1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
  24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  25  */
  26 
  27 #include <sys/zfs_context.h>
  28 #include <sys/spa_impl.h>
  29 #include <sys/spa_boot.h>
  30 #include <sys/zio.h>
  31 #include <sys/zio_checksum.h>
  32 #include <sys/zio_compress.h>
  33 #include <sys/dmu.h>
  34 #include <sys/dmu_tx.h>
  35 #include <sys/zap.h>
  36 #include <sys/zil.h>
  37 #include <sys/vdev_impl.h>
  38 #include <sys/metaslab.h>
  39 #include <sys/uberblock_impl.h>
  40 #include <sys/txg.h>
  41 #include <sys/avl.h>
  42 #include <sys/unique.h>
  43 #include <sys/dsl_pool.h>
  44 #include <sys/dsl_dir.h>
  45 #include <sys/dsl_prop.h>
  46 #include <sys/dsl_scan.h>
  47 #include <sys/fs/zfs.h>
  48 #include <sys/metaslab_impl.h>
  49 #include <sys/arc.h>
  50 #include <sys/ddt.h>
  51 #include "zfs_prop.h"
  52 #include "zfeature_common.h"
  53 
  54 /*
  55  * SPA locking
  56  *
  57  * There are four basic locks for managing spa_t structures:
  58  *
  59  * spa_namespace_lock (global mutex)
  60  *
  61  *      This lock must be acquired to do any of the following:
  62  *
  63  *              - Lookup a spa_t by name
  64  *              - Add or remove a spa_t from the namespace
  65  *              - Increase spa_refcount from non-zero
  66  *              - Check if spa_refcount is zero
  67  *              - Rename a spa_t
  68  *              - add/remove/attach/detach devices
  69  *              - Held for the duration of create/destroy/import/export
  70  *
  71  *      It does not need to handle recursion.  A create or destroy may
  72  *      reference objects (files or zvols) in other pools, but by
  73  *      definition they must have an existing reference, and will never need
  74  *      to lookup a spa_t by name.
  75  *
  76  * spa_refcount (per-spa refcount_t protected by mutex)
  77  *
  78  *      This reference count keep track of any active users of the spa_t.  The
  79  *      spa_t cannot be destroyed or freed while this is non-zero.  Internally,
  80  *      the refcount is never really 'zero' - opening a pool implicitly keeps
  81  *      some references in the DMU.  Internally we check against spa_minref, but
  82  *      present the image of a zero/non-zero value to consumers.
  83  *
  84  * spa_config_lock[] (per-spa array of rwlocks)
  85  *
  86  *      This protects the spa_t from config changes, and must be held in
  87  *      the following circumstances:
  88  *
  89  *              - RW_READER to perform I/O to the spa
  90  *              - RW_WRITER to change the vdev config
  91  *
  92  * The locking order is fairly straightforward:
  93  *
  94  *              spa_namespace_lock      ->   spa_refcount
  95  *
  96  *      The namespace lock must be acquired to increase the refcount from 0
  97  *      or to check if it is zero.
  98  *
  99  *              spa_refcount            ->   spa_config_lock[]
 100  *
 101  *      There must be at least one valid reference on the spa_t to acquire
 102  *      the config lock.
 103  *
 104  *              spa_namespace_lock      ->   spa_config_lock[]
 105  *
 106  *      The namespace lock must always be taken before the config lock.
 107  *
 108  *
 109  * The spa_namespace_lock can be acquired directly and is globally visible.
 110  *
 111  * The namespace is manipulated using the following functions, all of which
 112  * require the spa_namespace_lock to be held.
 113  *
 114  *      spa_lookup()            Lookup a spa_t by name.
 115  *
 116  *      spa_add()               Create a new spa_t in the namespace.
 117  *
 118  *      spa_remove()            Remove a spa_t from the namespace.  This also
 119  *                              frees up any memory associated with the spa_t.
 120  *
 121  *      spa_next()              Returns the next spa_t in the system, or the
 122  *                              first if NULL is passed.
 123  *
 124  *      spa_evict_all()         Shutdown and remove all spa_t structures in
 125  *                              the system.
 126  *
 127  *      spa_guid_exists()       Determine whether a pool/device guid exists.
 128  *
 129  * The spa_refcount is manipulated using the following functions:
 130  *
 131  *      spa_open_ref()          Adds a reference to the given spa_t.  Must be
 132  *                              called with spa_namespace_lock held if the
 133  *                              refcount is currently zero.
 134  *
 135  *      spa_close()             Remove a reference from the spa_t.  This will
 136  *                              not free the spa_t or remove it from the
 137  *                              namespace.  No locking is required.
 138  *
 139  *      spa_refcount_zero()     Returns true if the refcount is currently
 140  *                              zero.  Must be called with spa_namespace_lock
 141  *                              held.
 142  *
 143  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
 144  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
 145  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
 146  *
 147  * To read the configuration, it suffices to hold one of these locks as reader.
 148  * To modify the configuration, you must hold all locks as writer.  To modify
 149  * vdev state without altering the vdev tree's topology (e.g. online/offline),
 150  * you must hold SCL_STATE and SCL_ZIO as writer.
 151  *
 152  * We use these distinct config locks to avoid recursive lock entry.
 153  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
 154  * block allocations (SCL_ALLOC), which may require reading space maps
 155  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
 156  *
 157  * The spa config locks cannot be normal rwlocks because we need the
 158  * ability to hand off ownership.  For example, SCL_ZIO is acquired
 159  * by the issuing thread and later released by an interrupt thread.
 160  * They do, however, obey the usual write-wanted semantics to prevent
 161  * writer (i.e. system administrator) starvation.
 162  *
 163  * The lock acquisition rules are as follows:
 164  *
 165  * SCL_CONFIG
 166  *      Protects changes to the vdev tree topology, such as vdev
 167  *      add/remove/attach/detach.  Protects the dirty config list
 168  *      (spa_config_dirty_list) and the set of spares and l2arc devices.
 169  *
 170  * SCL_STATE
 171  *      Protects changes to pool state and vdev state, such as vdev
 172  *      online/offline/fault/degrade/clear.  Protects the dirty state list
 173  *      (spa_state_dirty_list) and global pool state (spa_state).
 174  *
 175  * SCL_ALLOC
 176  *      Protects changes to metaslab groups and classes.
 177  *      Held as reader by metaslab_alloc() and metaslab_claim().
 178  *
 179  * SCL_ZIO
 180  *      Held by bp-level zios (those which have no io_vd upon entry)
 181  *      to prevent changes to the vdev tree.  The bp-level zio implicitly
 182  *      protects all of its vdev child zios, which do not hold SCL_ZIO.
 183  *
 184  * SCL_FREE
 185  *      Protects changes to metaslab groups and classes.
 186  *      Held as reader by metaslab_free().  SCL_FREE is distinct from
 187  *      SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
 188  *      blocks in zio_done() while another i/o that holds either
 189  *      SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
 190  *
 191  * SCL_VDEV
 192  *      Held as reader to prevent changes to the vdev tree during trivial
 193  *      inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
 194  *      other locks, and lower than all of them, to ensure that it's safe
 195  *      to acquire regardless of caller context.
 196  *
 197  * In addition, the following rules apply:
 198  *
 199  * (a)  spa_props_lock protects pool properties, spa_config and spa_config_list.
 200  *      The lock ordering is SCL_CONFIG > spa_props_lock.
 201  *
 202  * (b)  I/O operations on leaf vdevs.  For any zio operation that takes
 203  *      an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
 204  *      or zio_write_phys() -- the caller must ensure that the config cannot
 205  *      cannot change in the interim, and that the vdev cannot be reopened.
 206  *      SCL_STATE as reader suffices for both.
 207  *
 208  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
 209  *
 210  *      spa_vdev_enter()        Acquire the namespace lock and the config lock
 211  *                              for writing.
 212  *
 213  *      spa_vdev_exit()         Release the config lock, wait for all I/O
 214  *                              to complete, sync the updated configs to the
 215  *                              cache, and release the namespace lock.
 216  *
 217  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
 218  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
 219  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
 220  *
 221  * spa_rename() is also implemented within this file since it requires
 222  * manipulation of the namespace.
 223  */
 224 
 225 static avl_tree_t spa_namespace_avl;
 226 kmutex_t spa_namespace_lock;
 227 static kcondvar_t spa_namespace_cv;
 228 static int spa_active_count;
 229 int spa_max_replication_override = SPA_DVAS_PER_BP;
 230 
 231 static kmutex_t spa_spare_lock;
 232 static avl_tree_t spa_spare_avl;
 233 static kmutex_t spa_l2cache_lock;
 234 static avl_tree_t spa_l2cache_avl;
 235 
 236 kmem_cache_t *spa_buffer_pool;
 237 int spa_mode_global;
 238 
 239 #ifdef ZFS_DEBUG
 240 /* Everything except dprintf and spa is on by default in debug builds */
 241 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
 242 #else
 243 int zfs_flags = 0;
 244 #endif
 245 
 246 /*
 247  * zfs_recover can be set to nonzero to attempt to recover from
 248  * otherwise-fatal errors, typically caused by on-disk corruption.  When
 249  * set, calls to zfs_panic_recover() will turn into warning messages.
 250  * This should only be used as a last resort, as it typically results
 251  * in leaked space, or worse.
 252  */
 253 boolean_t zfs_recover = B_FALSE;
 254 
 255 /*
 256  * If destroy encounters an EIO while reading metadata (e.g. indirect
 257  * blocks), space referenced by the missing metadata can not be freed.
 258  * Normally this causes the background destroy to become "stalled", as
 259  * it is unable to make forward progress.  While in this stalled state,
 260  * all remaining space to free from the error-encountering filesystem is
 261  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
 262  * permanently leak the space from indirect blocks that can not be read,
 263  * and continue to free everything else that it can.
 264  *
 265  * The default, "stalling" behavior is useful if the storage partially
 266  * fails (i.e. some but not all i/os fail), and then later recovers.  In
 267  * this case, we will be able to continue pool operations while it is
 268  * partially failed, and when it recovers, we can continue to free the
 269  * space, with no leaks.  However, note that this case is actually
 270  * fairly rare.
 271  *
 272  * Typically pools either (a) fail completely (but perhaps temporarily,
 273  * e.g. a top-level vdev going offline), or (b) have localized,
 274  * permanent errors (e.g. disk returns the wrong data due to bit flip or
 275  * firmware bug).  In case (a), this setting does not matter because the
 276  * pool will be suspended and the sync thread will not be able to make
 277  * forward progress regardless.  In case (b), because the error is
 278  * permanent, the best we can do is leak the minimum amount of space,
 279  * which is what setting this flag will do.  Therefore, it is reasonable
 280  * for this flag to normally be set, but we chose the more conservative
 281  * approach of not setting it, so that there is no possibility of
 282  * leaking space in the "partial temporary" failure case.
 283  */
 284 boolean_t zfs_free_leak_on_eio = B_FALSE;
 285 
 286 /*
 287  * Expiration time in milliseconds. This value has two meanings. First it is
 288  * used to determine when the spa_deadman() logic should fire. By default the
 289  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
 290  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
 291  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
 292  * in a system panic.
 293  */
 294 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
 295 
 296 /*
 297  * Check time in milliseconds. This defines the frequency at which we check
 298  * for hung I/O.
 299  */
 300 uint64_t zfs_deadman_checktime_ms = 5000ULL;
 301 
 302 /*
 303  * Override the zfs deadman behavior via /etc/system. By default the
 304  * deadman is enabled except on VMware and sparc deployments.
 305  */
 306 int zfs_deadman_enabled = -1;
 307 
 308 /*
 309  * The worst case is single-sector max-parity RAID-Z blocks, in which
 310  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
 311  * times the size; so just assume that.  Add to this the fact that
 312  * we can have up to 3 DVAs per bp, and one more factor of 2 because
 313  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
 314  * the worst case is:
 315  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
 316  */
 317 int spa_asize_inflation = 24;
 318 
 319 /*
 320  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
 321  * the pool to be consumed.  This ensures that we don't run the pool
 322  * completely out of space, due to unaccounted changes (e.g. to the MOS).
 323  * It also limits the worst-case time to allocate space.  If we have
 324  * less than this amount of free space, most ZPL operations (e.g. write,
 325  * create) will return ENOSPC.
 326  *
 327  * Certain operations (e.g. file removal, most administrative actions) can
 328  * use half the slop space.  They will only return ENOSPC if less than half
 329  * the slop space is free.  Typically, once the pool has less than the slop
 330  * space free, the user will use these operations to free up space in the pool.
 331  * These are the operations that call dsl_pool_adjustedsize() with the netfree
 332  * argument set to TRUE.
 333  *
 334  * A very restricted set of operations are always permitted, regardless of
 335  * the amount of free space.  These are the operations that call
 336  * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
 337  * operations result in a net increase in the amount of space used,
 338  * it is possible to run the pool completely out of space, causing it to
 339  * be permanently read-only.
 340  *
 341  * See also the comments in zfs_space_check_t.
 342  */
 343 int spa_slop_shift = 5;
 344 
 345 /*
 346  * ==========================================================================
 347  * SPA config locking
 348  * ==========================================================================
 349  */
 350 static void
 351 spa_config_lock_init(spa_t *spa)
 352 {
 353         for (int i = 0; i < SCL_LOCKS; i++) {
 354                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
 355                 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
 356                 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
 357                 refcount_create_untracked(&scl->scl_count);
 358                 scl->scl_writer = NULL;
 359                 scl->scl_write_wanted = 0;
 360         }
 361 }
 362 
 363 static void
 364 spa_config_lock_destroy(spa_t *spa)
 365 {
 366         for (int i = 0; i < SCL_LOCKS; i++) {
 367                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
 368                 mutex_destroy(&scl->scl_lock);
 369                 cv_destroy(&scl->scl_cv);
 370                 refcount_destroy(&scl->scl_count);
 371                 ASSERT(scl->scl_writer == NULL);
 372                 ASSERT(scl->scl_write_wanted == 0);
 373         }
 374 }
 375 
 376 int
 377 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
 378 {
 379         for (int i = 0; i < SCL_LOCKS; i++) {
 380                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
 381                 if (!(locks & (1 << i)))
 382                         continue;
 383                 mutex_enter(&scl->scl_lock);
 384                 if (rw == RW_READER) {
 385                         if (scl->scl_writer || scl->scl_write_wanted) {
 386                                 mutex_exit(&scl->scl_lock);
 387                                 spa_config_exit(spa, locks ^ (1 << i), tag);
 388                                 return (0);
 389                         }
 390                 } else {
 391                         ASSERT(scl->scl_writer != curthread);
 392                         if (!refcount_is_zero(&scl->scl_count)) {
 393                                 mutex_exit(&scl->scl_lock);
 394                                 spa_config_exit(spa, locks ^ (1 << i), tag);
 395                                 return (0);
 396                         }
 397                         scl->scl_writer = curthread;
 398                 }
 399                 (void) refcount_add(&scl->scl_count, tag);
 400                 mutex_exit(&scl->scl_lock);
 401         }
 402         return (1);
 403 }
 404 
 405 void
 406 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
 407 {
 408         int wlocks_held = 0;
 409 
 410         ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
 411 
 412         for (int i = 0; i < SCL_LOCKS; i++) {
 413                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
 414                 if (scl->scl_writer == curthread)
 415                         wlocks_held |= (1 << i);
 416                 if (!(locks & (1 << i)))
 417                         continue;
 418                 mutex_enter(&scl->scl_lock);
 419                 if (rw == RW_READER) {
 420                         while (scl->scl_writer || scl->scl_write_wanted) {
 421                                 cv_wait(&scl->scl_cv, &scl->scl_lock);
 422                         }
 423                 } else {
 424                         ASSERT(scl->scl_writer != curthread);
 425                         while (!refcount_is_zero(&scl->scl_count)) {
 426                                 scl->scl_write_wanted++;
 427                                 cv_wait(&scl->scl_cv, &scl->scl_lock);
 428                                 scl->scl_write_wanted--;
 429                         }
 430                         scl->scl_writer = curthread;
 431                 }
 432                 (void) refcount_add(&scl->scl_count, tag);
 433                 mutex_exit(&scl->scl_lock);
 434         }
 435         ASSERT(wlocks_held <= locks);
 436 }
 437 
 438 void
 439 spa_config_exit(spa_t *spa, int locks, void *tag)
 440 {
 441         for (int i = SCL_LOCKS - 1; i >= 0; i--) {
 442                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
 443                 if (!(locks & (1 << i)))
 444                         continue;
 445                 mutex_enter(&scl->scl_lock);
 446                 ASSERT(!refcount_is_zero(&scl->scl_count));
 447                 if (refcount_remove(&scl->scl_count, tag) == 0) {
 448                         ASSERT(scl->scl_writer == NULL ||
 449                             scl->scl_writer == curthread);
 450                         scl->scl_writer = NULL;      /* OK in either case */
 451                         cv_broadcast(&scl->scl_cv);
 452                 }
 453                 mutex_exit(&scl->scl_lock);
 454         }
 455 }
 456 
 457 int
 458 spa_config_held(spa_t *spa, int locks, krw_t rw)
 459 {
 460         int locks_held = 0;
 461 
 462         for (int i = 0; i < SCL_LOCKS; i++) {
 463                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
 464                 if (!(locks & (1 << i)))
 465                         continue;
 466                 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
 467                     (rw == RW_WRITER && scl->scl_writer == curthread))
 468                         locks_held |= 1 << i;
 469         }
 470 
 471         return (locks_held);
 472 }
 473 
 474 /*
 475  * ==========================================================================
 476  * SPA namespace functions
 477  * ==========================================================================
 478  */
 479 
 480 /*
 481  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
 482  * Returns NULL if no matching spa_t is found.
 483  */
 484 spa_t *
 485 spa_lookup(const char *name)
 486 {
 487         static spa_t search;    /* spa_t is large; don't allocate on stack */
 488         spa_t *spa;
 489         avl_index_t where;
 490         char *cp;
 491 
 492         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 493 
 494         (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
 495 
 496         /*
 497          * If it's a full dataset name, figure out the pool name and
 498          * just use that.
 499          */
 500         cp = strpbrk(search.spa_name, "/@#");
 501         if (cp != NULL)
 502                 *cp = '\0';
 503 
 504         spa = avl_find(&spa_namespace_avl, &search, &where);
 505 
 506         return (spa);
 507 }
 508 
 509 /*
 510  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
 511  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
 512  * looking for potentially hung I/Os.
 513  */
 514 void
 515 spa_deadman(void *arg)
 516 {
 517         spa_t *spa = arg;
 518 
 519         /*
 520          * Disable the deadman timer if the pool is suspended.
 521          */
 522         if (spa_suspended(spa)) {
 523                 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
 524                 return;
 525         }
 526 
 527         zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
 528             (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
 529             ++spa->spa_deadman_calls);
 530         if (zfs_deadman_enabled)
 531                 vdev_deadman(spa->spa_root_vdev);
 532 }
 533 
 534 /*
 535  * Create an uninitialized spa_t with the given name.  Requires
 536  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
 537  * exist by calling spa_lookup() first.
 538  */
 539 spa_t *
 540 spa_add(const char *name, nvlist_t *config, const char *altroot)
 541 {
 542         spa_t *spa;
 543         spa_config_dirent_t *dp;
 544         cyc_handler_t hdlr;
 545         cyc_time_t when;
 546 
 547         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 548 
 549         spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
 550 
 551         mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
 552         mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
 553         mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
 554         mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
 555         mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
 556         mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
 557         mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
 558         mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
 559         mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
 560         mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
 561 
 562         cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
 563         cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
 564         cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
 565         cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
 566 
 567         for (int t = 0; t < TXG_SIZE; t++)
 568                 bplist_create(&spa->spa_free_bplist[t]);
 569 
 570         (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
 571         spa->spa_state = POOL_STATE_UNINITIALIZED;
 572         spa->spa_freeze_txg = UINT64_MAX;
 573         spa->spa_final_txg = UINT64_MAX;
 574         spa->spa_load_max_txg = UINT64_MAX;
 575         spa->spa_proc = &p0;
 576         spa->spa_proc_state = SPA_PROC_NONE;
 577 
 578         hdlr.cyh_func = spa_deadman;
 579         hdlr.cyh_arg = spa;
 580         hdlr.cyh_level = CY_LOW_LEVEL;
 581 
 582         spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
 583 
 584         /*
 585          * This determines how often we need to check for hung I/Os after
 586          * the cyclic has already fired. Since checking for hung I/Os is
 587          * an expensive operation we don't want to check too frequently.
 588          * Instead wait for 5 seconds before checking again.
 589          */
 590         when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
 591         when.cyt_when = CY_INFINITY;
 592         mutex_enter(&cpu_lock);
 593         spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
 594         mutex_exit(&cpu_lock);
 595 
 596         refcount_create(&spa->spa_refcount);
 597         spa_config_lock_init(spa);
 598 
 599         avl_add(&spa_namespace_avl, spa);
 600 
 601         /*
 602          * Set the alternate root, if there is one.
 603          */
 604         if (altroot) {
 605                 spa->spa_root = spa_strdup(altroot);
 606                 spa_active_count++;
 607         }
 608 
 609         /*
 610          * Every pool starts with the default cachefile
 611          */
 612         list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
 613             offsetof(spa_config_dirent_t, scd_link));
 614 
 615         dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
 616         dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
 617         list_insert_head(&spa->spa_config_list, dp);
 618 
 619         VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
 620             KM_SLEEP) == 0);
 621 
 622         if (config != NULL) {
 623                 nvlist_t *features;
 624 
 625                 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
 626                     &features) == 0) {
 627                         VERIFY(nvlist_dup(features, &spa->spa_label_features,
 628                             0) == 0);
 629                 }
 630 
 631                 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
 632         }
 633 
 634         if (spa->spa_label_features == NULL) {
 635                 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
 636                     KM_SLEEP) == 0);
 637         }
 638 
 639         spa->spa_iokstat = kstat_create("zfs", 0, name,
 640             "disk", KSTAT_TYPE_IO, 1, 0);
 641         if (spa->spa_iokstat) {
 642                 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
 643                 kstat_install(spa->spa_iokstat);
 644         }
 645 
 646         spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
 647 
 648         /*
 649          * As a pool is being created, treat all features as disabled by
 650          * setting SPA_FEATURE_DISABLED for all entries in the feature
 651          * refcount cache.
 652          */
 653         for (int i = 0; i < SPA_FEATURES; i++) {
 654                 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
 655         }
 656 
 657         return (spa);
 658 }
 659 
 660 /*
 661  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
 662  * spa_namespace_lock.  This is called only after the spa_t has been closed and
 663  * deactivated.
 664  */
 665 void
 666 spa_remove(spa_t *spa)
 667 {
 668         spa_config_dirent_t *dp;
 669 
 670         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 671         ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
 672 
 673         nvlist_free(spa->spa_config_splitting);
 674 
 675         avl_remove(&spa_namespace_avl, spa);
 676         cv_broadcast(&spa_namespace_cv);
 677 
 678         if (spa->spa_root) {
 679                 spa_strfree(spa->spa_root);
 680                 spa_active_count--;
 681         }
 682 
 683         while ((dp = list_head(&spa->spa_config_list)) != NULL) {
 684                 list_remove(&spa->spa_config_list, dp);
 685                 if (dp->scd_path != NULL)
 686                         spa_strfree(dp->scd_path);
 687                 kmem_free(dp, sizeof (spa_config_dirent_t));
 688         }
 689 
 690         list_destroy(&spa->spa_config_list);
 691 
 692         nvlist_free(spa->spa_label_features);
 693         nvlist_free(spa->spa_load_info);
 694         spa_config_set(spa, NULL);
 695 
 696         mutex_enter(&cpu_lock);
 697         if (spa->spa_deadman_cycid != CYCLIC_NONE)
 698                 cyclic_remove(spa->spa_deadman_cycid);
 699         mutex_exit(&cpu_lock);
 700         spa->spa_deadman_cycid = CYCLIC_NONE;
 701 
 702         refcount_destroy(&spa->spa_refcount);
 703 
 704         spa_config_lock_destroy(spa);
 705 
 706         kstat_delete(spa->spa_iokstat);
 707         spa->spa_iokstat = NULL;
 708 
 709         for (int t = 0; t < TXG_SIZE; t++)
 710                 bplist_destroy(&spa->spa_free_bplist[t]);
 711 
 712         cv_destroy(&spa->spa_async_cv);
 713         cv_destroy(&spa->spa_proc_cv);
 714         cv_destroy(&spa->spa_scrub_io_cv);
 715         cv_destroy(&spa->spa_suspend_cv);
 716 
 717         mutex_destroy(&spa->spa_async_lock);
 718         mutex_destroy(&spa->spa_errlist_lock);
 719         mutex_destroy(&spa->spa_errlog_lock);
 720         mutex_destroy(&spa->spa_history_lock);
 721         mutex_destroy(&spa->spa_proc_lock);
 722         mutex_destroy(&spa->spa_props_lock);
 723         mutex_destroy(&spa->spa_scrub_lock);
 724         mutex_destroy(&spa->spa_suspend_lock);
 725         mutex_destroy(&spa->spa_vdev_top_lock);
 726         mutex_destroy(&spa->spa_iokstat_lock);
 727 
 728         kmem_free(spa, sizeof (spa_t));
 729 }
 730 
 731 /*
 732  * Given a pool, return the next pool in the namespace, or NULL if there is
 733  * none.  If 'prev' is NULL, return the first pool.
 734  */
 735 spa_t *
 736 spa_next(spa_t *prev)
 737 {
 738         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 739 
 740         if (prev)
 741                 return (AVL_NEXT(&spa_namespace_avl, prev));
 742         else
 743                 return (avl_first(&spa_namespace_avl));
 744 }
 745 
 746 /*
 747  * ==========================================================================
 748  * SPA refcount functions
 749  * ==========================================================================
 750  */
 751 
 752 /*
 753  * Add a reference to the given spa_t.  Must have at least one reference, or
 754  * have the namespace lock held.
 755  */
 756 void
 757 spa_open_ref(spa_t *spa, void *tag)
 758 {
 759         ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
 760             MUTEX_HELD(&spa_namespace_lock));
 761         (void) refcount_add(&spa->spa_refcount, tag);
 762 }
 763 
 764 /*
 765  * Remove a reference to the given spa_t.  Must have at least one reference, or
 766  * have the namespace lock held.
 767  */
 768 void
 769 spa_close(spa_t *spa, void *tag)
 770 {
 771         ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
 772             MUTEX_HELD(&spa_namespace_lock));
 773         (void) refcount_remove(&spa->spa_refcount, tag);
 774 }
 775 
 776 /*
 777  * Check to see if the spa refcount is zero.  Must be called with
 778  * spa_namespace_lock held.  We really compare against spa_minref, which is the
 779  * number of references acquired when opening a pool
 780  */
 781 boolean_t
 782 spa_refcount_zero(spa_t *spa)
 783 {
 784         ASSERT(MUTEX_HELD(&spa_namespace_lock));
 785 
 786         return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
 787 }
 788 
 789 /*
 790  * ==========================================================================
 791  * SPA spare and l2cache tracking
 792  * ==========================================================================
 793  */
 794 
 795 /*
 796  * Hot spares and cache devices are tracked using the same code below,
 797  * for 'auxiliary' devices.
 798  */
 799 
 800 typedef struct spa_aux {
 801         uint64_t        aux_guid;
 802         uint64_t        aux_pool;
 803         avl_node_t      aux_avl;
 804         int             aux_count;
 805 } spa_aux_t;
 806 
 807 static int
 808 spa_aux_compare(const void *a, const void *b)
 809 {
 810         const spa_aux_t *sa = a;
 811         const spa_aux_t *sb = b;
 812 
 813         if (sa->aux_guid < sb->aux_guid)
 814                 return (-1);
 815         else if (sa->aux_guid > sb->aux_guid)
 816                 return (1);
 817         else
 818                 return (0);
 819 }
 820 
 821 void
 822 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
 823 {
 824         avl_index_t where;
 825         spa_aux_t search;
 826         spa_aux_t *aux;
 827 
 828         search.aux_guid = vd->vdev_guid;
 829         if ((aux = avl_find(avl, &search, &where)) != NULL) {
 830                 aux->aux_count++;
 831         } else {
 832                 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
 833                 aux->aux_guid = vd->vdev_guid;
 834                 aux->aux_count = 1;
 835                 avl_insert(avl, aux, where);
 836         }
 837 }
 838 
 839 void
 840 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
 841 {
 842         spa_aux_t search;
 843         spa_aux_t *aux;
 844         avl_index_t where;
 845 
 846         search.aux_guid = vd->vdev_guid;
 847         aux = avl_find(avl, &search, &where);
 848 
 849         ASSERT(aux != NULL);
 850 
 851         if (--aux->aux_count == 0) {
 852                 avl_remove(avl, aux);
 853                 kmem_free(aux, sizeof (spa_aux_t));
 854         } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
 855                 aux->aux_pool = 0ULL;
 856         }
 857 }
 858 
 859 boolean_t
 860 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
 861 {
 862         spa_aux_t search, *found;
 863 
 864         search.aux_guid = guid;
 865         found = avl_find(avl, &search, NULL);
 866 
 867         if (pool) {
 868                 if (found)
 869                         *pool = found->aux_pool;
 870                 else
 871                         *pool = 0ULL;
 872         }
 873 
 874         if (refcnt) {
 875                 if (found)
 876                         *refcnt = found->aux_count;
 877                 else
 878                         *refcnt = 0;
 879         }
 880 
 881         return (found != NULL);
 882 }
 883 
 884 void
 885 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
 886 {
 887         spa_aux_t search, *found;
 888         avl_index_t where;
 889 
 890         search.aux_guid = vd->vdev_guid;
 891         found = avl_find(avl, &search, &where);
 892         ASSERT(found != NULL);
 893         ASSERT(found->aux_pool == 0ULL);
 894 
 895         found->aux_pool = spa_guid(vd->vdev_spa);
 896 }
 897 
 898 /*
 899  * Spares are tracked globally due to the following constraints:
 900  *
 901  *      - A spare may be part of multiple pools.
 902  *      - A spare may be added to a pool even if it's actively in use within
 903  *        another pool.
 904  *      - A spare in use in any pool can only be the source of a replacement if
 905  *        the target is a spare in the same pool.
 906  *
 907  * We keep track of all spares on the system through the use of a reference
 908  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
 909  * spare, then we bump the reference count in the AVL tree.  In addition, we set
 910  * the 'vdev_isspare' member to indicate that the device is a spare (active or
 911  * inactive).  When a spare is made active (used to replace a device in the
 912  * pool), we also keep track of which pool its been made a part of.
 913  *
 914  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
 915  * called under the spa_namespace lock as part of vdev reconfiguration.  The
 916  * separate spare lock exists for the status query path, which does not need to
 917  * be completely consistent with respect to other vdev configuration changes.
 918  */
 919 
 920 static int
 921 spa_spare_compare(const void *a, const void *b)
 922 {
 923         return (spa_aux_compare(a, b));
 924 }
 925 
 926 void
 927 spa_spare_add(vdev_t *vd)
 928 {
 929         mutex_enter(&spa_spare_lock);
 930         ASSERT(!vd->vdev_isspare);
 931         spa_aux_add(vd, &spa_spare_avl);
 932         vd->vdev_isspare = B_TRUE;
 933         mutex_exit(&spa_spare_lock);
 934 }
 935 
 936 void
 937 spa_spare_remove(vdev_t *vd)
 938 {
 939         mutex_enter(&spa_spare_lock);
 940         ASSERT(vd->vdev_isspare);
 941         spa_aux_remove(vd, &spa_spare_avl);
 942         vd->vdev_isspare = B_FALSE;
 943         mutex_exit(&spa_spare_lock);
 944 }
 945 
 946 boolean_t
 947 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
 948 {
 949         boolean_t found;
 950 
 951         mutex_enter(&spa_spare_lock);
 952         found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
 953         mutex_exit(&spa_spare_lock);
 954 
 955         return (found);
 956 }
 957 
 958 void
 959 spa_spare_activate(vdev_t *vd)
 960 {
 961         mutex_enter(&spa_spare_lock);
 962         ASSERT(vd->vdev_isspare);
 963         spa_aux_activate(vd, &spa_spare_avl);
 964         mutex_exit(&spa_spare_lock);
 965 }
 966 
 967 /*
 968  * Level 2 ARC devices are tracked globally for the same reasons as spares.
 969  * Cache devices currently only support one pool per cache device, and so
 970  * for these devices the aux reference count is currently unused beyond 1.
 971  */
 972 
 973 static int
 974 spa_l2cache_compare(const void *a, const void *b)
 975 {
 976         return (spa_aux_compare(a, b));
 977 }
 978 
 979 void
 980 spa_l2cache_add(vdev_t *vd)
 981 {
 982         mutex_enter(&spa_l2cache_lock);
 983         ASSERT(!vd->vdev_isl2cache);
 984         spa_aux_add(vd, &spa_l2cache_avl);
 985         vd->vdev_isl2cache = B_TRUE;
 986         mutex_exit(&spa_l2cache_lock);
 987 }
 988 
 989 void
 990 spa_l2cache_remove(vdev_t *vd)
 991 {
 992         mutex_enter(&spa_l2cache_lock);
 993         ASSERT(vd->vdev_isl2cache);
 994         spa_aux_remove(vd, &spa_l2cache_avl);
 995         vd->vdev_isl2cache = B_FALSE;
 996         mutex_exit(&spa_l2cache_lock);
 997 }
 998 
 999 boolean_t
1000 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1001 {
1002         boolean_t found;
1003 
1004         mutex_enter(&spa_l2cache_lock);
1005         found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1006         mutex_exit(&spa_l2cache_lock);
1007 
1008         return (found);
1009 }
1010 
1011 void
1012 spa_l2cache_activate(vdev_t *vd)
1013 {
1014         mutex_enter(&spa_l2cache_lock);
1015         ASSERT(vd->vdev_isl2cache);
1016         spa_aux_activate(vd, &spa_l2cache_avl);
1017         mutex_exit(&spa_l2cache_lock);
1018 }
1019 
1020 /*
1021  * ==========================================================================
1022  * SPA vdev locking
1023  * ==========================================================================
1024  */
1025 
1026 /*
1027  * Lock the given spa_t for the purpose of adding or removing a vdev.
1028  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1029  * It returns the next transaction group for the spa_t.
1030  */
1031 uint64_t
1032 spa_vdev_enter(spa_t *spa)
1033 {
1034         mutex_enter(&spa->spa_vdev_top_lock);
1035         mutex_enter(&spa_namespace_lock);
1036         return (spa_vdev_config_enter(spa));
1037 }
1038 
1039 /*
1040  * Internal implementation for spa_vdev_enter().  Used when a vdev
1041  * operation requires multiple syncs (i.e. removing a device) while
1042  * keeping the spa_namespace_lock held.
1043  */
1044 uint64_t
1045 spa_vdev_config_enter(spa_t *spa)
1046 {
1047         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1048 
1049         spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1050 
1051         return (spa_last_synced_txg(spa) + 1);
1052 }
1053 
1054 /*
1055  * Used in combination with spa_vdev_config_enter() to allow the syncing
1056  * of multiple transactions without releasing the spa_namespace_lock.
1057  */
1058 void
1059 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1060 {
1061         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1062 
1063         int config_changed = B_FALSE;
1064 
1065         ASSERT(txg > spa_last_synced_txg(spa));
1066 
1067         spa->spa_pending_vdev = NULL;
1068 
1069         /*
1070          * Reassess the DTLs.
1071          */
1072         vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1073 
1074         if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1075                 config_changed = B_TRUE;
1076                 spa->spa_config_generation++;
1077         }
1078 
1079         /*
1080          * Verify the metaslab classes.
1081          */
1082         ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1083         ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1084 
1085         spa_config_exit(spa, SCL_ALL, spa);
1086 
1087         /*
1088          * Panic the system if the specified tag requires it.  This
1089          * is useful for ensuring that configurations are updated
1090          * transactionally.
1091          */
1092         if (zio_injection_enabled)
1093                 zio_handle_panic_injection(spa, tag, 0);
1094 
1095         /*
1096          * Note: this txg_wait_synced() is important because it ensures
1097          * that there won't be more than one config change per txg.
1098          * This allows us to use the txg as the generation number.
1099          */
1100         if (error == 0)
1101                 txg_wait_synced(spa->spa_dsl_pool, txg);
1102 
1103         if (vd != NULL) {
1104                 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1105                 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1106                 vdev_free(vd);
1107                 spa_config_exit(spa, SCL_ALL, spa);
1108         }
1109 
1110         /*
1111          * If the config changed, update the config cache.
1112          */
1113         if (config_changed)
1114                 spa_config_sync(spa, B_FALSE, B_TRUE);
1115 }
1116 
1117 /*
1118  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1119  * locking of spa_vdev_enter(), we also want make sure the transactions have
1120  * synced to disk, and then update the global configuration cache with the new
1121  * information.
1122  */
1123 int
1124 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1125 {
1126         spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1127         mutex_exit(&spa_namespace_lock);
1128         mutex_exit(&spa->spa_vdev_top_lock);
1129 
1130         return (error);
1131 }
1132 
1133 /*
1134  * Lock the given spa_t for the purpose of changing vdev state.
1135  */
1136 void
1137 spa_vdev_state_enter(spa_t *spa, int oplocks)
1138 {
1139         int locks = SCL_STATE_ALL | oplocks;
1140 
1141         /*
1142          * Root pools may need to read of the underlying devfs filesystem
1143          * when opening up a vdev.  Unfortunately if we're holding the
1144          * SCL_ZIO lock it will result in a deadlock when we try to issue
1145          * the read from the root filesystem.  Instead we "prefetch"
1146          * the associated vnodes that we need prior to opening the
1147          * underlying devices and cache them so that we can prevent
1148          * any I/O when we are doing the actual open.
1149          */
1150         if (spa_is_root(spa)) {
1151                 int low = locks & ~(SCL_ZIO - 1);
1152                 int high = locks & ~low;
1153 
1154                 spa_config_enter(spa, high, spa, RW_WRITER);
1155                 vdev_hold(spa->spa_root_vdev);
1156                 spa_config_enter(spa, low, spa, RW_WRITER);
1157         } else {
1158                 spa_config_enter(spa, locks, spa, RW_WRITER);
1159         }
1160         spa->spa_vdev_locks = locks;
1161 }
1162 
1163 int
1164 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1165 {
1166         boolean_t config_changed = B_FALSE;
1167 
1168         if (vd != NULL || error == 0)
1169                 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1170                     0, 0, B_FALSE);
1171 
1172         if (vd != NULL) {
1173                 vdev_state_dirty(vd->vdev_top);
1174                 config_changed = B_TRUE;
1175                 spa->spa_config_generation++;
1176         }
1177 
1178         if (spa_is_root(spa))
1179                 vdev_rele(spa->spa_root_vdev);
1180 
1181         ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1182         spa_config_exit(spa, spa->spa_vdev_locks, spa);
1183 
1184         /*
1185          * If anything changed, wait for it to sync.  This ensures that,
1186          * from the system administrator's perspective, zpool(1M) commands
1187          * are synchronous.  This is important for things like zpool offline:
1188          * when the command completes, you expect no further I/O from ZFS.
1189          */
1190         if (vd != NULL)
1191                 txg_wait_synced(spa->spa_dsl_pool, 0);
1192 
1193         /*
1194          * If the config changed, update the config cache.
1195          */
1196         if (config_changed) {
1197                 mutex_enter(&spa_namespace_lock);
1198                 spa_config_sync(spa, B_FALSE, B_TRUE);
1199                 mutex_exit(&spa_namespace_lock);
1200         }
1201 
1202         return (error);
1203 }
1204 
1205 /*
1206  * ==========================================================================
1207  * Miscellaneous functions
1208  * ==========================================================================
1209  */
1210 
1211 void
1212 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1213 {
1214         if (!nvlist_exists(spa->spa_label_features, feature)) {
1215                 fnvlist_add_boolean(spa->spa_label_features, feature);
1216                 /*
1217                  * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1218                  * dirty the vdev config because lock SCL_CONFIG is not held.
1219                  * Thankfully, in this case we don't need to dirty the config
1220                  * because it will be written out anyway when we finish
1221                  * creating the pool.
1222                  */
1223                 if (tx->tx_txg != TXG_INITIAL)
1224                         vdev_config_dirty(spa->spa_root_vdev);
1225         }
1226 }
1227 
1228 void
1229 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1230 {
1231         if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1232                 vdev_config_dirty(spa->spa_root_vdev);
1233 }
1234 
1235 /*
1236  * Rename a spa_t.
1237  */
1238 int
1239 spa_rename(const char *name, const char *newname)
1240 {
1241         spa_t *spa;
1242         int err;
1243 
1244         /*
1245          * Lookup the spa_t and grab the config lock for writing.  We need to
1246          * actually open the pool so that we can sync out the necessary labels.
1247          * It's OK to call spa_open() with the namespace lock held because we
1248          * allow recursive calls for other reasons.
1249          */
1250         mutex_enter(&spa_namespace_lock);
1251         if ((err = spa_open(name, &spa, FTAG)) != 0) {
1252                 mutex_exit(&spa_namespace_lock);
1253                 return (err);
1254         }
1255 
1256         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1257 
1258         avl_remove(&spa_namespace_avl, spa);
1259         (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1260         avl_add(&spa_namespace_avl, spa);
1261 
1262         /*
1263          * Sync all labels to disk with the new names by marking the root vdev
1264          * dirty and waiting for it to sync.  It will pick up the new pool name
1265          * during the sync.
1266          */
1267         vdev_config_dirty(spa->spa_root_vdev);
1268 
1269         spa_config_exit(spa, SCL_ALL, FTAG);
1270 
1271         txg_wait_synced(spa->spa_dsl_pool, 0);
1272 
1273         /*
1274          * Sync the updated config cache.
1275          */
1276         spa_config_sync(spa, B_FALSE, B_TRUE);
1277 
1278         spa_close(spa, FTAG);
1279 
1280         mutex_exit(&spa_namespace_lock);
1281 
1282         return (0);
1283 }
1284 
1285 /*
1286  * Return the spa_t associated with given pool_guid, if it exists.  If
1287  * device_guid is non-zero, determine whether the pool exists *and* contains
1288  * a device with the specified device_guid.
1289  */
1290 spa_t *
1291 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1292 {
1293         spa_t *spa;
1294         avl_tree_t *t = &spa_namespace_avl;
1295 
1296         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1297 
1298         for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1299                 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1300                         continue;
1301                 if (spa->spa_root_vdev == NULL)
1302                         continue;
1303                 if (spa_guid(spa) == pool_guid) {
1304                         if (device_guid == 0)
1305                                 break;
1306 
1307                         if (vdev_lookup_by_guid(spa->spa_root_vdev,
1308                             device_guid) != NULL)
1309                                 break;
1310 
1311                         /*
1312                          * Check any devices we may be in the process of adding.
1313                          */
1314                         if (spa->spa_pending_vdev) {
1315                                 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1316                                     device_guid) != NULL)
1317                                         break;
1318                         }
1319                 }
1320         }
1321 
1322         return (spa);
1323 }
1324 
1325 /*
1326  * Determine whether a pool with the given pool_guid exists.
1327  */
1328 boolean_t
1329 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1330 {
1331         return (spa_by_guid(pool_guid, device_guid) != NULL);
1332 }
1333 
1334 char *
1335 spa_strdup(const char *s)
1336 {
1337         size_t len;
1338         char *new;
1339 
1340         len = strlen(s);
1341         new = kmem_alloc(len + 1, KM_SLEEP);
1342         bcopy(s, new, len);
1343         new[len] = '\0';
1344 
1345         return (new);
1346 }
1347 
1348 void
1349 spa_strfree(char *s)
1350 {
1351         kmem_free(s, strlen(s) + 1);
1352 }
1353 
1354 uint64_t
1355 spa_get_random(uint64_t range)
1356 {
1357         uint64_t r;
1358 
1359         ASSERT(range != 0);
1360 
1361         (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1362 
1363         return (r % range);
1364 }
1365 
1366 uint64_t
1367 spa_generate_guid(spa_t *spa)
1368 {
1369         uint64_t guid = spa_get_random(-1ULL);
1370 
1371         if (spa != NULL) {
1372                 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1373                         guid = spa_get_random(-1ULL);
1374         } else {
1375                 while (guid == 0 || spa_guid_exists(guid, 0))
1376                         guid = spa_get_random(-1ULL);
1377         }
1378 
1379         return (guid);
1380 }
1381 
1382 void
1383 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1384 {
1385         char type[256];
1386         char *checksum = NULL;
1387         char *compress = NULL;
1388 
1389         if (bp != NULL) {
1390                 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1391                         dmu_object_byteswap_t bswap =
1392                             DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1393                         (void) snprintf(type, sizeof (type), "bswap %s %s",
1394                             DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1395                             "metadata" : "data",
1396                             dmu_ot_byteswap[bswap].ob_name);
1397                 } else {
1398                         (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1399                             sizeof (type));
1400                 }
1401                 if (!BP_IS_EMBEDDED(bp)) {
1402                         checksum =
1403                             zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1404                 }
1405                 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1406         }
1407 
1408         SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1409             compress);
1410 }
1411 
1412 void
1413 spa_freeze(spa_t *spa)
1414 {
1415         uint64_t freeze_txg = 0;
1416 
1417         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1418         if (spa->spa_freeze_txg == UINT64_MAX) {
1419                 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1420                 spa->spa_freeze_txg = freeze_txg;
1421         }
1422         spa_config_exit(spa, SCL_ALL, FTAG);
1423         if (freeze_txg != 0)
1424                 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1425 }
1426 
1427 void
1428 zfs_panic_recover(const char *fmt, ...)
1429 {
1430         va_list adx;
1431 
1432         va_start(adx, fmt);
1433         vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1434         va_end(adx);
1435 }
1436 
1437 /*
1438  * This is a stripped-down version of strtoull, suitable only for converting
1439  * lowercase hexadecimal numbers that don't overflow.
1440  */
1441 uint64_t
1442 strtonum(const char *str, char **nptr)
1443 {
1444         uint64_t val = 0;
1445         char c;
1446         int digit;
1447 
1448         while ((c = *str) != '\0') {
1449                 if (c >= '0' && c <= '9')
1450                         digit = c - '0';
1451                 else if (c >= 'a' && c <= 'f')
1452                         digit = 10 + c - 'a';
1453                 else
1454                         break;
1455 
1456                 val *= 16;
1457                 val += digit;
1458 
1459                 str++;
1460         }
1461 
1462         if (nptr)
1463                 *nptr = (char *)str;
1464 
1465         return (val);
1466 }
1467 
1468 /*
1469  * ==========================================================================
1470  * Accessor functions
1471  * ==========================================================================
1472  */
1473 
1474 boolean_t
1475 spa_shutting_down(spa_t *spa)
1476 {
1477         return (spa->spa_async_suspended);
1478 }
1479 
1480 dsl_pool_t *
1481 spa_get_dsl(spa_t *spa)
1482 {
1483         return (spa->spa_dsl_pool);
1484 }
1485 
1486 boolean_t
1487 spa_is_initializing(spa_t *spa)
1488 {
1489         return (spa->spa_is_initializing);
1490 }
1491 
1492 blkptr_t *
1493 spa_get_rootblkptr(spa_t *spa)
1494 {
1495         return (&spa->spa_ubsync.ub_rootbp);
1496 }
1497 
1498 void
1499 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1500 {
1501         spa->spa_uberblock.ub_rootbp = *bp;
1502 }
1503 
1504 void
1505 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1506 {
1507         if (spa->spa_root == NULL)
1508                 buf[0] = '\0';
1509         else
1510                 (void) strncpy(buf, spa->spa_root, buflen);
1511 }
1512 
1513 int
1514 spa_sync_pass(spa_t *spa)
1515 {
1516         return (spa->spa_sync_pass);
1517 }
1518 
1519 char *
1520 spa_name(spa_t *spa)
1521 {
1522         return (spa->spa_name);
1523 }
1524 
1525 uint64_t
1526 spa_guid(spa_t *spa)
1527 {
1528         dsl_pool_t *dp = spa_get_dsl(spa);
1529         uint64_t guid;
1530 
1531         /*
1532          * If we fail to parse the config during spa_load(), we can go through
1533          * the error path (which posts an ereport) and end up here with no root
1534          * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1535          * this case.
1536          */
1537         if (spa->spa_root_vdev == NULL)
1538                 return (spa->spa_config_guid);
1539 
1540         guid = spa->spa_last_synced_guid != 0 ?
1541             spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1542 
1543         /*
1544          * Return the most recently synced out guid unless we're
1545          * in syncing context.
1546          */
1547         if (dp && dsl_pool_sync_context(dp))
1548                 return (spa->spa_root_vdev->vdev_guid);
1549         else
1550                 return (guid);
1551 }
1552 
1553 uint64_t
1554 spa_load_guid(spa_t *spa)
1555 {
1556         /*
1557          * This is a GUID that exists solely as a reference for the
1558          * purposes of the arc.  It is generated at load time, and
1559          * is never written to persistent storage.
1560          */
1561         return (spa->spa_load_guid);
1562 }
1563 
1564 uint64_t
1565 spa_last_synced_txg(spa_t *spa)
1566 {
1567         return (spa->spa_ubsync.ub_txg);
1568 }
1569 
1570 uint64_t
1571 spa_first_txg(spa_t *spa)
1572 {
1573         return (spa->spa_first_txg);
1574 }
1575 
1576 uint64_t
1577 spa_syncing_txg(spa_t *spa)
1578 {
1579         return (spa->spa_syncing_txg);
1580 }
1581 
1582 pool_state_t
1583 spa_state(spa_t *spa)
1584 {
1585         return (spa->spa_state);
1586 }
1587 
1588 spa_load_state_t
1589 spa_load_state(spa_t *spa)
1590 {
1591         return (spa->spa_load_state);
1592 }
1593 
1594 uint64_t
1595 spa_freeze_txg(spa_t *spa)
1596 {
1597         return (spa->spa_freeze_txg);
1598 }
1599 
1600 /* ARGSUSED */
1601 uint64_t
1602 spa_get_asize(spa_t *spa, uint64_t lsize)
1603 {
1604         return (lsize * spa_asize_inflation);
1605 }
1606 
1607 /*
1608  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1609  * or at least 32MB.
1610  *
1611  * See the comment above spa_slop_shift for details.
1612  */
1613 uint64_t
1614 spa_get_slop_space(spa_t *spa) {
1615         uint64_t space = spa_get_dspace(spa);
1616         return (MAX(space >> spa_slop_shift, SPA_MINDEVSIZE >> 1));
1617 }
1618 
1619 uint64_t
1620 spa_get_dspace(spa_t *spa)
1621 {
1622         return (spa->spa_dspace);
1623 }
1624 
1625 void
1626 spa_update_dspace(spa_t *spa)
1627 {
1628         spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1629             ddt_get_dedup_dspace(spa);
1630 }
1631 
1632 /*
1633  * Return the failure mode that has been set to this pool. The default
1634  * behavior will be to block all I/Os when a complete failure occurs.
1635  */
1636 uint8_t
1637 spa_get_failmode(spa_t *spa)
1638 {
1639         return (spa->spa_failmode);
1640 }
1641 
1642 boolean_t
1643 spa_suspended(spa_t *spa)
1644 {
1645         return (spa->spa_suspended);
1646 }
1647 
1648 uint64_t
1649 spa_version(spa_t *spa)
1650 {
1651         return (spa->spa_ubsync.ub_version);
1652 }
1653 
1654 boolean_t
1655 spa_deflate(spa_t *spa)
1656 {
1657         return (spa->spa_deflate);
1658 }
1659 
1660 metaslab_class_t *
1661 spa_normal_class(spa_t *spa)
1662 {
1663         return (spa->spa_normal_class);
1664 }
1665 
1666 metaslab_class_t *
1667 spa_log_class(spa_t *spa)
1668 {
1669         return (spa->spa_log_class);
1670 }
1671 
1672 int
1673 spa_max_replication(spa_t *spa)
1674 {
1675         /*
1676          * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1677          * handle BPs with more than one DVA allocated.  Set our max
1678          * replication level accordingly.
1679          */
1680         if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1681                 return (1);
1682         return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1683 }
1684 
1685 int
1686 spa_prev_software_version(spa_t *spa)
1687 {
1688         return (spa->spa_prev_software_version);
1689 }
1690 
1691 uint64_t
1692 spa_deadman_synctime(spa_t *spa)
1693 {
1694         return (spa->spa_deadman_synctime);
1695 }
1696 
1697 uint64_t
1698 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1699 {
1700         uint64_t asize = DVA_GET_ASIZE(dva);
1701         uint64_t dsize = asize;
1702 
1703         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1704 
1705         if (asize != 0 && spa->spa_deflate) {
1706                 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1707                 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1708         }
1709 
1710         return (dsize);
1711 }
1712 
1713 uint64_t
1714 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1715 {
1716         uint64_t dsize = 0;
1717 
1718         for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1719                 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1720 
1721         return (dsize);
1722 }
1723 
1724 uint64_t
1725 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1726 {
1727         uint64_t dsize = 0;
1728 
1729         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1730 
1731         for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1732                 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1733 
1734         spa_config_exit(spa, SCL_VDEV, FTAG);
1735 
1736         return (dsize);
1737 }
1738 
1739 /*
1740  * ==========================================================================
1741  * Initialization and Termination
1742  * ==========================================================================
1743  */
1744 
1745 static int
1746 spa_name_compare(const void *a1, const void *a2)
1747 {
1748         const spa_t *s1 = a1;
1749         const spa_t *s2 = a2;
1750         int s;
1751 
1752         s = strcmp(s1->spa_name, s2->spa_name);
1753         if (s > 0)
1754                 return (1);
1755         if (s < 0)
1756                 return (-1);
1757         return (0);
1758 }
1759 
1760 int
1761 spa_busy(void)
1762 {
1763         return (spa_active_count);
1764 }
1765 
1766 void
1767 spa_boot_init()
1768 {
1769         spa_config_load();
1770 }
1771 
1772 void
1773 spa_init(int mode)
1774 {
1775         mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1776         mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1777         mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1778         cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1779 
1780         avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1781             offsetof(spa_t, spa_avl));
1782 
1783         avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1784             offsetof(spa_aux_t, aux_avl));
1785 
1786         avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1787             offsetof(spa_aux_t, aux_avl));
1788 
1789         spa_mode_global = mode;
1790 
1791 #ifdef _KERNEL
1792         spa_arch_init();
1793 #else
1794         if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1795                 arc_procfd = open("/proc/self/ctl", O_WRONLY);
1796                 if (arc_procfd == -1) {
1797                         perror("could not enable watchpoints: "
1798                             "opening /proc/self/ctl failed: ");
1799                 } else {
1800                         arc_watch = B_TRUE;
1801                 }
1802         }
1803 #endif
1804 
1805         refcount_init();
1806         unique_init();
1807         range_tree_init();
1808         zio_init();
1809         dmu_init();
1810         zil_init();
1811         vdev_cache_stat_init();
1812         zfs_prop_init();
1813         zpool_prop_init();
1814         zpool_feature_init();
1815         spa_config_load();
1816         l2arc_start();
1817 }
1818 
1819 void
1820 spa_fini(void)
1821 {
1822         l2arc_stop();
1823 
1824         spa_evict_all();
1825 
1826         vdev_cache_stat_fini();
1827         zil_fini();
1828         dmu_fini();
1829         zio_fini();
1830         range_tree_fini();
1831         unique_fini();
1832         refcount_fini();
1833 
1834         avl_destroy(&spa_namespace_avl);
1835         avl_destroy(&spa_spare_avl);
1836         avl_destroy(&spa_l2cache_avl);
1837 
1838         cv_destroy(&spa_namespace_cv);
1839         mutex_destroy(&spa_namespace_lock);
1840         mutex_destroy(&spa_spare_lock);
1841         mutex_destroy(&spa_l2cache_lock);
1842 }
1843 
1844 /*
1845  * Return whether this pool has slogs. No locking needed.
1846  * It's not a problem if the wrong answer is returned as it's only for
1847  * performance and not correctness
1848  */
1849 boolean_t
1850 spa_has_slogs(spa_t *spa)
1851 {
1852         return (spa->spa_log_class->mc_rotor != NULL);
1853 }
1854 
1855 spa_log_state_t
1856 spa_get_log_state(spa_t *spa)
1857 {
1858         return (spa->spa_log_state);
1859 }
1860 
1861 void
1862 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1863 {
1864         spa->spa_log_state = state;
1865 }
1866 
1867 boolean_t
1868 spa_is_root(spa_t *spa)
1869 {
1870         return (spa->spa_is_root);
1871 }
1872 
1873 boolean_t
1874 spa_writeable(spa_t *spa)
1875 {
1876         return (!!(spa->spa_mode & FWRITE));
1877 }
1878 
1879 /*
1880  * Returns true if there is a pending sync task in any of the current
1881  * syncing txg, the current quiescing txg, or the current open txg.
1882  */
1883 boolean_t
1884 spa_has_pending_synctask(spa_t *spa)
1885 {
1886         return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1887 }
1888 
1889 int
1890 spa_mode(spa_t *spa)
1891 {
1892         return (spa->spa_mode);
1893 }
1894 
1895 uint64_t
1896 spa_bootfs(spa_t *spa)
1897 {
1898         return (spa->spa_bootfs);
1899 }
1900 
1901 uint64_t
1902 spa_delegation(spa_t *spa)
1903 {
1904         return (spa->spa_delegation);
1905 }
1906 
1907 objset_t *
1908 spa_meta_objset(spa_t *spa)
1909 {
1910         return (spa->spa_meta_objset);
1911 }
1912 
1913 enum zio_checksum
1914 spa_dedup_checksum(spa_t *spa)
1915 {
1916         return (spa->spa_dedup_checksum);
1917 }
1918 
1919 /*
1920  * Reset pool scan stat per scan pass (or reboot).
1921  */
1922 void
1923 spa_scan_stat_init(spa_t *spa)
1924 {
1925         /* data not stored on disk */
1926         spa->spa_scan_pass_start = gethrestime_sec();
1927         spa->spa_scan_pass_exam = 0;
1928         vdev_scan_stat_init(spa->spa_root_vdev);
1929 }
1930 
1931 /*
1932  * Get scan stats for zpool status reports
1933  */
1934 int
1935 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1936 {
1937         dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1938 
1939         if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1940                 return (SET_ERROR(ENOENT));
1941         bzero(ps, sizeof (pool_scan_stat_t));
1942 
1943         /* data stored on disk */
1944         ps->pss_func = scn->scn_phys.scn_func;
1945         ps->pss_start_time = scn->scn_phys.scn_start_time;
1946         ps->pss_end_time = scn->scn_phys.scn_end_time;
1947         ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1948         ps->pss_examined = scn->scn_phys.scn_examined;
1949         ps->pss_to_process = scn->scn_phys.scn_to_process;
1950         ps->pss_processed = scn->scn_phys.scn_processed;
1951         ps->pss_errors = scn->scn_phys.scn_errors;
1952         ps->pss_state = scn->scn_phys.scn_state;
1953 
1954         /* data not stored on disk */
1955         ps->pss_pass_start = spa->spa_scan_pass_start;
1956         ps->pss_pass_exam = spa->spa_scan_pass_exam;
1957 
1958         return (0);
1959 }
1960 
1961 boolean_t
1962 spa_debug_enabled(spa_t *spa)
1963 {
1964         return (spa->spa_debug);
1965 }
1966 
1967 int
1968 spa_maxblocksize(spa_t *spa)
1969 {
1970         if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
1971                 return (SPA_MAXBLOCKSIZE);
1972         else
1973                 return (SPA_OLD_MAXBLOCKSIZE);
1974 }