1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
  24  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
  25  */
  26 
  27 #include <sys/zio.h>
  28 #include <sys/spa.h>
  29 #include <sys/dmu.h>
  30 #include <sys/zfs_context.h>
  31 #include <sys/zap.h>
  32 #include <sys/refcount.h>
  33 #include <sys/zap_impl.h>
  34 #include <sys/zap_leaf.h>
  35 #include <sys/avl.h>
  36 #include <sys/arc.h>
  37 #include <sys/dmu_objset.h>
  38 
  39 #ifdef _KERNEL
  40 #include <sys/sunddi.h>
  41 #endif
  42 
  43 extern inline mzap_phys_t *zap_m_phys(zap_t *zap);
  44 
  45 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
  46 
  47 uint64_t
  48 zap_getflags(zap_t *zap)
  49 {
  50         if (zap->zap_ismicro)
  51                 return (0);
  52         return (zap_f_phys(zap)->zap_flags);
  53 }
  54 
  55 int
  56 zap_hashbits(zap_t *zap)
  57 {
  58         if (zap_getflags(zap) & ZAP_FLAG_HASH64)
  59                 return (48);
  60         else
  61                 return (28);
  62 }
  63 
  64 uint32_t
  65 zap_maxcd(zap_t *zap)
  66 {
  67         if (zap_getflags(zap) & ZAP_FLAG_HASH64)
  68                 return ((1<<16)-1);
  69         else
  70                 return (-1U);
  71 }
  72 
  73 static uint64_t
  74 zap_hash(zap_name_t *zn)
  75 {
  76         zap_t *zap = zn->zn_zap;
  77         uint64_t h = 0;
  78 
  79         if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
  80                 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
  81                 h = *(uint64_t *)zn->zn_key_orig;
  82         } else {
  83                 h = zap->zap_salt;
  84                 ASSERT(h != 0);
  85                 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
  86 
  87                 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
  88                         int i;
  89                         const uint64_t *wp = zn->zn_key_norm;
  90 
  91                         ASSERT(zn->zn_key_intlen == 8);
  92                         for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
  93                                 int j;
  94                                 uint64_t word = *wp;
  95 
  96                                 for (j = 0; j < zn->zn_key_intlen; j++) {
  97                                         h = (h >> 8) ^
  98                                             zfs_crc64_table[(h ^ word) & 0xFF];
  99                                         word >>= NBBY;
 100                                 }
 101                         }
 102                 } else {
 103                         int i, len;
 104                         const uint8_t *cp = zn->zn_key_norm;
 105 
 106                         /*
 107                          * We previously stored the terminating null on
 108                          * disk, but didn't hash it, so we need to
 109                          * continue to not hash it.  (The
 110                          * zn_key_*_numints includes the terminating
 111                          * null for non-binary keys.)
 112                          */
 113                         len = zn->zn_key_norm_numints - 1;
 114 
 115                         ASSERT(zn->zn_key_intlen == 1);
 116                         for (i = 0; i < len; cp++, i++) {
 117                                 h = (h >> 8) ^
 118                                     zfs_crc64_table[(h ^ *cp) & 0xFF];
 119                         }
 120                 }
 121         }
 122         /*
 123          * Don't use all 64 bits, since we need some in the cookie for
 124          * the collision differentiator.  We MUST use the high bits,
 125          * since those are the ones that we first pay attention to when
 126          * chosing the bucket.
 127          */
 128         h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
 129 
 130         return (h);
 131 }
 132 
 133 static int
 134 zap_normalize(zap_t *zap, const char *name, char *namenorm)
 135 {
 136         size_t inlen, outlen;
 137         int err;
 138 
 139         ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
 140 
 141         inlen = strlen(name) + 1;
 142         outlen = ZAP_MAXNAMELEN;
 143 
 144         err = 0;
 145         (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
 146             zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
 147             U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
 148 
 149         return (err);
 150 }
 151 
 152 boolean_t
 153 zap_match(zap_name_t *zn, const char *matchname)
 154 {
 155         ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
 156 
 157         if (zn->zn_matchtype == MT_FIRST) {
 158                 char norm[ZAP_MAXNAMELEN];
 159 
 160                 if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
 161                         return (B_FALSE);
 162 
 163                 return (strcmp(zn->zn_key_norm, norm) == 0);
 164         } else {
 165                 /* MT_BEST or MT_EXACT */
 166                 return (strcmp(zn->zn_key_orig, matchname) == 0);
 167         }
 168 }
 169 
 170 void
 171 zap_name_free(zap_name_t *zn)
 172 {
 173         kmem_free(zn, sizeof (zap_name_t));
 174 }
 175 
 176 zap_name_t *
 177 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
 178 {
 179         zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
 180 
 181         zn->zn_zap = zap;
 182         zn->zn_key_intlen = sizeof (*key);
 183         zn->zn_key_orig = key;
 184         zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
 185         zn->zn_matchtype = mt;
 186         if (zap->zap_normflags) {
 187                 if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
 188                         zap_name_free(zn);
 189                         return (NULL);
 190                 }
 191                 zn->zn_key_norm = zn->zn_normbuf;
 192                 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
 193         } else {
 194                 if (mt != MT_EXACT) {
 195                         zap_name_free(zn);
 196                         return (NULL);
 197                 }
 198                 zn->zn_key_norm = zn->zn_key_orig;
 199                 zn->zn_key_norm_numints = zn->zn_key_orig_numints;
 200         }
 201 
 202         zn->zn_hash = zap_hash(zn);
 203         return (zn);
 204 }
 205 
 206 zap_name_t *
 207 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
 208 {
 209         zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
 210 
 211         ASSERT(zap->zap_normflags == 0);
 212         zn->zn_zap = zap;
 213         zn->zn_key_intlen = sizeof (*key);
 214         zn->zn_key_orig = zn->zn_key_norm = key;
 215         zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
 216         zn->zn_matchtype = MT_EXACT;
 217 
 218         zn->zn_hash = zap_hash(zn);
 219         return (zn);
 220 }
 221 
 222 static void
 223 mzap_byteswap(mzap_phys_t *buf, size_t size)
 224 {
 225         int i, max;
 226         buf->mz_block_type = BSWAP_64(buf->mz_block_type);
 227         buf->mz_salt = BSWAP_64(buf->mz_salt);
 228         buf->mz_normflags = BSWAP_64(buf->mz_normflags);
 229         max = (size / MZAP_ENT_LEN) - 1;
 230         for (i = 0; i < max; i++) {
 231                 buf->mz_chunk[i].mze_value =
 232                     BSWAP_64(buf->mz_chunk[i].mze_value);
 233                 buf->mz_chunk[i].mze_cd =
 234                     BSWAP_32(buf->mz_chunk[i].mze_cd);
 235         }
 236 }
 237 
 238 void
 239 zap_byteswap(void *buf, size_t size)
 240 {
 241         uint64_t block_type;
 242 
 243         block_type = *(uint64_t *)buf;
 244 
 245         if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
 246                 /* ASSERT(magic == ZAP_LEAF_MAGIC); */
 247                 mzap_byteswap(buf, size);
 248         } else {
 249                 fzap_byteswap(buf, size);
 250         }
 251 }
 252 
 253 static int
 254 mze_compare(const void *arg1, const void *arg2)
 255 {
 256         const mzap_ent_t *mze1 = arg1;
 257         const mzap_ent_t *mze2 = arg2;
 258 
 259         if (mze1->mze_hash > mze2->mze_hash)
 260                 return (+1);
 261         if (mze1->mze_hash < mze2->mze_hash)
 262                 return (-1);
 263         if (mze1->mze_cd > mze2->mze_cd)
 264                 return (+1);
 265         if (mze1->mze_cd < mze2->mze_cd)
 266                 return (-1);
 267         return (0);
 268 }
 269 
 270 static void
 271 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
 272 {
 273         mzap_ent_t *mze;
 274 
 275         ASSERT(zap->zap_ismicro);
 276         ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
 277 
 278         mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
 279         mze->mze_chunkid = chunkid;
 280         mze->mze_hash = hash;
 281         mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
 282         ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
 283         avl_add(&zap->zap_m.zap_avl, mze);
 284 }
 285 
 286 static mzap_ent_t *
 287 mze_find(zap_name_t *zn)
 288 {
 289         mzap_ent_t mze_tofind;
 290         mzap_ent_t *mze;
 291         avl_index_t idx;
 292         avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
 293 
 294         ASSERT(zn->zn_zap->zap_ismicro);
 295         ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
 296 
 297         mze_tofind.mze_hash = zn->zn_hash;
 298         mze_tofind.mze_cd = 0;
 299 
 300 again:
 301         mze = avl_find(avl, &mze_tofind, &idx);
 302         if (mze == NULL)
 303                 mze = avl_nearest(avl, idx, AVL_AFTER);
 304         for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
 305                 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
 306                 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
 307                         return (mze);
 308         }
 309         if (zn->zn_matchtype == MT_BEST) {
 310                 zn->zn_matchtype = MT_FIRST;
 311                 goto again;
 312         }
 313         return (NULL);
 314 }
 315 
 316 static uint32_t
 317 mze_find_unused_cd(zap_t *zap, uint64_t hash)
 318 {
 319         mzap_ent_t mze_tofind;
 320         mzap_ent_t *mze;
 321         avl_index_t idx;
 322         avl_tree_t *avl = &zap->zap_m.zap_avl;
 323         uint32_t cd;
 324 
 325         ASSERT(zap->zap_ismicro);
 326         ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
 327 
 328         mze_tofind.mze_hash = hash;
 329         mze_tofind.mze_cd = 0;
 330 
 331         cd = 0;
 332         for (mze = avl_find(avl, &mze_tofind, &idx);
 333             mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
 334                 if (mze->mze_cd != cd)
 335                         break;
 336                 cd++;
 337         }
 338 
 339         return (cd);
 340 }
 341 
 342 static void
 343 mze_remove(zap_t *zap, mzap_ent_t *mze)
 344 {
 345         ASSERT(zap->zap_ismicro);
 346         ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
 347 
 348         avl_remove(&zap->zap_m.zap_avl, mze);
 349         kmem_free(mze, sizeof (mzap_ent_t));
 350 }
 351 
 352 static void
 353 mze_destroy(zap_t *zap)
 354 {
 355         mzap_ent_t *mze;
 356         void *avlcookie = NULL;
 357 
 358         while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
 359                 kmem_free(mze, sizeof (mzap_ent_t));
 360         avl_destroy(&zap->zap_m.zap_avl);
 361 }
 362 
 363 static zap_t *
 364 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
 365 {
 366         zap_t *winner;
 367         zap_t *zap;
 368         int i;
 369 
 370         ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
 371 
 372         zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
 373         rw_init(&zap->zap_rwlock, 0, 0, 0);
 374         rw_enter(&zap->zap_rwlock, RW_WRITER);
 375         zap->zap_objset = os;
 376         zap->zap_object = obj;
 377         zap->zap_dbuf = db;
 378 
 379         if (*(uint64_t *)db->db_data != ZBT_MICRO) {
 380                 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
 381                 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
 382         } else {
 383                 zap->zap_ismicro = TRUE;
 384         }
 385 
 386         /*
 387          * Make sure that zap_ismicro is set before we let others see
 388          * it, because zap_lockdir() checks zap_ismicro without the lock
 389          * held.
 390          */
 391         dmu_buf_init_user(&zap->zap_dbu, zap_evict, &zap->zap_dbuf);
 392         winner = dmu_buf_set_user(db, &zap->zap_dbu);
 393 
 394         if (winner != NULL) {
 395                 rw_exit(&zap->zap_rwlock);
 396                 rw_destroy(&zap->zap_rwlock);
 397                 if (!zap->zap_ismicro)
 398                         mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
 399                 kmem_free(zap, sizeof (zap_t));
 400                 return (winner);
 401         }
 402 
 403         if (zap->zap_ismicro) {
 404                 zap->zap_salt = zap_m_phys(zap)->mz_salt;
 405                 zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
 406                 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
 407                 avl_create(&zap->zap_m.zap_avl, mze_compare,
 408                     sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
 409 
 410                 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
 411                         mzap_ent_phys_t *mze =
 412                             &zap_m_phys(zap)->mz_chunk[i];
 413                         if (mze->mze_name[0]) {
 414                                 zap_name_t *zn;
 415 
 416                                 zap->zap_m.zap_num_entries++;
 417                                 zn = zap_name_alloc(zap, mze->mze_name,
 418                                     MT_EXACT);
 419                                 mze_insert(zap, i, zn->zn_hash);
 420                                 zap_name_free(zn);
 421                         }
 422                 }
 423         } else {
 424                 zap->zap_salt = zap_f_phys(zap)->zap_salt;
 425                 zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
 426 
 427                 ASSERT3U(sizeof (struct zap_leaf_header), ==,
 428                     2*ZAP_LEAF_CHUNKSIZE);
 429 
 430                 /*
 431                  * The embedded pointer table should not overlap the
 432                  * other members.
 433                  */
 434                 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
 435                     &zap_f_phys(zap)->zap_salt);
 436 
 437                 /*
 438                  * The embedded pointer table should end at the end of
 439                  * the block
 440                  */
 441                 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
 442                     1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
 443                     (uintptr_t)zap_f_phys(zap), ==,
 444                     zap->zap_dbuf->db_size);
 445         }
 446         rw_exit(&zap->zap_rwlock);
 447         return (zap);
 448 }
 449 
 450 int
 451 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
 452     krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
 453 {
 454         zap_t *zap;
 455         dmu_buf_t *db;
 456         krw_t lt;
 457         int err;
 458 
 459         *zapp = NULL;
 460 
 461         err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
 462         if (err)
 463                 return (err);
 464 
 465 #ifdef ZFS_DEBUG
 466         {
 467                 dmu_object_info_t doi;
 468                 dmu_object_info_from_db(db, &doi);
 469                 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
 470         }
 471 #endif
 472 
 473         zap = dmu_buf_get_user(db);
 474         if (zap == NULL)
 475                 zap = mzap_open(os, obj, db);
 476 
 477         /*
 478          * We're checking zap_ismicro without the lock held, in order to
 479          * tell what type of lock we want.  Once we have some sort of
 480          * lock, see if it really is the right type.  In practice this
 481          * can only be different if it was upgraded from micro to fat,
 482          * and micro wanted WRITER but fat only needs READER.
 483          */
 484         lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
 485         rw_enter(&zap->zap_rwlock, lt);
 486         if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
 487                 /* it was upgraded, now we only need reader */
 488                 ASSERT(lt == RW_WRITER);
 489                 ASSERT(RW_READER ==
 490                     (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
 491                 rw_downgrade(&zap->zap_rwlock);
 492                 lt = RW_READER;
 493         }
 494 
 495         zap->zap_objset = os;
 496 
 497         if (lt == RW_WRITER)
 498                 dmu_buf_will_dirty(db, tx);
 499 
 500         ASSERT3P(zap->zap_dbuf, ==, db);
 501 
 502         ASSERT(!zap->zap_ismicro ||
 503             zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
 504         if (zap->zap_ismicro && tx && adding &&
 505             zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
 506                 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
 507                 if (newsz > MZAP_MAX_BLKSZ) {
 508                         dprintf("upgrading obj %llu: num_entries=%u\n",
 509                             obj, zap->zap_m.zap_num_entries);
 510                         *zapp = zap;
 511                         return (mzap_upgrade(zapp, tx, 0));
 512                 }
 513                 err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
 514                 ASSERT0(err);
 515                 zap->zap_m.zap_num_chunks =
 516                     db->db_size / MZAP_ENT_LEN - 1;
 517         }
 518 
 519         *zapp = zap;
 520         return (0);
 521 }
 522 
 523 void
 524 zap_unlockdir(zap_t *zap)
 525 {
 526         rw_exit(&zap->zap_rwlock);
 527         dmu_buf_rele(zap->zap_dbuf, NULL);
 528 }
 529 
 530 static int
 531 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
 532 {
 533         mzap_phys_t *mzp;
 534         int i, sz, nchunks;
 535         int err = 0;
 536         zap_t *zap = *zapp;
 537 
 538         ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
 539 
 540         sz = zap->zap_dbuf->db_size;
 541         mzp = kmem_alloc(sz, KM_SLEEP);
 542         bcopy(zap->zap_dbuf->db_data, mzp, sz);
 543         nchunks = zap->zap_m.zap_num_chunks;
 544 
 545         if (!flags) {
 546                 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
 547                     1ULL << fzap_default_block_shift, 0, tx);
 548                 if (err) {
 549                         kmem_free(mzp, sz);
 550                         return (err);
 551                 }
 552         }
 553 
 554         dprintf("upgrading obj=%llu with %u chunks\n",
 555             zap->zap_object, nchunks);
 556         /* XXX destroy the avl later, so we can use the stored hash value */
 557         mze_destroy(zap);
 558 
 559         fzap_upgrade(zap, tx, flags);
 560 
 561         for (i = 0; i < nchunks; i++) {
 562                 mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
 563                 zap_name_t *zn;
 564                 if (mze->mze_name[0] == 0)
 565                         continue;
 566                 dprintf("adding %s=%llu\n",
 567                     mze->mze_name, mze->mze_value);
 568                 zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
 569                 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
 570                 zap = zn->zn_zap;    /* fzap_add_cd() may change zap */
 571                 zap_name_free(zn);
 572                 if (err)
 573                         break;
 574         }
 575         kmem_free(mzp, sz);
 576         *zapp = zap;
 577         return (err);
 578 }
 579 
 580 void
 581 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
 582     dmu_tx_t *tx)
 583 {
 584         dmu_buf_t *db;
 585         mzap_phys_t *zp;
 586 
 587         VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
 588 
 589 #ifdef ZFS_DEBUG
 590         {
 591                 dmu_object_info_t doi;
 592                 dmu_object_info_from_db(db, &doi);
 593                 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
 594         }
 595 #endif
 596 
 597         dmu_buf_will_dirty(db, tx);
 598         zp = db->db_data;
 599         zp->mz_block_type = ZBT_MICRO;
 600         zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
 601         zp->mz_normflags = normflags;
 602         dmu_buf_rele(db, FTAG);
 603 
 604         if (flags != 0) {
 605                 zap_t *zap;
 606                 /* Only fat zap supports flags; upgrade immediately. */
 607                 VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
 608                     B_FALSE, B_FALSE, &zap));
 609                 VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
 610                 zap_unlockdir(zap);
 611         }
 612 }
 613 
 614 int
 615 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
 616     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
 617 {
 618         return (zap_create_claim_norm(os, obj,
 619             0, ot, bonustype, bonuslen, tx));
 620 }
 621 
 622 int
 623 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
 624     dmu_object_type_t ot,
 625     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
 626 {
 627         int err;
 628 
 629         err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
 630         if (err != 0)
 631                 return (err);
 632         mzap_create_impl(os, obj, normflags, 0, tx);
 633         return (0);
 634 }
 635 
 636 uint64_t
 637 zap_create(objset_t *os, dmu_object_type_t ot,
 638     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
 639 {
 640         return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
 641 }
 642 
 643 uint64_t
 644 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
 645     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
 646 {
 647         uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
 648 
 649         mzap_create_impl(os, obj, normflags, 0, tx);
 650         return (obj);
 651 }
 652 
 653 uint64_t
 654 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
 655     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
 656     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
 657 {
 658         uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
 659 
 660         ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
 661             leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT &&
 662             indirect_blockshift >= SPA_MINBLOCKSHIFT &&
 663             indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT);
 664 
 665         VERIFY(dmu_object_set_blocksize(os, obj,
 666             1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
 667 
 668         mzap_create_impl(os, obj, normflags, flags, tx);
 669         return (obj);
 670 }
 671 
 672 int
 673 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
 674 {
 675         /*
 676          * dmu_object_free will free the object number and free the
 677          * data.  Freeing the data will cause our pageout function to be
 678          * called, which will destroy our data (zap_leaf_t's and zap_t).
 679          */
 680 
 681         return (dmu_object_free(os, zapobj, tx));
 682 }
 683 
 684 void
 685 zap_evict(void *dbu)
 686 {
 687         zap_t *zap = dbu;
 688 
 689         rw_destroy(&zap->zap_rwlock);
 690 
 691         if (zap->zap_ismicro)
 692                 mze_destroy(zap);
 693         else
 694                 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
 695 
 696         kmem_free(zap, sizeof (zap_t));
 697 }
 698 
 699 int
 700 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
 701 {
 702         zap_t *zap;
 703         int err;
 704 
 705         err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
 706         if (err)
 707                 return (err);
 708         if (!zap->zap_ismicro) {
 709                 err = fzap_count(zap, count);
 710         } else {
 711                 *count = zap->zap_m.zap_num_entries;
 712         }
 713         zap_unlockdir(zap);
 714         return (err);
 715 }
 716 
 717 /*
 718  * zn may be NULL; if not specified, it will be computed if needed.
 719  * See also the comment above zap_entry_normalization_conflict().
 720  */
 721 static boolean_t
 722 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
 723 {
 724         mzap_ent_t *other;
 725         int direction = AVL_BEFORE;
 726         boolean_t allocdzn = B_FALSE;
 727 
 728         if (zap->zap_normflags == 0)
 729                 return (B_FALSE);
 730 
 731 again:
 732         for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
 733             other && other->mze_hash == mze->mze_hash;
 734             other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
 735 
 736                 if (zn == NULL) {
 737                         zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
 738                             MT_FIRST);
 739                         allocdzn = B_TRUE;
 740                 }
 741                 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
 742                         if (allocdzn)
 743                                 zap_name_free(zn);
 744                         return (B_TRUE);
 745                 }
 746         }
 747 
 748         if (direction == AVL_BEFORE) {
 749                 direction = AVL_AFTER;
 750                 goto again;
 751         }
 752 
 753         if (allocdzn)
 754                 zap_name_free(zn);
 755         return (B_FALSE);
 756 }
 757 
 758 /*
 759  * Routines for manipulating attributes.
 760  */
 761 
 762 int
 763 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
 764     uint64_t integer_size, uint64_t num_integers, void *buf)
 765 {
 766         return (zap_lookup_norm(os, zapobj, name, integer_size,
 767             num_integers, buf, MT_EXACT, NULL, 0, NULL));
 768 }
 769 
 770 int
 771 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
 772     uint64_t integer_size, uint64_t num_integers, void *buf,
 773     matchtype_t mt, char *realname, int rn_len,
 774     boolean_t *ncp)
 775 {
 776         zap_t *zap;
 777         int err;
 778         mzap_ent_t *mze;
 779         zap_name_t *zn;
 780 
 781         err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
 782         if (err)
 783                 return (err);
 784         zn = zap_name_alloc(zap, name, mt);
 785         if (zn == NULL) {
 786                 zap_unlockdir(zap);
 787                 return (SET_ERROR(ENOTSUP));
 788         }
 789 
 790         if (!zap->zap_ismicro) {
 791                 err = fzap_lookup(zn, integer_size, num_integers, buf,
 792                     realname, rn_len, ncp);
 793         } else {
 794                 mze = mze_find(zn);
 795                 if (mze == NULL) {
 796                         err = SET_ERROR(ENOENT);
 797                 } else {
 798                         if (num_integers < 1) {
 799                                 err = SET_ERROR(EOVERFLOW);
 800                         } else if (integer_size != 8) {
 801                                 err = SET_ERROR(EINVAL);
 802                         } else {
 803                                 *(uint64_t *)buf =
 804                                     MZE_PHYS(zap, mze)->mze_value;
 805                                 (void) strlcpy(realname,
 806                                     MZE_PHYS(zap, mze)->mze_name, rn_len);
 807                                 if (ncp) {
 808                                         *ncp = mzap_normalization_conflict(zap,
 809                                             zn, mze);
 810                                 }
 811                         }
 812                 }
 813         }
 814         zap_name_free(zn);
 815         zap_unlockdir(zap);
 816         return (err);
 817 }
 818 
 819 int
 820 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 821     int key_numints)
 822 {
 823         zap_t *zap;
 824         int err;
 825         zap_name_t *zn;
 826 
 827         err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
 828         if (err)
 829                 return (err);
 830         zn = zap_name_alloc_uint64(zap, key, key_numints);
 831         if (zn == NULL) {
 832                 zap_unlockdir(zap);
 833                 return (SET_ERROR(ENOTSUP));
 834         }
 835 
 836         fzap_prefetch(zn);
 837         zap_name_free(zn);
 838         zap_unlockdir(zap);
 839         return (err);
 840 }
 841 
 842 int
 843 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 844     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
 845 {
 846         zap_t *zap;
 847         int err;
 848         zap_name_t *zn;
 849 
 850         err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
 851         if (err)
 852                 return (err);
 853         zn = zap_name_alloc_uint64(zap, key, key_numints);
 854         if (zn == NULL) {
 855                 zap_unlockdir(zap);
 856                 return (SET_ERROR(ENOTSUP));
 857         }
 858 
 859         err = fzap_lookup(zn, integer_size, num_integers, buf,
 860             NULL, 0, NULL);
 861         zap_name_free(zn);
 862         zap_unlockdir(zap);
 863         return (err);
 864 }
 865 
 866 int
 867 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
 868 {
 869         int err = zap_lookup_norm(os, zapobj, name, 0,
 870             0, NULL, MT_EXACT, NULL, 0, NULL);
 871         if (err == EOVERFLOW || err == EINVAL)
 872                 err = 0; /* found, but skipped reading the value */
 873         return (err);
 874 }
 875 
 876 int
 877 zap_length(objset_t *os, uint64_t zapobj, const char *name,
 878     uint64_t *integer_size, uint64_t *num_integers)
 879 {
 880         zap_t *zap;
 881         int err;
 882         mzap_ent_t *mze;
 883         zap_name_t *zn;
 884 
 885         err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
 886         if (err)
 887                 return (err);
 888         zn = zap_name_alloc(zap, name, MT_EXACT);
 889         if (zn == NULL) {
 890                 zap_unlockdir(zap);
 891                 return (SET_ERROR(ENOTSUP));
 892         }
 893         if (!zap->zap_ismicro) {
 894                 err = fzap_length(zn, integer_size, num_integers);
 895         } else {
 896                 mze = mze_find(zn);
 897                 if (mze == NULL) {
 898                         err = SET_ERROR(ENOENT);
 899                 } else {
 900                         if (integer_size)
 901                                 *integer_size = 8;
 902                         if (num_integers)
 903                                 *num_integers = 1;
 904                 }
 905         }
 906         zap_name_free(zn);
 907         zap_unlockdir(zap);
 908         return (err);
 909 }
 910 
 911 int
 912 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
 913     int key_numints, uint64_t *integer_size, uint64_t *num_integers)
 914 {
 915         zap_t *zap;
 916         int err;
 917         zap_name_t *zn;
 918 
 919         err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
 920         if (err)
 921                 return (err);
 922         zn = zap_name_alloc_uint64(zap, key, key_numints);
 923         if (zn == NULL) {
 924                 zap_unlockdir(zap);
 925                 return (SET_ERROR(ENOTSUP));
 926         }
 927         err = fzap_length(zn, integer_size, num_integers);
 928         zap_name_free(zn);
 929         zap_unlockdir(zap);
 930         return (err);
 931 }
 932 
 933 static void
 934 mzap_addent(zap_name_t *zn, uint64_t value)
 935 {
 936         int i;
 937         zap_t *zap = zn->zn_zap;
 938         int start = zap->zap_m.zap_alloc_next;
 939         uint32_t cd;
 940 
 941         ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
 942 
 943 #ifdef ZFS_DEBUG
 944         for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
 945                 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
 946                 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
 947         }
 948 #endif
 949 
 950         cd = mze_find_unused_cd(zap, zn->zn_hash);
 951         /* given the limited size of the microzap, this can't happen */
 952         ASSERT(cd < zap_maxcd(zap));
 953 
 954 again:
 955         for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
 956                 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
 957                 if (mze->mze_name[0] == 0) {
 958                         mze->mze_value = value;
 959                         mze->mze_cd = cd;
 960                         (void) strcpy(mze->mze_name, zn->zn_key_orig);
 961                         zap->zap_m.zap_num_entries++;
 962                         zap->zap_m.zap_alloc_next = i+1;
 963                         if (zap->zap_m.zap_alloc_next ==
 964                             zap->zap_m.zap_num_chunks)
 965                                 zap->zap_m.zap_alloc_next = 0;
 966                         mze_insert(zap, i, zn->zn_hash);
 967                         return;
 968                 }
 969         }
 970         if (start != 0) {
 971                 start = 0;
 972                 goto again;
 973         }
 974         ASSERT(!"out of entries!");
 975 }
 976 
 977 int
 978 zap_add(objset_t *os, uint64_t zapobj, const char *key,
 979     int integer_size, uint64_t num_integers,
 980     const void *val, dmu_tx_t *tx)
 981 {
 982         zap_t *zap;
 983         int err;
 984         mzap_ent_t *mze;
 985         const uint64_t *intval = val;
 986         zap_name_t *zn;
 987 
 988         err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
 989         if (err)
 990                 return (err);
 991         zn = zap_name_alloc(zap, key, MT_EXACT);
 992         if (zn == NULL) {
 993                 zap_unlockdir(zap);
 994                 return (SET_ERROR(ENOTSUP));
 995         }
 996         if (!zap->zap_ismicro) {
 997                 err = fzap_add(zn, integer_size, num_integers, val, tx);
 998                 zap = zn->zn_zap;    /* fzap_add() may change zap */
 999         } else if (integer_size != 8 || num_integers != 1 ||
1000             strlen(key) >= MZAP_NAME_LEN) {
1001                 err = mzap_upgrade(&zn->zn_zap, tx, 0);
1002                 if (err == 0)
1003                         err = fzap_add(zn, integer_size, num_integers, val, tx);
1004                 zap = zn->zn_zap;    /* fzap_add() may change zap */
1005         } else {
1006                 mze = mze_find(zn);
1007                 if (mze != NULL) {
1008                         err = SET_ERROR(EEXIST);
1009                 } else {
1010                         mzap_addent(zn, *intval);
1011                 }
1012         }
1013         ASSERT(zap == zn->zn_zap);
1014         zap_name_free(zn);
1015         if (zap != NULL)        /* may be NULL if fzap_add() failed */
1016                 zap_unlockdir(zap);
1017         return (err);
1018 }
1019 
1020 int
1021 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1022     int key_numints, int integer_size, uint64_t num_integers,
1023     const void *val, dmu_tx_t *tx)
1024 {
1025         zap_t *zap;
1026         int err;
1027         zap_name_t *zn;
1028 
1029         err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1030         if (err)
1031                 return (err);
1032         zn = zap_name_alloc_uint64(zap, key, key_numints);
1033         if (zn == NULL) {
1034                 zap_unlockdir(zap);
1035                 return (SET_ERROR(ENOTSUP));
1036         }
1037         err = fzap_add(zn, integer_size, num_integers, val, tx);
1038         zap = zn->zn_zap;    /* fzap_add() may change zap */
1039         zap_name_free(zn);
1040         if (zap != NULL)        /* may be NULL if fzap_add() failed */
1041                 zap_unlockdir(zap);
1042         return (err);
1043 }
1044 
1045 int
1046 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1047     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1048 {
1049         zap_t *zap;
1050         mzap_ent_t *mze;
1051         uint64_t oldval;
1052         const uint64_t *intval = val;
1053         zap_name_t *zn;
1054         int err;
1055 
1056 #ifdef ZFS_DEBUG
1057         /*
1058          * If there is an old value, it shouldn't change across the
1059          * lockdir (eg, due to bprewrite's xlation).
1060          */
1061         if (integer_size == 8 && num_integers == 1)
1062                 (void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1063 #endif
1064 
1065         err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1066         if (err)
1067                 return (err);
1068         zn = zap_name_alloc(zap, name, MT_EXACT);
1069         if (zn == NULL) {
1070                 zap_unlockdir(zap);
1071                 return (SET_ERROR(ENOTSUP));
1072         }
1073         if (!zap->zap_ismicro) {
1074                 err = fzap_update(zn, integer_size, num_integers, val, tx);
1075                 zap = zn->zn_zap;    /* fzap_update() may change zap */
1076         } else if (integer_size != 8 || num_integers != 1 ||
1077             strlen(name) >= MZAP_NAME_LEN) {
1078                 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1079                     zapobj, integer_size, num_integers, name);
1080                 err = mzap_upgrade(&zn->zn_zap, tx, 0);
1081                 if (err == 0)
1082                         err = fzap_update(zn, integer_size, num_integers,
1083                             val, tx);
1084                 zap = zn->zn_zap;    /* fzap_update() may change zap */
1085         } else {
1086                 mze = mze_find(zn);
1087                 if (mze != NULL) {
1088                         ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1089                         MZE_PHYS(zap, mze)->mze_value = *intval;
1090                 } else {
1091                         mzap_addent(zn, *intval);
1092                 }
1093         }
1094         ASSERT(zap == zn->zn_zap);
1095         zap_name_free(zn);
1096         if (zap != NULL)        /* may be NULL if fzap_upgrade() failed */
1097                 zap_unlockdir(zap);
1098         return (err);
1099 }
1100 
1101 int
1102 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1103     int key_numints,
1104     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1105 {
1106         zap_t *zap;
1107         zap_name_t *zn;
1108         int err;
1109 
1110         err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1111         if (err)
1112                 return (err);
1113         zn = zap_name_alloc_uint64(zap, key, key_numints);
1114         if (zn == NULL) {
1115                 zap_unlockdir(zap);
1116                 return (SET_ERROR(ENOTSUP));
1117         }
1118         err = fzap_update(zn, integer_size, num_integers, val, tx);
1119         zap = zn->zn_zap;    /* fzap_update() may change zap */
1120         zap_name_free(zn);
1121         if (zap != NULL)        /* may be NULL if fzap_upgrade() failed */
1122                 zap_unlockdir(zap);
1123         return (err);
1124 }
1125 
1126 int
1127 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1128 {
1129         return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1130 }
1131 
1132 int
1133 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1134     matchtype_t mt, dmu_tx_t *tx)
1135 {
1136         zap_t *zap;
1137         int err;
1138         mzap_ent_t *mze;
1139         zap_name_t *zn;
1140 
1141         err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1142         if (err)
1143                 return (err);
1144         zn = zap_name_alloc(zap, name, mt);
1145         if (zn == NULL) {
1146                 zap_unlockdir(zap);
1147                 return (SET_ERROR(ENOTSUP));
1148         }
1149         if (!zap->zap_ismicro) {
1150                 err = fzap_remove(zn, tx);
1151         } else {
1152                 mze = mze_find(zn);
1153                 if (mze == NULL) {
1154                         err = SET_ERROR(ENOENT);
1155                 } else {
1156                         zap->zap_m.zap_num_entries--;
1157                         bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid],
1158                             sizeof (mzap_ent_phys_t));
1159                         mze_remove(zap, mze);
1160                 }
1161         }
1162         zap_name_free(zn);
1163         zap_unlockdir(zap);
1164         return (err);
1165 }
1166 
1167 int
1168 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1169     int key_numints, dmu_tx_t *tx)
1170 {
1171         zap_t *zap;
1172         int err;
1173         zap_name_t *zn;
1174 
1175         err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1176         if (err)
1177                 return (err);
1178         zn = zap_name_alloc_uint64(zap, key, key_numints);
1179         if (zn == NULL) {
1180                 zap_unlockdir(zap);
1181                 return (SET_ERROR(ENOTSUP));
1182         }
1183         err = fzap_remove(zn, tx);
1184         zap_name_free(zn);
1185         zap_unlockdir(zap);
1186         return (err);
1187 }
1188 
1189 /*
1190  * Routines for iterating over the attributes.
1191  */
1192 
1193 void
1194 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1195     uint64_t serialized)
1196 {
1197         zc->zc_objset = os;
1198         zc->zc_zap = NULL;
1199         zc->zc_leaf = NULL;
1200         zc->zc_zapobj = zapobj;
1201         zc->zc_serialized = serialized;
1202         zc->zc_hash = 0;
1203         zc->zc_cd = 0;
1204 }
1205 
1206 void
1207 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1208 {
1209         zap_cursor_init_serialized(zc, os, zapobj, 0);
1210 }
1211 
1212 void
1213 zap_cursor_fini(zap_cursor_t *zc)
1214 {
1215         if (zc->zc_zap) {
1216                 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1217                 zap_unlockdir(zc->zc_zap);
1218                 zc->zc_zap = NULL;
1219         }
1220         if (zc->zc_leaf) {
1221                 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1222                 zap_put_leaf(zc->zc_leaf);
1223                 zc->zc_leaf = NULL;
1224         }
1225         zc->zc_objset = NULL;
1226 }
1227 
1228 uint64_t
1229 zap_cursor_serialize(zap_cursor_t *zc)
1230 {
1231         if (zc->zc_hash == -1ULL)
1232                 return (-1ULL);
1233         if (zc->zc_zap == NULL)
1234                 return (zc->zc_serialized);
1235         ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1236         ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1237 
1238         /*
1239          * We want to keep the high 32 bits of the cursor zero if we can, so
1240          * that 32-bit programs can access this.  So usually use a small
1241          * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1242          * of the cursor.
1243          *
1244          * [ collision differentiator | zap_hashbits()-bit hash value ]
1245          */
1246         return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1247             ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1248 }
1249 
1250 int
1251 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1252 {
1253         int err;
1254         avl_index_t idx;
1255         mzap_ent_t mze_tofind;
1256         mzap_ent_t *mze;
1257 
1258         if (zc->zc_hash == -1ULL)
1259                 return (SET_ERROR(ENOENT));
1260 
1261         if (zc->zc_zap == NULL) {
1262                 int hb;
1263                 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1264                     RW_READER, TRUE, FALSE, &zc->zc_zap);
1265                 if (err)
1266                         return (err);
1267 
1268                 /*
1269                  * To support zap_cursor_init_serialized, advance, retrieve,
1270                  * we must add to the existing zc_cd, which may already
1271                  * be 1 due to the zap_cursor_advance.
1272                  */
1273                 ASSERT(zc->zc_hash == 0);
1274                 hb = zap_hashbits(zc->zc_zap);
1275                 zc->zc_hash = zc->zc_serialized << (64 - hb);
1276                 zc->zc_cd += zc->zc_serialized >> hb;
1277                 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1278                         zc->zc_cd = 0;
1279         } else {
1280                 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1281         }
1282         if (!zc->zc_zap->zap_ismicro) {
1283                 err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1284         } else {
1285                 mze_tofind.mze_hash = zc->zc_hash;
1286                 mze_tofind.mze_cd = zc->zc_cd;
1287 
1288                 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1289                 if (mze == NULL) {
1290                         mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1291                             idx, AVL_AFTER);
1292                 }
1293                 if (mze) {
1294                         mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1295                         ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1296                         za->za_normalization_conflict =
1297                             mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1298                         za->za_integer_length = 8;
1299                         za->za_num_integers = 1;
1300                         za->za_first_integer = mzep->mze_value;
1301                         (void) strcpy(za->za_name, mzep->mze_name);
1302                         zc->zc_hash = mze->mze_hash;
1303                         zc->zc_cd = mze->mze_cd;
1304                         err = 0;
1305                 } else {
1306                         zc->zc_hash = -1ULL;
1307                         err = SET_ERROR(ENOENT);
1308                 }
1309         }
1310         rw_exit(&zc->zc_zap->zap_rwlock);
1311         return (err);
1312 }
1313 
1314 void
1315 zap_cursor_advance(zap_cursor_t *zc)
1316 {
1317         if (zc->zc_hash == -1ULL)
1318                 return;
1319         zc->zc_cd++;
1320 }
1321 
1322 int
1323 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1324 {
1325         int err;
1326         zap_t *zap;
1327 
1328         err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1329         if (err)
1330                 return (err);
1331 
1332         bzero(zs, sizeof (zap_stats_t));
1333 
1334         if (zap->zap_ismicro) {
1335                 zs->zs_blocksize = zap->zap_dbuf->db_size;
1336                 zs->zs_num_entries = zap->zap_m.zap_num_entries;
1337                 zs->zs_num_blocks = 1;
1338         } else {
1339                 fzap_get_stats(zap, zs);
1340         }
1341         zap_unlockdir(zap);
1342         return (0);
1343 }
1344 
1345 int
1346 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1347     uint64_t *towrite, uint64_t *tooverwrite)
1348 {
1349         zap_t *zap;
1350         int err = 0;
1351 
1352         /*
1353          * Since, we don't have a name, we cannot figure out which blocks will
1354          * be affected in this operation. So, account for the worst case :
1355          * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1356          * - 4 new blocks written if adding:
1357          *      - 2 blocks for possibly split leaves,
1358          *      - 2 grown ptrtbl blocks
1359          *
1360          * This also accomodates the case where an add operation to a fairly
1361          * large microzap results in a promotion to fatzap.
1362          */
1363         if (name == NULL) {
1364                 *towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE;
1365                 return (err);
1366         }
1367 
1368         /*
1369          * We lock the zap with adding == FALSE. Because, if we pass
1370          * the actual value of add, it could trigger a mzap_upgrade().
1371          * At present we are just evaluating the possibility of this operation
1372          * and hence we donot want to trigger an upgrade.
1373          */
1374         err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1375         if (err)
1376                 return (err);
1377 
1378         if (!zap->zap_ismicro) {
1379                 zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1380                 if (zn) {
1381                         err = fzap_count_write(zn, add, towrite,
1382                             tooverwrite);
1383                         zap_name_free(zn);
1384                 } else {
1385                         /*
1386                          * We treat this case as similar to (name == NULL)
1387                          */
1388                         *towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE;
1389                 }
1390         } else {
1391                 /*
1392                  * We are here if (name != NULL) and this is a micro-zap.
1393                  * We account for the header block depending on whether it
1394                  * is freeable.
1395                  *
1396                  * Incase of an add-operation it is hard to find out
1397                  * if this add will promote this microzap to fatzap.
1398                  * Hence, we consider the worst case and account for the
1399                  * blocks assuming this microzap would be promoted to a
1400                  * fatzap.
1401                  *
1402                  * 1 block overwritten  : header block
1403                  * 4 new blocks written : 2 new split leaf, 2 grown
1404                  *                      ptrtbl blocks
1405                  */
1406                 if (dmu_buf_freeable(zap->zap_dbuf))
1407                         *tooverwrite += MZAP_MAX_BLKSZ;
1408                 else
1409                         *towrite += MZAP_MAX_BLKSZ;
1410 
1411                 if (add) {
1412                         *towrite += 4 * MZAP_MAX_BLKSZ;
1413                 }
1414         }
1415 
1416         zap_unlockdir(zap);
1417         return (err);
1418 }