
new/usr/src/cmd/smbios/smbios.c 1

**
 34314 Thu Mar 26 17:12:00 2015
new/usr/src/cmd/smbios/smbios.c
5094 Update libsmbios with recent items
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
Reviewed by: Garrett D’Amore <garrett@damore.org>
Reviewed by: Robert Mustacchi <rm@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
24 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */

28 #include <sys/sysmacros.h>
29 #include <sys/param.h>

31 #include <smbios.h>
32 #include <alloca.h>
33 #include <limits.h>
34 #include <unistd.h>
35 #include <strings.h>
36 #include <stdlib.h>
37 #include <stdarg.h>
38 #include <stdio.h>
39 #include <fcntl.h>
40 #include <errno.h>
41 #include <ctype.h>

43 #define SMBIOS_SUCCESS 0
44 #define SMBIOS_ERROR 1
45 #define SMBIOS_USAGE 2

47 static const char *g_pname;
48 static int g_hdr;

50 static int opt_e;
51 static int opt_i = -1;
52 static int opt_O;
53 static int opt_s;
54 static int opt_t = -1;
55 static int opt_x;

57 /*PRINTFLIKE2*/

new/usr/src/cmd/smbios/smbios.c 2

58 static void
59 oprintf(FILE *fp, const char *format, ...)
60 {
61 va_list ap;

63 va_start(ap, format);
64 (void) vfprintf(fp, format, ap);
65 va_end(ap);
66 }

______unchanged_portion_omitted_

332 static void
333 print_chassis(smbios_hdl_t *shp, id_t id, FILE *fp)
334 {
335 smbios_chassis_t c;
336 int elem_cnt;

338 (void) smbios_info_chassis(shp, id, &c);

340 oprintf(fp, " OEM Data: 0x%x\n", c.smbc_oemdata);
341 oprintf(fp, " SKU number: %s\n",
342 c.smbc_sku == NULL ? "<unknown>" : c.smbc_sku);
343 oprintf(fp, " Lock Present: %s\n", c.smbc_lock ? "Y" : "N");

345 desc_printf(smbios_chassis_type_desc(c.smbc_type),
346 fp, " Chassis Type: 0x%x", c.smbc_type);

348 desc_printf(smbios_chassis_state_desc(c.smbc_bustate),
349 fp, " Boot-Up State: 0x%x", c.smbc_bustate);

351 desc_printf(smbios_chassis_state_desc(c.smbc_psstate),
352 fp, " Power Supply State: 0x%x", c.smbc_psstate);

354 desc_printf(smbios_chassis_state_desc(c.smbc_thstate),
355 fp, " Thermal State: 0x%x", c.smbc_thstate);

357 oprintf(fp, " Chassis Height: %uu\n", c.smbc_uheight);
358 oprintf(fp, " Power Cords: %u\n", c.smbc_cords);

360 elem_cnt = c.smbc_elems;
361 oprintf(fp, " Element Records: %u\n", elem_cnt);

363 if (elem_cnt > 0) {
364 id_t *elems;
365 uint8_t type;
366 int i, n, cnt;

368 elems = alloca(c.smbc_elems * sizeof (id_t));
369 cnt = smbios_info_contains(shp, id, elem_cnt, elems);
370 if (cnt > SMB_CONT_MAX)
371 return;
372 n = MIN(elem_cnt, cnt);

374 oprintf(fp, "\n");
375 for (i = 0; i < n; i++) {
376 type = (uint8_t)elems[i];
377 if (type & 0x80) {
378 /* SMBIOS structrure Type */
379 desc_printf(smbios_type_name(type & 0x7f), fp,
380 " Contained SMBIOS structure Type: %u",
381 type & 0x80);
382 } else {
383 /* SMBIOS Base Board Type */
384 desc_printf(smbios_bboard_type_desc(type), fp,
385 " Contained SMBIOS Base Board Type: 0x%x",
386 type);

new/usr/src/cmd/smbios/smbios.c 3

387 }
388 }
389 }
390 }

392 static void
393 print_processor(smbios_hdl_t *shp, id_t id, FILE *fp)
394 {
395 smbios_processor_t p;
396 uint_t status;

398 (void) smbios_info_processor(shp, id, &p);
399 status = SMB_PRSTATUS_STATUS(p.smbp_status);

401 desc_printf(smbios_processor_family_desc(p.smbp_family),
402 fp, " Family: %u", p.smbp_family);

404 if (p.smbp_family2 != 0)
405 desc_printf(smbios_processor_family_desc(p.smbp_family2),
406 fp, " Family Ext: %u", p.smbp_family2);

408 oprintf(fp, " CPUID: 0x%llx\n", (u_longlong_t)p.smbp_cpuid);

410 desc_printf(smbios_processor_type_desc(p.smbp_type),
411 fp, " Type: %u", p.smbp_type);

413 desc_printf(smbios_processor_upgrade_desc(p.smbp_upgrade),
414 fp, " Socket Upgrade: %u", p.smbp_upgrade);

416 oprintf(fp, " Socket Status: %s\n",
417 SMB_PRSTATUS_PRESENT(p.smbp_status) ?
418 "Populated" : "Not Populated");

420 desc_printf(smbios_processor_status_desc(status),
421 fp, " Processor Status: %u", status);

423 if (SMB_PRV_LEGACY(p.smbp_voltage)) {
424 oprintf(fp, " Supported Voltages:");
425 switch (p.smbp_voltage) {
426 case SMB_PRV_5V:
427 oprintf(fp, " 5.0V");
428 break;
429 case SMB_PRV_33V:
430 oprintf(fp, " 3.3V");
431 break;
432 case SMB_PRV_29V:
433 oprintf(fp, " 2.9V");
434 break;
435 }
436 oprintf(fp, "\n");
437 } else {
438 oprintf(fp, " Supported Voltages: %.1fV\n",
439 (float)SMB_PRV_VOLTAGE(p.smbp_voltage) / 10);
440 }

442 if (p.smbp_corecount != 0)
443 oprintf(fp, " Core Count: %u\n", p.smbp_corecount);
444 else
445 oprintf(fp, " Core Count: Unknown\n");

447 if (p.smbp_coresenabled != 0)
448 oprintf(fp, " Cores Enabled: %u\n", p.smbp_coresenabled);
449 else
450 oprintf(fp, " Cores Enabled: Unknown\n");

452 if (p.smbp_threadcount != 0)

new/usr/src/cmd/smbios/smbios.c 4

453 oprintf(fp, " Thread Count: %u\n", p.smbp_threadcount);
454 else
455 oprintf(fp, " Thread Count: Unknown\n");

457 if (p.smbp_cflags) {
458 flag_printf(fp, "Processor Characteristics",
459 p.smbp_cflags, sizeof (p.smbp_cflags) * NBBY,
460 smbios_processor_core_flag_name,
461 smbios_processor_core_flag_desc);
462 }

464 if (p.smbp_clkspeed != 0)
465 oprintf(fp, " External Clock Speed: %uMHz\n", p.smbp_clkspeed);
466 else
467 oprintf(fp, " External Clock Speed: Unknown\n");

469 if (p.smbp_maxspeed != 0)
470 oprintf(fp, " Maximum Speed: %uMHz\n", p.smbp_maxspeed);
471 else
472 oprintf(fp, " Maximum Speed: Unknown\n");

474 if (p.smbp_curspeed != 0)
475 oprintf(fp, " Current Speed: %uMHz\n", p.smbp_curspeed);
476 else
477 oprintf(fp, " Current Speed: Unknown\n");

479 id_printf(fp, " L1 Cache: ", p.smbp_l1cache);
480 id_printf(fp, " L2 Cache: ", p.smbp_l2cache);
481 id_printf(fp, " L3 Cache: ", p.smbp_l3cache);
482 }

______unchanged_portion_omitted_

758 static void
759 print_memdevice(smbios_hdl_t *shp, id_t id, FILE *fp)
760 {
761 smbios_memdevice_t md;

763 (void) smbios_info_memdevice(shp, id, &md);

765 id_printf(fp, " Physical Memory Array: ", md.smbmd_array);
766 id_printf(fp, " Memory Error Data: ", md.smbmd_error);

768 if (md.smbmd_twidth != -1u)
769 oprintf(fp, " Total Width: %u bits\n", md.smbmd_twidth);
770 else
771 oprintf(fp, " Total Width: Unknown\n");

773 if (md.smbmd_dwidth != -1u)
774 oprintf(fp, " Data Width: %u bits\n", md.smbmd_dwidth);
775 else
776 oprintf(fp, " Data Width: Unknown\n");

778 switch (md.smbmd_size) {
779 case -1ull:
780 oprintf(fp, " Size: Unknown\n");
781 break;
782 case 0:
783 oprintf(fp, " Size: Not Populated\n");
784 break;
785 default:
786 oprintf(fp, " Size: %llu bytes\n",
787 (u_longlong_t)md.smbmd_size);
788 }

790 desc_printf(smbios_memdevice_form_desc(md.smbmd_form),
791 fp, " Form Factor: %u", md.smbmd_form);

new/usr/src/cmd/smbios/smbios.c 5

793 if (md.smbmd_set == 0)
794 oprintf(fp, " Set: None\n");
795 else if (md.smbmd_set == (uint8_t)-1u)
796 oprintf(fp, " Set: Unknown\n");
797 else
798 oprintf(fp, " Set: %u\n", md.smbmd_set);

800 if (md.smbmd_rank != 0) {
801 desc_printf(smbios_memdevice_rank_desc(md.smbmd_rank),
802 fp, " Rank: %u", md.smbmd_rank);
803 } else {
804 oprintf(fp, " Rank: Unknown\n");
805 }

807 desc_printf(smbios_memdevice_type_desc(md.smbmd_type),
808 fp, " Memory Type: %u", md.smbmd_type);

810 flag_printf(fp, "Flags", md.smbmd_flags, sizeof (md.smbmd_flags) * NBBY,
811 smbios_memdevice_flag_name, smbios_memdevice_flag_desc);

813 if (md.smbmd_speed != 0)
814 oprintf(fp, " Speed: %u MHz\n", md.smbmd_speed);
778 oprintf(fp, " Speed: %uns\n", md.smbmd_speed);
815 else
816 oprintf(fp, " Speed: Unknown\n");

818 if (md.smbmd_clkspeed != 0)
819 oprintf(fp, " Configured Speed: %u MHz\n", md.smbmd_clkspeed);
820 else
821 oprintf(fp, " Configured Speed: Unknown\n");

823 oprintf(fp, " Device Locator: %s\n", md.smbmd_dloc);
824 oprintf(fp, " Bank Locator: %s\n", md.smbmd_bloc);

826 if (md.smbmd_minvolt != 0) {
827 oprintf(fp, " Minimum Voltage: %.2fV\n",
828 md.smbmd_minvolt / 1000.0);
829 } else {
830 oprintf(fp, " Minimum Voltage: Unknown\n");
831 }

833 if (md.smbmd_maxvolt != 0) {
834 oprintf(fp, " Maximum Voltage: %.2fV\n",
835 md.smbmd_maxvolt / 1000.0);
836 } else {
837 oprintf(fp, " Maximum Voltage: Unknown\n");
838 }

840 if (md.smbmd_confvolt != 0) {
841 oprintf(fp, " Configured Voltage: %.2fV\n",
842 md.smbmd_confvolt / 1000.0);
843 } else {
844 oprintf(fp, " Configured Voltage: Unknown\n");
845 }
846 }

______unchanged_portion_omitted_

1023 static int
1024 print_struct(smbios_hdl_t *shp, const smbios_struct_t *sp, void *fp)
1025 {
1026 smbios_info_t info;
1027 int hex = opt_x;
1028 const char *s;

1030 if (opt_t != -1 && opt_t != sp->smbstr_type)

new/usr/src/cmd/smbios/smbios.c 6

1031 return (0); /* skip struct if type doesn’t match -t */

1033 if (!opt_O && (sp->smbstr_type == SMB_TYPE_MEMCTL ||
1034 sp->smbstr_type == SMB_TYPE_MEMMOD))
1035 return (0); /* skip struct if type is obsolete */

1037 if (g_hdr++ == 0 || !opt_s)
1038 oprintf(fp, "%-5s %-4s %s\n", "ID", "SIZE", "TYPE");

1040 oprintf(fp, "%-5u %-4lu",
1041 (uint_t)sp->smbstr_id, (ulong_t)sp->smbstr_size);

1043 if ((s = smbios_type_name(sp->smbstr_type)) != NULL)
1044 oprintf(fp, " (%u) %s", sp->smbstr_type, s);
982 oprintf(fp, " %s", s);
1045 else if (sp->smbstr_type > SMB_TYPE_OEM_LO &&
1046 sp->smbstr_type < SMB_TYPE_OEM_HI)
1047 oprintf(fp, " (%u) %s+%u", sp->smbstr_type, "SMB_TYPE_OEM_LO",
985 oprintf(fp, " %s+%u", "SMB_TYPE_OEM_LO",
1048 sp->smbstr_type - SMB_TYPE_OEM_LO);
1049 else
1050 oprintf(fp, " %u", sp->smbstr_type);

1052 if ((s = smbios_type_desc(sp->smbstr_type)) != NULL)
1053 oprintf(fp, " (%s)\n", s);
1054 else
1055 oprintf(fp, "\n");

1057 if (opt_s)
1058 return (0); /* only print header line if -s specified */

1060 if (smbios_info_common(shp, sp->smbstr_id, &info) == 0) {
1061 oprintf(fp, "\n");
1062 print_common(&info, fp);
1063 }

1065 switch (sp->smbstr_type) {
1066 case SMB_TYPE_BIOS:
1067 oprintf(fp, "\n");
1068 print_bios(shp, fp);
1069 break;
1070 case SMB_TYPE_SYSTEM:
1071 oprintf(fp, "\n");
1072 print_system(shp, fp);
1073 break;
1074 case SMB_TYPE_BASEBOARD:
1075 oprintf(fp, "\n");
1076 print_bboard(shp, sp->smbstr_id, fp);
1077 break;
1078 case SMB_TYPE_CHASSIS:
1079 oprintf(fp, "\n");
1080 print_chassis(shp, sp->smbstr_id, fp);
1081 break;
1082 case SMB_TYPE_PROCESSOR:
1083 oprintf(fp, "\n");
1084 print_processor(shp, sp->smbstr_id, fp);
1085 break;
1086 case SMB_TYPE_CACHE:
1087 oprintf(fp, "\n");
1088 print_cache(shp, sp->smbstr_id, fp);
1089 break;
1090 case SMB_TYPE_PORT:
1091 oprintf(fp, "\n");
1092 print_port(shp, sp->smbstr_id, fp);
1093 break;
1094 case SMB_TYPE_SLOT:

new/usr/src/cmd/smbios/smbios.c 7

1095 oprintf(fp, "\n");
1096 print_slot(shp, sp->smbstr_id, fp);
1097 break;
1098 case SMB_TYPE_OBDEVS:
1099 oprintf(fp, "\n");
1100 print_obdevs(shp, sp->smbstr_id, fp);
1101 break;
1102 case SMB_TYPE_OEMSTR:
1103 case SMB_TYPE_SYSCONFSTR:
1104 oprintf(fp, "\n");
1105 print_strtab(shp, sp->smbstr_id, fp);
1106 break;
1107 case SMB_TYPE_LANG:
1108 oprintf(fp, "\n");
1109 print_lang(shp, sp->smbstr_id, fp);
1110 break;
1111 case SMB_TYPE_EVENTLOG:
1112 oprintf(fp, "\n");
1113 print_evlog(shp, sp->smbstr_id, fp);
1114 break;
1115 case SMB_TYPE_MEMARRAY:
1116 oprintf(fp, "\n");
1117 print_memarray(shp, sp->smbstr_id, fp);
1118 break;
1119 case SMB_TYPE_MEMDEVICE:
1120 oprintf(fp, "\n");
1121 print_memdevice(shp, sp->smbstr_id, fp);
1122 break;
1123 case SMB_TYPE_MEMARRAYMAP:
1124 oprintf(fp, "\n");
1125 print_memarrmap(shp, sp->smbstr_id, fp);
1126 break;
1127 case SMB_TYPE_MEMDEVICEMAP:
1128 oprintf(fp, "\n");
1129 print_memdevmap(shp, sp->smbstr_id, fp);
1130 break;
1131 case SMB_TYPE_SECURITY:
1132 oprintf(fp, "\n");
1133 print_hwsec(shp, fp);
1134 break;
1135 case SMB_TYPE_BOOT:
1136 oprintf(fp, "\n");
1137 print_boot(shp, fp);
1138 break;
1139 case SMB_TYPE_IPMIDEV:
1140 oprintf(fp, "\n");
1141 print_ipmi(shp, fp);
1142 break;
1143 case SMB_TYPE_OBDEVEXT:
1144 oprintf(fp, "\n");
1145 print_obdevs_ext(shp, sp->smbstr_id, fp);
1146 break;
1147 case SUN_OEM_EXT_PROCESSOR:
1148 oprintf(fp, "\n");
1149 print_extprocessor(shp, sp->smbstr_id, fp);
1150 break;
1151 case SUN_OEM_EXT_PORT:
1152 oprintf(fp, "\n");
1153 print_extport(shp, sp->smbstr_id, fp);
1154 break;
1155 case SUN_OEM_PCIEXRC:
1156 oprintf(fp, "\n");
1157 print_pciexrc(shp, sp->smbstr_id, fp);
1158 break;
1159 case SUN_OEM_EXT_MEMARRAY:
1160 oprintf(fp, "\n");

new/usr/src/cmd/smbios/smbios.c 8

1161 print_extmemarray(shp, sp->smbstr_id, fp);
1162 break;
1163 case SUN_OEM_EXT_MEMDEVICE:
1164 oprintf(fp, "\n");
1165 print_extmemdevice(shp, sp->smbstr_id, fp);
1166 break;
1167 default:
1168 hex++;
1169 }

1171 if (hex)
1172 print_bytes(sp->smbstr_data, sp->smbstr_size, fp);
1173 else
1174 oprintf(fp, "\n");

1176 return (0);
1177 }
______unchanged_portion_omitted_

new/usr/src/common/smbios/mktables.sh 1

**
 5504 Thu Mar 26 17:12:00 2015
new/usr/src/common/smbios/mktables.sh
5094 Update libsmbios with recent items
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
Reviewed by: Garrett D’Amore <garrett@damore.org>
Reviewed by: Robert Mustacchi <rm@joyent.com>
**

1 #!/bin/sh
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License, Version 1.0 only
7 # (the "License"). You may not use this file except in compliance
8 # with the License.
9 #

10 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
11 # or http://www.opensolaris.org/os/licensing.
12 # See the License for the specific language governing permissions
13 # and limitations under the License.
14 #
15 # When distributing Covered Code, include this CDDL HEADER in each
16 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
17 # If applicable, add the following below this CDDL HEADER, with the
18 # fields enclosed by brackets "[]" replaced with your own identifying
19 # information: Portions Copyright [yyyy] [name of copyright owner]
20 #
21 # CDDL HEADER END
22 #
23 #
24 # Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
25 # Copyright 2005 Sun Microsystems, Inc. All rights reserved.
26 # Use is subject to license terms.
27 #
27 #ident "%Z%%M% %I% %E% SMI"

29 #
30 # The SMBIOS interfaces defined in <sys/smbios.h> include a set of integer-to-
31 # string conversion routines for the various constants defined in the SMBIOS
32 # spec. These functions are used by smbios(1M) and prtdiag(1M) and can be
33 # leveraged by other clients as well. To simplify maintenance of the source
34 # base, this shell script automatically generates the source code for all of
35 # these functions from the <sys/smbios.h> header file and its comments. Each
36 # set of constants should be given a unique #define prefix, listed in the
37 # tables below. The smbios_*_name() functions return the identifier of the
38 # cpp define, and the smbios_*_desc() functions return the text of the comment.
39 #

41 name_funcs=’
42 SMB_BBFL_ smbios_bboard_flag_name uint_t
43 SMB_BIOSFL_ smbios_bios_flag_name uint64_t
44 SMB_BIOSXB1_ smbios_bios_xb1_name uint_t
45 SMB_BIOSXB2_ smbios_bios_xb2_name uint_t
46 SMB_CAT_ smbios_cache_ctype_name uint_t
47 SMB_CAF_ smbios_cache_flag_name uint_t
48 SMB_EVFL_ smbios_evlog_flag_name uint_t
49 SMB_IPMI_F_ smbios_ipmi_flag_name uint_t
50 SMB_MDF_ smbios_memdevice_flag_name uint_t
51 SMB_PRC_ smbios_processor_core_flag_name uint_t
52 SMB_TYPE_ smbios_type_name uint_t
53 SMB_SLCH1_ smbios_slot_ch1_name uint_t
54 SMB_SLCH2_ smbios_slot_ch2_name uint_t
55 ’

new/usr/src/common/smbios/mktables.sh 2

57 desc_funcs=’
58 SMB_BBFL_ smbios_bboard_flag_desc uint_t
59 SMB_BBT_ smbios_bboard_type_desc uint_t
60 SMB_BIOSFL_ smbios_bios_flag_desc uint64_t
61 SMB_BIOSXB1_ smbios_bios_xb1_desc uint_t
62 SMB_BIOSXB2_ smbios_bios_xb2_desc uint_t
63 SMB_BOOT_ smbios_boot_desc uint_t
64 SMB_CAA_ smbios_cache_assoc_desc uint_t
65 SMB_CAT_ smbios_cache_ctype_desc uint_t
66 SMB_CAE_ smbios_cache_ecc_desc uint_t
67 SMB_CAF_ smbios_cache_flag_desc uint_t
68 SMB_CAL_ smbios_cache_loc_desc uint_t
69 SMB_CAG_ smbios_cache_logical_desc uint_t
70 SMB_CAM_ smbios_cache_mode_desc uint_t
71 SMB_CHST_ smbios_chassis_state_desc uint_t
72 SMB_CHT_ smbios_chassis_type_desc uint_t
73 SMB_EVFL_ smbios_evlog_flag_desc uint_t
74 SMB_EVHF_ smbios_evlog_format_desc uint_t
75 SMB_EVM_ smbios_evlog_method_desc uint_t
76 SMB_HWSEC_PS_ smbios_hwsec_desc uint_t
77 SMB_IPMI_F_ smbios_ipmi_flag_desc uint_t
78 SMB_IPMI_T_ smbios_ipmi_type_desc uint_t
79 SMB_MAL_ smbios_memarray_loc_desc uint_t
80 SMB_MAU_ smbios_memarray_use_desc uint_t
81 SMB_MAE_ smbios_memarray_ecc_desc uint_t
82 SMB_MDF_ smbios_memdevice_flag_desc uint_t
83 SMB_MDFF_ smbios_memdevice_form_desc uint_t
84 SMB_MDT_ smbios_memdevice_type_desc uint_t
85 SMB_MDR_ smbios_memdevice_rank_desc uint_t
86 SMB_POC_ smbios_port_conn_desc uint_t
87 SMB_POT_ smbios_port_type_desc uint_t
88 SMB_PRC_ smbios_processor_core_flag_desc uint_t
89 SMB_PRF_ smbios_processor_family_desc uint_t
90 SMB_PRS_ smbios_processor_status_desc uint_t
91 SMB_PRT_ smbios_processor_type_desc uint_t
92 SMB_PRU_ smbios_processor_upgrade_desc uint_t
93 SMB_SLCH1_ smbios_slot_ch1_desc uint_t
94 SMB_SLCH2_ smbios_slot_ch2_desc uint_t
95 SMB_SLL_ smbios_slot_length_desc uint_t
96 SMB_SLT_ smbios_slot_type_desc uint_t
97 SMB_SLU_ smbios_slot_usage_desc uint_t
98 SMB_SLW_ smbios_slot_width_desc uint_t
99 SMB_TYPE_ smbios_type_desc uint_t
100 SMB_WAKEUP_ smbios_system_wakeup_desc uint_t
101 ’

103 if [$# -ne 1]; then
104 echo "Usage: $0 file.h > file.c" >&2
105 exit 2
106 fi

108 echo "\
109 /*\n\
110 * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.\n\
111 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.\n\
112 * Use is subject to license terms.\n\
113 */\n\
114 \n\
111 #pragma ident\t\"%Z%%M%\t%I%\t%E% SMI\"\n\
112 \n\
115 #include <smbios.h>"

117 echo "$name_funcs" | while read p name type; do
118 [-z "$p"] && continue
119 pattern="^#define[]\($p[A-Za-z0-9_]*\)[]*[A-Z0-9]*.*$"
120 replace=’ case \1: return ("\1");’

new/usr/src/common/smbios/mktables.sh 3

122 echo "\nconst char *\n$name($type x)\n{\n\tswitch (x) {"
123 sed -n "s@$pattern@$replace@p" < $1 || exit 1
124 echo "\t}\n\treturn (NULL);\n}"
125 done

127 #
128 # Generate the description functions based on the comment next to a #define.
129 # The transformations for descriptive comments are slightly more complicated
130 # than those used for the identifier->name functions above:
131 #
132 # (1) strip any [RO] suffix from the comment (a header file convention)
133 # (2) replace any " with \" so it is escaped for the final output string
134 # (3) replace return (...); with return ("..."); to finish the code
135 #
136 echo "$desc_funcs" | while read p name type; do
137 [-z "$p"] && continue
138 pattern="^#define[]\($p[A-Za-z0-9_]*\)[]*.*/* \(.*\) */$"
139 replace=’ case \1: return (\2);’

141 echo "\nconst char *\n$name($type x)\n{\n\tswitch (x) {"
142 sed -n "s@$pattern@$replace@p" < $1 | sed ’s/ ([RO]))/)/’ | \
143 sed ’s/"/\\"/g’ | sed ’s/(/("/;s/);$/");/’ || exit 1
144 echo "\t}\n\treturn (NULL);\n}"
145 done

147 exit 0

new/usr/src/common/smbios/smb_info.c 1

**
 31885 Thu Mar 26 17:12:00 2015
new/usr/src/common/smbios/smb_info.c
5094 Update libsmbios with recent items
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
Reviewed by: Garrett D’Amore <garrett@damore.org>
Reviewed by: Robert Mustacchi <rm@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
24 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */

28 /*
29 * SMBIOS Information Routines
30 *
31 * The routines in this file are used to convert from the SMBIOS data format to
32 * a more reasonable and stable set of structures offered as part of our ABI.
33 * These functions take the general form:
34 *
35 * stp = smb_lookup_type(shp, foo);
36 * smb_foo_t foo;
37 *
38 * smb_info_bcopy(stp->smbst_hdr, &foo, sizeof (foo));
39 * bzero(caller’s struct);
40 *
41 * copy/convert foo members into caller’s struct
42 *
43 * We copy the internal structure on to an automatic variable so as to avoid
44 * checks everywhere for structures that the BIOS has improperly truncated, and
45 * also to automatically handle the case of a structure that has been extended.
46 * When necessary, this code can use smb_gteq() to determine whether the SMBIOS
47 * data is of a particular revision that is supposed to contain a new field.
48 */

50 #include <sys/smbios_impl.h>

52 #ifdef _KERNEL
53 #include <sys/sunddi.h>
54 #else
55 #include <fcntl.h>
56 #include <unistd.h>
57 #include <string.h>

new/usr/src/common/smbios/smb_info.c 2

58 #endif

60 /*
61 * A large number of SMBIOS structures contain a set of common strings used to
62 * describe a h/w component’s serial number, manufacturer, etc. These fields
63 * helpfully have different names and offsets and sometimes aren’t consistent.
64 * To simplify life for our clients, we factor these common things out into
65 * smbios_info_t, which can be retrieved for any structure. The following
66 * table describes the mapping from a given structure to the smbios_info_t.
67 * Multiple SMBIOS stuctures’ contained objects are also handled here.
68 */
69 static const struct smb_infospec {
70 uint8_t is_type; /* structure type */
71 uint8_t is_manu; /* manufacturer offset */
72 uint8_t is_product; /* product name offset */
73 uint8_t is_version; /* version offset */
74 uint8_t is_serial; /* serial number offset */
75 uint8_t is_asset; /* asset tag offset */
76 uint8_t is_location; /* location string offset */
77 uint8_t is_part; /* part number offset */
78 uint8_t is_contc; /* contained count */
79 uint8_t is_contsz; /* contained size */
80 uint8_t is_contv; /* contained objects */
81 } _smb_infospecs[] = {

______unchanged_portion_omitted_

411 int
412 smbios_info_chassis(smbios_hdl_t *shp, id_t id, smbios_chassis_t *chp)
413 {
414 const smb_struct_t *stp = smb_lookup_id(shp, id);
415 /* Length is measurable by one byte, so it’ll be no more than 255. */
416 uint8_t buf[256];
417 smb_chassis_t *ch = (smb_chassis_t *)&buf[0];
414 smb_chassis_t ch;

419 if (stp == NULL)
420 return (-1); /* errno is set for us */

422 if (stp->smbst_hdr->smbh_type != SMB_TYPE_CHASSIS)
423 return (smb_set_errno(shp, ESMB_TYPE));

425 smb_info_bcopy(stp->smbst_hdr, ch, sizeof (buf));
422 smb_info_bcopy(stp->smbst_hdr, &ch, sizeof (ch));
426 bzero(chp, sizeof (smbios_chassis_t));

428 chp->smbc_oemdata = ch->smbch_oemdata;
429 chp->smbc_lock = (ch->smbch_type & SMB_CHT_LOCK) != 0;
430 chp->smbc_type = ch->smbch_type & ~SMB_CHT_LOCK;
431 chp->smbc_bustate = ch->smbch_bustate;
432 chp->smbc_psstate = ch->smbch_psstate;
433 chp->smbc_thstate = ch->smbch_thstate;
434 chp->smbc_security = ch->smbch_security;
435 chp->smbc_uheight = ch->smbch_uheight;
436 chp->smbc_cords = ch->smbch_cords;
437 chp->smbc_elems = ch->smbch_cn;
438 chp->smbc_elemlen = ch->smbch_cm;
425 chp->smbc_oemdata = ch.smbch_oemdata;
426 chp->smbc_lock = (ch.smbch_type & SMB_CHT_LOCK) != 0;
427 chp->smbc_type = ch.smbch_type & ~SMB_CHT_LOCK;
428 chp->smbc_bustate = ch.smbch_bustate;
429 chp->smbc_psstate = ch.smbch_psstate;
430 chp->smbc_thstate = ch.smbch_thstate;
431 chp->smbc_security = ch.smbch_security;
432 chp->smbc_uheight = ch.smbch_uheight;
433 chp->smbc_cords = ch.smbch_cords;
434 chp->smbc_elems = ch.smbch_cn;

new/usr/src/common/smbios/smb_info.c 3

435 chp->smbc_elemlen = ch.smbch_cm;

440 if (shp->sh_smbvers >= SMB_VERSION_27) {
441 (void) strlcpy(chp->smbc_sku, SMB_CH_SKU(ch),
442 sizeof (chp->smbc_sku));
443 }

445 return (0);
446 }

448 int
449 smbios_info_processor(smbios_hdl_t *shp, id_t id, smbios_processor_t *pp)
450 {
451 const smb_struct_t *stp = smb_lookup_id(shp, id);
452 smb_processor_t p;

454 if (stp == NULL)
455 return (-1); /* errno is set for us */

457 if (stp->smbst_hdr->smbh_type != SMB_TYPE_PROCESSOR)
458 return (smb_set_errno(shp, ESMB_TYPE));

460 smb_info_bcopy(stp->smbst_hdr, &p, sizeof (p));
461 bzero(pp, sizeof (smbios_processor_t));

463 pp->smbp_cpuid = p.smbpr_cpuid;
464 pp->smbp_type = p.smbpr_type;
465 pp->smbp_family = p.smbpr_family;
466 pp->smbp_voltage = p.smbpr_voltage;
467 pp->smbp_maxspeed = p.smbpr_maxspeed;
468 pp->smbp_curspeed = p.smbpr_curspeed;
469 pp->smbp_status = p.smbpr_status;
470 pp->smbp_upgrade = p.smbpr_upgrade;
471 pp->smbp_l1cache = p.smbpr_l1cache;
472 pp->smbp_l2cache = p.smbpr_l2cache;
473 pp->smbp_l3cache = p.smbpr_l3cache;

475 if (shp->sh_smbvers >= SMB_VERSION_25) {
476 pp->smbp_corecount = p.smbpr_corecount;
477 pp->smbp_coresenabled = p.smbpr_coresenabled;
478 pp->smbp_threadcount = p.smbpr_threadcount;
479 pp->smbp_cflags = p.smbpr_cflags;
480 }

482 if (shp->sh_smbvers >= SMB_VERSION_26)
483 pp->smbp_family2 = p.smbpr_family2;

485 return (0);
486 }

______unchanged_portion_omitted_

716 int
717 smbios_info_memarray(smbios_hdl_t *shp, id_t id, smbios_memarray_t *map)
718 {
719 const smb_struct_t *stp = smb_lookup_id(shp, id);
720 smb_memarray_t m;

722 if (stp == NULL)
723 return (-1); /* errno is set for us */

725 if (stp->smbst_hdr->smbh_type != SMB_TYPE_MEMARRAY)
726 return (smb_set_errno(shp, ESMB_TYPE));

728 smb_info_bcopy(stp->smbst_hdr, &m, sizeof (m));
729 bzero(map, sizeof (smbios_memarray_t));

new/usr/src/common/smbios/smb_info.c 4

731 map->smbma_location = m.smbmarr_loc;
732 map->smbma_use = m.smbmarr_use;
733 map->smbma_ecc = m.smbmarr_ecc;
734 map->smbma_ndevs = m.smbmarr_ndevs;
735 map->smbma_err = m.smbmarr_err;

737 if (m.smbmarr_cap != 0x80000000)
738 map->smbma_size = (uint64_t)m.smbmarr_cap * 1024;
739 else if (m.smbmarr_extcap != 0)
740 map->smbma_size = m.smbmarr_extcap;
741 else
742 map->smbma_size = 0; /* unknown */

744 return (0);
745 }

747 int
748 smbios_info_memarrmap(smbios_hdl_t *shp, id_t id, smbios_memarrmap_t *map)
749 {
750 const smb_struct_t *stp = smb_lookup_id(shp, id);
751 smb_memarrmap_t m;

753 if (stp == NULL)
754 return (-1); /* errno is set for us */

756 if (stp->smbst_hdr->smbh_type != SMB_TYPE_MEMARRAYMAP)
757 return (smb_set_errno(shp, ESMB_TYPE));

759 smb_info_bcopy(stp->smbst_hdr, &m, sizeof (m));
760 bzero(map, sizeof (smbios_memarrmap_t));

762 map->smbmam_array = m.smbamap_array;
763 map->smbmam_width = m.smbamap_width;

765 if (m.smbamap_start != 0xFFFFFFFF && m.smbamap_end != 0xFFFFFFFF) {
766 map->smbmam_addr = (uint64_t)m.smbamap_start * 1024;
767 map->smbmam_size = (uint64_t)
768 (m.smbamap_end - m.smbamap_start + 1) * 1024;
769 } else if (m.smbamap_extstart != 0 && m.smbamap_extend != 0) {
770 map->smbmam_addr = m.smbamap_extstart;
771 map->smbmam_size = m.smbamap_extend - m.smbamap_extstart + 1;
772 }

774 return (0);
775 }

777 int
778 smbios_info_memdevice(smbios_hdl_t *shp, id_t id, smbios_memdevice_t *mdp)
779 {
780 const smb_struct_t *stp = smb_lookup_id(shp, id);
781 smb_memdevice_t m;

783 if (stp == NULL)
784 return (-1); /* errno is set for us */

786 if (stp->smbst_hdr->smbh_type != SMB_TYPE_MEMDEVICE)
787 return (smb_set_errno(shp, ESMB_TYPE));

789 smb_info_bcopy(stp->smbst_hdr, &m, sizeof (m));
790 bzero(mdp, sizeof (smbios_memdevice_t));

792 mdp->smbmd_array = m.smbmdev_array;
793 mdp->smbmd_error = m.smbmdev_error;
794 mdp->smbmd_twidth = m.smbmdev_twidth == 0xFFFF ? -1U : m.smbmdev_twidth;
795 mdp->smbmd_dwidth = m.smbmdev_dwidth == 0xFFFF ? -1U : m.smbmdev_dwidth;

new/usr/src/common/smbios/smb_info.c 5

797 if (m.smbmdev_size == 0x7FFF) {
798 mdp->smbmd_size = (uint64_t)m.smbmdev_extsize;
799 mdp->smbmd_size *= 1024 * 1024; /* convert MB to bytes */
800 } else if (m.smbmdev_size != 0xFFFF) {
771 if (mdp->smbmd_size != 0xFFFF) {
801 mdp->smbmd_size = (uint64_t)(m.smbmdev_size & ~SMB_MDS_KBYTES);
802 if (m.smbmdev_size & SMB_MDS_KBYTES)
803 mdp->smbmd_size *= 1024;
804 else
805 mdp->smbmd_size *= 1024 * 1024;
806 } else
807 mdp->smbmd_size = -1ULL; /* size unknown */

809 mdp->smbmd_form = m.smbmdev_form;
810 mdp->smbmd_set = m.smbmdev_set;
811 mdp->smbmd_type = m.smbmdev_type;
812 mdp->smbmd_speed = m.smbmdev_speed;
813 mdp->smbmd_flags = m.smbmdev_flags;
814 mdp->smbmd_dloc = smb_strptr(stp, m.smbmdev_dloc);
815 mdp->smbmd_bloc = smb_strptr(stp, m.smbmdev_bloc);

817 if (shp->sh_smbvers >= SMB_VERSION_26)
818 mdp->smbmd_rank = m.smbmdev_attrs & 0x0F;
787 if (m.smbmdev_speed != 0)
788 mdp->smbmd_speed = 1000 / m.smbmdev_speed; /* MHz -> nsec */

820 if (shp->sh_smbvers >= SMB_VERSION_27)
821 mdp->smbmd_clkspeed = m.smbmdev_clkspeed;

823 if (shp->sh_smbvers >= SMB_VERSION_28) {
824 mdp->smbmd_minvolt = m.smbmdev_minvolt;
825 mdp->smbmd_maxvolt = m.smbmdev_maxvolt;
826 mdp->smbmd_confvolt = m.smbmdev_confvolt;
827 }

829 return (0);
830 }

832 int
833 smbios_info_memdevmap(smbios_hdl_t *shp, id_t id, smbios_memdevmap_t *mdp)
834 {
835 const smb_struct_t *stp = smb_lookup_id(shp, id);
836 smb_memdevmap_t m;

838 if (stp == NULL)
839 return (-1); /* errno is set for us */

841 if (stp->smbst_hdr->smbh_type != SMB_TYPE_MEMDEVICEMAP)
842 return (smb_set_errno(shp, ESMB_TYPE));

844 smb_info_bcopy(stp->smbst_hdr, &m, sizeof (m));
845 bzero(mdp, sizeof (smbios_memdevmap_t));

847 mdp->smbmdm_device = m.smbdmap_device;
848 mdp->smbmdm_arrmap = m.smbdmap_array;
810 mdp->smbmdm_addr = (uint64_t)m.smbdmap_start * 1024;
811 mdp->smbmdm_size = (uint64_t)
812 (m.smbdmap_end - m.smbdmap_start + 1) * 1024;
849 mdp->smbmdm_rpos = m.smbdmap_rpos;
850 mdp->smbmdm_ipos = m.smbdmap_ipos;
851 mdp->smbmdm_idepth = m.smbdmap_idepth;

853 if (m.smbdmap_start != 0xFFFFFFFF && m.smbdmap_end != 0xFFFFFFFF) {
854 mdp->smbmdm_addr = (uint64_t)m.smbdmap_start * 1024;
855 mdp->smbmdm_size = (uint64_t)
856 (m.smbdmap_end - m.smbdmap_start + 1) * 1024;

new/usr/src/common/smbios/smb_info.c 6

857 } else if (m.smbdmap_extstart != 0 && m.smbdmap_extend != 0) {
858 mdp->smbmdm_addr = m.smbdmap_extstart;
859 mdp->smbmdm_size = m.smbdmap_extend - m.smbdmap_extstart + 1;
860 }

862 return (0);
863 }

______unchanged_portion_omitted_

new/usr/src/common/smbios/smb_open.c 1

**
 10502 Thu Mar 26 17:12:00 2015
new/usr/src/common/smbios/smb_open.c
5094 Update libsmbios with recent items
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
Reviewed by: Garrett D’Amore <garrett@damore.org>
Reviewed by: Robert Mustacchi <rm@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
24 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */

28 #include <sys/smbios_impl.h>

30 static const uint_t _smb_hashlen = 64; /* hash length (must be Pof2) */
31 static const char _smb_emptystr[] = ""; /* empty string to return */
32 int _smb_debug = 0; /* default debug mode */

34 /*
35 * Strip out identification information for you privacy weenies. This is quite
36 * simple using our smbios_info_common() abstraction: we just locate any serial
37 * numbers and asset tags for each record, and then zero out those strings.
38 * Then we must handle two special cases: SMB_TYPE_SYSTEM holds a 16-byte UUID
39 * and SMB_TYPE_BATTERY stores a Smart Battery Data Spec 16-bit serial number.
40 * We use a literal ’0’ rather than ’\0’ for zeroing strings because \0\0 in
41 * the SMBIOS string table has a special meaning (denotes end-of-record).
42 */
43 static void
44 smb_strip(smbios_hdl_t *shp)
45 {
46 uint_t i;

48 for (i = 0; i < shp->sh_nstructs; i++) {
49 const smb_header_t *hp = shp->sh_structs[i].smbst_hdr;
50 smbios_info_t info;
51 char *p;

53 if (hp->smbh_type == SMB_TYPE_SYSTEM &&
54 hp->smbh_len >= offsetof(smb_system_t, smbsi_wakeup)) {
55 smb_system_t *sp = (smb_system_t *)(uintptr_t)hp;
56 bzero(sp->smbsi_uuid, sizeof (sp->smbsi_uuid));
57 }

new/usr/src/common/smbios/smb_open.c 2

59 if (hp->smbh_type == SMB_TYPE_BATTERY &&
60 hp->smbh_len >= offsetof(smb_battery_t, smbbat_sdate)) {
61 smb_battery_t *bp = (smb_battery_t *)(uintptr_t)hp;
62 bp->smbbat_ssn = 0;
63 }

65 if (smbios_info_common(shp, hp->smbh_hdl, &info) != SMB_ERR) {
66 for (p = (char *)info.smbi_serial; *p != ’\0’; p++)
67 *p = ’0’;
68 for (p = (char *)info.smbi_asset; *p != ’\0’; p++)
69 *p = ’0’;
70 }
71 }
72 }

74 smbios_hdl_t *
75 smbios_bufopen(const smbios_entry_t *ep, const void *buf, size_t len,
76 int version, int flags, int *errp)
77 {
78 smbios_hdl_t *shp = smb_zalloc(sizeof (smbios_hdl_t));
79 const smb_header_t *hp, *nhp;
80 const uchar_t *p, *q, *s;
81 uint_t i, h;

83 switch (version) {
84 case SMB_VERSION_23:
85 case SMB_VERSION_24:
86 case SMB_VERSION_25:
87 case SMB_VERSION_26:
88 case SMB_VERSION_27:
89 case SMB_VERSION_28:
90 break;
91 default:
92 return (smb_open_error(shp, errp, ESMB_VERSION));
93 }

95 if (ep == NULL || buf == NULL || len == 0 || (flags & ~SMB_O_MASK))
96 return (smb_open_error(shp, errp, ESMB_INVAL));

98 if (shp == NULL)
99 return (smb_open_error(shp, errp, ESMB_NOMEM));

101 if (_smb_debug)
102 shp->sh_flags |= SMB_FL_DEBUG;

104 if (strncmp(ep->smbe_eanchor, SMB_ENTRY_EANCHOR, SMB_ENTRY_EANCHORLEN))
105 return (smb_open_error(shp, errp, ESMB_HEADER));

107 if (strncmp(ep->smbe_ianchor, SMB_ENTRY_IANCHOR, SMB_ENTRY_IANCHORLEN))
108 return (smb_open_error(shp, errp, ESMB_HEADER));

110 smb_dprintf(shp, "opening SMBIOS version %u.%u bcdrev 0x%x\n",
111 ep->smbe_major, ep->smbe_minor, ep->smbe_bcdrev);

113 if (!(flags & SMB_O_NOVERS)) {
114 if (ep->smbe_major > SMB_MAJOR(SMB_VERSION))
115 return (smb_open_error(shp, errp, ESMB_NEW));

117 if (ep->smbe_major < SMB_MAJOR(SMB_VERSION_23) || (
118 ep->smbe_major == SMB_MAJOR(SMB_VERSION_23) &&
119 ep->smbe_minor < SMB_MINOR(SMB_VERSION_23)))
120 return (smb_open_error(shp, errp, ESMB_OLD));
121 }

123 if (len < sizeof (smb_header_t) ||

new/usr/src/common/smbios/smb_open.c 3

124 ep->smbe_stlen < sizeof (smb_header_t) || len < ep->smbe_stlen)
125 return (smb_open_error(shp, errp, ESMB_SHORT));

127 if (!(flags & SMB_O_NOCKSUM)) {
128 uint8_t esum = 0, isum = 0;
129 q = (uchar_t *)ep;

131 for (p = q; p < q + ep->smbe_elen; p++)
132 esum += *p;

134 for (p = (uchar_t *)ep->smbe_ianchor; p < q + sizeof (*ep); p++)
135 isum += *p;

137 if (esum != 0 || isum != 0) {
138 smb_dprintf(shp, "bad cksum: e=%x i=%x\n", esum, isum);
139 return (smb_open_error(shp, errp, ESMB_CKSUM));
140 }
141 }

143 /*
144 * Copy the entry point into our handle. The underlying entry point
145 * may be larger than our structure definition, so reset smbe_elen
146 * to our internal size and recompute good checksums for our copy.
147 */
148 bcopy(ep, &shp->sh_ent, sizeof (smbios_entry_t));
149 shp->sh_ent.smbe_elen = sizeof (smbios_entry_t);
150 smbios_checksum(shp, &shp->sh_ent);

152 shp->sh_buf = buf;
153 shp->sh_buflen = len;
154 shp->sh_structs = smb_alloc(sizeof (smb_struct_t) * ep->smbe_stnum);
155 shp->sh_nstructs = 0;
156 shp->sh_hashlen = _smb_hashlen;
157 shp->sh_hash = smb_zalloc(sizeof (smb_struct_t *) * shp->sh_hashlen);
158 shp->sh_libvers = version;
159 shp->sh_smbvers = SMB_MAJMIN(ep->smbe_major, ep->smbe_minor);

161 if (shp->sh_structs == NULL || shp->sh_hash == NULL)
162 return (smb_open_error(shp, errp, ESMB_NOMEM));

164 hp = shp->sh_buf;
165 q = (const uchar_t *)buf + MIN(ep->smbe_stlen, len);

167 for (i = 0; i < ep->smbe_stnum; i++, hp = nhp) {
168 smb_struct_t *stp = &shp->sh_structs[i];
169 uint_t n = 0;

171 if ((const uchar_t *)hp + sizeof (smb_header_t) > q)
172 return (smb_open_error(shp, errp, ESMB_CORRUPT));

174 smb_dprintf(shp, "struct [%u] type %u len %u hdl %u at %p\n",
175 i, hp->smbh_type, hp->smbh_len, hp->smbh_hdl, (void *)hp);

177 if (hp->smbh_type == SMB_TYPE_EOT)
178 break; /* ignore any entries beyond end-of-table */

180 if ((const uchar_t *)hp + hp->smbh_len > q - 2)
181 return (smb_open_error(shp, errp, ESMB_CORRUPT));

183 h = hp->smbh_hdl & (shp->sh_hashlen - 1);
184 p = s = (const uchar_t *)hp + hp->smbh_len;

186 while (p <= q - 2 && (p[0] != ’\0’ || p[1] != ’\0’)) {
187 if (*p++ == ’\0’)
188 n++; /* count strings until \0\0 delimiter */
189 }

new/usr/src/common/smbios/smb_open.c 4

191 if (p > q - 2)
192 return (smb_open_error(shp, errp, ESMB_CORRUPT));

194 if (p > s)
195 n++; /* add one for final string in string table */

197 stp->smbst_hdr = hp;
198 stp->smbst_str = s;
199 stp->smbst_end = p;
200 stp->smbst_next = shp->sh_hash[h];
201 stp->smbst_strtab = smb_alloc(sizeof (uint16_t) * n);
202 stp->smbst_strtablen = n;

204 if (n != 0 && stp->smbst_strtab == NULL)
205 return (smb_open_error(shp, errp, ESMB_NOMEM));

207 shp->sh_hash[h] = stp;
208 nhp = (void *)(p + 2);
209 shp->sh_nstructs++;

211 for (n = 0, p = s; n < stp->smbst_strtablen; p++) {
212 if (*p == ’\0’) {
213 stp->smbst_strtab[n++] =
214 (uint16_t)(s - stp->smbst_str);
215 s = p + 1;
216 }
217 }
218 }

220 if (flags & SMB_O_ZIDS)
221 smb_strip(shp);

223 return (shp);
224 }

______unchanged_portion_omitted_

new/usr/src/lib/libsmbios/common/mapfile-vers 1

**
 3691 Thu Mar 26 17:12:00 2015
new/usr/src/lib/libsmbios/common/mapfile-vers
5094 Update libsmbios with recent items
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
Reviewed by: Garrett D’Amore <garrett@damore.org>
Reviewed by: Robert Mustacchi <rm@joyent.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
23 # Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 #
27 # MAPFILE HEADER START
28 #
29 # WARNING: STOP NOW. DO NOT MODIFY THIS FILE.
30 # Object versioning must comply with the rules detailed in
31 #
32 # usr/src/lib/README.mapfiles
33 #
34 # You should not be making modifications here until you’ve read the most current
35 # copy of that file. If you need help, contact a gatekeeper for guidance.
36 #
37 # MAPFILE HEADER END
38 #

40 $mapfile_version 2

42 SYMBOL_VERSION SUNWprivate_1.1 {
43 global:
44 _smb_debug;
45 smbios_bboard_flag_desc;
46 smbios_bboard_flag_name;
47 smbios_bboard_type_desc;
48 smbios_bios_flag_desc;
49 smbios_bios_flag_name;
50 smbios_bios_xb1_desc;
51 smbios_bios_xb1_name;
52 smbios_bios_xb2_desc;
53 smbios_bios_xb2_name;
54 smbios_boot_desc;
55 smbios_buf;
56 smbios_buflen;
57 smbios_bufopen;

new/usr/src/lib/libsmbios/common/mapfile-vers 2

58 smbios_cache_assoc_desc;
59 smbios_cache_ctype_desc;
60 smbios_cache_ctype_name;
61 smbios_cache_ecc_desc;
62 smbios_cache_flag_desc;
63 smbios_cache_flag_name;
64 smbios_cache_loc_desc;
65 smbios_cache_logical_desc;
66 smbios_cache_mode_desc;
67 smbios_chassis_state_desc;
68 smbios_chassis_type_desc;
69 smbios_checksum;
70 smbios_close;
71 smbios_csn;
72 smbios_errmsg;
73 smbios_errno;
74 smbios_evlog_flag_desc;
75 smbios_evlog_flag_name;
76 smbios_evlog_format_desc;
77 smbios_evlog_method_desc;
78 smbios_fdopen;
79 smbios_hwsec_desc;
80 smbios_info_bboard;
81 smbios_info_bios;
82 smbios_info_boot;
83 smbios_info_cache;
84 smbios_info_chassis;
85 smbios_info_common;
86 smbios_info_contains;
87 smbios_info_eventlog;
88 smbios_info_hwsec;
89 smbios_info_ipmi;
90 smbios_info_lang;
91 smbios_info_memarray;
92 smbios_info_extmemarray;
93 smbios_info_memarrmap;
94 smbios_info_memdevice;
95 smbios_info_extmemdevice;
96 smbios_info_memdevmap;
97 smbios_info_obdevs;
98 smbios_info_obdevs_ext;
99 smbios_info_port;
100 smbios_info_extport;
101 smbios_info_processor;
102 smbios_info_extprocessor;
103 smbios_info_slot;
104 smbios_info_smbios;
105 smbios_info_strtab;
106 smbios_info_system;
107 smbios_info_pciexrc;
108 smbios_ipmi_flag_desc;
109 smbios_ipmi_flag_name;
110 smbios_ipmi_type_desc;
111 smbios_iter;
112 smbios_lookup_id;
113 smbios_lookup_type;
114 smbios_memarray_ecc_desc;
115 smbios_memarray_loc_desc;
116 smbios_memarray_use_desc;
117 smbios_memdevice_flag_desc;
118 smbios_memdevice_flag_name;
119 smbios_memdevice_form_desc;
120 smbios_memdevice_type_desc;
121 smbios_memdevice_rank_desc;
122 smbios_open;
123 smbios_port_conn_desc;

new/usr/src/lib/libsmbios/common/mapfile-vers 3

124 smbios_port_type_desc;
125 smbios_processor_family_desc;
126 smbios_processor_status_desc;
127 smbios_processor_type_desc;
128 smbios_processor_upgrade_desc;
129 smbios_processor_core_flag_desc;
130 smbios_processor_core_flag_name;
131 smbios_psn;
132 smbios_slot_ch1_desc;
133 smbios_slot_ch1_name;
134 smbios_slot_ch2_desc;
135 smbios_slot_ch2_name;
136 smbios_slot_length_desc;
137 smbios_slot_type_desc;
138 smbios_slot_usage_desc;
139 smbios_slot_width_desc;
140 smbios_system_wakeup_desc;
141 smbios_type_desc;
142 smbios_type_name;
143 smbios_write;
144 local:
145 *;
146 };

______unchanged_portion_omitted_

new/usr/src/uts/common/sys/smbios.h 1

**
 67005 Thu Mar 26 17:12:00 2015
new/usr/src/uts/common/sys/smbios.h
5094 Update libsmbios with recent items
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
Reviewed by: Garrett D’Amore <garrett@damore.org>
Reviewed by: Robert Mustacchi <rm@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
24 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */

28 /*
29 * This header file defines the interfaces available from the SMBIOS access
30 * library, libsmbios, and an equivalent kernel module. This API can be used
31 * to access DMTF SMBIOS data from a device, file, or raw memory buffer.
31 * This is NOT yet a public interface, although it may eventually become one in
32 * the fullness of time after we gain more experience with the interfaces.
32 *
33 * This is NOT a Public interface, and should be considered Unstable, as it is
34 * subject to change without notice as the DMTF SMBIOS specification evolves.
35 * Therefore, be aware that any program linked with this API in this
36 * instance of illumos is almost guaranteed to break in the next release.
34 * In the meantime, be aware that any program linked with this API in this
35 * release of Solaris is almost guaranteed to break in the next release.
36 *
37 * In short, do not user this header file or these routines for any purpose.
37 */

39 #ifndef _SYS_SMBIOS_H
40 #define _SYS_SMBIOS_H

42 #include <sys/types.h>

44 #ifdef __cplusplus
45 extern "C" {
46 #endif

48 /*
49 * SMBIOS Structure Table Entry Point. See DSP0134 5.2.1 for more information.
50 * SMBIOS Structure Table Entry Point. See DSP0134 2.1.1 for more information.
50 * The structure table entry point is located by searching for the anchor.

new/usr/src/uts/common/sys/smbios.h 2

51 */
52 #pragma pack(1)

54 typedef struct smbios_entry {
55 char smbe_eanchor[4]; /* anchor tag (SMB_ENTRY_EANCHOR) */
56 uint8_t smbe_ecksum; /* checksum of entry point structure */
57 uint8_t smbe_elen; /* length in bytes of entry point */
58 uint8_t smbe_major; /* major version of the SMBIOS spec */
59 uint8_t smbe_minor; /* minor version of the SMBIOS spec */
60 uint16_t smbe_maxssize; /* maximum size in bytes of a struct */
61 uint8_t smbe_revision; /* entry point structure revision */
62 uint8_t smbe_format[5]; /* entry point revision-specific data */
63 char smbe_ianchor[5]; /* intermed. tag (SMB_ENTRY_IANCHOR) */
64 uint8_t smbe_icksum; /* intermed. checksum */
65 uint16_t smbe_stlen; /* length in bytes of structure table */
66 uint32_t smbe_staddr; /* physical addr of structure table */
67 uint16_t smbe_stnum; /* number of structure table entries */
68 uint8_t smbe_bcdrev; /* BCD value representing DMI version */
69 } smbios_entry_t;

71 #pragma pack()

73 #define SMB_ENTRY_EANCHOR "_SM_" /* structure table entry point anchor */
74 #define SMB_ENTRY_EANCHORLEN 4 /* length of entry point anchor */
75 #define SMB_ENTRY_IANCHOR "_DMI_" /* intermediate anchor string */
76 #define SMB_ENTRY_IANCHORLEN 5 /* length of intermediate anchor */
77 #define SMB_ENTRY_MAXLEN 255 /* maximum length of entry point */

79 /*
80 * Structure type codes. The comments next to each type include an (R) note to
81 * indicate a structure that is required as of SMBIOS v2.8 and an (O) note to
82 * indicate a structure that is obsolete as of SMBIOS v2.8.
82 * indicate a structure that is required as of SMBIOS v2.3 and an (O) note to
83 * indicate a structure that is obsolete as of SMBIOS v2.3.
83 */
84 #define SMB_TYPE_BIOS 0 /* BIOS information (R) */
85 #define SMB_TYPE_SYSTEM 1 /* system information (R) */
86 #define SMB_TYPE_BASEBOARD 2 /* base board */
87 #define SMB_TYPE_CHASSIS 3 /* system enclosure or chassis (R) */
88 #define SMB_TYPE_PROCESSOR 4 /* processor (R) */
89 #define SMB_TYPE_MEMCTL 5 /* memory controller (O) */
90 #define SMB_TYPE_MEMMOD 6 /* memory module (O) */
91 #define SMB_TYPE_CACHE 7 /* processor cache (R) */
92 #define SMB_TYPE_PORT 8 /* port connector */
93 #define SMB_TYPE_SLOT 9 /* upgradeable system slot (R) */
94 #define SMB_TYPE_OBDEVS 10 /* on-board devices (O) */
95 #define SMB_TYPE_OBDEVS 10 /* on-board devices */
95 #define SMB_TYPE_OEMSTR 11 /* OEM string table */
96 #define SMB_TYPE_SYSCONFSTR 12 /* system configuration string table */
97 #define SMB_TYPE_LANG 13 /* BIOS language information */
98 #define SMB_TYPE_GROUP 14 /* group associations */
99 #define SMB_TYPE_EVENTLOG 15 /* system event log */
100 #define SMB_TYPE_MEMARRAY 16 /* physical memory array (R) */
101 #define SMB_TYPE_MEMDEVICE 17 /* memory device (R) */
102 #define SMB_TYPE_MEMERR32 18 /* 32-bit memory error information */
103 #define SMB_TYPE_MEMARRAYMAP 19 /* memory array mapped address (R) */
104 #define SMB_TYPE_MEMDEVICEMAP 20 /* memory device mapped address */
105 #define SMB_TYPE_MEMDEVICEMAP 20 /* memory device mapped address (R) */
105 #define SMB_TYPE_POINTDEV 21 /* built-in pointing device */
106 #define SMB_TYPE_BATTERY 22 /* portable battery */
107 #define SMB_TYPE_RESET 23 /* system reset settings */
108 #define SMB_TYPE_SECURITY 24 /* hardware security settings */
109 #define SMB_TYPE_POWERCTL 25 /* system power controls */
110 #define SMB_TYPE_VPROBE 26 /* voltage probe */
111 #define SMB_TYPE_COOLDEV 27 /* cooling device */
112 #define SMB_TYPE_TPROBE 28 /* temperature probe */

new/usr/src/uts/common/sys/smbios.h 3

113 #define SMB_TYPE_IPROBE 29 /* current probe */
114 #define SMB_TYPE_OOBRA 30 /* out-of-band remote access facility */
115 #define SMB_TYPE_BIS 31 /* boot integrity services */
116 #define SMB_TYPE_BOOT 32 /* system boot status (R) */
117 #define SMB_TYPE_MEMERR64 33 /* 64-bit memory error information */
118 #define SMB_TYPE_MGMTDEV 34 /* management device */
119 #define SMB_TYPE_MGMTDEVCP 35 /* management device component */
120 #define SMB_TYPE_MGMTDEVDATA 36 /* management device threshold data */
121 #define SMB_TYPE_MEMCHAN 37 /* memory channel */
122 #define SMB_TYPE_IPMIDEV 38 /* IPMI device information */
123 #define SMB_TYPE_POWERSUP 39 /* system power supply */
124 #define SMB_TYPE_ADDINFO 40 /* additional information */
125 #define SMB_TYPE_OBDEVEXT 41 /* on-board device extended info */
126 #define SMB_TYPE_MCHI 42 /* mgmt controller host interface */
127 #define SMB_TYPE_INACTIVE 126 /* inactive table entry */
128 #define SMB_TYPE_EOT 127 /* end of table */

130 #define SMB_TYPE_OEM_LO 128 /* start of OEM-specific type range */
131 #define SUN_OEM_EXT_PROCESSOR 132 /* processor extended info */
132 #define SUN_OEM_EXT_PORT 136 /* port exteded info */
133 #define SUN_OEM_PCIEXRC 138 /* PCIE RootComplex/RootPort info */
134 #define SUN_OEM_EXT_MEMARRAY 144 /* phys memory array extended info */
135 #define SUN_OEM_EXT_MEMDEVICE 145 /* memory device extended info */
136 #define SMB_TYPE_OEM_HI 256 /* end of OEM-specific type range */

138 /*
139 * OEM string indicating "Platform Resource Management Specification"
140 * compliance.
141 */
142 #define SMB_PRMS1 "SUNW-PRMS-1"

144 /*
145 * Some default values set by BIOS vendor
146 */
147 #define SMB_DEFAULT1 "To Be Filled By O.E.M."
148 #define SMB_DEFAULT2 "Not Available"

150 /*
151 * SMBIOS Common Information. These structures do not correspond to anything
152 * in the SMBIOS specification, but allow library clients to more easily read
153 * information that is frequently encoded into the various SMBIOS structures.
154 */
155 typedef struct smbios_info {
156 const char *smbi_manufacturer; /* manufacturer */
157 const char *smbi_product; /* product name */
158 const char *smbi_version; /* version */
159 const char *smbi_serial; /* serial number */
160 const char *smbi_asset; /* asset tag */
161 const char *smbi_location; /* location tag */
162 const char *smbi_part; /* part number */
163 } smbios_info_t;

______unchanged_portion_omitted_

170 #define SMB_CONT_BYTE 1 /* contained elements are byte size */
171 #define SMB_CONT_WORD 2 /* contained elements are word size */
172 #define SMB_CONT_MAX 255 /* maximum contained objects */

174 /*
175 * SMBIOS Bios Information. See DSP0134 Section 7.1 for more information.
174 * SMBIOS Bios Information. See DSP0134 Section 3.3.1 for more information.
176 * smbb_romsize is converted from the implementation format into bytes.
177 */
178 typedef struct smbios_bios {
179 const char *smbb_vendor; /* bios vendor string */
180 const char *smbb_version; /* bios version string */
181 const char *smbb_reldate; /* bios release date */

new/usr/src/uts/common/sys/smbios.h 4

182 uint32_t smbb_segment; /* bios address segment location */
183 uint32_t smbb_romsize; /* bios rom size in bytes */
184 uint32_t smbb_runsize; /* bios image size in bytes */
185 uint64_t smbb_cflags; /* bios characteristics */
186 const uint8_t *smbb_xcflags; /* bios characteristics extensions */
187 size_t smbb_nxcflags; /* number of smbb_xcflags[] bytes */
188 smbios_version_t smbb_biosv; /* bios version */
189 smbios_version_t smbb_ecfwv; /* bios embedded ctrl f/w version */
190 } smbios_bios_t;

192 #define SMB_BIOSFL_RSV0 0x00000001 /* reserved bit zero */
193 #define SMB_BIOSFL_RSV1 0x00000002 /* reserved bit one */
194 #define SMB_BIOSFL_UNKNOWN 0x00000004 /* unknown */
195 #define SMB_BIOSFL_BCNOTSUP 0x00000008 /* BIOS chars not supported */
196 #define SMB_BIOSFL_ISA 0x00000010 /* ISA is supported */
197 #define SMB_BIOSFL_MCA 0x00000020 /* MCA is supported */
198 #define SMB_BIOSFL_EISA 0x00000040 /* EISA is supported */
199 #define SMB_BIOSFL_PCI 0x00000080 /* PCI is supported */
200 #define SMB_BIOSFL_PCMCIA 0x00000100 /* PCMCIA is supported */
201 #define SMB_BIOSFL_PLUGNPLAY 0x00000200 /* Plug and Play is supported */
202 #define SMB_BIOSFL_APM 0x00000400 /* APM is supported */
203 #define SMB_BIOSFL_FLASH 0x00000800 /* BIOS is Flash Upgradeable */
204 #define SMB_BIOSFL_SHADOW 0x00001000 /* BIOS shadowing is allowed */
205 #define SMB_BIOSFL_VLVESA 0x00002000 /* VL-VESA is supported */
206 #define SMB_BIOSFL_ESCD 0x00004000 /* ESCD support is available */
207 #define SMB_BIOSFL_CDBOOT 0x00008000 /* Boot from CD is supported */
208 #define SMB_BIOSFL_SELBOOT 0x00010000 /* Selectable Boot supported */
209 #define SMB_BIOSFL_ROMSOCK 0x00020000 /* BIOS ROM is socketed */
210 #define SMB_BIOSFL_PCMBOOT 0x00040000 /* Boot from PCMCIA supported */
211 #define SMB_BIOSFL_EDD 0x00080000 /* EDD Spec is supported */
212 #define SMB_BIOSFL_NEC9800 0x00100000 /* int 0x13 NEC 9800 floppy */
213 #define SMB_BIOSFL_TOSHIBA 0x00200000 /* int 0x13 Toshiba floppy */
214 #define SMB_BIOSFL_525_360K 0x00400000 /* int 0x13 5.25" 360K floppy */
215 #define SMB_BIOSFL_525_12M 0x00800000 /* int 0x13 5.25" 1.2M floppy */
216 #define SMB_BIOSFL_35_720K 0x01000000 /* int 0x13 3.5" 720K floppy */
217 #define SMB_BIOSFL_35_288M 0x02000000 /* int 0x13 3.5" 2.88M floppy */
218 #define SMB_BIOSFL_I5_PRINT 0x04000000 /* int 0x5 print screen svcs */
219 #define SMB_BIOSFL_I9_KBD 0x08000000 /* int 0x9 8042 keyboard svcs */
220 #define SMB_BIOSFL_I14_SER 0x10000000 /* int 0x14 serial svcs */
221 #define SMB_BIOSFL_I17_PRINTER 0x20000000 /* int 0x17 printer svcs */
222 #define SMB_BIOSFL_I10_CGA 0x40000000 /* int 0x10 CGA svcs */
223 #define SMB_BIOSFL_NEC_PC98 0x80000000 /* NEC PC-98 */

225 #define SMB_BIOSXB_1 0 /* bios extension byte 1 (7.1.2.1) */
226 #define SMB_BIOSXB_2 1 /* bios extension byte 2 (7.1.2.2) */
224 #define SMB_BIOSXB_1 0 /* bios extension byte 1 (3.3.1.2.1) */
225 #define SMB_BIOSXB_2 1 /* bios extension byte 2 (3.3.1.2.2) */
227 #define SMB_BIOSXB_BIOS_MAJ 2 /* bios major version */
228 #define SMB_BIOSXB_BIOS_MIN 3 /* bios minor version */
229 #define SMB_BIOSXB_ECFW_MAJ 4 /* extended ctlr f/w major version */
230 #define SMB_BIOSXB_ECFW_MIN 5 /* extended ctlr f/w minor version */

232 #define SMB_BIOSXB1_ACPI 0x01 /* ACPI is supported */
233 #define SMB_BIOSXB1_USBL 0x02 /* USB legacy is supported */
234 #define SMB_BIOSXB1_AGP 0x04 /* AGP is supported */
235 #define SMB_BIOSXB1_I20 0x08 /* I2O boot is supported */
236 #define SMB_BIOSXB1_LS120 0x10 /* LS-120 boot is supported */
237 #define SMB_BIOSXB1_ATZIP 0x20 /* ATAPI ZIP drive boot is supported */
238 #define SMB_BIOSXB1_1394 0x40 /* 1394 boot is supported */
239 #define SMB_BIOSXB1_SMBAT 0x80 /* Smart Battery is supported */

241 #define SMB_BIOSXB2_BBOOT 0x01 /* BIOS Boot Specification supported */
242 #define SMB_BIOSXB2_FKNETSVC 0x02 /* F-key Network Svc boot supported */
243 #define SMB_BIOSXB2_ETCDIST 0x04 /* Enable Targeted Content Distrib. */
244 #define SMB_BIOSXB2_UEFI 0x08 /* UEFI Specification supported */
245 #define SMB_BIOSXB2_VM 0x10 /* SMBIOS table describes a VM */

new/usr/src/uts/common/sys/smbios.h 5

247 /*
248 * SMBIOS System Information. See DSP0134 Section 7.2 for more information.
245 * SMBIOS Bios Information. See DSP0134 Section 3.3.2 for more information.
249 * The current set of smbs_wakeup values is defined after the structure.
250 */
251 typedef struct smbios_system {
252 const uint8_t *smbs_uuid; /* UUID byte array */
253 uint8_t smbs_uuidlen; /* UUID byte array length */
254 uint8_t smbs_wakeup; /* wake-up event */
255 const char *smbs_sku; /* SKU number */
256 const char *smbs_family; /* family */
257 } smbios_system_t;

259 #define SMB_WAKEUP_RSV0 0x00 /* reserved */
260 #define SMB_WAKEUP_OTHER 0x01 /* other */
261 #define SMB_WAKEUP_UNKNOWN 0x02 /* unknown */
262 #define SMB_WAKEUP_APM 0x03 /* APM timer */
263 #define SMB_WAKEUP_MODEM 0x04 /* modem ring */
264 #define SMB_WAKEUP_LAN 0x05 /* LAN remote */
265 #define SMB_WAKEUP_SWITCH 0x06 /* power switch */
266 #define SMB_WAKEUP_PCIPME 0x07 /* PCI PME# */
267 #define SMB_WAKEUP_AC 0x08 /* AC power restored */

269 /*
270 * SMBIOS Base Board description. See DSP0134 Section 7.3 for more
267 * SMBIOS Base Board description. See DSP0134 Section 3.3.3 for more
271 * information. smbb_flags and smbb_type definitions are below.
272 */
273 typedef struct smbios_bboard {
274 id_t smbb_chassis; /* chassis containing this board */
275 uint8_t smbb_flags; /* flags (see below) */
276 uint8_t smbb_type; /* board type (see below) */
277 uint8_t smbb_contn; /* number of contained object hdls */
278 } smbios_bboard_t;

280 #define SMB_BBFL_MOTHERBOARD 0x01 /* board is a motherboard */
281 #define SMB_BBFL_NEEDAUX 0x02 /* auxiliary card or daughter req’d */
282 #define SMB_BBFL_REMOVABLE 0x04 /* board is removable */
283 #define SMB_BBFL_REPLACABLE 0x08 /* board is field-replacable */
284 #define SMB_BBFL_HOTSWAP 0x10 /* board is hot-swappable */

286 #define SMB_BBT_UNKNOWN 0x1 /* unknown */
287 #define SMB_BBT_OTHER 0x2 /* other */
288 #define SMB_BBT_SBLADE 0x3 /* server blade */
289 #define SMB_BBT_CSWITCH 0x4 /* connectivity switch */
290 #define SMB_BBT_SMM 0x5 /* system management module */
291 #define SMB_BBT_PROC 0x6 /* processor module */
292 #define SMB_BBT_IO 0x7 /* i/o module */
293 #define SMB_BBT_MEM 0x8 /* memory module */
294 #define SMB_BBT_DAUGHTER 0x9 /* daughterboard */
295 #define SMB_BBT_MOTHER 0xA /* motherboard */
296 #define SMB_BBT_PROCMEM 0xB /* processor/memory module */
297 #define SMB_BBT_PROCIO 0xC /* processor/i/o module */
298 #define SMB_BBT_INTER 0xD /* interconnect board */

300 /*
301 * SMBIOS Chassis description. See DSP0134 Section 7.4 for more information.
298 * SMBIOS Chassis description. See DSP0134 Section 3.3.4 for more information.
302 * We move the lock bit of the type field into smbc_lock for easier processing.
303 */
304 typedef struct smbios_chassis {
305 uint32_t smbc_oemdata; /* OEM-specific data */
306 uint8_t smbc_lock; /* lock present? */
307 uint8_t smbc_type; /* type */
308 uint8_t smbc_bustate; /* boot-up state */

new/usr/src/uts/common/sys/smbios.h 6

309 uint8_t smbc_psstate; /* power supply state */
310 uint8_t smbc_thstate; /* thermal state */
311 uint8_t smbc_security; /* security status */
312 uint8_t smbc_uheight; /* enclosure height in U’s */
313 uint8_t smbc_cords; /* number of power cords */
314 uint8_t smbc_elems; /* number of element records (n) */
315 uint8_t smbc_elemlen; /* length of contained element (m) */
316 char smbc_sku[256]; /* SKU number (as a string) */
317 } smbios_chassis_t;

319 #define SMB_CHT_OTHER 0x01 /* other */
320 #define SMB_CHT_UNKNOWN 0x02 /* unknown */
321 #define SMB_CHT_DESKTOP 0x03 /* desktop */
322 #define SMB_CHT_LPDESKTOP 0x04 /* low-profile desktop */
323 #define SMB_CHT_PIZZA 0x05 /* pizza box */
324 #define SMB_CHT_MINITOWER 0x06 /* mini-tower */
325 #define SMB_CHT_TOWER 0x07 /* tower */
326 #define SMB_CHT_PORTABLE 0x08 /* portable */
327 #define SMB_CHT_LAPTOP 0x09 /* laptop */
328 #define SMB_CHT_NOTEBOOK 0x0A /* notebook */
329 #define SMB_CHT_HANDHELD 0x0B /* hand-held */
330 #define SMB_CHT_DOCK 0x0C /* docking station */
331 #define SMB_CHT_ALLIN1 0x0D /* all-in-one */
332 #define SMB_CHT_SUBNOTE 0x0E /* sub-notebook */
333 #define SMB_CHT_SPACESAVE 0x0F /* space-saving */
334 #define SMB_CHT_LUNCHBOX 0x10 /* lunchbox */
335 #define SMB_CHT_MAIN 0x11 /* main server chassis */
336 #define SMB_CHT_EXPANSION 0x12 /* expansion chassis */
337 #define SMB_CHT_SUB 0x13 /* sub-chassis */
338 #define SMB_CHT_BUS 0x14 /* bus expansion chassis */
339 #define SMB_CHT_PERIPHERAL 0x15 /* peripheral chassis */
340 #define SMB_CHT_RAID 0x16 /* raid chassis */
341 #define SMB_CHT_RACK 0x17 /* rack mount chassis */
342 #define SMB_CHT_SEALED 0x18 /* sealed case pc */
343 #define SMB_CHT_MULTI 0x19 /* multi-system chassis */
344 #define SMB_CHT_CPCI 0x1A /* compact PCI */
345 #define SMB_CHT_ATCA 0x1B /* advanced TCA */
346 #define SMB_CHT_BLADE 0x1C /* blade */
347 #define SMB_CHT_BLADEENC 0x1D /* blade enclosure */

349 #define SMB_CHST_OTHER 0x01 /* other */
350 #define SMB_CHST_UNKNOWN 0x02 /* unknown */
351 #define SMB_CHST_SAFE 0x03 /* safe */
352 #define SMB_CHST_WARNING 0x04 /* warning */
353 #define SMB_CHST_CRITICAL 0x05 /* critical */
354 #define SMB_CHST_NONREC 0x06 /* non-recoverable */

356 #define SMB_CHSC_OTHER 0x01 /* other */
357 #define SMB_CHSC_UNKNOWN 0x02 /* unknown */
358 #define SMB_CHSC_NONE 0x03 /* none */
359 #define SMB_CHSC_EILOCK 0x04 /* external interface locked out */
360 #define SMB_CHSC_EIENAB 0x05 /* external interface enabled */

362 /*
363 * SMBIOS Processor description. See DSP0134 Section 7.5 for more details.
359 * SMBIOS Processor description. See DSP0134 Section 3.3.5 for more details.
364 * If the L1, L2, or L3 cache handle is -1, the cache information is unknown.
365 * If the handle refers to something of size 0, that type of cache is absent.
366 *
367 * NOTE: Although SMBIOS exports a 64-bit CPUID result, this value should not
368 * be used for any purpose other than BIOS debugging. illumos itself computes
364 * be used for any purpose other than BIOS debugging. Solaris itself computes
369 * its own CPUID value and applies knowledge of additional errata and processor
370 * specific CPUID variations, so this value should not be used for anything.
371 */
372 typedef struct smbios_processor {

new/usr/src/uts/common/sys/smbios.h 7

373 uint64_t smbp_cpuid; /* processor cpuid information */
374 uint32_t smbp_family; /* processor family */
375 uint8_t smbp_type; /* processor type (SMB_PRT_*) */
376 uint8_t smbp_voltage; /* voltage (SMB_PRV_*) */
377 uint8_t smbp_status; /* status (SMB_PRS_*) */
378 uint8_t smbp_upgrade; /* upgrade (SMB_PRU_*) */
379 uint32_t smbp_clkspeed; /* external clock speed in MHz */
380 uint32_t smbp_maxspeed; /* maximum speed in MHz */
381 uint32_t smbp_curspeed; /* current speed in MHz */
382 id_t smbp_l1cache; /* L1 cache handle */
383 id_t smbp_l2cache; /* L2 cache handle */
384 id_t smbp_l3cache; /* L3 cache handle */
385 uint8_t smbp_corecount; /* number of cores per processor socket */
386 uint8_t smbp_coresenabled;
387 /* number of enabled cores per processor socket */
388 uint8_t smbp_threadcount;
389 /* number of threads per processor socket */
390 uint16_t smbp_cflags;
391 /* processor characteristics (SMB_PRC_*) */
392 uint16_t smbp_family2; /* processor family 2 */
393 } smbios_processor_t;

395 #define SMB_PRT_OTHER 0x01 /* other */
396 #define SMB_PRT_UNKNOWN 0x02 /* unknown */
397 #define SMB_PRT_CENTRAL 0x03 /* central processor */
398 #define SMB_PRT_MATH 0x04 /* math processor */
399 #define SMB_PRT_DSP 0x05 /* DSP processor */
400 #define SMB_PRT_VIDEO 0x06 /* video processor */

402 #define SMB_PRV_LEGACY(v) (!((v) & 0x80)) /* legacy voltage mode */
403 #define SMB_PRV_FIXED(v) ((v) & 0x80) /* fixed voltage mode */

405 #define SMB_PRV_5V 0x01 /* 5V is supported */
406 #define SMB_PRV_33V 0x02 /* 3.3V is supported */
407 #define SMB_PRV_29V 0x04 /* 2.9V is supported */

409 #define SMB_PRV_VOLTAGE(v) ((v) & 0x7f)

411 #define SMB_PRSTATUS_PRESENT(s) ((s) & 0x40) /* socket is populated */
412 #define SMB_PRSTATUS_STATUS(s) ((s) & 0x07) /* status (see below) */

414 #define SMB_PRS_UNKNOWN 0x0 /* unknown */
415 #define SMB_PRS_ENABLED 0x1 /* enabled */
416 #define SMB_PRS_BDISABLED 0x2 /* disabled in bios user setup */
417 #define SMB_PRS_PDISABLED 0x3 /* disabled in bios from post error */
418 #define SMB_PRS_IDLE 0x4 /* waiting to be enabled */
419 #define SMB_PRS_OTHER 0x7 /* other */

421 #define SMB_PRU_OTHER 0x01 /* other */
422 #define SMB_PRU_UNKNOWN 0x02 /* unknown */
423 #define SMB_PRU_DAUGHTER 0x03 /* daughter board */
424 #define SMB_PRU_ZIF 0x04 /* ZIF socket */
425 #define SMB_PRU_PIGGY 0x05 /* replaceable piggy back */
426 #define SMB_PRU_NONE 0x06 /* none */
427 #define SMB_PRU_LIF 0x07 /* LIF socket */
428 #define SMB_PRU_SLOT1 0x08 /* slot 1 */
429 #define SMB_PRU_SLOT2 0x09 /* slot 2 */
430 #define SMB_PRU_370PIN 0x0A /* 370-pin socket */
431 #define SMB_PRU_SLOTA 0x0B /* slot A */
432 #define SMB_PRU_SLOTM 0x0C /* slot M */
433 #define SMB_PRU_423 0x0D /* socket 423 */
434 #define SMB_PRU_A 0x0E /* socket A (socket 462) */
435 #define SMB_PRU_478 0x0F /* socket 478 */
436 #define SMB_PRU_754 0x10 /* socket 754 */
437 #define SMB_PRU_940 0x11 /* socket 940 */
438 #define SMB_PRU_939 0x12 /* socket 939 */

new/usr/src/uts/common/sys/smbios.h 8

439 #define SMB_PRU_MPGA604 0x13 /* mPGA604 */
440 #define SMB_PRU_LGA771 0x14 /* LGA771 */
441 #define SMB_PRU_LGA775 0x15 /* LGA775 */
442 #define SMB_PRU_S1 0x16 /* socket S1 */
443 #define SMB_PRU_AM2 0x17 /* socket AM2 */
444 #define SMB_PRU_F 0x18 /* socket F */
445 #define SMB_PRU_LGA1366 0x19 /* LGA1366 */
446 #define SMB_PRU_G34 0x1A /* socket G34 */
447 #define SMB_PRU_AM3 0x1B /* socket AM3 */
448 #define SMB_PRU_C32 0x1C /* socket C32 */
449 #define SMB_PRU_LGA1156 0x1D /* LGA1156 */
450 #define SMB_PRU_LGA1567 0x1E /* LGA1567 */
451 #define SMB_PRU_PGA988A 0x1F /* PGA988A */
452 #define SMB_PRU_BGA1288 0x20 /* BGA1288 */
453 #define SMB_PRU_RPGA988B 0x21 /* rPGA988B */
454 #define SMB_PRU_BGA1023 0x22 /* BGA1023 */
455 #define SMB_PRU_BGA1224 0x23 /* BGA1224 */
456 #define SMB_PRU_LGA1155 0x24 /* LGA1155 */
457 #define SMB_PRU_LGA1356 0x25 /* LGA1356 */
458 #define SMB_PRU_LGA2011 0x26 /* LGA2011 */
459 #define SMB_PRU_FS1 0x27 /* socket FS1 */
460 #define SMB_PRU_FS2 0x28 /* socket FS2 */
461 #define SMB_PRU_FM1 0x29 /* socket FM1 */
462 #define SMB_PRU_FM2 0x2A /* socket FM2 */
463 #define SMB_PRU_LGA20113 0x2B /* LGA2011-3 */
464 #define SMB_PRU_LGA13563 0x2C /* LGA1356-3 */

466 #define SMB_PRC_RESERVED 0x0001 /* reserved */
467 #define SMB_PRC_UNKNOWN 0x0002 /* unknown */
468 #define SMB_PRC_64BIT 0x0004 /* 64-bit capable */
469 #define SMB_PRC_MC 0x0008 /* multi-core */
470 #define SMB_PRC_HT 0x0010 /* hardware thread */
471 #define SMB_PRC_NX 0x0020 /* execution protection */
472 #define SMB_PRC_VT 0x0040 /* enhanced virtualization */
473 #define SMB_PRC_PM 0x0080 /* power/performance control */

475 #define SMB_PRF_OTHER 0x01 /* other */
476 #define SMB_PRF_UNKNOWN 0x02 /* unknown */
477 #define SMB_PRF_8086 0x03 /* 8086 */
478 #define SMB_PRF_80286 0x04 /* 80286 */
479 #define SMB_PRF_I386 0x05 /* Intel 386 */
480 #define SMB_PRF_I486 0x06 /* Intel 486 */
481 #define SMB_PRF_8087 0x07 /* 8087 */
482 #define SMB_PRF_80287 0x08 /* 80287 */
483 #define SMB_PRF_80387 0x09 /* 80387 */
484 #define SMB_PRF_80487 0x0A /* 80487 */
485 #define SMB_PRF_PENTIUM 0x0B /* Pentium Family */
486 #define SMB_PRF_PENTIUMPRO 0x0C /* Pentium Pro */
487 #define SMB_PRF_PENTIUMII 0x0D /* Pentium II */
488 #define SMB_PRF_PENTIUM_MMX 0x0E /* Pentium w/ MMX */
489 #define SMB_PRF_CELERON 0x0F /* Celeron */
490 #define SMB_PRF_PENTIUMII_XEON 0x10 /* Pentium II Xeon */
491 #define SMB_PRF_PENTIUMIII 0x11 /* Pentium III */
492 #define SMB_PRF_M1 0x12 /* M1 */
493 #define SMB_PRF_M2 0x13 /* M2 */
494 #define SMB_PRF_CELERON_M 0x14 /* Celeron M */
495 #define SMB_PRF_PENTIUMIV_HT 0x15 /* Pentium 4 HT */
496 #define SMB_PRF_DURON 0x18 /* AMD Duron */
497 #define SMB_PRF_K5 0x19 /* K5 */
498 #define SMB_PRF_K6 0x1A /* K6 */
499 #define SMB_PRF_K6_2 0x1B /* K6-2 */
500 #define SMB_PRF_K6_3 0x1C /* K6-3 */
501 #define SMB_PRF_ATHLON 0x1D /* Athlon */
502 #define SMB_PRF_2900 0x1E /* AMD 2900 */
503 #define SMB_PRF_K6_2PLUS 0x1F /* K6-2+ */
504 #define SMB_PRF_PPC 0x20 /* PowerPC */

new/usr/src/uts/common/sys/smbios.h 9

505 #define SMB_PRF_PPC_601 0x21 /* PowerPC 601 */
506 #define SMB_PRF_PPC_603 0x22 /* PowerPC 603 */
507 #define SMB_PRF_PPC_603PLUS 0x23 /* PowerPC 603+ */
508 #define SMB_PRF_PPC_604 0x24 /* PowerPC 604 */
509 #define SMB_PRF_PPC_620 0x25 /* PowerPC 620 */
510 #define SMB_PRF_PPC_704 0x26 /* PowerPC x704 */
511 #define SMB_PRF_PPC_750 0x27 /* PowerPC 750 */
512 #define SMB_PRF_CORE_DUO 0x28 /* Core Duo */
513 #define SMB_PRF_CORE_DUO_M 0x29 /* Core Duo mobile */
514 #define SMB_PRF_CORE_SOLO_M 0x2A /* Core Solo mobile */
515 #define SMB_PRF_ATOM 0x2B /* Intel Atom */
516 #define SMB_PRF_ALPHA 0x30 /* Alpha */
517 #define SMB_PRF_ALPHA_21064 0x31 /* Alpha 21064 */
518 #define SMB_PRF_ALPHA_21066 0x32 /* Alpha 21066 */
519 #define SMB_PRF_ALPHA_21164 0x33 /* Alpha 21164 */
520 #define SMB_PRF_ALPHA_21164PC 0x34 /* Alpha 21164PC */
521 #define SMB_PRF_ALPHA_21164A 0x35 /* Alpha 21164a */
522 #define SMB_PRF_ALPHA_21264 0x36 /* Alpha 21264 */
523 #define SMB_PRF_ALPHA_21364 0x37 /* Alpha 21364 */
524 #define SMB_PRF_TURION2U_2C_MM 0x38
525 /* AMD Turion II Ultra Dual-Core Mobile M */
526 #define SMB_PRF_TURION2_2C_MM 0x39 /* AMD Turion II Dual-Core Mobile M */
527 #define SMB_PRF_ATHLON2_2C_M 0x3A /* AMD Athlon II Dual-Core M */
528 #define SMB_PRF_OPTERON_6100 0x3B /* AMD Opteron 6100 series */
529 #define SMB_PRF_OPTERON_4100 0x3C /* AMD Opteron 4100 series */
530 #define SMB_PRF_OPTERON_6200 0x3D /* AMD Opteron 6200 series */
531 #define SMB_PRF_OPTERON_4200 0x3E /* AMD Opteron 4200 series */
532 #define SMB_PRF_AMD_FX 0x3F /* AMD FX series */
533 #define SMB_PRF_MIPS 0x40 /* MIPS */
534 #define SMB_PRF_MIPS_R4000 0x41 /* MIPS R4000 */
535 #define SMB_PRF_MIPS_R4200 0x42 /* MIPS R4200 */
536 #define SMB_PRF_MIPS_R4400 0x43 /* MIPS R4400 */
537 #define SMB_PRF_MIPS_R4600 0x44 /* MIPS R4600 */
538 #define SMB_PRF_MIPS_R10000 0x45 /* MIPS R10000 */
539 #define SMB_PRF_AMD_C 0x46 /* AMD C-series */
540 #define SMB_PRF_AMD_E 0x47 /* AMD E-series */
541 #define SMB_PRF_AMD_A 0x48 /* AMD A-series */
542 #define SMB_PRF_AMD_G 0x49 /* AMD G-series */
543 #define SMB_PRF_AMD_Z 0x4A /* AMD Z-series */
544 #define SMB_PRF_AMD_R 0x4B /* AMD R-series */
545 #define SMB_PRF_OPTERON_4300 0x4C /* AMD Opteron 4300 series */
546 #define SMB_PRF_OPTERON_6300 0x4D /* AMD Opteron 6300 series */
547 #define SMB_PRF_OPTERON_3300 0x4E /* AMD Opteron 3300 series */
548 #define SMB_PRF_AMD_FIREPRO 0x4F /* AMD FirePro series */
549 #define SMB_PRF_SPARC 0x50 /* SPARC */
550 #define SMB_PRF_SUPERSPARC 0x51 /* SuperSPARC */
551 #define SMB_PRF_MICROSPARCII 0x52 /* microSPARC II */
552 #define SMB_PRF_MICROSPARCIIep 0x53 /* microSPARC IIep */
553 #define SMB_PRF_ULTRASPARC 0x54 /* UltraSPARC */
554 #define SMB_PRF_USII 0x55 /* UltraSPARC II */
555 #define SMB_PRF_USIIi 0x56 /* UltraSPARC IIi */
556 #define SMB_PRF_USIII 0x57 /* UltraSPARC III */
557 #define SMB_PRF_USIIIi 0x58 /* UltraSPARC IIIi */
558 #define SMB_PRF_68040 0x60 /* 68040 */
559 #define SMB_PRF_68XXX 0x61 /* 68XXX */
560 #define SMB_PRF_68000 0x62 /* 68000 */
561 #define SMB_PRF_68010 0x63 /* 68010 */
562 #define SMB_PRF_68020 0x64 /* 68020 */
563 #define SMB_PRF_68030 0x65 /* 68030 */
564 #define SMB_PRF_HOBBIT 0x70 /* Hobbit */
565 #define SMB_PRF_TM5000 0x78 /* Crusoe TM5000 */
566 #define SMB_PRF_TM3000 0x79 /* Crusoe TM3000 */
567 #define SMB_PRF_TM8000 0x7A /* Efficeon TM8000 */
568 #define SMB_PRF_WEITEK 0x80 /* Weitek */
569 #define SMB_PRF_ITANIC 0x82 /* Itanium */
570 #define SMB_PRF_ATHLON64 0x83 /* Athlon64 */

new/usr/src/uts/common/sys/smbios.h 10

571 #define SMB_PRF_OPTERON 0x84 /* Opteron */
572 #define SMB_PRF_SEMPRON 0x85 /* Sempron */
573 #define SMB_PRF_TURION64_M 0x86 /* Turion 64 Mobile */
574 #define SMB_PRF_OPTERON_2C 0x87 /* AMD Opteron Dual-Core */
575 #define SMB_PRF_ATHLON64_X2_2C 0x88 /* AMD Athlon 64 X2 Dual-Core */
576 #define SMB_PRF_TURION64_X2_M 0x89 /* AMD Turion 64 X2 Mobile */
577 #define SMB_PRF_OPTERON_4C 0x8A /* AMD Opteron Quad-Core */
578 #define SMB_PRF_OPTERON_3G 0x8B /* AMD Opteron 3rd Generation */
579 #define SMB_PRF_PHENOM_FX_4C 0x8C /* AMD Phenom FX Quad-Core */
580 #define SMB_PRF_PHENOM_X4_4C 0x8D /* AMD Phenom X4 Quad-Core */
581 #define SMB_PRF_PHENOM_X2_2C 0x8E /* AMD Phenom X2 Dual-Core */
582 #define SMB_PRF_ATHLON_X2_2C 0x8F /* AMD Athlon X2 Dual-Core */
583 #define SMB_PRF_PA 0x90 /* PA-RISC */
584 #define SMB_PRF_PA8500 0x91 /* PA-RISC 8500 */
585 #define SMB_PRF_PA8000 0x92 /* PA-RISC 8000 */
586 #define SMB_PRF_PA7300LC 0x93 /* PA-RISC 7300LC */
587 #define SMB_PRF_PA7200 0x94 /* PA-RISC 7200 */
588 #define SMB_PRF_PA7100LC 0x95 /* PA-RISC 7100LC */
589 #define SMB_PRF_PA7100 0x96 /* PA-RISC 7100 */
590 #define SMB_PRF_V30 0xA0 /* V30 */
591 #define SMB_PRF_XEON_4C_3200 0xA1 /* Xeon Quad Core 3200 */
592 #define SMB_PRF_XEON_2C_3000 0xA2 /* Xeon Dual Core 3000 */
593 #define SMB_PRF_XEON_4C_5300 0xA3 /* Xeon Quad Core 5300 */
594 #define SMB_PRF_XEON_2C_5100 0xA4 /* Xeon Dual Core 5100 */
595 #define SMB_PRF_XEON_2C_5000 0xA5 /* Xeon Dual Core 5000 */
596 #define SMB_PRF_XEON_2C_LV 0xA6 /* Xeon Dual Core LV */
597 #define SMB_PRF_XEON_2C_ULV 0xA7 /* Xeon Dual Core ULV */
598 #define SMB_PRF_XEON_2C_7100 0xA8 /* Xeon Dual Core 7100 */
599 #define SMB_PRF_XEON_4C_5400 0xA9 /* Xeon Quad Core 5400 */
600 #define SMB_PRF_XEON_4C 0xAA /* Xeon Quad Core */
601 #define SMB_PRF_XEON_2C_5200 0xAB /* Xeon Dual Core 5200 */
602 #define SMB_PRF_XEON_2C_7200 0xAC /* Xeon Dual Core 7200 */
603 #define SMB_PRF_XEON_4C_7300 0xAD /* Xeon Quad Core 7300 */
604 #define SMB_PRF_XEON_4C_7400 0xAE /* Xeon Quad Core 7400 */
605 #define SMB_PRF_XEON_XC_7400 0xAF /* Xeon Multi Core 7400 */
606 #define SMB_PRF_PENTIUMIII_XEON 0xB0 /* Pentium III Xeon */
607 #define SMB_PRF_PENTIUMIII_SS 0xB1 /* Pentium III with SpeedStep */
608 #define SMB_PRF_P4 0xB2 /* Pentium 4 */
609 #define SMB_PRF_XEON 0xB3 /* Intel Xeon */
610 #define SMB_PRF_AS400 0xB4 /* AS400 */
611 #define SMB_PRF_XEON_MP 0xB5 /* Intel Xeon MP */
612 #define SMB_PRF_ATHLON_XP 0xB6 /* AMD Athlon XP */
613 #define SMB_PRF_ATHLON_MP 0xB7 /* AMD Athlon MP */
614 #define SMB_PRF_ITANIC2 0xB8 /* Itanium 2 */
615 #define SMB_PRF_PENTIUM_M 0xB9 /* Pentium M */
616 #define SMB_PRF_CELERON_D 0xBA /* Celeron D */
617 #define SMB_PRF_PENTIUM_D 0xBB /* Pentium D */
618 #define SMB_PRF_PENTIUM_EE 0xBC /* Pentium Extreme Edition */
619 #define SMB_PRF_CORE_SOLO 0xBD /* Intel Core Solo */
620 #define SMB_PRF_CORE2_DUO 0xBF /* Intel Core 2 Duo */
621 #define SMB_PRF_CORE2_SOLO 0xC0 /* Intel Core 2 Solo */
622 #define SMB_PRF_CORE2_EX 0xC1 /* Intel Core 2 Extreme */
623 #define SMB_PRF_CORE2_QUAD 0xC2 /* Intel Core 2 Quad */
624 #define SMB_PRF_CORE2_EX_M 0xC3 /* Intel Core 2 Extreme mobile */
625 #define SMB_PRF_CORE2_DUO_M 0xC4 /* Intel Core 2 Duo mobile */
626 #define SMB_PRF_CORE2_SOLO_M 0xC5 /* Intel Core 2 Solo mobile */
627 #define SMB_PRF_CORE_I7 0xC6 /* Intel Core i7 */
628 #define SMB_PRF_CELERON_2C 0xC7 /* Celeron Dual-Core */
527 #define SMB_PRF_CORE 0xBD /* Intel Core */
528 #define SMB_PRF_CORE2 0xBF /* Intel Core 2 */
629 #define SMB_PRF_IBM390 0xC8 /* IBM 390 */
630 #define SMB_PRF_G4 0xC9 /* G4 */
631 #define SMB_PRF_G5 0xCA /* G5 */
632 #define SMB_PRF_ESA390 0xCB /* ESA390 */
633 #define SMB_PRF_ZARCH 0xCC /* z/Architecture */
634 #define SMB_PRF_CORE_I5 0xCD /* Intel Core i5 */

new/usr/src/uts/common/sys/smbios.h 11

635 #define SMB_PRF_CORE_I3 0xCE /* Intel Core i3 */
636 #define SMB_PRF_C7M 0xD2 /* VIA C7-M */
637 #define SMB_PRF_C7D 0xD3 /* VIA C7-D */
638 #define SMB_PRF_C7 0xD4 /* VIA C7 */
639 #define SMB_PRF_EDEN 0xD5 /* VIA Eden */
640 #define SMB_PRF_XEON_XC 0xD6 /* Intel Xeon Multi-Core */
641 #define SMB_PRF_XEON_2C_3XXX 0xD7 /* Intel Xeon Dual-Core 3xxx */
642 #define SMB_PRF_XEON_4C_3XXX 0xD8 /* Intel Xeon Quad-Core 3xxx */
643 #define SMB_PRF_VIA_NANO 0xD9 /* VIA Nano */
644 #define SMB_PRF_XEON_2C_5XXX 0xDA /* Intel Xeon Dual-Core 5xxx */
645 #define SMB_PRF_XEON_4C_5XXX 0xDB /* Intel Xeon Quad-Core 5xxx */
646 #define SMB_PRF_XEON_2C_7XXX 0xDD /* Intel Xeon Dual-Core 7xxx */
647 #define SMB_PRF_XEON_4C_7XXX 0xDE /* Intel Xeon Quad-Core 7xxx */
648 #define SMB_PRF_XEON_XC_7XXX 0xDF /* Intel Xeon Multi-Core 7xxx */
649 #define SMB_PRF_XEON_XC_3400 0xE0 /* Intel Xeon Multi-Core 3400 */
650 #define SMB_PRF_OPTERON_3000 0xE4 /* AMD Opteron 3000 */
651 #define SMB_PRF_SEMPRON_II 0xE5 /* AMD Sempron II */
652 #define SMB_PRF_OPTERON_4C_EM 0xE6 /* AMD Opteron Quad-Core embedded */
653 #define SMB_PRF_PHENOM_3C 0xE7 /* AMD Phenom Triple-Core */
654 #define SMB_PRF_TURIONU_2C_M 0xE8 /* AMD Turion Ultra Dual-Core mobile */
655 #define SMB_PRF_TURION_2C_M 0xE9 /* AMD Turion Dual-Core mobile */
656 #define SMB_PRF_ATHLON_2C 0xEA /* AMD Athlon Dual-Core */
657 #define SMB_PRF_SEMPRON_SI 0xEB /* AMD Sempron SI */
658 #define SMB_PRF_PHENOM_II 0xEC /* AMD Phenom II */
659 #define SMB_PRF_ATHLON_II 0xED /* AMD Athlon II */
660 #define SMB_PRF_OPTERON_6C 0xEE /* AMD Opteron Six-Core */
661 #define SMB_PRF_SEMPRON_M 0xEF /* AMD Sempron M */
662 #define SMB_PRF_I860 0xFA /* i860 */
663 #define SMB_PRF_I960 0xFB /* i960 */
664 #define SMB_PRF_SH3 0x104 /* SH-3 */
665 #define SMB_PRF_SH4 0x105 /* SH-4 */
666 #define SMB_PRF_ARM 0x118 /* ARM */
667 #define SMB_PRF_SARM 0x119 /* StrongARM */
668 #define SMB_PRF_6X86 0x12C /* 6x86 */
669 #define SMB_PRF_MEDIAGX 0x12D /* MediaGX */
670 #define SMB_PRF_MII 0x12E /* MII */
671 #define SMB_PRF_WINCHIP 0x140 /* WinChip */
672 #define SMB_PRF_DSP 0x15E /* DSP */
673 #define SMB_PRF_VIDEO 0x1F4 /* Video Processor */

675 /*
676 * SMBIOS Cache Information. See DSP0134 Section 7.8 for more information.
552 * SMBIOS Cache Information. See DSP0134 Section 3.3.8 for more information.
677 * If smba_size is zero, this indicates the specified cache is not present.
678 */
679 typedef struct smbios_cache {
680 uint32_t smba_maxsize; /* maximum installed size in bytes */
681 uint32_t smba_size; /* installed size in bytes */
682 uint16_t smba_stype; /* supported SRAM types (SMB_CAT_*) */
683 uint16_t smba_ctype; /* current SRAM type (SMB_CAT_*) */
684 uint8_t smba_speed; /* speed in nanoseconds */
685 uint8_t smba_etype; /* error correction type (SMB_CAE_*) */
686 uint8_t smba_ltype; /* logical cache type (SMB_CAG_*) */
687 uint8_t smba_assoc; /* associativity (SMB_CAA_*) */
688 uint8_t smba_level; /* cache level */
689 uint8_t smba_mode; /* cache mode (SMB_CAM_*) */
690 uint8_t smba_location; /* cache location (SMB_CAL_*) */
691 uint8_t smba_flags; /* cache flags (SMB_CAF_*) */
692 } smbios_cache_t;

694 #define SMB_CAT_OTHER 0x0001 /* other */
695 #define SMB_CAT_UNKNOWN 0x0002 /* unknown */
696 #define SMB_CAT_NONBURST 0x0004 /* non-burst */
697 #define SMB_CAT_BURST 0x0008 /* burst */
698 #define SMB_CAT_PBURST 0x0010 /* pipeline burst */
699 #define SMB_CAT_SYNC 0x0020 /* synchronous */

new/usr/src/uts/common/sys/smbios.h 12

700 #define SMB_CAT_ASYNC 0x0040 /* asynchronous */

702 #define SMB_CAE_OTHER 0x01 /* other */
703 #define SMB_CAE_UNKNOWN 0x02 /* unknown */
704 #define SMB_CAE_NONE 0x03 /* none */
705 #define SMB_CAE_PARITY 0x04 /* parity */
706 #define SMB_CAE_SBECC 0x05 /* single-bit ECC */
707 #define SMB_CAE_MBECC 0x06 /* multi-bit ECC */

709 #define SMB_CAG_OTHER 0x01 /* other */
710 #define SMB_CAG_UNKNOWN 0x02 /* unknown */
711 #define SMB_CAG_INSTR 0x03 /* instruction */
712 #define SMB_CAG_DATA 0x04 /* data */
713 #define SMB_CAG_UNIFIED 0x05 /* unified */

715 #define SMB_CAA_OTHER 0x01 /* other */
716 #define SMB_CAA_UNKNOWN 0x02 /* unknown */
717 #define SMB_CAA_DIRECT 0x03 /* direct mapped */
718 #define SMB_CAA_2WAY 0x04 /* 2-way set associative */
719 #define SMB_CAA_4WAY 0x05 /* 4-way set associative */
720 #define SMB_CAA_FULL 0x06 /* fully associative */
721 #define SMB_CAA_8WAY 0x07 /* 8-way set associative */
722 #define SMB_CAA_16WAY 0x08 /* 16-way set associative */
723 #define SMB_CAA_12WAY 0x09 /* 12-way set associative */
724 #define SMB_CAA_24WAY 0x0A /* 24-way set associative */
725 #define SMB_CAA_32WAY 0x0B /* 32-way set associative */
726 #define SMB_CAA_48WAY 0x0C /* 48-way set associative */
727 #define SMB_CAA_64WAY 0x0D /* 64-way set associative */
728 #define SMB_CAA_20WAY 0x0E /* 20-way set associative */

730 #define SMB_CAM_WT 0x00 /* write-through */
731 #define SMB_CAM_WB 0x01 /* write-back */
732 #define SMB_CAM_VARY 0x02 /* varies by address */
733 #define SMB_CAM_UNKNOWN 0x03 /* unknown */

735 #define SMB_CAL_INTERNAL 0x00 /* internal */
736 #define SMB_CAL_EXTERNAL 0x01 /* external */
737 #define SMB_CAL_RESERVED 0x02 /* reserved */
738 #define SMB_CAL_UNKNOWN 0x03 /* unknown */

740 #define SMB_CAF_ENABLED 0x01 /* enabled at boot time */
741 #define SMB_CAF_SOCKETED 0x02 /* cache is socketed */

743 /*
744 * SMBIOS Port Information. See DSP0134 Section 7.9 for more information.
614 * SMBIOS Port Information. See DSP0134 Section 3.3.9 for more information.
745 * The internal reference designator string is also mapped to the location.
746 */
747 typedef struct smbios_port {
748 const char *smbo_iref; /* internal reference designator */
749 const char *smbo_eref; /* external reference designator */
750 uint8_t smbo_itype; /* internal connector type (SMB_POC_*) */
751 uint8_t smbo_etype; /* external connector type (SMB_POC_*) */
752 uint8_t smbo_ptype; /* port type (SMB_POT_*) */
753 uint8_t smbo_pad; /* padding */
754 } smbios_port_t;

756 #define SMB_POC_NONE 0x00 /* none */
757 #define SMB_POC_CENT 0x01 /* Centronics */
758 #define SMB_POC_MINICENT 0x02 /* Mini-Centronics */
759 #define SMB_POC_PROPRIETARY 0x03 /* proprietary */
760 #define SMB_POC_DB25M 0x04 /* DB-25 pin male */
761 #define SMB_POC_DB25F 0x05 /* DB-25 pin female */
762 #define SMB_POC_DB15M 0x06 /* DB-15 pin male */
763 #define SMB_POC_DB15F 0x07 /* DB-15 pin female */
764 #define SMB_POC_DB9M 0x08 /* DB-9 pin male */

new/usr/src/uts/common/sys/smbios.h 13

765 #define SMB_POC_DB9F 0x09 /* DB-9 pin female */
766 #define SMB_POC_RJ11 0x0A /* RJ-11 */
767 #define SMB_POC_RJ45 0x0B /* RJ-45 */
768 #define SMB_POC_MINISCSI 0x0C /* 50-pin MiniSCSI */
769 #define SMB_POC_MINIDIN 0x0D /* Mini-DIN */
770 #define SMB_POC_MICRODIN 0x0E /* Micro-DIN */
771 #define SMB_POC_PS2 0x0F /* PS/2 */
772 #define SMB_POC_IR 0x10 /* Infrared */
773 #define SMB_POC_HPHIL 0x11 /* HP-HIL */
774 #define SMB_POC_USB 0x12 /* USB */
775 #define SMB_POC_SSA 0x13 /* SSA SCSI */
776 #define SMB_POC_DIN8M 0x14 /* Circular DIN-8 male */
777 #define SMB_POC_DIN8F 0x15 /* Circular DIN-8 female */
778 #define SMB_POC_OBIDE 0x16 /* on-board IDE */
779 #define SMB_POC_OBFLOPPY 0x17 /* on-board floppy */
780 #define SMB_POC_DI9 0x18 /* 9p dual inline (p10 cut) */
781 #define SMB_POC_DI25 0x19 /* 25p dual inline (p26 cut) */
782 #define SMB_POC_DI50 0x1A /* 50p dual inline */
783 #define SMB_POC_DI68 0x1B /* 68p dual inline */
784 #define SMB_POC_CDROM 0x1C /* on-board sound from CDROM */
785 #define SMB_POC_MINI14 0x1D /* Mini-Centronics Type 14 */
786 #define SMB_POC_MINI26 0x1E /* Mini-Centronics Type 26 */
787 #define SMB_POC_MINIJACK 0x1F /* Mini-jack (headphones) */
788 #define SMB_POC_BNC 0x20 /* BNC */
789 #define SMB_POC_1394 0x21 /* 1394 */
790 #define SMB_POC_SATA 0x22 /* SAS/SATA plug receptacle */
791 #define SMB_POC_PC98 0xA0 /* PC-98 */
792 #define SMB_POC_PC98HR 0xA1 /* PC-98Hireso */
793 #define SMB_POC_PCH98 0xA2 /* PC-H98 */
794 #define SMB_POC_PC98NOTE 0xA3 /* PC-98Note */
795 #define SMB_POC_PC98FULL 0xA4 /* PC-98Full */
796 #define SMB_POC_OTHER 0xFF /* other */

798 #define SMB_POT_NONE 0x00 /* none */
799 #define SMB_POT_PP_XTAT 0x01 /* Parallel Port XT/AT compat */
800 #define SMB_POT_PP_PS2 0x02 /* Parallel Port PS/2 */
801 #define SMB_POT_PP_ECP 0x03 /* Parallel Port ECP */
802 #define SMB_POT_PP_EPP 0x04 /* Parallel Port EPP */
803 #define SMB_POT_PP_ECPEPP 0x05 /* Parallel Port ECP/EPP */
804 #define SMB_POT_SP_XTAT 0x06 /* Serial Port XT/AT compat */
805 #define SMB_POT_SP_16450 0x07 /* Serial Port 16450 compat */
806 #define SMB_POT_SP_16550 0x08 /* Serial Port 16550 compat */
807 #define SMB_POT_SP_16550A 0x09 /* Serial Port 16550A compat */
808 #define SMB_POT_SCSI 0x0A /* SCSI port */
809 #define SMB_POT_MIDI 0x0B /* MIDI port */
810 #define SMB_POT_JOYSTICK 0x0C /* Joystick port */
811 #define SMB_POT_KEYBOARD 0x0D /* Keyboard port */
812 #define SMB_POT_MOUSE 0x0E /* Mouse port */
813 #define SMB_POT_SSA 0x0F /* SSA SCSI */
814 #define SMB_POT_USB 0x10 /* USB */
815 #define SMB_POT_FIREWIRE 0x11 /* FireWrite (IEEE P1394) */
816 #define SMB_POT_PCMII 0x12 /* PCMCIA Type II */
817 #define SMB_POT_PCMIIa 0x13 /* PCMCIA Type II (alternate) */
818 #define SMB_POT_PCMIII 0x14 /* PCMCIA Type III */
819 #define SMB_POT_CARDBUS 0x15 /* Cardbus */
820 #define SMB_POT_ACCESS 0x16 /* Access Bus Port */
821 #define SMB_POT_SCSI2 0x17 /* SCSI II */
822 #define SMB_POT_SCSIW 0x18 /* SCSI Wide */
823 #define SMB_POT_PC98 0x19 /* PC-98 */
824 #define SMB_POT_PC98HR 0x1A /* PC-98Hireso */
825 #define SMB_POT_PCH98 0x1B /* PC-H98 */
826 #define SMB_POT_VIDEO 0x1C /* Video port */
827 #define SMB_POT_AUDIO 0x1D /* Audio port */
828 #define SMB_POT_MODEM 0x1E /* Modem port */
829 #define SMB_POT_NETWORK 0x1F /* Network port */
830 #define SMB_POT_SATA 0x20 /* SATA */

new/usr/src/uts/common/sys/smbios.h 14

831 #define SMB_POT_SAS 0x21 /* SAS */
832 #define SMB_POT_8251 0xA0 /* 8251 compatible */
833 #define SMB_POT_8251F 0xA1 /* 8251 FIFO compatible */
834 #define SMB_POT_OTHER 0xFF /* other */

836 /*
837 * SMBIOS Slot Information. See DSP0134 Section 7.10 for more information.
838 * See DSP0134 7.10.5 for how to interpret the value of smbl_id.
706 * SMBIOS Slot Information. See DSP0134 Section 3.3.10 for more information.
707 * See DSP0134 3.3.10.5 for how to interpret the value of smbl_id.
839 */
840 typedef struct smbios_slot {
841 const char *smbl_name; /* reference designation */
842 uint8_t smbl_type; /* slot type */
843 uint8_t smbl_width; /* slot data bus width */
844 uint8_t smbl_usage; /* current usage */
845 uint8_t smbl_length; /* slot length */
846 uint16_t smbl_id; /* slot ID */
847 uint8_t smbl_ch1; /* slot characteristics 1 */
848 uint8_t smbl_ch2; /* slot characteristics 2 */
849 uint16_t smbl_sg; /* segment group number */
850 uint8_t smbl_bus; /* bus number */
851 uint8_t smbl_df; /* device/function number */
852 } smbios_slot_t;

854 #define SMB_SLT_OTHER 0x01 /* other */
855 #define SMB_SLT_UNKNOWN 0x02 /* unknown */
856 #define SMB_SLT_ISA 0x03 /* ISA */
857 #define SMB_SLT_MCA 0x04 /* MCA */
858 #define SMB_SLT_EISA 0x05 /* EISA */
859 #define SMB_SLT_PCI 0x06 /* PCI */
860 #define SMB_SLT_PCMCIA 0x07 /* PCMCIA */
861 #define SMB_SLT_VLVESA 0x08 /* VL-VESA */
862 #define SMB_SLT_PROPRIETARY 0x09 /* proprietary */
863 #define SMB_SLT_PROC 0x0A /* processor card slot */
864 #define SMB_SLT_MEM 0x0B /* proprietary memory card slot */
865 #define SMB_SLT_IOR 0x0C /* I/O riser card slot */
866 #define SMB_SLT_NUBUS 0x0D /* NuBus */
867 #define SMB_SLT_PCI66 0x0E /* PCI (66MHz capable) */
868 #define SMB_SLT_AGP 0x0F /* AGP */
869 #define SMB_SLT_AGP2X 0x10 /* AGP 2X */
870 #define SMB_SLT_AGP4X 0x11 /* AGP 4X */
871 #define SMB_SLT_PCIX 0x12 /* PCI-X */
872 #define SMB_SLT_AGP8X 0x13 /* AGP 8X */
873 #define SMB_SLT_PC98_C20 0xA0 /* PC-98/C20 */
874 #define SMB_SLT_PC98_C24 0xA1 /* PC-98/C24 */
875 #define SMB_SLT_PC98_E 0xA2 /* PC-98/E */
876 #define SMB_SLT_PC98_LB 0xA3 /* PC-98/Local Bus */
877 #define SMB_SLT_PC98_C 0xA4 /* PC-98/Card */
878 #define SMB_SLT_PCIE 0xA5 /* PCI Express */
879 #define SMB_SLT_PCIE1 0xA6 /* PCI Express x1 */
880 #define SMB_SLT_PCIE2 0xA7 /* PCI Express x2 */
881 #define SMB_SLT_PCIE4 0xA8 /* PCI Express x4 */
882 #define SMB_SLT_PCIE8 0xA9 /* PCI Express x8 */
883 #define SMB_SLT_PCIE16 0xAA /* PCI Express x16 */
884 #define SMB_SLT_PCIE2G 0xAB /* PCI Exp. Gen 2 */
885 #define SMB_SLT_PCIE2G1 0xAC /* PCI Exp. Gen 2 x1 */
886 #define SMB_SLT_PCIE2G2 0xAD /* PCI Exp. Gen 2 x2 */
887 #define SMB_SLT_PCIE2G4 0xAE /* PCI Exp. Gen 2 x4 */
888 #define SMB_SLT_PCIE2G8 0xAF /* PCI Exp. Gen 2 x8 */
889 #define SMB_SLT_PCIE2G16 0xB0 /* PCI Exp. Gen 2 x16 */
890 #define SMB_SLT_PCIE3G 0xB1 /* PCI Exp. Gen 3 */
891 #define SMB_SLT_PCIE3G1 0xB2 /* PCI Exp. Gen 3 x1 */
892 #define SMB_SLT_PCIE3G2 0xB3 /* PCI Exp. Gen 3 x2 */
893 #define SMB_SLT_PCIE3G4 0xB4 /* PCI Exp. Gen 3 x4 */
894 #define SMB_SLT_PCIE3G8 0xB5 /* PCI Exp. Gen 3 x8 */

new/usr/src/uts/common/sys/smbios.h 15

895 #define SMB_SLT_PCIE3G16 0xB6 /* PCI Exp. Gen 3 x16 */

897 #define SMB_SLW_OTHER 0x01 /* other */
898 #define SMB_SLW_UNKNOWN 0x02 /* unknown */
899 #define SMB_SLW_8 0x03 /* 8 bit */
900 #define SMB_SLW_16 0x04 /* 16 bit */
901 #define SMB_SLW_32 0x05 /* 32 bit */
902 #define SMB_SLW_64 0x06 /* 64 bit */
903 #define SMB_SLW_128 0x07 /* 128 bit */
904 #define SMB_SLW_1X 0x08 /* 1x or x1 */
905 #define SMB_SLW_2X 0x09 /* 2x or x2 */
906 #define SMB_SLW_4X 0x0A /* 4x or x4 */
907 #define SMB_SLW_8X 0x0B /* 8x or x8 */
908 #define SMB_SLW_12X 0x0C /* 12x or x12 */
909 #define SMB_SLW_16X 0x0D /* 16x or x16 */
910 #define SMB_SLW_32X 0x0E /* 32x or x32 */

912 #define SMB_SLU_OTHER 0x01 /* other */
913 #define SMB_SLU_UNKNOWN 0x02 /* unknown */
914 #define SMB_SLU_AVAIL 0x03 /* available */
915 #define SMB_SLU_INUSE 0x04 /* in use */

917 #define SMB_SLL_OTHER 0x01 /* other */
918 #define SMB_SLL_UNKNOWN 0x02 /* unknown */
919 #define SMB_SLL_SHORT 0x03 /* short length */
920 #define SMB_SLL_LONG 0x04 /* long length */

922 #define SMB_SLCH1_UNKNOWN 0x01 /* characteristics unknown */
923 #define SMB_SLCH1_5V 0x02 /* provides 5.0V */
924 #define SMB_SLCH1_33V 0x04 /* provides 3.3V */
925 #define SMB_SLCH1_SHARED 0x08 /* opening shared with other slot */
926 #define SMB_SLCH1_PC16 0x10 /* slot supports PC Card-16 */
927 #define SMB_SLCH1_PCCB 0x20 /* slot supports CardBus */
928 #define SMB_SLCH1_PCZV 0x40 /* slot supports Zoom Video */
929 #define SMB_SLCH1_PCMRR 0x80 /* slot supports Modem Ring Resume */

931 #define SMB_SLCH2_PME 0x01 /* slot supports PME# signal */
932 #define SMB_SLCH2_HOTPLUG 0x02 /* slot supports hot-plug devices */
933 #define SMB_SLCH2_SMBUS 0x04 /* slot supports SMBus signal */

935 /*
936 * SMBIOS On-Board Device Information. See DSP0134 Section 7.11 for more
793 * SMBIOS On-Board Device Information. See DSP0134 Section 3.3.11 for more
937 * information. Any number of on-board device sections may be present, each
938 * containing one or more records. The smbios_info_obdevs() function permits
939 * the caller to retrieve one or more of the records from a given section.
940 */
941 typedef struct smbios_obdev {
942 const char *smbd_name; /* description string for this device */
943 uint8_t smbd_type; /* type code (SMB_OBT_*) */
944 uint8_t smbd_enabled; /* boolean (device is enabled) */
945 } smbios_obdev_t;

947 #define SMB_OBT_OTHER 0x01 /* other */
948 #define SMB_OBT_UNKNOWN 0x02 /* unknown */
949 #define SMB_OBT_VIDEO 0x03 /* video */
950 #define SMB_OBT_SCSI 0x04 /* scsi */
951 #define SMB_OBT_ETHERNET 0x05 /* ethernet */
952 #define SMB_OBT_TOKEN 0x06 /* token ring */
953 #define SMB_OBT_SOUND 0x07 /* sound */
954 #define SMB_OBT_PATA 0x08 /* pata */
955 #define SMB_OBT_SATA 0x09 /* sata */
956 #define SMB_OBT_SAS 0x0A /* sas */

958 /*
959 * SMBIOS BIOS Language Information. See DSP0134 Section 7.14 for more

new/usr/src/uts/common/sys/smbios.h 16

816 * SMBIOS BIOS Language Information. See DSP0134 Section 3.3.14 for more
960 * information. The smbios_info_strtab() function can be applied using a
961 * count of smbla_num to retrieve the other possible language settings.
962 */
963 typedef struct smbios_lang {
964 const char *smbla_cur; /* current language setting */
965 uint_t smbla_fmt; /* language name format (see below) */
966 uint_t smbla_num; /* number of installed languages */
967 } smbios_lang_t;

969 #define SMB_LFMT_LONG 0 /* <ISO639>|<ISO3166>|Encoding Method */
970 #define SMB_LFMT_SHORT 1 /* <ISO930><ISO3166> */

972 /*
973 * SMBIOS System Event Log Information. See DSP0134 Section 7.16 for more
830 * SMBIOS System Event Log Information. See DSP0134 Section 3.3.16 for more
974 * information. Accessing the event log itself requires additional interfaces.
975 */
976 typedef struct smbios_evtype {
977 uint8_t smbevt_ltype; /* log type */
978 uint8_t smbevt_dtype; /* variable data format type */
979 } smbios_evtype_t;

______unchanged_portion_omitted_

1002 #define SMB_EVM_1x1i_1x1d 0 /* I/O: 1 1b idx port, 1 1b data port */
1003 #define SMB_EVM_2x1i_1x1d 1 /* I/O: 2 1b idx port, 1 1b data port */
1004 #define SMB_EVM_1x2i_1x1d 2 /* I/O: 1 2b idx port, 1 1b data port */
1005 #define SMB_EVM_MEM32 3 /* Memory-Mapped 32-bit Physical Addr */
1006 #define SMB_EVM_GPNV 4 /* GP Non-Volatile API Access */

1008 #define SMB_EVFL_VALID 0x1 /* log area valid */
1009 #define SMB_EVFL_FULL 0x2 /* log area full */

1011 #define SMB_EVHF_NONE 0 /* no log headers used */
1012 #define SMB_EVHF_F1 1 /* DMTF log header type 1 */

1014 /*
1015 * SMBIOS Physical Memory Array Information. See DSP0134 Section 7.17 for
872 * SMBIOS Physical Memory Array Information. See DSP0134 Section 3.3.17 for
1016 * more information. This describes a collection of physical memory devices.
1017 */
1018 typedef struct smbios_memarray {
1019 uint8_t smbma_location; /* physical device location */
1020 uint8_t smbma_use; /* physical device functional purpose */
1021 uint8_t smbma_ecc; /* error detect/correct mechanism */
1022 uint8_t smbma_pad0; /* padding */
1023 uint32_t smbma_pad1; /* padding */
1024 uint32_t smbma_ndevs; /* number of slots or sockets */
1025 id_t smbma_err; /* handle of error (if any) */
1026 uint64_t smbma_size; /* maximum capacity in bytes */
1027 } smbios_memarray_t;

1029 #define SMB_MAL_OTHER 0x01 /* other */
1030 #define SMB_MAL_UNKNOWN 0x02 /* unknown */
1031 #define SMB_MAL_SYSMB 0x03 /* system board or motherboard */
1032 #define SMB_MAL_ISA 0x04 /* ISA add-on card */
1033 #define SMB_MAL_EISA 0x05 /* EISA add-on card */
1034 #define SMB_MAL_PCI 0x06 /* PCI add-on card */
1035 #define SMB_MAL_MCA 0x07 /* MCA add-on card */
1036 #define SMB_MAL_PCMCIA 0x08 /* PCMCIA add-on card */
1037 #define SMB_MAL_PROP 0x09 /* proprietary add-on card */
1038 #define SMB_MAL_NUBUS 0x0A /* NuBus */
1039 #define SMB_MAL_PC98C20 0xA0 /* PC-98/C20 add-on card */
1040 #define SMB_MAL_PC98C24 0xA1 /* PC-98/C24 add-on card */
1041 #define SMB_MAL_PC98E 0xA2 /* PC-98/E add-on card */
1042 #define SMB_MAL_PC98LB 0xA3 /* PC-98/Local bus add-on card */

new/usr/src/uts/common/sys/smbios.h 17

1044 #define SMB_MAU_OTHER 0x01 /* other */
1045 #define SMB_MAU_UNKNOWN 0x02 /* unknown */
1046 #define SMB_MAU_SYSTEM 0x03 /* system memory */
1047 #define SMB_MAU_VIDEO 0x04 /* video memory */
1048 #define SMB_MAU_FLASH 0x05 /* flash memory */
1049 #define SMB_MAU_NVRAM 0x06 /* non-volatile RAM */
1050 #define SMB_MAU_CACHE 0x07 /* cache memory */

1052 #define SMB_MAE_OTHER 0x01 /* other */
1053 #define SMB_MAE_UNKNOWN 0x02 /* unknown */
1054 #define SMB_MAE_NONE 0x03 /* none */
1055 #define SMB_MAE_PARITY 0x04 /* parity */
1056 #define SMB_MAE_SECC 0x05 /* single-bit ECC */
1057 #define SMB_MAE_MECC 0x06 /* multi-bit ECC */
1058 #define SMB_MAE_CRC 0x07 /* CRC */

1060 /*
1061 * SMBIOS Memory Device Information. See DSP0134 Section 7.18 for more
918 * SMBIOS Memory Device Information. See DSP0134 Section 3.3.18 for more
1062 * information. One or more of these structures are associated with each
1063 * smbios_memarray_t. A structure is present even for unpopulated sockets.
1064 * Unknown values are set to -1. A smbmd_size of 0 indicates unpopulated.
1065 * WARNING: Some BIOSes appear to export the *maximum* size of the device
1066 * that can appear in the corresponding socket as opposed to the current one.
1067 */
1068 typedef struct smbios_memdevice {
1069 id_t smbmd_array; /* handle of physical memory array */
1070 id_t smbmd_error; /* handle of memory error data */
1071 uint32_t smbmd_twidth; /* total width in bits including ecc */
1072 uint32_t smbmd_dwidth; /* data width in bits */
1073 uint64_t smbmd_size; /* size in bytes (see note above) */
1074 uint8_t smbmd_form; /* form factor */
1075 uint8_t smbmd_set; /* set (0x00=none, 0xFF=unknown) */
1076 uint8_t smbmd_type; /* memory type */
1077 uint8_t smbmd_pad; /* padding */
1078 uint32_t smbmd_flags; /* flags (see below) */
1079 uint32_t smbmd_speed; /* speed in MHz */
936 uint32_t smbmd_speed; /* speed in nanoseconds */
1080 const char *smbmd_dloc; /* physical device locator string */
1081 const char *smbmd_bloc; /* physical bank locator string */
1082 uint8_t smbmd_rank; /* rank */
1083 uint16_t smbmd_clkspeed; /* configured clock speed */
1084 uint16_t smbmd_minvolt; /* minimum voltage */
1085 uint16_t smbmd_maxvolt; /* maximum voltage */
1086 uint16_t smbmd_confvolt; /* configured voltage */
1087 } smbios_memdevice_t;

1089 #define SMB_MDFF_OTHER 0x01 /* other */
1090 #define SMB_MDFF_UNKNOWN 0x02 /* unknown */
1091 #define SMB_MDFF_SIMM 0x03 /* SIMM */
1092 #define SMB_MDFF_SIP 0x04 /* SIP */
1093 #define SMB_MDFF_CHIP 0x05 /* chip */
1094 #define SMB_MDFF_DIP 0x06 /* DIP */
1095 #define SMB_MDFF_ZIP 0x07 /* ZIP */
1096 #define SMB_MDFF_PROP 0x08 /* proprietary card */
1097 #define SMB_MDFF_DIMM 0x09 /* DIMM */
1098 #define SMB_MDFF_TSOP 0x0A /* TSOP */
1099 #define SMB_MDFF_CHIPROW 0x0B /* row of chips */
1100 #define SMB_MDFF_RIMM 0x0C /* RIMM */
1101 #define SMB_MDFF_SODIMM 0x0D /* SODIMM */
1102 #define SMB_MDFF_SRIMM 0x0E /* SRIMM */
1103 #define SMB_MDFF_FBDIMM 0x0F /* FBDIMM */

1105 #define SMB_MDT_OTHER 0x01 /* other */
1106 #define SMB_MDT_UNKNOWN 0x02 /* unknown */

new/usr/src/uts/common/sys/smbios.h 18

1107 #define SMB_MDT_DRAM 0x03 /* DRAM */
1108 #define SMB_MDT_EDRAM 0x04 /* EDRAM */
1109 #define SMB_MDT_VRAM 0x05 /* VRAM */
1110 #define SMB_MDT_SRAM 0x06 /* SRAM */
1111 #define SMB_MDT_RAM 0x07 /* RAM */
1112 #define SMB_MDT_ROM 0x08 /* ROM */
1113 #define SMB_MDT_FLASH 0x09 /* FLASH */
1114 #define SMB_MDT_EEPROM 0x0A /* EEPROM */
1115 #define SMB_MDT_FEPROM 0x0B /* FEPROM */
1116 #define SMB_MDT_EPROM 0x0C /* EPROM */
1117 #define SMB_MDT_CDRAM 0x0D /* CDRAM */
1118 #define SMB_MDT_3DRAM 0x0E /* 3DRAM */
1119 #define SMB_MDT_SDRAM 0x0F /* SDRAM */
1120 #define SMB_MDT_SGRAM 0x10 /* SGRAM */
1121 #define SMB_MDT_RDRAM 0x11 /* RDRAM */
1122 #define SMB_MDT_DDR 0x12 /* DDR */
1123 #define SMB_MDT_DDR2 0x13 /* DDR2 */
1124 #define SMB_MDT_DDR2FBDIMM 0x14 /* DDR2 FBDIMM */
1125 #define SMB_MDT_DDR3 0x18 /* DDR3 */
1126 #define SMB_MDT_FBD2 0x19 /* FBD2 */

1128 #define SMB_MDF_OTHER 0x0002 /* other */
1129 #define SMB_MDF_UNKNOWN 0x0004 /* unknown */
1130 #define SMB_MDF_FASTPG 0x0008 /* fast-paged */
1131 #define SMB_MDF_STATIC 0x0010 /* static column */
1132 #define SMB_MDF_PSTATIC 0x0020 /* pseudo-static */
1133 #define SMB_MDF_RAMBUS 0x0040 /* RAMBUS */
1134 #define SMB_MDF_SYNC 0x0080 /* synchronous */
1135 #define SMB_MDF_CMOS 0x0100 /* CMOS */
1136 #define SMB_MDF_EDO 0x0200 /* EDO */
1137 #define SMB_MDF_WDRAM 0x0400 /* Window DRAM */
1138 #define SMB_MDF_CDRAM 0x0800 /* Cache DRAM */
1139 #define SMB_MDF_NV 0x1000 /* non-volatile */
1140 #define SMB_MDF_REG 0x2000 /* Registered (Buffered) */
1141 #define SMB_MDF_UNREG 0x4000 /* Unregistered (Unbuffered) */
1142 #define SMB_MDF_LRDIMM 0x8000 /* LRDIMM */

1144 #define SMB_MDR_SINGLE 0x01 /* single */
1145 #define SMB_MDR_DUAL 0x02 /* dual */
1146 #define SMB_MDR_QUAD 0x04 /* quad */
1147 #define SMB_MDR_OCTAL 0x08 /* octal */

1149 /*
1150 * SMBIOS Memory Array Mapped Address. See DSP0134 Section 7.20 for more
992 * SMBIOS Memory Array Mapped Address. See DSP0134 Section 3.3.20 for more
1151 * information. We convert start/end addresses into addr/size for convenience.
1152 */
1153 typedef struct smbios_memarrmap {
1154 id_t smbmam_array; /* physical memory array handle */
1155 uint32_t smbmam_width; /* number of devices that form a row */
1156 uint64_t smbmam_addr; /* physical address of mapping */
1157 uint64_t smbmam_size; /* size in bytes of address range */
1158 } smbios_memarrmap_t;

1160 /*
1161 * SMBIOS Memory Device Mapped Address. See DSP0134 Section 7.21 for more
1003 * SMBIOS Memory Device Mapped Address. See DSP0134 Section 3.3.21 for more
1162 * information. We convert start/end addresses into addr/size for convenience.
1163 */
1164 typedef struct smbios_memdevmap {
1165 id_t smbmdm_device; /* memory device handle */
1166 id_t smbmdm_arrmap; /* memory array mapped address handle */
1167 uint64_t smbmdm_addr; /* physical address of mapping */
1168 uint64_t smbmdm_size; /* size in bytes of address range */
1169 uint8_t smbmdm_rpos; /* partition row position */
1170 uint8_t smbmdm_ipos; /* interleave position */

new/usr/src/uts/common/sys/smbios.h 19

1171 uint8_t smbmdm_idepth; /* interleave data depth */
1172 } smbios_memdevmap_t;

1174 /*
1175 * SMBIOS Hardware Security Settings. See DSP0134 Section 7.25 for more
1017 * SMBIOS Hardware Security Settings. See DSP0134 Section 3.3.25 for more
1176 * information. Only one such record will be present in the SMBIOS.
1177 */
1178 typedef struct smbios_hwsec {
1179 uint8_t smbh_pwr_ps; /* power-on password status */
1180 uint8_t smbh_kbd_ps; /* keyboard password status */
1181 uint8_t smbh_adm_ps; /* administrator password status */
1182 uint8_t smbh_pan_ps; /* front panel reset status */
1183 } smbios_hwsec_t;

1185 #define SMB_HWSEC_PS_DISABLED 0x00 /* password disabled */
1186 #define SMB_HWSEC_PS_ENABLED 0x01 /* password enabled */
1187 #define SMB_HWSEC_PS_NOTIMPL 0x02 /* password not implemented */
1188 #define SMB_HWSEC_PS_UNKNOWN 0x03 /* password status unknown */

1190 /*
1191 * SMBIOS System Boot Information. See DSP0134 Section 7.33 for more
1033 * SMBIOS System Boot Information. See DSP0134 Section 3.3.33 for more
1192 * information. The contents of the data varies by type and is undocumented
1193 * from the perspective of DSP0134 -- it seems to be left as vendor-specific.
1194 * The (D) annotation next to SMB_BOOT_* below indicates possible data payload.
1195 */
1196 typedef struct smbios_boot {
1197 uint8_t smbt_status; /* boot status code (see below) */
1198 const void *smbt_data; /* data buffer specific to status */
1199 size_t smbt_size; /* size of smbt_data buffer in bytes */
1200 } smbios_boot_t;

1202 #define SMB_BOOT_NORMAL 0 /* no errors detected */
1203 #define SMB_BOOT_NOMEDIA 1 /* no bootable media */
1204 #define SMB_BOOT_OSFAIL 2 /* normal o/s failed to load */
1205 #define SMB_BOOT_FWHWFAIL 3 /* firmware-detected hardware failure */
1206 #define SMB_BOOT_OSHWFAIL 4 /* o/s-detected hardware failure */
1207 #define SMB_BOOT_USERREQ 5 /* user-requested boot (keystroke) */
1208 #define SMB_BOOT_SECURITY 6 /* system security violation */
1209 #define SMB_BOOT_PREVREQ 7 /* previously requested image (D) */
1210 #define SMB_BOOT_WATCHDOG 8 /* watchdog initiated reboot */
1211 #define SMB_BOOT_RESV_LO 9 /* low end of reserved range */
1212 #define SMB_BOOT_RESV_HI 127 /* high end of reserved range */
1213 #define SMB_BOOT_OEM_LO 128 /* low end of OEM-specific range */
1214 #define SMB_BOOT_OEM_HI 191 /* high end of OEM-specific range */
1215 #define SMB_BOOT_PROD_LO 192 /* low end of product-specific range */
1216 #define SMB_BOOT_PROD_HI 255 /* high end of product-specific range */

1218 /*
1219 * SMBIOS IPMI Device Information. See DSP0134 Section 7.39 and also
1061 * SMBIOS IPMI Device Information. See DSP0134 Section 3.3.39 and also
1220 * Appendix C1 of the IPMI specification for more information on this record.
1221 */
1222 typedef struct smbios_ipmi {
1223 uint_t smbip_type; /* BMC interface type */
1224 smbios_version_t smbip_vers; /* BMC’s IPMI specification version */
1225 uint32_t smbip_i2c; /* BMC I2C bus slave address */
1226 uint32_t smbip_bus; /* bus ID of NV storage device, or -1 */
1227 uint64_t smbip_addr; /* BMC base address */
1228 uint32_t smbip_flags; /* flags (see below) */
1229 uint16_t smbip_intr; /* interrupt number (or zero if none) */
1230 uint16_t smbip_regspacing; /* i/o space register spacing (bytes) */
1231 } smbios_ipmi_t;

1233 #define SMB_IPMI_T_UNKNOWN 0x00 /* unknown */

new/usr/src/uts/common/sys/smbios.h 20

1234 #define SMB_IPMI_T_KCS 0x01 /* KCS: Keyboard Controller Style */
1235 #define SMB_IPMI_T_SMIC 0x02 /* SMIC: Server Mgmt Interface Chip */
1236 #define SMB_IPMI_T_BT 0x03 /* BT: Block Transfer */
1237 #define SMB_IPMI_T_SSIF 0x04 /* SSIF: SMBus System Interface */

1239 #define SMB_IPMI_F_IOADDR 0x01 /* base address is in i/o space */
1240 #define SMB_IPMI_F_INTRSPEC 0x02 /* intr information is specified */
1241 #define SMB_IPMI_F_INTRHIGH 0x04 /* intr active high (else low) */
1242 #define SMB_IPMI_F_INTREDGE 0x08 /* intr is edge triggered (else lvl) */

1244 /*
1245 * SMBIOS Onboard Devices Extended Information. See DSP0134 Section 7.42
1087 * SMBIOS Onboard Devices Extended Information. See DSP0134 Section 3.3.42
1246 * for more information.
1247 */
1248 typedef struct smbios_obdev_ext {
1249 const char *smboe_name; /* reference designation */
1250 uint8_t smboe_dtype; /* device type */
1251 uint8_t smboe_dti; /* device type instance */
1252 uint16_t smboe_sg; /* segment group number */
1253 uint8_t smboe_bus; /* bus number */
1254 uint8_t smboe_df; /* device/function number */
1255 } smbios_obdev_ext_t;
______unchanged_portion_omitted_

1306 /*
1307 * SMBIOS Interfaces. An SMBIOS image can be opened by either providing a file
1308 * pathname, device pathname, file descriptor, or raw memory buffer. Once an
1309 * image is opened the functions below can be used to iterate over the various
1310 * structures and convert the underlying data representation into the simpler
1311 * data structures described earlier in this header file. The SMB_VERSION
1312 * constant specified when opening an image indicates the version of the ABI
1313 * the caller expects and the DMTF SMBIOS version the client can understand.
1314 * The library will then map older or newer data structures to that as needed.
1315 */

1317 #define SMB_VERSION_23 0x0203 /* SMBIOS encoding for DMTF spec 2.3 */
1318 #define SMB_VERSION_24 0x0204 /* SMBIOS encoding for DMTF spec 2.4 */
1319 #define SMB_VERSION_25 0x0205 /* SMBIOS encoding for DMTF spec 2.5 */
1320 #define SMB_VERSION_26 0x0206 /* SMBIOS encoding for DMTF spec 2.6 */
1321 #define SMB_VERSION_27 0x0207 /* SMBIOS encoding for DMTF spec 2.7 */
1322 #define SMB_VERSION_28 0x0208 /* SMBIOS encoding for DMTF spec 2.8 */
1323 #define SMB_VERSION SMB_VERSION_28 /* SMBIOS latest version definitions */
1161 #define SMB_VERSION SMB_VERSION_24 /* SMBIOS latest version definitions */

1325 #define SMB_O_NOCKSUM 0x1 /* do not verify header checksums */
1326 #define SMB_O_NOVERS 0x2 /* do not verify header versions */
1327 #define SMB_O_ZIDS 0x4 /* strip out identification numbers */
1328 #define SMB_O_MASK 0x7 /* mask of valid smbios_*open flags */

1330 #define SMB_ID_NOTSUP 0xFFFE /* structure is not supported by BIOS */
1331 #define SMB_ID_NONE 0xFFFF /* structure is a null reference */

1333 #define SMB_ERR (-1) /* id_t value indicating error */

1335 typedef struct smbios_hdl smbios_hdl_t;

1337 typedef struct smbios_struct {
1338 id_t smbstr_id; /* structure ID handle */
1339 uint_t smbstr_type; /* structure type */
1340 const void *smbstr_data; /* structure data */
1341 size_t smbstr_size; /* structure size */
1342 } smbios_struct_t;

1344 typedef int smbios_struct_f(smbios_hdl_t *,
1345 const smbios_struct_t *, void *);

new/usr/src/uts/common/sys/smbios.h 21

1347 extern smbios_hdl_t *smbios_open(const char *, int, int, int *);
1348 extern smbios_hdl_t *smbios_fdopen(int, int, int, int *);
1349 extern smbios_hdl_t *smbios_bufopen(const smbios_entry_t *,
1350 const void *, size_t, int, int, int *);

1352 extern const void *smbios_buf(smbios_hdl_t *);
1353 extern size_t smbios_buflen(smbios_hdl_t *);

1355 extern void smbios_checksum(smbios_hdl_t *, smbios_entry_t *);
1356 extern int smbios_write(smbios_hdl_t *, int);
1357 extern void smbios_close(smbios_hdl_t *);

1359 extern int smbios_errno(smbios_hdl_t *);
1360 extern const char *smbios_errmsg(int);

1362 extern int smbios_lookup_id(smbios_hdl_t *, id_t, smbios_struct_t *);
1363 extern int smbios_lookup_type(smbios_hdl_t *, uint_t, smbios_struct_t *);
1364 extern int smbios_iter(smbios_hdl_t *, smbios_struct_f *, void *);

1366 extern void smbios_info_smbios(smbios_hdl_t *, smbios_entry_t *);
1367 extern int smbios_info_common(smbios_hdl_t *, id_t, smbios_info_t *);
1368 extern int smbios_info_contains(smbios_hdl_t *, id_t, uint_t, id_t *);
1369 extern id_t smbios_info_bios(smbios_hdl_t *, smbios_bios_t *);
1370 extern id_t smbios_info_system(smbios_hdl_t *, smbios_system_t *);
1371 extern int smbios_info_bboard(smbios_hdl_t *, id_t, smbios_bboard_t *);
1372 extern int smbios_info_chassis(smbios_hdl_t *, id_t, smbios_chassis_t *);
1373 extern int smbios_info_processor(smbios_hdl_t *, id_t, smbios_processor_t *);
1374 extern int smbios_info_extprocessor(smbios_hdl_t *, id_t,
1375 smbios_processor_ext_t *);
1376 extern int smbios_info_cache(smbios_hdl_t *, id_t, smbios_cache_t *);
1377 extern int smbios_info_port(smbios_hdl_t *, id_t, smbios_port_t *);
1378 extern int smbios_info_extport(smbios_hdl_t *, id_t, smbios_port_ext_t *);
1379 extern int smbios_info_slot(smbios_hdl_t *, id_t, smbios_slot_t *);
1380 extern int smbios_info_obdevs(smbios_hdl_t *, id_t, int, smbios_obdev_t *);
1381 extern int smbios_info_obdevs_ext(smbios_hdl_t *, id_t, smbios_obdev_ext_t *);
1382 extern int smbios_info_strtab(smbios_hdl_t *, id_t, int, const char *[]);
1383 extern id_t smbios_info_lang(smbios_hdl_t *, smbios_lang_t *);
1384 extern id_t smbios_info_eventlog(smbios_hdl_t *, smbios_evlog_t *);
1385 extern int smbios_info_memarray(smbios_hdl_t *, id_t, smbios_memarray_t *);
1386 extern int smbios_info_extmemarray(smbios_hdl_t *, id_t,
1387 smbios_memarray_ext_t *);
1388 extern int smbios_info_memarrmap(smbios_hdl_t *, id_t, smbios_memarrmap_t *);
1389 extern int smbios_info_memdevice(smbios_hdl_t *, id_t, smbios_memdevice_t *);
1390 extern int smbios_info_extmemdevice(smbios_hdl_t *, id_t,
1391 smbios_memdevice_ext_t *);
1392 extern int smbios_info_memdevmap(smbios_hdl_t *, id_t, smbios_memdevmap_t *);
1393 extern id_t smbios_info_hwsec(smbios_hdl_t *, smbios_hwsec_t *);
1394 extern id_t smbios_info_boot(smbios_hdl_t *, smbios_boot_t *);
1395 extern id_t smbios_info_ipmi(smbios_hdl_t *, smbios_ipmi_t *);
1396 extern int smbios_info_pciexrc(smbios_hdl_t *, id_t, smbios_pciexrc_t *);

1398 extern const char *smbios_psn(smbios_hdl_t *);
1399 extern const char *smbios_csn(smbios_hdl_t *);

1401 #ifndef _KERNEL
1402 /*
1403 * The smbios_*_desc() and smbios_*_name() interfaces can be used for utilities
1404 * such as smbios(1M) that wish to decode SMBIOS fields for humans. The _desc
1405 * functions return the comment string next to the #defines listed above, and
1406 * the _name functions return the appropriate #define identifier itself.
1407 */
1408 extern const char *smbios_bboard_flag_desc(uint_t);
1409 extern const char *smbios_bboard_flag_name(uint_t);
1410 extern const char *smbios_bboard_type_desc(uint_t);

new/usr/src/uts/common/sys/smbios.h 22

1412 extern const char *smbios_bios_flag_desc(uint64_t);
1413 extern const char *smbios_bios_flag_name(uint64_t);

1415 extern const char *smbios_bios_xb1_desc(uint_t);
1416 extern const char *smbios_bios_xb1_name(uint_t);
1417 extern const char *smbios_bios_xb2_desc(uint_t);
1418 extern const char *smbios_bios_xb2_name(uint_t);

1420 extern const char *smbios_boot_desc(uint_t);

1422 extern const char *smbios_cache_assoc_desc(uint_t);
1423 extern const char *smbios_cache_ctype_desc(uint_t);
1424 extern const char *smbios_cache_ctype_name(uint_t);
1425 extern const char *smbios_cache_ecc_desc(uint_t);
1426 extern const char *smbios_cache_flag_desc(uint_t);
1427 extern const char *smbios_cache_flag_name(uint_t);
1428 extern const char *smbios_cache_loc_desc(uint_t);
1429 extern const char *smbios_cache_logical_desc(uint_t);
1430 extern const char *smbios_cache_mode_desc(uint_t);

1432 extern const char *smbios_chassis_state_desc(uint_t);
1433 extern const char *smbios_chassis_type_desc(uint_t);

1435 extern const char *smbios_evlog_flag_desc(uint_t);
1436 extern const char *smbios_evlog_flag_name(uint_t);
1437 extern const char *smbios_evlog_format_desc(uint_t);
1438 extern const char *smbios_evlog_method_desc(uint_t);

1440 extern const char *smbios_ipmi_flag_name(uint_t);
1441 extern const char *smbios_ipmi_flag_desc(uint_t);
1442 extern const char *smbios_ipmi_type_desc(uint_t);

1444 extern const char *smbios_hwsec_desc(uint_t);

1446 extern const char *smbios_memarray_loc_desc(uint_t);
1447 extern const char *smbios_memarray_use_desc(uint_t);
1448 extern const char *smbios_memarray_ecc_desc(uint_t);

1450 extern const char *smbios_memdevice_form_desc(uint_t);
1451 extern const char *smbios_memdevice_type_desc(uint_t);
1452 extern const char *smbios_memdevice_flag_name(uint_t);
1453 extern const char *smbios_memdevice_flag_desc(uint_t);
1454 extern const char *smbios_memdevice_rank_desc(uint_t);

1456 extern const char *smbios_port_conn_desc(uint_t);
1457 extern const char *smbios_port_type_desc(uint_t);

1459 extern const char *smbios_processor_family_desc(uint_t);
1460 extern const char *smbios_processor_status_desc(uint_t);
1461 extern const char *smbios_processor_type_desc(uint_t);
1462 extern const char *smbios_processor_upgrade_desc(uint_t);
1463 extern const char *smbios_processor_core_flag_name(uint_t);
1464 extern const char *smbios_processor_core_flag_desc(uint_t);

1466 extern const char *smbios_slot_type_desc(uint_t);
1467 extern const char *smbios_slot_width_desc(uint_t);
1468 extern const char *smbios_slot_usage_desc(uint_t);
1469 extern const char *smbios_slot_length_desc(uint_t);
1470 extern const char *smbios_slot_ch1_desc(uint_t);
1471 extern const char *smbios_slot_ch1_name(uint_t);
1472 extern const char *smbios_slot_ch2_desc(uint_t);
1473 extern const char *smbios_slot_ch2_name(uint_t);

1475 extern const char *smbios_type_desc(uint_t);
1476 extern const char *smbios_type_name(uint_t);

new/usr/src/uts/common/sys/smbios.h 23

1478 extern const char *smbios_system_wakeup_desc(uint_t);
1479 #endif /* !_KERNEL */

1481 #ifdef _KERNEL
1482 /*
1483 * For SMBIOS clients within the kernel itself, ksmbios is used to refer to
1484 * the kernel’s current snapshot of the SMBIOS, if one exists, and the
1485 * ksmbios_flags tunable is the set of flags for use with smbios_open().
1486 */
1487 extern smbios_hdl_t *ksmbios;
1488 extern int ksmbios_flags;
1489 #endif /* _KERNEL */

1491 #ifdef __cplusplus
1492 }
______unchanged_portion_omitted_

new/usr/src/uts/common/sys/smbios_impl.h 1

**
 19937 Thu Mar 26 17:12:01 2015
new/usr/src/uts/common/sys/smbios_impl.h
5094 Update libsmbios with recent items
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
Reviewed by: Garrett D’Amore <garrett@damore.org>
Reviewed by: Robert Mustacchi <rm@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
24 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */

28 /*
29 * This header file defines the implementation structures for the SMBIOS access
30 * library, libsmbios, and an equivalent kernel module. Clients should use
31 * the <smbios.h> or <sys/smbios.h> header files to access DMTF SMBIOS
32 * information, NOT these underlying implementation structures from the spec.
33 * In short, do not user this header file or these routines for any purpose.
34 */

36 #ifndef _SYS_SMBIOS_IMPL_H
37 #define _SYS_SMBIOS_IMPL_H

39 #include <sys/smbios.h>
40 #include <sys/sysmacros.h>

42 #ifdef _KERNEL
43 #include <sys/systm.h>
44 #else
45 #include <strings.h>
46 #include <stddef.h>
47 #endif

49 #ifdef __cplusplus
50 extern "C" {
51 #endif

53 #pragma pack(1)

55 typedef struct smb_header {
56 uint8_t smbh_type; /* structure type (SMB_TYPE_* value) */
57 uint8_t smbh_len; /* length in bytes of formatted area */

new/usr/src/uts/common/sys/smbios_impl.h 2

58 uint16_t smbh_hdl; /* structure handle */
59 } smb_header_t;

______unchanged_portion_omitted_

118 /* WARNING: the argument is evaluated three times! */
119 #define SMB_CH_SKU(smbcp) ((char *) \
120 (smbcp)->smbch_cv + ((smbcp)->smbch_cn * (smbcp)->smbch_cm))
121 #define SMB_CHT_LOCK 0x80 /* lock bit within smbch_type */

123 typedef struct smb_processor {
124 smb_header_t smbpr_hdr; /* structure header */
125 uint8_t smbpr_socket; /* socket designation */
126 uint8_t smbpr_type; /* processor type (see <smbios.h>) */
127 uint8_t smbpr_family; /* processor family (see <smbios.h>) */
128 uint8_t smbpr_manufacturer; /* manufacturer */
129 uint64_t smbpr_cpuid; /* processor cpuid information */
130 uint8_t smbpr_version; /* version */
131 uint8_t smbpr_voltage; /* voltage */
132 uint16_t smbpr_clkspeed; /* external clock speed in MHz */
133 uint16_t smbpr_maxspeed; /* maximum speed in MHz */
134 uint16_t smbpr_curspeed; /* current speed in MHz */
135 uint8_t smbpr_status; /* status (see <smbios.h>) */
136 uint8_t smbpr_upgrade; /* upgrade */
137 uint16_t smbpr_l1cache; /* L1 cache handle (if any) */
138 uint16_t smbpr_l2cache; /* L2 cache handle (if any) */
139 uint16_t smbpr_l3cache; /* L3 cache handle (if any) */
140 uint8_t smbpr_serial; /* serial number */
141 uint8_t smbpr_asset; /* asset tag */
142 uint8_t smbpr_part; /* part number */
143 uint8_t smbpr_corecount; /* number of cores per socket */
144 uint8_t smbpr_coresenabled; /* number of enabled cores per socket */
145 uint8_t smbpr_threadcount; /* number of threads per socket */
146 uint16_t smbpr_cflags; /* cpu characteristics (see <smbios.h>) */
147 uint16_t smbpr_family2; /* processor family2 (see <smbios.h>) */
148 } smb_processor_t;

______unchanged_portion_omitted_

164 /*
165 * Convert encoded cache size to bytes: DSP0134 Section 7.8 explains the
156 * Convert encoded cache size to bytes: DSP0134 Section 3.3.8 explains the
166 * encoding. The highest bit is 0 for 1k units, 1 for 64k units, and this
167 * macro decodes the value into bytes for exporting to our clients.
168 */
169 #define SMB_CACHE_SIZE(s) (((s) & 0x8000) ? \
170 ((uint32_t)((s) & 0x7FFF) * 64 * 1024) : ((uint32_t)(s) * 1024))

172 #define SMB_CACHE_CFG_MODE(c) (((c) >> 8) & 3)
173 #define SMB_CACHE_CFG_ENABLED(c) (((c) >> 7) & 1)
174 #define SMB_CACHE_CFG_LOCATION(c) (((c) >> 5) & 3)
175 #define SMB_CACHE_CFG_SOCKETED(c) (((c) >> 3) & 1)
176 #define SMB_CACHE_CFG_LEVEL(c) (((c) & 7) + 1)

178 typedef struct smb_port {
179 smb_header_t smbpo_hdr; /* structure header */
180 uint8_t smbpo_iref; /* internal reference designator */
181 uint8_t smbpo_itype; /* internal connector type */
182 uint8_t smbpo_eref; /* external reference designator */
183 uint8_t smbpo_etype; /* external connector type */
184 uint8_t smbpo_ptype; /* port type */
185 } smb_port_t;

______unchanged_portion_omitted_

202 typedef struct smb_obdev {
203 uint8_t smbob_type; /* encoded type and enable bit */
204 uint8_t smbob_name; /* description string */
195 uint8_t smbob_name; /* descriptiong string */

new/usr/src/uts/common/sys/smbios_impl.h 3

205 } smb_obdev_t;
______unchanged_portion_omitted_

237 typedef struct smb_memarray {
238 smb_header_t smbmarr_hdr; /* structure header */
239 uint8_t smbmarr_loc; /* location */
240 uint8_t smbmarr_use; /* use */
241 uint8_t smbmarr_ecc; /* error detect/correct mechanism */
242 uint32_t smbmarr_cap; /* maximum capacity */
243 uint16_t smbmarr_err; /* error handle */
244 uint16_t smbmarr_ndevs; /* number of slots or sockets */
245 uint64_t smbmarr_extcap; /* extended maximum capacity */
246 } smb_memarray_t;

248 typedef struct smb_memarrmap {
249 smb_header_t smbamap_hdr; /* structure header */
250 uint32_t smbamap_start; /* starting address in kilobytes */
251 uint32_t smbamap_end; /* ending address in kilobytes */
252 uint16_t smbamap_array; /* physical memory array handle */
253 uint8_t smbamap_width; /* partition width */
254 uint64_t smbamap_extstart; /* extended starting address in bytes */
255 uint64_t smbamap_extend; /* extended ending address in bytes */
256 } smb_memarrmap_t;

258 typedef struct smb_memdevice {
259 smb_header_t smbmdev_hdr; /* structure header */
260 uint16_t smbmdev_array; /* array handle */
261 uint16_t smbmdev_error; /* error handle */
262 uint16_t smbmdev_twidth; /* total width */
263 uint16_t smbmdev_dwidth; /* data width */
264 uint16_t smbmdev_size; /* size in either K or MB */
265 uint8_t smbmdev_form; /* form factor */
266 uint8_t smbmdev_set; /* device set */
267 uint8_t smbmdev_dloc; /* device locator */
268 uint8_t smbmdev_bloc; /* bank locator */
269 uint8_t smbmdev_type; /* memory type */
270 uint16_t smbmdev_flags; /* detail flags */
271 uint16_t smbmdev_speed; /* speed in MHz */
272 uint8_t smbmdev_manufacturer; /* manufacturer */
273 uint8_t smbmdev_serial; /* serial number */
274 uint8_t smbmdev_asset; /* asset tag */
275 uint8_t smbmdev_part; /* part number */
276 uint8_t smbmdev_attrs; /* attributes */
277 uint32_t smbmdev_extsize; /* extended size */
278 uint16_t smbmdev_clkspeed; /* configured clock speed */
279 uint16_t smbmdev_minvolt; /* minimum voltage */
280 uint16_t smbmdev_maxvolt; /* maximum voltage */
281 uint16_t smbmdev_confvolt; /* configured voltage */
282 } smb_memdevice_t;

284 #define SMB_MDS_KBYTES 0x8000 /* size in specified in kilobytes */

286 typedef struct smb_memdevmap {
287 smb_header_t smbdmap_hdr; /* structure header */
288 uint32_t smbdmap_start; /* starting address in kilobytes */
289 uint32_t smbdmap_end; /* ending address in kilobytes */
290 uint16_t smbdmap_device; /* memory device handle */
291 uint16_t smbdmap_array; /* memory array mapped address handle */
292 uint8_t smbdmap_rpos; /* row position */
293 uint8_t smbdmap_ipos; /* interleave position */
294 uint8_t smbdmap_idepth; /* interleave depth */
295 uint64_t smbdmap_extstart; /* extended starting address */
296 uint64_t smbdmap_extend; /* extended ending address */
297 } smb_memdevmap_t;

______unchanged_portion_omitted_

