                 txg_wait_synced(spa_get_dsl(spa), 0);
7871                 mutex_enter(&spa_namespace_lock);
7872                 spa_close(spa, FTAG);
7873         }
7874         mutex_exit(&spa_namespace_lock);
7875 }
7876 
7877 /*
7878  * ==========================================================================
7879  * Miscellaneous routines
7880  * ==========================================================================
7881  */
7882 
7883 /*
7884  * Remove all pools in the system.
7885  */
7886 void
7887 spa_evict_all(void)
7888 {
7889         spa_t *spa;
7890 
7891         /*
7892          * Remove all cached state.  All pools should be closed now,
7893          * so every spa in the AVL tree should be unreferenced.
7894          */
7895         mutex_enter(&spa_namespace_lock);
7896         while ((spa = spa_next(NULL)) != NULL) {
7897                 /*
7898                  * Stop async tasks.  The async thread may need to detach
7899                  * a device that's been replaced, which requires grabbing
7900                  * spa_namespace_lock, so we must drop it here.
7901                  */
7902                 spa_open_ref(spa, FTAG);
7903                 mutex_exit(&spa_namespace_lock);
7904                 spa_async_suspend(spa);
7905                 mutex_enter(&spa_namespace_lock);
7906                 spa_close(spa, FTAG);
7907 
7908                 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7909                         spa_unload(spa);
7910                         spa_deactivate(spa);
7911                 }
7912                 spa_remove(spa);
7913         }
7914         mutex_exit(&spa_namespace_lock);
7915 }
7916 
7917 vdev_t *
7918 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7919 {
7920         vdev_t *vd;
7921         int i;
7922 
7923         if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7924                 return (vd);
7925 
7926         if (aux) {
7927                 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7928                         vd = spa->spa_l2cache.sav_vdevs[i];
7929                         if (vd->vdev_guid == guid)
7930                                 return (vd);
7931                 }
7932 
7933                 for (i = 0; i < spa->spa_spares.sav_count; i++) {
7934                         vd = spa->spa_spares.sav_vdevs[i];
7935                         if (vd->vdev_guid == guid)
7936                                 return (vd);
7937                 }
7938         }
7939 
7940         return (NULL);
7941 }
7942 
7943 void
7944 spa_upgrade(spa_t *spa, uint64_t version)
7945 {
7946         ASSERT(spa_writeable(spa));
7947 
7948         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7949 
7950         /*
7951          * This should only be called for a non-faulted pool, and since a
7952          * future version would result in an unopenable pool, this shouldn't be
7953          * possible.
7954          */
7955         ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7956         ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7957 
7958         spa->spa_uberblock.ub_version = version;
7959         vdev_config_dirty(spa->spa_root_vdev);
7960 
7961         spa_config_exit(spa, SCL_ALL, FTAG);
7962 
7963         txg_wait_synced(spa_get_dsl(spa), 0);
7964 }
7965 
7966 boolean_t
7967 spa_has_spare(spa_t *spa, uint64_t guid)
7968 {
7969         int i;
7970         uint64_t spareguid;
7971         spa_aux_vdev_t *sav = &spa->spa_spares;
7972 
7973         for (i = 0; i < sav->sav_count; i++)
7974                 if (sav->sav_vdevs[i]->vdev_guid == guid)
7975                         return (B_TRUE);
7976 
7977         for (i = 0; i < sav->sav_npending; i++) {
7978                 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7979                     &spareguid) == 0 && spareguid == guid)
7980                         return (B_TRUE);
7981         }
7982 
7983         return (B_FALSE);
7984 }
7985 
7986 /*
7987  * Check if a pool has an active shared spare device.
7988  * Note: reference count of an active spare is 2, as a spare and as a replace
7989  */
7990 static boolean_t
7991 spa_has_active_shared_spare(spa_t *spa)
7992 {
7993         int i, refcnt;
7994         uint64_t pool;
7995         spa_aux_vdev_t *sav = &spa->spa_spares;
7996 
7997         for (i = 0; i < sav->sav_count; i++) {
7998                 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7999                     &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8000                     refcnt > 2)
8001                         return (B_TRUE);
8002         }
8003 
8004         return (B_FALSE);
8005 }
8006 
8007 sysevent_t *
8008 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8009 {
8010         sysevent_t              *ev = NULL;
8011 #ifdef _KERNEL
8012         sysevent_attr_list_t    *attr = NULL;
8013         sysevent_value_t        value;
8014 
8015         ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8016             SE_SLEEP);
8017         ASSERT(ev != NULL);
8018 
8019         value.value_type = SE_DATA_TYPE_STRING;
8020         value.value.sv_string = spa_name(spa);
8021         if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8022                 goto done;
8023 
8024         value.value_type = SE_DATA_TYPE_UINT64;
8025         value.value.sv_uint64 = spa_guid(spa);
8026         if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8027                 goto done;
8028 
8029         if (vd) {
8030                 value.value_type = SE_DATA_TYPE_UINT64;
8031                 value.value.sv_uint64 = vd->vdev_guid;
8032                 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8033                     SE_SLEEP) != 0)
8034                         goto done;
8035 
8036                 if (vd->vdev_path) {
8037                         value.value_type = SE_DATA_TYPE_STRING;
8038                         value.value.sv_string = vd->vdev_path;
8039                         if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8040                             &value, SE_SLEEP) != 0)
8041                                 goto done;
8042                 }
8043         }
8044 
8045         if (hist_nvl != NULL) {
8046                 fnvlist_merge((nvlist_t *)attr, hist_nvl);
8047         }
8048 
8049         if (sysevent_attach_attributes(ev, attr) != 0)
8050                 goto done;
8051         attr = NULL;
8052 
8053 done:
8054         if (attr)
8055                 sysevent_free_attr(attr);
8056 
8057 #endif
8058         return (ev);
8059 }
8060 
8061 void
8062 spa_event_post(sysevent_t *ev)
8063 {
8064 #ifdef _KERNEL
8065         sysevent_id_t           eid;
8066 
8067         (void) log_sysevent(ev, SE_SLEEP, &eid);
8068         sysevent_free(ev);
8069 #endif
8070 }
8071 
8072 void
8073 spa_event_discard(sysevent_t *ev)
8074 {
8075 #ifdef _KERNEL
8076         sysevent_free(ev);
8077 #endif
8078 }
8079 
8080 /*
8081  * Post a sysevent corresponding to the given event.  The 'name' must be one of
8082  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
8083  * filled in from the spa and (optionally) the vdev and history nvl.  This
8084  * doesn't do anything in the userland libzpool, as we don't want consumers to
8085  * misinterpret ztest or zdb as real changes.
8086  */
8087 void
8088 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8089 {
8090         spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
8091 }